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Abstract
We report the results of a verification experiment on an algorithm for robust mean estimation, i.e.,
an algorithm that computes a mean in the presence of outliers. We formalize the algorithm in
the Coq proof assistant and devise a pragmatic approach for identifying and solving issues related
to the choice of bounds. To keep our formalization succinct and generic, we recast the original
argument using an existing library for finite probabilities that we extend with reusable lemmas. To
formalize the original algorithm, which relies on a subtle convergence argument, we observe that by
adding suitable termination checks, we can turn it into a well-founded recursion without losing its
original properties. We also exploit a tactic for solving real-valued inequalities by approximation to
heuristically fix inaccurate constant values in the original proof.
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1 Towards formally-verified robust mean estimators

Our motivation is to produce formally-verified programs that perform robust mean estimation
as a first step towards formal robust statistics. The setting for robust mean estimation is
as follows. We are given samples from an unknown distribution, but some fraction of them
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39:2 Robust Mean Estimation by All Means

are outliers (data points that differ significantly from other observations) that we want to
discard. A robust mean estimator is an algorithm that computes the mean of a set of data
points while minimizing the effect of outliers. More formally, we say that a mean estimator
is robust when the difference between the computed mean and the optimal mean, without
considering outliers, can be upper-bounded by arbitrarily small positive numbers. There are
several algorithms for robust mean estimation, e.g., the median is a robust estimator, and
the trimmed mean by Tukey [14] is a robust estimator. Both of these estimators work by
excluding samples. The robustness of trimmed mean has already been formalized in Coq [5].

In this paper we verify the robustness of an archetypal algorithm for mean estimation
that operates by iteratively re-weighting the influence of each sample. The algorithm is an
example of an M-estimator [7, Ch. 3], and it is described in Steinhardt’s Ph.D. thesis [11]
under the name filter1d. M-estimators assign weights to each sample instead of excluding
samples. Not all M-estimators are robust: robustness requires that sufficiently low weights
are assigned to outliers.

We identify and resolve two main challenges with the algorithm filter1d. First, through
formalization, we identity and fix issues with the original proofs which contain erroneous
constants and bounds. The second challenge is technical. The original proofs spelled out
calculations in terms of “big sums,” which are the intuitive lingua franca for probability
theory in finite settings. We use and extend existing libraries to keep the formalization
succinct and reusable, and as a consequence, proofs became more modular.

These challenges, checking and occasionally fixing constant bounds, and devising tech-
niques for symbolic calculations, are recurring issues when formalizing paper proofs about
statistical algorithms. In this paper, we formalize the filter1d algorithm and its related
theory in Coq [12]. We leverage this experience to inform a broader discussion of these
recurring issues and to document a general approach. We represent calculations involving
probabilities using an existing library, and we also take advantage of an automated tactic
in Coq (namely interval [9]) to fix erroneous constants in the original proof. In the end,
we are able to formalize filter1d without ambiguity in the language of the Coq proof
assistant.

The paper is organized as follows. First, we present the filter1d algorithm for robust
mean estimation in Sect. 2. In Sect. 3, we explain how we formalize the bound on the mean
using an existing library and using changes of distributional assumptions. In Sect. 4, we
explain how we formalize the bound on the variance by fixing the original proofs, in practice
by using the interval tactic of Coq. Finally, we formalize the algorithm for robust mean
estimation and prove its termination and correctness in Sect. 5. The results presented in this
paper are available online as a Coq formalization [1].

2 An archetypal algorithm for robust mean estimation

The algorithm takes as input a discrete random variable X (with sampled values x1, . . . , xn),
a finite probability distribution P (with probabilities p1, . . . , pn), and a positive value v. It
either computes a mean µ̂ or fails. The computed mean is expected to be close to the mean
of the random variable X for the distribution P with the outliers removed. It is correctly
computed in the following sense: if there exists a subset S of dom(X) such that v = σ2

S

and the probability ε of S (i.e., the set of outliers) is smaller than 1/12.7, then |µ̂− µS | is
bounded by

√
v·2ε
2−ε +

√
16v·2ε

1−ε (where σ2
S

def= V [X|S] and µS
def= E [X|S]). This signifies what

is meant by robustness: as long as the probability of the set of outliers is smaller than a
constant, the result is guaranteed to stay within a reasonable range.
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The algorithm maintains a sequence of weights ci, initialized to 1, which represent the
contribution of each point to the computation. These weights are then updated iteratively,
such that points that deviate the most are given less weight (Algorithm 1).

