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Abstract
Apostol’s Modular Functions and Dirichlet Series in Number Theory [2] is a graduate text covering
topics such as elliptic functions, modular functions, approximation theorems and general Dirichlet
series. It relies on complex analysis, winding numbers, the Riemann ζ function and Laurent series.
We have formalised several chapters and can comment on the sort of gaps found in pedagogical
mathematics. Proofs are available from https://github.com/Wenda302/Number_Theory_ITP2024.
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1 Introduction

Number theory is an ideal testbed for techniques in the formalisation of mathematics: it is
central to mathematics, as many Fields medals attest, and its analytic branch requires the
deployment of complex analysis and approximation theory.

Apostol’s popular textbook series is a good choice of source material. His Modular
Functions and Dirichlet Series [2] follows on from his Introduction to Analytic Number
Theory [1], most of which has already been formalised in Isabelle/HOL [4]. By formalising
both volumes we create a good basis for formalising further work in analytic number theory,
while at the same time investigating Apostol’s actual text forensically.

Isabelle/HOL [7] is a popular proof assistant. Based on simple type theory, its advantages
include best-in-class automation, a library of over four million lines of formal proofs, and a
structured proof language offering a good degree of legibility. Users work within a highly
sophisticated interactive development environment.

We report on ongoing work to formalise the book and build a foundation of modular
forms in Isabelle/HOL. We explore the chapters that we formalised fully (1, 2, 3, 7) and
the parts of Chapter 6 that were already completed, commenting on what was covered and
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where we had issues with the text. Except for one technical lemma that we did not need, all
theorems from these chapters have been formalised. In particular, all results mentioned in
this paper have been formalised.

2 Prerequisites: holomorphicity, analyticity, meromorphicity

A complex function is called holomorphic (or analytic) on an open set A ⊆ C if its derivative
exists at every point of A. In the Isabelle library, these notions are defined not only for open
sets and here they do not coincide: f holomorphic_on A means that f is differentiable at
every point of A. On the other hand, f analytic_on A means that f has a power series
expansion at every point of A – or, equivalently, that f is holomorphic on some open superset
of A. For non-open sets, the notion analytic_on turns out to be much more useful.

A weaker condition than holomorphicity is meromorphicity on a set A: the function is
differentiable at every point of A except for some isolated points at which it has poles (i.e. it
tends to infinity). It was not straightforward to extend this definition to non-open sets, and
after some false starts we arrived at the following very simple definition: f is meromorphic
on A if f has a Laurent series expansion at every point of A.

definition meromorphic_on :: "(complex ⇒ complex) ⇒ complex set ⇒ bool"
(infixl "(meromorphic’_on)" 50) where
"f meromorphic_on A ←→ (∀ z∈A. ∃ F. (λw. f (z + w)) has_laurent_expansion F)"

3 Elliptic functions and complex lattices

Two complex numbers ω1 and ω2 such that ω2/ω1 /∈ R generate a lattice Λ = Zω1 + Zω2 in
the complex plane. If we identify all complex numbers that differ by an element of Λ we
obtain a complex torus TΛ.

▶ Definition 1 (elliptic functions). An elliptic function is a meromorphic function TΛ → C.

Apostol defines it as a meromorphic function C → C that is periodic in both ω1 and ω2.
This is also how we formalise it. The simplest non-trivial elliptic function is the following:

▶ Definition 2 (Weierstraß ℘ function). ℘(Λ, z) = 1
z2 +

∑
ω∈Λ\{0}

(
1

(z−ω)2 − 1
ω2

)
.

From this, a collection of related numbers arises:
Eisenstein series: Gn(Λ) =

∑
ω∈Λ\{0} ω−n.

Weierstraß invariants: g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).
Modular discriminant: ∆(Λ) = g2(Λ)3 − 27g3(Λ)2.
Klein’s J invariant: J(Λ) = g2(Λ)3/∆(Λ).

To illustrate the relevance of these numbers, note the following results:

▶ Theorem 3 (Laurent series expansion of ℘ at z = 0). ℘(Λ, z) = 1
z2 +

∑
n≥1(n+1)Gn+2(Λ)zn.

▶ Theorem 4 (Differential equation for ℘). [℘′(Λ, z)]2 = 4℘3(Λ, z) − g2(Λ)℘(Λ, z) − g3(Λ).

