
An Operational Semantics in Isabelle/HOL-CSP
Benoît Ballenghien #

Laboratoire Méthodes Formelles, University Paris-Saclay, France

Burkhart Wolff1 #

Laboratoire Méthodes Formelles, University Paris-Saclay, France

Abstract
The theory of Communicating Sequential Processes going back to Hoare and Roscoe is still today a
reference model for concurrency. In the fairly rich literature, several versions of operational semantics
have been discussed, which should be consistent with the denotational one.

This work is based on Isabelle/HOL-CSP 2.0, a shallow embedding of the failure-divergence
model of denotational semantics proposed by Hoare, Roscoe and Brookes in the eighties. In several
ways, HOL-CSP is actually an extension of the original setting in the sense that it admits higher-order
processes and infinite alphabets.

In this paper, we present a construction and formal equivalence proofs between operational CSP
semantics and the underlying denotational failure-divergence semantics. The construction is based
on a definition of the operational transition operator P ⇝e P’ basically via the After operator and
the classical failure-divergence refinement.

Several choices are discussed to formally derive the operational semantics leading to subtle
differences. The derived operational semantics for symbolic Labelled Transition Systems (LTSs) can
be potentially used for certifications of model-checker logs as well as combined proof techniques.

2012 ACM Subject Classification Theory of computation → Higher order logic; Theory of computa-
tion → Semantics and reasoning; General and reference → Verification

Keywords and phrases Process-Algebra, Semantics, Concurrency, Computational Models, Theorem
Proving, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.7

Supplementary Material Software (Source Code): https://gitlab.lisn.upsaclay.fr/burkhart.
wolff/hol-csp2.0 archived at swh:1:dir:89601b34c12af4812a99c58054a091d5afbc3e42

Funding Benoît Ballenghien: Labex DigiCosme.

Acknowledgements We would like to thank Catherine Dubois for her remarks on earliest versions of
this paper. The present version has been generated and deeply checked with Isabelle/DOF [9, 8].

1 Introduction

Communicating Sequential Processes (CSP) is a language to specify and verify patterns of
interaction of concurrent systems. Together with CCS and LOTOS, it belongs to the family
of process algebras. CSP’s rich theory comprises denotational, operational and algebraic
semantic facets and has influenced programming languages such as Limbo, Crystal, Clojure
and most notably Golang [14]. CSP has been applied in industry as a tool for specifying and
verifying the concurrent aspects of hardware systems, such as the T9000 transputer [5].

The theory of CSP was first described in 1978 by Tony Hoare [15], but has since evolved
substantially [6, 7, 27]. The denotational semantics of CSP is described by a fully abstract
model of behaviour designed to be compositional: a process P encompasses all possible
behaviours, i. e. sets of traces annotated by additional information that allow to reason over

1 corresponding author

© Benoît Ballenghien and Burkhart Wolff;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benoit.ballenghien@universite-paris-saclay.fr
https://orcid.org/0009-0000-4941-187X
mailto:wolff@lmf.cnrs.fr
https://orcid.org/0000-0002-9648-7663
https://doi.org/10.4230/LIPIcs.ITP.2024.7
https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0
https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0
https://archive.softwareheritage.org/swh:1:dir:89601b34c12af4812a99c58054a091d5afbc3e42;origin=https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0;visit=swh:1:snp:0a00c83c4f2c5b21619582d9b3ebda69b0587773;anchor=swh:1:rev:a4bef1755d2e69d47ac2b35a2cdcca33e38feb31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 An Operational Semantics in Isabelle/HOL-CSP

deadlocks (the resulting semantic domain is called failure semantics F)
and additionally livelocks (the failure-divergence semantics FD).

Several attempts have been undertaken to formalize this fairly complex theory, notably
[10, 34, 19, 23, 16]. The arguably (see Section 7) most comprehensive one is HOL-CSP
[34, 33, 31, 3, 4], which is in several ways not only a formalization in a proof assistant, but a
generalization of the original setting:

the set of traces ′α trace is constructed over an arbitrary type ′α in HOL, paving the way
for dense time, vector spaces, etc, 2,
more generally speaking, HOL-CSP attempts to remove finiteness-restrictions, and
the semantic domain is encapsulated in the type ′α process belonging to the cpo type
class (see Subsection 2.4). Thus, process patterns can be expressed and analyzed.

In this paper, we present the formal theory of the operational semantics of HOL-CSP which
is consistent with the denotational one by construction. To this end, we proceed by defining
the operational transition operator P ⇝e P’ in terms of the After operator and the classical
failure-divergence refinement. In the literature on process algebras like CSP ([15, 6, 7, 27])
or Circus ([35, 36]), several versions of operational semantics have been presented, but a
formal proof of equivalence for a substantial part of the language has never been undertaken.
Our proof architecture foresees an Isabelle locale (a parameterized theory) whose instances
represent several of these versions, thus shedding some light on their relationships. The
operational rules for small-step and big-steps pave the way for symbolic execution of processes
and the combination of model-checking with theorem proving.

We proceed as follows: after an introduction to “classic” CSP and our extensions HOL-CSP
and HOL-CSPM as an Isabelle framework in Section 2, we present in Section 3 the core con-
struction of this paper, the bridge-definition linking the denotational semantics to operational
one(s), resulting in the formally proven laws written in Section 4. This is generalized to
big steps semantics in Section 5 and possible variants are discussed in Section 6. Note that
HOL-CSP[33], HOL-CSPM[3] as well as the novel contribution HOL-CSP_OpSem [4] containing
the proofs discussed here are published in the Archive of Formal Proofs AFP.

2 Background

2.1 Classic CSP Syntax
At a glance, the syntax of the classical CSP core language reads as follows:

P ::= SKIP | STOP | P □ P ′ | P ⊓ P ′ | P [[A]] P ′ | P ; P ′ | P \ A
| a → P | □a ∈ A → P(a) | ⊓a ∈ A → P(a) | Renaming P g | µ X . f (X)

SKIP signals termination, STOP denotes a deadlock. Two choice operators are distinguished:
1. the external choice -□-, which forces a process “to follow” whatever its context requires,
2. the internal choice -⊓-, which imposes on the context of a process “to follow” the

non-deterministic choices made.
With the prefix operator a → P which signals a and continues with P (where a is an element
of a set Σ of events), generalized choices of the form □a∈A → P(a) resp. ⊓a∈A → P(a)
are constructed (A is originally a finite set). When events are tagged with channels, i. e. Σ
= CHANNELS × DATA, syntactic sugar like c?x∈A→P(x) or c!x∈A→P(x) is added; the
former reads intuitively as “x is read from channel c” while the latter means “x is arbitrarily
chosen from A and sent into c” (where c ∈ CHANNELS and x ∈ DATA).

2 or even differential equations as in cyber-physical system models [12]

B. Ballenghien and B. Wolff 7:3

The sequential composition P ; P ′ behaves first like P and, once it has successfully
terminated, like P ′. P \ A consists in hiding the events of the set A. Renaming P g results
in a process in which each event e of P is renamed in g(e). The Sliding operator P ▷ P ′ is
defined as (P □ P ′) ⊓ P ′. The fixed point µ X . f (X) operator satisfies (µ X . f (X)) = f (µ
X . f (X)) (but requires precautions, see Subsection 2.4).

CSP describes all communication with one single primitive: the synchronized product
written P [[A]] P ′. Note that interleaving P ||| P ′ stands for P [[{}]] P ′, whereas the parallel
operator P || P ′ is a shortcut for P [[UNIV]] P ′ (UNIV is the universal set).

2.2 Classic CSP Semantics
The denotational semantics (following [27]) comes in three layers: the trace model, the (stable)
failures model and the failure-divergence model.

