
Verifying Peephole Rewriting in SSA Compiler IRs
Siddharth Bhat #

Cambridge University, UK

Alex Keizer #

Cambridge University, UK

Chris Hughes #

University of Edinburgh, UK

Andrés Goens #

University of Amsterdam, The Netherlands

Tobias Grosser #

Cambridge University, UK

Abstract
There is an increasing need for domain-specific reasoning in modern compilers. This has fueled
the use of tailored intermediate representations (IRs) based on static single assignment (SSA), like
in the MLIR compiler framework. Interactive theorem provers (ITPs) provide strong guarantees
for the end-to-end verification of compilers (e.g., CompCert). However, modern compilers and
their IRs evolve at a rate that makes proof engineering alongside them prohibitively expensive.
Nevertheless, well-scoped push-button automated verification tools such as the Alive peephole
verifier for LLVM-IR gained recognition in domains where SMT solvers offer efficient (semi) decision
procedures. In this paper, we aim to combine the convenience of automation with the versatility of
ITPs for verifying peephole rewrites across domain-specific IRs. We formalize a core calculus for
SSA-based IRs that is generic over the IR and covers so-called regions (nested scoping used by many
domain-specific IRs in the MLIR ecosystem). Our mechanization in the Lean proof assistant provides
a user-friendly frontend for translating MLIR syntax into our calculus. We provide scaffolding for
defining and verifying peephole rewrites, offering tactics to eliminate the abstraction overhead of
our SSA calculus. We prove correctness theorems about peephole rewriting, as well as two classical
program transformations. To evaluate our framework, we consider three use cases from the MLIR
ecosystem that cover different levels of abstractions: (1) bitvector rewrites from LLVM, (2) structured
control flow, and (3) fully homomorphic encryption. We envision that our mechanization provides a
foundation for formally verified rewrites on new domain-specific IRs.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Semantics; Computing methodologies → Theorem proving algorithms; Theory of
computation → Rewrite systems

Keywords and phrases compilers, semantics, mechanization, MLIR, SSA, regions, peephole rewrites

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.9

Supplementary Material Software: https://github.com/opencompl/lean-mlir/tree/ITP24
archived at swh:1:dir:037d3d2587a091456ac21509c79a65076ccd348e

Funding This project has received funding from the European Union’s Horizon EUROPE research
and innovation program under grant agreement no. 101070374 (CONVOLVE).

Acknowledgements We thank Sébastien Michelland and Sebastian Ullrich for their early help in
this project and feedback, as well as Anton Lorenzen for his helpful feedback.

© Siddharth Bhat, Alex Keizer, Chris Hughes, Andrés Goens, and Tobias Grosser;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sb2743@cam.ac.uk
https://orcid.org/0009-0007-6410-3681
mailto:ack55@cam.ac.uk
https://orcid.org/0000-0002-8826-9607
mailto:chughes6@ed.ac.uk
mailto:a.goens@uva.nl
https://orcid.org/0000-0002-0409-1363
mailto:tobias.grosser@cst.cam.ac.uk
https://orcid.org/0000-0003-3874-6003
https://doi.org/10.4230/LIPIcs.ITP.2024.9
https://github.com/opencompl/lean-mlir/tree/ITP24
https://archive.softwareheritage.org/swh:1:dir:037d3d2587a091456ac21509c79a65076ccd348e;origin=https://github.com/opencompl/lean-mlir;visit=swh:1:snp:08cf530e0033980ee33e8b9d03352e02c1494c6c;anchor=swh:1:rev:ae0dd9332273e3e2c58f7e5fef63ca1709e7b67c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Verifying Peephole Rewriting in SSA Compiler IRs

1 Introduction

Static single assignment (SSA) [34] intermediate representations (IRs) are at the core of
modern compilers, thanks to the benefits their immediate encoding of use-def relationships
brings to compiler analyses and transformations. Peephole optimizations [26], which replace
assembly-level instruction sequences of bounded length with semantically equivalent optimized
ones, benefit from SSA during target code generation [25] and are now also widely used
for optimizing SSA-based IRs. Peephole optimizations are so common, that 10% of all IR
transforming code in LLVM [17] belongs to its InstCombine peephole optimizer,1 which is
beyond the size of LLVM’s loop optimizer. Further evidence is offered by LLVM’s commit
log, where the most referenced tool is the Alive peephole verifier [23]. Alive has brought
automatic SMT-based verification into the day-to-day of the LLVM compiler community.

In the context of the end-to-end verified compiler Compcert [21], peephole rewriting has
been formalized (and mechanized) in its classical form of straight-line assembly code [28],
but this verification does not cover rewriting along the SSA def-use chain. As an example,
consider the rewrite (y = x + 1; z = y − 1) 7→ (z = x). This pattern does not match the
program (y = x + 1; p = y; z = y − 1) in straight-line rewriting, due to the interleaved
instruction p = y. On the other hand, by concentrating on the dataflow, we rewrite any
subprogram of the form (y = x + 1; # ; z = y − 1) to (y = x + 1; # ; z = x), regardless of
what fills the hole #. This rewriting on the “def-use” chain can be applied to assembly code
before register allocation and all SSA-based IRs.

SSA-based IRs have been successful in domain-specific compilers, where they enable concise
reasoning at the favored abstraction level. In particular, the MLIR compiler framework [18]
has been widely adopted for machine learning [39], quantum computing [32], and even for
compiling Lean [6]. MLIR lowers the cost of instantiating domain-specific IRs and encourages
transformations on specialized high-level IRs. Instead of complex potentially side-effectful
global reasoning at a lower abstraction level, these tailored IR abstractions often offer value
semantics (i.e., referential transparency) to enable side-effect-free local reasoning. MLIR
also introduces the concept of regions, which allow IR operations to be nested, enabling
structured control flow. Structured control makes termination proofs of loops easier and the
tailored domain-specific IRs have the potential to reduce the complexity of proofs.

In this paper, we verify peephole rewriting over SSA-based IRs. We formalize a core
calculus for SSA-based IRs that is generic over the IR and covers regions instead of potentially
diverging unstructured control. We mechanize our calculus in the Lean [9] proof assistant and
make it accessible to MLIR developers by offering an embedding of MLIR syntax. Concretely,
our contributions are:

A formalization of SSA with regions parametrized over a user-defined IR X and its
mechanization in our framework2 LeanMLIR(X) that exploits denotational-style value
semantics for optimizing along the SSA use-def chain of an MLIR-style IR (Sections 2, 3)
Evidence that our formalization of SSA allows for effective meta-theoretic reasoning:

A verified peephole rewriter, for which we prove that lifting a peephole rewrite to a
rewrite on the entire program preserves semantics (Subsection 4.1)
Two verified implementations of generic SSA-based optimizations: dead code elimina-
tion and common subexpression elimination (Subsection 4.2)
Proof automation for eliminating the abstraction overhead of our SSA calculus and
exposing clean mathematical proof obligations for each rewrite (Subsection 4.3)

1 Non-blank and non-comment lines of .cpp files in llvm/lib/Transforms on commit f4f1cf6c3.
2 Our code is available at https://github.com/opencompl/lean-mlir/releases/tag/ITP24 (ae0dd933).

https://github.com/opencompl/lean-mlir/releases/tag/ITP24

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:3

inductive Ty
| r
| nat

inductive Op
| arith_const (x : Nat) -- with compile-time data `x`
| monomial -- build equivalence class of monomial
| add -- add op.

(a) QuotRing has three Op constructors, add, monomial, and arith_const x (for x an element of N)
matching the three operations of the IR and two Ty constructors, r and nat matching the two IR types.

instance : OpSignature Op Ty where signature
| .arith_const _ => { sig := [], outTy := .nat } -- takes no args, returns `nat`
| .add => { sig := [.r, .r], outTy := .r } -- takes two `r`, returns `r`
| .monomial => { sig := [.nat, .nat], outTy := .r } -- takes two`.nat`, returns `r`

(b) User-defined signatures of each QuotRing operation.

noncomputable def generator : (ZMod q)[X] := X^(2^n) + 1
abbrev R := (ZMod q)[X] / (span {generator q n})

instance : TyDenote Ty where
toType
| .r => R -- the denotation of `r` is an element of the ring `R`
| .nat => Nat

instance : OpDenote Op Ty where
denote
| .arith_const (x : Nat), _, _ => x -- the denotation of `arith_const x` is `x`
| .add, [(x : R), (y : R)]h, _ => x + y
| .monomial, [(c : Nat), (i : Nat)]h, _ =>

Quotient.mk (span {generator q n}) (monomial i c)

(c) User-defined semantics of QuotRing. The instance syntax is used to define a typeclass instance, by
specifying the corresponding members, which in this case are the denotation functions. The noncomputable
annotation in Lean tells the compiler not to generate executable code for this function since mathlib
uses a noncomputable definition for quotients of polynomial rings. Note that our framework ensures that
values are well-typed according to OpSignature and TyDenote.