▶ Theorem 5 (Non-vanishing of ∆). ∆(z) ̸= 0 for all z.

It is convenient to rotate and scale the lattice such that ω1 = 1 and ω2 = τ (where
Im(τ) > 0) so that we can describe the lattice by a single complex parameter. We can thus also
write Gn(τ), ∆(τ) etc. and view Gn, ∆, etc. as functions H → C, where H = {z | Im(z) > 0}
is the complex upper half plane. Importantly, all functions mentioned in this section are
meromorphic on H.
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The last important results in this section are the Fourier expansions of Gn, ∆, and
J . For example, using the Riemann ζ function and writing σa for the divisor function
σa(n) =

∑
d|n da and q = e2iπτ , we have the following:

▶ Theorem 6 (Fourier expansion of Gn). For even n, Gn(τ) has the following Fourier

expansion at τ = i∞: Gn(τ) = 2
(

ζ(n) + (2iπ)n

(n−1)!
∑

k≥1 σn−1(k)qk

)
.

We also formalised similar Fourier expansions for ∆ and J . The Fourier coefficients of these
do not have such simple closed forms, but we derive useful recurrences for them. These
expansions show that Gn, ∆, and J are “meromorphic at i∞”, which will be important later.

4 Modular forms

4.1 The modular group
The Möbius transformations of the form z 7→ az+b

cz+d form a group under function composition.
This is the projective linear group PSL(2,Z), also known as the modular group Γ. This
group is related to the functions Gn, ∆, J above because they satisfy simple functional
equations under composition with elements from the modular group, namely if h(z) = az+b

cz+d

then Gn(h(z)) = (cz + d)nGn(z) and ∆(h(z)) = (cz + d)12∆(z) and J(h(z)) = J(z).
In Isabelle, we represent the modular group as a type modgrp. This is a quotient type

of the set of tuples (a, b, c, d) with a, b, c, d ∈ Z and ad − bc = 1 modulo a relation that
identifies (a, b, c, d) and (−a, −b, −c, −d). We show that this is a group, which we write
multiplicatively.

Two special kinds of modular transformations are shifts Tn(z) = z + n and “mirror-
inversions” S(z) = −1/z. Notably, any modular transformation can be decomposed (non-
uniquely) into a product of S and Tn. We formalise this fact as an induction rule:

lemma modgrp_induct_S_shift [case_names id S shift]:
fixes P:: "modgrp ⇒ bool"
assumes "P 1 and "

∧
x. P x =⇒ P (S_modgrp * x)"

and "
∧

x n. P x =⇒ P (shift_modgrp n * x)"
shows "P x"

4.2 Fundamental regions
Consider a subgroup G of the modular group. We now consider two points in the upper
half-plane H to be equivalent whenever there exists a transformation in G that maps one to
the other:

▶ Definition 7 (equivalence under a subgroup of the modular group). Let G be a subgroup of
the modular group modgrp, and τ and τ ′ be two points in the upper half-plane H. We consider
τ and τ ′ to be equivalent under G if τ ′ = fτ for some f in G.

We can designate a canonical representative for each equivalence class e.g. by picking
a sub-region of H that contains exactly one representative of each class. The interior of a
region that satisfies this is called a fundamental region.

▶ Definition 8 (Fundamental region). An open subset R of H is a fundamental region of G

provided that:
No two distinct points of R are equivalent under G.
If τ ∈ H then there is a point τ ′ in the closure of R such that τ ′ is equivalent to τ .

ITP 2024
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Next we show that a particular region is indeed a fundamental region of the full modular
group. We call this the standard fundamental region RΓ:

▶ Theorem 9. The open set RΓ = {τ ∈ H | |τ | > 1, |Re(τ)| < 1
2 } is a fundamental region

for Γ.

4.3 Removing removable singularities
One issue that arises in formalising complex analysis is that on paper, removable singularities
are essentially ignored completely. For example, if we have the functions f(z) = z and
g(z) = 1/z then a mathematician would write f(z) · g(z) = 1. In a theorem prover like
Isabelle/HOL, this does not work: at least not if f and g are functions of type C → C.

Our solution is to introduce a special type to capture meromorphic complex functions
modulo removable singularities. Since our main interest later on will be functions on the
upper half plane H = {z | Im(z) > 0}, we additionally restrict the functions to that domain.