In the trace semantics model, the behaviour of a process P is denoted by a prefix-
closed set of traces, denoted T P, similar to the well-known concept of a “language of an
automata”. Since traces are finite lists and infinite behaviour is therefore represented via the
set of approximations, an additional element tick (written ✓) is used to represent explicit
termination signalized by SKIP. Note that, obviously, tick should only appear at the end of
a trace (traces should be front-tickFree).

It is impossible to distinguish external and internal non-determinism in the trace model
since the traces of both operators are just the union of their argument traces. To be more
discriminant, [6] proposed the failure semantics model, where traces were annotated with a
set of refusals, i. e. sets of events a process can not engage in. This leads to the notion of a
failure (t, X) ∈ F P which is a pair of a trace t and a set of refusals X. Consider for example
the process P = (a → SKIP) □ (a → STOP). The traces T P will non-deterministically
lead to a situation where the process accepts termination (but refuses everything else) or
just refuses everything. So, if we assume Σ = {a, ✓}, then the traces T P will be {[], [a]}.
The failures F P are then {([], {{✓}}), ([a], {Σ, {a}})} (plus all subsets of the respective
refusal sets, which is required for the recursion ordering discussed in Subsection 2.4).

Finally, [6] enriched the semantic domain of CSP with one more element, the set of
divergences (written D P), in order to distinguish deadlocks from livelocks3. In the failure
divergence model, the semantic domain consists of a pair of failures and divergences, where
the latter are traces to situations where livelocks may occur.

In contrast to Hoare Logics and its Hoare Triples, which is a framework to reason
over terminating calculations, CSP and process refinement are designed to reason over
non-terminating calculations. Three classic refinement notions are considered:
1. the trace refinement: P ⊑T Q ≡ T P ⊇ T Q,
2. the failure refinement: P ⊑F Q ≡ F P ⊇ F Q, and
3. the failure-divergence refinement P ⊑F D Q ≡ F P ⊇ F Q ∧ D P ⊇ D Q .
It turns out that beyond common protocol refinement proofs and test-problems, many
properties such as deadlock or livelock freeness can be expressed via a refinement statement.

2.3 Theories and Locales in Isabelle and HOL
Isabelle is a major interactive proof assistant implementing higher-order logic (HOL). As
an LCF style theorem prover, it is based on a small logical core (kernel) to increase the
trustworthiness of proofs without requiring – yet supporting – explicit proof objects.

3 also called infinite internal chatter as occurring in processes like µ x. a → x \ {a}

ITP 2024

7:4 An Operational Semantics in Isabelle/HOL-CSP

The Isabelle distribution comes with a number of library theories constructed solely from
definitional axioms; among them basic data-types for sets, lists, arithmetics, a substantial
part of analysis, and – particularly relevant here – Scott domain theory (HOLCF) [22] providing
a particular type class ′α::pcpo, i.e. the class of types ′α for which a least element ⊥ and a
complete partial order -⊑- is defined.

HOLCF provides the concept of continuity, the concept of admissibility, the fixed point
operator µ x. f x as well as the fixed point induction for admissible predicates. Isabelle’s
type inference can automatically infer, for example, that if ′α::pcpo, then (′β ⇒ ′α)::pcpo.

A distinguishing feature of Isabelle is the locale mechanism, i. e. theories that may be
parameterized by types, constant-symbols and local hypotheses over them. Since locales
may inherit from other locales, they represent a powerful structuring mechanism for orders
and algebraic structures very similar to dependent types available in other systems.

2.4 Isabelle/HOL-CSP
Isabelle/HOL-CSP is a shallow embedding of CSP in HOL based on the traditional semantic
domain described by 9 “axioms” over the three semantic functions T :: ′α process ⇒ ′α trace
set, F :: ′α process ⇒ ′α failure set and D :: ′α process ⇒ ′α trace set:

the empty trace is always the initial trace and any trace is front-tickFree;
traces of a process are prefix-closed and a process can refuse all subsets of refusals;
any event refused by a process after a trace s must be in a refusal set associated to s;
the tick accepted after a trace s implies that all other events are refused;
a divergence trace with any suffix is itself a divergence one
once a process has diverged, it can engage in or refuse any sequence of events.
a tick-ending divergence trace has a tickFree divergence trace prefix of maximal length.

More formally, a process P of the type Σ process should have the following properties:

([] ∈ T P ∧ (∀ s X . (s, X) ∈ F P −→ front-tickFree s) ∧
(∀ s t. s @ t ∈ T P −→ s ∈ T P) ∧ (∀ s X Y . (s, Y) ∈ F P ∧ X ⊆ Y −→ (s, X) ∈ F P) ∧
(∀ s X Y . (s, X) ∈ F P ∧ (∀ c. c ∈ Y −→ s @ [c] /∈ T P) −→ (s, X ∪ Y) ∈ F P) ∧
(∀ s X . s @ [✓] ∈ T P −→ (s, X − {✓}) ∈ F P) ∧
(∀ s t. s ∈ D P ∧ tickFree s ∧ front-tickFree t −→ s @ t ∈ D P) ∧
(∀ s X . s ∈ D P −→ (s, X) ∈ F P) ∧ (∀ s. s @ [✓] ∈ D P −→ s ∈ D P))

The core of HOL-CSP is to encapsulate this wishlist into a type definition. This is achieved
by 1) defining the pair of failures and divergences Σ process0 via (Σ✓ list × (Σ✓) set)set
× (Σ✓)set (where Σ✓ = Σ ⊎ {✓}), 2) by turning the above wishlist into a data-constraint
is-process of type Σ process0 ⇒ bool, and 3) by establishing an isomorphism between the
subset of Σ process0’es satisfying is-process via the-specification construct:

typedef ′α process = {P :: ′α process0 . is-process P}

Subsequently, we provide definitions for each CSP operator in terms of Σ process0; these
definitions formalize directly the textbook [27]. Finally, we prove that each operator preserves
the is-process-invariant. The preservation even holds for arbitrary (possibly infinite) sets A
in the generalisations □x∈A → P(x) resp. ⊓x∈A → P(x). Note that both use higher-order
abstract syntax and have the type ′α set ⇒ (′α ⇒ ′α process) ⇒ ′α process.

A major problem prevails: how to give semantics to the fixed point operator?
This is achieved by turning the denotational domain of CSP into a Scott complete partial
order (cpo) [29], which provides semantics for the fixed point operator µ x. f (x) under the
condition that f is continuous wrt. this partial ordering. Since the natural ordering - ⊑F D -

B. Ballenghien and B. Wolff 7:5

is too weak for this purpose, Roscoe and Brookes [24] proposed a complete process ordering
P ⊑ Q which is stronger, i. e. P ⊑ Q =⇒ P ⊑F D Q, and yet ensures completeness at least
for general read and write operations.
It is based on the concept refusals after a trace s (Ra P s ≡ {X | (s, X) ∈ F P}):

P ⊑ Q ≡ D Q ⊆ D P ∧ (∀ s. s /∈ D P −→ Ra P s = Ra Q s) ∧ min-elems (D P) ⊆ T Q

▶ Theorem 1 (Continuity). Almost all HOL-CSP operators ⊗ are continuous wrt. (⊑), i. e.:

cont f =⇒ cont g =⇒ cont(λx. (f x) ⊗ (g x))

▶ Theorem 2 (Fixed-point Inductions). Since (⊑F D) is admissible, when f is continuous we
have an induction rule of the following form:

C (⊥) ⊑F D Q =⇒ (
∧

x. C (x) ⊑F D Q =⇒ C (f x) ⊑F D Q) =⇒ C (µ X . f X) ⊑F D Q

▶ Proposition 3 (CSP-Algebra). HOL-CSP provides about 200 rules derived from the deno-
tational semantics, be it monotonicities or equalities, which were called the “axioms” in the
literature. We show here only the small collection used in the subsequent example proof:

(∀ y. c y ∈ S) =⇒ c?x → P x [[S]] c?x → Q x = c?x → (P x [[S]] Q x)
(∀ y. c y ∈ S) =⇒ inj c =⇒ c!a → P [[S]] c?x → Q x = c!a → (P [[S]] Q a)
d a /∈ S =⇒ (

∧
y. c y ∈ S) =⇒ d!a → P [[S]] c?x → Q x = d!a → (P [[S]] c?x → Q x)

d ∈ S =⇒ (
∧

y. c y /∈ S) =⇒ d → P [[S]] c?x → Q x= c?x → (d → P [[S]] Q x)
d a /∈ C =⇒ c ∈ C =⇒ c → Q [[C]] d!a → P = d!a → (c → Q [[C]] P)
∀ y. c y /∈ B =⇒ c?x → P x \ B = c?x → (P x \ B)
∀ y. c y /∈ B =⇒ c!a → P \ B = c!a → (P \ B)
c a ∈ B =⇒ c!a → P \ B = P \ B etc.

