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Preface

The International Conference on Interactive Theorem Proving (ITP) is the main venue for the
presentation of research into interactive theorem proving frameworks and their applications.
It has evolved organically starting with a HOL workshop in 1988, gradually widening to
include other higher-order systems and interactive theorem provers generally, as well as their
applications. This year’s conference takes place in Tbilisi in Georgia.

Previous ITP conferences took place in Edinburgh 2010, Nijmegen 2011, Princeton 2012,
Rennes 2013, Vienna 2014, Nanjing 2015, Nancy 2016, Brasilia 2017, Oxford 2018, Port-
land 2019, Paris 2020, Rome 2021, Haifa 2022, and Białystok 2023; those in 2010, 2014, 2018
and 2022 were under the umbrella organization of the Federated Logic Conference (FLoC).

This year’s conference attracted a total of 71 submissions. Each paper was systematically
reviewed by at least three program committee members or appointed external reviewers
and 39 papers were finally slected for presentation at the conference (36 regular papers
and 3 short papers). We thank the authors of both accepted and rejected papers for their
submissions, as well as the programme committee members and the external reviewers for
their invaluable work.

As well as all the selected papers, we are very pleased to have invited keynote talks
by Frédéric Blanqui (Centre Inria de l’Université de Lorraine, Nancy) and Tobias Nipkow
(Technische Universität München). The present volume collects all the accepted papers
contributed to the conference and abstracts for the two invited talks. This is the fifth time
that the ITP proceedings are published by the LIPIcs series. We thank all the colleagues at
Dagstuhl for their responsive feedback on all matters associated with the production of the
finished proceedings.

We are grateful to all of the local organizers and thankful to the ITP Steering Committee
for their guidance. This conference received partial support from the European Union COST
Action CA20111 “European Research Network on Formal Proofs”, and from Inria, France.

Yves Bertot, Temur Kutsia, and Michael Norrish
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Alpha-Beta Pruning Verified
Tobias Nipkow Ñ

Department of Computer Science, Technical University of Munich, Germany

Abstract
Alpha-beta pruning is an efficient search strategy for two-player game trees. It was invented in the
late 1950s and is at the heart of most implementations of combinatorial game playing programs. We
have formalized and verified a number of variations of alpha-beta pruning, in particular fail-hard and
fail-soft, and valuations into linear orders, distributive lattices and domains with negative values.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Algorithmic game theory

Keywords and phrases Verification, Algorithmic Game Theory, Isabelle

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.1

Category Invited Talk

1 Introduction

In this article, we sketch the results of our formalization [9] of a number of variants of
alpha-beta pruning in the proof assistant Isabelle [12, 11]. A more detailed presentation can
be found in a (forthcoming) book [10]. We restrict ourselves to functional correctness and do
not cover quantitative results

We consider two-player games with the usual notion of game trees. Let val(t) denote
the value of a game tree t. Alpha-beta pruning is an efficient strategy for determining the
value of a tree. In this extended abstract we assume that the reader is familiar with the
basic idea underlying alpha-beta pruning. We do not show any code but all our variants f of
alpha-beta pruning follow the calling convention f a b t where (a, b) is the search window
and t the game tree.

2 Linear Orders

In the literature it is often assumed that values are numbers extended with −∞ and ∞. In
this section we merely assume that the type of values is a bounded linear order with ⊥ and
⊤.

The first thorough mathematical analysis of alpha-beta pruning is due to Knuth and
Moore [6]. They employ the relation x ∼= y (a, b) defined as follows:

(y ≤ a −→ x ≤ a) ∧ (a < y < b −→ x = y) ∧ (y ≥ b −→ x ≥ b)

The notation x ∼= y (a, b) is ours and emphasizes the fact that the relation is symmetric
if a < b. Knuth and Moore consider the so-called fail-hard variant of alpha-beta pruning,
which we denote by hard a b t, and prove that val(t) ∼= hard a b t (a, b) which implies overall
correctness: hard ⊥ ⊤ t = val(t).

Fishburn [3] suggested the fail-soft variant and states that it searches the same part of
the tree as fail-hard and satisfies the relation soft a b t ≤ val(t) (a, b) (the notation is again
ours) where y ≤ x (a, b) is defined as follows:

(y ≤ a −→ x ≤ y) ∧ (a < y < b −→ x = y) ∧ (y ≥ b −→ x ≥ y)
© Tobias Nipkow;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 1; pp. 1:1–1:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.proof.cit.tum.de/~nipkow/
https://orcid.org/0000-0003-0730-515X
https://doi.org/10.4230/LIPIcs.ITP.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Alpha-Beta Pruning Verified

We verified both that the search space is the same and that soft a b t ≤ val(t) (a, b). Because
y ≤ x (a, b) implies x ∼= y (a, b) (but not the other way around), it appears that soft satisfies
a stronger property than hard. However, we could also prove hard a b t ≤ val(t) (a, b),
which begs the question in what sense soft is better than hard. The answer: we could also
prove hard a b t ≤ soft a b t (a, b). In summary: soft is as least as close to val as hard (and
sometimes closer).

2.1 Negative Values
In the literature, it is often assumed that values are positive and negative numbers and that
the value v for one player is −v for the other player. In this situation the definition of val

and of alpha-beta pruning can be streamlined: instead of having one function for each player,
now one function in total is needed. We found that this works for arbitrary linear orders
with unary negation under these two assumptions:

−min x y = max (−x)(−y) − (−x) = x

3 Lattices

Bird and Hughes [1] were the first to generalize alpha-beta pruning from linear orders to
lattices. The generalization of the code, including game tree evaluation, is easy: simply
replace min and max by ⊓ and ⊔. It turns out that this version of alpha-beta pruning works
for bounded distributive lattices (Bird and Hughes confusingly talk about Boolean algebra).
In order to prove this, Bird and Hughes invent the following relation (the notation ≃ is ours)

x ≃ y (a, b) ⇐⇒ a ⊔ (x ⊓ b) = a ⊔ (y ⊓ b)

and prove

bh a b t ≃ val(t) (a, b)

where bh is their variation of fail-hard. Top-level correctness bh ⊥ ⊤ t = val(t) follows
immediately.

For linear orders (but not for distributive lattices) ∼= and ≃ coincide if a < b:

x ∼= y (a, b) ⇐⇒ x ≃ y (a, b)

It is also possible to rephrase Fishburn’s predicate ≤ with min and max (for linear orders)
if a < b:

y ≤ x (a, b) ⇐⇒ min x b ≤ y ≤ max x a

We rephrase the r.h.s. for disttributive lattices and define

y ⊑ x (a, b) ⇐⇒ x ⊓ b ≤ y ≤ x ⊔ a

It coincides with ≤ for linear orders (but not for distributive lattices) if a < b

y ≤ x (a, b) ⇐⇒ y ⊑ x (a, b)

In distributive lattices ⊑ implies ≃

y ⊑ x (a, b) =⇒ x ≃ y (a, b)

but the opposite direction does not hold.
Fail-hard and fail-soft carry over to distributive lattices (mutadis mutandis) and satisfy

the stronger ⊑

f a b t ⊑ val(t) (a, b)

where f can be fail-hard, fail-soft, and bh (Bird and Hughes’ version),



T. Nipkow 1:3

3.1 Negative Values
The same extension to negative values that we sketched in Section 2.1 also works for
distributive lattices. Now we assume that unary negation satisfies

−(x ⊓ y) = (−x) ⊔ (−y) − (−x) = x

The result is a so-called de Morgan algebra [8]. Again, the definitions of val and the variants
of alpha-beta pruning can be streamlined as sketched before.

4 Related Work

Ginsburg and Jaffray [4] rediscover (independently of Bird and Hughes) that pruning also
works for distributive lattices but stop short of formulating and proving an actual algorithm.
Li et al. [7] build on the work of Ginsburg and Jaffray, formulate and prove an actual
algorithm correct (rediscovering the correctness notion ≃ by Bird and Hughes) and extend
the algorithm to also cache and reuse earlier calls, an aspect not covered above.

In our formalization of variants of alpha-beta pruning we also considered the program
that Hughes (in a much cited paper [5]) derived from a specification of val. Because his
program looks simpler than alpha-beta pruning, we suspected that it may not prune enough.
Hughes (private communication) used Haskell’s Quickcheck [2] to compare the search space
of his program with that of our implementation (which is the canonical alpha-beta algorithm)
and confirmed our suspicion.

5 Conclusion

We have formally verified a number of variants of alpha-beta pruning, both for linear orders
and distributive lattices, have clarified the relationship between different correctness notions,
have expressed precisely (and proved) in what sense fail-soft is better than fail-hard, and
discovered a “suboptimal” version of alpha-beta pruning in a much cited paper.
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Abstract
There exist many proof systems, interactive or automated. However, most of them are not inter-
operable, which leads to an important work duplication. This is unfortunate as it slows down the
formalization of more advanced mathematical results, and the democratization of proof systems
in education, industry and research. This state of affairs is not just a matter of file formats. Each
proof system has its own axioms and deduction rules, and those axioms and deduction rules can
sometimes be incompatible. To translate a proof from one system to the other, and be able to
handle so many different systems, it is important to find out a logical framework in which a logical
feature used in two different systems is represented by the same construction.

Research on proof system interoperability started about 30 years ago, and received some increased
attention with the formalization of Hales proof of Kepler conjecture in the years 2000, because parts
of this proof were initially formalized in different systems. Then, it received some new interest in the
years 2010 with the increasing use of automated theorem provers in proof assistants. At about the
same time appeared a new logical framework, Dedukti, which extends Edinburgh’s logical framework
LF by allowing the identification of types modulo some equational theory. It has been shown that
various proof systems can be nicely encoded in Dedukti, and various tools have been developed to
actually represent the proofs of those systems and translate them to other systems.

In this talk, I will review some of these works and tools, and present recent efforts to translate
entire libraries of definitions and theorems.
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Abstract
We present a formalisation of the correctness of algorithms to solve minimum-cost flow problems, in
Isabelle/HOL. Two of the algorithms are based on the technique of scaling, most notably Orlin’s
algorithm, which has the fastest running time for the problem of minimum-cost flow. Our work
uncovered a number of complications in the proofs of the results we formalised, the resolution of
which required significant effort. Our work is also the first to formally consider the problem of
minimum-cost flows and, more generally, scaling algorithms.
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1 Introduction

Flow networks are some of the most important structures in combinatorial optimisation and
computer science. In addition to many immediate practical applications, flow networks and
problems defined on them have many connections to other important problems in computer
science, most notably, the connection between maximum weight bipartite matching and
the problem of maximum flow. Because of this practical and theoretical relevance, network
flows have been intensely studied, leading to many important milestone results in computer
science, like the Edmonds-Karp algorithm [7] for computing the maximum flow between two
vertices in a network. Furthermore, flow algorithms were some of the earliest algorithms
to be considered for formal analysis. The first such effort was in 2005 by Lee in the prover
Mizar [19], where the Ford-Fulkerson algorithm for maximum flow was verified. Later on,
Lammich and Serfidgar [17] formally analysed the same algorithm and also the Edmonds-
Karp algorithm [7], which is one of its polynomial worst-case running time refinements, in
Isabelle/HOL.

In this work we formalise in Isabelle/HOL the correctness of a number of algorithms for
the minimum-cost flow problem, which is another important computational problem defined
on flow networks. Given a flow network, costs per unit flow associated with every edge, and
a desired flow value between a number of sources and a number of sinks, a solution to this
problem is a flow achieving that value, but for the minimum-cost. This problem can be seen
as a generalisation of maximum flow, and thus many problems can be reduced to it, e.g.
shortest path, maximum flow, and maximum weight bipartite matching.

© Mohammad Abdulaziz and Thomas Ammer;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohammad.abdulaziz@kcl.ac.uk
https://mabdula.github.io/
https://orcid.org/0000-0002-8244-518X
mailto:thomas.ammer@kcl.ac.uk
https://toamme.github.io/
https://orcid.org/0009-0001-5301-4620
https://doi.org/10.4230/LIPIcs.ITP.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 A Formal Analysis of Capacity Scaling Algorithms for Minimum Cost Flows

More specifically, we formalise 1. the problem of minimum-cost flows, 2. the main
optimality criterion used to justify most algorithms for minimum-cost flow, and 3. the
correctness of three algorithms to compute minimum-cost flows: a. successive shortest paths,
which has an exponential worst-case running time, b. capacity scaling, which has a polynomial
worst-case running time, and c. Orlin’s algorithm, which has a strongly polynomial worst-case
running time. A noteworthy outcome of our work is that it uncovered gaps in the correctness
proof of Orlin’s algorithm in most textbook expositions. For instance, an important property,
namely, optimality preservation, has a gap in all combinatorial proofs of which we are aware.
We cover that gap (Lemma 3) using an involved graphical argument, which was at least
15% of our effort. The presence of this gap and the complexity of proving Theorem 1 is yet
another example of complications uncovered in graphical and geometric arguments when
formalising them, something which was documented by prior authors [1, 24, 13, 3].

2 Background and Definitions

A directed graph is defined as a set of ordered pairs. A maximal set of vertices C, where
there is a path between x and y or y and x for all x, y ∈ C, is a connected component. A
representative function r : V → V maps all vertices within a component C to the same vertex
rC ∈ C. Consequently, we call r(x) the representative of component C for a vertex x ∈ C.

A flow network consists of a directed graph over edges E and vertices V, and a capacity
function u : E → R+

0 ∪ {∞}. If u(e) = ∞ for all e ∈ E , the network is uncapacitated. The
goal is to find a function, i.e. a flow f : E → R+

0 satisfying f(e) ≤ u(e) for any edge e. An
edge is saturated if its flow f(e) equals its capacity u(e), otherwise the edge is unsaturated.
The first vertex of an edge is called the source and the second one is the target of the edge,
respectively. For a specific vertex v, the set of all edges entering or leaving this vertex is
denoted by δ−(v) or δ+(v), respectively. The excess of a flow f at the vertex v, exf (v), is
the difference between ingoing and outgoing flow exf (v) def=

∑
e∈δ−(v)

f(e)−
∑

e∈δ+(v)
f(e).

Analogously to single vertices, the set of entering and leaving edges of a set of vertices X

is denoted by ∆+(X) and ∆−(X), respectively. An ordered bipartition (X,V \X) of the
graph’s vertices is called a cut. The (reverse) capacity of a cut X is the accumulated edge
capacity of all (ingoing) outgoing edges cap(X) def=

∑
e∈∆+(X)

u(e) (acap(X) def=
∑

e∈∆−(X)
u(e)).

A minimum cost flow problem consists of two further ingredients. We introduce balances
b : V → R denoting the amount of flow that should be caught or emitted at every vertex.
A flow satisfying balance and capacity constraints is called valid. In addition, there is
a function c : E → R telling us about the costs of sending one unit of flow through an
edge. A flow’s f total costs c(f) are c(f) =

∑
e∈E

f(e) · c(e). The set of feasible flows is

{f | ∀v ∈ V . − ex f (v) = b(v) ∧ ∀e ∈ E . f(e) ≤ u(e)}. We aim to find a minimum cost flow
which is a feasible flow of least total costs. A network without cycles of negative total costs
is called weight-conservative.

Given a flow f , we define the residual network: For any edge (x, y) ∈ E we have two
residual edges, namely, the forward F (x, y) and backward B (y, x) edge pointing from x to y

and from y to x, respectively. These form a pair of reverse edges. The reverse of a residual
edge e is written as ←e . We define the residual cost c of a residual edge as c(F (x, y)) = c(x, y)
and c(B (y, x)) = −c(x, y), respectively. For a flow f , we define the residual capacities uf .
On forward edges, this is the difference between the actual capacity and the flow currently
sent through this edge: uf (F (x, y)) = u(x, y) − f(x, y). The capacity of a backward edge
equals the flow assigned to the original edge: uf (B (y, x)) = f(x, y).
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(a) The original flow.
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(b) Original Residual Graph.
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(c) Flow after Augmentation.
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7, −2

6, −3

0, 3
(d) Residual Graph after Augmentation.

Figure 1 Flows, (residual) capacities and (residual) costs are black, green and red, respectively.
Forward edges are blue, backward edges purple.

The residual capacity uf (p) of a path p is defined as uf (p) = min{uf (e) . e ∈ p}. The
residual costs c(p) are obtained by accumulating residual costs for the edges contained in p.

Note that the residual network can be considered a multi graph that has at most two
copies of the same edge, e.g. F (x, y) and B(x, y) (see the residual network in Fig. 1b).
Intuitively, a forward edge of the residual network indicates how much more could be added
to the flow and a backward edge indicates how much could be removed from the flow.

▶ Example 1. Fig. 1a shows a flow network, where every edge is labelled by a flow, capacity,
and a cost per unit flow. The colouring convention from the caption applies. Fig. 1b shows
the residual network for the network in Fig. 1a. The residual network has, for every flow
network edge (x, y), two edges: one is the forward edge F (x, y), a copy of the original edge,
and the second is the backward edge B(y, x), going in the opposite direction. Thus, forward
edges of the residual network are labelled by the residual capacity, indicating how much more
flow can still go through the network. Backward edges are also labelled by a capacity but,
as stated earlier, the capacity is the flow going through the original edge, and the costs are
negative, indicating that removing from the flow saves cost.

3 Towards a Simple Algorithm

Augmentation is a principal technique in combinatorial optimisation in which a candidate
solution is incrementally improved until an optimal solution is found. In the context of flows,
augmenting (along) a forward edge by a positive real γ means to increase the flow assigned
to the original edge by γ. Augmenting along a backward edge is done by decreasing the flow
value of the original edge by γ. The augmentation along a path is done by augmenting along
each edge contained. We call a path of residual edges along which the residual capacities
are strictly positive an augmenting path. Closed augmenting paths p with c(p) < 0 are
augmenting cycles.

▶ Example 2. The result of augmenting our example flow from Fig. 1b is shown in Fig. 1c,
where the flow is augmented along the edges (u, v) and (v, u) by 2. The resulting new residual
network is shown in Fig. 1d, showing the change in capacities in forward and backward edges.

ITP 2024
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Algorithm 1 successive-shortest-
path(E , V, u, c, b).

initialise b′ ← b and f ← 0;
while True do

if ∀ v ∈ V . b′(v) = 0 then
return f as optimum flow;

else
take some s with b′(s) > 0;
if ∃ t reachable from s ∧ b′(t) < 0 then

take such a t and
a minimum cost augmenting path P

from s to t;
γ = min{b(s),−b(t), uf (P )} ;
augment along P by γ ;
b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;

else return infeasible;

Figure 2 Eliminating FBPs: Mem-
bers of an F BP belong either to the same
(left) or to two different cycles (right).
When the F BP is dropped on the left,
we obtain two new cycles. On the right,
F BP deletion results in a single new cycle.
Disjointness is preserved.

For this and all subsequent sections, we fix a weight-conservative flow network G =
(E ,V, u, c). Unless said otherwise, costs and capacities refer to this network. The balances b

are kept generic. Successive Shortest Path (SSP) as given in Algorithm 1 is one of the most
basic minimum cost flow algorithms. successive-shortest-path(G, b) repeatedly selects a source
s with positive balance, a target t with negative balance and a minimum cost augmenting
path P connecting s to t, i.e. a minimum cost path in the residual network connecting s to
t. Following that, it sends as much flow as possible, i.e. as much as the minimum capacity
of any forward residual edge or as the balances of s and/or t allow, from s to t along P .
The balances at s and t are lowered and increased by the same amount, respectively. This
is done until all balances reach zero or infeasibility can be inferred from the absence of an
augmenting path.

Conceptually, the algorithm is defined on program states consisting of variables E , V , u, c,
balances b, remaining balances b′ and the flow f . Invariants are predicates defined on states.
If not all variables are relevant to an invariant, we say that only the involved variables satisfy
the invariant.

Correctness of Algorithm 1. To prove that the algorithm is correct, we show that the
following invariants hold for the states encountered during the main loop of successive-
shortest-path(G, b) (Algorithm 1):
1. The flow f is a minimum cost flow for the balance b− b′1.
2. If capacities u and balances b are integral, then b′(v) and f(e) are integral for any vertex

x ∈ V and e ∈ E , respectively.
3. The sum of b′ over all vertices v is zero:

∑
v∈V

b′(x) = 0.

Proving Invariant 1 was the most demanding and we dedicate most of this section to
it. The other two invariants easily follow from the algorithm’s structure. Correctness of all
non-trivial algorithms for minimum cost flows depends on the following optimality criterion:

1 For any v, this is defined as (b − b′)(v) = b(v) − b′(v).
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▶ Theorem 1 (Optimality Criterion [14]). A flow f valid for balance b is optimum iff there is
no augmenting cycle w.r.t f .

Proof sketch. An augmenting cycle is a possibility to decrease costs while still meeting the
balance constraints which gives one direction.

For the other direction, assume a valid flow f ′ with c(f ′) < c(f). We define the
flow g in the residual graph as g(F (x, y)) = max{0, f ′(x, y) − f(x, y)} and g(B(y, x)) =
max{0, f(x, y)− f ′(x, y)}. It can be shown that g is a flow in the residual graph with zero
excess for every vertex, a so-called circulation. Moreover, c(g) = c(f ′)− c(f) and any residual
edge e with uf (e) = 0 has g(e) = 0. The circulation g can be decomposed, i.e. there is a set of
cycles C and weights w : C → R+ where any residual edge e has g(e) =

∑
C∈C∧e∈C

w(C). Since

0 > c(f) − c(f) = c(g) =
∑

C∈C
w(C) · c(C), there has to be a cycle C ∈ C where c(C) < 0.

uf (C) must be positive making this an augmenting cycle w.r.t. f . ◀

Flow-decomposition [12, 8] as used in the proof of Theorem 1 is a fundamental technique
in reasoning about flows. Now, pairs of residual edges where one is the reversed one of the
other are called forward-backward-pairs (FBP), e.g. F (x, y) and B(y, x). They are involved
in lemmas one can use to prove preservation of the optimality invariant. Subsequently,
disjointness of paths and cycles means their edge-disjointness.

▶ Lemma 2. Deleting all FBP s from a set of disjoint cycles yields another set of disjoint
cycles.

Proof Sketch. Proof by induction on the number of FBP s. See cases from Fig. 2. ◀

▶ Lemma 3. Assume an s-t-path P and some cycles C where every FBP is between the path
and a cycle, all items disjoint with one another. Deleting all FBP s results in an s-t-path
and some cycles, again all disjoint.

Proof Sketch. Proof by induction on the number of FBP s: Fix an arbitrary FBP which
must be between the current path P and some cycle C ∈ C. Now, we look at two cases.
Simple Case (Single FBP). It might be that this is the only FBP between P and C. By
dropping it, we simply get a new s-t-path P ′ and may eliminate one cycle (Simple Case in
Fig. 3). Still, there are no FBP s among or between cycles and the induction hypothesis can
be applied immediately to P ′ and C \ {C}.
Case (Several FBPs). We now consider the first and last FBP s between C and P according
to the order given by P . By deleting those, we obtain a new s-t-path P ′ and a new cycle
C ′ (Fig. 3a). Due to eliminating the first and last FBP , P ′ cannot have any FBP s within
itself. But the set of cycles D = C \ {C} ∪ {C ′} (Fig. 3b) may now contain FBP s, although
they are still disjoint with one another. By Lemma 2, the FBP s can be deleted resulting in
a set of disjoint cycles. This yields the path P ′ and cycles C′ from Fig. 3c. The number of
FBP s has decreased, the substructures are disjoint and any FBP is between P ′ and a cycle
in C′ to which the induction hypothesis may be applied. ◀

The following theorem implies the preservation of Invariant 1. This is perhaps not surprising
since we always send the balance/flow along the cheapest augmenting paths.

▶ Theorem 4 (Optimality Preservation [14]). Let f be a minimum cost flow for balances b.
Take an s-t-path P of minimum residual costs and γ ≤ uf (P ). If we augment f by γ along P

then the result is still optimum for modified balances b′ where b′(s) = b(s) + γ, b′(t) = b(t)−γ

and b′(v) = b(v) for any other v.
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s t

C

Simple case: Exactly one FBP between the s-t-path P and
a cycle C. Deleting this simply forms a new s-t-path. Other cycles
(grey) remain unaltered. Disjointness is preserved.

s t
p1 p2 p3

Complex Case (a): At least two FBPs between path and
cycle. The path P is composed out of p1, p2, p3 and the two red
edges. The cycle consists of the blue edges, the green path and the
pink path. When dropping the two fixed F BP s, the new path P ′ is
formed out of p1, p3 and the pink path. A new cycle C′ arises from
p2 and the green path. Uninvolved cycles are grey.

exactly one F BP

We have the s-t-path P and
the cycle C with FBP s
between them. How many
of those FBPs do exist?

two or more F BP s,
proceed from

3a over 3b to 3c.

Complex Case (b): Although all mutually
disjoint, the new set of cycles D might con-
tain F BP s, need for elimination according to
Lemma 2

s t

Complex Case (c): After eliminating the F BP s from
the set of cycles D, we have a set of disjoint cycles C′

without any F BP s. P ′ is still defined as in Fig. 3a.

Figure 3 Elimination of Forward-Backward-Pairs in the proof of Lemma 3.

Proof Sketch. P is vertex-disjoint since any cycle in P would have positive costs (Theorem 1)
contradicting the optimality of P . Assume the flow f ′ after the augmentation were not
optimum. By Theorem 1, there exists an augmenting cycle C. Wlog. C is vertex-disjoint:
Otherwise split C into vertex-disjoint cycles of which one has negative residual costs.

Due to vertex-disjointness, neither P nor C can contain any FBP s. We can therefore
apply Lemma 3 to P and C yielding another s-t-path P ′ and a set of cycles C. Their edges
have positive residual capacity w.r.t. f : For any e ∈ P ′∪

⋃
C we have uf (e) > 0 or uf ′(e) > 0.

If only the latter holds, then e ∈ C and ←e ∈ P which is an FBP . However, this would have
been deleted. Since deleting FBPs preserves costs, we have c(P ′) + c(C) = c(P ) + c(C).
Because c(P ′) ≥ c(P ) (optimality of P ) and c(C) < 0, there must be D ∈ C with c(D) < 0.
This is an augmenting cycle w.r.t. f contradicting Theorem 1. ◀

Lemma 3 is a gap, which we cover with the construction above, in all published com-
binatorial proofs we are aware of, including the proof by Korte and Vygen [14]. The only
other complete proof of Theorem 4 of which we are aware is a non-combinatorial proof by
Orlin [22, 4], in which he uses advanced LP-theory.

▶ Theorem 5 (Correctness of Algorithm 1). Assume the sum of balances b over V is zero. An
execution of sucessive-shortest-path(G, b) terminates, decides about the existence of a valid
flow and returns one in case of existence.
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Proof Sketch. Due to weight conservativity, the zero flow is optimum for the zero balance
making the optimality invariant (Invariant 1) initially true. Its preservation follows from
Theorem 4. Invariants 3 and 2 also hold initially. Their preservation can be seen from the
algorithm.

As the γ used for the augmentations will be a natural number, the sum of the absolute
values of balances will decrease yielding a termination measure.

It remains to show that there is no valid flow if the procedure returns infeasible, a case
for which we need some further auxiliary results. We note that f is a valid flow w.r.t. b− b′.
We call the set of vertices X reachable from v in the residual graph its residual cut, denoted
by Rescutf (v). It can be seen that any leaving edge must be saturated and any entering
edge’s flow is zero. The so-called Flow-Value Lemma says for any cut X, any b and any flow
f valid w.r.t. b:∑

v∈X

b(v) =
∑

e∈∆+(X)

f(e)−
∑

e∈∆−(X)

f(e)

Those two results yield for any b and any flow f valid w.r.t. b:∑
x∈Rescutf (v)

b(x) =
∑

e∈∆+(Rescutf (v))

f(e) = cap(Rescutf (v)) (Corollary 6)

We have 0 ≤
∑

e∈∆+(X)
f(e) ≤ cap(X) and 0 ≤

∑
e∈∆−(X)

f(e) ≤ acap(X) for any valid flow f

and cut X. If there is a valid flow, this implies together with the Flow-Value Lemma:

−acap(X) ≤
∑
v∈X

b(v) ≤ cap(X) (Corollary 7)

The sum of balances is the amount of flow to be sent to or removed from the cut. This has
to be within the bounds given by the capacities in both directions which is the intuition
behind Corollary 7 . From the algorithm’s control flow we can infer that there must be an s

with b′(s) > 0 without a reachable t where b′(t) < 0, i.e. any x in the rescut has a b′(x) ≥ 0.
We obtain a contradiction in case there exists a flow f ′ valid w.r.t. b.∑

x∈Rescutf (s)

b(x) ≤ cap(Rescutf (s)) (f ′ is valid flow and Corollary 7)

=
∑

x∈Rescutf (s)

(b− b′)(x) (Corollary 6 for f and b− b′)

<
∑

x∈Rescutf (s)

b(x) ◀

Formalisation. We represent loops as recursive functions. The non-trivial termination
argument requires the Isabelle function package [15]. We use records to model program
states. The formal version of the loop in Algorithm 1 is given in Listing 1. Most notation
is standard functional programming notation. The main exception is record updates, e.g.
’state(return := infeasible)’ denotes ’state’, but with state variable ’return’ updated to
’infeasible’.

Formally, selecting reachable targets and minimum cost paths corresponds to using
functions (get-source and get-min-augpath, respectively) that compute those items non-
deterministically. Their existence and properties are assumed by a named context, a so-called
locale. These allow us to fix constants and to make corresponding assumptions which are
both available within the locale.
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Listing 1: Recursive function formalising SSP

1 function SSP:: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 SSP s t a t e = ( l e t b = b a l a n c e s t a t e ; f = c u r r e n t - f l o w s t a t e i n
3 ( i f z e r o - b a l a n c e b then s t a t e L r e t u r n := found M
4 e l s e (ca se ge t - s o u r c e b o f
5 None ⇒ s t a t e L r e t u r n := i n f e a s i b l e M |
6 Some s ⇒(ca se ge t - r e a c h a b l e - t a r g e t f b s o f
7 None ⇒ s t a t e L r e t u r n := i n f e a s i b l e M |
8 Some t ⇒( l e t P = get - min - augpath f s t ;
9 γ = min ( min ( b s ) (− b t ) ) (Rcap f (s e t P) ) ;

10 f ’ = augment - edges f γ P ;
11 b ’ = (λ v . i f v = sthenb s − γ e l s e
12 i f v = t then b t + γ e l s e b v )
13 i n SSP (s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M ) ) ) ) ) )

Listing 2: Customised simplification for SSP

1 lemma SSP - s imps : assumes SSP -dom s t a t e
2 shows SSP - r e t - 1 - cond s t a t e =⇒ SSP s t a t e = (SSP - r e t 1 s t a t e )
3 SSP - r e t - 2 - cond s t a t e =⇒ SSP s t a t e = (SSP - r e t 2 s t a t e )
4 SSP - r e t - 3 - cond s t a t e =⇒ SSP s t a t e = (SSP - r e t 3 s t a t e )
5 SSP - c a l l - 4 - cond s t a t e =⇒ SSP s t a t e = SSP (SSP - upd4 s t a t e )

Listing 3: Customised induction rule for SSP

1 lemma SSP - i n d u c t : assumes SSP -dom s t a t e
2 assumes

∧
s t a t e . JSSP -dom s t a t e ;

3 SSP - c a l l - 4 - cond s t a t e =⇒ P (SSP - upd4 s t a t e ) K =⇒ P s t a t e
4 shows P s t a t e

Listing 4: Single-step preservation of Optimality

1 lemma assumes SSP - c a l l - 4 - cond s t a t e i nva rOpt s t a t e
2 shows i n va rOpt (SSP - upd4 s t a t e )

We introduced definitions to specify which execution branch is taken when doing an
iteration of the loop body, e.g. SSP -call-4-cond state indicating the recursive case from
the function definition above. It has the same structure as the loop body and returns True

for exactly one branch and False for all others. Similarly, the effect of a single execution
branch can be modelled, e.g. SSP -upd4 state. We can show a simplification lemma and an
induction principle for SSP , given in Listings 2 and 3, respectively. The preservation of the
invariants is proven for single updates like the one in Listing 4 and by the simplification and
induction lemmas this can be lifted to a complete execution of SSP . Proof automation makes
this process very smooth and convenient. We follow the same formalisation methodology for
all the algorithms we consider below.

4 The Capacity Scaling Algorithm

The naive Successive Shortest Path Algorithm (Algorithm 1) arbitrarily selects sources,
targets and minimum cost (mincost) paths for the augmentations. This is refined to Capacity
Scaling (CS) by selecting those triples where the residual capacities and balances are above a
certain threshold that is halved from one scaling phase to another (Algorithm 2). It was
proposed by Edmonds and Karp [7]. As SSP, CS works on a state consisting of E , V , u, c, b,
b′ and f . The algorithm uses two nested loops: The outer one is responsible for monitoring
the scaling and determining problem infeasibility. The inner one’s purpose is to process
every suitable path until none are remaining. It is also responsible for terminating the
execution when a solution has been found. As this refines SSP, the proofs for correctness and
termination do not differ significantly. The same three invariants may be reapplied. Note
that capacities and balances must still be integral to ensure termination.
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Algorithm 2 capacity-scaling(E , V, u, c, b).

1 initialise b′ ← b, f ← 0 and γ = 2⌊log2 B⌋ where B = max{1, 1
2

∑
v∈V

b(v)};
2 while True do
3 while True do
4 if ∀ v ∈ V . b′(v) = 0 then return f ;
5 else if ∃ s t P . P is s-t-path, uf (P ) ≥ γ, b′(s) ≥ γ and b′(t) ≤ −γ then
6 take such s, t and P ; augment γ along P ;
7 b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;
8 else break;
9 if γ = 1 then return infeasible;

10 else γ ← 1
2 · γ;

Listing 5: Formalisaton of Scaling

1 function (domint ro s ) SSP:: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 SSP s t a t e = ( l e t b = b a l a n c e s t a t e ; f = c u r r e n t - f l o w s t a t e i n
3 ( i f z e r o - b a l a n c e b then s t a t e L r e t u r n := s u c c e s s M
4 e l s e (ca se ge t - s o u r c e - t a r g e t - path f b o f
5 None ⇒ s t a t e L r e t u r n := notye t t e rm M |
6 Some (s , t , P) ⇒( l e t γ = min (min (b s ) (− b t ) ) (Rcap f (s e t P) ) ;
7 f ’ = augment - edges f γ P ;
8 b ’ = (λ v . i f v = s then b s − γ e l s e
9 i f v = t then b t + γ e l s e b v )

10 i n SSP (s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M ) ) ) ) )
11

12 definition s sp (γ::nat ) ≡ SSP . SSP E u (ge t - s o u r c e - t a r g e t - path γ )
13

14 function (domint ro s ) S c a l i n g :: nat ⇒ ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
15 S c a l i n g l s t a t e = ( l e t s t a t e ’ = s sp (2^ l −1) s t a t e i n
16 (ca se r e t u r n s t a t e ’ o f s u c c e s s ⇒ s t a t e ’
17 | f a i l u r e ⇒ s t a t e ’
18 | no tye t t e rm ⇒( i f l = 0 then s t a t e ’ L r e t u r n:= f a i l u r e M
19 e l s e S c a l i n g (l −1) s t a t e ’ ) ) )

Intuitively CS behaves like SSP, but only greedily chooses large steps towards the optimal
solution, thus hastening progress leading to a polynomial rather than exponential worst-case
running time. Each of these steps is a minimum cost augmenting path p from a source s to a
target t with a “step size” of min{uf (p), b(s),−b(t)}. When no paths of the right cost remain,
it halves the thresholds for treatment and continues with a more fine-grained analysis.

Formalisation. As it can be seen from Listing 5, a modified version of SSP realises the
inner loop. Paths returned by the selection function are assumed to have capacity above
γ, which is enforced by the definition statement. In case of existence, get-source-target-path
γ returns a source, a target and a minimum cost path with balances and capacity above γ.
The outer loop works on the logarithm of γ, denoted by l. The major difference between
SSP from Listing 5 and the one from Listing 1 is Line 5: In the modified version, the flag is
set to notyetterm which indicates that no more suitable paths were found and the decision
on infeasibility is left to the outer loop.

Most of the claims and proofs are inherited from the formalisation of SSP and therefore
they are conditioned on termination for the respective input state. This can be proven from
Invariant 2. The outer loop is a function on two arguments, namely, the logarithm of the
threshold and the program state. Its termination follows from the decrease in γ.

For SSP, we had the sum of the balances’ absolute values as termination measure decreasing
in any iteration by at least 1. This is linear in the balances and therefore exponential w.r.t.
input length. On the contrary, CS halves the measure after a polynomial number of iterations
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resulting in fast progress. The number of scaling phases is logarithmic w.r.t. the greatest
balance and thus, linear in terms of input length. The time for finding a minimum cost
path is polynomial and an augmentation is O(n). Provided infinite capacities, the number
of augmentations per phase is at most 4n [14]. For an efficient path computation, CS even
runs in O(n(n2 + m) log B) [7, 14], where B is the greatest absolute value of a balance.
This is polynomial w.r.t. input length including the representation of balances. It is not
polynomial w.r.t. only the number of vertices and edges. Such an algorithm would be strongly
polynomial.

5 Orlin’s Algorithm

Orlin’s Algorithm (Algorithm 3) allows for a strongly polynomial worst-case running time of
O(n log n(m + n log n)) [22, 4, 14]. Similar to Algorithm 2, we have an outer loop monitoring
the threshold γ and an inner loop treating all paths with a capacity above that (augment-
edges()). After each threshold decrease, a forest that is maintained by the algorithm is
updated. In the return value of augment-edges(), the flag indicates whether an optimum flow
was found or infeasibility was detected. Otherwise (i.e. flag = notyetterm), the algorithm
continues. The top loop and subprocedures work on a program state consisting of the
variables E , V, u, c, b, b′, f , F , actives, γ and r.

Here, the flow on only active edges and forest edges can be augmented, which is done using
augment-edges(). All edges are active initially. Edges deleted from this set are deactivated.
The subprocedures use a small positive constant ϵ. Its value influences the timespans between
component merges. Positivity ensures termination of augment-edges().

For the previous algorithms, the running time depended on B. On the contrary, Orlin’s
Algorithm avoids that using a continuously growing spanning forest F of edges. The crucial
observation is that this forest is used s.t. only one vertex (henceforth, the representative)
per forest connected component (henceforth, F -component) is considered as a source or as a
target in searching for augmenting paths. This reduction in augmentation effort is achieved
by maintaining the forest, which can be done in time polynomial in n and m.

Algorithm 3 orlins(E , V, u, c, b).

1 initialise b′ ← b; f ← 0; r(v)← v for any v; F ← ∅; actives = E ; γ ← max
v∈V
|b′(v)|;

2 while True do
3 (b′, f, flag)← augment-edges(E ,V, u, c, b′, f,F , actives, γ, r);
4 if flag = found then return f ;
5 if flag = infeasible then return infeasible;
6 if ∀ e ∈ actives. f(e) = 0
7 then γ ← min{γ

2 , max
v∈V
|b′(v)|};

8 else γ ← γ
2 ;

9 (b′, f,F , r, actives)← maintain-forest(E ,V, u, c, b′, f,F , actives, γ, r);

Partial correctness of the algorithm is shown by invariants on program states and properties
of the subprocedures. Line specifications refer to the state after executing the respective line.
Consider the following invariants about the execution of orlins(G, b):
1. γ is strictly positive, except when b = 0.
2. Any active edge e outside F has a flow f(e) that is a non-negative integer multiple of γ.
3. Endpoints of a deactivated edge belong to the same F -component.
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4. Only representatives can have a non-zero balance.
5. For states in Line 3, any edge e ∈ F has f(e) > 4 · n · γ.
6. f is optimum for the balance b− b′.

The balance potential Φ is important for the number of augmentations during subproced-
ures and their termination [14]. For b′ and γ it is defined as:

Φ(b′, γ) =
∑
v∈V

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
When writing Φ(state), we refer to the respective b′ and γ. We will later see in detail how
the subprocedures work. For now, assume the subprocedures have the following properties:
P1. For the result of augment-edges(), we have |b′(x)| ≤ (1− ϵ) ·γ for any x. If flag ̸= found

there is x with b′(x) > 0. flag is found when b′ = 0 is reached.
P2. For any e, the change in f(e) due to calling augment-edges() is an integer multiple of γ.
P3. Calling maintain-forest() preserves Invariants 3 and 4. Calling augment-edges() preserves

Invariant 4.
P4. For any edge that is in F after calling maintain-forest(), the flow reduction incurred

during this subprocedure is at most nβ where ∀ v. |b′(v)| ≤ β before calling maintain-
forest(). For edges e outside F after the call, there was no change in f(e).

P5. Φ(maintain-forest(state)) ≤ Φ(state) + n.
P6. Provided the other invariants hold, Invariant 6 is preserved by either subprocedure.
P7. The number of path augmentations during augment-edges(state) is at most Φ(state).

The flow decrease along any edge during augment-edges(state) is at most Φ(state) · γ.
P8. Assume all invariants hold on state. If flag = found in the result of augment-edges(state),

f is optimum. If flag = infeasible, the flow problem is indeed infeasible.

We examine how the invariants and properties yield partial correctness.

▶ Theorem 8 (Partial Correctness). Assume the algorithm terminates on an uncapacitated
instance with conservative weights. If a flow is found, it is a mincost flow, otherwise the
problem is infeasible.

Proof. b = 0 yields immediate termination with f = 0 as correct result (P1). If b ̸= 0, we
show the invariants for the last state on which augment-edges() is called. All invariants hold
for the initialisation given in the algorithm. The pseudocode and P1 imply preservation of
Invariant 1. The flow along edges outside F is only changed by augment-edges() (P4) and
the change is integral multiple of γ (P2) implying preservation of Invariant 2. The arguments
for Invariants 3 and 4 are simple (P3). Preservation of Invariant 5 is more difficult. Assume
it holds in Line 3. We know |b′(x)| ≤ (1− ϵ) · γ for any x (P1). After modifying γ (Lines 6 -
8), the flow along forest edges is above 8nγ, Φ(b′, γ) ≤ n and ∀x. |b′(x)| < 2 · γ. Executing
maintain-forest() can cause a decrease of 2nγ for forest edges (P4) and an increase in Φ
by at most n (P5). Calling augment-edges() is responsible for a further flow decrease of at
most 2nγ (P7). The overall decrease along forest edges was at most 4nγ. By P6 we obtain
Invariant 6 for the state before the last call of augment-edges(). P8 gives the claim. ◀

Note: we restrict ourselves to infinite edge capacities, which is insignificant as problems
can be reduced to the uncapacitated setting with a linear increase in input length [14].
Our theorems here require weight-conservativity which is inherited from Algorithm 1 and
Algorithm 2 as a constraint. However, we drop the restriction to integral capacities and
balances.

We now state the subprocedures and show that they satisfy the aforementioned properties.
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5.1 Augmenting the Flow

Algorithm 4 augment-edges(E , V, u, c, b′, f, F , actives, γ).

A1 while True do
A2 if ∀v ∈ V . b′(v) = 0 then return (b′, f, found);
A3 else if ∃ s . b′(s) > (1− ϵ) · γ then
A4 if ∃ t . b′(t) < −ϵ · γ ∧ t is reachable from s then
A5 take such s, t, and a connecting path P with original edges from actives ∪ F ;
A6 augment f along P from s to t by γ;
A7 b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;
A8 else return (b′, f, infeasible);
A9 else if ∃ t . b′(t) < −(1− ϵ) · γ then

A10 if ∃ s . b′(s) > ϵ · γ ∧ t is reachable from s then
A11 take such s, t, and a connecting path P with original edges from actives ∪ F ;
A12 augment f along P from s to t by γ;
A13 b′(s)← b′(s)− γ; b′(t)← b′(t) + γ;
A14 else return (b′, f, infeasible);
A15 else return (b′, f, please continue);

We now argue why augment-edges() satisfies the properties stated in the previous section.
P1, P2, P3, P6, P7 and P8 assert something about augment-edges(). P1 can be inferred from
the subprocedure’s structure. The only possible amount to augment is γ which yields P2.
P3 (Preservation of Invariant 4) also follows from the structure.

Proof Sketch for P6. We assume the invariants for hold state and we define (b′, f, flag) =
augment-edges(state). Then f is a minimum cost flow for balances b−b′ because of Theorem 4.
The restriction to active and forest edges (Lines A5 and A11) is unproblematic: Simulate
deactivated edges with forest paths which are of minimum costs. ◀

Proof Sketch for P7. Show that any iteration decreases Φ at least by 1, thus augment-
edges(state) performs at most Φ(state) iterations and the flow decrease for an edge is at
most Φ(state) · γ. The proof of a strict decrease in Φ only works for ϵ > 0. ◀

Proof Sketch for P8. If the algorithm found a flow, then ∀v ∈ V . b′(v) = 0 (Line A2).
Together with preservation of the optimality invariant, it gives the first subclaim.

If the algorithm asserts infeasibility, one can exploit information about b′ from Lines
A3, A4, A9 and A10. By employing residual cuts and the analogous definition where every
direction is reversed, one can show infeasibility for both cases. The proof is similar to that of
Theorem 5. The argument only works for ϵ ≤ 1

n . ◀

By this, we have shown that augment-edges() satisfies all asserted properties. We also
saw the restriction 0 < ϵ ≤ 1

n . Note: one might think that ϵ could be assigned to 0. As we
shall see later on, that would make it impossible for us to derive the worst-case running time
bound. In essence, we need to allow vertices to be processed if they are ’slightly’ below the
threshold, otherwise the algorithm take exponentially many iterations, and its running time
will depend on B. Interested readers should consult sec. 5.2 [22].
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Figure 4 Merging forest components: Remaining balances b′, forest edges, flow values and
representatives are blue, red, black and purple, respectively. Assume the balances are non-negative.

Algorithm 5 maintain-forest(E , V, u, c, b′, f, F , actives, γ, r).

F1 while ∃e = (x, y). e ∈ actives ∧ e ̸∈ F ∧ f(e) > 8nγ do
F2 F ← F ∪ {e};
F3 if |F -component of y| ≥ |F -component of x| then exchange x and y;
F4 let x′ = r(x) and y′ = r(y) the respective representatives;
F5 take residual path Q ⊆ F connecting x′ and y′;
F6 if b′(x′) > 0 then augment f along Q by b′(x) from x′ to y′;
F7 else augment f along

←−
Q by −b′(x) from y′ to x′;

F8 b′(y′)← b′(y′) + b′(x′); b′(x′) = 0;
F9 foreach v reachable from y′ in F do r(v)← y′ ;

F10 foreach d = (u, v). d ∈ actives ∧ {r(u), r(v)} = {y′} do actives ← actives\{d};
F11 return (b′, f,F , actives, r);

5.2 Maintaining the Forest
We now discuss the last part of the algorithm, namely, maintaining the forest. The definition
of maintain-forest() can be seen in Algorithm 5. We add active edges with flow above 8nγ to
F , which inevitably changes the connected components of the forest – a new component is
created for every added edge by merging the components the respective endpoints belong to.
Since non-zero balance is only allowed for representatives, balances must be re-concentrated
at one of the two representatives after merging two components.2 Moreover, all edges between
them are deactivated and the representatives must be updated. For a forest F , F is the
corresponding residual network consisting only of forest edges. Re-concentration is done by
augmentations along paths in F. An example of how balances, flow and forest change is
displayed in Fig. 4.

Only P3-P6 make assertions about maintain-forest() and we argue why they are indeed
satisfied. P3 (preservation of Invariant 3) is easy to see since it is precondition for deactivation
to have the same representatives (Line F10).

Proof Sketch for P4. Invariants F1 and F2 bound the forest edges’ flow decrease:
F1. For any x, |b′(x)| is bounded by the product of its F -component’s cardinality and β.
F2. For any e ∈ F , we have f(e) > α− β · |X| where X is the F -component of e.
Their conjunction is preserved by maintain-forest(). It is important to always concentrate
the balances at the larger component’s representative as done in the algorithm. ◀

Any iteration merges two F-components making n− 1 an upper bound for the number
of iterations. P5 asserts Φ(maintain-forest(state)) ≤ Φ(state) + n. This holds because the
potential cannot increase by more than 1 per iteration, as shown in the following lemma.

2 Cardinalities of forest components in the pseudocode refer to the number of vertices in the component.
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▶ Lemma 9. The increase of Φ during a single iteration of maintain-forest() is at most 1.

Proof. Let state be the program state in Line F1 and state′ be the one in Line F9, respectively.
Program variables refer to state. It follows:

Φ(state′) =
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ 0
γ
− (1− ϵ)

⌉
+

⌈ |b′(y′) + b′(x′)|
γ

− (1− ϵ)
⌉

=
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ |b′(y′)|+ |b′(x′)|
γ

− (1− ϵ)
⌉

≤
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ |b′(x′)|
γ

⌉
+

⌈ |b′(y′)|
γ

− (1− ϵ)
⌉

≤
∑

v∈V\{x′,y′}

⌈ |b′(v)|
γ
− (1− ϵ)

⌉
+

⌈ |b′(x′)|
γ

− (1− ϵ)
⌉

+ 1 +
⌈ |b′(y′)|

γ
− (1− ϵ)

⌉
= Φ(state) + 1 ◀

Proof of P6. To apply Theorem 4 we need optimality of forest paths Q and
←
Q used for

augmentations. Suppose this were not true. There is P with c(P ) < c(Q) connecting the
same vertices. Since c(

←−
Q ) = −c(Q), P

←−
Q is a cycle with c(P

←−
Q ) = c(P ) + c(

←−
Q ) < 0 and

uf (P
←−
Q ) > 0 contradicting Theorem 1 and Invariant 6. The case for

←
Q is analogous. Due

to Invariant 5, the flow in F is positive. Infinite edge capacities imply positive residual
capacities for F. ◀

This concludes our proofs that maintain-forest() satisfies properties P3-P6.

5.3 Termination and Running Time

For the inner loops we have termination measures decreasing in any iteration, namely, the
number of components and Φ. For the outer loop, there is a maximum number of iterations
until some desirable situation occurs. A vertex v is important iff |b′(v)| > (1 − ϵ) · γ [14],
i.e. its contribution to Φ is positive. We repeatedly wait for the occurrence of an important
vertex and ensure a merge of two forest components some iterations later. We define
ℓ = ⌈log(4 ·m · n + (1− ϵ))− log ϵ⌉+ 1 and k = ⌈log n⌉+ 3. It can be shown that (a) if we
wait for k + 1 iterations, a vertex has become important or there is a component merge,
and that (b) for an important vertex, ℓ + 1 iterations enforce its component being increased.
There can be at most n− 1 such merges, which yields termination.

Concerning running time, we assume atomic bounds for basic parts of the algorithm. For
instance, tF B is an upper bound for the time consumed when executing the loop body in
maintain-forest() and tF C is the time for checking the condition (analogously tAC and tAB

for augment-edges(), and tOC and tOB for orlins()). Time consumption can be bounded by

(n · (ℓ + k + 2)− 1) · (tOC + tOB + tAC + tF C) +
(n− 1) · (tF C + tF B + tAC + tAB) + (2n− 1) · (ℓ + 1) · (tBC + tBB) + tBC + tOC

The proof involves bounding the number of iterations of the subprocedures by n and Φ,
respectively, a connection between the number of important vertices and Φ, and bounding
the number of occurrences of important vertices by results on so-called Laminar Families.
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5.4 Formalisation
Listing 6: Locale to specify path selection for augment-edges()

1 locale augment - edges = a l g o +
2 fixes get - s o u r c e - t a r g e t - path :: ’ a Algo - s t a t e ⇒ ’ a ⇒ ’ a ⇒ ’ a Redge l i s t and
3 get - v e r t e x :: ( ’ a ⇒ boo l ) ⇒ ’ a
4 assumes get - s o u r c e - t a r g e t - path - ax ioms :
5 J get - s o u r c e - t a r g e t - path s t a t e s t = P ; s ∈ V ; t ∈ V ; s ̸= t
6 aux - i n v a r s t a t e ; (∀ e ∈ F s t a t e . c u r r e n t - f l o w s t a t e e > 0) ;
7 r e s r e a c h (c u r r e n t - f l o w s t a t e ) s t K =⇒
8 (Rcap (c u r r e n t - f l o w s t a t e ) (s e t P) > 0 ∧
9 ( i n v a r - i s O p t f l o w s t a t e −→ i s - min - path (c u r r e n t - f l o w s t a t e ) s t P) ∧

10 oedge ` s e t P ⊆ a c t i v e s s t a t e ∪ F s t a t e ∧ d i s t i n c t P

Listing 7: Formalisation of the Top Loop of Orlin’s algorithm.

1 function (domint ro s ) o r l i n s :: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 o r l i n s s t a t e = ( i f r e t u r n s t a t e = s u c c e s s then s t a t e
3 e l s e i f r e t u r n s t a t e= f a i l u r e then s t a t e
4 e l s e ( l e t f = c u r r e n t - f l o w s t a t e ; b = b a l a n c e s t a t e ;
5 γ = c u r r e n t -γ s t a t e ; E ’ = a c t i v e s s t a t e ;
6 γ ’ = ( i f ∀ e ∈ E ’ . f e = 0 then min (γ / 2) (Max { | b v | | v ∈ V} )
7 e l s e (γ / 2) ) ;
8 s t a t e ’ = ma in ta i n - f o r e s t (s t a t e L c u r r e n t -γ := γ ’ M ) ;
9 i n o r l i n s (augment - edges s t a t e ’ ) ) )

Listing 8: A function modelling the running time of orlins().

1 function (domint ro s ) o r l i n s T i m e :: nat ⇒(’ a , ’ b , ’ d ) Algo - s t a t e
2 ⇒ nat × (’ a , ’ b , ’ d ) Algo - s t a t e where
3 ( o r l i n s T i m e t tOC s t a t e ) = ( i f (r e t u r n s t a t e = s u c c e s s ) then (t tOC , s t a t e )
4 e l s e i f (r e t u r n s t a t e = f a i l u r e ) then (t tOC , s t a t e )
5 e l s e ( l e t f = c u r r e n t - f l o w s t a t e ; b = b a l a n c e s t a t e ;
6 γ = c u r r e n t -γ s t a t e ; E ’ = a c t i v e s s t a t e ;
7 γ ’ = ( i f ∀ e ∈ to - s e t E ’ . f e = 0 then
8 min (γ / 2) (Max { | b v | | v . v ∈ V} )
9 e l s e (γ / 2) ) ;

10 s t a t e ’ t ime = mainta in −f o r e s t T i m e (s t a t e L c u r r e n t -γ := γ ’ M ) ;
11 s t a t e ’ ’ t ime = augment−edgesTime (snd s t a t e ’ t ime )
12 i n (( tOC + tOB + f s t s t a t e ’ t ime + f s t s t a t e ’ ’ t ime )
13 +++ (o r l i n s T i m e t tOC (snd s t a t e ’ ’ t ime ) ) ) ) )

General. We assume functions selecting paths non-deterministically via locales (Listing 6),
which were later instantiated suitably. As above, we model program states as records and use
customised simplification and induction. However, here the algorithm’s complexity is more
substantial (see Listings 9 and 7). Also, we note that formal proofs about paths often need
pairwise distinctness of the vertices or edges which is often neglected in an informal setting.

Forest. For connected components, we reuse Abdulaziz et al.’s [2] formalisation modelling
undirected edges as sets. Paths based on that must be transformed to paths over residual
edges. Each direction is mapped to a residual edge pointing is this direction. Residual edges
realising opposite directions originate from the same graph edge. This implies that converting
a path over undirected edges and its reverse yields opposite costs as needed to show P6.

Termination. The termination proof reasons about a fixed number of iterations. We
introduced definitions expressing the effect of a single iteration, which can then be combined
to a fixed number by the function iteration compow. As soon as executing a single step does
not change anything, the recursive version would also terminate yielding an equal result.

Running Time. We model algorithm running times as functions returning natural numbers,
using an extension of Nipkow et al.’s approach. In this approach, for every function f : α→ β,
we devise a functional program fTime : α → N with the same recursion and control-flow
structure as the algorithm whose running time we measure. In its most basic form, for a
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given input x : α, fTime(x) returns the number of the recursive calls that f would perform
while processing x. If f involves calls to other functions, the running times of the called
functions are added to the number of recursive calls of f . To modularise the design of these
running time models, we use locales to assume running times of the called functions. An
example of such a running time model is shown in Listing 8, which models the running
time of Orlin’s algorithm. Here, there running times of the forest and path augmentation
procedures are only assumed, without explicitly specifying them, in the locale containing
the definition of orlinsTime. Mathematically, proving the upper bound on the running time
requires a basic result about laminar families, where the set of connected components of the
forest is viewed as a laminar family.

Listing 9: Formalisation of augment-edges() and corresponding Induction Rule

1 function (domint ro s ) augment - edges :: ’ a Algo - s t a t e ⇒ ’ a Algo - s t a t e where
2 augment - edges s t a t e = ( l e t f = c u r r e n t - f l o w s t a t e ; b = b a l a n c e s t a t e ;
3 γ = c u r r e n t -γ s t a t e
4 i n ( i f ∀ v ∈ V . b v = 0 then s t a t e L r e t u r n:=s u c c e s s M
5 e l s e i f ∃ s ∈ V . b s > (1 − ϵ ) ∗ γ then
6 ( l e t s = get - v e r t e x (λ s . b s > (1 − ϵ ) ∗ γ ∧ s ∈ V)
7 i n ( i f ∃ t ∈ V . b t < − ϵ ∗ γ ∧ r e s r e a c h f s t then
8 l e t t = get - v e r t e x (λ t . b t < − ϵ ∗ γ ∧ r e s r e a c h f s t ∧ t ∈ V) ;
9 P = get - s o u r c e - t a r g e t - path s t a t e s t ;

10 f ’ = augment - path f γ P ;
11 b ’ = (λ v . i f v = s then b s − γ
12 e l s e i f v = t then b t + γ e l s e b v ) ;
13 s t a t e ’ = s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M i n
14 augment - edges s t a t e ’
15 e l s e s t a t e L r e t u r n := f a i l u r e M ) )
16 e l s e i f ∃ t ∈ V . b t < − (1 −ϵ ) ∗ γ then
17 ( l e t t = get - v e r t e x (λ t . b t < − (1 −ϵ ) ∗ γ ∧ t ∈ V)
18 i n ( i f ∃ s ∈ V . b s > ϵ ∗ γ ∧ r e s r e a c h f s t then
19 l e t s = get - v e r t e x (λ s . b s > ϵ ∗ γ ∧ r e s r e a c h f s t ∧ s ∈ V) ;
20 P = get - s o u r c e - t a r g e t - path s t a t e s t ;
21 f ’ = augment - path f γ P ;
22 b ’ = (λ v . i f v = s then b s − γ
23 e l s e i f v = t then b t + γ e l s e b v ) ;
24 s t a t e ’ = s t a t e L c u r r e n t - f l o w := f ’ , b a l a n c e := b ’ M i n
25 augment - edges s t a t e ’
26 e l s e s t a t e L r e t u r n := f a i l u r e M ) )
27 e l s e s t a t e L r e t u r n := notye t t e rm M ) )
28

29 lemma augment - edges - i n d u c t : assumes augment - edges -dom s t a t e
30

∧
s t a t e . J augment - edges -dom s t a t e ;

31 augment - edges - c a l l 1 - cond s t a t e =⇒ P (augment - edges - c a l l 1 - upd s t a t e ) ;
32 augment - edges - c a l l 2 - cond s t a t e =⇒ P (augment - edges - c a l l 2 - upd s t a t e ) K

=⇒ P s t a t e
33 shows P s t a t e

6 Discussion

The algorithms that we considered here share a number of features with other maximum flow
algorithms that were formally analysed before, most notably the fact that they iteratively
compute augmenting paths to incrementally improve a solution until an optimal solution is
reached. Those algorithms also use residual graphs, which are intuitively graphs containing
the remaining capacity w.r.t. the current flow maintained by the algorithm, and which
have been formalised by Lammich and Sefidgar [17]. The most advanced one out of these
is probably the Push-Relabel Algorithm by Goldberg and Tarjan. Another combinatorial
optimisation algorithm that was also formalised is Edmonds’ blossom shrinking algorithm
for maximum cardinality matching in general graphs [2].

However, our work here is different from those previously studied algorithms for maximum
flow in one crucial aspect: here we cover the algorithms which use scaling, a technique for
designing fast optimisation algorithms, including algorithms with the fastest worst-case
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running times for different variants of matching and shortest path problems [6, 9, 10, 11, 23],
in addition to minimum-cost flows. Our work here provides a blueprint to formalise the
correctness of those other scaling algorithms. Furthermore, the running time proof here
depends on properties of laminar families, making it one of the more advanced running time
proofs to be formalised.

A main outcome of our work, from a mathematical perspective, is our proof of Theorem 4,
which is its first complete combinatorial proof, and our simplified proof of Theorem 1. Those
outcomes, especially the construction we devised for the former, highlight the potential
role of formalising deep proofs in filling gaps as well as in the generation of new proofs
and/or insights. Indeed, this was a recurring theme across the project, e.g. there were other
non-trivial claims in the main textbook by Korte and Vygen we used as reference [14], for
which no proof is given. E.g. it is claimed that the accumulated augmentations through a
forest edge are below 2(n− 1)γ. We could not formalise the proof of this in the textbook as it
also had gaps, and we devised Invariants F1 and F2 to be able to prove it. Other gaps were
in the proofs of Properties P7, P6, Lemma 5, Lemma 9, and a few parts of the termination
proof, but we have to refer interested readers to the formalisation due to the lack of space.

The formalisation of the algorithms presented here is around 25K lines of proof scripts. Our
methodology is based on using Isabelle/HOL’s locales to implement Wirth’s notion of step-wise
refinement [25], thereby compartmentalising different types of reasoning. This locale-based
implementation of refinement was used earlier by many authors, e.g. by Nipkow [21], Maric [20],
and Abdulaziz et al. [2]. In this approach, non-deterministic computation is handled by
assuming the existence and properties of functions that compute non-deterministically,
without assuming anything about the functions’ implementation. Our formalisation is one
further example showing that this approach scales to proving the correctness of some of the
most sophisticated algorithms. We also note that our focus here is more on formalising the
mathematical argument behind the algorithm and less on obtaining an executable program,
which is nonetheless attainable using this locale-based approach. A notable alternative
implementation of refinement is Peter Lammich’s [16] framework.

We note that in our work, we have used the locale-based approach in two ways: top-down
and bottom-up. Our approach to specifying augment-edges was top-down, where we assumed
the existence of a procedure for finding shortest paths between sources and targets. On the
other hand, for specifying orlins we went bottom-up, where we first defined and proved the
correctness of augment-edges and maintain-forest, and then started defining and proving the
correctness of orlins, which calls both augment-edges and maintain-forest. In the former case,
we went top-down as we had a good a priori understanding of the functions to assume and
their properties, while in the latter we went bottom-up because we had a poorer a priori
understanding of the functions to assume and their properties.

Furthermore, we define procedures as recursive functions using Isabelle’s function pack-
age [15], program states as records, and invariants as predicates on states. We devise
automation based on manually deriving theorems characterising properties of recursive
functions, and combining those theorems with Isabelle’s classical reasoning and simplification.
In this approach, the automation handles proofs of invariants and monotone properties, e.g.
the growth of the forest or the changes in Φ. Again, other approaches can be used to model
algorithms and automate reasoning about them, e.g. monads [18] or while combinators [5].
Both of those approaches allow for greater automation, which is particularly useful for
reasoning about low-level implementations. However, those two approaches are problematic
for manual mathematical proofs, which form the majority of our effort, as they usually add a
layer of concepts between the theorem prover’s basic logic and the algorithm’s model.
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Abstract
For performance and verification in machine learning, new methods have recently been proposed that
optimise learning systems to satisfy formally expressed logical properties. Among these methods,
differentiable logics (DLs) are used to translate propositional or first-order formulae into loss
functions deployed for optimisation in machine learning. At the same time, recent attempts to give
programming language support for verification of neural networks showed that DLs can be used to
compile verification properties to machine-learning backends. This situation is calling for stronger
guarantees about the soundness of such compilers, the soundness and compositionality of DLs, and
the differentiability and performance of the resulting loss functions. In this paper, we propose an
approach to formalise existing DLs using the Mathematical Components library in the Coq proof
assistant. Thanks to this formalisation, we are able to give uniform semantics to otherwise disparate
DLs, give formal proofs to existing informal arguments, find errors in previous work, and provide
formal proofs to missing conjectured properties. This work is meant as a stepping stone for the
development of programming language support for verification of machine learning.
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1 Introduction

This work aims to contribute to the field of formal verification of artificial intelligence, more
precisely machine learning, i.e., the study of algorithms that learn statistically from data.
Neural networks are the most common technical device used in machine learning. The
standard learning algorithms (such as gradient descent) use a loss function L : Rm ×Rn → R
to optimise the network’s parameters (say, θ) to fit the input-output vectors given by the
data in a way that the loss L(x, y) is minimised. This optimisation objective is usually
denoted as minθ L(x, y).
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Most approaches to verification of neural networks consist of an automated procedure
based on SMT solving, abstract interpretation, or branch-and-bound techniques (see, e.g.,
Albarghouthi’s survey [3]). Verification typically applies after training because traditional
learning is purely data-driven and thus agnostic to verification properties. In contrast,
property-guided training takes place once the verification properties are stated. More
precisely, verification of neural networks consists of two parts: statement and verification
of a given property, and training of the neural network that optimises the neural network’s
parameters towards satisfying the given property.

However, naively or manually performed mapping of a logical property to an optimisation
task results in major discrepancies (as shown by Casadio et al. [9]). This suggests the
need to have tools for property-guided training. One approach is to provide programming
language support for property-driven development of neural networks that involves specifica-
tion, verification, and optimisation in a safe-by-construction environment. As an example,
Vehicle [11, 13] provides this support in the form of a Haskell DSL, with a higher-order
typed specification language, in which required neural network properties can be clearly
documented, and type-driven compilation which can take care of correct-by-construction
translation of properties into both the language of neural network solvers and loss functions.

To generate loss functions from a logical property, one can use Differentiable Logics (DLs).
Well-studied fuzzy logics that date back to the works of Łukasiewicz and Gödel can be
used as DLs [26]. Recently, both verification and machine-learning communities formulated
alternative DLs such as DL2 [16] and STL [27]; the latter was shown to be more performant
in optimisation tasks. These DLs are very different; for example, they do not agree on the
domains of the resulting loss functions: fuzzy logics have domain [0, 1], the domain of DL2
corresponds to the Lawvere quantale (−∞, 0], and STL’s domain is (−∞, +∞) (all intervals
are equipped with the usual ordering on reals). Each domain has a designated value for
truth (e.g., 1 in fuzzy logics, 0 in DL2, +∞ in STL) and falsity (0, −∞, −∞, respectively).

Vehicle uses DLs to translate logical properties into loss functions. In order to ensure the
correctness of the translation, a DL needs to satisfy a number of properties:

Soundness: if a property interprets as “true” in the chosen DL domain, then it is true in
the boolean logic, and similarly for false.
Compositionality: the translation function should preserve the structural properties,
e.g., (the translation of) negation should compose with conjunction and disjunction, and
(the translation of) conjunction and disjunction should satisfy the usual properties of
idempotence, commutativity, and associativity.
Shadow-lifting: the resulting functions should have partial derivatives that can characterise
the idea of gradual improvement in training [27]. For example, a translation of a
conjunction should evaluate to a higher value if the value of one of its conjuncts increases.

Unfortunately, none of the existing DLs satisfies all of these requirements [24, 27]. There-
fore, future tools and compilers such as Vehicle may need to provide support for incorporating
a range of DLs for different scenarios.

This conclusion brings to the forefront the need for a generic framework in which logical
and geometric properties of different DLs can be formalised and proven. In this paper, we
propose a unified formalisation of DLs to lay down the ground for the development of a
reliable neural network verification tool. For that purpose, we will build on top of previous
work that has already proposed a common presentation of DLs [24]. In order to handle the
verification of translation from properties to loss functions, we use the Coq proof assistant
in which numerous formalisations of logics and programming languages have been carried
out. In addition, the formalisation of the properties of DLs also requires a good library
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support for algebra (to handle the structural properties of DLs) as well as analysis (to
handle shadow-lifting), a task for which the Mathematical Components libraries (hereafter,
MathComp [25]) seem well fitted.

Our contributions in this paper are as follows:
We explain how to encode known DLs in a single generic syntax using Coq, taking
advantage of dependent types and building on known techniques for logic embedding
(such as intrinsic typing). The formalisation is comprehensive and extensible for future
use.
We demonstrate how to use the MathComp libraries for our purpose, which includes
reusable lemmas that we had to newly develop.
As a result we are able to find and fix errors in the literature. The most prominent
missing results were: soundness of STL and missing parts of the shadow-lifting proofs,
both of which appear as original results in this paper.

The paper proceeds as follows. Section 2 provides further background information about
property-guided training and DLs. Section 3 explains how one can define DLs in Coq using a
generic encoding, including a translation function producing the semantics. Section 4 focuses
on the formalisation of logical properties and soundness of DLs. In Section 5, we demonstrate
the formal verification of the shadow-lifting properties of DLs. We discuss related work and
conclude in Section 6.

2 Background

2.1 Property-guided training, by means of an example
Neural network properties

Given a neural network N : Rm → Rn, the verification property usually takes the form of a
Hoare triple ∀x ∈ Rm.P(x) −→ S(x), where P and S can be arbitrary properties obtained
by using variables x ∈ Rm, constants, vector, arithmetic operations, ≤, =, ∧, ∨, and ¬.
Additionally, S may contain the neural network N as a function.

▶ Example 1 (Properties of neural networks). Given a neural network N and a vector v,
consider the specification that requires that for all inputs x that are within ϵ distance from v,
the output of N(x) should not deviate by more than δ from N(v):

∀x.|x − v|L∞ ≤ ϵ ⇒ |N(x) − N(v)|L∞ ≤ δ.

This property is known as ϵ-δ-robustness [9]. It can be used to avoid misclassifying images
when only a few pixels are perturbed. This particular example uses the L∞ norm: |x−y|L∞

def=
maxi∈{0,...,n−1}([x]i − [y]i), where [x]i stands for the ith element of x.

Unfortunately, as demonstrated by Fischer et al. [16], even most accurate neural networks
fail even the most natural verification properties, such as ϵ-δ-robustness. This motivated the
search for better ways to train the networks.

Property-guided training

Methods for property-guided training have received considerable attention in the AI literature,
as the survey [18] shows. We will only illustrate the method that was suggested by Fischer
et al. [16], and refer the reader to the survey for more examples.
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▶ Example 2 (Generating a loss function from a logical property [16]). Recall that standard
supervised learning trains a neural network N with trainable parameters θ to optimise the
objective minθ L(x, y), for the loss function L : Rm × Rn → R. Generally, L measures the
difference between the network’s output and the given data for each input point. Examples
of L are cross-entropy loss or mean squared error. But now we want to train the neural
network to satisfy any arbitrary property ∀x.P(x) −→ S(x). For this, we replace the above
optimisation objective with

min
θ

[
max

x∈HP(x)
LS(x)

]
where HP(x) ⊆ Rm refines the type Rm to a subset for which the property P holds, and
LS : Rm → R is obtained by applying a suitable interpretation function for S.

We omit the exact details of how such optimisation algorithms are defined: they are
known and can be found in a suitable machine learning tutorial, for example [19]. Intuitively,
the optimisation algorithm will search for x ∈ HP(x) such that x maximises the loss LS(x),
in order to train the neural network parameters θ to minimise that loss. Concretely, if the
property is ϵ-δ-robustness, it will look for the worst perturbation of v that violates the
property, and will optimise the neural network to classify that bad example correctly.

Differentiable logics for loss functions

In the above example, we did not explain how to define the interpretation function LS for
an arbitrary property S; we need differentiable logics for that purpose. Fischer et al. [16]
proposed one such interpretation function – called the differentiable logic DL2, standing for
“Deep Learning with Differentiable Logics”.

▶ Example 3 (Loss functions from properties in a fuzzy logic). Taking the properties from
Example 1, by the Fischer et al. method we must be able to interpret the right-hand side of
the implication, i.e., |N(x) − N(v)|L∞ ≤ δ, given concrete values for ϵ, δ, a concrete vector v,
neural network N , and a suitable definition of the L∞ norm. For example, interpretation for
our property in STL [27] is given by J|N(x) − N(v)|L∞ ≤ δKSTL = δ − |JN(x)K − JN(v)K|L∞ .
On the left-hand side, the L∞ distance between vectors as well as N are defined in the
syntax of STL; on the right-hand side, they are given by real vector arithmetic operations.
Example 8 will make the relation between syntax and interpretation clear. The obtained
function can be used directly for training neural networks.

We next consider our choices of DLs in details.

2.2 Differentiable logics
Ślusarz et al. [24] suggest a common syntax for all DLs, calling it the logic of differentiable
logics (LDL), and subsequently obtain different DLs via different interpretation functions.
In the following, we summarize the syntactic and semantic features of DLs following this
formulation; minor modifications will be discussed as we introduce them.

LDL syntax

LDL’s syntax consists of types and expressions (Fig. 1). Types are given by booleans, reals,
vectors, indices, and a function type Fun n m; expressions are given by real numbers, vectors,
vector indices, lookup operations, and functions that take real vectors as inputs. Formulae
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type ∋ t ::= Bool | Index n for n ∈ N | Real | Vec n | Fun n m for n, m ∈ N

exprInd ∋ i ::= i ∈ N
exprR ∋ r, r1, r2 ::= r ∈ R | [v]i

exprFun ∋ f ::= f ∈ Rn → Rm

exprVec ∋ v ::= v ∈ Rn | f v

exprB ∋ p, p0, . . . , pn ::= True | False
| r1 ≤ r2

| r1 ̸= r2

|
∧

M
(p0, . . . , pM )

|
∨

M
(p0, . . . , pM )

| ¬p

Figure 1 Types and expressions of LDL.

are formed either via applying predicates ≤, = to real expressions, by boolean values, or using
logical connectives ∨, ∧, ¬. Because STL by Varnai et al. [27] lacks associativity, conjunction
and disjunction are defined as n-ary connectives so that they are the same for all DLs.
Further, implication is not present in the syntax: that is due to the n-ary nature of the
other connectives, which do not always allow for the implication of classical logic. Any DL
with associative conjunction and disjunction will admit implication b1 ⇒ b2 to be defined as
¬b1 ∨ b2.

We forgo the originally included quantifiers, lambda, and let expressions to obtain a
simpler core language in which the three properties of interest – soundness, compositionality,
and differentiability – can be studied.

Obtaining DLs via interpretation functions

To define a DL, one defines an interpretation function J·KDL that, given an expression
in LDL, returns a function on real numbers. We introduce all DLs in a generic way
and use the meta-notation J·KDL, to refer to a range of interpretation functions, with
DL ∈ {Gödel, Łukasiewicz, Yager, product, DL2, STL}. The boolean interpretation function
J·KB is the obvious logical interpretation of boolean formulas, which will be useful for proving
soundness later.

Table 1 shows the interpretation of all DLs. First are the four DLs based on well-known
fuzzy logics: Gödel, Łukasiewicz [28], Yager, and product [26]. All fuzzy logics have the
interpretation domain of [0, 1] ⊂ R. Other logics have different domains: DL2 [16] has the
interpretation domain (−∞, 0], and STL [27] the domain (−∞, +∞).

The binary predicates ≤ and = are defined in a way that ensures that they are interpreted
within the chosen real interval for the given DL. The definitions of logical connectives

∨
M ,∧

M , and ¬ are taken directly from the related papers that define the given DLs. Note that
we reformulate

∨
M and

∧
M for all DLs as n-ary connectives, however, only STL had n-ary

connectives originally.

2.3 Properties of DLs

Soundness

There is no consensus in the DL literature on how or whether to state soundness: for example,
STL came without any soundness statement. For the sake of generic formalisation of all DLs,
we propose the following definition of soundness, which generalises soundness as defined in
DL2 and fuzzy logics [16,26].
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Table 1 Interpretation function J·KDL, which extends naturally to sequences of expressions as
well as interpretation function J·KB, which is a structural interpretation of boolean formulas.
†: Negation is undefined in the sense that it is not defined as a structural transformation of the syntax of
formulas. It is implemented at the level of atomic comparison only, and negation on composite formulas is
provided as syntactic sugar [16, Sect. 3]. For example, consider J3 = 3KDL2 = 0. In DL2, J¬(3 = 3)KDL2 is
not defined in term of J3 = 3KDL2 = 0, but DL2 provides an interpretation for the symbol ̸= separately.

J
∧

M
sK J

∨
M

sK J¬eK

Gödel minJsKG max JsKG 1 − JeKG

Łukasiewicz max
[∑

a∈JsKŁ
a − |s| + 1, 0

]
min

[∑
a∈JsKŁ

a, 1
]

1 − JeKŁ

Yager max
[

1 −
(∑

a∈JsKY
(1 − a)p

)1/p

, 0
]

min
[(∑

a∈JsKY
ap
)1/p

, 1
]

1 − JeKY

product
∏

a∈JsKP
a fold (λx y . x + y − xy) 0 JsKP 1 − JeKP

DL2
∑

a∈JsKDL2
a (−1)|s|+1 ·

∏
a∈JsKDL2

a undefined†

STL andS JsKSTL orS JsKSTL −JeKSTL

Bool
∧

M
JsKB

∨
M

JsKB ¬JeKB

Je1 = e2K Je1 ≤ e2K JTrueK JFalseK

fuzzy
if Je1K = −Je2K
then Je1K = Je2K
else max

[
1 −
∣∣ Je1K−Je2K

Je1K+Je2K

∣∣ , 0
]

if Je1K = −Je2K
then Je1K ≤ Je2K
else
max

[
1 − max

[ Je1K−Je2K
Je1K+Je2K , 0

]
, 0
] 1 0

DL2 −|Je2KDL2 − Je1KDL2| − max [Je1KDL2 − Je2KDL2, 0] 0 −∞
STL −|Je2KSTL − Je1KSTL| Je2KSTL − Je1KSTL +∞ −∞
Bool Je1KB = Je2KB Je1KB ≤ Je2KB True False

andS [a1, . . . , aM ] =



∑
i
amineãi eνãi∑

i
eνãi

if amin < 0∑
i
aie

−νãi∑
i
e−νãi

if amin > 0

0 if amin = 0

where
ν ∈ R+ (constant)

amin = min [a1, . . . , aM ]
ãi = ai − amin

amin

orS is analogous to andS

▶ Definition 4 (Soundness). Given a DL, an expression e, and a boolean value b ∈
{True, False}, the DL is sound if

JeKDL = JbKDL =⇒ JeKB = b.

Note that not all DLs are sound. For example, one of the oldest fuzzy logics by
Łukasiewicz [28] is known to be unsound. Table 2 summarises all known soundness results.
Note that prior to this paper, soundness of STL was not known. Here, we obtain the result
with some restrictions, see Sect. 4.

Compositionality

We define idempotence, associativity, and commutativity of interpretation functions for
∧

M

and analogously
∨

M :

▶ Definition 5 (Commutativity, idempotence, and associativity of
∧

M ). Given a DL, the
interpretation function of conjunction is commutative if for any permutation π of the integers
i ∈ {1, . . . , M} we have

s∧
M

(p0, . . . , pM )
{

DL
=

s∧
M

(
pπ(0), . . . , pπ(M)

){

DL
.
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Table 2 Properties of the different DLs formalised in this paper [29]. We distinguish previously
known proofs that we mechanise from previously known results published with incomplete or semi-
formal proofs ( yellow ) and new results ( orange ).
†: For DL2 and STL, we prove soundness of the negation-free fragment of LDL; negation is undefined for
DL2, and STL is not sound for the full fragment.

Properties: Negation Idempotence Commutat. Associativ. Soundness Shadow-lifting
Gödel yes yes yes yes yes no
Łukasiewicz yes no yes yes no no
Yager yes no yes yes no no
product yes no yes yes yes yes
DL2 no no yes yes yes† yes
STL yes yes yes no yes† yes

It is idempotent and associative if we have
s∧

M
(p, . . . , p)

{

DL
= JpKDL,

s∧
M

(∧
M

(p0, p1), p2

){

DL
=

s∧
M

(
p0,
∧

M
(p1, p2)

){

DL
.

Table 2 shows which DLs satisfy which logical properties. Finally, as already illustrated
in Sect. 2.1, negation can be problematic in some DLs. For example, DL2 does not give a
direct interpretation for negation, as its domain is asymmetric. We will see in Sect. 4 that
negation also causes problems with the soundness of STL.

Differentiability

Varnai et al. [27] introduce three properties in this category: weak smoothness, scale-
invariance, and shadow-lifting. The latter is the most important as it accounts for gradual
improvement in training. We only consider shadow-lifting here as it is the most complex of
those properties and leave the remaining properties to future work.

▶ Definition 6 (Shadow-lifting property [27]). The DL satisfies the shadow-lifting property if,
for any JpKDL ̸= 0:

∂

s∧
M (p0, . . . , pi, . . . , pM )

{

DL
∂JpiKDL

∣∣∣∣∣∣∣∣
pj=p where i̸=j

> 0

holds for all 0 ≤ i ≤ M , where ∂ denotes partial differentiation.

Notice that classical conjunction does not satisfy the property of shadow-lifting: no matter
how “true” the value of p2 is, if p1 is false, then p1 ∧ p2 will remain false. Likewise, all DLs
that use min or max to define conjunction will fail shadow-lifting.

Shadow-lifting was originally defined for conjunction only, as STL had no disjunction. In
our formalisation, we could, in principle, extend shadow-lifting to disjunction. However, we
left this incremental extension for future work.

Summary of results

Table 2 summarises all properties covered in our Coq formalisation and highlights the ones
for which we provide original proofs. In our development, we provided several missing results,
most prominently, the soundness of STL and missing parts of the shadow-lifting proofs. Note
that the formalisation further revealed some errors:
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▶ Example 7 (Discrepancies in pen and paper proofs). While doing the Coq formalisation,
we found two sources of errors in our pen and paper proofs [24] as well as in [27]. Firstly, the
work in [24] concerned completing results of Table 2 in the uniform notation of LDL. Many
proofs were analogous and it was easy to overlook the rare cases when the proof could not be
completed by analogy with existing proofs. For example, we tried to prove the soundness of
Yager by analogy with other fuzzy logics overlooking that Yager is not sound. Indeed Yager
is a generalisation of Łukasiewicz logic which in itself is not sound. The Coq formalisation
revealed all such errors.

The second source of errors came from extension of fuzzy logics with comparison operators.
The interpretation of comparisons needed to be scaled between 0 and 1, and it seemed obvious
that the scaling was done correctly. Therefore we did not provide any proofs concerning the
interval properties of these operations. In contrast the soundness proofs in Coq required us
to prove that the fuzzy interpretation functions always return values within the interval [0, 1].

Thirdly, while a sketch of the shadow-lifting proof was provided in [27], it was incomplete
and did not mention either the existence of other cases as well as the reliance of the proof on
L’Hôpital’s rule.

No DL satisfies all desirable properties – for example, Gödel is sound, idempotent, associative,
and commutative, but it is not shadow-lifting. On the other hand, Łukasiewicz is not sound,
STL not associative, and while DL2 is sound and shadow-lifting, it fails idempotence, and its
negation is not compositional because it is not structural. Varnai et al. [27] have proven that
it is impossible for any DL to be idempotent, associative, and shadow-lifting at the same
time.

When one has to make a choice of a DL, different considerations may influence that choice.
Soundness and shadow-lifting are strictly desirable, thus Gödel, Łukasiewicz and Yager
are probably less desirable than the rest, even if some of them have nice logical properties.
However, given soundness and shadow-lifting, the choice between logical properties is less
clear. For example, one can imagine a scenario when the specification language avoids
negation, and in a style of substructural logics, treats differently p and p ∧ p and thus
sacrifices idempotence; in this case, DL2 may provide an ideal translation function.

3 An encoding of DLs in Coq

As discussed, LDL aims at defining all DLs in a generic and extendable way, using uniform
syntactic conventions. In this section, we start by highlighting the generic features of our
formalisation.

3.1 Encoding of the syntax of types and expressions
The encoding of the LDL types is the matter of declaring the following inductive type:

Inductive flag := def | undef.

Inductive ldl_type :=
Bool_T of flag | Index_T of nat | Real_T | Vector_T of nat | Fun_T of nat & nat.

This corresponds to the informal syntax of Fig. 1 with the difference that we refine the
Boolean type with a (flag) to signify whether negation is defined in the logic.

As for LDL expressions, their encoding is displayed in Fig. 2. It is an inductive type
indexed by ldl_type so that the resulting syntax is intrinsically-typed: one cannot write
ill-typed expressions. The Coq inductive type matches the informal syntax already explained



R. Affeldt, A. Bruni, E. Komendantskaya, N. Ślusarz, and K. Stark 4:9

in Fig. 1. Real expressions (line 6) use a type R of type realType coming from MathComp-
Analysis [1] that represents real numbers. Boolean expressions (line 7) use the native Coq
type bool. Indices embed an ordinal from MathComp (line 8). More specifically, 'I_n
is the type of natural number smaller than n. Similarly, vectors just reflect MathComp
tuples (line 9). For defining n-ary connectives ldl_and and ldl_or, we use polymorphic
lists (of type seq). Yet, to ease reading, we will use notation such as a `/\ b to denote
binary conjunction in the following. For a generic definition of the syntax, we need to allow
for the case of DLs in which negation is not defined (in fact, DL2). The additional argument
Bool_T_def in the constructor ldl_not (line 12) signifies that the negation is defined. The
constructor ldl_cmp (line 13) is for binary comparison operators over the real numbers;
hereafter, we will use notations such as `<= for the comparison corresponding to ≤ instead
of “ldl_cmp cmp_le” to ease reading. As for the last constructors, they are respectively for
functions, their application, and lookups, as per Fig. 1.

1 Definition Bool_T_undef := Bool_T undef.
2 Definition Bool_T_def := Bool_T def.
3 Inductive comparison := cmp_le | cmp_eq.
4

5 Inductive expr : ldl_type -> Type :=
6 | ldl_real : R -> expr Real_T
7 | ldl_bool : forall p, bool -> expr (Bool_T p)
8 | ldl_idx : forall n, 'I_n -> expr (Index_T n)
9 | ldl_vec : forall n, n.-tuple R -> expr (Vector_T n)

10 | ldl_and : forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)
11 | ldl_or : forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)
12 | ldl_not : expr Bool_T_def -> expr Bool_T_def
13 | ldl_cmp : forall x, comparison -> expr Real_T -> expr Real_T -> expr (Bool_T x)
14 | ldl_fun : forall n m, (n.-tuple R -> m.-tuple R) -> expr (Fun_T n m)
15 | ldl_app : forall n m, expr (Fun_T n m) -> expr (Vector_T n) -> expr (Vector_T m)
16 | ldl_lookup : forall n, expr (Vector_T n) -> expr (Index_T n) -> expr Real_T.

Figure 2 LDL syntax in Coq.

3.2 Encoding of the interpretation function
We now proceed to the translation function that interprets the syntax. Types are mapped to
their obvious semantics:

1 Definition type_translation (t : ldl_type) : Type :=
2 match t with
3 | Bool_T x => R
4 | Real_T => R
5 | Vector_T n => n.-tuple R
6 | Index_T n => 'I_n
7 | Fun_T n m => n.-tuple R -> m.-tuple R
8 end.

In particular, booleans are mapped to R of type realType, the type of real numbers.
This translation accommodates the many interpretations of the DLs: the domain [0, 1]
for fuzzy logic, (−∞, 0] for DL2, and (−∞, +∞) for STL. For DL2 and STL, we also
provide an alternative translation function ereal_type_translation that maps booleans
to real numbers extended with −∞ and +∞, i.e., the type \bar R of extended real numbers
as provided by MathComp-Analysis. We use an invariant to restrict the range of the
interpretation function accordingly.
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Each logic requires a separate interpretation function (as explained in Table 1). Here, we
only show an excerpt of the translation function for STL, namely the cases for conjunction
(constructor ldl_and), negation (notation `~), and comparison (notation `<=) of STL in
Fig. 3.

Fixpoint stl_translation {t} (e : expr t) : type_translation t :=
match e in expr t return type_translation t with
| ldl_and _ (e0 :: s) => let A := map stl_translation s in

let a0 := stl_translation e0 in
let a_min := \big[minr/a0]_(i <- A) i in
if a_min < 0 then stl_and_lt0 (a0 :: A) else
if a_min > 0 then stl_and_gt0 (a0 :: A) else
0

| `~ E1 => - {[ E1 ]}
| E1 `<= E2 => {[ E2 ]} - {[ E1 ]}
... (* see [29] for omitted connectives *)
end where "{[ e ]}" := (stl_translation e).

Figure 3 Excerpt of the semantics of STL: conjunction, negation, and comparison.
(See Fig. 4 for intermediate definitions stl_and_lt0 and stl_and_gt0.)

The case for conjunction of STL is the most complex in our formalisation because dealing
formally with it requires the theories of exponentiation (expR), big sums (\sum), inverses
(^-1), and minima (minr). To reduce the clutter, we define the cases for amin > 0 and
amin < 0 separately as stl_and_gt0 and stl_and_lt0 reproduced in Fig. 4. This will allow
us to state intermediate lemmas about sub-expressions.

Definition sumR a := \sum_(i <- a) i.
Definition min_dev {R : realType} (x:R) (a:seq R) : R :=

let r := \big[minr/x]_(i <- a) i in (x - r) * r^-1.

Definition stl_and_gt0 (a : seq R) :=
sumR (map (fun x => x * expR(-nu * min_dev x a)) a) *
(sumR (map (fun x => expR(-nu * min_dev x a)) a))^-1.

Definition stl_and_lt0 (a : seq R) :=
sumR (map (fun x => (\big[minr/x]_(i <- a) i) *

expR (min_dev x a) * expR(nu * min_dev x a)) a) *
(sumR (map (fun x => expR(nu * min_dev x a)) a))^-1.

amin = min [a1, . . . , aM ]
ãi = ai − amin

amin

ν ∈ R+ (constant)∑
i
aie

−νãi∑
i
e−νãi

(case amin > 0)

∑
i
amineãi eνãi∑

i
eνãi

(case amin < 0)

Figure 4 Intermediate definitions to define the conjunction of STL.
(The right subfigure reproduces part of Table 1 for reading convenience.)

As a first application of our encoding, we can already formalise our running example,
with the advantage of encoding it once for all DLs:

▶ Example 8. Taking the interpretation task of Example 3, we first give a suitable definition
for L∞ norm (ldl_norm_infty) and vector subtraction (ldl_vec_sub). One only needs to
call the defined interpretation function to encode the loss function of Example 3:

Context (eps delta : @expr R Real_T) (f : @expr R (Fun_T n.+1 m.+1))
(v : @expr R (Vector_T n.+1)) (x : @expr R (Vector_T n.+1)).

Definition eps_delta_robust : expr Bool_T_undef :=
ldl_lookup

(ldl_app (ldl_norm_infty m) (ldl_vec_sub (ldl_app f x) (ldl_app f v)))
(ldl_idx ord0) `<= delta.
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4 Logical properties and soundness of DLs

4.1 Logical properties of DLs
The logical properties of DLs are idempotence, commutativity, and associativity. Not all DLs
have the same properties as we saw earlier (Table 2). Proving the logical properties essentially
amounts to showing that the semantic interpretation does have them. For example, the
conjunction of DL2 being interpreted as addition on reals inherits its associativity directly
from the properties of real numbers, and as a consequence, its proofs are one-liners, e.g.:
Lemma dl2_andA (e1 e2 e3 : expr Bool_T_undef) :

[[ e1 `/\ (e2 `/\ e3) ]]_dl2 = [[ (e1 `/\ e2) `/\ e3 ]]_dl2.
Proof. by rewrite /=/sumR ?big_cons ?big_nil !addr0 addrA. Qed.

In contrast, for Yager and STL, the proofs are more demanding. For example, the
associativity for Yager, though stated analogously,
Theorem Yager_andA (e1 e2 e3 : expr Bool_T_def) :

0 < p -> [[ (e1 `/\ e2) `/\ e3]]_Yager = [[ e1 `/\ (e2 `/\ e3) ]]_Yager.

consists of about 100 lines of code. This is because in this case, the interpretation relies on
the power function of MathComp-Analysis whose properties are more technical. Yet, we
could put the automatic tactics available with MathComp such as lra [22, 23] to good use.

4.2 Soundness of DLs
We now address the topic of formalising the soundness results of Table 2.

Soundness for closed interval DLs
For fuzzy DLs and, more generally, closed interval DLs there is a clear consensus on how to
define soundness: we generalised it in Definition 4. It boils down to taking the least and
greatest elements in the given real interval as interpretations for False and True, respectively.
In Coq, the statement of soundness for Gödel and product is as follows:
Lemma soundness (e : expr Bool_T_def) b :

[[ e ]]_ l = [[ ldl_bool _ b ]]_ l -> [[ e ]]_B = b.

This is a direct paraphrase of the pencil-and-paper Definition 4. The proofs proceed by
induction and require inversion lemmas, which we will discuss later in this section.

Soundness for DLs with open intervals
When a DL’s domain of interpretation is given by an open interval, which is the case for
DL2 and STL, there is no clear consensus in the literature on defining or proving soundness.
We will illustrate the problems that arise using STL and following previous work [24]. The
first question is how to state soundness. The easiest choice is to simply add −∞ and +∞ as
constants to the domain, and keep the soundness statement of Definition 4. However, because
no formula in the language evaluates to −∞ or +∞, such a soundness proof is vacuous. Note
that Definition 4 did not cause this problem for fuzzy DLs because there were formulae in
the language that evaluated to bottom and top values: take for example J3 = 3KP = 1.

Alternatively, one may keep the open interval intact and simply re-define soundness
in terms of intervals: if the interpretation of the formula e is greater or equal to 0, then
JeKB = True else JeKB = False. However, this solution triggers a different problem: negation
is no longer sound. Indeed, if J3 = 3KSTL = 0 means the formula is true, then the same can
be said about J¬(3 = 3)KSTL = 0.
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One could think of a solution excluding 0 from the interval (−∞, +∞) altogether, but
that complicates the interpretation of comparisons and creates a point in the interval at
which the resulting function is not differentiable, which damages shadow-lifting.

Coq formalisation for logics with open intervals
For the reasons explained above, we remove negation from STL and use intervals to define
the truth:

Definition is_stl b (x : R) := if b then x >= 0 else x < 0.

This results in the following soundness statement:

Lemma stl_soundness (e : expr Bool_T_undef) b :
is_stl b (nu.-[[ e ]]_stl) -> [[ e ]]_B = b.

The flag Bool_T_undef in (e : expr Bool_T_undef) signifies that the proof omits the case
that uses negation. We write nu.-[[ e ]]_stl as notation for interpretation of STL (and
similar notation for the remaining DLs).

The soundness proof proceeds by induction on the structure of the interpretation function.
Because of the extensive use of dependent types in our formalisation we need a custom
dependent induction principle. The most interesting cases are those for conjunction and
disjunction, which need special inversion lemmas. Here is one example:

Lemma stl_nary_inversion_andE1 (s : seq (expr Bool_T_undef)) :
is_stl true (nu.-[[ ldl_and s ]]_stl) ->

forall i, i < size s -> is_stl true (nu.-[[ nth (ldl_bool pos false) s i ]]_stl).

Our formalisation faced a minor technical problem: if we are to comply with the generic
DL syntax defined in Fig. 1, we need to interpret constants True and False present in the
language. We therefore propose two alternative interpretations for DL2 and STL: one that
works on extended reals (with added constants −∞, +∞) and maps True and False to the
top and bottom elements of the respective domains, and one that resolves this discrepancy
by choosing arbitrary interpretations for True and False that satisfy all the properties of
interest for our study. In the latter case, for DL2 we choose to interpret True as 0 and False
as −1, and for STL we choose to interpret True as 1 and False as −1. In all these four cases
we show that the resulting logic satisfies the soundness property stated above. Adding −∞
and +∞ has repercussions when proving the geometric properties of the logics, as we show
later in Sect. 5. If it were not for considerations of using the generic syntax for all DLs, True
and False could be removed from the STL syntax altogether, without damaging the main
results.

Lessons learnt
Soundness for DLs with open intervals was the first real challenge that this formalisation faced.
Having no plausible solution in the field, being able to use Coq to experiment with different
soundness statements and see their effect on proofs was extremely rewarding. Overall, we
proved three different versions of STL soundness (one for “vacuous proofs”, which we do not
present here); and we intend to use this formalisation to experiment further with STL. In
particular, finding an alternative approach to negation, e.g., using “approximate 0”, is now
within our reach. The currently presented approach is the first proof of soundness for any
fragment of STL, it already covers formalisation of problems such as the ϵ-δ-robustness; and
we attribute this intermediate success to the assistance of the Coq formalisation.
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5 Differentiability: shadow-lifting

It was Varnai et al. who provided for STL the pencil-and-paper proof of shadow-lifting [27,
Sect. V] (along with the definition of the STL conjunction). This section formalises this result
and actually completes it since the original proof only covers one of the two non-trivial cases.
The main technical aspect of the proof is high-school level mathematics: an application of
L’Hôpital’s rule, which was not yet available in MathComp-Analysis.

DL2 and the product DL also trivially enjoy shadow-lifting. In the following, we will
therefore start by formalising the latter DLs, then formalising L’Hôpital’s rule, and finally
provide an overview of the missing part of Varnai et al.’s proof of shadow-lifting for STL. Note
that the logics Gödel, Łukasiewicz, Yager fail shadow-lifting as they are not differentiable
everywhere, due to their use of min or max to define conjunction.

5.1 formalisation of shadow-lifting
As seen in Sect. 2, shadow-lifting is defined in terms of partial derivatives, for which there
was however no theory yet in MathComp-Analysis. They can be easily defined on the
model of derivatives [1, file derive.v]. First, we define error vectors as row vectors (type
'rV[R]_k where R is some ring) that are 0 everywhere except at one coordinate i:
Definition err_vec {R : ringType} (i : 'I_n.+1) : 'rV[R]_n.+1 :=

\row_(j < n.+1) (i == j)%:R.

The notation %:R injects a natural number into a ring; note that here the boolean equality
(notation: ==) is implicitly coerced to a natural number. Then, given a function f that takes
as input a row vector, we define a function partial that given a row vector a and an index i
returns the limit limh→0

h ̸=0

f(a+herr_vec i)−f(a)
h . Put formally:

Definition partial {R} {n} (f : 'rV[R]_n.+1 -> R) (a : 'rV[R]_n.+1) i :=
lim (h^-1 * (f (a + h *: err_vec i) - f a) @[h --> 0^']).

In this syntax, 0^' represents the deleted neighborhood of 0, and lim g @ F represents the
limit of the function g at the filter F [2]. The notation *: represents scaling but is equivalent
to the multiplication of real numbers here. Hereafter, we use the Coq notation d f '/d i
for partial f i.

Using partial derivatives, the definition of shadow-lifting (Definition 6) translates directly
into Coq:
Definition shadow_lifting {R : realType} n (f : 'rV_n.+1 -> R) :=

forall p, p > 0 -> forall i, ('d f '/d i) (const_mx p) > 0.

The const_mx function comes from MathComp’s matrix theory and represents a matrix
where all coefficients are the given constant; we use it to implement the restriction “pj = p”
seen in Definition 6.

5.2 Shadow-lifting for DL2 and product
The proof of shadow-lifting for DL2 and product DLs provides an easy illustration of the use
of the definition of the previous section (Sect. 5.1).

For DL2, the first thing to observe is that the semantics of a vector of real numbers
can simply be written as an iterated sum using the notation ``_ to address elements of
row-vectors:
Definition dl2_and {R : fieldType} {n} (v : 'rV[R]_n) := \sum_(i < n) v ``_ i.
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Shadow-lifting for DL2 really just amounts to checking that the partial derivatives of the
function v⃗ 7→

∑
j<|v⃗| v⃗j are 1, i.e., considering vectors of size M.+1:

Lemma shadowlifting_dl2_andE (p : R) : p > 0 ->
forall i, ('d (@dl2_and R M.+1) '/d i) (const_mx p) = 1.

Since the partial derivatives are all positive, DL2 satisfies the shadow_lifting predicate,
see [24, file dl2.v].

Similarly, we observe for the product DL that the semantics of a vector is the function
v⃗ 7→

∏
j<|v⃗| v⃗j whose partial derivatives are pM , which is positive:

Lemma shadowlifting_product_andE p : p > 0 ->
forall i, ('d (@product_and R M.+1) '/d i) (const_mx p) = p ^+ M.

5.3 formalisation of L’Hôpital’s rule using MathComp-Analysis
As indicated in the introduction of this section, the key technical lemma to prove shadow-
lifting for STL is L’Hôpital’s rule, that we show how to formalise in MathComp-Analysis.
As a reminder, here follows one of L’Hôpital’s rules:

▶ Theorem 9 (L’Hôpital’s rule). Let f, g : R → R be functions differentiable on an open
interval U except possibly at one point a. Suppose that ∀x ∈ U , x ̸= a, we have g′(x) ̸= 0. If it
holds that f(a) = g(a) = 0, then if lim

x→a+

f ′(x)
g′(x) = l for some real number l, then lim

x→a+

f(x)
g(x) = l.

It can be formally stated with MathComp-Analysis using: (a) the relation is_derive
(between a function and its derivative at some point: the 1 appearing in the is_derive
expression is the direction of the derivative, which is 1 for real number-valued functions) and
(b) the right filter a^'+ (i.e., the filter of neighborhoods of a intersected with (a, +∞)). We
slightly generalize the above statement by considering a neighborhood U of a instead of an
open (line 2) and by having the derivative of g non-zero “near” a (line 6) [2, Sect. 3.2]:
1 Context {R : realType}.
2 Variables (f df g dg : R -> R) (a : R) (U : set R) (Ua : nbhs a U).
3 Hypotheses (fdf : forall x, x \in U -> is_derive x 1 f (df x))
4 (gdg : forall x, x \in U -> is_derive x 1 g (dg x)).
5 Hypotheses (fa0 : f a = 0) (ga0 : g a = 0)
6 (cdg : \forall x \near a^', dg x != 0).
7 Lemma lhopital_right (l : R) :
8 df x / dg x @[x --> a^'+] --> l -> f x / g x @[x --> a^'+] --> l.

The proof is textbook, relying in particular on Cauchy’s Mean Value Theorem (MVT), the
proof of which can be derived from the already available MVT, see [24, file stl.v]. Note
that we also need the variant for the left filters.

5.4 Shadow-lifting for STL
Compared with DL2 and product, the conjunction of STL (andS in Table 1) is much more
involved: it consists of two non-trivial cases (marked as amin < 0 and amin > 0 in Table 1)
whose computation requires summations of exponentials of deviations. Varnai et al. provide
a proof sketch for the case amin > 0 [27, Sect. V] which we have successfully formalised, using
in particular l’Hôpital’s rule from the previous section. Below we explain the formalisation
of the other case amin < 0 that Varnai et al. did not treat.

The case amin < 0 actually refers to the semantics provided by the function stl_and_lt0
already presented in Fig. 4. The positive limit we are looking for is actually 1

M+1 (where
M + 1 is the size of vectors), i.e., our goal is to prove formally (the notation \o is for function
composition):
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Lemma shadowlifting_stl_and_lt0 (p : R) : p > 0 -> forall i,
('d (stl_and_lt0 \o seq_of_rV) '/d i) (const_mx p) = M.+1%:R^-1.

This boils down to proving the existence of the limit “from below” and “from above”. The
“from below” case consists in the following convergence lemma:

Lemma shadowlifting_stl_and_lt0_cvg_at_left (p : R) i : p > 0 ->
h^-1 * (stl_and_lt0 (seq_of_rV (const_mx p + h *: err_vec i)) -

stl_and_lt0 (seq_of_rV (const_mx p))) @[h --> 0^'-] --> M.+1%:R^-1.

For the sake of clarity, let us switch to standard mathematical notations and assume without
loss of generality that i is actually M. By mere algebraic transformations (using MathComp’s
algebra theory), the goal can be turned into a sum of two limits:

lim
h→0−

J
∧

M (p, . . . , p, p + h)KSTL − J
∧

M (p, . . . , p)KSTL

h

= lim
h→0−

1
h

(
(p + h)Me

−h
p+h eν −h

p+h + p + h

Meν −h
p+h + 1

− p

)
by definition (see Table 1)

= lim
h→0−

h

h(M + eν h
p+h )︸ ︷︷ ︸

(a)

+ lim
h→0−

M(p + h)e
−h

p+h − pM

h(M + eν h
p+h )︸ ︷︷ ︸

(b)

by simplification

We can show directly that (a) = 1
M+1 but the computation of (b) requires L’Hôpital’s rule:

(b) = lim
h→0−

hMe

−h
p+h

p+h

e
ν h

p+h +he
ν

−h
p+h ( ν

p+h − hν
(p+h)2 )+M

= lim
h→0−

h lim
h→0−

Me
−h

p+h

p+h lim
h→0−

1

e
ν h

p+h +he
ν

−h
p+h ( ν

p+h − hν
(p+h)2 )+M

= 0 · M
p · 1

1+M = 0

Barring the necessity of finding the most convenient breakdown of the limit in the two
penultimate steps, this proof is arguably mathematically straightforward. The corresponding
mechanised proof is however significantly less trivial than in the cases of product and DL2
(Sect. 5.2): length-wise the first tentative formal proof we wrote was an order of magnitude
larger.

Proving the “from above” above consists of a simpler but similar argument:

lim
h→0+

J
∧

M (p, . . . , p, p + h)KSTL − J
∧

M (p, . . . , p)KSTL

h
= lim

h→0+

1
h

(
pM + e

h
p e

νh
p

M + e
h
p

− p

)

= lim
h→0+

1
M + e

νh
p

lim
h→0+

e
νh
p lim

h→0+

e
h
p − 1

h
p

= 1
M + 1 · 1 · 1 = 1

M + 1

Combined with the formalisation of the case amin > 0 sketched by Varnai et al. in [27,
Sect. V], this completes the formal proof of shadow-lifting for STL.
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Table 3 Overview of the formalisation [29].

File Contents L.o.c.
Additions to MathComp libraries
mathcomp_extra.v Lemmas iterated min/max, etc. 504
analysis_extra.v L’Hôpital’s rule, Cauchy’s MVT (§ 5.3), etc. 820
Generic logic and generic definitions of properties
ldl.v LDL syntax and semantics (§ 3), shadow-lifting (§ 5.1) 417
Soundness, logical and geometric properties of concrete logics
dl2.v DL2: logical (§ 4), geometric (§ 5.2) 259
fuzzy.v Gödel, Łukasiewicz, Yager, product: 731

logical (§ 4), geometric (§ 5.2)
stl.v STL: logical (§ 4), geometric (§ 5.4) 977
Alternative formalisations of logical properties/ soundness using extended reals
dl2_ereal.v DL2: logical (§ 4.2) 211
stl_ereal.v STL: logical (§ 4.2) 362

Total 4281

6 Conclusions, related and future work

We have presented a complete Coq formalisation of a range of existing DLs; making the
following two main contributions:
1. We contribute to the DL community by revisiting semantics of STL and DL2 in a way

more amenable to formal verification. We find and fix errors in the literature.
2. We propose a general formalisation strategy based on dependent types and formal math-

ematics. The proposed formalisation is built to be easily extendable for future studies of
different DLs.

Table 3 summarises the Coq implementation. Both L’Hôpital’s rule and geometric
properties, especially in complex cases such as STL, form a substantial part of the development.
The proofs for fuzzy DLs (file fuzzy.v) are grouped together as thanks to their similarity, they
share some of the proofs. The files mathcomp_extra.v and analysis_extra.v contain utility
lemmas for the respective libraries. The file mathcomp_extra.v has a selection of lemmas on
big operations (e.g., iterated sums, n-ary maximum), including lemmas for said operations
when restricted to the domain [0, 1] used by fuzzy logics. The file analysis_extra.v on the
other hand contains proofs of L’Hôpital, Cauchy’s MVT, and multiple lemmas on properties
of mine and maxe (min and max for extended reals).

During our work, we completed missing parts of the shadow-lifting proof for STL, for
example, the original STL proof failed to acknowledge the need for L’Hôpital’s rule. We
believe that understanding, let alone verifying theories that pertain to AI, without any
mechanised support is difficult. Our previous attempt [24] to do this with pen and paper
proofs was drowned in low-level case analysis and resulted in some errors, see Example 7.
This complexity was our initial motivation to undertake the formalisation.

Regarding the concrete formalisation strategy, it was revealing that most of our formal-
isation was coherent with the standard MathComp libraries (and standard mathematical
results), and the library extensions we needed were natural (e.g., L’Hôpital’s rule). This
work hence demonstrates that Coq and MathComp are effective working tools to formalise
state-of-the-art AI results: DL2 and STL were published in recent conferences [16,27] and
this paper formalises the most significant results from both.

In the end, we have a uniform formalisation where all DLs are “tamed” which provides
solid ground for formalisation of methods deployed in verification of neural networks.
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Related Work

As this paper illustrates, neural network verification is a new field, and its nascent methods
need validation and further refinement.

In terms of programming language support for neural network verification, a tool
CAISAR [17], implemented as an OCaml DSL, puts emphasis on the smooth integration of a
general specification language with many existing neural network solvers. However, CAISAR
does not support property-guided training. The aspiration of languages like Vehicle and
CAISAR is to accommodate compilation of specifications into both neural network solver
and machine learning backends. For the former, there is an on-going work on certifying the
neural network solver backends [12,14].

On the side of machine-learning backends, DLs have been previously formalised in Agda
as part of the Vehicle formalisation [5], but did not extend to shadow-lifting – the part that
requires extensive mathematical libraries. Property-guided training certified via theorem
proving was also proposed in [10].

Relevant work on formalisation of neural networks in ITPs includes: verification of neural
networks in Isabelle/HOL [8] and Imandra [15], formalisation of piecewise affine activation
functions in Coq [4], providing formal guarantees of the degree to which the trained neural
network will generalise to new data in Coq [7], convergence of a single-layered perceptron in
Coq [21]; and verification of neural archetypes in Coq [20]. The formalisation presented
here does not directly formalise neural networks.

Future Work

We plan to consider other definitions of soundness, and other DLs, including STL with
revised negation. We hypothesise that Definition 6 allows for generalisation (removing the
condition “pj = p”) and this is left for future work. We saw in Sect. 4.2 that the choice of
the interpretation domains has an impact on both soundness and shadow-lifting and this
choice might deserve further investigation. The trade-off between idempotence, associativity
and shadow-lifting that was conjectured in [27] is reminiscent of substructural logics and
suggests investigating the connection. Establishing connection of this work with the logics of
Lawvere quantale by Bacci et al. [6] might also provide new tools to study DLs.

Separately from the questions of scientific curiosity and mathematical elegance, there
is a question of lacking programming language support for machine learning. As tools like
Vehicle [13] and CAISAR [17] are being proposed to provide a more principled approach to
verification of machine learning, in the long term, compilers of these new emerging languages
will require certification. And this, in turn, will demand formalisation of results such as the
ones we presented here. The formalisation of DLs would hence directly contribute to certified
compilation of specification languages to machine learning libraries.
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Abstract
Formalization of real analysis offers a chance to rebuild traditional proofs of important theorems
as unambiguous theories that can be interactively explored. This paper provides a comprehensive
overview of the Lebesgue Differentiation Theorem formalized in the Coq proof assistant, from which
the first Fundamental Theorem of Calculus (FTC) for the Lebesgue integral is obtained as a corollary.
Proving the first FTC in this way has the advantage of decomposing into loosely-coupled theories of
moderate size and of independent interest that lend themselves well to incremental and collaborative
development. We explain how we formalize all the topological constructs and all the standard
lemmas needed to eventually relate the definitions of derivability and of Lebesgue integration of
MathComp-Analysis, a formalization of analysis developed on top of the Mathematical Components
library. In the course of this experiment, we substantially enrich MathComp-Analysis and even
devise a new proof for Urysohn’s lemma.
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1 Introduction

The formalization of the Fundamental Theorem of Calculus (FTC) for the Lebesgue integral
in the Coq proof assistant [29] is an ongoing work as part of the development of MathComp-
Analysis [1], a library for analysis that extends the Mathematical Components library [17]
with classical axioms [3, §5]. Besides mathematics, MathComp-Analysis has also been
used to formalize programming languages [4, 27,31].

The first FTC for Lebesgue integration can be stated as follows: for f integrable on R,
F (x) def=

∫
t∈]−∞,x] f(t)(d µ) is differentiable and F ′(x) = f(x) almost-everywhere (hereafter,

a.e.) relatively to µ, where µ is the Lebesgue measure. This is different from the standard
statement for the Riemann integral, where f is assumed to be continuous, making for a simple
proof. In comparison, connecting derivation and Lebesgue integration under an integrability
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hypothesis is unwieldy, even more so in MathComp-Analysis whose formalizations of
derivation [3, §4.5] and of the Lebesgue integral [2, §6.4] have been unrelated so far. They
can be bridged thanks to the Lebesgue Differentiation theorem and this is appealing for two
reasons. First, it is a useful theorem in itself: the first FTC is a consequence, as well as other
results such as Lebesgue’s density theorem. Second, we can decompose its proof in several
results: this provides a way to incrementally enrich the theories of MathComp-Analysis.
We think that this approach is an instance of a more generic way to tackle formalization
of mathematics: find a path through the literature to present many key results as easy
consequences of a central, technical lemma with rather weak assumptions. Incidentally, such
a fine-grained decomposition also provides a practical way to monitor formalization progress.

In terms of formalization in a proof assistant, our contributions are as follows:

We provide the first formalization of the first FTC for Lebesgue integration in Coq.

We bring to Coq several standard lemmas and theorems of measure theory: Vitali’s lem-
mas and theorem, a theory of Hardy-Littlewood’s operator, Urysohn’s lemma, Ergorov’s,
Lusin’s, Tietze’s theorems, and the Lebesgue Differentiation theorem. In particular,
among these results, Urysohn’s lemma is given an original proof. We also improve
the MathComp-Analysis support for topology (lower semicontinuity, normal spaces,
subspaces, etc.) and for real functions (by extending the theory for lim sup / lim inf). The
formalization of the first FTC for Lebesgue integration provides a strong evidence that
these pieces of formalization can indeed be combined to achieve a large result.

Another intent with this paper is to produce an informative document for potential users
of the topology and measure theories of MathComp-Analysis. The whole library is still
under development in the sense that not all notions are formalized as we would like them to
be, often to cope with temporary limitations of the available tooling. Yet, we did observe
that it is already a useful tool. For example, we could use it to revisit the proof of Urysohn’s
lemma by producing an original proof. Also, we had to clarify a few proof steps that are often
hand-waved in lecture notes: typically, generalizations from lemmas stated for bounded cases
only. Filling such gaps is almost business-as-usual when formalizing mathematics, but we
believe that it is important to document them to better anticipate similar gaps in the future.
For these reasons, we think that our formalization of the FTC provides a nice milestone to
document MathComp-Analysis.

Outline

Regarding mathematical proofs, we stay at the level of a bird’s-eye view and instead focus
on the main aspects of the formalization. We start by recalling the basics of MathComp-
Analysis in Sect. 2. We explain the formal statement of the Lebesgue Differentiation
theorem in Sect. 3 and provide an overview of its proof in Sect. 4. To formalize this proof,
we extend MathComp-Analysis with new topological constructs in Sect. 5 and with basic
but new measure-theoretic lemmas in Sect. 6. In the particular case of Urysohn’s lemma,
we explain the formalization of an original proof in Sect. 7. The main intermediate lemmas
of the Lebesgue Differentiation theorem are the purpose of Sect. 8 and Sect. 9. Finally,
we apply the Lebesgue Differentiation theorem to the proof of the first FTC for Lebesgue
integration and to the proof of Lebesgue’s density theorem in Sect. 10. We review related
work in Sect. 11 and conclude in Sect. 12.
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2 Background on MathComp-Analysis

MathComp-Analysis is built on top of MathComp and reuses several of its theories. We
use in particular the following notations, which are traditionally in ASCII in MathComp
libraries. The successor function of natural numbers is noted .+1, multiplication of a
natural number by 2 is noted .*2. A multiple conjunction is noted [/\ P1, P2, ... & Pn].
Function composition is noted \o. Point-wise equality between two functions is noted =1.
Point-wise multiplication of two functions f and g is noted f \* g. The notation f ^~ y
is for the function λx.f x y. Intervals are noted `]a, b[, `]a, b], etc. One can inject a
natural number n into a ring with the notation n%:R. The inverse of a field element r is
noted r^-1. The norm of x is noted `|x|. The inclusion between two lists s and r is noted
{subset s <= r}. We write x \in s when an element x belongs to the list s.

MathComp-Analysis comes with library support for set theory. Given a type T, set T
is the type of sets of elements of type T. The notation [set: T] is for the set of all the
elements of type T; the singleton set containing x is noted [set x]; and set0 represents the
empty set. To unambiguously improve readability, we use standard LATEX notations instead
of ASCII for the set-theoretic operations set inclusion (⊆), set intersection (∩), set union
(∪), set difference (\), and the product of sets (×). The complement of a set A is noted
A∁. (If necessary, see [2, Table 2] for a list-up of the corresponding ASCII notations.) Set
difference with a singleton is noted A `\ x: it is a shortcut for A \ [set x]. The image by
a function f of a set A is written f @` A. The set {f(x) | x ∈ A} defined by comprehension is
noted [set f x | x in A]. A list s can be turned into a set with the notation [set` s].
The notation A !=set0 means that the set A is not empty. A family F of pairwise-disjoint sets
indexed by D is noted trivIset D F. The characteristic function over a set A is noted \1_A.

MathComp-Analysis extends the numeric types of MathComp with the type realType
for reals. When R is a numeric type, \bar R is the numeric type extended with -oo and +oo,
so that when R : realType, \bar R corresponds to R. One can inject a numeric value r
into the corresponding type of extended numbers with the notation r%:E (this is actually a
notation for EFin r). An extended number x can be projected to the corresponding numeric
value by fine x (which is 0 when x is ±∞). The supremum of a set of extended reals A is
noted ereal_sup A. In this paper, the variable R has type realType unless stated otherwise.

Like several other libraries [7, 13, 30], MathComp-Analysis uses filters to formalize
topology. For example, we note \oo the filter consisting of the set of predicates over natural
numbers that are eventually true; x^' the deleted neighborhood filter of x, i.e., the set
of neighborhoods of x from which x is excluded; x^'+ for right filters, i.e., the filters of
neighborhoods of x intersected with ]x, +∞[, and similarly for the left filters note x^'-.
Filters are associated to elements of a given type upon the definition of a filtered type. The
convergence statement f(x) −−−→

x→a
ℓ is noted f x @[x --> a] --> l; the limit of a filter

F is noted lim F [3, §2.3]. Topological spaces are built on top of filtered types and their
type is topologicalType. In a topological space, the set of neighborhoods of x is nbhs x.
Mathematical structures such as topological spaces are defined and instantiated using a Coq
extension called Hierarchy-Builder [9]. With this tool, interfaces are defined as so-called
factories whose definition generates constructors to build instances. See [2, §3.1] for a quick
reference to Hierarchy-Builder. The predicates open, closed, closure, and compact
correspond to the eponymous topological notions. The type of uniform spaces is uniformType.
Given a uniform space M, entourages are objects of type set (set (M * M)) that satisfy the
axioms of uniform space for M. One of the axiom of uniform spaces guarantees that for each
entourage E, there is an entourage V with {(x, z) | ∃y, (x, y) ∈ V ∧ (y, z) ∈ V } ⊆ E. We denote
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this entourage with split_ent(E). MathComp-Analysis also provides pseudometric spaces
in which a ball is noted ball; over the real line, a ball is a centered open interval. The type
of sequences (indexed by natural numbers) over T is noted T^nat.

The basics of measure theory in MathComp-Analysis is documented in previous work [2].
A measurableType is a type equipped with a structure of σ-algebra. Given a measurable
type T and A of type set T, we write measurable A when the set A is measurable. The fact
that the extended real-valued function f is measurable over D is noted measurable_fun D f.
For a measure mu, the fact that f is integrable over D is noted mu.-integrable D f. The
integral

∫
x∈A

f(x)(d µ) is noted \int[mu]_(x in A) f x. When A is negligible for a mea-
sure mu, we write mu.-negligible A. The fact that the predicate P holds a.e. relatively to
mu is noted {ae mu, forall x, P x}.

3 Statement of the Lebesgue Differentiation theorem

Let us note [f ]A
def= 1

µ(A)
∫

y∈A
|f(y)|(d µ) the average of a real-valued function f over the

set A. Using the existing notations of MathComp-Analysis, we formalize this notion as
follows:

Definition iavg (f : R -> R) (A : set R) :=
(fine (mu A))^-1%:E * \int[mu]_(y in A) `| (f y)%:E |.

Recall from Sect. 2 that %:E injects a numeric value into its extended version and that
fine performs a corresponding projection. We also introduce the notation fBr(x)

def=
[λy.f(y) − f(x)]Br(x) where Br(x) is a ball centered at x of radius r:

Definition davg (f : R -> R) (x r : R) := iavg (center (f x) \o f) (ball x r).

The center c function is λy.y − c.
Given a real-valued function f , a Lebesgue point is a real number x s.t. fBr(x) −−−−→

r→0+
0.

Reusing the Lebesgue measure (hereafter mu) formalized in previous work [2, §5.2], we
formally define Lebesgue points:

Definition lebesgue_pt (f : R -> R) (x : R) :=
davg f x r @[r --> 0^'+] --> 0.

Note the use of right filters (Sect. 2) to define the fact that r tends to 0+. The Lebesgue
Differentiation theorem states that, for a real-valued, locally-integrable function f (i.e.,
integrable on compact subsets of its domain), we have Lebesgue points a.e.:

Lemma lebesgue_differentiation (f : R -> R) : locally_integrable [set: R] f
-> {ae mu, forall x, lebesgue_pt f x}.

Being locally integrable can be defined as the following conjunction:

Definition locally_integrable (D : set R) (f : R -> R) :=
[/\ measurable_fun D f, open D & forall K, K ⊆ D -> compact K ->

\int[lebesgue_measure]_(x in K) `|f x|%:E < +oo].

In fact, this definition specializes in a locally compact space such as R to the conjunction of
open D and

forall x, D x -> exists U, open_nbhs x U /\ mu.-integrable U (EFin \o f)

where open_nbhs is a predicate for open neighborhoods; yet, we stuck to the previous
definition from our reference textbook [16].



R. Affeldt and Z. Stone 5:5

4 Proof of the Lebesgue Differentiation theorem

The first step of the proof of the Lebesgue Differentiation theorem is to reduce the problem
to functions fk

def= f1Bk
with Bk

def= B2(k+1)(0):

Lemma lebesgue_differentiation_bounded (f : R -> R) :
let B k := ball 0 k.+1.*2%:R in let f_ k := f \* \1_(B k) in
(forall k, mu.-integrable [set: R] (EFin \o f_ k)) ->
forall k, {ae mu, forall x, B k x -> lebesgue_pt (f_ k) x}.

This problem reduction is often hand-waved in lecture notes (Schwartz’s presentation is one
exception [28, eqn (5.12.101)]).

Second, instead of proving for all k that we have a.e. Lebesgue points over Bk, it is
sufficient to prove that the set Ak(a) def= Bk ∩

{
x | a < lim supr→0 fkBr(x)

}
is negligible for

all a > 0, i.e.:

(* local context omitted *)
============================
mu.-negligible (B k ∩ [set x | a%:E < (f_ k)^* x])

where h^* x is a (local) notation for lim supr→0 hBr(x).
For this last step, the idea is to exhibit a sequence of continuous functions gi such that

Ak(a) ⊆
⋂
n

Bk ∩
(
{x | fk(x) − gn(x) ≥ a/2}︸ ︷︷ ︸

(a)

∪ {x | HL(fk(x) − gn(x)) > a/2}︸ ︷︷ ︸
(b)

)

where HL(f)(x) def= supr>0{[f ]Br(x)} is the Hardy-Littlewood operator.We can show that the
measure of the right-hand side is null. To deal with (a), we use Markov’s inequality (i.e.,
the fact that µ({x | |f(x)| ≥ a}) ≤ 1

a ||f ||1 for a > 0 and a measure µ, where || · ||1 is the L1

norm) and the fact that continuous functions are dense in L1, whose proof requires several
standard results of measure theory (in particular, Urysohn’s lemma). To deal with (b), we
need the Hardy-Littlewood maximal inequality, which in turns relies on Vitali’s covering
lemma.

Figure 1 shows the main lemmas that we add to MathComp-Analysis to formalize this
proof.

5 Topological constructs added to MathComp-Analysis

Before explaining the formalization of the main lemmas to prove the Lebesgue Differentiation
theorem, we explain the preparatory work needed to extend the formalization of topology
of MathComp-Analysis. In particular, as a preliminary step to be able to state Egorov’s
theorem, Lusin’s theorem, and Tietze’s theorem, we extend MathComp-Analysis with the
subspace topology and with the topology of uniform convergence.

5.1 Subspace topologies
Given a type T equipped with a topology T and a set A of elements of T , {A ∩ U | U ∈ T }
forms a subspace topology. We formalize subspace topologies on the basis of the existing
formalization of topological space of MathComp-Analysis and using Hierarchy-Builder
(see Sect. 2). First, we introduce an identifier subspace that serves as an alias for a type T
and which is parameterized by a set A:
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FTC for Lebesgue integration (§10.1) Lebesgue’s density theorem (§10.2)

Lebesgue Differentiation theorem (§3)

Lebesgue Differentiation theorem (bounded) (§3)

Hardy-Littlewood maximal inequality (§9.2)

Vitali’s lemma (§9.1)

Continuous functions are dense in L1 (§8.3)

Lusin’s thm (§8.1)

Inner regularity (§6.2.2)

Inner regularity (bounded) (§6.2.2)

Outer regularity (§6.2.1)

Egorov’s
thm (§6.1)

Tietze’s thm (§8.2)

Urysohn’s
lemma (§7)

Figure 1 Overview of the proof of the Lebesgue Differentiation theorem and derived results.
(dashed arrows indicate generalizations from statements about bounded sets)

Definition subspace {T : Type} (A : set T) := T.

When the underlying type T is equipped with a topology (i.e., it has type topologicalType),
we can equip the identifier subspace with a structure of topology relative to A. For that
purpose, we start by defining a filter for a point x in the subspace topology as: (1) the restric-
tion of the neighborhoods of x to A (below: within A (nbhs x)) when x belongs to A, or,
otherwise, (2) the filter of the sets containing the singleton {x} (below: globally [set x]):

Definition nbhs_subspace (x : subspace A) : set_system (subspace A) :=
if x \in A then within A (nbhs x) else globally [set x].

A set_system is simply synonymous for a set of sets. Filters defined in this way give rise to
a filtered type (Sect. 2). To attach the structure of filtered type with the identifier subspace,
it suffices to summon Hierarchy-Builder with the appropriate factory :

HB.factory Record hasNbhs T := { nbhs : T -> set_system T }.

A factory is represented by an interface (here, hasNbhs) and its definition gives rise to a
constructor (here, hasNbhs.Build) that can be used to build instances, e.g.:

HB.instance Definition _ := hasNbhs.Build (subspace A) nbhs_subspace.

The filtered type associated with subspace can furthermore be equipped with a topology
using this other factory provided by MathComp-Analysis:

HB.factory Record Nbhs_isNbhsTopological T of Nbhs T := {
nbhs_filter : forall p : T, ProperFilter (nbhs p);
nbhs_singleton : forall (p : T) (A : set T), nbhs p A -> A p;
nbhs_nbhs : forall (p : T) (A : set T), nbhs p A -> nbhs p (nbhs ^~ A) }.