Figure 1 User definitions for QuotRing, which declares the operations and types of the IR, the
type signatures of the operations, and the denotations of the types and operations into Lean types.

An extension of our pure optimizations in a context with side effects (Section 5)
Syntax, semantics, and local rewrites for three MLIR-based IRs: (1) arithmetic over
bitvectors, (2) structured control flow, and (3) fully homomorphic encryption (Section 6)

2 Motivation: Verfying Optimizations for High-Level IRs

Effective domain-specific optimizations are almost impossible when reasoning on traditional
LLVM-style compiler IRs. These offer a “universal” low-level abstraction, originally designed
to represent C-style imperative code. Such LLVM-style IRs are built around the concepts
of load/store/arithmetic/branching, which is ideal when optimizing at the level of scalar
arithmetic, instruction scheduling, or applying certain kinds of loop optimizations. However,
this level of abstraction is unsuitable for reasoning about high-level mathematical abstractions.

Consider a compiler for Fully Homomorphic Encryption (FHE) [10], a cryptographic
technique that uses algebraic structures to allow an untrusted third party to do computation
on encrypted data. In such a compiler, we might have a rewrite like (a + X2n + 1 7→ a),

ITP 2024

9:4 Verifying Peephole Rewriting in SSA Compiler IRs

which is a simple identity on the corresponding quotient ring.3 Expressed in LLVM, the
computation of this simple operation consists of multiple basic blocks forming a loop, each
containing memory loads, pointer arithmetic, scalar operations, and branches. As a result,
the algebraic structure is completely lost and exploiting simple algebraic identities turns into
a heroic effort of reasoning about side effects and stateful program behavior. State-of-the-art
compilers for FHE consequently use domain-specific IRs (often expressed with MLIR [40, 30])
when generating optimized code for FHE, where algebraic optimizations can take place at an
FHE-specific IR that has value-semantics (e.g., is referentially transparent) and is overall
closer to the mathematical structure of the problem.

2.1 Defining LeanMLIR(QuotRing): Syntax and Semantics
As an example, we model an IR aimed at FHE that manipulates objects in the algebraic
structure R ≡ (Z/qZ)[X]/(X2n + 1). To model it, we instantiate an IR LeanMLIR(QuotRing)
in our framework. It has three simple operations: arith_const and monomial, to construct
values in R, and add to add two values of R. To define the syntax and semantics of
LeanMLIR(QuotRing), we first declare the types and operations in the IR (Figure 1a).
QuotRing has two types: r, which represents the ring R, and nat for naturals. Terms in Op
represent the operations arith_const, monomial, and add, as well as associated compile-time
data. We then define the operation signatures by giving an instance of the OpSignature
typeclass, which is offered by our framework to instantiate custom IRs (Figure 1b). That is,
for each operation we specify: (1) the arity and types of arguments sig, and (2) the type of
the return value outTy. The operation arith_const takes no arguments and returns a nat,
monomial and add take two nat/r-valued arguments respectively, and both return an r.

The type denotation is also simple to express with the TyDenote typeclass (Figure 1c). Ty
thus represents the embedded type in the IR and has only two inhabitants r and nat, whose
denotation are R and Nat, the Lean (host) type that represents the mathematical objects R

and N respectively. The denotation of operations is a Lean function from the denotation of
the input types (as recorded in the signature of that operation), to the denotation of the
output type.4 Concretely, an arith_const n operation takes no arguments, so its denotation
is Lean’s Nat, while add takes two r arguments, so its denotation is a function from the
product5 of its arguments to its output, i.e., R × R → R. The same is true for monomial for
Nat × Nat → R. We define the denotation of arith_const n to evaluate to n, add(x, y) to
evaluate to x + y, and monomial(a, i) to evaluate to Quotient.mk (span generator p q
(monomial a i)), the equivalence class of the monomial aXi. As the QuotRing IR does not
require regions (Subsection 6.2), we only need to add MLIR syntax support (Subsection 3.2)
and translate the MLIR AST to Ty and Op, e.g., mapping !Nat6 to nat and !R to r, and a
full QuotRing example (Figure 2) can be written in Lean.

2.2 Defining and Executing Peephole Rewrites for QuotRing

We now verify the peephole rewrite (a + X2n + 1 7→ a), where a is a variable and X2n

is a constant in the ring. In (Z/qZ)[X]/(X2n + 1) this rewrite is simple to prove and,
unsurprisingly, our custom LeanMLIR(QuotRing) IR enables us to rewrite at exactly this

3 We will discuss the underlying mathematical structure in more detail in Subsection 6.3
4 Our framework groups type and operation denotations into a Dialect, which we leave out for brevity.
5 The mechanization uses a heterogeneous vector type HVector, which is coerced into the product type.
6 In practice, one would use a fixed-bitwidth type iN but we use !Nat for a simpler exposition.

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:5

def a_plus_generator_eq_a : PeepholeRewrite Op [.r] .r := {
lhs /- a + X^(2^n) + 1 -/ := [quotring_com q, n| {

^bb0(%a : !R):
%one_int = arith.const 1 : !Nat
%two_to_the_n = arith.const ${2**n} : !Nat
%x2n = poly.monomial %one_int, %two_to_the_n : (!Nat, !Nat) -> !R
%oner = poly.const 1 : !R
%p = poly.add %x2n, %oner : !R
%v1 = poly.add %a, %p : !R
return %v1 : !R

}],
rhs /- a -/ := [quotring_com q, n| {

^bb0(%a : !R):
return %a : !R

}],
correct := by

funext Γv; simp_peephole [Nat.cast_one, Int.cast_one] at Γv 1
/- ⊢ a + ((Quotient.mk (span {f q n})) ((monomial (2**n)) 1) + 1) = a -/
... /- simple proof with only definitions and theorems from Mathlib -/

}

Figure 2 A peephole rewrite in LeanMLIR(QuotRing) asserts the semantic equivalence of two
SSA programs given in MLIR syntax. Our proof automation through simp_peephole eliminates the
framework overhead, such that closing a clean mathematical goal suffices to prove correctness.

level. Any given peephole rewrite (of which Figure 2 is an example) consists of a context Γ of
free variables in the search pattern of the peephole rewrite. The search pattern is called lhs,
and the replacement is rhs. The user has a proof obligation that the denotations of the left
and right-hand sides are equal, which is given by the field correct of the peephole rewrite.
In later examples, we reason upto semantic refinement to incorporate LLVM’s notion of
poison values [20]. For now, we stick to equality to simplify exposition.

We declare our desired peephole rewrite by defining a_plus_generator_eq_a. Its type
is PeepholeRewrite Op [.r] r, where the Op specifies the IR the rewrite belongs to and
[.r] is the list of types of free variables in the program. For (a+X2n +1 7→ a), this is (a : r).
The final instruction we are matching yields a value of type r. The lhs is the program
fragment we want to match on, with the free variable %a interpreted as being allowed to
match any variable of type r. Observe that the type encapsulates exactly what is necessary
for a well-typed match: the types of free variables r and the type of the instruction whose
return value we are replacing (also r in this case). The rewritten program is the rhs field.

Both the left- and right-hand sides of the rewrite are written in MLIR syntax. Note
that we also include a custom quasiquotation ${2**n}, to inline the symbolic (universally
quantified) value n, even though the IR would require 2n to be a concrete constant. Using
MLIR syntax matches the LLVM community’s use of automation tooling, such as Alive: copy
a code snippet and get a response. Our goal is to make the use of an interactive theorem
prover part of the day-to-day workflow of compiler engineers. To enable this workflow, we
implement a full MLIR syntax parser, along with facilities to convert from the generic MLIR
abstract syntax into our framework type, such that we can use MLIR syntax in Lean.