The theories HOL-CSP and HOL-CSPM [3] also add a number of extensions of the original
language. This includes for the binary operators P [[A]] P ′, P ; P ′, P □ P ′, P ⊓ P ′, the
generalizations [[S]]i ∈# M . P(i), ||| i ∈# M . P(i), etc. Roscoe’s operators Interrupt P
△ P ′ and Throw (exception handler) P Θ a ∈ A. P ′(a) have also been included since they
come in handy in some of the more general constructions. Finally, [31] proposed another
refinement ordering, the trace-divergence ordering P ⊑DT Q ≡ P ⊑T Q ∧ D Q ⊆ D P,
which has surprisingly benign properties wrt. operational semantics and which is relevant for
applications [12].

2.5 A Model and Sample Proof in HOL-CSP
Of course, proving refinements is not done by unfolding the definitions in the denotational
semantics. Instead, the predominant proof technique is merely fixed point induction via
Theorem 2, application of the algebraic rules of Proposition 3 as well as the monotonicity
rules which are a consequence of Theorem 1. We demonstrate this with the paradigmatic
CopyBuffer example, where we model a protocol COPY (“received data on channel left
will eventually be copied into channel right”) and an implementing SYS which transfers the
data from some SEND-component into some REC -component using an internal channel mid
where REC acknowledges each data-package via a signal on the internal ack-channel.

The formalisation of these model-elements proceeds as follows. The events were defined
by the inductive data-type introducing the channels:

datatype ′α channel = left ′α | right ′α | mid ′α | ack

ITP 2024

7:6 An Operational Semantics in Isabelle/HOL-CSP

Note that this definition leaves open what data is actually transmitted. A synchronisation
set SYN is defined via {e | ∃ x. e = mid x} ∪ {ack}. The process COPY of type ′α channel
process is defined by µ x. left?xa → right!xa → x, the process SEND by µ x. left?xa →
mid!xa → ack → x and the process REC by µ x. mid?xa → right!xa → ack → x. The latter
two are wired together to the process SYS via SYS ≡ SEND [[SYN]] REC \ SYN.

Now we ask the question: does SYS implement the protocol COPY ? This can be rewritten
as the following refinement problem : COPY ⊑F D SYS.
Unfolding COPY and applying Theorem 2 yields the two subgoals:
1. ⊥ ⊑F D (SEND [[SYN]] REC \ SYN)
2.

∧
x. x ⊑F D (SEND [[SYN]] REC \ SYN) =⇒

left?a → right!a → x ⊑F D (SEND [[SYN]] REC \ SYN)
where the former is trivial and the latter represents the induction step. If we unfold once
SEND and REC and apply the reduction rules of Proposition 3, this results in:

left?a → right!a → x ⊑F D left?a → right!a → (SEND [[SYN]] REC \ SYN)

Applying the monotonicity rules resulting from Theorem 1 we can reduce this goal to the
induction hypothesis x ⊑F D (SEND [[SYN]] REC \ SYN).

Furthermore this proof can be highly automated (reduces to a few lines in Isabelle/Isar).
No assumption is made over ′α, this construction is therefore truly parametric over data,
which is in stark contrast to model-checkers for CSP such as [1, 30]. Using the fact that
functions over processes are continuous, we can specify and analyse, e. g., global variables by
VAR σinit ≡ (µ x. (λσ. (Read!σ → x σ) □ (Update?σ ′ → x σ ′))) σinit and other building
blocks of concurrent programs like buffers, semaphores and monitors.

3 Small Steps Semantics

Operational semantics of CSP involve two kinds of transitions that we need to define:
the τ transition, denoted P ⇝τ Q, (internal transition)
and the transition with an observable event (external transition) where we distinguish
the two cases resulting from the type sum of “real” events ev e and the special event ✓.
The former transition will be denoted by P ⇝e Q, the latter by P ⇝✓ Q.

Initially, Hoare and Jifeng in [20] proposed the following link between the operational
and denotational semantics: P ⇝τ Q ≡ P ⊑F D Q and P ⇝e Q ≡ P ⊑F D (e → Q) □ P.
This approach is fine as long as we do not consider explicit termination of processes via the
special event ✓. Moreover, the initial presentation was referring to fragment of the language
which foundation wrt. the underlying denotational semantics (including process ordering)
was still prone to subtle errors [34]. For these reasons, we opted for another bridge based on
the After operator, denoted P after e, which represents a kind of inversion of e → P. We
will investigate the precise connection between both definitions in Section 6.

3.1 The Notion of initials
As prerequisite, we need the events P can start with, called initials P and denoted P0.

▶ Definition 4 (initials). The definition is straightforward: P0 ≡ {e | [e] ∈ T P}
or equivalently, thanks to ′α process properties, P0 = {e | ∃ s. e · s ∈ T P}.

Intuitively, for each ev e in P0, the traces of P after e should be the tails of the traces of
P beginning with ev e. The question arises what happens with processes P where no trace is
beginning with ev e. The semantic domain of P after e will require that the set of traces is
non-empty (recall the is-process invariant from which we built the ′α process type).

B. Ballenghien and B. Wolff 7:7

The initials are a notion commonly evoked in [6, 27, 28]; for now let us derive the general
computational rules for it.

▶ Theorem 5 (Basic rules for initials). We derive:

⊥0 = UNIV (P0 = ∅) = (P = STOP) SKIP0 = {✓}
(P ⊓ Q)0 = P0 ∪ Q0 (P □ Q)0 = P0 ∪ Q0 (e → P)0 = {ev e}

(P ▷ Q)0 = P0 ∪ Q0 (P △ Q)0 = P0 ∪ Q0 (P Θ a∈A. Q a)0 = P0

▶ Theorem 6 (More complex rules for initials). The following list requires more caution:
(Renaming P f)0 = (if P = ⊥ then UNIV else EvExt f ‘ P0)
(P ; Q)0 = (if P = ⊥ then UNIV else P0 − {✓} ∪ (if ✓ ∈ P0 then Q0 else ∅))
(P [[S]] Q)0 = P0 ∪ Q0 − ({✓} ∪ ev ‘ S) ∪ P0 ∩ Q0 ∩ ({✓} ∪ ev ‘ S)
if P ̸= ⊥ and Q ̸= ⊥ (otherwise (⊥ [[S]] Q)0 = UNIV and (P [[S]] ⊥)0 = UNIV).

The equality for the Hiding operator, proved but omitted here, is downright difficult. Note
that the function initials is of type ′α process ⇒ ′α event set. This implies that we may have
✓ ∈ P0, especially when P = SKIP for which it serves as a refinement characterization.

▶ Theorem 7 (Characterization of initial ✓). ✓ ∈ P0 if and only if P ⊑F D SKIP.

3.2 The After Operator
There is no comprehensive treatment of the After operator in the CSP literature, at least not
with a formal definition and a precise clarification of the behaviour wrt. the other operators;
we had to do a number of trials and second-guessing here. A key element is the notion of
initials (Definition 4); assuming ev e ∈ P0 for P:: ′α process, we obviously choose its failures
to be {(s, X) | (ev e · s, X) ∈ F P} and its divergences {s | ev e · s ∈ D P}.