To be precise: our type mero_uhp consists of those functions f : C → C that are
meromorphic on H and return 0 at their poles and outside H. This captures exactly the
mathematical idea of meromorphic functions on H.

Conversion of a “normal” complex function f to the mero_uhp type is done by restricting
f to the appropriate domain and fixing removable singularities. The latter is done with the
very useful function remove_sings:

definition remove_sings :: "(complex ⇒ complex) ⇒ complex ⇒ complex" where
"remove_sings f z = (if ∃ c. f −z→ c then Lim (at z) f else 0)"

This function takes a complex function (assumed to be meromorphic) and returns a version
of that function with all removable singularities removed and all poles totalised to 0.

With this, we can now also define basic arithmetic on mero_uhp and prove that it is a
field and a C-vector space, which would not be possible for the normal function type.

This type mero_uhp now forms the basis for our formalisation of modular forms and
modular functions.

4.4 Definition of modular forms
Next we will finally define modular forms and related concepts, namely as “sufficiently nice”
functions that satisfy interesting equations under composition with modular transformations.1

▶ Definition 10. A weakly modular form of integer weight k w.r.t. a subgroup G of the
modular group is a meromorphic function f : H → C that satisfies the functional equation
f(h(z)) = (cz + d)kf(z) for any h(z) = az+b

cz+d with h ∈ Γ.

By adding more conditions, we can define the following concepts.
if f is additionally meromorphic at the cusps, we call it a meromorphic form
if f is even holomorphic (including at the cusps), we call it a modular form
a meromorphic form of weight 0 is called a modular function

Here, “meromorphic at the cusps” means that f(h(z))(cz + d)−k has a meromorphic Fourier
expansion

∑
n≥n0

ane2iπz at z = i∞ for all h ∈ Γ (not just in G). For “holomorphic at the
cusps”, we additionally require n0 ≥ 0.

1 For simplicity, some of our definitions in Isabelle currently only work when G is the full modular group,
but this will be generalised soon.
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In Section 3 we have already seen that Gn is a modular form of weight n for n ≥ 3, ∆ is
a modular form of weight 12, and J is a modular function.

Apostol does not use the terms “weakly modular form” and “meromorphic form” at all,
but we find that they make the formalisation more modular: they allow e.g. the valence
formula (below) to be shown directly for meromorphic forms rather than deriving them
separately for modular forms and modular functions. This is a typical case where the
educational approach of Apostol’s textbook clashes with the needs of formalisation.

4.5 The valence formula

The central result in our formalisation so far is the valence formula for meromorphic forms.
It relates the number of zeros of a modular form to the number of its poles:

▶ Theorem 11. Let f be a non-zero meromorphic form of weight k on the full modular
group Γ. Then the sum of the multiplicities of the zeros of f inside the closure of RΓ minus
the sum of the multiplicities of its poles in the same set is exactly k/12.

Several caveats apply here about how to count zeros and poles directly at the border of the
region: any point on the border is weighted with 1

2 , except for the points ± 1
2 +

√
3

2 i, which
are weighted with 1

6 . It should also be noted that i∞ may also be a zero or pole and must
be counted accordingly (with weight 1).

The proof of the valence formula was the most difficult to formalise so far. The basic idea
is simple: we apply the argument principle and integrate along a contour that is essentially a
finite version of the border of RΓ. Due to the symmetries of RΓ and f , most of the integral
cancels, only k/12 remains plus the contribution of the potential zero or pole at i∞.

The problem is that there may be zeros or poles directly on the border itself and we
need to add little “wiggles” to avoid these and account for the error made by this. This is
easy to justify on paper, but not in a theorem prover. We eventually solved this problem by
using the “Wiggle Framework”, which the first author developed specifically for this proof
(but with similar future applications in mind). It allows deforming integration contours and
relating them to the original contour. We are currently planning to eventually replace this
framework with a much simpler approach based on a generalised residue theorem that allows
singularities on the integration path. [6]

For modular functions, the valence formula is particularly striking: it means that the
number of zeros of a modular function f(z) is exactly the same as the number of its poles.
Moreover, since the number of zeroes in f(z) − c is the same as that of f(z), we can even say
that f takes on all complex values equally often. In particular, J is a bijection between R′

Γ
and C (where R′

Γ denotes the union of RΓ and the left half of its closure).
Apostol uses this last fact to give a relatively simple proof of Picard’s little theorem

(a non-constant entire function takes every value in C with at most one exception). We
formalised this as well, but it turned out to be not quite so simple: in particular, we had to
first prove the stronger fact that J is a covering between H and C, which was a reasonably
simple, but somewhat tedious and definitely non-trivial proof. It is surprising that Apostol
does not mention this seemingly indispensable bit of work in his proof.