To prove the correctness of a_plus_generator_eq_a, we use the simp_peephole 1
tactic from our framework, which removes any overhead of our SSA encoding. We are

ITP 2024

9:6 Verifying Peephole Rewriting in SSA Compiler IRs

left with: ⊢ a + ((Quotient.mk (span f q n)) ((monomial (2**n)) 1) + 1) = a , a
proof obligation in the underlying algebraic structure that, thanks to Lean’s mathlib, can
be closed with a few (elided) lines of algebraic reasoning.

2.3 Executing Peephole Rewrites
Given a peephole rewrite rw and a source program s, we provide rewritePeephole to replace
the pattern rw.lhs in the source program s. If the matching succeeds, we insert the target
program rw.rhs (with appropriate substitutions) and replace all references to the original
variable with a reference to the newly inserted var. Note that the matching is based on the
def-use chain. Thus, a pattern need not be syntactically sequential in the program s. As long
as the pattern rw.lhs can be found as a subprogram of s, s will be rewritten. This makes
our peephole rewriter an SSA peephole rewriter, which distinguishes it from a straight-line
peephole rewriter that only matches a linear sequence of instructions.

Thanks to our intrinsically well-typed encoding, we know that the result of the rewriter
is always a well-typed program, under the same context and resulting in the same type
as the original program. Furthermore, the framework extends the local proof of semantic
equivalence to a global proof, showing that the rewriter is semantics preserving:

/- The denotation of the rewritten program is equal to the source program. -/
theorem denote_rewritePeephole (fuel : N) (rw : PeepholeRewrite Op Γ t)

(target : Com Op Γ2 t2) : (rewritePeephole fuel rw target).denote = target.denote

These typeclass definitions are all we need to define the QuotRing IR. Our framework
takes care of building the intrinsically well-typed IR for QuotRing from this, and gives us a
verified peephole rewriter, with other optimizations like CSE and DCE. We will now delve
into the details of the framework and see how it achieves this.

3 LeanMLIR(X): A Framework for Intrinsically Well-Typed SSA

In this section, we describe the core design of the framework: the encoding of programs and
their semantics in LeanMLIR(X) (Figure 3a). We review some dependently-typed tooling we
use to define our IR. Contexts: Our encoding is intrinsically well-typed (i.e., each inhabitant
of Expr or Com described below is, by construction, well typed). Thus, we need a context to
track the types of variables that are allowed to occur (Ctxt Ty). A context is a list of types,
where for example [int, int, bool] means that there are two variables of the (user-defined)
type int and one variable of type bool we may refer to. Variables: The type (Var Γ α)
encodes variables of type α in context Γ. We use De Bruijn indices [33] in the standard
way, but, additionally, a variable with index i also carries a proof witness that the i-th entry
of context Γ is the type α. Heterogeneous Vectors: To define an argument signature
(OpSignature.sig), say, [int, int, bool], we need an expression with this operation to
store two variables of type int and one of type bool. We want to statically ensure that the
types of these variables are correct, so we store them in a heterogeneous vector. A vector of
type HVector f [α1, ..., αn] is equivalent to a tuple (f α1 × ... × f αn).

3.1 Semantics of LeanMLIR(X)
The core types for programs are Expr and Com, shown in Figure 3a. The type Expr Γ α

describes individual SSA operations; we think of it as a function from values in the context
Γ – also called a valuation for that context – to a value in the denotation of type α. The
type Com Γ α has a similar interpretation but represents sequences of operations. Each
command binds a new value in the current context (the var constructor) until the sequence

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:7

inductive Expr [OpSignature Op Ty] : Ctxt Ty → Ty → Type where
| mk (op : Op) -- op (arg1, arg2, ..., argn) : outTy op

(args : HVector (Var Γ) (OpSignature.sig op)) : Expr Γ (OpSignature.outTy op)

inductive Com [OpSignature Op Ty] : Ctxt Ty → Ty → Type where
| ret (v : Var Γ α) : Com Γ α -- return v
| var (e : Expr Γ α) (body : Com (Γ.snoc α) β) : Com Γ β -- let v : α := e in body

(a) Core syntax of LeanMLIR(X), polymorphic over Op. The arguments in square brackets are assumed
typeclass instances. Type is the base universe of Lean types.

variable [TyDenote Ty] [OpDenote Op Ty] [DecidableEq Ty]

def Expr.denote : {ty : Ty} → (e : Expr Op Γ ty) → (Γv : Valuation Γ) → toType ty
| _, 〈op, args〉, Γv => OpDenote.denote op (args.map (fun _ v => Γv v))

def Com.denote : Com Op Γ ty → (Γv : Valuation Γ) → (toType ty)
| .ret e, Γv => Γv e
| .var e body, Γv => body.denote (Γv.snoc (e.denote Γv))

(b) Denotation of Expr and Com in LeanMLIR(X), which extends the user’s OpDenote to entire programs.
Intrinsic well-typing of Com makes its denotation a well-typed function from the context valuation to the
return type. The angled brackets are used to pattern match on a structure constructor anonymously.

Figure 3 Definitions in LeanMLIR(X) for Expr and Com, and their associated denotations.

returns the value of one such variable v (the ret constructor). Thus, this encoding of SSA
exploits the similarity to the ANF [2] and CPS [15] encodings. In particular, our Expr
represents an SSA assignment, and Coms represents a block of operations, often called a
basic block. A basic block typically would either return or branch to another block. In our
case, blocks only return and consequently do not model branching. Instead, we use regions
to model structured control flow (Subsection 6.2). Given our core syntax, our framework
now automatically expands the semantics given by the user in OpDenote to semantics for
Expr and Com (Figure 3b). An Expr evaluates its arguments by looking up their value in the
valuation and then invokes the user-defined OpDenote.denote to evaluate the semantics of
the op.

3.2 Writing LeanMLIR(X) Programs Using MLIR Syntax

An important goal for our framework is to provide easy access to formalization for the MLIR
community. Toward this goal, we have a deep embedding of MLIR’s AST and a corresponding
parser. This is developed using Lean’s syntax extensions [38]. We extend Lean with a generic
framework to build Expr and Com terms from a raw MLIR AST. This framework allows the
user to pattern-match on the MLIR AST to build intrinsically well-typed terms, as well as
to throw errors on syntactically correct, but malformed MLIR input. These are used by our
framework to automatically convert MLIR syntax into our SSA encoding, along with the
ability to provide precise error messages in cases of translation failure. This enables us to
write all our examples in MLIR syntax, as demonstrated throughout the paper.

More concretely, we have an embedded domain-specific language (EDSL), which declares
the MLIR grammar as a Lean syntax extension. As part of this work, we have found several
inconsistencies with the MLIR language reference and contributed patches upstream to

ITP 2024

9:8 Verifying Peephole Rewriting in SSA Compiler IRs

structure OpSignature (Ty : Type) where /- (1) Extending signature. -/
regSig : List (Ctxt Ty × Ty)

· · ·

class OpDenote [TyDenote Ty] [OpSignature Op Ty] where /- (2) Extending denotation. -/
denote : (op : Op) → (args : HVector toType (OpSignature.sig op)) →
(regArgs : HVector (fun (ctx, t) => Valuation ctx → toType t) (OpSignature.regSig op)) →

(toType (OpSignature.outTy op))

inductive Expr : (Γ : Ctxt Ty) → (ty : Ty) → Type where
| mk (op : Op)
· · ·
(regArgs : HVector (fun (ctx, ty) => Com ctx ty) (OpSignature.regSig op)) :

Expr Γ ty

mutual /- (3) extending expression denotation to recursively invoke regions. -/
def Expr.denote : {ty : Ty} → (e : Expr Op Γ ty) → (Γv : Γ.Valuation) → (toType ty)
| _, 〈op, args, regArgs〉, Γv =>
OpDenote.denote op (args.map (fun ty v => Γv v)) regArgs.denote
· · ·
end

Figure 4 Extending LeanMLIR(X) with regions. New fields are in green . In OpDenote, one can
now access the sub-computation represented by the region when defining the semantics of Op.

update them.7 Overall, this gives users the ability to write idiomatic MLIR code into our
framework and receive an MLIR AST. Moreover, as we will showcase in the examples, our
EDSL is idiomatically embedded into Lean, which allows us to quasiquote Lean terms. This
will come in handy to write programs that are generic over constants, such as parameterizing
a program by 2n for any choice of n. We build our intrinsically well-typed data structures
from this MLIR AST by writing custom elaborators.