Indeed, (1) one can show that nbhs_subspace’s are proper filters (i.e., no set in the filter
is empty) [3, §3.2.2], (2) points are contained into their neighborhoods, and (3) given a
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neighborhood A, the set of points of which A is a neighborhood is also a neighborhood.
It suffices to build an instance of topological type by passing to the factory above the
proofs of the facts (1), (2), and (3) (omitted here but that can be found in the formal
development [1, file topology.v]):

HB.instance Definition _ := Nbhs_isNbhsTopological.Build (subspace A)
nbhs_subspace_filter nbhs_subspace_singleton nbhs_subspace_nbhs.

This is the subspace topology relative to A. Note that this topology is discrete outside of A.
In particular, we use the topology of subspace to define continuity as follows. The notation

{within A, continuous f} denotes continuity of f : subspace A -> Y:

Notation "{ 'within' A , 'continuous' f }" :=
(continuous (f : subspace A -> _)).

The notation continuous comes from MathComp-Analysis [1, file topology.v] and pre-
dates this work. The purpose of the notation {within A, continuous f} is to ensure that
the continuity of f depends only on its values in A while f(x + eps) type-checks. If x and eps
have type subspace A, then f(x + eps) is indeed well-defined. One might naively attempt to
use the sigma type {x | A x} with the weak topology (i.e., the topology defined by the preim-
ages of opens for a given function) induced by the function projT1 : {x : T | A x} -> T
to define the subspace topology. However, there is no clear way to define addition for
{x | A x} so that f(x + eps) is well-typed.

5.2 Uniform convergence
The methodology to formalize the topology of uniform convergence is similar to the one used
to formalize subspaces.

First, let us recall how total functions are equipped with the structure of uniform space
in MathComp-Analysis. There is an identifier arrow_uniform_type which is an alias for
the type U -> V with U : choiceType and V : uniformType. The corresponding uniform
space is generated by the entourages {(f, g) | ∀x : U, E(f(x), g(x))} where E is an entourage
of V (see fct_ent in [1, file function_spaces.v]). As a consequence of the appropriate
Hierarchy-Builder instantiation, arrow_uniform_type is given the type uniformType.

Now, we formalize a topology whose elements are functions from the set A to the type V.
First, we introduce an identifier:

Definition uniform_fun {U : Type} (A : set U) (V : Type) : Type := U -> V.

We also introduce a notation {uniform` A -> V} which stands for @uniform_fun _ A V.
We then introduce the (high-order) function sigL_arrow that turns a function U → V

between two types into a function A → V from a set to a type:

Definition sigL_arrow {U : choiceType} (A : set U) (V : uniformType) :
(U -> V) -> arrow_uniform_type A V := @sigL _ V A.

The function sigL comes from [1, file functions.v]. The identifier uniform_fun is then
equipped with the weak topology (weak_topology in MathComp-Analysis) induced by
sigL_arrow and eventually the desired topology is simply obtained by copying the structure
obtained by weak topology:

HB.instance Definition _ (U : choiceType) (A : set U) (V : uniformType) :=
Uniform.copy {uniform` A -> V} (weak_topology (@sigL_arrow _ A V)).
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Copying a structure is a feature provided by Hierarchy-Builder. Note that we can copy
the structure using Uniform.copy instead of Topological.copy because weak topology
always inherits a uniform structure, see the section weak_uniform in [1, file topology.v].

Then, the uniform convergence of a sequence of functions F towards f over a set A can
be defined. It is the filter inclusion of the neighborhoods of f in {uniform` A -> V} into
the filter F, and this inclusion is written cvg_to F (nbhs (f : {uniform` A -> _})) in
MathComp-Analysis. The notation {uniform A, F --> f} is for the latter inclusion.

5.3 More support for extended real-valued functions

Besides the topological structures we explained in the previous sections, Sect. 4 also highlights
the need to generalize MathComp-Analysis’s theory of lim sup / lim inf . Before our experi-
ment, this theory was limited to sequences (indexed by natural numbers) that were actually
introduced to develop the monotone convergence theorem and its consequences [2, §6.5].
Handling extended real-valued functions over the real numbers requires the formalization of
the following definition: lim sup

x→a
f(x) def= lim

ε→0+
sup{f(x) | x ∈ Bε(a) \ {a}}. It can be couched

in formal terms by first defining the limit superior of a function f at filter F:

Variables (T : choiceType) (X : filteredType T) (R : realFieldType).
Implicit Types (f : X -> \bar R) (F : set (set X)).
Definition limf_esup f F := ereal_inf [set ereal_sup (f @` V) | V in F].

We can then specialize this definition to define the limit superior of a function over the type
of real numbers by using deleted neighborhood filters:

Variable R : realType.
Implicit Types (f : R -> \bar R) (a : R).
Definition lime_sup f a : \bar R := limf_esup f a^'.

This generic definition of lime_sup can be shown to be equivalent to limε→0+ sup{f(x) | x ∈
Bε(a) \ {a}}:

Let sup_ball f a r := ereal_sup [set f x | x in ball a r `\ a].
Lemma lime_sup_lim f a : lime_sup f a = lim (sup_ball f a e @[e --> 0^'+]).

In the course of formalizing the Lebesgue Differentiation theorem, developing the theory
of lim sup/lim inf turned out to be a non-trivial intermission, which revealed some quirks
(now fixed) in the automatic handling of right filters using the near tactics [3, §3.2] in
MathComp-Analysis.

6 Egorov’s theorem and regularity

The top part of Fig. 1 reveals the first measure-theoretic results needed to prove the Lebesgue
Differentiation theorem. Lusin’s theorem requires Egorov’s theorem as well as the inner
regularity of the Lebesgue measure, which is also used to prove the Hardy-Littlewood maximal
inequality. In the following, mu is the Lebesgue measure. We give little detail about the
proofs in this section because proof scripts are essentially textbook, they can be found in
MathComp-Analysis [1, file lebesgue_measure.v].
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6.1 Egorov’s theorem
Egorov’s theorem relates convergence a.e. and uniform convergence (Sect. 5.2). Let A be
a bounded measurable set, fk be a sequence of functions measurable over A, and g be a
function measurable over A. Suppose that fk convergences a.e. relatively to the Lebesgue
measure µ towards g. Then for any ε > 0, there exists a measurable set B such that µ(B) < ε

and fk converges uniformly towards g over A \ B. Formally, assuming T is a measurable type:

Lemma ae_pointwise_almost_uniform (f_ : (T -> R)^nat) (g : T -> R) A eps :
(forall k, measurable_fun A (f_ k)) -> measurable_fun A g ->
measurable A -> mu A < +oo ->
{ae mu, forall x, A x -> f_ ^~ x @ \oo --> g x} ->
(0 < eps)%R -> exists B, [/\ measurable B, mu B < eps%:E &

{uniform A \ B, f_ @ \oo --> g}].

The notation for uniform convergence has been explained in Sect. 5.2.

6.2 Regularity
Proving the outer regularity of the Lebesgue measure is a preliminary step before proving its
inner regularity.

6.2.1 Outer regularity
The Lebesgue measure is outer regular, which means that it can be approximated from above
by open subsets. More formally, for every bounded measurable set D and ε > 0, there exists
an open U ⊇ D such that µ(U \ D) < ε:

Lemma lebesgue_regularity_outer D eps :
measurable D -> mu D < +oo -> (0 < eps)%R ->
exists U : set R, [/\ open U , D ⊆ U & mu (U \ D) < eps%:E].

The proof is based on the definition of the Lebesgue measure as the infimum of the measures
of covers, i.e., µ(X) = infF {

∑∞
k=0 µ(Fk) | (∀k, measurable(Fk)) ∧ X ⊆

⋃
k Fk}.

6.2.2 Inner regularity
Intuitively, a measure is inner regular when it can be approximated from within by a compact
subset. The inner regularity of the Lebesgue measure states that for every (bounded)
measurable set D and ε > 0, there exists a compact set V ⊆ D such that µ(D \ V ) < ε:

Lemma lebesgue_regularity_inner D eps :
measurable D -> mu D < +oo -> (0 < eps)%R ->
exists V : set R, [/\ compact V , V ⊆ D & mu (D \ V) < eps%:E].

Textbooks also resort to an alternative statement of inner regularity. Precisely, the
above statement about a bounded measurable set can be generalized using the σ-finiteness
of the Lebesgue measure by saying that the measure of a measurable set can be ex-
pressed as the supremum of the measure of the compact sets included inside, i.e., µ(D) =
sup{µ(K) | compact(K) ∧ K ⊆ D}:

Lemma lebesgue_regularity_inner_sup D : measurable D ->
mu D = ereal_sup [set mu K | K in [set K | compact K /\ K ⊆ D]].

As a matter of fact, we do use both forms in our development (Fig. 1).
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7 A new proof of Urysohn’s lemma

The classical version of Urysohn’s lemma states that a topological space T is normal (i.e., two
disjoint closed sets have disjoint open neighborhoods) if and only if, for any closed, disjoint,
non-empty subsets A and B, there is a continuous function f : T → R such that f(A) = {0}
and f(B) = {1}. This result is important because it connects a purely topological property
(normality) with a purely analytic property (a function into the reals). Traditionally the
proof involves an induction over the rationals to explicitly construct such a function. We do
not follow the traditional proof for a technique that, we believe, is more appealing from the
viewpoint of formal verification. Our proof has the same pattern as proving the Lebesgue
Differentiation theorem first, and then the FTC: we found that proving the right intermediate
lemmas made several results, including Urysohn’s much easier.

7.1 Urysohn’s lemma using uniform separator
We start by stating one of our intermediate lemmas. We first introduce a new definition. For
a topological space T, we define a uniform separator as follows:

Definition uniform_separator (A B : set T) :=
exists (uT : @Uniform.axioms_ T^o) (E : set (T * T)),

let UT := Uniform.Pack uT in [/\
@entourage UT E,
(A × B) ∩ E = set0 &
(forall x, @nbhs UT UT x ⊆ @nbhs T T x)].

This says that there is a uniform structure UT on T which separates A and B, and is coarser
than the T topology. This is subtly different than assuming that T is a uniform space,
which would imply forall x, @nbhs UT UT x = @nbhs T T x, which is too strong for our
purposes. Also, (A × B) ∩ E = set0 has a nice visual: since an entourage is a region
around the diagonal of T * T, (A × B) ∩ E = set0 means that the region A × B is far
from the diagonal.

The key result about uniform separators is:

Lemma uniform_separatorP {T : topologicalType} {R : realType} (A B : set T) :
uniform_separator A B <-> exists f : T -> R, [/\

continuous f,
range f ⊆ `[0, 1],
f @` A ⊆ [set 0] &
f @` B ⊆ [set 1]].

For the sake of readability, we defer the explanation of the proof to the next section (Sect. 7.2).
The lemma just above is nearly Urysohn’s lemma, but does not assume that T is a

normal space. In fact, Urysohn’s lemma follows immediately from the following lemma [1, file
normedtype.v]:

Lemma normal_uniform_separator {T : topologicalType} (A : set T) (B : set T) :
normal_space T -> closed A -> closed B -> A ∩ B = set0 ->
uniform_separator A B.

The advantage of the general lemma uniform_separatorP is that, besides Urysohn’s
lemma, we can derive other results. A completely regular space T is a topological space
where for every point x and closed set A with x /∈ A there is a continuous function f : T → R
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Urysohn’s lemma (§7.1)uniform_completely_regular (§7.1)

uniform_separatorP
(§7.1)

metric for gauge.type (§7.2)

metric for countable_uniform

metric for prod_topology
[1, file function_spaces.v]

point_uniform_separator
(§7.1)

normal_uniform_separator
(§7.1)

uniform_pseudometric_sup
[1, file topology.v]

Figure 2 Overview of a novel proof of Urysohn’s lemma and derived results.
(dashed nodes are derived results that are not relevant to the Lebesgue Differentiation theorem)

with f(x) = 0 and f(A) = {1}. The classical result is that uniform spaces are completely
regular (lemma uniform_completely_regular in [1, file normedtype.v]). This follows from
the lemma uniform_separatorP and the following lemma:

Lemma point_uniform_separator {uniformType T} (x : T) (B : set T) :
closed B -> ~ B x -> uniform_separator [set x] B.

So, just like this paper formalizes the Lebesgue Differentiation theorem and proves the
FTC among others, we find out that the lemma uniform_sepratorP proves Urysohn’s lemma
and more.

7.2 Existence of uniform separators
The proof of uniform_separatorP from the previous section (Sect. 7.1) follows other in-
termediate lemmas. If T is a uniform space with a countable basis for its uniformity (i.e.,
the set of entourages of T is the upward closure of a countable subset of entourages, see
countable_uniformity [1, file topology.v]), then T has a pseudometric [15]. The construc-
tion of the metric is rather involved, but is only done once. Then, whenever we want a function
into the reals, we construct a suitable uniformity instead, and rely on this result to guarantee
such a function. This has several useful consequences, such as proving countable products of
metric spaces are metrizable (Fig. 2). More importantly, the metrizability of uniform spaces
lets us build the so-called gauge metric. Given an entourage E, we get a metric for the
uniform structure generated by E0 = E ∩ E−1, E1 = split_ent(E0) ∩ split_ent(E0)−1,
etc., where split_ent was explained in Sect. 2.

The direct part of the proof of uniform_separatorP starts by building the gauge metric
of the separator of A and B generated from E. Since the initial entourage separates A

and B, we know that there is an ε > 0 such that for all x ∈ A and y ∈ B, y /∈ Bε(x).
We define the extended real-valued function d(x, y) def= inf{r > 0 | y ∈ Br(x)} (edist in [1,
file normedtype.v]) and the extended real-valued function d′(A, z) def= inf{d(z, a) | a ∈ A}
(edist_inf in [1, file normedtype.v]). The function d is continuous on the gauge uniform
space. Since it is coarser than the topology on T , d is continuous on T × T , and thus d′ is
continuous on T . It follows that f(x) def= min(d′(A, x), ε)/ε is continuous. It also takes 0 on A,
and 1 on B, and has range [0, 1], which means that we have the separating function and thus
a proof of uniform_separatorP. See lemma urysohn_separation in [1, file normedtype.v]
for details.
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We now need to show normal_uniform_separator. For that purpose, we need to build a
suitable uniform structure on a normal space. The uniformity we construct has the following
basis:

Let apxU (UV : set T * set T) : set (T * T) :=
(UV.2 × UV.2) ∪ ((closure UV.1)∁ × (closure UV.1)∁).

Let nested (UV : set T * set T) :=
[/\ open UV.1, open UV.2, A ⊆ UV.1 & closure UV.1 ⊆ UV.2].

Let ury_base := [set apxU UV | UV in nested].

Most of the work is to show that this is a basis for a uniformity, and that it is coarser than
the topology on T . Then given an A and a B which are closed, disjoint, and non-empty,
normality guarantees an open set U ⊇ A with U ∩ B = ∅. Then apxU (U, B∁) is a separator
for A and B and we have our uniform_separator. See [1, file normedtype.v] for details.

8 Lusin and Tietze theorems and continuous functions are dense in L1

As sketched in Sect. 4, one important step to prove the Lebesgue Differentiation theorem is
to establish that continuous functions are dense in L1. As we explained in Sect. 4, we can
get along with a formal proof considering only functions defined over a bounded set. As an
intermediate step, we formalize Lusin’s theorem and Tietze’s extension theorem.

8.1 Lusin’s theorem
We place ourselves in a context with R : realType to represent a type of reals and where mu
is the Lebesgue measure. Lusin’s theorem states that, given a measurable function f over A

(a measurable bounded set) and ε > 0, there exists a compact K ⊆ A such that µ(K \ A) < ε

and f is continuous within K [1, file lebesgue_integral.v]:

Lemma measurable_almost_continuous (f : R -> R) (A : set R) (eps : R) :
measurable A -> mu A < +oo -> measurable_fun A f ->
0 < eps -> exists K,

[/\ compact K, K ⊆ A, mu (A \ K) < eps%:E & {within K, continuous f}].

The notation {within _, continuous _} was explained along the formalization of subspace
topologies in Sect. 5.1. The proof also uses the following lemma that pertains to subspace
topologies as well: if f and g are equal on A and f is continuous then so is g. Put formally:

Lemma subspace_eq_continuous {S : topologicalType} (f g : subspace A -> S) :
{in A, f =1 g} -> continuous f -> continuous g.

The proof connects to results presented earlier in this paper: Egorov’s theorem (Sect. 6.1)
and the (bounded version of the) inner regularity of Lebesgue measurable (Sect. 6.2.2).

8.2 Tietze’s extension theorem
Tietze’s extension theorem states that in a normal topological space (normality being already
defined in Sect. 7), a bounded, continuous, real-valued function on a closed set can be
extended to a bounded, continuous function on the whole set. Although we do formalize
Tietze’s theorem for normal spaces, it should be noted that the normality condition is
incidental to the main results of this paper; what is relevant here is that the reals are normal.
Here follows the statement of Tietze’s theorem in MathComp-Analysis [1, file numfun.v]:
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Context {X : topologicalType} {R : realType}.
Hypothesis normalX : normal_space X.
Lemma continuous_bounded_extension (f : X -> R^o) (A : set X) M :

closed A -> {within A, continuous f} ->
0 < M -> (forall x, A x -> `|f x| <= M) ->
exists g, [/\ {in A, f =1 g}, continuous g & forall x, `|g x| <= M].

The notation ^o is only to help type-checking. Besides Urysohn’s lemma, this proof uses
the fact that uniform convergence preserves continuity (lemma uniform_limit_continuous
in [1, file function_spaces.v]). The hypothesis {within A, continuous f} is a typical
detail that does not appear in a textbook where this theorem would be assuming that the
function f is continuous on A.

8.3 Continuous functions are dense in L1

Finally, we arrive at the true goal of this section: the fact that continuous functions are
dense in L1, i.e., that given a function f integrable over a measurable, bounded set A, there
exists a sequence of continuous functions gk, integrable over A, such that ||f − gk||1 tends
towards 0:

Lemma approximation_continuous_integrable (A : set _) (f : R -> R):
measurable A -> mu A < +oo -> mu.-integrable A (EFin \o f) ->
exists g_ : (R -> R)^nat,

[/\ forall n, continuous (g_ n),
forall n, mu.-integrable A (EFin \o g_ n) &
\int[mu]_(z in A) `|(f z - g_ n z)%:E| @[n --> \oo] --> 0].

The proof uses Tietze’s and Lusin’s theorems, see [1, file lebesgue_integral.v]. As we
explained in Sect. 4, we use the above lemma to produce a sequence of continuous functions gi

to be used in the “bounded version” of the Lebesgue Differentiation theorem for a real-valued
function restricted to some ball Bk. The desired sequence of gi’s is obtained by the above
lemma modulo the technical detail that we need to restrict them to Bk for them to connect
correctly to other lemmas used in the proof of the Lebesgue Differentiation theorem.

9 Covering lemmas and the Hardy-Littlewood maximal inequality

As we explained in Sect. 4, the second important step to prove the Lebesgue Differentiation
theorem is the Hardy-Littlewood maximal inequality, i.e., the fact that, for all locally
integrable functions f , µ({x | HL(f)(x) > c}) ≤ 3

c ||f ||1 for all c > 0. Its proof relies on a
covering lemma typical of measure theory.

9.1 Vitali’s covering lemma
In its finite version, the Vitali covering lemma can be stated as follows: given a finite collection
of balls Bi with i ∈ s, there exists a subcollection Bj with j ∈ D of pairwise disjoint balls such
that

⋃
i∈s Bi ⊆

⋃
j∈D 3Bj . To formalize this statement without committing to a concrete

representation for collection of balls, we represent them by a function B : I -> set R such
that each set satisfies a predicate is_ball, instead of representing them, say, as a function
returning pairs of a center and a radius. The approach using the is_ball predicate gives rise
to two functions cpoint and radius returning respectively a center point and a non-negative
radius, when the set is indeed a ball. The finiteness of the collections is captured by using
lists (respectively s and D below).
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Context {I : eqType}.
Variable (B : I -> set R).
Hypothesis is_ballB : forall i, is_ball (B i).
Hypothesis B_set0 : forall i, B i !=set0.

Lemma vitali_lemma_finite (s : seq I) : { D : seq I | [/\ uniq D,
{subset D <= s}, trivIset [set` D] B &
forall i, i \in s -> exists j, [/\ j \in D, B i ∩ B j !=set0,

radius (B j) >= radius (B i) & B i ⊆ 3 *` (B j)] ] }.

The notation *` represents scaling of the radius of a ball, i.e., k *` B is the open ball with
center cpoint B and radius k * radius B.

We also formalized the infinite version of Vitali’s covering lemma [1, file normedtype.v]
and Vitali’s theorem [1, file lebesgue_measure.v], which are much more involved. We did
not need them to prove the Lebesgue Differentiation theorem but they served as a test-bed
for using the is_ball predicate and are anyway often mentioned in connection with proofs
of the FTC.

9.2 Hardy-Littlewood maximal inequality
The Hardy-Littlewood operator is a function that transforms a real-valued function f into
the function

HL(f)(x) def= sup
r>0

1
µ(Br(x))

∫
y∈Br(x)

|f(y)|(d µ).

Its formal definition uses elements similar to the ones used when defining Lebesgue points in
Sect. 3:

Definition HL_max (f : R -> R) (x : R^o) (r : R) : \bar R :=
(fine (mu (ball x r)))^-1%:E * \int[mu]_(y in ball x r) `|(f y)%:E|.

Definition HL_maximal (f : R -> R) (x : R^o) : \bar R :=
ereal_sup [set HL_max f x r | r in `]0, +oo[ ].

The statement of the Hardy-Littlewood maximal inequality that we explained informally at
the very beginning of this section (Sect. 9) then translates directly:

Lemma maximal_inequality (f : R -> R) c :
locally_integrable [set: R] f -> 0 < c ->
mu [set x | HL_maximal f x > c%:E] <= (3%:R / c)%:E * norm1 [set: R] f.

The L1 norm is formalized in the obvious way as the identifier norm1. The proof relies
on inner regularity (Sect. 6.2.2) and Vitali’s covering lemma (Sect. 9.1). To establish that
the Hardy-Littlewood operator is measurable, we also need to develop a theory of lower
semicontinuity, which has been added to MathComp-Analysis on this occasion, see [1] for
details.

10 Applications of the Lebesgue Differentiation theorem

In the previous sections, we have explained the main lemmas (mainly: continuous functions
are dense in L1 and the Hardy-Littlewood maximal inequality) used to prove the Lebesgue
Differentiation theorem that we sketched in Sect. 4. We are now ready to proceed to direct
applications.
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10.1 The first FTC for Lebesgue integration
Recall from Sect. 1 the informal statement of the first FTC for Lebesgue integration: for
f ∈ L1, F (x) def=

∫
t∈]−∞,x] f(t)(d µ) is differentiable and F ′(x) a.e.= f(x). This can furthermore

be generalized to intervals of the form ]a, x] and [a, x] and stated as a single theorem as
follows [1, file ftc.v]:

Lemma FTC1_lebesgue_pt f a : mu.-integrable [set: R] (EFin \o f) ->
let F x := (\int[mu]_(t in [set` Interval a (BRight x)]) (f t))%R in
forall x, a < BRight x -> lebesgue_pt f x ->
derivable F x 1 /\ F^`() x = f x.

The variable a has the generic type of an “interval bound” and BRight stands for closed
bounds on the right [11, file interval.v]. The predicate derivable is for derivability (1 is
the direction) and the notation ^`() is for derivatives with domain R [3, §4.5]. The theorem
above connects these notions with the Lebesgue integral developed in MathComp-Analysis
independently [2, §6.4]. The proof is standard in that it goes through a generalization
of the Lebesgue Differentiation theorem where balls are replaced with nicely shrinking
sets [16, §II.4.1]. The statement of the first FTC from Sect. 1 is an immediate corollary of
the above lemma:

Corollary FTC1Ny f : mu.-integrable setT (EFin \o f) ->
let F x := (\int[mu]_(t in [set` `]-oo, x]]) (f t))%R in
{ae mu, forall x, derivable F x 1 /\ F^`() x = f x}.

10.2 Lebesgue’s density theorem
Lebesgue’s density theorem is another direct consequence of the Lebesgue Differentiation
theorem. The density of a point x w.r.t. a set A is defined by lim

r→0+

µ(A ∩ Br(x))
µ(Br(x)) . Lebesgue’s

density theorem states that almost everywhere the density is 0 or 1:

Lemma density (A : set R) : measurable A ->
{ae mu, forall x, mu (A ∩ ball x r) * (fine (mu (ball x r)))^-1%:E

@[r --> 0^'+] --> (\1_A x)%:E}.

11 Related work

We have been using various documents to formalize the Lebesgue Differentiation theorem.
In particular, the main lines are drawn from lecture notes by Bowen [8]. For the proofs
of the Hardy-Littlewood maximal inequality and the proof of the Lebesgue Differentiation
theorem, we used books by Li [16] and Schwartz [28]. Surely, the same contents can be found
elsewhere.

Several lemmas that we discussed can also be found in Mathlib [30]. Of course, the
proof of Urysohn’s lemma in Mathlib [23] is different from ours, which is original, as we
explained in Sect. 7. Tietze’s extension theorem in Mathlib [22, class TietzeExtension]
has a similar statement and a similar proof. The statement of the Lebesgue Differentiation
theorem in Mathlib [19] is more general than ours: it allows the domain of the function to
be an arbitrary metric space, the measure can be any locally finite measure, the codomain
can be any normed abelian group, and the balls (used in davg in Sect. 3) can be replaced by
an arbitrary Vitali family. The Lebesgue Differentiation theorem in Mathlib is also used to
prove a generic version of Lebesgue’s density theorem [18] [26, §3.2].
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Table 1 Estimated lines of code for the formalization of the Lebesgue Differentiation theorem
and its direct applications.
(the column l.o.c. contains the number of lines of code in proof scripts for the main proof and intermediate
lemmas (including statements); these numbers are approximations because, among other reasons, where
one draws the line between intermediate lemmas and the supporting theories can be arbitrary)

Supporting theories Section l.o.c. file in [1]
Subspaces Sect. 5.1 N.A. topology.v
Uniform convergence Sect. 5.2 N.A. function_spaces.v

Main lemmas Section l.o.c. file in [1]
Egorov’s thm Sect. 6.1 ≈ 87 (2 lemmas) lebesgue_measure.v
Outer regularity Sect. 6.2.1 ≈ 61 (1 lemma) lebesgue_measure.v
Inner regularity Sect. 6.2.2 ≈ 118 (4 lemmas) lebesgue_measure.v
Lusin’s thm Sect. 8.1 ≈ 108 (3 lemmas) lebesgue_integral.v
Tietze’s extension thm Sect. 8.2 ≈ 108 (3 lemmas) numfun.v
Density of cont. functions Sect. 8.3 ≈ 118 (3 lemmas) lebesgue_integral.v
Finite Vitali’s covering lem. Sect. 9.1 ≈ 75 (2 lemmas) normedtype.v
Hardy-Littlewood max. ineq. Sect. 9.2 ≈ 180 (6 lemmas) lebesgue_integral.v
Urysohn’s lemma Sect. 7.1 ≈ 165 (11 lemmas) normedtype.v
Lebesgue Differentiation thm Sect. 4 ≈ 143 (3 lemmas) lebesgue_integral.v
First FTC Sect. 10.1 ≈ 265 (4 lemmas) ftc.v
Lebesgue’s density thm Sect. 10.2 ≈ 69 (1 lemma) lebesgue_integral.v

Total (Main lemmas) ≈ 1,497

The FTC has already been the target of several formalizations in proof assistants. It can
be found in Coq but for the Riemann integral in a constructive setting [10, §6]. NASAlib
does not feature the first FTC for Lebesgue integration but an elementary version (for a C1

function) of the second FTC [25, file lebesgue_fundamental.pvs], which can actually be
obtained from the first FTC for Lebesgue integration as a corollary. Isabelle/HOL features
the first FTC for Lebesgue integration but for continuous functions whereas we prove it for
integrable functions [6, §3.7]. Mathlib features several variants of the first FTC; many require
integrability and continuity at the endpoints but establish strict differentiability [20]. They
stem from a lemma analogous to a strengthening of the Lebesgue Differentiation theorem
with nicely shrinking sets [21]. In other words, we are able to match our lemmas with
Mathlib lemmas but statements and proofs are organized in a different way. However, it
must be said that Mathlib’s statements are admittedly more general than ours in many
respects. One reason is that MathComp-Analysis has started to use Hierarchy-Builder
pervasively only recently. Before that, mathematical structures were manually encoded
with packed classes [12]: this was making modifications very difficult in practice. With
Hierarchy-Builder, we believe that introduction of, say, Banach spaces, should be a
matter of engineering because most of our proofs are textbook, because we do not abuse the
fact that we are working on the real line, and because our development is short enough to be
refactored (see Table 1 for a concrete size estimation).

12 Conclusions

In this paper, we provided a comprehensive overview of the Lebesgue Differentiation theorem.
We started with a formal statement and a proof overview (in Sect. 3 and in Sect. 4) to plan
the whole development (as summarized in Fig. 1). Before being able to even state the first
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intermediate lemmas, we needed to extend MathComp-Analysis with in particular new
topological constructs in Sect. 5. This made it possible to formalize the needed basic lemmas
from measure theory in Sect. 6. Among the needed lemma, we formalized in particular a novel
proof of Urysohn’s lemma in Sect. 7. We used all this material to formalize the main steps
of the proof of the Lebesgue Differentiation theorem: the density of continuous functions
in L1 in Sect. 8 and Hardy-Littlewood maximal inequality in Sect. 9. Our formalization of
the Lebesgue Differentiation theorem was completed by two applications in Sect. 10, which
include the first proof of the first FTC for Lebesgue integration for the Coq proof assistant.

In the end, we provide in a single document a complete overview of an important
theorem. We believe that this experiment also concretely illustrates an important aspect
of formalization of mathematics: the Lebesgue Differentiation theorem, like the uniform
separators of Sect. 7.1, are examples of results whose formalization should be prioritized
because, though technical, they are generic intermediate results from which important results
can be obtained as corollaries (here, the first FTC and Urysohn’s lemma). More pragmatically,
we hope that this overview also contributes to documenting formalization of real analysis
with MathComp-Analysis, for example by explaining the use of Hierarchy-Builder to
develop topology. We think that we demonstrated that MathComp-Analysis is already a
rich library and also a useful tool to formalize mathematics. As a matter of fact, we could
use it to revisit Urysohn’s lemma by producing an original proof.

As for future work, we are now working on the second FTC for Lebesgue integration
whose most general form deals with absolutely continuous functions [24], using as the main
ingredient the Radon-Nikodým theorem already available in MathComp-Analysis [14] and
the recently developed theory of bounded and total variation [1, file realfun.v].
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Towards Solid Abelian Groups:
A Formal Proof of Nöbeling’s Theorem
Dagur Asgeirsson # Ñ

University of Copenhagen, Denmark

Abstract
Condensed mathematics, developed by Clausen and Scholze over the last few years, is a new way of
studying the interplay between algebra and geometry. It replaces the concept of a topological space
by a more sophisticated but better-behaved idea, namely that of a condensed set. Central to the
theory are solid abelian groups and liquid vector spaces, analogues of complete topological groups.

Nöbeling’s theorem, a surprising result from the 1960s about the structure of the abelian group
of continuous maps from a profinite space to the integers, is a crucial ingredient in the theory of
solid abelian groups; without it one cannot give any nonzero examples of solid abelian groups. We
discuss a recently completed formalisation of this result in the Lean theorem prover, and give a more
detailed proof than those previously available in the literature. The proof is somewhat unusual in
that it requires induction over ordinals – a technique which has not previously been used to a great
extent in formalised mathematics.
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1 Introduction

Nöbeling’s theorem says that the abelian group C(S,Z) of continuous maps from a profinite
space S to the integers, is a free abelian group. In fact, the original statement [14, Satz 1] is
the more general result that bounded maps from any set to the integers form a free abelian
group, but this special case has recently been applied [16, Theorem 5.4] in the new field of
condensed mathematics (see also [15, 5, 3]).

We report on a recently completed formalisation of this theorem using the Lean 4 theorem
prover [12], building on its Mathlib library of formalised mathematics (which was recently
ported from Lean 3, see [11, 10]). The proof uses the well-ordering principle and a tricky
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induction over ordinals. This is the first use of the induction principle for ordinals in Mathlib
outside the directory containing the theory of ordinals. Often, one can replace such transfinite
constructions by appeals to Zorn’s lemma. The author is not aware of any proof of Nöbeling’s
theorem that does this, or otherwise avoids induction over ordinals1.

When formalising a nontrivial proof, one inevitably makes an effort to organise the
argument carefully. One purpose of this paper is to give a well-organised and detailed proof
of Nöbeling’s theorem, written in conventional mathematical language, which is essentially a
by-product of the formalisation effort. This will hopefully be a more accessible proof than
those that already exist in the literature; the one in [14] is in German, while the proofs of
the result in [7, 16] are the same argument as the one presented here, but in significantly
less detail. This is the content of section 4; some mathematical prerequisites are found in
section 3.

In section 2 we give more details about the connection to condensed mathematics and in
sections 5 and 6 we discuss the formalisation process and the integration into Mathlib.

Throughout the text, we use the symbol “2” for external links, usually directly to the
source code for the corresponding theorems and definitions in Mathlib. In order for the links
to stay usable, they are all to a fixed commit to the master branch (the most recent one at
the time of writing).

Mathlib is a growing library of mathematics formalised in Lean. All material is maintained
continuously by a team of experts. There is a big emphasis on unity, meaning that there is
one official definition of every concept, and it is the job of contributors to provide proofs
that alternative definitions are equivalent. All the code in this project has been integrated
into Mathlib; a process that took quite some time, as high standards are demanded of code
that enters the library. However, it is an important part of formalisation to get the code into
Mathlib, because doing so means that it stays usable to others in the future.

2 Motivation

Condensed mathematics [16, 15, 5] is a new theory developed by Clausen and Scholze (and
independently by Barwick and Haine, who called the theory pyknotic sets [3]). It has the
purpose of generalising topology in a way that gives better categorical properties, which is
desirable e.g. when the objects have both a topological and an algebraic structure. Condensed
objects2 can be described as sheaves on a certain site of profinite spaces. A topological abelian
group A can be regarded as a condensed abelian group with S-valued points C(S, A) for
profinite spaces S. Discrete abelian groups such as Z are important examples of topological
abelian groups. There is a useful characterisation of discrete condensed sets (which leads
to the same characterisation for more general condensed objects such as condensed abelian
groups), which has been formalised in Lean 3 by the author in [1].

The discreteness characterisation can be stated somewhat informally as follows: A
condensed set X is discrete if and only if for every profinite space S = lim←−i

Si (written as a
cofiltered limit of finite discrete spaces), the natural map

lim−→
i

X(Si)→ X(S)

is an isomorphism.

1 The proof does not use any ordinal arithmetic. However, it crucially uses the principle of induction over
ordinals with a case split between limit ordinals and successor ordinals.

2 This notion was first formalised in the Liquid Tensor Experiment [6, 17], see section 6 for a more detailed
discussion.
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There is a notion of completeness of condensed abelian groups, called being solid [16,
Definition 5.1]. For the convenience of the reader, we give the informal definition here in
Definition 1. First, we need to recall two facts about condensed abelian groups:

The category of condensed abelian groups has all limits.
The forgetful functor from condensed abelian groups to condensed sets has a left adjoint,
denoted by Z[−] (adopted from the analogous relationship between the category of sets
and the category of abelian groups).

▶ Definition 1. Let S = lim←−i
Si be a profinite space and define a condensed abelian group as

follows:

Z[S] := lim←−
i

Z[Si]

There is a natural map Z[S]→ Z[S] , and we say that a condensed abelian group A is solid
if for every profinite space S and every morphism f : Z[S]→ A of condensed abelian groups,
there is a unique morphism g : Z[S] → A making the obvious triangle commute3.

Using the discreteness characterisation and Nöbeling’s theorem, one can prove that for
every profinite space S, there is a set I and an isomorphism of condensed abelian groups

Z[S] ∼=
∏
i∈I

Z.

This structural result is essential to developing the theory of solid abelian groups. Without
it one cannot even prove the existence of a nontrivial solid abelian group.

Since the proof of Nöbeling’s theorem has nothing to do with condensed mathematics,
people studying the theory might be tempted to skip the proof and use Nöbeling’s theorem
as a black box. Now that it has been formalised, they can do this with a better conscience.
On the other hand, people interested in understanding the proof might want to turn to
sections 3 and 4 of this paper for a more detailed account.

3 Preliminaries

For ease of reference, we collect in this section some prerequisites for the proof of Nöbeling’s
theorem. Most of them were already in Mathlib.

3.1 Order theory
▶ Definition 2. 2 Let I and X be sets and let r be a binary relation on X. An I-indexed
family (xi) in X is directed if for all i, j ∈ I, there exists k ∈ I such that r(xi, xk) and
r(xj , xk).

▶ Lemma 3. 2 A monotone map on a poset with a join operation (i.e. a least upper bound
of two elements) is directed.

▶ Remark 4. Taking the union of two sets is an example of a join operation.

▶ Definition 5. 2 A category C is filtered if it satisfies the following three conditions
(i) C is nonempty.

3 This definition has also been formalised by the author in Lean 3 in [2]
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(ii) For all objects X, Y , there exists an object Z and morphisms f : X → Z and g : Y → Z.
(iii) For all objects X, Y and all morphisms f, g : X → Y , there exists an object Z and a

morphism h : Y → Z such that h ◦ f = h ◦ g.
A category is cofiltered if the opposite category is filtered.

▶ Remark 6. A poset is filtered if and only if it is nonempty and directed.
▶ Remark 7. The poset of finite subsets of a given set is filtered.

3.2 Linear Independence
▶ Lemma 8. 2 If (Xi) is a family of linearly independent subsets of a module over a ring
R, which is directed with respect to the subset relation, then its union is linearly independent.

▶ Lemma 9. 2 Suppose we have a commutative diagram

0 N M P

I I ⊔ J J

f g

v u w

where N, M, P are modules over a ring R, the top row is exact, and the bottom maps are the
inclusion maps. If v and w are linearly independent, then u is linearly independent.

3.3 Cantor’s intersection theorem
▶ Theorem 10. 2 Cantor’s intersection theorem. If (Zi)i∈I is a nonempty family of
nonempty, closed and compact subsets of a topological space X, which is directed with respect
to the superset relation (V, W ) 7→ V ⊇W , then the intersection

⋂
i∈I Zi is nonempty.

▶ Remark 11. Cantor’s intersection theorem is often stated only for the special case of
decreasing nested sequences of nonempty compact, closed subsets. The generalisation above
can be proved by slightly modifying the standard proof of that special case.

3.4 Cofiltered limits of profinite spaces
▶ Definition 12. 2 A profinite space is a totally disconnected compact Hausdorff space.

▶ Lemma 13. 2 Every profinite space has a basis of clopen subsets.

▶ Lemma 14. 2 Every profinite space is totally separated, i.e. any two distinct points can
be separated by clopen neighbourhoods.

▶ Remark 15. A topological space is profinite if and only if it can be written as a cofiltered
limit of finite discrete spaces. See section 6 for a further discussion.

▶ Lemma 16. 2 Any continuous map from a cofiltered limit of profinite spaces to a discrete
space factors through one of the components.

▶ Remark 17. In particular, a continuous map from a profinite space

S = lim←−
i

Si

to a discrete space factors through one of the finite quotients Si.
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https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Separation.lean#L2293-L2305
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/CofilteredLimit.lean#L211-L250
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4 The theorem

This section is devoted to proving

▶ Theorem 18. 2 (Nöbeling’s theorem). Let S be a profinite space. Then the abelian group
C(S,Z) of continuous maps from S to Z is free.

We can immediately reduce this to proving Lemma 19 below as follows: Let I denote the
set of clopen subsets of S. Then the map

S →
∏
i∈I

{0, 1}

whose i-th projection is given by the indicator function of the clopen subset i is a closed
embedding.

▶ Lemma 19. 2 Let I be a set and let S be a closed subset of
∏

i∈I{0, 1}. Then C(S,Z) is
a free abelian group.

To prove Lemma 19, we need to construct a basis of C(S,Z). Our proposed basis is
defined as follows:

Choose a well-ordering on I.
Let eS,i ∈ C(S,Z) denote the composition

S
∏

i∈I{0, 1} {0, 1} Zpi

where pi denotes the i-th projection map, and the other two maps are the obvious
inclusions.
Let P denote the set of finite, strictly decreasing sequences in I. Order these lexicograph-
ically.
Let evS : P → C(S,Z) denote the map

(i1, · · · , ir) 7→ eS,i1 · · · eS,ir
.

For p ∈ P , let ΣS(p) denote the span in C(S,Z) of the set

evS ({q ∈ P | q < p}) .

Let E(S) denote the subset of P consisting of those elements whose evaluation cannot be
written as a linear combination of evaluations of smaller elements of P , i.e.

E(S) := {p ∈ P | evS(p) /∈ ΣS(p)}.

In Subsection 4.2 we prove that the set evS (E(S)) spans C(S,Z), and in Subsection 4.3 we
prove that the family

evS : E(S)→ C(S,Z)

is linearly independent, concluding the proof of Nöbeling’s theorem. Subsection 4.1 defines
some notation which will be convenient for bookkeeping in the subsequent proof.
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https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1827-L1832
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1769-L1773


6:6 Towards Solid Abelian Groups: A Formal Proof of Nöbeling’s Theorem

4.1 Notation and generalities
For a subset J of I we denote by

πJ :
∏
i∈I

{0, 1} →
∏
i∈I

{0, 1}

the map whose i-th projection is pi if i ∈ J , and 0 otherwise. These maps are continuous,
and since source and target are compact Hausdorff spaces, they are also closed. Given a
subset S ⊆

∏
i∈I{0, 1}, we let

SJ := πJ(S).

We can regard I with its well-ordering as an ordinal. Then I is the set of all strictly smaller
ordinals. Given an ordinal µ, we let

πµ := π{i∈I | i<µ}

and

Sµ := S{i∈I | i<µ}.

These maps induce injective Z-linear maps

π∗
J : C(SJ ,Z)→ C(S,Z)

by precomposition.
Recall that we have defined P as the set of finite, strictly decreasing sequences in I,

ordered lexicographically. We will use this notation throughout the proof of Nöbeling’s
theorem.

▶ Lemma 20. 2 For p ∈ P and x ∈ S, we have

evS(p)(x) =
{

1 if ∀i ∈ p, xi = 1
0 otherwise.

Proof. Obvious. ◀

▶ Lemma 21. 2 Let J be a subset of I and let p ∈ P be such that i ∈ p implies i ∈ J . Then
π∗

J(evSJ
(p)) = evS(p).

Proof. Since i ∈ p implies i ∈ J , we have

xi = π∗
J(x)i

for all x ∈ S and i ∈ p. The result now follows from Lemma 20. ◀

▶ Remark 22. 2 The hypothesis in Lemma 21 holds in particular if p ∈ E(SJ). Indeed,
suppose i ∈ p, then if i /∈ J , we have evSJ

(p) = 0.

▶ Lemma 23. 2 If µ′, µ are ordinals satisfying µ′ < µ, then E(Sµ′) ⊆ E(Sµ).

Proof. Let p ∈ E(Sµ′). Then every entry of p is < µ′, and it suffices to show that if

evSµ
(p) = π∗

µ′(evSµ′ (p))

is in the span of

evSµ ({q ∈ P | q < p}) = π∗
µ′

(
evSµ′ ({q ∈ P | q < p})

)
then evSµ′ (p) is in the span of evSµ′ ({q ∈ P | q < p}). This follows by injectivity of π∗

µ′ . ◀

https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L378-L392
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L394-L403
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L414-L428
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L964-L973


D. Asgeirsson 6:7

4.2 Span
The following series of lemmas proves that evS (E(S)) spans C(S,Z).

▶ Lemma 24. The set P is well-ordered.

Proof sketch. Suppose not. Take a strictly decreasing sequence (pn) in P . Let an denote
first term of pn. Then (an) is a decreasing sequence in I and hence eventually constant.
Denote its limit by a. Let qn = pn \ an. Then there exists an N such that (qn)n≥N is a
strictly decreasing sequence in P and we can repeat the process of taking the indices of the
first factors, get a decreasing sequence in I whose limit is strictly smaller than a. Continuing
this way, we get a strictly decreasing sequence in I, a contradiction. ◀

▶ Remark 25. The proof sketch of Lemma 24 above is ill-suited for formalisation. Kim
Morrison gave a formalised proof 2, following similar ideas to those above, which used close
to 300 lines of code. A few days later, Junyan Xu found a proof 2 that was ten times
shorter, directly using the inductive datatype WellFounded. This is the only result whose
proof indicated in this paper differs significantly from the one used in the formalisation.

▶ Lemma 26. 2 If evS (P ) spans C(S,Z), then evS (E(S)) spans C(S,Z).

Proof. It suffices to show that evS (P ) is contained in the span of evS (E(S)). Suppose it is
not, and let p be the smallest element of P whose evaluation is not in the span of evS (E(S))
(this p exists by Lemma 24). Write evS(p) as a linear combination of evaluations of strictly
smaller elements of P . By minimality of p, each term of the linear combination is in the span
of evS (E(S)), implying that p is as well, a contradiction. ◀

▶ Lemma 27. 2 Let F denote the contravariant functor from the (filtered) poset of finite
subsets of I to the category of profinite spaces, which sends J to SJ . Then S is homeomorphic
to the limit of F .

Proof sketch. Since S is compact and the limit is Hausdorff, it suffices to show that the
natural map from S to the limit of F induced by the projection maps πJ : S → SJ is bijective.

For injectivity, let a, b ∈ S such that πJ(a) = πJ(b) for all finite subsets J of I. For all
i ∈ I we have ai = π{i}(a) = π{i}(b) = bi, hence a = b.

For surjectivity, let b ∈ lim F . Denote by

fJ : lim F → SJ

the projection maps. We need to construct an element a of C such that πJ (a) = fJ (b) for all
J . In other words, we need to show that the intersection⋂

J

π−1
J {fJ(b)},

where J runs over all finite subsets of I, is nonempty. By Cantor’s intersection theorem 10, it
suffices to show that this family is directed (all the fibres are closed by continuity of the πJ ,
and closed subsets of a compact Hausdorff space are compact). To show that it is directed,
it suffices to show that for J ⊆ K, we have

π−1
K {fK(b)} ⊆ π−1

J {fJ(b)}

(by Lemma 3). This follows easily because the transition maps in the limits are just restrictions
of the πJ . ◀
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https://github.com/leanprover-community/mathlib4/pull/6361
https://github.com/leanprover-community/mathlib4/pull/6432
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L450-L469
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L229-L246
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▶ Lemma 28. 2 Let J be a finite subset of I. Then evSJ
(E(SJ)) spans C(SJ ,Z).

Proof. By lemma 26, it suffices to show that evSJ
(P ) spans. For x ∈ SJ , denote by fx the

map SJ → Z given by the Kronecker delta fx(y) = δxy.
Since SJ is finite, the set of continuous maps is actually the set of all maps, and the maps

fx span C(SJ ,Z).
Now let j1 > · · · > jr be a decreasing enumeration of the elements of J . Let x ∈ SJ and

let ei denote eSJ ,ji
if xji

= 1 and (1− eSJ ,ji) if xji = 0. Then

fji
=

r∏
i=1

ei

is in the span of P (SJ), as desired. ◀

▶ Lemma 29. 2 P spans C(S,Z).

Proof. Let f ∈ C(S,Z). Then by Lemmas 27 and 16, there is a g ∈ C(SJ ,Z) such that
f = π∗

J(g). Writing this g as a linear combination of elements of E(SJ), by Lemma 21 we
see that f is a linear combination of elements of P as desired. ◀

4.3 Linear independence
▶ Notation 30. Regard I with its well-ordering as an ordinal. Let Q denote the following
predicate on an ordinal µ ≤ I:

For all closed subsets S of
∏

i∈I{0, 1}, such that for all x ∈ S and i ∈ I, xi = 1 implies
i < µ, E(S) is linearly independent in C(S,Z).

We want to prove the statement Q(I). We prove by induction on ordinals that Q(µ)
holds for all ordinals µ ≤ I.

▶ Lemma 31. 2 The base case of the induction, Q(0), holds.

Proof. In this case, S is empty or a singleton. If S is empty, the result is trivial. Suppose S

is a singleton. We want to show that E(S) consists of only the empty list, which evaluates to
1 and is linearly independent in C(S,Z) ∼= Z. Let p ∈ P and suppose p is nonempty. Then it
is strictly larger than the empty list. But the evaluation of the empty list is 1, which spans
C(S,Z) ∼= Z, and thus evS(p) is in the span of strictly smaller products, i.e. not in E(S). ◀

4.3.1 Limit case
Let µ be a limit ordinal, S a closed subset such that for all x ∈ S and i ∈ I, xi = 1 implies
i < µ. In other words, S = Sµ. Suppose Q(µ′) holds for all µ′ < µ. Then in particular
E(Sµ′) is linearly independent

▶ Lemma 32. 2 Let µ′ < µ and p ∈ P whose entries are all < µ′. Then

π∗
µ′

(
evSµ′ ({q ∈ P | q < p})

)
= evSµ

({q ∈ P | q < p}) .

Proof. If q < p, then every element of q is also < µ′. Thus, by lemma 21,

π∗
µ′

(
evSµ′ (q)

)
= evSµ(q),

as desired. ◀

https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L623-L675
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L687-L696
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1732-L1740
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L951-L958
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▶ Lemma 33. 2

E(Sµ) =
⋃

µ′<µ

E(Sµ′)

Proof. The inclusion from right to left follows from Lemma 23, so we only need to show that
if p ∈ E(Sµ) then there exists µ′ < µ such that p ∈ E(Sµ′). Take µ′ to be the supremum of
the set {i + 1 | i ∈ p}. Then µ′ = 0 if p is empty, and of the form i + 1 for an ordinal i < µ if
p is nonempty. In either case, µ′ < µ.

Since every i ∈ p satisfies i < µ′ < µ, we have

evSµ(p) = π∗
µ′(evSµ′ (p))

and

evSµ
({q ∈ P | q < p}) = π∗

µ′

(
evSµ′ ({q ∈ P | q < p})

)
so if evSµ′ (p) is in the span of

evSµ′ ({q ∈ P | q < p}) ,

then evSµ
(p) is in the span of

evSµ
({q ∈ P | q < p}) ,

contradicting the fact that p ∈ E(Sµ). ◀

▶ Lemma 34. 2

evSµ
(E(Sµ)) =

⋃
µ′<µ

π∗
µ′

(
evSµ′ (E(Sµ′))

)
Proof. This follows from a combination of Lemmas 21 and 33. ◀

The family of subsets in the union in Lemma 34 is directed with respect to the subset
relation (this follows from Lemmas 3, 23, and 21). The sets evSµ′ (E(Sµ′)) are all linearly
independent by the inductive hypothesis, and by injectivity of π∗

µ, their images under that
map are as well. Thus, by Lemma 8, the union is linearly independent, and we are done. 2

4.3.2 Successor case
Let µ be an ordinal, S a closed subset such that for all x ∈ S and i ∈ I, xi = 1 implies i < µ+1.
In other words, S = Sµ+1. Suppose Q(µ) holds. Then in particular evSµ : E(Sµ)→ C(Sµ,Z)
is linearly independent.

To prove the inductive step in the successor case, we construct a closed subset S′ of∏
i∈I{0, 1} such that for all x ∈ S′, xi = 1 implies i < µ, and a commutative diagram

0 C(Sµ,Z) C(S,Z) C(S′,Z)

E(Sµ) E(S) E′(S)

π∗
µ g

evSevSµ (1)

where the top row is exact and E′(S) is the subset of E(S) consisting if those p with µ ∈ p

(note that p necessarily starts with µ). For p ∈ P , we denote by pt ∈ P the sequence obtained
by removing the first element of p (t stands for tail). The linear map g has the property that
g(evS(p)) = evS′(pt) and pt ∈ E(S′). Given such a construction, the successor step in the
induction follows from lemma 9.
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https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1074-L1088
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1090-L1102
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1742-L1749
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▶ Construction 35. 2 Let

S0 = {x ∈ S | xµ = 0},

S1 = {x ∈ S | xµ = 1},

and

S′ = S0 ∩ πµ(S1).

Then S′ satisfies the inductive hypothesis.

▶ Construction 36. 2 Let g0 : S′ → S denote the inclusion map, and let g1 : S′ → S denote
the map that swaps the µ-th coordinate to 1 (since S′ ⊆ πµ(S1), this map lands in S). These
maps are both continuous, and we obtain a linear map

g∗
1 − g∗

0 : C(S,Z)→ C(S′,Z),

which we denote by g.

▶ Lemma 37. 2 The top row in diagram (1) is exact.

Proof. We already know that π∗
µ is injective. Also, since πµ ◦ g1 = πµ ◦ g0, we have

g ◦ π∗
µ = 0.

Now suppose we have

f ∈ C(S,Z) with g(f) = 0.

We want to find an

fµ ∈ C(Sµ,Z) with fµ ◦ πµ = f.

Denote by

π′
µ : πµ(S1)→ S1

the map that swaps the µ-th coordinate to 1. Since g(f) = 0, we have

f ◦ g1 = f ◦ g0

and hence the two continuous maps f|S0 and f|S1 ◦ π′
µ agree on the intersection

S′ = S0 ∩ πµ(S1)

Together, they define the desired continuous map fµ on all of S0 ∪ πµ(S1) = Sµ. ◀

▶ Lemma 38. 2 If p ∈ P starts with µ, then g(evS(p)) = evS′(pt).

Proof. This follows from considering all the cases given by Lemma 20. We omit the proof
here and refer to the Lean proof linked above. ◀

▶ Remark 39. If p ∈ E(S) and µ ∈ p, then p satisfies the hypotheses of Lemma 38.

▶ Lemma 40. 2 If p ∈ E(S) and µ ∈ p, then pt ∈ E(S′).

https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1193-L1226
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1261-L1287
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1366-L1376
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1539-L1567
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1608-L1678
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Proof. Contraposing the statement, it suffices to show that if

evS′
(
pt

)
∈ Span

(
evS′

(
{q | q < pt}

))
,

then

evS(p) ∈ Span (evS ({(q) | q < p})) .

Given a q ∈ P such that i ∈ q implies i < µ, we denote by qµ ∈ P the sequence obtained by
adding µ at the front. Write

g(evS(p)) = evS′(pt) =
∑
q<pt

nq evS′(q) =
∑
q<pt

nqg(evS(qµ)).

Then by Lemma 37, there exists an n ∈ C(Sµ,Z) such that

evS(p) = π∗
µ(n) +

∑
q<pt

nq(evS(qµ)).

Now it suffices to show that each of the two terms in the sum above is in the span of
{evS(q) | q < p}. The latter term is because q < pt implies qµ < p. The former term is
because we can write n as a linear combination indexed by E(Sµ), and for q ∈ E(Sµ) we
have π∗

µ

(
evSµ

(q)
)

= evS(q) and µ /∈ q so q < p. ◀

▶ Lemma 41. 2 The set E(S) is the disjoint union of E(Sµ) and

E′(S) = {p ∈ E(S) | µ ∈ p}.

Proof. We already know by Lemma 23 that E(Sµ) ⊆ E(S). Also, as noted in Remark 22, if
p ∈ E(Sµ) then all elements of p are < µ and hence p /∈ E′(S). Now it suffices to show that
if p ∈ E(S) \ E′(S), then p ∈ E(Sµ).

Since p ∈ E(S) \ E′(S), every i ∈ p satisfies i < µ. We have

evS(p) = π∗
µ(evSµ

(p))

and

evS ({q ∈ P | q < p}) = π∗
µ

(
evSµ ({q ∈ P | q < p})

)
so if evSµ

(p) is in the span of

evSµ
({q ∈ P | q < p}) ,

then evS(p) is in the span of

evS ({q ∈ P | q < p}) ,

contradicting the fact that p ∈ E(S). ◀

The above lemmas prove all the claims made at the beginning of this section, concluding
the inductive proof. 2
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https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1390-L1412
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Nobeling.lean#L1751-L1762
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5 The formalisation

First a note on terminology: in the mathematical exposition of the proof in section 4, we
have talked about continuous maps from S to Z. Since Z is discrete, these are the same as
the locally constant maps. The statement we have formalised is Listing 1.

instance LocallyConstant.freeOfProfinite (S : Profinite.{u}) :
Module.Free Z (LocallyConstant S Z)

Listing 1 Nöbeling’s theorem

which says that the Z-module of locally constant maps from S to Z is free. When talking
about locally constant maps, one does not have to specify a topology on the target, which is
slightly more convenient when working in a proof assistant.

The actual proof is about closed subsets of the product
∏

i∈I{0, 1}, which is of course
the same thing as the space of functions I → {0, 1}. We implement it as the type I → Bool,
where Bool is the type with two elements called true and false. This is the canonical choice
for a two-element discrete topological space in Mathlib.

5.1 The implementation of P and E(S)
We implemented the set P as the type Products I defined as

def Products (I : Type*) [LinearOrder I] := {l : List I // l.Chain’ (·>·)}

The predicate l.Chain’ (·>·) means that adjacent elements of the list l are related by
“>”. We define the evaluation evS of products as

def Products.eval (S : Set (I → Bool)) (l : Products I) :
LocallyConstant S Z := (l.val.map (e S)).prod

where l.val.map (e S) is the list of eS,i for i in the list l.val, and List.prod is the product
of the elements of a list.

We define a predicate on Products

def Products.isGood (S : Set (I → Bool)) (l : Products I) : Prop :=
l.eval S /∈ Submodule.span Z ((Products.eval S) ’’ {m | m < l})

and then the set E(S) becomes

def GoodProducts (S : Set (I → Bool)) : Set (Products I) :=
{l : Products I | l.isGood S}

It is slightly painful to prove completely trivial lemmas like 20 and its corollary 21 in
Lean. Indeed, these results are not mentioned in the proof of [16, Theorem 5.4]. Although
trivial, they are used often in the proof of the theorem and hence very important to making
the proof work. Reading an informal proof of this theorem, one might never realise that
these trivialities are used. This is an example of a useful by-product of formalisation; more
clarity of exposition.

5.2 Ordinal induction
When formalising an inductive proof of any kind, one has to be very precise about what
statement one wants to prove by induction. This is almost never the case in traditional
mathematics texts. For example, the proof of [16, Theorem 5.4] claims to be proving by
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induction that E(S) is a basis of C(S,Z), not just that it is linearly independent. Furthermore,
the set I is not fixed throughout the inductive proof which makes it somewhat unclear what
the inductive hypothesis actually says. Working inside the topological space

∏
i∈I{0, 1} for a

fixed set I throughout the proof was convenient in the successor step. This avoided problems
that are solved by abuse of notation in informal texts, such as regarding a set as the same
thing as its image under a continuous embedding.

The statement of the induction principle for ordinals in Mathlib is the following4:

def Ordinal.limitRecOn {Q : Ordinal → Sort _} (o : Ordinal)
(H1 : Q 0)
(H2 : ∀ o, Q o → Q (succ o))
(H3 : ∀ o, IsLimit o → (∀ o’ < o, Q o’)→ Q o) :
Q o

In our setting, given a map Q : Ordinal → Prop (in other words, a predicate on ordinals)5,
we can prove Q(µ) for any ordinal µ if three things hold:

The zero case: Q(0) holds.
The successor case: for all ordinals λ, Q(λ) implies Q(λ + 1).
The limit case: for every limit ordinal λ, if Q(λ′) holds for every λ′ < λ, then Q(λ) holds.

Finding the correct predicate Q on ordinals was essential to the success of this project:

def Q (I : Type*) [LinearOrder I] [IsWellOrder I (·<·)] (o : Ordinal) : Prop :=
o ≤ Ordinal.type (·<· : I → I → Prop) →

(∀ (S : Set (I → Bool)), IsClosed S → contained S o →
LinearIndependent Z (GoodProducts.eval S))

The inequality

o ≤ Ordinal.type (·<· : I → I → Prop)

means that o ≤ I when I is considered as an ordinal, and the proposition contained S o is
defined as

def contained {I : Type*} [LinearOrder I] [IsWellOrder I (·<·)]
(S : Set (I → Bool)) (o : Ordinal) : Prop :=

∀ f, f ∈ S → ∀ (i : I), f i = true → ord I i < o

and ord I i is an abbreviation for

Ordinal.typein (·<· : I → I → Prop) i

i.e. the element i ∈ I considered as an ordinal. The conclusion

LinearIndependent Z (GoodProducts.eval S)

means that the map evS : E(S)→ C(S,Z) is linearly independent.
As is often the case, this is quite an involved statement that we are proving by induction,

and when writing informally, mathematicians wouldn’t bother to specify the map Q :
Ordinal → Prop explicitly.

4 We have altered the notation slightly to match the notation in this paper.
5 Prop is Sort 0
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5.3 Piecewise defined locally constant maps
In the proof of Lemma 37, we defined a locally constant map Sµ → Z by giving locally
constant maps from S0 and πµ(S1) that agreed on the intersection, and noting that this
gives a locally constant map from the union which is equal to Sµ. To do this in Lean, the
following definition was added to Mathlib 2:

def LocallyConstant.piecewise {X Z : Type*} [TopologicalSpace X] {C1 C2 : Set X}
(h1 : IsClosed C1) (h2 : IsClosed C2) (h : C1 ∪ C2 = Set.univ)
(f : LocallyConstant C1 Z) (g : LocallyConstant C2 Z)
(hfg : ∀ (x : X) (hx : x ∈ C1 ∩ C2), f ⟨x, hx.1⟩ = g ⟨x, hx.2⟩)
[∀ j, Decidable (j ∈ C1)] : LocallyConstant X Z where

toFun i := if hi : i ∈ C1 then f ⟨i, hi⟩
else g ⟨i, (compl_subset_iff_union.mpr h) hi⟩

isLocallyConstant := omitted

It says that given locally constant maps f and g defined respectively on closed subsets C1
and C2 which together cover the space X, such that f and g agree on C1 ∩ C2, we get
a locally constant map defined on all of X. This seems like exactly what we need in the
above-mentioned proof. However, there is a subtlety, in that because of how the rest of the
inductive proof is structured, we want the sets S0, πµ(S1) and Sµ all to be considered as
subsets of the underlying topological space

∏
i∈I{0, 1}. To use LocallyConstant.piecewise,

we would have to consider Sµ as the underlying topological space and S0 and πµ(S1) as
subsets of it. This is possible and is what was done initially, but a cleaner solution is to
define a variant of LocallyConstant.piecewise:

def LocallyConstant.piecewise’ {X Z : Type*} [TopologicalSpace X]
{C0 C1 C2 : Set X}
(h0 : C0 ⊆ C1 ∪ C2) (h1 : IsClosed C1) (h2 : IsClosed C2)
(f1 : LocallyConstant C1 Z) (f2 : LocallyConstant C2 Z)
[DecidablePred (· ∈ C1)]
(hf : ∀ x (hx : x ∈ C1 ∩ C2), f1 ⟨x, hx.1⟩ = f2 ⟨x, hx.2⟩) :
LocallyConstant C0 Z

which satisfies the equations

lemma LocallyConstant.piecewise’_apply_left {X Z : Type*} [TopologicalSpace X]
{C0 C1 C2 : Set X} (h0 : C0 ⊆ C1 ∪ C2)
(h1 : IsClosed C1) (h2 : IsClosed C2)
(f1 : LocallyConstant C1 Z) (f2 : LocallyConstant C2 Z)
[DecidablePred (· ∈ C1)]
(hf : ∀ x (hx : x ∈ C1 ∩ C2), f1 ⟨x, hx.1⟩ = f2 ⟨x, hx.2⟩)
(x : C0) (hx : x.val ∈ C1) :
piecewise’ h0 h1 h2 f1 f2 hf x = f1 ⟨x.val, hx⟩

and

lemma LocallyConstant.piecewise’_apply_right {X Z : Type*} [TopologicalSpace X]
{C0 C1 C2 : Set X} (h0 : C0 ⊆ C1 ∪ C2)
(h1 : IsClosed C1) (h2 : IsClosed C2)
(f1 : LocallyConstant C1 Z) (f2 : LocallyConstant C2 Z)
[DecidablePred (· ∈ C1)]
(hf : ∀ x (hx : x ∈ C1 ∩ C2), f1 ⟨x, hx.1⟩ = f2 ⟨x, hx.2⟩)
(x : C0) (hx : x.val ∈ C2) :
piecewise’ h0 h1 h2 f1 f2 hf x = f2 ⟨x.val, hx⟩

https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/LocallyConstant/Basic.lean#L613-L634
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Here C0, C1, and C2 are subsets of the same underlying topological space X; C1 and C2
are closed sets covering C0, and f1 and f2 are locally constant maps defined on C1 and C2
respectively, such that f1 and f2 agree on the intersection. This fits the application perfectly
and shortened the proof of Lemma 37 considerably. Subtleties like this come up frequently,
and can stall the formalisation process, especially when formalising general topology. When
formalising Gleason’s theorem 2 (another result in general topology relevant to condensed
mathematics, see [16, Definition 2.4] and [8]), similar subtleties arose about changing the
“underlying topological space” to a subset of the previous underlying topological space.

The phenomenon that it is sometimes more convenient to formalise the definition of an
object rather as a subobject of some bigger object is, of course, well known. It was noted
in the context of group theory by Gonthier et al. during the formalisation of the odd order
theorem, see [9, Section 3.3].

5.4 Reflections on the proof
The informal proof in [16] is about half a page; 21 lines of text. Depending on how one
counts (i.e. what parts of the code count as part of the proof and not just prerequisites), the
formalised proof is somewhere between 1500 and 3000 lines of Lean code. A big part of the
difference is because of omissions in the proof in [16].

A more fair comparison would be with the entirety of section 4 in this paper, which is
an account of all the mathematical contents of the formalised proof. Still, there is quite a
big difference, which is mostly explained by the pedantry of proof assistants, as discussed in
subsections 5.1, 5.2, and 5.3.

5.5 Mathlib integration
As discussed in recent papers by Nash [13] and Best et al. [4], when formalising mathematics
in Lean, it is desirable to develop as much as possible directly against Mathlib. Otherwise,
the code risks going stale and unusable, while if integrated into Mathlib it becomes part of a
library that is continuously maintained.

The development of this project took place on a branch of Mathlib, all code being written
in new files. This was a good workflow to get the formalisation done as quickly as possible,
because if new code is put in the “correct places” immediately, one has to rebuild part of
Mathlib to be able to use that code in other places, which can be a slow process if changes
are made deep in the import hierarchy.

The proof of Nöbeling’s theorem described in this paper has now been fully integrated
into Mathlib. An unusually large portion of the code was of no independent interest, which
resulted in a pull request adding one huge file, which Johan Commelin and Kevin Buzzard
kindly reviewed in great detail, improving both the style and performance of the code.

6 Towards condensed mathematics in Mathlib

The history of condensed mathematics in Lean started with the Liquid Tensor Experiment
(LTE) [6, 17]. This is an example of a formalisation project that was in some sense too big
to be integrated into Mathlib. Nevertheless, it was a big success in that it demonstrated the
capabilities of Lean and its community by fully formalising the complicated proof of a highly
nontrivial theorem about so-called liquid modules. Moreover, it provided a setting in which
to experiment with condensed mathematics and find the best way to do homological algebra
in Lean. As mentioned above, the goal of LTE was to formalise one specialised theorem.
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This is somewhat orthogonal to the goal of Mathlib which is to build a coherent, unified
library of formalised mathematics. It is thus understandable that the contributors of LTE
chose to focus on completing the task at hand instead of spending time on moving some
parts of the code to Mathlib. Now that both LTE and the port of Mathlib to Lean 4 have
been completed, we are seeing some important parts of LTE being integrated into Mathlib.

The definition 2 of a condensed object was recently added to Mathlib. During a
masterclass on formalisation of condensed mathematics organised in Copenhagen in June
2023, participants collaborated, under the guidance of Kevin Buzzard and Adam Topaz, on
formalising as much condensed mathematics as possible in one week (all development took
place in Lean 4 and the goal was to write material for Mathlib). The code can be found in
the masterclass GitHub repository 2 and much of it has already made it into Mathlib.

Profinite spaces form a rich category of topological spaces and there is more work other
than Nöbeling’s theorem to be done in Mathlib. Being the building blocks of condensed sets,
it is important to develop a good API for profinite spaces in Mathlib. There, profinite spaces
are defined as totally disconnected compact Hausdorff spaces. It is proved 2 that every
profinite space can be expressed as a cofiltered limit (more precisely, over the poset of its
discrete quotients). It is also proved 2 that the category of profinite spaces has all limits
and that the forgetful functor to topological spaces preserves them 2. From this we can
extract the following useful theorem:

▶ Theorem 42. A topological space is profinite if and only if it can be written as a cofiltered
limit of finite discrete spaces.

The story about profinite spaces as limits does not end there, though. Sometimes it is not
enough to know just that some profinite space can be written as a limit, but rather that there
is a specific limit formula for it. Lemma 27 gives one specific way of writing a compact subset
of a product as a cofiltered limit, which can be useful. Another example can be extracted
from [1]. This is the fact that the identity functor on the category of profinite spaces is right
Kan extended from the inclusion functor from finite sets to profinite spaces along itself. This
gives another limit formula for profinite spaces, coming from the limit formula for right Kan
extensions, and is useful when formalising the definition of solid abelian groups [2].

It can also be useful to regard the category of profinite spaces as the pro-category of the
category of finite sets. The definition of pro-categories and this equivalence of categories
would make for a nice formalisation project and be a welcome contribution to Mathlib.

7 Conclusion and future work

By formalising Nöbeling’s theorem, we have illustrated that the induction principle for
ordinals in Mathlib can be used to prove nontrivial theorems outside the theory ordinals
themselves. Another contribution is the detailed proof given in section 4, and of course as
mentioned before, it is an important step for the formalisation of condensed mathematics to
continue.

A natural next step in the formalisation of the theory of solid abelian groups is to port the
code in [1, 2] to Lean 4 and get it into Mathlib. Then one can put together the discreteness
characterisation and Nöbeling’s theorem to prove the structural results about Z[S] , which
would lead us one step closer to an example of a nontrivial solid abelian group in Mathlib.

More broadly, it is important to continue moving as much as possible of the existing Lean
code about condensed mathematics (from the LTE and the Copenhagen masterclass) into
Mathlib.

https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Condensed/Basic.lean#L46-L47
https://github.com/adamtopaz/CopenhagenMasterclass2023
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/AsLimit.lean#L104-L105
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Basic.lean#L306-L307
https://github.com/leanprover-community/mathlib4/blob/ba9f2e5baab51310883778e1ea3b48772581521c/Mathlib/Topology/Category/Profinite/Basic.lean#L302-L303
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Abstract
The theory of Communicating Sequential Processes going back to Hoare and Roscoe is still today a
reference model for concurrency. In the fairly rich literature, several versions of operational semantics
have been discussed, which should be consistent with the denotational one.

This work is based on Isabelle/HOL-CSP 2.0, a shallow embedding of the failure-divergence
model of denotational semantics proposed by Hoare, Roscoe and Brookes in the eighties. In several
ways, HOL-CSP is actually an extension of the original setting in the sense that it admits higher-order
processes and infinite alphabets.

In this paper, we present a construction and formal equivalence proofs between operational CSP
semantics and the underlying denotational failure-divergence semantics. The construction is based
on a definition of the operational transition operator P ⇝e P’ basically via the After operator and
the classical failure-divergence refinement.

Several choices are discussed to formally derive the operational semantics leading to subtle
differences. The derived operational semantics for symbolic Labelled Transition Systems (LTSs) can
be potentially used for certifications of model-checker logs as well as combined proof techniques.
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1 Introduction

Communicating Sequential Processes (CSP) is a language to specify and verify patterns of
interaction of concurrent systems. Together with CCS and LOTOS, it belongs to the family
of process algebras. CSP’s rich theory comprises denotational, operational and algebraic
semantic facets and has influenced programming languages such as Limbo, Crystal, Clojure
and most notably Golang [14]. CSP has been applied in industry as a tool for specifying and
verifying the concurrent aspects of hardware systems, such as the T9000 transputer [5].

The theory of CSP was first described in 1978 by Tony Hoare [15], but has since evolved
substantially [6, 7, 27]. The denotational semantics of CSP is described by a fully abstract
model of behaviour designed to be compositional: a process P encompasses all possible
behaviours, i. e. sets of traces annotated by additional information that allow to reason over
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deadlocks (the resulting semantic domain is called failure semantics F)
and additionally livelocks (the failure-divergence semantics FD).

Several attempts have been undertaken to formalize this fairly complex theory, notably
[10, 34, 19, 23, 16]. The arguably (see Section 7) most comprehensive one is HOL-CSP
[34, 33, 31, 3, 4], which is in several ways not only a formalization in a proof assistant, but a
generalization of the original setting:

the set of traces ′α trace is constructed over an arbitrary type ′α in HOL, paving the way
for dense time, vector spaces, etc, 2,
more generally speaking, HOL-CSP attempts to remove finiteness-restrictions, and
the semantic domain is encapsulated in the type ′α process belonging to the cpo type
class (see Subsection 2.4). Thus, process patterns can be expressed and analyzed.

In this paper, we present the formal theory of the operational semantics of HOL-CSP which
is consistent with the denotational one by construction. To this end, we proceed by defining
the operational transition operator P ⇝e P’ in terms of the After operator and the classical
failure-divergence refinement. In the literature on process algebras like CSP ([15, 6, 7, 27])
or Circus ([35, 36]), several versions of operational semantics have been presented, but a
formal proof of equivalence for a substantial part of the language has never been undertaken.
Our proof architecture foresees an Isabelle locale (a parameterized theory) whose instances
represent several of these versions, thus shedding some light on their relationships. The
operational rules for small-step and big-steps pave the way for symbolic execution of processes
and the combination of model-checking with theorem proving.

We proceed as follows: after an introduction to “classic” CSP and our extensions HOL-CSP
and HOL-CSPM as an Isabelle framework in Section 2, we present in Section 3 the core con-
struction of this paper, the bridge-definition linking the denotational semantics to operational
one(s), resulting in the formally proven laws written in Section 4. This is generalized to
big steps semantics in Section 5 and possible variants are discussed in Section 6. Note that
HOL-CSP[33], HOL-CSPM[3] as well as the novel contribution HOL-CSP_OpSem [4] containing
the proofs discussed here are published in the Archive of Formal Proofs AFP.

2 Background

2.1 Classic CSP Syntax
At a glance, the syntax of the classical CSP core language reads as follows:

P ::= SKIP | STOP | P □ P ′ | P ⊓ P ′ | P [[A]] P ′ | P ; P ′ | P \ A
| a → P | □a ∈ A → P(a) | ⊓a ∈ A → P(a) | Renaming P g | µ X . f (X)

SKIP signals termination, STOP denotes a deadlock. Two choice operators are distinguished:
1. the external choice -□-, which forces a process “to follow” whatever its context requires,
2. the internal choice -⊓-, which imposes on the context of a process “to follow” the

non-deterministic choices made.
With the prefix operator a → P which signals a and continues with P (where a is an element
of a set Σ of events), generalized choices of the form □a∈A → P(a) resp. ⊓a∈A → P(a)
are constructed (A is originally a finite set). When events are tagged with channels, i. e. Σ
= CHANNELS × DATA, syntactic sugar like c?x∈A→P(x) or c!x∈A→P(x) is added; the
former reads intuitively as “x is read from channel c” while the latter means “x is arbitrarily
chosen from A and sent into c” (where c ∈ CHANNELS and x ∈ DATA).

2 or even differential equations as in cyber-physical system models [12]
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The sequential composition P ; P ′ behaves first like P and, once it has successfully
terminated, like P ′. P \ A consists in hiding the events of the set A. Renaming P g results
in a process in which each event e of P is renamed in g(e). The Sliding operator P ▷ P ′ is
defined as (P □ P ′) ⊓ P ′. The fixed point µ X . f (X) operator satisfies (µ X . f (X)) = f (µ
X . f (X)) (but requires precautions, see Subsection 2.4).

CSP describes all communication with one single primitive: the synchronized product
written P [[A]] P ′. Note that interleaving P ||| P ′ stands for P [[{}]] P ′, whereas the parallel
operator P || P ′ is a shortcut for P [[UNIV ]] P ′ (UNIV is the universal set).

2.2 Classic CSP Semantics
The denotational semantics (following [27]) comes in three layers: the trace model, the (stable)
failures model and the failure-divergence model.

In the trace semantics model, the behaviour of a process P is denoted by a prefix-
closed set of traces, denoted T P, similar to the well-known concept of a “language of an
automata”. Since traces are finite lists and infinite behaviour is therefore represented via the
set of approximations, an additional element tick (written ✓) is used to represent explicit
termination signalized by SKIP. Note that, obviously, tick should only appear at the end of
a trace (traces should be front-tickFree).

It is impossible to distinguish external and internal non-determinism in the trace model
since the traces of both operators are just the union of their argument traces. To be more
discriminant, [6] proposed the failure semantics model, where traces were annotated with a
set of refusals, i. e. sets of events a process can not engage in. This leads to the notion of a
failure (t, X) ∈ F P which is a pair of a trace t and a set of refusals X. Consider for example
the process P = (a → SKIP) □ (a → STOP). The traces T P will non-deterministically
lead to a situation where the process accepts termination (but refuses everything else) or
just refuses everything. So, if we assume Σ = {a, ✓}, then the traces T P will be {[], [a]}.
The failures F P are then {([], {{✓}}), ([a], {Σ, {a}})} (plus all subsets of the respective
refusal sets, which is required for the recursion ordering discussed in Subsection 2.4).

Finally, [6] enriched the semantic domain of CSP with one more element, the set of
divergences (written D P), in order to distinguish deadlocks from livelocks3. In the failure
divergence model, the semantic domain consists of a pair of failures and divergences, where
the latter are traces to situations where livelocks may occur.

In contrast to Hoare Logics and its Hoare Triples, which is a framework to reason
over terminating calculations, CSP and process refinement are designed to reason over
non-terminating calculations. Three classic refinement notions are considered:
1. the trace refinement: P ⊑T Q ≡ T P ⊇ T Q,
2. the failure refinement: P ⊑F Q ≡ F P ⊇ F Q, and
3. the failure-divergence refinement P ⊑F D Q ≡ F P ⊇ F Q ∧ D P ⊇ D Q .
It turns out that beyond common protocol refinement proofs and test-problems, many
properties such as deadlock or livelock freeness can be expressed via a refinement statement.

2.3 Theories and Locales in Isabelle and HOL
Isabelle is a major interactive proof assistant implementing higher-order logic (HOL). As
an LCF style theorem prover, it is based on a small logical core (kernel) to increase the
trustworthiness of proofs without requiring – yet supporting – explicit proof objects.

3 also called infinite internal chatter as occurring in processes like µ x. a → x \ {a}
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The Isabelle distribution comes with a number of library theories constructed solely from
definitional axioms; among them basic data-types for sets, lists, arithmetics, a substantial
part of analysis, and – particularly relevant here – Scott domain theory (HOLCF) [22] providing
a particular type class ′α::pcpo, i.e. the class of types ′α for which a least element ⊥ and a
complete partial order -⊑- is defined.

HOLCF provides the concept of continuity, the concept of admissibility, the fixed point
operator µ x . f x as well as the fixed point induction for admissible predicates. Isabelle’s
type inference can automatically infer, for example, that if ′α::pcpo, then ( ′β ⇒ ′α)::pcpo.

A distinguishing feature of Isabelle is the locale mechanism, i. e. theories that may be
parameterized by types, constant-symbols and local hypotheses over them. Since locales
may inherit from other locales, they represent a powerful structuring mechanism for orders
and algebraic structures very similar to dependent types available in other systems.

2.4 Isabelle/HOL-CSP
Isabelle/HOL-CSP is a shallow embedding of CSP in HOL based on the traditional semantic
domain described by 9 “axioms” over the three semantic functions T :: ′α process ⇒ ′α trace
set, F :: ′α process ⇒ ′α failure set and D :: ′α process ⇒ ′α trace set:

the empty trace is always the initial trace and any trace is front-tickFree;
traces of a process are prefix-closed and a process can refuse all subsets of refusals;
any event refused by a process after a trace s must be in a refusal set associated to s;
the tick accepted after a trace s implies that all other events are refused;
a divergence trace with any suffix is itself a divergence one
once a process has diverged, it can engage in or refuse any sequence of events.
a tick-ending divergence trace has a tickFree divergence trace prefix of maximal length.

More formally, a process P of the type Σ process should have the following properties:

([] ∈ T P ∧ (∀ s X . (s, X) ∈ F P −→ front-tickFree s) ∧
(∀ s t. s @ t ∈ T P −→ s ∈ T P) ∧ (∀ s X Y . (s, Y ) ∈ F P ∧ X ⊆ Y −→ (s, X) ∈ F P) ∧
(∀ s X Y . (s, X) ∈ F P ∧ (∀ c. c ∈ Y −→ s @ [c] /∈ T P) −→ (s, X ∪ Y ) ∈ F P) ∧
(∀ s X . s @ [✓] ∈ T P −→ (s, X − {✓}) ∈ F P) ∧
(∀ s t. s ∈ D P ∧ tickFree s ∧ front-tickFree t −→ s @ t ∈ D P) ∧
(∀ s X . s ∈ D P −→ (s, X) ∈ F P) ∧ (∀ s. s @ [✓] ∈ D P −→ s ∈ D P))

The core of HOL-CSP is to encapsulate this wishlist into a type definition. This is achieved
by 1) defining the pair of failures and divergences Σ process0 via (Σ✓ list × (Σ✓) set)set
× (Σ✓)set (where Σ✓ = Σ ⊎ {✓}), 2) by turning the above wishlist into a data-constraint
is-process of type Σ process0 ⇒ bool, and 3) by establishing an isomorphism between the
subset of Σ process0’es satisfying is-process via the-specification construct:

typedef ′α process = {P :: ′α process0 . is-process P}

Subsequently, we provide definitions for each CSP operator in terms of Σ process0; these
definitions formalize directly the textbook [27]. Finally, we prove that each operator preserves
the is-process-invariant. The preservation even holds for arbitrary (possibly infinite) sets A
in the generalisations □x∈A → P(x) resp. ⊓x∈A → P(x). Note that both use higher-order
abstract syntax and have the type ′α set ⇒ ( ′α ⇒ ′α process) ⇒ ′α process.

A major problem prevails: how to give semantics to the fixed point operator?
This is achieved by turning the denotational domain of CSP into a Scott complete partial
order (cpo) [29], which provides semantics for the fixed point operator µ x . f (x) under the
condition that f is continuous wrt. this partial ordering. Since the natural ordering - ⊑F D -
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is too weak for this purpose, Roscoe and Brookes [24] proposed a complete process ordering
P ⊑ Q which is stronger, i. e. P ⊑ Q =⇒ P ⊑F D Q, and yet ensures completeness at least
for general read and write operations.
It is based on the concept refusals after a trace s (Ra P s ≡ {X | (s, X) ∈ F P}):

P ⊑ Q ≡ D Q ⊆ D P ∧ (∀ s. s /∈ D P −→ Ra P s = Ra Q s) ∧ min-elems (D P) ⊆ T Q

▶ Theorem 1 (Continuity). Almost all HOL-CSP operators ⊗ are continuous wrt. (⊑), i. e.:

cont f =⇒ cont g =⇒ cont(λx. (f x) ⊗ (g x))

▶ Theorem 2 (Fixed-point Inductions). Since (⊑F D) is admissible, when f is continuous we
have an induction rule of the following form:

C (⊥) ⊑F D Q =⇒ (
∧

x. C (x) ⊑F D Q =⇒ C (f x) ⊑F D Q) =⇒ C (µ X . f X) ⊑F D Q

▶ Proposition 3 (CSP-Algebra). HOL-CSP provides about 200 rules derived from the deno-
tational semantics, be it monotonicities or equalities, which were called the “axioms” in the
literature. We show here only the small collection used in the subsequent example proof:

(∀ y. c y ∈ S) =⇒ c?x → P x [[S ]] c?x → Q x = c?x → (P x [[S ]] Q x)
(∀ y. c y ∈ S) =⇒ inj c =⇒ c!a → P [[S ]] c?x → Q x = c!a → (P [[S ]] Q a)
d a /∈ S =⇒ (

∧
y. c y ∈ S) =⇒ d!a → P [[S ]] c?x → Q x = d!a → (P [[S ]] c?x → Q x)

d ∈ S =⇒ (
∧

y. c y /∈ S) =⇒ d → P [[S ]] c?x → Q x= c?x → (d → P [[S ]] Q x)
d a /∈ C =⇒ c ∈ C =⇒ c → Q [[C ]] d!a → P = d!a → (c → Q [[C ]] P)
∀ y. c y /∈ B =⇒ c?x → P x \ B = c?x → (P x \ B)
∀ y. c y /∈ B =⇒ c!a → P \ B = c!a → (P \ B)
c a ∈ B =⇒ c!a → P \ B = P \ B etc.

The theories HOL-CSP and HOL-CSPM [3] also add a number of extensions of the original
language. This includes for the binary operators P [[A]] P ′, P ; P ′, P □ P ′, P ⊓ P ′, the
generalizations [[S]]i ∈# M . P(i), ||| i ∈# M . P(i), etc. Roscoe’s operators Interrupt P
△ P ′ and Throw (exception handler) P Θ a ∈ A. P ′(a) have also been included since they
come in handy in some of the more general constructions. Finally, [31] proposed another
refinement ordering, the trace-divergence ordering P ⊑DT Q ≡ P ⊑T Q ∧ D Q ⊆ D P,
which has surprisingly benign properties wrt. operational semantics and which is relevant for
applications [12].

2.5 A Model and Sample Proof in HOL-CSP
Of course, proving refinements is not done by unfolding the definitions in the denotational
semantics. Instead, the predominant proof technique is merely fixed point induction via
Theorem 2, application of the algebraic rules of Proposition 3 as well as the monotonicity
rules which are a consequence of Theorem 1. We demonstrate this with the paradigmatic
CopyBuffer example, where we model a protocol COPY (“received data on channel left
will eventually be copied into channel right”) and an implementing SYS which transfers the
data from some SEND-component into some REC -component using an internal channel mid
where REC acknowledges each data-package via a signal on the internal ack-channel.

The formalisation of these model-elements proceeds as follows. The events were defined
by the inductive data-type introducing the channels:

datatype ′α channel = left ′α | right ′α | mid ′α | ack
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Note that this definition leaves open what data is actually transmitted. A synchronisation
set SYN is defined via {e | ∃ x . e = mid x} ∪ {ack}. The process COPY of type ′α channel
process is defined by µ x . left?xa → right!xa → x, the process SEND by µ x . left?xa →
mid!xa → ack → x and the process REC by µ x . mid?xa → right!xa → ack → x. The latter
two are wired together to the process SYS via SYS ≡ SEND [[SYN ]] REC \ SYN.

Now we ask the question: does SYS implement the protocol COPY ? This can be rewritten
as the following refinement problem : COPY ⊑F D SYS.
Unfolding COPY and applying Theorem 2 yields the two subgoals:
1. ⊥ ⊑F D (SEND [[SYN ]] REC \ SYN )
2.

∧
x. x ⊑F D (SEND [[SYN ]] REC \ SYN ) =⇒

left?a → right!a → x ⊑F D (SEND [[SYN ]] REC \ SYN )
where the former is trivial and the latter represents the induction step. If we unfold once
SEND and REC and apply the reduction rules of Proposition 3, this results in:

left?a → right!a → x ⊑F D left?a → right!a → (SEND [[SYN ]] REC \ SYN )

Applying the monotonicity rules resulting from Theorem 1 we can reduce this goal to the
induction hypothesis x ⊑F D (SEND [[SYN ]] REC \ SYN ).

Furthermore this proof can be highly automated (reduces to a few lines in Isabelle/Isar).
No assumption is made over ′α, this construction is therefore truly parametric over data,
which is in stark contrast to model-checkers for CSP such as [1, 30]. Using the fact that
functions over processes are continuous, we can specify and analyse, e. g., global variables by
VAR σinit ≡ (µ x . (λσ. (Read!σ → x σ) □ (Update?σ ′ → x σ ′))) σinit and other building
blocks of concurrent programs like buffers, semaphores and monitors.

3 Small Steps Semantics

Operational semantics of CSP involve two kinds of transitions that we need to define:
the τ transition, denoted P ⇝τ Q, (internal transition)
and the transition with an observable event (external transition) where we distinguish
the two cases resulting from the type sum of “real” events ev e and the special event ✓.
The former transition will be denoted by P ⇝e Q, the latter by P ⇝✓ Q.

Initially, Hoare and Jifeng in [20] proposed the following link between the operational
and denotational semantics: P ⇝τ Q ≡ P ⊑F D Q and P ⇝e Q ≡ P ⊑F D (e → Q) □ P.
This approach is fine as long as we do not consider explicit termination of processes via the
special event ✓. Moreover, the initial presentation was referring to fragment of the language
which foundation wrt. the underlying denotational semantics (including process ordering)
was still prone to subtle errors [34]. For these reasons, we opted for another bridge based on
the After operator, denoted P after e, which represents a kind of inversion of e → P. We
will investigate the precise connection between both definitions in Section 6.

3.1 The Notion of initials
As prerequisite, we need the events P can start with, called initials P and denoted P0.

▶ Definition 4 (initials). The definition is straightforward: P0 ≡ {e | [e] ∈ T P}
or equivalently, thanks to ′α process properties, P0 = {e | ∃ s. e · s ∈ T P}.

Intuitively, for each ev e in P0, the traces of P after e should be the tails of the traces of
P beginning with ev e. The question arises what happens with processes P where no trace is
beginning with ev e. The semantic domain of P after e will require that the set of traces is
non-empty (recall the is-process invariant from which we built the ′α process type).
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The initials are a notion commonly evoked in [6, 27, 28]; for now let us derive the general
computational rules for it.

▶ Theorem 5 (Basic rules for initials). We derive:

⊥0 = UNIV (P0 = ∅) = (P = STOP) SKIP0 = {✓}
(P ⊓ Q)0 = P0 ∪ Q0 (P □ Q)0 = P0 ∪ Q0 (e → P)0 = {ev e}

(P ▷ Q)0 = P0 ∪ Q0 (P △ Q)0 = P0 ∪ Q0 (P Θ a∈A. Q a)0 = P0

▶ Theorem 6 (More complex rules for initials). The following list requires more caution:
(Renaming P f )0 = (if P = ⊥ then UNIV else EvExt f ‘ P0)
(P ; Q)0 = (if P = ⊥ then UNIV else P0 − {✓} ∪ (if ✓ ∈ P0 then Q0 else ∅))
(P [[S ]] Q)0 = P0 ∪ Q0 − ({✓} ∪ ev ‘ S) ∪ P0 ∩ Q0 ∩ ({✓} ∪ ev ‘ S)
if P ̸= ⊥ and Q ̸= ⊥ (otherwise (⊥ [[S ]] Q)0 = UNIV and (P [[S ]] ⊥)0 = UNIV).

The equality for the Hiding operator, proved but omitted here, is downright difficult. Note
that the function initials is of type ′α process ⇒ ′α event set. This implies that we may have
✓ ∈ P0, especially when P = SKIP for which it serves as a refinement characterization.

▶ Theorem 7 (Characterization of initial ✓). ✓ ∈ P0 if and only if P ⊑F D SKIP.

3.2 The After Operator
There is no comprehensive treatment of the After operator in the CSP literature, at least not
with a formal definition and a precise clarification of the behaviour wrt. the other operators;
we had to do a number of trials and second-guessing here. A key element is the notion of
initials (Definition 4); assuming ev e ∈ P0 for P:: ′α process, we obviously choose its failures
to be {(s, X) | (ev e · s, X) ∈ F P} and its divergences {s | ev e · s ∈ D P}.

This solves part of the problem, but is not enough. We will need a total definition of
this operator in HOL, i. e. we need to deal with the case ev e /∈ P0. There are basically
the alternatives STOP, ⊥, or just some underspecified constant undefined. Since the actual
choice made leads to subtle differences in corner cases but does not impact the operational
rules that we establish, we use Isabelle locales mentioned in Subsection 2.3 to model this:

▶ Definition 8 (After operator).

locale After = fixes Ψ :: ‹[ ′α process, ′α] ⇒ ′α process› begin

lift-definition After :: ‹[ ′α process, ′α] ⇒ ′α process› (infixl ‹after› 77 )
is ‹λP e. if ev e ∈ initials P

then ({(s, X). (ev e # s, X) ∈ F P}, {s. ev e # s ∈ D P})
else (F (Ψ P e), D (Ψ P e))›

Here, lift-definition is a variant of Isabelle constant definition which gives automatic
support for “lifting” an operation of the ′α process0-level to ′α process. Note that Ψ is a
parameter of the locale requiring no assumption which can be instantiated freely.

The need of the theory of the After operator and its straightforward generalisation to
traces denoted by P / s was identified at many places in the CSP literature [15, 27, 28],
especially after basing the process-ordering (⊑) on its refusals. After and P / s play a pivotal
role when linking CSP to automata-theoretic concepts; nevertheless it was commonly treated
as something “meta”4.

4 Roscoe states that “this operator should not be thought of as an ordinary part of the CSP language”[27].
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In our work, we turn After into an ordinary operator, compatible with all other concepts,
preserving the invariant of ′α process, enjoying monotony and continuity, and a number of
distributivities (that one could call “algebraic laws”) useful for establishing an operational
semantics. The formal proofs of this part of our theory amount to 2000 lines. For example,
we obtain equalities like the following:

▶ Theorem 9 (After and Sync). (P [[S ]] Q) after e is equal to:
if P = ⊥ ∨ Q = ⊥ then ⊥
else if ev e ∈ P0 ∩ Q0

then if e ∈ S then P after e [[S ]] Q after e
else (P after e [[S ]] Q) ⊓ (P [[S ]] Q after e)

else if ev e ∈ P0 ∧ e /∈ S then P after e [[S ]] Q
else if ev e ∈ Q0 ∧ e /∈ S then P [[S ]] Q after e else Ψ (P [[S ]] Q) e

The only operator for which we have not managed to establish such a property is Hiding.
However, we have at least the following monotonies:

▶ Theorem 10 (After and Hiding).

[[ev e ∈ P0; e ∈ B]] =⇒ (P \ B) ⊑F D (P after e \ B)
[[ev e ∈ P0; e /∈ B]] =⇒ (P \ B) after e ⊑F D (P after e \ B)

This will not be too restrictive for our construction thanks to the following theorem.

▶ Theorem 11 (Characterization of FD-refinement).
The FD-refinement P ⊑F D Q holds if and only if P = P ⊓ Q.

3.3 The Rationale for an Operational Semantics
With respect to the τ transition, (⇝τ ), we follow the choice of Jifeng and Hoare in [20], i. e.
we define it by P ⇝τ Q ≡ P ⊑F D Q .

With respect to the external transitions, we expect that:
P ⇝e Q (resp. P ⇝✓ Q) is impossible if ev e /∈ P0 (resp. ✓ /∈ P0)
event transitions should absorb τ transitions (on both sides) because (⊑F D) is transitive
since P ⊑F D Q can be interpreted as “Q is more deterministic than P”, Q should be at
least as deterministic as P after e when P makes a transition via event e.

The formalization still requires an extension of the After operator to deal with ✓. This is
achieved by extending the locale with an additional parameter Ω.

▶ Definition 12 (Aftertick operator).

definition After tick :: ‹[ ′α process, ′α event] ⇒ ′α process› (infixl ‹after✓› 77 )
where ‹P after✓ e ≡ case e of ev x ⇒ P after x | ✓ ⇒ Ω P›

3.4 Finally: Formal Definitions of the Transition Relations
To make our construction as general as possible, we formalize the requirements of Subsec-
tion 3.3 by parameterizing the τ transition in a locale with four hypotheses:

locale OpSemTransitions = AfterExt Ψ Ω
for Ψ :: ‹[ ′α process, ′α] ⇒ ′α process› and Ω :: ‹ ′α process ⇒ ′α process› +

fixes τ -trans :: ‹[ ′α process, ′α process] ⇒ bool› (infixl ‹⇝τ › 50 )
assumes τ -trans-NdetL: ‹P ⊓ Q ⇝τ P›

and τ -trans-transitivity: ‹P ⇝τ Q =⇒ Q ⇝τ R =⇒ P ⇝τ R›
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and τ -trans-anti-mono-initials: ‹P ⇝τ Q =⇒ Q0 ⊆ P0›
and τ -trans-mono-AfterExt: ‹Q0 =⇒ P ⇝τ Q =⇒ P after✓ e ⇝τ Q after✓ e›

begin

abbreviation ev-trans :: ‹[ ′α process, ′α, ′α process] ⇒ bool› (‹- ⇝- -› [50 , 3 , 51 ] 50 )
where ‹P ⇝e Q ≡ ev e ∈ P0 ∧ P after✓ ev e ⇝τ Q›

abbreviation tick-trans :: ‹[ ′α process, ′α process] ⇒ bool› (‹- ⇝✓ -› [50 , 51 ] 50 )
where ‹P ⇝✓ Q ≡ ✓ ∈ P0 ∧ P after✓ ✓ ⇝τ Q›

To sum up, this locale needs to be instantiated with:
a function Ψ that is a placeholder for the value of P after e when ev e /∈ P0

a function Ω that is a placeholder for the value of P after✓ ✓
a binary relation (⇝τ ) which is compatible with (⊓), is transitive, makes initials anti-
monotonic and makes After tick monotonic.

With these only four local axioms, we can derive most of the basic operational rules for
SKIP, e → P, etc., and some of the rules for P \ S or P ; Q, . . . In order to recover the
remaining rules, we divide the work. For each operator with a missing rule, we introduce
a locale inheriting from OpSemTransitions in which we add a local axiom (about (⇝τ )).
With the rules already proven and the denotational properties of the operator, we can derive
the missing rules. Here, we illustrate the case of one of the rules for the Sync operator:

e /∈ S P ⇝e P ′

P [[S ]] Q ⇝e P ′ [[S ]] Q

Proof. (Derivation of one of the Sync Operational Rules).
Case P = ⊥ or Q = ⊥, this is obvious because of the properties of ⊥.
Otherwise since P ⇝e P ′ we have ev e ∈ P0.
With Theorem 6 and e /∈ S, we additionally have ev e ∈ (P [[S ]] Q)0.
Thus, from Theorem 9, (P [[S ]] Q) after e is equal to (P after e [[S ]] Q) ⊓ (P [[S ]] Q after e)
if ev e ∈ Q0, and P after e [[S ]] Q otherwise.
In both cases, with (⇝τ ) properties, we obtain (P [[S ]] Q) after e ⇝τ P after e [[S ]] Q.
Using the additional assumption that, in general, P ⇝τ P ′ =⇒ P [[S ]] Q ⇝τ P ′ [[S ]] Q, we
finally conclude that P [[S ]] Q ⇝e P ′ [[S ]] Q. ◀

Finally, by assembling the locales of each operator (which is inheriting of all these locales),
their instantiations lead to formal proofs that the core of the ruleset shown in Section 4
are actually derivable for T,F, and FD semantics. In the end, they all rely on the four
assumptions of OpSemTransitions and on eight additional assumptions of monotony for the
first argument wrt. (⇝τ ) for the operators Det, Seq, Hiding, Sync, Sliding, Interrupt, Throw
and Renaming e. g. P ⇝τ P ′ =⇒ P ▷ Q ⇝τ P ′ ▷ Q. Special cases of rules not in the core
ruleset will be discussed in the subsequent sections.

4 The Derived Rules of the Operational Semantics at a Glance

P ⇝e P ′ P ′⇝τ P ′′

P ⇝e P ′′
P ⇝τ P ′ P ′⇝e P ′′

P ⇝e P ′′

P ⇝✓ P ′ P ′⇝τ P ′′

P ⇝✓ P ′′
P ⇝τ P ′ P ′⇝✓ P ′′

P ⇝✓ P ′′

absorption

ITP 2024



7:10 An Operational Semantics in Isabelle/HOL-CSP

SKIP ⇝✓ Ω SKIP
SKIP

cont f P = (µ x . f x)
P ⇝τ f P

fixed point

e → P ⇝e P
e ∈ A

□a∈A → P a ⇝e P e
e ∈ A

⊓a∈A → P a ⇝e P e
prefix

P ⊓ Q ⇝τ P P ⊓ Q ⇝τ Q
e ∈ A

⊓ a∈A. P a ⇝τ P e
internal choice

P ⇝τ P ′

P □ Q ⇝τ P ′ □ Q
P ⇝e P ′

P □ Q ⇝e P ′
P ⇝✓ P ′

P □ Q ⇝✓ Ω SKIP
Q ⇝τ Q ′

P □ Q ⇝τ P □ Q ′
Q ⇝e Q ′

P □ Q ⇝e Q ′
Q ⇝✓ Q ′

P □ Q ⇝✓ Ω SKIP
external choice

P ▷ Q ⇝τ Q
P ⇝τ P ′

P ▷ Q ⇝τ P ′ ▷ Q
P ⇝e P ′

P ▷ Q ⇝e P ′
P ⇝✓ P ′

P ▷ Q ⇝✓ Ω SKIP
sliding choice

P ⇝τ P ′

P ; Q ⇝τ P ′ ; Q
P ⇝e P ′

P ; Q ⇝e P ′ ; Q
P ⇝✓ P ′ Q ⇝τ Q ′

P ; Q ⇝τ Q ′

sequential composition

P ⇝τ P ′

P \ B ⇝τ P ′ \ B
P ⇝✓ P ′

P \ B ⇝✓ Ω SKIP
e /∈ B P ⇝e P ′

P \ B ⇝e P ′ \ B
e ∈ B P ⇝e P ′

P \ B ⇝τ P ′ \ B
hiding

P ⇝τ P ′

P [[S ]] Q ⇝τ P ′ [[S ]] Q
e /∈ S P ⇝e P ′

P [[S ]] Q ⇝e P ′ [[S ]] Q
P ⇝✓ P ′

P [[S ]] Q ⇝τ SKIP [[S ]] Q
Q ⇝τ Q ′

P [[S ]] Q ⇝τ P [[S ]] Q ′
e /∈ S Q ⇝e Q ′

P [[S ]] Q ⇝e P [[S ]] Q ′
Q ⇝✓ Q ′

P [[S ]] Q ⇝τ P [[S ]] SKIP
e ∈ S P ⇝e P ′ Q ⇝e Q ′

P [[S ]] Q ⇝e P ′ [[S ]] Q ′ SKIP [[S ]] SKIP ⇝✓ Ω SKIP
synchronization
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P ⇝τ P ′

P △ Q ⇝τ P ′ △ Q
P ⇝e P ′

P △ Q ⇝e P ′ △ Q
P ⇝✓ P ′

P △ Q ⇝✓ Ω SKIP
Q ⇝τ Q ′

P △ Q ⇝τ P △ Q ′
Q ⇝e Q ′

P △ Q ⇝e Q ′
Q ⇝✓ Q ′

P △ Q ⇝✓ Ω SKIP

interrupt

P ⇝τ P ′

P Θ a∈A. Q a ⇝τ P ′ Θ a∈A. Q a
P ⇝✓ P ′

P Θ a∈A. Q a ⇝✓ Ω SKIP
e /∈ A P ⇝e P ′

P Θ a∈A. Q a ⇝e P ′ Θ a∈A. Q a
e ∈ A P ⇝e P ′

P Θ a∈A. Q a ⇝e Q e

throw

P α⇝τ P ′

Renaming P f β⇝τ Renaming P ′ f
f a = b P α⇝a P ′

Renaming P f β⇝b Renaming P ′ f
P α⇝✓ P ′

Renaming P f β⇝✓ Ωβ SKIP

renaming

5 Big Steps Semantics

The notation P / [e] sometimes appearing in the classical literature will now be given a formal
definition in terms of the After tick (Definition 12) operator. From there, the generalization
to an operator “connecting” two processes P and Q via a trace s – analogously to the notion
of δ function in automata theory – is straightforward. In the same manner, we can combine
small steps transitions to a trace transition. These generalized notions will allow for both
establishing new formats of refinement proofs as well as (bi)simulation theorems.

5.1 Extensions to Traces
The definition of the generalized After operator proceeds inductively:

▶ Definition 13 (Aftertrace operator).

fun After trace :: ‹[ ′α process, ′α trace] ⇒ ′α process› (infixl ‹afterT › 77 )
where ‹P afterT [] = P›
| ‹P afterT (e # s) = (P after✓ e) afterT s›

The definition of the generalized trace-transition is done analogously:

▶ Definition 14 (Transition with a trace).

inductive trace-trans :: ‹[ ′α process, ′α trace, ′α process] ⇒ bool› (‹-/ ⇝∗-/ -› [50 , 3 , 51 ] 50 )
where trace-τ -trans : ‹P ⇝τ P ′ =⇒ P ⇝∗ [] P ′›
| trace-tick-trans : ‹P ⇝✓ P ′ =⇒ P ⇝∗ [✓] P ′›
| trace-Cons-ev-trans : ‹P ⇝e P ′ =⇒ P ′ ⇝∗ s P ′′ =⇒ P ⇝∗ (ev e) # s P ′′›

The After trace operator and the trace transition P ⇝∗s Q are deeply related, which is
expressed in the following theorem:
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▶ Theorem 15 (Bridge between trace transition and Aftertrace operator).

P ⇝∗s Q if and only if s ∈ T P ∧ P afterT s ⇝τ Q.

Informally spoken, P afterT s is the the least deterministic process that we can expect from
process P after the trace s. This interpretation will become clearer when we will instantiate
the formal (⇝τ )-relation of the locale with concrete refinements in Section 6.

Since the projections for the After trace operator are relatively easy to handle, this theorem
is an important new weapon in our arsenal. We will illustrate this by the following “reality
checks” which have concrete applications when certifying traces or divergences.

▶ Theorem 16 (Reality Checks).

We have s ∈ T P if and only if ∃ Q. P ⇝∗s Q.
Under the assumption ∀ P. P ⇝τ ⊥ −→ P = ⊥ of unicity of the least element of (⇝τ ),
a trace tickFree s verifies s ∈ D P if and only if P ⇝∗s ⊥.
Under the assumption ∀ P Q. P ⇝τ Q −→ P ⊑F Q that a τ transition implies F-
refinement, and if tickFree s, we have (s, X) ∈ F P if and only if ∃ Q. P ⇝∗s Q ∧ X ∈
R Q.

(where R Q is the set of refusals of Q, defined as {X | ([], X) ∈ F Q}).

5.2 Strong Induction and (Bi)Simulations
The following theorem (and its generalizations not shown here) represents a new form of
induction over the set of reachable processes:

▶ Theorem 17 (Strong Induction for Refinements). ] Let f be a continuous function:
[[∃ s∈T P. tickFree s ∧ Q = P afterT s;∧

s x . [[s ∈ T P; ∀ y. (∃ s∈T P. tickFree s ∧ y = P afterT s) −→ x ⊑F D y]]
=⇒ f x ⊑F D P afterT s]]

=⇒ (µ x . f x) ⊑F D Q

Note that as in Hoare and Jifengs approach, there will always be infinite sequences of τ

transitions. This is a consequence of the fact that the FD-refinement is reflexive. More
generally speaking, since any process equality P = Q is subsumed by the reflexivity P ⇝τ

Q, this is unavoidable: unfolding fixed points, for example, also falls into the category of
infinite sequences of τ transitions. Compared to classical operational semantics in CCS,
which is defined purely in terms of syntactic manipulations on process-terms, this means that
we can never have “strong simulations” in our denotational framework, which is based on
higher-order abstract syntax and a congruence generated from the equality on the semantic
domain. Rather, we will target weak transitions resp. simulations, which are, as we argue,
more suited for the semantic treatment we are heading for.

6 The Construction put into a Global Perspective

6.1 Transitions as Local Refinements
We use a sublocale to partially instantiate OpSemTransitions with (⊑F D), i. e. by leaving
Ψ and Ω as parameters. In this context we prove that we have only one remaining hypothesis
: [[✓ ∈ Q0; P F D⇝τ Q]] =⇒ Ω P F D⇝τ Ω Q, which is obvious if Ω takes the value STOP
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(a choice commonly used in the literature, whether explicitly stated or implied). However, in
principle, any constant function is acceptable for Ω since we do not care about the traces
after a termination5.

Independent of this choice, we recover all the rules of operational semantics, and even
better for the “reality checks” (Theorem 16) since we get rid of the hypotheses.

However, it remains unfortunate that in the right hand side of the equivalence for failures
appears the denotational notion of refusals.

One work-around for this problem are deterministic processes. A process P is said to be
deterministic if ∀ s e. s @ [e] ∈ T P −→ (s, {e}) /∈ F P. We will not detail much this notion
here6, but to cut a long story short we prove that being in the refusals set of a deterministic
process P is the same as non intersecting its initials P0. Moreover, the notion of deterministic
is preserved by tickFree trace transitions. We finally prove:

▶ Theorem 18 (Deterministic Version of failures reality Check).
Assuming deterministic P and tickFree s, we have:

(s, X) ∈ F P if and only if ∃ Q. P F D⇝∗s Q ∧ X ∩ Q0 = ∅.

It came as a pleasant surprise when we observed that the same argument applies for the
trace divergence refinement (⊑DT ). Initially defined and studied in [31] for pure curiosity, it
behaves remarkably well: the only remaining hypothesis is a monotony for Ω : [[✓ ∈ Q0; P
DT⇝τ Q]] =⇒ Ω P DT⇝τ Ω Q and we recover all the rules of the operational semantics.

Of course by restricting ourselves to traces and the divergences, we can not reason about
failures anymore.

It turns out that it is also possible to instantiate the τ transition in the locale OpSem-
Transitions with the failure refinement or the trace refinement. However, for them, the result
is somewhat unimpressive. The following table summarizes the rule sets corresponding to
operators which can be established.

basic (□) (;) P \ S P [[S ]] Q (▷) (△) Throw Renaming
(⊑F D) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(⊑DT ) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(⊑F ) ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

(⊑T ) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗

where “basic” refers to the rules for absorption, SKIP, e → P, □ a ∈ A → P a, ⊓ a ∈ A →
P a, P ⊓ Q and µ X . f X that we get as soon as we instantiate OpSemTransitions.

Being able to instantiate the locale represents the main result: we can formally derive an
operational semantics from the denotational one developed in HOL-CSP. This also constitutes
a formal proof that the expected rules are consistent (see Section 4).

And last but not least, we obtained actually two interesting variants with FD-refinement
and DT-refinement, plus all the sub-variants resulting from the free choice of Ψ and Ω.

6.2 Running Example: the Copy Buffer Again
From the derived laws of Section 4 we can formally obtain the following LTSs for the Copy
Buffer example presented in Subsection 2.5. Note that the τ -transition are collapsed thanks to
the absorbtion rules, and with the properties of initials we ensure that no external transition
is missed. Further note that t1 is a key for the term mid e → ack → SEND, t2 for ack →
SEND, t3 for right e → ack → REC, t4 for ack → REC, and finally t5 for right e → SYS.

5 Therefore, we are free to choose for Ω λP. P ⊓ STOP or λP. Renaming P f or λP. e → P, . . .
6 We refer to [27].
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SEND

t1 t2

left ?e

mid e

ack

REC

t3 t4

mid ?e

right e

ack

SYS

t5

left?e right e

Figure 1 LTSs for the Copy Buffer Example.

6.3 Comparison with the Work of Jifeng and Hoare
As mentioned in Section 3, Hoare and Jifeng in [20] defined P ⇝τ Q ≡ P ⊑F D Q and
P ⇝e Q ≡ P ⊑F D (e → Q) □ P. Looking at our version (instantiated with the FD-
refinement), we differ on the external transition with ev e ∈ P0 ∧ P after e ⊑F D Q instead.
What happened? Did we miss something?

In general, from the generic τ transition in our locale, we can define P HOARE⇝e Q ≡
P ⇝τ (e → Q) □ P. We immediately prove that their version is stronger than ours i. e. P
HOARE⇝e Q =⇒ P ⇝e Q. However, adding the two hypotheses of monotony on (⇝τ ), we
can prove the reciprocal. The situation is summarized in the following theorem:

▶ Theorem 19 (Equivalence of Transitions).
Assuming a τ monotony for prefix: ∀ P P ′ e. P ⇝τ P ′ −→ e → P ⇝τ e → P ′

and for Det: ∀ P P ′ Q. P = ⊥ ∨ P ′ ̸= ⊥ −→ P ⇝τ P ′ −→ P □ Q ⇝τ P ′ □ Q,
we have P HOARE⇝e Q if and only if P ⇝e Q.

These two hypotheses are verified by all four refinement relations. In other words, the
definition of Jifeng and Hoare is equivalent to ours as long as we do not consider ✓!

Indeed, as mentioned in Section 3, their definition can not handle ✓ because the prefix
operator only accepts a “real” event. In this sense one can say that our construction is
a generalization. Furthermore, the After tick operator gives a direct access to the least
deterministic process that can be expected while doing an external transition, which is not
easily accessible from the version of Hoare and Jifeng. Finally we note that the After operator
is itself of interest, even if we restrict ourselves to a purely denotational reasoning7.

6.4 Discussion
Our construction and the resulting proof rules (Section 4) permit the following observations:
1. As a general rule, when looking at a transition involving the special event ✓, we obtain

something like P ⊗ Q ⇝✓ Ω SKIP. This is a consequence of Theorem 7 and Theorem 11.
2. The “absorption” rules at the beginning allow additional rules to be derived directly e. g.

P ⇝✓ P ′ Q ⇝e Q ′

P ; Q ⇝e Q ′
P ⇝✓ P ′ Q ⇝✓ Q ′

P ; Q ⇝✓ Q ′

3. About the termination of Sync operator, Roscoe postulates in [27] that:
P ⇝✓ P ′

P [[S ]] Q ⇝τ Ω ′ [[S ]] Q
P ⇝✓ P ′

P [[S ]] Q ⇝τ Ω ′ [[S ]] Q Ω ′ [[S ]] Ω ′⇝✓ Ω ′

7 The interested reader is referred to examples of fixed point induction to reason about deadlock freeness[4].
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where Ω ′ is intended to denote any process that has already terminated. In the common
interpretation that Ω ′ can be identified with STOP, these rules are incompatible with the
denotational properties since we have STOP [[S ]] STOP = STOP that can not make a ✓
transition. Under the assumptions of the locale, we rather prove the rules of Section 4.

4. We deliberately focus in Section 4 on the operational rules that we found in the literature.
In particular for the Throw operator, where the right argument remains inactive until an
exception is triggered, we should not write a right τ transition rule like:

∀ a∈A. Q a ⇝τ Q ′ a
P Θ a∈A. Q a ⊑F D P Θ a∈A. Q ′ a

while this is true when instantiating (⇝τ ) with (⊑F D), (⊑DT ), (⊑F ) or (⊑T ).

7 Related Work

In the introduction, we claimed that HOL-CSP is arguably the most comprehensive formal-
ization of CSP; here, we’d like to substantiate this claim.

The theory of CSP has attracted a lot of interest since the eighties and nineties, both as
a theoretical device as well as a modelling language to analyze complex concurrent systems.
A wealth of theoretical articles appeared to investigate certain fragments and extensions of
the core framework; it is therefore not surprising that attempts to their formalisations have
been undertaken with the advent of interactive proof assistants.

Most noteworthy to these attempts is an early CSP trace semantics model in HOL
System proposed by [11]. Its successor [10] presented a first failure-divergence semantics for
a restricted set of operators and used the notion of a universal (polymorphic) alphabet8.
Note that [34] tackled already with subtle difficulties concerning is-process and ✓.

The tool CSP-Prover [18] – based on a deep embedding of CSP in an Isabelle/HOL
theory on the stable failures model – allows for the refinement verification [18] by using some
automated support for induction. However, only if a process is divergence-free, its failures
are the same as its stable failures. In our view, this is a too strong assumption for both a
theory as well as a practical tool.

In the past few years, CSP benefited from a renewed interest with proof assistants. CSP
Agda was introduced in 2026 [16] with an implementation quite different from HOL-CSP since
it is based on coinductive data types. Only trace and stable failures semantics have been
covered so far, and the library of proven laws is fairly modest [17]. In 2020, an operational
semantics of CSP in Coq was introduced [13] by a direct definitional approach. The theory
covers only trace refinement and a subset of CSP’s operators, but offers rather well-developed
proof automation for this language fragment close to conventional automata theory.

With respect to all these formalizations in HOL, we would like to remind the importance
of the general fact that invariants (like is-process) or bridge theorems (like Hoare’s P ⇝e
Q ≡ P ⊑F D (e → Q) □ P) do not simply generalise from one fragment to the next, and
that features which are well studied in one fragment are not necessarily well-understood in
the whole picture. It is our main contribution to provide an integrated formal theory that
tackles with the complexities of the necessary generalisations. This involved a revision of the
role of the After operator in the entire theory.

In the late nineties, research focused on automated verification tools for CSP, most notably
on FDR (see [1] for the latest instance). It relies on an operational CSP semantics, that allows
for a conversion of processes into labelled transition systems, where the states were normalized

8 Our first attempts for HOL-CSP [34] are based on a extended version of this theory ported to Is-
abelle/HOL
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by the “axioms” derived from the denotational semantics. For finite event sets, FDR can
reduce refinement proofs to bisimulation problems. With efficient compression techniques,
state-elimination and factorization by semantic equivalence [26], FDR was successful in
analysing some industrial applications. However, such a model checker can never handle
infinite cases. Another similar model checking tool [30] implemented some more optimization
techniques, such as partial order reduction, symmetric reduction, and parallel model checking,
but is also restricted to the finite case. In a way, these tool require for their foundation
integrated denotational/algebraic/operational techniques as provided by our theory.

Attempts to find characterizations of processes to generalise finite results to infinite ones
by data-independence [21, 2, 25], a variant of parametric model-checking, have seen only a
limited success. Roscoe developed a data independent technology to verify security protocols
modelled with CSP/FDR, which allows the node to call infinite fresh values for nonces, thus
infinite sequence of operations [25]. An extension of this work was proposed in [2] using the
script language CSPM . However, in their works, even though each agent in the security
protocol can perform infinite number of operations, the number of agent entities remains
finite. HOL-CSP satisfies the need to parameterization and high-order processes naturally
[32] as a consequence of their pcpo-type structure. A formalization and theory development
of CSPM has been undertaken [3] but is out of the scope of this paper.

8 Conclusion

We presented a formalisation of a comprehensive semantic theory for CSP, a ’classical’
language for the specification and analysis of concurrent systems studied in a rich body of
literature. The theory comprises the denotational part (including recursion and permitting
higher-order processes), the algebraic part paving the way for parametric refinement proofs
involving fixed point induction, and the operational semantics part. The size of the latter,
which constitutes an original contribution, is about 16 kLOC of Isabelle/HOL proofs.

The resulting framework offers new ways to reason consistently over denotationally
defined CSP processes paving the way to symbolic execution of LTS-based representations of
processes as well as the possibility to certify output from model-checkers like [1, 30], which
excel in the calculational parts related to interleaving processes. As a by-product, the theory
allows for new proof principles like strong induction (cf. Theorem 17).

An interesting line of future work is the development of a library of “process-bricks”
containing, e. g., semaphores, monitors or just global variables like:

VAR Read Update ≡ µ x. (λσ. (Read!σ → x σ) □ (Update?σ ′ → x σ ′))

or non-deterministic key-generators like:

KEY chan ≡ (µ x. (λσ. chan!a ∈ σ → x (σ − {a}))) �

which will have symbolic traces like:

[[a ∈ �; b ∈ � − {a}; c ∈ � − {a, b}]] =⇒ [C a, C b, C c] ∈ T (KEY C )

which can be derived both algebraically as well as operationally.
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Abstract
Directed topology augments the concept of a topological space with a notion of directed paths. This
leads to a category of directed spaces, in which the morphisms are continuous maps respecting
directed paths. Directed topology thereby enables an accurate representation of computation paths
in concurrent systems that usually cannot be reversed.

Even though ideas from algebraic topology have analogues in directed topology, the directedness
drastically changes how spaces can be characterised. For instance, while an important homotopy
invariant of a topological space is its fundamental groupoid, for directed spaces this has to be
replaced by the fundamental category because directed paths are not necessarily reversible.

In this paper, we present a Lean 4 formalisation of directed spaces and of a Van Kampen theorem
for them, which allows the fundamental category of a directed space to be computed in terms of
the fundamental categories of subspaces. Part of this formalisation is also a significant theory of
directed spaces, directed homotopy theory and path coverings, which can serve as basis for future
formalisations of directed topology. The formalisation in Lean can also be used in computer-assisted
reasoning about the behaviour of concurrent systems that have been represented as directed spaces.
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1 Introduction

Any topological space is equipped with a set of paths (continuous maps from the unit
interval into the space), which is closed under composition and reversion. However, one often
needs to distinguish a subset of paths following a particular direction, for example to model
non-reversible processes. One motivation stems from models of true concurrency [9], where
executions are modelled as non-reversible paths in a space. For instance, two programs A
and B can be executed sequentially in two ways: either we first run A and then B, or vice
versa, see a) of Figure 1. This choice between two sequential linearisations corresponds to
semantics of labelled transition systems, but it neglects potential parallel execution. To see
this, suppose that A and B have no dependency or interaction and can be run in parallel.
This situation can be modelled by admitting any path in the square from the bottom left
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Figure 1 Possible execution paths of two programs A and B under three conditions: a) sequential
(left), b) simultaneous (middle) and c) simultaneous with obstacles (right).

to the top right as a valid execution, with the intuition that going along the path tracks
how far each of the processes has been run, see b) of Figure 1. The caveat is that processes
can, in general, not be reversed and therefore the path may only ever go up and to the
right, following the directions of the arrows. Suppose that there is a dependency between
the processes, for instance they need to write to the same memory location. To prevent race
conditions, we could rule out execution paths in which the processes access that memory
location at the same time. This can be modelled by the space in Figure 1 c), where the
darker rectangle is an obstacle that paths have to bypass. The two displayed paths in that
space represent different memory access patterns: the lower path means that process B first
gets access to the memory location, while the upper means that A first gets access. These
two paths are essentially different because the observable behaviour of the system differs and
because we cannot change the access pattern during execution. In contrast, the different
paths in Figure 1 b) model executions that differ only in the relative execution speeds of
A and B but are otherwise equivalent. By giving one process more execution time, we can
always deform one path into another in this space. Finally, the space in Figure 1 a) has
exactly two paths from the bottom left to top right, neither of which can be deformed to the
other due to the absence of parallelism. This tells us that the spaces in Figure 1 all model
different systems. The question is then how our intuition about relating execution paths can
be made precise and how we can reason about these relations.

Directed topology and directed homotopy theory [8, 13] make the above intuition precise
and enable the analysis of concurrent systems with the tools of algebraic topology. There
are various ways to enforce direction in topological spaces, such as higher-dimensional
automata [22, 20], spaces with a global order [10], spaces with local orders [7], streams [15],
and various others [6, 11]. We will focus here on the notion of d-space [12], which represents
a directed space as a topological space with a distinguished set of directed paths. It then
turns out that reasoning about concurrent systems becomes reasoning about the homotopy
type of d-spaces, that is, the relation between directed paths in a d-space.

An important strategy in building and analysing large systems is to prove local properties
of subsystems and deduce properties of the composed system from these local properties. In
algebraic topology, an important result allowing us to combine knowledge of the homotopy
type of subspaces into knowledge about the whole space is the Van Kampen theorem [3]. This
result expresses the fundamental group of a topological space as a pushout of fundamental
groups of suitably chosen subspaces. It has been extended to d-spaces by Grandis [12]. To
make the latter result applicable in larger systems, we set out in this paper to formalise the Van
Kampen theorem for d-spaces in the proof assistant Lean [5], thereby enabling compositional
reasoning about homotopy types of d-spaces and of concurrent systems modelled as d-spaces.



H. Basold, P. Bruin, and D. Lawson 8:3

1.1 Contributions
Our main contribution is the formalisation of definitions and theorems relating to directed
topology, in particular the Van Kampen Theorem. For this formalisation we used Lean
4.6.0-rc1 and we built upon the work already present in mathlib [18]. All of the formalisation
can be found in the accompanying Git repository [16]. It consists of 5.6k lines of code
distributed over 30 files. Throughout the article, excerpts from the formalisation are given
to show the implementations of definitions and lemmas.

As directed topology has not been formalised before, our formalisation is a natural starting
point for the development of a formalised directed topology. Our work has not yet been
integrated into mathlib, but we plan on doing so in the near future.

1.2 Related work
There are currently no other formalisations of (parts of) directed topology. The undirected
Van Kampen theorem has been formalised in Agda by Favonia and Shulman [14], and in
Lean 2 by Van Doorn et al. [21]. In both cases, the formalisation uses synthetic homotopy
theory in the form of univalent homotopy type theory, while our formalisation is analytic,
that is, we define homotopy as concept derived from (directed) topological spaces. At the
moment, mathlib does not contain a proof of the undirected Van Kampen Theorem.

1.3 Overview
In Section 2, we define the notion of directed spaces and directed maps and give a few
examples. In Section 3, the definitions and some properties of directed homotopies and
directed path homotopies are given. We use those to define relations on the set of directed
paths between two points. In Section 4, the equivalence classes of paths under these relations
are used to define the fundamental category. The Van Kampen Theorem is stated in Section 5
and we describe the connection between its proof and its formalisation in a precise manner.
Finally, in Section 6 we reflect on the ideas presented in this article.

2 Directed Spaces

In this section, we will look at the basic structure of a directed space. With directed maps
as morphisms, the category of directed spaces dTop is obtained.

2.1 Directed Spaces
A directed space is a topological space with a distinguished set of paths, whose elements are
called directed paths. This set must contain all constant paths and must be closed under
concatenation and monotone subparametrisation. We denote the concatenation of two paths
by ⊙.

▶ Definition 1 (Directed space). A directed space is a topological space X together with a
subset PX of the set of paths in X, satisfying the following three properties:
1. For any point x ∈ X, we have 0x ∈ PX , where 0x is the constant path in x.
2. For any two paths γ1, γ2 ∈ PX with γ1(1) = γ2(0), we have γ1 ⊙ γ2 ∈ PX .
3. For any path γ ∈ PX and any continuous, monotone map φ : [0, 1] → [0, 1], we have

γ ◦ φ ∈ PX .
The elements of PX are called directed paths or dipaths.

ITP 2024
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We will first consider some examples of directed spaces.

▶ Example 2 (Directed unit interval). We can give the unit interval a rightward direction.
This is done by taking P[0,1] = {φ : [0, 1] → [0, 1] | φ continuous and monotone}. We will
denote this directed space by I. More generally, every (pre)ordered space can be given a set
of directed paths this way.

▶ Example 3 (Product of directed spaces). If (X, PX) and (Y, PY ) are two directed spaces,
then the space X × Y with the product topology can be made into a directed space by
letting PX×Y = {t 7→ (γ1(t), γ2(t)) | γ1 ∈ PX and γ2 ∈ PY }. As we will see in Section 2.2,
with this set of directed paths both projection maps will be examples of directed maps and
(X × Y, PX×Y ) becomes a product in a categorical sense.

▶ Example 4 (Induced directed space). Let X be a topological space and (Y, PY ) a directed
space. Let a continuous map f : X → Y be given. If γ : [0, 1] → X is a path in X,
then f ◦ γ : [0, 1] → Y is a path in Y . We can make X into a directed space by taking
PX = {γ ∈ C([0, 1], X) | f ◦ γ ∈ PY }. In the special case that X is a subspace of Y and f is
the inclusion map, we find that every subspace of a directed space can be given a natural
directedness.