This solves part of the problem, but is not enough. We will need a total definition of
this operator in HOL, i. e. we need to deal with the case ev e /∈ P0. There are basically
the alternatives STOP, ⊥, or just some underspecified constant undefined. Since the actual
choice made leads to subtle differences in corner cases but does not impact the operational
rules that we establish, we use Isabelle locales mentioned in Subsection 2.3 to model this:

▶ Definition 8 (After operator).

locale After = fixes Ψ :: ‹[′α process, ′α] ⇒ ′α process› begin

lift-definition After :: ‹[′α process, ′α] ⇒ ′α process› (infixl ‹after› 77)
is ‹λP e. if ev e ∈ initials P

then ({(s, X). (ev e # s, X) ∈ F P}, {s. ev e # s ∈ D P})
else (F (Ψ P e), D (Ψ P e))›

Here, lift-definition is a variant of Isabelle constant definition which gives automatic
support for “lifting” an operation of the ′α process0-level to ′α process. Note that Ψ is a
parameter of the locale requiring no assumption which can be instantiated freely.

The need of the theory of the After operator and its straightforward generalisation to
traces denoted by P / s was identified at many places in the CSP literature [15, 27, 28],
especially after basing the process-ordering (⊑) on its refusals. After and P / s play a pivotal
role when linking CSP to automata-theoretic concepts; nevertheless it was commonly treated
as something “meta”4.

4 Roscoe states that “this operator should not be thought of as an ordinary part of the CSP language”[27].

ITP 2024

7:8 An Operational Semantics in Isabelle/HOL-CSP

In our work, we turn After into an ordinary operator, compatible with all other concepts,
preserving the invariant of ′α process, enjoying monotony and continuity, and a number of
distributivities (that one could call “algebraic laws”) useful for establishing an operational
semantics. The formal proofs of this part of our theory amount to 2000 lines. For example,
we obtain equalities like the following:

▶ Theorem 9 (After and Sync). (P [[S]] Q) after e is equal to:
if P = ⊥ ∨ Q = ⊥ then ⊥
else if ev e ∈ P0 ∩ Q0

then if e ∈ S then P after e [[S]] Q after e
else (P after e [[S]] Q) ⊓ (P [[S]] Q after e)

else if ev e ∈ P0 ∧ e /∈ S then P after e [[S]] Q
else if ev e ∈ Q0 ∧ e /∈ S then P [[S]] Q after e else Ψ (P [[S]] Q) e

The only operator for which we have not managed to establish such a property is Hiding.
However, we have at least the following monotonies:

▶ Theorem 10 (After and Hiding).

[[ev e ∈ P0; e ∈ B]] =⇒ (P \ B) ⊑F D (P after e \ B)
[[ev e ∈ P0; e /∈ B]] =⇒ (P \ B) after e ⊑F D (P after e \ B)

This will not be too restrictive for our construction thanks to the following theorem.

▶ Theorem 11 (Characterization of FD-refinement).
The FD-refinement P ⊑F D Q holds if and only if P = P ⊓ Q.

3.3 The Rationale for an Operational Semantics
With respect to the τ transition, (⇝τ), we follow the choice of Jifeng and Hoare in [20], i. e.
we define it by P ⇝τ Q ≡ P ⊑F D Q .

With respect to the external transitions, we expect that:
P ⇝e Q (resp. P ⇝✓ Q) is impossible if ev e /∈ P0 (resp. ✓ /∈ P0)
event transitions should absorb τ transitions (on both sides) because (⊑F D) is transitive
since P ⊑F D Q can be interpreted as “Q is more deterministic than P”, Q should be at
least as deterministic as P after e when P makes a transition via event e.

The formalization still requires an extension of the After operator to deal with ✓. This is
achieved by extending the locale with an additional parameter Ω.

▶ Definition 12 (Aftertick operator).

definition Aftertick :: ‹[′α process, ′α event] ⇒ ′α process› (infixl ‹after✓› 77)
where ‹P after✓ e ≡ case e of ev x ⇒ P after x | ✓ ⇒ Ω P›

3.4 Finally: Formal Definitions of the Transition Relations
To make our construction as general as possible, we formalize the requirements of Subsec-
tion 3.3 by parameterizing the τ transition in a locale with four hypotheses:

locale OpSemTransitions = AfterExt Ψ Ω
for Ψ :: ‹[′α process, ′α] ⇒ ′α process› and Ω :: ‹ ′α process ⇒ ′α process› +

fixes τ -trans :: ‹[′α process, ′α process] ⇒ bool› (infixl ‹⇝τ › 50)
assumes τ -trans-NdetL: ‹P ⊓ Q ⇝τ P›

and τ -trans-transitivity: ‹P ⇝τ Q =⇒ Q ⇝τ R =⇒ P ⇝τ R›

B. Ballenghien and B. Wolff 7:9

and τ -trans-anti-mono-initials: ‹P ⇝τ Q =⇒ Q0 ⊆ P0›
and τ -trans-mono-AfterExt: ‹Q0 =⇒ P ⇝τ Q =⇒ P after✓ e ⇝τ Q after✓ e›

begin

abbreviation ev-trans :: ‹[′α process, ′α, ′α process] ⇒ bool› (‹- ⇝- -› [50 , 3 , 51] 50)
where ‹P ⇝e Q ≡ ev e ∈ P0 ∧ P after✓ ev e ⇝τ Q›

abbreviation tick-trans :: ‹[′α process, ′α process] ⇒ bool› (‹- ⇝✓ -› [50 , 51] 50)
where ‹P ⇝✓ Q ≡ ✓ ∈ P0 ∧ P after✓ ✓ ⇝τ Q›

To sum up, this locale needs to be instantiated with:
a function Ψ that is a placeholder for the value of P after e when ev e /∈ P0

a function Ω that is a placeholder for the value of P after✓ ✓
a binary relation (⇝τ) which is compatible with (⊓), is transitive, makes initials anti-
monotonic and makes After tick monotonic.

With these only four local axioms, we can derive most of the basic operational rules for
SKIP, e → P, etc., and some of the rules for P \ S or P ; Q, . . . In order to recover the
remaining rules, we divide the work. For each operator with a missing rule, we introduce
a locale inheriting from OpSemTransitions in which we add a local axiom (about (⇝τ)).
With the rules already proven and the denotational properties of the operator, we can derive
the missing rules. Here, we illustrate the case of one of the rules for the Sync operator:

e /∈ S P ⇝e P ′

P [[S]] Q ⇝e P ′ [[S]] Q

Proof. (Derivation of one of the Sync Operational Rules).
Case P = ⊥ or Q = ⊥, this is obvious because of the properties of ⊥.
Otherwise since P ⇝e P ′ we have ev e ∈ P0.
With Theorem 6 and e /∈ S, we additionally have ev e ∈ (P [[S]] Q)0.
Thus, from Theorem 9, (P [[S]] Q) after e is equal to (P after e [[S]] Q) ⊓ (P [[S]] Q after e)
if ev e ∈ Q0, and P after e [[S]] Q otherwise.
In both cases, with (⇝τ) properties, we obtain (P [[S]] Q) after e ⇝τ P after e [[S]] Q.
Using the additional assumption that, in general, P ⇝τ P ′ =⇒ P [[S]] Q ⇝τ P ′ [[S]] Q, we
finally conclude that P [[S]] Q ⇝e P ′ [[S]] Q. ◀

Finally, by assembling the locales of each operator (which is inheriting of all these locales),
their instantiations lead to formal proofs that the core of the ruleset shown in Section 4
are actually derivable for T,F, and FD semantics. In the end, they all rely on the four
assumptions of OpSemTransitions and on eight additional assumptions of monotony for the
first argument wrt. (⇝τ) for the operators Det, Seq, Hiding, Sync, Sliding, Interrupt, Throw
and Renaming e. g. P ⇝τ P ′ =⇒ P ▷ Q ⇝τ P ′ ▷ Q. Special cases of rules not in the core
ruleset will be discussed in the subsequent sections.