Algorithm 1 filter1d.

1. Initialize each weight c1, . . . , cn to 1
2. Compute the empirical mean: µ̂c ← (

∑n
i=1 pixici)/(

∑n
i=1 pici)

3. Compute the empirical variance: σ̂2
c ← (

∑n
i=1 piciτi)/(

∑n
i=1 pici) where τi

def= (xi − µ̂c)2

4. If σ̂2
c ≤ 16v then terminate and output µ̂c

5. Otherwise, update ci ← ci(1− τi/τmax) where τmax = maxi∈supp(c) τi

6. If all ci = 0 then terminate with error; otherwise, go back to line 2

Note that at Step 5, we take the maximum over the support of the function c : i 7→ ci

whereas the original algorithm [11, Sect. 1.2.3] does not make this explicit. This makes our
algorithm slightly different from the original algorithm, but it is a reasonable modification
because it does not change the computed values. In Step 6, our algorithm also checks that
not all ci are zero before continuing, because otherwise there is a division by zero in Step 2
(take for example the situation of a positive computed variance and two points of equal
weight). These modifications do not change the property originally stated by Steinhardt,
namely that when filter1d terminates, it results in the desired mean (Step 4). Furthermore,
we generalize the algorithm by giving each point xi a probability pi instead of assuming a
uniform distribution1 as in [11].

Lastly, the robustness of filter1d is a consequence of the following invariant [11, eqn
(I), page 5] being preserved:

∑
i∈S (1− ci)pi ≤ 1−ε

2
∑

i∈S (1− ci)pi (I). It shows that the
amount of “mass” (the sum of the weights) removed from the points in S is less than 1−ε

2
times the amount of mass removed from the outliers. The invariant is key to establishing
the bound between the empirical mean and the mean on the points in S shown in Sect. 3.3,
which delivers the final robustness argument, and the bounding of the empirical variance of
Sect. 4, which in turn is necessary to show that the invariant is preserved when the weights
are updated.

3 Bounding the empirical mean using resilience and changes of
distributional assumptions

In this section, we rework the original proofs so that they can be formalized using InfoTheo [3,
4], a formalization of information theory in Coq.

3.1 Background about formalization of probabilities
InfoTheo introduces a number of definitions and lemmas to deal with finite probabilities.
The type of finite distributions is {fdist U} where U is a finite type (finType as provided by
the MathComp library [8]). A finite set in MathComp is an object of type {set U} where

1 This change does not affect the final computation: for finite samples, pi corresponds to a multiplicity
count of the occurrences of xi. In the case of a uniform distribution, all pi have the value 1/n, so the
original algorithm is a special case. Note that the computation of the updated ci at Step 5 does not
directly depend on the value of pi.

ITP 2024
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U is a finite type; finite sets are used to represent events. A probability space is a finite type
with a function P, which assigns to each point of the type a probability in [0, 1]. The domain
of P can also be extended to finite sets, taking the sum of the pointwise values, resulting in the
corresponding probability measure. A random variable is a function embodying the notion of
probabilistically changing values: it goes from a probability space to a type, the input being
assumed to be sampled from the probability space according to its probability measure. The
type of real-valued random variables is denoted by {RV P -> R} where P is the probability
measure of the ambient probability space and R is the type of real numbers [3, Sect. 2]. The
conditional expectation of the random variable X w.r.t. an event A is `E_[X | A] (see [2] for
conditional probabilities in InfoTheo). We use a resilience lemma that bounds the distance
between two conditional expectations (generalizing [5, Sect. 5.1]):

▶ Lemma 1 (Resilience). Let X be a random variable with probability measure P , and F , G

be two events such that F ⊆ G. Then for any δ such that 0 < δ ≤ P (F )/P (G), we have

|E [X|F ]− E [X|G]| ≤
√

2V [X|G] 1− δ

δ
.