We formalised the notion of a directed space by extending the TopologicalSpace class.
In our formalisation, we do not explicitly use a set containing paths. Rather, being a directed
path is a property of a path itself, analogously to how being open is a property of a set in
the TopologicalSpace class. Paths in topological spaces have been implemented in mathlib
in the file Topology/Connected/PathConnected.lean. A path has type Path x y, where
its starting point is x and its endpoint is y. The definition of a directed space can be found
in directed_space.lean.
class DirectedSpace (α : Type u) extends TopologicalSpace α where

IsDipath : ∀ {x y : α}, Path x y → Prop
isDipath_constant : ∀ (x : α), IsDipath (Path.refl x)
isDipath_concat : ∀ {x y z : α} {γ1 : Path x y} {γ2 : Path y z},

IsDipath γ1 → IsDipath γ2 → IsDipath (Path.trans γ1 γ2)
isDipath_reparam : ∀ {x y : α} {γ : Path x y} {t0 t1 : I}

{f : Path t0 t1}, Monotone f → IsDipath γ →
IsDipath (f.map (γ.continuous_toFun))

The term IsDipath determines whether a path is directed. The three other terms are
exactly the three properties of a directed space. Path.refl x is the constant path in a
point x and Path.trans is used for the concatenation of paths. The mathlib library only
has support for reparametrisations of paths (meaning that the endpoints must remain the
same), but we want to also allow strict subparametrisations. We do this by interpreting the
subparametrisation f as a monotone path in [0, 1]. Then the path γ ◦ f can be obtained
using Path.map, where we interpret γ as a continuous map.

In constructions.lean, various instances of directed spaces can be found: topological
spaces with a preorder (Example 2), products of directed spaces (Example 3) and induced
directedness (Example 4).

For brevity, we introduce a notation for the set of all directed paths between x and y.

▶ Definition 5. If X is a directed space and x, y ∈ X points, we use the shorthand notation
PX(x, y) for the set {γ ∈ PX | γ(0) = x and γ(1) = y}.

This definition can also be seen as a type for our formalisation. That is exactly how to
interpret the structure Dipath, found in dipath.lean:

https://github.com/leanprover-community/mathlib4/blob/fa48894/Mathlib/Topology/Connected/PathConnected.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/directed_space.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/dipath.lean
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variable {X : Type u} [DirectedSpace X]
structure Dipath (x y : X) extends Path x y :=

(dipath_toPath : IsDipath toPath)

It extends the path structure and depends on two points x and y in a directed space X.
The term dipath_toPath has type IsDipath toPath. That means that the underlying
path it extends must be a directed path. Due to the axioms of a directed space, we can
define Dipath.refl and Dipath.trans analogously to their path-counterparts. However,
Path.symm, the reversal of a path, cannot be converted to a directed variant as it is not
guaranteed that the reversal of a directed path is directed.

We introduce a notation for a special kind of subpath of a directed path.

▶ Definition 6. Let X be a directed space and γ ∈ PX a directed path. Given integers
n > 0 and 1 ≤ i ≤ n, we will define γi,n ∈ PX to be the path from γ( i−1

n ) to γ( i
n ) given by

γi,n(t) = γ( i+t−1
n ).

We can now say what it means for a directed path to be covered by a cover of a directed
space. This definition will play a big role in proving and formalising the Van Kampen
Theorem for directed spaces.

▶ Definition 7. Let X be a directed space, U ⊆ X a subset and γ ∈ PX a directed path. We
say that γ is contained in U if Im γ ⊆ U .

▶ Definition 8. Let X be a directed space and U a cover of X. Let γ ∈ PX be a directed
path and n > 0 an integer. We say that γ is n-covered (by U) if γi,n is contained in some
Ui ∈ U for each 1 ≤ i ≤ n.

In path_cover.lean we formalise this definition of n-covered in the special case that U
consists of two sets X0 and X1 using induction:

variable {x y : X} (hX : X0 ∪ X1 = univ)

def covered (γ : Dipath x y) : Prop :=
(range γ ⊆ X0) ∨ (range γ ⊆ X1)

def covered_partwise (γ : Dipath x y) (n : N) : Prop := match n with
| Nat.zero => covered hX γ

| Nat.succ n =>
covered hX (FirstPart γ (Fraction.ofPos (Nat.succ_pos n.succ))) ∧
covered_partwise hX

(SecondPart γ (Fraction.ofPos (Nat.succ_pos n.succ))) n

Here covered corresponds with γ being 1-covered: its image is either contained in X0 or
in X1. We use this definition to inductively define covered_partwise. As it is easier to start
at zero in Lean, covered_partwise hX γ n corresponds with γ being (n+1)-covered. In the
case that n = 0, we have that covered_partwise simply agrees with covered. Otherwise,
we use an induction step to define that covered_partwise hX γ (Nat.succ n) holds if the
first part γ1,n+2 is covered and the remainder of γ is covered_partwise hX γ n. Note the
use of n + 2 instead of n + 1 due to the offset between the definitions. The remainder of
path_cover.lean contains lemmas about conditions for being n-covered.
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2.2 Directed Maps
As directed spaces are an extension of topological spaces, directed maps will be extensions
of continuous maps. They will need to respect the extra directed structure. If a path in
the domain space is given, a path in the codomain space can be obtained by composing the
continuous map with the path. If the former is directed, so should be the latter.

▶ Definition 9 (Directed map). Let X and Y be two directed spaces. A directed map
f : X → Y is a continuous map on the underlying topological spaces that furthermore
satisfies: for any γ ∈ PX , we have f ◦ γ ∈ PY .

By the construction of the product of directed spaces in Example 3, the continuous
projection maps on both coordinates are directed: a directed path in the product space is
a pair of directed paths and a projection returns the original directed path. Similarly, if
a continuous map f : X → Y is used to induce a direction on X as in Example 4, then f

becomes a directed map from X to Y , where X has the induced directedness.
In order to formalise the definition of a directed map in Lean, we define the property

Directed, which expresses exactly that a continuous map between two directed spaces maps
directed paths to directed paths. A directed map is then an extension of the ContinuousMap
structure with a proof for being Directed.
variable {α β : Type*} [DirectedSpace α] [DirectedSpace β]
def Directed (f : C(α, β)) : Prop := ∀ {x y : α} (γ : Path x y),

IsDipath γ → IsDipath (γ.map f.continuous_toFun)

structure DirectedMap extends ContinuousMap α β where
protected directed_toFun : DirectedMap.Directed toContinuousMap

Within Lean, we use the notation D(α, β) for the type of directed maps between two
spaces α and β. Directed paths are also instances of directed maps, because they map
directed paths in I to monotone subparametrisation of themselves. dipath.lean contains
definitions on how to convert the Dipath type to the DirectedMap type and the other way
around. These are called toDirectedMap and of_directedMap respectively.

Directed spaces and directed maps form a category, which we will denote by dTop.

3 Directed Homotopies

In this section, we will look at directed homotopies and directed path homotopies. These
two concepts realise the idea of deformation, while respecting the directedness of a directed
space.

3.1 Homotopies
A directed homotopy is the deformation of one directed map into another.

▶ Definition 10 (Directed homotopy). Let X and Y be two directed spaces. A homotopy
between two directed maps f, g : X → Y is a directed map H : I × X → Y such that for all
x ∈ X we have H(0, x) = f(x) and H(1, x) = g(x), where the product I × X is taken between
directed spaces, see Example 3.

We say that H is a directed homotopy from f to g. This order matters, as unlike in the
undirected case a directed homotopy cannot generally be reversed. In our formalisation, we
adhere to the method used in defining homotopies between continuous maps in mathlib, which

https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/dipath.lean
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can be found in Topology/Homotopy/Basic.lean. In an analogous manner, the structure
extends the DirectedMap (I x X) Y structure and has two extra properties.

structure Dihomotopy (f0 f1 : D(X, Y)) extends D((I × X), Y) :=
(map_zero_left : ∀ x, toFun (0, x) = f0.toFun x)
(map_one_left : ∀ x, toFun (1, x) = f1.toFun x)

As a directed map is always a continuous map on the underlying topological spaces, we
can convert a Dihomotopy to a Homotopy. Conversely, if we are given a Homotopy and we
know that it is directed, we can obtain a Dihomotopy.

If f : X → Y is a directed map, there is an identity homotopy H from f to f , given by
H(t, x) = f(x). Also, if G is a directed homotopy from f to g and H a directed homotopy
from g to h, we obtain a directed homotopy G ⊗ H from f to h given by

(G ⊗ H)(t, x) =
{

G(2t, x), t ≤ 1
2 ,

H(2t − 1, x), 1
2 < t.

These constructions are called refl and trans in directed_homotopy.lean. In both
cases we coerce a Homotopy to a Dihomotopy, by supplying proofs that the obtained homo-
topies are directed. Here we use the existing proofs in mathlib that the constructed maps are
indeed homotopies, i.e. are continuous and satisfy the two mapping properties.

3.2 Path Homotopies
▶ Definition 11 (Directed path homotopy). Let X be a directed space and x, y ∈ X two points.
A directed path homotopy between two directed paths γ1, γ2 ∈ PX(x, y) is a directed homotopy
H : I × I → X from γ1 to γ2 such that additionally for all t ∈ [0, 1] we have H(t, 0) = x and
H(t, 1) = y.

In other words, a path homotopy is a homotopy between two paths that keeps both
endpoints fixed. Again we say that H is a directed path homotopy from γ1 to γ2. Between
two paths γ1 and γ2 in I with the same endpoints exists a path homotopy under the condition
that γ1(t) ≤ γ2(t) for all t ∈ I as the following example shows.

▶ Example 12. Let t0, t1 ∈ I be two points and γ1, γ2 ∈ PI(t0, t1). If γ1(t) ≤ γ2(t) for all t ∈ I,
then there is a directed path homotopy H from γ1 to γ2 given by H(t, s) = (1−t)·γ1(s)+t·γ2(s).
It is continuous by continuity of paths, multiplication and addition. It can be shown that
H(a0, b0) ≤ H(a1, b1) if a0 ≤ a1 and b0 ≤ b1. From this, it follows that H is directed, because
a directed path in I × I is exactly a pair of monotone maps I → I by definition.

Note that H interpolates two paths γ1 and γ2. The formalised proof of it being a directed
map can be found in the file interpolate.lean.

Let x, y, z ∈ X be three points, β1, γ1 ∈ PX(x, y) and β2, γ2 ∈ PX(y, z). If there are two
directed path homotopies G from β1 to γ1 and H from β2 to γ2, we can construct a directed
path homotopy G ⊙ H from β1 ⊙ β2 to γ1 ⊙ γ2 given by

(G ⊙ H)(t, s) =
{

G(t, 2s), s ≤ 1
2 ,

H(t, 2s − 1), 1
2 < s.

Let x, y ∈ X be two points and γ1, γ2 ∈ PX(x, y). If there exists a path homotopy from γ1
to γ2, we will write γ1 ⇝ γ2. This defines a relation on the set PX(x, y), but that relation is
not guaranteed to be an equivalence relation, as it is generally not symmetric. This is due to
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the fact that the reversal of a directed path may not be directed. In order get an equivalence
relation on the set of directed paths between two points, we will take the symmetric transitive
closure of this relation.

▶ Definition 13. Let X be a directed space and x, y ∈ X two points. We say that two dipaths
γ1, γ2 ∈ PX(x, y) are equivalent, or γ1 ≃ γ2, if there is an integer n ≥ 0 together with dipaths
βi ∈ PX(x, y), for each 1 ≤ i ≤ n, such that

γ1 ⇝ β1 ⇝. . .⇝ βn ⇝γ2.

This alternating sequence of arrows is also called a zigzag. As γ2 ⇝γ2 holds for any path γ2
by reflexivity, we can always assume that there is an odd number of paths in a zigzag between
two paths γ1 and γ2. By taking n = 0, it follows that γ1 ≃ γ2 holds if γ1 ⇝ γ2. More
precisely, ≃ is the smallest equivalence relation on PX(x, y) such that that property holds
[17, p. 129]. As ≃ is an equivalence relation, we can talk about equivalence classes of paths,
denoted by [γ]. An important property of these equivalence classes is that they are invariant
under directed maps and path reparametrisation.

▶ Lemma 14. Let X, Y be directed spaces and x, y ∈ X. Let γ1, γ2 ∈ PX(x, y) and f : X → Y

directed. If γ1 ≃ γ2, then f ◦ γ1 ≃ f ◦ γ2.

Proof. Let n > 0 odd and βi ∈ PX(x, y) for 1 ≤ i ≤ n such that

γ1 ⇝ β1 ⇝β2 ⇝ . . .⇝ βn ⇝γ2.

If H : I × I → X is a directed path homotopy from γ1 to β1, then f ◦ H is a directed path
homotopy from f ◦ γ1 to f ◦ β1. We find that f ◦ γ1 ⇝ f ◦ β1. Repeating this for all other
arrows in the zigzag gives us

f ◦ γ1 ⇝ f ◦ β1 ⇝f ◦ β2 ⇝ . . .⇝ f ◦ βn ⇝f ◦ γ2,

We conclude that f ◦ γ1 ≃ f ◦ γ2. ◀

▶ Lemma 15. Let X be a directed space and x, y ∈ X. Let γ ∈ PX(x, y) and φ, φ′ : I → I

continuous and monotone with φ(0) = φ′(0) = 0 and φ(1) = φ′(1) = 1. Then γ ◦ φ ≃ γ ◦ φ′.

Proof. As γ is a directed map from I to X, it is enough by Lemma 14 to show that φ ≃ φ′.
Let β1 = φ ⊙ 01 and β2 = 00 ⊙ φ′. Then, by applying Example 12 three times, we obtain the
zigzag φ⇝ β1 ⇝β2 ⇝ φ′. This shows that φ ≃ φ′, completing the proof. ◀

In the next section, we will construct the fundamental category of a directed space. For
that we need the following four additional equalities of equivalence classes.

▶ Lemma 16. Let X be a directed space and x, y, z, w ∈ X. Let β1, γ1 ∈ PX(x, y), β2, γ2 ∈
PX(y, z) and γ3 ∈ PX(z, w) such that β1 ≃ γ1 and β2 ≃ γ2. Then the following holds:
1. β1 ⊙ β2 ≃ γ1 ⊙ γ2
2. 0x ⊙ γ1 ≃ γ1
3. γ1 ⊙ 0y ≃ γ1
4. (γ1 ⊙ γ2) ⊙ γ3 ≃ γ1 ⊙ (γ2 ⊙ γ3)

Proof. Statements 2, 3 and 4 are direct applications of Lemma 15 as they are all repara-
metrisations. We will now show statement 1. Let n, m > 0 odd and pi, qj ∈ PX(x, y) for
1 ≤ i ≤ n and 1 ≤ j ≤ m such that

β1 ⇝ p1 ⇝p2 ⇝ . . .⇝ pn ⇝γ1 and β2 ⇝ q1 ⇝q2 ⇝ . . .⇝ qm ⇝γ2.
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Let G be a directed path homotopy from β1 to p1 and H be the identity homotopy from β2
to β2. Then G ⊙ H is a directed path homotopy from β1 ⊙ β2 to p1 ⊙ β2. Repeating this, we
obtain a zigzag

β1 ⊙ β2 ⇝ p1 ⊙ β2 ⇝p2 ⊙ β2 ⇝ . . .⇝ pn ⊙ β2 ⇝γ1 ⊙ β2,

so β1 ⊙ β2 ≃ γ1 ⊙ β2. Analogously we obtain a zigzag

γ1 ⊙ β2 ⇝ γ1 ⊙ q1 ⇝γ1 ⊙ q2 ⇝ . . .⇝ γ1 ⊙ qm ⇝γ1 ⊙ γ2.

This results in γ1⊙β2 ≃ γ1⊙γ2 and combining both equivalences gives us β1⊙β2 ≃ γ1⊙γ2. ◀

The definition of a directed path homotopy and the three lemmas above have all been
been formalised in directed_path_homotopy.lean. For the path homotopies, we followed
the more general approach from mathlib, where we first defined directed homotopies that
satisfy some property P . Thereafter we defined DihomotopyRel as directed homotopies that
are fixed on a select subset of points. This is all defined in directed_homotopy.lean. A
path homotopy is a homotopy that is fixed on both endpoints, that is, on {0, 1} ⊆ I, so we
can define a directed path homotopy as

abbrev Dihomotopy (p0 p1 : Dipath x y) :=
DirectedMap.DihomotopyRel p0.toDirectedMap p1.toDirectedMap {0, 1}

The construction ⊙ is called hcomp and ⊗ is called trans. If f, g ∈ D(I, I) are two
directed maps with f(t) ≤ g(t) for all t ∈ I, the definition Dihomotopy.reparam constructs
a homotopy from γ ◦ f to γ ◦ g. This is done by composing γ and the homotopy obtained
from Example 12. If H is a homotopy from γ1 to γ2 with γ1, γ2 ∈ PX(x, y), and f : X → Y

is a directed map, then the homotopy from f ◦ γ1 to f ◦ γ2 given by f ◦ H is exactly what
Dihomotopy.map entails.

Now we can formalise the relations ⇝ and ≃. These are called PreDihomotopic and
Dihomotopic respectively.

def PreDihomotopic : Prop := Nonempty (Dihomotopy p0 p1)
def Dihomotopic : Prop := EqvGen PreDihomotopic p0 p1

The term Nonempty means exactly that there exists some directed homotopy, which
corresponds with our definition of⇝. EqvGen gives the smallest equivalence relation generated
by a relation. The lemmas map, reparam and hcomp in the namespace Dihomotopic now
correspond with Lemma 14, Lemma 15 and the first point of Lemma 16 respectively.

This gives us enough tools to construct the so called fundamental category.

4 The Fundamental Category

Using the properties found in Section 3.2, we can define a category that captures the
information of all paths up to directed deformation in a directed space. This is the directed
version of the fundamental groupoid.

▶ Definition 17 (Fundamental Category). Let X be a directed space. The fundamental
category of X, denoted by −→Π(X), is the category that consists of:

Objects: points x ∈ X.
Morphisms: −→Π(X)(x, y) = PX(x, y)/≃.
Composition: [γ2] ◦ [γ1] = [γ1 ⊙ γ2].
Identity: idx = [0x].
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https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/directed_path_homotopy.lean
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8:10 The Directed Van Kampen Theorem in Lean

▶ Remark 18. The fact that this category is well defined follows from Lemma 16. Due to
property 1, composition is well defined. Due to properties 2 and 3, the constant path behaves
as an identity and property 4 gives us associativity.

Note that −→Π maps objects in dTop to objects in Cat. It turns out that it can also be
defined on morphisms making it into a functor.

▶ Definition 19. Let f : X → Y be a directed map. We define −→Π(f) : −→Π(X) →
−→Π(Y ) as

the functor:
On objects: −→Π(f)(x) = f(x).
On morphisms: −→Π(f)([γ]) = [f ◦ γ].

It is well behaved on morphisms, because of Lemma 14. It is straightforward to verify
that −→Π(f) respects composition and identities.

In our formalisation, we follow the construction of the fundamental groupoid in mathlib
found in AlgebraicTopology/FundamentalGroupoid/Basic.lean closely. Our implement-
ation is found in fundamental_category.lean.

structure FundamentalCategory (X : Type u) where
as : X

instance : CategoryTheory.Category (FundamentalCategory X) where
Hom x y := Dipath.Dihomotopic.Quotient x.as y.as
id x := ⟦Dipath.refl x.as⟧
comp {_ _ _} := Dipath.Dihomotopic.Quotient.comp
id_comp {x _} f := Quotient.inductionOn f fun a =>

show ⟦(Dipath.refl x.as).trans a⟧ = ⟦a⟧ from
Quotient.sound (EqvGen.rel _ _ ⟨Dipath.Dihomotopy.refl_trans a⟩)

comp_id {_ y} f := /- Proof omitted -/
assoc {_ _ _ _} f g h := /- Proof omitted -/

We show that FundamentalCategory X is an instance of a category by defining the morph-
isms (hom), identities (id) and composition (comp). The morphisms between two objects x and
y are given by Dipath.Dihomotopic.Quotient x y. This is the quotient of Dipath x y
under the Dihomotopic relation and is defined in directed_path_homotopy.lean. The
identity on x is then the equivalence class (denoted by ⟦ ⟧) of the constant path in x. The
composition of the equivalence classes of two compatible paths is defined as the equivalence
class of the concatenation of the two paths in Dipath.Dihomotopic.Quotient.comp.

The proof that this defines a category is given by id_comp, comp_id and assoc. For
example, id_comp requires us to show that the directed paths (Dipath.refl x).trans a
and a are dihomotopic, corresponding to statement 2 of Lemma 16. The file also contains
the definition of the −→Π -functor from dTop to Cat. Analogously to the undirected mathlib
implementation, we use the notation dπ for this functor.

5 The Van Kampen Theorem

In this section, we will state and prove the Van Kampen Theorem. We follow the proof of
Grandis [12] and work out some of the details that were omitted there. In Section 5.2 we
show how we have formalised this proof by comparing the proof to the Lean code.

https://github.com/leanprover-community/mathlib4/blob/fa48894/Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/fundamental_category.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/directed_path_homotopy.lean
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5.1 The Van Kampen Theorem

Before we state and prove the theorem, we will define the notion of being covered for directed
homotopies.

▶ Definition 20. Let X be a directed space and U a cover of X. Let H : I × I → X be a
directed homotopy and n, m > 0 two integers. We say that H is (n, m)-covered (by U) if for
all 1 ≤ i ≤ n and 1 ≤ j ≤ m the image of

[
i−1

n , i
n

]
×

[
j−1
m , j

m

]
⊆ I × I under H is contained

in some U ∈ U .

By the Lebesgue Number Lemma [19, p. 179], for any homotopy H and open cover U
of X, there are n, m > 0 such that H is (n, m)-covered by U .

▶ Theorem 21 (Van Kampen Theorem). Let X be a directed space and X1 and X2 two open
subspaces such that X = X1 ∪ X2 and let X0 = X1 ∩ X2. Let ik : X0 → Xk and jk : Xk → X

be the inclusion maps, k ∈ {1, 2}. Then we obtain a pushout square in Cat:

Π⃗(X0) Π⃗(X1)

Π⃗(X2) Π⃗(X)

Π⃗(i1)

Π⃗(i2) Π⃗(j1)

Π⃗(j2)

Proof. As j1 ◦ i1 = j2 ◦ i2 and Π⃗ is a functor, the square is commutative. It remains to
show it satisfies the universal property of a pushout square. Let C be any category and
F1 : Π⃗(X1) → C and F2 : Π⃗(X2) → C be two functors such that F1 ◦ Π⃗(i1) = F2 ◦ Π⃗(i2). We
will explicitly construct a functor F : Π⃗(X) → C such that F ◦ Π⃗(j1) = F1 and F ◦ Π⃗(j2) = F2.
The construction will show that this functor is necessarily unique with this property.

Step 1) The objects of Π⃗(X) are exactly the points of X. If an object x ∈ Π⃗(X) is also
contained in Π⃗(X1), it holds that F (x) = F (j1(x)) = (F ◦ Π⃗(j1))(x). The desired condition
F ◦ Π⃗(j1) = F1 then requires us to define F (x) = F1(x). A similar argument gives us that if
x ∈ Π⃗(X2) then F (x) = F2(x). As X1 and X2 cover X, for all x ∈ Π⃗(X) we have

F (x) =
{

F1(x), x ∈ X1,

F2(x), x ∈ X2.

By the assumption that F1 ◦ Π⃗(i1) = F2 ◦ Π⃗(i2) this is well defined, so we know how F must
behave on objects.

Step 2) Let [γ] : x → y be a morphism in Π⃗(X). Then there is an n > 0 such that γ is
n-covered by the open cover {X1, X2}, with γi,n contained in Xki

, ki ∈ {1, 2}. One important
thing to note is that γi,n can be both seen as a path in X and as a path in Xki by restricting
its codomain. This matters when we talk about [γi,n], as it could be a morphism in Π⃗(X)
and in Π⃗(Xki

). Within this proof will always consider it as a morphism in Π⃗(Xki
) and write

[jki ◦ γi,n] for the morphism in Π⃗(X). Note that we have [γ] = [jkn ◦ γn,n] ◦ . . . ◦ [jk1 ◦ γ1,n]
in Π⃗(X), as γ is equal to γ1,n ⊙ (γ2,n ⊙ . . . (γn−1,n ⊙ γn,n)) up to reparametrisation. Because
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we want F to be a functor and thus to respect composition, we find that necessarily

F [γ] = F ([jkn
◦ γn,n] ◦ . . . ◦ [jk1 ◦ γ1,n])

= F [jkn
◦ γn,n] ◦ . . . ◦ F [jk1 ◦ γ1,n]

= F
(

Π⃗(jkn
)[γn,n]

)
◦ . . . ◦ F

(
Π⃗(jk1)[γ1,n]

)
= (F ◦ Π⃗(jkn

))[γn,n] ◦ . . . ◦ (F ◦ Π⃗(jk1))[γ1,n]
= Fkn

[γn,n] ◦ . . . ◦ Fk1 [γ1,n].

As multiple choices were made, we need to make sure that F is well defined this way. We do
this by defining a map F ′ : PX → Mor(C), where Mor(C) is the collection of all morphisms
in C. The map is given by

F ′(γ) = Fkn
[γn,n] ◦ . . . ◦ Fk1 [γ1,n],

where γ is n-covered with γi,n contained in Xki
. In the next steps, we will first show that

this map is well defined. Then we show that F ′ respects equivalence classes. From this it
follows that F is well defined, as it is simply F ′ descended to equivalence classes.
Step 3) We first need to make sure that F ′ does not depend on any choices of ki. In
the case that γi,n is contained in both X1 and X2, the value of ki can be either 1 or 2.
The condition that F1 ◦ Π⃗(i1) = F2 ◦ Π⃗(i2) assures us that both options give us the same
morphism.
Step 4) The second choice we made is that of n. It is possible that γ is also m-covered for
another integer m > 0, with γj,m being contained in Xpj

. We want to show that

Fkn [γn,n] ◦ . . . ◦ Fk1 [γ1,n] = Fpm [γm,m] ◦ . . . ◦ Fp1 [γ1,m].

If we refine the partition of γ in n pieces into a partition of mn pieces, that partition will
surely also be partwise covered. Let li ∈ {1, 2} for all 1 ≤ i ≤ mn such that γi,mn is contained
in Xli

. We now claim that for all 1 ≤ i ≤ n it holds that Fki
[γi,n] = Flmi

[γmi,mn] ◦ . . . ◦
Flm(i−1)+1 [γm(i−1)+1,mn]. As γm(i−1)+j,mn with 1 ≤ j ≤ m is a subparametrisation of γi,n,
we may assume that lm(i−1)+j = ki. This is because F1 and F2 agree on X1 ∩ X2. As Fki

is a functor, the claim now follows because functors respect composition and because γi,n

is exactly the concatenation of all the smaller paths up to reparametrisation. By a similar
claim for Fpj

[γj,m] we find:

Fkn [γn,n] ◦ . . . ◦ Fk1 [γ1,n] = Flmn [γmn,mn] ◦ . . . ◦ Fl1 [γ1,mn]
= Fpm

[γm,m] ◦ . . . ◦ Fp1 [γ1,m].

We conclude that the definition is independent of the value of n. This makes F ′ well defined.
Step 5) Before we verify that F ′ is independent of the choice of representative γ, we will
first show that F ′ satisfies two properties:

∀x ∈ Π⃗(X) : F ′(0x) = idF (x). (1)
∀γ ∈ PX(x, y), δ ∈ PX(y, z) : F ′(γ ⊙ δ) = F ′(δ) ◦ F ′(γ). (2)

Let x ∈ Π⃗(X) be given. If x ∈ X1, then 0x is already contained in X1 and so by
definition of F ′ we find F ′(0x) = F1[0x] = idF1(x) = idF (x). Otherwise it holds that x ∈ X2,
so F ′(0x) = F2[0x] = idF2(x) = idF (x). This proves Equation (1).
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Let γ ∈ PX(x, y) and δ ∈ PX(y, z) be two paths in X. We can then find an n such that
both γ and δ are n-covered, with γi,n contained in Xki

and δi,n contained in Xpi
. Then γ ⊙ δ

is 2n-covered as it holds that

(γ ⊙ δ)i,2n =
{

γi,n, i ≤ n,

δi−n,n, i > n.

We find:

F ′(δ ⊙ γ) =
Fpn [(δ ⊙ γ)2n,2n] ◦ . . . ◦ Fp1 [(δ ⊙ γ)n+1,2n] ◦ Fkn [(δ ⊙ γ)n,2n] ◦ . . . ◦ Fk1 [(δ ⊙ γ)1,2n] =
(Fpn

[δn,n] ◦ . . . ◦ Fp1 [δ1,n]) ◦ (Fkn
[γn,n] ◦ . . . ◦ Fk1 [γ1,n]) = F ′(δ) ◦ F ′(γ).

This shows that Equation (2) holds.

Step 6) We will now show that F ′ respects equivalence classes. Then it descends to the
quotient and it follows that F is well defined. If [γ] = [δ] with δ another path from x to y,
we want that

F ′(γ) = F ′(δ). (3)

Because of the way the equivalence classes are defined, it is enough to show this for γ and
δ such that γ ⇝ δ. Let in that case a directed path homotopy H from γ to δ be given.
We take n, m > 0 such that H is (n, m)-covered by {X1, X2}. Firstly assume that n > 1.
Restricting H to the rectangle

[
0, 1

n

]
× [0, 1] gives us a directed path homotopy H1 from γ to

the directed path η given by η(t) = H
( 1

n , t
)
. By restricting H to the rectangle

[ 1
n , 1

]
× [0, 1]

we get a directed path homotopy H2 from η to δ. It is clear that H1 is (1, m)-covered and
that H2 is (n − 1, m)-covered. By applying induction on n, we can conclude that it is enough
to show that Equation (3) holds for (1, m)-covered directed path homotopies, as we would
obtain that F ′(γ) = F ′(η) = F ′(δ).

Step 7) We will prove the case where H is (1, m)-covered by showing a more general
statement:

Let H be any directed homotopy – not necessarily a path homotopy – from one path
γ ∈ PX(x, y) to another path δ ∈ PX(x′, y′) that is (1, m)-covered, m > 0. Let η0 be the path
given by η0(t) = H(t, 0) and η1 be given by η1(t) = H(t, 1). Then F ′(η0 ⊙ δ) = F ′(γ ⊙ η1).
We do this by induction on m.

In the case that m = 1, we have a homotopy contained in X1 or X2. Without loss
of generality, we can assume it is contained in X1. Let Γ1 be the directed homotopy
given by Γ1(t, s) = η0(min(t, s)) from 0x to η0. Let Γ2 be the directed homotopy given by
Γ2(t, s) = η1(max(t, s)) from η1 to 0y′ . We then can construct a directed path homotopy
from (0x ⊙ γ) ⊙ η1 to (η0 ⊙ δ) ⊙ 0y′ given by (Γ1 ⊙ H) ⊙ Γ2. It is a directed path homotopy
because Γ1(t, 0) = η0(min(t, 0)) = η0(0) = x and Γ2(t, 1) = η1(max(t, 1)) = η1(1) = y′ for
all t ∈ I. As η0, η1 and H are all contained in X1, this directed path homotopy will be
contained in X1 as well. We find that [γ ⊙ η1] = [η0 ⊙ δ] in Π⃗(X1). This gives us that
F ′(γ ⊙ η1) = F1[γ ⊙ η1] = F1[η0 ⊙ δ] = F ′(η0 ⊙ δ).

Let now m > 1 and assume the statement holds for (1, m − 1)-covered homotopies. We
can restrict H to [0, 1] ×

[
0, m−1

m

]
to obtain a (1, m − 1)-covered homotopy H1, say from γ1

to δ1. Similarly, we can restrict H to [0, 1]×
[

m−1
m , 1

]
to obtain a (1, 1)-covered homotopy H2,

say from γ2 to δ2. We write η′ for the path given by η′(t) = H(t, m−1
m ) = H1(t, 1) = H2(t, 0).
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Note that F ′(γ) = F ′(γ2)◦F ′(γ1) by definition, because γ1 is (m−1)-covered, γ2 is 1-covered
and γ is m-covered. Similarly it holds that F ′(δ) = F ′(δ2) ◦ F ′(δ1). We find:

F ′(γ ⊙ η1) = F ′(η1) ◦ F ′(γ) (Equation (2))
= F ′(η1) ◦ (F ′(γ2) ◦ F ′(γ1))
= (F ′(η1) ◦ F ′(γ2)) ◦ F ′(γ1)
= (F ′(δ2) ◦ F ′(η′)) ◦ F ′(γ1) (Case m = 1)
= F ′(δ2) ◦ (F ′(η′) ◦ F ′(γ1))
= F ′(δ2) ◦ (F ′(δ1) ◦ F ′(η0)) (Induction Hypothesis)
= (F ′(δ2) ◦ F ′(δ1)) ◦ F ′(η0)
= F ′(δ) ◦ F ′(η0)
= F ′(η0 ⊙ δ) (Equation (2)).

This proves the statement. From the statement we find that Equation (3) holds:

F ′(δ) = F ′(δ) ◦ idx = F ′(δ) ◦ F ′(0x) = F ′(0x ⊙ δ) =
F ′(γ ⊙ 0y) = F ′(0y) ◦ F ′(γ) = idx ◦ F ′(γ) = F ′(γ).

Here, the fourth equality follows from the statement. We conclude that F is well defined.
Step 8) As we have F [γ] = F ′(γ), it is immediate that F is a functor by Equation (1) and
Equation (2). The equalities F ◦ Π⃗(j1) = F1 and F ◦ Π⃗(j2) = F2 hold by construction: if γ is
contained in X1, then γ1,1 is as well, so (F ◦ Π⃗(j1))[γ] = F [j1 ◦ γ] = F ′(γ) = F1[γ1,1] = F1[γ].
We conclude that the commutative square is indeed a pushout. ◀

5.2 Formalisation
In the formalisation of Theorem 21, we follow the constructive nature of its proof. It can be
found in directed_van_kampen.lean. We have the following global variables, corresponding
with the assumptions of the Van Kampen Theorem:
variable {X : dTopCat.{u}} {X1 X2 : Set X}
variable (hX : X1 ∪ X2 = Set.univ)
variable (X1_open : IsOpen X1) (X2_open : IsOpen X2)

Like in the proof, we introduce a category C and two functors F1 : Π⃗(X1) → C and
F2 : Π⃗(X2) → C. Using these we are going to explicitly construct a functor from Π⃗(X) to C

and show that it is unique. We will use that to prove that we indeed have a pushout square.
variable {C : CategoryTheory.Cat.{u, u}}
variable (F1 : (dπx (dTopCat.of X1) −→ C))
variable (F2 : (dπx (dTopCat.of X2) −→ C))
variable (h_comm : (dπm i1) ≫ F1 = (dπm i2) ≫ F2)
/- Here we use two abbreviations:
i1 = dTopCat.DirectedSubsetHom (Set.inter_subset_left X1 X2)
i2 = dTopCat.DirectedSubsetHom (Set.inter_subset_right X1 X2)

-/

The variable h_comm is the assumption that the two maps F1 and F2 out of C form a
commutative square when composed with the inclusions Π⃗(X1) → Π⃗(X) and Π⃗(X2) → Π⃗(X).
These inclusions are obtained by DirectedSubsetHom, defined in dTop.lean. This defines
the inclusion morphism X0 → X1 in dTop in the case that X0 ⊆ X1 ⊆ X. We start with
defining the functor F on objects (Step 1).

https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/directed_van_kampen.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/dTop.lean
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def FunctorOnObj (x : dπx X) : C := Or.by_cases
((Set.mem_union x.as X1 X2).mp (Filter.mem_top.mpr hX x.as))

(fun hx => F1.obj ⟨x.as, hx⟩)
(fun hx => F2.obj ⟨x.as, hx⟩)

We use Filter.mem_top.mpr hX x.as to show that x ∈ X1 ∪ X2. From this, we use
Set.mem_union to obtain x ∈ X1 or x ∈ X2 and we can split by those cases to apply
either F1 or F2. We abbreviate FunctorOnObj hX F1 F2 to F_obj in our formalisation to
maintain clarity. After this definition, there are two lemmas that prove for k ∈ {1, 2} that
F (x) = Fk(x) if x ∈ Xk.

In the proof of Theorem 21, F ′ is first defined and it is then shown to be a valid definition.
Within our Lean formalisation, we have to do these two parts in the reverse order. Once
we have shown that the construction is well-defined, we can define F ′ in our formalisation.
That is why Step 2 will be completed later.

We use the definitions of covered and covered_partwise, shown in Section 2, to define
the mapping of morphisms inductively (Step 3):

def FunctorOnHomOfCovered {γ : Dipath x y} (hγ : covered hX γ) :
F_obj ⟨x⟩ −→ F_obj ⟨y⟩ :=

Or.by_cases hγ

(fun hγ => FunctorOnHomOfCoveredAux1 hX h_comm hγ)
(fun hγ => FunctorOnHomOfCoveredAux2 hX h_comm hγ)

def FunctorOnHomOfCoveredPartwiseAux {n : N} :
∀ (x y : X) (γ : Dipath x y) (hγ : covered_partwise hX γ n),

F_obj ⟨x⟩ −→ F_obj ⟨y⟩ :=
Nat.recOn n

(fun _ _ _ hγ => F0 hγ)
(fun _ ih _ _ _ hγ => (F0 hγ.1) ≫ (ih _ _ _ hγ.2))

In FunctorOnHomOfCovered we define what to do with a path γ that is 1-covered, that
is, we map it to F1[γ] or F2[γ] depending on whether γ is contained in X1 or X2. It depends
on FunctorOnHomOfCoveredAux1, which specifies what F1[γ] should be, as [γ] is a morphism
in Π⃗(X) and not in Π⃗(X1). We use F0 to abbreviate FunctorOnHomOfCovered hX h_comm.
We can then use this base case to define FunctorOnHomOfCoveredPartwiseAux for an n-
covered path inductively by applying F0 to the first covered part of γ. In the construction of
FunctorOnHomOfCoveredPartwiseAux, the variables x, y and γ are given explicitly in order
to use induction. We use this definition in order to define FunctorOnHomOfCoveredPartwise
which uses these implicitly and we abbreviate it to Fn to maintain readability.

Since n is an input of the definition, we need to show that it is independent of the choice
of n. The lemma functorOnHomOfCoveredPartwise_unique captures this (Step 4).

lemma functorOnHomOfCoveredPartwise_unique {n m : N} {γ : Dipath x y}
(hγ_n : covered_partwise hX γ n) (hγ_m : covered_partwise hX γ m) :

Fn hγ_n = Fn hγ_m :=
/- Proof omitted -/

This lemma makes use of the following lemma that shows that the image remains the
same if we refine the partition of γ, so when we use an nk-covering instead of an n-covering.

lemma functorOnHomOfCoveredPartwise_refine {n : N} (k : N) :
Π {x y : X} {γ : Dipath x y} (hγ_n : covered_partwise hX γ n),

Fn hγ_n = Fn (covered_partwise_refine hX n k hγ_n) :=
/- Proof omitted -/
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Now we know that the image is independent of n, and because an n > 0 exists such
that γ is n-covered (shown by has_subpaths), we can choose one such n and we obtain the
following formalisation of F ′, completing Step 2. We abbreviate this map to Fh_aux.
def FunctorOnHomAux (γ : Dipath x y) : F_obj ⟨x⟩ −→ F_obj ⟨y⟩ :=

Fn (Classical.choose_spec (has_subpaths hX X1_open X2_open γ))

Now we show that Equation (1) and Equation (2) from the proof hold (Step 5).
lemma functorOnHomAux_refl {x : X} :

Fh_aux (Dipath.refl x) = 1 (F_obj ⟨x⟩) :=
/- Proof omitted -/

lemma functorOnHomAux_trans {x y z : X} (γ1 : Dipath x y)
(γ2 : Dipath y z) :

Fh_aux (γ1.trans γ2) = Fh_aux γ1 ≫ Fh_aux γ2 :=
/- Proof omitted -/

As shown in Step 6, we want to show that F ′ is invariant under the Dihomotopic relation.
To do this we need to show the claim from the proof: if we have a directed homotopy H

from f to g that is (1, m)-covered, then F ′[H(_, 1)] ◦ F ′[f ] = F ′[g] ◦ F ′[H(_, 0)] (Step 7).
lemma functorOnHomAux_of_homotopic_dimaps {m : N} :

Π {f g : D(I, X)} {H : DirectedMap.Dihomotopy f g}
(_ : DirectedMap.Dihomotopy.coveredPartwise hX H 0 m),

Fh_aux (Dipath.of_directedMap f) ≫ Fh_aux (H.eval_at_right 1) =
Fh_aux (H.eval_at_right 0) ≫ Fh_aux (Dipath.of_directedMap g) :=

/- Proof omitted -/

By using induction once again, we end up with the lemma showing us that the choice of
representative does not matter.
variable (γ γ’ : Dipath x y)
lemma functorOnHomAux_of_dihomotopic (h : γ.Dihomotopic γ’) :

Fh_aux γ = Fh_aux γ’ :=
/- Proof omitted -/

We can now finally define the behaviour on morphisms to obtain a functor by using the
universal mapping property of quotients.
def FunctorOnHom {x y : dπx X} (γ : x −→ y) : F_obj x −→ F_obj y :=

Quotient.liftOn γ Fh_aux
(functorOnHomAux_of_dihomotopic hX X1_open X2_open h_comm)

def Functor : (dπx X) −→ C where
obj := F_obj
map γ := F_hom γ

map_id x := functorOnHom_id hX X1_open X2_open h_comm x
map_comp γ1 γ2 := functorOnHom_comp hX X1_open X2_open h_comm γ1 γ2

Here F_hom is an abbreviation for FunctorOnHom and the final Functor is abbreviated
to F. Finally, we get to Step 8. The remaining lemmas show that F ◦ Π⃗(jk) = Fk for k = 1
and k = 2, and that F is the unique functor with this property.
lemma functor_comp_left : (dπm j1) ≫ F = F1 := /- Proof omitted -/
lemma functor_comp_right : (dπm j2) ≫ F = F2 := /- Proof omitted -/
lemma functor_uniq (F’ : (dπx X) −→ C) (h1 : (dπm j1) ≫ F’ = F1)

(h2 : (dπm j2) ≫ F’ = F2) : F’ = F := /- Proof omitted -/
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The Van Kampen Theorem is stated as

theorem directed_van_kampen (_ : IsOpen X1) (_ : IsOpen X2)
(hX : X1 ∪ X2 = Set.univ) :

IsPushout (dπm i1) (dπm i2) (dπm j1) (dπm j2) :=
/- Proof omitted -/

This theorem now follows easily from the lemmas above.

6 Conclusion and Further Research

In this article, we presented a formalisation of the Van Kampen Theorem in directed topology
in the proof assistant Lean 4. This theorem allows one to calculate the fundamental category
of a directed space using the fundamental categories of subspaces under a mild condition on
the subspaces. At the moment, mathlib does not have a version of the Van Kampen Theorem
for groupoids, originally proven by Brown in 1968 [2, 3]. The undirected version is a corollary
of the directed version because the fundamental groupoid of a topological space can be seen
as the fundamental category of a directed space, where all paths are directed. We have not
formalised this implication, but it should not be hard to prove the Van Kampen Theorem
for groupoids in this manner.

There are generalisations of the undirected version that allow an arbitrary open cover [4,
Theorem 2.3.5]. An extension of our formalisation to allow this would be possible using the
same general approach, but we have not investigated this in depth.

As a next step, it would be natural to formalise the relation between d-spaces and their
homotopy theory with other models of concurrency, such as higher-dimensional automata
and their languages, and to develop the homotopy theory of d-spaces further in Lean.
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Abstract
There is an increasing need for domain-specific reasoning in modern compilers. This has fueled
the use of tailored intermediate representations (IRs) based on static single assignment (SSA), like
in the MLIR compiler framework. Interactive theorem provers (ITPs) provide strong guarantees
for the end-to-end verification of compilers (e.g., CompCert). However, modern compilers and
their IRs evolve at a rate that makes proof engineering alongside them prohibitively expensive.
Nevertheless, well-scoped push-button automated verification tools such as the Alive peephole
verifier for LLVM-IR gained recognition in domains where SMT solvers offer efficient (semi) decision
procedures. In this paper, we aim to combine the convenience of automation with the versatility of
ITPs for verifying peephole rewrites across domain-specific IRs. We formalize a core calculus for
SSA-based IRs that is generic over the IR and covers so-called regions (nested scoping used by many
domain-specific IRs in the MLIR ecosystem). Our mechanization in the Lean proof assistant provides
a user-friendly frontend for translating MLIR syntax into our calculus. We provide scaffolding for
defining and verifying peephole rewrites, offering tactics to eliminate the abstraction overhead of
our SSA calculus. We prove correctness theorems about peephole rewriting, as well as two classical
program transformations. To evaluate our framework, we consider three use cases from the MLIR
ecosystem that cover different levels of abstractions: (1) bitvector rewrites from LLVM, (2) structured
control flow, and (3) fully homomorphic encryption. We envision that our mechanization provides a
foundation for formally verified rewrites on new domain-specific IRs.
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1 Introduction

Static single assignment (SSA) [34] intermediate representations (IRs) are at the core of
modern compilers, thanks to the benefits their immediate encoding of use-def relationships
brings to compiler analyses and transformations. Peephole optimizations [26], which replace
assembly-level instruction sequences of bounded length with semantically equivalent optimized
ones, benefit from SSA during target code generation [25] and are now also widely used
for optimizing SSA-based IRs. Peephole optimizations are so common, that 10% of all IR
transforming code in LLVM [17] belongs to its InstCombine peephole optimizer,1 which is
beyond the size of LLVM’s loop optimizer. Further evidence is offered by LLVM’s commit
log, where the most referenced tool is the Alive peephole verifier [23]. Alive has brought
automatic SMT-based verification into the day-to-day of the LLVM compiler community.

In the context of the end-to-end verified compiler Compcert [21], peephole rewriting has
been formalized (and mechanized) in its classical form of straight-line assembly code [28],
but this verification does not cover rewriting along the SSA def-use chain. As an example,
consider the rewrite (y = x + 1; z = y − 1) 7→ (z = x). This pattern does not match the
program (y = x + 1; p = y; z = y − 1) in straight-line rewriting, due to the interleaved
instruction p = y. On the other hand, by concentrating on the dataflow, we rewrite any
subprogram of the form (y = x + 1; # ; z = y − 1) to (y = x + 1; # ; z = x), regardless of
what fills the hole #. This rewriting on the “def-use” chain can be applied to assembly code
before register allocation and all SSA-based IRs.

SSA-based IRs have been successful in domain-specific compilers, where they enable concise
reasoning at the favored abstraction level. In particular, the MLIR compiler framework [18]
has been widely adopted for machine learning [39], quantum computing [32], and even for
compiling Lean [6]. MLIR lowers the cost of instantiating domain-specific IRs and encourages
transformations on specialized high-level IRs. Instead of complex potentially side-effectful
global reasoning at a lower abstraction level, these tailored IR abstractions often offer value
semantics (i.e., referential transparency) to enable side-effect-free local reasoning. MLIR
also introduces the concept of regions, which allow IR operations to be nested, enabling
structured control flow. Structured control makes termination proofs of loops easier and the
tailored domain-specific IRs have the potential to reduce the complexity of proofs.

In this paper, we verify peephole rewriting over SSA-based IRs. We formalize a core
calculus for SSA-based IRs that is generic over the IR and covers regions instead of potentially
diverging unstructured control. We mechanize our calculus in the Lean [9] proof assistant and
make it accessible to MLIR developers by offering an embedding of MLIR syntax. Concretely,
our contributions are:

A formalization of SSA with regions parametrized over a user-defined IR X and its
mechanization in our framework2 LeanMLIR(X) that exploits denotational-style value
semantics for optimizing along the SSA use-def chain of an MLIR-style IR (Sections 2, 3)
Evidence that our formalization of SSA allows for effective meta-theoretic reasoning:

A verified peephole rewriter, for which we prove that lifting a peephole rewrite to a
rewrite on the entire program preserves semantics (Subsection 4.1)
Two verified implementations of generic SSA-based optimizations: dead code elimina-
tion and common subexpression elimination (Subsection 4.2)
Proof automation for eliminating the abstraction overhead of our SSA calculus and
exposing clean mathematical proof obligations for each rewrite (Subsection 4.3)

1 Non-blank and non-comment lines of .cpp files in llvm/lib/Transforms on commit f4f1cf6c3.
2 Our code is available at https://github.com/opencompl/lean-mlir/releases/tag/ITP24 (ae0dd933).

https://github.com/opencompl/lean-mlir/releases/tag/ITP24
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inductive Ty
| r
| nat

inductive Op
| arith_const (x : Nat) -- with compile-time data `x`
| monomial -- build equivalence class of monomial
| add -- add op.

(a) QuotRing has three Op constructors, add, monomial, and arith_const x (for x an element of N)
matching the three operations of the IR and two Ty constructors, r and nat matching the two IR types.

instance : OpSignature Op Ty where signature
| .arith_const _ => { sig := [], outTy := .nat } -- takes no args, returns `nat`
| .add => { sig := [.r, .r], outTy := .r } -- takes two `r`, returns `r`
| .monomial => { sig := [.nat, .nat], outTy := .r } -- takes two`.nat`, returns `r`

(b) User-defined signatures of each QuotRing operation.

noncomputable def generator : (ZMod q)[X] := X^(2^n) + 1
abbrev R := (ZMod q)[X] / (span {generator q n})

instance : TyDenote Ty where
toType
| .r => R -- the denotation of `r` is an element of the ring `R`
| .nat => Nat

instance : OpDenote Op Ty where
denote
| .arith_const (x : Nat), _, _ => x -- the denotation of `arith_const x` is `x`
| .add, [(x : R), (y : R)]h, _ => x + y
| .monomial, [(c : Nat), (i : Nat)]h, _ =>

Quotient.mk (span {generator q n}) (monomial i c)

(c) User-defined semantics of QuotRing. The instance syntax is used to define a typeclass instance, by
specifying the corresponding members, which in this case are the denotation functions. The noncomputable
annotation in Lean tells the compiler not to generate executable code for this function since mathlib
uses a noncomputable definition for quotients of polynomial rings. Note that our framework ensures that
values are well-typed according to OpSignature and TyDenote.

Figure 1 User definitions for QuotRing, which declares the operations and types of the IR, the
type signatures of the operations, and the denotations of the types and operations into Lean types.

An extension of our pure optimizations in a context with side effects (Section 5)
Syntax, semantics, and local rewrites for three MLIR-based IRs: (1) arithmetic over
bitvectors, (2) structured control flow, and (3) fully homomorphic encryption (Section 6)

2 Motivation: Verfying Optimizations for High-Level IRs

Effective domain-specific optimizations are almost impossible when reasoning on traditional
LLVM-style compiler IRs. These offer a “universal” low-level abstraction, originally designed
to represent C-style imperative code. Such LLVM-style IRs are built around the concepts
of load/store/arithmetic/branching, which is ideal when optimizing at the level of scalar
arithmetic, instruction scheduling, or applying certain kinds of loop optimizations. However,
this level of abstraction is unsuitable for reasoning about high-level mathematical abstractions.

Consider a compiler for Fully Homomorphic Encryption (FHE) [10], a cryptographic
technique that uses algebraic structures to allow an untrusted third party to do computation
on encrypted data. In such a compiler, we might have a rewrite like (a + X2n + 1 7→ a),

ITP 2024
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which is a simple identity on the corresponding quotient ring.3 Expressed in LLVM, the
computation of this simple operation consists of multiple basic blocks forming a loop, each
containing memory loads, pointer arithmetic, scalar operations, and branches. As a result,
the algebraic structure is completely lost and exploiting simple algebraic identities turns into
a heroic effort of reasoning about side effects and stateful program behavior. State-of-the-art
compilers for FHE consequently use domain-specific IRs (often expressed with MLIR [40, 30])
when generating optimized code for FHE, where algebraic optimizations can take place at an
FHE-specific IR that has value-semantics (e.g., is referentially transparent) and is overall
closer to the mathematical structure of the problem.

2.1 Defining LeanMLIR(QuotRing): Syntax and Semantics
As an example, we model an IR aimed at FHE that manipulates objects in the algebraic
structure R ≡ (Z/qZ)[X]/(X2n + 1). To model it, we instantiate an IR LeanMLIR(QuotRing)
in our framework. It has three simple operations: arith_const and monomial, to construct
values in R, and add to add two values of R. To define the syntax and semantics of
LeanMLIR(QuotRing), we first declare the types and operations in the IR (Figure 1a).
QuotRing has two types: r, which represents the ring R, and nat for naturals. Terms in Op
represent the operations arith_const, monomial, and add, as well as associated compile-time
data. We then define the operation signatures by giving an instance of the OpSignature
typeclass, which is offered by our framework to instantiate custom IRs (Figure 1b). That is,
for each operation we specify: (1) the arity and types of arguments sig, and (2) the type of
the return value outTy. The operation arith_const takes no arguments and returns a nat,
monomial and add take two nat/r-valued arguments respectively, and both return an r.

The type denotation is also simple to express with the TyDenote typeclass (Figure 1c). Ty
thus represents the embedded type in the IR and has only two inhabitants r and nat, whose
denotation are R and Nat, the Lean (host) type that represents the mathematical objects R

and N respectively. The denotation of operations is a Lean function from the denotation of
the input types (as recorded in the signature of that operation), to the denotation of the
output type.4 Concretely, an arith_const n operation takes no arguments, so its denotation
is Lean’s Nat, while add takes two r arguments, so its denotation is a function from the
product5 of its arguments to its output, i.e., R × R → R. The same is true for monomial for
Nat × Nat → R. We define the denotation of arith_const n to evaluate to n, add(x, y) to
evaluate to x + y, and monomial(a, i) to evaluate to Quotient.mk (span generator p q
(monomial a i)), the equivalence class of the monomial aXi. As the QuotRing IR does not
require regions (Subsection 6.2), we only need to add MLIR syntax support (Subsection 3.2)
and translate the MLIR AST to Ty and Op, e.g., mapping !Nat6 to nat and !R to r, and a
full QuotRing example (Figure 2) can be written in Lean.

2.2 Defining and Executing Peephole Rewrites for QuotRing

We now verify the peephole rewrite (a + X2n + 1 7→ a), where a is a variable and X2n

is a constant in the ring. In (Z/qZ)[X]/(X2n + 1) this rewrite is simple to prove and,
unsurprisingly, our custom LeanMLIR(QuotRing) IR enables us to rewrite at exactly this

3 We will discuss the underlying mathematical structure in more detail in Subsection 6.3
4 Our framework groups type and operation denotations into a Dialect, which we leave out for brevity.
5 The mechanization uses a heterogeneous vector type HVector, which is coerced into the product type.
6 In practice, one would use a fixed-bitwidth type iN but we use !Nat for a simpler exposition.
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def a_plus_generator_eq_a : PeepholeRewrite Op [.r] .r := {
lhs /- a + X^(2^n) + 1 -/ := [quotring_com q, n| {

^bb0(%a : !R):
%one_int = arith.const 1 : !Nat
%two_to_the_n = arith.const ${2**n} : !Nat
%x2n = poly.monomial %one_int, %two_to_the_n : (!Nat, !Nat) -> !R
%oner = poly.const 1 : !R
%p = poly.add %x2n, %oner : !R
%v1 = poly.add %a, %p : !R
return %v1 : !R

}],
rhs /- a -/ := [quotring_com q, n| {

^bb0(%a : !R):
return %a : !R

}],
correct := by

funext Γv; simp_peephole [Nat.cast_one, Int.cast_one] at Γv 1
/- ⊢ a + ((Quotient.mk (span {f q n})) ((monomial (2**n)) 1) + 1) = a -/
... /- simple proof with only definitions and theorems from Mathlib -/

}

Figure 2 A peephole rewrite in LeanMLIR(QuotRing) asserts the semantic equivalence of two
SSA programs given in MLIR syntax. Our proof automation through simp_peephole eliminates the
framework overhead, such that closing a clean mathematical goal suffices to prove correctness.

level. Any given peephole rewrite (of which Figure 2 is an example) consists of a context Γ of
free variables in the search pattern of the peephole rewrite. The search pattern is called lhs,
and the replacement is rhs. The user has a proof obligation that the denotations of the left
and right-hand sides are equal, which is given by the field correct of the peephole rewrite.
In later examples, we reason upto semantic refinement to incorporate LLVM’s notion of
poison values [20]. For now, we stick to equality to simplify exposition.

We declare our desired peephole rewrite by defining a_plus_generator_eq_a. Its type
is PeepholeRewrite Op [.r] r, where the Op specifies the IR the rewrite belongs to and
[.r] is the list of types of free variables in the program. For (a+X2n +1 7→ a), this is (a : r).
The final instruction we are matching yields a value of type r. The lhs is the program
fragment we want to match on, with the free variable %a interpreted as being allowed to
match any variable of type r. Observe that the type encapsulates exactly what is necessary
for a well-typed match: the types of free variables r and the type of the instruction whose
return value we are replacing (also r in this case). The rewritten program is the rhs field.

Both the left- and right-hand sides of the rewrite are written in MLIR syntax. Note
that we also include a custom quasiquotation ${2**n}, to inline the symbolic (universally
quantified) value n, even though the IR would require 2n to be a concrete constant. Using
MLIR syntax matches the LLVM community’s use of automation tooling, such as Alive: copy
a code snippet and get a response. Our goal is to make the use of an interactive theorem
prover part of the day-to-day workflow of compiler engineers. To enable this workflow, we
implement a full MLIR syntax parser, along with facilities to convert from the generic MLIR
abstract syntax into our framework type, such that we can use MLIR syntax in Lean.

To prove the correctness of a_plus_generator_eq_a, we use the simp_peephole 1
tactic from our framework, which removes any overhead of our SSA encoding. We are
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left with: ⊢ a + ((Quotient.mk (span f q n)) ((monomial (2**n)) 1) + 1) = a , a
proof obligation in the underlying algebraic structure that, thanks to Lean’s mathlib, can
be closed with a few (elided) lines of algebraic reasoning.

2.3 Executing Peephole Rewrites
Given a peephole rewrite rw and a source program s, we provide rewritePeephole to replace
the pattern rw.lhs in the source program s. If the matching succeeds, we insert the target
program rw.rhs (with appropriate substitutions) and replace all references to the original
variable with a reference to the newly inserted var. Note that the matching is based on the
def-use chain. Thus, a pattern need not be syntactically sequential in the program s. As long
as the pattern rw.lhs can be found as a subprogram of s, s will be rewritten. This makes
our peephole rewriter an SSA peephole rewriter, which distinguishes it from a straight-line
peephole rewriter that only matches a linear sequence of instructions.

Thanks to our intrinsically well-typed encoding, we know that the result of the rewriter
is always a well-typed program, under the same context and resulting in the same type
as the original program. Furthermore, the framework extends the local proof of semantic
equivalence to a global proof, showing that the rewriter is semantics preserving:

/- The denotation of the rewritten program is equal to the source program. -/
theorem denote_rewritePeephole (fuel : N) (rw : PeepholeRewrite Op Γ t)

(target : Com Op Γ2 t2) : (rewritePeephole fuel rw target).denote = target.denote

These typeclass definitions are all we need to define the QuotRing IR. Our framework
takes care of building the intrinsically well-typed IR for QuotRing from this, and gives us a
verified peephole rewriter, with other optimizations like CSE and DCE. We will now delve
into the details of the framework and see how it achieves this.

3 LeanMLIR(X): A Framework for Intrinsically Well-Typed SSA

In this section, we describe the core design of the framework: the encoding of programs and
their semantics in LeanMLIR(X) (Figure 3a). We review some dependently-typed tooling we
use to define our IR. Contexts: Our encoding is intrinsically well-typed (i.e., each inhabitant
of Expr or Com described below is, by construction, well typed). Thus, we need a context to
track the types of variables that are allowed to occur (Ctxt Ty). A context is a list of types,
where for example [int, int, bool] means that there are two variables of the (user-defined)
type int and one variable of type bool we may refer to. Variables: The type (Var Γ α)
encodes variables of type α in context Γ. We use De Bruijn indices [33] in the standard
way, but, additionally, a variable with index i also carries a proof witness that the i-th entry
of context Γ is the type α. Heterogeneous Vectors: To define an argument signature
(OpSignature.sig), say, [int, int, bool], we need an expression with this operation to
store two variables of type int and one of type bool. We want to statically ensure that the
types of these variables are correct, so we store them in a heterogeneous vector. A vector of
type HVector f [α1, ..., αn] is equivalent to a tuple (f α1 × ... × f αn).

3.1 Semantics of LeanMLIR(X)
The core types for programs are Expr and Com, shown in Figure 3a. The type Expr Γ α

describes individual SSA operations; we think of it as a function from values in the context
Γ – also called a valuation for that context – to a value in the denotation of type α. The
type Com Γ α has a similar interpretation but represents sequences of operations. Each
command binds a new value in the current context (the var constructor) until the sequence
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inductive Expr [OpSignature Op Ty] : Ctxt Ty → Ty → Type where
| mk (op : Op) -- op (arg1, arg2, ..., argn) : outTy op

(args : HVector (Var Γ) (OpSignature.sig op)) : Expr Γ (OpSignature.outTy op)

inductive Com [OpSignature Op Ty] : Ctxt Ty → Ty → Type where
| ret (v : Var Γ α) : Com Γ α -- return v
| var (e : Expr Γ α) (body : Com (Γ.snoc α) β) : Com Γ β -- let v : α := e in body

(a) Core syntax of LeanMLIR(X), polymorphic over Op. The arguments in square brackets are assumed
typeclass instances. Type is the base universe of Lean types.

variable [TyDenote Ty] [OpDenote Op Ty] [DecidableEq Ty]

def Expr.denote : {ty : Ty} → (e : Expr Op Γ ty) → (Γv : Valuation Γ) → toType ty
| _, 〈op, args〉, Γv => OpDenote.denote op (args.map (fun _ v => Γv v))

def Com.denote : Com Op Γ ty → (Γv : Valuation Γ) → (toType ty)
| .ret e, Γv => Γv e
| .var e body, Γv => body.denote (Γv.snoc ( e.denote Γv))

(b) Denotation of Expr and Com in LeanMLIR(X), which extends the user’s OpDenote to entire programs.
Intrinsic well-typing of Com makes its denotation a well-typed function from the context valuation to the
return type. The angled brackets are used to pattern match on a structure constructor anonymously.

Figure 3 Definitions in LeanMLIR(X) for Expr and Com, and their associated denotations.

returns the value of one such variable v (the ret constructor). Thus, this encoding of SSA
exploits the similarity to the ANF [2] and CPS [15] encodings. In particular, our Expr
represents an SSA assignment, and Coms represents a block of operations, often called a
basic block. A basic block typically would either return or branch to another block. In our
case, blocks only return and consequently do not model branching. Instead, we use regions
to model structured control flow (Subsection 6.2). Given our core syntax, our framework
now automatically expands the semantics given by the user in OpDenote to semantics for
Expr and Com (Figure 3b). An Expr evaluates its arguments by looking up their value in the
valuation and then invokes the user-defined OpDenote.denote to evaluate the semantics of
the op.

3.2 Writing LeanMLIR(X) Programs Using MLIR Syntax

An important goal for our framework is to provide easy access to formalization for the MLIR
community. Toward this goal, we have a deep embedding of MLIR’s AST and a corresponding
parser. This is developed using Lean’s syntax extensions [38]. We extend Lean with a generic
framework to build Expr and Com terms from a raw MLIR AST. This framework allows the
user to pattern-match on the MLIR AST to build intrinsically well-typed terms, as well as
to throw errors on syntactically correct, but malformed MLIR input. These are used by our
framework to automatically convert MLIR syntax into our SSA encoding, along with the
ability to provide precise error messages in cases of translation failure. This enables us to
write all our examples in MLIR syntax, as demonstrated throughout the paper.

More concretely, we have an embedded domain-specific language (EDSL), which declares
the MLIR grammar as a Lean syntax extension. As part of this work, we have found several
inconsistencies with the MLIR language reference and contributed patches upstream to
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structure OpSignature (Ty : Type) where /- (1) Extending signature. -/
regSig : List (Ctxt Ty × Ty)

· · ·

class OpDenote [TyDenote Ty] [OpSignature Op Ty] where /- (2) Extending denotation. -/
denote : (op : Op) → (args : HVector toType (OpSignature.sig op)) →
(regArgs : HVector (fun (ctx, t) => Valuation ctx → toType t) (OpSignature.regSig op)) →

(toType (OpSignature.outTy op))

inductive Expr : (Γ : Ctxt Ty) → (ty : Ty) → Type where
| mk (op : Op)
· · ·
(regArgs : HVector (fun (ctx, ty) => Com ctx ty) (OpSignature.regSig op)) :

Expr Γ ty

mutual /- (3) extending expression denotation to recursively invoke regions. -/
def Expr.denote : {ty : Ty} → (e : Expr Op Γ ty) → (Γv : Γ.Valuation) → (toType ty)
| _, 〈op, args, regArgs〉, Γv =>
OpDenote.denote op (args.map (fun ty v => Γv v)) regArgs.denote
· · ·
end

Figure 4 Extending LeanMLIR(X) with regions. New fields are in green . In OpDenote, one can
now access the sub-computation represented by the region when defining the semantics of Op.

update them.7 Overall, this gives users the ability to write idiomatic MLIR code into our
framework and receive an MLIR AST. Moreover, as we will showcase in the examples, our
EDSL is idiomatically embedded into Lean, which allows us to quasiquote Lean terms. This
will come in handy to write programs that are generic over constants, such as parameterizing
a program by 2n for any choice of n. We build our intrinsically well-typed data structures
from this MLIR AST by writing custom elaborators.

3.3 Modelling Control Flow in LeanMLIR(X) With Regions
So far, our definition of Com only allows straight-line programs. To be able to model control
flow, we add regions to our IR. Regions are an extension to SSA introduced by MLIR.
They add the syntactic ability to nest IR definitions, thereby allowing syntactic encoding of
concepts such as structured control flow. This is in contrast with the approach of having a
sea of basic blocks in a control-flow graph (CFG) that are connected by branch instructions.
More specifically, structured control flow with regions allows modeling reducible control
flow [1]. General CFGs allow us to represent more complex, irreducible control flow, which
makes them harder to reason about. Consequently, compiler frameworks such as MLIR
encourage structured control flow (even though they allow for a sea of basic blocks). In our
framework, we focus on the novel aspects of MLIR: structured control via nested regions.

Intuitively, regions allow an Op to receive Coms as arguments, and choose to execute these
Com arguments zero, one, or multiple times. This allows us to model if conditions (by executing
the regions zero or once), loops (by executing the region n times), and complex operations
such as tensor contractions and convolutions by executing the region on the elements of
the tensor [39]. We implement this by extending Expr with a new field representing region
arguments (Figure 4). We also extend OpSignature with an extra argument for the input
types and output types of the region. In parallel, we add the denotation of regions as an

7 reviews.llvm.org/{D122979, D122978, D122977, D119950, D117668}
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argument, extending OpDenote. Similarly, we extend the denotation of Expr to compute the
denotation of the region Coms in the Expr, before handing off to OpDenote.

This extension to our core calculus gives us the ability to model structured nesting of
programs whose denotation is a bounded computation.8 This is used pervasively in MLIR, to
represent if conditions, for loops, and higher-level looping patterns such as multidimensional
strided array accesses over multidimensional arrays (tensors). We show how to model control
flow in Subsection 6.2.

4 Reasoning About LeanMLIR(X)

The correctness of peephole rewriting is a key aspect of the metatheory of LeanMLIR(X). We
begin by sketching the mechanized proof of correctness of peephole rewriting. We then discuss
how the infrastructure built for this proof is reused to prove two other SSA optimizations:
common subexpression elimination (CSE) and dead code elimination (DCE). Finally, we
discuss our proof automation, which manipulates the IR encoding at elaboration time to
eliminate all references to the framework and provide a clean goal to the proof engineer.

4.1 Verified SSA Rewriting With rewritePeephole

We now provide a sketch of the mechanized correctness proof of rewritePeephole. The
key idea is that to apply a rewrite at location i, we open up the Com at location i in
terms of a zipper [12]. This zipping and rewriting at a location i is implemented by
rewritePeepholeAt. The zipper comprises of Lets to the left-hand side of i, and Com to
the right: let x2 = x1; (let x3 = x2; (let x4 = x3; (return x3))): Com [x1] α =

((let x2 = x1); let x3 = x2); : Lets [x1] [x1, x2, x3]

(let x4 = x3; (return x3)) : Com [x1, x2, x3] α

The use of a zipper enables us to easily traverse the sequence of let-bindings during
transformation and exposes the current let binding being analyzed. This exposing is
performed by Lets, which unzips a Com such that the outermost binding of a Lets is the
innermost binding of a Com. This forms the zipper, which splices the Com into a Com and
a Lets. Also, while Com tracks only the return type α in the type index, Lets tracks the
entire resulting context ∆. That is, in (lets : Lets Γ ∆), the first context, Γ, lists all
free variables (just as in Com Γ t), but the second context, ∆, consists of all variables in Γ
plus a new variable for each let-binding in the sequence lets. We can thus think of ∆ as
the context at the current position of the zipper. Another difference is the order in which
these sequences grow. Recall that in Com, the outermost constructor represents the topmost
let-binding. In Lets, the outermost constructor instead corresponds to the bottom-most
let-binding. This difference is what makes the zipper work.

We have two functions to go from a program to a zipper and back: (1) (splitProgramAt
pos prog), to create a zipper from a program prog by moving the specified number of
bindings to a new Lets sequence, and (2) (addComInMiddleOfLetCom top mid bot), to
turn a zipper top, bot into the program, while inserting a program mid : Com in between.
We also prove that the result of splitting a program with splitProgramAt is semantically

8 Since our semantics denote into Lean expressions, the user-given semantics must be provably terminating
to be executable. We wish to explore richer denotations, such as (computable) coinductive and
(noncomputable) domain theoretic semantics in future work.
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equivalent to the original program. Similarly, we prove that stitching a zipper back together
with addComInMiddleOfLetCom results in a semantically equivalent program.

Given a peephole rewrite (matchCom, rewriteCom), to rewrite at location i, we first split
the target program into top and bot. We then attempt to match the def-use chain of the
return variable in matchCom with the final variable in top (which is the target i, since we
split the program there). This matching of variables recursively matches the entire expression
tree.9 Upon successful matching, this returns a substitution σ for the free variables in
matchCom in terms of (free or bound) variables of top. Using this successful matching, we
stitch the program together as top; σ(rewriteCom); τ(bot). Here, τ is another substitution
that replaces the variable at location i with the return variable of rewriteCom. Since we
derived a successful matching, we know that the semantics of variable i is equal to that
of the return variable of matchCom. By assumption on the peephole rewrite, the variable
i is equivalent to the return variable of rewriteCom. This makes it safe to replace all
occurrences of the variable i in bot with the return variable of rewriteCom. This proves
denote_rewritePeephole, which states that if a rewrite succeeds, then the semantics of
the program remain unchanged. In this way, we use a zipper as a key inductive reasoning
principle to mechanize the proof of correctness of SSA-based peephole rewriting. We extend
this rewriting to regions by recursively rewriting over the regions in a program.

4.2 DCE & CSE: Folding Over Intrinsically Well Typed SSA

The classic optimizations enabled by SSA are peephole rewriting, dead code elimination
(DCE), and common subexpression elimination (CSE). We implement these optimizations
in our framework as a test of its suitability for metatheoretic reasoning. Our approach
is different from previous approaches [47, 5] with our use of intrinsic well-typing, which
mandates proofs of the structural rules on contexts to rewrite programs. We begin by
building machinery to witness that a context ∆ is equal to the context Γ, minus the variable
x. This is spelled as Deleted Γ x ∆ in LeanMLIR(X). We then prove context-strengthening
theorems to delete variables that do not occur in Expr and Com while preserving denotation.

Using this tooling, DCE is implemented in ≈ 400 LoC, which shows that our framework
is well-suited to metatheoretic reasoning. The implementation is written in a proof-carrying
style, interleaving function definitions with their proof of correctness. The recursive step of
the dead code elimination takes a program p : Com Γ t and a variable v to be deleted, and
returns a new p′ : Com ∆ t. The two contexts Γ and ∆ are linked by a context morphism
(Hom Γ ∆), to interpret p′ (with the deleted variable) which lives in a strengthened context
∆ in the old context Γ. We walk p recursively to eliminate dead values at each let binding.
This produces a new p′ with dead bindings removed, a proof of semantic preservation, and
a context morphism from the context of p to the strengthened context of p′ with all dead
variables removed.

Similarly, the CSE implementation folds over Com recursively, maintaining data structures
necessary to map variables and expressions to their canonical form. At each (let x =
f(v1, ...vn) in b) step, we canonicalize the variables vi to find variables ci. We then look up
the canonicalized expression f(c1, . . . , cn) in our data structure to find the canonical variable
cx if it exists and replace x with cx. If such a canonical cx does not exist, we add a new
entry mapping f(c1, . . . , cn) to x, thereby canonicalizing any further uses of this expression.

9 We match regions in expressions for structural equality. We do not recurse into regions during matching,
and treat regions as black-boxes.
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4.3 Proof Automation for Goal State Simplification in LeanMLIR(X)
The proof automation tactic simp_peephole Γ (used to eliminate framework definitions
from the goal state) takes a context Γ, reduces its type completely, and abstracts out program
variables to provide a theorem statement that is universally quantified over the variables of
the program, with all framework definitions eliminated. It uses a set of equation theorems
to normalize the type of Γ. This is necessary to extract the types of variables during
metaprogramming. Once the type of Γ is known, we simplify away all framework definitions
(such as Expr.denote). We then replace all occurrences of a variable accesses Γ[i] with a
new (Lean, i.e., host) variable. We do this by abstracting terms of the form Γ[i] where i is
the i-th variable. This gives us a proof state that is universally quantified over variables from
the context. Finally, we clear the context away to eliminate all references to the context
Γ. The set of definitions we simplify away is extensible, enabling us to add domain-specific
simplification rewrites for the IR.

5 Pure Rewriting in a Side-Effectful World

While LeanMLIR(X) streamlines the verification of higher-level IRs that use only value
semantics, typical IRs may interleave islands of pure operations (with value semantics) with
operations that carry side effects. An IR that is user-facing can usually be rephrased with
high-level, side-effect-free semantics. Yet, each operation in such an IR is compiled through a
sequence of IRs that are lower level and potentially side-effectful. For example, in the case of
FHE, the pure FHE IR is compiled to a lower-level IR that encodes the coset representative
of each ideal as an array, with control flow represented via structured control flow (scf).
Eventually, this is compiled into LLVM which is rife with mutation and global state. In
such a compilation flow, peephole rewrites are used at each intermediate IR to optimize pure
fragments while leaving side-effectful fragments untouched. An effective compiler pipeline
introduces the right abstractions to maximize rewrites on side effect-free fragments.

LeanMLIR(X) is designed to facilitate verification of peephole rewrites as they arise in such
a compiler pipeline. The previous sections already presented how our framework supports
the verification of peephole rewrites in a pure setting. Yet, our design also allows for the
optimization of a pure fragment in a side-effectful context. We have a mechanized proof of
the correctness of the extended framework with support for side effects and a rewrite theorem
that performs pure rewrites in the presence of side effects. The key idea is to annotate each
Op with an EffectKind, where EffectKind.pure changes the denotation of the Expr into
the Id monad, while EffectKind.impure denotes into an arbitrary, user-chosen, IR-specific
monad. We also introduce a new notion of monadic evaluation of Lets, which returns a
valuation plus a proof that, for every variable v that represents a pure expression e in the
sequence of let-bindings, the valuation applied to v agrees with the (pure) denotation of
e. This proof-carrying definition allows us to use this invariant when reasoning inside a
subexpression of a monadic bind.

With the above at hand, the overall rewriter construction and proof strategy remains
unchanged, with the additional constraint of performing rewriting only on those operations
marked as EffectKind.pure, and the surrounding monadic ceremony required to show that
a pure rewrite indeed does not change the state of pure variables in various lemmas.10

10 A limitation of our current mechanization is that we assume that all regions are potentially side-effecting.
This is a simplification that shall be addressed in a newer version of the proof.
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6 Case Studies

We mechanize three IRs based on ones found in the MLIR ecosystem as case studies for
LeanMLIR(X) and show how they benefit from the different aspects of our framework. Note
that the core of our framework (definitions of Expr, Com, PeepholeRewrite, lemmas about
these objects, and the peephole rewriting theorem) is ≈ 2.2k LoC. The case studies based
on our framework together are ≈ 5.6k LoC, which stresses the framework to ensure that it
scales to realistic formal verification examples.

6.1 Reasoning About Bitvectors of Arbitrary Width
We first demonstrate our ability to reason about a well-established domain of peephole
rewrites: LLVM’s arithmetic operations over fixed-bitwidth integers. Using the Z3 SMT
solver [8], the Alive project [24, 23] can efficiently and automatically reason about these.
Notably, at the time of this writing, almost 700 LLVM patches have justified their correctness
by referencing Alive. In this way, accessible proof tools can find a place in production compiler
development workflows. However, Alive is limited by the capabilities of the underlying SMT
solvers. SMT solvers are complex, heuristic-driven, and sometimes even have soundness
bugs [43]. They are also specialized to support very concrete theories. Among others, this
means Alive can only reason about a given fixed bitwidth. Even recent work that specifically
aims to generalize rewrites to arbitrary bitwidths, can only exhaustively test a concrete set
of bitwidths [27]. Using our framework, we can reproduce Alive-style correctness proofs, and
extend them to reason about arbitrary (universally quantified) bitwidths. This ability to
handle arbitrary bitwidth is important in verification contexts that have wide bitvectors, as
they can occur in real-life VLSI problems [13, 41]. MLIR itself has multiple IRs that require
bitvector reasoning: comb for combinational logic in circuits, arith and index for integer
and pointer manipulation, and llvm which embeds LLVM IR in MLIR. Our streamlined
verification experience offers developers an Alive-style workflow for the llvm dialect, while
allowing reasoning across bitwidths. As our framework is extensible, we believe we can also
support other dialects that require bitvector reasoning, such as comb, arith, and index.

6.1.1 Modeling a fragment of LLVM IR: Syntax and Semantics
To test our ability to reason about bitvectors in practice, we model the semantics of the
arithmetic fragment of LLVM as the IR LeanMLIR(LLVM). We support the (scalar) operators:
not, and, or, xor, shl, lshr, ashr, urem, srem, add, mul, sub, sdiv, udiv, select and
icmp. We support all icmp comparison flags, but not the strictness flags nsw and nuw.

At the foundation of our denotational semantics is Lean’s BitVec type, which models
bitvectors of arbitrary width and offers smtlib [4] compatible semantics. However, when we
started this work, most bitvector operations were not defined in the Lean ecosystem and the
bitvector type itself was not fully fleshed out. Hence, we worked with the mathlib and Lean
community to build and upstream a theory of bitvectors.11 After developing the core theory
in mathlib, Lean’s mathematical library, development subsequently moved into Lean core,
where we continue to evolve Lean’s bitvector support.

11 github.com/leanprover-community/mathlib4/pull/{5383,5390,5400,5421,5558,5687,5838,5896,7410,
7451,8231,8241,8301,8306,8328,8345,8353},
github.com/leanprover/lean4/pull/{3487,3471,3461,3457,3445,3492,3480,3450,3436},
github.com/leanprover/std4/pull/{357,359,599,626,633-636,637,639,641,645-648,655,658-660,653}
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The semantics of LLVM’s arithmetic operations follow the semantics of smtlib (and
consequently Lean’s) bitvectors closely. In case of integer wrapping or large shifts, for
example, LLVM can produce so-called poison values [24], which capture undefined behavior
as a special value adjoined to the bitvector domain. LLVM’s poison is designed not to be
a side effect and, consequently, can be reasoned about in a pure setting. In contrast, ub
is a side effect that triggers immediate undefined behaviour, and can be refined into any
behavior. In LLVM, the following refinements are legal: ub ⊑ poison ⊑ val. Among the
instructions we model, division and remainder can produce immediate undefined behavior ub.
In our framework, we approximate these by collapsing the side-effectful undefined behavior
and side-effect-free poison both into Option.none. We thus denote bitvectors into the type
Option (BitVec w). This is safe as long as the right hand side is allowed to produce ub
only when the left hand side produces ub. In our context, only the division and remainder
operations produce ub. In all the Alive rewrites we translate that contain division and
remainder operations, we manually verify that the right hand side of a rewrite triggers ub if
and only if the left hand side does (by checking that any division/reminder on the right has a
corresponding operation with syntactically equal arguments on the left). To be fully correct
one can either treat division and remainder as side-effectful operations in our framework or
develop further theorey with respect to treating ub as a side effect. We leave separating ub
as a side effect distinct from poison, and reasoning about peephole rewrites which refine such
side effects as interesting future work.

For side-effect-free programs, our semantics match the LLVM semantics. We perform
exhaustive enumeration tests between our semantics and that of LLVM. We take advantage
of the fact that an IR with computable semantics automatically defines an interpreter in our
framework. We build an executable program that runs every instruction, with all possible
input combinations upto bitwidth 8. We get LLVM’s ground truth by using LLVM’s optimizer,
opt to transform the same instruction with constant inputs. This optimizes the program
into a constant output, handling undefined behavior. By exhaustive enumeration, our tested
executable semantics correspond to the LLVM semantics wherever the result is Option.some,
and also soundly model undefined behavior whenever the result is Option.none. This gives
us confidence our semantics correspond to LLVM’s.

6.1.2 Proving Bitvector Rewrites in our Framework
Effective automation for bitvector reasoning is necessary to resolve the proof obligations
that LeanMLIR(X) derives automatically from peephole rewrites expressed as MLIR program
snippets. While Lean does not yet have extensive automation for bitvectors, thanks to our
work we can already use a decision procedure for commutative rings [11] and an extensionality
lemma that establishes the equality of bitvectors given equality on an arbitrary bit index.

We test the available automation on a dataset of peephole optimizations from Alive’s
test suite, consisting of theorems about addition, multiplication, division, bit-shifting and
conditionals. Out of the 435 tests in Alive’s test suite, we translate 93 tests which are the
ones that are supported by the LLVM fragment we model and without preconditions. We
prove 54 of these rewrites from the Alive test suite automatically. Some rewrites cannot
be handled automatically. Of those where automation struggles, we manually prove an
additional 6, selecting the ones where an SMT solver takes long to prove them even for a
specific bitwidth (e.g., 64). Our proofs are over arbitrary (universally quantified) bitwidth,
save for some theorems that are only true at particular bitwidths.12 As an example, let us
consider the following rewrites:

12 e.g., a + b = a xor b is true only at bitwidth 1.
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example (w : Nat) :
[llvm (w)| {

^bb0(%X : _, %Y : _):
%v1 = llvm.sub %X, %X
%r = llvm.xor %v1, %Y
llvm.return %r

}] ⊑ [llvm (w)| {
^bb0(%X : _, %Y : _):

llvm.return %Y
}] := by

simp_alive_peephole
alive_auto

example (w : Nat) :
[llvm (w)| {

^bb0(%X : _, %Y : _):
%v1 = llvm.and %X, %Y
%v2 = llvm.or %X, %Y
%v3 = llvm.add %v1, %v2
llvm.return %v3

}] ⊑ [llvm (w)| {
^bb0(%X : _, %Y : _):

%v3 = llvm.add %X, %Y
llvm.return %v3

}] := by
simp_alive_peephole
<proof omitted>

Note that due to the support of MLIR syntax in our framework, these rewrites are specified
in MLIR syntax. We use a custom extension with the placeholder syntax _, to stand for an arbi-
trary bitwidth w. Simplification of the framework code with simp_peephole, yields the proof
obligation (w : Nat) (X Y : BitVec w) ⊢ LLVM.xor (LLVM.sub X X) Y ⊑ Y for the
first example. This proof obligation only concerns the semantics in the semantic domain of
bitvectors, it does not feature MLIR and SSA anymore. This goal is automatically proven
by our proof automation for bitvectors, alive_auto. The proof for the second example
(omitted) is slightly more involved and currently requires manual intervention. It yields the
proof state: ⊢ (B &&& A) + (B ||| A) = B + A , where the proof follows by reasoning
about the addition as a state machine. In the longer term, we aim to also connect our work
to a verified SAT checker that is under development.13

6.2 Structured Control Flow
The examples of IRs we have seen so far are all straight-line code. In this use case, we show
how we can add control flow to existing IRs, thanks to the parametricity of our framework.
We also demonstrate how encoding control flow structures as regions enable succinct proofs
for transformations, by exploiting the high-level structure of these operations. To this end,
we model structured control flow as a fragment of the scf IR in MLIR, by giving semantics
to two common kinds of control flow: if conditions and bounded for loops. Note that
we choose to model bounded for loops, since these are the loops that are used in MLIR to
model high-level operations such as tensor contractions. A pleasant upshot is that these
are guaranteed to terminate, and can thus have a denotation as a Lean function without
requiring modelling of nontermination (which is side-effectful). Our sketch of the extended
framework with side effects will be used to pursue this line of research in the future. The
conditionals and bounded for loops allow us to concisely express loop canonicalizations and
transformations from MLIR in LeanMLIR(scf).

We built this parametrically over an existing IR X to allow these constructs to be added
to an existing IR X. The key idea is that the Op corresponding to scf is parametrized by
the Op corresponding to another IR X. Since the only datatypes scf requires are booleans
and natural numbers, we ask that the type domain of X contains these types. We then
provide denotations in LeanMLIR(scf(X)) for booleans and integers from the type domain of
X. Thus, what we encode is LeanMLIR(scf(X)), which is an IR for structured control flow
parametrized by another, user-defined IR X.

The scf.for operation (Figure 5) has three arguments: the number of times the loop is
to be executed, a starting and step value for the iteration, and a seed value for the loop to

13 https://github.com/leanprover/leansat

https://github.com/leanprover/leansat
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/-- only control flow operations, parametric over another IR Op' -/
inductive Op (Op': Type) [OpDenote Op' Ty'] : Type
| coe (o : Op') -- coerce Op' to Op
| for (ty : Ty') -- a for loop whose loop carried data is Ty'

instance [I : HasTy Op' Int] : OpSignature (Op Op') Ty' where
signature
| .coe o => signature o
| .for t => 〈[/-start-/I.ty, /-step-/I.ty, /-niters-/N.ty, /-v-/t],

/- region arguments: -/ [([/-i-/I.ty, /-v-/t], /-v'-/t)],
/-return-/t〉

instance [I : HasTy Op' Int] [OpDenote Op' Ty']: OpDenote (Op Op') Ty' where
denote
| .coe o', args', regArgs' => OpDenote.denote o' args'regArgs' -- reuse denotation of o'
| .for ty, [istart, istep, niter, vstart]h, [f]h =>

let istart : Z := I.denote_eq ▶ istart -- coerce to `int`.
... -- coerce other arguments
let loop_fn := ... -- build up the function that's iterated.
(loop_fn (istart, vstart)).2

Figure 5 Simplified implementation of LeanMLIR(scf(X)) Observe that the IR is parametrized
over another IR Op’, and that we add control flow to the other IR in a modular fashion.

iterate on. Note that in the definition, the IR Op is defined parametrically over another IR
Op’, and the types of Op are the same as the types of other IR Ty’. We perform a similar
construction for if conditions.

The denotation of the for loop, as well as theorems about loop transformations, follow
from mathlib’s theory for iterating functions, Nat.iterate. The loop body in scf.for has
a region that receives the current value of the loop counter and the current iterated value
and returns the next iterated value. We prove the inductive invariant for loops using the
standard theory of iterated function compositions (f0 = id, fk ◦ f l = fk+l, idk = id). We
also prove common rewrites over loops: running a for loop for zero iterations is the same as
not running a loop at all (dead loop deletion), two adjacent loops with the same body can
be fused into one when the ending index of the first loop is the first index of the second loop
(loop fusion), and a loop whose loop body does not depend on the iteration count can be
reversed (loop reversal). Similarly, we prove that if true e e′ = e, and if false e e′ = e′.

These do not count as peephole rewrites in our framework, as they are universally
quantified over the loop body (which is a region). This is unsupported – peephole rewrites in
LeanMLIR(X) may only have free variables, not free region arguments.

Consider the loop optimization that converts iterated addition into a single multiplication.
Its proof obligation is (⊢ λx. x + δ)n(c) = n · δ + c . This transformation is challenging
to perform in a low-level IR, since there is no syntactic concept of a loop. However, this
transformation is a valid peephole rewrite in our framework since it uses a statically known
loop body. We showcase how regions permit MLIR (and, consequently, us) to easily encode
and reason with commonplace loop transformations. The parametricity of our framework
allows us to prove theorems that are valid on all IR extensions scf(X).

6.3 Fully Homomorphic Encryption

A key motivation for LeanMLIR(X) is to enable specifying formal semantics for high-level,
mathematical IRs. These IRs require access to complex mathematical objects that are
available in proof assistants, and verifying rewrites on such IRs is out of practical reach for
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today’s SMT solvers. As a case study, we formalize the complete “Poly” IR.14 This IR is a
work in progress and is in flux, as it is part of the discussion of an upcoming open standard
for homomorphic encryption, developed in collaboration by Intel and Google.15 Contrary
to what its naming implies, this IR does not model operations on polynomials.16 Instead,
codewords are encoded as elements in a finitely-presented commutative ring, specifically,
the ring R ≡ (Z/qZ)[x]/(x2n + 1), where q, n ∈ N are positive integers (q composite). The
name “Poly” comes from the equivalence class representatives are polynomials, but not all
IR operations are invariants of the equivalence class.

The “Poly” IR is, in fact, a superset of the QuotRing IR we defined in Section 2. It consists
of the operations add, sub, mul, mul_constant, leading_term, monomial, monomial_mul,
from_tensor, to_tensor, arith.constant and constant.17

Most of these operations are self-explanatory and derive from the (commutative) ring
structure of R or are used to build elements in R, like the equivalence classes of constants
or monomials. Three operations, to_tensor and from_tensor and leading_term do not
follow directly from the algebraic properties of the polynomial ring. Instead, they depend
on a (non-canonical) choice of representatives for each ideal coset in the polynomial ring.
More precisely, let π : (Z/qZ)[x] ↠ (Z/qZ)[x]/(x2n + 1) be the canonical surjection into the
quotient, taking a polynomial to its equivalence class modulo division by x2n + 1. Further
let σ : (Z/qZ)[x]/(x2n + 1) ↪→ Z/qZ[x] be the injection taking an equivalence class to its
(unique) representative with degree ≤ 2n. This is a right-inverse of π, i.e. π ◦ σ = id. Note
that multiple right-inverses could have been chosen for σ: As long as σ(x) is a representative
of the equivalence class of x for all x ∈ (Z/qZ)[x]/(x2n + 1), σ will be a right-inverse of
π. The operation to_tensor(p) returns the vector (σ(p)[i])i=0,...,2n , where a[i] represents
the i-th coefficient, i.e. σ(p) =

∑2n

i=0(σ(p)[i])xi, and to_tensor the converse. Similarly,
leading_term(p) returns the equivalence class of the leading term of the representative σ(p)
(which also depends on the choice of σ).

This allows us to define the semantics and prototype both the IR and rewrites in
it. Rewrites like mul(p,q) → mul(q,p) follow immediately from the fact that R is
a commutative ring. Other rewrites like from_tensor(to_tensor(p)) → p, or even
add(p,monomial(1,2n)) → sub(p,1), on the other hand, are more specific to this IR
and have a higher manual-proof overhead. We prove all of these.

We discussed the IR and potential semantics with the authors of the HEIR IR in the
context of the upcoming open standard for homomorphic encryption. We believe that a
framework like the one presented in this paper will allow standards like these to be defined
with formal semantics from the ground up.

7 Related Work

The semantics of LLVM, the spiritual ancestor of MLIR, have been well-studied. Both
Vellvm [46] and K-LLVM [22] formalized a large portion of LLVM, including reasoning
about SSA transformations explicitly [47]. Alive [24] and Alive 2 [23] provide push-button
verification for a subset of LLVM by leveraging SMT solvers. Alive-tv does the same for a set
of concrete IRs for tensor operations in MLIR [3]. AliveInLean [19] proves the correctness

14 as of commit 2db7701de
15 https://homomorphicencryption.org/
16 In the same way that rationals Q are not pairs of integers Z × Z.
17 It also has distinct types for integers and naturals, which we unified in Section 2 for simplicity.

https://github.com/google/heir/tree/2db7701de976f0277f7d3b8be9c65315c647cf79/include/Dialect/Poly
https://homomorphicencryption.org/
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of the translation from the Alive DSL into SMT expressions, as well as the correctness of
their encoding of program refinement as an SMT expression. In contrast, our work focuses
on building a framework for describing full programs (rather than rewrite snippets), and
formally defines and proves the correctness of peephole rewriting within a larger program
context. The semantics and correctness of compiling compositionally have been explored by
multiple authors, like Pilsener [29] or many variants of CompCert [21]: like compositional
CompCert [37], CompCertX [42], SepCompCert [14], CompCertM [36], and CompCertO [16].
A great summary of the approaches to this problem (including the ones mentioned above),
with their differences and similarities, is given by Patterson et al [31]. All of these use fixed
languages but are reasonable ways of giving semantics to relevant IRs in LeanMLIR(X).

The authors of [45] introduce a more modular approach to LLVM’s semantics, based on
interaction trees [44]. Like theirs, our semantics is also denotational and can be executed.
We currently only model a restricted set of side effects, whereas interaction trees shine
when modeling more complex side effects such as memory or non-terminating behavior. An
approach like this would thus be a great candidate for the semantics of a lower-level IR
such as LLVM within MLIR. Similarly, the work of DimSum [35] deals with the boundaries
between languages in the context of linking. This addresses also important part aspect we
don’t model yet: what occurs at the boundaries of IRs, when mixing them.

There is a longer line of work studying SSA and its relationship to functional programming.
Our work is inspired by and builds on the ideas from [15, 2, 5]. Complex compiler optimizations
have also been studied formally and verified, like [7] which implements verified polyhedral
optimization. We focus on the simpler and more ubiquitous peephole rewrites.

Our work differs from prior work on formalizing peephole rewrites by providing a framework
for reasoning about SSA peephole rewrites. The closest similar work, Peek [28] defines
peephole rewriting over an assembly instruction set. Their rewriter expects instructions to
be adjacent to one another. Furthermore, their rewriter restricts source and target patterns
to be of the same length, filling in the different lengths with nop instructions. Their patterns
permit side effects, which we disallow since we are interested in higher-level, pure rewrites.
Our patterns provide more flexibility since the source and target patterns are arbitrary
programs, and are matched on sub-DAGs instead of a linear sequence.

8 Conclusion

Peephole rewrites represent a large and important class of compiler optimizations. We have
seen how domain-specific IRs in SSA with regions greatly extend the scope of these peephole
rewrites. They raise the level of abstraction both syntactically with def-use chains and
nesting, and semantically, with domain-specific abstractions. We have shown how to reason
effectively about such SSA-based compilers, and, specifically, local reasoning in the form
of peephole rewrites. We advocate building on top of a proof assistant with a small TCB,
an expressive language and a large library of mathematics. This increases the confidence
in our verification and extends its applicability to many domains where more specialized
methods don’t exist. We also advocate proof automation and an intrinsically well-typed
mechanized core that can be designed to focus on the semantics of the domain. We incarnate
these principles in LeanMLIR(X), a framework built on Lean and mathlib to reason about
domain-specific IRs in SSA with regions. We show how LeanMLIR(X) is simple to use,
amenable to automation, and effective for verifying IRs over complex domains.
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Abstract
We present Duper, a proof-producing theorem prover for Lean based on the superposition calculus.
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1 Introduction

Interactive and automated theorem proving offer complementary strengths. Push-button
automation is convenient but limited to small problems or restricted problem domains, and
generally it does not provide strong correctness guarantees. Interactive theorem provers make
it possible to verify just about any theorem with a high degree of confidence in the correctness
of the result, but the work required is often unpleasant or impracticable. Most modern proof
assistants therefore rely on multiple forms of supporting automation. Domain-specific tactics
polish off goals in linear or linear integer arithmetic [17, 37], carry out calculations in any
ring [19], and even perform inferences involving abstract geometric structures [39]. Term
rewriters carry out general equational simplification [33], and tools like Isabelle’s Auto [34],
HOL Light’s Meson [20], and Lean’s Aesop [26] implement general tableau search.

Isabelle’s celebrated Sledgehammer [31, 32, 35, 36] provides powerful domain-general
automation by exporting problems to external provers and then harvesting enough inform-
ation to reconstruct and verify the results. A proof-producing ordered resolution prover,
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Metis [21], is frequently used for the latter purpose. Similar hammers for proof assistants
based on first-order logic or simple type theory include HOL(y) Hammer [22], a hammer
for Mizar [23], and a hammer for Metamath [12]. (See also [9] for a survey overview.)
Dependently typed foundations like those of Coq [7], Agda [10], and Lean [15] offer better
support for algebraic reasoning, but the added expressivity comes at a cost, and developing
domain-general automation for dependently typed foundations is notoriously hard. Even
applying a single lemma can require complex unification and elaboration processes, including
definitional reductions, type class search, and other means of inferring implicit arguments.
There is a hammer for Coq, CoqHammer [14], which uses a custom-designed inhabitation
procedure for proof reconstruction [13], but that reconstruction procedure is tuned to Coq’s
intuitionistic framework. A prototype hammer for Agda [18] uses only equational reasoning
for reconstruction. There is currently no hammer for Lean.

This paper introduces Duper, a proof-producing theorem prover for Lean based on the
superposition calculus [3]. Duper is written in the Lean programming language and it directly
generates proofs as expressions in Lean’s axiomatic foundation. It can be called as a tactic
when writing proofs interactively in Lean, but it is also intended to serve as a means of
proof reconstruction for external automation. Most notably, Duper is designed to work in a
dependently typed setting. Some of the challenges of working in a dependent type theory,
such as the need to use type class inference to instantiate algebraic structures, are best
handled in a monomorphization and preprocessing phase. For that, we use a tool called
LeanAuto, developed by the second author, which will be described in detail elsewhere. Other
challenges, such as Skolemizing formulas in an axiomatic framework in which quantifiers can,
in principle, range over empty types, have to be handled natively. We deal with remaining
challenges, such as polymorphic reasoning over types, polymorphic reasoning over type
universes, and higher-order reasoning, using a flexible combination of preprocessing and
native handling. Duper uses methods inspired by the Zipperposition prover [45] to carry out
higher-order inferences, and the framework is flexible enough to accommodate, in the main
loop, inferences that are specific to dependent types.

Our contributions are as follows:
We have developed new ways of incorporating important aspects of dependently typed
reasoning in a superposition theorem prover.
We have developed ways of generating proofs directly in a dependently typed axiomatic
framework.
We make effective use of LeanAuto’s preprocessing to prove the kinds of goals that arise
in practice when working with Lean and its library, Mathlib.
We show that Duper’s performance is comparable to Metis’ on standard benchmarks in
the interactive theorem proving community, specifically the Seventeen provers [16] and
GRUNGE benchmarks [11].

Duper is available online at https://github.com/leanprover-community/duper.

2 Proof Search

Duper is a superposition theorem prover implemented in Lean. It accepts as input a goal
state of the form E(Γ ⊢ p : Prop) where Γ is a local context, or list of hypotheses with
corresponding types, E is a global environment, or list of declarations, and p is the target
proposition. Duper also accepts as input a list of lemmas from E that may be relevant to the
provided goal. Since Duper is not yet equipped with a relevance filter, these lemmas must
currently be supplied manually. Given a goal state and lemma list, Duper will attempt to
produce a proof term t such that E(Γ ⊢ t : p).

https://github.com/leanprover-community/duper
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Although Duper’s input and output formats are tailored for closing Lean goals, its
approach to proof search more closely resembles that of standalone automatic theorem
provers than other forms of Lean automation. In this section, we describe the core aspects of
this approach that are essential to Duper’s functioning as a superposition theorem prover.

2.1 Main Saturation Loop
Given a goal state E(Γ ⊢ p : Prop), the first thing Duper does is negate the target p and add
it to the local context Γ, resulting in the modified goal state E(Γ,¬p ⊢ False : Prop). Having
a goal state of this form allows Duper to enter a main saturation loop in which it attempts
to deduce all possible inferences from Γ, ¬p, and the user-provided lemmas until either a
contradiction is derived or no further inferences can be performed. In the former case, Duper
uses the set of hypotheses that yielded a contradiction to produce the desired proof term t,
and in the latter case, Duper informs the user that it was unable to prove the goal with the
available lemmas. This high-level approach to proof search makes Duper a saturation-based
theorem prover.

The procedure that drives the main saturation loop in most saturation-based theorem
provers is called the given clause procedure [28]. Since different theorem provers implement
different calculi and search heuristics, there are multiple variants of this procedure [8],
the most common of which are the Otter loop [30] and the DISCOUNT loop [1]. Duper
implements a variant of the DISCOUNT loop, described by Vukmirović et al. [45], that is
designed to address complications that arise in higher-order unification.

At a high level, Duper’s given clause procedure functions by partitioning its derived facts
into a set of fully processed clauses called the active set and a set of unprocessed formulas
called the passive set. In each iteration of the main saturation loop, the procedure selects a
new formula from the passive set called the “given clause,” clausifies it, simplifies it, and then
uses generating rules to produce conclusions from it before transferring it to the active set and
proceeding to the next iteration of the loop. Conceptually, this control flow is simple, though
there are a variety of complications, such as the fact that some of Duper’s inference rules
can generate infinitely many clauses. Solutions to complications arising from higher-order
reasoning are described by Vukmirović et al. [45], and our solutions to complications arising
specifically from dependent type theory are described in Section 4.2.2.

Aside from implementing a prover’s central control flow, one of the primary purposes of
a given clause procedure is to manage redundancy. Since the search space that an automatic
theorem prover can consider is so large, reducing it as much as possible is an extremely
important part of building a performant prover. Toward this end, modern provers implement
a variety of heuristics, strategies, and features to help minimize the time spent reasoning
about clauses that are no longer necessary to obtain a contradiction.

One of the main ways the given clause procedure manages redundancy is by performing
simplification rules. Simplification rules are like generating rules in that they can produce
new conclusions for Duper to reason about, but they are unlike generating rules in that they
also eliminate one of the rule’s premises from future consideration. Simplification rules can
be applied as forward simplification rules, meaning they use clauses from the active set to
modify or eliminate the current given clause, or as backward simplification rules, meaning
they use the current given clause to modify or eliminate clauses in the active set.

Typically, in each iteration of the main saturation loop, forward simplification rules are
applied first, then backward simplification rules, and finally inference rules. This order is
ideal because it ensures that the given clause is simplified before it is used to modify the
active set and that the active set is reduced as much as possible before it is used to generate
inferences. Although this order is preferred, there are some special cases in which it must be
violated. Such cases are discussed in Section 4.2.2.

ITP 2024
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2.2 Core Calculus
The core calculus Duper uses to generate new facts in its main saturation loop is based on
Zipperposition’s oλSup calculus [5]. There are two primary reasons we chose to use this
calculus. First, Zipperposition is a state-of-the-art theorem prover with an established track
record of high performance, especially on higher-order problems [40, 41, 42, 44]. Second,
Zipperposition’s calculus is designed to be a graceful generalization of first-order superposition,
rather than a translation-based approach that transforms higher-order problems into first-
order logic before calling an essentially first-order procedure. Since Duper operates in a
dependently typed setting, we preferred an approach that supports native higher-order
reasoning and can be extended to support native dependent type theory reasoning over an
approach that requires translating to a less expressive logic.

Duper’s implementation of the superposition calculus has three primary components. First,
there is the implementation of each individual rule and its corresponding proof-reconstruction
procedure. For the most part, there are few substantive differences between how Duper
implements its inference rules and how other provers might implement the same rules.

One aspect of rule implementation worth mentioning is how Duper defines the clauses
that its inference rules act on. Most of Duper’s inference rules involve unification. Since
that involves mapping variables to specific values, a clause’s variables may take on particular
values for the sake of one inference but not others. It is therefore convenient to store clauses
both in a permanent format that will be unchanged by inference generation as well as in a
temporary format that can be modified by the unification procedure. To avoid confusion, we
refer to facts in the first format as clauses and facts in the second format as mclauses. This
naming convention arises from the fact that mclauses represent their variables with Lean
metavariables whose types and values can easily be modified by the unification procedure.

The second component of Duper’s core calculus is a strict order on terms, literals, and
mclauses. Having such an order enables Duper to impose side conditions on its inference rules
which drastically improve performance by limiting the number of possible valid inferences.
For this, Duper uses the Knuth-Bendix order (KBO) [24, 27] extended to be compatible with
higher-order logic [5].

To implement this order for Lean expressions, which come in more categories than just
symbols and variables, only a few additions and modifications are necessary. In mclauses,
Duper uses Lean metavariables as free variables, and treats Lean constants, free variables,
projections, strings, and natural numbers as “symbols.” Of these symbols, Duper treats
constants as greatest, followed by free variables, projections, strings, and natural numbers,
in that order. Lean expressions with additional metadata are definitionally equivalent to
those same expressions without the metadata, so Duper simply removes them from all
expressions prior to calling the KBO procedure. To handle λ-expressions, Duper follows
the approach described by Bentkamp et al. [6]. This involves exhaustively applying β- and
η-reduction rules to get rid of as many λ-expressions as possible, and then treating any
remaining λ-expressions of the form (λx : t. e[x]) as expressions of the form (LAM t e[#0])
where “LAM” is a constant and #0 is a bound variable with De Bruijn index 0. Finally, to
handle let expressions, Duper’s KBO procedure applies ζ-reduction exhaustively along with
β- and η-reduction which guarantees that no let expressions need to be considered.

The final component of Duper’s core calculus is a higher-order unification procedure.
We extend the approach outlined by Vukmirović et al. [46] to dependent type theory. This
enables Duper to generate arbitrarily many solutions to unification problems where infinitely
many incomparable unifiers may exist. The specifics of how we extend this approach to
dependent type theory are described in Section 4.1.
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3 Proof Reconstruction

Once Duper derives a contradiction in its main saturation loop, it uses that contradiction
to construct a proof term t such that E(Γ,¬p ⊢ t : False). Since Duper always begins by
applying double-negation elimination to transform its input goal E(Γ ⊢ p : Prop) into the
modified goal E(Γ,¬p ⊢ False : Prop), this suffices to close the original goal. We note that
although this initial transformation is standard for many automatic theorem provers, it is
only sound classically, as are many of the rules in Duper’s underlying superposition calculus.
Consequently, Duper only generates classical proofs, even when given a goal that could be
proved intuitionistically.

To construct t, Duper begins by collecting the list of clauses that were used to derive the
contradiction it found. Duper then generates proof terms for each clause in this list using
proof terms from earlier clauses or facts supplied as input. Since the final clause that Duper
generates is the empty clause, the final proof term that Duper generates is t.

Since the addition of a new clause is justified by a rule and a list of parent clauses, one can
construct the proof term for the result of an inference from those of the inference’s premises.
The specifics of how each result is justified depend on which rule is used to produce it, so
each of Duper’s rules is paired with a unique proof reconstruction procedure. In this section,
we discuss two ideas relevant to the proof reconstruction procedure of several of our rules.

3.1 Clause Instantiation
Each of Duper’s clauses is a disjunction of literals preceded by arbitrarily many universal
quantifiers. So if conclusion D is meant to follow from premises C1 and C2, the first step
to constructing D’s proof term is usually to instantiate all of the universal quantifiers at
the heads of C1 and C2. To guarantee that this is possible, if a rule’s proof reconstruction
procedure is known to require this first step, the rule itself will output conclusions whose
universal quantifiers include all of its parents’ universal quantifiers. Duper can then instantiate
C1’s and C2’s universal quantifiers using free variables introduced from the target D.

Although this restriction on Duper’s inference rules ensures that Duper will always be
able to instantiate C1’s and C2’s universal quantifiers with free variables introduced from
D, there are some instances in which Duper must adopt a different instantiation strategy.
This happens primarily when metavariables in mclauses are instantiated with particular
values by Duper’s unification procedure. Since metavariables in mclauses correspond to
bound variables in regular clauses, instantiating an mclause’s metavariable corresponds to
instantiating a clause’s universal quantifier. When this instantiation strategy is used, the
term used to instantiate the relevant quantifier is provided by the unification procedure.

This approach has some subtle consequences. The first is that Duper’s inference rules
can generate conclusions containing universal quantifiers whose variables do not appear in
the conclusion’s clause body. For example, given the premise ∀x : α, f x ̸= f x ∨ a = b,
Duper will recognize that the literal f x ̸= f x is always false and eliminate it to produce
the conclusion ∀x : α, a = b. Even though x does not appear in the clause body a = b, the
conclusion includes x’s universal quantifier since x appears in the premise and is not assigned
a value by the unification procedure.

To compensate for this behavior, Duper implements an additional simplification rule, called
removeVanishedVars, which takes an arbitrary premise and attempts to produce a conclusion
containing an identical clause body and strictly fewer universal quantifiers. Applying this
rule requires knowing that the removed quantifiers range over inhabited types, so Duper
must perform additional reasoning to determine which types are provably inhabited. The
specifics of this additional reasoning are discussed in Section 4.2.1.

ITP 2024
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The second subtle consequence of this approach is that although most of Duper’s proof
reconstruction can be delayed until after it is known which clauses appear in the final
proof, some amount of proof reconstruction must be performed for every generated clause.
Specifically, after any rule is carried out, all metavariable instantiations performed by the
unification procedure must be recorded before the rule’s mclauses are forgotten. For this
reason, Duper constructs partially instantiated parent terms immediately rather than wait
until the end of the proof search. Transforming the conclusion’s mclause into a clause also
requires taking the unification procedure’s instantiations into account, so performing these
partial instantiations immediately does not result in significant additional overhead.

3.2 Transfer Expressions
The only input required by most rules’ proof reconstruction procedures is a list of proof terms
corresponding to each premise and the type of the desired conclusion. In many cases, a rule’s
proof reconstruction procedure amounts to applying a single polymorphic Lean theorem that
justifies the rule’s soundness. However, some rules require additional information.

One example of such a rule is ForallHoist. This rule takes a clause C containing an
expression e that can be unified with (∀x : ?m1, (?m2 x)) and cases on whether e is
true. It does this by replacing e with False in C and giving C a new literal of the form
(?m2 ?m3 = True) where ?m3 is a fresh metavariable of type ?m1. The idea is that if e is
false, then replacing it with False in C is sound, and if e is true, then (?m2 ?m3) will also
evaluate to true.

The issue is that although ?m2 appears in the parent clause that ForallHoist takes, ?m3
does not. So it’s not possible to produce a proof term for the correct conclusion by merely
passing the parent’s proof term into even a polymorphic Lean theorem. The result type would
contain an unassigned metavariable, which is disallowed by Lean’s application procedure.
It is therefore necessary to, in addition to supplying the parent’s proof term, supply an
expression corresponding to ?m3. In principle, this expression can be derived from the type
of the desired conclusion, but in practice, it is both simpler and more efficient to pass the
necessary expression to the proof reconstruction procedure directly.

We call expressions that are passed directly to proof reconstruction procedures but are
not proof terms for parent clauses “transfer expressions.” Several of the higher-order rules
that Duper implements have proof reconstruction procedures that benefit from such transfer
expressions, usually because these rules produce more involved unification problems. If
Duper were a standalone automatic theorem prover that needed to interface with a separate
interactive theorem prover, passing along transfer expressions might be prohibitively difficult.
But because Duper is implemented in Lean, has clauses defined in terms of Lean expressions,
and makes use of several of Lean’s metaprogramming functionalities, implementing transfer
expressions is relatively straightforward.

4 Native Dependent Type Theory Reasoning

Lean’s type theory is based on the calculus of constructions (CoC) with a countable hierarchy
of non-cumulative universes and inductive types [2]. Lean moreover allows users to mark
arguments to be instantiated by type classe inference. Developing an automatic theorem
prover that can operate in the presence of these features poses a variety of challenges. Here,
we discuss the problems that Duper handles natively. Additional issues that are addressed
during preprocessing are discussed in Section 5.
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4.1 Unification
Many of Duper’s inference rules involve unification. To ensure these rules can be applied
even when dependent types are at play, it is important that Duper can support unifying
dependently typed terms. Consider the following example which involves matrices defined in
terms of Fin n, the (dependent) type of values less than n:

example (a b : Nat) (matrix : Fin a → Fin b → Nat)
(transpose : ∀ n m : Nat, (Fin n → Fin m → Nat) → (Fin m → Fin n → Nat))
(h : ∀ n m : Nat, (fun x => transpose n m (transpose m n x)) = (fun x => x)) :
transpose b a (transpose a b matrix) = matrix := by
duper [h]

This example can be proved by using h to rewrite transpose b a (transpose a b matrix) as
(fun x => x) matrix. But in order to perform this straightforward rewrite, it is necessary to
unify matrix of type Fin a → Fin b → Nat with x of type Fin ?m → Fin ?n → Nat (where ?m
and ?n are assignable metavariables). From this, we can see that even simple examples may
require Duper to use a unification procedure that supports dependently typed terms.

The unification procedure in Duper is based on that of Vukmirović et al. [46]. To unify
two terms s and t, the unification procedure builds a tree with nodes of the form (E, σ), where
E is a multiset of unification constraints {(s1

?= t1), . . . , (sn
?= tn)} and σ is a substitution.

The tree is built by starting from the root ({s ?= t}, ∅) and progressively creating nodes
according to transition rules. A transition rule (E, σ) −→ (E′, σ′) allows one to attach a
new node (E′, σ′) to an existing node (E, σ). It is expected that the solutions represented by
(E′, σ′) is a subset of that of (E, σ), and that either σ′ = σ or σ′ is a refinement of σ.

Among all the transition rules, the Bind rule is of great importance because it is the main
rule that refines the substitution. The Bind rule is defined as

({s ?= t} ⊎ E, σ) −→ ({s ?= t} ⊎ E, ρσ) ρ ∈ P(s ?= t)

where P(s ?= t) is the set of bindings applicable to s ?= t.
Both the transitions and bindings implemented by Duper are a superset of the ones

described by Vukmirović et al., hence Duper’s procedure is complete for the higher-order
fragment of Lean. In the following discussion, we use the notations and conventions established
by Vukmirović et al., including describing the unification procedure as acting on free variables.
Note that because Duper’s unification procedure operates on terms taken from mclauses, free
variables in the following discussion correspond with metavariables in our implementation.

4.1.1 Transitions
In dependent type theory, types are also terms, and types can contain ∀ binders. Consider
the unification equation ∀x. F x

?= ∀x. g x where F is a free variable and g is rigid. It is
easy to see that F 7→ g is a solution. However, there are no transitions in Vukmirović et
al.’s higher-order procedure applicable to this unification equation. To address this issue, we
introduce a new transition:

ForallToLambda : ({∀x. f x ?= ∀x. g x} ⊎ E, σ) → ({λx. f x ?= λx. g x} ⊎ E, σ)

Apart from this, the Fail and Decompose transitions from Vukmirović et al. are extended to
handle dependent type theory features.

ITP 2024
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4.1.2 Bindings
In this section, we explain how Imitation Binding of Vukmirović et al. is extended to account
for dependent types. Other bindings are extended in a similar way. Apart from these, a new
binding ImitForall is introduced to deal with ∀ quantifiers.

For unification equations of the form λx. F sn
?= λx. a tm where F : α1 → · · · → αn → β

and a : γ1 → · · · → γn → β, Vukmirović et al. allows the binding Imitation of a for F to be
applied:

F 7→ λxn. a (F1 xn) . . . (Fm xn).

Here Fm are fresh free variables. This binding attempts to find a substitution for F such
that the head of the two sides of the equations are identical.

Three issues are introduced when we take dependent type theory into account. Resolving
these issues yields an imitation binding suitable for dependent type theory:

F and a might be dependently typed. Hence, even when the number of λ binders in the
LHS and RHS of the unification equation are different, solutions might still exist. For
example, consider unification equation λx. F x

?= g U where F and U are free variables
and F : γ → γ, U : Type, and g : ∀ α : Type. α. Note that both LHS and RHS are
η-expanded, and that the number of λ binders are different. However, the substitution
{F 7→ g (γ → γ), U 7→ (γ → γ)} is clearly a solution to the unification equation. Thus,
we need to extend the scope of the imitation binding to unification equations of form
λxu. F sn

?= λxv. a tm, where u and v are not required to be equal.
Since F and a might be dependently typed, their types should be written as

F : ∀ (x1 : α1) . . . (xk : αk). β xk

a : ∀ (y1 : γ1) . . . (yl : γl). δ yl

Again, we cannot assert that k = n or l = m because types can contain free variables.
However, since both λxu. F sn and λxv. a tm are η-expanded, we know that k ≤ n and
l ≤ m.
For 1 ≤ i < j ≤ n, the type of the bound variable xj can depend on xi, hence the binding
for F should be written as

F 7→ λ (x1 : α1) . . . (xk : αk). a (F1 xn) . . . (Fh xk)

Plugging the above binding into the unification equation and comparing the number of
λ-binders on the two sides, we get h+ n− k − u = m− v, hence h = m+ k + u− n− v.

4.2 Inhabitation Reasoning
As noted in Section 3.1, sound proof reconstruction in a dependently typed setting requires
reasoning about the presence of empty types. If any of a clause’s universal quantifiers range
over an empty type, then the clause is vacuously true and has an irrelevant clause body. One
way we might respond to this issue is to observe that in many of the theorems that people
actually care to prove, all of the nonpropositional types at play are known to be inhabited. In
practice, it is often fine to have Duper temporarily assume that all nonpropositional types it
encounters are inhabited and throw an error at the end if this results in an unsound inference.
This is exactly what Duper does if passed in the option inhabitationReasoning := False.

When Duper is not passed in this option, it takes care throughout the reasoning process
to ensure that empty types and potentially vacuous clauses are properly accounted for. In
broad strokes, the differences in Duper’s behavior when inhabitationReasoning is enabled or
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disabled can be classified into two categories: there is the additional reasoning needed to
determine whether any given type is inhabited, and there are the modifications to the main
saturation loop needed to ensure that Duper correctly handles potentially vacuous clauses.

4.2.1 Determining Whether a Type Is Inhabited
Lean has a built-in type class Inhabited α that indicates that α is nonempty and supplies a
witness attesting to this fact. When a type is known to be inhabited and is either built-in or
part of the popular Mathlib library [29], it will typically already have an instance of this
type class. Additionally, user-defined datatypes can often generate instances of this type
class automatically with the syntax deriving Inhabited, and if a type is composed of inhabited
types in certain preapproved ways, then Lean can automatically infer that the produced type
is also inhabited. For example, from the instances [Inhabited α] and [Inhabited β], type class
inference will automatically yield [Inhabited (α× β)].

So in most cases, when Duper encounters a type and needs to determine whether it is
nonempty, Duper can simply make use of Lean’s built-in type class inference. However, there
are some goals, particularly those involving polymorphic types, for which this approach is
insufficient. Consider the following example:

example (f : α → α) (h : ∃ x : α, f x ̸= x) : ∃ x y : α, x ̸= y := by duper [h]

If we manually inspect this example, it is clear from hypothesis h that α must be inhabited,
otherwise it would be impossible for there to exist a value x of type α. But Lean’s type class
inference on its own is insufficient to make use of this observation. In order for Duper to
handle this example, it must explicitly note that ∃x : α, f x ̸= x entails that α is inhabited.

More generally, when inhabitationReasoning is enabled, the simplification rules used to
clausify quantifiers must do more than apply Skolemization to eliminate said quantifiers. We
note that given a clause of the form (∃x : α, P (x)) ∨R, it is not always possible to generate
a Skolem symbol of type α since α may not be inhabited. So instead, Duper generates a
Skolem symbol skS of type α → α, and produces the Skolemized clause ∀z : α, (P (skS z)∨R).
This approach is effective in pushing all quantifiers to the head of the clause, but it does not
preserve the information that if R is false, then α must be inhabited. To ensure that this
information remains derivable, the simplification rules Duper uses to clausify quantifiers are
expanded from just Clausify∃

1 and Clausify∀
1 to all of the rules in Figure 1.

∀x1 : α1, ... ∀xn : αn, (∃y : β, p) = True ∨ R

∀x1 : α1, ... ∀xn : αn, ∀z : β, p[y/(skS x1 x2 ... xn z)] = True ∨ R
Clausify∃

1

∀x1 : α1, ... ∀xn : αn, (∃y : β, p) = True ∨ R

∀x1 : α1, ... ∀xn : αn, Nonempty β = True ∨ R
Clausify∃

2

∀x1 : α1, ... ∀xn : αn, (∀y : β, p) = False ∨ R

∀x1 : α1, ... ∀xn : αn, ∀z : β, ¬p[y/(skS x1 x2 ... xn z)] = True ∨ R
Clausify∀

1

∀x1 : α1, ... ∀xn : αn, (∀y : β, p) = False ∨ R

∀x1 : α1, ... ∀xn : αn, Nonempty β = True ∨ R
Clausify∀

2

Figure 1 Quantifier clausification rules. The constant skS which appears in Clausify∃
1 and Clausify∀

1
is a fresh Skolem function of type α1 → ... → αn → β → β.

Note that although some preprocessing can be done to extract inhabited types from a
goal state’s original hypotheses, it is not possible in general to derive all type inhabitation
information at the preprocessing stage. As an example, if a goal state contains the hypothesis
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(∃x : α, P ) ∨ Q, then after this hypothesis is clausified to (∃x : α, P ) = True ∨ Q = True,
Clausify∃

2 can be used to derive Nonempty α = True ∨Q = True. But this does not yet settle
the question of whether α is actually inhabited. Until Q is refuted, which may not happen
until a later stage in the reasoning process, Duper cannot use this clause to determine α’s
inhabitation status. The fact that type inhabitation information must be derived throughout
the reasoning process, rather than all at once during preprocessing, has consequences on the
structure of the main saturation loop that are discussed in Section 4.2.2.

4.2.2 Modifications to the Main Saturation Loop
The main saturation loop described in Section 2.1 accurately reflects Duper’s behavior when
inhabitationReasoning is disabled. As long as all types are known or assumed to be inhabited,
a dependently typed setting does not require any substantive changes from this procedure.
However, when there are potentially vacuous clauses, meaning clauses with leading universal
quantifiers whose types are possibly empty, the approach described in Section 2.1 can cause
Duper to remove or ignore clauses that are necessary to obtain a contradiction.

To avoid removing or ignoring clauses that are necessary to obtain a contradiction, Duper
must refrain from using potentially vacuous clauses to simplify away nonvacuous clauses.
However, Duper cannot avoid reasoning about potentially vacuous clauses entirely, as they
may be discovered to be nonvacuous at a later stage in the reasoning process. Additionally,
Duper cannot fully defer reasoning about potentially vacuous clauses until they are determined
to be nonvacuous because they may be needed to derive certain type inhabitation facts. For
example, even if α is a possibly empty type, it may be necessary to reason about the clause
∀x : α,Nonempty β = True ∨ P because if P can be refuted, then the resulting clause will
entail that α → β is nonempty.

To satisfy these various requirements, when inhabitationReasoning is enabled, Duper
adopts an alternative given clause procedure that has been modified in the following ways:

When a given clause is identified as potentially vacuous, forward simplification rules and
inference rules are still applied to it, but it is not used for backward simplification rules.
When a potentially vacuous clause is added to the active set, it is still added to the data
structures that allow it to be retrieved for inference rules and backward simplification
rules. However, it is not added to any of the data structures that would enable it to be
used in future forward simplification rules.
After any clause is fully simplified, a check is run to see if any type inhabitation facts can
be derived from the clause.
When a new type is discovered to be nonempty, the set of clauses that Duper classifies as
potentially vacuous is revisited and updated.
When a clause previously classified as potentially vacuous is discovered to be nonvacuous,
it is immediately used for backward simplification rules and is subsequently added to the
data structures that enable it to be used in future forward simplification rules.

4.3 Universe Levels
Some problems require Duper to reason about universe polymorphic theorems and inductive
types with universe level parameters. In many cases, these complications can be eliminated
at the preprocessing stage by way of the monomorphization procedure described in Section 5.
When feasible, this is Duper’s preferred method of addressing universe polymorphism.
Unfortunately, the procedure described in Section 5 cannot be applied to all problems. Even
when it can be used, it is still possible for some of Duper’s higher-order inference rules to
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produce clauses containing universe polymorphic constants such as the equality and inequality
predicates @Eq.{u} and @Ne.{u}. So Duper requires the ability to carry out some universe
polymorphic reasoning natively.

During the main saturation loop, there are three areas where universe levels are relevant.
First, Duper’s unification procedure must take universe levels into account. For the most
part, this only requires calling Lean’s built-in level unifier in cases where a level metavariable
determines whether two sorts or constants are unifiable. Second, converting between clauses
and mclauses requires interchanging parameter names in clauses with level metavariables
in mclauses. Finally, the Skolem symbols that Duper generates in Figure 1’s Clausify∃

1 and
Clausify∀

1 are universe polymorphic, so some machinery is needed both to generate the initial
Skolem symbols and to keep track of their parameters across inferences.

During proof reconstruction, Duper must occasionally instantiate universe polymorphic
facts with specific universe levels. In some cases, Duper must even instantiate the same fact
multiple times with different universe levels. Consider the following example:

theorem singletonListNotEmpty.{u} : ∀ α : Type u, ∀ z : α, ¬[z].isEmpty := . . .

example (t1 : Type 1) (t2 : Type 2) (x : t1) (y : t2) :
¬[x].isEmpty ∧ ¬[y].isEmpty := by duper [singletonListNotEmpty]

In this example, Duper must instantiate singletonListNotEmpty with universe level 1 so
that ¬[x].isEmpty can be derived and with universe level 2 so that ¬[y].isEmpty can be
derived. During proof reconstruction, Duper determines this by examining the children
clauses generated via inferences involving singletonListNotEmpty. If these clauses have specific
universe levels instead of singletonListNotEmpty’s universe variable, then those universe levels
determine how singletonListNotEmpty is instantiated. If the children clauses are also universe
polymorphic, then their children clauses are recursively examined until a clause without
singletonListNotEmpty’s universe variable is found. This is guaranteed to happen because
repeatedly examining children will inevitably lead to the empty clause. The information
concerning how universe levels must be instantiated can then be propagated from children to
parents until it is known how to instantiate each of Duper’s universe polymorphic clauses.

5 Monomorphization

An advantage to using dependent type theory as a foundation is that it provides powerful
mechanisms to support algebraic reasoning. When a user types an expression like x + y
in a context where x and y are inferred to have type Nat, the expression is parsed as
HAdd.hAdd Nat _, where the third argument, represented here by an underscore, is expected
to be an instance of a type class for the addition notation. Lean will synthesize a suitable value,
such as @instHAdd Nat AddSemigroup.toAdd, by searching through a database of instances
that have been registered with the system. Type classes are similarly used to handle algebraic
structures and generic theorems about them.

Type class inference is at odds with automated reasoning in a number of respects. First,
it renders expressions quite verbose, increasing processing time and storage during search.
Second, searching for instances is generally too expensive to carry out in Duper’s main
saturation loop. Third, two fully elaborated instances of an expression like x + y may be only
definitionally equal rather than syntactically equal, which means that Lean can determine
they are the same only by unfolding definitions and simplifying them. This can happen when
the system infers implicit arguments, like the addition function that is appropriate to the
natural numbers, in different ways. Testing equivalence of terms up to definitional equality
is also generally too expensive to carry out during the main saturation loop.
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When using Duper as a tactic in Lean, we therefore rely on a preprocessing phase,
implemented in a separate tool called LeanAuto,1 that does all of the following:

abstracts the proof goal as a smaller higher-order problem with dependently typed
parameters that are kept separate;
heuristically instantiates types and type classes in generic lemmas in the context; and
identifies definitionally equal expressions with a single representative.

We refer to this as monomorphization although that term is more properly used to describe
the second component above. The monomorphization procedure is complex and will be
described in greater detail elsewhere. Here we sketch the main ideas.

5.1 Reduction to Essentially Higher-Order Problems
The first observation is that many goals that arise in Lean are essentially higher-order
validities. For example, suppose we have variables n : Nat and a b c : Fin n, where Fin n
is the (dependent) type of values less than n. Suppose further that we are trying to prove

a + (b + c) = (c + b) + a

from

∀ x y : Fin n, x + y = y + x.

If we abstract Fin n to a generic type α, we get a first-order problem of which our original
goal is an instance.