4 The Derived Rules of the Operational Semantics at a Glance

P ⇝e P ′ P ′⇝τ P ′′

P ⇝e P ′′
P ⇝τ P ′ P ′⇝e P ′′

P ⇝e P ′′

P ⇝✓ P ′ P ′⇝τ P ′′

P ⇝✓ P ′′
P ⇝τ P ′ P ′⇝✓ P ′′

P ⇝✓ P ′′

absorption

ITP 2024

7:10 An Operational Semantics in Isabelle/HOL-CSP

SKIP ⇝✓ Ω SKIP
SKIP

cont f P = (µ x. f x)
P ⇝τ f P

fixed point

e → P ⇝e P
e ∈ A

□a∈A → P a ⇝e P e
e ∈ A

⊓a∈A → P a ⇝e P e
prefix

P ⊓ Q ⇝τ P P ⊓ Q ⇝τ Q
e ∈ A

⊓ a∈A. P a ⇝τ P e
internal choice

P ⇝τ P ′

P □ Q ⇝τ P ′ □ Q
P ⇝e P ′

P □ Q ⇝e P ′
P ⇝✓ P ′

P □ Q ⇝✓ Ω SKIP
Q ⇝τ Q ′

P □ Q ⇝τ P □ Q ′
Q ⇝e Q ′

P □ Q ⇝e Q ′
Q ⇝✓ Q ′

P □ Q ⇝✓ Ω SKIP
external choice

P ▷ Q ⇝τ Q
P ⇝τ P ′

P ▷ Q ⇝τ P ′ ▷ Q
P ⇝e P ′

P ▷ Q ⇝e P ′
P ⇝✓ P ′

P ▷ Q ⇝✓ Ω SKIP
sliding choice

P ⇝τ P ′

P ; Q ⇝τ P ′ ; Q
P ⇝e P ′

P ; Q ⇝e P ′ ; Q
P ⇝✓ P ′ Q ⇝τ Q ′

P ; Q ⇝τ Q ′

sequential composition

P ⇝τ P ′

P \ B ⇝τ P ′ \ B
P ⇝✓ P ′

P \ B ⇝✓ Ω SKIP
e /∈ B P ⇝e P ′

P \ B ⇝e P ′ \ B
e ∈ B P ⇝e P ′

P \ B ⇝τ P ′ \ B
hiding

P ⇝τ P ′

P [[S]] Q ⇝τ P ′ [[S]] Q
e /∈ S P ⇝e P ′

P [[S]] Q ⇝e P ′ [[S]] Q
P ⇝✓ P ′

P [[S]] Q ⇝τ SKIP [[S]] Q
Q ⇝τ Q ′

P [[S]] Q ⇝τ P [[S]] Q ′
e /∈ S Q ⇝e Q ′

P [[S]] Q ⇝e P [[S]] Q ′
Q ⇝✓ Q ′

P [[S]] Q ⇝τ P [[S]] SKIP
e ∈ S P ⇝e P ′ Q ⇝e Q ′

P [[S]] Q ⇝e P ′ [[S]] Q ′ SKIP [[S]] SKIP ⇝✓ Ω SKIP
synchronization

B. Ballenghien and B. Wolff 7:11

P ⇝τ P ′

P △ Q ⇝τ P ′ △ Q
P ⇝e P ′

P △ Q ⇝e P ′ △ Q
P ⇝✓ P ′

P △ Q ⇝✓ Ω SKIP
Q ⇝τ Q ′

P △ Q ⇝τ P △ Q ′
Q ⇝e Q ′

P △ Q ⇝e Q ′
Q ⇝✓ Q ′

P △ Q ⇝✓ Ω SKIP

interrupt

P ⇝τ P ′

P Θ a∈A. Q a ⇝τ P ′ Θ a∈A. Q a
P ⇝✓ P ′

P Θ a∈A. Q a ⇝✓ Ω SKIP
e /∈ A P ⇝e P ′

P Θ a∈A. Q a ⇝e P ′ Θ a∈A. Q a
e ∈ A P ⇝e P ′

P Θ a∈A. Q a ⇝e Q e

throw

P α⇝τ P ′

Renaming P f β⇝τ Renaming P ′ f
f a = b P α⇝a P ′

Renaming P f β⇝b Renaming P ′ f
P α⇝✓ P ′

Renaming P f β⇝✓ Ωβ SKIP

renaming

5 Big Steps Semantics

The notation P / [e] sometimes appearing in the classical literature will now be given a formal
definition in terms of the After tick (Definition 12) operator. From there, the generalization
to an operator “connecting” two processes P and Q via a trace s – analogously to the notion
of δ function in automata theory – is straightforward. In the same manner, we can combine
small steps transitions to a trace transition. These generalized notions will allow for both
establishing new formats of refinement proofs as well as (bi)simulation theorems.

5.1 Extensions to Traces
The definition of the generalized After operator proceeds inductively:

▶ Definition 13 (Aftertrace operator).

fun Aftertrace :: ‹[′α process, ′α trace] ⇒ ′α process› (infixl ‹afterT › 77)
where ‹P afterT [] = P›
| ‹P afterT (e # s) = (P after✓ e) afterT s›

The definition of the generalized trace-transition is done analogously:

▶ Definition 14 (Transition with a trace).

inductive trace-trans :: ‹[′α process, ′α trace, ′α process] ⇒ bool› (‹-/ ⇝∗-/ -› [50 , 3 , 51] 50)
where trace-τ -trans : ‹P ⇝τ P ′ =⇒ P ⇝∗ [] P ′›
| trace-tick-trans : ‹P ⇝✓ P ′ =⇒ P ⇝∗ [✓] P ′›
| trace-Cons-ev-trans : ‹P ⇝e P ′ =⇒ P ′ ⇝∗ s P ′′ =⇒ P ⇝∗ (ev e) # s P ′′›

The After trace operator and the trace transition P ⇝∗s Q are deeply related, which is
expressed in the following theorem:

ITP 2024

7:12 An Operational Semantics in Isabelle/HOL-CSP

▶ Theorem 15 (Bridge between trace transition and Aftertrace operator).

P ⇝∗s Q if and only if s ∈ T P ∧ P afterT s ⇝τ Q.

Informally spoken, P afterT s is the the least deterministic process that we can expect from
process P after the trace s. This interpretation will become clearer when we will instantiate
the formal (⇝τ)-relation of the locale with concrete refinements in Section 6.

Since the projections for the After trace operator are relatively easy to handle, this theorem
is an important new weapon in our arsenal. We will illustrate this by the following “reality
checks” which have concrete applications when certifying traces or divergences.

▶ Theorem 16 (Reality Checks).

We have s ∈ T P if and only if ∃ Q. P ⇝∗s Q.
Under the assumption ∀ P. P ⇝τ ⊥ −→ P = ⊥ of unicity of the least element of (⇝τ),
a trace tickFree s verifies s ∈ D P if and only if P ⇝∗s ⊥.
Under the assumption ∀ P Q. P ⇝τ Q −→ P ⊑F Q that a τ transition implies F-
refinement, and if tickFree s, we have (s, X) ∈ F P if and only if ∃ Q. P ⇝∗s Q ∧ X ∈
R Q.

(where R Q is the set of refusals of Q, defined as {X | ([], X) ∈ F Q}).