3.2 Changing distributional assumptions

Steinhardt argues for the correctness of his algorithm using big sums. We recast big sums
in terms of expectation and variance, as provided by InfoTheo, to enable the reuse of
existing lemmas. We further extend InfoTheo with lemmas about changes in distributional
assumptions of RVs.

A change of distributional assumption is the transformation of a RV X on a probability
space T1 with probability measure P into another RV on another space T2 with probability
measure Q by precomposing a function f : T1→ T2:

Definition change_dist (T1 T2 : finType) (P : {fdist T1}) (Q : {fdist T2})
(f : T2 -> T1) (X : {RV P -> R}) : {RV Q -> R} := X \o f.

We denote with Q.-RV X \o f the resulting RV and write Q.-RV X when f is the identity.
The main application of changing distributional assumptions is to formalize the empirical

variance (Step 3 of filter1d). Given a probability measure P and (non-negative) weights ci

(i ∈ A), we call the probability measure i 7→ cipi/
∑

j∈A cjpj weighted. In Coq we provide
the weighted probability measure of P as a function wgt whose argument is a proof of∑

j∈A cjpj ̸= 0. We call weighted the change of distributional assumption with a weighted
probability measure. In particular, the empirical mean of X with weights ci can be expressed
as the expectation of a weighted RV.

Similarly, given a probability measure P over U and a function h with codomain ⊆ [0, 1],
we call split the probability measure over U × {F, T} (Split.d P h in Coq):

split(P, h)(i,b)
def=

{
h(i)pi if b = T

(1− h(i))pi if b = F.

We call first-split the RV Q.-RV X \o fst (where Q is Split.d P h). It is possible to change
a conditional expectation by a first-split. (The Coq notation `* is for the Cartesian product
and [set: bool] is for the set of booleans.)

Definition fst_RV (X : {RV P -> R}) : {RV d -> R} := (Split.d P h).-RV X \o fst.
Lemma cEx (X : {RV P -> R}) A : `E_[X | A] = `E_[fst_RV X | A `* [set: bool]].
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3.3 Bounding the empirical mean
We prove the following bound between the mean and the empirical mean under the invari-
ant (I): |µS − µ̂c| ≤ σS

√
2ε

2−ε + σ̂c

√
2ε

1−ε [11, Lemma 1.4].
For that purpose, we introduce an intermediate value µ̃c and first show (µS−µ̃c)2 ≤ σ̂2

c
2ε

1−ε ,
which is formalized as follows, using PC0, a proof that Weighted.total P C != 0:
Let WP := Weighted.d PC0.
Lemma bound_emean : invariantW -> (* A weaker version of the invariant *)

(`E_[WP.-RV X | S] - `E (WP.-RV X))^+2 <= `V (WP.-RV X) * 2 * eps / (1 - eps).

The proof is a direct application of Lemma 1 with δ = 1− ε and G being the full set.
The second bound is (µS− µ̃c)2 ≤ σ2

S
2ε

2−ε , proved using the inequality 1−ε/2 ≤
∑

i∈S
cipi

P (S)
(which we shall call “S-mass”):
Lemma bound_mean : invariant ->

(`E_[X | S] - `E_[WP.-RV X | S])^+2 <= `V_[X | S] * 2 * eps / (2 - eps).

The proof relies on the observation that one can change the distributional assumption of
µS as E [X1|S × {F, T}] and similarly µ̃c = E [X1|S × {T}], where X1 is the first-split of
X. This changing of distributional assumption corresponds to the formalization of the
following proof step in [11, page 63]: “(here we think of µ̃c as the mean of an event occurring
with probability

∑
i∈S ci/|S| under the uniform distribution on |S|)”. Using changing of

distributional assumption, the proof is actually an application of Lemma 1, using “S-mass”
to fulfill its hypothesis:

(E [X1|S × {F, T}]︸ ︷︷ ︸
µ

−E [X1|S × {T}]︸ ︷︷ ︸
µ̃

)2 ≤
↑

Lemma 1

2V [X1|S × {F, T}]︸ ︷︷ ︸
V[X|S]

1− (1− ε/2)
1− ε/2 .