▶ Definition 1. Let φ be a proposition in Lean. φ is an essentially higher-order validity
iff there exists a valid higher-order formula ψ and a mapping σ such that:

σ(ψ) = φ.
σ maps free variables to expressions in Lean.
σ maps constants, function symbols and type symbols to closed expressions in Lean.
Moreover, we require that the equality symbol = in higher-order logic is mapped to = in
Lean.
σ is type consistent, i.e. for each constant, function symbol, type symbol, or free variable
x of type T , σ(x) is of type σ(T ).

A Lean goal h1 : T1, h2 : T2, . . . , hn : Tn ⊢ T is essentially higher(first)-order iff ∀ (h1 :
T1) (h2 : T2) . . . (hn : Tn), T is essentially higher(first)-order.

Given a Lean goal h1, h2, . . . , hn ⊢ False, our monomorphization procedure will instantiate
the quantifiers of the premises and construct a new goal G with the resulting instances as
premises and False as conclusion. Then, it attempts to find a higher-order formula ψ and
a substitution σ such that σ(ψ) is equivalent to G. If successful, ψ is passed to the main
saturation loop. Finally, if the saturation loop manages to find a proof of ψ, a proof of G
will be reconstructed using σ.

5.2 Type Classes and Definitional Equality
Our monomorphization procedure implements a mechanism to check whether functions with
different type class instance arguments are definitionally equal. For each function f with
such arguments, the monomorphization procedure keeps a list of mutually (definitionally)

1 https://github.com/leanprover-community/lean-auto

https://github.com/leanprover-community/lean-auto
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unequal expressions of the form f t. Each time a new expression e of the form f t is found
by the monomorphization procedure, it compares e to the previously recorded expressions
associated with f and checks whether they are definitionally equal. This mechanism cannot
recognize all definitional equalities in Lean, since expressions with different heads can also be
definitionally equal. However, this approach is effective in handling the sorts of type classes
that tend to appear in Mathlib.

6 Evaluation

In this section, we evaluate Duper’s performance on first-order and higher-order benchmarks
in the TPTP format [43]. Duper requires a Lean goal state as input, so to run Duper on
these benchmarks, we wrote a parser to convert TPTP problems into Lean goals. Said parser
is included in the Duper repository. The goal of our evaluation is to answer the following:
1. How does Duper compare against other automatic theorem provers? In particular, how

does Duper compare against Metis, an automatic theorem prover frequently used for
Sledgehammer’s proof reconstruction? This is a metric for Duper’s current strength as a
general automatic theorem prover.

2. What is the impact of using external automation to minimize benchmarks on Duper’s
performance? And is this impact dependent on the nature of the external automation?
This is a metric for Duper’s current potential as proof reconstruction for a future hammer.

3. Some of Duper’s rules are marked as expensive based on their behavior in Zipperposition.
What is the impact of enabling or disabling expensive rules on Duper’s performance?
And is this impact dependent on whether Duper is given a problem in a first-order or
higher-order format? This is a metric for determining in which circumstances Duper’s
expensive rules should be enabled.

6.1 Experimental Methodology
6.1.1 Benchmarks
We borrow benchmarks from Seventeen Provers under the Hammer [16] and GRUNGE: A
Grand Unified ATP Challenge [11]. Both of these sources provide TPTP benchmarks in
multiple formats, so we evaluate on the same set of benchmarks translated to a first-order
form (FOF) and a typed higher-order form (THF). Specifically, we use the TH0− encodings
from the Seventeen benchmarks and TH0-II encodings from the GRUNGE benchmarks.

The Seventeen benchmarks contain multiple versions of each problem with different
numbers of additional facts supplied by Sledgehammer. We test on the same Seventeen
benchmarks with 16 facts included and 256 facts included. The GRUNGE benchmarks are
not duplicated in this manner, so for these, we just test on the available benchmarks in their
“bushy” format, meaning the format containing exactly the facts needed to prove the original
HOL4 [38] theorems from which the benchmarks were generated.

6.1.2 Provers
In addition to Duper, we evaluate the benchmarks with Metis, Zipperposition, and Vampire
[25]. Metis was selected as the standard for Sledgehammer-style proof reconstruction,
Zipperposition was selected as a powerful automatic theorem prover that implements the
same core calculus as Duper, and Vampire was selected as a powerful automatic theorem
prover that implements a different core calculus from Duper.
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We use Duper version v0.0.9, Metis version 2.4, Zipperposition version 2.1, and Vampire
version 4.6.1. All provers except Duper are given arguments indicating they have a 30 second
timeout, and all provers are externally terminated after 30 seconds of wall-clock time. Duper
is run both with and without expensive rules enabled. Duper (–) is used to refer to Duper
without expensive rules and Duper (+) is used to refer to Duper with “expensive” rules. Metis
is run with default settings, while Vampire and Zipperposition are run with options replicating
those in the Seventeen paper as closely as possible. Specifically, Vampire is run in portfolio
mode with the “casc” schedule for FOF problems and the “casc_hol_2020” schedule for
THF problems, while Zipperposition is run with the script portfolio.lams.parallel.py available
in Zipperposition’s repository. We note that the Python code used to run Zipperposition’s
portfolio mode on multiple cores is not Mac-compatible, so Zipperposition is only able to use
one core of the computer used to run these experiments. Vampire’s portfolio mode code does
not have such issues, so it was run unaltered. The computer used to run these experiments
is a Mac with a 3.8GHz processor and 16GB of RAM.

6.2 Experimental Results

Table 1 Original benchmark problems solved.

FOF Format THF Format
Seventeen
(16 Facts)

Seventeen
(256 Facts)

GRUNGE
(Bushy)

Seventeen
(16 Facts)

Seventeen
(256 Facts)

GRUNGE
(Bushy)

Duper (−) 1176/5000 1086/5000 64/1000 1111/5000 934/5000 231/1000
Duper (+) 1167/5000 1050/5000 64/1000 997/5000 670/5000 78/1000
Metis 1195/5000 1120/5000 202/1000 – – –
Vampire 1285/5000 2521/5000 262/1000 1331/5000 2341/5000 459/1000
Zipperposition 1277/5000 2209/5000 277/1000 1314/5000 2122/5000 354/1000

Table 1 shows the number of original benchmark problems solved by Duper, Metis,
Vampire, and Zipperposition when given a 30 second timeout. Vampire and Zipperposition
outperform Metis by a significant margin, especially as more facts are made available, and
Metis outperforms Duper by a slimmer margin. We note that except for Metis, which only
accepts FOF problems, all provers perform significantly better on GRUNGE THF problems
than GRUNGE FOF problems. The difference in results between GRUNGE ’s formats is
significantly greater than the difference in results between Seventeen’s formats. This is likely
explained by the fact that the GRUNGE benchmarks use a more inefficient encoding of
polymorphism into the FOF format, apparently resulting in harder FOF problems [16].

Table 2 Vampire-minimized Seventeen benchmark problems solved.

FOF Format THF Format
16 Facts 256 Facts 16 Facts 256 Facts

Duper (−) 1246/1285 2372/2521 1214/1331 2121/2341
Duper (+) 1244/1285 2368/2521 1149/1331 2025/2341
Metis 1268/1285 2382/2521 – –

Tables 2 and 3 show the number of Seventeen benchmark problems that Duper and Metis
can solve after they are minimized by Vampire and Zipperposition respectively. Minimized
benchmark problems are generated by removing all axioms that do not appear in the proofs
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Table 3 Zipperposition-minimized Seventeen benchmark problems solved.

FOF Format THF Format
16 Facts 256 Facts 16 Facts 256 Facts

Duper (−) 1249/1277 2169/2209 1231/1314 2061/2122
Duper (+) 1248/1277 2166/2209 1214/1314 2014/2122
Metis 1267/1277 2165/2209 – –

output by Vampire and Zipperposition. Thus, a minimized benchmark problem can only be
generated if Vampire or Zipperposition solved the original benchmark problem. We only test
on minimized Seventeen benchmark problems because the original GRUNGE benchmark
problems already include exactly the axioms necessary to solve them.

Although Metis observably outperforms Duper on original benchmark problems, neither
Duper nor Metis significantly outperforms the other on minimized problems. For both
Vampire-minimized problems and Zipperposition-minimized problems, there is less than a
2% disparity in the number of reconstructed 16-Facts FOF problems, and less than a 1%
disparity in the number of reconstructed 256-Facts FOF problems. Duper appears to do
slightly better reconstructing Zipperposition’s proofs than Vampire’s, but the difference is
marginal. We take this as a evidence that Metis’ and Duper’s abilities to reconstruct proofs
generated by external provers are comparable.

In all benchmark categories, Duper performs better on average with its expensive rules
disabled. We note that there are no FOF benchmarks that Duper can only solve with its
expensive rules enabled, but there are 46 THF problems across the various categories that
Duper requires expensive rules to solve. The fact that expensive rules appear to have some
benefit for THF problems but no benefit for FOF problems is explained by the fact that
most of Duper’s expensive rules are higher-order.

Overall, we conclude that on raw TPTP problems, Metis performs slightly better than
Duper, but that the two tools perform extremely similarly on problems minimized by a
more powerful external prover. We note that this evaluation of Duper’s performance is
restricted to first-order and higher-order problems. Ideally, the features Duper implements
that are oriented toward reasoning in a dependently typed setting would be evaluated using
benchmarks from Mathlib, but until Duper is equipped with a relevance filter, such an
evaluation is not feasible.

7 Related Work

Section 6 provides a quantitative evaluation comparing Duper against other automatic
theorem provers. In this section, we discuss some of the qualitative differences between
Duper and other general-purpose proof automation in various interactive theorem provers.

In Coq, the tactic most similar to Duper in purpose is sauto [13]. Just as Duper was
designed with proof reconstruction for a future Lean hammer in mind, sauto was created to be
CoqHammer’s [14] proof reconstruction procedure of choice. The primary difference between
Duper and sauto is that Duper produces classical proofs and sauto produces constructive
proofs. While Duper’s initial goal transformation and underlying superposition calculus are
only sound classically, sauto’s direct search for type inhabitants in an appropriate normal
form is fundamentally intuitionistic. For many Lean users, the benefit of being able to prove
more facts outweighs the benefit of staying in Lean’s intuitionistic fragment, since many
Lean users are formalizing classical mathematics in any case. On the other hand, many Coq
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users are firmly committed to constructive proofs and their computational interpretations,
so it makes sense that there would be a greater desire for Coq’s general-purpose automation
to remain intuitionistic, even if it means fewer problems can be solved.

In Lean 3, the tactic most similar to Duper is Super.2 Super is a prototype proof-producing
superposition theorem prover implemented with Lean 3’s metaprogramming language. Due
to inherent limits of Lean 3 metaprogramming, Super was not performant enough to make it
into common use, but it was nonetheless an important proof of concept. The name “Duper”
is an homage to that project.

In Lean 4, the most notable general-purpose proof automation tactic currently available
is Aesop [26]. The primary difference between Duper and Aesop is that Duper is designed to
require as little user input as possible, whereas Aesop is designed to be a highly customizable
white-box automation tactic. There are benefits to both approaches. Aesop’s white-box
approach gives users more control over how the proof search is performed, while Duper’s
black-box approach is more amenable to push-button automation and has a lower barrier
to entry for users. Overall, we hope that Duper and Aesop will prove to be complementary
tactics well suited to different use cases.

In Isabelle/HOL, HOL4, and HOL Light, the proof automation most similar to Duper is
Metis. Although the evaluation given in Section 6 is useful for gauging Metis’ and Duper’s
relative performances, it is limited in that it considers only TPTP problems that can be
expressed in both first- and higher-order logic. A fact that the evaluation does not capture
is that there is a class of problems accessible to Duper but not Metis. This is the class of
problems that fundamentally require native higher-order reasoning.

Even though Metis is a first-order prover, it can still solve some higher-order problems by
first translating them into first-order logic. For many problems, this approach is sufficient,
as evidenced by Metis’ frequent use in higher-order interactive theorem provers. However,
as noted in Mechanical Mathematics [4], when problems critically involve higher-order
constructions, their first-order translations can quickly become intractable. Consider the
following problem which is presented both as an Isabelle/HOL lemma and as a Lean example:

lemma "(
∑

i::nat=0..n. i) + (
∑

i::nat=0..n. i) = (
∑

i::nat=0..n. i + i)"
by (metis sum.distrib)

example : Σ i in range n, i + Σ i in range n, i = Σ i in range n, (i + i) :=
by duper [Finset.sum_add_distrib]

When this problem is given to Isabelle/HOL’s Sledgehammer, Zipperposition is able to
find a proof and suggests the above Metis call. However, Metis is unable to reconstruct
Zipperposition’s proof because the summation notation involved is significantly more complex
when encoded in first-order logic. On the other hand, Duper has no issue with the equivalent
Lean example because it does not need to translate the problem into a less expressive logic.

8 Conclusion and Future Work

We have presented Duper, a proof-producing superposition theorem prover for Lean. Duper’s
underlying approach to proof search adapts classical methods in automatic theorem proving
to a dependently typed setting using a flexible combination of preprocessing and native
reasoning. Since Duper directly generates proofs in Lean’s axiomatic foundation, it can be
called as a terminal tactic in interactive Lean proofs.

2 https://github.com/leanprover/super

https://github.com/leanprover/super
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In the future, we hope to use Duper for proof reconstruction in a Lean hammer. Equipping
Duper with a relevance filter and integrating Duper into a full hammer pipeline will drastically
increase Duper’s usefulness. The experimental results given in Section 6.2 show that Duper is
performant enough to reconstruct proofs from a variety of state-of-the-art automatic theorem
provers.
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This paper discusses the formalization of the theory of quaternions in the Prototype Verification
System (PVS). The general approach in this mechanization relies on specifying quaternion structures
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reals or rationals. The theory includes characterizing algebraic properties that lead to constructing
quaternions as division rings. In particular, we illustrate how the general theory is applied to formalize
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1 Introduction

Quaternions can be identified with the general theory of algebraic structures consisting
of quadruples built over a field, ⟨F,+F, ∗F, zeroF, oneF⟩ and two selected elements of the
field a, b ∈ F, where the quaternion addition is built from the field addition component to
component, and the product quaternion is a distributive product, that satisfies a series of
axioms, including

(zeroF, oneF, zeroF, zeroF)2 = (a, zeroF, zeroF, zeroF)

(zeroF, zeroF, oneF, zeroF)2 = (b, zeroF, zeroF, zeroF)

(zeroF, zeroF, oneF, zeroF) ∗ (zeroF, oneF, zeroF, zeroF) = (zeroF, zeroF, zeroF, oneF)

among others, from which all properties of addition and multiplication of quaternions are
inferred. In general, given a field F, and elements a, b ∈ F, the quaternion algebra is
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represented as
(
a, b

F

)
. It is a vector space in F, with the basis

1 = (oneF, zeroF, zeroF, zeroF) i = (zeroF, oneF, zeroF, zeroF)
j = (zeroF, zeroF, oneF, zeroF) k = (zeroF, zeroF, zeroF, oneF)

and a distributive product, such that : i2 = a, j2 = b, ij = k (cf. axioms above), and
ij = −ji, for a = (a, zeroF, zeroF, zeroF), b = (b, zeroF, zeroF, zeroF).

Hamilton’s quaternions are the first introduced structure of quaternions [11]. After its
discovery, the research for structures similar to the original quaternions started, leading to a
more generic and algebraic definition than the classic approach of Hamilton. Our specification
in PVS uses such a generic definition.

Using the notation above, Hamilton’s quaternions is the algebra H =
(

−1,−1
R

)
.

The structure of Hamilton’s quaternions is the most popular because of its well-known
efficient applicability in manipulating three-dimensional (3D) objects. Despite this fact, the
interest in quaternions is not limited to Hamilton’s ones but also to other structures of
quaternions that are of great interest (e.g., [22]).

1.1 Main results
This paper describes the formalization of the general theory of the structures of quaternions in
the interactive proof assistant PVS. It provides a characterization of quaternions as division
rings based on algebraic properties of fields. The characterization is crucial to building
multiplicative inverses for non-zero quaternion elements, an essential element in structures
such as Hamilton’s quaternions. In addition, the formalization shows how to build the
structure of Hamilton’s quaternions with adequate theory parameters. Finally, we formalize
a completeness theorem of Hamilton’s quaternions to rotate any 3D vector.

The quaternions theory is developed over the PVS nasalib theory algebra 2. Recent
developments on this theory are reported in [4]. The theory includes complete proofs of the
three isomorphism theorems for rings, characterizations of principal, prime, and maximal
ideals, and an abstract algebraic-theoretical version of the Chinese Remainder Theorem for
arbitrary rings [7]. Also, it includes a division algorithm for Euclidean rings and Unique
Factorization Domains [6].

As far as we know, there are three solid formalizations restricted to the structure of
Hamilton’s quaternions, one of them in HOL Light [9], another in Coq [2], and the third one
in Isabelle/HOL [18]. The HOL Light formalization applies to verify basic parts of theories
related to slicing regular functions and Pythagorean-Hodograph curves; the second one in
Coq has been applied to formalize 3D robot manipulators; and the one in Isabelle/HOL
inspired Koutsoukou-Argyraki’s formalization of octonions [13]. In contrast, some elements
of the general theory of quaternions built over any abstract field, as in our case, were only
developed as part of the Lean mathlib library [16].

1.2 Organization
Section 2 is divided into subsections discussing the basic elements used in the specification
and axiomatization of the general theory of quaternions (2.1), discussing how the algebraic
properties of such structures are inferred from the axiomatization (2.2), and how quaternions
are characterized as division rings (2.3). Section 3 is divided into two subsections presenting
the theory parameters used to obtain Hamilton’s quaternions (3.1), and the formalization

https://github.com/nasa/pvslib/tree/master/algebra
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Specification 1 Quaternion addition and scalar multiplication quaternion_def 2
+(u,v): quat = ( u’x + v’x, u’y + v’y, u’z + v’z, u’t + v’t ) ;
*(c,v): quat = ( c * v’x, c * v’y, c * v’z, c * v’t ) ;

% scalar multiplication
* :[ quat ,quat -> quat] ; % quaternion multiplication

of the completeness of this structure to deal with 3D vector rotations (3.2). Finally, before
concluding and discussing future lines of research in Section 5, Section 4 briefly discusses
how other structures of quaternions can be specified.

The paper includes links to the specific points of the specification. The formalization is
part of the PVS nasalib theory algebra 2. Formalizations in PVS are given in two files with
extensions .pvs and .prf. The former contains the specifications, whereas the latter contains
the proofs. The system itself, as well as relevant documentation about it, can be found in [1].
Also, an extension for PVS is available for VSCode [15].

2 Mechanization of the theory of quaternions

This section presents the formalization of the theory of quaternions using as a parameter an
algebraic field and two constants: ⟨F,+F, ∗F, zeroF, oneF, a, b⟩.

2.1 Specification of Basic Notions

The general theory of quaternions is built from any abstract type T, with binary operators
for addition and multiplication +,*: [T, T] -> T, with constants zero, one, a, b: T.

Initially, in the theory defining the structure and type quat, quaternion_def 2, it is only
assumed that [T,+,zero] is a group: group?(fullset[T]). An element q of type quat is
a quadruple of elements of type T, represented as q = (x, y, z, t), and through the use
of a macro, components of q can be accessed, for instance q’y = y. Quadruples for the
quaternion basis 1, i, j, k, and for quaternions a and b are defined; distinguishing them with
names one_q, i, j, k, a_q, b_q. The substring _q refers to quaternions. Thus, field
elements with the suffix _q refer to the associated quaternions; for instance, a_q refers to
the quaternion (a, zero, zero, zero), and zero_q specifies the zero quaternion. The
conjugate and the additive inverse of a quaternion are specified in the usual manner: they are
well-defined since [T,+,zero] is a group, and each element of the quadruple has an additive
inverse. Tuple addition and scalar multiplication are defined in Specification 1. Finally, note
that quaternion multiplication is defined as a binary operator over quaternions.

The required axioms of the theory of quaternions are given in Specification 2, where
variable types are u, v : quat, and c, d : T. Notice that the axioms include associativity
and (right and left) distributivity of the quaternion multiplication over the addition (q_assoc,
q_distr and q_distrl), and associativity and commutativity regarding scalar multiplication
over quaternion multiplication (sc_quat_assoc, sc_comm and sc_assoc). Also, it is required
that one_q be the identity for quaternion multiplication: the axioms one_q_times and
times_one_q are essential to prove the characterization of the quaternion multiplication
provided in the Subsection 2.2.
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Specification 2 Axioms for the Theory of Quaternion 2

sqr_i : AXIOM i * i = a_q
sqr_j : AXIOM j * j = b_q
ij_is_k : AXIOM i * j = k
ji_prod : AXIOM j * i = inv(k)
sc_quat_ assoc : AXIOM c*(u*v) = (c*u)*v
sc_comm : AXIOM (c*u)*v = u*(c*v)
sc_ assoc : AXIOM c*(d*u) = (c*d)*u
q_ distr : AXIOM distributive ?[ quat ](* , +)
q_ distrl : AXIOM (u + v) * w = u * w + v * w
q_ assoc : AXIOM associative ?[ quat ](*)
one_q_ times : AXIOM one_q * u = u
times _one_q : AXIOM u * one_q = u

Specification 3 Quaternion Basis 2

basis _quat: LEMMA
FORALL (q: quat ): q = q’x * one_q + q’y * i + q’z * j + q’t * k

2.2 Inference of Algebraic Properties of Quaternions

The PVS theory quaternions 2 completes the basic structure of quaternions, refining the
parameters in such a manner that a and b are different from zero, and [T,+,*,zero,one] is
a field (specified in theory field_def 2). So, the type T with addition and zero, as well as
T-{zero} with multiplication and one are Abelian groups.

From this basis, it is now possible to infer a series of lemmas about quaternions,
such as j*i = - (i*j), k*k = -a_q * b_q, k * i = -a_q * j, k * j = b_q * i, i
* k = a_q * j, and j * k = -b_q * i (see basic lemmas 2).

Such lemmas allow us to infer that quaternions one_q, i, j, and k act as a basis as
given in Specification 3, and the characterization of quaternion multiplication as given in
Specification 4. The proof of this characterization uses the decomposition according to the
lemma basis_quaternion and requires exhaustive algebraic manipulation using quaternions
axioms, a series of auxiliary lemmas, including the previous ones mentioned, and others
about the algebra of quaternions, such as lemmas for the scalar product. The advantage of
such formulation is that the characterization of quaternion multiplication, usually presented
as a definition, is obtained from a minimal axiomatization.

Further results include the formalization of the fact that any quaternion abstract
structure, quat[T,+,*,zero,one,a,b], is a ring with identity as given in the Specifi-
cation 5. A ring is not necessarily commutative regarding multiplication. The proof
requires expanding the field definition for [T, +, *, zero, one], then using that it is
a commutative division ring, a commutative group with identity. From this, and the

Specification 4 Quaternion Multiplication Characterization 2

q_prod_ charac : LEMMA FORALL (u,v:quat ):
u * v = (u’x * v’x + u’y * v’y * a + u’z * v’z * b + u’t * v’t * inv(a)*b,

u’x * v’y + u’y * v’x + (inv(b)) * u’z * v’t + b* u’t * v’z,
u’x * v’z + u’z * v’x +a * u’y * v’t + inv(a) * u’t * v’y,
u’x * v’t + u’y * v’z + inv(u’z * v’y) + u’t * v’x );

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L79-L90
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L86-L86
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Specification 5 Quaternions are Rings with identity 2

quat_is_ring_w_one: LEMMA
ring_with_one ?[ quat ,+,*, zero_q,one_q]( fullset [quat ])

Specification 6 Conjugate of Multiplication of Quaternions 2

conj_ product _quat : LEMMA FORALL (q, u : quat) :
conjugate (q * u) = conjugate (u) * conjugate (q)

algebraic properties inferred until this point, it is possible to prove that the structure
of quaternions given as [quat[T,+,*,zero,one,a,b], +, *, zero_q, one_q] is indeed
a ring with identity. The last is done expanding the notion of ring-with-identity and
proving first that [quat[T,+,*,zero,one,a,b], +, *, zero_q] is a ring, and then that
[quat[T,+,*,zero,one,a,b], *, one_q] is a monoid.

Some of the formalizations benefit from PVS strategies to automatize manipulation of the
algebra of quaternions. For instance, the lemma in Specification 6 states that for quaternions
q, u, conjugate(q * u) = conjugate(u) * conjugate(q), where conjugate(u) 2 is
given by the quaternion (u‘x, -u‘y, -u‘z, -u‘t). The proof of this lemma is done
by applying the theorem of characterization of quaternion multiplication q_prod_charac,
showing that each pair of corresponding components of the resulting quadruples are equal.
Quaternions’ operations are defined from addition and multiplication over arbitrary fields.
PVS allows the manipulation of numerical algebraic structures, such as the field of reals.
Indeed, Manip is a package of PVS tactics that simplify numerical manipulation [8]. However,
it does not support algebraic manipulations over arbitrary fields.

Simple strategies were developed to handle quaternions’ operations PVS strategies 2.
Roughly, a strategy in PVS is a proof script that can be applied as a PVS proof command
to improve automation. For instance, at some point in the proof, one must show that the
quadruples’ first components coincide with the corresponding equation presented below.
However, proving this equality is not straightforward, requiring exhaustive applications of
quaternions’ addition and multiplication properties, which justified the development of such
strategies.

-(q‘x * u‘t + q‘y * u‘z + -(q‘z * u‘y) + q‘t * u‘x) =
-(u‘x * q‘t) + u‘y * q‘z + -(u‘z * q‘y) + -(u‘t * q‘x)

Some additional lemmas and definitions are formalized to characterize quaternions as
division rings.

Two important predicates and subtypes of quat are defined, the type of pure quaternions,
pure_quat 2, and the type of scalar quaternions, scalar_F 2, which consists of quaternions
with null scalar component and with null components i,j,k, respectively. Also, we specify
the reduced norm of a quaternion q as red_norm(q) = q * conjugate(q). The lemmas
obtained for such definitions cover the properties in the Specification 7, among others.

The lemma center_quat_is_sc_F expresses the fact that if the characteristic of the ring
[T, +, *, zero] is different from two, i.e., there exists an element x ∈ T such that x +
x ̸= zero, the center of the structure built with the quaternions and its multiplication is
exactly the subtype of all the scalar quaternions.

ITP 2024

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L109-L109
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L134-L135
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L67-L67
https://github.com/nasa/pvslib/tree/master/algebra/pvs-strategies#L1-L207
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L52-L58
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L52-L58


11:6 A Formalization of the General Theory of Quaternions

Specification 7 Pure and Scalar Quaternions Conjugate and Norm Properties 2

red_norm_ charac : LEMMA FORALL (q: quat ):
red_norm(q) = (q‘x * q‘x +

inv(a) * (q‘y * q‘y) +
inv(b) * (q‘z * q‘z) +
(a * b) * (q‘t * q‘t),
zero , zero , zero)

conj_ product _quat_ scalar : LEMMA FORALL (s : T, q : quat) :
conjugate (s * q) = s * conjugate (q)

red_norm_conj: LEMMA FORALL (q:quat ):
red_norm( conjugate (q)) = red_norm(q)

center _quat_is_sc_F: LEMMA charac ( fullset [T]) /= 2 IMPLIES
center [( quat ) ,*]( fullset [quat ]) = scalar _F

q_x_v_cq : LEMMA FORALL (q:quat , v:( pure_quat )) :
pure_quat(q * v * conjugate (q))

Specification 8 T_q(q)(v) Operator 2

T_q(q: quat )(v:( pure_quat )): (pure_quat) = q * v * conjugate (q)

T_q_is_ linear : LEMMA FORALL (c,d: T, q: quat , v,w: (pure_quat )):
T_q(q)(c * v + d * w) = c * T_q(q)(v) + d * T_q(q)(w)

T_q_red_norm_ invariant : LEMMA FORALL (q: quat , v:( pure_quat )):
red_norm(q) = one_q IMPLIES red_norm(T_q(q)(v)) = red_norm(v)

T_q_ invariant _red_norm: LEMMA FORALL (c: T, q: quat ):
red_norm(q) = one_q IMPLIES T_q(q)(c * pure_part(q)) = c * pure_part(q)

The center of such structure is given by the quaternions that multiplicatively commute
with all other quaternions: { q | ∀ u : q * u = u * q }. This theorem is obtained,
proving that for any quaternion q in the center, commutativity with the basis quaternions i,
j, k implies the pure components of x should be zero.

Finally, from the last lemma in Specification 7, q_x_v_cq, the transformation given as the
curried operator Tq(q:quat)(v:(pure_quat)) is specified, and crucial properties about it are
proved, as presented in Specification 8. Such properties express the linearity of the operator,
T_q_is_linear; the fact that if the red_norm of q is one, the resulting transformation of the
pure quaternion v, T_q(q)(v), has the same norm as v; and, that the transformation over the
pure quaternion pure_part(q), obtained from q, does not affect any multiple of it. In fact,
the last lemma could be obtained by proving that T_q(q)(pure_part(q))=pure_part(q)
and by the fact that T_q(q) is linear.

Quaternions of characteristic two require specialized definitions but are not the subject
of this paper (e.g., Chapter six of [22]).

2.3 Characterization of Quaternions as Division Rings
The characterization of quaternions as division rings is given by a series of six lemmas
presented in Specification 9.
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The first lemma, nz_red_norm_if_inv_exist, is proved constructively. Assuming
red_norm(q) ̸= zero_q, using the characterization of red_norm in Specification 7, one
has that the scalar component of red_norm(q) = q‘x * q‘x + -(a) * (q‘y * q‘y) +
-(b) * (q‘z * q‘z) + (a * b) * (q‘t * q‘t) is not null and consequently has a multi-
plicative inverse in the field, say y. From this, one builds the desired quaternion multiplicative
inverse of q as the quaternion conjugate(q) *(y * one_q). We have to consider the quater-
nion y * one_q in the previous multiplication since y is a scalar. The exhaustive job is
once again related to the algebraic manipulation to prove that q * (conjugate(q) *(y *
one_q)) = one_q and vice-versa. This involves repeated applications of the characteri-
zation of quaternion multiplication, the definition and characterization of red_norm, and
several algebraic properties of quaternions.

The second lemma in Specification 9, div_ring_iff_nz_rednorm, established that a
quaternion is a division ring exactly when all non-zero quaternions have a reduced norm
different from zero_q. Necessity is proved by contradiction, assuming the existence of an
inverse for q, say y * q = one_q. Then, by expanding the definition of reduced norm, one
obtains q * conjugate(q) = zero_q. From these equations, by simple algebraic manipu-
lations, one obtains y * (q * conjugate(q)) = one_q * conjugate(q), and finally one
obtains zero_q = conjugate(q), which contradicts the assumption that q ̸= zero_q. The
proof of sufficiency is obtained by applying the first lemma.

The third lemma in Specification 9, inv_q_prod_charac, characterizes the inverse of a non
zero_q quaternion q through the equation inv(q) = conjugate(q) * inv(red_norm(q))
whenever the quaternion structure is a division ring. This lemma uses the previous
one and exhaustive algebraic manipulation. The key of the proof is to show that
conjugate(q) * (red_norm(q))−1 is the inverse of q. This is proved showing that q *
(conjugate(q) * (red_norm(q))−1) = one_q and (conjugate(q) * (red_norm(q))−1)
* q = one_q. The former equation requires only associativity and expansion of the defini-
tion of red_norm to obtain the equation (q * conjugate(q)) * (q * conjugate(q))−1

= one_q, from which one concludes. The latter equation requires the application of the
previous lemma to obtain the multiplicative inverse of red_norm(q), say y, such that
red_norm(q) * y = one_q. Expanding the definition of red_norm, one obtains the equa-
tion (q * conjugate(q)) * y = one_q. In this manner, one obtains the equation q *
((conjugate(q) * y) * q) = q * one_q, from which one concludes.

The fourth lemma in Specification 9, quat_div_ring_aux1, is a simple auxiliary result
from the theory of fields. If t = zero, the type of a implies -a ≠ zero. For the case in which
t ̸= zero, after Skolemization, one obtains the premise t*t = a; also, t has a multiplicative
inverse, say y. Then, by instantiating the premise with y and zero, one obtains objective
equality a*(y*y) + b * zero = one. By replacing a with t*t, one obtains (t*t)*(y*y)
= one. The formalization, as expected, requires simple field algebraic manipulations.

The fifth lemma, quat_div_ring_aux2, is another auxiliary result on fields. When t =
zero, one concludes by the inequation results from the type of b. Otherwise, let y and y1 be
the multiplicative inverses of t and a + a, respectively. Notice that since the characteristic
of the field is different from two, a + a ̸= zero, allowing the use of the latter inverse. The
second premise is then instantiated with (one + a) * y1 and (one - a) * y1 * y giving
the objective

a((one + a) ∗ y1)2 + b((one − a) ∗ y1 ∗ y)2 = one

Algebraic manipulation transforms the left-hand side of this equation into the term below,
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11:8 A Formalization of the General Theory of Quaternions

Specification 9 Characterization of Quaternions as Division Rings 2

nz_red_norm_iff_inv_ exist : LEMMA
( FORALL (q:nz_quat ):

red_norm(q) /= zero_q) IFF
inv_ exists ?[ quat ,*, one_q]( remove (zero_q, fullset [quat ]))

div_ring_iff_nz_ rednorm : LEMMA
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]) IFF
( FORALL (q: nz_quat ): red_norm(q) /= zero_q)

inv_q_prod_ charac : LEMMA
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]) IMPLIES
( FORALL (q: nz_quat ):

inv[nz_quat ,*, one_q](q) = conjugate (q)* inv[nz_quat ,*, one_q]( red_norm(q)))

quat_div_ring_aux 1: LEMMA
( FORALL (x,y:T): a * (x*x) + b * (y*y) /= one) IMPLIES

FORALL (t:T): t*t + inv[T,+, zero ](a) /= zero

quat_div_ring_aux 2: LEMMA
( charac ( fullset [T]) /= 2 AND ( FORALL (x,y:T): a * (x*x)+b * (y*y) /= one ))

IMPLIES
FORALL (t:T): a*(t*t) + b /= zero

quat_div_ring_char: LEMMA
charac ( fullset [T]) /= 2 IMPLIES
(( FORALL (x,y:T): a*(x*x) + b*(y*y) /= one) IFF
division _ring ?[ quat ,+,*, zero_q,one_q]( fullset [quat ]))

where for the integer k, k t abbreviates t+t+· · · +t k times.

a ∗ y12 + 2(a2 ∗ y12) + a3 ∗ y12 + b ∗ y12 ∗ y2 + 2(b ∗ (−a) ∗ y12 ∗ y2) + b ∗ (−a)2 ∗ y12 ∗ y2

By multiplying a*(t*t) + b = zero by y * y, one obtains the equation a + b (y * y)
= zero, which allows the elimination of the first and second component of the above term;
indeed

a ∗ y12 + b ∗ y12 ∗ y2 = (a + b ∗ y2)y12 = zero

The third and last components are also eliminated:

a3 ∗ y12 + b ∗ (−a)2 ∗ y12 ∗ y2 = (a + b ∗ y2) ∗ a2 ∗ y12 = zero

Finally, the remaining four components are proved equal to one using the equation
−b ∗ (y ∗ y) = a:

2(a2 ∗ y12) + 2(b ∗ (−a) ∗ y12 ∗ y2) = 4(a2 ∗ y12) = (a + a) ∗ (a + a) ∗ y12 = one

The final lemma, quat_div_ring_char, states that the structure of quaternions with
multiplication is a division ring whenever the characteristic of the ring [T, +, *, zero] with
field multiplication is different from two and the condition ∀x, y ∈ T : a ∗ x2 + b ∗ y2 ̸= one,
used in previous two lemmas, holds. The proof applies the second lemma in the series of
lemmas given in Specification 9, div_ring_iff_nz_rednorm, thus, changing the objective
to proving that red_norm(q) ̸= zero_q, for any q ̸= zero_q under these conditions.

On the one side, if there exists x, y in the field such that a ∗ x2 + b ∗ y2 = one, one can
select the quaternion element q = oneq + x ∗ i + y ∗ j. So, q ̸= zero_q, and its reduced
norm, 1 − a ∗ x2 − b ∗ y2 is different from zero. Therefore, the quaternion cannot be a
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division ring. On the other side, suppose the quaternion is not a division ring, but the
condition ∀x, y ∈ T : a ∗ x2 + b ∗ y2 ̸= one holds. Then, there exists q ̸= zero_q such that
red_norm(q) = q‘x2 − a ∗ q‘y2 − b ∗ q‘z2 + a ∗ b ∗ q‘t2 = zero_q. For short, let this q be
equal to (x,y,z,t).

The first component of the reduced norm gives the field equation:

x2 − a ∗ y2 − b ∗ z2 + a ∗ b ∗ t2 = zero (1)

From the last equation, one has that x2 − a ∗ y2 = b ∗ (z2 − a ∗ t2). From this equation,
one obtains (x2 − a ∗ y2) ∗ (z2 − a ∗ t2) = b ∗ (z2 − a ∗ t2)2. This equation gives

(x2 ∗ z2 + a2 ∗ y2 ∗ t2 − a ∗ x2 ∗ t2 − a ∗ y2 ∗ z2) = b ∗ (z2 − a ∗ t2)2

From the last equation, one obtains

a ∗ (x ∗ t + y ∗ z)2 + b ∗ (z2 − a ∗ t2)2 = (x ∗ z + a ∗ y ∗ t)2 (2)

Notice that (x ∗ z + a ∗ y ∗ t) = zero; otherwise, multiplying the equation by the square
of the inverse of this term, one contradicts the hypothesis ∀x, y ∈ T : a ∗ x2 + b ∗ y2 ̸= one.
Therefore, equation (2) becomes:

a ∗ (x ∗ t + y ∗ z)2 + b ∗ (z2 − a ∗ t2)2 = zero (3)

Suppose now that z2 − a ∗ t2 ̸= zero. Thus, multiplying the equation by the square of
the inverse of this term, one obtains an equation of the form a ∗ t′2 + b = zero, which gives
a contradiction by lemma quat_div_ring_aux2. Thus, z2 − a ∗ t2 = zero.

Assume now that t ̸= zero. Multiplying by the square of the inverse of t, one ob-
tains an equation of the form t′2 − a = zero, which gives a contradiction by lemma
quat_div_ring_aux1. Therefore, the fourth component of the quaternion element q is
zero: t = zero, which also implies the third component z = zero.

Thus the reduced norm of q is equal to x2 − ay2, and by hypothesis, x2 − ay2 = zero.
Once again, if y ̸= zero, multiplying the equation by the square of the inverse of y, one
obtains an equation of the form t′2 − a = zero, which gives a contradiction by lemma
quat_div_ring_aux1. So, y = zero, and also x = zero.

This completes the proof.

3 Parameterization of the Algebra of Hamilton’s Quaternions

By providing parameters quaternions[real,+,*,0,1,-1,-1] to the theory quaternions
2, one obtains Hamilton’s quaternions, H, mentioned in the introduction. This structure
is usually characterized in textbooks by the identities i2 = j2 = k2 = ijk = −1 (e.g.,
[22]). In this section, we will present the completeness of 3D rotation by using Hamilton’s
quaternion, as well as the main properties to achieve such results formalized in the PVS
theory quaternions_Hamilton 2. In this section, “quaternions” reference elements of the
structure of Hamilton’s quaternions.

3.1 Specification of Basic Properties
The structure given by (H,+H, zeroq, ∗R), where ∗R indicates the scalar product induced
by the multiplication over real numbers, is a vector space isomorphic to R4 equipped with
their standard operations. A pure part of a quaternion can be mimicked by a vector from
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11:10 A Formalization of the General Theory of Quaternions

Specification 10 Connection between quaternions and vectors 2

Real_part(q: quat ): real = q‘x

Vector _part(q: quat ): Vect3 = (q‘y, q‘z, q‘t)

conversion _quot: LEMMA
FORALL (r: real , nz: nzreal ): r/nz = number _ fields ./(r,nz)

quat_is_Real_p_ Vector _part: LEMMA
FORALL (q: quat ):

q = (Real_part(q), Vector _part(q)‘x, Vector _part(q)‘y, Vector _part(q)‘z)

decompose _eq_Real_ Vector _part: LEMMA
FORALL (q, p : quat ):

Real_part(q) = Real_part(p) AND Vector _part(q) = Vector _part(p) IFF
q = p

Vector _part_ scalar : LEMMA
FORALL (k:real , q: quat ): Vector _part(k*q) = k * Vector _part(q)

R3 and has a fundamental role in the theorems regarding the completeness of 3D rotations.
To reuse results about real vectors, formalized in theory vectors 2 in PVS nasalib, we
specified operators that return the real and pure part of a quaternion as a real number and
a three-dimensional vector, respectively, and formalized basic properties about them (see
Specification 10).

3.2 Rotational completeness of Hamilton’s Quaternions
Hamilton’s quaternions is a suitable structure to perform rotations in R3, and it has some
advantages when compared with techniques based on rotating by Euler angles:

The rotation using quaternions relies on the application of the linear transformation
T_q(q)(v), defined in Specification 8. This operator is based on the multiplication of
three quaternions which, in the light of the lemma q_prod_charac 2, is computed using
multiplication and sum of real numbers in this context. On the other hand, rotating by
Euler angles relies on the multiplication of three matrices of order 3, whose entries contain
trigonometric functions, each one of these matrices represents a rotation around the axes
x, y, and z of a 3D coordinate system (e.g., Chapter 4 in [3], and [19]). Thus, Hamilton’s
quaternions provide a computational, more efficient manner to perform rotations.
Rotating by Euler angles can lead to a gimbal lock. This well-known phenomenon occurs
when two axes align, causing the loss of one degree of freedom and locking the system to
rotate in a degenerated two-dimensional space [10]. Hamilton’s quaternions avoid gimbal
lock.
A rotation by Euler angles is based on the composition of rotations around three axes,
e.g., yaw, pitch, and roll. In contrast, only the pure part of a quaternion element q defines
the axis of a rotation using Hamilton’s quaternions [10]. Therefore, it is easier to visualize
the transformation by quaternions.

The landmark results of this section, presented in the Specification 11, are the formaliza-
tions of theorems Quaternions_Rotation 2 and Quaternions_Rotation_Deform 2. The
former states that given two pure quaternions a and b, which can be identified as vectors
of R3 of the same norm, there is a quaternion q = rot_quat(a,b) such that the operator
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Specification 11 Completion of rotation using Hamilton’s quaternions 2

Quaternions _ Rotation : THEOREM
FORALL (a:( pure_quat), b:( pure_quat) |

norm( Vector _part(a)) = norm( Vector _part(b)) AND
linearly _ independent ?( Vector _part(a), Vector _part(b))):

LET q = rot_quat(a,b) IN b = T_q(q)(a)

Quaternions _ Rotation _ Deform : THEOREM
FORALL (a:( pure_quat), b:( pure_quat) |

linearly _ independent ?( Vector _part(a), Vector _part(b))):
LET q =
(sqrt( number _ fields ./( norm( Vector _part(b)), norm( Vector _part(a )))))*

rot_quat(a,
number _ fields ./( norm( Vector _part(a)), norm( Vector _part(b)))*b)

IN b = T_q(q)(a)

T_q(q) rotates a into b. The latter theorem ensures the existence of a quaternion q such that
the operator T_q(q) transforms a into b, even when they are not, necessarily, of the same

length. For the second transformation, it is only needed multiplying rot_quat
(

a,
|a|
|b|

b
)

by

the scalar

√
|a|
|b|

, where |v| denotes the usual norm of v in R3.

The following will highlight the main steps to formal-
ize those theorems. Initially, consider two pure quater-
nions a and b such that va = Vector_part(a) and vb
= Vector_part(b) are linearly independent; i.e., such
vectors are nonparallel and non-null. Let θ be the small-
est angle between va and vb and consider n = va × vb

|va||vb|
,

where va × vb denotes the usual cross product of vectors
in R3. The idea is to consider n as the rotation axis and
built the quaternion q that leads a into b from θ and n,
as follows:

q =
(

cos
(
θ

2

)
, n′x ∗ sin

(
θ

2

)
, n′y ∗ sin

(
θ

2

)
, n′z ∗ sin

(
θ

2

))
The elements θ, n and q were specified as r_angle(a,b) 2, n_rot_axis(a,b) 2, and

rot_quat(a,b) 2, respectively (See Specification 12). They use some structures formalized
in the theories vectors 2 and trig 2 in the PVS nasalib. For example, r_angle(a,b)
is formalized from the operator angle_between(Vector_part(a),Vector_part(b)) 2,
which, in turn, is specified by using the arccosine function and the usual inner product
of R3; whereas, n_rot_axis(a,b) uses the specification of cross product defined as the
vector cross(a,b) 2. Notice that r_angle(a,b) 2 has type nnreal_le_pi, inheriting the
adequate type (reals in the interval (0, π]) in which the function acos is specified in the PVS
trigonometry library.

Four main lemmas are needed to formalize the Theorem Quaternions_Rotation 2.
The first one consists of a characterization of the operator T_q(q)(a) specified as the

lemma T_q_Real_charac 2. According to this result, for any quaternion q and any pure
quaternion a, the following equality holds:
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11:12 A Formalization of the General Theory of Quaternions

Specification 12 Basic elements to built a rotation by quaternions 2

r_ angle (a,b:( nzpure _quat )): nnreal _le_pi =
angle _ between ( Vector _part(a), Vector _part(b))

n_rot_axis(a:( pure_quat),b:( pure_quat) |
linearly _ independent ?( Vector _part(a), Vector _part(b))): Vect3 =

normalize ( cross ( Vector _part(a), Vector _part(b)))

rot_quat(a:( pure_quat),b:( pure_quat) |
linearly _ independent ?( Vector _part(a), Vector _part(b))): quat =

LET rot_angl_ halve : nnreal _le_pi = number _ fields ./(r_ angle (a,b), 2),
sin_ha = sin(rot_angl_ halve ),
cos_ha = cos(rot_angl_ halve ),
n = n_rot_axis(a,b)

IN (cos_ha , sin_ha * n‘x, sin_ha * n‘y, sin_ha * n‘z)

Vector_part(T_q(q)(a)) = ((q′x)2 − |Vector_part(q)|2) ∗ va +
(2 ∗ (Vector_part(q) ∗ va)) ∗ Vector_part(q) +
(2 ∗ q′x) ∗ (Vector_part(q) × va)

(4)

In Equation 4, the multiplication v ∗ w between vectors is interpreted as the dot product.
The vector part of T_q(q)(a) expresses all the relevant information of the resulting

quaternion: since the type established for T_q(q)(a) is pure_quat, see Specification 8, the
prover automatically generates a proof obligation, called in PVS Type Correctness Condition
(TCC), to verify that the first component of this quaternion is zero. Also, according to
the lemma T_q_is_linear, showed in Specification 8, T_q(q)(a) is a linear transformation.
And since |q| = 1, it preserves the norm of |a|, acting as a rotation.

The other three key lemmas consist of established equivalent expressions for each term in
the addition appearing in T_q_Real_charac, see Equation 4.

The lemma Quat_Rot_Aux1 2 ensures that Vector_part(q) * va = 0. Consequently,
the equation (2 * (Vector_part(q) * va)) * Vector_part(q) = 0 also holds.

The formalization of this lemma applies the lemma orth_cross 2, of the PVS theory
vectors, that guarantees that the vectors (va × vb) and va are orthogonal. This is a

consequence of the equalities Vector_part(q) = sin
(
θ

2

)
∗ n =

sin
(

θ
2

)
|va||vb|

∗ (va × vb).

The lemma Quat_Rot_Aux2 2 establishes the equality

((q′x)2 − |Vector_part(q)|2) ∗ va = cos(θ) ∗ va

By definition of q and since |n| = 1,

(q′x)2 − |Vector_part(q)|2 = cos2
(
θ

2

)
− sin2

(
θ

2

)
∗ |n|2 = cos2

(
θ

2

)
− sin2

(
θ

2

)
Thus, Quat_Rot_Aux2 follows as a consequence of the lemma cos_2a 2, formalized in the

theory trig@trig_basic, from which one can infer that cos2
(
θ

2

)
− sin2

(
θ

2

)
= cos(θ).

Finally, in the lemma Quat_Rot_Aux3 2, it is formalized that

(2 ∗ q′x) ∗ (Vector_part(q) × va) = vb − cos(θ) ∗ va

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L81-L91
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L148-L150
https://github.com/nasa/pvslib/tree/master/vectors/vectors_3D_extra.pvs#L51-L51
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L152-L157
https://github.com/nasa/pvslib/tree/master/trig/trig_basic.pvs#L34-L34
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L159-L165
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In fact, by definition of q and n, and the associative property for scalar elements, one can
infer that:

(2 ∗ q′x) ∗ (Vector_part(q) × va) =
(

2 cos
(
θ

2

)
sin
(
θ

2

)
1

|va × vb|

)
((va × vb) × va)

Applying the lemmas cross_cross 2 and sin_2a 2, specified in theories
vectors@cross_3D and trig@trig_basic, respectively, one obtains the equality(

2 cos
(

θ

2

)
sin
(

θ

2

) 1
|va × vb|

)
((va × vb) × va) = sin(θ)

|va × vb| ((va ∗ va) ∗ vb − (vb ∗ va) ∗ va)

Since, (va ∗ va) = |va|2 and (vb ∗ va) = cos(θ)|va||vb|, it holds that

sin(θ)
|va × vb|

((va ∗ va) ∗ vb − (vb ∗ va) ∗ va) = sin(θ)
|va × vb|

(|va|2 ∗ vb − (cos(θ) ∗ |va||vb|) ∗ a)

Thus, by using the fact the |va| = |vb| and applying the identity
|va × vb| = |va||vb| sin(θ), formalized in the lemma norm_cross_charac_ 2 of the
theory vectors, one obtains the equality

sin(θ)
|va × vb|

(|va|2 ∗ vb − (cos(θ) ∗ |va||vb|) ∗ va) = vb − cos(θ)va

The Theorem Quaternions_Rotation 2 is then obtained as a direct consequence of the
lemmas T_q_Real_charac, Quat_Rot_Aux1, Quat_Rot_Aux2 and Quat_Rot_Aux3.

The formalization of the Theorem Quaternions_Rotation_Deform 2 ensures that Hamil-
ton’s quaternions are useful to promote not only rotations in R3 but also linear scaling since
the transformation T_q(q)(a) maps a into b even when they are not of the same length.

For this, we have only to consider q =

√
|b|
|a|

∗ rot_quat
(

a,
|a|
|b|

b
)

. In fact, using this q as

argument of the transformation,

T_q(q)(a) =

√
|b|
|a|

∗ rot_quat
(

a,
|a|
|b|

b
)

∗ a ∗ conjugate

(√
|b|
|a|

∗ rot_quat
(

a,
|a|
|b|

b
))

Then, applying the lemma conj_product_quat_scalar 2, behind some algebraic ma-
nipulations, it holds that

T_q(q)(a) =
√

|b|
|a| ∗

√
|b|
|a| ∗ rot_quat

(
a,

|a|
|b|b
)

∗ a ∗ conjugate

(
rot_quat

(
a,

|a|
|b|b
))

= |b|
|a| ∗ T_q

(
rot_quat

(
a,

|a|
|b|b
))

(a)

Finally, since |Vector_part(a)| =
∣∣∣∣Vector_part

(
|a|
|b|

b
)∣∣∣∣, the proof of the Theorem

Quaternions_Rotation_Deform 2 is completed instantiating Quaternions_Rotation 2

with the pure quaternions a and |a|
|b|

b, which guarantees that

T_q
(

rot_quat
(

a,
|a|
|b|

b
))

(a) = |a|
|b|

b,

and, consequently, that T_q(q)(a) = b.
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It is important to note that only the crucial lemmas for formalizing the previous results
were highlighted. Although the automation for the simplification of equations over reals is in
an advanced stage in PVS, several algebraic manipulations involving associative property
for scalars, characterization of the norm of a vector, and properties derived from linear
independence, among others, were necessary to conclude the formal proofs.

4 Theory Parameters to Specify other Quaternions

Quaternion theory, as defined in Section 1, can describe many algebraic structures. Depending
on the field F and a, b ∈ F×, the subset of invertible elements of the field, some quaternions
algebra can be isomorphic to the matrix ring M2(F). In these cases, we say that the
quaternion algebra splits over F. In fact, it has been proved that a quaternion algebra(
a, b

F

)
, which is not a division ring, is indeed isomorphic to M2(F) [5].

An example is given by the quaternion built over the complex field:
(
a, b

C

)
∼−→ M2(C),

in which not only, it splits for some values a, b ∈ C \ {0} = C×.

On the other hand, all
(
a, b

F

)
that are not isomorphic to M2(F) are division rings; an

example are Hamilton’s quaternions.

Another case of a quaternion that is a division ring is
(
a, p

Q

)
, where p is an odd prime

and a is a quadratic non-residue, or
(
a, p

Qp

)
, where Qp are the p-adic numbers and a, p having

the same restrictions [22].
The formalization of the general theory of quaternions constitutes a starting point for

dealing with other interesting applications of the theory of quaternions. Surveying only a few
of the applications covered in Voight’s book [22], we can mention the following: applications
of quaternion algebras in analytic number theory, geometry (hyperbolic geometry and low-
dimensional topology), arithmetic geometry, and supersingular elliptic curves. Also, Lewis
surveys relevant applications of quaternion theory in several areas [14].

Many of these application topics use these different types of quaternions or their order.
In this case, an order is understood as a subring of the quaternion algebra, which is also
a lattice. In Voight’s book [22], a more detailed description of interesting orders such as
maximal order, Eichler order, and more general orders is given.

The Hurwitz quaternion order is one such maximal order used for proving theorems.

This quaternion order is a subring of the quaternions H and
(

−1,−1
Q

)
, and is given by

H = {αζ + βi+ γj + δk | α, β, γ, δ ∈ Z}, where ζ = 1
2 (1 + i+ j + k).

It is used to prove Lagrange’s theorem that every positive integer is a sum of four squares.
Furthermore, it is possible to prove that, short of commutativity, H has all the properties of
Euclidean rings.

In the aforementioned proof of Lagrange’s four-square theorem. Considering u, v ∈ H:

u = a0 + a1i+ a2j + a3k, and v = b0 + b1i+ b2j + b3k

Since Red_norm(uv) = Red_norm(u) * Red_norm(v) 2, the reduced norm in H can be
used to prove the Lagrange Identity in Z:

(a2
0 + a2

1 + a2
2 + a2

3)(b2
0 + b2

1 + b2
2 + b2

3) = c2
0 + c2

1 + c2
2 + c2

3

https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L165-L166
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where, by the characterization of quaternion multiplication:

c0 = a0b0 − a1b1 − a2b2 − a3b3 c1 = a0b1 + a1b0 + a2b3 − a3b2

c2 = a0b2 − a1b3 + a2b0 + a3b1 c3 = a0b3 + a1b2 − a2b1 + a3b0

With this identity and by restricting the domain from H to H , we can change the original
problem from finding a solution for all positive integers into finding it for all primes. In this
manner, the four integer square problem is expressed using only quaternions, which turns
the Number Theory problem into an easier algebraic one. A didactic proof approach appears
in Chapter 7 of Herstein’s textbook [12]. Among other formalized properties available in the
PVS nasalib theory algebra 2, the mechanization of this theorem uses the first isomorphism
theorem for rings and results about maximal ideals [7].

Among the interesting applications in physics, it is possible to express gravity as part of
a simple quaternion wave equation [21], the four Maxwell equations as a nonhomogeneous
quaternion wave equation, as well as the Klein-Gordon equation as a quaternion simple
harmonic oscillator [20]. Furthermore, under some restrictions, it is possible to express
a quaternion analog to the Schrödinger equation, a well-known differential equation that
governs the behavior of wave functions in quantum mechanics. The Schrödinger equation
gives the kinetic energy plus the potential. To do this, we first look at the quaternions as
the external tensor product of a scalar and an R3-vector, denoted by (s, Ṽ), and write the
quaternion in its polar form, namely:

q = (s, Ṽ) = ∥q∥ eθ∗I = ∥q∥(cos(θ) + I ∗ sin(θ)),

where ∥q∥ =
√

q ∗ conjugate(q), θ = arccos
(

s
∥q∥

)
, and I = Ṽ

∥Ṽ∥
. Note that I2 = −1.

Next, it is necessary to determine the quaternion wave function, ψ. Therefore, consider
the quaternion (t, R̃) representing time and space, the quaternion (E, P̃) representing the
electric field and momentum, and the quaternion V(0, X) representing the potential. Thus,
with ℏ being the reduced Planck constant, we have:

ψ ≡ (t, R̃) ∗ (E, P̃)
ℏ

= (Et − R̃ ∗ P̃, E ∗ R̃ + P̃ ∗ t + R̃ × P̃)
ℏ

Passing ψ to its polar form, and assuming that ψ is normalized, we have the quaternion
wave function:

ψ = e(E∗t−R̃∗P̃)∗I/ℏ, where I = E ∗ R̃ + P̃ ∗ t + R̃ × P̃
∥E ∗ R̃ + P̃ ∗ t + R̃ × P̃∥

Now, the derivatives of ψ with respect to time and space give, respectively:

∂ψ

∂t
= E ∗ I

ℏ
ψ√

1 +
(

E∗t−R̃∗P̃
ℏ

)2
and ∇ψ = − P̃ ∗ I

ℏ
ψ√

1 +
(

E∗t−R̃∗P̃
ℏ

)2

To achieve the objective, which is to establish an analog to the Schrödinger equation in
terms of quaternions, it is necessary to consider some assumptions and verify the behavior of
the quaternion wave function ψ. Among these assumptions are, for example, the conservation
of energy and momentum and the assumption that E ∗ t − R̃ ∗ P̃ = 0. Therefore,

∂ψ

∂t
= E ∗ I

ℏ
ψ ⇒ −I ∗ ℏ

∂ψ

∂t
= Eψ ⇒ E = −I ∗ ℏ

∂

∂t

ITP 2024
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∇ψ = − P̃ ∗ I
ℏ

ψ ⇒ I ∗ ℏ∇ψ = P̃ψ ⇒ P̃ = I ∗ ℏ∇

It is known that the momentum P̃ is the product of the mass, m, and velocity, v. Conse-
quently,

P̃2 = (mv)2 = 2m
mv2

2
= 2m KE = −ℏ2∇2 ⇒ KE = − ℏ2

2m
∇2

Since the Hamiltonian H corresponds to the total energy (E), that is, it is equal to the
sum of the kinetic energy KE and the potential energy V, we obtain the following equation,
which is similar to the Schrödinger equation:

Hψ = − ℏ2

2m
∇2ψ + V ∗ ψ.

5 Conclusions and Future Work

Table 1 presents the number of lines in the proofs of the crucial lemmas and theorems
on the characterization of quaternions as division rings and rotational completeness of
Hamilton’s quaternions formalized in the theories quaternions 2 and quaternions_Hamilton
2, respectively.

Although the complexity of proving rotational completeness is high, PVS supplies sat-
isfactory algebraic automation of the field of reals R, which makes the formalization of
rotational completeness much simpler than the formalization of characterization of an arbi-
trary structure of quaternion as a division ring (observe the number of proof lines). Indeed,
algebraic manipulation on standard number types, such as the type real, has been studied
and implemented during the evolution of PVS, as reported by Muñoz and Mayero in [17] and
di Vito in [8], among others. Although some simple strategies were developed in this work to
apply automatically commutative and associative properties of the (general) field parameter
over which quaternions were defined, the improvement of tactics and the availability of
techniques to detect and cancel equal terms over algebraic theories as field and quat is
indispensable. This will surely make it possible to simplify substantially the length of the
proofs presented in Table 1 for the case of the theory of quaternions.

Possible future work includes formalizations of applications of quaternions theory in other
areas as discussed in Section 4. For instance, a formalization of Lagrange’s four-square
theorem (in progress) required adequate parameters to the quaternion theory, proving that
Hurwitz’s substructure is indeed a ring and almost a Euclidean ring, except for commutativity.
After such proof, a few more auxiliary arithmetic lemmas, such as Lagrange’s Identity, which
can turn the problem from finding solutions to all integers into finding for all primes, can be
used for proving Lagrange’s Theorem using quaternions.

In addition to the availability of the abstract theory of quaternions, other available PVS
theories may be useful to formalize the application of quaternions in quantum mechanics
discussed in Section 4. For instance, to specify quaternions in their polar form and the quater-
nion wave function, the core of theorems related to quaternion arithmetic and trigonometric
theory should be useful; also, to formalize the Schrödinger equation, it will be extremely
relevant to develop theorems or axioms on the differentiation of quaternions, and physics
concepts, for example, momentum.

Of course, another urgent line of research is extending PVS tactics, strategies, and, in
general, mechanisms of arithmetic manipulation for standard types as int, nat, and reals
to abstract algebraic structures as ring, field, and quat.
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Table 1 Quantitative information.

Theory/Formula Name Proof Line
Numbers

Number of Proved
Formulas

Lemmas/Theorems
nz_red_norm_iff_inv_exist 2 125 1
div_ring_iff_nz_rednorm 2 95 1
inv_q_prod_charac 2 259 1
quat_div_ring_aux1 2 40 1
quat_div_ring_aux2 2 388 1
quat_div_ring_char 2 487 1
quaternions.pvs 2 10981 63

T_q_Real_charac 2 190 1
Quat_Rot_Aux1 2 10 1
Quat_Rot_Aux2 2 116 1
Quat_Rot_Aux3 2 106 1
Quaternions_Rotation 2 38 1
Quaternions_Rotation_Deform 2 94 1
quaternions_Hamilton.pvs 2 3662 30
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Abstract
Superposition is an efficient proof calculus for reasoning about first-order logic with equality that is
implemented in many automatic theorem provers. It works by saturating the given set of clauses
and is refutationally complete, meaning that if the set is inconsistent, the saturation will contain a
contradiction. In this work, we restructured the completeness proof to cleanly separate the ground
(i.e., variable-free) and nonground aspects, and we formalized the result in Isabelle/HOL. We relied
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1 Introduction

Superposition is a highly successful proof calculus for reasoning about first-order logic with
equality designed by Bachmair and Ganzinger [2, 3]. It is implemented in many automatic
theorem provers, including E [33], SPASS [45], Vampire [22], and Zipperposition [16].

Superposition provers work by refutation and saturation. They operate on a clause
set, which initially consists of the clausified input problem in which the conjecture appears
negated. Inferences are performed using clauses from this set as premises; the conclusions
of inferences are added to the set. The prover stops when the empty clause ⊥, denoting
falsehood, is derived or when no more inferences are possible.
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Consider the problem of proving f(b) ≈ f(a) from b ≈ a, where ≈ denotes equality. After
negating the conjecture, we obtain the clause set {b ≈ a, f(b) ̸≈ f(a)}. The superposition
calculus includes an inference rule called superposition that uses the first clause to rewrite
the second clause to f(a) ̸≈ f(a). This new clause is added to the clause set. At this point, a
unary inference rule called equality resolution uses f(a) ̸≈ f(a) to derive ⊥.

During the saturation, the prover can delete clauses considered redundant, and it does
not need to perform inferences considered redundant. For example, if the clause set contains
b ≈ a, then the clauses f(b) ≈ f(a) and b ≈ a ∨ b ̸≈ c are redundant. Deletion of redundant
clauses helps reduce the clause explosion caused by saturation.

The inference rules of the superposition calculus are sound, meaning that the conclusion
of each rule is entailed by the premises. This is easy to prove. What is much harder to show
is that the calculus is refutationally complete: If a clause set is unsatisfiable and saturated (up
to redundancy), then it contains ⊥. We care about completeness because a complete calculus
is likely to yield a higher success rate in practice than an incomplete one. Moreover, the
completeness proof serves as a guide during the development of the calculus: Only inferences
that are needed in the proof must be performed.

When developing proof calculi for first-order logic and beyond, it often helps to first
develop a calculus that works on ground (i.e., variable-free) clauses. We can then lift it
to the nonground level. This approach cleanly separates concerns. It is common in the
literature [7–11,29] and is supported by the saturation framework developed by Bachmair and
Ganzinger [4, Section 4] and extended by Waldmann et al. [44], a collection of pen-and-paper
results useful to establish the refutational completeness of saturation calculi and provers.

For superposition, Bachmair and Ganzinger’s completeness proof [3] does not separate the
ground and nonground aspects. Waldmann et al. give some hints on how to instantiate the
framework to obtain a modular proof that separates these aspects. Our main contributions
are twofold. First, we elaborated these hints into a 15-page proof text [43] (summarized here
in Section 3). Second, following this detailed blueprint, we formalized in Isabelle/HOL [24]
the refutational completeness of ground superposition (Section 4) and lifted it to derive the
refutational completeness of the nonground calculus (Section 5). We also proved soundness.

The separation of concerns, apart from allowing different people to work independently
on different parts of the formalization, simplifies the completeness proof. On the ground level,
there is no need to rename variables apart or to perform unification. On the nonground level,
an inference overapproximates a set of ground inferences. Intuitively, this means that every
inference on ground clauses can be simulated by inferences on corresponding nonground
clauses. For superposition inferences, this roughly means that if Dγ1 and Eγ2 are premises
of a nonredundant ground inference yielding C, where γ1, γ2 are substitutions, then there
exists an inference with D and E as premises and whose conclusion is a generalization of C.

A difficulty arises on the nonground level because the calculus is optimized to avoid
superposition into variables. For example, given the clause set {b ≈ a, f(x) ̸≈ c}, a
superposition inference unifying b with x would yield the conclusion f(a) ̸≈ c, but the calculus
excludes this inference. Intuitively, since f(a) ̸≈ c is an instance of f(x) ̸≈ c, we would expect
the inference to be unnecessary, but this must be justified in general.

The Isabelle formalization relies on the first-order terms and related notions from the
IsaFoR library [39]. It also uses the Isabelle version of the saturation framework [42]. The
formalization validates the pen-and-paper proof: We found only one easy-to-repair mistake
and one unnecessary assumption. The formalization can serve as a reference for refutational
completeness of superposition, an important result in automated reasoning. It could also
serve as the basis of a verified executable prover.
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Ours is not the first formalization of superposition in a proof assistant, or even in
Isabelle/HOL. Our predecessor is Peltier, who formalized a generalization of superposition
and published his result in the Archive of Formal Proofs (AFP) [27]. However, his proof is
monolithic, mixing ground and nonground aspects. By using the saturation framework, we
get a clearer proof structure and immediately obtain the completeness of an abstract prover
based on superposition [44, Lemma 10] as well as the completeness of various saturation
procedures [44, Section 4].

Our Isabelle formalization and the underlying pen-and-paper proof are available online
[17,43]. The formalization will soon be submitted to the AFP. Our work is part of the IsaFoL
(Isabelle Formalization of Logic) effort [12].1

2 Background
Prerequisites. We consider an untyped first-order logic with equality. A term is defined
inductively as either a variable x or a function application f(t1, . . . , tn) for a function symbol
f and a (possibly empty) list of terms t1, . . . , tn. An atom is an unordered pair of terms,
typically written as an equation t ≈ t′. A literal is an atom t ≈ t′ or a negated atom
t ̸≈ t′. A clause is a finite multiset {L1, . . . , Ln} of literals, typically written as a disjunction
L1 ∨ · · · ∨Ln. The symbol ⊥ denotes the empty clause (or empty disjunction), which is false.
All variables in a clause are to be understood as implicitly universally quantified in that clause.

A context κ is a term with one designated position that is to be filled by another term –
in other words, a term with a hole. We use the syntax κ[t] to represent the term consisting
of a subterm t in a context κ. We write □ for the empty context.

Substitutions are total unary functions that let us replace variables with terms. We can
apply a substitution σ to a syntactic entity X (e.g., a term or literal) by writing Xσ. A
substitution γ is a grounding substitution for a syntactic entity X if Xγ is ground, i.e., if
it does not contain variables. A substitution ρ is a renaming if it is injective and xρ is a
variable for every variable x. The composition of two substitutions σ1 and σ2 is defined as
the function σ1 ◦ σ2 = (λx. xσ1σ2). A substitution µ is an idempotent most general unifier
(IMGU) for a set of terms T if µ is a unifier for T and µ ◦ υ = υ for every unifier υ for T .

An element x is maximal in a finite multiset X w.r.t. a strict partial ordering ≺ on X if
x ∈ X ∧ (∀y ∈ X . y ̸= x −■→ x ̸≺ y). An element x is strictly maximal in a finite multiset
X w.r.t. a strict partial ordering ≺ on X if x ∈ X ∧ (∀y ∈ X \ {x}. x ̸⪯ y), where ⪯ is the
reflexive closure of ≺. The two notions coincide except for their handling of duplicates: A
maximal element can have duplicates, whereas a strictly maximal element cannot. If the
ordering is not total, a multiset can have multiple maximal or strictly maximal elements.

The Superposition Calculus. Bachmair and Ganzinger’s superposition calculus [2,3] belongs
to a class of proof calculi for automatic provers known as saturation calculi. A saturation
prover takes a set of formulas, usually clauses, as input and processes it by performing two
operations: First, it derives new formulas from the old ones and adds them to the set. Second,
it deletes superfluous formulas from the set. This process is repeated until the prover either
finds ⊥ or reaches a state in which it is not required to add further formulas.

Abstractly, the calculus can be defined by two components: a set of inferences
Cn · · · C1

C0

indicating that the formula C0 (the conclusion) must be added to the set whenever the
formulas Cn, . . . , C1 (the premises) are already present, and a redundancy criterion that
describes which inferences are unnecessary and which formulas may be deleted from the set.

1 https://github.com/IsaFoL/IsaFoL
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For the superposition calculus, the inferences are given by three schematic inference rules.
The first one is

D︷ ︸︸ ︷
t ≈ t′ ∨D′

E︷ ︸︸ ︷
κ[u] 1 u′ ∨ E′

superposition
(κ[t′ρ] 1 u′ ∨ E′ ∨D′ρ)µ︸ ︷︷ ︸

C

where the clauses D and E are the premises, C is the conclusion, ▷◁ is either ≈ or ̸≈, u is a
nonvariable subterm occurring in a context κ in clause E, ρ is an arbitrary but fixed renaming
that is chosen so that Dρ and E are variable-disjoint, and µ is an IMGU of tρ and u.

The other two rules are
D︷ ︸︸ ︷

t ̸≈ t′ ∨D′
equality resolution

D′µ︸︷︷︸
C

where µ is an IMGU of t and t′, and
D︷ ︸︸ ︷

u ≈ u′ ∨ t ≈ t′ ∨D′
equality factoring

(u′ ̸≈ t′ ∨ u ≈ t′ ∨D′)µ︸ ︷︷ ︸
C

where µ is an IMGU of t and u.
To reduce the number of inferences that need to be computed during the saturation, the

inference rules above are equipped with ordering restrictions. Let ≺t be an ordering on terms
that is stable under grounding substitutions, and whose ground restriction is well-founded,
total, and compatible with contexts, and has the subterm property. The term ordering ≺t is
extended to a literal ordering and a clause ordering in the following way: To every positive
literal t ≈ t′, we assign the multiset {t, t′}, to every negative literal t ̸≈ t′, we assign the
multiset {t, t, t′, t′}. The literal ordering ≺lit compares these multisets using the multiset
extension of ≺t. The clause ordering ≺c compares clauses by comparing their multisets of
literals using the multiset extension of ≺lit.

We impose the following ordering restrictions on the inferences above: (1) If L is the first
literal in a premise D or E, it must be maximal in that premise w.r.t. ≺lit (after applying the
substitution); (2) if additionally L is a positive equation in a superposition inference, it must
be strictly maximal; (3) except in equality resolution inferences, the right-hand side of the
equation or negated equation L may not be larger than or equal to the left-hand side w.r.t. ≺t;
and (4) in superposition inferences, Dρµ may not be larger than or equal to Cµ w.r.t. ≺c.

In the worst case, all literals in a clause can be incomparable and hence maximal. For
clauses with negative literals, this effect can be remedied using a selection function that
overrides the ordering restrictions. This is a function that maps every clause to a submultiset
of its negative literals. The ordering conditions above are then modified so that if at least
one literal in a clause is selected, then the maximality conditions for literals are applied to
the selected submultiset instead of the original clause. This means that only inferences that
involve literals that are maximal among the selected literals need to be performed.

These local restrictions are supplemented by a global redundancy criterion for clauses and
inferences. Bachmair and Ganzinger’s standard redundancy criterion is defined as follows:
A ground clause C is redundant w.r.t. a set N of ground clauses if it is entailed by clauses
in N that are smaller than C w.r.t. ≺c. A nonground clause C is redundant w.r.t. a set
N of nonground clauses if every ground instance of C is redundant w.r.t. the set of all
ground instances of clauses in N . A ground inference (i.e., an inference with ground premises
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and ground conclusion) is redundant w.r.t. a set N of ground clauses if its conclusion is
entailed by clauses in N that are smaller than the maximal premise. A nonground inference
is redundant w.r.t. a set N of nonground clauses if every ground instance of the inference is
redundant w.r.t. the set of all ground instances of clauses in N .

Redundant clauses may be deleted from the clause set during a saturation; redundant
inferences need not be computed. In particular, inferences whose conclusion is already
contained in the clause set are always redundant.

The Saturation Framework. In their article in the Handbook of Automated Reasoning [4],
Bachmair and Ganzinger gave a general account of components and properties of saturation
calculi. The framework by Waldmann et al. [44] extended this to include a general treatment
of lifting, subsumption, and prover architectures. We summarize the main results.

Let F be a set of formulas, and |= be a consequence relation on F . An F -inference
is an inference with premises and conclusion in F . An F -inference system Inf is a set of
F -inferences. If N ⊆ F , we write Inf(N) for the set of all inferences in Inf with premises in N .

Let Red I be a function from sets of formulas to sets of inferences; let RedF be a function
from sets of formulas to sets of formulas. The pair Red = ⟨Red I, RedF⟩ is a redundancy
criterion for Inf if it satisfies the following conditions:
1. if N |= {⊥}, then N \ RedF(N) |= {⊥};
2. if N ⊆ N ′, then RedF(N) ⊆ RedF(N ′) and Red I(N) ⊆ Red I(N ′);
3. if N ′ ⊆ RedF(N), then RedF(N) ⊆ RedF(N \N ′) and Red I(N) ⊆ Red I(N \N ′); and
4. if the conclusion of an inference in Inf is in N , then the inference is in Red I(N).

Inferences in Red I(N) and formulas in RedF(N) are called redundant w.r.t. N .
A saturation prover for a calculus ⟨Inf , Red ⟩ gets a set of formulas N0 ⊆ F as input and

generates a sequence N0, N1, . . . of sets of formulas by adding newly computed formulas and
by deleting unnecessary formulas. We require that in every step the deleted formulas are
redundant w.r.t. the remaining ones. We call the sequence N0, N1, . . . a derivation. The set
N∞ =

⋃
i

⋂
j≥i Nj of persistent formulas is called the limit of the derivation. The derivation

is fair if every inference from persistent formulas eventually becomes redundant. The calculus
⟨Inf , Red ⟩ is dynamically refutationally complete if for every set N0 with N0 |= {⊥} and
every fair derivation N0, N1, . . . , the formula ⊥ is eventually derived, that is, ⊥ ∈

⋃
i Ni.

Proving the dynamic refutational completeness of the calculus ⟨Inf , Red ⟩ directly is usually
difficult. Fortunately, dynamic refutational completeness can be shown to be equivalent
to another property, namely static refutational completeness: A set N ⊆ F is saturated
w.r.t. Inf and Red if Inf(N) ⊆ Red I(N). The calculus ⟨Inf , Red ⟩ is statically refutationally
complete if for every saturated set N we have that N |= ⊥ implies ⊥ ∈ N .

To prove the static (and thus dynamic) refutational completeness of a calculus, it is
usually convenient to start with a ground version of the calculus. The completeness result
for the nonground calculus can then be obtained from the completeness result for the ground
calculus by lifting, using a suitable grounding function that maps nonground formulas to sets
of ground formulas and nonground inferences to sets of ground inferences. The framework
also shows how to deal with redundancy criteria that are defined as intersections of other
redundancy criteria (a technique that we will need to handle selection functions in the
lifting process), how to integrate subsumption into the redundancy criterion (so that, e.g.,
x ≈ a makes its instance b ≈ a redundant), and how to obtain completeness results for
implementations of the calculus in various prover architectures.

The framework has been formalized in Isabelle/HOL and extended by Tourret and
Blanchette [14,40,42]. The present work builds on this formalization.

ITP 2024
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3 Proof Outline

Static refutational completeness can be stated as follows:

▶ Theorem 1. For every set N that is saturated w.r.t. the superposition calculus, if N entails
⊥, then ⊥ ∈ N .

Equivalently: For every saturated set N such that ⊥ /∈ N , there exists a model of N .
Bachmair and Ganzinger’s original proof [3, Section 4] uses a monolithic approach. Our
proof is more modular and proceeds in two clearly separated steps:
1. Given a ground clause set M saturated w.r.t. ground inferences, we build a model of M .
2. We show that if a clause set N is saturated w.r.t. nonground inferences, then its grounding

NG = {Cγ | C ∈ N and Cγ is ground} is saturated w.r.t. ground inferences. Hence, by
step 1, there exists a model of NG, which is also a model of N .

In step 1, we construct a confluent and terminating term rewriting system R∞ and use
it to define an interpretation that equates all terms that share the same normal form w.r.t.
R∞, and no others. For example, if R∞ = {b→ a}, then the associated interpretation makes
f(b) ≈ f(a) true and c ≈ a false. The system R∞ is built incrementally. We start with {} and
traverse the clauses in M from the smallest clause following the ordering ≺c. For each clause
C ∈M , if C is true in the current interpretation, there is nothing to do. Otherwise, we add a
rewrite rule that attempts to make C true without affecting the truth of earlier, smaller clauses.
While this process might fail in general, it will always produce a model of M if M is saturated.

In step 2, we must show that saturation on the nonground level implies saturation on
the ground level. Via a result from the saturation framework, this amounts to showing that
there exist nonground inferences corresponding to all nonredundant ground inferences of
the calculus. A subtlety is that the calculus avoids superposition inferences into variables.
Thus there might exist ground inferences that are not reflected on the nonground level.
However, we can show that all such inferences are redundant. Another concern is the
selection function. In general, we cannot assume that it is stable under substitutions, but
without this assumption it is hard to relate the ground and nonground levels. The solution
is provided by the saturation framework, which allows us to simultaneously lift all ground
selection functions to the nonground level.

4 The Ground Proof

On the ground level, we reuse theories [23] from the IsaFoR project for terms, of type ′fgterm,
and term contexts, of type ′f gctxt. The type variable ′f represents function symbols. Isabelle
types use a postfix notation. Ground atoms have type ′f gatom, which is a synonym for
′fgterm uprod, i.e., unordered pair of ground terms. Ground literals have type ′fgatom literal .
Ground clauses have type ′f gatom clause, which is a synonym for ′f gatom literal multiset.
Isabelle multisets are always finite.

We start the formalization by introducing a locale, or module, that fixes an ordering on
ground terms:

locale ground_ordering =
fixes (≺t) :: ′f gterm ⇒ ′f gterm ⇒ bool
assumes

transp (≺t) and asymp (≺t) and totalp (≺t) and wfp (≺t) and
∀κ :: ′f gctxt. ∀t1 t2 . t1 ≺t t2 −■→ κ[t1 ] ≺t κ[t2 ] and
∀κ :: ′f gctxt. ∀t. κ ̸= □ −■→ t ≺t κ[t]



M. Desharnais, B. Toth, U. Waldmann, J. Blanchette, and S. Tourret 12:7

In Isabelle, a locale consists of parameters (here, ≺t) that may depend on type variables (here,
′f) paired with assumptions. Locales allow us to declare parameters and assumptions once
and reuse them in multiple definitions and lemmas. When we later instantiate a locale, we
must supply concrete arguments for the types and parameters and then discharge the proof
obligations corresponding to the assumptions.

The locale ground_ordering assumes that the binary relation ≺t is a well-founded total
ordering, is compatible with ground term contexts, and has the subterm property.

Inside the locale context, we lift the term ordering and its properties to literals (≺lit) and
clauses (≺c). We also configure the little-known order Isabelle proof method [38], a decision
procedure for the quantifier-free theory of partial and total orderings, so that it can solve
problems for our orderings.

As a building block for this formalization, we developed a generic theory of (strictly)
minimal, (strictly) maximal, least, and greatest element in sets, finite sets, and finite multisets
w.r.t. any partial or total ordering.

Next, we define the notion of selection function:

locale select =
fixes sel :: ′a clause ⇒ ′a clause
assumes
∀C . sel C ⊆ C and
∀C . ∀L ∈ sel C. is_neg L

The locale select fixes a function sel for clauses with any atom type ′a. In this section,
we instantiate ′a with ′f gatom; Section 5 will instantiate it with its own atom type. Our
assumptions on a selection function are that it always returns a submultiset of the argument
C and only returns negative literals.

We can now assemble the parameters and assumption for the ground calculus:

locale ground_superposition_calculus = ground_ordering (≺t) + select selG
for

(≺t) :: ′f gterm ⇒ ′f gterm ⇒ bool and
selG :: ′f gatom clause ⇒ ′f gatom clause +

assumes ∀R :: (′f gterm × ′f gterm) set. ground_critical_pair_theorem R

The locale ground_superposition_calculus extends both ground_ordering and select, inheriting
all their assumptions as well as the definitions and theorems from their locale contexts. The
parameters ≺t and selG are provided with type annotations to control the instantiation of the
type parameters. We also assume that the critical pair theorem [1, Theorem 6.2.4] holds for
ground terms. As a sanity check, we proved this theorem in Isabelle by adapting a similar,
but license-incompatible, result from the IsaFoR project [39].

We can now specify the ground version of the inference rules presented in Section 2, using
inductive predicates. Compared with their nonground counterparts, the ground rules benefit
from two simplifications. First, neither renamings nor unifiers are needed because ground
terms contain no variables. Second, terms and clauses can be compared directly using ≺t
and ≺c instead of using a reversed negated form since the orderings are total.

We show the ground superposition rule as an example. The rule notation below defines an
inductive predicate ground_superpositionD E C with the rule’s premises D, E as assumptions
and the rule’s conclusion C as conclusion:

ITP 2024



12:8 A Modular Formalization of Superposition in Isabelle/HOL

D︷ ︸︸ ︷
t ≈ t′ ∨D′

E︷ ︸︸ ︷
κ[t] 1 u ∨ E′

ground_superposition D E C
κ[t′] 1 u ∨D′ ∨ E′︸ ︷︷ ︸

C

Side conditions:
1. 1 ∈ {≈, ̸≈};
2. D ≺c E;
3. t′ ≺t t;
4. u ≺t κ[t];
5. if 1 =≈, then selG E = {} and κ[t] 1 u is strictly maximal in E;
6. if 1 = ̸≈, then selG E = {} and κ[t] 1 u is maximal in E or κ[t] 1 u is maximal in selG E;
7. selG D = {};
8. t ≈ t′ is strictly maximal in D.
Following the structure required by the saturation framework, we define an inference system
InfG and a consequence relation entailsG. For formulas, we use the type of ground clauses
′f gatom clause, and for contradictions, we use the empty clause ⊥.

▶ Definition 2. The set InfG :: ′f gatom clause inference set consists of all inferences of the
ground superposition calculus:

InfG = {⟨[D, E], C⟩ | ground_superposition D E C} ∪
{⟨[D], C⟩ | ground_eq_resolution D C} ∪ {⟨[D], C⟩ | ground_eq_factoring D C}

For the consequence relation, we reuse the theory of Herbrand interpretation developed
for a formalization of ordered resolution [32]. This theory considers an interpretation to be
a set of true atoms and defines the relation I |=lit L expressing that the interpretation I
models the literal L, i.e., that L’s atom is in I iff L is positive. The predicate is lifted to
clauses (|=c) and clause sets (|=) in the usual way.

Our ground atoms being unordered pairs of ground terms, our interpretations should be
sets of unordered pairs. However, since Isabelle makes it easier to manipulate sets of ordered
pairs, we use these as our interpretation and define a small wrapper with the help of the
function uprod :: ′a× ′a⇒ ′a uprod to bridge the gap.

▶ Definition 3. The predicates (||=c) :: (′fgterm× ′fgterm) set ⇒ ′fgatom clause ⇒ bool and
(||=) :: (′f gterm × ′f gterm) set ⇒ ′f gatom clause set ⇒ bool express that an interpretation
models a clause and a clause set, respectively:

I ||=c C ←→{uprod r | r ∈ I} |=c C I ||= N ←→{uprod r | r ∈ I} |= N

We cannot use arbitrary sets of pairs as interpretations because the pairs should represent
term equality. We require a valid interpretation I to be reflexive, symmetric, and transitive
and to be compatible with ground context application (i.e., ∀κ :: ′f gctxt. ∀t t′. ⟨t, t′⟩ ∈ I −■→
⟨κ[t], κ[t′]⟩ ∈ I). We encode these requirements in the entailsG predicate:

▶ Definition 4. The predicate entailsG :: ′f gatom clause set ⇒ ′f gatom clause set ⇒ bool
expresses that a clause set N1 entails another clause set N2, i.e., every valid interpretation of
N1 is also a valid interpretation of N2:

entailsG N1 N2 ←→ (∀I :: (′f gterm × ′f gterm) set.
refl I −■→ sym I −■→ trans I −■→ compatible_with_gctxt I −■→
I ||= N1 −■→ I ||= N2)
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Equipped with InfG and entailsG, we can start to use the saturation framework. We first
instantiate the sound_inference_system locale to make sure that the ground superposition
calculus is sound and that our definitions correspond to what the framework expects:

sublocale ground_superposition_calculus ⊆ sound_inference_system where
Inf = InfG and Bot = {⊥} and entails = entailsG

The sublocale notation means that definitions and theorems from ground_superposition_
calculus are sufficient to prove the assumptions of sound_inference_system w.r.t. the given
parameter instantiations. At this point, Isabelle requires us to actually prove the assumptions.

As the redundancy criterion, we reuse the standard redundancy criterion defined in the
Isabelle saturation framework [14]:

sublocale ground_superposition_calculus ⊆
calculus_with_finitary_standard_redundancy where

Inf = InfG and Bot = {⊥} and entails = entailsG and less = (≺c)
defines RedIG = RedI and RedFG = RedF

The locale calculus_with_finitary_standard_redundancy defines the functions RedI :: ′fgatom
clause set ⇒ ′f gatom clause inference set, identifying redundant inferences, and RedF ::
′f gatom clause set ⇒ ′f gatom clause set, identifying redundant formulas. We rename them
to RedIG and RedFG, respectively.

To prove refutational completeness, we will exhibit a valid interpretation for a given
saturated clause set. We build this interpretation by defining a confluent and terminating
set of rewrite rules R∞, which we lift to an interpretation JR∞K↓ that defines term equality.
Each rewrite rule is a pair ⟨t, t′⟩, written t→ t′.

▶ Definition 5. The function J ·K :: (′fgterm× ′fgterm)set ⇒ (′fgterm× ′fgterm)set expands
a rewrite rule set to all term contexts: JRK = {κ[t]→ κ[t′] | t→ t′ ∈ R}.

▶ Definition 6. The function ·↓ :: (′fgterm× ′fgterm)set ⇒ (′fgterm× ′fgterm)set produces
the set of all term pairs considered equal w.r.t. a set of rewrite rules: R↓ = {⟨t, t′⟩ | ∃t′′. t→
t′′ ∈ R∗ ∧ t′ → t′′ ∈ R∗}.

Now that we can lift a set of rewrite rules to a model, we define two mutually recursive
functions that construct such a set for a given clause set.

▶ Definition 7. Let N≺cD = {C ∈ N | C ≺c D} for any N and D. The functions epsilon ::
′f gatom clause set ⇒ ′f gatom clause ⇒ (′f gterm × ′f gterm) set and rewrite_sys :: ′f gatom
clause set ⇒ (′f gterm × ′f gterm) set generate a term rewriting system for a given clause set:

epsilon N C = {t→ t′ | ∃C ′. C ∈ N ∧ C = (t ≈ t′ ∨ C ′) ∧ selG C = {} ∧
t ≈ t′ is strictly maximal in C ∧ t′ ≺t t ∧
Jrewrite_sys N≺cCK↓ ̸||=c C ∧
Jrewrite_sys N≺cC ∪ {t→ t′}K↓ ̸||=c C ′ ∧
t is in normal form w.r.t. Jrewrite_sys N≺cCK↓}

rewrite_sys N =
⋃

C∈N epsilon N C

We reuse the definitions of joinability (·↓) and of normal form (i.e., irreducibility) from a
formalization of abstract rewriting systems [35].

The model construction iterates over the clause set, starting from the smallest clause
following the ordering ≺c, and collects a set of rewrite rules. At any point, we can use J ·K↓

to obtain the candidate model. At each iteration, epsilon returns a set of rewrite rules that
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are added to the term rewriting system: Either the considered clause is already true w.r.t. to
the candidate model, in which case epsilon returns the empty set, or epsilon returns a single
new rewrite rule that should make the clause true.

▶ Example 8. Assume ≺t is the lexicographic path ordering with the precedence a ≺ b ≺
c ≺ d ≺ e ≺ f. Let N = {d ≈ c, b ≈ a ∨ e ̸≈ c, b ̸≈ b ∨ f(b) ≈ a, f(c) ≈ b, f(b) ≈ a ∨ f(c) ̸≈ b,

f(b) ≈ a ∨ f(d) ̸≈ b} be a clause set saturated w.r.t. the ground superposition calculus. The
following table shows the result of each iteration of the model construction:

Iteration Clause C rewrite_sys N≺cC epsilon N C

1 d ≈ c {} {d → c}
2 b ≈ a ∨ e ̸≈ c {d → c} {}
3 b ̸≈ b ∨ f(b) ≈ a {d → c} {f(b) → a}
4 f(c) ≈ b {d → c, f(b) → a} {f(c) → b}
5 f(b) ≈ a ∨ f(c) ̸≈ b {d → c, f(b) → a, f(c) → b} {}
6 f(b) ≈ a ∨ f(d) ̸≈ b {d → c, f(b) → a, f(c) → b} {}

At each iteration i + 1, the term rewriting system consists of the union of the term rewriting
system of iteration i and the “epsilon” of iteration i. As expected, the interpretation after
iteration 6 is a model of N .

The conditions on rewrite rule production were chosen so that the term rewriting system is
confluent. Specifically, we prove strong normalization and the weak Church–Rosser property,
which together imply the Church–Rosser property, which is equivalent to confluence.

▶ Lemma 9. Let N be a ground clause set. The term equality specified by Jrewrite_sys NK↓

is reflexive, symmetric, transitive, and compatible with ground contexts.

Now that we can build a valid interpretation for a clause set, it remains to show that it
satisfies all clauses from this set. We first need a pair of lemmas that express monotonicity
properties of the construction:

▶ Lemma 10. Let N be a ground clause set and C be a ground clause. If epsilon N C =
{t→ t′}, then
1. Jrewrite_sys NK↓ ||=c C;
2. ∀D ∈ N. C ≺c D −■→ Jrewrite_sys N≺cDK↓ ||=c C;
3. Jrewrite_sys NK↓ ̸||=c C \ {t ≈ t′}; and
4. ∀D ∈ N. C ≺c D −■→ Jrewrite_sys N≺cDK↓ ̸||=c C \ {t ≈ t′}.

▶ Lemma 11. Let N be a ground clause set and C ∈ N be a ground clause. If Jrewrite_sys
N≺cCK↓ ||=c C, then
1. Jrewrite_sys NK↓ ||=c C and
2. ∀D ∈ N. C ≺c D −■→ Jrewrite_sys N≺cDK↓ ||=c C.

We can now prove that our model construction works for all clauses.

▶ Lemma 12. Let N be a saturated ground clause set and C ∈ N be a ground clause. If
⊥ /∈ N , then
1. epsilon N C = {} ←→ Jrewrite_sys N≺cCK↓ ||=c C and
2. ∀D ∈ N. C ≺c D −■→ Jrewrite_sys N≺cDK↓ ||=c C.

Proof Sketch. By well-founded induction w.r.t. ≺c. ◀

▶ Lemma 13 (Ground Model Construction). Let N be a saturated ground clause set and
C ∈ N be a ground clause. If ⊥ /∈ N , then Jrewrite_sys NK↓ ||=c C.

Proof Sketch. By Lemmas 11 and 12 if epsilon N C = {} and Lemma 10 otherwise. ◀
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▶ Theorem 14 (Ground Refutational Completeness). Let N be a saturated ground clause set.
If entailsG N {⊥}, then ⊥ ∈ N .

Proof Sketch. We assume ⊥ /∈ N and show ¬ entailsG N {⊥}. We must show the existence
of an interpretation I such that (1) I is reflexive, symmetric, transitive, and compatible with
ground contexts; (2) I ||= N ; and (3) I ̸||=c ⊥. We let I = Jrewrite_sys NK↓. Step 1 follows
from Lemma 9. Step 2 follows from Lemma 13. Step 3 follows from the definition of |=c. ◀

Finally, we can provide our main result for the ground calculus by instantiating the locale
statically_complete_calculus from the saturation framework:

sublocale ground_superposition_calculus ⊆ statically_complete_calculus where
Inf = InfG and Bot = {⊥} and entails = entailsG and less = (≺c) and
RedI = RedIG and RedF = RedFG

We use Theorem 14 to discharge the proof obligation.

5 The Nonground Proof

On the nonground level, we reuse theories [36] from the IsaFoR project for terms, of
type (′f, ′v) term, and term contexts, of type (′f, ′v) ctxt. The type variable ′v represents term
variables. Atoms have type (′f, ′v) atom, which is a synonym for (′f, ′v) term uprod. Literals
and clauses (type (′f, ′v) atom clause) are defined analogously to ground literals and clauses.
Substitutions have type ′v ⇒ (′f, ′v) term.

▶ Definition 15. The predicates is_groundt :: (′f, ′v) term ⇒ bool and is_groundctxt ::
(′f, ′v) ctxt ⇒ bool express that the given term or context does not contain any variables. We
lift is_groundt to substitutions (is_groundsubst), atoms (is_grounda), literals (is_groundlit),
and clauses (is_groundc).

▶ Definition 16. The function groundingsc :: (′f, ′v) atom clause ⇒ ′f gatom clause set maps
a clause to the set of its groundings: groundingsc C = {Cγ | is_groundc (Cγ)}.

The calculus is parameterized by a well-founded total ordering on ground terms as defined
in the locale ground_ordering. We introduce a locale for the nonground ordering:

locale first_order_ordering =
fixes (≺t) :: (′f, ′v) term ⇒ (′f, ′v) term ⇒ bool
assumes

transp (≺t) and asymp (≺t) and
totalp_on {t | is_groundt t} (≺t) and wfp_on {t | is_groundt t} (≺t) and
∀κ :: (′f, ′v) ctxt. ∀t1 t2 . is_groundt t1 −■→ is_groundt t2 −■→ is_groundctxt κ −■→

t1 ≺t t2 −■→ κ[t1 ] ≺t κ[t2 ] and
∀κ :: (′f, ′v) ctxt. ∀t. is_groundt t −■→ is_groundctxt κ −■→ κ ̸= □ −■→ t ≺t κ[t] and
∀t1 t2 γ. is_groundt (t1 γ) −■→ is_groundt (t2 γ) −■→ t1 ≺t t2 −■→ t1 γ ≺t t2 γ

We assume transitivity and asymmetry on the entire relation. We assume totality and well-
foundedness on ground terms using totalp_on and wfp_on. We also assume compatibility
with ground contexts and the subterm property for ground terms. Finally, we assume stability
under grounding substitutions: If two terms are ≺t-related, then they are still ≺t-related
after applying a grounding substitution. Most of the restrictions to ground terms are not
necessary for practical orders such as the Knuth–Bendix ordering and the lexicographic path
ordering, but we prefer the additional generality.
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In the locale context of first_order_ordering, we define ≺tG as ≺t on ground terms. We
lift ≺t to literals (≺lit) and clauses (≺c). We then prove transitivity, asymmetry, totality,
well-foundedness, and stability under grounding substitutions for ≺lit and ≺c.

The next lemma will be useful to prove that nonground inferences overapproximate
ground inferences:

▶ Lemma 17. Let C be a clause, L ∈ C a literal, and γ a grounding substitution for C. If
Lγ is (strictly) maximal in Cγ, then L is (strictly) maximal in C.

Next to the ordering, the calculus is also parameterized by a selection function. Let
(′f, ′v) select abbreviate (′f, ′v) atom clause ⇒ (′f, ′v) atom clause and ′f gselect abbreviate
′f gatom clause ⇒ ′f gatom clause. We define

locale first_order_select = select sel
for sel :: (′f, ′v) select

The locale first_order_select extends the locale select and fixes the type of its selection function
sel. We use this locale to prove some lemmas regarding sel and grounding substitutions. The
blueprint also initially assumed stability under renaming: sel (Cρ) = (sel C)ρ for every clause
C and every renaming ρ. This assumption was taken from the formal completeness proof for
the resolution calculus [30], but it turns out to be unnecessary in our formalization because
we use a different approach to lift ground inferences.

The following predicate is useful to lift selection functions:

▶ Definition 18. The predicate is_groundingS :: (′f, ′v) select ⇒ ′f gselect ⇒ bool relates two
selection functions, S for nonground clauses and SG for ground clauses: is_groundingSSSG ←→
∀CG :: ′f gatom clause. ∃C :: (′f, ′v) atom clause. ∃γ. CG = Cγ ∧ SG CG = (S C)γ.

Using is_groundingS, we define the following in the context of the first_order_select locale:

▶ Definition 19. The set gselects :: ′f gselect set consists of all ground selection functions
related to sel: gselects = {SG | is_groundingS sel SG}.

Based on gselects, we lift the ground calculus for all ground selection functions. The
following locale associates a selection function sel with a grounding selG:

locale grounded_first_order_select = first_order_select sel
for sel :: (′f, ′v) select +
fixes selG :: ′f gselect
assumes is_groundingS sel selG

We show that the grounding selG fulfills the criteria for a ground-level selection function:

sublocale grounded_first_order_select ⊆ select where
sel = selG

This sublocale relation establishes the lifting for the selection function.
We continue by creating the main building block for the nonground calculus:

locale first_order_superposition_calculus =
first_order_ordering (≺t) + first_order_select sel
for

(≺t) :: (′f, ′v) term ⇒ (′f, ′v) term ⇒ bool and
sel :: (′f, ′v) select +
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fixes tiebreakers :: ′f gatom clause ⇒ (′f, ′v) atom clause ⇒ (′f, ′v) atom clause ⇒ bool

assumes
infinite (UNIV :: ′v set) and
∀CG. wfp (tiebreakers CG) ∧ transp (tiebreakers CG) ∧ asymp (tiebreakers CG) and
∀R :: (′f gterm × ′f gterm) set. ground_critical_pair_theorem R

We define the locale first_order_superposition_calculus extending first_order_ordering and
first_order_select. We need three additional assumptions: First, we assume that the set of
all variables (UNIV :: ′v set) is infinite, so that we can generate enough fresh variables for
renamings. Second, we support tiebreakers, i.e., a family of well-founded partial orderings
indexed by ground clauses. The orderings can be used to implement subsumption. Third, we
assume the theorem of ground critical pairs as in Section 4.

Next, we define the three inference rules superposition, eq_resolution, and eq_factoring
presented in Section 2 inside first_order_superposition_calculus using inductive predicates.
The superposition rule follows as an example:

D︷ ︸︸ ︷
t ≈ t′ ∨D′

E︷ ︸︸ ︷
κ[u] 1 u′ ∨ E′

superposition D E C
((κρ2)[t′ρ1] 1 u′ρ2 ∨D′ρ1 ∨ E′ρ2)µ︸ ︷︷ ︸

C

Side conditions:
1. 1 ∈ {≈, ̸≈};
2. ρ1 and ρ2 are renamings;
3. Dρ1 and Eρ2 are variable-disjoint;
4. u is not a variable;
5. µ is an IMGU of {tρ1, uρ2};
6. Eρ2µ ⪯̸c Dρ1µ;
7. tρ1µ ⪯̸t t′ρ1µ;
8. (κ[u])ρ2µ ⪯̸t u′ρ2µ;
9. if 1 =≈, then sel E = {} and (κ[u] 1 u′)ρ2µ is strictly maximal in Eρ2µ;

10. if 1 = ̸≈, then sel E = {} and (κ[u] 1 u′)ρ2µ is maximal in Eρ2µ or (κ[u] 1 u′)ρ2µ is
maximal in (sel E)ρ2µ;

11. sel D = {};
12. (t ≈ t′)ρ1µ is strictly maximal in Dρ1µ.

Unlike in the blueprint, we do not fix functions to create the renamings and the IMGUs.
Instead, we use predicates that describe the properties of renamings and IMGUs. This gives
more flexibility to a saturation prover based on the calculus, which could, for example, use a
nondeterministic implementation.

▶ Definition 20. The set InfF :: (′f, ′v) atom clause inference set consists of all inferences of
the superposition calculus:

InfF = {⟨[D, E], C⟩ | superposition D E C} ∪
{⟨[D], C⟩ | eq_resolution D C} ∪ {⟨[D], C⟩ | eq_factoring D C}

Concluding the setup for the lifting of the calculus, we define

locale grounded_first_order_superposition_calculus =
first_order_superposition_calculus + grounded_first_order_select
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By combining first_order_superposition_calculus and grounded_first_order_select, we pro-
vide an arbitrary ground select function selG to the nonground calculus. The resulting locale
grounded_first_order_superposition_calculus has all the required assumptions to instantiate
ground_superposition_calculus:

sublocale grounded_first_order_superposition_calculus ⊆
ground_superposition_calculus where
selG = selG and ≺t =≺tG

The selection function causes some complications. In general, sel is not stable under
substitutions (i.e., (sel C)σ and sel (Cσ) might be different). As a result, we cannot directly
use it at the ground level. Based on sel and a saturated set N , we would want to define a
suitable ground selection function SG. However, this definition cannot work, because N is
not a priori known. The solution is as follows: For all ground selection functions in gselects,
we lift the corresponding ground calculi to the nonground level and consider all of them
together. This ensures that we perform the right lifting regardless of N .

The locale lifting_intersection [42, Section 3.1] of the saturation framework enables us to
lift a family of ground calculi indexed by gselects. We instantiate the locale as a sublocale of
first_order_superposition_calculus. Since we lift a ground calculus family and not a single
calculus, we cannot have a global ground_superposition_calculus. However, once we have an
arbitrary but fixed ground selection function SG ∈ gselects, we can use Isabelle’s facility for
instantiating locales locally in a proof using interpret.

The locale lifting_intersection gives us the following lifted definition of the entailment
relation for nonground clause sets:

▶ Definition 21. The predicate entailsF :: (′f, ′v) atom clause set ⇒ (′f, ′v) atom clause set ⇒
bool expresses that a clause set N1 entails another clause set N2: entailsF N1 N2 ←→
entailsG

(⋃
C∈N1

groundingsc C
) (⋃

C∈N2
groundingsc C

)
.

Next, we ensure that the nonground calculus is sound and compatible with the saturation
framework by instantiating the sound_inference_system locale:

sublocale first_order_superposition_calculus ⊆ sound_inference_system where
Inf = InfF and Bot = {⊥} and entails = entailsF

The locale lifting_intersection provides a lifted redundancy criterion ⟨RedI, RedF⟩ sup-
porting full subsumption based on tiebreakers. Additionally, it reduces our proof of static
refutational completeness for first_order_superposition_calculus to two easier proof obliga-
tions: First, every member of the ground calculus family is statically refutationally complete.
We can prove this directly by the main result of Section 4. Second, there exists a selection
function grounding that is indexing a member of the ground calculus family, with which the
nonground inferences overapproximate all ground inferences. We prove this below.

▶ Definition 22. The function groundingsInf :: (′f, ′v) atom clause inference ⇒ ′f gatom
clause inference set maps an inference to the set of ground inferences that can arise by
grounding its premises and conclusions: groundingsInf ι = {ιγ | ιγ ∈ InfG}.

▶ Lemma 23 (Equality Resolution Lifting). Let C and D be clauses, γ be a grounding
substitution for C and D, and ιG be a ground inference. If selG (Dγ) = (sel D)γ and
ιG = ground_eq_resolution (Dγ) (Cγ), then there exist C ′ and ι such that Cγ = C ′γ, ι =
eq_resolution D C ′, and ιG ∈ groundingsInf ι.
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Note that the first assumption further restricts the relation between sel and selG. We will
see in Lemmas 26 and 27 how we can discharge this assumption within the locale.

Proof Sketch. We first deconstruct the premise D using the properties of its grounding Dγ

induced by the ground inference to put it in the correct form for the nonground inference.
Then we construct a matching conclusion C ′ and show that Cγ = C ′γ. The more restricted
relation between sel and selG is required to lift the side condition about selection. ◀

▶ Lemma 24 (Equality Factoring Lifting). Let C and D be clauses, γ be a grounding
substitution for C and D, and ιG be a ground inference. If selG (Dγ) = (sel D)γ and
ιG = ground_eq_factoring (Dγ) (Cγ), then there exist C ′ and ι such that Cγ = C ′γ, ι =
eq_factoring D C ′, and ιG ∈ groundingsInf ι.

Proof Sketch. Analogous to Lemma 23. ◀

▶ Lemma 25 (Superposition Lifting). Let C, D, E be clauses, γ be a grounding substitu-
tion for C, D, E, ρ1, ρ2 be renamings such that Dρ1 and Eρ2 are variable-disjoint, and ιG
be a ground inference. If selG (Dρ1γ) = (sel (Dρ1))γ, selG (Eρ2γ) = (sel (Eρ2))γ, ιG =
ground_superposition (Dρ1γ) (Eρ2γ) (Cγ), and ιG /∈ RedIG(groundingsc D ∪ groundingsc E),
then there exist C ′ and ι such that Cγ = C ′γ, ι = superpositionDEC ′, and ιG ∈ groundingsInf ι.

Compared with Lemmas 23 and 24, there are two additions: First, nonground super-
position inferences require their premises to be variable-disjoint. Therefore, the lemma is
parameterized by renamings ρ1 and ρ2. Second, we assume that ιG is not redundant. This is
unproblematic: The lemma is used only to prove that nonground inferences overapproximate
ground inferences, and there we need the lifting only in the nonredundant case.

Proof Sketch. The proof is similar to those of the previous two lemmas. A subtlety is that
superposition avoids inferences into variables (side condition 4). We must show that ground
inferences whose lifting would results in an inference into a variable are redundant according
to RedIG. We sketch the proof with two examples:

Consider the saturated clause set N = {b ≈ a, g(x) ̸≈ d}. We must show that there are
no nonredundant inferences from the set of its groundings NG = {b ≈ a, g(a) ̸≈ d, g(b) ̸≈
d, g(c) ̸≈ d, . . .}. However, we can derive the clause g(a) ̸≈ d using b ≈ a and g(b) ̸≈ d.
Fortunately, the inference is redundant since g(a) ̸≈ d is already contained in NG.
What if we have a clause with multiple occurrences of the same variable, as in N ′ = {b ≈ a,

g(x) ̸≈ f(x)}? We then have N ′
G = {b ≈ a, g(a) ̸≈ f(a), g(b) ̸≈ f(b), g(c) ̸≈ f(c), . . .} and

can use b ≈ a and g(b) ̸≈ f(b) to generate g(a) ̸≈ f(b). However, since {b ≈ a, g(a) ̸≈ f(a)}
||= {g(a) ̸≈ f(b)} and g(a) ̸≈ f(a) ≺c g(a) ̸≈ f(b), this inference is also redundant.

The formal proof performs multiple inductions over the number of occurrences of variables. ◀

While proving the above lemmas in Isabelle, we discovered a mistake in the formulation
of our blueprint. We had wrongly stated the conclusion of Lemma 23 as: “Then there exists
ι = eq_resolution D C and . . . .” We had fixed the conclusions of the nonground inferences
to C, even though many clauses can result in the same grounding w.r.t. γ. The same issue
arose in Lemmas 24 and 25.

▶ Lemma 26. Let N be a clause set, NG be the set containing all groundings of all clauses
of N , and S be an arbitrary function of type (′f, ′v) select. Then there exists a function
SG of type ′f gselect such that is_groundingS S SG and ∀CG ∈ NG. ∃C γ. C ∈ N ∧ CG =
Cγ ∧ SG CG = (S C)γ.
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Proof Sketch. We construct a SG on NG such that it fulfills the last property. This is possible
since the elements of NG are the groundings of the elements of N . It follows directly from
the definition of groundingsc that SG on NG is a grounding of S. For clauses not in NG, we
define SG as the ground restriction of S. ◀

▶ Lemma 27 (Overapproximation). Let N be a clause set. Then there exists a ground calculus
with a ground selection function SG such that nonground inferences from N overapproximate
all ground inferences from the groundings of N , meaning that each ground inference from the
groundingsc of N is either contained in the groundingsInf of inferences from N or redundant.

Proof Sketch. The proof follows from the lifting lemmas (Lemmas 23–25), for which we can
obtain the required ground selection functions using Lemma 26. For Lemma 25, we also need
the assumption that the set of all variables is infinite to be able to provide the renamings. ◀

Using Lemma 27, we can conclude our endeavor and instantiate statically_complete_
calculus:

sublocale first_order_superposition_calculus ⊆ statically_complete_calculus where
Inf = InfF and Bot = {⊥} and entails = entailsF and less = (≺c) and
RedI = RedI and RedF = RedF

We have verified the static refutational completeness of first-order superposition. The
saturation framework provides us with a proof of dynamic refutational completeness.

Finally, to exclude any inconsistency in our assumptions, we instantiate the locale
first_order_superposition_calculus with a trivial select function, trivial tiebreakers, and
the verified Knuth–Bendix ordering [37]. We can discharge all proof obligations. Since
first_order_superposition_calculus transitively instantiates all the other locales, we cover all
our assumptions.

6 Related Work

The saturation framework [44] has been used in the completeness proof of several new variants
of superposition:

Boolean λ-superposition [8] for higher-order logic, as well as its predecessors Boolean-free
λ-superposition [9] and Boolean-free λ-free superposition [7] that operate on fragments of
higher-order logic.
superposition with delayed unification [11] for first-order logic, which adds constraints to
the conclusions of inferences instead of performing full unifications.

An extended abstract by Tourret [41] discusses how these use the framework. The work
described in the present paper could serve as a foundation to formalize these proofs.

The Isabelle/HOL formalization of the saturation framework was introduced together
with an instance of the resolution calculus and an abstract resolution prover called RP by
Tourret and Blanchette [42]. Other theorem proving techniques formalized in Isabelle/HOL
include an executable SAT solver by Blanchette et al. [13] based on CDCL (conflict-driven
clause learning) for propositional logic with state-of-the-art optimizations, various sequent
and tableau calculi for first-order and related logics by From et al. [19, 20], and another
version of resolution and RP by Schlichtkrull et al. [30] following Bachmair and Ganzinger’s
original, more ad hoc proof that was extended to an executable prover [31]. Most recently,
the newly created SCL calculus [18], which follows a CDCL-like approach to theorem proving
in first-order logic, was also verified in Isabelle/HOL by Bromberger et al. [15] as it was
being developed. Also relevant here is Paulson’s formalization of Gödel’s incompleteness
theorems [25,26].
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Isabelle/HOL is possibly the most widely used system for formalizing automated reasoning
results, but other proof assistants are used as well. Early results include Shankar’s proof
of Gödel’s first incompleteness theorem in Nqthm [34], Persson’s completeness proof for
intuitionistic predicate logic in ALF [28], and Harrison’s formalization of basic first-order
model theory in HOL Light [21]. We refer to Blanchette [12, Section 5] for a survey.

Finally, the work closest to ours, already mentioned in the introduction, is the formalization
of a variant of the superposition calculus in Isabelle/HOL by Peltier [27]. Our initial intent
was to integrate his calculus with the saturation framework, but after months of fruitless
attempts, we decided to start from scratch, which resulted in the present work.

A first obstacle we encountered was related to Peltier’s redundancy criterion. He relies
on a notion that is sufficient to prove static refutational completeness but cannot be lifted
to dynamic completeness because his redundancy is defined in terms of smaller or equal
clauses rather than strictly smaller clauses. This makes it unsuitable for use in the saturation
framework, but we managed to replace it with a suitable criterion without changing the
calculus, allowing us to pursue our work in this direction for a while.

What made us switch approach was an incompatibility requiring a major modification
of Peltier’s formalization itself. Peltier works with closures, i.e., pairs ⟨C, σ⟩ consisting of
a set of literals C and a substitution σ. This calculus is defined directly on the nonground
level, where static completeness is proved. For integration into the saturation framework, we
wanted a ground version of the calculus, which we obtained by restricting the substitutions to
groundings only and operating on clauses as sets of ground literals Cσ. However, this made
it impossible to overapproximate this calculus with Peltier’s calculus on the nonground level,
which is needed for the lifting to be possible in the framework. The issue is that we do not want
to match a literal K in a ground clause to two literals L1, L2 in a nonground closure ⟨L1∨L2∨
C, σ⟩ such that L1σ = L2σ = K, because this breaks the lifting. Fixing this would require
working directly on closures also at the ground level. A new proof of ground refutational
completeness would have had to be provided for this new calculus. It seemed more convenient
to formalize a calculus operating on multisets of literals instead of closures, especially that the
Isabelle multiset library was already well developed for use in theorem proving formalization.

Our formalization consists of 12 000 nonblank lines, 7000 of which are for nonbackground
theories. For comparison, Peltier’s formalization consists of 9000 nonblank lines, 7000 of
which are for nonbackground theories. All numbers are rounded to the nearest thousand.
Interestingly, the two formalizations have approximately the same size even though they are
written in very different styles. To our surprise, the additional modularity of our work did
not lead to a shorter proof.

7 Conclusion

We restructured the refutational completeness proof of superposition using the saturation
framework. We first proved refutational completeness for the ground calculus and lifted
the proof to the full, nonground calculus. Next, we formalized this pen-and-paper proof
in Isabelle/HOL. The formalization can be seen as a case study for the IsaFoR library and
the saturation framework, as well as for basic Isabelle tools such as locales, which facilitate
modularity and proof reuse.

We see three main directions for future work. First, the proof could be extended to support
simply typed or rank-1-polymorphic first-order terms. Second, the completeness proofs of
variants of superposition, such as hierarchic superposition [5,6], combinatory superposition
[10], and λ-superposition [8], could be formalized as well. Third, the formalization of
superposition (or that of variants) could be extended to obtain a verified executable prover.
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Abstract
Multiparty session types (MPST) serve as a foundational framework for formally specifying and
verifying message passing protocols. Asynchronous subtyping in MPST allows for typing optimised
programs preserving type safety and deadlock freedom under asynchronous interactions where
the message order is preserved and sending is non-blocking. The optimisation is obtained by
message reordering, which allows for sending messages earlier or receiving them later. Sound
subtyping algorithms have been extensively studied and implemented as part of various programming
languages and tools including C, Rust and C-MPI. However, formalising all such permutations under
sequencing, selection, branching and recursion in session types is an intricate task. Additionally,
checking asynchronous subtyping has been proven to be undecidable.

This paper introduces the first formalisation of asynchronous subtyping in MPST within the Coq
proof assistant. We first decompose session types into session trees that do not involve branching
and selection, and then establish a coinductive refinement relation over them to govern subtyping.
To showcase our formalisation, we prove example subtyping schemas that appear in the literature,
all of which cannot be verified, at the same time, by any of the existing decidable sound algorithms.

Additionally, we take the (inductive) negation of the refinement relation from a prior work by
Ghilezan et al. [22] and re-implement it, significantly reducing the number of rules (from eighteen to
eight). We establish the completeness of subtyping with respect to its negation in Coq, addressing
the issues concerning the negation rules outlined in the previous work [22].

In the formalisation, we use the greatest fixed point of the least fixed point technique, facilitated
by the paco library, to define coinductive predicates. We employ parametrised coinduction to
prove their properties. The formalisation consists of roughly 10K lines of Coq code, accessible at:
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1 Introduction

Software systems often consist of concurrent and distributed components that interact
through message-passing based on predefined communication protocols. Ensuring that
each component adheres to the specified protocol is crucial to prevent runtime failures like
communication errors and deadlocks. Session types have emerged as a successful solution to
this challenge [27, 36], originally devised to two-party protocols like client-server interactions
and later expanded to handle multiparty protocols as well [21, 41]. Session types offer a
type-based approach to statically validate if a process conforms to a specified protocol.

A crucial challenge in employing session types lies in determining whether it is feasible
to replace a part of the protocol T with another T′ without violating safety and deadlock-
freedom. This concept is referred to as session subtyping [18, 16], denoted by T′ ⩽ T, when
T′ is a subtype of T.

It becomes even more challenging to formalise the precise subtyping in asynchronous
interactions where the send operation is non-blocking. The asynchronous nature permits
message reordering, facilitating the sending of messages earlier or delaying their reception
and opening up the possibility for protocol optimisations. To exemplify this, we take the
ring-choice protocol in [13], which orchestrates three participants A, B and C:
1. A sends an integer n to B with the label add.
2. B sends an integer m to C, labelled either add or sub.

a. If C receives the integer m labelled add, it sends
an integer m+k back to A with the add label, and
the protocol restarts from step 1.

b. If C receives the integer m labelled sub, it sends
an integer m − k to A with the sub label, and the
protocol restarts from step 1.

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

(a) synchronous
interactions

(b) optimised
interactions

Source: [13]

Certainly, during synchronous interactions (a), no data flow would occur from B to C or
from C to A before B receives data from A. However, under asynchronous interactions (b),
assuming that each participant begins with its own initial value, B can concurrently send
data (with different labels) to C before receiving data from A, letting C to start the next
iteration by sending data to A.

The synchronous interactions from B’s local viewpoint could be represented by a session
type TB, which can then be optimised into the type TB

opt under asynchronous interactions as
specified in Figure 1. The notation “!” is read as “send to” while “?” denotes “receive from”

TB = µt.A?add(i32).⊕C!
{

add(i32).t
sub(i32).t Topt

B = µt.⊕C!
{add(i32).A?add(i32).t

sub(i32).A?add(i32).t

Figure 1 Local type TB and its optimised local type Topt
B (view) of B.

actions, and “i32” is the integer sort of payloads. The selection type ⊕ denotes the internal
choice of actions (label, payload sort, continuation triples) directed towards a particular
participant. Dually, the branching type & is the external choice of actions from a participant.
The symbol µ denotes the recursion binder.

The optimisation pictured in Figure 1 is handled simply by reordering “send to C”
and “receive from A” actions. The type of optimised interactions TB

opt is said to be an
asynchronous subtype [21, 22] of the type TB, and can safely replace it within the protocol
while maintaining deadlock-freedom.

▶ Note 1. Throughout the paper, we hyperlink the related Coq sources to the symbol .
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We provide the first Coq [38] library (https://github.com/ekiciburak/sessionTreeST/
tree/itp2024) that handles the internal dynamics of asynchronous subtyping for MPTS
[22] and proves the optimisation summarised in Figure 1 and four more examples from the
literature: Examples 3.17 3.19 and 4.14 in [22] . Notice that no decidable sound subtyping
algorithm in the literature [14, 5, 10, 2] can verify examples all together (see § 6).

We then prove a completeness theorem of subtyping with respect to its negation. The
Coq proof of completeness involves reorganising the subtyping relation by reformulating the
underlying refinement relation and its negation, proposed by Ghilezan et al. [21, 22] .

In the reformulation of refinement, we accommodate the possibility of including the empty
prefix ε in term syntax, leading to the definition of the relation with two fewer rules than
[22, Definition 3.3] (see Figure 5). This simplification facilitates the proof of an inversion
lemma, as elaborated in Remark 6 and Lemma 7.

Regarding the reformulation of the refinement negation, we reduce the number of rules
from eighteen in [22, Fig. 6] to eight, thereby rendering the remaining ten rules provable.
This is done by introducing a new sort of term prefixing (C(p) – Lemma 12) and using it to
modify some of the original rules in order to adopt a better structural shape of rules and
become more readily applicable within proofs. Further details are covered in Lemmata 17,
14, 18 and 20, and in Remark 19.

The accompanying Coq library can be used to certify additional asynchronous protocol
optimisations in MPST. This entails defining both the original and optimised protocols, then
applying either of the two main refinement rules (see Figure 5) to show that the latter is a
subtype of the former. In addition, provided that the subtyping is obtained by the use of
coinductive structures in Coq, applications dealing with infinite trees could also leverage the
structures and lemmata present in the library.

2 Session Trees and Subtyping

The subtyping of session types [16, 18] plays a crucial role in process calculi, as a process that
instantiates a session type T can securely substitute another process inhabiting a supertype T′

of T. Such substitution contributes to the development of more optimised protocols [21, 22].
Each closed asynchronous session type T is associated with a corresponding session tree

T = T (T). Refer to [20, Def. A.14] for the definition of the translation function T : T → T.
Therefore, the definition of a subtyping relation could be captured by the use of session trees.
With this perspective, in this work we introduce a Coq library that implements asynchronous
session trees together with various property proofs.

A session tree is coinductively defined with the following syntax that reflects in Coq in
the way listed alongside:

T ::=
| end
| &i∈I p?ℓi(Si).Ti

| ⊕i∈I
p!ℓi(Si).Ti

CoInductive st: Type ≜
| st_end : st
| st_receive: participant → list (label*sort*st) → st
| st_send : participant → list (label*sort*st) → st.

Notation "p ’?’’ l" ≜ (st_receive p l).
Notation "p ’!’ l" ≜ (st_send p l).

The constructor &i∈I
p?ℓi(Si).Ti denotes branching (or external choice) interactions

and represents a set of messages towards participant p with labels ℓi, payload sorts Si

and continuations Ti. While ⊕i∈I
p!ℓi(Si).Ti stands for selection (or internal choice) and

specifies a set of messages from p with labels ℓi, payload sorts Si and continuations Ti (for
some i ∈ I); the constructor end signals termination of interactions.
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In both the code alongside and the rest of the paper, we use the notation “?’” and
st_receive constructor interchangeably, as well as the notation ‘!’ and st_send constructor.
We exclude the symbols & and ⊕ but maintain their functionality using Coq lists. That is,
labels, sorts and continuations for selections and branchings are represented in Coq by lists
of label-sort-continuation triples. See the constructors st_receive and st_send in the above
code snippet.

The objective in checking “whether a session tree T qualifies a subtype (subtree) of
another tree T′ (T ⩽ T′)” is twofold:
1. the decomposition of both trees into sets of single-input-single-output (SISO) trees, and
2. checking whether it is possible to find SISO trees W, from the decomposition of considered

subtree, and W′, from the decomposition of considered supertree, such that W is a
refinement of W′. That is, there exist certain ways to reorder the actions in W so that it
matches the structure of actions in W′. See Definition 5 for further details on refinement.

2.1 SI, SO and SISO Trees
In [22], the decomposition of a given session tree T into a set of SISO trees is not accomplished
all at once; instead, it involves intermediate steps. Initially, T is partitioned into a set of
trees where each tree is characterised by singleton choices in their selections (referred to as
single-output (SO) trees). Subsequently, for each individual SO tree, a further set of trees
is formed where the members exhibit singleton branchings (referred to as single-input (SI )
trees). Therefore, consecutively applying SO and SI decompositions (in any order) to a
session tree eventually yields in a set of SISO trees.

In what follows, we coinductively present SO (denoted U), SI (denoted V) and SISO
(denoted W) trees. In SO trees, there is a list of branchings but a single selection while SI
trees contain a list of selections with a single branching

U ::= end || &
i∈I

p?ℓi(Si).Ui || p!ℓ(S).U V ::= end || p?ℓ(S).V || ⊕
i∈I

p!ℓi(Si).Vi

and SISO trees are made of single branching and single selection :

W ::=
| end
| p?ℓ(S).W
| p!ℓ(S).W

Inductive singletonI (R: st → Prop): st → Prop ≜
| ends : singletonI R st_end
| sends: ∀ p l s w, R w → singletonI R (st_send p [(l,s,w)])
| recvs: ∀ p l s w, R w → singletonI R (st_receive p [(l,s,w)]).

Definition singleton s ≜ paco1 (singletonI) bot1 s.
Class siso: Type ≜ mk_siso { und: st; sprop: singleton und }.

Formalisation of SISO trees in Coq initiates with the declaration of a Prop valued inductive
predicate singletonI which serves for verifying “whether the selections and branchings within
a given session tree are singletons”. We then leverage the “greatest fixed point of the least
fixed point” technique facilitated by the paco library [29], and generate the type singleton
as the greatest fixed point of singletonI; so that the latter is applicable to infinite session
trees. We then formulate SISO trees as a sigma type of a session tree und such that und
respects singleton.

This technique has been employed by Zakowski et al. [43] to define weak bisimilarity on
streams, and Tirore et al. [40] to define (sound and complete) projection of global session
types onto local types.
▶ Remark 2. The use of paco library is beneficial – in many constructions presented through
our the paper – since it allows for coinductive reasoning parametrised by “accumulated
knowledge” so that proof goals could be closed upon encountering something that is already in

https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/siso.v#L10-L29
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the knowledge set through out coinductive folding steps. Furthermore, paco utilises semantic
guardedness rather than relying on syntactic guard checks, which can be problematic and
compromised even through straightforward setoid rewrites.

We bypass the intermediate SO and SI decompositions and directly build a coinductive
relation that inhabits SISO tree and session tree pairs such that former is obtained by
decomposing the latter. This approach is slightly different from the one outlined in § 3.4 of
[22], but it better aligns with Coq formalisation.

▶ Definition 3. The SISO decomposition of a session tree is governed by the coinductive
relation ◁∼∼∼ with the following rules:

∀i ∈ I ∃k ∈ I ℓ = ℓk W ◁∼∼∼ Tk

p?ℓ(S).W ◁∼∼∼ &i∈I
p?ℓi(Si).Ti

[siso-rcv]
∀i ∈ I ∃k ∈ I ℓ = ℓk W ◁∼∼∼ Tk

p!ℓ(S).W ◁∼∼∼ ⊕i∈I
p!ℓi(Si).Ti

[siso-snd]

end ◁∼∼∼ end
[siso-end]

for some finite set of indices I.

The relation ◁∼∼∼ provided in Definition 3 is coinductively implemented in Coq under
the name st2sisoC, as shown below. This implementation operates at the level of session
trees instead of SISO trees, to avoid the need for singleton checks at each step of rule
application. However, we ensure that the relation is instantiated with the underlying und of
a siso tree whenever it is called. Refer to the formal subtyping definition, subtype, outlined
in Definition 10, for instance. We maintain this methodology until § 4.2, where we establish
the negation of the refinement relation, nRefinement, directly over siso trees.

Inductive st2siso (R: st → st → Prop): st → st → Prop ≜
| st2siso_end: st2siso R st_end st_end
| st2siso_rcv: ∀ l s x xs p, R x (pathsel l xs) → st2siso R (p ?’ [(l,s,x)]) (st_receive p xs)
| st2siso_snd: ∀ l s x xs p, R x (pathsel l xs) → st2siso R (p ! [(l,s,x)]) (st_send p xs) .

Definition st2sisoC s1 s2 ≜ paco2 (st2siso) bot2 s1 s2.

The function pathsel selects the path among the list of selections and branchings that
matches the label of the current SISO action.

Fixpoint pathsel (u: label) (l: list (label*sort*st)): st ≜
match l with

| (lbl,s,x)::xs ⇒ if eqb u lbl then x else pathsel u xs
| nil ⇒ st_end

end.

It returns Tk under the condition ℓ = ℓk within the context of the rules [siso-rcv] and [siso-snd].

2.2 SISO Tree Refinement
The other key component of checking whether a given session tree is a subtree (or supertree)
of another is the support for action reordering. Conceptually, the subtree has the capability
to “anticipate” certain input/output actions that are expected to take place in the supertree.
This anticipation is captured by action reordering [22, Def. 3.2], namely executing actions
earlier or later than their prescribed occurrence.