3.3 Modelling Control Flow in LeanMLIR(X) With Regions
So far, our definition of Com only allows straight-line programs. To be able to model control
flow, we add regions to our IR. Regions are an extension to SSA introduced by MLIR.
They add the syntactic ability to nest IR definitions, thereby allowing syntactic encoding of
concepts such as structured control flow. This is in contrast with the approach of having a
sea of basic blocks in a control-flow graph (CFG) that are connected by branch instructions.
More specifically, structured control flow with regions allows modeling reducible control
flow [1]. General CFGs allow us to represent more complex, irreducible control flow, which
makes them harder to reason about. Consequently, compiler frameworks such as MLIR
encourage structured control flow (even though they allow for a sea of basic blocks). In our
framework, we focus on the novel aspects of MLIR: structured control via nested regions.

Intuitively, regions allow an Op to receive Coms as arguments, and choose to execute these
Com arguments zero, one, or multiple times. This allows us to model if conditions (by executing
the regions zero or once), loops (by executing the region n times), and complex operations
such as tensor contractions and convolutions by executing the region on the elements of
the tensor [39]. We implement this by extending Expr with a new field representing region
arguments (Figure 4). We also extend OpSignature with an extra argument for the input
types and output types of the region. In parallel, we add the denotation of regions as an

7 reviews.llvm.org/{D122979, D122978, D122977, D119950, D117668}

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:9

argument, extending OpDenote. Similarly, we extend the denotation of Expr to compute the
denotation of the region Coms in the Expr, before handing off to OpDenote.

This extension to our core calculus gives us the ability to model structured nesting of
programs whose denotation is a bounded computation.8 This is used pervasively in MLIR, to
represent if conditions, for loops, and higher-level looping patterns such as multidimensional
strided array accesses over multidimensional arrays (tensors). We show how to model control
flow in Subsection 6.2.

4 Reasoning About LeanMLIR(X)

The correctness of peephole rewriting is a key aspect of the metatheory of LeanMLIR(X). We
begin by sketching the mechanized proof of correctness of peephole rewriting. We then discuss
how the infrastructure built for this proof is reused to prove two other SSA optimizations:
common subexpression elimination (CSE) and dead code elimination (DCE). Finally, we
discuss our proof automation, which manipulates the IR encoding at elaboration time to
eliminate all references to the framework and provide a clean goal to the proof engineer.

4.1 Verified SSA Rewriting With rewritePeephole

We now provide a sketch of the mechanized correctness proof of rewritePeephole. The
key idea is that to apply a rewrite at location i, we open up the Com at location i in
terms of a zipper [12]. This zipping and rewriting at a location i is implemented by
rewritePeepholeAt. The zipper comprises of Lets to the left-hand side of i, and Com to
the right: let x2 = x1; (let x3 = x2; (let x4 = x3; (return x3))): Com [x1] α =

((let x2 = x1); let x3 = x2); : Lets [x1] [x1, x2, x3]

(let x4 = x3; (return x3)) : Com [x1, x2, x3] α

The use of a zipper enables us to easily traverse the sequence of let-bindings during
transformation and exposes the current let binding being analyzed. This exposing is
performed by Lets, which unzips a Com such that the outermost binding of a Lets is the
innermost binding of a Com. This forms the zipper, which splices the Com into a Com and
a Lets. Also, while Com tracks only the return type α in the type index, Lets tracks the
entire resulting context ∆. That is, in (lets : Lets Γ ∆), the first context, Γ, lists all
free variables (just as in Com Γ t), but the second context, ∆, consists of all variables in Γ
plus a new variable for each let-binding in the sequence lets. We can thus think of ∆ as
the context at the current position of the zipper. Another difference is the order in which
these sequences grow. Recall that in Com, the outermost constructor represents the topmost
let-binding. In Lets, the outermost constructor instead corresponds to the bottom-most
let-binding. This difference is what makes the zipper work.

We have two functions to go from a program to a zipper and back: (1) (splitProgramAt
pos prog), to create a zipper from a program prog by moving the specified number of
bindings to a new Lets sequence, and (2) (addComInMiddleOfLetCom top mid bot), to
turn a zipper top, bot into the program, while inserting a program mid : Com in between.
We also prove that the result of splitting a program with splitProgramAt is semantically

8 Since our semantics denote into Lean expressions, the user-given semantics must be provably terminating
to be executable. We wish to explore richer denotations, such as (computable) coinductive and
(noncomputable) domain theoretic semantics in future work.

ITP 2024

9:10 Verifying Peephole Rewriting in SSA Compiler IRs

equivalent to the original program. Similarly, we prove that stitching a zipper back together
with addComInMiddleOfLetCom results in a semantically equivalent program.

Given a peephole rewrite (matchCom, rewriteCom), to rewrite at location i, we first split
the target program into top and bot. We then attempt to match the def-use chain of the
return variable in matchCom with the final variable in top (which is the target i, since we
split the program there). This matching of variables recursively matches the entire expression
tree.9 Upon successful matching, this returns a substitution σ for the free variables in
matchCom in terms of (free or bound) variables of top. Using this successful matching, we
stitch the program together as top; σ(rewriteCom); τ(bot). Here, τ is another substitution
that replaces the variable at location i with the return variable of rewriteCom. Since we
derived a successful matching, we know that the semantics of variable i is equal to that
of the return variable of matchCom. By assumption on the peephole rewrite, the variable
i is equivalent to the return variable of rewriteCom. This makes it safe to replace all
occurrences of the variable i in bot with the return variable of rewriteCom. This proves
denote_rewritePeephole, which states that if a rewrite succeeds, then the semantics of
the program remain unchanged. In this way, we use a zipper as a key inductive reasoning
principle to mechanize the proof of correctness of SSA-based peephole rewriting. We extend
this rewriting to regions by recursively rewriting over the regions in a program.

4.2 DCE & CSE: Folding Over Intrinsically Well Typed SSA

The classic optimizations enabled by SSA are peephole rewriting, dead code elimination
(DCE), and common subexpression elimination (CSE). We implement these optimizations
in our framework as a test of its suitability for metatheoretic reasoning. Our approach
is different from previous approaches [47, 5] with our use of intrinsic well-typing, which
mandates proofs of the structural rules on contexts to rewrite programs. We begin by
building machinery to witness that a context ∆ is equal to the context Γ, minus the variable
x. This is spelled as Deleted Γ x ∆ in LeanMLIR(X). We then prove context-strengthening
theorems to delete variables that do not occur in Expr and Com while preserving denotation.

Using this tooling, DCE is implemented in ≈ 400 LoC, which shows that our framework
is well-suited to metatheoretic reasoning. The implementation is written in a proof-carrying
style, interleaving function definitions with their proof of correctness. The recursive step of
the dead code elimination takes a program p : Com Γ t and a variable v to be deleted, and
returns a new p′ : Com ∆ t. The two contexts Γ and ∆ are linked by a context morphism
(Hom Γ ∆), to interpret p′ (with the deleted variable) which lives in a strengthened context
∆ in the old context Γ. We walk p recursively to eliminate dead values at each let binding.
This produces a new p′ with dead bindings removed, a proof of semantic preservation, and
a context morphism from the context of p to the strengthened context of p′ with all dead
variables removed.

Similarly, the CSE implementation folds over Com recursively, maintaining data structures
necessary to map variables and expressions to their canonical form. At each (let x =
f(v1, ...vn) in b) step, we canonicalize the variables vi to find variables ci. We then look up
the canonicalized expression f(c1, . . . , cn) in our data structure to find the canonical variable
cx if it exists and replace x with cx. If such a canonical cx does not exist, we add a new
entry mapping f(c1, . . . , cn) to x, thereby canonicalizing any further uses of this expression.