5.2 Strong Induction and (Bi)Simulations
The following theorem (and its generalizations not shown here) represents a new form of
induction over the set of reachable processes:

▶ Theorem 17 (Strong Induction for Refinements).] Let f be a continuous function:
[[∃ s∈T P. tickFree s ∧ Q = P afterT s;∧

s x. [[s ∈ T P; ∀ y. (∃ s∈T P. tickFree s ∧ y = P afterT s) −→ x ⊑F D y]]
=⇒ f x ⊑F D P afterT s]]

=⇒ (µ x. f x) ⊑F D Q

Note that as in Hoare and Jifengs approach, there will always be infinite sequences of τ

transitions. This is a consequence of the fact that the FD-refinement is reflexive. More
generally speaking, since any process equality P = Q is subsumed by the reflexivity P ⇝τ

Q, this is unavoidable: unfolding fixed points, for example, also falls into the category of
infinite sequences of τ transitions. Compared to classical operational semantics in CCS,
which is defined purely in terms of syntactic manipulations on process-terms, this means that
we can never have “strong simulations” in our denotational framework, which is based on
higher-order abstract syntax and a congruence generated from the equality on the semantic
domain. Rather, we will target weak transitions resp. simulations, which are, as we argue,
more suited for the semantic treatment we are heading for.

6 The Construction put into a Global Perspective

6.1 Transitions as Local Refinements
We use a sublocale to partially instantiate OpSemTransitions with (⊑F D), i. e. by leaving
Ψ and Ω as parameters. In this context we prove that we have only one remaining hypothesis
: [[✓ ∈ Q0; P F D⇝τ Q]] =⇒ Ω P F D⇝τ Ω Q, which is obvious if Ω takes the value STOP

B. Ballenghien and B. Wolff 7:13

(a choice commonly used in the literature, whether explicitly stated or implied). However, in
principle, any constant function is acceptable for Ω since we do not care about the traces
after a termination5.

Independent of this choice, we recover all the rules of operational semantics, and even
better for the “reality checks” (Theorem 16) since we get rid of the hypotheses.

However, it remains unfortunate that in the right hand side of the equivalence for failures
appears the denotational notion of refusals.

One work-around for this problem are deterministic processes. A process P is said to be
deterministic if ∀ s e. s @ [e] ∈ T P −→ (s, {e}) /∈ F P. We will not detail much this notion
here6, but to cut a long story short we prove that being in the refusals set of a deterministic
process P is the same as non intersecting its initials P0. Moreover, the notion of deterministic
is preserved by tickFree trace transitions. We finally prove:

▶ Theorem 18 (Deterministic Version of failures reality Check).
Assuming deterministic P and tickFree s, we have:

(s, X) ∈ F P if and only if ∃ Q. P F D⇝∗s Q ∧ X ∩ Q0 = ∅.

It came as a pleasant surprise when we observed that the same argument applies for the
trace divergence refinement (⊑DT). Initially defined and studied in [31] for pure curiosity, it
behaves remarkably well: the only remaining hypothesis is a monotony for Ω : [[✓ ∈ Q0; P
DT⇝τ Q]] =⇒ Ω P DT⇝τ Ω Q and we recover all the rules of the operational semantics.

Of course by restricting ourselves to traces and the divergences, we can not reason about
failures anymore.

It turns out that it is also possible to instantiate the τ transition in the locale OpSem-
Transitions with the failure refinement or the trace refinement. However, for them, the result
is somewhat unimpressive. The following table summarizes the rule sets corresponding to
operators which can be established.

basic (□) (;) P \ S P [[S]] Q (▷) (△) Throw Renaming
(⊑F D) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(⊑DT) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(⊑F) ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

(⊑T) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗

where “basic” refers to the rules for absorption, SKIP, e → P, □ a ∈ A → P a, ⊓ a ∈ A →
P a, P ⊓ Q and µ X . f X that we get as soon as we instantiate OpSemTransitions.

Being able to instantiate the locale represents the main result: we can formally derive an
operational semantics from the denotational one developed in HOL-CSP. This also constitutes
a formal proof that the expected rules are consistent (see Section 4).

And last but not least, we obtained actually two interesting variants with FD-refinement
and DT-refinement, plus all the sub-variants resulting from the free choice of Ψ and Ω.

6.2 Running Example: the Copy Buffer Again
From the derived laws of Section 4 we can formally obtain the following LTSs for the Copy
Buffer example presented in Subsection 2.5. Note that the τ -transition are collapsed thanks to
the absorbtion rules, and with the properties of initials we ensure that no external transition
is missed. Further note that t1 is a key for the term mid e → ack → SEND, t2 for ack →
SEND, t3 for right e → ack → REC, t4 for ack → REC, and finally t5 for right e → SYS.

5 Therefore, we are free to choose for Ω λP. P ⊓ STOP or λP. Renaming P f or λP. e → P, . . .
6 We refer to [27].

ITP 2024

7:14 An Operational Semantics in Isabelle/HOL-CSP

SEND

t1 t2

left ?e

mid e

ack

REC

t3 t4

mid ?e

right e

ack

SYS

t5

left?e right e

Figure 1 LTSs for the Copy Buffer Example.

6.3 Comparison with the Work of Jifeng and Hoare
As mentioned in Section 3, Hoare and Jifeng in [20] defined P ⇝τ Q ≡ P ⊑F D Q and
P ⇝e Q ≡ P ⊑F D (e → Q) □ P. Looking at our version (instantiated with the FD-
refinement), we differ on the external transition with ev e ∈ P0 ∧ P after e ⊑F D Q instead.
What happened? Did we miss something?

In general, from the generic τ transition in our locale, we can define P HOARE⇝e Q ≡
P ⇝τ (e → Q) □ P. We immediately prove that their version is stronger than ours i. e. P
HOARE⇝e Q =⇒ P ⇝e Q. However, adding the two hypotheses of monotony on (⇝τ), we
can prove the reciprocal. The situation is summarized in the following theorem:

▶ Theorem 19 (Equivalence of Transitions).
Assuming a τ monotony for prefix: ∀ P P ′ e. P ⇝τ P ′ −→ e → P ⇝τ e → P ′

and for Det: ∀ P P ′ Q. P = ⊥ ∨ P ′ ̸= ⊥ −→ P ⇝τ P ′ −→ P □ Q ⇝τ P ′ □ Q,
we have P HOARE⇝e Q if and only if P ⇝e Q.

These two hypotheses are verified by all four refinement relations. In other words, the
definition of Jifeng and Hoare is equivalent to ours as long as we do not consider ✓!

Indeed, as mentioned in Section 3, their definition can not handle ✓ because the prefix
operator only accepts a “real” event. In this sense one can say that our construction is
a generalization. Furthermore, the After tick operator gives a direct access to the least
deterministic process that can be expected while doing an external transition, which is not
easily accessible from the version of Hoare and Jifeng. Finally we note that the After operator
is itself of interest, even if we restrict ourselves to a purely denotational reasoning7.

6.4 Discussion
Our construction and the resulting proof rules (Section 4) permit the following observations:
1. As a general rule, when looking at a transition involving the special event ✓, we obtain

something like P ⊗ Q ⇝✓ Ω SKIP. This is a consequence of Theorem 7 and Theorem 11.
2. The “absorption” rules at the beginning allow additional rules to be derived directly e. g.

P ⇝✓ P ′ Q ⇝e Q ′

P ; Q ⇝e Q ′
P ⇝✓ P ′ Q ⇝✓ Q ′

P ; Q ⇝✓ Q ′

3. About the termination of Sync operator, Roscoe postulates in [27] that:
P ⇝✓ P ′

P [[S]] Q ⇝τ Ω ′ [[S]] Q
P ⇝✓ P ′

P [[S]] Q ⇝τ Ω ′ [[S]] Q Ω ′ [[S]] Ω ′⇝✓ Ω ′

7 The interested reader is referred to examples of fixed point induction to reason about deadlock freeness[4].

B. Ballenghien and B. Wolff 7:15

where Ω ′ is intended to denote any process that has already terminated. In the common
interpretation that Ω ′ can be identified with STOP, these rules are incompatible with the
denotational properties since we have STOP [[S]] STOP = STOP that can not make a ✓
transition. Under the assumptions of the locale, we rather prove the rules of Section 4.