▶ Definition 4. ( , ). To elucidate action reorderings, a pair of input/output sequences
are recursively defined below

A(p) ::= ε || q?ℓ(S) || q?ℓ(S).A(p)

B(p) ::= ε || r?ℓ(S) || q!ℓ(S) || r?ℓ(S).B(p) || q!ℓ(S).B(p) (q ̸=p)
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The A(p) prefix refers to a finite sequence of actions containing all possible receives
excluding those from the participant p. B(p), on the other hand, indicates a finite sequence
that involves all receives and all sends but not those towards participant p.

▶ Definition 5. The refinement relation ≲ over SISO trees is coinductively defined with:

S′ ≤ : S W ≲ A(p).W′ act(W) = act(A(p).W′)

p?ℓ(S).W ≲ A(p).p?ℓ(S′).W′
[ref-A]

S ≤ : S′ W ≲ B(p).W′ act(W) = act(B(p).W′)

p!ℓ(S).W ≲ B(p).p!ℓ(S′).W′
[ref-B]

end ≲ end
[ref-end]

The symbol ≤ : denotes the least reflexive relation over payload sorts (i.e., nat ≤ : int)
while the function act coinductively accumulates the actions, participant-dir pairs where
dir ∈ {!, ?}, of a given SISO tree into a stream (or a colist/coseq). Action equality checks
serve the purpose of ensuring that rule applications neither introduce nor remove actions.

The rule [ref-B] in general captures the reordering backed by B(p) prefixes. It allows for
the reordering, a finite number of times, of an output directed towards a participant p with
any input and output combinations, excluding other outputs directed towards the participant
p. While the rule [ref-A] anticipates the reordering of an input from a participant p with any
input combination but not those from p.
▶ Remark 6. As opposed to the original definition of refinement relation given in [22, Def.
3.2], we allow prefixes A(p) and B(p) to include the empty prefix ε. This deviation indeed
introduces an important flexibility in the framework. By permitting this, we are essentially
acknowledging the possibility of contexts without any actions, which can be crucial for certain
proofs and reasoning processes. It particularly allows for the proof of an inversion lemma,
which asserts that SISO trees with action dis-equality cannot refine each other. This is one
of the key results of our Coq formalisation.

▶ Lemma 7. ∀W W′, act(W) ̸= act(W′) =⇒ ¬(W ≲ W′).

This lemma is a significant result, as it establishes a fundamental property regarding
the relationship between terms with action mismatch. Note that the action the dis-equality
definition here is obtained by negating the statement in Definition 15.

Below is a representation of the refinement relation ≲ in a Coq implementation where
the rule [ref-B] is referred to as ref_b while [ref-A] is named ref_a.

Inductive dir: Type ≜ rcv: dir | snd: dir.
CoFixpoint act (t: st): coseq (participant * dir) ≜

match t with
| st_receive p [(l,s,t’)] ⇒ cocons (p, rcv) (act t’)
| st_send p [(l,s,t’)] ⇒ cocons (p, snd) (act t’)
| _ ⇒ conil

end.
Inductive refinementR (R: st → st → Prop): st → st → Prop ≜

| ref_a : ∀ w w’ p l s s’ a n, subsort s s’ → seq w (merge_ap_contn p a w’ n) →
( ∃ L1, ∃ L2, coseqInLC (act w) L1 ∧ coseqInLC (act (merge_ap_contn p a w’ n)) L2 ∧

coseqInR L1 (act w) ∧ coseqInR L2 (act (merge_ap_contn p a w’ n)) ∧
(∀ x, List.In x L1 ↔ List.In x L2) ) →

refinementR R (st_receive p [(l,s,w)]) (merge_ap_contn p a (st_receive p [(l,s’,w’)]) n)
| ref_b : ∀ w w’ p l s s’ b n, subsort s s’ → seq w (merge_bp_contn p b w’ n) →

( ∃ L1, ∃ L2, coseqInLC (act w) L1 ∧ coseqInLC (act (merge_bp_contn p b w’ n)) L2 ∧
coseqInR L1 (act w) ∧ coseqInR L2 (act (merge_bp_contn p b w’ n)) ∧
(∀ x, List.In x L1 ↔ List.In x L2) ) →

refinementR R (st_send p [(l,s,w)]) (merge_bp_contn p b (st_send p [(l,s’,w’)]) n)
| ref_end: refinementR seq st_end st_end.

Definition refinement: st → st → Prop ≜ fun s1 s2 ⇒ paco2 refinementR bot2 s1 s2.

https://github.com/ekiciburak/sessionTreeST/blob/itp2024/subtyping/refinement.v#L9-L32
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reorderingfacts.v#L3427
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The function merge_bp_contn takes a participant p, an instance b of B(p), a natural number n
and a session tree w. It repeats the action b, n times, and prefixes it to the tree w. There
are analogous constructs for A(p) type of prefixes which we omit elucidating here. The code
blocks under the existential quantifiers ∃ validate action equalities according to Definition 8.

2.3 Action Equalities
One key point in the context of the refinement relation is to decide the equalities over streams
of actions modulo action reordering. There, the focus lies not on assessing structural equality
between streams, but rather on discerning the similarity of their constituent elements. A
potential strategy to achieve this is having a coinductive definition of stream membership,
and checking if a pair of streams have matching members .

Inductive coseqInC {A: Type} (R: A → coseq A → Prop): A → coseq A → Prop ≜
| CoInSplit1A x xs {ys}: xs = cocons x ys → coseqInC R x xs
| CoInSplit2A x xs y ys: xs = cocons y ys → x ̸= y → R x ys → coseqInC R x xs.

Definition coseqCoIn {A} ≜ paco2 (@coseqInC A) bot2.

This coinductive approach turns out to be unsound as it allows for proving the existence of a
‘b’ within the stream of ‘a’s where a ̸= b.

CoFixpoint W {A: Type} (a: A): coseq A ≜ cocons a (W a).
Lemma unsound_coseqCoIn: ∀ A (a b: A), a ̸= b → coseqCoIn b (W a).

We proceed by assuming that any stream of actions adheres to a reasonable notion of
finiteness, meaning it comprises only a finite set of distinct actions. This assumption
naturally aligns with the framework of multiparty session types. Even in scenarios where
sessions involve an infinite number of interactions, these interactions must occur among a
finite number of participants [21, 22], leading to finitely many distinct actions. Consequently,
it becomes feasible to state that a pair of streams share identical members if and only if
the list of (distinct) actions is contained within the stream of actions. We do not explicitly
state this as an axiom in Coq, rather massage it into the action equality check formulated in
Definition 8.

▶ Definition 8. For a pair of SISO trees W and W′, we define action equality as follows:

∃l1 l2, l1 ∈I act(W) ∧ act(W) ∈C l1 ∧ l2 ∈I act(W′) ∧ act(W′) ∈C l2 ∧
(∀x, mem x l1 ⇐⇒ mem x l2)

where the relation ∈I inductively traverses a given action list and checks if every list member
is in the stream, while ∈C coinductively folds a provided stream of actions, and checks if
every stream member is in the list. These relations are formally defined employing the
following constructors:

nil ∈I w
[i-nil]

x ∈ w xs ∈I w

(x :: xs) ∈I w
[i-cons]

conil ∈C l
[c-nil]

mem x l xs ∈C l

(cocons x xs) ∈C l
[c-cons]

The symbol ∈ represents the inductive stream membership check, associated with the predicate
coseqIn in the following code snippet, whereas mem denotes the typical list membership check.

▶ Lemma 9. Given W := p!ℓ1(S1).p?ℓ2(S2).q!ℓ3(S3).W and l := p? :: p! :: q! :: nil, we
have (1) act(W) ∈C l and (2) l ∈I act(W).

Proof. To close the first item, we apply the constructor [c-cons] three times making sure that
p!, p? and q! are in l, and then employ the coinduction hypothesis. The proof of the second
item proceeds by applying the constructor [i-cons] three times, ensuring that p?, p!, and q!
are in act(W). Finally, one more application of [i-nil] suffices to demonstrate the goal. ◀
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We formalise the relation ∈C (resp., ∈I) in Coq, denoted as coseqInLC (resp., coseqInR) .

Inductive coseqIn: (participant * dir) → coseq (participant * dir) → Prop ≜
| CoInSplit1 x xs y ys: xs = cocons y ys → x = y → coseqIn x xs
| CoInSplit2 x xs y ys: xs = cocons y ys → x ̸= y → coseqIn x ys → coseqIn x xs.

Inductive coseqInL (R: coseq (participant * dir) → list (participant * dir) → Prop):
coseq (participant * dir) → list (participant * dir) → Prop ≜

| c_nil : ∀ ys, coseqInL R conil ys
| c_incl: ∀ x xs ys, List.In x ys → R xs ys → coseqInL R (cocons x xs) ys.

Definition coseqInLC ≜ fun s1 s2 ⇒ paco2 (coseqInL) bot2 s1 s2.
Inductive coseqInR: list (participant * dir) → coseq (participant * dir) → Prop ≜

| i_nil : ∀ ys, coseqInR nil ys
| i_incl: ∀ x xs ys, coseqIn x ys → coseqInR xs ys → coseqInR (x::xs) ys.

This strategy remains effective for proving subtyping examples discussed in § 3.1 as it allows
us to store actions of specifically given trees into finite lists and perform action equality
checks via list membership comparisons. However, it becomes cumbersome when aiming
to prove completeness of subtyping. This is because it is not useful for proving general
properties about tree shapes with prefixes; see § 4.1, especially Lemmata 12 and 13.

3 Asynchronous Subtyping

▶ Definition 10. The asynchronous subtyping relation ⩽ over session trees is defined as:

∃
{

(Wi, W′
i) | i ∈ I

}
Wi ◁∼∼∼ T W′

i ◁∼∼∼ T′ Wi ≲ W′
i

T ⩽ T′

for some finite set of indices I.

We revisit the original subtyping definition in [22, Def. 3.13] such that it relies on the direct
decomposition into SISO trees as in Definition 3. The intuitive idea is then to plug in a list
of SISO tree pairs (Wi, W′

i), where each Wi is part of the SISO decomposition of T, similarly
each W′

i is part of the decomposition of T′, and check whether Wi refines W′
i.

Definition subtype (T T’: st): Prop ≜ ∃ (l: list (siso*siso)), decomposeL l T T’ ∧ listSisoPRef l.

The function decomposeL verifies if the first projection of each pair in the list l is a SISO tree
taken from decomposing T, and if the second projections are from T′. While, the function
listSisoPRef is used to conduct refinement checks employing the refinement relation.

3.1 Subtyping Example
An instance of optimisation managed by asynchronous subtyping arises in the protocol
for distributed batch processing (Example 4.14 in [22]), where a particular segment of the
protocol is replaced with another. We have this subtyping proof formalised in Coq, not
at the level of session types but their induced session trees . In consideration of space
limitations, we omit this proof and instead introduce another optimisation case addressed
by subtyping (Example 3.19 in [22]), which is more involved as it contains coinductive but
non-cyclic derivations. Consider the following session types:

T = µt1. & p?
{

ℓ1 (S).p!ℓ3(S).p!ℓ3(S).p!ℓ3(S).t1

ℓ2 (S).µt2.p!ℓ3(S).t2
T′ = µt1. & p?

{
ℓ1 (S).p!ℓ3(S).t1
ℓ2 (S).µt2.p!ℓ3(S).t2

Figure 2 Example session types with T′ is a subtype of T from [22, Example 3.19].

https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reordering.v#L51-L83
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/subtyping/subtyping.v#L11-L23
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/examples/Example4_14.v


B. Ekici and N. Yoshida 13:9

We translate the types T and T′ into respective session trees TB and TB’ manually, and
then develop them in Coq. The operational aspect of the recursion binder µ is addressed by
Coq’s CoFixpoint vernacular as session trees are coinductively defined.

CoFixpoint TS : st ≜ "p"![("l3",I,TS)].
CoFixpoint TB : st ≜ "p"?’[("l1",I,"p"![("l3",I,"p"![("l3",I,"p"![("l3",I,TB)])])]); ("l2",I,TS)].
CoFixpoint TB’: st ≜ "p"?’[("l1",I,"p"! [("l3",I,TB’)]); ("l2",I,TS)].

Before proceeding with the proof steps, we introduce some tree terms and prefixes that
will be used later within the proof.

CoFixpoint WB : st ≜ "p"?’[("l1",I,"p"![("l3",I,"p"![("l3",I,"p"![("l3",I,WB)])])])].
CoFixpoint WB’: st ≜ "p"?’[("l1",I,"p"![("l3",I,WB’)])].
Definition pi1: Dp ≜ "p"?’ "l1" I ("p!" "l3" I).
Definition pi3: Dp ≜ "p"?’ "l1" I ("p!" "l3" I ("p!" "l3" I ("p!" "l3" I))).
CoFixpoint WD: st ≜ "p"!’[("l3",I,WD)].
Definition WA: st ≜ "p"?’[("l2",I,WD)].

The type Dp is inhabiting SISO style (without branching and selection) term prefixes.
To prove that TB ⩽ TB’ holds, we are supposed to
(1) show that (WB,TB), (WB’,TB’), (WA,TB) and (WA,TB’) are in st2sisoC
(2) and demonstrate that WB ≲ WB’ with (pi3)n · WA ≲ (pi1)n · WA for all naturals n. The

infix function t · W glues a prefix term t (of type Dp) to a SISO tree W, and the superscript
n denotes the repetition of the prefix n times before glueing.

The complication in refinement stated in item (2) above is due to the complex co-recursive
structure of terms TB and TB’. Intuitively, the former case covers the refinement for the outer
recursive structure while the latter is supposed to deal with the inner one.

Proof. We skip the last two cases of the item (1) and the last case of the item (2) due to
space constraints, and begin by proving that pairs (WB,TB) and (WB’,TB’) are in st2sisoC. To
address the former case, we apply the rule st2siso_rcv once and st2siso_snd three times.
We then employ the coinductive hypothesis that saves the initial proof state. The proof of
the second case shares commonalities. It can be effectively handled by first applying the
st2siso_rcv rule followed by st2siso_snd, and then invoking the coinductive hypothesis.

Proving that WB ≲ WB’ holds however presents a more intriguing scenario. For that, a
pen-and-paper proof is structured in Figure 3 (read: bottom left → top left generalised by−−−−−−−−−→
bottom right → top right). Steps on the left are straightforward refinement rule applications,

WB ≲ p?ℓ1(S).p?ℓ1(S).WB′

p!ℓ3(S).WB ≲ p?ℓ1(S).WB′ [ref-B]

(p!ℓ3(S))2.WB ≲ WB′
[ref-B]

(p!ℓ3(S))3.WB ≲ p!ℓ3(S).WB′
[ref-B]

WB ≲ WB′ [ref-A]

WB ≲ (p?ℓ1(S1).p?ℓ1(S))n+1.WB′

p!ℓ3(S).WB ≲ (p?ℓ1(S).p?ℓ1(S1))n.p?ℓ1(S).WB′ [ref-B]

(p!ℓ3(S))2.WB ≲ (p?ℓ1(S).p?ℓ1(S))n.WB′
[ref-B]

(p!ℓ3(S))3.WB ≲ (p?ℓ1(S).p?ℓ1(S))n.p!ℓ3(S).WB′
[ref-B]

WB ≲ (p?ℓ1(S).p?ℓ1(S))n.WB′ [ref-A]

Figure 3 Proof steps of WB ≲ WB′.
(
Source: [22, Example 3.19]

)
where the topmost derivation is complemented by the helper steps on the right for every
natural number n. These auxiliary steps can be proven by conducting a case analysis on n,
supported by a “stronger” coinduction hypothesis universally quantifying over n.
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In a Coq implementation, however, we take a slightly different approach. We consider
merging WB’ with a single prefix p?ℓ1(S) and ensure that this happens an even number of
times. Below lemma aligns with the bottommost line of the helper steps in Figure 3 .

Lemma WBRef: ∀ n, ev n → refinemement WB (merge_bp_contn "p" (bp_receivea "p" "l1" sint) WB’ n).

The term bp_receivea in the lemma statement corresponds to the r?ℓ(S).B(p) constructor
of B(p), enabling the prefixing of a receive action from any participant to a given session
tree. Consequently, in the statement, the right-hand side of the refinement represents a SISO
tree where the action p?’ is executed an even number (n) of times before being succeeded by
actions from WB’.

To develop this lemma in Coq, we begin by storing the proof state within a coinduction
hypothesis CIH, universally quantified over n. We then conduct a case analysis based on
whether n is even. This results in two subgoals: one where n = 0 and another where n ⩾ 0 is
an even number. The former case involves demonstrating the validity of WB ≲ WB’ is omitted
here due to space constraints. We proceed with the latter case, which is outlined below:

CIH : ∀ n : nat, ev n → r WB (merge_bp_contn "p" (bp_receivea "p" "l1" (I)) WB’ n)
H : ev n
______________________________________(1/1)
paco2 refinementR r WB (merge_bp_contn "p" (bp_receivea "p" "l1" (I)) WB’ n.+2)

▶ Remark 11. To center the attention on actions and continuations, we will no longer use
list notation, labels, or sorts in the rest of the proof text. This is because both sides of ≲ are
made of streamline of actions (nested singleton lists), where all elements (labels and sorts)
align. Just that we employ a dot to delineate prefixes from the infinite terms.

Unfolding WB and applying the rule ref_a transforms the goal into p!p!p!.WB ≲

(p?’)n+1.WB’. This term corresponds to the one given in second-to-last line on the right-hand
side of the proof steps in Figure 3. Note that the rule application permits the discharge of
the leftmost receive prefixes on both sides.

After unfolding WB’ inside the goal, it takes the form p!p!p!.WB ≲ (p?’)n+2p!.WB’). We
then apply ref_b with n ≜ n+2, resulting in p!p!.WB ≲ (p?’)n+2.WB’. Notice that this applic-
ation effectively shifts the send action on the right to the leftmost position through reordering
and cancels the leftmost send prefixes.

We keep unfolding WB’ followed by the application of ref_b with n ≜ n+3 and n ≜ n+4
respectively and obtain the goal in the following shape: WB ≲ (p?’)n+4.WB’ which could easily
be closed by instantiating the coinduction hypothesis CIH with n ≜ n+4. Note also that we
separately prove the action equalities after every single application of rules ref_a and ref_b
employing the idea in Definition 8. ◀

4 Subtyping Negation

The negation of refinement relation ̸≲ over SISO trees structurally displays the shape of trees
which cannot refine each other. It serves as a framework for the complement of subtyping
within the context of session types thus session trees. Originally comprised of eighteen
inductively stated rules as outlined in [22, Fig. 6], we are able to shrink the set by eliminating
ten rules, and present the new set of rules in Figure 4. Completeness with respect to
refinement is elaborated in § 5. Before delving into the specifics of the new set of rules, we
need to revisit the way action equalities are handled.

https://github.com/ekiciburak/sessionTreeST/blob/itp2024/examples/Example3_19.v#L557
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4.1 Action Equalities, Refinement and Subtyping Revisited
We revisit the rationale behind membership and action equality checks outlined in § 2.3,
and restate refinement and subtyping relations accordingly. We establish an inductive
membership relation over streams of actions which is crucial for deriving useful lemmas
regarding the structure of terms containing specific actions. For instance, Lemma 12 and 13
cannot be proven unless the membership check ∈ is inductively defined. This is because it
is impossible to infer term shapes from a coinductively defined membership relation. This
can only be achieved through the induction schema for an inductively defined membership
relation. These lemmata are key in proving completeness of refinement thus subtyping with
respect to negations.

▶ Lemma 12. ∀p W, ∃C(p) ℓ S W′, p? ∈ act(W) =⇒ W = C(p).p?ℓ(S).W′.

where C(p) is a sort of prefixing

C(p) ::= ε || r!ℓ(S) || q?ℓ(S) || r!ℓ(S).C(p) || q?ℓ(S).C(p) (q ̸=p)

that allows all sends alongside all receives but not those from a particular participant p.

▶ Lemma 13. ∀p W, ∃B(p) ℓ S W′, p! ∈ act(W) =⇒ W = B(p).p!ℓ(S).W′.

Notice that C(p) sort of prefixing amounts to the A(p) sort in the absence of send actions.

▶ Lemma 14. ∀p C(p) W, p! /∈ C(p) =⇒
(
∃A(p), C(p).W = A(p).W

)
.

▶ Definition 15. For a pair of SISO trees W and W′, we define action equality as follows:

∀a, a ∈ act(W) ⇐⇒ a ∈ act(W′).

Definition act_eq (t t’: st) ≜ ∀ a, coseqIn a (act t) ↔ coseqIn a (act t’).
Definition act_neq (t t’: st) ≜ ∃ a, coseqIn a (act t) ∧ (coseqIn a (act t’) → False) ∨

coseqIn a (act t’) ∧ (coseqIn a (act t) → False).

We redefine the refinement relation by incorporating the action equality check described
in Definition 15 . This adjustment enables us to establish its completeness in regard to
negations as discussed in § 4.2 and § 5.

Inductive refinementR2 (seq: st → st → Prop): st → st → Prop ≜
| ref2_a: ∀ w w’ p l s s’ a n,

subsort s’ s → seq w (merge_ap_contn p a w’ n) →
act_eq w (merge_ap_contn p a w’ n) →
refinementR2 seq (st_receive p [(l,s,w)]) (merge_ap_contn p a (st_receive p [(l,s’,w’)]) n)

| ref2_b: ∀ w w’ p l s s’ b n,
subsort s s’ → seq w (merge_bp_contn p b w’ n) →
act_eq w (merge_bp_contn p b w’ n) →
refinementR2 seq (st_send p [(l,s,w)]) (merge_bp_contn p b (st_send p [(l,s’,w’)]) n)

| ref2_end: refinementR2 seq st_end st_end.
Definition refinement2: st → st → Prop ≜ fun s1 s2 ⇒ paco2 refinementR2 bot2 s1 s2.
Notation "x ’~<’ y" ≜ (refinement2 x y) (at level 50, left associativity).

The subyping relation therefore takes the following shape :

Definition subtype2 (T T’: st): Prop ≜ ∃ (l: list (siso*siso)), decomposeL l T T’ ∧ listSisoPRef2 l.

The sole difference between the functions listSisoPRef and listSisoPRef2 is that the former
employs the refinement relation while the latter makes use of the refinement2 relation.
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https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reorderingfacts.v#L832-L833
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reordering.v#L374
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reorderingfacts.v#L898-L899
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reordering.v#L463-L465
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reordering.v#L85
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/subtyping/refinement.v#L47-L60
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/subtyping/subtyping.v#L31
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▶ Remark 16. In Coq, there is no way to bridge the gap between the action equality checks
in Definitions 8 and 15. One potential avenue involves assuming that

∀W l, act(W) ∈C l =⇒ act(W) ∈I
C l (1)

holds for the inductively defined version ∈I
C of ∈C ; and deducing that the statement in

Definition 8 implies that in Definition 15. However, this approach would lead to inconsistency
in Coq. It is because the predicate ∈I

C forces its first argument to be finite whereas ∈C can
hold for some infinite stream. Therefore, implication 1 cannot be an instance of the coinductive
extensionality (cext) principle. An example of the affirmative case is presented in [1, Appendix
B], where cext effectively establishes the Leibniz equality from the bisimulation =Nco over
conats. This is because conats modulo =Nco is isomorphic to N + 1.

In our current context, such an isomorphism is not available. We are dealing with
non-structural equality over streams of actions. Considering this, we decided to employ a pair
of refinement (thus subtyping) relations that solely vary in their action equality checks. It is
evident that they essentially serve the same purpose provided the finiteness assumption
that “in a session with a potentially infinite number of interactions, there can only exist a
finite number of distinct actions”.

Note also that in the rest of the paper, we overload the symbol ≲ to denote the refinement
relation (refinement2) based on the check given in Definition 15.

4.2 Negation of Refinement
The negation of the refinement relation is inductively defined as a counterpart of the
coinductively given refinement relation. We revisit the set of rules originally stated in [22,
Fig. 6] and list them in Figure 4 . The rule [n-act] states that if a pair of trees do not have

act(W) ̸= act(W′)
W ̸≲ W′ [n-act]

q! ∈ C(p)

p?ℓ(S).W ̸≲ C(p).p?ℓ′(S′).W′
[n-i-o-2]

ℓ ̸= ℓ′

p?ℓ(S).W ̸≲ A(p).p?ℓ′(S′).W′
[n-A-ℓ]

S′ ̸≤ : S

p?ℓ(S).W ̸≲ A(p).p?ℓ(S′).W′
[n-A-S]

S′ ≤ : S W ̸≲ A(p).W′

p?ℓ(S).W ̸≲ A(p).p?ℓ(S′).W′
[n-A-W]

ℓ ̸= ℓ′

p!ℓ(S).W ̸≲ B(p).p!ℓ′(S′).W′
[n-B-ℓ]

S ̸≤ : S′

p!ℓ(S).W ̸≲ B(p).p!ℓ(S′).W′
[n-B-S]

S ≤ : S′ W ̸≲ B(p).W′

p!ℓ(S).W ̸≲ B(p).p!ℓ(S′).W′
[n-B-W]

Figure 4 The negation of the refinement relation ̸≲ over SISO trees.

the same set of actions (in terms of Definition 15) then they cannot refine each other. We
managed prove in Coq that such kind of terms cannot be in the refinement relation thus
they must be in the negation of the refinement; see Lemma 7. The rule [n-act] in fact proves
four rules given in the original definition.

▶ Lemma 17. ∀p ℓ S W W′,
(1) p! /∈ act(W′) =⇒ p!ℓ(S).W ̸≲ W′ (2) p? /∈ act(W′) =⇒ p?ℓ(S).W ̸≲ W′

(3) p! /∈ act(W) =⇒ W ̸≲ p!ℓ(S).W′ (4) p? /∈ act(W) =⇒ W ̸≲ p?ℓ(S).W′

The rule [n-i-o-2] states that within a pair of terms, if the left term starts with a receive
action from a fixed participant p, it cannot refine the right term if the latter contains an
arbitrary send action occurring before a receive action from the participant p. This restriction
arises from the inability to reorder the actions of the right term such that a p? action moves
to the beginning and becomes the leftmost action.

Another crucial aspect of this rule is the renovation of its shape, compared to the one in
the original definition:

https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nrefinement.v#L14-L43
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nrefinement.v#L77-L147
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original definition reformulated shape

p?ℓ(S).W ̸≲ A(p).q!ℓ′(S′).W′ =⇒
q! ∈ C(p)

p?ℓ(S).W ̸≲ C(p).p?ℓ′(S′).W′

This renovation is advantageous because the rule now adopts a similar structural shape to
the other rules. It becomes more readily applicable since the right-hand side exhibits the
general structural form of terms with receive actions. This connection is shown in Lemma 12.
Also, Lemma 14 becomes applicable when the rule premise fails to be satisfied. Moreover, it
makes one of the rules in the original definition ([n-i-o-1]) provable with the help of [n-act].

▶ Lemma 18 ([n-i-o-1]). ∀p q ℓ ℓ′ S S′ W W′, p?ℓ(S).W ̸≲ q!ℓ′(S′).W′.

The last six rules ensure subtle cases involving asynchronous reorderings. The rule [n-A-ℓ]

claims that terms with mismatching labels cannot refine each other even under A(p) kind of
reordering; [n-A-§] and [n-A-W] are variants where sorts and continuations mismatch. In the
last line, we have similar kind of rules this time for B(p) style reorderings.

▶ Remark 19. We can prove six more rules from the original definition of negation relation
simply by allowing inductive prefixes A(p) and B(p) to contain the empty prefix ε. We suffice
to state in Lemma 20 only those related with [n-A-ℓ] and [n-B-ℓ].

▶ Lemma 20. ∀p ℓ ℓ′ S S′ W W′,

(1) ℓ ̸= ℓ′ =⇒ p?ℓ(S).W ̸≲ p?ℓ′(S′).W′ (2) ℓ ̸= ℓ′ =⇒ p!ℓ(S).W ̸≲ p!ℓ′(S′).W′

The negation relation is represented by a standard inductive type called nRefinement.

Inductive nRefinement: siso → siso → Prop ≜
| n_act : ∀ w w’, act_neq (@und w) (@und w’) → nRefinement w w’
| n_i_o_2: ∀ w w’ p l l’ s s’ c P Q, isInCp p c = true →

nRefinement (mk_siso (st_receive p [(l,s,(@und w))]) P)
(mk_siso (merge_cp_cont p c (st_receive p [(l’,s’,(@und w’))])) Q)

| n_a_l : ∀ w w’ p l l’ s s’ a n P Q, l ̸= l’ →
nRefinement (mk_siso (p?’[(l,s,(@und w))]) P)

(mk_siso (merge_ap_contn p a (p?’[(l’,s’,(@und w’))]) n) Q)
| n_a_s : ∀ w w’ p l s s’ a n P Q, nsubsort s’ s →

nRefinement (mk_siso (st_receive p [(l,s,(@und w))]) P)
(mk_siso (merge_ap_contn p a (st_receive p [(l,s’,(@und w’))]) n) Q)

| n_a_w : ∀ w w’ p l s s’ a n P Q R, subsort s’ s →
nRefinement w (mk_siso (merge_ap_contn p a (@und w’) n) P) →
nRefinement (mk_siso (st_receive p [(l,s,(@und w))]) Q)

(mk_siso (merge_ap_contn p a (st_receive p [(l,s’,(@und w’))]) n) R)
| n_b_s : ∀ w w’ p l s s’ b n P Q, nsubsort s s’ →

nRefinement (mk_siso (st_send p [(l,s,(@und w))]) P)
(mk_siso (merge_bp_contn p b (st_send p [(l,s’,(@und w’))]) n) Q)

| ...

The function merge_cp_cont takes a participant p, an instance c of C(p) and a session tree w
and prefixes the actions of c to the tree w. The relation involves constructors n_b_l and n_b_w,
omitted in the snippet, serving as alternatives to rules n_a_l and n_a_w respectively, with
B(p) sort of prefixing. We develop the relation in Coq over SISO trees, therefore the proof
obligation singleton needs to be satisfied each time a session tree is used in this context.
The parameters P, Q and R denote instances of such proofs.

With all the essential components in place, we are now equipped to define the negation
of the subtyping relation, for which the refinement negation ̸≲ serves as the basis.

▶ Definition 21 (negation of subtyping). For any pair of session trees T, T′,

T ̸⩽ T′ ≜ ∀i ∈ I ∀(Wi, W′
i)

(
Wi ◁∼∼∼ T

)
=⇒

(
W′

i ◁∼∼∼ T′) =⇒ Wi ̸≲ W′
i.
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https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nrefinement.v#L45-L46
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nrefinement.v#L149-L217
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reordering.v#L387
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nsubtyping.v#L20
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5 Completeness

Completeness serves as the primary meta property of the subtyping relation (with respect to
negation) that we successfully formulated and verified in Coq. In essence, it asserts that for
any given pair of session trees T and T′, T is either a subtype of T′ or it is linked to T′ by
the negation of the subtyping relation, leaving no room for a third possibility. The subtyping
completeness proof relies on the completeness of the revisited refinement relation (§ 4.1), as
formally delineated below.

▶ Lemma 22 (refinement completeness). For any pair of SISO trees W, W′, we have

¬
(
W ≲ W′) ⇐⇒ W ̸≲ W′.

Proof. (⇒) To establish the left-to-right implication, we initially prove ¬
(
W ̸≲ W′) =⇒

W ≲ W′, followed by deducing its contrapositive. This choice is motivated by the observation
that in Coq proofs, the presence of the negation of a coinductively defined term within the
goal context lacks utility, as its inversion fails to produce useful equations .

Lemma nRefLH: ∀ w w’, (nRefinement w w’ → False) → refinement2 (@und w) (@und w’).

The proof proceeds by storing the proof state in a coinduction hypothesis CIH following the
decomposition of w and w’ into pairs of their respective underlying session trees and proofs
confirming that they are singletons, namely into (w, Pw) and (w’, Pw’).

CIH: ∀ (w’: st) (Pw’ singleton w’) (w: st) (Pw: singleton w),
(nRefinement {|und≜ w; sprop≜ Pw|} {|und≜ w’; sprop≜ Pw’|} → False) → r w w’

CIH is parametrised by the binary relation r over session trees which signifies the accumulated
knowledge derived from coinductive foldings of the refinement relation. The rest relies on
the inversion lemma sinv over SISO trees which discusses the possible shapes they could
exhibit: a SISO tree is a streamline of actions that initiates with a send or receive action, or
it is simply an end .

Lemma sinv: ∀ w, singleton w →
(∃ p l s w’, w = st_send p [(l,s,w’)] ∧ singleton w’) ∨
(∃ p l s w’, w = st_receive p [(l,s,w’)] ∧ singleton w’) ∨ (w = st_end).

Therefore considering the potential shapes of w and w’, the left-to-right proof is made of nine
distinct cases. Here we focus on the one where both of the trees start with receive actions
such that w1 = (p?’[(l,s,w1)]) and w2 = (q?’[(l’,s’,w2)]) for some p, q, l, l’, s, s’, w1
and w2 such that w1 and w2 are indeed singleton trees.

1. We have a case distinction on the fact that p?’ ∈ act(w’). If w’ does not contain the
p?’ action, the goal is a trivial application of the rule n_act. Otherwise, we get w’ =
merge_cp_cont p c (p?’[(l1,s1,w3)]) thanks to Lemma 12 for some prefix c, label l1,
sort s1 and term w3.

We then apply a further case analysis on p! ∈ c. The positive case is a direct implic-
ation of the rule n_i_o_2. In the negative case, w’ takes the shape of merge_ap_cont p
a (p?’[(l1,s1,w3)]) for some prefix a due to Lemma 14, transforming the goal into
paco2 refinementR2 r (p?’[(l,s,w1)]) (merge_ap_cont p a (p?’[(l1,s1,w3)])) which
is solved by case distinctions described in below items 2 to 4.

2. When l = l’, s’ is a subsort of s and w1 and (merge_ap_cont p a w3) are of the same
actions, we apply the constructor ref_a with the prefix a ≜ a which entails a subgoal
upaco2 refinementR2 r w1 (merge_ap_cont p a w3).

https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nrefinement.v#L1144-L1148
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nrefinement.v#L1136-L1142
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/negations/nrefinement.v#L763
https://github.com/ekiciburak/sessionTreeST/blob/itp2024/src/reorderingfacts.v#L742-L745
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To close the subgoal, we do not further fold the coinductive relation refinementR2,
instead employ the coinduction hypothesis CIH. Then, the objective is to show that
nRefinement w1 (merge_ap_cont p a w3) → False holds under the initial assumption
nRefinement w w’ → False. This is addressed by the rule n_a_w with a ≜ a.

3. In case l = l’, s’ is a subsort of s and w1 and (merge_ap_cont p a w3) are of the different
actions, we can deduce that nRefinement w w’ thanks to the rule n_act. This contradicts
with the initial assumption of nRefinement w w’ → False and closes the case.

4. The cases where l ̸= l’ or s’ is not a subsort of s are handled by rules n_a_l and
n_a_s. ◀

Proof. (⇐) . The right-to-left implication reflects into Coq as follows.

Lemma nRefR: ∀ w w’, nRefinement w w’ → (refinement2 (@und w) (@und w’) → False).

The proof argues by structural induction over the negation relation and is made of eight cases.
Here, we present a selected case associated to the rule n_b_s. The refinement assumption
in this case is of the shape: H: refinementR2 (upaco2 refinementR2 bot2) (p![(l,s,w)])
(merge_bp_contn p b (p![(l,s’,w’)]) n) for some n, w, w’, s and s’ such that s is not a
subsort of s’. Inverting H results in proving False provided following equations.

1. p![(l,s’0,w’0)] = merge_bp_contn p b (p![(l,s’,w’)]) n for some w’0, s’0 such that w
refines w’0 and s is a subsort of s’0;

2. merge_bp_contn p b0 (p![(l,s’0,w’0)]) n0 = merge_bp_contn p b (p![(l,s’,w’)]) n
for some n0, b0, w’0, s’0 such that w refines merge_bp_contn p b0 w’0 n0, s is a subsort
of s’0 and w contains the same actions with merge_bp_contn p b0 w’0 n0.

The initial falsity is demonstrated through a case analysis over n (number of times the
prefix is repeated) and subsequent case analysis over b (the prefix) when n ⩾ 0. Each of
these cases is resolved by establishing contradictions within the context: either an equality
between a send and a receive action, a dis-equality between the same actions, or hypotheses
asserting both that s is a subsort of s’ and its negation at the same time.

The proof of the second falsity is somewhat more intricate and relies on the meqBp lemma
provided below. This lemma establishes the structural equality between merging a term once
with a single sequence of actions captured after n iterations of appending a given prefix with
itself and merging the term with the given prefix n times.

The function BpnA handles the appending of a given prefix b to itself n times and
constructs a sequence of actions from it. And, the function merge_bp_cont is a variant of
merge_bp_contn with n set to 1.

Lemma meqBp: ∀ n p b w, merge_bp_cont p (BpnA p b n) w = merge_bp_contn p b w n.

We rewrite the lemma meqBp in the hypothesis and transform it into merge_bp_cont
p (Bpn p b0 n0) (p![(l,s’0,w’0)]) = merge_bp_cont p (Bpn p b n) (p![(l,s’,w’)]). It is
now possible to infer that (p![(l,s’0,w’0)]) = (p![(l,s’,w’)]), hence s’0 = s’ and w’0
= w’, thanks to the lemma BpBpeqInv2 .

Lemma BpBpeqInv2: ∀ p b1 b2 l1 l2 s1 s2 w1 w2,
merge_bp_cont p b1 (p![(l1,s1,w1)]) = merge_bp_cont p b2 (p![(l2,s2,w2)]) →
(p![(l1,s1,w1)]) = (p![(l2,s2,w2)]).
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We can now close the goal simply by plugging s0’ = s’ in. This equation leads to inconsistency
in the proof context as we then obtain proofs of “s is not a subsort of s’” and “s is a subsort
of s’” at the same time. ◀

▶ Corollary 23 (subtyping completeness). For any pair session trees T, T′, we have

¬
(
T ⩽ T′) ⇐⇒ T ̸⩽ T′.

Proof. Follows from Lemma 22. ◀

Lemma subNeqL: ∀ T T’, (subtype2 T T’ → False) → nsubtype T T’.
Lemma subNeqR: ∀ T T’, nsubtype T T’ → (subtype2 T T’ → False).
Theorem completeness: ∀ T T’, (subtype2 T T’ → False) ↔ nsubtype T T’.
Proof. split; [ apply (subNeqL T T’) | intros. apply (subNeqR T T’); easy ]. Qed.

Axiomatic Base and Mechanisation Effort. In the accompanying library, we employ
classical reasoning to conduct case analysis primarily over coinductively defined predicates.
We also use the proof irrelevance axiom to obtain that different proofs of dis-equality among
the same pair of participants are treated the same. The library comprises around 10K lines of
code, containing 250 proven lemmata and 166 definitions, with 35 of them being coinductively
stated. Initially, integrating inductive and coinductive reasoning seemed challenging, but it
scaled remarkably well with the aid of the paco library.

6 Related Work and Conclusion

Asynchronous session subtyping was first introduced to achieve message optimization in
session-based high-performance computing platforms, i.e., multicore C programming [28, 42]
and MPI-C [34, 33]. Then, numerous theoretical and practical advancements have emerged.

In theory, Chen et al. [11] introduced and proved preciseness of synchronous [18, 15]
and asynchronous subtyping for the binary (2-party) session types. Later, the asynchronous
subtyping was found undecidable, independently by Bravetti et al. [6], and by Lange and
Yoshida [32]. This provoked active studies on (1) identifying a set of binary session types where
asynchronous subtyping is decidable [7, 32]; and (2) proposing sound algorithms extending
the formalism to binary communicating automata [4] in [5, 2] (also to fair refinement in
[8]). In the multiparty setting, Ghiezan et al. [20, 21, 22] proposed precise synchronous and
asynchronous session subtyping employing coinductive axiomatisation.

In practice, Castro-Perez and Yoshida [10] examined a constrained version of multiparty
asynchronous subtyping algorithm where permutations across unrolling recursions are pro-
hibited. This framework has been used for the cost analysis of optimised C code. Cutner
et al. [14] proposed a sound multiparty synchronous subtyping algorithm and integrated
it into Rust. Neither of the multiparty algorithms in [10] and [14] nor the one for binary
sessions types in [5] can validate [22, Example 3.19]. In a recent study [2, Figure 6], Bocchi
et al. presented an extended version of the algorithm proposed in [5], incorporating program
analysis techniques. They effectively validated the example, albeit the algorithm is limited
to the binary setting. We mechanised and proved this example in Coq (Figure 5) within a
multiparty setting.

The mechanisation approach we employ is not bounded by the undecidability of asyn-
chronous subtyping, as subtyping is axiomatised as a coinductive relation in Coq. It is
non-computational. The key point we make in Figure 5 is to show that our subtyping
technique and its implementation in Coq are expressive enough to cover several examples
that have been proven using different automated tools.

https://github.com/ekiciburak/sessionTreeST/blob/itp2024/completeness/completeness.v
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[5] [2] [10] [14] Ours
ring-choice [13] ✗ ✗ ✓ ✓ ✓

Example 3.17 [22] ✗ ✗ ✓ ✓ ✓

Example 3.19 [22] ✗ ✓ ✗ ✗ ✓

Example 4.14 [22] ✗ ✗ ✗ ✓ ✓

Figure 5 Examples and related work.

Mechanisation recently emerges as a pivotal facet in the concurrent communication
models. Tirore et al. [40] introduced a novel projection function that maps global multiparty
session types to local types. This function has been demonstrated to be both sound and
complete with respect to its coinductive counterpart. It has been implemented in Coq
and its mentioned properties have been formally proven there. Castro-Perez et al. [9] built
a domain-specific language named Zooid, and implemented in Coq. Zooid allows for the
extraction of certified synchronously interacting programs built upon MPST. Brady [3]
devised secure communication protocols for binary sessions in Idris. Thiemann et al. [39]
formalised progress and preservation properties for binary session types in Agda. Tassarotti
et al. [37] developed a compiler grounded in a simplified version of the GV system [19] for a
functional language equipped with binary session types. The correctness of this compiler
has been proven in Coq. Jacobs et al. [30] expanded a functional language with multiparty
session types (MPGV) and formally verified, in Coq, that the language is deadlock-free.
Hinrichsen et al. [25, 23, 24] introduced Actris, a Coq tool that integrates separation logics
and asynchronous binary session types with an asynchronous subtyping mechanism. Actris is
developed as an extension to the Iris program logic. Jacobs et al. extended Actris by linear
logic into LinearActris in their recent work [31] to freely obtain deadlock and leak freedom
for binary session types from linearity. Choreographic programming paradigm allows one to
implement distributed programs as single programs, ensuring coherence between send and
receive operations by consolidating them into a single construct. Deadlock freedom is inherit
in the design. Cruz-Filipe et al. [12] formalised the theory of choreographic programming in
Coq. In their work [26], Hirsch and Garg introduced Pirouette, a choreographic language
designed with formal guarantees, which are rigorously verified in Coq. Similarly, in [35],
Pohjola et al. presented Kalas, a compiler for a choreographic language correctness of which
has been verified using the HOL4 theorem prover.

Conclusion and Future Work. In this paper, we present the first formalisation of asyn-
chronous subtyping for session trees, establishing a framework for asynchronous subtyping in
MPST. The formalisation (1) decomposes arbitrary session trees into SISO trees that are free
of choice and selection, and (2) governs the subtyping relation through refinement of these
trees. It has been used to certify four illustrative protocol optimisation examples presented
in the literature. See Figure 5.

In the development, we redefined the negation of the refinement relation, addressing the
incompleteness issue spotted in the prior work [22], and proved that subtyping is complete
with respect to the renovated negation. To determine the precise configuration for refinement
and its negation, we employed a new sort of term prefixing.

Our future plan includes establishing a Coq proof of the soundness of subtyping with
respect to liveness, a behavioural property of typing environments ensuring that every pending
send eventually enqueues messages and every pending reception is eventually executed.

ITP 2024
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Abstract
Designing an efficient yet accurate floating-point approximation of a mathematical function is an
intricate and error-prone process. This warrants the use of formal methods, especially formal proof,
to achieve some degree of confidence in the implementation. Unfortunately, the lack of automation
or its poor interplay with the more manual parts of the proof makes it way too costly in practice.
This article revisits the issue by proposing a methodology and some dedicated automation, and
applies them to the use case of a faithful binary64 approximation of exponential. The peculiarity of
this use case is that the target of the formal verification is not a simple modeling of an external
code; it is an actual floating-point function defined in the logic of the Coq proof assistant, which is
thus usable inside proofs once its correctness has been fully verified. This function presents all the
attributes of a state-of-the-art implementation: bit-level manipulations, large tables of constants,
obscure floating-point transformations, exceptional values, etc. This function has been integrated
into the proof strategies of the CoqInterval library, bringing a 20× speedup with respect to the
previous implementation.
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1 Introduction

A mathematical library is a set of floating-point functions that are designed to approximate
mathematical functions. They are used in various domains, ranging from engineering to
scientific computing and experimental mathematics. For such applications, these functions
are required to be both accurate and fast to compute. To meet those requirements, the code
of such a floating-point function is usually intricate and its correctness is far from trivial [14].
This warrants verifying the latter formally, which can be long and tedious [8, 9].
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Formally verified mathematical libraries can even be used for formal proofs. An example
of such usage is the CoqInterval library,1 which provides a set of strategies for the Coq proof
assistant that automate the verification of enclosures of real-valued expressions. It is based on
a formalization of rigorous polynomial approximations that are computed using an interval
arithmetic with floating-point bounds [11]. Originally, the floating-point computations were
performed one bit at a time in the logic of the Coq system. Later, support for 63-bit integers
was added to Coq to speed up computation [5]. Even then, a formal verification of the
following approximation of Siegfried Rump’s integral – an example known to cause computer
algebra systems to struggle due to the large number of oscillations of the integrand – would
still take minutes to complete:∫ 8

0
sin(x + exp x)dx = 0.3474± 10−6.

Indeed, proving this approximation requires computing polynomial approximations of the
integrand on numerous subintervals of [0; 8], which itself requires computing enclosures of
the sine and exponential functions on many inputs.

To improve performance, recent work has added support for performing hardware floating-
point computations inside Coq proofs [12]. These built-in operations are axiomatized with
a purely computational specification, which has been formally proved to comply with the
IEEE 754 standard thanks to the Flocq library [3]. This makes it possible to both trust the
specification and use it for formal reasoning. Thanks to this new feature, the time needed to
verify the above approximation is reduced to just a few seconds.

This remains much slower than what could be achieved by state-of-the-art libraries [17,
§12]. Part of the reason is that we are performing computations inside the logic system, but
also that the code itself uses hardware floating-point numbers in a very naive way. To make
CoqInterval even more suitable for this kind of numerically intensive proofs, we would like to
improve on this last point by providing it with a mathematical library that is specialized for
hardware floating-point numbers and that is also formally verified. The work presented in
this article focuses on the implementation of the exponential function.

1.1 The original CoqInterval implementation
Prior to this work, CoqInterval would use a single algorithm for the exponential function,
but instantiated twice: once for floating-point numbers computed in hardware and once for
floating-point numbers slowly emulated in the logic of Coq.2 This was made possible thanks
to a suitable abstraction of floating-point arithmetic [12]. Having a single algorithm, and
thus a single proof of correctness, made the large formalization effort that went into adding
hardware computations to CoqInterval much less tedious.

CoqInterval’s original algorithm for computing an enclosure of exp x goes as follows. First,
using the following mathematical identities, an argument reduction brings the input x into
the interval [−2−8; 0]:

exp x = (exp(−x))−1

exp x = (exp(x/2))2 (1)

1 https://coqinterval.gitlabpages.inria.fr/
2 While slow, this emulation of floating-point arithmetic is still useful for proofs that require more than

the 53 bits of precision provided by the binary64 format.

https://coqinterval.gitlabpages.inria.fr/
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Listing 1 Guaranteed approximation of exponential in OCaml. The output is a pair of floating-
point numbers that enclose exp x. Symbols invLog2_64, log2_64h, log2_64l, cst, p1, p2, etc, are
predefined floating-point literals.
let iexp x =

if x < -0x1.74385446d71c4p9 then (0., 0x1.p-1074) else
if x > 0x1.62e42fefa39efp9 then (0x1.fffffffffff2ap1023, infinity) else
let k’ = x *. invLog2_64 +. 0x1.8p52 in
let k = k’ -. 0x1.8p52 in
let t = (x -. k *. log2_64h) -. k *. log2_64l in
let y = t *. (p1 +. t *. (p2 +. t *. (... + t *. p5))) in
let ki = int_of_float k’ - 0x18000000000000 in
let p0 = cst.(ki land 63) in
let d = 0x1.25p-57 in
let lb = p0 +. (p0 *. y -. d) in
let ub = p0 +. (p0 *. y +. d) in
next_down (ldexp lb (ki asr 6)), next_up (ldexp ub (ki asr 6))

Second, the alternating series exp(−x) =
∑

(−x)n/n! is computed using interval arithmetic
to a high enough order. Thanks to the use of interval arithmetic and an alternating series,
the algorithm is guaranteed to compute an enclosure of the real number exp x. Third, the
argument reduction is reversed to reconstruct the final interval result.

By suitably choosing the order of truncation of the series, one can obtain arbitrarily
tight enclosures of exp x, assuming that the precision of the floating-point arithmetic used
to compute the interval bounds can be made accordingly large. This property is invaluable
when used in conjunction with the original multi-precision floating-point arithmetic of
CoqInterval. But for hardware floating-point numbers and their fixed precision of 53 bits,
the property is pointless. The inadequacies of the implementation of exp then become
prominent. First, Equation (1) means that computing an enclosure of exp x is not constant
time, but proportional to the magnitude of x. Second, an alternating series is the worst way
of approximating a value, as part of the computations performed at order i are immediately
canceled by those at order i + 1 and thus have been performed in vain. Third, while interval
arithmetic is correct by construction, hence very proof-friendly, it performs twice as many
floating-point operations as needed.

1.2 The whole new algorithm
An approximation of the exponential function, as found in usual mathematical libraries, does
not suffer from these defects, as it is generally implemented along the following guidelines [14,
§6.2]. It would first perform a constant-time argument reduction using the following math-
ematical identity:

exp x = exp(x− k · ln 2) · 2k with k = ⌈x/ ln 2⌋ ∈ Z.

where ⌈·⌋ denotes the nearest integer. Then, a low-degree polynomial approximation of
exp around 0 would be evaluated. Finally, the result reconstruction is trivial, as it is a
multiplication by a power of two. The whole algorithm amounts to just a few tens of
operations; it is thus extremely fast.

Listing 1 shows the implementation we have devised, represented as an OCaml function
for readability. (Its translation to Coq’s λ-calculus is straightforward.) Given a finite floating-
point number x, the code computes a pair of floating-point numbers enclosing exp x. In
particular, it uses the functions next_down and next_up to compute the predecessor and
successor of a floating-point number.
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While the code seems to contain useless, if not adverse, floating-point computations, this is
not the case. For example, k looks like it could be directly computed as x *. invLog2_64 by
canceling 0x1.8p52 -. 0x1.8p52. This optimization would completely break the function,
causing it to no longer approximate the exponential, not even roughly. Similarly, t should not
be rewritten as x -. k *. (log2_64h +. log2_64l), and d should not be moved outside of
the parentheses in the computations of lb and ub. So, not only does floating-point arithmetic
ignore the usual algebraic laws of associativity and distributivity, but floating-point experts
actively rely on the lack of these laws to compute more accurate approximations.

1.3 Challenges of the formal verification

Contrarily to the previous algorithm, the adequacy of this new implementation of the
exponential no longer derives from the use of interval arithmetic, so the proof is no longer
straightforward. But at the same time, the proof effort needs to be sufficiently light so that
it is worth replacing a feature that is already good enough for most use cases.

There have been several attempts at formally verifying this kind of state-of-the-art
implementation using the Coq proof assistant, but they all have suffered from various
shortcomings. It might have been that the floating-point arithmetic was modeled without any
exceptional value [3, §6.2.3]. Indeed, when a computer-assisted proof is meant to complement
a pen-and-paper proof, it is acceptable that it only focuses on the most intricate parts of the
proof, which the absence of exceptional behavior is hardly ever. But, since this idealized
arithmetic does not match the behavior of hardware floating-point numbers, it cannot be
used here. Some later attempt solved the issue of the exceptional values [7], but it was still
targeting the verification of some code meant to run outside of Coq and thus did not need to
cover all of its facets. On the contrary, the algorithm shown in Listing 1 will effectively be
run when checking subsequent Coq proofs, so absolutely no shortcuts can be taken.

1.4 Contributions

This article proposes a fully proven, fast, and accurate implementation of the exponential
function for CoqInterval. The intricacy of this implementation corresponds to what is typically
found in the state of the art: tables of precomputed values, mixed floating-point integer
operations, etc. The proof covers all aspects of the correctness: the argument reduction, the
polynomial approximation, and the reconstruction. In addition, this article describes our
methodology for formally verifying floating-point approximations of mathematical functions.
In particular, we will present the automated strategies that were added to make this
verification as painless as possible.

Section 2 reminds both the arithmetic language and the notion of well-behaved expression
that were introduced in a previous work [7]. Section 3 explains how some strategies of
CoqInterval have been improved to automatically verify properties involving tight bounds
on rounding errors. Section 4 details the new features added to the arithmetic language
and associated tools to tackle the algorithm of Listing 1: hardware floating-point numbers,
conversions, macro-operations, array accesses, etc. Section 5 describes the methodology
used to formally verify the correctness of exponential, as well as some unusual properties of
floating-point arithmetic we ended up with. Section 6 explains how this work relates to some
other works. Finally, Section 7 concludes with some benchmarks and some perspectives.
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2 Preliminaries

This work is partly built on top of a framework for modeling floating-point expressions [7].
In particular, that framework provides some facilities to automate the proof of the absence of
exceptional behaviors, thus making it possible for the user to focus on a modeling of floating-
point expressions as real numbers. This section reminds the features of that framework that
are the most relevant to the presented work. Section 2.1 focuses on the expressions and their
various interpretations, while Section 2.2 shows how one can jump between interpretations
to ease the proof process.

In the following, the unary operator ◦(·) designates a rounding operator from R to R; it
returns the real number the nearest to the input that fits in the target floating-point format
(with unlimited range) [3, §3.2.2]. This theoretical operator is at the core of the IEEE-754
standard for floating-point arithmetic.

2.1 Arithmetic expressions
An arithmetic expression e is represented as the value of an inductive type corresponding to
a typed abstract syntax tree, namely an expression tree [7]. The nodes of an expression tree
correspond to arithmetic expressions, including floating-point operations, integer operations,
and some functions such as nearbyint.

The expression e can then be interpreted in several ways, two of which are relevant
here. First, it can be interpreted as the floating-point number JeKflt that would be obtained
according to the IEEE-754 standard. Second, e can be interpreted as the value JeKrnd obtained
by performing all the operations on real numbers and rounding their results. For example, in
the case of the floating-point addition, we have Ju + vKrnd = ◦(JuKrnd + JvKrnd). In the case of
integer operations, JeKflt performs computations modulo a power of two, while JeKrnd performs
operations on unbounded integers, e.g, Ju + vKrnd = JuKrnd + JvKrnd. The first interpretation
corresponds to the value actually computed by an implementation, and therefore the value
on which we need to prove a correctness theorem. The second interpretation, however, is the
one that is the more amenable to formal reasoning, as it is not susceptible to exceptional
behaviors such as overflows.

There are two features of expression trees that are of interest to us. The first one is the
support for let-binding operators, with binders represented by their de Bruijn indices, to
express sharing between sub-expressions and to guide proofs. The second one is the availability
of exact arithmetic operations, as they are commonly encountered in implementation of
mathematical functions. As far as J·Kflt is concerned, there is no difference in interpretation
between exact and inexact operations over floating-point numbers; they are performed as
mandated by the IEEE-754 standard. For J·Krnd, exact arithmetic operations, however, are
not rounded, which makes formal proofs, both manual and automatic, much simpler. This
raises the concern of whether such a proof about JeKrnd is meaningful, which Theorem 1 below
will tackle.

Let us illustrate these two features on the example of the argument reduction of the Cody-
Waite exponential [4], variants of which are still widely used in modern implementations,
including in the code shown in Listing 1:

k ← nearbyint(x · C),
t← x− k · c1 − k · c2,

with c1 + c2 ≃ 1/C and c2 ≪ c1. Below is the formulation of this argument reduction as an
expression tree.
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Let (NearbyInt (Op MUL (Var 0) (BinFl C)))
(Op SUB

(OpExact SUB (Var 1) (OpExact MUL (Var 0) (BinFl c1)))
(Op MUL (Var 0) (BinFl c2)))

Notice that both floating-point operations in x− k · c1 are annotated as exact operations
by using the OpExact constructor. All the other operations are marked as potentially inexact
(Op constructor). This gives the following value for JtKrnd:

◦(x− k · c1 − ◦(k · c2)) with k = ⌈◦(x · C)⌋.

2.2 Relation between interpretations
As mentioned earlier, a correctness statement is about JeKflt, while a user only wants to have to
deal with JeKrnd, as it is free of exceptional behaviors and contains fewer rounding operations.
In order to bridge the gap between both interpretations, a predicate WB (for well-behaved)
is defined recursively over expressions. For example, the proposition WB(Op DIV u v) is
defined as

WB(u) ∧WB(v) ∧ JvKrnd ̸= 0 ∧ |◦(JuKrnd/JvKrnd)| ≤ Ω

with Ω the value of the largest finite floating-point number. In other words, for the floating-
point division u/v to be well-behaved, it is sufficient that u and v are well-behaved, that the
interpretation of v as a real number is non-zero, and that the division over real numbers,
once rounded, does not overflow the floating-point format. The predicate WB is defined
in a similar way for the other inexact operations over floating-point numbers. For exact
operations, the formula contains an additional conjunct that states that the result is exactly
representable. For example, the proposition WB(OpExact ADD u v) is defined as

WB(u) ∧WB(v) ∧ ◦(JuKrnd + JvKrnd) = JuKrnd + JvKrnd ∧ |JuKrnd + JvKrnd| ≤ Ω.

The key result is that, if an expression e is well-behaved, then JeKflt is a finite floating-point
number and it represents the real number JeKrnd. This is expressed by the following theorem:

▶ Theorem 1. Given an expression e, WB(e)⇒ JeKflt finite ∧ JeKflt = JeKrnd.

When applying Theorem 1, the user is left with a subgoal WB(e), which is painful to
prove by hand. So, to ease the proof process, the framework proposes a proof strategy called
simplify_wb, which tackles this subgoal by applying a procedure similar to CoqInterval’s
interval strategy to every conjunct of WB(e) individually. In practice, one can expect all
the conjuncts related to the absence of exceptional behaviors to be automatically proved.
Conjuncts related to exact operations, e.g., ◦(JuKrnd + JvKrnd) = JuKrnd + JvKrnd, are however
out of the scope of CoqInterval. So, the user will have to prove them either manually or
using a dedicated tool like Gappa [3, §4.3].

Note that, in order for simplify_wb to make use of the interval strategy of CoqInterval,
the latter had to be enhanced with some support for rounding operators, as they appear in
almost all the conjuncts of WB(e). This support was based on the so-called standard model
of floating-point arithmetic. (Section 3.2 will propose a better approach.) For instance, given
an enclosure u ∈ [u; u], CoqInterval would compute an enclosure of ◦(u) as follows, assuming
a binary64 format:

◦(u) ∈ [u− ε; u + ε] with ε = max
(
2−1075,−2−53 · u, +2−53 · u

)
. (2)
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3 Automated tools and rounding errors

Consider the code of Listing 1. To verify its correctness, we need to prove the following
bound on the absolute error between the exponential function and its floating-point degree-5
polynomial approximation:

∀t ∈ R, |t| ≤ 355·2−16 ⇒ |1+y−exp t| ≤ 11·2−62 with y = ◦(t·◦(p1+◦(t·◦(p2+. . .)))). (3)

The traditional methodology to prove such a bound is as follows [3, §6.2.3]. One would
split the expression 1 + y − exp t into two parts e1 + e2, with e1 = y − t · (p1 + t · (p2 + . . .)))
and e2 = (1 + t · (p1 + t · (p2 + . . .)))− exp t. On one hand, expression e1, which contains only
arithmetic operations and rounding operators, can be bounded using the dedicated Gappa
tool [3, §4.3]. On the other hand, expression e2, which contains no rounding operator, can
be bounded using the rigorous polynomial approximations of CoqInterval [11]. Combining
the proofs of both bounds gives the final result.

Since support for rounding operators has been added to CoqInterval so that simplify_wb
could automatically prove conjuncts of WB [7], it should now be possible to perform this
kind of proof directly, without any need for such algebraic manipulations nor the use of
an external tool. Unfortunately, several issues arise when using the interval strategy on
Equation (3). Indeed, it is slightly more involved than the usual conjuncts of WB.

First of all, both sides of the subtraction are strongly correlated, since the left-hand side
1 + y was chosen among the best possible floating-point approximations of the right-hand
side exp t. This means that naive interval arithmetic, as used in Equation (2) to define the
enclosure of a rounding operator, will cause an overestimation of the final enclosure that is so
large that it becomes useless for proving anything interesting. On this example, the strategy
would only be able to prove that the error is bounded by 10−2, very far from the expected
bound of 11 · 2−62. So, the first step is to define rigorous polynomial approximations for
rounding operators (Section 3.1).

This is not sufficient though, as the strategy would only succeed in proving a bound of
24 ·2−62, which is already quite good, but not sufficient to prove the correctness of the code of
Listing 1. This overestimation is a consequence of using the standard model of floating-point
arithmetic to derive Equation (2), as it is a bit too naive. So, the second step is to prove
tighter bounds on rounding errors (Section 3.2).

3.1 Rigorous polynomial approximations
The correlation issue of naive interval arithmetic is well-known, and it is independent of
rounding errors. In fact, even the interval evaluation of (a + x) · (b− x) would suffer from
it, as a + x and b− x vary in opposite directions with respect to x. A first solution to this
issue is to split the domain of x into smaller sub-intervals and to take the union of the
enclosures of the whole expression on all these sub-intervals. This approach is very simple
proof-wise, but it scales poorly computation-wise, so it should only be used as a last resort.
A second solution is to compute enclosures whose bounds symbolically depend on x rather
than being just numerical values. This approach scales better, but it requires a much larger
formalization effort.

CoqInterval provides both approaches [11]. In particular, the second approach is im-
plemented using rigorous polynomial approximations. Instead of just computing a single
interval [e; e] that encloses an expression e(x) for any x ∈ X, it computes a polynomial P

and an interval ∆ such that, for any x ∈ X, we have e(x)− P (x) ∈ ∆, which we denote by
e ∈ (P, ∆)X . Those polynomial enclosures can then be composed. For example, if we have
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f ∈ (Pf , ∆f )X and g ∈ (Pg, ∆g)X , we also have f + g ∈ (Pf + Pg, ∆f + ∆g)X . This makes
it possible to compute the polynomial enclosure of an arbitrary expression, by induction on
its structure.

Therefore, to benefit from the rigorous polynomial approximations of CoqInterval, we
need to be able to compute a polynomial enclosure of ◦(u), given an enclosure u ∈ (P, ∆)X .
To do so, we rewrite ◦(u(x)) into the sum [◦(u(x)) − u(x)] + u(x). For the left-hand side,
we use the degree-0 enclosure ◦(u)− u ∈ (0, [−ε; ε])X with ε computed as in Equation (2).
Then, by adding the original enclosure (P, ∆)X , we get a polynomial enclosure of ◦(u).

This change to CoqInterval was straightforward, but it has shifted the perspective on
rounding operators in the library. Indeed, the original implementation, which was designed
for simplify_wb, computed an enclosure of ◦(u) given an enclosure of u. Then, the user
could ask for an enclosure of ◦(u) − u, which would be correct but overestimated. The
new implementation computes a tight enclosure of ◦(u) − u from an enclosure of u, from
which it derives an enclosure of ◦(u). This change has been propagated up to the surface
language, that is, CoqInterval now recognizes the expression ◦(u)− u as an atomic error for
an expression u rather than a subtraction between two sub-expressions involving u.

3.2 Tighter error bounds
By adding support for rounding operators, CoqInterval is now able to automatically prove
Equation (3), but only if the rightmost bound is changed to 24 · 2−62. It fails for any tighter
bound, especially for 11 · 2−62, which we need to prove the correctness of the implementation
of Listing 1. As mentioned earlier, the issue comes from the simplicity of the standard
model of floating-point arithmetic, which states that the absolute error between ◦(u) and u

is bounded by 2−53 · |u|, assuming that u is in the normal range. While this is sensibly true
for values of u slightly larger than a power of two, this is off by a factor two for values of
u that are slightly smaller than a power of two. A better model of floating-point errors is
to bound the absolute error between ◦(u) and u by 1

2 ulp(u), where ulp denotes the unit in
the last place, which is the distance between |u| and its successor. In other words, given an
enclosure u ∈ [u; u], we have the following enclosure of the absolute error:

◦(u)− u ∈ [− ε
2 ; ε

2 ] with ε = ulp(max(−u, u)).

Not only is this new enclosure tighter, but it also makes the implementation and its proof
more generic, as it separates the concerns about the target format and the rounding direction.
Regarding the target format, one just has to choose the corresponding definition for ulp. As
a consequence, CoqInterval now supports not only the floating-point formats of Flocq, but
also its fixed-point formats. As for the rounding direction, it is a matter of choosing the
enclosing interval: [− ε

2 ; ε
2 ] for rounding to nearest, [0; ε] for rounding toward +∞, and so on.

Thanks to these improvements, the interval strategy can now directly prove Equation (3).
This proof only takes a tenth of a second using degree-10 polynomials (default degree for
interval). Note that the use of polynomial approximations, rather than the use of more
naive variants of interval arithmetic, is critical for this proof, as can be experienced by
reducing the degree. With degree 3, it takes about one second; with degree 2, it takes about
one minute; and with degree 1, it does not seem to terminate.

4 Supported formats and expressions

Since the goal of our work is to formally prove the function shown in Listing 1, we need several
new features that were missing from the earlier work on the Cody-Waite algorithm [7]. First
of all, since our implementation relies on hardware support for both integer and floating-point
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numbers, we need an interpretation of the expressions from Section 2 into the corresponding
types (Section 4.1). Since the implementation also uses an array of pre-calculated values to
reduce the degree of the polynomial approximation, the grammar of expressions has been
extended with array accesses (Section 4.2). Finally, as mentioned earlier, the algorithm takes
advantage of the inaccuracies and “flaws” of floating-point arithmetic to implement optimized
versions of nearbyint and int_of_float. Hence, to ease the proof of this algorithm, we
have added support for these optimized operations (Section 4.3).

4.1 Hardware operations
Similarly to JeKflt, we would like to define another interpretation JeKprim which repres-
ents the computation of e using the hardware types provided by Coq’s standard library.
The PrimFloat module offers support for hardware floating-point numbers [12], while the
PrimInt63 module offers support for OCaml’s 63-bit integers [5]. Both modules provide
constants, basic operations (+, −, ×, /, etc.), comparisons (=, <, ≤), conversions, and some
miscellaneous functions (e.g., floating-point predecessor and successor functions). They also
provide axiomatized specifications for these hardware operations.

Since hardware floating-point numbers are just an instance of Flocq’s generic floating-point
numbers, we have derived the following variant of Theorem 1:

▶ Theorem 2. Given an expression e, WB(e)⇒ JeKprim finite ∧ JeKprim = JeKrnd.

There are two things to note about the definition of JeKprim. First, not all operations can
be performed directly on hardware types. Fused multiply-add (FMA), for example, is not
yet provided by the PrimFloat module. Therefore, to complete the definition of JeKprim, we
emulate these missing operations using the Flocq library (i.e., convert the operands to the
formalized Flocq types, compute the result using Flocq’s operations, and convert it back to
the hardware type).

Second, we have made our integers 32-bit wide, so that we can use Coq’s 63-bit hardware
integers to compute JeKprim while maintaining our ability to export verified algorithms as C
programs. For 32-bit integer expressions, WB(e) hence requires JeKrnd to remain inside the
[−231; 231 − 1] range.

4.2 Array accesses
The implementation of Listing 1 starts with an argument reduction that is very similar to
Cody & Waite’s, but based on a slightly different identity:

exp(x) = exp
(

x− k · ln 2
64

)
· 2k/64 with k =

⌈
x · 64

ln 2

⌋
. (4)

This makes the reduced argument much smaller, but it also means that the reconstruction
is not a simple multiplication by an integer power of 2 anymore. To multiply by 2k/64 for
some integer k, we first compute the Euclidean division of k by 64, in other words find kq

and kr such that k = kq ·64 +kr and 0 ≤ kr ≤ 63. Since there are only finitely many different
values of kr, we pre-compute the floating-point number closest to 2kr/64 for each value of kr

and store the results in a table cst. Therefore, to multiply by 2k/64, we first multiply by
cst.[kr] and then by 2kq (see Listing 1).

We have defined cst using the Coq standard library PArray, which provides persistent
arrays [5]. To ease proofs, we have added a constructor ArrayAcc to the type of expressions
to represent accesses to tables of constants. The constructor takes as argument an array a of
hardware floating-point numbers and an integer expression i and is interpreted as follows:

JArrayAcc a iKprim := a.[JiKprim].
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For an access to be well-behaved, we need the index to be well-behaved and smaller than
the length of the array, and all the entries of the array to be finite floating-point numbers.

4.3 Macro-operations
As we can see in Equation (4), the argument reduction also requires the nearbyint function.
This poses a problem as the latter is not provided by the PrimFloat module. Since we only
need to compute the exponential on inputs in the [−746; 710] range, we can use the following
trick3 to compute the integer part:

⌈f⌋ = ◦(◦(f + 1.5 · 252)− 1.5 · 252). (5)

Using the language of abstract expressions, we could simply represent this sequence of
operations as Op SUB (Op ADD f (BinFl 0x1.8p52)) (BinFl 0x1.8p52). However, that
would not be very helpful in proofs because it leaves us the tedious work of showing that those
operations behave as nearbyint. Instead, we want to treat those operations as if they were
one single nearbyint operation. For this, we define a new constructor FastNearbyint in
the language whose interpretation as a floating-point expression is the sequence of operations
above, but whose interpretation as a rounded expression is the integer part:

JFastNearbyint eKflt/prim := JeKflt/prim ⊕ 0x1.8p52⊖ 0x1.8p52,

JFastNearbyint eKrnd := ⌈JeKrnd⌋.

Since these interpretations are no longer in one-to-one correspondence, proving Theorems 1
and 2 for these constructors required significantly more work on our part. This, however, saves
the user from having to do the work themselves. Note that Equation (5) is only meaningful
for inputs |f | ≤ 251, so WB(FastNearbyint e) contains a conjunct |JeKrnd| ≤ 251.

The macro-operation we have just defined computes the integer part as a floating-point
number, but the algorithm in Listing 1 also needs it as an integer. Hence, we define another
constructor FastNearbyintToInt which extracts the mantissa4 after adding 1.5 · 252:

⌈f⌋Z = mantissa(◦(f + 0x1.8p52))− 3 · 251.

5 Application: a state-of-the-art exponential

We now have all the ingredients to state and prove the correctness of the algorithm shown in
Listing 1. It is stated as follows, with x the floating-point input, and with flb and fub the
components of the pair computed by the algorithm:

▶ Theorem 3. If x is finite, then flb ≤ exp x ≤ fub.

Proof of this theorem for large positive and negative values of x is straightforward,
as those are the cases where the exponential either overflows or degenerates to 0. This
section presents the methodology we have followed for proving the correctness theorem for
x ∈ [−745.13; 709.78].

For a given floating-point input x, to find an enclosure of exp x, our algorithm performs
only one approximation y, but then subtracts (resp. adds) an error term d to find the
lower (resp. upper) bound of the enclosure. Correctness of the algorithm therefore relies on

3 If |f | ≤ 251 then f + 1.5 · 252 is between 252 and 253 with ulp(252) = 1, which means the result of the
addition is rounded to the nearest integer.

4 For hardware numbers, we have implemented it as normfr_mantissa (fst (frshiftexp f)).
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whether d is big enough to cancel out the inaccuracy of the approximation. For this reason,
an essential step in our proof is to find some ε such that any choice of d with |d| > ε makes
◦(◦(p0 · y) + d) an upper bound of exp(x− k ln 2/64)− 2kr/64 (and similarly for the lower
bound). The value we have experimentally found for ε is characterized by the following
lemma:

▶ Lemma 4. For any finite floating-point number d such that |d| ≤ 2−52, we have∣∣∣2kr/64 + ◦(◦(p0 · y) + d)− (exp(x− kq ln 2) + d)
∣∣∣ < ε ≃ 1.14 · 2−57.

The proof of this lemma is too intricate to be comprehensively explained. Instead, we
will illustrate our methodology on the parts that verify the argument reduction and the
polynomial evaluation (Section 5.1). We will also show part of the proof for the reconstruction
as it involves some unusual facts about floating-point arithmetic (Section 5.2).

5.1 Illustration of the methodology
Among other facts about the argument reduction, we need to prove that the computation of
ki causes no exceptional behaviors and that it is indeed an integer part equal to k despite
its convoluted code. To do so in the Coq proof, we have defined an abstract expression ki’
whose interpretation in the hardware numbers – namely, Jki’Kprim – is the value stored in
ki, and whose interpretation in the rounded real numbers – namely, Jki’Krnd – is k. Then
we can use Theorem 2 to transform a goal about ki into a goal about k.

In practice, we not only want to transform the goal, but we also want to assert some prop-
erty on the transformed subexpression. Hence, we have implemented a strategy assert_float
which takes as argument a predicate Q, looks for an expression of the form JeKprim, and
applies the following corollary of Theorem 2:

WB(e) =⇒ Q(JeKrnd) =⇒ (∀x, x = JeKrnd ∧Q(x) =⇒ G(x)) =⇒ G(JeKprim).

The strategy also invokes simplify_wb to discharge as many conjuncts of WB(e) as possible.
When using this strategy, the Coq proof usually looks as follows:

set (ki’ := FastNearbyintToInt (Op MUL (Var 0) InvLog2_64)).
change (normfr_mantissa _ - _)

with (evalPrim ki’ [:x:]). (* Var 0 is mapped to x *)
assert_float (fun ki => -68736 <= ki <= 65536).
{ ... proof of the assertion ... }

We have used the assert_float strategy 8 times in the proof. Here is another example
of its usage to state the main property about the reduced argument t, which contains exact
operations just like in the original Cody-Waite algorithm (see Section 2.1):

set (t’ := Op SUB (OpExact SUB (Var 1) ...) ...).
change (x - _ - _) with (evalPrim t’ [:k, x:])).
assert_float (fun t => abs t <= 355 / 65536

/\ abs (t - (x - k * ln 2) <= 65537 * pow2 (-77)).

Contrary to the other uses of assert_float in the proof, simplify_wb is not able to
completely discharge the subgoal WB(t). So we have to manually prove the remaining
conjuncts, which are the proof obligations of exact operations:

◦(k · c1) = k · c1 ∧ ◦(x− k · c1) = x− k · c1.
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The proof of both equalities relies on bit-counting reasoning, which Gappa is specifically
designed for [3, §4.3.4]. But to avoid introducing a dependency over Gappa just to prove
these two conjuncts, we have performed this reasoning by hand.

As a last illustration, let us consider Equation (3), which bounds the error caused by both
the polynomial approximation and its floating-point evaluation. The corresponding proof
script looks as follows. For the sake of readability, we have removed a few administrative
steps (e.g., unfolding of definitions) from the script.
change (Papprox t’) with (evalPrim g0 [:t’:]).
assert_float (fun y => abs y <= 0.0055

/\ abs (1 + y - exp t) <= 11 * pow2 (-62)).
{ split.

- interval.
- interval with (i_taylor t, i_bisect t, i_prec 80). }

Thanks to the automation provided by assert_float and interval, in just a few lines,
we have proved that none of the floating-point operations had any exceptional behavior,
that the image of the floating-point function was bounded, and more importantly, that
its error was bounded too. More generally, if a user needed to prove the correctness of a
simple floating-point implementation with no intricate argument reduction (e.g., a piece-wise
polynomial approximation), that would be the whole of the script.

5.2 Correctness of reconstruction
At this point in the proof, thanks to Lemma 4, we know 2kr/64+yℓ ≤ exp x·2−kq ≤ 2kr/64+yu,
with yℓ and yu some intermediate floating-point results. To complete the proof, we need to
deduce the following enclosure:

flb = pred(◦(◦(p0 + yℓ) · 2kq )) ≤ exp x ≤ succ(◦(◦(p0 + yu) · 2kq )) = fub.

To do so, we want to factor out the multiplication by 2kq , but the possibility that the
result might fall into the subnormal range makes this factorization impossible. So we have
proved the following lemma:

▶ Lemma 5. Let y be a binary64 floating-point number greater than 2−1021. Then, for any
integer k, pred(◦(y · 2k)) ≤ pred(y) · 2k and succ(◦(y · 2k)) ≥ succ(y) · 2k.

By transitivity, we are thus left to prove the following inequalities:

pred(◦(p0 + yℓ)) ≤ 2kr/64 + yℓ ∧ 2kr/64 + yu ≤ succ(◦(p0 + yu)).

These inequalities hold because the predecessor and successor functions are enough to
compensate both the error between p0 and 2kr/64 and the rounding error of the final addition.
Indeed, there are two cases, depending on the value of kr:

If kr = 0, then p0 = 1. So, the first inequality reduces to pred(◦(1 + yℓ)) ≤ 1 + yℓ, which
is a general property of the predecessor function. Proof of the upper bound is similar.

If kr ̸= 0, then we have 1.01 < p0 < 1.99. Therefore, 1.001 < ◦(p0 +yℓ) < 1.999 and hence
pred(◦(p0 + yℓ)) = ◦(p0 + yℓ)− 2−52. Moreover, we have |p0 − 2kr/64| ≤ 2−53. Similarly,
|◦(p0 + yℓ)− (p0 + yℓ)| ≤ 2−53. As a consequence,

pred(◦(p0 + yℓ)) = 2kr/64 + yℓ + (p0 − 2kr/64) + (◦(p0 + yℓ)− (p0 + yℓ))− 2−52

≤ 2kr/64 + yℓ + 2−53 + 2−53 − 2−52 = 2kr/64 + yℓ

which completes the proof for the lower bound. Proof of the upper bound is similar.
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6 Related work

While there had been some earlier works to formalize hardware arithmetic operators [18],
formal verification of mathematical libraries really started with the impressive work by John
Harrison. Among other things, he used the HOL Light system to prove the correctness of a
binary32 approximation of the exponential function which presents many similarities with
our own algorithm [8]. But being a binary32 function, it could nowadays be validated by
sheer exhaustive testing. So, perhaps more interesting is Harrison’s subsequent work on the
formal verification of the implementation of sin and cos for IA-64 architectures, as it sets the
bar even higher [9]. Indeed, these approximations perform 80-bit floating-point computations
and are accurate to 0.574 ulp for inputs smaller than 263. They use an intricate argument
reduction: first a pre-reduction, followed by a 3-term Cody-Waite reduction, resulting in a
double-binary80 reduced argument. Then a degree-17 polynomial is evaluated, followed by
a simple reconstruction of the result so as to take the lower part of the reduced argument
into account. During both the argument reduction and the reconstruction, several floating-
operations are actually exact and need to be considered as such, in order to be able to prove
anything interesting about the result. Our methodology could be used to automate various
parts of this proof, but the representation of the reduced argument as a non-evaluated sum of
two floating-point numbers would presumably warrant adding a few more macro-operations
to our expression language, e.g., a FastTwoSum operator [15, §1.3].

A more recent work is the large verification using the Coq proof assistant of the power
function of the CORE-MATH library by Laurence Rideau and Laurent Théry [10]. This
includes the correctness of an exponential function whose implementation shares some
similarities with ours, but it is a lot more subtle, since both input and output are double-
binary64 numbers. Their formalization, however, ignores the issue of exceptional behaviors
and just assumes that numbers can be arbitrarily large, as is traditionally the case in
pen-and-paper proofs. Again, our methodology could help transition to a complete proof,
especially since they are already making heavy use of CoqInterval.

Regarding the use of hardware floating-point numbers in the Coq proof assistant, Érik
Martin-Dorel and Pierre Roux have implemented and verified a checker for semi-definite
positive matrices [12]. The algorithm performs a Choleski decomposition using floating-point
arithmetic on a slightly perturbed input matrix. The correctness theorem states that, if
this decomposition succeeds, then a Choleski decomposition using exact arithmetic would
have succeeded on the original input matrix, which guarantees that it was indeed semi-
definite positive. The perturbation, and hence the correctness proof, depends on the ability
to compute a bound on the rounding error of the floating-point decomposition [16]. Our
approach would have been of little help for that use case, as the algorithm and the error
bound highly depend on the dimension of the matrix.

Regarding the automation of proofs of bounds on rounding errors in a proof assistant, one
can cite the FPTaylor tool, which can generate proofs for HOL Light [19]. Given a floating-
point expression, it computes an affine form that encloses it, using elementary rounding errors
as variables of the affine form. The strength of that tool is that the coefficients of the affine
form are kept as symbolic expressions rather than intervals. This approach separates the
concerns between the global optimizer used for computing enclosures and the formalization
of affine forms for floating-point arithmetic. Indeed, enclosures of the symbolic expressions
are only needed when they occur in terms of order 2 or more, as these terms cannot be
represented as part of the affine form. Therefore, the verification of these enclosures can be
done in a rather naive way, since they are only used for higher-order error term and thus do
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not have to be tight. It should be noted that FPTaylor supports both the standard model
of floating-point arithmetic and a tighter model (see Section 3.2), but it can only generate
proofs for the former. Moreover, the global optimizer used to compute the enclosures in
FPTaylor is not the same as the one used to verify them in HOL Light, which might cause
difficulties if the latter procedure is not strong enough or too slow.

A similar tool is PRECiSA, which targets the PVS proof assistant [13]. As with FPTaylor,
errors are kept as symbolic expressions, and a global optimizer is used to compute their
enclosures. Higher-order error terms, however, are not eliminated as computations progress,
which might cause some performance issues compared to FPTaylor. PRECiSA, however,
uses a tight formal model of floating-point errors, and the tool can detect exact subtractions
(Sterbenz’ lemma). Moreover, it supports conditional expressions, including the cases where
rounding causes a different branch to be taken.

Finally, one should mention the VCFloat2 tool, which targets the Coq proof assistant [1].
As with the previous two tools, the error is kept as a symbolic expression. Before being fed
to a global optimizer (namely CoqInterval), this expression is first simplified by expanding it
through distributivity and discarding the sub-expressions that cancel. This expansion might
cause some performance issues, due to combinatorial explosion. A user-provided threshold is
used to further discard negligible terms, at the expense of a potentially worse error bound. It
can also use a technique similar to Gappa to reduce the correlation between sub-expressions,
and thus improve the tightness of the computed enclosures. The tool uses the standard
model of floating-point errors, but the user can annotate operations that are supposed to
be exact and the tool will verify that the conditions hold (Sterbenz’ lemma). Moreover,
the tool supports user-defined operations, which means that it can easily be extended with
double-word arithmetic, as long as the user has formalized it beforehand.

7 Conclusion

In this article, we have presented a floating-point approximation of the exponential function,
its mechanized proof of correctness, and the tools we have developed to ease the verification
work. One peculiarity of this work is that the verified code is not just modeled using the
Coq proof assistant, it can actually run in the logic of the system and therefore be used to
perform proofs by computations. Indeed, the correctness theorem tells how the result of
the approximation can be used as a lower/upper bound of the mathematical exponential.
The specification of the code of Listing 1 and its correctness proof take about 600 lines
of Coq script;5 Lemma 5 is about 130 lines; extending the proof of Theorem 1 to support
macro-operations and arrays takes about 500 lines; the tighter bounds on rounding errors
take about 200 lines. This work was integrated in release 4.10.0 of CoqInterval.

7.1 Integration to CoqInterval and performances
As explained in the introduction, the CoqInterval library provides an interval extension
of the exponential function that can use the floating-point unit of the processor to speed
up proof checking [12]. Its implementation, however, is based on a truncated power series,
which is effective but rather naive, compared with the implementations that can be found in
mathematical libraries targeting hardware floating-point formats. We have thus plugged our
verified implementation in place of the original one. Consider the following Coq script.

5 https://gitlab.inria.fr/coqinterval/interval/-/blob/interval-4.11.0/src/Interval/Float_
full_primfloat.v

https://gitlab.inria.fr/coqinterval/interval/-/blob/interval-4.11.0/src/Interval/Float_full_primfloat.v
https://gitlab.inria.fr/coqinterval/interval/-/blob/interval-4.11.0/src/Interval/Float_full_primfloat.v
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Goal forall x, 10 <= x <= 11 -> Rabs (exp x - exp x) <= 0x1p-6.
Proof. intros x Hx. interval with (i_bisect x, i_depth 30). Qed.

It states that, for any real number x between 10 and 11, the difference between exp x

(mathematical exponential) and itself is less than 2−6. From a mathematical point of view,
this statement is useless, since it could be trivially proved by rewriting exp x− exp x to zero,
but it is a good way to exercise the computations performed by CoqInterval. Indeed, the way
the interval strategy is invoked, it will not try to use anything fancier than naive interval
arithmetic. As a consequence, because exp x is strongly correlated with itself, the formal
proof generated by the tactic ends up considering around 6.7 million sub-intervals of the
input enclosure x ∈ [10; 11] (and as many interval evaluations of the exponential function).

Using the original implementation, this computationally intensive proof takes about 160
seconds to be checked by the Coq proof assistant on an Intel 13th-generation 4GHz processor.
With the implementation verified in this work, the proof is checked in less than 8 seconds.
Taking the average of three runs, the speedup is 20.5×. Since the argument reduction of the
original implementation is more costly the further away from zero the input is, the speedup
can grow even larger, up to 24×.

As for the accuracy of the new implementation, one can get an intuitive feel of it by
considering the distance between the bounds of the output interval. Ideally, it should be one
ulp (except for the input 0), meaning that the bounds of the interval should be consecutive
floating-point numbers. This property, called correct rounding [14, §12.3], is still an open
research question for floating-point formats larger than binary32 and completely out of reach
of a formal proof, as of today. So, the best we can hope to achieve is a distance of up to two
ulps, that is, one component is optimal, while the other is off-by-one. In the code shown in
Listing 1, if the constant d was zero, this would be the case. As it is not quite zero here,
when exp x is close to the midpoint between two consecutive floating-point numbers, the
distance might end up being three ulps. The proportion of inputs that cause a 3-ulp interval
output is roughly d · 251 ≃ 1/60.

7.2 Real-life performances
Being able to perform about one million faithful interval evaluations of exponential per second
inside the logic of Coq is impressive, but it is nowhere near the actual throughput of the
floating-point unit of the processor. Indeed, disregarding any concern about the guaranteed
accuracy of a mathematical library, one should expect a state-of-the-art implementation
to take 25–50 cycles to compute two floating-point approximations of exponential6 (and
thus one interval enclosure), so about 100× faster than what we currently achieve in the
logic of Coq. There are several reasons for the remaining gap. First of all, the code of our
implementation is not directly run by the processor, but interpreted by a virtual machine.
Second, this bytecode interpreter boxes floating-point numbers, and thus performs a large
amount of memory allocations. Third, while our code only performs computations on values,
the interpreter still needs to account for the possibility of open terms (e.g., free variables)
appearing as operands to the floating-point computations.

The first issue can be worked around by using the native_compute machinery of the Coq
system, which compiles the code using the OCaml compiler and then executes it directly [2].
This machinery also partially avoids the second issue, since the compiler can optimize away

6 https://core-math.gitlabpages.inria.fr/
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Listing 2 Floating-point exponential in OCaml.
let fexp x =

if x < -0x1.74385446d71c4p9 then 0. else
if x > 0x1.62e42fefa39efp9 then infinity else
if x <> x then nan else
let k’ = x *. invLog2_64 +. 0x1.8p52 in
...
let p0 = cst.(ki land 63) in
ldexp (p0 +. p0 *. y) (ki asr 6)

the boxing of some intermediate floating-point results. But the third issue is still present
and makes it hard to avoid pessimization in the generated code. As a consequence, this only
improves proof checking by a factor 3× to 4× for the longer proofs.

To get a better feel of the actual performances of our implementation, we can instead
implement the function directly in OCaml, as shown in Listing 2. This is roughly the same
code as Listing 1, except that the original last three lines, which were computing an enclosure
of exp x, have been replaced by a single floating-point value: ldexp (p0 +. p0 *. y) (ki
asr 6). Accordingly, the first few lines return a single value for the exceptional cases. The
code is run on about 1.5 · 109 inputs uniformly distributed among those that lead to a finite
output. Compiling the code with OCaml 5.1.1, we get that the floating-point exponential
from the GNU C Library is about 1.45× faster than our implementation.

Even if the GNU C Library has been heavily tuned, this is still a rather large gap. Part
of the reason is its use of the FMA operation. This ternary operation computes ◦(x · y + z)
at once, which halves the number of operations performed during the argument reduction
and the polynomial evaluation. Modifying our code accordingly, this reduces its slowdown
to 1.32×. When translating the code to C and compiling it with GCC, the slowdown is
brought down to 1.24×. Obviously, using FMAs in place of multiplications and additions
invalidates the correctness proof, since they do not compute the same values (notice the lack
of rounding operator around the product). Fortunately, the proof can be easily adapted.
Indeed, exact operations during the argument reduction are still exact when performed with
an FMA, and having a more accurate polynomial evaluation only makes the proof simpler.
Note that, while our framework supports reasoning about the FMA operation, it is not one
of the native floating-point operations provided by the Coq system, so it cannot be used to
speed up the implementation of CoqInterval. One would instead have to use larger tables, as
does the GNU C Library, so as to reduce the degree of the polynomial approximation.

7.3 Future works
First, it should be noted that, while the GNU C Library does not implement correct rounding
either, it is nonetheless slightly more accurate than our implementation. In about 20% of
cases, the code of Listing 2 returns a floating-point result that is off by one, while for the
GNU C Library, the probability is 10−5. In the context of CoqInterval, this hardly matters,
since we want to compute an enclosure of the mathematical result rather than the nearest
floating-point number. But for a mathematical library, people might prefer a code that is
experimentally a bit more accurate to a code whose correctness has been formally verified.
Most of the inaccuracy comes from the factor p0. There are two ways to improve it, both of
which require adding a new table along cst. In the first approach, the new table contains
the error on p0, which can then be reintroduced in the computation. In the second approach,
the new table tells how to shift the input, such that the error on p0 becomes negligible.
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A natural extension of this work is to convert all the other mathematical functions
of CoqInterval to use some state-of-the-art implementation when hardware floating-point
numbers are used as interval bounds. For functions such as log and arctan, our approach
should work without difficulty, as they are quite similar to exp. For trigonometric functions
such as sin and cos, the situation is slightly different. First of all, they are not monotone, so
considering the lower and upper bounds of the input interval separately might be counter-
productive; it might be better to perform a simultaneous argument reduction on both bounds.
Second, the Cody-Waite approach to argument reduction does not scale well to extremely
large inputs, while some other algorithms for argument reduction take advantage of the
periodicity of the trigonometric functions [14, §11.4].
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Abstract
We propose a type-theoretic framework for describing and proving properties of quantum computa-
tions, in particular those presented as quantum circuits. Our proposal is based on an observation
that, in the polymorphic type system of Coq, currying on quantum states allows one to apply
quantum gates directly inside a complex circuit. By introducing a discrete notion of lens to control
this currying, we are further able to separate the combinatorics of the circuit structure from the
computational content of gates. We apply our development to define quantum circuits recursively
from the bottom up, and prove their correctness compositionally.
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1 Introduction

Quantum computation is a theory of computation whose unit of information is the states of
a quantum particle, called a quantum bit. A quantum bit is unlike a classical bit in that
the former may retain many values at the same time, albeit they ultimately can only be
observed as probabilities, while the latter has a single value. This possibility of a multitude
of values is preserved by pure quantum computation, and destroyed by a measurement of
the probability.

These properties of quantum bits and computation are commonly modelled in terms of
unitary transformations in a Hilbert space [19]. Such a transformation is constructed by
composing both sequentially and parallelly various simple transformations called quantum
gates.

Many works have been built to allow proving quantum algorithms in such settings [15,
18, 20], or more abstractly using string diagrams representing computations in a symmetric
monoidal category [5]. We investigate whether some type-theoretic insights could help in
describing and proving properties of quantum computations, in particular those denoted by
so-called quantum circuits.

Our main goal is to reach compositionality inside a semantical representation of compu-
tations. We wish it both at the level of definitions and proofs, with as little overhead as
possible.
Definitional compositionality means that it should be possible to turn any (pure) quantum

circuit into an abstract component, which can be instantiated repeatedly in various larger
circuits.
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Proof compositionality means that the proof of functional properties about (pure) quantum
circuits should be statable as a generic lemma about the corresponding abstract component,
so that one can build proofs of a large circuit by applying this lemma to instances of the
component, without having to unfold the concrete definition of the component during
the proof.

Abstraction overhead refers to the extra steps required for abstraction and instantiation,
both in definitions and proofs.

The approach we have designed represents circuits as linear transformations, and reaches
the above goals by cleanly separating the complex linear algebra in computation from the
combinatorics of the wiring, using a combinatorial notion of lens. Compared to more abstract
approaches, such as the ZX-calculus [4], we are directly working on an explicit representation
of states, but we are still able to prove properties in a scalable way that does not rely on
automation, as one can compose circuits without adding complexity to the proof.

Our proposal combines several components, which are all represented using dependent
and polymorphic types in Coq. Finite functions over n-tuples of bits can encode a n-qubit
quantum state. Lenses are injections between sets of indices, which can be used to describe
the wiring of quantum circuits in a compositional way. They are related to the lenses used for
view-update in programming languages and databases [7]. Currying of functions representing
states, along a lens, provides a direct representation of tensor products. Polymorphism
suffices to correctly apply transformations to curried states. We need this polymorphism to
behave uniformly, which is equivalent to morphisms being natural transformations.

Using these components, we were able to provide a full account of pure quantum circuits in
Coq, on top of the MathComp library, proving properties from the ground up. We were also
able to prove a number of examples, such as the correctness of Shor coding [17] (formalized
for the first time, albeit only for an error-free channel at this point), the Greenberger-Horne-
Zeilinger (GHZ) state preparation [10], and the reversed list circuit [20].

Our development is available online [9].
The plan of this paper is as follows. In Section 2, we provide a short introduction to

quantum states and circuits. In Section 3, we define lenses. In Section 4, we provide the
mathematical definition of focusing of a circuit through a lens. In Sections 5 and 6, we
explain the Coq definitions of gates and their composition. In Section 7, we introduce some
lemmas used in proof idioms that we apply to examples in Section 8. In Section 9, we define
noncommutative and commutative monoids of sequential and parallel compositions of gates.
We present related works in Section 10 before concluding.

2 Quantum circuits and unitary semantics

In this section, we present basic notions from linear algebra to describe the unitary model of
quantum computation, and how they appear in a quantum circuit diagram.

2.1 Quantum states
Let us first recall that pure classical computation can be seen as a sequence of boolean
functions acting on an array of bits of type 2n for some n. Similarly, pure quantum
computation is modeled, in terms of linear algebra, as a sequence of unitary transformations
that act on a quantum state of type C2n .

A quantum bit (or qubit) is the most basic unit of data in quantum computation. We
regard it as a variable of type C2 and each vector of norm 1 is considered to be a state of
the qubit. C2 has a standard basis (1, 0), (0, 1), which we denote in the context of quantum
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|ψ⟩ • • H • •

Ch

• • H • •
|0⟩ •
|0⟩ •
|0⟩ H • • • • H •
|0⟩ •
|0⟩ •
|0⟩ H • • • • H •
|0⟩ •
|0⟩ •

Figure 1 Shor’s 9-qubit code.

• •
Ch

• •
•
•

Figure 2 Bit-flip code.

• • H

Ch

H • •

H H •

H H •

Figure 3 Sign-flip code.

programming |0⟩ , |1⟩, indicating that the state of the qubit is 0 and 1 respectively. Regarding
C2 as the function space [[[2]]]→ C, where [[[n]]] stands for {0, . . . , n− 1}, we can express the
standard basis in the form of functions

|0⟩ := x 7→

{
1 if x = 0
0 otherwise

|1⟩ := x 7→

{
1 if x = 1
0 otherwise

States other than basis states are linear combinations, which we call superpositions. The
state of a qubit is mapped to a classical bit by an operation called measurement, which
probabilistically results in values 0 or 1. The measurement of a state in superposition
a |0⟩+ b |1⟩ results in 0 with probability |a|2 and 1 with probability |b|2.

Those definitions naturally extend to n-ary quantum states. The basis states for n qubits
are functions

|i1i2 . . . in⟩ := (x : [[[2]]]n) 7−→
{

1 if x = (i1, i2, . . . , in)
0 otherwise

States other than basis states are again superpositions, which are linear combinations of norm
1. In other words, a state is represented by a function of type C2n , besides the condition on
its norm. We hereafter regard this type as the space of states. This type can also be identified
with the n-ary tensor power (C2)⊗n of C2, a usual presentation of states in textbooks.

Similarly to the unary case, a measurement of an n-ary quantum state
∑
i∈2n ci |i1i2 . . . in⟩

results in an array of classical bits i = (i1, i2, . . . , in) with probability |ci|2.

2.2 Unitary transformations
We adopt the traditional view that pure quantum computation amounts to applying unitary
transformations to a quantum state. A unitary transformation is a linear function from a
vector space to itself that preserves the inner product of any two vectors, that is, ⟨U(a) | U(b)⟩
is equal to ⟨a | b⟩ for any unitary U and vectors a and b, if we denote the inner product
by ⟨a | b⟩. Since the norm of a is defined to be

√
⟨a | a⟩, a unitary also preserves the norm

condition of quantum states.

2.3 Quantum circuits
In the same way that classical computation can be expressed by an electronic circuit comprised
of boolean gates (AND, OR, etc.), quantum computation is also conveniently presented as a
circuit with quantum gates that represent primitive unitary transformations. More generally,
a quantum circuit may contain nonunitary operations such as measurement, but we restrict
ourselves to pure quantum circuits that contain none of them.
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A quantum circuit is a concrete representation of quantum computation, drawn as n

parallel wires with quantum gates and other larger subcircuits being placed over those wires.
A quantum state is input from the left end of a circuit, transformed by gates and subcircuits
on the corresponding wires, and output from the right end. As an example, we show the
Shor’s 9-qubit error correction code (Figure 1) and its subcomponents (Figures 2 and 3).

The primitive operations in a quantum circuit are quantum gates. In the Shor’s code,
three kinds of gates appear, namely Hadamard H , Controlled Not (CNOT) • , and
Toffoli •• . The large box Ch denotes an arbitrary unitary transformation modelling
a possibly erroneous channel. The gates placed to the left of Ch implement the encoder
algorithm of the code, and those to the right the decoder. The unitary operations denoted
by these gates can be expressed as matrices with respect to the lexicographically ordered
standard basis (e.g. |00⟩ , |01⟩ , |10⟩ , |11⟩ for two qubits):

H = 1√
2

[
1 1
1 −1

] •
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •• =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


A gate composed in a circuit is represented by a matrix by, first taking the Kronecker

product with identity matrices corresponding to irrelevant wires, and second sandwiching
it with the matrices that represent the action of a permutation on the index of tensors to
reorder the input and output wires. For example, to describe the leftmost CNOT gate in the
Shor’s code, we first pad (append) seven wires to CNOT by taking the Kronecker product
with I27 = I128 and apply the permutation (24) to move ⊕ from the second wire to the
fourth wire. The resulting matrix is:

U29((42))


I128 0 0 0

0 I128 0 0
0 0 0 I128
0 0 I128 0

 U29((24))

where U29((24)) denotes the matrix representation of (24) that maps the basis vectors
|i1 i2 i3 i4 i5 i6 i7 i8 i9⟩ to |i1 i4 i3 i2 i5 i6 i7 i8 i9⟩, and its inverse U29((42)) is the same since
(42) = (24).

The above method realizes the padding and permutation as linear transformations,
resulting in multiplications of huge matrices. Taken literally, this method is compositional in
that the embedding of a smaller circuit into a larger one can be iterated, but impractical
because of the exponential growth of the dimension of the matrices. A way to avoid this
problem is to stick to a symbolic representation based on sums of matrix units, that can
ignore zero components, but it is less compositional, in that the representation of the gate
is modified to fit an application site, leading to different representations and reasoning at
different sites. We aim at solving this problem by separating the wiring part, which is a
combinatorics that does not essentially touch quantum states, from the actions of a quantum
gate, which is an intrinsic property of the gate itself.

3 Lenses

The first element of our approach is to provide a data structure, which we call a lens, that
describes the composition of a subcircuit into a circuit. It forms the basis for a combinatorics
of composition.
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The concept of lens [7] was introduced in the programming language community as a
way to solve the view-update problem [1], which itself comes from the database community.
Lenses are often described as a pair of functions get : S → V and put : V × S → S, which
satisfy the laws GetPut : put(get(s), s) = s and PutGet : get(put(v, s)) = v. A more
versatile approach adds the concept of complementary view [1, 2], which adds another type
C and a function get∁ : S → C, changing the type of put to V × C → S, so that the first
law becomes put(get(s), get∁(s)) = s.

Our representation of lenses is an instance of the second approach. We want to map
the m wires of a subcircuit to the n wires of the external one. This amounts to defining an
injection from [[[m]]] to [[[n]]], which can be represented canonically as a list of m indices in [[[n]]],
without repetition.

Record lensn,m := {ℓ : [[[n]]]m | uniq ℓ}.

Throughout this paper, we use mathematical notations to make our Coq code easier to read.
For instance [[[n]]] in the above record definition denotes the ordinal type 'I_n of MathComp,
and [[[n]]]m denotes the type of tuples of arity m of this type (i.e. the type m.-tuple 'I_n).
We also write type parameters as indices, and allow for omitting them.

We call focusing the operation using a lens to update a system accoding to changes in a
subsystem. The following operations on lenses are basic and required to define focusing.

Definition extractT,n,m : lensn,m → Tn → Tm.
Definition lensCn,m : lensn,m → lensn,n−m.
Definition mergeT,n,m : lensn,m → Tm → Tn−m → Tn.

The get operation of lens ℓ is extract ℓ, which is the projection of Tn onto Tm along ℓ.
Each lens ℓ has its complementary lens lensC ℓ, which is the unique monotone bijection
from [[[n−m]]] to [[[n]]] ∖ Im(ℓ). We will write ℓ∁ for lensC ℓ. Their composition extract ℓ∁

returns the complementary view. The corresponding put operation is merge ℓ v c. In the
following, the lens ℓ will be available from the context, so that we omit it in extract and
merge, and extract∁ denotes extract ℓ∁. The GetPut and PutGet laws become:

Lemma merge_extract : merge (extract v) (extract∁ v) = v.
Lemma extract_merge : extract (merge v1 v2) = v1.
Lemma extractC_merge : extract∁ (merge v1 v2) = v2.

We show the classical case of focusing (focus1) as an example (Figure 4). In this case,
data is represented by direct products, whose elements are tuples, readily manipulated by
extract and merge. A change on the subsystem of type Tm is thus propagated to the global
state of type Tn.

Definition focus1T,n,m (ℓ : lensn,m) (f : Tm → Tm) : Tn → Tn :=
s 7→ merge (f (extract s)) (extract∁ s).

Lemma focus1_in : extract ◦ (focus1ℓ f) = f ◦ extract.

It is also often useful to compose lenses, or to factorize a lens into its basis (the monotone
part) and permutation part.

[[[m]]] [[[n]]]

[[[m]]]
perm.

ℓ

basis, monotone

Namely, we have the following functions and laws:
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S = T n T m = V

T n T m

extractℓ

focus1ℓ f

mergeℓ

Figure 4 Classical focusing.

S = T 2n

(T 2n−m

)2m

= V T 2m

T 2n

(T 2n−m

)2m

T 2m

curryℓ

focusℓ G
T 2n−m GT

uncurryℓ

Figure 5 Quantum focusing.

Definition lens_compn,m,p : lensn,m → lensm,p → lensn,p.
Definition lens_basisn,m : lensn,m → lensn,m.
Definition lens_permn,m : lensn,m → lensm,m.
Lemma lens_basis_perm : lens_comp (lens_basis ℓ) (lens_perm ℓ) = ℓ.
Lemma mem_lens_basis : lens_basis ℓ =i ℓ.

where ℓ1 =i ℓ2 means that ℓ1 and ℓ2 are equal as sets.

4 Quantum focusing

We are going to define actions of lenses on quantum states and operators. The classical
operators merge and extract introduced in the previous section play an important role in
the definition.

In the quantum case, the get operation must not discard the irrelevant part of an input
state, unlike the classical one that was defined as a projection. Such a quantum get and the
corresponding put operations can be defined in a form of currying and uncurrying:

Definition curryT,n,m : lensn,m → T 2n → (T 2n−m)2m

.
Definition uncurryT,n,m : lensn,m → (T 2n−m)2m → T 2n

.

The type parameter T is intended to vary over C-modules, whose archetypical example is
C itself. The result of applying curryℓ to an input state σ ∈ T 2n is a function that takes
two indexing tuples v ∈ 2m and w ∈ 2n−m and returns σ(merge v w), the evaluation of
σ at the combined index of v and w along ℓ. Its inverse uncurryℓ is defined similarly as
σ(extract v)(extract∁ v) for σ ∈ (T 2n−m)2m and v ∈ 2n.

We verify that curry and uncurry form an isomorphism by cancellation lemmas:

Lemma curryK : uncurryℓ ◦ curryℓ = idT 2n .
Lemma uncurryK : curryℓ ◦ uncurryℓ = id(T 2n−m )2m .

When specialized to T := C, we can further follow another isomorphism derived from the
adjunction between the category Set of sets and Vect of vector spaces, showing that our
curry is actually equivalent to the currying for tensor products in Vect:

C2n ∼=
(
C2n−m

)2m

= Set
(

2m,C2n−m
)
∼= Vect

(
C2m

,C2n−m
)

.

An m-qubit quantum gate G is a linear transformation on C2m , and it can be represented
by a matrix. The action of this matrix on a 2m-dimensional vector is computed only by
scalar multiplications and additions. Therefore, the action can be extended to T 2m for
any C-module T . We are thus led to endow such G with a polymorphic type of linear
transformations indexed by T .

G : ∀T : C-module, T 2m linear−→ T 2m
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Along the curry-uncurry isomorphism above, a gate G can be applied to a larger number
of qubits, to become composable in a circuit. This realizes quantum focusing (Figure 5).

focusℓ G := Λ T.(uncurryℓ ◦GT 2n−m ◦ curryℓ)

So far, the type of G has told that each instance GT is linear and can be represented by
a matrix, but not that they are the same matrix for any T . We impose the uniqueness of the
matrix as an additional property as follows.

∃M :M2m(C), ∀T : C-module, ∀s : T 2m

, GT (s) = Ms.

Here the multiplication Ms is defined for s = (s1, . . . , s2m)t and M = (M(i,j))i,j as

Ms :=
∑

1≤j≤2m

(M(1,j)sj , . . . , M(2m,j)sj)t.

This existence of a unique matrix representation implies the uniformity of the actions of G,
which amounts to naturality with respect to the functor (−)2m :

T T 2m

T 2m

T ′ T ′2m

T ′2m

∀φ φ2m
φ2m

GT

GT ′

We proved conversely that this naturality implies the uniqueness of the matrix. We shall
incorporate naturality, instead of a matrix, in our definition of quantum gates.

5 Defining quantum gates

Using MathComp, we can easily present the concepts described in the previous sections.
From here on, we fix K to be a field, and denote by K1 the one-dimensional vector space
over K to distinguish them as different types.

We first define quantum states as the double power T 2n discussed in Section 2. It is
encoded as a function type T n̂ from n-tuples of some finite type I to a type T . For qubits, we
shall have I = [[[2]]] = {0, 1}, but we can also naturally represent qutrits (quantum information
units with three states) by choosing I = [[[3]]].

Variables (I : finite type) (dI : I) (K : field) (T : K-module).
Definition T n̂ := In

finite−−−→ T.
Definition dpmapm,T1,T2 (φ : T1 → T2) (s : T1

m̂) : T2
m̂ := φ ◦ s.

This construction, (−)n̂, can be regarded as a functor with its action on functions provided
by dpmap, that is, any function φ : T1 → T2 can be extended to dpmap φ : T1

n̂ → T2
n̂, which

are drawn as the vertical arrows in the naturality square in the previous section.
We next define quantum gates as natural transformations (or morphisms).

Definition morlinm,n := ∀ T : K-module, T m̂
linear−−−→ T n̂.

Definition naturalitym,n (G : morlinm,n) :=

∀(T1 T2 : K-module), ∀(φ : T1
linear−−−→ T2), (dpmap φ) ◦ (G T1) = (G T2) ◦ (dpmap φ).

Record morm,n := {G : morlinm,n | naturality G}.
Notation endon := (morn,n).
Definition unitary_morm,n (G : morm,n) := ∀s, t, ⟨GK1 s | GK1 t⟩ = ⟨s | t⟩.
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A crucial fact we rely on here is that, for any K-module T , MathComp defines the K-module
of the finite functions valued into it, so that T n̂ is a K-module. This allows us to define
the type morlin of polymorphic linear functions between T m̂ and T n̂, and further combine
it with naturality into the types morm,n of morphisms from (−)m̂ to (−)n̂ and endon of
endo-morphisms.

We leave unitarity as an independent property, called unitary_mor, since it makes sense
to have non-unitary morphisms in some situations.

Concrete quantum states can be expressed directly as functions in (K1)n̂, or as a linear
combination of computational basis vectors |v⟩, where v : In is the index of the only 1 in the
vector.

Definition |v⟩ : (K1)n̂ := (v′ : In) 7→
{

1 if v = v′

0 otherwise

For a concrete tuple, we also write |i1, . . . , in⟩ for |[tuple i1; . . . ; in]⟩. This representation of
states allows us to go back and forth between computational basis states and indices, and is
amenable to proofs.

Using this basis, one can also define a morphism from its matrix representation (expressed
as a nested double power, in column-major order). We define the CNOT gate as mapping
from computational basis indices to column vectors, using v[i] as a notation for the ith
element of the tuple v, aka tnth v i. The expression ket_bra k b stands for the product of
a column vector and a row vector, resulting in an m× n matrix (written |k⟩ ⟨b| in the Dirac
notation). We use it to define the Hadamard gate as a sum of matrix units. Both matrices
are then fed to dpmor to obtain morphisms.

Definition dpmorm,n : ((K1)n̂)
m̂

→ morm,n.

Definition ket_bram,n (k : (K1)m̂) (b : (K1)n̂) : ((K1)n̂)
m̂

:= v 7→ (k v) · b.
Definition cnot : endo2 := dpmor (v : [[[2]]]2 7→ |v[0], v[0]⊕ v[1]⟩).
Definition hadamard : endo1 :=

dpmor
(

1√
2

(ket_bra |0⟩ |0⟩+ ket_bra |0⟩ |1⟩+ ket_bra |1⟩ |0⟩ − ket_bra |1⟩ |1⟩)
)

.

As explained in Section 4, naturality for a morphism is equivalent to the existence of a
uniform matrix representation.

Lemma naturalityP : naturality G ←→ ∃M, ∀T, s, GT s = (dpmor M)T s.

On the right hand side of the equivalence we use the extensional equality of morphisms,
which quantifies on T and s. By default, it is not equivalent to Coq’s propositional equality;
however the two coincide if we assume functional extensionality and proof irrelevance, two
relatively standard axioms inside Coq.

Lemma morP : ∀(F, G : morm,n), (∀T, s, FT s = GT s)←→ F = G.

While our development distinguishes between the two equalities, in this paper we will not
insist on the distinction, and just abusively write F = G for extensional equality too. Only
in Section 9 will we use those axioms to prove and use the above lemma.

6 Building circuits

The currying defined in Section 4 allows us to compose circuits without referring to a
global set of qubits. This is obtained through two operations: (sequential) composition of
morphisms, which just extends function composition, and focusing through a lens, which
allows us to connect the wires of a gate into a larger circuit.
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Definition •n,m,p : morm,p → morn,m → morn,p.
Definition focusn,m : lensn,m → endom → endon.

To define focus, we combine currying and polymorphism into focuslin as we did in Section 4,
and add a proof of naturality.

Definition focuslinn,m (ℓ : lensn,m) (G : endom) : morlinn,n :=
ΛT. (uncurry ℓ)T ◦G

T n̂−m ◦ (curry ℓ)T .
Lemma focusN ℓ G : naturality (focuslin ℓ G).
Definition focusn,m ℓ G := (a morphism packing focuslin ℓ G and focusN ℓ G).

In particular, focus and sequential composition satisfy the following laws, derived from
naturality and lens combinatorics.

Lemma focus_comp : focusℓ (F •G) = (focusℓ F ) • (focusℓ G).
Lemma focusM : focus(lens_comp ℓ ℓ′) G = focusℓ (focusℓ′ G).
Lemma focusC : ℓ and ℓ′ disj.→ (focusℓ F ) • (focusℓ′ G) = (focusℓ′ G) • (focusℓ F ).
Lemma unitary_comp : unitary_mor F → unitary_mor G→ unitary_mor (F •G).
Lemma unitary_focus : unitary_mor G→ unitary_mor (focusℓ G).

The law focus_comp states that the sequential composition of morphism commutes with
focusing. Similarly, focusM states that the composition of lenses commutes with focusing.
The law focusC states that the sequential composition of two morphisms focused through
disjoint lenses (i.e. lenses whose codomains are disjoint) commutes. The last two lemmas
are about unitarity. Since all circuits can be built from unitary basic gates using sequential
composition and focus, they are sufficient to guarantee unitarity for all of them.

7 Proving correctness of circuits

Once we have defined a circuit by combining gates through the above functions, we want
to prove its correctness. Usually this involves proving a relation between the input and the
output of the transformation, which can be expressed as a behavior on computational basis
vectors. In such situations, the following lemmas allow the proof to progress.

Variables (n m : N) (ℓ : lensn,m).
Definition dpmerge : In → (K1)m̂ linear−−−→ (K1)n̂.
Lemma focus_dpbasis : (focusℓ G)K1 |v⟩ = dpmerge v (GK1 |extract v⟩).
Lemma dpmerge_dpbasis : dpmerge v |v′⟩ = |merge v′ (extract∁ v)⟩.
Lemma decompose_scaler : ∀(σ : (K1)n̂), σ =

∑
v:Ik σ(v) · |v⟩.

The function dpmerge embeds the result of a quantum gate applied to a part of the system
into the whole system, using the input computational basis vector for complement; this can
be seen as an asymmetric variant of the put operation. It is defined using uncurryℓ and
dpmap. It is only introduced and eliminated through the two lemmas following. The helper
law focus_dpbasis allows one to apply the morphism G to the local part of the basis vector
v. The result of this application must then be decomposed into a linear combination of
(local) basis vectors, either by using the definition of the gate, or by using decompose_scaler.
One can then use linearity to obtain terms of the form dpmerge v |v′⟩ and merge the local
result into the global quantum state. Linear algebra computations have good support in
MathComp, so we do not need to extend it much.
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Extraction and merging only rely on lens-related lemmas, orthogonal to the linear algebra
part. We have not yet developed a complete theory of lenses, but we have many such lemmas.
The following ones are of particular interest:

Section lens_index.
Variables (n m : N) (i : [[[n]]]) (ℓ : lensn,m).
Definition lens_index (H : i ∈ ℓ) : [[[m]]].
Lemma tnth_lens_index : ∀(H : i ∈ ℓ), ℓ[lens_index H] = i.
Lemma tnth_merge : ∀(H : i ∈ ℓ), (merge v v′)[i] = v[lens_index H].
Lemma tnth_extract : (extract v)[j] = v[ℓ[j]].
Lemma mem_lensC : (i ∈ ℓ∁) = (i /∈ ℓ).
Lemma mem_lens_comp : ∀(H : i ∈ ℓ), (i ∈ lens_comp ℓ ℓ′) = (lens_index H ∈ ℓ′).
End lens_index.
Lemma tnth_mergeC : ∀(H : i ∈ ℓ∁), (merge v v′)[i] = v′[lens_index H].

The expression lens_index H , where H is a proof that i is in ℓ, denotes the ordinal position
of i in ℓ, hence the statement of tnth_lens_index. It is particularly useful in tnth_merge
and tnth_mergeC, where it allows one to prove equalities of tuples and lenses through case
analysis on the boolean expression i ∈ ℓ (using mem_lensC for conversion).

Using these two techniques we have been able to prove the correctness of a number of
pure quantum circuits, such as Shor’s 9-qubit code or the GHZ preparation.

8 Concrete examples

When working on practical examples we move to more concrete settings. Namely, we use C
as the coefficient field, which can also be seen as the vector space Co = C1. The indices are
now in I = [[[2]]] = {0, 1}. In this section we use Coq notations rather than the mathematical
ones of the previous sections, so as to keep close to the actual code.

As an example, let us recall the circuit diagram of Shor’s code (Figure 1). It consists
of two smaller components, bit-flip and sign-flip codes (Figures 2 and 3), in such a way
that three bit-flip codes are placed in parallel and surrounded by one sign-flip code. This
construction can be expressed straightforwardly as the following Coq code.

Definition bit_flip_enc : endo3 := focus [lens 0; 2] cnot • focus [lens 0; 1] cnot.
Definition bit_flip_dec : endo3 := focus [lens 1; 2; 0] toffoli • bit_flip_enc.
Definition hadamard3 : endo3 :=

focus [lens 2] hadamard • focus [lens 1] hadamard • focus [lens 0] hadamard.
Definition sign_flip_dec := bit_flip_dec • hadamard3.
Definition sign_flip_enc := hadamard3 • bit_flip_enc.
Definition shor_enc : endo9 :=
focus [lens 0; 1; 2] bit_flip_enc • focus [lens 3; 4; 5] bit_flip_enc •
focus [lens 6; 7; 8] bit_flip_enc • focus [lens 0; 3; 6] sign_flip_enc.

Definition shor_dec : endo9 := ...

We proved that Shor’s code is the identity on an error-free channel:

Theorem shor_code_id : (shor_dec • shor_enc) |i, 0, 0, 0, 0, 0, 0, 0, 0⟩ = |i, 0, 0, 0, 0, 0, 0, 0, 0⟩.

The proof is compositional, relying on lemmas for each subcircuit.

Lemma cnotE : cnot |i, j⟩ = |i, i + j⟩.
Lemma toffoliE00 : toffoli |0, 0, i⟩ = |0, 0, i⟩.
Lemma hadamardK : ∀T, involutive hadamardT .
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1 bit_flip_enc ¦ i, j, k 〉
2 rewrite /=.
3 = focus [lens 0; 2] cnot (focus [lens 0; 1] cnot ¦ i, j, k 〉)
4 rewrite focus_dpbasis.
5 = focus [lens 0; 2] cnot (dpmerge [lens 0; 1] [tuple i; j; k]
6 (cnot ¦ extract [lens 0; 1] [tuple i; j; k]〉)
7 simpl_extract.
8 = focus [lens 0; 2] cnot (dpmerge [lens 0; 1] [tuple i; j; k] (cnot ¦ i, j 〉))
9 rewrite cnotE.

10 = focus [lens 0; 2] cnot (dpmerge [lens 0; 1] [tuple i; j; k] ¦ i, i + j 〉)
11 rewrite dpmerge_dpbasis.
12 = focus [lens 0; 2] cnot ¦ merge [lens 0; 1] [tuple i; i + j]
13 (extract (lensC [lens 0; 1]) [tuple i; j; k]) 〉
14 simpl_merge.
15 = focus [lens 0; 2] cnot ¦ i, i + j, k 〉

Figure 6 Excerpt of interactive proof of bit_flip_enc_ok.

Lemma bit_flip_enc_ok : bit_flip_enc |i, j, k⟩ = |i, i + j, i + k⟩.
Lemma bit_flip_toffoli : bit_flip_dec • bit_flip_enc = focus [lens 1;2;0] toffoli.
Lemma sign_flip_toffoli: sign_flip_dec • sign_flip_enc = focus [lens 1;2;0] toffoli.

The notation (i : [[[m]]]) in expressions (here in flip) denotes that we have a proof that i ∈ [[[m]]];
in the actual code one uses specific function to build such dependently-typed values. The
first 3 lemmas describe properties of the matrix representation of gates, and involve linear
algebra computations. The proof of HadamardK also involves some real computations about√

2. The remaining 3 lemmas and the theorem do mostly computations on lenses. In total,
there were about 100 lines of proof.

To give a better idea of how the proofs proceed, we show a few steps of the beginning of
bit_flip_enc_ok, in Figure 6, interspersing tactics on a gray background between quantum
state expressions and equations. Lines beginning with an “=” symbol state that the expression
is equal to the previous one.

Simplifying on line 2 reveals the focused application of the two cnot gates. Rewriting
with focus_dpbasis, on line 4, applies the first gate directly to a basis vector. The helper
tactic simpl_extract, on line 7, computes the tuple obtained by extract (MathComp is
not good at computing in presence of dependent types). It results here in the vector |i, j⟩,
which we can rewrite with cnotE. As a result, on line 10, dpmerge is applied to a basis vector,
so that we can rewrite it with dpmerge_dpbasis. Again, on line 14, we use a helper tactic
simpl_merge, which uses the same code as simpl_extract to simplify the value of the merge
expression. We obtain |i, i + j, k⟩ as result after the first gate, and can proceed similarly
with the second gate to reach |i, i + j, i + k⟩.

As we explained above, our approach cleanly separates computation on lenses from linear
algebra parts. Namely, in the above proof we have three logical levels: focus_dpbasis and
dpmerge_dpbasis let one get in and out of a focus application; simpl_extract and simpl_merge
are doing lens computations; and finally cnotE uses a property of the specific gate.

The proof of shor_code_id is more involved as the Hadamard gates introduce superposi-
tions. The code can be found in the file qexamples_shor.v of the accompanying development,
and is about 30 lines long. We will just explain here the main steps of the proof. The basic
idea is to pair the encoders and decoders, and to turn them into Toffoli gates, which happen
to be identities when the extra inputs are zeros. The first goal is to prove that

(shor_dec • shor_enc) |i, 0, 0, 0, 0, 0, 0, 0, 0⟩ =
focus [lens 0;3;6] (sign_flip_dec • sign_flip_enc) |i, 0, 0, 0, 0, 0, 0, 0, 0⟩
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|0⟩ H •
|0⟩ •
|0⟩ •
|0⟩ •
|0⟩

Figure 7 5-qubit GHZ state preparation.

|φ1⟩ × |φ5⟩
|φ2⟩ × |φ4⟩
|φ3⟩ |φ3⟩
|φ4⟩ × |φ2⟩
|φ5⟩ × |φ1⟩

Figure 8 5-qubit reversed state circuit.

If we expand the compositions on both sides, we see that they both start by applying
focus [lens 0;3;6] sign_flip_enc to the input. We can use focus_dpasis and simpl_extract
to progress, but due to the Hadamard gates in sign_flip_enc, the state of the corresponding
3 qubits becomes non-trivial. However, we can use decompose_scaler to see this state as a
sum of unknown computational basis vectors, and progress using linear algebra lemmas, to
reach the bit-flip part of the circuit. Once we do that, the remainder of the proof consists in
using focusC to reorder the bit-flip encoders and decoders, so that the corresponding ones are
sequentially paired. We can then use focus_comp to produce applications of bit_flip_dec •
bit_flip_enc, which can be converted to Toffoli gates by bit_flip_toffoli. Then we observe
that in the input the ancillaries are all zeros, so that the result of each gate is the identity,
which concludes the first part of the proof. Then we can proceed similarly to prove that the
remaining composition of the sign-flip encoder and decoder is the identity, which concludes
the proof.

Another interesting example is the Greenberger-Horne-Zeilinger (GHZ) state preparation.
It is a generalization of the Bell state, resulting in a superposition of |0⟩⊗n and |1⟩⊗n, which
denote states composed of n zeroes and ones, respectively. As a circuit, it can be expressed
by the composition of one Hadamard gate followed by n CNOT gates, each one translated
by 1 qubit, starting from the state |0⟩⊗n. The 5-qubit case is shown in Figure 7.

We can write the transformation part as follows in our framework (for an arbitrary n):

Lemma succ_neq n (i : [[[n]]]) : (i : [[[n + 1]]]) ̸= (i + 1 : [[[n + 1]]]).
Fixpoint ghz n :=

match n as n return endon.+1 with
| 0 => hadamard
| m.+1 => focus (lens_pair (succ_neq (m:[m.+1]))) cnot •

focus (lensC (lens_single (m.+1:[m.+2]))) (ghz m)
end.

The definition works by composing ghz(m), which has type endon (since n = m + 1), with an
extra CNOT gate. Note that we use dependent types, and the recursion is at a different type.
The lemma succ_neq is a proof that i ̸= i + 1 in [[[n + 1]]]. It is used by lens_pair to build
the lens [lens m; m + 1] from [[[2]]] to [[[m + 2]]]. lens_single builds a singleton lens, so that
lensC (lens_single (m.+1:[m.+2])) is the lens from [[[m + 1]]] to [[[m + 2]]] connecting the inner
circuit to the first m + 1 wires. We can express the target state and correctness property as
follows:

Definition ghz_state n : (C1)n̂+1 :=
1√
2

·
(
|0⟩⊗(n+1) + |1⟩⊗(n+1)).

Lemma ghz_ok : ghz n |0⟩⊗(n+1) = ghz_state n.

Due to the nesting of lenses, the proof includes a lot of lens combinatorics, and is about 50
lines long. We only show the last few lines of the proof in Figure 9, as they include typical
steps. They prove the action of the last CNOT gate of the circuit when it propagates a 1 to
the last qubit of the state. The notation [tuple F i | i < n] denotes the n-tuple whose ith
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1 lp := lens_pair (succ_neq (n : [n.+1]))
2 =======================================
3 merge lp [tuple 1; 1]
4 (extract (lensC lp) [tuple if i != n.+1 then 1 else 0 | i < n.+2])
5 = [tuple 1 | _ < n.+2]
6 apply eq_from_tnth => i; rewrite [RHS]tnth_mktuple.
7 case/boolP: (i \in lp) => Hi.
8 Hi : i \in lp
9 ============================

10 tnth (merge lp [tuple 1; 1]
11 (extract (lensC lp) [tuple if i0 != n.+1 then 1 else 0 | i0 < n.+2])) i = 1
12 rewrite tnth_merge -[RHS](tnth_mktuple (fun=>1) (lens_index Hi)).
13 tnth [tuple 1; 1] (lens_index Hi) = tnth [tuple 1 | _ < 2] (lens_index Hi)
14 by congr tnth; eq_lens.
15 Hi : i \notin lp
16 ============================
17 tnth (merge lp [tuple 1; 1]
18 (extract (lensC lp)) [tuple if i0 != n.+1 then 1 else 0 | i0 < n.+2])) i = 1
19 rewrite -mem_lensC in Hi.
20 rewrite tnth_mergeC tnth_extract tnth_mktuple.
21 Hi : i \in lensC lp
22 ============================
23 (if tnth (lensC lp) (lens_index Hi) < n.+1 then 1 else 0) = 1
24 rewrite tnth_lens_index ifT //.
25 i != n.+1
26 move: Hi; rewrite mem_lensC !inE; apply contra.
27 i == n.+1 -> (i == (n : [n.+2])) || (i == (n.+1 : [n.+2]))
28 by move/eqP => Hi; apply/orP/or_intror/eqP/val_inj.