9 We match regions in expressions for structural equality. We do not recurse into regions during matching,
and treat regions as black-boxes.

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:11

4.3 Proof Automation for Goal State Simplification in LeanMLIR(X)
The proof automation tactic simp_peephole Γ (used to eliminate framework definitions
from the goal state) takes a context Γ, reduces its type completely, and abstracts out program
variables to provide a theorem statement that is universally quantified over the variables of
the program, with all framework definitions eliminated. It uses a set of equation theorems
to normalize the type of Γ. This is necessary to extract the types of variables during
metaprogramming. Once the type of Γ is known, we simplify away all framework definitions
(such as Expr.denote). We then replace all occurrences of a variable accesses Γ[i] with a
new (Lean, i.e., host) variable. We do this by abstracting terms of the form Γ[i] where i is
the i-th variable. This gives us a proof state that is universally quantified over variables from
the context. Finally, we clear the context away to eliminate all references to the context
Γ. The set of definitions we simplify away is extensible, enabling us to add domain-specific
simplification rewrites for the IR.

5 Pure Rewriting in a Side-Effectful World

While LeanMLIR(X) streamlines the verification of higher-level IRs that use only value
semantics, typical IRs may interleave islands of pure operations (with value semantics) with
operations that carry side effects. An IR that is user-facing can usually be rephrased with
high-level, side-effect-free semantics. Yet, each operation in such an IR is compiled through a
sequence of IRs that are lower level and potentially side-effectful. For example, in the case of
FHE, the pure FHE IR is compiled to a lower-level IR that encodes the coset representative
of each ideal as an array, with control flow represented via structured control flow (scf).
Eventually, this is compiled into LLVM which is rife with mutation and global state. In
such a compilation flow, peephole rewrites are used at each intermediate IR to optimize pure
fragments while leaving side-effectful fragments untouched. An effective compiler pipeline
introduces the right abstractions to maximize rewrites on side effect-free fragments.

LeanMLIR(X) is designed to facilitate verification of peephole rewrites as they arise in such
a compiler pipeline. The previous sections already presented how our framework supports
the verification of peephole rewrites in a pure setting. Yet, our design also allows for the
optimization of a pure fragment in a side-effectful context. We have a mechanized proof of
the correctness of the extended framework with support for side effects and a rewrite theorem
that performs pure rewrites in the presence of side effects. The key idea is to annotate each
Op with an EffectKind, where EffectKind.pure changes the denotation of the Expr into
the Id monad, while EffectKind.impure denotes into an arbitrary, user-chosen, IR-specific
monad. We also introduce a new notion of monadic evaluation of Lets, which returns a
valuation plus a proof that, for every variable v that represents a pure expression e in the
sequence of let-bindings, the valuation applied to v agrees with the (pure) denotation of
e. This proof-carrying definition allows us to use this invariant when reasoning inside a
subexpression of a monadic bind.

With the above at hand, the overall rewriter construction and proof strategy remains
unchanged, with the additional constraint of performing rewriting only on those operations
marked as EffectKind.pure, and the surrounding monadic ceremony required to show that
a pure rewrite indeed does not change the state of pure variables in various lemmas.10

10 A limitation of our current mechanization is that we assume that all regions are potentially side-effecting.
This is a simplification that shall be addressed in a newer version of the proof.

ITP 2024

9:12 Verifying Peephole Rewriting in SSA Compiler IRs

6 Case Studies

We mechanize three IRs based on ones found in the MLIR ecosystem as case studies for
LeanMLIR(X) and show how they benefit from the different aspects of our framework. Note
that the core of our framework (definitions of Expr, Com, PeepholeRewrite, lemmas about
these objects, and the peephole rewriting theorem) is ≈ 2.2k LoC. The case studies based
on our framework together are ≈ 5.6k LoC, which stresses the framework to ensure that it
scales to realistic formal verification examples.

6.1 Reasoning About Bitvectors of Arbitrary Width
We first demonstrate our ability to reason about a well-established domain of peephole
rewrites: LLVM’s arithmetic operations over fixed-bitwidth integers. Using the Z3 SMT
solver [8], the Alive project [24, 23] can efficiently and automatically reason about these.
Notably, at the time of this writing, almost 700 LLVM patches have justified their correctness
by referencing Alive. In this way, accessible proof tools can find a place in production compiler
development workflows. However, Alive is limited by the capabilities of the underlying SMT
solvers. SMT solvers are complex, heuristic-driven, and sometimes even have soundness
bugs [43]. They are also specialized to support very concrete theories. Among others, this
means Alive can only reason about a given fixed bitwidth. Even recent work that specifically
aims to generalize rewrites to arbitrary bitwidths, can only exhaustively test a concrete set
of bitwidths [27]. Using our framework, we can reproduce Alive-style correctness proofs, and
extend them to reason about arbitrary (universally quantified) bitwidths. This ability to
handle arbitrary bitwidth is important in verification contexts that have wide bitvectors, as
they can occur in real-life VLSI problems [13, 41]. MLIR itself has multiple IRs that require
bitvector reasoning: comb for combinational logic in circuits, arith and index for integer
and pointer manipulation, and llvm which embeds LLVM IR in MLIR. Our streamlined
verification experience offers developers an Alive-style workflow for the llvm dialect, while
allowing reasoning across bitwidths. As our framework is extensible, we believe we can also
support other dialects that require bitvector reasoning, such as comb, arith, and index.

6.1.1 Modeling a fragment of LLVM IR: Syntax and Semantics
To test our ability to reason about bitvectors in practice, we model the semantics of the
arithmetic fragment of LLVM as the IR LeanMLIR(LLVM). We support the (scalar) operators:
not, and, or, xor, shl, lshr, ashr, urem, srem, add, mul, sub, sdiv, udiv, select and
icmp. We support all icmp comparison flags, but not the strictness flags nsw and nuw.

At the foundation of our denotational semantics is Lean’s BitVec type, which models
bitvectors of arbitrary width and offers smtlib [4] compatible semantics. However, when we
started this work, most bitvector operations were not defined in the Lean ecosystem and the
bitvector type itself was not fully fleshed out. Hence, we worked with the mathlib and Lean
community to build and upstream a theory of bitvectors.11 After developing the core theory
in mathlib, Lean’s mathematical library, development subsequently moved into Lean core,
where we continue to evolve Lean’s bitvector support.

11 github.com/leanprover-community/mathlib4/pull/{5383,5390,5400,5421,5558,5687,5838,5896,7410,
7451,8231,8241,8301,8306,8328,8345,8353},
github.com/leanprover/lean4/pull/{3487,3471,3461,3457,3445,3492,3480,3450,3436},
github.com/leanprover/std4/pull/{357,359,599,626,633-636,637,639,641,645-648,655,658-660,653}

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:13

The semantics of LLVM’s arithmetic operations follow the semantics of smtlib (and
consequently Lean’s) bitvectors closely. In case of integer wrapping or large shifts, for
example, LLVM can produce so-called poison values [24], which capture undefined behavior
as a special value adjoined to the bitvector domain. LLVM’s poison is designed not to be
a side effect and, consequently, can be reasoned about in a pure setting. In contrast, ub
is a side effect that triggers immediate undefined behaviour, and can be refined into any
behavior. In LLVM, the following refinements are legal: ub ⊑ poison ⊑ val. Among the
instructions we model, division and remainder can produce immediate undefined behavior ub.
In our framework, we approximate these by collapsing the side-effectful undefined behavior
and side-effect-free poison both into Option.none. We thus denote bitvectors into the type
Option (BitVec w). This is safe as long as the right hand side is allowed to produce ub
only when the left hand side produces ub. In our context, only the division and remainder
operations produce ub. In all the Alive rewrites we translate that contain division and
remainder operations, we manually verify that the right hand side of a rewrite triggers ub if
and only if the left hand side does (by checking that any division/reminder on the right has a
corresponding operation with syntactically equal arguments on the left). To be fully correct
one can either treat division and remainder as side-effectful operations in our framework or
develop further theorey with respect to treating ub as a side effect. We leave separating ub
as a side effect distinct from poison, and reasoning about peephole rewrites which refine such
side effects as interesting future work.