4. We deliberately focus in Section 4 on the operational rules that we found in the literature.
In particular for the Throw operator, where the right argument remains inactive until an
exception is triggered, we should not write a right τ transition rule like:

∀ a∈A. Q a ⇝τ Q ′ a
P Θ a∈A. Q a ⊑F D P Θ a∈A. Q ′ a

while this is true when instantiating (⇝τ) with (⊑F D), (⊑DT), (⊑F) or (⊑T).

7 Related Work

In the introduction, we claimed that HOL-CSP is arguably the most comprehensive formal-
ization of CSP; here, we’d like to substantiate this claim.

The theory of CSP has attracted a lot of interest since the eighties and nineties, both as
a theoretical device as well as a modelling language to analyze complex concurrent systems.
A wealth of theoretical articles appeared to investigate certain fragments and extensions of
the core framework; it is therefore not surprising that attempts to their formalisations have
been undertaken with the advent of interactive proof assistants.

Most noteworthy to these attempts is an early CSP trace semantics model in HOL
System proposed by [11]. Its successor [10] presented a first failure-divergence semantics for
a restricted set of operators and used the notion of a universal (polymorphic) alphabet8.
Note that [34] tackled already with subtle difficulties concerning is-process and ✓.

The tool CSP-Prover [18] – based on a deep embedding of CSP in an Isabelle/HOL
theory on the stable failures model – allows for the refinement verification [18] by using some
automated support for induction. However, only if a process is divergence-free, its failures
are the same as its stable failures. In our view, this is a too strong assumption for both a
theory as well as a practical tool.

In the past few years, CSP benefited from a renewed interest with proof assistants. CSP
Agda was introduced in 2026 [16] with an implementation quite different from HOL-CSP since
it is based on coinductive data types. Only trace and stable failures semantics have been
covered so far, and the library of proven laws is fairly modest [17]. In 2020, an operational
semantics of CSP in Coq was introduced [13] by a direct definitional approach. The theory
covers only trace refinement and a subset of CSP’s operators, but offers rather well-developed
proof automation for this language fragment close to conventional automata theory.

With respect to all these formalizations in HOL, we would like to remind the importance
of the general fact that invariants (like is-process) or bridge theorems (like Hoare’s P ⇝e
Q ≡ P ⊑F D (e → Q) □ P) do not simply generalise from one fragment to the next, and
that features which are well studied in one fragment are not necessarily well-understood in
the whole picture. It is our main contribution to provide an integrated formal theory that
tackles with the complexities of the necessary generalisations. This involved a revision of the
role of the After operator in the entire theory.

In the late nineties, research focused on automated verification tools for CSP, most notably
on FDR (see [1] for the latest instance). It relies on an operational CSP semantics, that allows
for a conversion of processes into labelled transition systems, where the states were normalized

8 Our first attempts for HOL-CSP [34] are based on a extended version of this theory ported to Is-
abelle/HOL

ITP 2024

7:16 An Operational Semantics in Isabelle/HOL-CSP

by the “axioms” derived from the denotational semantics. For finite event sets, FDR can
reduce refinement proofs to bisimulation problems. With efficient compression techniques,
state-elimination and factorization by semantic equivalence [26], FDR was successful in
analysing some industrial applications. However, such a model checker can never handle
infinite cases. Another similar model checking tool [30] implemented some more optimization
techniques, such as partial order reduction, symmetric reduction, and parallel model checking,
but is also restricted to the finite case. In a way, these tool require for their foundation
integrated denotational/algebraic/operational techniques as provided by our theory.

Attempts to find characterizations of processes to generalise finite results to infinite ones
by data-independence [21, 2, 25], a variant of parametric model-checking, have seen only a
limited success. Roscoe developed a data independent technology to verify security protocols
modelled with CSP/FDR, which allows the node to call infinite fresh values for nonces, thus
infinite sequence of operations [25]. An extension of this work was proposed in [2] using the
script language CSPM . However, in their works, even though each agent in the security
protocol can perform infinite number of operations, the number of agent entities remains
finite. HOL-CSP satisfies the need to parameterization and high-order processes naturally
[32] as a consequence of their pcpo-type structure. A formalization and theory development
of CSPM has been undertaken [3] but is out of the scope of this paper.

8 Conclusion

We presented a formalisation of a comprehensive semantic theory for CSP, a ’classical’
language for the specification and analysis of concurrent systems studied in a rich body of
literature. The theory comprises the denotational part (including recursion and permitting
higher-order processes), the algebraic part paving the way for parametric refinement proofs
involving fixed point induction, and the operational semantics part. The size of the latter,
which constitutes an original contribution, is about 16 kLOC of Isabelle/HOL proofs.

The resulting framework offers new ways to reason consistently over denotationally
defined CSP processes paving the way to symbolic execution of LTS-based representations of
processes as well as the possibility to certify output from model-checkers like [1, 30], which
excel in the calculational parts related to interleaving processes. As a by-product, the theory
allows for new proof principles like strong induction (cf. Theorem 17).

An interesting line of future work is the development of a library of “process-bricks”
containing, e. g., semaphores, monitors or just global variables like:

VAR Read Update ≡ µ x. (λσ. (Read!σ → x σ) □ (Update?σ ′ → x σ ′))

or non-deterministic key-generators like:

KEY chan ≡ (µ x. (λσ. chan!a ∈ σ → x (σ − {a}))) �

which will have symbolic traces like:

[[a ∈ �; b ∈ � − {a}; c ∈ � − {a, b}]] =⇒ [C a, C b, C c] ∈ T (KEY C)

which can be derived both algebraically as well as operationally.

References
1 FDR4 - The CSP Refinement Checker. https://www.cs.ox.ac.uk/projects/fdr/, 2019.
2 Jing An, Lei Zhang, and Chun You. The design and implementation of data independence in

the csp model of security protocol. Advanced Materials Research, 915-916:1386–1392, April
2014. doi:10.4028/www.scientific.net/AMR.915-916.1386.

https://www.cs.ox.ac.uk/projects/fdr/
https://doi.org/10.4028/www.scientific.net/AMR.915-916.1386

B. Ballenghien and B. Wolff 7:17

3 Benoît Ballenghien, Safouan Taha, and Burkhart Wolff. HOL-CSPM - Architectural operators
for HOL-CSP. Archive of Formal Proofs, 2023, 2023. URL: https://www.isa-afp.org/
entries/HOL-CSPM.html.

4 Benoît Ballenghien and Burkhart Wolff. Operational Semantics formally proven in HOL-CSP.
Archive of Formal Proofs, December 2023. URL: https://isa-afp.org/entries/HOL-CSP_
OpSem.html.

5 G. Barrett. Model checking in practice: the t9000 virtual channel processor. IEEE Transactions
on Software Engineering, 21(2):69–78, February 1995. doi:10.1109/32.345823.

6 S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560–599, 1984.

7 S. D. Brookes and A. W. Roscoe. An improved failures model for communicating sequential
processes. In Stephen D. Brookes, Andrew William Roscoe, and Glynn Winskel, editors,
Seminar on Concurrency, pages 281–305, Berlin, Heidelberg, 1985. Springer.

8 Achim D. Brucker, Idir Aït-Sadoune, Nicolas Méric, and Burkhart Wolff. Using deep ontologies
in formal software engineering. In Uwe Glässer, José Creissac Campos, Dominique Méry, and
Philippe A. Palanque, editors, Rigorous State-Based Methods - 9th International Conference,
ABZ 2023, Nancy, France, May 30 - June 2, 2023, Proceedings, volume 14010 of Lecture Notes
in Computer Science, pages 15–32. Springer, 2023. doi:10.1007/978-3-031-33163-3_2.