Figure 9 Excerpt of interactive proof of ghz_ok.

element is F i. Lemma eq_from_tnth on line 6 allows index-wise reasoning. The tnth_mktuple
on the same line extracts the ith element of the tuple comprehension on the right-hand side.
We immediately do a case analysis on whether i is involved in the last gate. In the first case,
we have i ∈ lens_pair(succ_neq(n : [[[n + 1]]])), so we can use tnth_merge on the left-hand
side. On the right-hand side we use tnth_mktuple backwards, to introduce a 2-tuple. As a
result, we obtain on line 13 a goal on which we can use congruence, and conclude with eq_lens
as both tuples are equal. The second case, when i /∈ lens_pair(succ_neq(n : [[[n + 1]]])), is
more involved. By using mem_lensC in Hi, we can use tnth_mergeC, followed by tnth_extract
and tnth_mktuple to reach the goal at line 21. But then the argument to tnth is precisely
that of Hi, so this expression can be rewritten to i by tnth_lens_index. From line 25 on it
just remains to prove that i cannot be n + 1, which is true since it is in the complement of
lens_pair (succ_neq (n : [[[n + 1]]])).

9 Parallel composition

In this section, we extend our theory with noncommutative and commutative monoids of
the sequential and parallel compositions of morphisms. Thanks to quantum state currying,
we have been able to define focusing and composition of circuits without relying on the
Kronecker product. This also means that parallel composition is not primitive in this system.
Thanks to focusC, morphisms applied through disjoint lenses do commute, but it is harder
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to extend this to an n-ary construct, as done in CoqQ [20]. Yet it is possible to define
parallel composition using MathComp big operators by defining a new notion of commuting
composition of morphisms. Note that big operators on monoids require axioms based on
propositional equality, rather than the extensional equality of morphisms, so in this section
we assume functional extensionality and proof irrelevance, which allows us to use lemma
morP of Section 5.

As a first step, we define the noncommutative monoid of morphisms, using the sequential
(vertical in category-theoretic terminology) composition as monoid operation and the identity
morphism as unit element. Registering the associativity and unitality laws with Hierarchy
Builder [6], allows one to use the corresponding m-ary big operator.

HB.instance Definition _ := Monoid.isLaw.Build on •n,n,n and idmorn.
Definition compn_mor m (F : [[[m]]] → endon) (P : pred [[[n]]]) :=

\big[•n,n,n/idmorn](i<n, P i) F i.

By itself, it just allows us to define some circuits in a more compact way. It will also allow
us to connect with the commutative version.

The parallel (horizontal) composition of morphisms is derived from vertical composition,
in the case where the morphisms focused in a circuit have disjoint supports.

G1

G2

G3

:=

G1

G2

G3

( Turn the diagram 90 degrees clockwise to
see that it is a “horizontal” composition.

)
We construct a commutative monoid whose operation is the horizontal composition, by
reifying the notion of focused morphism (inside an n-qubit circuit), using the corresponding
lens to express the support.

Record foc_endon := {(m, ℓ, e) : N × lensn,m × endom | ℓ is monotone}.

The monotonicity of ℓ in focused morphisms is demanded for the canonicity and strictness of
their compositions. The arity m of the morphism is existentially quantified.

The actual Coq definition of foc_endo has four fields foc_m, foc_l, foc_e, and foc_s,
the first three corresponding to m, ℓ, e above, and the last one being the proof that ℓ is
monotone. We define mkFendo, a “smart constructor” that factorizes a given lens (lens_basis
and lens_perm in Section 3) into its basis (whose monotonicity proof being lens_sorted_basis)
and permutation to build a focused morphism.

Definition mkFendon,m (ℓ : lensn,m) (G : endom) :=
{| foc_s := lens_sorted_basis ℓ; foc_e := focus (lens_perm ℓ) G |}.

Focused morphisms come with both a unit element and an annihilating (zero) element.

Definition id_fendo := mkFendo (lens_empty n) (idmor I K 0).
Definition err_fendo := mkFendo (lens_id n) (nullmor n n).

The unit element id_fendo has an empty support, and the zero element err_fendo has a full
support.

A focused morphism can be used as an ordinary morphism at arity n by actually focusing
the morphism field e along the lens field ℓ (field projections foc_l and foc_e are denoted by
.ℓ and .e).

Definition fendo_mor (Φ : foc_endo) : endon := focus Φ.ℓ Φ.e.

We can then define commutative composition comp_fendo.
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Definition par_compp,q (F : endop) (G : endoq) : endop+q :=
(focus lens_left F ) • (focus lens_right G)

Definition comp_fendo (Φ Ψ : foc_endo) :={
mkFendo (Φ.ℓ ++ Ψ.ℓ : lensn,Φ.m+Ψ.m) (par_comp Φ.e Ψ.e) if Φ.ℓ and Ψ.ℓ are disjoint
err_fendo otherwise

To make composition commutative, we return the zero element whenever the lenses of the
two morphisms are not disjoint. If they are disjoint, we return their composition, using the
union of the two lenses. We require lenses to be monotone to guarantee associativity.

Using this definition of commutative composition, we can declare the commutative monoid
structure on focused morphisms and define their m-ary parallel composition. When the
lenses are pairwise disjoint, it coincides with compn_mor.

HB.instance Definition _ := Monoid.isComLaw.Build on comp_fendo and id_fendo.
Variables (m : N) (F : [[[m]]] → foc_endo) (P : pred [[[m]]]).
Definition compn_fendo := \big[comp_fendo/id_fendo](i<m, P i) F i.
Hypothesis Hdisj : ∀i, j, i ̸= j → (F i).ℓ and (F j).ℓ are disjoint.
Theorem compn_mor_disjoint : compn_mor (fendo_mor ◦ F) P = fendo_mor compn_fendo.

To exemplify the use of this commutative monoid, we proved that the circuit that consists
of ⌊n/2⌋ swap gates that swap the ith and (n− i− 1)th of n qubits returns a reversed state
(Figure 8).

Lemma rev_ord_neqn (i : [[[⌊n/2⌋]]]) : (i : [[[n]]]) ̸= (n − i − 1 : [[[n]]]).
Definition rev_circuit n : endon :=

compn_mor (i 7→ focus (lens_pair (rev_ord_neq i)) swap) xpredT.
Lemma rev_circuit_ok : ∀(i : [[[n]]]),

proj (lens_single (n − i − 1 : [[[n]]])) (rev_circuit n σ) = proj (lens_single i) σ.

Here rev_ord_neq produces an inequality in [[[n]]], which we can use to build the required pair
lens to apply swap.

10 Related works

There are many works that aim at the mechanized verification of quantum programs [14].
Here we only compare with a number of like-minded approaches, built from first principles, i.e.
where the formalization includes a model of computation based on unitary transformations,
which justifies the proof steps.

Qiskit [16] is a framework for writing quantum programs in Python. While it does not
let one write proofs, it has the ability to turn a circuit into a gate, allowing one to reuse it in
other circuits, so that it has definitional compositionality.

QWIRE [15] and SQIR [11] define a quantum programming language and its Hoare logic
in Coq, modeling internally computation with matrices and Kronecker products. QWIRE
and SQIR differ in their handling of variables: in QWIRE they are abstract, handled through
higher-order abstract syntax, but in SQIR, which was originally intended as an intermediate
language for the compilation of QWIRE, they are concrete natural numbers, denoting indices
of qubits. The authors note in their introduction [11] that “[abstract variables] necessitate
a map from variables to indices, which we find confounds proof automation”. They go on
remarking that having a distinct semantics for pure quantum computation, rather than
relying only on the density matrices needed for hybrid computations, considerably simplifies
proofs; this justifies our choice of treating specifically the pure case. While QWIRE satisfies
definitional compositionality, this is not the case for SQIR, as circuits using fixed indices
cannot be directly reused. We have not proved enough programs to provide a meaningful
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comparison, yet it is noteworthy that our proof of GHZ, which uses virtually no automation,
is about half the size of the proof in SQIR [11]. The main difference is that we are able to
solve combinatorics at the level of lenses, while they have to work all along with a symbolic
representation of matrices, that is a linear combination of matrix units (Dirac’s notation), to
avoid working directly on huge matrices.

VyZX [12, 13] formalizes the ZX-calculus in Coq, on top of SQIR. Its goal is to prove
graph-rewriting rules, and ultimately to build a verified optimizer for the ZX-calculus.
However, as they state themselves, the graphical nature of the calculus appears to be a
major difficulty, and only restricted forms of the rules are proved at this point. Since the
ZX-calculus itself enjoys compositionality, albeit at the graph level, this is a promising line of
work. It would be interesting to see if our approach can make proving such graph-rewriting
rules easier. As preliminary experiment, we have proved the triangular identity involving a
cup and a cap, by defining an asymmetric version of focusing. More generally, finding a nice
way to compose graphs is essential, and concepts such as lenses could have a role there.

CoqQ [20] builds a formalized theory of Hilbert spaces and n-ary tensor products on
top of MathComp, adding support for the so-called labelled Dirac notation. Again they
define a Hoare logic for quantum programs, and are able to handle both pure and hybrid
computations. While the labelled Dirac notation allows handling commutation comfortably,
it does not qualify as compositional, since it is based on a fixed set of labels, i.e. one cannot
mix programs if they do not use the same set of labels.

Unruh developed a quantum Hoare logic and formalized it in Isabelle, using a concept of
register [18] for which he defines a theory, including operations such as taking the complement
of a register. His registers in some meaning generalize our focus function, as they allow
focusing between arbitrary types rather than just sets of qubits. Since one can compose
registers, his approach is compositional, for both definitions and proofs, and the abstraction
overhead is avoided through automation. However, while each application of focus to a lens
can be seen as a register, he has not separated out a concrete combinatorics based on finite
objects similar to our notion of lens.

In a slightly different direction, Qbricks [3] uses the framework of path-sums to allow the
automatic proof of pure quantum computations. The notion of path is more expressive than
that of computational basis state, and allows one to represent many unitary transformations
as maps from path to path, making calculations easier. It would be interesting to see whether
it is possible to use them in our framework.

Most approaches above support not only pure quantum computation but also hybrid
quantum-classical computation. While we have concentrated here on pure computation, we
have already extended our approach to the density-matrix interpretation required to support
hybrid computations, and verified that it commutes with focusing. Practical applications are
left to future work.

Note also that, while some of the above works use dependent types to represent matrix
sizes for instance, they all rely on ways to hide or forget this information as a workaround.
On the other hand, our use of dependent types is strict, only relying on statically proved
cast operators to adjust types where needed, yet it is lightweight enough for practical use.

Some other aspects of our approach can be related to programming language theory. For
instance, the way we shift indices during currying is reminiscent of De Bruijn indices, and our
merge operation shifts indices in the precise same way as the record concatenation defined
in the label-selective λ-calculus [8]. This suggests that our currying of quantum states is
actually similar to the currying occurring in that calculus.
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11 Conclusion

We have been able to build a compositional model of pure quantum computation in Coq,
on top of the MathComp library, by using finite functions, lenses, and focusing. We have
applied the development to prove the correctness of several quantum circuits. An interesting
remark is that, while we started from the traditional view of seeing quantum states as
tensor products, our implementation does not rely on the Kronecker product for composing
transformations. Since the Kronecker product of matrices can be cumbersome to work with,
this is a potential advantage of this approach.

Many avenues are open for future work. First we need to finish the proof of Shor’s code,
this time for erroneous channels; paper proofs are simple enough but the devil is in the details.
Next, building on our experience, we would like to formalize and abstract the algebraic
theory of lenses. Currently we rely on a large set of lemmas developed over more than a
year, without knowing their interdependencies; such a theory would have both theoretical
and practical implications. Third, we are interested in the category-theoretic aspects of this
approach, and would like to give an account of focus, explaining both the relation between a
lens and its action, and the structural properties of focusing.
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Abstract
In 1995, McKay and Radziszowski proved that the Ramsey number R(4,5) is equal to 25. Their
proof relies on a combination of high-level arguments and computational steps. The authors have
performed the computational parts of the proof with different implementations in order to reduce
the possibility of an error in their programs. In this work, we prove this theorem in the interactive
theorem prover HOL4 limiting the uncertainty to the small HOL4 kernel. Instead of verifying their
algorithms directly, we rely on the HOL4 interface to MiniSat to prove gluing lemmas. To reduce the
number of such lemmas and thus make the computational part of the proof feasible, we implement a
generalization algorithm. We verify that its output covers all the possible cases by implementing a
custom SAT-solver extended with a graph isomorphism checker.
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1 Introduction

Formalizations are useful to verify that there are no bugs in some software and also that there
are no errors in a mathematical proof. Researchers write their formalizations in an interactive
theorem prover also called a proof assistant. An interactive theorem prover transforms
high-level proof steps, written by its user in the language of the interactive theorem prover,
into low-level proof steps at the level of logical rules and axioms. These low-level steps are
then verified by the kernel of the proof assistant. Formalizations are thus doubly appropriate
when a proof combines advanced human-written arguments and computer-generated lemmas.
This is the case for the four-color theorem [3] which was proved by Appel and Haken in 1976
and the Kepler conjecture [13] which was proved by Hales and Ferguson in 1998.

In those two cases, a human argument is used to reduce a potentially infinite number
of cases to a finite number. Then, a computer algorithm is used to generate a proof for
each of these cases. The generated proofs are too numerous to be verified manually and so
the generating code, which is in those cases quite complicated, had to be trusted. To avoid
trusting that the generating code fits together with the human argument, a formalization
of the four-color theorem [11] was completed in the Coq proof assistant [4] by Gonthier in
2005 and a formalization of the Kepler conjecture [12] was completed in the HOL Light proof
assistant [14] by a team led by Hales in 2014.

The case of R(4, 5) ≤ 25 is different. Since it is a finite problem, one could prove it by
considering a finite number of cases. Since there are 25×24

2 = 300 edges in a graph with 25
vertices, a naive proof would consist of checking the presence of a 4-clique or a 5-independent
set in all graphs of size 25 which would amount to 2300 ≈ 1090 graphs. Another approach
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would be to encode the clique constraints into a SAT solver. This reduces the search space
dramatically but so far no proof of R(4, 5) ≤ 25 relying only on calls to SAT solvers has been
found.

The proof of McKay and Radziszowski [18] first uses a high-level argument and then relies
on a pre-processing algorithm to reduce the number of cases to a manageable number. Each of
those cases requires proving that a pair of graph cannot occur together in an R(4, 5, 25)-graph.
These kinds of problems are called gluing problems. Our formalization of R(4, 5) = 25 in the
HOL4 theorem prover [19] will mostly follow the initial splitting argument. We construct a
slightly different pre-processing algorithm that uses gray edges instead of removing vertices.
We also make use of the HOL4 interface [20] to the SAT solver MiniSat [9], instead of re-using
the custom-built solver of McKay and Radziszowski, to prove that the gluing problems are
unsatisfiable. This greatly simplifies our proof as we do not need to trace the proof steps of
their optimized solver and we do not have to replay those proof steps in HOL4. Additional
differences between our formal proof and the original proof are discussed in Section 8.

We now explain in more detail the different components of our formal proof. To conclude
that R(4, 5) = 25, we prove that R(4, 5) ≤ 25 and that R(4, 5) > 24. The statement
R(4, 5) > 24 can simply be proved by exhibiting an R(4, 5, 24)-graph. The existence of such
graph has been known since 1965 thanks to a construction by Kalbfleisch [16]. The formal
proof of the existence of an R(4, 5, 24)-graph is given in Section 6.2. The other parts of
this paper describe how to formally prove the more challenging statement R(4, 5) ≤ 25. In
Section 2, we first give three important definitions. In particular, we define the Ramsey
number R(4, 5) which is necessary to state the final theorem. In Section 3, we prove that in
an R(4, 5, 25)-graph there exists a vertex of degree d ∈ {8, 10, 12} and that the neighbors of
that vertex form an R(3, 5, d)-graph and the antineighbors form an R(4, 4, 24 − d)-graph as
illustrated in Figure 1. This vertex is referred to in other parts of the proofs as the splitting
vertex. In Section 4, we enumerate all possible R(3, 5, d)-graphs and R(4, 4, 24 − d)-graphs
modulo isomorphism. We then regroup similar graphs together in what we call generalizations.
In Section 5, we prove that there is no way to glue an R(3, 5, d)-generalization and an
R(4, 4, 24 − d)-generalization while respecting the clique constraints. This is achieved by
encoding the gluing into SAT and calling the HOL4 interface to MiniSat. In Section 5.2,
we improve the construction of generalizations by preferring ones resulting in easier gluing
problems. This selection is guided by a simplicity heuristic, which estimates how hard the
resulting SAT solving problems would be, as described in Section 5.1. In Section 6.1, we
connect the different parts of the proofs proving that formulas stated at different logical
levels (propositional, first-order and higher-order) imply each other in the desired way.

▶ Remark. Not every algorithm needs to have its computation steps verified in a formal
manner. Sometimes, it is enough to verify that the mathematical object produced by the
algorithm satisfies the desired properties. For example, we did not verify every step of the
nauty algorithm [17] which we rely on to normalize graphs in Section 4. Indeed, it is sufficient
to save the witness permutations used during graph normalization to show that two graphs
are isomorphic.

2 Preliminaries

Throughout our proof, we rely on the following definitions.

▶ Definition 1 (neighbors, antineighbors).
Given a graph (V, E):

the set of neighbors (blue-neighbors) of a vertex x ∈ V is {y ∈ V | y ̸= x ∧ (x, y) ∈ E},
the set of antineighbors (red-neighbors) of a vertex x ∈ V is {y ∈ V | y ̸= x ∧ (x, y) ̸∈ E}.



T. Gauthier and C. E. Brown 16:3

R(3, 5, d) R(4, 4, 24 − d)

R(4, 5, 25)

Figure 1 Neighbors (blue-neighbors) and antineighbors (red-neighbors) of a vertex of degree d in
an R(4, 5, 25)-graph.

▶ Definition 2 (Ramsey property).
The Ramsey property R(n, m, k) holds for a graph (V, E) if:

V has size k,
(V, E) does not contain a clique (blue-clique) of size n,
(V, E) does not contain an independent set (anticlique, red-clique) of size m.

We also use R(n, m, k) to refer to the set of graphs with property R(n, m, k).
A graph for which the property R(n, m, k) holds is called a R(n, m, k)-graph.

▶ Definition 3 (Ramsey number).
The Ramsey number R(n, m) is the least k ∈ N such that R(n, m, k) is empty.

In our formalization, a set of vertices V will be represented by a subset of nonnegative
integers. Moreover, we often use an equivalent formulation of graphs when discussing
algorithms on graphs. In the equivalent formulation, all graphs are complete graphs but
their edges are colored either blue or red. The correspondence between the two formulations
is straightforward. There is a blue edge in the second formulation if and only if there is an
edge in the first.

3 Degree Constraints

As an intermediate concept, we define Ro(r, s, n) to hold if R(r, s, n) is empty. It is easy to
see R(r, s) ≤ n iff Ro(r, s, n). In our formalization, we are primarily interested in proving
Ro(r, s, n) for values of r, s and n. In this section our focus is on reducing the goal of proving
Ro(4, 5, 25) to ruling out vertices of degrees 8, 10 or 12. All the lemmas presented in this
section are formalized in the file basicRamsey of our repository [10]. These lemmas are
reformulations of basic results in graph theory [5].

Given a graph (V, E)1 and a vertex v ∈ V , we write N (V,E)(v) for the set of neighbors of
v and A(V,E)(v) for the set of antineighbors of v. We will almost always omit the superscript
and write N (v) and A(v). The degree of v is defined to be the cardinality of N (v). Likewise,
the antidegree of v is the cardinality of A(v).

Several relevant smaller Ramsey numbers are well-known: R(2, s) = s, R(3, 3) = 6,
R(3, 4) = 9, R(3, 5) = 14 and R(4, 4) = 18. In our formalization we prove the Ro variant,
only proving the known values are upper bounds. We begin by sketching a description of
these results as well as some of the preliminary results used to obtain them.

1 We always implicitly assume the set V is finite.
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By considering complements of graphs we know that Ro(r, s, n) implies Ro(s, r, n). If
(V, E) ∈ R(r+1, s, n) and v ∈ V is a vertex of degree d, then (N (v), E) ∈ R(r, s, d). Likewise,
if (V, E) ∈ R(r, s + 1, n) and v ∈ V is a vertex with antidegree d, then (A(v), E) ∈ R(r, s, d).

Every graph in R(2, s, m) has no edges (since an edge would be a 2-clique). Thus every
graph in R(2, s, m) is an independent set of size m. This is impossible if s ≤ m, and so we
conclude Ro(2, m, m). Likewise, Ro(m, 2, m).

We next prove a well-known result that provides upper bounds for values of R(r, s).

▶ Lemma 4. If Ro(r + 1, s, m + 1) and Ro(r, s + 1, n + 1), then Ro(r + 1, s + 1, m + n + 2).

Proof. Assume we have a graph (V, E) in R(r + 1, s + 1, m + n + 2). We choose a vertex
v ∈ V with degree d and antidegree d′. We know (N (v), E) ∈ R(r, s + 1, d) and (A(v), E) ∈
R(r + 1, s, d′). We obtain a contradiction using d + d′ = m + n + 1, d < m + 1 (since
Ro(r + 1, s, m + 1)) and d′ < n + 1 (since Ro(r, s + 1, n + 1)). ◀

Applying the previous results, we immediately obtain Ro(3, 3, 6). We also obtain
Ro(3, 4, 10), but need the stronger result Ro(3, 4, 9).

There is an easy informal argument for why R(3, 4, 9) is empty. Assume (V, E) is a graph
in R(3, 4, 9). The results above ensure every vertex v ∈ V must have degree d < 4 (since
Ro(2, 4, 4)) and antidegree d′ < 6 (since Ro(3, 3, 6)). Since d + d′ = 8, we must have d = 3
and d′ = 5. We now consider the sum of the degrees of each vertex. Since the relation is
symmetric, the sum must be even, as each edge is counted as part of the degree of each of
the vertices of the edge. However, the sum is also 9 · 3 = 27, which is odd. Hence no such
graph exists. Below we describe our formalization of general results allowing us to prove
Ro(3, 4, 9). The results will also allow us to later prove every graph in R(4, 5, 25) must have
a vertex with even degree.

▶ Lemma 5. Let (V, E) be a graph in which every vertex has odd degree. For each U ⊆ V ,
U has odd cardinality if and only if Σu∈U |N (u)| is odd.

Proof. The proof follows by an induction over the finite set U . ◀

Applying Lemma 5 with U = V , we obtain that if V has odd cardinality and every vertex has
odd degree, then Σv∈V |N (v)| is odd. In particular for a hypothetical graph (V, E) ∈ R(3, 4, 9),
Σv∈V |N (v)| is odd since 9 and 3 are odd.

On the other hand we can prove Σv∈V |N (v)| is always even, though this requires two
inductions on finite sets. We first prove that if we extend a graph with a new vertex, the
neighbors of the new vertex in the larger graph contribute twice to the sum.

▶ Lemma 6. Let V be a finite set, u /∈ V and E be a symmetric relation (on V ∪ {u}).2 For
every finite set U , if N (V ∪{u},E)(u) = U , then

Σw∈V ∪{u}|N (V ∪{u},E)(w)| = Σv∈V |N (V,E)(v)| + 2|U |.

Proof. This is proved by induction on the finite set U . ◀

We can now prove the sum is even by induction on the finite set of vertices V .

▶ Lemma 7. For every finite set V and symmetric relation E, Σv∈V |N (V,E)(v)| is even.

2 In the formalization, E is assumed to be symmetric on the relevant type, ignoring V ∪ {u}.
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With Lemmas 5 and 7 we can conclude Ro(3, 4, 9) since the sum of the degrees of the
vertices in a hypothetical graph (V, E) ∈ R(3, 4, 9) would be both odd and even.

Using Lemma 4 we now immediately obtain Ro(3, 5, 14) and Ro(4, 4, 18), giving us all
the upper bounds for small Ramsey numbers we will need.

We now turn to the consideration of Ro(4, 5, 25). For the next steps in the proof, we assume
for the sake of contradiction that there exists a graph (V, E) ∈ R(4, 5, 25). Let v ∈ V with
degree d and antidegree d′ be given. Since (N (v), E) ∈ R(3, 5, d) and (A(v), E) ∈ R(4, 4, d′)
we know d < 14 and d′ < 18. Since d + d′ = 24, we must have d > 6. This provides our basic
upper and lower bounds on degrees of vertices in (V, E).

These same degree bounds are, of course, given in [18]. The argument in [18] considers
graphs in R(3, 5, d) and corresponding graphs in R(4, 4, 24 − d) that could hypothetically
correspond to N (v) and A(v) for a vertex v ∈ V . In [18], the case with d = 11 is ruled out since
if every vertex had degree 11, the sum of degrees would be odd, giving a contradiction. That
is, we can be assured of the existence of a vertex v ∈ V with degree d ∈ {7, 8, 9, 10, 12, 13}. In
our proof, we apply Lemmas 5 and 7 more generally to conclude that there must be a vertex
v ∈ V of even degree. Thus, we can be assured there is a v ∈ V with degree d ∈ {8, 10, 12}.

4 Enumeration of Graphs and Construction of Covers

Assuming that there exists a graph (V, E) ∈ R(4, 5, 25), there must exist a vertex v ∈ V

of degree d ∈ {8, 10, 12} as proven in Section 3. Thus, if we prove that for all d ∈ {8, 10, 12}
and for all pair of graphs G ∈ R(3, 5, d) and H ∈ R(4, 4, 24 − d), there is no way to color
edges connecting G and H without creating a 4-blue or a 5-red clique, then we would have
proved that Ro(4, 5, 25) (i.e. R(4, 5) ≤ 25).

Here is a simple approach. First, enumerate all the graphs in R(3, 5, d) and in R(4, 4, 24−
d), and then prove the absence of gluing between each pair of graphs (see Section 5). This
is however not efficient enough given our computational means. In Table 3, we estimated
that this approach would take more than 16,000 CPU days. To save time in both algorithms,
we regroup graphs that are similar to each other, differing only by a few edges, in what we
call generalizations. This way, our proofs will avoid repeating the same arguments in similar
situations. This idea reduces, with the help of a simplicity heuristic, the total computation
time to less than 950 CPU days as shown in Table 3.

From a set of graphs G, we will construct a set of generalizations G∗ (this is a set of set
of graphs) with the following properties. Every graph in G is a member of a generalization in
G∗ (we are not missing any case) and every graph in a generalization G∗ ∈ G∗ is in G (we
are not covering extra cases).

▶ Definition 8 (cover,exact cover).
A set of generalizations G∗ is a cover of a set of graphs G if G ⊆

⋃
G∗∈G∗ G∗.

A set of generalizations G∗ is an exact cover of a set of graphs G if G =
⋃

G∗∈G∗ G∗.

In a cover the generalizations do not need to be disjoint. Furthermore, our proof does not
fundamentally require the constructed covers to be exact and better covers may be obtained
by dropping this requirement. Yet, having exact covers simplify our presentation of the
gluing algorithm as it enable us to ignore all clique constraints containing the splitting vertex
(see Section 5).

ITP 2024
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4.1 Algorithm for Constructing an Exact Cover
In the following, we describe our base algorithm for constructing an exact cover for a set of
graphs G. Our algorithm differs from the one given in [18] where they decide on which vertex
to remove from a graph. This is equivalent in our algorithm to ignoring the color of all edges
connecting to that vertex. In contrast, our approach is more targeted and can decide whether
to ignore the color of an edge individually. Creating such alternative approach was crucial
for us. Indeed, following the original vertex removal method resulted in the creation of SAT
problems, which were difficult to reconstruct in HOL4 due to memory issues, negating most
of the advantage gained by regrouping graphs.

This will be achieved by incrementally growing a set of generalizations G∗
partial . We refer

to the set of graphs G ∈ G that are not currently covered by G∗
partial as Guncovered . Initially,

G∗
partial is empty and thus Guncovered is equal to G.

At each iteration of our algorithm, we randomly pick a graph G from Guncovered construct-
ing a singleton generalization G∗

0 = {G}. Then, we color one of the edges of G gray. This
represents a generalization G∗

1 that contains the two graphs obtained by coloring the gray
edge red or blue. Note that one of this graph is G and thus G ∈ G∗

1 and G∗
0 ⊆ G∗

1. In general,
the process starts from a generalization G∗

n represented as a graph with n gray edges. By
definition, the generalization G∗

n is defined to be the set of all graphs that can be obtained
by coloring its n gray edges red or blue in its representation. Then, the algorithm selects
randomly one edge to gray among edges respecting the following conditions: the produced
generalization G∗

n+1 must only contain graphs that are in G and (G∗
n+1 \ Gn) ∩ Guncovered

must contain at least ⌈2n−3⌉ graphs. The first condition makes the cover exact and the
second condition prevents large overlaps between generalizations. The coefficient ⌈2n−3⌉ was
experimentally determined and essentially ensures that at least 1

8 of the covered graphs by
the newly created generalization are not covered by previous generalizations.

This process is repeated graying one more edge per generalization step, as illustrated in
Figure 2. It stops when the number of gray edges exceeds a user-given limit or when there
are no more edges respecting the conditions.

When the generalization algorithm stops, it creates a maximal generalization G∗
max which

is added to the set of generalizations G∗
partial and the instantiations of G∗

max are removed
from the set Guncovered We keep adding new generalizations to G∗

partial by the same procedure
until the set Guncovered is empty and therefore G∗

partial is an exact cover of G.
We can reduce the size of the final cover G∗ by sampling multiple graphs in Guncovered

at each iteration of the algorithm. In our implementation, we sample 1000 graphs when
G = R(4, 4, k) and all graphs when G = R(3, 5, k). This produces one maximal generalization
for each of those graphs. We then select among them a generalization G∗ that contains a
maximum number of uncovered graphs. That is to say one for which |G∗ ∩ Guncovered | is
maximum. We call this strategy for selecting generalization the greedy cover strategy. Our
final strategy for constructing covers, described in Section 5.2, is a blend of the greedy cover
strategy and a strategy that minimizes the difficulty of resulting problems with respect to a
simplicity heuristic given in Section 5.1.

The nauty algorithm [17] is called to normalize graphs in G and in each generalization G∗.
By normalizing all graphs, we can check that two graphs are isomorphic by simply checking
if their normalizations are equal.

Computing the lists of R(3, 5, k)-graphs and R(4, 4, k)-graphs up-to-isomorphism can be
done efficiently by simply repeatedly extending graphs in R(3, 5, k) (resp. R(4, 4, k)) by one
vertex while respecting the clique constraints to produce R(3, 5, k + 1) (resp. R(4, 4, k + 1)).
Such lists have been repeatedly compiled as mentioned in [18] and therefore we will not
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Table 1 Number of R(3, 5, k)-graphs and R(4, 4, k)-graphs up-to-isomorphism together with the
number of generalizations in the respective covers. All the covers were initially constructed with a
maximum of 10 gray edges. We later updated the cover for the bold cases using an edge selection
algorithm and an improved selection algorithm for generalizations (see Section 5.2).

k R(3, 5, k) R∗(3, 5, k) R(4, 4, k) R∗(4, 4, k)

1 1 1
2 2 2
3 3 4
4 7 9 1
5 13 3 24 3
6 32 3 84 6
7 71 5 362 11
8 179 27 2079 47
9 290 11 14701 271

10 313 43 103706 1669
11 105 12 546356 7919
12 12 12 1449166 26845
13 1 1 1184231 13078
14 130816 11752
15 640 67
16 2 2
17 1 1

Iteration 0: Guncovered = G = { , , }, G∗
partial = ∅

Randomly chosen generalization G∗
0 = { }

G∗
0Generalizations G∗

1 G∗
2

Graphs

stops

Iteration 1: Guncovered = ∅, G∗ = G∗
partial = {G∗

2} = { }

Figure 2 Construction of an exact cover G∗ of a set of graphs G. The process of graying edges
stops as it would otherwise produce a gray triangle including a blue triangle. The construction of
an exact cover terminates in this case after one iteration. The dotted arrows indicate which graph
belongs to which generalization.

discuss in more detail how to construct them. From those lists, we construct corresponding
covers R∗(3, 5, k) and R∗(4, 4, k). The size of those constructed covers for the sets of graphs
R(3, 5, k) with 5 ≤ k ≤ 13 and the sets of graphs R(4, 4, k) with 4 ≤ k ≤ 17 is presented in
Table 1.

ITP 2024
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4.2 Proof that R(3, 5, k) is Covered by R∗(3, 5, k)
In this section, we only present the proof for the covers R∗(3, 5, k) since the proof for the
covers R∗(4, 4, k) follows by an analogous argument. Given the result presented in Section 3,
it is enough to consider the cases of a splitting vertex with degree d ∈ {8, 10, 12}. Therefore,
it would be enough to prove that R∗(3, 5, d) covers the set of graphs with property R(3, 5, d).
However, to do so, we found it easier to prove the stronger result:

∀ 5 ≤ k ≤ 13. G has property R(3, 5, k) ⇒ ∃G∗ ∈ R∗(3, 5, k). G ∈ G∗

We prove the result by a finite induction over the number of vertices k.
The base case k = 5 consists of searching for all the possible graphs with property R(3, 5, 5)
and show that they appear modulo isomorphism in one of the generalizations in R∗(3, 5, 5).
The inductive case is similar. The main difference is that we start the search from a
generalization G∗ instead of the empty generalization. We prove that for all generalizations
G∗ in R∗(3, 5, k), any extension of G∗ by one vertex that respects the property R∗(3, 5, k + 1)
is isomorphic to an element of R∗(3, 5, k + 1). This is achieved by exploring all possible
colorings (in blue or in red) of edges that are either gray or contain the new vertex. This
extension process is depicted in Figure 3.

Figure 3 Extension of an R∗(3, 5, 9)-generalization depicted as an adjacency matrix. The first 9
rows and columns represent the vertices x0 to x8 of the R∗(3, 5, 9)-generalization. Gray edges are
represented by dotted gray circles. Edges containing the extension vertex x9 (last row and column)
are represented by black circles.

The formalization and efficiency of the previous arguments rely on our custom-made
solver for labeled graphs. Our solver mostly works like a DPLL SAT solver [8]. The principal
difference is that it represents clauses as essentially first-order formulas. We show how we
represent the property R∗(3, 5, k +1) in first-order. Given a graph G of size k +1, represented
by a binary relation E over a set of vertices V = [|0, k|] = {0, 1, . . . , k}, our first-order
representation of the statement “G has property R∗(3, 5, k + 1)” is given by the two formulas:

∀x0x1x2
distinct

< k+1. ¬Ex0x1 ∨ ¬Ex0x2 ∨ ¬Ex1x2

∀x0x1x2x3x4
distinct

< k+1. Ex0x1 ∨ Ex0x2 ∨ Ex0x3 ∨ Ex0x4 ∨ Ex1x2∨

Ex1x3 ∨ Ex1x4 ∨ Ex2x3 ∨ Ex2x4 ∨ Ex3x4

where distinct means that we add inequalities between each of pair of quantified variables.
For example, ∀x0x1x2

distinct
< k + 1. P [x1, x2, x3] stands for:

∀x0x1x2. (x0 <k+1 ∧ x1 <k+1 ∧ x2 <k+1 ∧ x0 ̸=x1 ∧ x0 ̸=x2 ∧ x1 ̸=x2) ⇒ P [x1, x2, x3]
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Our solver is designed to work exclusively on graphs where edges are represented by
first-order literals and the coloring of an edge (i, j) to blue (resp. red) corresponds to assuming
the literal Exixj in the branch (resp. the negation of the literal ¬Exixj). A gray edge just
indicates that no color for that edge is currently assumed. The prover starts by assuming
all literals corresponding to colored edges in a generalization G∗ with k vertices. It then
explores all possible colorings of the gray edges and then all the possible coloring of the edges
containing a new vertex xk. At the leaf, this produces a graph of size k + 1 represented by
all the literals assumed in the branch.

By representing vertices by variables x0, . . . , xk instead of the concrete value 0, . . . , k, it
is easier to prove that the graphs in the leaves are indeed isomorphic to one of the elements
of one of the generalizations G′ ∈ R∗(3, 5, k + 1). To prove that every generalization in
R∗(3, 5, k) extends to graphs belonging to a generalization in R∗(3, 5, k + 1), we will prove
that there is no way to extend a generalization in R∗(3, 5, k) if we forbid the creation of
any graph that is a member of a generalization in R∗(3, 5, k + 1). Given a generalization
G′ ∈ R∗(3, 5, k + 1) with a set of blue edges Blue and a set of red edges Red, we use the
following formula to forbid the creation of an element of G′:

∀x0 . . . xi . . . xj . . . xk
distinct

< k + 1. ((
∧

(i,j)∈Blue

Exixj) ∧ (
∧

(i,j)∈Red

¬Exixj)) ⇒ ⊥

Note that this implies that all permutations of graphs that are members of this generalization
are forbidden. The first reason is that the formula does not assume any constraints on the
gray edges of G′ therefore forbids all members of G′. The second reason is one can permute
the indices of variables by a simple instantiation of the variables with a permutation being
given by the nauty algorithm to make the labeled graph on the branch match with one of the
labeled generalizations.

5 Gluing

In the previous section, we constructed covers for R(3, 5, d)-graphs and R(4, 4, 24−d)-graphs.
The next step of our proof is to prove that given a generalization G∗ in R∗(3, 5, d) and a
generalization in H∗ in R∗(3, 5, 24 − d), there is no way to extend color gray edges and
transverse edges to form an R(4, 5, 24)-graph (see Figure 4) and thus an R(4, 5, 25)-graph
by adding the splitting vertex. In the rest of this section, we can ignore clique constraints
that include the splitting vertex as they are already satisfied. This is a consequence of
the fact that our covers are exact covers. All our gluing problems are formulated at the
propositional level and contain the following clauses representing the property R(4, 5, 24).
Let us number the vertices of an R∗(3, 5, d)-generalization G∗ from 0 to d − 1, and the
vertices of a R∗(4, 4, 24 − d)-generalization graph H∗ from d to 23.

For each subset S ⊂ [|0, 23|] of size 4, we create the clause
∨

a,b∈S∧a<b

¬Ea,b .

For each subset T ⊂ [|0, 23|] of size 5, we create the clause
∨

a,b∈T ∧a<b

Ea,b .

In all these propositional clauses, Ea,b is a propositional variable that is true if there is
a blue edge between a and b and that is false if there is a red edge between a and b. One
can note that any clauses containing only vertices from G∗ or only vertices from H∗ can be
omitted as G∗ and H∗ provably avoid any blue 4-clique or any red 5-clique. This removal
occurs naturally as a consequence of performing unit propagation. In each gluing problem
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(G∗,H∗), we add unit clauses for each colored edge (red or blue) of G∗ and H∗. If an edge
(a, b) with a < b is blue then we add the unit clause Ea,b, if it is red then we add the unit
clause ¬Ea,b. If an edge is gray we do not add a unit clause. Together, with the clique
clauses this forms our SAT problem that is sent to the MiniSat interface. In practice, we had
to perform unit propagation to reduce the number of clauses before sending a problem to
the interface. This is due to some limitations in the interface as this does not happen when
we call the SAT solver directly.

Figure 4 The adjacency matrix of a graph of size 24 where a partial coloring is given by a
generalization G∗ with 4 gray edges (dotted gray circles) with vertices numbered from 0 to 9 and a
generalization H∗ with 4 gray edges with vertices numbered from 10 to 23. The goal of the SAT
solvers is to prove that there is no way to assign a color (blue or red) to the gray edges and the
transverse edges (black circles) without creating a blue 4-clique or a red 5-clique.

5.1 Simplicity Heuristic
In this section, we design a heuristic that will be used to construct covers resulting in easier

problems for the SAT solver. Let bk represent the number of blue k-cliques in G∗. Let rk

represent the number of red k-cliques in G∗. Let b′
k represent the number of blue k-cliques

in H∗. Let r′
k represent the number of red k-cliques in H∗. We use the following formula to

estimate the difficulty of a gluing problem (G∗, H∗):

simplicity(G∗, H∗) = 1
23 b1b′

3 + 1
24 b2b′

2 + 1
26 r2r′

3 + 1
26 r3r′

2 + 1
24 r4r′

1
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Our formula is originally designed to estimate the simplicity of a problem of gluing an
R(3, 5, d)-graph G with an R(4, 4, 24 − d)-graph H . There, 5 different types of configurations
that may create a blue 4-clique or a 5 red-clique as illustrated in Figure 5. In the resulting
SAT solving problem after unit propagation, a clause mentioning only the transverse edges is
associated with each configuration. The above heuristic can be derived from a more general
heuristic for a SAT problem P :

simplicity(P ) =
∑
c∈P

1
2|c|

where |c| is the number of literals in a clause c. This heuristic operates under the simplistic
assumption that each clause covers separate cases, allowing it to estimate the extent of
search space coverage by summing up the contribution of each clause. Experimentally, we
found that this heuristic is only effective to compare problems with the same number of
variables. Consequently, we ignore clauses containing gray edges from all gluing problems
when computing their simplicity, as we will use this heuristic to compare generalizations
with varying numbers of gray edges. Another advantage of ignoring clauses containing gray
edges is that the heuristic will prefer problems that can delay splitting on the color of gray
edges as much as possible, which favors proof sharing.

Figure 5 The five possible types of configurations. In each configuration, a colored clique in an
R(3, 5, d)-graph is displayed on the left and a colored clique in an R(4, 4, 24 − d)-graph is displayed
on the right. Transverse edges are shown as dotted black edges. Transverse edges must not all be
blue in blue configurations and they must not all be red in red configurations.

We now test how good the simplicity score is at predicting the run time of MiniSat via
the HOL4 interface on 200 gluing problems between R(3, 5, 10)-graphs and R(4, 4, 14)-graphs
in Figure 6. The results reveal that our simplicity score is a good predictor in this setting.

Finally, during the construction of a cover for G we are not aware of the corresponding
cover for H. The covers would have to be built simultaneously making the algorithm more
complicated. To avoid those complications, we devise a measure to predict if a generalization
will create difficult problems on its own without depending on the possible counterparts. To
this end, we chose to estimate the simplicity of a generalization G∗ by how difficult it is to
glue it with an average counterpart graph H̄. Let b̄′

k represent the average number of blue
k-cliques per graph in H and r̄′

k represent the average number of red k-cliques per graph in
H, the simplicity of G∗ is:

simplicity(G∗) = 1
23 b1b̄′

3 + 1
24 b2b̄′

2 + 1
26 r2r̄′

3 + 1
26 r3r̄′

2 + 1
24 r4r̄′

1

Similarly, let b̄k represent the average number of blue k-cliques per graph in G and r̄k

represent the average number of red k-cliques per graph in G, the simplicity of H∗ is:

simplicity(H∗) = 1
23 b̄1b′

3 + 1
24 b̄2b′

2 + 1
26 r̄2r′

3 + 1
26 r̄3r′

2 + 1
24 r̄4r′

1
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Figure 6 Relation between the simplicity score of a problem and the time required by the HOL4
interface to MiniSat to prove that it is unsatisfiable. Each problem consists of an R(3, 5, 10)-graph
and an R(4, 4, 14)-graph. Each dot represents one problem among a random sample of 200 gluing
problems.

5.2 Creation of Better Covers by Parameter Search

We now improve the exact cover algorithm by relying on our simplicity heuristic in two
places. The first one is during the selection of edges. Previously, the edges were selected
at random as long as the produced generalization satisfied some conditions. Now, we will
select, among the possible edges allowed by the conditions, the one that produces the
generalization with the highest simplicity score. We call this strategy fastest in Table 2. The
second place where the simplicity score will influence the algorithm is during the selection of
generalizations. Previously, we selected maximal generalizations G∗ with highest coverage
value ncover(G∗) = |G∗ ∩ Guncover |. This strategy was called the greedy cover strategy. Now,
we will also prefer generalizations with higher simplicity scores. Since we want to optimize
for both objectives at the same time, we will select the graph G∗ with the highest combined
score simplicity(G∗)c × ncover(G∗) where c is a real number parameter influencing how much
one heuristic is preferred over the other. In Table 2, we call this selection strategy mixed-c.

Although the simplicity score is important to reduce the difficulty of the problems, the
most important parameter in reducing the total computation time is the number of maximum
allowed gray edges in each generalization. In Table 2, we optimize those parameters for the
three relevant cases d = 8, 10, 12 for the gluing. Each experiment consists of a line in Table 2.
There, we compute new covers with different parameters. To figure out the best parameters,
we estimate the run time of an average problem by sampling 200 random problems from
a pair of covers. We then multiply this estimate by the number of problems this pair of
covers would create to get an estimated total run time for this pair of covers. In the end, we
decided not to go with the best parameters according to the estimated times given in Table 2.
The reason is that by increasing the number of gray edges, the total number of problems
is reduced but the difficulty of each problem is increased. This makes the problems harder
and they would have taken more memory than we had available. That is why we chose to
compromise and instead use the fastest parameter settings, shown in bold in Table 2, that
would not use more memory than available on our machines. Table 3 gives a comparison
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of the total run time for our final problems with the total runtime that we would get by
simply gluing pairs of graphs instead of generalizations. For degree d = 10, the number of
gluing problems is reduced by a factor of 81.0 and the estimated total time by a factor 14.6.
For degree d = 12, the number of gluing problems is reduced by a factor of 53.9 and the
estimated total time by a factor of 20.6.

Table 2 Tested parameters for creating exact covers. The columns titled 3,5 and 4,4 show the
maximum number of gray edges allowed during the construction of the cover.

Gluing 3,5 4,4 Edge sel. Gen. sel. CPU-days (estimation)

3,5,8-4,4,16 0 0 none none 0.055
4 0 fastest mixed-0.5 0.018

3,5,10-4,4,14 0 0 none none 8373
3 4 fastest mixed-1.0 725
4 3 fastest mixed-1.0 689
4 4 random greedy cover 734
4 4 fastest mixed-10.0 625
4 4 fastest mixed-2.0 595
4 4 fastest mixed-1.0 658
4 4 fastest mixed-0.5 572
4 4 fastest mixed-0.1 706
5 4 fastest mixed-1.0 547
4 5 fastest mixed-1.0 586
5 5 fastest mixed-0.5 396

3,5,12-4,4,12 0 0 none none 7702
2 6 fastest mixed-0.5 641
3 6 fastest mixed-0.5 782
4 6 fastest mixed-0.5 784
0 8 fastest mixed-0.5 374
1 8 fastest mixed-0.5 353
2 8 fastest mixed-0.5 538
3 8 fastest mixed-0.5 360
4 8 fastest mixed-0.5 419

6 Combining the Different Parts of the Proof

Our proof is expressed using three different formal representations of mathematical statements.
In Section 3, we express our statements in a higher-order form allowing us to make counting
arguments. In Section 4.2, we rely on an almost first-order representation to implement a
custom theorem prover for graphs and in particular to prove isomorphism between graphs.
In Section 5, the problems are stated at the propositional level. Here, we first describe how
we connect the different representations and as a consequence prove that R(4, 5) ≤ 25. Then,
we give the proof of the existence of an R(4, 5, 24)-graph and show that R(4, 5) > 24.
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Table 3 Reduction of the number of SAT solver calls and faster estimated times in days.

Graphs Generalizations

d 3,5,d 4,4,24-d problems days 3,5,d 4,4,24-d problems days

8 179 2 358 0.055 27 2 54 0.018
10 313 130816 40945408 8373 43 11752 505336 572
12 12 1449166 17389992 7702 12 26845 322140 374

6.1 Connecting Representations
We will start by translating propositional gluing lemmas to first-order formulas. The SAT
problems do not explicitly mention on which vertices the graphs are lying on since they are
only constraining SAT variables that represent edges. Surprisingly, one can instantiate the
SAT variables Ei,j by the atom E xi xj in the gluing problem. As a consequence, gluing
problems for all permutations of edges are proved at once. We can also freely add the
following additional constraints. All variables xi must be distinct and variables with indices
less than the degree d must have a value less than d and other variables must have a value
greater or equal to d. This ensures that our generalizations G∗ and H∗ have distinct sets of
vertices. We then prove that for each R∗(3, 5, d)-generalization a single theorem stating that
this particular generalization can not be glued to any of the corresponding generalizations in
R∗(4, 4, 24 − d) by regrouping gluing theorems. This step constructs 27 theorems for degree
d = 8, 43 theorems for degree d = 10, and 12 theorems for degree d = 12. These numbers
correspond to the number of R∗(3, 5, d)-generalizations presented in Table 1. Together,
these 27 theorems (respectively 43 and 12) can be used to prove a theorem stating that the
splitting edge, represented by the vertex number 24, cannot have degree 8 (respectively 10
and 12). The higher-order version of these three final theorems do not state on which set of
vertices the neighbors and antineighbors should lie although it requires them to form sets of
nonnegative integers of size d and 24 − d respectively. To prove the more general higher-order
formulations, we rely on the fact that there is a bijection from [|0, d − 1|] to sets of vertices
of size d and a bijection from [|d, 23|] to sets of vertices of size 24 − d. These three theorems
together are enough to prove that R(4, 5) ≤ 25 according to the proof given in Section 3.

6.2 Existence of an R(4, 5, 24)-graph
To prove the existence of an R(4, 5, 24)-graph, we pick a graph from the full list of R(4, 5, 24)-
graphs compiled in 2016 and available at [2]. This was necessary step to prove that R(5, 5) ≤
48 as described in [1]. For our purpose, we only need one arbitrary witness graph G0 from
that list. Let B be the set of blue edges in G0, we represent the graph G0 as the relation:

E0 =def λij.
∨

(a,b)∈B∧a<b

(i = a ∧ j = b) ∨ (j = a ∧ i = b)

We prove on the first-order level that this graph does not contain any blue 4-cliques or any
red 5-cliques which can be stated as:

⊢ ∀x0x1x2x3
distinct

< 24. ¬E0x0x1 ∨ ¬E0x0x2 ∨ ¬E0x0x3 ∨ ¬E0x1x2 ∨ ¬E0x1x3 ∨ ¬E0x2x3

⊢ ∀x0x1x2x3x4
distinct

< 24. E0x0x1 ∨ E0x0x2 ∨ E0x0x3 ∨ E0x0x4 ∨ E0x1x2∨

E0x1x3 ∨ E0x1x4 ∨ E0x2x3 ∨ E0x2x4 ∨ E0x3x4
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This was achieved by repeatedly applying the following lemma to eliminate the quantified
variables ⊢ (

∧
x<24

P (x)) ⇒ (∀x < 24.P (x)). To speed up the process, we stop applying the

lemma as soon as we were able to prove the goal on the branch either because we find a
red edge in blue clique (or a blue edge in a red clique) or because we have selected the
same vertex twice in the clique. With these optimizations, the existence of a graph can
be verified in less than 15 minutes on a single CPU. The connection with the higher-order
formulation can be obtained by proving that the set [|0, 23|] has cardinality 24. And thus we
get R(4, 5) > 24 which together with R(4, 5) ≤ 25 gives:

⊢ R(4, 5) = 25

7 Reproducibility

We provide instructions on how to reproduce the proof in the README.md of our repository [10].
The computational resources necessary to run our proof are the following. The final

gluing step was run on 4 different machines allowing us to finish the gluing phase in less than
9 days. This is slightly longer than what we expected according to the estimated times. Two
machines were used for the d = 10 case and the other 2 were used for the d = 12 case. Three
of them have 512 GB of RAM and one of them has 1024 GB of RAM. All of those machines
have 64 hyper-threaded CPU cores for a total of 128 available CPUs. However, we only used
40 cores per machine as our main limitation was memory. In all those machines, the same
copy of HOL4 was used to get compatible timestamps in the produced gluing theories. The
other phases were much faster and required less memory but were still run on the machine
with more memory.

Potential issues one could encounter when trying to reproduce the proof are the following.
As expected, all the technical problems come during or after the expensive gluing phase.
The first issue we discovered is that the communication files between HOL4 and MiniSat are
stored in the temporary directory of the system. Since the proof file produced by MiniSat
can be up to 2GB and our temporary directory sits in a partition of only 32GB, we ran
out of memory in that partition because we were running 40 processes in parallel. So, we
changed the temporary directory used by the HOL4 interface to MiniSat by modifying the file
dimacsTools.sml. We changed the temporary directory used by MiniSat using the TMPDIR
bash variable. The second issue is that the reconstruction of a SAT proof in HOL4 can
require a lot of memory (in the order of 20GB per problem) and time (about 3 times longer
than the SAT solver call). We found out that creating theories with one theorem per theory
diminished memory consumption. To guarantee that the memory consumption did not
exceed a threshold, we also ran the scripts using buildheap instead of Holmake as the latter
does not provide a way to limit the memory consumption per core. Finally, we were not
able to load all the gluing theories together into HOL4 in a reasonable time. Indeed, we
observed a slowdown of time taken to load one theory as more and more theories were added
making it impossible for us to load more than 200,000 theories. Thus, we used the following
workaround instead. We loaded the theorems produced by the 43 theorems for degree d = 10
and the 12 theorems for degree d = 12, mentioned in Section 6.1, without specifying in which
theory they were proved. This was achieved by creating an alternative theory loader where
we omitted the call to the function link_parents. To ensure the safety of this procedure,
we externally check that constructing the complete theory graph for our proof without any
broken dependencies is possible in the directory theorygraph . There, we make sure that
the time stamps are coherent and that there are no cycles. In the complete theory graph,
the final theory r45_equals_24 has 828857 ancestor theories.
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8 Related Works

Our formalization is based on the work of McKay and Radziszowski [18]. Their proof already
contains the three steps performed in our formalization, namely: the degree constraints for a
splitting, the creation of covers, and the proof of the absence of satisfiable gluing problems.
We explain here how our proof differs in each of those steps. In the first step, their proof
mentions that it is not possible for all vertices to have degree 11. We realized during the
formalization that this argument can be applied to prove that it is not possible for all vertices
to have odd degrees. This allows us to save time during the formalization compared to their
original proof by additionally ignoring the cases of a splitting vertex of degree d ∈ {7, 9, 13}.
In the second step, their proof removes vertices from graphs to create generalizations which
would correspond to graying all edges connected to the removed vertices in our formalization.
We tried this approach but the large number of grayed edges made the problems very difficult
for the SAT solvers. Moreover, our tests gave an estimated time to completion much larger
than with our more parsimonious approach to graying edges. In the final step, they rely on
a custom provers for gluing generalizations and spend a large part of the paper describing
how they optimize its different components. In contrast, we perform the gluing step with an
existing SAT solver. Furthermore, they state that they prefer sparser (redder) generalizations
when constructing a cover of R(3, 5, 10)-graphs and denser (bluer) generalizations when
constructing a cover of R(4, 4, 12)-graphs. Our approach instead relies on a more involved
heuristic. We try to estimate the simplicity of a generalization G∗ by understanding which
type of clauses would appear in a gluing problem where one of the generalizations is G∗.

Proving mathematical theorems in combinatorics with the help of SAT solvers is not a
new phenomenon. For instance in [6], the authors prove using SAT solvers that the 3-color
Ramsey number R(4,3,3) is equal to 30. This proof contains consideration about the degrees
of vertices, a symmetry-breaking component to avoid considering isomorphic graphs and an
abstraction component relying on degree matrices to represent sets of graphs. Ultimately, the
approach relies on encoding each of these steps into SAT clauses and calling a SAT solver. A
more famous example is the proof of the Pythagorean Triple theorem [15]. In that paper, the
authors rely on a cube-and-conquer, look-ahead methods and symmetry-breaking arguments.
The DRAT proof produced by their custom SAT solver was verified using an independent
DRAT proof checker [21]. In a later work, the proof of the Pythagorean Triple theorem
has been fully formalized in Coq [7]. There, they verified symmetry-breaking arguments
and an encoding of the problem into SAT. For the computational part of the proof, they
relied on OCaml code proven correct in Coq. This last step was necessary because of memory
limitations but is generally considered slightly less safe than running the computation directly
in Coq. In contrast, we were able to run the entire proof of R(4, 5) = 25, which is larger
in size (approximately a petabyte of proof files produced by MiniSat versus 200 terabytes),
through the HOL4 kernel.

9 Conclusion

We have created the first formalization of the theorem R(4, 5) = 25. This verification was
performed within the HOL4 theorem prover. During this process, we have realized that we
can generalize the argument given for degree d = 11 to eliminate all odd degree cases. We
have designed a verified algorithm for regrouping similar graphs, creating generalizations
and ultimately speeding up our subsequent proofs. Finally, we have created and tested a
heuristic for predicting the relative run-time of a SAT solver on gluing problems. This helped
us choose generalizations that create easier gluing problems.
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In the future, we would like to investigate if a proof of R(4, 5) = 25 is intrinsically
computational or if there exist additional high-level arguments that could eliminate the need
for a large computation.
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Abstract
Some processors, especially embedded ones, do not implement all instructions in hardware. Instead,
if the processor encounters an unimplemented instruction, an unsupported-instruction exception
is raised, and an exception handler is run that implements the missing instruction in software.
Getting such a system to work correctly is tricky: The exception-handler code must not destroy any
state of the user program and must use the control and status registers (CSRs) of the processor
correctly. Moreover, parts of the handler are typically implemented in assembly, while other parts
are implemented in a language like C, and one must make sure that when jumping from the user
program into the handler assembly, from the handler assembly into C, back to assembly and finally
back to the user program, all the assumptions made by the different pieces of code, hardware, and
the compiler are satisfied.

Despite all these tricky details, there is a concise and intuitive way of stating the correctness of
such a system: User programs running on a system where some instructions are implemented in
software behave the same as if they were running on a system where all instructions are implemented
in hardware.

We formalize and prove such a statement in the Coq proof assistant, for the case of a simple
exception handler implementing the multiplication instruction on a RISC-V processor.
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1 Introduction

Assembly language is frequently regarded as the lowest level of software abstraction in software-
verification endeavors. However, the ISA (instruction-set architecture) semantics typically
employed for software verification present an abstraction of the bare-metal ISA specifications,
omitting machine-level aspects of the ISA, like the configuration registers that control
the intricate interplay between the hardware’s intrinsic capabilities and the meticulously
crafted firmware (a piece of software) tasked with maintaining machine configurations and
implementing high-privilege handlers in charge of emulating unsupported instructions, as
well as managing other forms of low-level exceptions.
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For example, in the RISC-V ISA, control and status registers (CSRs) shape the behavior
and functionality of the machine. These registers serve as a mechanism for controlling various
aspects of the processor’s operation, ranging from enabling or disabling specific features to
controlling where the machine jumps in case of interrupts and exceptions. These registers
and the associated exception handlers exert fundamental control over machine behaviors, so
their improper configuration can lead to undefined outcomes.

CSRs coupled with the handlers introduce an intriguing specification, implementation,
and verification challenge: while they are essential to determining the machine’s behavior,
the CSRs are themselves set and manipulated by software, and the handlers are themselves
software.

There is a bit of a chicken-and-egg problem: We want to provide a nice and simple ISA
abstraction, but to implement this abstraction and prove it correct, we have to write a trap
handler and want to compile parts of it with a compiler whose proof already relies on this
abstraction that we are supposed to implement, so how can we break the circularity?

One might be tempted simply to augment software-verification efforts with more detailed
and faithful ISA specifications. We eschew this approach. The simplified ISA abstractions
commonly employed are far more practical and productive compared to their cumbersome
and heavier bare-metal counterparts, and the intricate details of configurations and handlers
should anyway remain irrelevant to software or compilers higher up the stack.

This paper endeavors to disentangle the problem by focusing on a simplified-yet-illustrative
instance: the specification, implementation, and verification of a RISC-V machine with
software-implemented multiply instructions.

Through this exploration, we aim to shed light on the interesting challenges posed by
CSRs and handlers and pave the way for a more coherent understanding of hardware-software
interactions.

We will show that for this simple case we can indeed provide (with proofs!) the desired
abstractions, and we can leverage tools that were built on top of those nice abstractions
to provide the said abstractions without creating a circular conundrum. Our solution is to
prove a helper lemma that ports assembly program-correctness proofs against the nice and
simple ISA semantics to proofs against the detailed low-level ISA semantics. The helper
lemma requires that the program does not contain any unsupported instruction that would
trigger the trap handler, and this assumption gets discharged when we instantiate it with
the concrete handler code produced by the compiler. However, there are also parts of the
handler whose semantics cannot be expressed using the nice and simple ISA semantics, and
we implement these manually in assembly and prove their correctness directly at the assembly
level.

Our paper makes the following contributions:
We propose a pleasantly simple specification for a RISC-V system equipped with a
software trap handler emulating unsupported instructions: User programs running on a
system where some instructions are implemented in software in a trap handler should
behave as if they were running on a system with hardware support for these instructions.
We implement such a trap handler by combining code in a C-like language with handwrit-
ten assembly code, and we prove its correctness, in a mechanized and foundational way,
down to the binary machine code of the handler, combining symbolic-evaluation proofs
at the C level and assembly level with a compiler-correctness proof.

All our code is publicly available at https://github.com/mit-plv/softmul.

https://github.com/mit-plv/softmul
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Figure 1 Overview diagram. The circled numbers are referenced in the text and do not stand for
any meaningful order.

2 Overview

We want to show that a machine without hardware support for multiplication, but correctly
configured with an exception handler that implements multiplication in software, behaves
like a machine that supports multiplication in hardware. This theorem could then be used to
simplify reasoning about programs running on a machine without hardware multiplication,
because it saves the burden of reasoning about the trap handler and instead makes it as easy
as reasoning about the specification with multiplication in hardware:
match inst with
| Mul rd rs1 rs2⇒

x← getRegister rs1;

y← getRegister rs2;

setRegister rd (mul x y)

| ...

end

We use the RISC-V instruction-set architecture [1, 2], as formalized in riscv-coq [5].
RISC-V splits the instruction set into several extensions, each named with an uppercase letter.
The base instruction set that every processor must support is called I, and multiplication,
division and modulo operations are in a separate extension called M that small embedded
processors may choose not to implement, or to implement in software by catching unsupported-
instruction exceptions. In our proof-of-concept case study, we pretend that the M extension
only contains one single instruction, namely the multiplication instruction, but we believe
that support for the other instructions of the M extension could be added in the same way.

The riscv-coq specification defines a set of rougly a dozen primitives such as getRegister,
setRegister, loadByte, storeByte, and then defines the semantics of each RISC-V instruction
in terms of these primitives. As explained in [5], the semantics of each primitive is deliberately
left unspecified in riscv-coq, so that each application that needs a formal specification of
RISC-V can instantiate these primitives in a suitable domain-specific way.

Figure 1 presents an overview of our code (boxes ➄ and ➅) and specifications (the
remaining boxes). Our theorem uses two instantiations of the riscv-coq specification: One
that implements multiplication in hardware (box ➀) and one (box ➁) that implements it
using a trap handler. Note that since the configurability of this specification is first-class, i.e.
expressed in Coq itself rather than in some configuration files of the build process, there is
no code duplication between the two instantiations.

ITP 2024



17:4 Verifying Software Emulation of an Unsupported Hardware Instruction

Parts of the exception handler (box ➅) are implemented in the Bedrock2 source lan-
guage [8] (a small and simple subset of C) and compiled (➆) using the Bedrock2 compiler,
but the handler also needs some low-level operations that are not expressible in the Bedrock2
source language and are therefore implemented by-hand in assembly. That is, our handler
(box ➄) starts and ends in handwritten assembly and calls a compiled Bedrock2 function in
the middle. Our proof combines a program-logic proof about the Bedrock2 handler function,
the compiler-correctness proof, and a proof about the assembly instructions, guaranteeing
that all these parts have been put together correctly, and the final statement only mentions
RISC-V semantics. All the other interfaces have been canceled out by combining the proofs
and thus are not part of the trusted code base anymore.

In addition to the two instantiations of the RISC-V semantics with and without hardware
multiplication, our proof (but not the final statement) also uses a third instantiation (box ➃)
which does not have any CSRs (control and status registers, required by the exception
mechanism). This third instantiation fails (with undefined behavior) on all CSR-related
instructions. For the compiler, an axiomatization (box ➂) of this instantiation was chosen
to simplify the proof, because the compiler does not emit any instructions that depend on
CSRs.

3 The Top-Level Theorem Statement

We can state the theorem (arrow ➉ in Figure 1) as follows:

Theorem softmul-correct: forall (initialH initialL: MachineState) (post: State→ Prop),

runsTo (mcomp_sat (run1 mdecode)) initialH post→
R initialH initialL→
runsTo (mcomp_sat (run1 idecode)) initialL (fun finalL⇒

exists finalH, R finalH finalL ∧ post finalH).

It is phrased as a specification-preservation1 statement: If a machine with hardware
multiplication runs from an initial state initialH to states satisfying a postcondition post,
then every machine initialL with hardware multiplication, related to initialH by R, runs to
a low-level state finalL which, when translated back to a high-level state finalH, satisfies the
same postcondition.

The theorem uses run1, which defines how one single instruction is executed:

Definition run1(decoder: Z→ Instruction): M unit :=

pc← getPC;

inst← Machine.loadWord Fetch pc;

Execute.execute (decoder (LittleEndian.combine 4 inst));;

endCycleNormal.

It is is parameterized over the instruction decoder, which is instantiated with mdecode

(a decoder that supports the multiplication instruction) in the hypothesis and with idecode

(a decoder that returns InvalidInstruction for the multiplication instruction) in the conclusion
of the theorem.
The mcomp_sat function is of type M unit → State → (State → Prop) → Prop and asserts
that a monadic program (consisting of primitives used in riscv-coq such as getRegister,
setRegister, loadByte, etc.), applied to some initial state, satisfies a postcondition, and runsTo

1 It can also be seen as a small-step omnisemantics forward simulation as defined in [6].
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Definition R(r1 r2: MachineState): Prop :=

r1.(regs) = r2.(regs) ∧
r1.(pc) = r2.(pc) ∧
r1.(nextPc) = r2.(nextPc) ∧
r1.(csrs) = map.empty ∧
basic_CSRFields_supported r2 ∧
regs_initialized r2.(regs) ∧
exists mtvec_base scratch_end,

map.get r2.(csrs) CSRField.MTVecBase = Some mtvec_base ∧
map.get r2.(csrs) CSRField.MScratch = Some scratch_end ∧
<{ * eq r1.(mem)

* mem_available (word.of_Z (scratch_end - 256)) (word.of_Z scratch_end)

* ptsto_bytes (word.of_Z (mtvec_base * 4)) softmul-binary }> r2.(mem).

Figure 2 The predicate relating high-level states (multiplication implemented in hardware) to
low-level states (multiplication implemented in software).

lifts it to an arbitrary (but finite) number of steps.2 The predicate R (Figure 2) is used to
relate a high-level state (i.e. the state of a machine that supports multiplication in hardware)
to a low-level state (i.e. the state of a machine that implements multiplication in software
using a trap handler), and it also contains all the preconditions on how the low-level machine
needs to be configured. That is, R asserts that the two states have the same values for the
registers and the program counter, and that the memory (modeled as a partial map from
32-bit addresses to bytes) of the low-level machine contains all of the high-level memory, as
well as the instructions of the exception handler and some scratch space that the exception
handler can use as its stack (which must be available even if the main program has used up
all of its stack). To define at which address in memory the handler and the scratch space are
located, RISC-V defines some CSRs [2] that our definition of R mentions:

The CSR called MTVecBase is used to store the address of the trap handler (we use direct
mode where all exceptions set the PC to the same address, but RISC-V also has a vectored
mode where the PC is set to the base address in this register plus an offset corresponding
to the cause of the exception).
The CSR called MScratch is a read/write register dedicated for use by machine mode, and
we use it to store the address of the end of the scratch space (we store the end address
instead of the start address because it is used like a stack that grows downwards).

The memory (record fields r1.(mem) and r2.(mem) in Figure 2) is modeled as a finite map
from 32-bit words to bytes. In the setup used in this case study, no primitive (nor other
operation) changes the domain of that map. If an address outside of the domain of that map
is accessed, the memory-access primitives cause undefined behavior, i.e. the Prop returned by
mcomp_sat (and thus also the Prop returned by runsTo) becomes unprovable. This means that
the runsTo hypothesis of the top-level theorem assumes a basic form of memory safety of the
user program, namely that it does not access memory outside the domain of the memory.
The separation-logic formula used in Figure 2 ensures that the memory the user program can
write to (r1.(mem)) is disjoint from the scratch space and the handler code (second and third
bullet points, respectively, in the separation-logic formula). To remove this memory-safety
assumption, one could prove memory safety for the user program, i.e. that a runsTo holds for

2 runsTo is defined like the omnisemantics eventually operator [6].
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an arbitrary postcondition (the easiest choice would simply be λs. True). In our setting, user
code and handler code both run in machine mode, but in more complex systems that feature
both user mode and machine mode and also hardware-based memory-protection support (e.g.
by segmentation or virtual memory), the requirement to assume or prove this basic memory
safety for user programs could be lifted.

4 The Handler Code

The exception-handler code is implemented partially in handwritten assembly and partially
in the Bedrock2 [8] source language and compiled to bytes by the Bedrock2 compiler. In
order to prove the softmul-correct theorem, we use the correctness theorem of the Bedrock2
compiler, but note that the statement of the softmul-correct theorem does not depend on the
Bedrock2 language semantics or on anything related to the fact that we used the Bedrock2
compiler, so the auditing burden for someone (who trusts the Coq proof checker) auditing
our handler is much smaller, because one does not need to worry about the compiler, its
language semantics, and its interaction with the assembly code.

The handwritten assembly of the handler is shown in Figure 3a. Since we want our
software-emulated multiplication to behave as if it were implemented in hardware, we cannot
make any assumptions about the remaining space on the user program’s stack, nor about
whether the stack pointer sp contains any meaningful value at all. Therefore, we reserve a
separate scratch space in memory just for our handler, and we require that the CSR MScratch

contains the address of that scratch space.
As its first action (in handler_init), the handler has to store all 32 registers of the user

process by which it was triggered. It may only use registers that it has already saved, because
otherwise it would destroy state of the user program. We therefore resort to tricks such
as temporarily storing the user stack pointer in the MScratch CSR and then temporarily
storing it in the return-address register. Such tricks are easy to get wrong (and we did; see
section 8.2).

After handler_init, the registers 3 to 31 are saved to the scratch space as well, and then
the Bedrock2-generated part is called by passing it the value of the CSR register MTVal, which
contains the invalid instruction that caused the exception, and a pointer to the scratch space
in which we saved the registers.

The Bedrock2 code (Figure 3b) is written directly in Coq using the custom-notations
feature, a C-like syntax, and operator precedence as suggested by whitespace. It extracts the
three 5-bit fields of the instruction that indicate the two source registers (operands of the
multiplication operation) and the destination register, respectively, and then calls another
Bedrock2 function rpmul that implements multiplication in terms of addition, storing the
result back into the scratch space. The rpmul function iterates over the bits of the second
operand while repeatedly doubling the first operand, a technique sometimes called “Russian
peasant multiplication.” Both softmul and rpmul are verified using the Bedrock2 program
logic. The spec of the former is given in Figure 4.

Its pre- and postcondition are expressed in terms of an (unused) I/O trace t and the
memory m, for which we assert a list of two separation-logic clauses (a word array corresponding
to the scratch space containing the register values, and a generic frame R for the rest of the
memory).

After the Bedrock2 part, the handwritten snippet inc_mepc runs. It increases the CSR
called MEPC, which stores the address of the instruction that caused the exception. This
increment is needed because upon returning from the trap handler (by the Mret instruction),
execution will jump to MEPC, so we have to set it to one instruction (i.e., 4 bytes) past the
multiplication instruction.
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Definition handler_init := [[

Csrrw sp sp MScratch; (* swap sp and MScratch CSR *)

Sw sp zero (-128); (* save the 0 register (for uniformity) *)

Sw sp ra (-124); (* save ra *)

Csrr ra MScratch; (* use ra as a temporary register... *)

Sw sp ra (-120); (* ... to save the original sp *)

Csrw sp MScratch; (* restore the original value of MScratch *)

Addi sp sp (-128) (* remainder of code will be relative to updated sp *)

]].

Definition call-mul := [[

Csrr a0 MTVal; (* argument 0: value of invalid instruction *)

Addi a1 sp 0; (* argument 1: pointer to memory with register values before trap *)

Jal ra (Z.of_nat (1 + List.length inc_mepc + 29 + List.length handler_final) * 4)

]].

Definition inc_mepc := [[

Csrr t1 MEPC;

Addi t1 t1 4;

Csrw t1 MEPC

]].

Definition handler_final := [[

Lw ra sp 4;

Lw sp sp 8; (* Bug: used to be ˋCsrr sp MScratchˋ, which is wrong if Mul sets sp *)

Mret

]].

Definition asm_handler_insts := handler_init ++ save_regs3to31 ++

call-mul ++ inc_mepc ++ restore_regs3to31 ++ handler_final.

(a) Assembly part of trap handler (embedded in Coq).

Definition softmul := func! (inst, a_regs) {

a = a_regs + (inst>>15 & 31)<<2;

b = a_regs + (inst>>20 & 31)<<2;

d = a_regs + (inst>>07 & 31)<<2;

unpack! c = rpmul(load(a), load(b));

store(d, c)

}.

Definition rpmul := func! (x, e) ∼> ret {

ret = $0;

while (e) {

if (e & $1) { ret = ret + x };

e = e >> $1;

x = x + x

}

}.

(b) Bedrock2 part of trap handler (using custom Coq notations to make it look similar to C).

Figure 3 Trap handler code.
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Instance spec_of_softmul : spec_of "softmul" :=

fnspec! "softmul" inst a_regs / rd rs1 rs2 regvals R,

{ requires t m :=

mdecode (word.unsigned inst) = MInstruction (Mul rd rs1 rs2) ∧
List.length regvals = 32 ∧
seps [a_regs 7→ word_array regvals; R] m;

ensures t’ m’ := t = t’ ∧
seps [a_regs 7→ word_array (List.upd regvals (Z.to_nat rd) (word.mul

(List.nth (Z.to_nat rs1) regvals default)

(List.nth (Z.to_nat rs2) regvals default))); R] m’ }.

Figure 4 Specification of softmul function.

And finally, in restore_regs3to31 and handler_final, the values of the user program’s
registers are restored.

5 Combining the Program-Logic Proofs and Compiler-Correctness
Proof

By combining the program-logic proofs about the two Bedrock2 functions with the compiler-
correctness theorem, we can prove that if we run the compiler within Coq to obtain a list
of instructions mul-insts, these instructions satisfy the specification shown in Figure 5, a
verbose but unsurprising specification, laying out calling-convention details.

Lines 5 to 6 specify in which registers the arguments need to be placed, and line 14
requires that at address a_regs, there is an array of 32 words that store the values of the
registers of the user program. Lines 18 to 20 state that after running mul-insts, the array at
address a_regs storing the registers is updated at its rd’th index with the result of multiplying
its rs1-th and rs2-th elements, and line 23 states that the new registers of the processor (not
the ones saved in memory) only differ from the original registers on the callee-saved registers.

Note that the conclusion on line 27 refers to the same machine as the conclusion of the
top-level theorem in section 3, namely the one described by (mcomp_sat (run1 idecode)), or
box ➁ in Figure 1. However, to get there, two more proof steps (➇ and ➈) are needed:
In order to keep the Bedrock2 compiler (somewhat) general, it was not proven against a
specific instantiation of the riscv-coq semantics but against an axiomatization (box ➂) of
the primitives used in riscv-coq such as getRegister, setRegister, loadByte, etc. However, to
keep the Bedrock2 compiler proof manageable, the RISC-V machine-state representation
appearing in that axiomatization was hardcoded to a record type without CSRs (because
compiler-emitted code never touches CSRs).

An additional problem requiring some proof effort to show compatibility is that the
compiler correctness proof assumes a machine with hardware support for multiplication, but
we want to run its code on one without. By inspecting the code that it generated, we can
see that it did not output any multiplication instructions, but if it did, this would lead to a
serious bug: If during the execution of the trap handler, a multiplication instruction were
encountered, the trap handler would be recursively invoked again, infinitely many times.

We solve these two problems by introducing an intermediate helper machine (box ➃)
that uses the same state representation (without CSRs) as the compiler, and we prove an
invariant no_mul saying that the memory region marked as executable (which only includes
the compiled handler code in that instance) contains no multiplication instructions.
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1 Lemma mul-correct: forall initial a_regs regvals invalidIInst R (post: State→ Prop)
2 ret_addr stack_start stack_pastend rd rs1 rs2,
3 word.unsigned initial.(pc) mod 4 = 0→
4 initial.(nextPc) = word.add initial.(pc) (word.of_Z 4)→
5 map.get initial.(regs) RegisterNames.a0 = Some invalidIInst→
6 map.get initial.(regs) RegisterNames.a1 = Some a_regs→
7 map.get initial.(regs) RegisterNames.ra = Some ret_addr→
8 map.get initial.(regs) RegisterNames.sp = Some stack_pastend→
9 word.unsigned ret_addr mod 4 = 0→

10 word.unsigned (word.sub stack_pastend stack_start) mod 4 = 0→
11 regs_initialized initial.(regs)→
12 mdecode (word.unsigned invalidIInst) = MInstruction (Mul rd rs1 rs2)→
13 128≤ word.unsigned (word.sub stack_pastend stack_start)→
14 seps [a_regs 7→ with_len 32 word_array regvals;
15 initial.(pc) 7→ program idecode mul-insts;
16 mem_available stack_start stack_pastend; R] initial.(MinimalCSRs.mem) ∧
17 (forall newMem newRegs,
18 seps [a_regs 7→ with_len 32 word_array (List.upd regvals (Z.to_nat rd) (word.mul
19 (List.nth (Z.to_nat rs1) regvals default)
20 (List.nth (Z.to_nat rs2) regvals default)));
21 initial.(pc) 7→ program idecode mul-insts;
22 mem_available stack_start stack_pastend; R] newMem→
23 map.only_differ initial.(regs) reg_class.caller_saved newRegs→
24 regs_initialized newRegs→
25 post { initial with pc := ret_addr; nextPc := word.add ret_addr (word.of_Z 4);
26 MinimalCSRs.mem := newMem; regs := newRegs })→
27 runsTo (mcomp_sat (run1 idecode)) initial post.

Figure 5 The correctness lemma of the compiler-generated part of the handler.

6 Correctness Proof of the Assembly Part

The assembly part of the handler is proven correct by induction over the runsTo hypothesis
of softmul-correct. If the machine with hardware multiplication executes any instruction
besides multiplication, we just need to show that after executing the same instruction on
the machine with software multiplication, the R judgment is preserved, but we can do that
once-and-for-all by inspecting each primitive of the riscv-coq spec (getRegister, setRegister,
loadByte, etc.), instead of analyzing the much larger number of RISC-V instructions. The
interesting case is when the machine with hardware multiplication encounters a multiplication
instruction, and we have to show that the machine with software multiplication steps to a
related state. We do so by first symbolically executing the specification of what the hardware
does in case of an exception (Figure 6), which boils down to setting some CSR fields and
then setting the PC to the exception-handler address found in the MTVecBase CSR.

After that, we symbolically execute the handwritten assembly instructions, using Coq’s
proof context to keep track of all the facts that we know about the current state of the
machine. For each assembly instruction, we encounter its specification in terms of the
primitives of riscv-coq, and for each primitive, we have a helper lemma that updates our
symbolic state. At the point where we reach the call to the Bedrock2-generated code, we
apply the correctness lemma for the compiled trap handler. After that call, we step through
more handwritten assembly instructions that restore the registers and then call the Mret

instruction that jumps back to one instruction past the multiplication instruction that caused
the exception. At that point, we need to prove that the symbolic state accumulated in the
Coq proof context implies that the two machines are still related by R, which only works if
there are no bugs in the handler code.
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Definition raiseExceptionWithInfo{A: Type}(isInterrupt exceptionCode info: t): M A :=

pc← getPC;

(* hardcoded simplification: we only support machine mode and no interrupts *)

addr← getCSRField MTVecBase;

setCSRField MTVal (regToZ_unsigned info);;

(* these two need to be set just so that Mret will succeed at restoring them *)

setCSRField MPP (encodePrivMode Machine);;

setCSRField MPIE 0;;

setCSRField MEPC (regToZ_unsigned pc);;

setCSRField MCauseCode (regToZ_unsigned exceptionCode);;

setPC (ZToReg (addr * 4));;

@endCycleEarly M t MM MW MP A.

Figure 6 Specification (in riscv-coq) of what hardware does in case of an exception.

7 What If . . .

To explain our specification from a different angle, we list a few potential bugs that an
implementor could introduce, and we show how they make our specification unprovable.
Note that these are not bugs that actually occurred in our own implementation. For those,
we refer to section 8.2. To present each potential bug, we ask: What if . . .

. . . the compiler used to compile the handler emitted a multiplication instruction, which
would cause the handler to trigger itself recursively infinitely many times? When proving
correctness of the handwritten assembly (section 6), when we get to the jump instruction
that calls the code emitted by the Bedrock2 compiler, we need to apply the compiler-
correctness theorem (instantiated with the Bedrock2 part of our handler), but that
theorem talks about execution on a machine with multiplication support, whereas the
theorem we are about to prove is about execution on a machine without multiplication
support. To make the proof work, we need to introduce box ➃ and steps ➇ and ➈ in
Figure 1 as explained in section 5, which at some point requires us to go through the
concrete list of instructions emitted by the compiler and to check that none of them is a
multiplication instruction.
. . . the handler runs at a time when no stack exists or the stack does not have enough
remaining space? The output of the Bedrock2 compiler contains a number that indicates
the amount of stack space that the compiled code needs, and one hypothesis of the
compiler-correctness theorem is that at least that much space is available below the
current stack pointer. In order to make sure this hypothesis holds, our trap handler uses
a separate reserved scratch pad in memory as its stack, and when the correctness theorem
for the handwritten assembly applies the instantiated compiler-correctness theorem
mul-correct, it has to prove that there are at least 128 bytes of space remaining in the
scratch pad, as mandated by the hypothesis on line 13 in Figure 5.
. . . the assembly that calls compiled Bedrock2 code makes wrong assumptions about the
calling conventions of the compiler, e.g. which registers are used to pass arguments,
or whether they are passed on the stack, in which direction the stack grows, or which
registers are caller-saved? All these conventions are also captured in the intermediate
lemma mul-correct in Figure 5.
. . . the handler forgot to increase MEPC, the CSR storing the address to which the
machine jumps when we return from the exception handler, which would cause the
faulting multiplication instruction to be run again and trigger the handler again? At the
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end of the handler correctness proof, this bug would lead to a mismatch between the
state of the machine with multiplication support (whose program counter gets advanced
past the multiplication instruction) and the state of the machine without multiplication
support (whose program counter would still point to the multiplication instruction).
. . . we ran a user program using compressed instructions (2-byte instructions) on our
system? The riscv-coq specification only supports the uncompressed instruction format,
where all instructions are 4 bytes long. There is no single location where the spec explicitly
says “compressed instructions are not supported” – it requires an attentive reader who
notices that the whole spec never mentions compressed instructions. In this scenario, our
trap handler would fail to decode the unsupported instruction, and arbitrary behavior
would occur. If riscv-coq did support compressed instructions, and our handler correctly
decoded them, that would still require it to decide correctly whether to increase the
MEPC by 2 or 4, and like in the previous point, one would notice the mismatch during
the proof.

8 Evaluation

We attempt to answer the following evaluation questions (and dedicate one subsection to
each of them):
1. Does our verified trap handler run on a RISC-V system implemented by a third party?
2. Did our implementation contain bugs that our verification caught?
3. Did our implementation contain bugs that our verification failed to catch?
4. Was the effort required for verification lower than the effort for debugging would have

been?

8.1 Running Our Handler
To validate that our verified handler actually runs on a system not implemented by ourselves,
we first looked for small embedded RISC-V processors without multiplication support but
could not find any product with enough documentation in English to make us want to try it
out. Instead, we chose to test our code in the Spike RISC-V ISA simulator [3], which offers
fine-grained control over which RISC-V extensions are enabled.

We want to test that our handler behaves as expected on a system that runs a simple
C program with multiplications, compiled by a third-party compiler. We wrote a simple
program which computes the factorial of a hardcoded number and saves the result as well as
a “done” flag to memory. We compiled it using the GNU RISC-V toolchain.

Our top-level theorem applies to a list of bytes called softmul-binary (mentioned in
Figure 2 in the definition of the relation R), representing a piece of position-independent
RISC-V machine code. However, Spike expects as input an ELF file. We relied on the GNU
RISC-V toolchain to transform our binary into an ELF file, using a custom 25-line linker
script.

For our theorem to be applicable, the conditions that the relation R (Figure 2) imposes on
r2 (the machine without support for multiplication) must hold on our Spike machine. The
first six conditions above the exists are related to the formalization and do not require any
special setup action. The two lines below the exists require that the MTVecBase and MScratch

CSRs have suitable values, which we ensure by running an assembly script at the beginning
that initializes these two CSRs with addresses defined in our linker script. The last three
lines are a bullet-point separation-logic clause list describing the memory, saying that it must
contain all of the specification machine’s memory r1.(mem), as well as 256 bytes of scratch

ITP 2024



17:12 Verifying Software Emulation of an Unsupported Hardware Instruction

memory at the address in the MScratch CSR and the softmul-binary at the address in the
MTVecBase CSR. Our linker script, together with the memory-layout command-line argument
we pass to Spike, ensures that these conditions hold.

Spike comes with its own small language of debugger commands, and we used it to run
the system until the done flag in memory is 1, then print the value of the memory at the
address where we expect the result, and we also print the value of the CSR minstret, the
number of retired instructions, to see how many instructions were executed.

No matter whether we invoked Spike with or without multiplication enabled, we observed
the same result for factorial(5), namely 120. With multiplication enabled, the number of
instructions was 87; and with multiplication disabled, the number of instructions increased
to 787, which shows that our handler indeed ran. As an additional sanity check, we also
confirmed that it stops working if we set the MTVecBase CSR to a different value.

Therefore, at least for this one simple example, we can answer question 1 with “yes”.

8.2 Bugs Caught During Verification

At the end of the proof that steps through the handwritten handler assembly, we need to
prove that the symbolic state accumulated in the Coq proof context implies that the two
machines are still related by R, which only works if there are no bugs in the handler code (see
end of section 6). At that point, we found two interesting bugs. The first one was that we
forgot to reset the MScratch CSR, so one invocation of the exception handler works fine, but
the next one will use a wrong address for its scratch space. The second bug was the corner
case where the multiplication instruction stores its result into the stack pointer. In that case,
we must not override the stack pointer with the original stack pointer that we swapped into
the MScratch register at the beginning of the handler.

We also found two more obvious bugs related to when to set the stack pointer and what
stack-pointer offsets to use.

So we can answer question 2 with “yes”.

8.3 Bugs Encountered While Trying to Run It

We split the development of our experiment into two phases: First, we set up the linker script,
with the trap handler already in place, but inactive, because we enabled the M extension.
Once this experiment produced the expected output, we deactivated the M extension, so
that our handler would run.

Getting phase 1 to work required some debugging. The most difficult part was to
understand how to pass the linker-script-defined address of the heap memory to the C
program, and it required reading the relevant page3 of the GNU Linker’s manual, which
starts by saying that “accessing a linker script defined variable from source code is not
intuitive,” and further down explains that “when you are using a linker script defined symbol
in source code you should always take the address of the symbol, and never attempt to use
its value”.

None of the code involved in phase 1 was verified, so it is not surprising that debugging
was required. And to our delight, in phase 2, as soon as we disabled the M extension, our
verified trap handler worked on the first try, and no debugging was needed at all.

3 https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html

https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html
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So, to answer question 3, there were bugs in the unverified part, but no bugs in the
verified part.

In the future, it would be interesting also to verify ELF file generation, which we believe
could have prevented the above bug.

8.4 Effort

For lack of better measures, we resort to lines-of-code counts as a very approximate measure
of effort. Table 1 lists the counts of the different components.

It suggests that to produce 76 lines of verified code, a total of 3331 lines of code was
necessary, which is more than a 40× blowup. This ratio looks not very appealing, but it still
seems fair to say that for tricky code, large proofs are sometimes needed. We also have some
(potentially alleviating) remarks for each row of the table:

The RISC-V helper instance is not referenced by the top-level theorem statement but
acts as a bridge between the RISC-V spec used by the Bedrock2 compiler (whose state
does not contain any CSRs) and the one used in the top-level theorem (whose state does
have CSRs). Additionally, the helper instance maintains the invariant that no executable
instructions are from the M extension, which is important during the execution of the
trap handler, because if the trap handler contained a multiplication instruction, the trap
handler would be invoked recursively over and over again. The helper instance and its
accompanying lemmas are mostly copied from the one used in the compiler, and careful
refactoring to share the code with the compiler could considerably reduce this count,
which also means that these lines were low-effort to produce.
To verify multiplication and a simple instruction decoder in Bedrock2, we used the original
Bedrock2 program logic [8], which only automates the application of weakest-precondition
rules but does not provide any automation for side condition solving. Using a framework
that provides more automation would have reduced this proof size.
A large chunk of the proof lines (1454) is in the correctness proof of the trap-handler
parts written in assembly. The reason for this verbosity might be that, to our knowledge,
this project is the first within the Bedrock2 ecosystem to verify more than two or three
lines of assembly at a time, so there was no assembly-specific framework available. About
two thirds of the proof code could probably be factored out into a framework that would
be reusable for other assembly programs as well. We also did not spend too much time
on side-condition automation, which could further reduce the number of proof lines. We
conjecture that in a more mature assembly-verification framework, the assembly part
of the trap-handler proof might be as short as maybe 100 lines of code. Moreover, the
code-to-proof ratio also looks bad because we count the number of lines of Coq code
rather than the number of assembly instructions, which matters for save_regs3to31 and
restore_regs3to31: Each of these is just a two-line functional program but expands to 29
assembly instructions.
The compiler compat & invocation code deals with the different RISC-V instances and
decoders and also applies the Bedrock2 compiler’s correctness theorem for the instruction
decoder and multiplier implemented in Bedrock2. It consists of important but not
particularly interesting bookkeeping that quickly adds up to many lines of proof.
Finally, the top-level theorem puts everything together. It requires some helper lemmas
that could probably be generalized and moved to a library, but the fact that these lemmas
were not already present in any library used in the Bedrock2 ecosystem seems fairly
representative of the general verification experience, so it seems fair to count these lines.
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Table 1 Lines-of-code counts, excluding the dependencies (coqutil, riscv-coq, Bedrock2, and the
Bedrock2 compiler).

impl spec proof total
RISC-V helper instance 0 101 309 410
Multiplication in Bedrock2 8 5 83 96
Instruction decoder in Bedrock2 7 27 80 114
Trap handler in assembly 36 28 1454 1518
Compiler compat & invocation 14 47 716 777
Top-level theorem 11 18 147 176
Excluded (imports & comments) 240
Total 76 226 2789 3331

Finding the bugs described in section 8.2 through debugging (especially the first two)
might have been quite hard but would probably still not have taken as long as our verification
effort took, so the answer for question 4 is probably a “no”.

However, we can imagine a promising world where the proof burden becomes lower than
the debugging burden and verification becomes a part of most systems developers’ toolboxes.

9 Related Work

A number of projects have attempted to verify the interaction between (some or all of)
C code, its compilation, handwritten assembly code, and trap handlers.

In the context of the Verisoft project, Alkassar et al. [4] verified a virtual-memory system
that can swap out virtual memory pages onto disk. If an address is accessed that currently
is on disk, a page fault is triggered, and a verified page-fault handler runs. Their correctness
statement says that a physical machine with the page-fault handler can simulate a virtual
machine (by which they mean a machine that provides to a user process a linear memory
covering the whole address space). Their handler is implemented in C0 (a subset of C)
with some inline assembly, which is modeled as external calls that modify additional state
that cannot be modified directly from C0. That is, they call assembly from C, whereas we
chose the opposite direction, calling C (or the C-like language Bedrock2, in our case) from
assembly. In their project, saving and restoring of registers before and after the handler are
not implemented in assembly and verified like we do but are instead part of the semantics of
the physical machine.

BabyVMM [16] proves correctness of a simple virtual memory manager by showing that
for all kernel implementations, linking the kernel with the virtual memory manager and
running it on a machine with only physical memory (“hardware model” HW) behaves like
running the kernel on a machine with an address space whose lower part is physical memory
and whose upper part is virtual memory (“address space model” AS). It is implemented in a
C-like language, and no compiler nor assembly code appears in the formalization. Instead,
the theorem is stated in terms of C semantics. It also does not mention any page-fault
handlers.

The verified microkernel seL4 [12] is implemented in C, but some small parts are hand-
written assembly and are not verified [14, sections 4.4 and 4.8]. Contrary to our approach of
using a verified compiler, they apply translation validation to the binary generated by GCC
and certify using SMT solvers that it behaves like the C program.

CertiKOS [10, 11, 7] is a verified OS kernel. By means of certified abstraction layers, it
fully captures the behavior of each component in a deep specification, so that from the outside,
it does not matter whether the component is implemented in C or in assembly, thus achieving
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interoperability at the proof level between C and assembly. Its correctness is expressed as a
contextual refinement, based on CompCert’s [15] notion of a backward simulation, extended
with a universal quantification over all possible surrounding programs (contexts): It states
that for all assembly programs, all behaviors of that assembly program when linked with
the low-level kernel can be simulated by the same program when linked with the high-level
kernel specification. It relies on a notion of linking and uses CompCert’s formalization of
assembly, which is still fairly high-level compared to binary machine code, e.g. jumps use
labels instead of offsets or addresses, and there are instructions that allocate and free a stack
frame that do not correspond to any machine instructions. CompCert’s assembly (which
is used to model CertiKOS’s lowest layer) also does not model CSRs, whereas riscv-coq,
on which our project is based, does, so to model trap handlers at our level of detail, the
assembly (or machine) model would have to be extended.

CompCertELF [17], a different project by the same group, extends CompCert to also cover
machine-code generation and uses a more realistic memory model, without the stack-frame
allocation/freeing instructions mentioned above. As far as we know, CompCertELF has
not (yet) been integrated with CertiKOS and is not publicly available. If it were, and if
we managed to make CompCertELF compatible with our project, it could have helped to
prevent the bug (section 8.3) we encountered in our unverified usage of the GNU linker to
turn our plain binary into an ELF file.

Goel et al. [9] verify a subset of the instructions of an x86 processor which decodes x86
instructions and translates them into micro-operations before executing them. For the more
complex instructions, the generated micro-operations contain a trap that causes a jump to
microcode stored in a ROM. Similarly to our theorem, they prove that this processor behaves
as if there were no micro-operations, traps or microcode, and instructions were executed
according to a high-level x86 specification.

The CakeML compiler [13] targets multiple ISAs, and some instructions (e.g. division)
are not supported by all of them, so the compiler has to implement some unsupported
instructions in software, but contrary to our work, the necessary in-software implementation
is emitted directly by the compiler, and no trap handler comes into play.

10 Conclusion and Future Work

We have shown a pleasantly simple way of specifying the correctness of a trap handler that
emulates unsupported instructions in software, and we proved that our implementation of
such a trap handler combining handwritten assembly and compiler-generated code satisfies
this specification by combining symbolic-evaluation proofs about assembly and Bedrock2
programs with the correctness proof of the Bedrock2 compiler, as well as by proving that
the output of the Bedrock2 compiler, which assumes a machine without CSRs and with
hardware support for multiplication, also runs correctly on a machine with CSRs but without
hardware support for multiplication.

This style of proof relating multiple execution models constitutes a first step towards the
more ambitious goal of thoroughly proving correctness of a virtual memory system, stated
in a similar flavor by saying that user programs running on a system with virtual memory
(implemented by a combination of hardware, assembly, and C) behave as if they were running
on a machine where the user program can use the full physical address space.
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1 Introduction

The interactions and combinations of higher-order logic (HOL) with set theory in the context
of proof systems have been a long-standing topic of study (e.g. [7, 10, 18, 6, 2]). Set theory (in
particular ZF and ZFC) is the prototypical and oldest formalized foundation of mathematics,
but it does not naturally admit a concept of “typed” expressions, which are widely used in
informal mathematics, for guiding automated proof search, and in programming languages.
HOL, on the other hand, naturally supports typed expressions, type checking and reasoning
for simply typed lambda calculus with top-level polymorphism.

The first goal of the present work is to study a syntactic embedding of HOL into first-order
set theory. It is well known that the Zermelo-Franekel axioms (ZF) imply the existence of a
set that is a model of higher-order logic, where types are interpreted as sets, type judgement
as set membership and λ-terms as set-theoretic functions [10]. However, the mere fact that
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18:2 Mechanized HOL Reasoning in Set Theory

models of set theory contain a model of HOL (that is, a semantic embedding) is of little
use by itself in practice. To be able to write the syntax and simulate the features of HOL,
or to import theorems from HOL libraries, we need a syntactic embedding that transforms
expressions in HOL into terms and formulas of first order set theory.

Some proof assistants have explored mixing features of set theory and HOL in various ways
in their foundations, such as Egal [5], Isabelle/HOLZF [25] or ProofPeer [26]. A translation of
statements and proofs from HOL to set theory has been done for some systems, for example
between Isabelle/HOL and Isabelle/ZF [18], between Isabelle/HOL and Isabelle/Mizar [17, 7]
or between HOL Light and Metamath [8]. However, both Isabelle/ZF and Metamath, as well
as other systems using higher-order Tarski-Grothendieck [7], admit the Hilbert ϵ operator
(as suggested in [10]) or built-in notations for replacement and comprehension which allow,
in some form, writing terms binding variables. This is impossible in syntactically strict
first-order logic as described in mathematical text books and in first-order automated theorem
provers and proof assistants, where only the universal and existential quantifiers, ∀ and ∃,
can bind variables. This makes it impossible to naturally express arbitrary λ-terms of the
form λx.t as standalone terms in FOL.

Nonetheless, we show that it is possible to embed higher-order logic and λ-terms in
first-order set theory without these constructs using a notion of contexts, i.e. formulas
that give local assumptions about terms. We study how this embedding impacts decision
procedures for type checking and simulating the proof steps of HOL and implement the
embedding in the Lisa proof assistant [13], whose foundations are built on first-order set
theory. We obtain from this a form of soft type system over set theory, and support for
reasoning about functions with HOL-like proofs steps in Lisa. Specifically, we implement
the proof steps of HOL Light [14], for the simplicity of its foundations. This also allows
automatic import of theorems from the HOL Light library, and while this embedding works
well in practice for human-written proofs, which typically don’t contain high towers of nested
λ-abstractions, but our initial tests suggest that the embedding has too much overhead in
the size of the proofs for the translation of large proofs whose basic building blocks are such
λ-abstractions to be of practical use. Nonetheless, if HOL Light is trusted and we do not
recheck proofs, our implementation allows importing all theorems and definitions from the
HOL Light library efficiently.

In the second part of this paper, with the same motivation of simulating features from type
systems into set theory, we describe how Algebraic Data Types (ADTs) can be encoded into set
theory. ADTs are types defined inductively by their constructors, one of the simplest examples
is that of singly-linked lists of integers, given by List = Nil | Cons(head : Z, tail : List). ADTs
and their generalizations are essential constructs in type theory based proof assistants (such
as Coq [29] and Lean [22]) and in functional programming languages. Given the description
of an ADT in terms of the type signature of its constructors, we show how to define the set
corresponding to the type and functions representing the constructors, deriving the desired
theorems about induction and injectivity. We show that expressions using ADTs and their
constructors can be type checked by the same procedure as expressions from higher-order
logic embedded in Lisa. Finally, we extend these results to polymorphic ADTs.

1.1 Contributions

The contribution of this paper is to present a practical embedding of simply typed lambda
calculus with polymorphism, of the proof steps of HOL Light and of ADTs into classical ZFC
within first-order logic, and its implementation in the Lisa proof assistant.
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We describe how to embed simply typed lambda calculus with top level polymorphism
(and in particular lambda abstractions, which cannot be syntactically expressed as terms
in first-order logic) into set theory. Our approach is based on maintaining a context of
local definitions, expressing the desired properties about the subterms of λ-terms of the
form λx.t. If t contains variables other than x, i.e. free variables, we need to encode the
closure of λx.t instead, similar to the compilation of programs containing nested function
declarations.
We explain how this encoding allows simulating proof steps and type checking from HOL
by producing the corresponding proofs in set theory.
We implement this embedding and the proof-producing tactics in the Lisa proof assistant,
allowing reasoning about set-theoretic functions using HOL proof steps.
We use this embedding to import parts of the HOL Light library. We find that importing
theorem statements themselves is fast, but replaying HOL proofs within set theory faces
scalability challenges for large proofs.
We describe how algebraic data types (ADTs) can be automatically defined in ZF set
theory and how to obtain their key recursive properties derived from the recursion theorem
in ZF set theory. We mechanize this system in Lisa, making ADTs and their constructors
fully compatible with implemented HOL tactics.

In the present work we picked HOL Light as our reference system for HOL, but with some
additional work, the results can be translated to other proof assistants in the HOL-family of
proof assistants, such as HOL4 [28], Isabelle/HOL [24], or Candle [1].

Similarly, our target system was Lisa, but none of the results are specific to Lisa, and they
transfer to other systems using axiomatic set theory in first-order logic, such as Mizar [23].
The implementation corresponding to the work we describe can be found at:

https://github.com/epfl-lara/lisa/tree/itp2024-archive .

The current Lisa repository, which incorporates some of these techniques, is at:

https://github.com/epfl-lara/lisa/ .

2 Preliminaries

There exist several different variations of higher-order logic (HOL). We consider it as it
is defined in HOL Light. Its language is the simply typed lambda calculus with top-level
polymorphism (or, the Hindley-Milner type system). Each variable in an HOL term is
associated with a single type, which may contain type variables. We note V λ the set of HOL
variables and T λ the set of type variable symbols of HOL. The deduction rules of HOL Light
are described in Figure 1 1. We denote by B the type of Booleans containing two elements,
and by =A the built-in polymorphic function representing equality on type A.

We assume familiarity with the syntax and deduction rules of first-order logic (see, for
example, [21]). We take Sequent Calculus [9] as our proof system, which is used by our proof
assistant Lisa, but the results transfer to other proof systems for first-order logic (FOL). We
call first-order set theory (FOST) the axiomatic system of ZFC [15, 19] in first-order logic.
This is also the foundation of the Lisa proof system [13] in which we implement our result.

1 HOL Light also admits a choice function and an infinity axiom later in the library development, which
are justified in ZFC by the choice axiom and infinity axiom. These two additional axioms are largely
tangential to the concerns of the present work. While ETA is also formally an axiom in HOL Light,
we consider it as a basic rule because set-theoretic functions are naturally extensional, and to handle
alpha-equivalence in Section 3.

ITP 2024
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REFL⊢ t =A t
Γ ⊢ s =A t ∆ ⊢ t =A u

TRANSΓ, ∆ ⊢ s =A u

Γ ⊢ s =A→B t ∆ ⊢ u =A v MK_COMB
Γ, ∆ ⊢ s(u) =B t(v)

Γ ⊢ s =B t
ABS

Γ ⊢ (λx : A.s) =A→B λ(x : A.t)
BETA

⊢ λ(x : A.t)x =B t
ASSUME

p ⊢ p

Γ ⊢ p =B q ∆ ⊢ p
EQ_MP

Γ, ∆ ⊢ q

Γ, q ⊢ p ∆, p ⊢ q
DEDUCT_ANTISYM_RULE

Γ, ∆ ⊢ p =B q

Γ ⊢ p
INST

Γ[x⃗ := t⃗] ⊢ p[x⃗ := t⃗]
Γ ⊢ p

INSTTYPE
Γ[X⃗ := A⃗] ⊢ p[X⃗ := A⃗]

ETA
⊢ (λx.tx) =A t

Figure 1 Deduction rules for higher-order logic as implemented in HOL Light.

In both HOL (see [3]) and FOL, the language can be extended conservatively using the
concept of extension by definition, as described (for example) in [19, Section 2.10] and [11].

▶ Theorem 2.1 (Extension by Definition for First Order Logic). Let K be a first order
theory (for example, FOST), and ϕ a formula with free variables y, x1, ..., xn. Suppose
⊢K ∀x1, ..., xn∃!y.ϕ and let the theory K ′ be K with the addition of a function symbol f of
arity n and the axiom ∀y, y = f(x1, ..., xn) ⇐⇒ ϕ. Then K ′ is fully conservative2 over K.

2.1 Set-Theoretic Semantics of HOL
To motivate our translation from HOL to set theory, we review classical set-theoretic semantics
of HOL. This allows us to focus first on the semantics of functions and types, without having
to worry about if a certain set is expressible, efficiently or at all, as a term in FOST. We
interpret types as sets and HOL functions as total set theoretic functions.

As is usual in set theoretic foundations, we identify a function f : A → B with its graph,
that is, as a subset of A × B such that for every element x of A, there exists exactly one
element y ∈ B where (x, y) ∈ f . We write isFunction(f, A, B) to denote that the set f is a
total and functional relation (or simply, a function) from A to B.

We define an operator app such that, for all f such that isFunction(f, A, B) and for all
x ∈ A, app(f, x) = y iff (x, y) ∈ f .

▶ Definition 2.2 (Set theoretic universe). We use the following concepts to give a classical
semantics to HOL.

Fix U to be a set that is a universe of Zermelo set theory, i.e., containing an infinite set,
and closed under powersets, unions, and subsets defined by set comprehension (separation
axiom). Consequently, U is closed under Cartesian products. For example, we can take U

to be the set Vω+ω of the cumulative (von Neumann) hierarchy [15, Chapter 6] in ZFC.
Let app and isFunction be as above.
For A, B ∈ U , let A ⇒ B denote the set {r ∈ P(A × B) | isFunction(r, A, B)}.

2 Full conservativity says that any formula in the new language has an equivalent formula in the old
language. This is stronger than typical conservativity and necessary in the presence of axiom schemas,
but the distinction is not critical here. See [11] for more details.
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Let N be the set of natural numbers.
Let ⊥ = ∅, ⊤ = {∅} and B = {⊥, ⊤}.
For A ∈ U , let E(A) =

{(x, f) ∈ (A×(A ⇒ B)) | f = {(y, b) ∈ (A×B) | (x = y → b = ⊤)∧(x ̸= y → b = ⊥)}} .

Note that for all A, E(A) ∈ (A ⇒ (A ⇒ B)).

▶ Definition 2.3 (Semantics of HOL). An assignment α : (V λ ∪ T λ) → U is a function such
that for all x : A ∈ V λ, α(x : A) ∈ α(A). We define an interpretation of HOL terms with
respect to an assignment:

JAKα = α(A)q
T λ

1 → T λ
2
y

α
=

q
T λ

1
y

α
⇒

q
T λ

1
y

α

JBKα = B
JiKα = N
Jx : AKα = α(x)
J=A: A → A → BKα = E(JAKα)
J(f : A → B)(t : A) : BKα = app(Jf : A → BKα , Jt : AKα)
J(λx : A. t : B) : A → BKα = {(y, z) ∈ (JAKα × JBKα) | z = JtKα[x 7→y]} .

▶ Definition 2.4 (Syntactic and Semantic truth).
For any FOST sequent s = (l1, ..., ln) ⊢ (r1, ..., rn), we write:

⊢ s if s is provable in FOST
For any HOL sequent s = (l1, ..., ln) ⊢ r, we write:

⊢ s if s is provable in HOL
U |= s if, for every assignment α, (Jl1Kα = ⊤ ∧ .. ∧ JlnKα = ⊤) =⇒ JrKα = ⊤ holds in U

▶ Theorem 2.5. For any term s : A ∈ tλ and assignment α, Js : AKα ∈ JAKα

Proof. By induction on the structure of t. ◀

We can show that all rules of HOL from Figure 1 hold in ZFC, giving the following theorem:

▶ Theorem 2.6. For any assignment α and HOL terms s1 : B, ...sn : B and t : B ∈ tλ,

if (s1, ..., sn ⊢ t and ∀i. Jsi : BKα = ⊤) then Jt : BKα = ⊤

While the above argument shows that HOL has an interpretation into first-order set
theory, it does not immediately give us a mechanical translation from an HOL proof system
to proofs in mechanized set theory. In particular, note that in Definition 2.3, the right-hand
side of the lambda case cannot be expressed in the syntax of first-order logic. It tells us
neither if and how we can automate the translation of an HOL proof into an FOST proof,
nor the production of proofs of a statement t ∈ A that would correspond to type checking.
However, note also that the embedding is shallow, in the sense that HOL functions are
interpreted as usual set theoretic functions and types of functions as sets of set theoretic
functions.

3 From HOL Formulas to First-Order Set Theory Formulas

We wish to define a translation L·M from HOL sequents to FOL sequents such that if an
HOL sequent s is provable in HOL, then LsM is provable in FOST. Technically, a trivial such
embedding would map all sequents to the trivially true sequent. We cannot require that

ITP 2024



18:6 Mechanized HOL Reasoning in Set Theory

the embedding maps unprovable sequents of HOL to unprovable sequents of FOST, because
FOST is strictly more powerful and can prove additional statements. But, we can require
that the embedding does not map semantically false statements to provable sequents. This
means, for every sequent s of HOL:
1. ⊢ s =⇒ ⊢ LsM
2. ⊢ LsM =⇒ U |= s

Moreover, for the embedding to be of practical use in theorem proving and for import of
proofs, we would like the embedding to be as natural as possible, so that we ideally have
an embedding L·M : tλ → t, i.e. from terms of HOL to terms of FOST, such that, for every
assignment α, we have JLs : AMKα = Js : AKα. Unfortunately, the syntax of FOST terms does
not support λ-abstractions. Of course, the set we denote by

{(y, z) ∈ (JAKα × JBKα) | z = JtKα[x 7→y]}

is guaranteed to exist by the Comprehension axiom, but the above expression is not a term
in first-order logic. In particular, any variable that appears in a term has to be free, but
here, we would want y and z to be bound. While the symbol E was defined similarly with a
comprehension, we need to show the existence and uniqueness of E only once to introduce it
with a definitional extension once and for all, as in Theorem 2.1.

We represent λ-abstractions using a variable which is only valid under some context, a
set of formulas. For example, we can represent the term λx : B.x using:

a variable λ1, along with the corresponding
context, the formula λ1 ∈ (B ⇒ B) ∧ ∀x ∈ B. λ1(x) = x

Formally, using the mechanism of extension by definition, we first extend FOST with constant
and functional symbols for ⇒,B,N, E, and app, according to Definition 2.2. We then define
L·M as follows:

▶ Definition 3.1 (Embedding of HOL into FOST). Reserve a special set of variables Λ =
{λ1, λ2, ...} that are used to represent lambda expressions and associate to every HOL term t

a single i. In practice, we use a global counter. We use the standard application notation for
FOST terms, so that, for example, λ2 x y really means app(app(λ2, x), y).

LXM = X

LT λ
1 → T λ

2 M = LT λ
1 M ⇒ LT λ

1 M
LBM = B
LiM = N
Lx : AM = x

L=A: A → A → BM = E(LAM)
L(f : A → B)(t : A) : BM = Lf : A → BM Lt : BM
L(λx : A. t : B) : A → BM = λi y1 ... yn

where y1,...,yn are the free variables of λx.t,
and λi is a variable symbol associated with the term λx.t .

In the last line, λi is a representation of the closure of the lambda term λx.t, and is intended
to only be valid under the appropriate defining assumption.

There is another issue with this encoding, which is that we are losing type information
associated to variables, as well as the HOL assumption that type variables cannot represent
empty types. Fortunately, this can also be solved with contexts.

3.1 HOL in FOST Using Contexts
To translate propositions of HOL into FOST, we need to compute contexts of HOL terms.
We will need a non-emptiness context, to handle type variables, a typing context, to carry
over information regarding types of variables, and a definition context to handle abstractions.
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The following definition defines ctxN (non-emptiness), ctxT (variable typing), and ctxD

(definitions). Assume for simplicity and without loss of generality that variables typed
differently have different identifiers, so that, for example x, x : A, and x : B do not appear
together in the same proof.

▶ Definition 3.2 (Non-Emptiness Context). The typing context of an HOL term is the set of
assumptions A ̸= ∅ for every type variable A in the term. This also includes type variables in
the type signature of polymorphic constant symbols.

▶ Definition 3.3 (Typing Context). The typing context of an HOL term is a set of FOST
formulas of the form x ∈ T and is computed recursively as follows:

ctxT (x : T ) = {x ∈ T}
ctxT (c) = ∅ for c a constant symbol
ctxT (f t) = ctxT (f) ∪ ctxT (t)
ctxT (λx : T. t) = ctxT (t) − {x ∈ T}

▶ Definition 3.4 (Definitional Context). The definition context of an HOL term is a set of
FOST formulas whose free variables are from Λ (from Definition 3.1) and from the set of
type variables. It is computed as follows:

ctxD(x : T ) = ∅
ctxD(c) = ∅
ctxD(f t) = ctxD(t) ∪ ctxD(t)
ctxD(λx : T.t) = ctxD(t) ∪

{(λi ∈ (LT1M ⇒ ... ⇒ LTnM ⇒ LT M ⇒ Ltype (t)M)∧
∀y1 ∈ T1, ..., ∀yn ∈ Tn, ∀x ∈ T. λi yi ... yn x = LtM}

where y1 : T1, ..., yn : Tn are the free variables of t (without x).

λi represents the closure of the λ-expression, as in the supercombinator compilation of
functional programming languages [16, Chapter 13]. Having λi represent the closure of the
lambda abstraction rather than the abstraction itself is necessary because otherwise the yi’s
would be free in the definition. But this should not be the case if they are supposed to be
bound in an outer term. This is illustrated in the third formula in the following Example 3.5.

The context, ctx(t), of an HOL term t, is ctxN (t) ∪ ctxT (t) ∪ ctxD(t).

▶ Example 3.5. Let x : X, y : Y , f : Y → X, g : X → Y . We omit type annotations from
lambda terms.

Lλx.xM = λ1
ctx(λx.x) = {X ̸= ∅, λ1 ∈ X ⇒ X ∧ ∀x ∈ X.(λ1 x) = x}

L(λx.y) (f y)M = λ2 y (f y)
ctx((λx.y) (f y)) = {X ̸= ∅, Y ̸= ∅, y ∈ Y, f ∈ Y ⇒ X

(λ2 ∈ Y ⇒ X ⇒ Y ) ∧ ∀y ∈ Y.∀x ∈ X.(λ2 y x) = y}

L(λy.(λx.y) =X→Y g)M = λ3 g

ctx((λy.(λx.y) =X→Y g) y) = {X ̸= ∅, Y ̸= ∅, g ∈ X ⇒ Y,

(λ2 ∈ Y ⇒ X ⇒ Y ) ∧ ∀y ∈ Y.∀x ∈ X.(λ2 y x) = y,

(λ3 ∈ (X ⇒ Y ) ⇒ Y ⇒ B) ∧
∀g ∈ X ⇒ Y.∀y ∈ Y.(λ3 g y = E(X ⇒ Y ) (λ2 y) g)}

ITP 2024
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Note that in the last example, the definition of λ3 refers to λ2, and binds the variable y

which is free in the λ-abstraction represented by λ2. Without the closure, y would be free in
the definition of λ2 and could not be bound in the definition of λ3. Recall that E(A) denotes
the interpretation of the (curried) equality relation on A.

We can now define the embedding of sequents:

▶ Definition 3.6. Let s = t1, ..., tn ⊢ t be an HOL sequent. Define the embedding LsM as

ctx (t1), ..., ctx (tn), ctx (t), Lt1M = ⊤, ..., LtnM = ⊤ ⊢ LtM = ⊤.

3.2 Proof of Type Checking
To produce proofs corresponding to type checking, we define a proof tactic in
ProofType(t: Term) in Lisa, which for any term t of type T outputs a proof of

ctx(t) ⊢ LtM ∈ LT M

As abstractions are represented by typed variables applied to some other free variables in
our encoding, the tactic only has to type applicative terms. For example, consider the term
(λx : A. y : A)(z : A). The corresponding theorem of first-order set theory is:

(λ1 ∈ A ⇒ A ⇒ A) ∧ (∀y ∈ A.∀x ∈ A.λ1 x y = y), y ∈ A, z ∈ A ⊢ (λ1 y) z ∈ A

for which our approach generates a proof by recursing on the structure of t and T , and using
the definition of function spaces.

Polymorphism

More interesting is the typing of polymorphic constants such as HOL equality =A. Its HOL
type is A → A → B and its interpretation according to Definition 3.1 is E(A). Hence, the
corresponding typing judgement proven by ProofType should be E(A) ∈ A → A → B. In
simply typed lambda calculus with explicit polymorphism (like System F, see for example
[4]), = would be given the type ΛA.A → A → B to E. The corresponding property for E in
FOST is ∀A.E(A) ∈ A ⇒ A ⇒ B. This is conveniently represented in our embedding using
free set variables in sequents. We added support for such top-level polymorphism to the
ProofType tactic, so that it can automatically type polymorphic constants embedded this
way.

3.3 Simulating HOL Proofs
The goal of the section is to demonstrate that HOL Light proof steps can be simulated by
proofs in our encoding.

▶ Theorem 3.7 (Simulating HOL Proofs in FOST). Let
s1 ... sn

s

be an instance of a deduction rule of HOL from Figure 1. Then
Ls1M ... LsnM

LsM

is admissible in FOST (rules of sequent calculus and axioms of set theory).
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We state three auxiliary theorems of FOST which will be necessary for the simulation:

▶ Lemma 3.8. The following statements are theorems of FOST:

x ∈ A, y ∈ A ⊢ (E(A) x y = ⊤) ⇔(x = y) (Correctness of E)
f ∈ A ⇒ B, g ∈ A ⇒ B, ∀x ∈ A.f x = g x ⊢ f = g (Functional Extensionality)

p ∈ B, q ∈ B, (p = ⊤) ⇔(q = ⊤) ⊢ p = q (Propositional Extensionality)

The simulation of a proof step can in general be split into two parts: first, produce a proof
under arbitrary typing and context assumptions, and then handle the modifications in context.
For example, let x : B, f : B → B, g : B → B and consider a TRANS step deducing

Γ ⊢ x =B f x Γ ⊢ f x =B g x

Γ ⊢ x =B g x

and let cΓ = ctx(Γ). We wish to obtain a proof of
x ∈ B, f ∈ B ⇒ B, cΓ, LΓM ⊢ (E(B) x (f x)) = ⊤

x ∈ B, f ∈ B ⇒ B, g ∈ B ⇒ B, cΓ, LΓM ⊢ (E(B) (f x) (g x)) = ⊤
x ∈ B, g ∈ B ⇒ B, cΓ, LΓM ⊢ (E(B) x (g x)) = ⊤

This should follow from applying Correctness of E (Lemma 3.8) to each premise, using
transitivity of first order equality, and applying back Correctness of E (Lemma 3.8) to the
result. However, to apply this lemma, we need the facts f x ∈ B and g x ∈ B. Moreover, the
f ∈ B ⇒ B assumption from the premise will stay in the conclusion, yielding:

x ∈ B, f ∈ B ⇒ B, g ∈ B ⇒ B, f x ∈ B, g x ∈ B, cΓ, LΓM ⊢ (x =λ g x) = ⊤

which is a correct conclusion, but contains too many assumptions. Fortunately, these
assumptions can be eliminated.

Eliminating lingering assumptions

Pursuing the example above, let L = {x ∈ B, g ∈ B ⇒ B, cΓ, LΓM} and R = (x =λ g x) = ⊤.
We want to simulate the following proof step:

f ∈ B ⇒ B, f x ∈ B, g x ∈ B, L ⊢ R

L ⊢ R

First, we prove (automatically) the non-elementary typing assumptions (x ∈ B, f ∈ B ⇒
B) ⊢ f x ∈ B by recursing over the structure of f x (as in Subsection 3.2) and similarly
for g. Then, note that f is free everywhere but in its typing assumption: we can quantify
it to ∃f.f ∈ B ⇒ B using the LeftExists rule from first-order logic. Now, this statement
is provable, as it can be deduced from the non-emptiness of B. Formally, we obtain the
following proof:

f ∈ B ⇒ B, f x ∈ B, g x ∈ B, L ⊢ R
...

x ∈ B, f ∈ B ⇒ B ⊢ f x ∈ B
Cut

f ∈ B ⇒ B, g x ∈ B, L ⊢ R

...

f ∈ B ⇒ B, L ⊢ R
LeftExists∃f.f ∈ B ⇒ B, L ⊢ R

...
⊢ ∃f.f ∈ B ⇒ B

Cut
L ⊢ R

This example covers statements corresponding to type judgement and typing context. In
general, there are three kinds of context formulas we need to eliminate: lambda definitions,
variable type assignments, and type variables’ non-emptiness. We implement a proof tactic
called CLEAN which eliminates context formulas iteratively:
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1. Find in the context a definition def (λi) such that λi does not appear anywhere else.
Then, using LeftExists, generalize the left-hand side to ∃λi.def (λi). Prove ∃λi.def (λi).
This is always possible using the adequate type non-emptiness assumption. Eliminate
∃λi.def (λi) using the Cut rule. Iterate on the next definition.

2. Find a variable type assignment x ∈ T . Using LeftExists, generalize to ∃x.x ∈ T . Using
the type variable’s non-emptiness assumptions, prove that ∃x.x ∈ T (i.e. T is non-empty).
Eliminate ∃x.x ∈ T . Iterate on next unused variable.

3. Find a non-emptiness assumption A ̸= ∅ for a type variable that does not appear
anywhere else. Using LeftExists, generalize to ∃A.A ̸= ∅, which is of course provable
without assumption, and eliminate it. Iterate on the next unused type variable.

We make every tactic that possibly eliminates subterms (that is, TRANS, ABS, EQ_MP, INST and
INSTTYPE) call CLEAN to eliminate lingering assumptions.

Simulating HOL steps

We briefly hint at how steps of HOL can be simulated in FOST, leaving implicit concerns
regarding proofs of type checking and context elimination, which were addressed above.

REFL is simulated with Correctness of E and reflexivity of first-order equality.
TRANS is similarly simulated with Correctness of E and transitivity of first order equality.
Note that in HOL Light, TRANS requires only alpha-equivalence of the shared terms
of the two premises. We explain how this can be handled without assuming that all
alpha-equivalent expressions are represented by the same λi in the next paragraph.
MK_COMB is simulated with Correctness of E and substitution of equals for equals in
first-order logic.
ABS and ETA follow from the definition of the λi and from Functional Extensionality
(Lemma 3.8).
BETA steps are proven directly from the definition of the λi.
ASSUME is simply a Hypothesis step in Sequent calculus.
EQ_MP is simulated with Correctness of E and substitution of equals. Similar to TRANS, it
is subsequently made to support alpha-equivalence.
DEDUCT_ANTISYM_RULE steps are proven with Propositional Extensionality.
INST follows from instantiation of free variables in first order logic, except that doing so
changes the shape of embeddings of abstractions to a non-canonical representation, which
need to be transformed back into a canonical representation. We explain this mechanism
in detail in the following paragraph.
INSTTYPE corresponds to instantiation of free variables, but doing so breaks that assumption
about which λi represents the term. Just as for INST, we then need to substitute the
result for its canonical form, but this is simpler.

Alpha Equivalence

The steps TRANS and EQ_MP each take 2 premises with the added requirement that they share
some subterm. For concreteness, consider the TRANS step:

Γ ⊢ s =A t ∆ ⊢ t =A u
TRANSΓ, ∆ ⊢ s =A u

In HOL Light, the two terms t1 and t2 in the premises are required to be identical up to
alpha equivalence. However, alpha equivalence does not naturally hold in our encoding: two
alpha-equivalent abstractions may be represented by different variables λi from Definition 3.1.
(In fact, in the absence of memoization, even two occurrences of the same lambda can be
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represented by different variables. In practice, for our import from HOL Light we perform
memoization in the constructor of abstractions λ(x:Var, body: Term) using de Bruijn indices
so that alpha equivalent terms HOL terms are mapped to the exact same FOST expression
FOST for efficiency. That said, we still wish to show how to support alpha equivalence as a
rule.

For concreteness, consider symbols λ1 and λ2, representing abstractions, with the defini-
tions:

(λ1 ∈ A ⇒ A) ∧ (∀x ∈ A.λ1 x = x)

(λ2 ∈ A ⇒ A) ∧ (∀y ∈ A.λ2 y = y)

Here, we can use the fact that our local definitions of lambda terms ensure not only existence,
but also uniqueness. In particular, under those two assumptions, λ1 = λ2 is a consequence
of the extensionality of set-theoretic functions. In fact, using the Eta axiom from HOL
(implemented instead as a deduction step ETA), alpha equivalence is provable and does not
need to be assumed.

▶ Definition 3.9 (Tactic for Alpha-Conversion). Let _TRANS and _EQ_MP be restrictions of TRANS
and EQ_MP not supporting alpha-equivalence. We implement a tactic

ALPHA_CONV
⊢ λx.t = λy.t[x := y]

where

ALPHA_CONV x y t = _TRANS (ETA y (λx. t)) (ABS (INST (BETA x t) x y) y)

Note that the first argument of _TRANS proves λx.t = λy.(λx.t)y and the second proves
λy.(λx.t)y = λy.t[x := y]

We can then define a tactic proving the following:
ALPHA_EQUIVALENCE (if t and u are alpha-equivalent)⊢ t = u

which proves the equality by applying ALPHA_CONV recursively on t and u. Finally, we can
define the complete versions TRANS and EQ_MP, which apply ALPHA_EQUIVALENCE if the shared
terms in the input are not strictly equal.

INST Proof Step and Normalization

It may seem at first glance that INST is a very easily simulated step: first-order logic admits
instantiation of free variables across a sequent (in fact, Lisa offers this as a built-in proof
step). This however fails to preserve the structure of the embedding. For concreteness again,
let x : A, y : A, p : B and consider the following simple provable HOL statement and its
embedding in FOST:

S = ⊢ (λx.p =B p)y
LSM = p ∈ B, y ∈ A, def λ1 ⊢ (λ1 p y) = ⊤

where def λ1
= (λ1 ∈ B ⇒ A ⇒ B) ∧ (∀p ∈ B.∀x ∈ A.λ1 p x = E(B) p p). Now, suppose

f :: B ⇒ B is also a variable and consider the effect of the instantiation p := (f p) on the
HOL sequent:

S[p:=(f p)] = ⊢ (λx.(f p) =B (f p)) y
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and on the embedded FOL sequent:

LSM[p:=(f p)] = (f p) ∈ B, y ∈ A, def λ1
⊢ (λ1 (f p) y) = ⊤

But on the other hand, we have

LS[p:=(f p)]M = p ∈ B, f ∈ B ⇒ B, y ∈ A, def λ2 ⊢ (λ2 f p y) = ⊤

where

def λ2 = (λ2 ∈ (B ⇒ B) ⇒ B ⇒ A ⇒ B) ∧
(∀f ∈ (B ⇒ B).∀p ∈ B.∀x ∈ A.λ2 f p x = E(B) p p) .

So, instantiation and embedding do not commute. Moreover, the shape of S[p:=(fp)] does
not correspond to the canonical specification of the embedding of HOL terms described in
Definition 3.1.

▶ Definition 3.10. (The embedding of) an abstracted term t is in closure-canonical form if
it is of the form λi x y z... where x, y, z... are the free variables of t and λi is a symbol whose
local context is as defined by Definition 3.4. A term is in closure-canonical form if all its
subterms are in closure-canonical form.

λ2 f p x is in closure-canonical form, as any term produced by Definition 3.1, but LS[p:=(fp)]M
is not, because the subterm λ1 (fp) y is not in canonical form. Hence, even though it denotes
an equivalent statement, S[p:=(fp)] is not a legal expression whose shape other proof tactics
expect to receive. To solve this, we implemented a recursive tactic that recursively transforms
any non-canonical representation of an HOL term into its closure-canonical form and prove
equality between the two. This then allows the INST tactic to output a statement in canonical
form.

This concludes our simulation of the various proof tactics in FOST leading to Theorem 3.7.

▶ Corollary 3.11. Let s be an HOL sequent. Then a proof of s in HOL can be transformed
in a proof of LsM in FOST.

We have implemented the transformation and the above tactics in Lisa.