For side-effect-free programs, our semantics match the LLVM semantics. We perform
exhaustive enumeration tests between our semantics and that of LLVM. We take advantage
of the fact that an IR with computable semantics automatically defines an interpreter in our
framework. We build an executable program that runs every instruction, with all possible
input combinations upto bitwidth 8. We get LLVM’s ground truth by using LLVM’s optimizer,
opt to transform the same instruction with constant inputs. This optimizes the program
into a constant output, handling undefined behavior. By exhaustive enumeration, our tested
executable semantics correspond to the LLVM semantics wherever the result is Option.some,
and also soundly model undefined behavior whenever the result is Option.none. This gives
us confidence our semantics correspond to LLVM’s.

6.1.2 Proving Bitvector Rewrites in our Framework
Effective automation for bitvector reasoning is necessary to resolve the proof obligations
that LeanMLIR(X) derives automatically from peephole rewrites expressed as MLIR program
snippets. While Lean does not yet have extensive automation for bitvectors, thanks to our
work we can already use a decision procedure for commutative rings [11] and an extensionality
lemma that establishes the equality of bitvectors given equality on an arbitrary bit index.

We test the available automation on a dataset of peephole optimizations from Alive’s
test suite, consisting of theorems about addition, multiplication, division, bit-shifting and
conditionals. Out of the 435 tests in Alive’s test suite, we translate 93 tests which are the
ones that are supported by the LLVM fragment we model and without preconditions. We
prove 54 of these rewrites from the Alive test suite automatically. Some rewrites cannot
be handled automatically. Of those where automation struggles, we manually prove an
additional 6, selecting the ones where an SMT solver takes long to prove them even for a
specific bitwidth (e.g., 64). Our proofs are over arbitrary (universally quantified) bitwidth,
save for some theorems that are only true at particular bitwidths.12 As an example, let us
consider the following rewrites:

12 e.g., a + b = a xor b is true only at bitwidth 1.

ITP 2024

9:14 Verifying Peephole Rewriting in SSA Compiler IRs

example (w : Nat) :
[llvm (w)| {

^bb0(%X : _, %Y : _):
%v1 = llvm.sub %X, %X
%r = llvm.xor %v1, %Y
llvm.return %r

}] ⊑ [llvm (w)| {
^bb0(%X : _, %Y : _):

llvm.return %Y
}] := by

simp_alive_peephole
alive_auto

example (w : Nat) :
[llvm (w)| {

^bb0(%X : _, %Y : _):
%v1 = llvm.and %X, %Y
%v2 = llvm.or %X, %Y
%v3 = llvm.add %v1, %v2
llvm.return %v3

}] ⊑ [llvm (w)| {
^bb0(%X : _, %Y : _):

%v3 = llvm.add %X, %Y
llvm.return %v3

}] := by
simp_alive_peephole
<proof omitted>

Note that due to the support of MLIR syntax in our framework, these rewrites are specified
in MLIR syntax. We use a custom extension with the placeholder syntax _, to stand for an arbi-
trary bitwidth w. Simplification of the framework code with simp_peephole, yields the proof
obligation (w : Nat) (X Y : BitVec w) ⊢ LLVM.xor (LLVM.sub X X) Y ⊑ Y for the
first example. This proof obligation only concerns the semantics in the semantic domain of
bitvectors, it does not feature MLIR and SSA anymore. This goal is automatically proven
by our proof automation for bitvectors, alive_auto. The proof for the second example
(omitted) is slightly more involved and currently requires manual intervention. It yields the
proof state: ⊢ (B &&& A) + (B ||| A) = B + A , where the proof follows by reasoning
about the addition as a state machine. In the longer term, we aim to also connect our work
to a verified SAT checker that is under development.13

6.2 Structured Control Flow
The examples of IRs we have seen so far are all straight-line code. In this use case, we show
how we can add control flow to existing IRs, thanks to the parametricity of our framework.
We also demonstrate how encoding control flow structures as regions enable succinct proofs
for transformations, by exploiting the high-level structure of these operations. To this end,
we model structured control flow as a fragment of the scf IR in MLIR, by giving semantics
to two common kinds of control flow: if conditions and bounded for loops. Note that
we choose to model bounded for loops, since these are the loops that are used in MLIR to
model high-level operations such as tensor contractions. A pleasant upshot is that these
are guaranteed to terminate, and can thus have a denotation as a Lean function without
requiring modelling of nontermination (which is side-effectful). Our sketch of the extended
framework with side effects will be used to pursue this line of research in the future. The
conditionals and bounded for loops allow us to concisely express loop canonicalizations and
transformations from MLIR in LeanMLIR(scf).

We built this parametrically over an existing IR X to allow these constructs to be added
to an existing IR X. The key idea is that the Op corresponding to scf is parametrized by
the Op corresponding to another IR X. Since the only datatypes scf requires are booleans
and natural numbers, we ask that the type domain of X contains these types. We then
provide denotations in LeanMLIR(scf(X)) for booleans and integers from the type domain of
X. Thus, what we encode is LeanMLIR(scf(X)), which is an IR for structured control flow
parametrized by another, user-defined IR X.

The scf.for operation (Figure 5) has three arguments: the number of times the loop is
to be executed, a starting and step value for the iteration, and a seed value for the loop to

13 https://github.com/leanprover/leansat

https://github.com/leanprover/leansat

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:15

/-- only control flow operations, parametric over another IR Op' -/
inductive Op (Op': Type) [OpDenote Op' Ty'] : Type
| coe (o : Op') -- coerce Op' to Op
| for (ty : Ty') -- a for loop whose loop carried data is Ty'

instance [I : HasTy Op' Int] : OpSignature (Op Op') Ty' where
signature
| .coe o => signature o
| .for t => 〈[/-start-/I.ty, /-step-/I.ty, /-niters-/N.ty, /-v-/t],

/- region arguments: -/ [([/-i-/I.ty, /-v-/t], /-v'-/t)],
/-return-/t〉

instance [I : HasTy Op' Int] [OpDenote Op' Ty']: OpDenote (Op Op') Ty' where
denote
| .coe o', args', regArgs' => OpDenote.denote o' args'regArgs' -- reuse denotation of o'
| .for ty, [istart, istep, niter, vstart]h, [f]h =>

let istart : Z := I.denote_eq ▶ istart -- coerce to `int`.
... -- coerce other arguments
let loop_fn := ... -- build up the function that's iterated.
(loop_fn (istart, vstart)).2

Figure 5 Simplified implementation of LeanMLIR(scf(X)) Observe that the IR is parametrized
over another IR Op’, and that we add control flow to the other IR in a modular fashion.

iterate on. Note that in the definition, the IR Op is defined parametrically over another IR
Op’, and the types of Op are the same as the types of other IR Ty’. We perform a similar
construction for if conditions.

The denotation of the for loop, as well as theorems about loop transformations, follow
from mathlib’s theory for iterating functions, Nat.iterate. The loop body in scf.for has
a region that receives the current value of the loop counter and the current iterated value
and returns the next iterated value. We prove the inductive invariant for loops using the
standard theory of iterated function compositions (f0 = id, fk ◦ f l = fk+l, idk = id). We
also prove common rewrites over loops: running a for loop for zero iterations is the same as
not running a loop at all (dead loop deletion), two adjacent loops with the same body can
be fused into one when the ending index of the first loop is the first index of the second loop
(loop fusion), and a loop whose loop body does not depend on the iteration count can be
reversed (loop reversal). Similarly, we prove that if true e e′ = e, and if false e e′ = e′.

These do not count as peephole rewrites in our framework, as they are universally
quantified over the loop body (which is a region). This is unsupported – peephole rewrites in
LeanMLIR(X) may only have free variables, not free region arguments.

Consider the loop optimization that converts iterated addition into a single multiplication.
Its proof obligation is (⊢ λx. x + δ)n(c) = n · δ + c . This transformation is challenging
to perform in a low-level IR, since there is no syntactic concept of a loop. However, this
transformation is a valid peephole rewrite in our framework since it uses a statically known
loop body. We showcase how regions permit MLIR (and, consequently, us) to easily encode
and reason with commonplace loop transformations. The parametricity of our framework
allows us to prove theorems that are valid on all IR extensions scf(X).