4 Bounding of variance: using interval to fix proofs

In this section, we explain how we formalize and fix the proofs that bound the empirical
variance of filter1d. Precisely, we obtain the following bound for the empirical variance.

▶ Lemma 2. Provided the invariant (I), 16σ2
S ≤ σ̂2

c , and ε ≤ 1/12.7, we have:
(a)

∑
i∈S cipiτi ≤ 1−ε

3.35 σ2
c and (b)

∑
i∈S cipiτi ≥ 2

3.35 σ2
c .

Steinhardt claims an upper-bound of 1/12 for ε and uses 3 in the denominators in (a) and
(b) instead of 3.35 [11, Lemma 1.4 (part 2)/eqn A.6–A.9]. We believe that the lemma cannot
be proved with Steinhard’s bounds because we corrected mistakes in the original proof of
(b) [11, eqn A.10–A.11, page 63], which we discovered when we mechanized an argument
that “consist[s] of straightforward but tedious calculation” [11, page 5].

The correct bounds can be obtained by using the interval tactic [9, 10] of Coq. We
parameterize the Coq statements corresponding to Lemma 2 with a variable eps_max for the
upper-bound to be found and with a variable denom for the denominators in (a) and (b):
Notation eps := Pr P cplt_S. (* cplt_S is the complement of S *)
Notation eps_max := 10 / 127. (* values found by try-and-error, see below *)
Notation denom := 335 / 100.
Hypothesis low_eps : eps <= eps_max.

Lemma bound_empirical_variance_S :
\sum_(i in S) C i * P i * tau i <= (1 - eps)/denom * `V (WP.-RV X).

Lemma bound_empirical_variance_cplt_S :
2/denom * `V (WP.-RV X) <= \sum_(i in cplt_S) C i * P i * tau i.

ITP 2024



39:6 Robust Mean Estimation by All Means

Then, we use two proof scripts (inspired by Steinhard’s proofs) to reduce the proof to
purely arithmetical subgoals depending on the variables eps_max and denom. Finally, we
use Coq to help find optimal values for eps_max and denom by adjusting the parameters
and replaying the proof scripts, deferring subgoals related to arithmetic to interval. In
this way, we obtained the values 3.35 and 1/12.7 for denom and eps_max, respectively, by
iterative trial-and-error. Note that with Steinhard’s parameters (3 and 1/12), the proof
script bound_empirical_variance_S holds, but bound_empirical_variance_cplt_S does
not. It is possible to use the same process to further refine the constants: e.g., we are able to
show the same results for 3.345 and 1/12.65.

5 A formally robust algorithm for mean estimation

5.1 Formalizing filter1d

The algorithm filter1d was presented in Sect. 2 in the form of a loop. To formalize it in
Coq, we turn it into a recursive algorithm by using the Function command [12, Functional
Induction], which can be used for arbitrary well-founded recursion (not just structural).

1 Variables (U : finType) (P : {fdist U}) (X : {RV P -> R}).
2 Function filter1D_rec v (v_ge0 : 0 <= v)
3 (C : nneg_finfun U) (C01 : is01 C) (PC0 : Weighted.total P C != 0)
4 {measure (fun C => #| 0.-support C |) C} :=
5 let WP := wgt PC0 in
6 if `V (WP.-RV X) <=? 16 * v is left _ then
7 Some (`E (WP.-RV X))
8 else
9 let C' := update X PC0 in

10 if Weighted.total P C' !=? 0 is left PC0' then
11 filter1D_rec v_ge0 (is01_update X PC0 C01) PC0'
12 else
13 None.