3.4 Defining new constants
HOL Light allows the introduction of new definitions which serve as shorthand for existing
terms. This is also possible in Lisa, wherein if we produce a theorem of the form ∃!x.P (x), we
obtain a new constant c and the property ∀x.P (x) ⇐⇒ x = c. However, for this extension
to be sound, the definition of a constant can not contain free variables, as otherwise defining
c := x would allow proving ∀x.c = x. For definitions from HOL, consider for example the
term defining the universal quantifier ! in HOL Light (bool.ml: 243):

λP : A → B.P = λx : A.⊤

It is represented as a variable λ2 while the subterm λx : A.⊤ is represented by a symbol λ1.
As in the elimination of contexts, we can prove ∃!λ2. ctx (λ2), which matches the requirement
of extension by definition. The type variable A is reflected as an explicit parameter of the
constant (which means that ! is an applied function symbol !(A)). However, λ1 will be free
in ctx (λ2), so we need to bundle with the definition of λ2 all the context definitions that it
refers to and prove existence and uniqueness accordingly.
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It is easy to prove that such a symbol exists under the assumption of the usual context:

ctx (λ1), ctx (λ2) ⊢ ∃!c. c = λ2

However when quantifying all assumptions, this will only yield

∀λ1. ctx (λ1) =⇒ ∀λ2. ctx (λ2) =⇒ ∃!c. c = λ2

while the mechanism of extension by definition requires the ∃! quantifier to be the top-level
quantifier in the definition. We use an additional FOL theorem that allows us to swap the
universal and unique-existential quantifiers

∃!x.P (x) =⇒ ((∀x. P (x) =⇒ ∃!y. Q(x, y)) ⇐⇒ (∃!y. ∀x.P (x) =⇒ Q(x, y)))

This fact, alongside proofs that the terms λi are uniquely defined by their contexts, we can
swap the quantifiers one-by-one to produce the final justification for the definition:

∃!c. ∀λ1. ctx (λ1) =⇒ ∀λ2. ctx (λ2) =⇒ c = λ2 .

We generate this proof automatically in our implementation. The proof of typing is
generated alongside the symbol by type checking the definition. The theorem corresponding
to the definition under appropriate context ctx (λ1), ctx (λ2) ⊢ !(A) = λ2 is also generated
automatically.

4 Formalizing Algebraic Data Types

We want to bring the benefits of types into FOST. In particular, algebraic data types are
useful when reasoning about inductive data structures such as lists or trees. Their encoding
is generally hidden to the user, who only obtains access to their characteristic theorems and
definitional mechanisms. We want Lisa to incorporate such mechanisms. Even though ADTs
can be encoded within HOL [20], we choose instead for Lisa’s implementation to directly
define them in FOST. We therefore avoid going through an intermediate encoding but also
lay the foundations of further generalization. We start by giving a syntactic definition of
algebraic data types.

▶ Definition 4.1 (Algebraic data types). An algebraic data type in set theory is a set A

equipped with a finite set of functions, ci : T i
1 ⇒ · · · ⇒ T i

n ⇒ A, referred to as constructors.
All elements of A have to be in the image of one of exactly one of its constructors. T i

j can
refer to A itself, giving algebraic data types their recursive behaviour.

We assume for simplicity and without loss of generality that each constructor has exactly
n arguments. m refers to the number of constructors in the datatype specification.

We want to allow defining and reasoning about ADTs directly in FOST. Specifically,
consider an ADT specification {ci : (Si

1, . . . , Si
n)}i≤m, where Si

j is either a term with no
variables, or a special symbol recursively referring to the ADT itself. We want to output a
set A and functions {ci}i≤m with the following properties:

(Typing) For all i ≤ m, ci ∈ (Si
1 ⇒ · · · ⇒ Si

n ⇒ A)
(Injectivity 1) Every ci is injective.
(Injectivity 2) For x, y ∈ A, if x ∈ Im(ci), y ∈ Im(cj) and i ̸= j then x ̸= y

(Structural induction) A is the smallest set closed under the constructors ci’s. This allows
us to write proofs by induction on the structure of the ADT.
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▶ Example 4.2. Consider the type of boolean linked lists, with specification

listbool = {nil : (), cons : (B, listbool)}

We want to generate a set listbool and constructors nil and cons such that nil ∈ listbool and
cons ∈ B ⇒ listbool ⇒ listbool. The above properties should hold; for instance, cons ⊤ nil
̸= cons ⊥ nil.

We next present our formalization as implemented in Lisa within FOST. We represent
an algebraic data type as a set A of tuples containing the tag of the constructor and the
arguments given to it. This ensures that elements of A are in the image of exactly one
constructor. For the listbool example, cons ⊤ nil is hence represented as the tuple (tagcons,
⊤, (tagnil)). In this setting, tags are arbitrary terms that differentiate constructors. They
can, for example, be natural numbers or some encoding of the name of the constructor. We
define the set A as the least fixpoint of the function

F (H) =
⋃

i≤m

{
(tagci

, x1, . . . , xn)
∣∣∣∣ xk ∈

{
H if Si

k is a self-reference
Si

k otherwise

}
The existence of F (S) for every set S is guaranteed by the replacement and the union axioms.
In order to characterize the least fix point of F , we use the recursion theorem schema of ZF
to obtain a unique function f with domain N (which is also the smallest infinite ordinal ω)
such that

f(0) = ∅

∀a ∈ N. f(a + 1) = F (f(a))

Intuitively, f(a) corresponds to all instances of A of height smaller than or equal to a.
For example, for lists of Booleans, f(2) is the set

{(tagnil), (tagcons, ⊤, (tagnil)), (tagcons, ⊥, (tagnil))}

▶ Lemma 4.3. The class function F admits a least fixpoint given by A :=
⋃

n∈ω f(n).

Proof. If xk ∈ A then there is a ak ∈ ω such that xk ∈ f(ak). Since F is monotonic xk ∈
f(maxxk∈A ak). Therefore, for every (tagci

, x1, . . . , xn) ∈ F (A), we have (tagci
, x1, . . . , xn) ∈

f(maxxk∈A ak + 1) ⊆ A. ◀

▶ Definition 4.4. We define ci as the function in Si
1 ⇒ · · · ⇒ Si

n ⇒ A such that

ci x1 . . . xn = (tagci
, x1, . . . , xn)

Now that we have a formal definition of A and ci, we prove that they fulfil the above
properties.

▶ Theorem 4.5. Let A and {ci}i≤m constructed as above. The following statements hold in
FOST

x1 ∈ Si
1, . . . , xn ∈ Si

n ⊢ ci x1 . . . xn ∈ A (Typing)∧
k≤n

xk ∈ Si
k ∧ yk ∈ Si

k, ci x1 . . . xn = ci y1 . . . yn ⊢
∧

k≤n

xk = yk (Injectivity 1)

∧
k≤n

xk ∈ Si
k ∧ yk ∈ Sj

k, i ̸= j ⊢ ci x1 . . . xn ̸= cj y1 . . . yn′ (Injectivity 2)
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Proof. For typing, we have ci x1 . . . xn = (tagci
, x1, . . . , xn) ∈ F (A) = A.

We know that tuples are injective, that is

⊢ (tagci
, x1, . . . , xn) = (tagcj

, y1, . . . , yn) ⇐⇒
∧

k≤n xk = yk ∧ tagci
= tagcj

Moreover, tuples of different arities are not equal. Injectivity 1 follows from the forward
implication, while Injectivity 2 from the backward one and the fact that tags are uniquely
assigned to constructors. ◀

▶ Theorem 4.6. Structural induction schema holds on A.∧
i≤m

(
∀xi

1 ∈ Si
1. P̂ (xi

1) =⇒ · · · =⇒ ∀xi
n ∈ Si

n. P̂ (xi
n) =⇒ P (ci xi

1 . . . xi
n)

)
⊢ ∀x ∈ A. P (x)

where P̂ (xi
k) =

{
P (xi

k) if Si
k = A

⊤ if Si
k ̸= A

Proof. We first show that for every a ∈ N, the theorem holds when replacing A by f(a).
This follows by induction on a. Since by the definition of A, every x ∈ A is in f(a) for some
a, the statement holds for every element of A. ◀

Polymorphic algebraic data types

Algebraic data types can be polymorphic, meaning that the specification of the constructors
contain type parameters. This allows, for example, reasoning over generic lists instead of lists
of a specific type. We extend our mechanization of ADTs to support such polymorphism. To
do so, we generalize A and {ci} to be class functions instead of constant symbols.

Formally, let {ci : (Si
1, . . . , Si

n)}i≤m be the specification of an algebraic data type that
possibly contains variable symbols X1, . . . , Xl. We define A(X1, . . . , Xl) as the fix point of
F (X1, . . . , Xl) where the construction of F carries the same behaviour as above. Using this
definition, all the properties of ADTs are preserved, and the construction is essentially the
same.

As in Subsection 3.2, we give a top level polymorphic type to the function symbols A and
ci, so that they can similarly be type checked. This also implies that all the tactics from the
previous section are compatible with terms referring to some ADT A and its constructors.
To conclude, we show an example of polymorphic lists in Lisa.

▶ Example 4.7. The user can define polymorphic lists with the following syntax:

1 val define(list: ADT[1], constructors(nil, cons)) =
2 T --> (() | (T, list))

where list, nil, and cons are new function symbols. ADT[1] represents ADTs with one type
parameter. list is such that list(T) is a set containing all lists over T, nil(T) is a constructor
taking one type parameter and no argument, and cons(T) is a constructor taking one type
parameter T as well as an element of type T and an element of list(T) as arguments. This
declaration also automatically proves Theorem 4.5 and Theorem 4.6 for this specification.
Our typing tactic from Subsection 3.2 can use these properties to type check any expressions
containing list, nil, and cons.
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5 Importing Proofs from HOL Light

While the embedding of HOL as described above allows writing HOL proofs directly in Lisa,
we also implement a prototype to attempt the automatic import of theorems and definitions
from HOL Light. We chose HOL Light for our import due to its simple foundations, its large
library and easily accessible proof export. With some additional work in matching proof
steps, the same method can be adapted to other members of the HOL family.

Since the HOL Light kernel does not keep track of proof objects by default, we rely on the
ProofTrace export system packaged in the HOL Light repository [27]. The system provides
a patch to the HOL Light kernel to track every proven statement in the system’s execution.
The stored proofs are finally exported to JSON files. We modified the existing JSON output
syntax slightly to allow its automatic import using standard JSON libraries for Scala. The
terms are exported as strings with a simple and unambiguous grammar, and are parsed back
by Lisa. After reading the JSON files, the proofs (with indexed steps) are transformed into
proof DAGs in an intermediate representation, and finally transformed to Lisa theorems.

Given the Lisa tactics we developed for this purpose, the translation of HOL Light
theorems is straightforward, and proceeds by recursing on the proof DAG obtained from
HOL Light, translating each proof step to the equivalent Lisa tactic call. Although constant
definitions also appear as a single proof step, DEFINITION, they must be dealt with separately,
as in Subsection 3.4.

After defining a polymorphic constant, we change its signature compared to the HOL
Light version. For example, the universal quantifier !: (A -> bool) -> bool becomes a class
function ! such that ∀A. !(A) ∈ (A ⇒ B) ⇒ B. On subsequent occurrences of ! in the
import, it occurs with an ascribed type, say !: (T -> bool) -> bool. This instantiated type
is matched against the original, polymorphic type to find the substitution A 7→ T. The
definition is correspondingly instantiated, and the occurrence is replaced by the Lisa term
!(T).

The embedding described here produces a large overhead in proof length. The proofs
of the first 15 named definitions and theorems as defined in the HOL Light library, involve
1716 HOL Light kernel steps. These are expanded to just over 300,000 Lisa kernel steps,
with the reconstruction and verification taking 93 seconds on a laptop running Linux with
an i7-1165G7 CPU and 16GB RAM.

However, if we trust theorems from HOL Light and proof rechecking, any theorem from
HOL Light Library can be quickly imported with the encoding of Section 3. Then, the first
70 definitions and theorems about logical quantifiers and inductive reasoning are parsed,
translated and imported in about 6 seconds instead. A similar approach could also potentially
serve as a way to bootstrap the mathematical library and create a theory skeleton in the
target system (Lisa) to accelerate further development.

6 Conclusion

We have demonstrated how to embed HOL into conventional first-order logic axiomatization
of set theory. Our translation maintains local definitions (at the level of the sequent) of the
closure of abstraction terms. We showed that this encoding allows simulating all the core
proof steps of higher-order logic. We mechanized this encoding in Lisa, and obtained an
interface and tactics for reasoning with typed expressions and set-theoretic functions. We
then demonstrated how (possibly polymorphic) ADTs can be mechanized in first-order set
theory, and that their representation is compatible with the tactics and type checking we
developed for HOL functions.
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We also considered alternative encodings of lambda terms. Instead of defining lambdas
at the level of the whole sequent, we could place the definition right after the first predicate
symbol. In particular, definitions of lambdas become nested, instead of being independent.
On one hand, this means that we do not have to compute closures. On the other hand, the
defining property of a lambda would often be deep in a formula, and its use would require
deconstructing and reconstructing the formula to use the context. Alternatively, we could use
an embedding of λ-terms based on combinators from combinatory logic [4]. We did not use
fixed combinators such as SKI due to growth in formula size; in the future we may explore
the use of parametric combinator families.

While the results we obtain are of practical use and we expect them to become part of
the standard Lisa release, the encoding is somewhat complicated and even if most of the
machinery can be hidden, it may confuse non-expert users. There is a significant overhead
in the size of translated proofs, which is less than ideal in practice. This also prevented us
from translating and rechecking a larger number of proofs from the HOL Light library. The
syntactic restrictions on terms of FOL is the main source of complexity in the translation. For
Lisa, this suggests considering extensions of FOL with terms that refer to formulas, such as
the definite description operator ιx.P , denoting an individual that is uniquely characterized
by the predicate P .
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Abstract
Intrusive linked data structures are commonly used in low-level programming languages such as C
for efficiency and to enable a form of generic types. Notably, intrusive versions of linked lists and
search trees are used in the Linux kernel and the Boost C++ library. These data structures differ
from ordinary data structures in the way that nodes contain only the meta data (i.e. pointers to
other nodes), but not the data itself. Instead the programmer needs to embed nodes into the data,
thereby avoiding pointer indirections, and allowing data to be part of several data structures.

In this paper we address the challenge of specifying and verifying intrusive data structures using
separation logic. We aim for modular verification, where we first specify and verify the operations
on the nodes (without the data) and then use these specifications to verify clients that attach data.
We achieve this by employing a representation predicate that separates the data structure’s node
structure from the data that is attached to it. We apply our methodology to singly-linked lists –
from which we build cyclic and doubly-linked lists – and binary trees – from which we build binary
search trees. All verifications are conducted using the Coq proof assistant, making use of the Iris
framework for separation logic.
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1 Introduction

Linked data structures such as lists and trees are pervasive in imperative programming and
serve as the implementation for various abstract data types such as queues, stacks, deques,
sets and maps. Verification of these data structures therefore received a considerable amount
of attention in the literature – e.g. the seminal papers on separation logic [30, 28] use linked
lists and trees as their key examples, and many papers on verification tools use linked data
structures as case studies [3, 4, 8, 9, 12, 27]. Yet, there is an unfortunate discrepancy between
the way linked data structures are studied in the literature and the way they are implemented
in systems programming, e.g. the Linux kernel [16, 23] and the Boost C++ library [20].

Let us first review the naive way to represent singly-linked lists in C that are “generic” in
the element type:

1 struct list {
2 void* data;
3 struct list* next;
4 };
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Linked-list nodes contain the data and a pointer to the next node (the NULL pointer is used to
represent the empty list). To avoid fixing the element type, the field data is a void pointer,
meaning it could point to data of arbitrary type. This naive way of representing lists has a
number of drawbacks in systems programming where efficiency is a key concern.

Motivation #1. The use of a pointer indirection for data requires additional storage and
incurs a run-time cost on every read. This is in contrast to the “nongeneric” version where
the data is stored directly in the struct:

1 struct int_list {
2 int data;
3 struct int_list * next;
4 };

Defining a specific version of linked lists for each element type is clearly undesirable – it
means one has to duplicate all methods from the list API for each element type. Modern
programming languages such as C++ and Rust offer generics and monomorphization to
address this problem. It also possible to obtain efficient data types with generic elements in
plain C, which we will illustrate in the following.

The Linux kernel uses the intrusive approach to linked lists, allowing for lists that can be
re-used for different data types, while avoiding the overhead caused by pointer indirections.
This is achieved by separating the meta data (i.e. the pointers to node) from the data. One
first defines a node structure which is used to achieve the necessary linking:

1 struct node {
2 struct node* next;
3 };

next next next
NULL

The list API can now be developed for the node structure, independently of the data. These
nodes can then be incorporated as fields in other structures to create lists with values of any
desired element type. Here we show the instantiation with integer values:

1 struct intrusive_int_list {
2 int data;
3 struct node node;
4 };

next next next
NULL

d0 d1 d2

Compared to the naive approach, the functions implemented for the node API can be used to
operate on lists with attached data, no matter the type of the data. To further illustrate this,
we consider the function replace_at, which replaces the n-th element of an intrusive_int_list

with a new integer value. In the implementation, we first define a function get_pos which
yields a pointer to the n-th position in the node structure, and then use this function in
replace_at to make the replacement at the correct position:

1 struct node* get_pos (int n, struct node* v) {
2 if (n == 0 || v == NULL) return v;
3 return get_pos (n-1, v->next);
4 }
5

6 # define container_of (ptr , container , field )
7 ( container *) (( unsigned char *)(ptr) - offsetof (container ,field ))
8

9 void replace_at (int n, struct intrusive_int_list * l, data a) {
10 struct node* pos = get_pos (n, &l->node);
11 if (pos == NULL) return ;
12 struct intrusive_int_list * lp =
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13 container_of (pos , struct intrusive_int_list , node);
14 lp ->data = a;
15 }

In replace_at, we first create a pointer to the node field. If the call to get_pos returns a
non-NULL node pointer pos, we make use of the container_of macro [24] to recover a pointer
to its encompassing intrusive_int_list structure, in which we can then change the data field.

Motivation #2. The intrusive representation is particularly useful when elements are part
of multiple data structures. For example, elements might be part of multiple search trees and
a priority queue so that they can be retrieved efficiently in different orders. Let us consider a
simpler example where a structure contains multiple singly-linked list nodes:

1 struct intrusive_int_list_2 {
2 int data;
3 struct node node_left ;
4 struct node node_right ;
5 };

next next next
NULL

next next next
NULL

d0 d1 d2

Here, we use node_left to keep track of the elements in left-to-right order, and node_right

to keep track of the elements in right-to-left order. In other words, using two singly-linked
intrusive lists we have constructed a doubly-linked list.

We emphasize that intrusive data structures also provide benefits in terms of allocation.
When creating a new element, one allocates a new intrusive_int_list_2, which readily
contains the list structures. This is in contrast to ordinary non-intrusive data structures,
where one has to allocate the element, and insert (a pointer to) the element into both lists.
Inserting an element into a list involves allocating a node, so this means there are three
allocations in total, while the intrusive version needs just one allocation. Note that this
means that allocation and deallocation are not handled by the node API, but that clients are
put in charge of these tasks.

Goal of the paper. Formally specifying and verifying the correctness of intrusive data
structures poses some interesting challenges. To illustrate this, let us consider the function
replace_at. First, this function makes use of some involved pointer arithmetic by its use of
the container_of macro. Secondly, the structures and functions are defined in a modular
way, and it is desirable for the verification to follow this pattern. We say that the structures
and functions are modular because instantiations (such as intrusive_int_list) use the node
structure in an abstract way. They do not interact directly with the fields of node, and only
use functions (such as get_pos) that operate on node. Similarly, we first want to specify node

and verify get_pos, and then use these ingredients to specify intrusive_int_list and verify
replace. In other words, the proof for replace should simply be about straight-line code,
whereas the reasoning about the recursion should be done in the proof of get_pos.

Regarding the first point – to verify programs operating on pointers – we make use of
separation logic [30, 28]. Since the exact programming language is not the issue we want
to focus on, we will use a simpler language that has dynamic allocation, arrays and pointer
arithmetic, but has none of the orthogonal challenges of C such as fixed-size integers, byte
representations and alignment.

To formally verify the above code in separation logic, we need to formally describe the
involved list structure. Below is the canonical way to specify int_list using a representation
predicate, which associates a value v with a mathematical list of integer data values D:
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IntList : val→ list int → iProp
IntList v [ ] ≜ v = None
IntList v (d :: D) ≜ ∃(l : loc). v = Some l ∗ ∃v′. l 7→ [ d, v′ ] ∗ IntList v′ D

Here, the notation l 7→ [ d, v′ ], or more generally l 7→ [ v0, . . . , vn ], is an abbreviation for
l 7→ v0 ∗ . . .∗ l+n 7→ vn, which provides unique ownership of an array storing values v0, . . . , vn

at the locations l to l + n. The connective ∗ is the separating conjunction, which is used to
describe the disjointness of the resources. NULL pointers are modeled using the constructors
None and Some of the option type.

Using the representation predicate, the specification for a function replace_int_at on
int_list can be expressed in terms of a Hoare triple. We will use ⟨n := d⟩D to denote the
mathematical list obtained from D by replacing its n-th element with d. If n is larger than
the length of the list, D remains unchanged.

{ IntList v D } replace_int_at n v d { IntList v (⟨n := d⟩D) }

While representation predicates are commonly used to describe non-intrusive structures
like int_list, our goal is to formulate and prove similar specifications for intrusive data
structures like intrusive_int_list. Additionally, we would like to achieve this in a way that
also formally captures and makes use of the modularity which underlies the definition of
intrusive_int_list and the implementation of replace_at.

To modularly verify replace_at, we should state and verify a specification for get_pos.
This brings us to the key observation about giving a specification to intrusive structures: We
should closely follow the definition of intrusive_int_list, and first isolate the intrusive node

part of the structure:

Node : val→ list loc → iProp
Node v [ ] ≜ v = None
Node v (l :: L) ≜ v = Some l ∗ ∃v′. l 7→ v′ ∗ Node v′ L,

In contrast to IntList, the above does not make reference to any list of data values and
is instead linking locations taken from the list L. However, this now allows us to define a
representation predicate for the intrusive structure intrusive_int_list in a straightforward
yet novel way:

IntrusiveIntList v D ≜ ∃L. Node v L ∗∗l,d∈L,D (l − 1) 7→ d

In the above, the big separating conjunction of the form ∗l,d∈[ l0,...,ln ],[ d0,...,dn ] runs over the
pairs (l0, d0), . . . , (ln, dn), implicitly requiring the two appearing lists to be of equal length.
The definition of IntrusiveIntList clearly exposes the underlying intrusive structure in the
form of the Node predicate. We can now easily give a specification for get_pos, which we can
then use in the verification of replace_at:

{ Node v L } get_pos n v {x. x = nth n L ∗ Node v L }
{ IntrusiveIntList v D } replace_at n v d { IntrusiveIntList v (⟨n :=d⟩D) }

In the above specification, nth n L returns Some l if l is the n-th element of the list L,
and returns None if there is no n-th element. Given our definition of IntrusiveIntList the
verification of replace_at is both straightforward and modular. We can easily make use of
the specification of get_pos, since its precondition Node v L conveniently appears as the left
part of the separating conjunction in the definition of IntrusiveIntList.
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Summary of key idea. The example illustrates the key idea we want to push forward in this
paper: A separation of concerns when specifying intrusively implemented data types. One
concern is the “shape” in which data is supposed to be stored, here given by the node structure.
The second concern is the actual data itself, which we can think of as being attached to
the shape. The underlying shape is then used for navigation on the data. Functions that
have been implemented on the shape can, and should, then be used in a modular way when
implementing functions that operate on the data. The verification of the specifications should
then turn out to be modular as well.

We demonstrate this methodology through two examples: intrusive lists (Section 2) and
intrusive binary search trees (Section 3). In both cases, we give representation predicates
to specify the intrusive structure and then show how to use them to specify mutable data
structures that carry data. In the case of trees, we will implement a similar function to the
above get_pos, to locate a specific key in the tree, and to obtain a pointer to the corresponding
node. Since this function leaves us with a partially traversed tree, we need to deal with
the orthogonal challenge of specifying partial trees (Section 3.3), for which we employ ‘the
magic-wand as frame’ approach by Cao et al. [7] (which has previously only been applied to
ordinary data structures, not intrusive ones).

To summarize, the main contributions of this paper are:
We introduce a specification for Linux-like intrusive singly-linked lists and sequences in
separation logic. We use the specification to modularly build up intrusive singly-linked
cyclic lists (Section 2.3) and doubly-linked cyclic lists (Section 2.4), and use them to
implement data structures that carry data with them (Section 2.5).
We apply our approach by verifying locate and insertion operations of binary search trees,
which are based on intrusive binary trees (Section 3). In extension to what is done by
Cao et al. [7], we consider intrusive data structures, and our definition of partial trees
incorporates the invariant of a binary search tree.

All of the included structures, their operations and specifications have been defined and
verified [10] in the Coq proof assistant, by making use of the Iris framework [13, 14, 15, 17,
18, 19] for separation logic.

2 Intrusive List Structures

In this section, we will gradually and modularly build intrusive list data structures. These
structures link together locations in the heap, and do not carry any data with them. Their
API allows a user to attach new locations as nodes to the list. This means that the user is
responsible for the allocation and deallocation of the nodes, and the list structure is only
used to manage the nodes. This can then be used by the user to form lists keeping track of
data, which we will showcase by implementing a deque data structure.

After covering some preliminaries concerning the programming language and separa-
tion logic (Section 2.1), we start with the implementation of simple intrusive sequences
(Section 2.2), and give specifications for some standard operations. We then continue by
modularly using sequences to build intrusive cyclic lists (Section 2.3) and doubly-linked cyclic
lists (Section 2.4). Lastly, we illustrate how the intrusive doubly-linked cyclic lists can be
complemented with data values to implement a deque data structure (Section 2.5).

2.1 Preliminaries
We briefly go over some specifics of the programming language and program logic that will
subsequently be used. We work in a λ-calculus which includes let expressions, if-then-else
expressions, matching on terms, equality checks and mutable arrays:
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alloc n v Allocates n successive locations in memory, initializes all of them with
the value v, and returns the starting location of this array.

free n l Deallocates n successive memory locations beginning from l.
l← v Assigns the value v to the location l.
! l Retrieves the value at memory location l.

To reason about these operations, we utilize separation logic [30, 28], a variant of Hoare logic
designed for imperative programs with pointers. Separation logic introduces the primitive
l 7→ v, separating conjunction ∗, and separating implication −∗, which can be used to form
assertions that are interpreted to describe fragments of the heap.

emp An empty heap fragment.
l 7→ v Describes a memory fragment in which location l contains the value v.
P ∗Q Disjoint union of the fragments described by P and Q.
P −∗ Q Describes a heap fragment which satisfies Q once it is combined with a

disjoint fragment for which P holds.

We let iProp denote the set of separation logic assertions, differentiating it from the set of
assertions Prop of the meta-logic (Coq). We allow pointer arithmetic on locations, meaning
l + n denotes the location n steps away from l. This allows us to describe arrays of values
v0, . . . , vn in the heap, by the formula l 7→ [ v0, . . . , vn ] ≜ l + 0 7→ v0 ∗ . . . ∗ l + n 7→ vn. We
often encounter situations where we want to make the assumption that a certain location
is non-empty. This is expressed by ∃v. l 7→ v, which we abbreviate as l 7→ _, and likewise
extend the usage of the wildcard symbol “_” to arrays, as for example in l 7→ [ _, _, v ].

A key element in reasoning about program correctness within the framework of separation
logic are Hoare triples. A Hoare triple is of the form {P } e { v. Φ(v) }, where:

P Assertion specifying the state of the heap before the execution of e.
e An expression in the programming language being analyzed.
Φ(v) A predicate making an assertion about the return value v and describing

the state of the heap after the execution of e.

The semantics of a Hoare triple is that if the initial state satisfies the precondition P , then
the program e will not crash, and if it finishes executing, the return value and final state will
satisfy the postcondition Φ. If the postcondition does not bind a return value, we simply
write {P} e {Q}.

2.2 Sequences
A sequence [30] starting at location l : loc links together a list D : list val of values and
stores a given default pointer e : loc in the final node, giving its predicate the type signature
loc → list val → loc → iProp. A standard definition of lists is similar to this, but would
restrict it by demanding the last pointer to be a NULL pointer. Since our goal is to specify
intrusive structures, we decouple the values from the shape of the sequence and define a
representation predicate Seq.pred with signature loc → list loc → loc → iProp, which only
links together a list of locations:

Seq.pred s [ ] e ≜ s 7→ e Seq.pred s (l :: L) e ≜ s 7→ l ∗ Seq.pred l L e.

Our API for sequences includes a function to create a new intrusive sequence, push a new
location to the front of the sequence, pop the first location, and to retrieve the next location
in the sequence:
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Seq.new start end := start← end

Seq.push start new := new ← ! start; start← new

Seq.pop start := let rem = ! start in start← ! rem ; rem

Seq.next start := ! start

As alluded to by the naming, the predicate and functions are enclosed in a module named Seq.
If the context makes it clear enough, we abbreviate the representation predicate Seq.pred by
Seq, and drop the module name in the function names. We do so for all data structures that
follow. The specifications for the operations on sequences are as follows:

{ s 7→ _ } new s e { Seq s [ ] e }
{ l 7→ _ ∗ Seq s L e } push s l { Seq s (l :: L) e }
{ Seq s (l :: L) e } pop s { p. p = l ∗ Seq s L e ∗ p 7→ _ }
{ Seq s L e } next s { p. p = nth 0 (L ++[e]) ∗ Seq s L e }

Recall that nth n L returns the n-th element of a list or None if there is no such element.
The specification clarifies that to create a new sequence at location s, the caller needs to
own the location s and provide a pointer e to be stored inside s. The function push likewise
requires the caller to have ownership of the location that is added to the sequence, and pop
will return ownership of the popped location. This means that the operations do not perform
allocation or deallocation of nodes, but are used to manage locations of the sequence.

We want to highlight the specification of next, as its postcondition, maybe unexpectedly,
seems to return the sequence unchanged. In a non-empty cycle Seq s (l :: L) e the call next s

returns the location l. Intuitively, the caller would now continue to operate on the sequence
Seq l L e. Formally, this is done using the following “splitting” property:

Seq s1 (L1 ++s2 :: L2) ⊣⊢ Seq s1 L1 s2 ∗ Seq s2 L2 e (1)

Here, ⊣⊢ expresses interderivability of separation logic assertions, making it possible to use
the rule in both directions. This means that one can use the rule in left-to-right direction
to obtain a Seq predicate for any position in the list, then push or pop elements there, and
finally use the right-to-left direction to reattain the Seq predicate for the whole sequence.

2.3 Cyclic Lists
We can now use the previously defined sequences to define intrusive cyclic lists. For this,
we simply make use of the fact that we can freely choose the pointer stored at the end of a
sequence and use it to point back to the start:

Cycle.pred c L := Seq c L c

The Cycle predicate satisfies the following “rotation” property, derived from the “splitting”
property for Seq (1), reflecting its cyclic structure:

Cycle c (c′ :: L) ⊣⊢ Cycle c′ (L ++[c]) (2)

The API for cyclic lists is similar to the one for sequences, but includes a function that
checks if a list is empty. This is done by comparing the starting location of the cycle to the
location it points to. If the two are equal, the cycle is considered empty. Once we attach
data to the intrusive cycle, the starting location takes the special role of a sentinel node.
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Cycle.new start := Seq.new start start

Cycle.is_empty start := ! start = start

Cycle.insert := Seq.push

Cycle.remove := Seq.pop

Cycle.next := Seq.next

Many of the functions are directly defined in terms of the sequence functions. The specifica-
tions are as follows, where is_nil returns a boolean reflecting if a list is empty:

{ c 7→ _ } new c { Cycle c [ ] }
{ Cycle c L } is_empty c { b. b = is_nil L ∗ Cycle c L }
{ Cycle c L ∗ l 7→ _ } insert c l { Cycle c (l :: L) }
{ Cycle c (l :: L) } remove c { p. p = l ∗ Cycle c L ∗ p 7→ _ }
{ Cycle c L } next c { p. p = nth 0 (L ++[c]) ∗ Cycle c L }

Similar to sequences, we can use the specification of next in combination with the “rotation”
property (2) to insertion and remove elements at arbitrary positions in the cycle.

2.4 Doubly-linked cyclic Lists
We now come to the more interesting example of intrusive doubly-linked cyclic lists, or
dcycles for brevity. Conceptually, a dcycle is composed of a cyclically arranged nodes, each
node containing two pointers, one to the next node, and one to the previous node. Another
way to split a dcycle into two parts, is to collect all the forward pointers in a cycle, and all
the backward pointers in a separate cycle.

l0

l0 + 1

l1 l2

l1 + 1 l2 + 1

Figure 1 Each node of the dcycle consists of
two pointers, one pointing to the next, and one
pointing to the previous node.

l0

l0 + 1

l1 l2

l1 + 1 l2 + 1

Figure 2 The dcycle can be decomposed into
two cycles, one containing all the next pointers
(white), and one with all the prev pointers (grey).

Both combined make up the doubly-linked cyclic list. It is this latter view that motivates our
choice for the representation predicate for dcycles, since it allows us to re-use the previous
cycle specification in a straightforward way:

DCycle.pred c L := Cycle c L ∗ Cycle (c + 1) (rev_add_1 L)

The function rev_add_1 reverses the list of locations and adds 1 to every location, generating
the cycle of backward pointers. By this definition, a node of the dcycle DCycle.pred c L

at location l ∈ L owns the resources l 7→ next ∗ (l + 1) 7→ prev, where next points to the
next node in the dcycle and is owned by the underlying cycle Cycle c L, and prev points to
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the previous one, and is owned by the cycle Cycle (c + 1) (rev_add_1 L) (Figure 2). Basic
operations on dcycles are implemented in a way that leverages the functions already provided
by the underlying cycles. For readability, we introduce some notation for operations used in
accessing the next and previous pointer of a node: given a location l in a dcycle, we write
l.next for l + 0 and l.prev for l + 1.

DCycle.new c := Cycle.new c.next ; Cycle.new c.prev

DCycle.is_empty c := Cycle.is_empty c.next

DCycle.next c := Cycle.next c.next

DCycle.prev c := (Cycle.next c.prev) + (−1)
DCycle.insert0 c new := let next = DCycle.next c in

Cycle.insert next.prev new.prev ;
Cycle.insert c.next new.next

DCycle.remove0 c := let nn = DCycle.next (DCycle.next c) in
let l0 = Cycle.remove c.next in
Cycle.remove nn.prev ; l0

The function insert0 and remove0 are used to insertion and remove the node that comes
after the current node. We can also define functions insert1 and remove1, which do the
same operations in the other direction of the dcycle. We omit these here, but they can be
found in the Coq mechanization. The specifications of the dcycle functions are:

{ c 7→ [ _, _ ] } new c { DCycle c [ ] }
{ DCycle c L } is_empty c { b. b = is_nil L ∗ DCycle c L }
{ DCycle c L } next c { p. p = nth 0 (L ++[c]) ∗ DCycle c L }
{ DCycle c L } prev c { p. p = nth 0 (rev L ++[c]) ∗ DCycle c L }
{ DCycle c L ∗ l 7→ [ _, _ ] } insert0 c l { DCycle c (l :: L) }
{ DCycle c (l :: L) } remove0 c { p. p = l ∗ DCycle c L ∗ p 7→ [ _, _ ] }

We often need to make use of a “rotation” property, which analogously to the similar property
for cycles (2), allows us to cyclically rotate the locations of the dcycle:

DCycle c (c′ :: L) ⊣⊢ DCycle c′ (L ++[c]) (3)

To illustrate in how far the chosen definition of the dcycle representation predicate allows for
modular reasoning, let us consider what happens during the verification of DCycle.remove0.
Its specification as given above is:

{ DCycle c (l :: L) } DCycle.remove0 c { p. p = l ∗ DCycle c L ∗ p 7→ [ _, _ ] }

The function DCycle.remove0 first makes two calls to DCycle.next. The specification of
DCycle.next keeps the initial DCycle predicate unaltered, so we make use of the rotation
property. Next, there are two calls to the function Cycle.remove, each separately effecting
one of the two underlying cycles of the dcycle. At this point, we would like to use the already
verified specification of Cycle.remove from Section 2.3. Fortunately, we can achieve this by
unfolding the definition of the DCycle predicate:

DCycle c (l :: L)
⊣⊢ Cycle c (l :: L) ∗ Cycle (c + 1) (rev_add_1 (l :: L))

This then allows us to reason on the separate cycles and make use of the Cycle.remove
specification twice.
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2.5 Deques
We now illustrate how the intrusively treated dcycles can be used to implement and verify a
deque data structure. A deque represents a linearly arranged list of elements, supporting
push and pop operations for the addition and removal of elements at both the front and the
end of the list. The cyclic nature of dcycles makes it convenient to implement a deque, since
we can use the first node as a sentinel. Using a dcycle as the underlying structure, defining
the representation predicate is also rather simple: we associate the nodes of the dcycle with
the data that is supposed to be stored next to it:

Deque.pred c D := ∃L. DCycle c L ∗∗l,d∈L,D (l − 1) 7→ d

Since a node of the underlying dcycle at location l stores two pointers, the data is stored at
location l − 1. From the entry-point c of the dcycle (which does not get any data), we can
then make changes at the head and tail of the deque. Creation, push and pop operations for
the deque are defined as follows:

Deque.new () := let l = alloc 2 None in DCycle.new l ; l

Deque.push_front x c := let lx = alloc 3 x in DCycle.insert0 c (lx + 1)
Deque.push_back x c := let lx = alloc 3 x in DCycle.insert1 c (lx + 1)

Deque.pop_front c := if DCycle.is_empty c then None else
let next = DCycle.next c in
let x = ! next.data in
let rem = DCycle.remove0 c in
free 3 (rem− 1) ; Some x

Deque.pop_back c := if DCycle.is_empty c then None else
let prev = DCycle.prev c in
let x = ! prev.data in
let rem = DCycle.remove1 c in
free 3 (rem− 1) ; Some x

Here, l.data is notation for l− 1. Note that Deque.new only makes an allocation for an array
of length 2, since it only creates the sentinel node of the underlying dcycle, which does not
get to hold any data.

Thanks to the already verified specifications for the operations on dcycles, available
lemmas about the big separating conjunction in the library of Iris, and the usage of the
proof automation framework Diaframe [26], verifying the specifications of the deque API
surmounts to less than 30 lines of proof in Coq.

3 Intrusive Binary Search Trees

In this section, we discuss and specify intrusive trees (Section 3.1), akin to those found in
the Linux kernel [32, 22], where they are used for the implementation of the red-black trees.
In the introduction (Section 1) we gave an example where the replacement of an element
in a list was split into two parts: first, finding the right position in the intrusive list and
returning a pointer to that location, and second, using this pointer to make the replacement
in the corresponding data field. In the case of binary search trees, our implementation of the
insertion operation will likewise be done in two steps. It first uses a function locate to find
the correct position for the insertion – making use of the intrusive structure for navigation –
and then carry out the insertion in this position. Again, it will be our goal to show that the
verification of the final insertion operation can be done modularly (Section 3.3).
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Since locate searches for – and potentially stops – at an arbitrary position inside a tree,
we need to deal with partially traversed binary trees. In Section 3.3 we will show how we can
deal with this by using the “magic wand as frame” approach [7], which we have also adapted
(Section 3.2) to deal with the verification of properties of the functional locate function.

3.1 Representation Predicates

To illustrate a use of binary search trees, our overall goal will be to use them to implement a
map data structure, which keeps track of key-value pairs by making use of an underlying
binary search tree.

To start, we specify the intrusive tree structure, which relates a tree t : tree loc labeled
with locations – each one the location of a node of the heap representation of the tree – to
the root-location l : loc of the tree.

Tree.pred : loc→ tree loc→ iProp
Tree.pred l Leaf := l 7→ None
Tree.pred l (Node p t1 t2) := l 7→ Some p ∗ Tree.pred p t1 ∗ Tree.pred (p + 1) t2

In the above, we make use of polymorphic typed trees in Coq, since we will use them with
different types for the labels.

tree (A : Type) ::= Leaf : tree A | Node : A→ tree A→ tree A→ tree A

We also define standard map and inorder functions on those trees. So far we have only
specified the intrusive binary tree shape. To get binary search trees, our next step is to
add a key of type K to every node in the tree, changing the signature to take trees of type
tree (K ∗ loc), and to enforce the binary search tree invariant. We restrict our attention to
binary search trees that use natural numbers as their keys (i.e. K = nat), and we rely on a
Coq predicate BST_inv_nat : tree nat → Prop to describe binary search trees on the level of
Coq. Combining the above, the desired heap predicate for binary search trees is:

BST.pred : loc→ tree (K * loc)→ iProp
BST.pred l t := Tree.pred l (π1 t) ∗ BST_inv_nat (π2 t) ∗ ∗(k,l)∈inorder t (l + 2) 7→ k

The predicate is a separating conjunction of three parts:
The shape of the tree, which must hold for the tree of locations that we get from the first
projection π1 t = map fst t of the tree t : tree (K * loc) of key-location pairs.
The binary search tree invariant, which must hold for the tree of natural numbers that
we get from the second projection π2 t = map snd t of the tree.
A big separating conjunction over every key-location pair (k, l) in the tree t, and indicating
where the key is stored. Notably, the structure of the tree plays no role here.

Using binary search trees, we can now specify finite maps K fin−⇀ val of key-value pairs. This
is first done by specifying a finite map connecting keys and locations, which can then be
used to attach data to the locations.

MapNode.pred : loc→ (K fin−⇀ loc) → iProp
MapNode.pred l m := ∃t. BST.pred l t ∗ m = to_map t

Map.pred : loc→ (K fin−⇀ val) → iProp
Map.pred l m := ∃m′. MapNode.pred l m′ ∗∗(l,v)∈m′,m (l − 1) 7→ v
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The specification of the insertion operation for intrusive maps is then:

{new 7→ [ None, None, k ] ∗ MapNode l m }
MapNode.insert l new

{ml. MapNode l (⟨k := new⟩m)
∗ if m(k) = Some l′ then ml = Some l′ ∗ l′ 7→ [_, _, k] else ml = None }

Here, ⟨k := new⟩m is the map m extended with the key-value pair (k, new) (the value of k is
overwritten if it already exists). Note that by definition of Tree.pred the location l is always
the entry point of the tree and not subject to any changes the function insert makes.

To verify the above, we make immediate use of the specification of insertion for trees,
which will be discussed in Section 3.3. After using it we are left with proof obligations about
the mathematical trees, which can be resolved by previously established lemmas, and lemmas
from the library. Finishing the example, we can then use the above to verify the insertion
operation on maps that have values attached:

{Map l m} Map.insert l k v {Map l (⟨k := v⟩m)}

In the next two subsections we cover the definition and verification of the locate and insertion
functions on binary search trees, first as functional versions on the level of the meta-theory
(Section 3.2), and then implemented in the imperative object language (Section 3.3).

3.2 Functional Implementation of Tree Functions
To specify representation predicates for binary search trees we made use of polymorphic trees
on the level of Coq. To give specifications for the locate and insert operations, we also need
to implement functional versions of them. Our choice of implementing insert by making
use of locate, instead of the more standard recursive definition, will lead to an interesting
challenge when it comes to verifying that insert preserves the binary search tree invariant.
Dealing with this is the main technical aspect we would like to highlight in this section.

We again try to keep things polymorphic and assume an arbitrary type K of keys, and a
boolean comparison function p : K → K → bool. Functional implementations of locate and
insert are then given by the following Coq code:

1 Fixpoint locate (k : K) (Γ : tree K → tree K) (t’ : tree K) : (tree K → tree K) ∗ tree K :=
2 match t’ with
3 | Leaf ⇒ (Γ , Leaf)
4 | Node k’ l r ⇒ if p k k’ then locate k (λ h, Γ (Node k’ h r)) l
5 else if p k’ k then locate k (λ h, Γ (Node k’ l h)) r
6 else (Γ , t’)
7 end.
8

9 Definition insert (k : K) (t : tree K) : tree K :=
10 match locate k id t with
11 | (Γ ’, Leaf) ⇒ Γ ’ (Node k Leaf Leaf)
12 | (Γ ’, Node _ l r) ⇒ Γ ’ (Node k l r)
13 end.

The argument Γ : tree K → tree K of locate is used as a form a functional zipper [11] or
context – it keeps track of the tree that is left behind, as we traverse down in search of the
key. We can also think of the function Γ as a partial tree with one hole, waiting for a tree as
input in order to be completed to a full tree. Since not all functions correspond to partial
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trees that result from traversing down a tree (e.g. λt, Node t t ), we define a predicate
ctx to define properly formed contexts. The constructors capture the ways in which locate
enlarges the context during a recursive call.

1 Inductive ctx : (tree K → tree K) → Prop :=
2 | ctx_id : ctx id
3 | ctx_ht k t Γ : ctx Γ→ ctx (λ h, Γ (Node k h t))
4 | ctx_th k t Γ : ctx Γ→ ctx (λ h, Γ (Node k t h)).

Making use of the comparing function p we define the binary search tree invariant BST for
trees over K, and make the assumption that p is asymmetric and antisymmetric to ensure
that the invariant has the expected properties.

1 Inductive BST_inv : tree K →Prop :=
2 | BST_Leaf : BST_inv Leaf
3 | BST_Node x l r : BST_inv l → (∀ y, y ∈ to_set l → p y x) →
4 BST_inv r → (∀ y, y ∈ to_set r → p x y) →
5 BST_inv (Node x l r).

The above is the invariant which we specialized to natural numbers (BST_inv_nat) in Sec-
tion 3.1. Next we want to prove that insert preserves the BST invariant, since this is a
property that will be needed in the verification of the imperative implementation of insert.

Compared to the recursive implementation of insert, the usage of locate complicates
this verification. A specification for locate needs to faithfully capture that the function can
potentially stop in the middle of a tree, leaving behind a partially traversed tree and the
root of a tree that has the sought after key.

To formally capture partially traversed trees, we define the predicate BST_ctx.
1 Definition BST_ctx (Γ : tree K → tree K) C C’ :=
2 forall t, BST_inv t → to_set t ⊆ C → BST_inv (Γ t) ∧ to_set (Γ t) ⊆ C’.
3

4 Lemma BST_ctx_locate_spec {k Γ t Γ ’ t’} C :
5 locate k Γ t = (Γ ’, t’) →
6 BST_inv t ∧ BST_ctx Γ ({k} ∪ to_set t) ({k} ∪ C) →
7 BST_inv t’ ∧ BST_ctx Γ ’ ({k} ∪ to_set t’) ({k} ∪ C).

The assertion BST_ctx Γ C C’ expresses that for every BST t with keys in the set C, passing
it to Γ will yield another binary search tree Γ t whose keys are a subset of C ′.

The above specification of locate can now be shown by induction on the BST invariant
of the input tree t and making sure that the induction hypothesis generalizes over Γ. It also
makes use of some properties of BST_ctx, which establish base cases and compositionality,
and readily follow from the definition:

C ⊆ C ′ → BST_ctx id C C ′

(∀y. y ∈ C → p y k)→ BST_inv t→ BST_ctx (λh, Node k h t) C ({k} ∪ C ∪ to_set t)
(∀y. y ∈ C → p k y)→ BST_inv t→ BST_ctx (λh, Node k t h) C ({k} ∪ C ∪ to_set t)
BST_ctx Γ A B → BST_ctx Γ′ B C → BST_ctx (Γ′ ◦ Γ) A C

To prove that insert preserves the BST invariant, we only need the special case of the above
lemma, where Γ = id and C = to_set t This gives us:

1 locate k id t = (Γ ’, t’) → BST_inv t →
2 BST_inv t’ ∧ BST_ctx Γ ’ ({k} ∪ to_set t’) ({k} ∪ to_set t).

By case analysis on the tree t, we can then show the desired preservation property of insert:
1 Lemma BST_inv_insert k t : BST_inv t → BST_inv (insert k t).
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3.3 Locate and Insertion on Binary Search Trees
We come to a minimal API for binary search tree, only including a function to create a new
tree and one to insert a new element. We again introduce notations for accessing the fields
of a node: l.left for l + 0, l.right for l + 1, and l.key for l + 2.

BST.new l := l← None
BST.locate pos k := match ! pos with

None ⇒ pos

| Some l ⇒ let k′ = ! l.key in
if k < k′ then BST.locate l.left k

else if k > k′ then BST.locate l.right k

else pos

end

BST.insert root new := let new_key = ! new.key in
let pos = BST.locate root new_key in
match ! pos with
None ⇒ pos← new ; None
| Some l ⇒ new.left← ! l.left ;

new.right← ! l.right ;
pos← new ; Some l

end

Running locate to find a key k in the tree t, will return a value with the location of the node
in t that contains the key k, or None if no such node exists. Notably, if the key is found,
this means we get a pointer to a node in the tree. The challenge is now to find a way to
give a specification for locate, since it must somehow mention this pointer to an internal
node of the tree. This is not yet possible with the tree predicate we have given so far. The
specification of locate should assure that the function will always successfully run on a BST.

{ BST l t } locate l k { l′. Φ l′ }

We still need to determine the predicate for the postcondition Φ. On the one hand, it will
need to express that the returned pointer l′ is the root of some subtree, which can be done by
using the BST predicate. But apart from this subtree, Φ also has to account for the remainder
of the initial tree t. Instead of coming up with a new data structure in Coq to describe these
partial trees, we deal with this by following the “magic wand as frame” approach [7], which
makes use of the separating implication −∗ and functions Γ to define partial trees.

part_BST : loc→ (tree (nat ∗ loc) → tree (nat ∗ loc))→ loc→ iProp
part_BST l Γ p := ∀t′.

(
BST.pred p t′ ∗ BST_inv_nat (π1(Γ t′))

)
−∗ BST.pred l (Γ t′)

In the predicate part_BST l Γ p, the location l is the root of the partial tree, p is the location
which is missing a subtree, and Γ can intuitively be viewed as the remaining partial tree.
Formally, during the proof, we require Γ to correspond to proper contexts, so we use the ctx
predicate to enforce this. We can now formulate the specification for locate as follows:

ctx Γ→ tree.locate k s id t = (Γ′, t′)→
{ BST l t } locate l k {l′. part_BST l Γ′ l′ ∗ BST l′ t′ }

Here, tree.locate is the functional implementation of locate in Coq (Section 3.2). The
verification of the above specification is done by induction on the tree t. Since locate is
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running a loop, we will need a loop invariant. A first proof attempt quickly reveals that
during a loop of locate, the precondition involving BST can usually not be restored, since the
tree is only partially traversed. But we can generalize the precondition to fix this issue.

ctx Γ→ tree.locate k s Γ t = (Γ′, t′)→
{ part_BST l Γ p ∗ BST p t } locate p k {p′. part_BST l Γ′ p′ ∗ BST p′ t′ }

The above can then be proven by induction on the tree t while making sure to generalize over
all other parameters. The specification of locate can then be used to verify the insertion
function, only requiring a case distinction on the tree, and no further proof by induction.

{new 7→ [ None, None, k ] ∗ BST l t } insert l new { BST l (tree.insert k new t) }

The proof makes use of the fact that the functional implementation of insertion preserves
the BST invariant of the tree, which was discussed in Section 3.2.

4 Mechanization

All of the above presented data structures, specification and related proofs have been fully
mechanized in the Coq proof assistant, making use of the Iris framework for separation logic.
Apart from some notational short hands, the definitions and theorem statements in the paper
directly reflect their counterparts in Coq.

In the verification, we additionally make use of Diaframe [26], which is a proof automation
framework for Iris. It employs a goal-directed proof search strategy which can be extended
by the user. The object programming language we use and study with Iris is HeapLang,
which is the standard language provided by Iris, and is used without further adjustments.
Regarding Diaframe, we added a few lines of code to enhance some simple handling of pointer
arithmetic. These latter lines can be found in the Setup.v file.

The proofs remain rather simple for the sequences and cyclic lists, but start to get slightly
more involved once we layer the intrusive lists in the case of the dcycles (Section 2.4). The
representation predicate needs to be unfolded and its constituents manipulated in very
deliberate ways, by making use of the rotation property of the cycle predicate. The same
can be said about the verification in the case of the binary search trees. Here, the main
formalization overhead (Util.v) was in relation to the underlying mathematical trees, which
turns out to be significantly larger than the corresponding one for lists. This was mainly due
to the choice of implementing insertion via locate, which required different proof approaches
compared to the recursive version, but allowed us to discuss the problem of internal pointers
in tree structures.

5 Related Work

Intrusive Data Structures. As part of effort in verifying Google’s pKVM hypervisor
for Android, Pulte et al. [29] verify the buddy allocator [1] used in the hypervisor. The
corresponding C code makes use of intrusive lists (list_head), which are specified as part of
the main invariant in the verification. The intrusive data structure is however not identified
and specified as an independent structure. Lee et al. [21] consider intrusive data structures
in the context of Rust, where they focus the issue of type-checking intrusive structures in
ownership type-systems.
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Linked List in Separation Logic. Linked lists are a standard data structure covered in any
introduction to separation logic [3, 5, 30]. They also serve as a natural target to benchmark
verification tools and verifications can therefore for example be found in among others
Bedrock [9], Charge [4], VST [3, 6], Viper [27] and Verifast [31, 12]. In all of these cases, lists
are specified in a non-intrusive way, similar to is_int_list in the introduction (Section 1).

Magic Wand as Frame. Cao et al. [7] utilize the magic wand to describe partial data
structures, which avoids the introduction of another recursively defined predicate to specify
these kinds of data “frames”. While we have adopted their approach for defining partial trees
by usage of the magic wand, our definition still differs. They define a partial tree that only
represents the partial tree shape. We however actually define a partial binary search tree, i.e.
the values in our partial structure define are sorted according to the BST invariant.

Higher-Order Representation Predicates in Separation Logic. Charguéraud [8] showcases
how higher-order representation predicates can be used to describe polymorphic mutable
data structures. He covers a wide range of standard structures, which includes mutable
lists, list segments, records, trees and arrays. Similarly to the example we have given in
Section 1, he treats the example of a function to read the n-th cell of a mutable list, and uses
a predicate designating a list segment to be able to formulate the specification. Likewise, he
continues by treating trees and showing techniques of how to represent trees with holes, i.e.
trees, where the ownership of possibly several subtrees has been detached. Charguéraud uses
recursively defined predicates to describe the structures with holes, whereas we have made
use of the “magic wand as frame” approach. Lists are treated non-intrusively, and he does
not cover cyclic data structures or binary search trees.

6 Conclusion

In this paper, we have presented an approach to specify intrusive data structures by first
separately specifying the underlying node structure before the addition of data. One key
feature of intrusive data structures is that they can be combined: they can be used to keep
track of data across multiple intrusive data structures. With our given approach, this can
easily be captured, since we can combine specifications of intrusive data structures. We
illustrated this by using two cyclic lists to track data, effectively giving us the implementation
of a deque (Section 2.5).

Throughout the presented examples, we have chosen a modular approach when it came to
specifying the list and tree data structures. This is particularly evident in the specifications of
the cyclic and doubly-cyclic lists. But this was not only limited to specifications; whenever we
implemented a new function on a data structure, we made sure to reuse operations provided
by any underlying structure. As a consequence, verifying the specifications of the presented
data structures also ended up decomposing in a modular way. Since our mechanization makes
use of the Iris framework and Diaframe, most proofs get simplified to the point where the
only proof obligations that were left were related to the logical representations of the data.

Looking ahead, it remains to be determined to which extent this modular approach can
be applied to more complex graph-like structures. The Linux kernel makes use of a task
structure [25], which contains multiple intrusive list node occurrences (list_head) and with
the addition of other intrusive structures, and the buddy allocator in pKVM [1, 2] makes
use of intrusive lists to keep track of free blocks. So there are natural examples of data
structures in which many intrusive structures are embedded. Some scaling challenges will
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probably appear when tying the mathematical structures – which outline the shape and
carry information about the location of nodes – to the heap representations of the intrusive
structures. In the dcycle example (Section 2.4) this happened by the usage of the rev_add_1
function. Many similar functions, or a complex relation, will most likely be needed in order
to specify a structure that involves several embedded intrusive data structures.
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Abstract
Quillen model category theory forms the cornerstone of modern homotopy theory, and thus the
semantics of (and justification for the name of) homotopy type theory / univalent foundations
(HoTT/UF). One of the main tools of Quillen model category theory is the small object argument.
Indeed, the particular model categories that can interpret HoTT/UF are usually constructed using
the small object argument.

In this article, we formalize the algebraic small object argument, a modern categorical version of
the small object argument originally due to Garner, in the Coq UniMath library. This constitutes
a first step in building up the tools required to formalize – in a system based on HoTT/UF –
the semantics of HoTT/UF in particular model categories: for instance, Voevodsky’s original
interpretation into simplicial sets.

More specifically, in this work, we rephrase and formalize Garner’s original formulation of the
algebraic small object argument. We fill in details of Garner’s construction and redefine parts of the
construction to be more direct and fit for formalization. We rephrase the theory in more modern
language, using constructions like displayed categories and a modern, less strict notion of monoidal
categories. We point out the interaction between the theory and the foundations, and motivate the
use of the algebraic small object argument in lieu of Quillen’s original small object argument from a
constructivist standpoint.
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1 Introduction

The tools of model category theory underpin the semantics of homotopy type theory and
univalent foundations (HoTT/UF) (starting with [7, 19]). This work is the first step in
building up this toolkit within HoTT/UF, with the ultimate goal of formalizing and verifying
the semantics of HoTT/UF within HoTT/UF – or more specifically, within the Coq library
UniMath. We focus on formalizing one major tool in the envisioned kit: the algebraic small
object argument. This is the main tool for constructing particular model categories, and it
(or versions) is used to model HoTT/UF in particular categories [19, 5, 8, 11, 10, 6].
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Model category theory and the algebraic small object argument

Model category theory, first introduced by Quillen [25], forms the foundation of modern
homotopy theory. It provides a language and tools for this branch of mathematics, expanding
the use of methods originally developed for the study of topological spaces to other domains:
e.g. (higher) category theory [18, 17, 26], derived algebraic geometry [21], motivic homotopy
theory [23], and now type theory as mentioned above.

A model category consists of two interacting weak factorization systems (WFSs) on
a category, and, in specific examples, these are usually constructed via the small object
argument [25] or variations. In this article, we study and formalize algebraic/natural weak
factorization systems (NWFSs) [14] and the algebraic small object argument [13, 12], categor-
ical improvements to the original versions that are well-suited for formalization. (Though
algebraic weak factorization system is the more modern terminology, we will adhere to the
vocabulary from [13] and refer to them as natural weak factorization systems.)

WFSs, while important for the theory of model categories, are lacking from a categorical
or constructivist viewpoint. The definition and the problems created will be explicated in
Section 3, but in summary a WFS consists of some structure A together with the property
that some other structure B merely exists. NWFSs solve the constructivist problems that
this creates by including both A and B explicitly, as structure, not property. In addition, to
take advantage of machinery from category theory, B is not only given explicitly as structure,
but as arising from (co)algebras of a (co)monad. Though the definition of NWFS is, a
priori, more restrictive than that of WFS, most WFSs of interest to us (e.g. the ones in
[19, 5, 8, 11, 10, 6]) are actually NWFSs. Additionally, NWFSs are an important tool in
recent efforts towards producing constructive models of HoTT/UF [11, 10].

Quillen’s small object argument (SOA) [25] generates a WFS from a sufficiently well-
behaved subclass of maps of a category. Garner introduced a variant, the algebraic small
object argument (ASOA) [13] which produces NWFSs and which takes advantage of the fact
that NWFSs are defined in terms of (co)monads in order to produce a cleaner construction.
The NWFSs of [19, 5, 8, 11, 10, 6] are generated by the ASOA or variations.

Coq and UniMath

Coq in conjunction with the UniMath library (henceforth just UniMath) is a formalization
framework for HoTT/UF. It adds insights from homotopy theory to type theory to produce
a foundation of mathematics that is well-suited for the formalization of mathematics closely
related to homotopy theory, especially the category theory that we are using here.

We only make light use of the additional assumptions that UniMath adds to Coq: we
use functional extensionality and the homotopy levels of propositions and sets, as well as
propositional truncation for the classical theory in Section 3 (though not in the actual ASOA
construction in Section 5), but nothing else (including univalence). We do however take
significant advantage of the technology developed in UniMath for formalizing category theory.
In particular, we use the machinery of displayed categories [2] and the extensive formalization
of monoidal categories [28]. Furthermore, we do expect the univalence axiom to become
important and useful for the further development of model category theory in UniMath.

That being said, some of the high level machinery employed in [13] is not available in the
UniMath library. For example, much of the theory of (co)ends and the two-fold monoidal
categories employed there are not yet available in UniMath. Instead, we make more direct
arguments, making for a more concrete and detailed description of the construction.
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Contributions and related work

We formalize [13, Proposition 4.22] with the “smallness requirement” (in the language of
[13]) that every object is finitely presentable (see Theorem 50), and its prerequisites. Garner
also proves Proposition 4.22 for other smallness requirements. What we have formalized
constitutes the most important parts of the algebraic small object argument construction in
the most general setting with the current available theory, and is still applicable to situations
of interest. See Remark 39 for technical details.

We have modified the proofs to be feasible in UniMath. We use the machinery of
displayed categories [2] to construct various categories used in [13]; this is necessary to
talk about functors commuting strictly (i.e., up to definitional equality), as is done in [13].
Where [13] uses strict monoidal categories, we use the weaker monoidal categories of [28],
to make our constructions more widely applicable. We give the construction of the free
monoid (see Section 5.4) and the proofs of [13, Proposition 4.18] (Section 5.3.1) and [13,
Propositions 4.19 and 4.22] (Section 5.5) more directly. Furthermore, the formalization
provides a more detailed and streamlined account for the proof of [13, Proposition 4.17].

Our formalization has been accepted into the UniMath library in commit 6605a4a.
This paper is based on a master’s thesis by the first-named author [15]. This provides an

expanded account of our formalization with more details and diagrams.

Outline and preliminary remarks

We first introduce the reader to relevant aspects of UniMath in Section 2. We then introduce
WFSs and the SOA in Section 3, pointing out constructive issues. We introduce NWFSs in
Section 4, showing that they fix the issues encountered in WFSs. Finally, we go over the
algebraic small object argument in Section 5, going into some detail on our modifications.

Composition of morphisms in this paper is written in diagrammatic order, adopting the
conventions in the UniMath library (so the composite of f : X → Y and g : Y → Z is written
f · g). Throughout, we assume C to be a cocomplete category.

2 Preliminary theory in HoTT/UF

2.1 Homotopy levels
There is a hierarchy of homotopy n-types in UniMath, indexed by n : N. We use 1-types,
called mere propositions, and 2-types, called sets. A type P is a mere proposition if any
two points are equal (meaning it may be empty): i.e., if there is a term of

∏
x,y:P (x =P y).

We denote the type of mere propositions by hProp [27, hProp]. A type is a set if all of its
identity types are propositions. We denote the type of sets by hSet [27, hSet].

Sometimes, instead of needing a term of a type A, it is sufficient (or perhaps even
necessary!) to only know of the mere existence of a term of A. That is to say, we want a
propositional type witnessing only that “a term of type A exists”, ignoring what this term is
exactly or how it is constructed. This idea is captured in the propositional truncation of A,
denoted ∥A∥. UniMath defines ∥A∥ through an “impredicative encoding” [27, ishinh_UU]

∥A∥ :=
∏

P :hProp

((A → P ) → P ).

▶ Remark 1. It is important to note that we can not (in general) obtain a term of type A

given a term of type ∥A∥. We are effectively losing information when truncating a type. This
is the root cause for the constructive issues arising in the classical theory of WFSs.
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2.2 Category theory
In set-based mathematics, a category consists of a set O of objects, and for each X, Y ∈ O a
set of morphisms hom(X, Y ). In HoTT, one might naively define a category to consist of a
type of objects and types of morphisms. We call this a precategory. Though allowing for basic
constructions like limits [27, Limits.v] or colimits [27, Colimits.v], these are not sufficient
for our purposes.

If we restrict the types hom(X, Y ) to be sets, we get the notion of a category. In the rest
of this paper, we will only be considering categories.

We can add more restrictions to this notion of category to produce univalent categories [1]
or setcategories [4]. Interestingly enough, we never need to assume either of these restrictions
for our categories, which makes our construction applicable to both.

2.3 Displayed categories
It is common practice to construct a new category D out of a category C by adding data
or properties to the objects and morphisms, often expressed in terms of a forgetful functor
F : D −→ C. Instead of mapping the objects and morphisms of D to those of C, it is useful
to index them as families of objects and morphisms “lying over” those of C. This idea is
captured in the notion of displayed categories, analogous to dependent type families in HoTT
[2].

▶ Definition 2 ([27, disp_cat]). A displayed category D over C consists of the following:
(i) For each object X : C, a type DX of “objects over X”;
(ii) For each morphism f : X → Y with X, Y : C, and for each displayed object X : DX

and Y : DY a set of “morphisms from X to Y over f”, denoted by X →f Y ;
(iii) For each object X : C and each X : DX , a displayed identity morphism 1X : X →idX

X;
(iv) For all X, Y, Z : C, X : DX , Y : DY , Z : DZ and f : X → Y , g : Y → Z, a composition

(−) · (−) :
(
X →f Y

)
×
(
Y →g Z

)
→
(
X →f ·g Z

)
;

satisfying displayed versions of associativity and identity axioms.

One can easily construct an “actual” category from a displayed category, analogous to
the construction of dependent pair types from type families in HoTT. UniMath calls the
constructed category Dtot: the total category of D. It provides definitional information on
the relation of Dtot to C, whereas a forgetful functor would provide propositional information.

In the rest of this section, D will always denote a displayed category over C.

▶ Definition 3 ([27, total_category]). The total category Dtot of D is defined to have
Objects:

∑
X:C DX

Morphisms from the dependent pairs (X, X) to (Y, Y ): the set
∑

f :X→Y X →f Y

with the natural unit and composition.

▶ Remark 4. For readability, we will mostly refer to total categories without their explicit
notation. That is to say, we may use D to denote Dtot for a displayed category D.

▶ Example 5 (arrow). The arrow category C2 of C is the total category of a displayed
category over C × C with

Displayed objects over (X, Y ) : C × C as the type of arrows X → Y .
Displayed morphisms between displayed objects f : X → Y and g : A → B over a
morphism (h, k) : (X, Y ) → (A, B) : the proposition f · k =(X→B) h· g.

https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.Limits.Graphs.Limits
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.Limits.Graphs.Colimits
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.DisplayedCats.Core#disp_cat
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.DisplayedCats.Total#total_category
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.DisplayedCats.Examples.Arrow#arrow
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It is the functor category from the poset 2 := {0, 1} to C.

▶ Example 6 (three). The three category C3 of C is the total category of a displayed category
over C2 with

Displayed objects over f : X → Y : C2:∑
(Ef :C)

∑
(f01:X→Ef )

∑
(f12:Ef →Y )

f01· f12 =(X→Y ) f.

Displayed morphisms between displayed objects (Ef , f01, f12) and (Ef ′ , f ′
01, f ′

12) over
a morphism (g00, g22):∑

g11:Ef →Ef′

(
f01· g11 =(X→Ef′ ) g00· f ′

01

)
×
(
f12· g22 =(Ef →Y ′) g11· f ′

12
)

.

It is the functor category from the poset 3 := {0, 1, 2} to C.

▶ Remark 7. Though both of the previous examples are equivalent to certain functor categories
from posets, defining them in terms of displayed categories provides definitional equalities
that are much simpler to reason with in formalization. From a classical point of view, one
may consider them to be functor categories.

UniMath defines displayed variants of functors and natural transformations, in such a
way that they “lift” to functors and natural transformations on the total categories. We are
mostly interested in one kind of displayed functor: sections of displayed categories. Given a
category C and a displayed category D over C there is a projection functor πD

1 : Dtot −→ C
projecting a pair (X, X) down to X. Morally, a section is a strict right inverse to πD

1 .

▶ Definition 8 ([27, section_disp]). A section from C to D consists of a dependent function
of objects F :

∏
X:C DX and a corresponding dependent function, also denoted F , of type∏

f :X→Y F (X) →f F (Y ), such that F (idX) =F (X)→F (X) 1F (X) and F (f · g) =F (X)→F (Z)
F (f)· F (g) for morphisms f : X → Y and g : Y → Z in C. Such a section lifts to a functor
C −→ Dtot.

▶ Remark 9. For any section F : C −→ D and any X : C, the composite (F · πD
1 )(X) is in

fact definitionally equal to X. There is no way to specify this definitional equality using a
forgetful functor. The definitional equality is much more convenient to reason with, greatly
simplifying the formalization process. Additionally, it is necessary to faithfully capture the
classical theory that we are formalizing: see Remark 27.

We define a notion of natural transformation between sections, again to capture strict
commutation over C (one corresponding to whiskering a natural transformation with πD

1 ).

▶ Definition 10 (section_nat_trans_disp). Let F, F ′ be sections of the displayed category
D over C. A natural transformation of sections from F to F ′ is a family of displayed
morphisms∏

X:C
F (X) →idX

F ′(X),

making the appropriate diagrams commute.
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3 Weak factorization systems

Weak factorization systems consist of two subclasses of morphisms (morphism_class) of a
category C, related through lifting properties, as well as a factorization of all morphisms. We
define the lifting properties in terms of lifting problems and fillers. We use propositional
truncation in both the lifting properties and the factorization.

▶ Definition 11 (filler). For morphisms f, g in C, an (f, g)-lifting problem is a morphism
f → g in C2. More precisely, it is a commutative square as in the left-hand diagram below.

X A

Y B

f g

X A

Y B

f g
l

We call a diagonal map l : Y → A that makes the whole diagram commute a filler.

▶ Definition 12 (lp). Given morphisms f, g in C, we say that that (f, g) has the lifting
property if there merely exists a filler for every (f, g)-lifting problem. That is,

lp :=
∏

f :X→Y

∏
g:A→B

∏
x:f→g

∥∥∥∥∥ ∑
l:Y →A

l is a filler for x

∥∥∥∥∥ .

▶ Remark 13. We use propositional truncation here so that lp is a proposition, as we want
to use it to define subclasses of morphisms: see Remark 17 below. Still, we are able to show
interesting properties using the recursion principle of the propositional truncation (WFS.v).

▶ Definition 14 (rlp, llp). We say that g has the right lifting property with respect to a
subclass of morphisms L if (f, g) has the lifting property for all f ∈ L. We denote the class
of all such g as L□. Dually, we say that f has the left lifting property with respect to a class
R if (f, g) has the lifting property for all g ∈ R. We denote the class of all such f by □R.

▶ Definition 15 (wfs_fact_ax). A pair of subclasses of morphisms (L, R) factors C if for
any f : X → Y there merely exists an object Ef : C and morphisms λf : X → Ef in L and
ρf : Ef → Y in R such that f = λf · ρf .

▶ Definition 16 (wfs). A weak factorization system (WFS) is an ordered pair (L, R) of
subclasses of morphisms in C that factors C and satisfies

L = □R and R = L□.

▶ Remark 17. The definition of a WFS shows why we need the propositional truncation
in the lifting property: the equalities L = □R and R = L□ would otherwise be ill-typed.
Without the propositional truncation, corresponding notions of □R or L□ would not simply
be subclasses of morphisms, but rather subclasses of morphisms with extra data, containing
information about the fillers in any appropriate lifting problem.
In any WFS (L, R), L is left saturated and R is right saturated [22, Prop 14.1.8]. Left
saturation tells us that L contains all isomorphisms (wfs_L_contains_isos) and is closed
under retracts (wfs_L_retract), pushouts (wfs_closed_pushouts), transfinite composition
and coproducts (wfs_closed_coproducts). Right saturation is defined dually. Constructive
issues arise in the last two closure properties. To illustrate, consider the following lemma.

▶ Lemma 18 (wfs_closed_coproducts). Assume the axiom of choice. A WFS (L, R) is
closed under coproducts. That is to say: for a set I and a family of maps { fi : Xi → Yi }i:I
such that fi ∈ L for all i : I, the coproduct f :=

⊔
i:I fi is also in L.

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.MorphismClass#morphism_class
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#filler
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#lp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#rlp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Lifting#llp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_fact_ax
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_L_contains_isos
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_L_retract
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_closed_pushouts
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_closed_coproducts
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.WFS#wfs_closed_coproducts
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Proof. Consider a g ∈ R and an (f, g)-lifting problem. By the universal property of the
coproduct, this is equivalent to a (fi, g)-lifting problem for each i : I. We obtain the mere
existence of fillers li : Yi → A through the lifting properties of the fi.⊔

i:I Xi A

⊔
i:I Yi B

⊔
i:I

fi
g

Xi A

Yi B

fi
g

li

Using the axiom of choice, we infer the mere existence of a morphism
⊔

i:I li :
⊔

i:I Yi → A as
a filler for the original lifting problem [24]. ◀

▶ Remark 19 (Constructive issues). Why do we need the axiom of choice in this proof? To put
it shortly: because we lose information through the propositional truncation. We know of the
mere existence of a lift in every individual diagram, but need to put all the lifts together to
infer the mere existence of a lift in a “combined” diagram. We effectively want to construct
a function(∏

i:I

∥∥∥∥∥ ∑
li:Yi→A

fi· li = h × li· g = k

∥∥∥∥∥
)

→

∥∥∥∥∥∥∥
∑

l:
∏

i:I
Yi→A

∏
i:I

fi· l(i) = h × l(i)· g

∥∥∥∥∥∥∥ .

This is precisely the statement of the axiom of choice in UniMath, which says that for any
set X and any L : X → hSet, and any P :

∏
x:X L(x) → hProp, we have∏

x:X

∥∥∥∥∥∥
∑

lx:L(x)

P (x, lx)

∥∥∥∥∥∥
 →

∥∥∥∥∥∥∥
∑

l:
∏

x:X
L(x)

∏
x:X

P (x, l(x))

∥∥∥∥∥∥∥ .

Thus, we are only able to show that the left class of a WFS is closed under coproducts by
assuming the axiom of choice.

As described in Remark 13 and Remark 17, we cannot drop the propositional truncation
in the definition of a WFS to fix this issue. It is resolved in the theory of NWFSs however,
where the added algebraic structure provides a canonical choice function in analogous lifting
problems, see Remark 33 and Lemma 34.

3.1 The small object argument
In this section, we briefly describe the SOA [25], following the account in [16]. We have not
formalized the SOA; this section is intended to motivate and build intuition for the ASOA.

The SOA allows us to construct WFSs given a sufficiently well-behaved subclass of
morphisms. The constructed WFS is related to the generating class J through the lifting
property itself: its right class will be J□, and its left class will be □

(
J□
)
.

For the rest of this paper, we assume J to be a subclass of morphisms in our category C.

▶ Definition 20. A relative J-cell complex is a transfinite composition of pushouts of
morphisms in J . We denote this class by J-cell.

▶ Example 21. The main motivating examples are in the categories of topological spaces
(TOP) and simplicial sets (SSET). In both cases, J is the class of boundary inclusions
(where S−1 := ∅)

J :=
{

jn : Sn ↪→ Dn+1 ∣∣ n = −1, 0, 1, . . .
}

.

We think of pushing out one map of J along a function f : Sn → X (the attaching map) as
producing a relative cell complex X → X ⊔Sn Dn+1: that is, the inclusion of X into X with
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a copy of Dn+1 (a cell) “glued” to it along f . Then we think of a relative J-cell complex as
the inclusion of a space X into X with many cells attached. In topological spaces, these are
called relative CW-complexes. When X := ∅ they are called CW-complexes.

▶ Remark 22. Assuming the axiom of choice, the class J-cell is a subclass of □
(
J□
)

since
then □

(
J□
)

is closed under pushouts and transfinite compositions.
Let us briefly go over the SOA. We omit an explicit definition of the “smallness” giving

rise to the name small object argument, but we will indicate when we use it.

▶ Theorem 23 (Small object argument (SOA)). Suppose the domains of all the maps in J

are “small” relative to J-cell. Then there is a factorization f 7→ (λf , ρf ) on C such that, for
all morphisms f in C, λf is in J-cell and ρf is in J□.

Proof sketch. Let f : X → Y be a morphism in C. We inductively construct factorizations

X
λα

f−−→ Eα
f

ρα
f−−→ Y

of f , for ordinals α. First, we set λ0
f = idX and ρ0

f = f . Since the composition of 0 morphisms
is an instance of transfinite composition, idX is in J-cell. However, f is not necessarily in J□;
we continuously “improve” this factorization in the inductive step until some ρi

f is in J□.
Consider the factorization f 7→ (λα

f , ρα
f ) corresponding to step α. Let Sα be the set of

all (g, ρα
f )-lifting problems with g ranging over J . For any lifting problem x : Sα, denote by

gx : Ax → Bx the corresponding map in J . We define Eα+1
f and ρα+1

f through the pushout
on the left-hand side of the following diagram. The right-hand side shows the first step in
the transfinite sequence.⊔

x∈Sα Ax Eα
f

⊔
x∈Sα Bx Eα+1

f Y

⊔
x∈Sα gx

⌜
sα

ρα
f

ρα+1
f

α=0

⊔
x∈S0 Ax X

⊔
x∈S0 Bx E1

f Y

⊔
x∈S0 gx

⌜
λ1

f

f

ρ1
f

(1)

We set λα+1
f := λα

f · sα, which is in J-cell by construction.
Note that the inductive process simply repeats the first step, meaning that

ρα
f := ρ1

ρ1
...

ρ1
f

(α times)

This defines the (successor ordinal part of the) transfinite construction of the small object
argument. One can show that the smallness of the domains in J means that there is some
ρα

f which is in J□. Very roughly, the cells being attached to the domain of f at each step
are solutions to lifting problems between J and f ; the smallness guarantees that at some
point, solutions to all possible lifting problems have been added. ◀

▶ Remark 24 (Constructive issues). Besides the use of the axiom of choice mentioned in
Remark 22, we note some other constructive and categorical issues in the argument. In
the categories of topological spaces and simplicial sets, the construction boils down to the
following: at every step in the transfinite construction, we glue on cells for every possible
lifting problem. This means that at every step, we glue duplicate cells, as we can glue all
the cells that we have glued before (in addition to new ones). Thus, the construction never
converges; we simply just stop whenever we have gone far enough, dictated by the smallness
assumption on J . This again implies some sort of choice, and may introduce massive ordinal
sequences (which pose a challenge in itself, see Remark 39). From a categorical perspective,
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we might describe this issue as the fact that this construction has no universal property:
how long you run the construction before stopping is not uniquely determined by the input
morphism f . This is what was noticed and rectified in [13].

4 Natural weak factorization systems

Natural weak factorization systems (NWFSs) are an algebraic refinement of WFSs due to
Grandis and Tholen [14]. An NWFS is based on a functorial factorization, which gives
a canonical, well-behaved choice for the factorizations, as opposed to the structureless
factorization in a WFS, see Definition 15. We impose additional algebraic structure, making
it so that being an L- or R-map is no longer a property like for WFSs, but an algebraic
structure on morphisms. This fixes the constructive issues in the closure properties of WFSs.

4.1 Functorial factorizations
Recall Example 6, defining C3 as a displayed category over C2.

▶ Definition 25 (functorial_factorization). A functorial factorization F over a category
C is a section from C2 to C3.

▶ Remark 26. Compare this with the definition of factorization Definition 15. That was
a section of the composition function ob C3 → ob C2, as opposed to the projection functor
C3 −→ C2.
There are three natural functors d0, d1, d2 : C3 −→ C2 which take a composable pair
X

λf−−→ Ef
ρf−−→ Y to ρf , λf · ρf , and λf , respecively (here d1 coincides with the canonical

projection). We obtain two endofunctors C2 −→ C2 by considering R := F · d0 (which sends
an f to its right map ρf ) and L := F · d2 (which sends an f to its left map λf ).
▶ Remark 27 (The need for sections). With our definition, the left and right functors L and
R are automatically compatible. That is to say, for any morphism f : X → Y , definitional
equalities arising from the definition of a section make for a well-typed (and trivial) equality
L(f)· R(f) =X→Y f .

A more naive approach would be to specify F as a section of d1 in the usual sense:∑
F :C2−→C3

F · d1 = idC2 .

However, with this definition the composite L(f)· R(f) may not have the same domain and
codomain as f . We merely know that their domains and codomains are propositionally equal,
so the equality L(f)· R(f) = f is now ill-typed. One could use the idtoiso function [27],
mapping equalities of objects to isomorphisms between them, but this does not capture the
classical theory, which asks for L(f)· R(f) to be strictly equal, not just isomorphic, to f .

4.2 Natural weak factorization systems
Using only the data of a functorial factorization F , we can view the left and right functors L

and R as a copointed endofunctor (L, Φ) and a pointed endofunctor (R, Λ) by defining:

Φf :=
X X

Ef Y

λf f

ρf

and Λf :=
X Ef

Y Y

f

λf

ρf
. (2)
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▶ Definition 28 (nwfs). A natural weak factorization system (NWFS) is given by a functorial
factorizaton F , together with an extension of (R, Λ) to a monad R = (R, Λ, Π) and the
extension of the (L, Φ) to a comonad L = (L, Φ, Σ). Such an NWFS is said to lie over F .

It will be useful to split this definition into two halves: LNWFS and RNWFS. The former
contains only the data concerning the left comonad, the latter contains only the data
concerning the right monad. We define the notion of LNWFS, an RNWFS is defined dually.

▶ Definition 29 (lnwfs_over, cf. [13, 4.5]). The left half of an NWFS (LNWFS) is given
by a functorial factorization F , with an extension of (L, Φ) to a comonad L = (L, Φ, Σ).

4.3 Algebraic structure
Now we form a category FfC of functorial factorizations on C (Ff) by defining morphisms.

▶ Definition 30 (fact_mor, cf. [13, 3.3]). A morphism of functorial factorizations τ : F → F ′

is a natural transformation between sections.

Since we defined NWFSs as functorial factorizations “with added structure”, we define the
category of NWFSs on C as a displayed category over FfC . We again split this construction
into LNWFSs and RNWFSs, yielding two displayed categories: LNWFSC and RNWFSC
over FfC . Together they form a displayed category NWFSC over FfC .

In order to do this, we require some additional structure on the morphisms in FfC . Take
F, F ′ : FfC . A morphism τ : F → F ′ induces canonical natural transformations τL : L =⇒ L′

and τR : R =⇒ R′ by whiskering with d2 and d0.

▶ Definition 31 (LNWFS, RNWFS, NWFS, cf. [13, 3.3,4.5]). A morphism τ : F → F ′ in FfC is
a morphism of LNWFSs if F and F ′ underlie LNWFSs and τL is a comonad morphism;
a morphism of RNWFSs if F and F ′ underlie RNWFSs and τR is a monad morphism;
a morphism of NWFSs if F and F ′ underlie NWFSs and τ is both a morphism of LNWFSs
and of RNWFSs.

These three properties define the displayed morphisms of displayed categories LNWFSC,
RNWFSC, and NWFSC over FfC.

Similar to a WFS, an NWFS (L, R) has left- and right maps. These are defined to be the
coalgebras of the comonad L and the algebras of the monad R respectively. We denote the
categories of left and right maps of an (L, R) as L-Map and R-Map respectively.

4.4 Fixing the constructive issues
The algebraic structure in NWFSs allows us to construct fillers in lifting problems between
any L-Map and R-Map, fixing the constructive issues in the theory of WFSs.

▶ Lemma 32 (L_map_R_map_elp, cf. [13, 2.15]). Let (L, R) be an NWFS over F , f : X → Y

an L-Map, g : A → B an R-Map. There exists a filler for any (f, g)-lifting problem (h, k).

Proof. The (co)algebra axioms force the (co)algebra αf : f → λf and αg : ρg → g to be of
specific forms. Specifically, they ensure that the morphisms X → X and B → B are in fact
identities in the left-hand diagrams below. Consider then the right-hand diagram, obtained
by applying F to (h, k) and attaching the (co)algebra morphisms. The filler Y → A can be
read off the diagram as s· F (h, k)11· p.

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#nwfs
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#lnwfs_over
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#Ff
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#fact_mor
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#LNWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#RNWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#NWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.NWFS#L_map_R_map_elp
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X X X X A

Y Ef
Y Ef Eg A

Eg A

B B Y B B

f αf λf f αf λf

h

λg

s
s

ρf

F (h,k)11 p

ρg αg g

p

ρg αg g

k
◀

▶ Remark 33. Note that we construct the actual filler, and not just the mere existence of one.
This is an important difference with WFSs, where we only know of the mere existence of a
filler. We get a canonical choice function for the filler in any given lifting problem between
an L-Map and an R-Map, fixing the problems we had with plain WFSs, see Remark 19. It
allows us to prove analogues of the desired closure properties of WFSs, like the following.

▶ Lemma 34 (nwfs_closed_coproducts). Let I be a set and { fi : Xi → Yi }i:I a family
of maps, such that fi is an L-Map for every i : I. Then

⊔
i:I fi is also an L-Map.

5 The algebraic small object argument

The construction of the ASOA is inductive like its classical counterpart, the SOA. At each
step, we construct an object of LNWFSC . We then apply a general transfinite construction
[20], giving us a full NWFS. There will be many similarities between the constructions, but
also some obvious differences. The construction also resolves the constructive and categorical
issues that we touched upon in Remark 22 and Remark 24.

We will be following Garner [13, 12], rephrasing the theory using univalent foundations
and redefining part of the construction to be more direct and fit for formalization.

5.1 The one-step comonad
Let f : X → Y be a morphism in C. Recall the first step from the iterative process in the
small object argument in equation (1). This construction is in fact functorial, yielding a
functorial factorization F 1: the one-step factorization (one_step_factorization).

There is always a natural transformation Σ1 : L1 =⇒ L1· L1, extending (L1, Φ1) to a
comonad (where L1 := F 1 · d2, the left part of F 1, and Φ1 is the copoint of L1 given in
2), giving us an object of LNWFSC : the one-step comonad (one_step_comonad), c.f. [12,
Section 5.2]. The pointed endofunctor (R1, Λ1) does not, in general, extend to a monad, so
we do not yet obtain an object of NWFSC .

The first step in the algebraic small object argument corresponds with the first step in
the classical counterpart. The “left part” of the initial factorization already satisfies the
properties we need, while the “right part” of the first step has to be “fixed”.

5.2 Monoidal categories
Now we construct an NWFS from our one-step comonad L1. This uses Kelly’s free monoid
construction. In [13], this takes place in a strict monoidal category. We instead use a more
general notion of weak monoidal categories, formalized in UniMath in [28]. This is because in
UniMath it is not possible to sensibly define strict monoidal categories, where associators and
unitors are equalities on objects, unless one is working with setcategories (categories whose
types of objects are sets). By using weak monoidal categories, our construction applies to
more general categories (in particular, univalent categories).
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Garner in fact uses two-fold monoidal categories, which comprise two interacting monoidal
structures. This fits the theory perfectly, but is not yet formalized in UniMath, so we formalize
only one monoidal structure. We only need one result relating to the other, which we prove
directly (LNWFS_comon_structure_whiskercommutes). This simplifies our construction.

5.2.1 The monoidal structure on LNWFSC

The idea behind the construction is to define a monoidal structure on FfC , such that a
monoid corresponds with an object in RNWFSC . This monoidal structure lifts to one on
LNWFSC , so that a monoid in LNWFSC corresponds with an object of NWFSC . We
define the unit of the monoidal structure on FfC to be the initial object I mapping

X
f−−→ Y 7→ X

idX−−→ X
f−−→ Y. (Ff_lcomp_unit, cf. [13, Theorem 4.14])

For two functorial factorizations F, F ′, we define their tensor product F ′ ⊗ F to be

X
f−−→ Y 7→ X

λf ·λ′
ρf−−−−−→ E′

ρf

ρ′
ρf−−→ Y. (Ff_lcomp, cf. [13, Theorem 4.14])

▶ Lemma 35 (Ff_monoidal, Ff_monoid_is_RNWFS, cf. [13, Theorem 4.14]). The pair (⊗, I)
defines a monoidal structure on FfC. A monoid structure on F : FfC corresponds to an
object of RNWFSC over F .

Noting how ⊗ acts on the right functor, the second claim boils down to the fact that a monad
is a monoid in the category of endofunctors. Garner mentions the lifting of the monoidal
structure to LNWFSC in the more general setting of two-fold monoidal categories [13, 4.11],
but in the absence of this theory in UniMath, we take a direct approach. Proving this took
about 1000 lines of formalization (LNWFSMonoidalStructure.v), and is the file that takes
the longest to compile on various setups (see for example the discussion in PR 1858).
▶ Remark 36. The machinery used to lift the monoidal structure on FfC to one on LNWFSC
is that of displayed monoidal categories [3, disp_monoidal]. It allows one to define a monoidal
structure on (the total category of) a displayed category over some monoidal category, by
defining diplayed analogues of the monoidal data in the base category.

▶ Lemma 37 (LNWFS_tot_monoidal, LNWFS_tot_monoid_is_NWFS, cf. [13]). Let L, L′ :
LNWFSC over F, F ′ : FfC respectively. Then there is an LNWFS structure on F ⊗ F ′.
There is also an LNWFS structure on I, lifting (⊗, I) to a monoidal structure on LNWFSC.
Furthermore, a monoid L : LNWFSC over some F : FfC corresponds with an object of
NWFSC over F .

▶ Remark 38. The classical small object argument boils down to a transfinite tensor product

Lα := L1 ⊗ L1 ⊗ . . . ⊗ L1 : f 7→ λα
f .

This is not satisfactory, as it leaves us with the same issues discussed before, see Remark 24.
We fix this by defining the iterative step with a coequalizer, associating duplicate cells
(next_pair_diagram_coeq), and a simple convergence condition, removing the need for
arbitrary truncation (T_preserves_diagram_on).

5.3 The iterative step
Garner generalized a transfinite construction by Kelly [20] to generate a monoid in a monoidal
category V, given certain “smallness requirements” on a generating object T : V and on V
itself. The construction defines a sequence indexed by the category of small ordinals [13,
4.16], converging at some limit ordinal.

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSHelpers#LNWFS_comon_structure_whiskercommutes
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_lcomp_unit
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_lcomp
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_monoidal
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.FFMonoidalStructure#Ff_monoid_is_RNWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSMonoidalStructure
https://github.com/UniMath/UniMath/pull/1858
https://math.asoa.dennishilhorst.nl/UniMath.CategoryTheory.Monoidal.Displayed.Monoidal#disp_monoidal
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSMonoidalStructure#LNWFS_tot_monoidal
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSMonoidalStructure#LNWFS_tot_monoid_is_NWFS
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#next_pair_diagram_coeq
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#T_preserves_diagram_on
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▶ Remark 39 (Limitations of ordinals in UniMath). What limit ordinal Garner’s generalized
sequence converges at [13, 4.16] is dictated by the hypothesis in [13, Proposition 4.19],
requiring that “T ⊗(−) preserves λ-filtered colimits”, which is reduced to smallness requirement
(*) in [13]. We limit ourselves to the first (finitely filtered) limit ordinal ω by replacing (*)
with finite presentability, and substituting the hypothesis on T with (V3).

We do this since the theory of (filtered) ordinals has not been developed enough in
UniMath (or HoTT in general [9]). This is still sufficient to apply the theorem to important
examples in, for instance, SSET and [5].

Formalizing requirement [13, (†)] or other ordinals should only involve adapting the proofs
in (GenericFreeMonoidSequence.v), most notably up to the convergence of the sequence
(T_preserves_diagram_impl_convergence_on), with appropriate hypotheses.

5.3.1 The transfinite sequence
For this section, we assume V to be a monoidal category that has all connected colimits
and T to be a pointed object in V, with point t : I → T . In the algebraic small object
argument, V will be LNWFSC and T will be L1. It is easier and more performant to define
this sequence on an abstract monoidal category in formalization, but it is useful to keep our
main application in mind, particularly in the cases of TOP or SSET.

We assume the following “smallness requirements” on V and T .
(V1) V has ω-colimits and coequalizers.
(V2) V is right closed (so the functor (−) ⊗ A preserves colimits for all A : V).
(V3) The functor T ⊗ (−) preserves ω-colimits and coequalizers.

Given objects X0 := A, X1 := T ⊗A in V and σ0 := idT ⊗A : T ⊗X0 → X1, we inductively
define a transfinite sequence, called the free T -algebra sequence for A [13, 4.16]. For a
successor ordinal α+ := α + 1 we define Xα++ and σα+ : T ⊗ Xα+ → Xα++ as the following
coequalizer:

Xα+
T ⊗ Xα T ⊗ Xα+ Xα++

T ⊗ (T ⊗ Xα)

t⊗Xα+

T ⊗(t⊗Xα)

σα

σα+

T ⊗σα

For any step α, we define xα : Xα → Xα+ to be (t ⊗ X)· σα. The full sequence becomes

T ⊗ X0 T ⊗ X1 . . . T ⊗ Xα

X0 X1 X2 . . . Xα Xα+ . . .

σ0 σ1 σα
t⊗X0

x0 x1 x2

t⊗Xα

xα

(3)

▶ Remark 40. The morphism t ⊗ Xα is actually a morphism I ⊗ Xα → T ⊗ Xα, so the
diagram is actually ill-typed. By definition, there is a natural isomorphism to correct for
this. Morphisms like this one are left out for simplicity, reading closer to the notion of strict
monoidal categories, but they are accounted for in the formalization.

▶ Remark 41. In the examples in TOP and SSET, the functor T ⊗ (−) corresponds to
“gluing cells”. Then Xα corresponds to “α steps of gluing cells to A, without duplicates.” The
coequalizers σα are continuous maps that identify duplicate cells with ones glued previously.

The sequence is defined inductively, using the previous two objects and the previous morphism
to define the next morphism and object. In order to do this properly, with definitional
equalities, we introduce a helper type, capturing the data of one “triangle” in the sequence.
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▶ Definition 42 (pair_diagram). A “pair diagram”, corresponding to the “triangle” of step
α in the sequence displayed in equation (3), is an object of C3 of the form

Xα
t⊗Xα−−−−→ T ⊗ Xα

σα−−→ Xα+.

▶ Remark 43. The only real data in this object are Xα, Xα+ and σα : T ⊗ Xα → Xα+.
Indeed, one can define the (α + 1)-th pair diagram using only the data from the α-th pair dia-
gram. The inductive definition allows us to make sure left object of the (α+1)-th pair diagram
is in fact definitionally equal to the right object of the α-th pair diagram. Assumptions (V1)
and (V3) ensure this sequence converges (T_preserves_diagram_impl_convergence_on),
cf. [13, Proposition 4.17]. The limit when A := I yields a T -algebra (T ∞, τ∞), consisting of
an object T ∞ : V and a morphism τ∞ : T ⊗ T ∞ → T ∞, which we will show is a monoid.
▶ Remark 44. Intuitively, keeping TOP or SSET in mind, we may view the object T ∞ as
the “space with all cells attached”. The T -algebra map τ∞ describes how one more step of
attaching cells (through tensoring with T ) can be collapsed back into T ∞ itself.

5.4 Obtaining the free monoid
In [12, Proposition 27], the forgetful functor from the category of T -algebras to V is used to
obtain a monoid. Instead, we define the monoid structure more directly, allowing for a much
more direct and intuitive construction. There is an obvious choice for the unit η∞ : I → T ∞:
the canonical inclusion into the colimit X0 ↪→ T ∞. It remains to find a multiplication. By
assumption (V2), we have

T ∞ ⊗ T ∞ ∼= colim(Xα ⊗ T ∞).

We define the multiplication µ∞ : T ∞ ⊗ T ∞ → T ∞ by defining a family of morphisms
{ τα : Xα ⊗ T ∞ → T ∞ } that forms a cocone on { Xα ⊗ T ∞ }.

▶ Lemma 45 (Tinf_pd_Tinf_map). There is a family of maps { τα : Xα ⊗ T ∞ → T ∞ } such
that the following diagram commutes for any α.

T ⊗ Xα ⊗ T ∞ Xα+ ⊗ T ∞

T ⊗ T ∞ T ∞

σα⊗T ∞

T ⊗τα τα+

τ∞

▶ Remark 46. Intuitively, the τα “collapse α steps of gluing cells into T ∞”. The diagram tells
us that it does not matter if we first collapse α steps of cells into T ∞, and then the last step,
or if we first collapse the last step into the first α steps, and then collapse that into T ∞.
We define the τα inductively (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map), with
obvious choices for τ0 and τ1. In the inductive step, we use assumption (V2) to define τα++
as the unique map out of the coequalizer

Xα+ ⊗ T ∞ Xα++ ⊗ T ∞

T ⊗ Xα ⊗ T ∞ T ⊗ Xα+ ⊗ T ∞

T ⊗ T ⊗ Xα ⊗ T ∞ T ⊗ T ∞ T ∞

t⊗Xα+⊗T ∞

∃!τα++

T ⊗t⊗Xα⊗T ∞

σα⊗T ∞ σα+⊗T ∞

T ⊗τα+

T ⊗σα⊗T ∞
τ∞

The required commutativity constraint on τα++ can be read off the diagram directly. The
smallness assumptions allow one to show that (T ∞, η∞, µ∞) is indeed a monoid in V
(Tinf_monoid).

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#pair_diagram
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#T_preserves_diagram_impl_convergence_on
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#Tinf_pd_Tinf_map
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.GenericFreeMonoidSequence#Tinf_monoid
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5.5 Smallness requirements on LNWFSC and L1

We used assumptions on V and T that we now need to show for V = LNWFSC and T = L1.
We show (V1) and (V2) and reduce (V3) to a much weaker requirement, only involving the
subclass of morphisms J used to define L1. In this section, we do not have access in UniMath
to some of the categorical machinery (e.g., the full theory of (co)ends) used in [13], so our
arguments are more direct.

5.5.1 Cocompleteness of LNWFSC

Issues commonly arise in the displayed nature of LNWFSC over FfC , or that of C3 over
C2, requiring definitional equalities where naive arguments only produce propositional ones.
Consider the image of a morphism f : X → Y under an ω-chain of functorial factorizations
{ Fα }, as well as its colimit, in the left-hand diagram below.

X X X X∞

E0
f E1

f E2
f E∞

f

Y Y Y Y ∞

X

E0
f E1

f E2
f · · ·

Y

The colimit exists (three_colims), but its domain X∞ and codomain Y ∞ need not be
definitionally equal to X and Y respectively. We merely know they are isomorphic. We could
correct the domain and codomain with these isomorphisms to define an object of C3 over f ,
and in turn a colimit F∞ : FfC . However, this is quite cumbersome to work with as we want
to define a comonad structure on the left functor of F∞ to define colimits in LNWFSC .

Instead, recall what the actual data is in functorial factorizations and transformations
between them: the middle objects in the image, and the morphisms between them. We
“collapse” the (definitional) equalities in the left-hand diagram to form the right-hand diagram
above. Let E∞

f be the colimit of the Eα
f . We always get a map E∞

f → Y , but a map X → E∞
f

can only be defined when the colimit is non-empty and connected, namely as the canonical
inclusion of X → Eα

f → E∞
f for an arbitrary α. Indeed, we have the following.

▶ Lemma 47 (ColimFfCocone, ColimLNWFSCocone, cf. [13, Prop. 4.18]). Both FfC and
LNWFSC have all connected, non-empty colimits, where colimits in FfC are constructed as
described above, and colimits in LNWFSC lie over those of the projected diagrams in FfC.

5.5.2 Right closure of LNWFSC

Here too, Garner uses a high level argument [13, Proposition 4.18], but we take a more direct
approach. One can show that the functor (−) ⊗ A : FfC −→ FfC preserves colimits for any
A : FfC quite easily. The following lemma then proves requirement (V2).

▶ Lemma 48 (Ff_iso_inv_LNWFS_mor). Let L, L′ : LNWFSC over F, F ′ : FfC respectively.
Let τ : F → F ′ be an isomorphism. Then τ−1 is a morphism of LNWFSs whenever τ is.

5.5.3 Reducing the smallness requirement on L1

To reduce requirement (V3) to a simpler one, we mostly follow [12, Proposition 32]. The last
part of this reduction has again been rephrased to be more direct and fit for formalization,
using low level arguments (OneStepMonadSmall.v). In the end, the smallness requirement
we are left with is phrased in terms of presentable objects in a category.
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▶ Definition 49 (presentable). Let X : C. Then X is called ω-presentable if and only if
the covariant hom-set functor hom(X, −) : C −→ SET preserves ω-colimits.

▶ Theorem 50 (small_object_argument). Let J be a subclass of morphisms in a cocomplete
category C, such that any g ∈ J is ω-presentable in C2. Then there exists an NWFS in C.

▶ Remark 51. Besides using arbitrary ordinals and not just ω, Garner describes another,
more involved smallness requirement [13, (†), Proposition 4.22]. Still, the case where we
work is sufficient for us. See also Remark 39.

6 Scaling

Besides the strategies we used to make our formalization mathematically feasible, we also
used the following strategies to make our formalization computationally feasible.

Proper use of abstraction: Ending a lemma with Qed, makes it opaque, preventing the
proof checker from unfolding it in other proofs. This significantly speeds up the proof
checker, and the formalization process as a whole. The abstract tactic allows one to
construct opaque terms within a proof. This alone sped up the compile time for the
(FFMonoidalStructure.v) file from 30 minutes to 30 seconds on one setup.
Avoiding rewrite: Though useful, this tactic produces large and unwieldy proof terms,
which take a long time to verify. Instead we often used the etrans and apply tactics.
Removing cbn, simpl, unfold or other “unfolding” tactics from finished proofs: These
unfolded terms take much longer to type check. Avoiding the rewrite tactic allows us to
completely remove these tactics from finished proofs, as tactics like etrans and apply
do not consider the precise syntactic form of a goal term, but only consider its value up
to definitional equality.
Sectioning and local opacity: Compile times were also reduced by using context variables
and proper sectioning. Local opacity (through the Opaque vernacular, used in e.g.
(LNWFSClosed.v)) provided the benefits of opaque proof terms when the precise definition
of a certain construction was not needed in a file, without enforcing opacity globally.

7 Conclusion

We have rephrased and formalized Garner’s algebraic small object argument [13] using
machinery more appropriate for formalization in UniMath, like displayed categories and weak
monoidal categories.

Let us briefly go over some of the main differences in the argument by Garner and this
work. First, we filled in many details which [13] left implicit. For example, the explicit
construction of lifting of the monoidal structure on FfC to LNWFSC was left out in [13],
but took over 1000 lines of formalization and is the file that takes the longest to compile in
the entire formalization.

Secondly, we introduced more modern language, in the form of displayed categories [2]
and a weak notion of monoidal categories [28].

Thirdly, we left out a lot of complex theory that Garner uses. This is, again, partly due to
the limited available results in UniMath, but it contributes to the accessibility of the proofs.
Complex constructions like two-fold monoidal categories are left out, Garner’s construction
of the free monoid is replaced with a more direct and intuitive one.

The formalization gave more insight into the details of the theory, pointing out constructive
issues in the theory of WFSs and showing how few assumptions Garner’s algebraic small

https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.OneStepMonadSmall#presentable
https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.SmallObjectArgument#small_object_argument
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https://math.asoa.dennishilhorst.nl/UniMath.ModelCategories.Generated.LNWFSClosed
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object argument really needs. In the formalization of the construction, we never assumed any
categories to be setcategories (as they are in any classical theory, including [13]) or univalent
categories.

There is still some work that may be done in the formalization of Garner’s article,
for example overcoming our limitations mentioned in Remark 39 and Remark 51. Other
than that, there are further results beyond the main theorem of [13] that could be formal-
ized, for instance [13, Proposition 5.4]. Some theory on this has already been formalized
(algebraically_free), but once complete more examples could be worked out as well.
Beyond that, our ultimate goal is to use this to formalize semantics of HoTT/UF within
UniMath.
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Abstract
The Lévy-Prokhorov metric is a metric between finite measures on a metric space. The metric was
introduced to analyze weak convergence of measures. We formalize the Lévy-Prokhorov metric
and prove Prokhorov’s theorem in Isabelle/HOL. Prokhorov’s theorem provides a condition for
the relative compactness of sets of finite measures and plays essential roles in proofs of the central
limit theorem, Sanov’s theorem in large deviation theory, and the existence of optimal coupling in
transportation theory. Our formalization includes important results in mathematics such as the Riesz
representation theorem, which is a theorem in functional analysis and used to prove Prokhorov’s
theorem. We also apply the Lévy-Prokhorov metric to show that the measurable space of finite
measures on a standard Borel space is again a standard Borel space.
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1 Introduction

The Lévy-Prokhorov metric is a mathematical tool to analyze asymptotic behaviors of
distributions or measures in terms of weak convergence. Such analysis is one of the important
aspects of probability theory and a foundation of statistics because the knowledge on
asymptotic behaviors provides insights of what will be likely to happen when we collect large
data.

Our motivation of formalizing the Lévy-Prokhorov metric is to prove that the measurable
space of finite measures on a standard Borel space is again a standard Borel space, where a
standard Borel space is a measurable space with certain good properties. Standard Borel
spaces are often used in modern probability theory. The disintegration theorem, which
guarantees the existence of conditional probability kernels, requires the underlying space to
be a standard Borel space. Standard Borel spaces are also a theoretical basis for the theory
of quasi-Borel spaces, a denotational model for higher-order probabilistic programs [8]. We
formalize the Lévy-Prokhorov metric because we need to give a metric on finite measures in
order to show that the space of finite measures is a standard Borel space. Another metric
which metrizes weak convergence is the Wasserstein metric. The Wasserstein metric is applied
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in transportation theory and machine learning. We chose to formalize the Lévy-Prokhorov
metric because the Wasserstein metric may fail to be a metric in the mathematical sense
when the underlying metric is not bounded.

During the proof of our goal, we also prove important mathematical theorems in related
areas. Our work is divided into three parts.

Weak Convergence and the Lévy-Prokhorov Metric. We first formalize the notion of weak
convergence including the Portmanteau theorem, equivalent conditions of weak convergence,
and the topology of weak convergence. We define the notion of weak convergence using
filters as convergence in Isabelle/HOL. We then formalize the Lévy-Prokhorov metric. We
prove the equivalence of the topology of weak convergence and the topology induced by the
Lévy-Prokhorov metric. The proof is different from the common textbook proofs (e.g. [3, 4]).
We obtain a simpler proof thanks to the generalization of weak convergence by filters.

Prokhorov’s Theorem. We show Prokhorov’s theorem using the Lévy-Prokhorov metric.
Prokhorov’s theorem states that a set of (uniformly bounded) finite measures is relatively
compact if and only if it is tight. Prokhorov’s theorem plays essential roles in the proofs of
the central limit theorem, Sanov’s theorem, and the existence of the optimal coupling in
transportation theory. In order to formalize Prokhorov’s theorem, we also prove (a special
case of) Alaoglu’s theorem and the Riesz representation theorem. The Riesz representation
theorem is an important result in functional analysis. While its proof, including related
lemmas, consists of around nine pages in Rudin’s book [22], our formalization takes more
than 2,100 lines of proofs.

Measurable Spaces of Finite Measures. One often considers the measurable space of
measures on some measurable space. Such spaces are used in stochastic processes and
semantics of probabilistic programming. The measurable space of measures is defined
independently from metrics or topologies. We prove that the measurable space of finite
measures is generated from the Lévy-Prokhorov metric. As a consequence, we obtain that
the measurable space of finite measures on a standard Borel space is a standard Borel space.

Our formalization is mainly based on the lecture notes by Gaans [27]. The lecture notes
includes detailed proofs about the Lévy-Prokhorov metric on probability measures. We
extend their definitions and proofs for finite measures.

Related Work
Avigad et al. formalized the notion of weak convergence of probability measures on R and
a special case of Prokhorov’s theorem during the proof of the central limit theorem in
Isabelle/HOL [1]. Compared to their work, our formalization of weak convergence treats
finite measures on any metric spaces, and convergence is generalized by filters. While there is
a simpler proof for the special case of Prokhorov’s theorem that they formalized, Prokhorov’s
theorem that we formalize needs tools in functional analysis, such as the Riesz representation
theorem, and thus requires more effort.

The Lean mathematical library, mathlib [25], includes ongoing formalization of the
weak convergence and the Lévy-Prokhorov metric by Kytölä [15]. Their definition of the
weak convergence is also generalized by filters and treats not only probability measures
but also finite measures. They showed that the Lévy-Prokhorov metric on the set of finite
measures on a pseudo metric space is a pseudo metric. They proved the equivalence of the
topology of weak convergence and the topology induced by the Lévy-Prokhorov metric on the
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space of probability measures. Our work contains more results than their work such as the
equivalence of convergence with respect to the Lévy-Prokhorov metric and weak convergence
(Theorem 10. 3) and Prokhorov’s theorem (Theorem 20).

The Riesz representation theorem in its original form as given by Riesz is formalized by
Narkawicz in PVS [19] and by Narita et al. in Mizar [18].

Paper Outline
In Section 2, we review the basic notions and theorems of topological spaces, metric spaces,
and measurable spaces. In Section 3, we define the weak convergence of measures, the topology
of weak convergence, and the Lévy-Prokhorov metric. We then show their properties. In
Section 4, we explain Prokhorov’s theorem and lemmas used in the proof of Prokhorov’s
theorem. In Section 5, we discuss the measurable space of finite measures.

We do not show Isabelle source code in this paper except for the definition of the topology
of weak convergence and the Lévy-Prokhorov metric in Section 3.4. The definitions and
statements in Isabelle/HOL are almost direct translations from the mathematical notation;
therefore, printing them here would not provide any additional insights.

2 Preliminaries

In this section, we review basic definitions and theorems related to topology, metric spaces,
and measure theory. Most of the results in this section are included in Isabelle/HOL’s
standard library.

2.1 Topology
Topology is a way of expressing nearness of points in a set. Let X be a set and OX a set of
subsets of X. The pair (X,OX) is called a topological space when ∅ ∈ OX , X ∈ OX , and
OX is closed under finite intersections and arbitrary unions. We sometimes write only X for
(X,OX), when the structure is obvious from the context. We follow the standard definitions
of topology, such as,

U ⊆ X is an open set of X
def⇐⇒ U ∈ OX

C ⊆ X is a closed set of X
def⇐⇒ X − C is open

f : X → Y is a continuous map def⇐⇒ ∀U ∈ OY . f−1(U) ∈ OX

for topological spaces X and Y .

2.2 Metric Spaces
While topological spaces express nearness in abstract way, metric spaces specify concrete
distances. Let X be a set and d : X ×X → R. The pair (X, d) is called a metric space if the
following holds.

For all x, y ∈ X, d(x, y) ≥ 0.
For all x, y ∈ X, d(x, y) = d(y, x).
For all x, y ∈ X, d(x, y) = 0 ⇐⇒ x = y.
For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

We sometimes write only X for (X, d). Let (X, d) be a metric space, x ∈ X and ε > 0. The
set ballX(x, ε) = {y ∈ X | d(x, y) < ε} is called an open ball with center x and radius ε. The
set cballX(x, ε) = {y ∈ X | d(x, y) ≤ ε} is called a closed ball with center x and radius ε. We
assume that R is equipped with the standard distance d(x, y) = |x− y| in this presentation.
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A metric space X induces the topological space (X,Od), where Od consists of arbitrary
unions of open balls. We call a topological space X metrizable if there exists a metric d on
X, which induces X.

2.3 Filter and Convergence
In Isabelle/HOL’s library, the notion of convergence is formalized in a general way using
filters. A filter on I is a set of subsets of I satisfying certain conditions. Filters can, among
other things, describe the set of all elements that are “sufficiently large” or “sufficiently close
to a”. We do not explain the detail of filters, which can be found in [13]. Let I be a set, F a
filter on I, X a topological space, {xi}i∈I ⊆ X, and x ∈ X. The notion “{xi}i∈I converges
to x in X with respect to F”, denoted by (xi −→ x) F in X (limitin in Isabelle/HOL), is
defined by

(xi −→ x) F in X ⇐⇒ For every open neighborhood U of x, eventually xi ∈ U w.r.t. F .

Intuitively, (xi −→ x) F in X means that xi is eventually close to x in X. We call x the
limit if (xi −→ x) F in X. When the topology is obvious from the context, we omit the
topology and write (xi −→ x) F for (xi −→ x) F in X. For instance, there are filters Fseq
on N and (at a) on R corresponding to “for sufficiently large n” and “for x sufficiently close
to a,” respectively. Convergences with respect to these filters have the same meaning as the
usual definitions.

lim
n→∞

xn = x ⇐⇒ (xn −→ x) Fseq in R

⇐⇒ ∀ε > 0. ∃N. ∀n ≥ N. |xn − x| < ε

lim
x→a

f(x) = L ⇐⇒ (f −→ L) (at a) in R

⇐⇒ (∀ε > 0. ∃δ > 0. ∀x. x ̸= a ∧ |x− a| < δ =⇒ |f(x)− L| < ε)

In addition to limit, limit inferior and limit superior are also generalized by filter in Isa-
belle/HOL. Limit inferior and limit superior with respect to F are denoted by LiminfF and
LimsupF , respectively.

A Characterization of Closed Sets by Limits. There is a characterization of closed sets
using convergence with respect to nets (Exercise A.48 [7]). We formalize the following
characterization of closed sets by limit with respect to filters because nets and filters are
equally expressive in terms of convergence (Section 4 [23]).

▶ Lemma 1. Let X be a topological space and C ⊆ X. Then, the following are equivalent.
1. C is closed in X.
2. For all sets I, filters F on I, {xi}i∈I ⊆ C, x ∈ X such that ∅ /∈ F and (xi −→ x) F in X,

we have x ∈ C.
If X is first-countable, then these are also equivalent to the following.
3. For all {xn}n∈N ⊆ C, x ∈ X such that (xi −→ x) Fseq in X, we have x ∈ C.
The implication that 1 implies 2 (and 3) is already included in Isabelle/HOL’s library. We
prove the other implications. The last condition of the above equivalence has already been
formalized for metric spaces. Since metric spaces are first-countable, our result is a relaxed
version of the existing result. There is also a characterization of open sets by limit with
respect to filters. The characterization is easily derived from that of closed sets.
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From the characterization of closed sets, we obtain a condition to decide whether two
topological spaces are equal using limit with respect to filters because topological spaces are
determined by closed sets.

▶ Corollary 2. Let (X,OX) and (X,O′
X) be topological spaces.

If (xi −→ x) F in (X,OX) ⇐⇒ (xi −→ x) F in (X,O′
X) for all I, F , {xi}i∈I , and x,

then OX = O′
X .

If (xn −→ x) Fseq in (X,OX) ⇐⇒ (xn −→ x) Fseq in (X,O′
X) for all {xn}n∈N and x,

and both of (X,OX) and (X,O′
X) are first-countable, then OX = O′

X .

▶ Remark 3. In Isabelle/HOL, we cannot quantify filters as “for any filter F” due to
Isabelle/HOL’s type system. For instance, when showing P ←→ (∀F :: □ filter. Q F), we
need to specify some type □ on which filters are defined. We state Lemma 1 and Corollary 2
by quantifying1 filters as the type F :: ′a set filter when the topology is X :: ′a topology
because we use a filter on V (x) (the set of all open neighbourhoods of x) to prove the lemmas.
Details of the filter are found in the lecture notes by Heil [7].

Finally, we define the Cauchy sequence and related notions.

▶ Definition 4. A sequence {xn}n∈N on a metric space X is called a Cauchy sequence if
∀ε > 0. ∃N. ∀n, m ≥ N. d(xn, xm) < ε.
A metric space is complete if every Cauchy sequence has a limit.
A topological space X is called a completely metrizable space if there exists a complete
metric on X, which induces X.
A topological space X is called a Polish space if X is separable and completely metrizable.

2.4 Measure Theory

The current measure theory library in Isabelle/HOL was first formalized by Hölzl and
Heller [12] and has been extended by several other works [1, 5]. Let M be a set and ΣM a
set of subsets of M . A pair (M, ΣM ) is called a measurable space if ΣM is non-empty and
closed under complements and countable unions. We sometimes write M for a measurable
space (M, ΣM ). A member A ∈ ΣM is called a measurable set. A function f from a
measurable space M to a measurable space N is measurable if f−1(A) ∈ ΣM for all A ∈ ΣN .
Let M be a measurable space, µ : ΣM → [0,∞] is a measure on M if µ(∅) = 0 and
µ(
⋃

n∈N An) =
∑∞

n=0 µ(An) for any disjoint family {An}n∈N ⊆ ΣM . A measure µ on M is
called a finite measure if µ(M) <∞, a sub-probability measure if µ(M) ≤ 1, and a probability
measure if µ(M) = 1. For a measure µ on M and a measurable function f : M → R,

∫
fdµ

denotes the Lebesgue integral of f with respect to µ.
A topological space (X,OX) induces the measurable space (X, σ[OX ]), where σ[OX ] is

the least σ-algebra including all open sets of X. The measurable space (X, σ[OX ]) is called
the Borel space. Notice that a metric space is also treated as a measurable space since it
induces a topological space. The Borel space induced by a metric space (X, d) is denoted by
(X, Σd).

1 The direction 1 implies 2 of Lemma 1, which is already included in Isabelle/HOL’s library, has been
proved for all filters of any type using Isabelle’s polymorphism. That is, P =⇒ Q (F :: ′b filter) can be
stated in Isabelle.
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3 The Lévy-Prokhorov Metric

Historically, Lévy first introduced a metric, known as the Lévy metric, between cumulative
distribution functions [17]. Later, Prokhorov defined the Lévy-Prokhorov metric between
finite measures analogous to the Lévy metric [21]. In this section, we review the notion of
weak convergence and the Lévy-Prokhorov metric. At the end of this section, we discuss our
formalization of the topology of weak convergence and the Lévy-Prokhorov metric. For a
measurable space X, P(X) denotes the set of all finite measures on X. Note that X can be
a metric space or a topological space since they both induce a measurable space.

3.1 Weak Convergence
The existing formalization of weak convergence in Isabelle/HOL’s standard library is restricted
to sequences on N of probability measures on R. We define the notion of weak convergence
which treats finite measures on any topological spaces. The convergence in our formalization
is generalized by filters.

▶ Definition 5 (Weak Convergence). Let X be a topological space, I a set, F a filter on I,
{µi}i∈I ⊆ P(X), and µ ∈ P(X). We say that {µi}i∈I converges weakly to µ with respect to
F , denoted by (µi ⇒wc µ) F , if

(∫
fdµi −→

∫
fdµ

)
F for all f ∈ Cb(X), where Cb(X) is

the set of all bounded continuous functions from X to R.

The notion of weak convergence has several equivalent statements when X is a metric space.

▶ Theorem 6 (The Portmanteau Theorem). Let X be a metric space, I a set, F a filter on I,
{µi}i∈I ⊆ P(X), and µ ∈ P(X). Then, the following are equivalent.
1. (µi ⇒wc µ) F .
2. For all f ∈ UCb(X),

(∫
fdµi −→

∫
fdµ

)
F .

3. (µi(X) −→ µ(X)) F and for every closed set C, LimsupF {µi(C)}i∈I ≤ µ(C).
4. (µi(X) −→ µ(X)) F and for every open set U , LiminfF {µi(U)}i∈I ≥ µ(U).
5. For every measurable set A ∈ ΣX such that µ (∂A) = 0, (µi(A) −→ µ(A)) F .

The set UCb(X) denotes the set of all bounded uniform continuous functions f : X → R.

The Portmanteau theorem is commonly stated for probability measures rather than finite
measures. Notice that we require the condition (µi(X) −→ µ(X)) F in 3 and 4. This
condition does not appear in the Portmanteau theorem for probability measures. In the
proof for probability measures, we use µi(X) = µ(X) = 1. For finite measures, µi(X) is
not equal to µ(X) in general. Hence, we use the condition (µi(X) −→ µ(X)) F instead of
µi(X) = µ(X) = 1 in order to approximate µi(X) to µ(X) during the proof.

3.2 Topology of Weak Convergence
Let X be a topological space. Topology of weak convergence on X, denoted by OWCX

, is
the coarsest topology on P(X) which makes (λµ.

∫
fdµ) : P(X) → R continuous for all

f ∈ Cb(X). As the name suggests, convergence in the topology of weak convergence is equal
to weak convergence.

▶ Lemma 7. Let X be a topological space, I a set, F a filter on I, {µi}i∈I ⊆ P(X), and
µ ∈ P(X). Then,

(µi −→ µ) F in (P(X),OWCX
) ⇐⇒ (µi ⇒wc µ) F.
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3.3 The Lévy-Prokhorov Metric
In the lecture notes by Gaans, they only treat the case when P(X) is the set of all probability
measures on X. We generalize their definitions and proofs to the set of all finite measures.

▶ Definition 8 (Lévy-Prokhorov Metric). For a metric space (X, d), the Lévy-Prokhorov
metric dP(X) is a metric on P(X) defined by

dP(X)(µ, ν) = inf{α > 0 | ∀A ∈ ΣX . µ(A) ≤ ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α},

where Aα =
⋃

x∈A ballX(x, α).

Note that dP(X)(µ, ν) < ∞ because ∞ ̸= max(µ(X), ν(X)) ∈ {α > 0 | ∀A ∈ ΣX . µ(A) ≤
ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α}. The Lévy-Prokhorov metric is also expressed using open
sets, closed sets, and compact sets.

▶ Lemma 9.

dP(X)(µ, ν) = inf{α > 0 | ∀U : open. µ(U) ≤ ν(Uα) + α ∧ ν(U) ≤ µ(Uα) + α}
= inf{α > 0 | ∀C: closed. µ(C) ≤ ν(Cα) + α ∧ ν(C) ≤ µ(Cα) + α}.

If X is separable and complete, then

dP(X)(µ, ν) = inf{α > 0 | ∀K: compact. µ(K) ≤ ν(Kα) + α ∧ ν(K) ≤ µ(Kα) + α}.

The convergence with respect to the Lévy-Prokhorov metric is equivalent to the weak
convergence when X is separable.

▶ Theorem 10 (Theorem 4.1 and 4.2 [27]). The following hold.
1. (P(X), dP(X)) is a metric space.
Let I be a set, F a filter on I, {µi}i∈I ⊆ P(X) and µ ∈ P(X).
2. (µi −→ µ) F in (P(X),OdP(X)) implies (µi ⇒wc µ) F .
3. If X is separable, (µi −→ µ) F in (P(X),OdP(X)) if and only if (µi ⇒wc µ) F .
The proofs are similar to the one when P(X) is the set of all probability measures and
F = Fseq (i.e., the convergence is not generalized by filters). The Lévy-Prokhorov metric
metrizes the topology of weak convergence when X is separable.

▶ Corollary 11. If X is separable, the Lévy-Prokhorov metric metrizes the topology of weak
convergence, i.e., OWCX

= OdP(X) .

The generalization by filters of weak convergence and Theorem 10 enables us to prove this
lemma easily.

Proof. The metrizability is shown from the equivalence of convergences. From Lemma 7
and Theorem 10, convergences in (P(X),OWCX

) and (P(X),OdP(X)) are equivalent for all
filters. Hence, we have OWCX

= OdP(X) from Corollary 2. ◀

Even though Corollary 11 is a well-known result, only a few books include its proof. We
found two books showing Corollary 11. In the book by Billingsley [3], they directly prove
the equivalence by examining neighborhoods. In the book by Deuschel and Stroock [4],
they prove the equivalence by using the equivalence of convergence with respect to the filter
Fseq (i.e., sequences are defined on N such as {µn}n∈N). As we stated in Corollary 2, their
proof requires the assumption that (P(X),OWCX

) is first-countable. They use the fact
that (P(X),OWCX

) is second-countable (and thus also first-countable) without providing
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any proof that it is second-countable. If we follow their proof, we will need additional
efforts to show the first countability of (P(X),OWCX

). In our proof, we do not need the
first countability because we generalized the notion of weak convergence and equivalence of
convergence by filters.

Thanks to Corollary 11, we identify (P(X),OdP(X)) with (P(X),OWCX
), when X is a

separable metric space.

▶ Proposition 12 (Proposition 4.4 [27]). If X is a separable metric space, then P(X) is also
a separable metric space.

The proof is similar to the one when P(X) is the set of all probability measures on X. If
{an}n∈N is a dense subset of X, then⋃

k∈N
{r0δa0 + · · ·+ rkδak

| r0, . . . , rk ∈ Q ∩ [0,∞)}

is a countable dense subset of P(X), where δa denotes the Dirac measure centered at a.

3.4 Implementation in Isabelle/HOL
We explain our implementation of the topology of weak convergence and the Lévy-Prokhorov
metric. We sometimes use usual mathematical symbols in source code for readability.

Topology of Weak Convergence

We define the topology of weak convergence by combining existing constants which generate
topological spaces. Let f be a bounded continuous function on X and Of the least topology
on P(X), which makes (λN .

∫
x. f x ∂N) continuous2. Then, (P(X),Of) is written in

Isabelle/HOL as follows:

(P(X),Of) = pullback-topology P(X) (λN .
∫

x. f x ∂N) R,

where

pullback-topology :: ′a set ⇒ ( ′a ⇒ ′b) ⇒ ′b topology ⇒ ′a topology
pullback-topology A f Y = The least topology on A which makes f : A→ Y continuous.

The set of all open sets Of is extracted as follows:

Of = Collect (openin (pullback-topology P(X) (λN .
∫

x. f x ∂N) R)),

where

openin :: ′a topology ⇒ ′a set ⇒ bool, openin X U ⇐⇒ U is an open set of X.
Collect :: ( ′a ⇒ bool) ⇒ ′a set, Collect P = {x. P x}.

Finally, we define the topology of weak convergence (P(X),O[
⋃

f∈Cb(X)Of]).

definition weak-conv-topology :: ′a topology ⇒ ′a measure topology where
weak-conv-topology X ≡ topology-generated-by

(
⋃

f∈{f . continuous-map X R f ∧ (∃B. ∀ x∈topspace X. |f x| ≤ B)} .
Collect (openin (pullback-topology P(X) (λN .

∫
x. f x ∂N) R)))

2 In Isabelle/HOL, the Lebesgue integral of f with respect to N is denoted by
∫

x. f x ∂N.
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The term continuous-map X R f means that f is a continuous map from X to R and
topology-generated-by receives a set of sets and returns the least topology, including the
received set. The topological space weak-conv-topology X meets the requirements of the
topology of weak convergence.
lemma continuous-map-weak-conv-topology :

assumes continuous-map X R f and
∧

x. x ∈ topspace X =⇒ |f x| ≤ B
shows continuous-map (weak-conv-topology X) R (λN .

∫
x. f x ∂N)

lemma weak-conv-topology-minimal:
assumes topspace Y = P(X)

and
∧

f B. continuous-map X R f =⇒ (
∧

x. x ∈ topspace X =⇒ |f x| ≤ B)
=⇒ continuous-map Y R (λN .

∫
x. f x ∂N)

shows openin (weak-conv-topology X) U =⇒ openin Y U

The first lemma guarantees that weak-conv-topology X makes (λN .
∫

x. f x ∂N) continuous
and the second lemma states that weak-conv-topology X is the least topology in such
topological spaces.

From Lemma 7, weak convergence and convergence in the topology of weak convergence
are equivalent. Thus, we define the notion of weak convergence as an abbreviation of
the convergence in the topology of weak convergence. Then, the usual definition of weak
convergence (Definition 5) is shown as a lemma.
abbreviation weak-conv-on :: ( ′a ⇒ ′b measure) ⇒ ′b measure ⇒ ′a filter ⇒ ′b topology ⇒ bool
where weak-conv-on Ni N F X ≡ limitin (weak-conv-topology X) Ni N F

lemma weak-conv-on-def ′:
assumes

∧
i. Ni i ∈ P(X) and N ∈ P(X)

shows weak-conv-on Ni N F X ←→
(∀ f . continuous-map X R f −→ (∃B. ∀ x∈topspace X. |f x| ≤ B)

−→ ((λi.
∫

x. f x ∂Ni i) −−−→ (
∫

x. f x ∂N)) F)

The term limitin (weak-conv-topology X) Ni N F denotes (Ni −→ N) F in (P(X),OWCX
)

in our presentation.