6.3 Fully Homomorphic Encryption

A key motivation for LeanMLIR(X) is to enable specifying formal semantics for high-level,
mathematical IRs. These IRs require access to complex mathematical objects that are
available in proof assistants, and verifying rewrites on such IRs is out of practical reach for

ITP 2024

9:16 Verifying Peephole Rewriting in SSA Compiler IRs

today’s SMT solvers. As a case study, we formalize the complete “Poly” IR.14 This IR is a
work in progress and is in flux, as it is part of the discussion of an upcoming open standard
for homomorphic encryption, developed in collaboration by Intel and Google.15 Contrary
to what its naming implies, this IR does not model operations on polynomials.16 Instead,
codewords are encoded as elements in a finitely-presented commutative ring, specifically,
the ring R ≡ (Z/qZ)[x]/(x2n + 1), where q, n ∈ N are positive integers (q composite). The
name “Poly” comes from the equivalence class representatives are polynomials, but not all
IR operations are invariants of the equivalence class.

The “Poly” IR is, in fact, a superset of the QuotRing IR we defined in Section 2. It consists
of the operations add, sub, mul, mul_constant, leading_term, monomial, monomial_mul,
from_tensor, to_tensor, arith.constant and constant.17

Most of these operations are self-explanatory and derive from the (commutative) ring
structure of R or are used to build elements in R, like the equivalence classes of constants
or monomials. Three operations, to_tensor and from_tensor and leading_term do not
follow directly from the algebraic properties of the polynomial ring. Instead, they depend
on a (non-canonical) choice of representatives for each ideal coset in the polynomial ring.
More precisely, let π : (Z/qZ)[x] ↠ (Z/qZ)[x]/(x2n + 1) be the canonical surjection into the
quotient, taking a polynomial to its equivalence class modulo division by x2n + 1. Further
let σ : (Z/qZ)[x]/(x2n + 1) ↪→ Z/qZ[x] be the injection taking an equivalence class to its
(unique) representative with degree ≤ 2n. This is a right-inverse of π, i.e. π ◦ σ = id. Note
that multiple right-inverses could have been chosen for σ: As long as σ(x) is a representative
of the equivalence class of x for all x ∈ (Z/qZ)[x]/(x2n + 1), σ will be a right-inverse of
π. The operation to_tensor(p) returns the vector (σ(p)[i])i=0,...,2n , where a[i] represents
the i-th coefficient, i.e. σ(p) =

∑2n

i=0(σ(p)[i])xi, and to_tensor the converse. Similarly,
leading_term(p) returns the equivalence class of the leading term of the representative σ(p)
(which also depends on the choice of σ).

This allows us to define the semantics and prototype both the IR and rewrites in
it. Rewrites like mul(p,q) → mul(q,p) follow immediately from the fact that R is
a commutative ring. Other rewrites like from_tensor(to_tensor(p)) → p, or even
add(p,monomial(1,2n)) → sub(p,1), on the other hand, are more specific to this IR
and have a higher manual-proof overhead. We prove all of these.

We discussed the IR and potential semantics with the authors of the HEIR IR in the
context of the upcoming open standard for homomorphic encryption. We believe that a
framework like the one presented in this paper will allow standards like these to be defined
with formal semantics from the ground up.

7 Related Work

The semantics of LLVM, the spiritual ancestor of MLIR, have been well-studied. Both
Vellvm [46] and K-LLVM [22] formalized a large portion of LLVM, including reasoning
about SSA transformations explicitly [47]. Alive [24] and Alive 2 [23] provide push-button
verification for a subset of LLVM by leveraging SMT solvers. Alive-tv does the same for a set
of concrete IRs for tensor operations in MLIR [3]. AliveInLean [19] proves the correctness

14 as of commit 2db7701de
15 https://homomorphicencryption.org/
16 In the same way that rationals Q are not pairs of integers Z × Z.
17 It also has distinct types for integers and naturals, which we unified in Section 2 for simplicity.

https://github.com/google/heir/tree/2db7701de976f0277f7d3b8be9c65315c647cf79/include/Dialect/Poly
https://homomorphicencryption.org/

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:17

of the translation from the Alive DSL into SMT expressions, as well as the correctness of
their encoding of program refinement as an SMT expression. In contrast, our work focuses
on building a framework for describing full programs (rather than rewrite snippets), and
formally defines and proves the correctness of peephole rewriting within a larger program
context. The semantics and correctness of compiling compositionally have been explored by
multiple authors, like Pilsener [29] or many variants of CompCert [21]: like compositional
CompCert [37], CompCertX [42], SepCompCert [14], CompCertM [36], and CompCertO [16].
A great summary of the approaches to this problem (including the ones mentioned above),
with their differences and similarities, is given by Patterson et al [31]. All of these use fixed
languages but are reasonable ways of giving semantics to relevant IRs in LeanMLIR(X).

The authors of [45] introduce a more modular approach to LLVM’s semantics, based on
interaction trees [44]. Like theirs, our semantics is also denotational and can be executed.
We currently only model a restricted set of side effects, whereas interaction trees shine
when modeling more complex side effects such as memory or non-terminating behavior. An
approach like this would thus be a great candidate for the semantics of a lower-level IR
such as LLVM within MLIR. Similarly, the work of DimSum [35] deals with the boundaries
between languages in the context of linking. This addresses also important part aspect we
don’t model yet: what occurs at the boundaries of IRs, when mixing them.

There is a longer line of work studying SSA and its relationship to functional programming.
Our work is inspired by and builds on the ideas from [15, 2, 5]. Complex compiler optimizations
have also been studied formally and verified, like [7] which implements verified polyhedral
optimization. We focus on the simpler and more ubiquitous peephole rewrites.

Our work differs from prior work on formalizing peephole rewrites by providing a framework
for reasoning about SSA peephole rewrites. The closest similar work, Peek [28] defines
peephole rewriting over an assembly instruction set. Their rewriter expects instructions to
be adjacent to one another. Furthermore, their rewriter restricts source and target patterns
to be of the same length, filling in the different lengths with nop instructions. Their patterns
permit side effects, which we disallow since we are interested in higher-level, pure rewrites.
Our patterns provide more flexibility since the source and target patterns are arbitrary
programs, and are matched on sub-DAGs instead of a linear sequence.

8 Conclusion

Peephole rewrites represent a large and important class of compiler optimizations. We have
seen how domain-specific IRs in SSA with regions greatly extend the scope of these peephole
rewrites. They raise the level of abstraction both syntactically with def-use chains and
nesting, and semantically, with domain-specific abstractions. We have shown how to reason
effectively about such SSA-based compilers, and, specifically, local reasoning in the form
of peephole rewrites. We advocate building on top of a proof assistant with a small TCB,
an expressive language and a large library of mathematics. This increases the confidence
in our verification and extends its applicability to many domains where more specialized
methods don’t exist. We also advocate proof automation and an intrinsically well-typed
mechanized core that can be designed to focus on the semantics of the domain. We incarnate
these principles in LeanMLIR(X), a framework built on Lean and mathlib to reason about
domain-specific IRs in SSA with regions. We show how LeanMLIR(X) is simple to use,
amenable to automation, and effective for verifying IRs over complex domains.

ITP 2024

9:18 Verifying Peephole Rewriting in SSA Compiler IRs

References

1 AV Aho, R Sethi, and JD Ullman. Compilers: Principles, Techniques, and Tools. Citeseer,
1985.

2 Andrew W Appel. SSA is functional programming. Acm Sigplan Notices, 33(4):17–20, 1998.
3 Seongwon Bang, Seunghyeon Nam, Inwhan Chun, Ho Young Jhoo, and Juneyoung Lee. SMT-

based translation validation for machine learning compiler. In Sharon Shoham and Yakir
Vizel, editors, Computer Aided Verification - 34th International Conference, CAV 2022, Haifa,
Israel, August 7-10, 2022, Proceedings, Part II, volume 13372 of Lecture Notes in Computer
Science, pages 386–407. Springer, 2022. doi:10.1007/978-3-031-13188-2_19.

4 Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In
Proceedings of the 8th international workshop on satisfiability modulo theories (Edinburgh,
UK), volume 13, page 14, 2010.