The parameter U is a finite type, P is a probability measure over U, and X is a random variable
whose probability measure is P. The function takes as parameters the variance v with a proof
that it is non-negative (v_ge0), as well as a (non-negative) weight function C with proofs
that the weights are less than 1 (C01) and that their total is not 0 (PC0). The measure that
controls termination is the size of the support of C. Indeed, an execution of Step 5 sets one
nonzero weight to zero (the weight Ci such that τi = τmax), rendering the nonzero support of
Ci’s (0.-support C at line 4) strictly smaller.

At each iteration, we update the distributional assumption (line 5) and compute the
variance (line 6). Then, we update the weights (line 9) and test if we can recurse by checking
that the total of the new weights is nonzero. A termination is reached if (1) the empirical
variance satisfies the convergence condition σ̂2

c ≤ 16v (line 6), resulting in Some(µ̂c), or
(2) the weighted total after the update is zero, resulting in None (line 13). When neither is
the case, we perform a recursive call at line 11, passing two proof terms that also implicitly
carry the updated C'i’s. The function is01_update computes a term that shows that C'i’s
do not break the invariant that they are between 0 and 1. The proof PC0' directly results
from the case analysis at line 10.

We feed a set of constant weights, all equal to 1, as the base case of Ci to complete the
definition of filter1d (again, in this definition, the constant weights are implicitly passed
by two proof terms C1_is01 U and PC1_neq0 P):

Definition filter1D v (v_ge0 : 0 <= v) := filter1D_rec v_ge0 (C1_is01 U) (PC1_neq0 P).
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5.2 Robustness of filter1d

We can finally prove the robustness of filter1d. The recursive definition based on the
measure #|0.-support C| ensures that the function returns None if and only if the compu-
tation has failed and all Ci’s are set to zero. Otherwise, it returns the empirical mean upon
termination.

The first step in proving robustness is to show the preservation of the invariant (I) w.r.t.
the update performed at Step 5:

Lemma invariant_update : let C' := update X PC0 in
invariant P C S eps -> invariant P C' S eps.

This formalizes [11, Lemma 1.5, page 5]. The proof is a consequence of Lemma 2 (Sect. 4)
used in conjunction with the following property of update (update_removed_weight in [1]):∑

i∈E pi(1− c′
i) =

∑
i∈E pi(1− ci) + 1/τmax

∑
i∈E piciτi where the c′

i’s are the weights after
an update, i.e., c′

i := ci

(
1− τi

τmax

)
.

Using the preservation of the invariant, we show that filter1d is robust with the following
theorem and its corollary:

1 Hypothesis low_eps : eps <= eps_max.
2 Lemma filter1D_correct :
3 let v := `V_[X | S] in
4 if @filter1D U P X v v_ge0 is Some mu_hat
5 then `| `E_[X | S] - mu_hat | <= Num.sqrt (v * (2 * eps) / (2 - eps)) +
6 Num.sqrt (16 * v * (2 * eps) / (1 - eps))
7 else false.
8

9 Corollary filter1D_converges : @filter1D U P X `V_[X | S] v_ge0 != None.

The @ mark (in lines 4 and 9) disables the inference of implicit arguments in Coq. The
theorem shows that, if given the appropriate ε and variance: (i) the algorithm never terminates
with an error; and (ii) when the algorithm terminates, the empirical mean is close enough to
the true mean.

6 Conclusions

This paper describes a mechanized proof of a simple M-estimator in the proof assistant Coq.
The result contributes to the state of the art by improving the pencil-and-paper presentation,
by making explicit all details, by clarifying the termination argument, by fixing errors in the
pencil-and-paper proofs, and by improving the error bounds. Our approach makes use of
the interval tactic, which helped determine the correct bounds in the formulation of the
main lemma (Sect. 4). The formal verification of the M-estimator can be seen as yet another
result in a series of applications of formalized probability, among them the verification of
stochastic algorithms [13] and machine learning algorithms [15].

In future work, we plan to generalize the present work on robust mean estimation to the
multi-dimensional case (as in [6]) and to normed vector spaces.
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