9 Achim D. Brucker and Burkhart Wolff. Isabelle/dof, July 2022. doi:10.5281/zenodo.6810799.
10 Albert J. Camilleri. A higher order logic mechanization of the csp failure-divergence semantics.

In Graham Birtwistle, editor, IV Higher Order Workshop, Banff 1990, pages 123–150, London,
1991. Springer.

11 Albert John Camilleri. Mechanizing CSP trace theory in higher order logic. IEEE Trans.
Software Eng., 16(9):993–1004, 1990.

12 Paolo Crisafulli, Safouan Taha, and Burkhart Wolff. Modeling and analysing cyber-physical
systems in HOL-CSP. Robotics Auton. Syst., 170:104549, 2023. doi:10.1016/J.ROBOT.2023.
104549.

13 Carlos Alberto da Silva Carvalho de Freitas. A theory for communicating, sequential processes
in coq, 2020. URL: https://api.semanticscholar.org/CorpusID:259373665.

14 A.A.A. Donovan and B.W. Kernighan. The Go Programming Language. Addison-Wesley
Professional Computing Series. Pearson Education, 2015.

15 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1985.

16 Bashar Igried and Anton Setzer. Programming with monadic csp-style processes in dependent
type theory. In Proceedings of the 1st International Workshop on Type-Driven Development,
TyDe 2016, pages 28–38, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2976022.2976032.

17 Bashar Igried and Anton Setzer. Trace and stable failures semantics for csp-agda. arXiv
preprint arXiv:1709.04714, 2017.

18 Yoshinao Isobe and Markus Roggenbach. A complete axiomatic semantics for the CSP stable-
failures model. In CONCUR 2006 - Concurrency Theory, 17th International Conference,
Bonn, Germany, August 27-30, 2006, pages 158–172, 2006.

19 Yoshinao Isobe and Markus Roggenbach. Csp-prover: a proof tool for the verification of
scalable concurrent systems. Information and Media Technologies, 5(1):32–39, 2010. doi:
10.11185/imt.5.32.

20 He Jifeng and CAR Hoare. From algebra to operational semantics. Information Processing
Letters, 45(2):75–80, 1993.

21 Ranko S. Lazic. A semantic study of data-independence with applications to the mechanical
verification of concurren. PhD thesis, University of Oxford, 1999.

22 Olaf Müller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch. HOLCF = HOL + LCF.
j-fp, 9(2):191–223, 1999. doi:10.1017/S095679689900341X.

ITP 2024

https://www.isa-afp.org/entries/HOL-CSPM.html
https://www.isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://doi.org/10.1109/32.345823
https://doi.org/10.1007/978-3-031-33163-3_2
https://doi.org/10.5281/zenodo.6810799
https://doi.org/10.1016/J.ROBOT.2023.104549
https://doi.org/10.1016/J.ROBOT.2023.104549
https://api.semanticscholar.org/CorpusID:259373665
https://doi.org/10.1145/2976022.2976032
https://doi.org/10.11185/imt.5.32
https://doi.org/10.11185/imt.5.32
https://doi.org/10.1017/S095679689900341X

7:18 An Operational Semantics in Isabelle/HOL-CSP

23 Pasquale Noce. Conservation of CSP noninterference security under sequential com-
position. Archive of Formal Proofs, 2016. URL: https://www.isa-afp.org/entries/
Noninterference_Sequential_Composition.shtml.

24 A. W. Roscoe. An alternative order for the failures model. J. Log. Comput., 2:557–577, 1992.
25 A. W. Roscoe and Philippa J. Broadfoot. Proving security protocols with model checkers by

data independence techniques. Journal of Computer Security, 7(1):147–190, 1999.
26 A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M. Jackson, and J. B.

Scattergood. Hierarchical compression for model-checking csp or how to check 1020 dining
philosophers for deadlock. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 133–152, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

27 A.W. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1997.
28 A.W. Roscoe. Understanding Concurrent Systems. Springer-Verlag, Berlin, Heidelberg, 1st

edition, 2010.
29 Dana Scott. Continuous lattices. In F. W. Lawvere, editor, Toposes, Algebraic Geometry and

Logic, pages 97–136, Berlin, Heidelberg, 1972. Springer.
30 Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flexible verification under

fairness. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification, pages
709–714, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

31 Safouan Taha, Burkhart Wolff, and Lina Ye. The HOL-CSP refinement toolkit. Arch. Formal
Proofs, 2020, 2020. URL: https://www.isa-afp.org/entries/CSP_RefTK.html.

32 Safouan Taha, Burkhart Wolff, and Lina Ye. Philosophers may dine - definitively! In
Brijesh Dongol and Elena Troubitsyna, editors, Integrated Formal Methods - 16th International
Conference, IFM 2020, Lugano, Switzerland, November 16-20, 2020, Proceedings, volume
12546 of Lecture Notes in Computer Science, pages 419–439. Springer, 2020. doi:10.1007/
978-3-030-63461-2_23.

33 Safouan Taha, Lina Ye, and Burkhart Wolff. HOL-CSP Version 2.0. Archive of Formal Proofs,
April 2019. URL: http://isa-afp.org/entries/HOL-CSP.html.

34 Haykal Tej and Burkhart Wolff. A corrected failure divergence model for CSP in Isabelle/HOL.
In John S. Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, Formal Methods Europe (FME),
volume 1313 of LNCS, pages 318–337. Springer, 1997. doi:10.1007/3-540-63533-5_17.

35 Jim Woodcock and Ana Cavalcanti. The semantics of circus. In Didier Bert, Jonathan P.
Bowen, Martin C. Henson, and Ken Robinson, editors, ZB 2002: Formal Specification and
Development in Z and B, 2nd International Conference of B and Z Users, Grenoble, France,
January 23-25, 2002, Proceedings, volume 2272 of Lecture Notes in Computer Science, pages
184–203. Springer, 2002. doi:10.1007/3-540-45648-1_10.

36 Jim Woodcock, Ana Cavalcanti, Simon Foster, Marcel Oliveira, Augusto Sampaio, and Frank
Zeyda. Utp, circus, and isabelle. In Jonathan P. Bowen, Qin Li, and Qiwen Xu, editors,
Theories of Programming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion
of His 80th Birthday, volume 14080 of Lecture Notes in Computer Science, pages 19–51.
Springer, 2023. doi:10.1007/978-3-031-40436-8_2.

https://www.isa-afp.org/entries/Noninterference_Sequential_Composition.shtml
https://www.isa-afp.org/entries/Noninterference_Sequential_Composition.shtml
https://www.isa-afp.org/entries/CSP_RefTK.html
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-63461-2_23
http://isa-afp.org/entries/HOL-CSP.html
https://doi.org/10.1007/3-540-63533-5_17
https://doi.org/10.1007/3-540-45648-1_10
https://doi.org/10.1007/978-3-031-40436-8_2

	1 Introduction
	2 Background
	2.1 Classic CSP Syntax
	2.2 Classic CSP Semantics
	2.3 Theories and Locales in Isabelle and HOL
	2.4 Isabelle/HOL-CSP
	2.5 A Model and Sample Proof in HOL-CSP

	3 Small Steps Semantics
	3.1 The Notion of initials
	3.2 The After Operator
	3.3 The Rationale for an Operational Semantics
	3.4 Finally: Formal Definitions of the Transition Relations

	4 The Derived Rules of the Operational Semantics at a Glance
	5 Big Steps Semantics
	5.1 Extensions to Traces
	5.2 Strong Induction and (Bi)Simulations

	6 The Construction put into a Global Perspective
	6.1 Transitions as Local Refinements
	6.2 Running Example: the Copy Buffer Again
	6.3 Comparison with the Work of Jifeng and Hoare
	6.4 Discussion

	7 Related Work
	8 Conclusion