5 Gilles Barthe, Delphine Demange, and David Pichardie. Formal verification of an SSA-based
middle-end for CompCert. ACM Transactions on Programming Languages and Systems
(TOPLAS), 36(1):1–35, 2014.

6 Siddharth Bhat and Tobias Grosser. Lambda the ultimate ssa: optimizing functional programs
in ssa. In 2022 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 1–11. IEEE, 2022.

7 Nathanaël Courant and Xavier Leroy. Verified code generation for the polyhedral model.
Proceedings of the ACM on Programming Languages, 5(POPL):1–24, 2021.

8 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems: 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14, pages 337–340. Springer,
2008.

9 Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming
language. In International Conference on Automated Deduction, pages 625–635. Springer,
2021.

10 Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.
11 Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative ring done

right in Coq. In Joe Hurd and Thomas F. Melham, editors, Theorem Proving in Higher
Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005,
Proceedings, volume 3603 of Lecture Notes in Computer Science, pages 98–113. Springer, 2005.
doi:10.1007/11541868_7.

12 Gérard Huet. The zipper. Journal of functional programming, 7(5):549–554, 1997.
13 Petter Källström and Oscar Gustafsson. Fast and area efficient adder for wide data in recent

Xilinx FPGAs. In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–4. IEEE, 2016.

14 Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis.
Lightweight verification of separate compilation. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 178–190,
2016.

15 Richard A Kelsey. A correspondence between continuation passing style and static single
assignment form. ACM SIGPLAN Notices, 30(3):13–22, 1995.

16 Jérémie Koenig and Zhong Shao. CompCertO: compiling certified open C components. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, pages 1095–1109, 2021.

17 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75–86. IEEE, 2004.

https://doi.org/10.1007/978-3-031-13188-2_19
https://doi.org/10.1007/11541868_7

S. Bhat, A. Keizer, C. Hughes, A. Goens, and T. Grosser 9:19

18 Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle, Albert Cohen,
Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: A compiler
infrastructure for the end of Moore’s law. arXiv preprint arXiv:2002.11054, 2020.

19 Juneyoung Lee, Chung-Kil Hur, and Nuno P Lopes. AliveInLean: a verified LLVM peephole
optimization verifier. In International Conference on Computer Aided Verification, pages
445–455. Springer, 2019.

20 Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer,
John Regehr, and Nuno P Lopes. Taming undefined behavior in LLVM. ACM SIGPLAN
Notices, 52(6):633–647, 2017.

21 Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and
Christian Ferdinand. CompCert-a formally verified optimizing compiler. In ERTS 2016:
Embedded Real Time Software and Systems, 8th European Congress, 2016.

22 Liyi Li and Elsa L Gunter. K-LLVM: a relatively complete semantics of LLVM IR. In 34th
European Conference on Object-Oriented Programming (ECOOP 2020), 2020.

23 Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. Alive2:
bounded translation validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, pages 65–79,
2021.

24 Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably correct
peephole optimizations with alive. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 22–32, 2015.

25 Carl McConnell and Ralph E. Johnson. Using static single assignment form in a code optimizer.
ACM Lett. Program. Lang. Syst., 1(2):152–160, June 1992. doi:10.1145/151333.151368.

26 William M McKeeman. Peephole optimization. Communications of the ACM, 8(7):443–444,
1965.

27 Manasij Mukherjee and John Regehr. Hydra: Generalizing peephole optimizations with
program synthesis. Proceedings of the ACM on Programming Languages, (OOPSLA), 2024.

28 Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. Verified peephole optimiza-
tions for CompCert. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 448–461, 2016.

29 Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor
Vafeiadis. Pilsner: A compositionally verified compiler for a higher-order imperative lan-
guage. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, pages 166–178, 2015.

30 Sunjae Park, Woosung Song, Seunghyeon Nam, Hyeongyu Kim, Junbum Shin, and Juneyoung
Lee. HEaaN.MLIR: An optimizing compiler for fast ring-based homomorphic encryption.
Proceedings of the 44th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2023.

31 Daniel Patterson and Amal Ahmed. The next 700 compiler correctness theorems (functional
pearl). Proceedings of the ACM on Programming Languages, 3(ICFP):1–29, 2019.

32 Anurudh Peduri, Siddharth Bhat, and Tobias Grosser. QSSA: an SSA-based IR for quantum
computing. In Proceedings of the 31st ACM SIGPLAN International Conference on Compiler
Construction, pages 2–14, 2022.

33 Benjamin C Pierce and C Benjamin. Types and programming languages. MIT press, 2002.
34 Fabrice Rastello and Florent Bouchez Tichadou. SSA-based Compiler Design. Springer Nature,

2022.
35 Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers,

Deepak Garg, and Derek Dreyer. Dimsum: A decentralized approach to multi-language
semantics and verification. Proceedings of the ACM on Programming Languages, 7(POPL):775–
805, 2023.

ITP 2024

https://doi.org/10.1145/151333.151368

9:20 Verifying Peephole Rewriting in SSA Compiler IRs

36 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil
Hur. CompCertM: CompCert with C-assembly linking and lightweight modular verification.
Proceedings of the ACM on Programming Languages, 4(POPL):1–31, 2019.

37 Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W Appel. Compositional
CompCert. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 275–287, 2015.

38 Sebastian Ullrich and Leonardo de Moura. Beyond notations: Hygienic macro expansion for
theorem proving languages. In International Joint Conference on Automated Reasoning, pages
167–182. Springer, 2020.

39 Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravishankar, Thomas Raoux,
Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego Caballero, Stephan Herhut, Stella
Laurenzo, and Albert Cohen. Composable and modular code generation in MLIR: A structured
and retargetable approach to tensor compiler construction. CoRR, abs/2202.03293, 2022.
arXiv:2202.03293.

40 Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. HECO: Automatic code
optimizations for efficient fully homomorphic encryption. arXiv preprint arXiv:2202.01649,
2022.

41 Wei Wang and Xinming Huang. A novel fast modular multiplier architecture for 8,192-bit
RSA cryposystem. In 2013 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–5. IEEE, 2013.

42 Yuting Wang, Pierre Wilke, and Zhong Shao. An abstract stack based approach to veri-
fied compositional compilation to machine code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–30, 2019.

43 Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT solvers via semantic
fusion. In Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 718–730. ACM, 2020. doi:10.1145/
3385412.3385985.

44 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C Pierce,
and Steve Zdancewic. Interaction trees: representing recursive and impure programs in Coq.
arXiv preprint arXiv:1906.00046, 2019.

45 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic.
Modular, compositional, and executable formal semantics for LLVM IR. Proc. ACM Program.
Lang., 2021. doi:10.1145/3473572.

46 Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Formalizing the
LLVM intermediate representation for verified program transformations. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 427–440, 2012.

47 Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Formal
verification of SSA-based optimizations for LLVM. In Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation, pages 175–186, 2013.

https://arxiv.org/abs/2202.03293
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3473572

	1 Introduction
	2 Motivation: Verfying Optimizations for High-Level IRs
	2.1 Defining LeanMLIR(QuotRing): Syntax and Semantics
	2.2 Defining and Executing Peephole Rewrites for QuotRing
	2.3 Executing Peephole Rewrites

	3 LeanMLIR(X): A Framework for Intrinsically Well-Typed SSA
	3.1 Semantics of LeanMLIR(X)
	3.2 Writing LeanMLIR(X) Programs Using MLIR Syntax
	3.3 Modelling Control Flow in LeanMLIR(X) With Regions

	4 Reasoning About LeanMLIR(X)
	4.1 Verified SSA Rewriting With rewritePeephole
	4.2 DCE & CSE: Folding Over Intrinsically Well Typed SSA
	4.3 Proof Automation for Goal State Simplification in LeanMLIR(X)

	5 Pure Rewriting in a Side-Effectful World
	6 Case Studies
	6.1 Reasoning About Bitvectors of Arbitrary Width
	6.1.1 Modeling a fragment of LLVM IR: Syntax and Semantics
	6.1.2 Proving Bitvector Rewrites in our Framework

	6.2 Structured Control Flow
	6.3 Fully Homomorphic Encryption

	7 Related Work
	8 Conclusion