Another straightforward application of the valence formula is to determine the dimension
of the vector space of modular forms of weight k, the formalisation of which is ongoing work.

ITP 2024
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5 Dedekind’s η function

▶ Definition 12 (The Euler function ϕ and Dedekind’s η function). Define ϕ(q) =
∏

k≥1
(
1−qk

)
and η(z) = eiπz/12ϕ

(
e2iπz

)
. They are holomorphic for |q| < 1 and z ∈ H, respectively.

Dedekind’s η function is not a modular form in the sense that Apostol defines, but it does
display interesting behaviour under the two generators z 7→ z + 1 and z 7→ −1/z of the
modular group:2

▶ Theorem 13. η(z + 1) = eiπ/12η(z) and η(−1/z) =
√

−iz η(z).

Using these two relations and our induction rule for the modular group, one can show the
following more general equation:

▶ Theorem 14. If h(z) = az+b
cz+d is an element of the modular group, then η(h(z)) =

εh

√
cz + d η(z) where εh is a 24th root of unity depending on h but not on z.

This εh has an explicit (albeit complicated) formula in terms of Dedekind sums which we
shall not show here. It is noteworthy that our definition of εh and our version of the theorem
differ somewhat from Apostol’s, since ours work for any value of c while he requires c > 0.

Interestingly, Apostol proves Theorem 14 directly using Iseki’s formula: a technical lemma
whose proof is four pages of dense calculations and which is never used again. We chose
not to formalise Iseki’s formula and to instead follow a simpler approach outlined in the
appendix of the second edition of the book: we first follow Apostol’s proofs for Theorem 13
and then obtain Theorem 14 from it.

An interesting consequence of Theorem 14 is that η24 is a modular form of weight 12.
Combining this with the valence formula, one obtains (relatively easily) a remarkable
connection: ∆(z) = (2π)12η(z)24.

6 Discussion and related work

The tradition of formalising textbooks dates back to Jutting’s formalisation of Landau’s
Foundations of Analysis using AUTOMATH [8] in 1977. The challenge is about the volume of
material but also the obligation to cover everything rather than to pick and choose. Although
we did not have time to formalise the entire text, we did cover half of the eight chapters.

We built upon a huge library of prior material, including Laurent series, winding numbers,
Dirichlet series, polynomial factorisation and Bernoulli numbers, all of which had to interop-
erate. We worked under the handicap that none of us is a number theorist. Perhaps for this
reason, many of the Isabelle/HOL proofs are considerably longer than Apostol’s. We invested
some effort in making the formal proofs clear, through Isabelle’s structured proof language,
hoping to retain some of the pedagogical value of the original text. The four chapters (1, 2,
3, 7) respectively consist of 12K, 10K, 4K, and 3K lines of proof scripts including comments.
Together with other supporting material, the project has already exceeded 53,000 lines.

Much number theory has been formalised in other proof assistants, chiefly Lean. To our
knowledge, ours was the first treatment of elliptic functions and modular forms in a theorem
prover, although we are aware of more recent unpublished work by Birkbeck [3] in Lean
covering mostly the definition of modular forms and Eisenstein series. This work is now also
part of Mathlib 4.

2 Here,
√

denotes the standard branch of the complex square root where Re(
√

z) ≥ 0 for all z ∈ C and
Im(
√

x) > 0 for any real x < 0.
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7 Conclusions

The formalisation of a textbook remains challenging. Our impression was that Apostol’s proofs
were clear overall, and wherever they were, the formalisation process was straightforward,
regardless of the mathematical tools required. There were however some gaps, mistakes, and
informal arguments that took time to overcome, but none that were serious. Graduate-level
analytic number theory can be formalised in Isabelle/HOL without undue effort.
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