The Lévy-Prokhorov Metric

To formalize the Lévy-Prokhorov metric in Isabelle/HOL, we use the set-based metric space
library, which has recently appeared in the standard distribution since Isabelle 2023. The
library was ported from HOL Light by Paulson [20]. Another metric space library that has
been used is based on type classes [13]. While set-based metric space enable us to treat metric
spaces with arbitrary carrier sets, type-based metric spaces only work for an entire type.
For each type, there can only be one metric-space instance. This works well for situations
where there is a “canonical” metric space for a type, but it lacks the flexibility to describe,
for instance, the set of all metric spaces with a given carrier set. The library based on type
classes is unsuitable for our use because we use the set of finite measures on a measurable
space, which is not the universe of the type.

In Isabelle/HOL’s library, the set-based metric space is defined with the locale command.
locale Metric-space =

fixes M :: ′a set and d :: ′a ⇒ ′a ⇒ real
assumes nonneg:

∧
x y. 0 ≤ d x y

assumes commute:
∧

x y. d x y = d y x
assumes zero:

∧
x y. [[x ∈ M ; y ∈ M ]] =⇒ d x y = 0 ←→ x=y

assumes triangle:
∧

x y z. [[x ∈ M ; y ∈ M ; z ∈ M ]] =⇒ d x z ≤ d x y + d y z
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The locale command introduces a context. In this case, a set M and a function d are fixed
and the four assumptions hold, i.e., (M, d) forms a metric space in the context of Metric-space.
Notice that the non-negativity and commutativity must hold on not only M but the whole
type universe. These assumptions make it easier to use non-negativity and commutativity
in proofs, and do not change the essential structure of the metric space. Owing to these
assumptions, we need to take care of non-negativity and commutativity even outside the
carrier set when we define a metric space.

We introduced a new locale Levy-Prokhorov which is logically equivalent to Metric-space.
locale Levy-Prokhorov = Metric-space

Remember that the Lévy-Prokhorov metric is defined as follows.

dP(X)(µ, ν) = inf{α > 0 | ∀A ∈ ΣX . µ(A) ≤ ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α},

where Aα =
⋃

x∈A

ballX(x, α).

Hence, we define the Lévy-Prokhorov metric in the context of Levy-Prokhorov as follows:
definition P ≡ {N . sets N = sets (borel-of mtopology) ∧ finite-measure N}

definition LPm :: ′a measure ⇒ ′a measure ⇒ real where
LPm N L ≡

if N ∈ P ∧ L ∈ P then
(
d
{e. e > 0 ∧ (∀A∈sets (borel-of mtopology).

measure N A ≤ measure L (
⋃

a∈A. mball a e) + e ∧
measure L A ≤ measure N (

⋃
a∈A. mball a e) + e)})

else 0

In the definition of P, the projection function sets receives a measure and returns the
σ-algebra on which the measure is defined. The constant mtopology denotes the topological
space induced by (M, d), and borel-of mtopology denotes the Borel space generated from
mtopology. In the definition of LPm, measure N A corresponds to N (A) in usual mathematics
notation. Notice that LPm returns 0 when one of the arguments is not a member of P
because the set to which we apply infimum might be empty when LPm receives an infinite
measure. In Isabelle/HOL, the infimum operator on real numbers does not return ∞ nor
any specific value when applied to the empty set; i.e., the value of

d
∅ is unknown. This is

a problem because LPm needs to be a non-negative function on the whole type universe due
to the definition of Metric-space.

We then prove that (P, LPm) is a metric space in the context of Levy-Prokhorov.
sublocale LPm: Metric-space P LPm

The reader might wonder why we define a new locale Levy-Prokhorov, which is logically
equivalent to Metric-space, rather than using Metric-space directly. If we try to define the
Lévy-Prokhorov metric in the context of Metric-space without introducing a new locale, it
does not work.
context Metric-space
begin

definition P ≡ {N . sets N = sets (borel-of mtopology) ∧ finite-measure N}
definition LPm ≡ ...

sublocale LPm: Metric-space P LPm

end
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The problem is that we try to instantiate Metric-space inside the context of Metric-space.
This causes Isabelle to build an infinite chain; thus, Isabelle does not terminate. This
workaround is explained in the Isabelle tutorial on locales [2].

4 Prokhorov’s Theorem

One of the important results related to the Lévy-Prokhorov metric is Prokhorov’s theorem.
In a typical situation in probability theory or statistics, one may want to know whether
a sequence of measures has a limit or at least has a converging subsequence. Prokhorov’s
theorem is applied to prove the existence of a converging subsequence. The theorem is used
in proofs for various important results such as the central limit theorem, Sanov’s theorem,
and the existence of optimal coupling. The central limit theorem and Sanov’s theorem are
key concepts in probability theory. The central limit theorem states that under appropriate
conditions, the distribution of normalized sample means converges weakly to the standard
normal distribution. Sanov’s theorem is an important result in the large deviation theory
(e.g. Section 3.2 [4]). The theorem describes the asymptotic behavior of atypical samples
and gives evidence why we use the relative entropy (Kullback-Leibler divergence) to evaluate
estimated distributions. Both the central limit theorem and Sanov’s theorem use Prokhorov’s
theorem. In transportation theory, a coupling is a plan how to move resources from supply
areas to demand areas. A coupling is represented as a measure satisfying certain conditions.
An optimal coupling is a coupling that minimizes the total cost of transporting resources. In
the proof of the existence of an optimal coupling, Prokhorov’s theorem is essential [28, 29].

In this section, we discuss Prokhorov’s theorem and related topics.

4.1 Regular Measures
We define the notion of regular measures and tightness of measures. The regularity of
measures gives ways to approximate a measured value µ(A) by open sets, closed sets, and
compact sets. The tightness of measures is used to express a condition in Prokhorov’s
theorem.

▶ Definition 13. Let X be a topological space. A measure µ on X is called:
1. inner regular if µ(A) = sup{µ(C) | C ⊆ A, C is closed} for all measurable sets A,
2. outer regular if µ(A) = inf{µ(U) | A ⊆ U , U is open} for all measurable sets A, and
3. regular if µ is inner regular and outer regular.

▶ Proposition 14. Let X be a metrizable space. Then, any finite measure on X is regular.

▶ Remark 15. This definition of inner regular by Gaans is different from the standard
definition. In general, a measure µ on X is called inner regular if
1’. µ(A) = sup{µ(K) | K ⊆ A, K is compact} for all measurable sets A.
This definition is stronger than the condition 1 in Definition 13, when every compact set is
closed (e.g. when X is metrizable). As we will see soon, Proposition 14 still holds even if we
use the condition 1’ as inner regularity when X is a Polish space (Corollary 19).

Proposition 14 has been already included in the standard Isabelle/HOL’s library. They
assume that X is a Polish space and use the condition 1’ as the definition of inner regular.
Their formalization is restricted to measures on the Borel space of topological space on type
classes; thus, they treat only when X is the universal set such as R. We formalize the general
result when X is an arbitrary metrizable space or a Polish space.

Next, we define tightness.
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▶ Definition 16 (Tightness). Let X be a topological space and Γ ⊆ P(X). We call Γ tight if
for every ε > 0, there exists a compact set K of X such that µ(X −K) ≤ ε for all µ ∈ Γ. A
measure µ on X is tight if {µ} is tight.

The existing definition of tightness in Isabelle/HOL’s library is restricted to when Γ is a
sequence on N of probability measures on R.

▶ Lemma 17. If X is metrizable and µ is a tight measure on X, then µ(A) = sup{µ(K) |
K ⊆ A, K is compact} for all measurable sets A.

▶ Theorem 18. If X is a Polish space, then any finite measure on X is tight.

▶ Corollary 19. If X is a Polish space and µ is a finite measure on X, then µ(A) =
sup{µ(K) | K ⊆ A, K is compact} for all measurable sets A.

4.2 Prokhorov’s Theorem
We formalize Prokhorov’s theorem. Let Pr(X) = P(X) ∩ {µ | µ(X) ≤ r} for r ≥ 0.

▶ Theorem 20 (Prokhorov’s Theorem). Let X be a Polish space and Γ ⊆ Pr(X) for some
r ≥ 0. Then, the following are equivalent.
1. Γ is relatively compact.
2. Γ is tight.
▶ Remark 21. Actually, the assumption Γ ⊆ Pr(X) is relaxed to Γ ⊆ P(X) in the proof that
1 implies 2. The completeness assumption is not required in the proof that 2 implies 1.
The following corollary is applied to show the existence of a converging subsequence.

▶ Corollary 22. Let X be a separable metrizable space and {µn}n∈N ⊆ Pr(X) for some
r ≥ 0. If {µn}n∈N is tight, then there exists a subsequence {µnk

}k∈N and µ ∈ Pr(X) such
that (µnk

⇒wc µ) Fseq.

Avigad et al. formalized the above corollary when {µn}n∈N is a sequence of probability
measures on R and applied it to prove the central limit theorem [1]. In the case of probability
measures on R, there is a simpler proof using Helly’s selection theorem. In general case, we
need to prove in other way because the proof using Helly’s selection theorem uses cumulative
distribution function; i.e., X needs to be R.

The proof that 1 implies 2 in Prokhorov’s theorem is more straightforward. The proof
that 2 implies 1 requires more effort to prove for us. We do not discuss the details of the
proof. Instead, we explain a key lemma for the proof that 2 implies 1.

▶ Lemma 23. If X is a compact metric space, then Pr is compact.

The proof relies on results from vector space theory such as Alaoglu’s theorem and the Riesz
representation theorem. Although these theorems need to be stated in set-based vector
space in Isabelle/HOL for our use, most of Isabelle/HOL’s vector space library is based on
type classes. The set-based vector space library by Lee [16] includes only basic definitions.
Thiemann and Yamada also formalized a set-based vector space [26]. However, their work
treats only finite-dimensional spaces. Since we are interested in the Lévy-Prokhorov metric
rather than vector space theory, we leave the development of the set-based vector space
library for future work. Thus, we formalize positive linear functionals used in proofs and
their properties without mentioning vector spaces. For Alaoglu’s theorem, we prove a special
case of the theorem.
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Proof. The idea of the proof is to make a homeomorphism between Pr and a compact space.
Let Φ be

Φ =
(
RC(X)

)
∩ {φ | φ is a positive linear functional ∧ φ(1) ≤ r}. (1)

Remember that an element φ of RC(X) is a function φ : C(X)→ R. We denote φ(f) by φf .
Then, the linearity of φ ∈ Φ means that for all α, β ∈ R and f, g ∈ C(X), φαf+βg = αφf +βφg.
The positiveness means that for all f ∈ C(X) such that f ≥ 0, φf ≥ 0.

We assume that Φ is equipped with the subspace topology of the product topology RC(X)

(subspace topology of the weak* topology). We define the function T from Pr to Φ by
T (µ)f =

∫
fdµ. It is easy to check that T (µ) ∈ Φ, and T is a sequential homeomorphic

map. For instance, the linearity of the integral implies the linearity of T (µ). The function
T is bijective by the Riesz representation theorem (Corollary 31). As Gaans stated, Φ is
metrizable3. Thus, T is a homeomorphism4. Furthermore, Φ is compact by the special case
of Alaoglu’s theorem (Theorem 28). Hence, Pr is compact. ◀

▶ Remark 24. In the lecture notes, Gaans stated that the sequential compactness of a closed
subset of Φ follows from its compactness. This statement is true because Φ is metrizable.
However, they did not mention that in their proof.

Prokhorov’s theorem is applied to prove the completeness of the Lévy-Prokhorov metric.

▶ Corollary 25. If X is separable and complete, then (P(X), dP(X)) is complete.

When we prove the existence of a limit of a Cauchy sequence {µn}n∈N ⊆ P(X), we use
Prokhorov’s theorem as Γ = {µn}n∈N. Hence, we need to show that {µn}n∈N ⊆ Γr for some
r ≥ 0. This follows from the fact that {µn}n∈N is a Cauchy sequence.

As a consequence of Corollary 11, Proposition 12, and Corollary 25, we have the following.

▶ Corollary 26. If X is a Polish space, then so is P(X).

4.3 Alaoglu’s Theorem
Alaoglu’s theorem (sometimes called the Banach-Alaoglu theorem) is an important result
in functional analysis. The theorem states that the closed unit ball of the dual space of a
normed vector space is compact. Let Y be a vector space over R and Y ∗ the dual space
of Y . The weak* topology is a topology on Y ∗, which is the coarsest topology that makes
every (λf. f(y)) : Y ∗ → R continuous. The original statement of the Alaoglu’s theorem is
the following.

▶ Theorem 27 (Alaoglu’s Theorem). Let Y be a normed vector space and B∗ = {φ ∈ Y ∗ |
∥φ∥ ≤ r}. Then, B∗ is compact in Y ∗ with respect to the weak* topology.

We do not prove the above form of the theorem due to the lack of set-based vector space
library in Isabelle/HOL. Instead, we prove a special case of Alaoglu’s theorem for our use.

3 Since X is compact, C(X) along with the topology of uniform convergence is separable (Theorem
2.4.3 [24]). Let {gn}n∈N be a dense subset of C(X). Then, the metric on Φ is, for instance, given by

d(φ,ψ) =
∞∑

n=0

1
2n+1 min(1, |φ(gn)− ψ(gn)|).

4 A function f from a first-countable space is continuous iff it is sequentially continuous.
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▶ Theorem 28. If a topological space X is compact, then Φ defined by (1) in the proof of
Lemma 23 is compact.

▶ Remark 29. While the Alaoglu’s theorem says that {φ ∈ C(X)∗ | ∥φ∥ ≤ r} is compact,
Theorem 28 states that Φ = {φ ∈ C(X)∗ | ∥φ∥ ≤ r ∧ φ is positive} is compact. Note that
∥φ∥ = φ(1) when φ ∈ C(X)∗ is positive.

Proof Outline. We formalize the theorem following the proof in the lecture notes by Heil [6].
The proof is simple. We first observe that

∏
f∈C(X) [−r∥f∥, r∥f∥] is compact in RC(X) by

Tychonoff’s theorem. Note that every f ∈ C(X) is bounded because X is compact. We then
show that Φ ⊆

∏
f∈C(X)[−r∥f∥, r∥f∥] and Φ is closed. The fact that Φ is closed is shown by

the characterization of closed sets by limit (Lemma 1). ◀

4.4 The Riesz Representation Theorem
The Riesz representation theorem (sometimes called the Riesz-Markov representation theorem
or Riesz-Markov-Kakutani representation theorem) states that a real-valued (or complex-
valued) positive linear functional is represented by the Lebesgue integration with respect
to a unique measure. We prove the Riesz representation theorem following the book by
Rudin [22].

▶ Theorem 30 (The Riesz representation theorem). Let X be a locally compact Hausdorff
space and φ a real-valued positive linear functional on Cc(X), where Cc(X) is the set of all
continuous functions on X whose closed support is compact. Then, there exists a σ-algebra
M in X and a unique measure µ on (X,M) such that:

φ(f) =
∫

fdµ for all f ∈ Cc(X),
ΣX ⊆M,
µ(K) <∞ for all compact sets K,
µ(A) = inf{µ(U) | A ⊆ U , U is open} for all A ∈M,
µ(A) = sup{µ(K) | K ⊆ A, K is compact} for all open sets A and for all A ∈ M such
that µ(A) <∞, and
µ is a complete measure, i.e., if E ∈M, A ⊆ E, and µ(E) = 0, then A ∈M.

In the book, the proof of the Riesz representation theorem is divided into ten steps and uses
two lemmas. Their proofs consist of around nine pages, whereas we spent more than 2,100
lines for their proofs. The proof requires Urysohn’s lemma on locally compact Hausdorff
space. Although Isabelle/HOL’s library has several forms of Urysohn’s lemmas and lemmas
related to locally compact spaces, the library does not include Urysohn’s lemma on locally
compact Hausdorff space. Hence, we formalized the lemma by ourselves.

We use the following corollary in the proof of Prokhorov’s theorem.

▶ Corollary 31. Let X be a compact metric space and φ be a real-valued positive linear
functional on C(X). Then, there exists a unique measure µ on X such that for all f ∈ C(X),

φ(f) =
∫

fdµ.

5 Measurable Spaces of Finite Measures

In this section, we discuss the measurable space of all finite measures. Measurable spaces on
a set of measures are used in stochastic processes and semantics of probabilistic programs.
In stochastic processes, measures are usually indexed by time or states. A stochastic process
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is interpreted as a measurable function from its index set to the space of measures. In the
semantics of probabilistic programs, the Giry monad G (or sub-Giry monad) gives a standard
semantics of probabilistic programs where G(M) is the measurable space of all probability
measures on M defined independently from metric or topology.

We will show that this type of measurable space of all finite measures is generated from
the topology of weak convergence when the underlying topological space is a Polish space.

▶ Definition 32. Let M be a measurable space. The space of finite measures on M is denoted
by (P(M), ΣP(M)), where ΣP(M) is the least σ-algebra that makes (λµ. µ(A)) measurable for
all A ∈ ΣM .

Note that this definition does not use any metric or topology. In Isabelle/HOL’s library, the
space of all sub-probability measures Psprob(M) and the space of all probability measures
Pprob(M) are already formalized by Eberl et al. [5] (subprob-algebra M and prob-algebra
M, respectively). We have formalized the space of all finite measures in the same way as
subprob-algebra. Subsequently, we have shown that Psprob(M) and Pprob(M) are subspaces
of P(M).

The following lemma follows immediately from the Portmanteau theorem5.

▶ Lemma 33 (Corollary 17.21 [14]). For open U ⊆ X, (λµ. µ(U)) : (P(X),OdP(X)) → R
is lower semi-continuous. For closed C ⊆ X, (λµ. µ(C)) : (P(X),OdP(X)) → R is upper
semi-continuous.

▶ Corollary 34. ΣP(X) ⊆ ΣdP(X) .

Proof. From the definition of ΣP(X), it is sufficient to show that for all A ∈ ΣX , (λµ. µ(A))
is a measurable function from (P(X), ΣdP(X)) to R. It is easy to check the measurability
because by Lemma 33, (λµ. µ(U)) : (P(X), dP(X))→ R is lower semi-continuous for all open
sets U ⊆ X, hence measurable. ◀

The inverse inclusion holds when X is separable and complete.

▶ Theorem 35. If a metric space X is separable and complete, then ΣP(X) = ΣdP(X) .

▶ Corollary 36. If X is a Polish space, then ΣP(X) = Σ(P(X),OWCX
).

We constructed the proof of Theorem 35 by ourselves because we could not find any proof
for the statement. We provide an informal proof here.

Proof of Theorem 35. Since ΣdP(X) is generated from closed balls, it is sufficient to prove
that every closed ball is a member of ΣP(X). Let µ be a finite measure on X and ε ≥ 0. Our
goal is to show that cBallP(X)(µ, ε) ∈ ΣP(X). Let Ob be a countable base of X and ObfU
the set of all finite unions of elements of Ob. Then, ObfU is also countable.

▷ Claim 37.

cBallP(X)(µ, ε) =
⋂

U∈ObfU

(⋂
n∈N

(λν. ν(U))−1
(
−∞, µ

(
U(ε+ 1

1+n )
)

+ ε + 1
1 + n

]
∩

(
λν. ν

(
U(ε+ 1

1+n )
))−1

[
µ(U)−

(
ε + 1

1 + n

)
,∞
))

(2)

5 Remember that for a first-countable space X,
f : X → R is lower semi-continuous iff (xn −→ x) Fseq in X implies f(x) ≤ LiminfFseq{f(xn)}n∈N.
f : X → R is upper semi-continuous iff (xn −→ x) Fseq in X implies f(x) ≥ LimsupFseq

{f(xn)}n∈N.
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If the above claim is shown, cBall(µ, ε) ∈ ΣP(X) follows from the definition of ΣP(X).
The inclusion ⊆ in equation (2) is directly proven by unfolding the definition of the

Lévy-Prokhorov metric. Hence, we show ⊇ of (2). Let us assume that ν is a member of the
right hand side of (2). Then, for all U ∈ ObfU and n ∈ N, we have

ν(U) ≤ µ
(

U(ε+ 1
1+n )

)
+ ε + 1

1 + n
, µ(U) ≤ ν

(
U(ε+ 1

1+n )
)

+ ε + 1
1 + n

. (3)

We show ν ∈ cBallP(X)(µ, ε) by proving that dP(X)(µ, ν) < ε′ for all ε′ > ε. Let ε′ > ε, then
there exists n ∈ N such that ε + 1

1+n < ε′. For an open set A ⊆ X, we have

µ(A) = sup{µ(K) | K ⊆ A, K is compact} (Corollary 19)
≤ sup{µ(U) | U ⊆ A, U ∈ ObfU} (4)

≤ sup
{

ν
(

U(ε+ 1
1+n )

)
+ ε + 1

1 + n
| U ⊆ A, U ∈ ObfU

}
(by (3))

≤ ν
(

A(ε+ 1
1+n )

)
+ ε + 1

1 + n
.

The inequality (4) above is shown as follows: Since Ob is a base of X, there exists O′ ⊆ Ob

such that A =
⋃

U∈O′ U . If K ⊆ A is compact, there exists a finite subset O′
fin ⊆ O′ such

that K ⊆
⋃

U∈O′
fin

U . By the definition of ObfU, we have
⋃

U∈O′
fin

U ∈ ObfU. Thus, (4) holds.

Similarly, we have ν(A) ≤ µ
(

A(ε+ 1
1+n )

)
+ ε + 1

1+n for all open sets A ⊆ X. Hence,

dP(X)(µ, ν) = inf{α > 0 | ∀A: open. µ(A) ≤ ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α}

≤ ε + 1
1 + n

< ε′. ◀

Corollary 36 is applied to prove that the space of finite measures is a standard Borel
space, which is a measurable space generated from a Polish space. Many practical spaces
(e.g. R, N, and countable product spaces of standard Borel spaces) are standard Borel spaces.
Standard Borel spaces have good properties such as Kuratowski’s theorem stating that any
standard Borel space is either a countable discrete space or isomorphic to R. In our previous
work [11], we formalized the notion of standard Borel space. As a consequence of Corollary 26
and Corollary 36, we obtain the following.

▶ Corollary 38. If M is a standard Borel space, then so is P(M).

▶ Corollary 39. If M is a standard Borel space, then Psprob(M) and Pprob(M) are also
standard Borel spaces.

6 Conclusion

We formalized the Lévy-Prokhorov metric and related notions to show that the measurable
space of finite measures on a standard Borel space is a standard Borel space. We also
showed important mathematical theorems such as the Riesz representation theorem and
Prokhorov’s theorem. Our formalization consists of around 11,000 lines (4,400 lines for
the Riesz representation theorem and 6,600 lines for the Lévy-Prokhorov metric) including
comments and blank lines.

Formalization of the large deviation theory and transportation theory could be interesting
future works. Both of these theories depend on Prokhorov’s theorem for the proof of important
theorems in their fields, namely, Sanov’s theorem and the existence of an optimal coupling.



M. Hirata 21:17

References
1 Jeremy Avigad, Johannes Hölzl, and Luke Serafin. A formally verified proof of the cent-

ral limit theorem. Journal of Automated Reasoning, 59(4):389–423, 2017. doi:10.1007/
s10817-017-9404-x.

2 Clemens Ballarin. Tutorial to locales and locale interpretation. Contribuciones científicas en
honor de Mirian Andrés Gómez, pages 123–140, 2010.

3 Patrick Billingsley. Convergence of Probability Measures. Wiley series in probability and
mathematical statistics, Tracts on probability and statistics. Wiley, New York, United States,
1968.

4 Jean-Dominique Deuschel and Daniel W. Stroock. Large Deviations, volume 137 of Pure and
Applied Mathematics. Elsevier Science, 1989.

5 Manuel Eberl, Johannes Hölzl, and Tobias Nipkow. A verified compiler for probability density
functions. In European Symposium on Programming (ESOP 2015), volume 9032 of LNCS,
pages 80–104. Springer, 2015. doi:10.1007/978-3-662-46669-8_4.

6 Christopher E. Heil. Alaoglu’s theorem. https://heil.math.gatech.edu/6338/summer08/
section9f.pdf, 2008. Lecture notes on MATH 6338 (Real Analysis II) at Gerogia Insisute of
Technology, Accessed: January 5, 2024.

7 Christopher E. Heil. Nets, directed sets, and convergence. https://heil.math.gatech.edu/
6338/summer08/section9b.pdf, 2008. Lecture notes on MATH 6338 (Real Analysis II) at
Gerogia Insisute of Technology, Accessed: January 5, 2024.

8 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017. IEEE Press, 2017. doi:10.1109/lics.2017.8005137.

9 Michikazu Hirata. The Lévy-Prokhorov metric. Archive of Formal Proofs, June 2024. , Formal
proof development. URL: https://isa-afp.org/entries/Levy_Prokhorov_Metric.html.

10 Michikazu Hirata. The Riesz representation theorem. Archive of Formal Proofs, June 2024.
, Formal proof development. URL: https://isa-afp.org/entries/Riesz_Representation.
html.

11 Michikazu Hirata, Yasuhiko Minamide, and Tetsuya Sato. Semantic foundations of higher-order
probabilistic programs in Isabelle/HOL. In Adam Naumowicz and René Thiemann, editors, 14th
International Conference on Interactive Theorem Proving (ITP 2023), volume 268 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 18:1–18:18, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITP.2023.18.

12 Johannes Hölzl and Armin Heller. Three chapters of measure theory in Isabelle/HOL. In
Marko van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive
Theorem Proving, pages 135–151, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

13 Johannes Hölzl, Fabian Immler, and Brian Huffman. Type classes and filters for mathematical
analysis in Isabelle/HOL. In Proceedings of the 4th International Conference on Interactive
Theorem Proving, ITP 2013, pages 279–294, Berlin, Heidelberg, 2013. Springer-Verlag. doi:
10.1007/978-3-642-39634-2_21.

14 Alexander S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics.
Springer New York, 1995. doi:10.1007/978-1-4612-4190-4.

15 Kalle Kytölä. LevyProkhorovMetric.lean. https://github.com/leanprover-community/
mathlib4/blob/master/Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean. Ac-
cessed May 27th 2024.

16 Holden Lee. Vector spaces. Archive of Formal Proofs, August 2014. , Formal proof development.
URL: https://isa-afp.org/entries/VectorSpace.html.

17 Paul Lévy. Thèorie de l’addition des variables alèatoires. Gauthier-Villars, Paris, 1937.
18 Keiko Narita, Kazuhisa Nakasho, and Yasunari Shidama. F. Riesz theorem. Formalized

Mathematics, 25(3):179–184, 2017. doi:10.1515/forma-2017-0017.
19 Anthony Narkawicz. A formal proof of the Riesz representation theorem. Journal of Formalized

Reasoning, 4(1):1–24, January 2011. doi:10.6092/issn.1972-5787/1952.

ITP 2024

https://doi.org/10.1007/s10817-017-9404-x
https://doi.org/10.1007/s10817-017-9404-x
https://doi.org/10.1007/978-3-662-46669-8_4
https://heil.math.gatech.edu/6338/summer08/section9f.pdf
https://heil.math.gatech.edu/6338/summer08/section9f.pdf
https://heil.math.gatech.edu/6338/summer08/section9b.pdf
https://heil.math.gatech.edu/6338/summer08/section9b.pdf
https://doi.org/10.1109/lics.2017.8005137
https://isa-afp.org/entries/Levy_Prokhorov_Metric.html
https://isa-afp.org/entries/Riesz_Representation.html
https://isa-afp.org/entries/Riesz_Representation.html
https://doi.org/10.4230/LIPIcs.ITP.2023.18
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/978-1-4612-4190-4
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/MeasureTheory/Measure/LevyProkhorovMetric.lean
https://isa-afp.org/entries/VectorSpace.html
https://doi.org/10.1515/forma-2017-0017
https://doi.org/10.6092/issn.1972-5787/1952


21:18 A Formalization of the Lévy-Prokhorov Metric in Isabelle/HOL

20 Lawrence C. Paulson. Porting the HOL Light metric space library. https://lawrencecpaulson.
github.io/2023/07/12/Metric_spaces.html. Accessed: December 31. 2023.

21 Yuri Vasilyevich Prokhorov. Convergence of random processes and limit theorems in probability
theory. Theory of Probability and Its Applications, 1(2):157–214, 1956. doi:10.1137/1101016.

22 Walter Rudin. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., USA, 1987.
23 Mirah Shi. Nets and filters. https://www.uvm.edu/~smillere/TProjects/MShi20s.pdf, 2020.

Accessed November 17th 2023.
24 Shashi Mohan Srivastava. A Course on Borel Sets. Springer, 1998. doi:10.1007/b98956.
25 The mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM

SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pages
367–381. Association for Computing Machinery, 2020. doi:10.1145/3372885.3373824.

26 René Thiemann and Akihisa Yamada. Matrices, jordan normal forms, and spectral radius
theory. Archive of Formal Proofs, August 2015. , Formal proof development. URL: https:
//isa-afp.org/entries/Jordan_Normal_Form.html.

27 Onno van Gaans. Probability measures on metric spaces. https://www.math.leidenuniv.
nl/~vangaans/jancol1.pdf. Accessed: February 29. 2024.

28 Cédric. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, 2008. doi:10.1007/978-3-540-71050-9.

29 Shaoyi Zhang. Existence and application of optimal markovian coupling with respect to
non-negative lower semi-continuous functions. Acta Mathematica Sinica, 16(2):261–270, 2000.
doi:10.1007/s101140000049.

https://lawrencecpaulson.github.io/2023/07/12/Metric_spaces.html
https://lawrencecpaulson.github.io/2023/07/12/Metric_spaces.html
https://doi.org/10.1137/1101016
https://www.uvm.edu/~smillere/TProjects/MShi20s.pdf
https://doi.org/10.1007/b98956
https://doi.org/10.1145/3372885.3373824
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://www.math.leidenuniv.nl/~vangaans/jancol1.pdf
https://www.math.leidenuniv.nl/~vangaans/jancol1.pdf
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/s101140000049


Distributed Parallel Build for the Isabelle Archive
of Formal Proofs
Fabian Huch
Technische Universität München, Garching, Germany

Makarius Wenzel Ñ

Augsburg, Germany

Abstract
Motivated by the continuously growing performance demands for the Isabelle Archive of Formal
Proofs (AFP), we introduce distributed cluster computing to the Isabelle platform. Parallel build
time on a single node has approached 4 h–8 h in recent years: by supporting multiple nodes, without
shared memory nor shared file-systems, we target at a substantial speedup factor to get below the
critical limit of 45 min total elapsed time. Our distributed build tool is part of the regular Isabelle
distribution, but specifically adapted to cope with the structure of projects seen in the AFP.

In this work, we address two main challenges: (1) the distributed system architecture that has
been implemented in Isabelle/Scala, and (2) the build schedule optimization problem for multi-
threaded tasks on multiple compute nodes. We introduce a heuristic tuned to the typical AFP
session structure, which can generate good schedules in a few seconds. We reached a total speedup
factor of over 100, which is a milestone never before reached. Using this approach, we could build
the Isabelle distribution in 8 min 10 s elapsed time, and the AFP in 35 min 40 s, or 1 h 59 min 13 s
including very slow sessions.
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1 Introduction

Motivation. The Isabelle proof assistant is accompanied by the Archive of Formal Proofs
(AFP) [1], an online journal of formal content produced with Isabelle. The AFP is continuously
checked against the underlying Isabelle version (official release or development snapshots).

The AFP was founded 20 years ago: the first entry is from 19-Mar-2004 [21], and in June
2024 there are ≈ 830 entries. The steady growth of AFP content challenges the underlying
Isabelle platform, since proposed changes to Isabelle need to be pushed through all entries of
the AFP. Such changes could affect interfaces of Isabelle/ML, fundamental syntax of the
Isabelle/Pure framework, library content in Isabelle/HOL (e.g. term notation, default proof
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rules). Often, the initial change idea fails: it requires iterated refinement, until it becomes
acceptable to the AFP – not causing too many follow-up changes there.

To retain the very notion of interactive proof development and maintenance, AFP test
runs need to be reasonably fast. The folklore of AFP maintenance tells us that 45 min
is a critical limit of “waiting online” for results, e.g. while doing other maintenance work
elsewhere. Most of its lifetime, though, AFP tests have required much longer than that:
often a rather painful 2 h–4 h. To help a bit, there is a classification of some AFP entries as
slow (sessions that may take ≈ 1 h CPU time on their own account), or very_slow (sessions
that require many hours). These tagged groups are tested less frequently than the main bulk.

In recent years, Isabelle users have been so successful in producing AFP content that
we are now at 4.4 million source lines,1 and the build time has degraded to 4 h–8 h (on a
high-end server machine with many cores). Thus it has become increasingly difficult to
change Isabelle libraries significantly: known problems often remain open for a long time.

That means it is high time to catch up with Isabelle prover technology. This has already
happened several times in the past, e.g. with the introduction of shared-memory parallelism
in Isabelle/ML from 2009 to 2013 [29, 19, 30], and replacement of GNU make by the custom-
made isabelle build tool (after 2012). The next stage is to support distributed parallel
build directly in Isabelle, to regain the 45 min limit for AFP built time.

Problem. The overall task is to organize the Isabelle build process better, to achieve a
significant speedup factor that accommodates interactive development and maintenance:
there needs to be enough headroom for the coming years of AFP growth. One side-condition
is that Isabelle/AFP developments can be very large and thus produce large build results
that need to be handled efficiently. Other side-conditions are given by the underlying ML
system of Isabelle, Poly/ML2 by David Matthews, and its traditional concept of persistent
heap image from old LISP times. That is a convenient programming model from the past,
which allows a growing context of ML code and values produced incrementally, but there
are built-in limitations. ML heaps can only be stacked-up linearly – there can be forks,
but no joins (so the dependency graph of Isabelle sessions always is a tree). Thus, large
developments may often contain redundantly processed theories, to simulate session merges.

Solutions. There are various axes to tackle the problem, and several solutions may be
combined eventually. At first we distinguish internal organization about how Isabelle/ML
works vs. external organization of running ML sessions; the latter is done in Isabelle/Scala.

The past 15 years have seen many internal improvements of Isabelle/ML, notably shared-
memory multiprocessing (e.g. yielding a solid factor of ≈ 5–6 on 8 cores), but also runtime
sharing of ML values. Those have already provided significant improvements to scalability,
but also cause quite some complexity in the Poly/ML platform. Without exceedingly difficult
engineering, significant gains cannot to be expected in this area, according to collected
timings [16].

An external approach is to reorganize Isabelle session structure on the spot. The static
description (via ROOT files) consists of session name, parent, used theories, and optionally
re-used theories from other sessions. There is no need to build ML heaps precisely around
this structure. The Isabelle/jEdit Prover IDE already allows to build a custom heap image,
for the true requirements of the edited session (via isabelle jedit -A -R). The build tool

1 https://www.isa-afp.org/statistics
2 https://www.polyml.org

https://www.isa-afp.org/statistics
https://www.polyml.org
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could do likewise, and load common library theories into one big session used as prerequisite
for AFP, e.g. the union of HOL-Library, HOL-Analysis, and HOL-Algebra.

A less conservative variation is to impose the skip_proofs option on theories that are
re-used from other sessions. This would imitate the theory (object) files known from the
HOL4 prover, which is also based on Poly/ML. In any case, the expected speedup factor is
limited to the currently observed waste factor of ≈ 1.75 in the AFP.

A more promising approach is to allow multiple build hosts, to open the game of distributed
parallel computing: compute clusters may easily consist of hundreds or thousands of nodes,
so a large speedup factor can be expected for the future. This merely requires to manage
distributed builds properly, which is the plan of this work: for small clusters of 10–20 nodes.

Contribution. We introduce Isabelle technology for distributed parallel build of the AFP,
with only minimal requirements on system infrastructure, and support for heterogeneous
hardware that is often found in scientific environments, consisting of fast and slow machines.
We provide build schedule optimizations based on an initial set of empirical data, and evaluate
the resulting schedules and system performance with two more data sets

2 Distributed Build Architecture

Our overall approach is that “Isabelle is the build system of Isabelle”. Regular users often
identify “Isabelle” with the Isabelle/HOL object-logic, but the reality is more complex:
Isabelle is a platform of different languages with different purposes (although with a common
emphasis on λ-calculus and functional programming). Two Isabelle languages are particularly
important: (1) Isabelle/ML as mathematical programming language to implement formal logic,
specification mechanisms, proof tools etc. – that provides only minimal system operations, e.g.
to access external files. (2) Isabelle/Scala as functional language for systems programming,
with full-scale access to file systems, database engines (SQLite or PostgreSQL), external
processes (GNU Bash), operating system tools (rsync, SSH, XZ, Zstd), TCP/IP services etc.
Scala runs on the Java/VM and acts like an abstract operating-system for organization of
Isabelle applications: it works uniformly on Linux, macOS, or Windows (with Cygwin).

So we shall rather identify “Isabelle” with the Isabelle/Scala environment for systems
programming: this is where our main implementation happens.3 Thus we follow the tradition
of the first (more modest) isabelle build tool from September 2012.4

2.1 Re-use the Slurm Cluster Workload Manager?
Quite a lot of systems for compute cluster management have appeared in the past 10–20 years.
In the world of scientific computing, the most popular one is now Slurm [17]. Major centers
for high-performance computing (HPC) often use Slurm as a “meta-operating system”, to
manage queues of user jobs. A running job appears on several compute nodes at the same
time. The user program sees a conventional Linux system with network access; usually there
are additional means to communicate with sibling nodes via message passing (e.g. OpenMPI).

The HPC Linux Cluster of the Leibniz Supercomputing Centre (LRZ) is next door to
TU München in Garching. Thus we were motivated to explore this infrastructure carefully,

3 https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/Build/
;29f2b8ff84f3

4 https://isabelle-dev.sketis.net/source/isabelle/browse/default/src/Pure/System/build.
scala;aa1e2ba3c697
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with the help of a student project that produced an Isabelle workload manager based on
Slurm [20], but running on our own Linux computers or virtual machines from the LRZ. The
main lessons from this experiment are:

1. Slurm is primarily for Linux, and unavailable on macOS or Windows.5 This is bad,
because macOS is important in the ITP community, and we intend to test AFP on it
eventually.

2. Slurm set-up is rather complicated, requires special Unix permissions, and is not easy
to extend. In particular, Slurm needs a custom authentication service (system daemon),
demands uniform user and group IDs, and has static cluster configuration that makes it
difficult to add new machines. This is in conflict with typical compute resources found in
academic environments: often there is only non-root access and standard system software.

3. Slurm does provide mechanisms for planning and scheduling jobs, but these are insufficient
for our purpose, as they cannot use as much of our domain-specific information: For
instance, Isabelle sessions can be built in different configurations (regarding ML threads
and heap size). With a prediction model for the required computation time and resources,
a build schedule could be planned in advance and optimized accordingly.

4. Although Slurm is very popular, its feature set turned out insufficient to handle high-end
workstations with different kinds of CPU cores (hot “P-cores” versus cool “E-cores”).

Hence, we decided not to use an off-the-shelf component for cluster management, and
instead do it ourselves in Isabelle/Scala, with minimal requirements and better results.

2.2 System Design based on Isabelle/Scala + SSH + PostgreSQL
Our design makes only minimal assumptions about the system environment:

1. Uniform platform: All build machines (master and worker nodes) operate on the same
platform, after an initial decision if that is Linux, macOS, or Windows – and Intel or
ARM.

2. Repository clones: official Mercurial repositories of Isabelle6 and AFP7 are required at
the root of the overall build process, but regular build hosts get sources via rsync.

3. Local file systems: Working directories reside on fast solid-state storage. Network shares
are neither required, nor desired: too slow and difficult to use concurrently.

4. SSH: The master node can reach all worker nodes via ssh, to access files and to run
processes. SSH users and home directories may vary, but the shell needs to be GNU
bash.

5. PostgreSQL: There is a dedicated PostgreSQL database server8, which is accessible via
LAN/WAN from all build nodes (using TCP/IP directly or tunneled through SSH).

SSH clients and servers are readily available on all platforms, usually from the single source
of the OpenSSH project, which works reliably. In Isabelle/Scala, ssh works as stay-resident
program: a single connection is multiplexed for many requests. The PostgreSQL database
server is available in many forms on many systems, e.g. as a system package on Ubuntu
Linux that requires approx. 10 min to set-up – we are using version 14, e.g. on Ubuntu 22.04

5 https://slurm.schedmd.com/platforms.html
6 https://isabelle.in.tum.de/repos/isabelle
7 https://foss.heptapod.net/isa-afp/afp-devel
8 https://www.postgresql.org
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LTS. Accessing the database server through SSH tunneling (via Isabelle/Scala) avoids the
need to configure extra SSL certificates. The SQL module in Isabelle/Scala provides a simple
programming interface, based on PostgreSQL JDBC for Java. All other system dependencies
are bundled with the Isabelle distribution, notably Scala 3 and OpenJDK 21. This now also
includes the rsync tool, in just one version for all platforms, so that it can speak to itself
reliably over a cluster of dissimilar machines.

These parts are fit together as the distributed parallel build infrastructure for Isabelle as
shown in Figure 1. The cluster topology is given on the command-line via “isabelle build
-H hosts:options . . . ”, based on predefined hosts and host groups from a global registry file
(in TOML format). The master oversees the build process, using database tables that are
shared with all workers. Workers may in principle join and leave the build process freely, but
presently we use a fixed arrangement determined at the build start. The master and workers
all run the same Isabelle/Scala program, with a conventional programming model of critical
regions and functional update of shared state (similar to synchronized variables in Isabelle/ML
and Isabelle/Scala). The distribution of state information happens via the database server,
using our own implementation of transactions with table locking, and efficient propagation
of incremental updates (that works like a version control system, using a relational OUTER
JOIN of recent updates against latest data). Since full transaction locking is rather costly
(minimum ≈ 100 ms, median ≈ 1 s, sometimes much longer), we use the special PostgreSQL
commands LISTEN and NOTIFY for asynchronous IPC messages. This reduces the frequency
of state synchronization for critical regions: the master signals when relevant state updates
have happened, so workers run silently most of the time without polling the database.
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Figure 1 Overview of the distributed Isabelle build system.
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Seen from the master build host, the main build phases of Figure 1 are as follows:
1. Analyze the source structure of selected sessions (as defined in ROOT files), including

full theory dependencies (given by theory headers). The resulting data is transferred to
the database and can later be retrieved by workers. File names are stored with symbolic
paths, relative to the root directories of Isabelle or the AFP.

2. Synchronize the master Isabelle distribution to all workers via ssh and rsync. This
includes Scala/Java build artifacts and thus saves 1.5 min to initialize remote clones. The
command-line isabelle build -A: treats the AFP directory structure analogously, but
other project directories must already be present on each worker node.

3. Initialize the worker Isabelle distributions, by letting each node download required system
components from the Isabelle components store, and finally ensure that all Scala/Java
modules are up-to-date. Afterwards, workers are ready to run.

4. Run a short benchmark session by each worker, if explicit schedules should be used. This
helps to predict overall run-times as discussed below.

5. Run all workers and let them work on the build autonomously, using queue and schedule
information from the database. The master could participate as another worker, but is
disabled by default, as it often resides on a slow workstation.

6. Finalize the build when all pending sessions are finished. This includes HTML and LATEX
presentation for all sessions, based on markup information found in session databases.

For the AFP, being more a scientific journal than a library of code, the presentation is
the main outcome of a successful build. In contrast, the result of running an Isabelle/ML
session is an opaque heap image, which is potentially large. So we compress heap images
with Zstd (portably in Isabelle/Scala) and store them in separate tables of the database as
raw blobs (avoiding extra compression by PostgreSQL). Remote workers check and restore
required heaps from the shared store: local file systems act like a cache for heaps served by
the database.

Care is required to manage ML heaps in a scalable manner. For example, the HOL image
is at ≈ 200 MiB uncompressed, ≈ 50 MiB compressed, with 0.9 s/0.3 s compression/uncom-
pression time (on a fast machine). To give a sense of scale: Committing the compressed
blob requires roughly 1.5 s. Most Isabelle/AFP session images are much smaller, but can
sometimes approach 1 GB. To allow very large applications in the future and circumvent the
PostgreSQL limit of 2 GB for blobs, we store heap images as slices of ≈ 50 MiB.

After several rounds of performance tuning of our Isabelle/Scala implementation, the
PostgreSQL engine works fairly well, both for small-scale synchronized program state, and
large-scale storage of session images. Thus we can work without network shares, and really
treat worker hosts as independent machines (apart from user-level SSH connections).

2.3 Prediction of Run-time per Configuration
A critical component for the schedule generation is an accurate estimation of run-time for a
given configuration. Generally, there is little hope to estimate that without actually running
the session: For instance, the AFP theory Lorenz_C1 contains a single innocent-looking
locale interpretation (three lines), whose run-time is about 50 h CPU-time on average test
hardware. Still, once the run-time is known for some configuration, we can predict others.
We use the build_log database of Isabelle to get data from historic builds. Our estimation
is based on two main principles:
1. Given a job and number of threads, we estimate how the time changes across different

build hosts via a factor derived from an initial benchmark. The benchmark session runs
in single-threaded mode, it should be neither too short nor too long, its content should
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rarely change, and it must be representative. Figure 2 shows the mean square error (MSE)
of all sessions when used as individual benchmarks to scale the run-time of other sessions
across hosts. There is a distinct separation in the build time since most sessions require
HOL, which accumulates to 155 s already. FOLP-ex stands out as the session with lowest
MSE amongst the faster sessions, and only takes about 15 s. All sessions with lower MSE
are much slower. Further experiments with the initial fragment of HOL as benchmark all
exhibited a far higher MSE, and the sessions that stick out have in common that they
manipulate large terms. A likely explanation is that the typical workload seen in most
sessions consists of such term manipulations, and the Isabelle/ML loading in Pure and
bootstrapping of HOL is not representative.

2. If a job has been run with a different number of threads on the same host, we can
interpolate the curve to the unknown point. However, the speedup has lots of variation,
as illustrated by the speedup curve for HOL-Analysis shown in Figure 3. Even though
the speedup factor varies, it always increases up to an optimum at 8–16 threads and then
decreases again due to multithreading inefficiencies. Although one could try to train a
sophisticated prediction model for the speedup, in practice only very few configurations
are known most of the time and robustness is more important than accuracy. Hence
we make use of the only underlying mechanic that we can safely assume: According to
Amdahl’s law [14], in any task only a fraction p of the total work T is parallelizable, so
the total time for n threads is p

n T + (1 − p)T . Thus, we select the prefix for which the
speedup is monotone, estimate p by pT = nm(Tn−Tm)

m−n for any two present timings Tn

and T m (for n and m threads, respectively), and interpolate according to that. If there
is no such prefix, we use a simple rectified linear interpolation. This approach decreases
the mean relative error (MRE) from 0.52 (linear only) to 0.42.

Our estimation then works as follows: If there is no historic build of a given job, we either
use the session time-out if it is defined, or we take the average time of all jobs. If there are no
other jobs to approximate from, we use dummy data to bootstrap the process. Otherwise, if
there is data for the right job and threads, we just scale it to the right host. Should there be
no data for the given number of threads, we try to interpolate. If there are not enough data
points on the given host to do that, we interpolate on all other hosts individually and scale
the results up to the current host. In case there is no host with enough data points, we unify
the data and scale the individual points up to the current host, and then interpolate. Finally,
if there is only one data point, we use the global speedup curve for the interpolation. Figure 4
shows boxplots of the relative error in the different scenarios outlined above. Unsurprisingly,
the error is lower in the scenarios where less prediction is necessary.

In the final estimation, we are interested in producing a result that does not lead to
underestimations which could be exploited by the schedule optimization – especially since
a delayed task can cause problems for the whole schedule, but faster completion is not a
problem. Hence, we increase the estimations slightly depending on the scenario.

3 The Scheduling Problem

The classic isabelle build tool immediately starts new session jobs whenever there is free
capacity. If there are multiple sessions to select from, the session with the longest build time
in its path of successors is chosen. To estimate the build time, the timing of the previous build
is used, if available. Otherwise the static session timeout serves as a rough approximation of
actual runtime. The configuration of the number of threads for the Isabelle/ML process is a
static parameter, usually given on the command-line.

ITP 2024
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This now works differently: the command-line option “-o build_engine=. . . ” tells which
implementation of build scheduling should be used. The default is merely an upgrade
of the old approach, to work with multiple build hosts. In addition, there is now the
“build_schedule” engine that implements advanced scheduling as described in the following.

While the old strategy was sufficient for a low degree of session-parallelism, it is far from
optimal for parallel builds in a large heterogeneous cluster, where the compute power may
vary greatly across machines. The two different levels of parallelism, as well as non-uniform
memory access and different kinds of processor cores found in current CPUs, make for a very
uneven scheduling problem. Hence, basic approaches to multiprocessor scheduling are not
applicable. Instead, the scheduling problem at hand has been studied as the multi-mode
resource-constrained project scheduling problem (MRCPSP) since the late 1960s [7]. Some
variations of the exact formulation of this problem exist in the literature. Typically, it consists
of finding a schedule for activities A in different modes M, where each configuration (pair
of activity and mode) takes T : A×M → � time, such that the overall makespan (i.e., the
time it takes to process all activities once in any mode) is minimized. The problem is subject
to precedence constraints according to some acyclic precedence relation ≺: A×A → bool,
and there are constrained (renewable and non-renewable) resources R. Each resource has
an associated capacity C : R → �, and a certain amount is required to run a configuration
according to some cost function R: A×M → R → �.

In our case, we need to schedule the build of a selection of sessions as activities, adhering
to the dependency graph that induces the precedence relation. Each session can be run with
different arguments such as the number of ML threads or the maximum ML heap size, though
we only consider threads in this work. The build hosts (machines) define our resources: Each
host has a number of CPU cores, which is a capacity that limits the sum of threads used. A
second capacity is given by the maximum number of sessions that may run in parallel on each
host. Finally, the run-time is determined by the session, build host, and number of threads
as discussed in Section 2.3. Since in the MRCPSP formulation the run-time is independent
of the resource used, we employ one mode per host and possible number of threads.

ITP 2024
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As we may not know the exact run-time and have to estimate it from historical data,
we do introduce some uncertainty. Although stochastic approaches to the problem exist
[26, 18], we work with the deterministic variant since it is simpler and more widely studied,
and because the worst-case time is less of a concern – we are more interested in obtaining
a solution quickly with good average time (which is a situation where this approach is
appropriate [2]). Moreover, there is no need that the schedule stays fixed throughout the
build: Should the actual times deviate (or a better solution be found due to the decreasing
search space), the new schedule can be dynamically adopted. Hence, we re-compute the
schedule periodically during the build.

3.1 Computational Complexity
Already the much simpler scheduling problem (considering identical processors instead of
resources) is NP-complete [27]. Moreover, the MRCPSP (with resources and processors)
remains strongly NP-hard even when restricting the problem simultaneously to one resource,
uniform activity durations, a dependency graph that is a tree, and two processors (or three
when the graph is omitted) [10]. It can also not be approximated by a constant factor in
polynomial time even for a less general variant [9]. In our scheduling problem, in addition to
the dependency graph being a tree, we can assume that T typically exhibits a monotone
behavior: For all sessions, faster CPUs and more Isabelle/ML threads (up to a limit) usually
correspond to less runtime. However, this does not improve complexity as the problem
remains strongly NP-hard even with only two machines, a chain of dependencies, one single
resource, as well as uniform mode, capacity, cost, time, and speed [4].

3.2 Schedule Generation Methods
Due to the practical importance in many fields and industries, a vast number of approaches
exist to the problem (cf. [25] for a recent comprehensive resource). Exact solutions are often
branch-and-cut methods which iteratively constrain the LP-relaxation of the mixed integer
program for the optimal solution [33]. However, these integer programs explode in size:
Due to the linear nature, one variable is required for every possible configuration of every
activity at every time step. In another approach, Bofill et al. [5] use iterative SAT solving
to find the lower bound for which an encoding of the problem is still satisfiable such that
the satisfying assignments correspond to a schedule. Both this implementation as well as a
recent implementation of the linear programming based-approach (as well as [12] and our
own implementation of another mixed integer approach) could find the optimal solution for
a small problem with 28 activities9, but found no reasonable bounds for larger problems.

Meta-heuristic optimization approaches such as genetic algorithms, local search, or
simulated annealing (where neighbor solutions are constructed for an initial feasible solution
to find optima) have become quite popular in the field [23]; these can find approximative
solutions for larger problems. We observed that a local search implementation [11] and one of
the original genetic algorithm approaches [13] found solutions for the small problem very fast,
but struggled for our medium-sized problem (132 activities)10 due to technical limitations.
Using OptaPlanner11 (which combines several meta-heuristics), we could generate a good
solution for this problem in short time, but did not find a solution for our large problem

9 Building all sessions in the Isabelle distribution excluding HOL on one machine, with 1 or 8 threads.
10 Building the whole Isabelle distribution of a cluster of 4 fast machines, with 1 or 8 threads.
11 https://www.optaplanner.org

https://www.optaplanner.org
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(923 activities)12. We found that only some constraint programming solvers were able to
tackle problems of this size. While the open-source Google OR-Tools13 could solve some of
the large problem instances given enough time, IBM ILOG CPLEX14 excelled for this task,
finding a reasonable solution for the large problem in a few minutes.

However, since CPLEX is proprietary software that cannot be bundled with Isabelle, we
focus on heuristic-based schedule generation schemes (SGS) in the present work. These can
also provide an initial solution to aid further optimization, e.g. by providing an upper bound
on the makespan for the constraint programming formulation. SGS yield very fast solutions
at the expense of solution quality by iteratively building a schedule, maintaining a decision
set of activities whose precedence constraints are fulfilled. In the serial SGS, at every step a
configuration is selected according to some priority rule (e.g., selecting the activity with the
most successors in the fastest mode) and scheduled in the earliest possible time. In contrast,
in every time step of the parallel SGS, a priority rule is employed to select from the set of
currently feasible configurations until no more can be scheduled, at which point the scheme
proceeds to the next time step. This latter approach is greedy since activities are scheduled
immediately when they are feasible, which limits the search space, but also means that the
optimal solution may not be found (independently of the priority rule).

3.3 Priority Rules for Isabelle builds
In the literature, a vast amount of priority rules have been explored, and ultimately it
depends on the problem structure which rules perform best. Our exact problem structure
can vary depending on which sessions need to run, and which hardware is available. Still, we
can make some general observations that hold for AFP builds on a typical cluster:
1. Session sizes and in-degrees in the dependency graph (the number of other uses of a

session) weakly follow a scale-free distribution [15], i.e. there are few long-running or
frequently-used sessions, and many sessions which are fast or without dependencies.

2. As machines in research environments often accumulate over the years, there will be
relatively few of the fastest machine, but plenty of slower ones. Moreover, machines with
many cores (server CPUs) typically have far lower clock speed than high-end consumer
CPUs with fewer cores, so the more cores a CPU has the slower they are.

3. As the number of threads for a single session increases, the elapsed time decreases (up to
some limit, typically 16 threads), but the parallel efficiency also degrades.

Hence, it is desirable to build sessions that greatly influence the overall makespan with the
optimal amount of threads on the hardware with fastest individual cores, and sessions that
have little to no impact in single-threaded mode on slow hardware. Due to the scale-free
nature, we can hope that constructing a greedy solution that takes this into account yields a
near-optimal solution. Our heuristics hence employ the notion of critical sessions, which are
sessions that are on a path in the dependency graph whose accumulated time (for optimal
amount of threads) is longer than some cut-off. The cut-off is taken either at some absolute
value, or as a factor of the critical path through the dependency graph. A number of the
fastest hosts is reserved for these critical sessions: Either one for every critical session that
needs to be built in parallel, a fixed fraction of the fastest machines, or all machines faster
than some cut-off. Finally, the uncritical sessions are run with a number of threads that
increases for slower sessions (or is always constant).

12 Building the AFP (without slow sessions) on an experimental cluster of 14 machines, with 1 or 8 threads.
13 https://developers.google.com/optimization
14 https://www.ibm.com/products/ilog-cplex-optimization-studio
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Figure 5 Solution quality (on preliminary data) for the three different parameters of our heuristic.
The x-axis shows the criterion for a critical session, the y-axis how the available machines are split
for critical/uncritical sessions, and the group label shows the threads parameter: The arrow notation
maps run times less than the specified number of minutes on the left hand side to the number of
threads on the right hand side. Darker is better (shorter makespan).

Figure 5 shows a comparison of the resulting makespan for an AFP build, depending
on concrete values for the parameters explained above. The thread distribution is clearly
the most important parameter for this build, and best results are generally achieved with 1
thread up to 1 min, then 4 threads up to 5 min, and 8 threads above that. Which sessions
should be considered critical depends on the other parameters, but an absolute path length
of 10 min to 20 min works well. The machine split only plays a minor role most of the time.

For the final heuristic, we additionally exploit that the number of sessions that may be
scheduled on each host is typically much smaller than the number of CPU cores available
(due to memory requirements), so we construct a parallel SGS where sessions are scheduled
with a larger amount of threads than the minimum if there are unused cores. Additionally, if
there is more capacity than sessions can use in parallel, we immediately schedule all sessions
in their optimal mode. Finally, we sweep over the parameter space to find the best schedule,
which can be done within a few seconds even for our largest problems.

4 Experimental Results

To empirically evaluate our schedules and strategies, we used three data sets with different
hardware and configuration, as shown in Table 1: A preliminary data set used during
development (cf. Section 3), one set collected on a heterogeneous cluster, and a final data set
where we used the Isabelle2024 release on our current hardware.
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Table 1 Experimental setup for data sets used in evaluation. CPU slices have access to 10 cores.

Data Set Preliminary Heterogeneous Release
Measure Period Nov/Dec 2023 Mar 2024 Jun 2024
Isabelle Revision various 08b83f91a1b2 Isabelle2024
Builds/Data Points (Sessions) 38/19 263 41/30 510 36/30 203
Cluster Hardware:

Xeon Silver 4316 Slice, 44 GB DDR4 10 10 –
Intel Core i9-12900K, 64 GB DDR5 4 4 4
Intel Core i9-13900K, 128 GB DDR5 – – 4

We compare four scenarios in the following: Building the Isabelle distribution (medium-
sized problem in Section 3.2), the AFP (without slow, corresponds to the large problem),
the slow AFP (including slow, but not very_slow), or the full AFP. In doing so, we want
to answer the following research questions empirically:

RQ1: Which timings do we achieve, and when should one use explicit schedules?
RQ2: How good is our heuristic compared to the best solver-generated solution?
RQ3: Do the actual builds follow the generated schedule closely?

RQ1. To answer our first question, we compare the resulting build timings for different
scheduling modes of the heterogeneous cluster in Table 2a, and the final results for the release
version on our current hardware in Table 2b. On our current (homogeneous) cluster, the

Table 2 Final build timings from heterogeneous and release data sets, with different build engines.
The solver engine refers to a scheduled build with an initial schedule generated by CPLEX in 5 min.

Distribution
AFP
Slow AFP
Full AFP

(a) Elapsed time for heterogeneous
data set, without benchmarks.

Classic Heuristic Solver
Elapsed Elapsed Elapsed
0:16:23 0:09:16 0:09:29
1:00:25 0:43:11 0:56:12
0:58:16 0:48:03 0:50:13
5:04:32 2:07:56 2:12:01

(b) Elapsed and CPU time for release data set,
including benchmarks.

Classic Heuristic
Elapsed CPU Elapsed CPU
0:08:10 2:49:51 0:09:12 3:58:49
0:42:16 37:22:37 0:35:40 64:57:11
0:49:09 45:52:17 0:40:50 73:49:22
2:07:10 50:53:02 1:59:13 77:01:21

classic build mode performs best for shorter builds, finishing the distribution in 8 min 10 s.
For longer builds, using the schedule generated by our heuristic is 7 min to 8 min faster than
the classic build, finishing the AFP in 35 min 40 s, and 40 min 50 s including slow sessions.
This corresponds to a factor of over 100 between CPU time and elapsed time, though the
CPU time does increase with the amount of parallelism (since the parallelism consumes
additional CPU time). These timings are all within our critical limits of 10 min for the
distribution and 45 min for the AFP, which is a huge improvement. The difference between
the strategies is much more pronounced on the large heterogeneous cluster, as important
jobs can end up on a slow host if assigned blindly. Since this is the case for the classic build,
finishing the full AFP (with very slow sessions) took more than 5 h, compared to about 2 h
otherwise. Finally, starting with a solver-generated schedule (CPLEX in 5 min) resulted in
slightly worse times compared to the heuristic, although the solver always generated a better
initial schedule.

ITP 2024
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Figure 6 Estimate and actual build time (log-scaled) for consecutive builds of the slow AFP, using
the release version and our current hardware (starting with an initially empty build log database).

Even though the heuristic was faster than the classic build for the AFP, it requires
bootstrapping by collecting data from several builds until the estimation can be accurate.
Figure 6 shows how much the actual time deviates from the initially predicated time when
starting with an empty database. After 7–8 builds, the estimate was very close to the actual
build time, and both remained stable consequently. While the bootstrapping could still be
improved by generating schedules that explore more modes, it is sufficient in automated
build environments – for one-shot builds, the classic build engine is better suited anyway.

Heterogeneous Heterogeneous
(4/14 machines) Release Release

(4/8 machines)

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Full AFP

Slow AFP

AFP

Distribution

Makespan [h]

Method Lower Bound CPLEX 3 h CPLEX 5 min Heuristic

Figure 7 Comparison of estimated makespan (and best computed lower bound) in different
scenarios on heterogeneous and release data sets, using the full cluster or only the four fastest hosts.

RQ2. Although the true build duration is often better than initially estimated due to the
optimization every 5 min (by default), computing a good schedule is still critical. Hence, for
our second research question we compare the makespan of the initially generated schedules.
We consider the schedule found by our heuristic as well as the best schedule and lower bound
we could generate via CPLEX (on a slow machine) in 5 min, and 3 h, respectively. Figure 7
shows the results. For both data sets, the schedules are reasonably close to each other on
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the full cluster (in the expected ordering). There is still a significant gap to the best lower
bound for the harder scheduling problems (AFP and slow AFP). The solution quality of the
heuristic drops off dramatically when scheduling only for the four fastest machines, where
our assumption is violated that plenty of slower hardware would be available.

RQ3. For our last research question, we want to assess whether generated schedules can be
followed closely in the actual build. To that end, we analyze deviation of session run-time
and session delay (i.e., the difference between planned and actual completion) for builds of
the AFP with pre-generated schedules. All optimizations that would change the schedule
during the build are disabled for this experiment. Figure 8 shows the result. Overall, the
individual run-time deviations were quite low. However, with the solver-generated schedule
a few sessions took several minutes longer, delaying a significant chunk of sessions such
that the schedule finished 13 min late. The heuristically generated schedule had less (and
mostly negative) deviations and accumulated not much delay, finishing within a minute of
the estimated time. While the solver-generated schedule might have accumulated more delay
as it is more tightly packed, the mean deviation was also three times as high compared to
the heuristic, indicating that the run-time estimation was worse. A likely reason for this is
that the data was collected by running builds with the heuristic strategy, so there is more
accurate data for its frequently selected configurations. This also explains why using the
solver resulted in worse timings even though the initially estimated makespan was shorter.
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Figure 8 Accumulated delay and session run-time deviation for AFP builds with fixated schedules
(release data), with histograms.

5 Conclusions

In this work, we introduced a distributed build system for Isabelle tailored to the requirements
of the AFP. Based on the Isabelle/Scala framework in a standard repository clone, the
system requires only SSH access, a fast local file system, and a single PostgreSQL database
server – fully platform-independent. To utilize large heterogeneous clusters as well, we
developed a sophisticated scheduling approach that incorporates build time estimation based
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on previous timings. This involves finding a good solution to the computationally difficult
multi-mode resource-constrained project scheduling problem in a few seconds, which remains
NP-complete under major relaxations [10] (and does not admit constant-factor approximation
in polynomial time [9]). After several rounds of tuning, the scheduling now works exceedingly
well, and with our small clusters of 8–14 machines, we could achieve a speedup factor of over
100 vs. CPU time. This means that the AFP, which (through sheer size) had accumulated a
multithreaded build time of 4 h–8 h on a single high-end server machine, can now be run in
under 45 min again including slow sessions. Even with the very_slow group, the AFP now
takes less than 2 h.

5.1 Related work

Any successful ITP system will eventually struggle with build times, as users are pushing
more and more material into the libraries and archives. Coping with that requires technical
efforts that usually remain unnoticed and unpublished. Subsequently we can only sketch
important work for other proof assistants, with the focus on three kinds of parallelism: (1)
multithreading within a single process, (2) multiprocessing on a single machine, (3) cluster
computing on multiple machines.

The Mizar system and Mizar Mathematical Library have many similarities to
Isabelle and AFP, concerning sizes of content, and the idea of a formally checked journal. The
software technology is quite different, though: Mizar is implemented in Pascal and works like
a multi-pass compiler on intermediate files. This does open possibilities for parallel processing:
Urban [28] uses Perl and GNU make -j to manage the Mizar process for multiprocessing on
a single machine. It might be worth revisiting that approach 10 years later, e.g. with the
help of a distributed make tool. The resulting architecture would be unlike ours, where build
data is stored in the database instead of a (shared) file-system.

Coq lacks a curated collection of applications, and it lacks a uniform build tool. Instead,
every project needs to stand on its own for hosting and tooling. Reichel et al. [24] have
scrutinized Coq build processes of projects found on public repositories: the motivation was
to replay builds on intermediate versions, in order to collect data for automatic proof repair
via machine-learning. As preliminary stage, huge efforts were required to “capture” Coq
builds (they report that 68 % of commits in open-source Coq projects could not be built
without problems). This lack of uniform tooling for Coq makes difficult to foresee eventual
moves towards cluster computing.

The OCaml runtime (on which Coq runs) did not support parallel execution of concur-
rent code until recently, so Coq parallelization had to rely on parallel processes without
shared-memory, e.g. via parallel make for independent files. More involved efforts use local
multiprocessing with message passing for proofs that are irrelevant (opaque), notably Barras
et al. [3]: an explicit directed acyclic graph of Coq proofs tells which parts can be independ-
ently checked in parallel forks of coqc. Coq proof state information is passed along with
the opaque proof task. A distributed version of that will probably require homogeneous
software setup, but this has not been pursued so far. Instead, regression proof selection was
introduced by Celik et al. [6] and later refined and parallelized by Palmskog et al. [22], where
the fine-grained dependency graph of theorems and definitions is analyzed so that only proofs
affected by changes need to be re-checked. However, they do not consider changes in the logic,
which would be very hard to track via dependency graph. For instance, if any tactic changes,
only checking the selected proofs would not be sufficient. Despite those technological efforts,
changes are often not checked well enough.
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The Lean prover [8] and its companion library Mathlib are closer to Isabelle and AFP
than Coq, but Lean makes every effort to do everything in just one language. Consequently,
the “Lean Make” or Lake tool has been implemented in the monadic functional programming
language of Lean. Lake is a sophisticated build and package manager for Lean projects, and
is part of the main code base of Lean 4.15 The corresponding Mathlib 416 is organized as a
Lake project: its current source size is 1.4 million lines or 62 MiB (the AFP has 4.4 million
lines or 216 MiB). Proof-level parallelism is part of regular Lean, with built-in multithreading.
Further scaling in Lake is unclear from skimming through the documentation: we did not
find dedicated papers to explain its concepts.

In practice, users of Lean and Lake usually rely on cached object files for theories rather
than building them afresh, and the build time of the continuous integration for isolated
changes in Mathlib is usually less than 1 h. We could run the whole of Mathlib 4 in 28 min
on one of our fastest machines, plus another 7 min for add-on tests (which in Isabelle/AFP
would be part of regular sessions). As Mathlib grows further towards the current size of AFP,
it will be interesting to see which improvements on Lean build management will emerge.

5.2 Future Work

We can imagine many directions for further improvement of the Isabelle build system.
Some alternative solutions have already been sketched in the introduction: notably ad hoc
reorganization of session structure, similar to existing options isabelle jedit -A -R.
In fact, the Prover IDE opens many further questions of working with quasi-interactive
builds: the user could repair failures incrementally in the IDE, while the build keeps running,
and changed sources would be uploaded to the build database without stopping sessions that
are unaffected. This ultimately means combining ideas from the PIDE editor model [31]
with the build tool, to scale-up editing to the AFP, as was postulated naïvely in 2014 [32].

Revisiting the build schedule problem, we could support near-optimal schedules as
follows. The heuristic developed above can find appropriate schedules in a very short time,
but they are usually not optimal. In contrast, a state-of-the-art CP-solver can yield schedules
with tangibly shorter makespan, but finding optimal solutions often takes much longer than
our target of 45 min for the whole build. We could do the scheduling occasionally (e.g. once
per week), and re-use the result for subsequent versions of the sources. With an optimal
solution generated offline, and only small ongoing changes of the AFP, we can expect even
better quantitative results.

Looking further at the big picture, an important question is how to use compute cluster
resources efficiently within a typical research group, with several independent builds
potentially by multiple users. This could mean to have different categories and priorities
of builds, e.g. responsive ones for quasi-interactive maintenance via the Prover IDE front-end
vs. more traditional batch builds for continuous integration scenarios (occasional updates
by AFP authors). Our cluster resources could be maintained in a global database, and
Isabelle/Scala build process would work with this information to re-arrange schedules on
the spot. Ultimately, we would like to regain good reactivity for interactive work, and avoid
disappointing “CI-clouds” where the queue-time is often longer than the actual build time.

15 https://github.com/leanprover/lean4/blob/master/src/lake/README.md
16 https://github.com/leanprover-community/mathlib4
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Abstract
This paper describes GenRGSep, an Isabelle/HOL library for the development of RGSep logics
using a general algebraic state model. In particular, we develop an algebraic state models based on
resource algebras that assume neither the presence of unit resources or the cancellativity law. If a
new resource model is required, its components need only be proven an instance of a permission
algebra, and then they can be composed together using tuples and functions.

The proof of soundness is performed by Vafeiadis’ operational soundness method. This method
was originally formulated with respect to a concrete heap model. This paper adapts it to account
for the absence of both units as well as the cancellativity law.
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1 Introduction

This paper describes GenRGSep, an Isabelle/HOL [35] library for the development of RGSep
logics [39, 37], using a general algebraic state model. This library bases its state model on
permission algebras, the most generic form of resource algebra [8]. Permission, multi-unit and
single-unit separation algebras [12, 3] are developed as a type-class hierarchy that enables
the integration of permissions and values into a common algebraic language. This allows
for useful resource models to be developed from simple components and then automatically
applied to RGSep. The soundness of GenRGSep has been formally verified by an operational
soundness proof that generalises a method of Vafeiadis’ [38] to work without the cancellativity
law.

This project is motivated, in part, by a desire to have a general separation logic framework
for verifying concurrent code in Isabelle/HOL. There are several very general frameworks
for the development of separation logics for the verification of concurrent programs in other
theorem provers: for example, VST [2] and Iris [25]. There is, as yet, none in Isabelle/HOL.
While this work is not yet as comprehensive as these projects, we hope it will provide a good
foundation for the future development of such projects in Isabelle/HOL.

In order to achieve generality, we develop separation logic from resource algebras, an
abstract algebraic model of resources [8]. A resource algebra is a specific sort of partial
semigroup or monoid, which defines a model of separated resources. There are many variations,
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usually on which unit elements the algebra is guaranteed to have (no guarantee, some unit
for every resource, or a universal unit), and whether the logic admits the cancellativity law.
The resource algebra approach has been used in many projects [12, 26, 3, 28, 25, 29].

All Isabelle/HOL separation algebras up to this point assume the existence of resources
that act like a unit for resource addition. Similar to VST [3], GenRGSep is based on a type-
class hierarchy of resource algebras which includes permission algebras, that do not require
units to exist. This approach treats permissions as first-class citizens that compositionally
integrate with other resources and into larger structures.

The RGSep family of logics [39, 37] combines the rely–guarantee method [24, 23] and
concurrent separation logic [31, 7]. The rely–guarantee method is a method of concurrent
program verification that requires rely and guarantee relations for each proces. The rely
relation establishes how the shared state can be changed by the environment (other processes),
and the guarantee relation establishes how the current process can change the shared state.
Concurrent separation logic is a method of concurrent program verification that requires all
state to either be local: in which case it can be separated into pieces which are acted upon
by parallel processes separately, or shared, in which case, it must obey a resource invariant.
RGSep combines the benefits of both methods: the separate reasoning about local state of
concurrent separation logic and the fine-grained concurrency of rely–guarantee.

This paper introduces GenRGSep, a generalisation of RGSep to non-cancellative resource
algebras without units, and prove its soundness. Our paper is structured as follows: in
Section 2, we review the construction of resource algebras and describe the particular
issues we encountered in translating them to Isabelle/HOL. In Section 3, we describe our
GenRGSep language, which in addition to standard programming constructs, includes
external nondeterminism and non-deterministic do statements [19, 20], and the RGSep
logic for it. We also review explicit stabilisation [37, 41], which simplifies reasoning about
stability. In Section 4.2, we discuss the soundness proof for GenRGSep, using an extension
of a method by Vafeiadis [38]. This method encounters some problems with the combination
of non-cancellative resource models and external-nondeterminism, which we demonstrate
how to address.

Contributions

The paper presents the following contributions:
1. an encoding of an Isabelle/HOL type-class hierarchy for permission and separation

algebras that allows for the compositional construction of resource models;
2. the formalisation of the soundness of RGSep over general permission algebras in Isa-

belle/HOL; and
3. a re-examination of Vafeiadis’ operational soundness method, showing how to extend it

to non-cancellative resource algebras.

2 Formalising the Foundations

We construct separation logic from the foundations of an algebraic model of separated
resources; these are often called separation algebras or resource algebras [8, 3]. In particular,
we define three structures as type-classes in Isabelle/HOL: permission algebras, multi-unit
separation algebras, and (single-unit) separation algebras. We will refer to these collectively
as resource algebras, and to the elements of these algebras as resources. The axioms for these
structures are listed in Figure 1.
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class perm-alg(#, +) =
partial-add-assoc: a # b −→ b # c −→ a # c −→ (a + b) + c = a + (b + c)
partial-add-commute: a # b −→ a + b = b + a

disjoint-sym: a # b −→ b # a

disjoint-add-rightL: b # c −→ a # b + c −→ a # b

disjoint-add-right-commute: b # c −→ a # b + c −→ b # a + c

positivity: a # a′ −→ b # b′ −→ a + a′ = b −→ b + b′ = a −→ a = b

class multi-sep-alg(#, +, unitof) =
perm-alg(#, +) +
unitof-disjoint: (unitof a) # a

unitof-add: (unitof a) # b −→ (unitof a) + b = b

class sep-alg(#, +, unitof, 0) =
multi-sep-alg(#, +, unitof) +
zero-disjoint : 0 # x

zero-unit : 0 + x = x

class cancel-perm-alg(#, +) =
perm-alg(#, +) +
cancel-right: a # c −→ b # c −→ a + c = b + c −→ a = b

Figure 1 Resource algebra axioms.

2.1 Resource Algebras

A permission algebra (perm-alg), is a partial commutative semigroup, where + is the semigroup
operator and # (disjoint) specifies when + is defined. The + operator and # obey a number
of laws, namely: the disjointness relation is commutative, the disjoint parts of a resource
remain disjoint to (other) resources disjoint to the whole (that is, y # z and x # y + z

implies x # y), and the disjoint parts of a resource remain disjoint to the other parts of
that resource when added to (another) resource disjoint from the whole (that is, y # z and
x # y + z implies x + y # z). In addition, resources that contain each other as parts are
equal (positivity).

A multi-unit separation algebra (multi-sep-alg) is a permission algebra with an additional
operation unitof : α ⇒ α, which produces the unit of the given resource of the algebra. A
separation algebra (sep-alg) is a multi-unit separation algebra with the single unit, 0.

Resources form an order: a resource is strictly less than another (≺) if they are not equal
and there is some resource that adds to the first to make the second (a ̸= b∧ (∃c. a + c = b)).
A resource is less than or equal to another (⪯) if they are equal or there is some third
resource that adds to the first to make the second (a = b∨ (∃c. a + c = b)). These definitions
form an order, but this order is not necessarily Isabelle/HOL’s standard order instance.
Note that the order is anti-symmetric by virtue of the law of positivity. Note also that, in a
multi-unit separation algebra, we have that a ⪯ b←→ (∃c. a # c ∧ a + c = b), because units
are guaranteed to exist.

Permission algebras are useful for representing values with constraints on how those
values may be used. The classic model is fractional permissions [6, 5] (PQ in Figure 2), where
1 represents the ability to change the value, and fractional quantities (0 < x < 1) represent
only the ability to read the value. By placing this permission in a tuple with the discrete
permission algebra (α discr, Figure 2), we obtain a model of these read-write values.

ITP 2024
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Fractional Permissions
typedef PQ := {x ∈ Q. 0 < x ≤ 1}

instance PQ : perm-alg
a # b := a + b ≤ 1
a + b := min (a + b) 1

Multiplicative Unit

datatype 1 = 1

instance 1 : perm-alg
a # b := ⊥
a + b := undefined

Discrete Type

typedef α discr := (UNIV : α set)

instance α discr : multi-sep-alg
a # b := a = b
a + b := a

unitof a := a

Functions
instance (α⇒ (β : perm-alg)) : perm-alg

f # g := ∀x. (f x) # (g x)
a + b := λx. (f x) + (g x)

instance (α⇒ (β : multi-sep-alg)) : multi-sep-alg
unitof f := λx. unitof (f x)

instance (α⇒ (β : sep-alg)) : sep-alg
0 := λx. 0

Tuples

instance ((α : perm-alg)× (β : perm-alg)) : perm-alg
(a1, a2) # (b1, b2) := (a1 # b1) ∧ (a2 # b2)
(a1, a2) + (b1, b2) := (a1 + b1, a2 + b2)

instance ((α : multi-sep-alg)× (β : multi-sep-alg)) : multi-sep-alg
unitof (a1, a2) := (unitof a1, unitof a2)

instance ((α : sep-alg)× (β : sep-alg)) : sep-alg
0 := (0, 0)

Option Type

datatype α option = Some α | None
instance (α : perm-alg) option : sep-alg

a # b :=
case (a, b) of

(None, b)⇒ True
| (a, None)⇒ True
| (Some x, Some y)⇒ (x # y)

a + b :=
case (a, b) of

(None, b)⇒ b
| (a, None)⇒ a
| (Some x, Some y)⇒ Some (x + y)

unitofa := None
0 := None

Figure 2 Resource algebras instances for basic types.
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The multiplicative unit (1, Figure 2) is another permission algebra; it acts as an indivisible
permission. By placing this permission in a tuple with the discrete permission algebra
(α discr, Figure 2), we obtain a model of non-duplicable values.

Using these type-classes, we can develop compositional instances for standard data-types,
such as sums (+), tuples (×), functions (⇒), and options (α option). Note that such
instances have already been described in previous literature [12]. For this paper, it is
sufficient to note the following: tuples inherit the (least specific) class of their components,
options transform permission algebras to separation algebras, and functions inherit the class
of their co-domain.

Given these instantiations, it becomes simple to create various complex separation algebras
built from these simple ones. For example, the standard heap model is encoded as

(α, β) heap := α ⇀ (β discr× 1),

where α ⇀ β := α ⇒ β option. One key point to structuring our type-class hierarchy in
this manner, distinguishing permission algebras from multi-unit algebras from separation
algebras, is to allow flexibility for the proof engineer. For example: to change the previous
heap instance to use fractional permissions [6, 5], one only needs to swap the 1 for PQ.

3 The GenRGSep Logic

Using these resource algebras, we can construct a generic RGSep [39, 37], a combination of
separation logic and rely–guarantee, to reason over programs in resource models other than
the standard heap model.

3.1 Language

The language (Figure 3) includes skip statements (skip), sequencing (c1; c2), parallel (c1 ∥ c2),
and do-loops (do c od). Atomic statements (⟨b⟩) are specified by a relation between states
(b), and execution is blocked when the state is not in the domain of the relation. Inspired
by CSP [20], we also distinguish between internal (c1 + c2) and external (c1 ✷ c2) non-
determinism. We have chosen to include both internal and external non-determinism, and
also relational atomic actions, because they provide a generic foundation upon which to
build more concrete languages. The standard while-loop and if-then-else constructs can be
encoded using external non-determinism, blocking guards, and do loops.

The state model for this language is composed of two parts: local and shared state.
Thus we represent our state as a tuple, the left representing the local state and the right
representing the shared state. Local state splits among the processes on parallel composition,
whereas shared state is shared identically between the processes. Note that we choose not to
explicitly model a store, because such an abstraction is not present in low-level state models.

The relational atomic statement, in particular, allows the definition of the specific atomic
actions appropriate for whichever resource model the logic is instantiated with. For the same
reason, the relation acts over a pair of local and shared state, which allows the resource
models for local and shared state to differ. Moreover, this removes the requirement from
standard RGSep that the shared part of the pre- and postconditions must pick out the shared
state precisely.

ITP 2024
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Logical Variables
r, g, b (state relations)

p, q (state predicates)

Commands
c ::= skip (skip)
| c1; c2 (sequence)
| c1 + c2 (internal non-det.)
| c1 ✷ c2 (external non-det.)
| c1 ∥ c2 (parallel)
| ⟨b⟩ (relational atomic action)
| do c od (do loop)

Abbreviations
[p] := ⟨λx y. p x ∧ x = y⟩ (guard)

while p do c done := do ([p]; c) ✷ [¬p] od (while loop)
if p then c1 else c2 fi := ([p]; c1) ✷ ([¬p]; c2) (if-then-else)

Small-Step Semantics

(h, c1) ∼α❀ (h′, c′
1)

(h, c1; c2) ∼α❀ (h′, c′
1; c2)

SeqL (h, skip; c2) ∼τ❀ (h, c2)
SeqR

(h, c1) ∼α❀ (h′, c′
1)

(h, c1 + c2) ∼α❀ (h′, c′
1)

INDetL
(h, c2) ∼α❀ (h′, c′

2)
(h, c2 + c2) ∼α❀ (h′, c′

2)
INDetR

(h, skip ✷ c2) ∼τ❀ (h, c2)
ENDetSkipL (h, c1 ✷ skip) ∼τ❀ (h, c1)

ENDetSkipR

(h, c1) ∼τ❀ (h′, c′
1)

(h, c1 ✷ c2) ∼τ❀ (h′, c′
1 ✷ c2)

ENDetTauL
(h, c2) ∼τ❀ (h′, c′

2)
(h, c2 ✷ c2) ∼τ❀ (h′, c1 ✷ c′

2)
ENDetTauR

(h, c1) ∼a❀ (h′, c′
1)

(h, c1 ✷ c2) ∼a❀ (h′, c′
1)

ENDetL
(h, c2) ∼a❀ (h′, c′

2)
(h, c2 ✷ c2) ∼a❀ (h′, c′

2)
ENDetR

(h, skip ∥ skip) ∼τ❀ (h, skip)
ParSkip

(h, c1) ∼α❀ (h′, c′
1)

(h, c1 ∥ c2) ∼α❀ (h′, c′
1 ∥ c2)

ParL
(h, c2) ∼α❀ (h′, c′

2)
(h, c2 ∥ c2) ∼α❀ (h′, c1 ∥ c′

2)
ParR

(h, c) ∼α❀ (h′, c′)
(h, do c od) ∼α❀ (h′, c′; do c od)

DoStep
¬ enabled c h

(h, do c od) ∼τ❀ (h, skip)
DoEnd

b h h′

(h, ⟨b⟩) ∼Upd❀ (h′, skip)
Atomic

where enabled c h holds when there is some head atomic command ⟨b⟩ in c where h is in the domain
of b.

Figure 3 Language syntax and small-step semantics.
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3.2 Semantics
We give the language a small step semantics (Figure 3) with the relation (h, c) ∼α❀ (h′, c′).
This should be interpreted as: starting with state h and program c, an α-step can be taken
to state h′ and program c′.

Steps are divided into two sorts of actions: τ -actions that represent internal decisions a
process makes that are not directly observable by other processes and observable actions
that are visible to other processes. Examples of τ -actions include the outcome of a non-
deterministic choice and the end of a while loop. An example of an observable action is heap
updates. This distinction is reflected by the fact that, when we connect these semantics to
RGSep, it will be the observable actions that generate the guarantee. As is traditional, we
will use the variable α to stand for any action and the variable a to stand for any observable
action.

We only have one observable action: Upd, for atomic update actions. The distinction
between internal and update commands is all that is necessary to prove soundness with
respect to the operational semantics.

3.3 Separation Logic
We shallowly embed the predicates in Isabelle/HOL, rather than constructing a deeply em-
bedded predicate language. The definitions of separating conjunction, separating implication,
and the empty predicate are standard.

(∗) : ((α : perm-alg)⇒ bool)⇒ (α⇒ bool)⇒ (α⇒ bool)
p ∗ q := λx. ∃x1 x2. x1 # x2 ∧ x = x1 + x2 ∧ p x1 ∧ q x2

(−∗) : ((α : perm-alg)⇒ bool)⇒ (α⇒ bool)⇒ (α⇒ bool)
p−∗ q := λh. ∀h1. h # h1 −→ p h1 −→ q (h + h1)

emp : ((α : perm-alg)⇒ bool)
emp := λx. x # x ∧ (∀a. a # x −→ a + x = a)

Slightly less standard (notationally) is the connective (∗∧). This is defined as

(∗∧) : ((α : perm-alg)× (β : perm-alg)⇒ bool)⇒ (α× β ⇒ bool)⇒ (α× β ⇒ bool)
p ∗∧ q := λ(x, y). ∃x1 x2. x1 # x2 ∧ x = x1 + x2 ∧ p (x1, y) ∧ p (x2, y),

and plays the role of the RGSep separating conjunction. We define this connective separately,
as the standard permission algebra instance for tuples splits both the left and right parts of
the tuple, not only the left part (the local resources), which is what RGSep requires.

Note also that, as we wish to formalise RGSep shallowly, we do not have Vafeiadis’
boxed-predicates, which are a syntactic construct which demarcates predicates on the shared
state. To regain the ease of reasoning that predicates acting on just the local or shared
state provide, we define two liftings L and S from predicates on local and shared states,
respectively, to predicates on the overall state

L : (α⇒ bool)⇒ (α× β ⇒ bool)
L p := p ◦ fst

S : (β ⇒ bool)⇒ (α× β ⇒ bool)
S p := p ◦ snd

Unlike Vafeiadis, our S does not enforce that the local state is empty, as units are not
guaranteed to exist in a permission algebra.

ITP 2024
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Using these, we can prove that ∗∧ is indeed the standard RGSep separating conjunction,
by showing that the connective separates over local state, L p ∗∧ L q = L(p ∗ q), and is
additive over shared state, S p ∗∧ S q = S(p ∧ q).

3.4 Stabilisation Predicate Transformers

In our formalisation of RGSep, instead of adding side-conditions to the reasoning rules
asserting that our pre- and postconditions are stable (invariant under the action of the rely,
guarantee, or both), we instead use stabilisation predicate transformers [37, 41]. These ease
reasoning about stability in RGSep, because they semi-distribute over ∗∧. This means that
the stability of a predicate can be proven from the stability of its parts, unlike stability
side-conditions, which do not distribute at all with ∗∧. They are defined using relational
weakest precondition (wlp) and strongest postcondition (sp) predicate transformers [11],
defined as follows: wlp r q := (λx. ∀y. r x y −→ q y) and sp r p := (λy. ∃x. r x y ∧ p x).

If we know we have a state that meets the predicate q, and we wish to know what the
state could have been before the interference of the environment, we calculate the weakest
assertion stronger than q and stable under r (the weakest stronger stable assertion, wssa).
If we know we have a state that meets the predicate p, and we wish to know what the
state might be after the interference of the environment, we calculate the strongest assertion
weaker than p and stable under r (the strongest stable weaker assertion, sswa). These are
defined as follows:

wssa r q := wlp ((=)×R r∗) q sswa r p := sp ((=)×R r∗) p.

where r1 ×R r2 := λ(x1, x2) (y1, y2). r1 x1 y1 ∧ r2 x2 y2, and thus ((=)×R r∗) is the relation
that leaves the local state the same, and changes the shared state by the reflexive transitive
closure of r.

Useful facts are that wssa is an interior operator and sswa is a closure operator,

wssa r p −→ p

wssa r (wssa r p)←→ wssa r p

(p −→ q) ∧wssa r p −→ wssa r q

p −→ sswa r p

sswa r (sswa r p)←→ sswa r p

(p −→ q) ∧ sswa r p −→ sswa r q;

they distribute or semi-distribute over the logical connectives

wssa r (p ∧ q)←→ wssa r p ∧wssa r q

wssa r p ∨wssa r q −→ wssa r (p ∨ q)
wssa r p ∗∧ wssa r q −→ wssa r (p ∗∧ q)

sswa r (p ∧ q) −→ sswa r p ∧ sswa r q

sswa r (p ∨ q)←→ sswa r p ∨ sswa r q

sswa r (p ∗∧ q) −→ sswa r p ∗∧ sswa r q;

and they do not interact with local state

wssa r (L p)←→ L p sswa r (L p)←→ L p;

and this is the case even under a ∗∧ for sswa

sswa r (L p ∗∧ q)←→ L p ∗∧ sswa r q.
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r, g ⊢ { p } skip { sswa r p }
Skip

r, g ⊢ { p1 } c1 { p2 } r, g ⊢ { p2 } c2 { p3 }
r, g ⊢ { p1 } c1; c2 { p3 }

Seq

sp b (wssa r p) ⊆ sswa r q ∀f. sp b (wssa r (p ∗∧ f)) ⊆ sswa r (q ∗∧ f) ⊤×R g ⊆ b

r, g ⊢ {wssa r p } ⟨b⟩ { sswa r q }
Atomic

r, g ⊢ { p } c1 { q1 }
r, g ⊢ { p } c2 { q2 }

r, g ⊢ { p } c1 + c2 { q1 ∨ q2 }
INDet

r, g ⊢ { p } c1 { q1 }
r, g ⊢ { p } c2 { q2 }

r, g ⊢ { p } c1 ✷ c2 { q1 ∨ q2 }
ENDet

(r ∪ g2), g1 ⊢ { p1 } c1 { q1 } (r ∪ g1), g2 ⊢ { p2 } c2 { q2 }
sswa (r ∪ g2) q1 ⊆ q′

1 sswa (r ∪ g1) q2 ⊆ q′
2

r, (g1 ∪ g2) ⊢ { p1 ∗∧ p2 } c1 ∥ c2 { q′
1 ∗∧ q′

2 }
Par

r, g ⊢ { sswa r i } c { sswa r i }
r, g ⊢ { i } do c od { sswa r i }

Do
r, g ⊢ { p } c { q } sswa (r ∪ g) f ⊆ f ′

r, g ⊢ { p ∗∧ f } c { q ∗∧ f ′ }
Frame

r, g ⊢ { p1 } c { q1 } r, g ⊢ { p2 } c { q2 }
r, g ⊢ { p1 ∨ p2 } c { q1 ∨ q2 }

Disj

r, g ⊢ { p1 } c { q1 } r, g ⊢ { p2 } c { q2 } for all local states hl, cancellative hl

r, g ⊢ { p1 ∧ p2 } c { q1 ∧ q2 }
Conj

r′, g′ ⊢ { p′ } c { q′ } p ⊆ p′ q′ ⊆ q r ⊆ r′ g′ ⊆ g

r, g ⊢ { p } c { q }
Weaken

where
cancellative : (α : perm-alg)⇒ bool

cancellative z := ∀x y. x # z ∧ y # z ∧ x + z = y + z −→ x = y.

Figure 4 The GenRGSep Logic.

3.5 RGSep Reasoning
The RGSep judgement, r, g ⊢ { p } c { q }, should be interpreted as follows: if we can rely
on the environment changing the shared state according to r, and we start in a state that
satisfies the precondition p, then successful execution of the program c will result in a state
that satisfies the postcondition q, only changing the shared state according to g. The rules
for this judgement can be found in Figure 4.

4 Soundness

To prove soundness, we must extend the individual small-step rules above to a semantics of
the execution of the entire program. We apply Vafeiadis’ operational soundness approach
[38], where the program execution not only integrates the transitive closure of small steps,
but requires that each small step be closed under framing by a local state. We generalise this
approach to permission algebras, which means that we do not assume either the presence of
units or the cancellativity law (Figure 1).

4.1 Safety
The inductive judgement safe establishes that a program c can: take n steps from the state
(hl, hs), where hl is the local state and hs is the shared state; under interference from rely
relation r; while ensuring the guarantee g for each Upd step; and that the state satisfies the
postcondition q if c has terminated. (Note also that rely steps are counted as steps.) The
formal definition of safe is as follows:

ITP 2024



23:10 A Generalised Union of Rely–Guarantee and Separation Logic

▶ Definition 1 (Safety).
Inductively:
1. 0: safe 0 c hl hs r g q always holds;
2. Suc n: safe (Suc n) c hl hs r g q holds if

a. Post-condition Safety:
c = skip −→ q (hl, hs),

b. Rely Safety:
∀h′

s. r hs h′
s −→ safe n c hl h′

s r g q,

c. Guarantee Safety:
∀α hlx h′

lx h′
s c′. α ̸= τ ∧ hl ⪯ hlx ∧ ((hlx, hs), c) ∼α❀ ((h′

lx, h′
s), c′) −→ g hs h′

s

d. Opstep Safety
∀α h′

l h′
s c′. ((hl, hs), c) ∼α❀ ((h′

l, h′
s), c′) −→ safe n c h′

l h′
s r g q, and

e. Frame Safety
∀α h′ c′ hlf . ((hl + hlf , hs), c) ∼α❀ (h′, c′) −→

(∃h′
l. h′

l # hlf ∧ h′ = h′
l + hlf ∧ (α = τ −→ h′

l = hl) ∧ safe n c h′
l h′

s r g q).

The function of each clause is as follows: taking zero steps is always safe, and when a step
is taken; if execution has terminated (c = skip) the postcondition is established, taking a
rely step is safe, taking a local step under any expanded state ensures the guarantee, taking
a local step is safe, and finally taking a local step under a frame is also safe and a framed
local tau step steps to the same (unframed) local state.

We make a number of changes to Vafeiadis’ original definition. By adding actions, we
can distinguish between τ actions, that do not induce a guarantee step, and observable
actions, that do. This also means that g is not forced to be reflexive by internal actions.
Moreover, it allows us to combine non-cancellative models with operations such as external
non-determinism, which have τ actions that do not collapse part of the program. (Compare
sequencing and internal non-determinism, which destroy their connectives upon the τ move.
See Paragraph 4.2.1.1 for more discussion of this.)

As we only have a single atomic statement, we do not need abort conditions to prevent
multiple acquisitions of the same lock. If multiple locks are desired, these can be added either
by the extension of the proof, as Vafeiadis does, or by instantiation with the appropriate
resource model.

4.2 Soundness
For each language construct, a theorem is proven that the safety of the sub-commands shows
the safety of the overall command. In addition, it is shown that framing by ∗∧ and weakening
the precondition preserves safety. This then allows us to show the soundness of the RGSep
proof system.

▶ Theorem 2 (Soundness).

r, g ⊢ { p } c { q } −→ p (hl, hs) −→ safe n c hl hs r g q

Proof Sketch. The proof is by induction over the RGSep rules [37]. Each safe-preservation
rule discussed above corresponds to an RGSep proof rule, and proves it essentially directly,
with occasional weakening of the postcondition. ◀
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4.2.1 Proving Operational Soundness Without Cancellativity
Perhaps surprisingly, Vafeiadis’ approach to soundness almost generalises to non-cancellative
models without any amendment. That is, the respective safety preservation rule for each com-
mand can be proven without issue, except for external non-determinism and the conjunction
rule. The reason for this is that, while the frame safety condition appears to require that we
cancel a non-cancellative resource, it does not actually make the true claim of cancellativity:
that the resources are equal. It only requires that we can safely continue from some unframed
resource.

4.2.1.1 External Non-determinism

One place where the original proof breaks is in the τ -substep rules for external non-
determinism (Figure 3), ENDetTauL and ENDetTauR. Here, we do find that, using the
original definition of safe, which does not distinguish between actions, we need to appeal
to cancellativity. External non-determinism, uniquely, has a rule which executes a τ -step,
but keeps the primary operation (✷) over that executed sub-command after execution. This
creates issues with the inductive proof of safety, as τ -steps always produce equal heaps,
but Vafeiadis’ original frame safety condition only required that we find some smaller heap.
Thus, in the soundness proof of ✷, in, for example, the left-step case, we would have that
safe n hl hs r g q and

((hl + hlf , hs), c1) ∼τ❀ ((h′
l + hlf , hs), c′

1),

(from the inductive frame safety hypothesis), but be required to prove safe n h′
l hs r g q.

This problem is resolved by strengthening the existential heap condition in frame safety, to
require that h′

l = hl in the case of a τ move.

4.2.1.2 Cancel and The Conjunction Rule

A more fundamental appeal to cancellativity appears in the safety proof of the conjunction
rule. When proving the frame safety condition, as there are two safe assumptions, we obtain,
by reduction of the hypotheses, two safe assumptions

safe n c′ h′
l h′

s r g q1 ∧ safe n c′ h′′
l h′

s r g q2

and the relation

hl + hlf = h′
l + hlf ,

but are required to find a single h∗
l such that

h∗
l + hlf = h′

l + hlf ∧ safe n c′ h∗
l h′

s r g (q1 ∧ q2).

There is no way to satisfy the inductive step, because the two safe assumptions disagree on
their local states, but the inductive step requires them to be equal.

This is another appearance of the well-studied precision side-condition for the conjunction
rule [16], as cancellativity is an instance of the precision law:

((=) a ∗∧ (=) c) ∧ ((=) a ∗∧ (=) c) −→ ((=) a ∧ (=) b) ∗∧ (=) c.

Thus we make the pessimistic assumption that, when applying conj, every possible local
state is cancellative.
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4.2.1.3 Atomic

Lastly, care must be taken with atomic, as the natural framing condition to apply to the
relation is the frame property [42],

p (x, z) ∧ x # f ∧ b (x + f, z) xfz ′ −→
∃x′ z′. x′ # f ∧ xfz ′ = (x′ + f, z′) ∧ b (x, z) (x′, z′) ∧ q (x′, z′),

but this is stronger than necessary to prove safety, and rules out useful atomic commands.
We only require that

p (x, z) ∧ x # f ∧ b (x + f, z) xfz ′ −→ ∃x′ z′. x′ # f ∧ xfz ′ = (x′ + f, y′) ∧ q (x′, z′),

which does not require that b also admits the unframed step. Note that this condition can
be written more neatly as ∀f. sp b (p ∗∧ f) ⊆ (q ∗∧ f).

5 Related Work

5.1 Resource Algebras

The resource algebra approach to building separation logic was introduced by Calcagno et al.
[8], although similar ideas had been applied much earlier to relevant logic by Routley and
Meyer [32, 4]. There are two main styles to formalising these algebras either represent the
partial plus operation with a ternary relation or have a total plus operation and a binary
disjointness relation that marks when the monoid/semigroup laws actually hold. Iris [25]
takes yet another approach, and has a total plus operation and total laws, but has a validity
predicate which marks when the output of plus is not a meaningful resource.

Calcagno et al. introduce both separation algebras and permission algebras, but assume
only a single unit (for separation algebras) and the cancellativity property (for both).
Separation algebras were revisited by Dockins et al. [12], who formalised them in ternary
style in Coq [34], noted that the algebraic structure could be weakened to include multiple
units, and distilled many useful laws that extend the basic resource algebra laws. Klein et
al. [26] implemented separation algebra and separation logic as an Isabelle/HOL type-class,
in disjoint-plus style, which pairs well with Isabelle/HOL’s simplifier. Appel et al. [3]
constructed a permission–separation algebra type-class hierarchy in ternary style in Coq for
VST. This implementation weakens the positivity axiom from Dockins et al. to account for
the lack of the cancellativity law. Krebbers [28] formalised separation algebras in disjoint-plus
style in Coq, and built a C memory model on top of them. Lastly, Iris [25] develops a
very powerful concurrent separation logic in Coq, based on a generalisation of resource
algebras called a Camera, that allow for the approximation of impredicative invariants using
step-indexing.

5.2 RGSep

Vafeiadis’ original soundness proof for RGSep was proven using cancellative separation
algebra, by a pen-and-paper proof [37]. Vafeiadis later proved the soundness of RGSep for the
heap model, using a much simpler proof method [38]; this proof was mechanically formalised
in Coq and Isabelle/HOL.
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5.3 Explicit Stabilisation
Explicit stabilisation, or, the connectives wssa and sswa, were originally defined by Vafeiadis
[37] to analyse where stabilisation needed to occur in an RGSep proof. However, they
were defined impredicatively. Wickerson et al. [41, 40] noted that they could be defined
predicatively: respectively, as the weakest precondition and strongest postcondition of the
transitive closure of the destabilising relation (e.g. the rely). They applied them to rely–
guarantee, RGSep, and GSep, a proof system for reasoning about sequential programs with
modules. They were applied to the verification of barriers by Dodds et al. [14], where they
were noted to improve the ease of reasoning about stability, because they could be distributed
through the separating conjunction.

5.4 Separation Logic Frameworks
There are many frameworks for the verification of programs using separation logic. RGSep
was integrated into the automated verification tool SmallfootRG [9]. It employs symbolic
execution to automatically prove the correctness of program assertion. It is specific to the
abstract heap model. SmallfootRG was formalised [36] in the HOL4 theorem prover [33],
again for the heap model. The Verified Software Toolchain (VST) [2] is a toolchain and
framework for the verification of C code. Its foundations are built on permission algebras in
Coq. Iris [25] is a particularly powerful concurrent separation logic framework, that provides
an algebraic model of ghost state for the verification of concurrent code and protocols.
However, the Iris logic cannot simply embedded into Isabelle/HOL, as the later modality
is incompatible with the law of excluded middle, and thus incompatible with standard
Isabelle/HOL predicates.

In Isabelle/HOL, Dodds et al. [13] implement deny–guarantee, a close relative of RGSep;
they use a separation algebra approach, but assume a singular unit and cancellativity.
Separation Algebras have been formalised by Klein et al. [26, 27], but they assume a
single unit, which prevents them from developing permissions separately, and also prevents
the development of the multi-sep-alg instance for discr and sums. Lammich and Meis
[30] develop imperative separation logic specifically for heaps. Lammich [29] develops a
Concurrent Separation Logic in Isabelle/HOL based on Klein et al.’s Isabelle/HOL library,
which, as noted earlier assumes a single unit. Lastly, Eilers et al. [15, 10] develop a Relational
Information Flow Concurrent Separation Logic, which is specific to a combination of a
fractional heap, guard state, and guard condition heap.

6 Conclusion and Future Work

In this paper, we have introduced a new Isabelle/HOL library for the development of RGSep
logics. It provides a foundation for future verification of concurrent code in in Isabelle/HOL.

In the future, we would like to generalise the semantics of safe to a proper failure trace
semantics, where update actions record the state update that occurs. We believe Vafeiadis’
soundness method [38] should generalise quite nicely to this, as it resembles the method of
Aczel traces [1], except that extra traces are added to allow for intermittent framing.

Moreover, we would like to replace do-od with µ-recursion, as it appears in later CSP
languages [20]. This would allow for a simple implementation of general recursion, and
remove the notion of enabled from our semantics. This is frustrated by the fact that the
standard Hoare rule for recursion [18, 21] requires non-well-founded induction on the triple.
This could be solved by adding concurrent specification statements [17] to our language.
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ity. Given a semi-complete rewrite system R and two terms s and t, we show a formalized proof that
if narrowing terminates, then it provides a decision procedure for R-unifiability for s and t, where R
is viewed as a set of equations. Furthermore, we present multiset narrowing and its formalization for
multiset reachability and reachability analysis, providing decision procedures using certain restricted
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1 Introduction

Narrowing [13,18,23] generalizes rewriting in the sense that matching is replaced by unification.
Narrowing is a widely used technique for solving E-unification problems using term rewriting
systems, where equational unification (or E-unification) is concerned with making terms
equivalent w.r.t. an equational theory E [4]. For example, consider E = {f(x, 0) ≈ x}. Then,
two terms f(y, z) and 0 are not syntactically unifiable, but they are E-unifiable using the
substitution θ := {y 7→ 0, z 7→ 0} because f(y, z)θ = f(0, 0) ≈E 0. Given a complete rewrite
system R representing E, narrowing is known to be complete for E-unification in the sense
that for every solution of a given E-unification problem for s and t, a more general solution
can be found by narrowing [18]. It is also known that the semi-completeness of R suffices for
the completeness of narrowing w.r.t. E-unification [23,30].

In logic programming [20] and constraint based theorem proving [19, 25], it is often
sufficient to decide the solvability of E-unification problems, called E-unifiability [29]. Given
a set of equations E and two terms s and t, it is generally undecidable whether there exists a
substitution σ such that sσ ≈E tσ holds or not [4]. It is a natural question to ask when this
E-unifiability problem is decidable. E-unifiability using narrowing was considered in [29]
using a complete rewrite system R. However, it focuses on the complexity result of narrowing
w.r.t. E-unifiability, where narrowing is used as a complete semi-decision procedure for
E-unifiability.

Given a semi-complete rewrite system R corresponding to E, we present a new formalized
proof that (ordinary) narrowing may provide a decision procedure for E-unifiability if it
terminates. Roughly speaking, if the narrowing procedure terminates, then it either reaches
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the success state or not. If it reaches the success state, then we show that it yields an
E-unifier. Otherwise, we show that there is no E-unifier. We provide this correctness proof
of narrowing for the E-unifiability problem in the proof assistant Isabelle/HOL.

Narrowing was originally studied in the context of equational unification, but later it was
also studied in the context of the reachability problem [14, 22, 27, 28]. Given a rewrite system
R and two terms s and t, the reachability problem is stated as follows: is there a substitution
σ such that sσ →∗

R tσ? We say that this reachability problem is satisfiable if there is such a
substitution σ. If no such a substitution exists, then this problem is said to be infeasible [21].

Narrowing is known to be weakly complete [22] for reachability analysis in the sense that
it can find all R normalized solutions if some reasonable executability assumptions on R
are provided. In [28], the authors proposed a semi-decision procedure, called back-and-force
narrowing, for solving reachability goals, which is guaranteed to find a solution if it exists.

In this paper, we provide a formalized proof of some sufficient conditions of satisfying
reachability problems using ordinary narrowing. Also, given a semi-complete TRS R and two
terms s and t, where t is a strongly-irreducible term [7] (e.g. a constructor term), we show
a formalized proof that if narrowing terminates, then it can provide a decision procedure
whether the reachability problem from s to t is satisfiable or infeasible.

Ordinary narrowing (without special encoding) has some limitations on E-unifiability
and reachability analysis. In particular, it is not (directly) applicable to E-unifiability and
reachability analysis consisting of multiple goals. E-unification consisting of multiple goals is
considered in [15,24] using inference rules, but they are not concerned with E-unifiability
consisting of multiple goals. Meanwhile, reachability analysis consisting of multiple goals is
considered in [22,28], but they are not concerned with E-unification/E-unifiability.

One may also use narrowing with special encoding for considering multiple narrowing
goals. For example, if u1 (resp. v1) and u2 (resp. v2) are E-unifiable, then f̄(u1, u2) and
f̄(v1, v2) are also E-unifiable, where f̄ is a new symbol. This encoding is applicable to
narrowing-based E-unification/E-unifiability consisting of multiple goals (cf. [9, 11, 12]),
but has some limitations on reachability and multiset reachability analysis, which will be
discussed later in this paper.

We present multiset narrowing based on multiset rewriting in order to generalize narrowing
in multiset setting because identical elements (or states) in a multiset can reach different
elements (or states). For example, consider the multiset S = {f(x, y), f(x, y)}, the (renamed)
rewrite system R = {f(a, b) → d, f(a, z1) → g(z1), f(z2, a) → d, g(a) → c}, the target
multiset G = {c, d}, and a variant of a reachability problem: is there a substitution σ such
that Sσ can reach G by R? If we simply use the rule f(a, b) → d using the substitution
{x 7→ a, y 7→ b}, then f(x, y)σ reaches d but it does not reach c using the rewrite steps
by R. Using multiset narrowing discussed later in this paper, we can find a substitution
σ = {x 7→ a, y 7→ a}, which allows Sσ to reach G using the rewriting steps by R, i.e., multiset
narrowing provides a means to solve multiset reachability problems.

Furthermore, both E-unifiability and reachability analysis are considered in the unified
multiset narrowing framework. Our multiset narrowing works on multisets of ordinary
terms for multiset reachability analysis, multisets of equational terms for E-unification/E-
unifiability along with certain restricted cases of reachability analysis, and multisets of pairs
of terms for reachability analysis. It is applicable to E-unification problems and (ordinary)
reachability problems consisting of multiple goals, which is generic in the sense that it simply
encapsulates (ordinary) rewriting/narrowing for multiset rewriting/narrowing. In particular,
it provides a complete method for E-unification and E-unifiability consisting of multiple
goals, where E is represented by a complete rewrite system.
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Meanwhile, Isabelle [26] is a generic proof assistant, i.e., a computer program that allows
its users to express concepts in mathematics and computer science and to prove them
using a logical calculus. While formalization of term rewriting has been done extensively in
Isabelle (e.g., IsaFoR [1]), formalization of narrowing has not been done much yet in proof
assistants including Isabelle. Our formalization of narrowing is built on IsaFoR (Isabelle/HOL
Formalization of Rewriting). The relevant Isabelle theory files inside IsaFoR1 under the
directory thys/Narrowing are as follows:

Narrowing.thy Equational_Narrowing.thy
Multiset_Narrowing.thy Equational_Narrowing_Unification.thy
Equational_Narrowing_Reachability.thy Multiset_Narrowing_Unification.thy
Multiset_Narrowing_Reachability.thy

In the remainder of this paper, we provide hyperlinks (marked by §) to an HTML
rendering for our formalized proofs in Isabelle/HOL.

2 Preliminaries

The definitions and results in this section can be found in [3, 6, 10, 18, 23]. We consider
first-order terms over some signature F (consisting of function symbols f, g, h, . . . with fixed
arities) and some infinite set of variables x, y, z, . . . ∈ V . A position within a term is a list of
indices where ε denotes the empty position, also called the root position. The set of positions
of a term are defined as Pos(x) = {ε} and Pos(f(t1, . . . , tn)) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈
Pos(ti)}. Given p ∈ Pos(t), we write t|p for the subterm of t at position p, i.e., t|ε = t and
f(t1, . . . , tn)|ip = ti|p. The set of positions Pos(t) of a term t is partitioned into function
positions FPos(t) and variable positions VPos(t), where FPos(t) = {p ∈ Pos(t) | t|p /∈ V}.
For p ∈ Pos(t), we denote by t[s]p the term that is obtained from t by replacing the subterm
at position p by s.

The set of variables occurring in a term t is denoted by V(t).
A substitution σ is a mapping from V to T (F ,V) such that {x ∈ V |xσ ̸= x} is finite. This

set is called the domain of σ, which is denoted by Dσ, while the set of variables introduced
by σ is denoted by Iσ. Substitutions are extended to mappings from T (F ,V) to T (F ,V) in
the obvious way. In the remainder of this paper, we also write sσ := σ(s) for substitutions σ

and terms s, and (σ ◦ θ)(s) := sθσ for substitutions θ, σ and terms s.
The restriction σ ↾V of a substitution σ to V is defined as follows:

σ ↾V x =
{

xσ if x ∈ V
x otherwise

}
A variable renaming is a bijective substitution from V to V. We write σ = τ [V] if

σ ↾V= τ ↾V and σ ⩽ τ [V] if there is a substitution θ such that θ ◦ σ = τ [V].
An equation is a pair (s, t) of terms, written s ≈ t. We denote by ≈E the least congruence

on T (F ,V) that is closed under substitutions and contains a set of equations E. If s ≈E t

for two terms s and t, then s and t are E-equivalent.
A substitution σ is a unifier of two terms s and t if sσ = tσ. It is a most general unifier

(or mgu for short) if for every unifier θ of s and t, there exists a substitution λ such that
θ = λ ◦ σ. Two terms s and t are E-unifiable if there exists a substitution σ such that
sσ ≈E tσ.

1 http://cl-informatik.uibk.ac.at/isafor/#downloads
http://cl-informatik.uibk.ac.at/experiments/ITP2024/ceta_with_narrowing.zip for this paper.
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A TRS R is a set of ordered pairs of terms, called rules, where a rule is usually written
ℓ→ r. For each rule ℓ→ r, we assume that the set of variables occurring in ℓ includes the set
of variables occurring in r, i.e., V(ℓ) ⊇ V(r). The induced rewrite relation is written as →R
and can be defined either via positions or via contexts: s→R t if there is some ℓ→ r ∈ R
and substitution σ such that s|p = ℓσ and t = s[rσ]p for some p ∈ Pos(s) (or equivalently
s = C[ℓσ] and t = C[rσ] for some context C).

A substitution σ is normalized (w.r.t. a TRS R) if xσ is a normal form for every x ∈ Dσ.
A substitution σ is normalizable (w.r.t. a TRS R) if xσ has a normal form for every x ∈ Dσ.

A TRS R is confluent if ∗
R← · →∗

R ⊆ →∗
R · ∗

R←. A TRS R is strongly normalizing (SN)
if there is no infinite reduction sequence t1 →R t2 →R t3 →R · · · . A TRS R is weakly
normalizing (WN) if every term has a normal form. A TRS R is complete if it is confluent and
strongly normalizing. A TRS R is semi-complete if it is confluent and weakly normalizing.

A term t is strongly irreducible (w.r.t. R) if tσ is a normal form (w.r.t. R) for all normalized
substitutions σ.

A multiset is a collection of elements in which elements can occur more than once. More
formally, a multiset is a function from an element set S to the natural numbers, giving the
multiplicity of each element. This paper is only concerned with finite multisets.

3 Narrowing

▶ Definition 1. A term t is narrowable into a term t′ if there exist a position p ∈ FPos(t),
a variant2 ℓ→ r of a rewrite rule in R, and a substitution σ such that

σ is a most general unifier of t|p and ℓ,
t′ = t[r]pσ.

Then, we write t ⇝[p,ℓ→r,σ] t′ or simply t ⇝σ,R t′ (or more simply ⇝). The relation
⇝ is called narrowing. Also, we write t ⇝∗

σ,R t′ if there exists a narrowing derivation
t = t1 ⇝σ1,R t2 ⇝σ2,R · · ·⇝σn−1,R tn = t′ such that σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1. If n = 1, then
σ = ε.

▶ Lemma 2 (Lifting Lemma). Let R be a TRS. Suppose that we have terms s and t, a
normalized substitution θ and a set of variables V such that V(s) ∪ Dθ ⊆ V and t = sθ. If
t→∗

R t′, then there exist a term s′ and substitutions θ′, σ such that
s⇝∗

σ,R s′,
s′θ′ = t′,
θ′ ◦ σ = θ[V ],
θ′ is normalized. §

Now, we may add a fresh binary function symbol ≈? and a fresh constant ⊤ to the set of
function symbols and assume that R contains the rewrite rule x ≈? x→ ⊤

▶ Definition 3. Equational terms are the terms of the following form s ≈? t, where s and t

do not contain any occurrences of ≈? and ⊤.

We may use the lifting lemma for equational terms because equational terms are simply
some specific type of terms. We often denote equational terms using uppercase letters, such
as S, T , U , etc, while ordinary terms are denoted by lowercase letters, such as s, t, u, etc.
We assume that if S is an equational term, then Sσ is also an equational term for any
substitution σ. In other words, any substitution does not allow to introduce the special
symbols ≈? and ⊤ in its range.

2 See Definition 3.1 in [23] for details.

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Narrowing.html#lem:lifting_lemma
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In our Isabelle/HOL formalization, the definition of narrowing (see Definition 1) is done
using inductive_set in Isabelle. Here, s narrows into t iff (s, t, δ) ∈ narrowing_step.3

inductive_set narrowing_step where

"(t = (replace_at s p (snd rl)) · δ ∧ ω • rl ∈ R ∧ (vars_term s ∩ vars_rule rl = {}) ∧ p ∈
fun_poss s ∧mgu (s|p) (fst rl) = Some δ)⇒ (s, t, δ) ∈ narrowing_step"

Above, the renaming ω is applied to the rule rl, expressed by ω • rl, so that no variable
shares between s and rl. This corresponds to a variant of a rewrite rule l→ r in Definition 1,
where l → r is denoted here by rl. For renaming, we use the earlier formalization of
permutation for renaming [17] in IsaFoR. Now, we formalize whether a narrowing derivation
s ⇝∗

σ t holds or not, which cannot simply use the reflexive and transitive closure of the
relation derived from narrowing_step because σ should be combined and computed for the
narrowing steps from s to t.

definition narrowing_derivation where

"narrowing_derivation s s′ σ ←→ (∃n. (∃f τ. f 0 = s ∧ f n = s′ ∧ (∀i < n.((f i), (f (Suc i)),

(τ i)) ∈ narrowing_step) ∧ (if n = 0 then σ = V ar else σ = compose (map (λi.(τ i))[0.. <

n]))))"

Above, s⇝∗
σ t is true, denoted by (s, t, σ) ∈ narrowing_derivation, if there are functions f

and τ forming the chains of narrowing steps and their corresponding narrowing substitutions,
where the end points of the chain formed by f are s and t, respectively, and σ is the
composition of all substitutions of the chain formed by the function τ . (Here, if the length of
the chain is 0, then σ is simply the identity substitution (i.e., σ = V ar).)

Next, we need to formalize equational terms in Definition 3 in order to formalize the
results in Sections 4 and 5. Formalization of equational terms needs some special treatment
because of the new symbols ≈? and ⊤. Also, s and t in an equational term s ≈? t should
not contain any occurrences of ≈? and ⊤. We introduce two function symbols using locale
additional_function_symbols. Here, the binary function symbol .= corresponds to ≈? in
Definition 3. In the following, a term t is a wf_equational_term if t is either the constant ⊤
(i.e., Fun ⊤ [ ]) or it is an equational term of the form u ≈? v, where the binary symbol ≈?

and the constant ⊤ do not occur in any of u and v.

locale additional_function_symbols = fixes DOTEQ :: "′f" ("
.=") and TOP :: "′f" ("⊤")

begin

definition wf_equational_term where

“wf_equational_term t ←→ ((t = F un ⊤ [ ]) ∨ (∃u v. t = F un
.= [u :: (′f,′ v) term, v ::

(′f,′ v) term] ∧ (
.=, 2) /∈ funas_term u ∧ (

.=, 2) /∈ funas_term v) ∧ (⊤, 0) /∈ funas_term u ∧
(⊤, 0) /∈ funas_term v))"
...
end

Above, the term is represented by the datatype in IsaFoR:

datatype (α, β) term = V ar β | F un α ((α, β) term list)

where α and β are type parameters.

3 Here, R is added as an argument of narrowing_step implicitly using a locale in Isabelle .

ITP 2024
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In the Narrowing directory (below the thys directory in IsaFoR), Narrowing.thy is concerned
with narrowing without using equational terms, while Equational_Narrowing.thy is concerned
with equational narrowing using equational terms. Note that R in the former file denotes the
usual rewrite system with the condition that for each ℓ→ r ∈ R, V(ℓ) ⊇ V(r) and ℓ is not a
variable, while R in the latter file additionally includes the rule x ≈? x→ ⊤, written by a
pair (Fun .= [Var x, Var x], Fun ⊤ [ ]) in our formalization. We may also need to consider
the original rewrite system from R excluding the rule x ≈? x→ ⊤, where the binary symbol
.= and the constant ⊤ do not occur in the original rewrite system. We use the Isabelle’s
locale [5] to specify these in Equational_Narrowing.thy.

locale equational_narrowing = narrowing R + additional_function_symbols DOTEQ TOP" +
for R :: "(′f, ′v:: infinite) trs"
. . .

fixes R′ :: "(′f, ′v:: infinite) trs"
and F :: "′f sig"
and D :: "′f sig"
and x :: "′v"

assumes "wf_trs R"
and "R = R′ ∪ {(F un

.= [V ar x, V ar x], F un ⊤ [ ])}"
and "funas_trs R′ ⊆ F"
and "D = {( .=, 2), (⊤, 0)}"
and "D ∩ F = {}"
. . .

Above, R′ is the original rewrite system, while R is the rewrite system R = R′∪{(Fun
.=

[V ar x, V ar x], Fun ⊤ [ ])}. We assume that the function symbols of the original rewrite
system R′ is contained in F , which is written as funas_trs R′ ⊆ F . Also, D is the set
of fresh symbols {( .=, 2), (⊤, 0)}, which should be disjoint from the original set of function
symbols F (i.e., D ∩ F = {}).

Note that the lifting lemma is a key lemma for narrowing, which states that a rewriting
sequence can be “lifted” to a narrowing derivation. Our formalization includes four lifting
lemmas, i.e., the lifting lemma for narrowing in Narrowing.thy, the lifting lemma for equational
narrowing in Equational_Narrowing.thy, and the lifting lemma for multiset narrowing (see
Lemma 22) and its slight variation in Multiset_Narrowing.thy, respectively. Here, we consider
our formalization of the lifting lemma in equational narrowing, which is given as follows:

lemma lifting_lemma:
fixes V ::"(′v :: infinite) set" and S ::"(′f,′ v)term" and T ::"(′f,′ v)term"

assumes "normal_subst R θ"
and "wf_equational_term S"
and "T = S · θ"
and "vars_term S ∪ subst_domain θ ⊆ V "
and "(T, T ′) ∈ rstep R)∗"
and "finite V "

shows "∃σ θ′ S′.narrowing_derivation S S′ σ ∧ T ′ = S′ · θ′ ∧ wf_equational_term S′∧
normal_subst R θ′ ∧ (σ ◦s θ′) |S V = θ |S V "

There are slight differences between the formalization statement above and Lemma 2.
Here, we use wf_equational_terms instead of ordinary terms. Each narrowing step transforms
one wf_equational_term into another wf_equational_term. Also, we assume that V is finite
because we only consider finite wf_equational_terms and finite substitution domains for their
associated substitutions. It is easier to rename the variables of the rules distinct from a finite
V instead of the infinite V . (For example, if V is the universe of all variables of the given
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type, then we cannot rename the variables of the rules distinct from V .) Also, in the above
formalization statement of the lifting lemma, (T, T ′) ∈ (rstep R)∗ denotes the rewriting
sequence from T to T ′, where the formalization of rstep is already available from IsaFoR [1]
(see below):

inductive_set rstep::"_⇒ (′f,′ v)term rel" for R ::"(′f,′ v) trs" where
"rstep :

∧
C σ l r. (l, r) ∈ R =⇒ s = C⟨l · σ⟩ =⇒ t = C⟨r · σ⟩ =⇒ (s, t) ∈ rstep R"

Above, (σ ◦s θ′) |S V (resp. θ |S V ) denotes the restriction of a substitution σ ◦s θ′ (resp. θ)
to a set of variables V , where the restriction of a substitution subst_restrict is also available
from IsaFoR (see below):

definition subst_restrict:: "(′f,′ v) subst⇒′ v set⇒ (′f,′ v) subst" (infix "|s" 67) where
"σ |s V = (λx. if x ∈ V then σ(x) else V ar x)"

Similarly to the proof of the lifting lemma in [23], the proof of the formalization of the
lifting lemma is proceeded by the induction on the length of the reduction sequence from T

to T ′. To this end, from the assumption (T, T ′) ∈ (rstep R)∗, we may obtain a chain and a
number in such a way that

obtain f n where "f 0 = T ” and ”f n = T ′” and ”∀i < n.(f i, f (Suc i)) ∈ rstep R"

Then we show the following statement using induction on n:

∃σ θ′ S′. narrowing_derivation_num S S′ σ n ∧ T ′ = S′ · θ′ ∧ wf_equation_term S′ ∧
normal_subst R θ′ ∧ (σ ◦s θ′) |S V = θ |S V .

Above, the narrowing_derivation_num is simply narrowing_derivation with the number of
derivation steps being explicitly specified:

definition narrowing_derivation_num where
"narrowing_derivation_num s s′ σ n←→ (∃f τ. f 0 = s ∧ f n = s′ ∧ (∀i < n.((f i), (f (Suc i)),

(τ i)) ∈ narrowing step)∧(if n = 0 then σ = V ar else σ = compose (map (λi.(τ i))[0.. < n])))"

We leave it to our formalization for all the technical details of the proof of the lifting
lemma.

4 E-unifiability

Narrowing is known to be a complete method of solving E-unification problems if E can
be represented by a semi-complete rewrite system [23]. The completeness of narrowing
w.r.t. E-unification is derived from the lifting lemma using a semi-complete rewrite system
representing E. The underlying idea of using narrowing is as follows (cf. [28]): A narrowing
step from a term s may represent many rewrite steps starting with instances of s. If sθ →R t′

is a rewrite step from sθ using a (fresh variant of) rule ℓ→ r at a non-variable position p

of s, then s|p and ℓ are unifiable. Then, using the most general unifier δ of s|p and ℓ, we
have a rewrite step sδ →R t by applying the same rule ℓ → r at the same position p of s,
where t′ = tσ for some substitution σ. Now, the narrowing step s ⇝δ,R t may represent
different rewriting steps for each unifier τ of s|p and ℓ, where s⇝δ,R t implies sδ →R t. This
can be extended to narrowing sequences in such a way that s⇝∗

σ,R t implies sδ →∗
R t. The

following lemma is used for both narrowing-based E-unification and the reachability analysis
in the next section.
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▶ Lemma 4.
(i) s⇝∗

σ,R t implies sσ →∗
R t. §

(ii) s ≈? t⇝∗
σ,R ⊤ implies sσ ≈? tσ →∗

R ⊤. §

Proof. For the proof of (i), we proceed by induction on the length of the narrowing derivation
s ⇝∗

σ,R t. The base case is immediate because we have s = t and σ = ε (i.e., the identity
substitution). For the inductive case, we have some u such that s⇝∗

σ1,R u⇝σ2,R t, where
the length of the narrowing derivation s⇝∗

σ1,R u is one less than the length of the narrowing
derivation in s⇝∗

σ,R t with σ = σ2 ◦σ1. The induction hypothesis yields sσ1 →∗
R u. Also, by

Definition 1, we see that uσ2 →R t from u⇝σ2,R t. Now, we have (sσ1)σ2 →∗
R uσ2 →R t,

and thus the conclusion of (i) follows. We omit the proof of (ii), since it is almost identical
to the proof of (i). ◀

Recall that we have the rule x ≈? x → ⊤ included in R, where ⊤ is a fresh constant
symbol. This means that if sθ ≈? tθ →∗

R ⊤, then θ is an R-unifier of s and t because sθ and
tθ should be joined by R. (Otherwise, no rewriting sequence by R from sθ ≈? tθ reaches ⊤.)
Now, the following lemma directly follows from this observation using Lemma 4(ii).

▶ Lemma 5 ( [23]). Given a TRS R, if s ≈? t⇝∗
σ,R ⊤ for some substitution σ, then s and

t are R-unifiable. §

In the above, given a set of equations E represented by a rewrite system R, E-unifiable is
formalized in the following way, where eq is a pair of terms for representing an equation, and
τ denotes an E-unifier.

definition "E_unifiable eq ←→ (∃τ.((fst eq) · τ, (snd eq) · τ ∈ (rstep R)↔∗
)

▶ Example 6. Let E = {f(x, 0) ≈ g(x), g(b) ≈ c} and consider the unification problem
f(x, y) ≈?

E c. A rewrite system for E is R = {f(x, 0) → g(x), g(b) → c, x ≈? x → ⊤},
where the rule x ≈? x → ⊤ is added using the fresh constant ⊤. We rename the rules
in R whenever necessary, where variables with subscripts denote the renamed variables
in this example. First, find the mgu of f(x, y) and f(x1, 0) in f(x1, 0) → g(x1), which is
σ1 = {x 7→ x1, y 7→ 0}. This yields the narrowing step (f(x, y) ≈? c) ⇝σ1 (g(x1) ≈? c).
Next, find the mgu of g(x1) and g(b), which is σ2 = {x1 7→ b}. This yields the narrowing
step (g(x1) ≈? c)⇝σ2 (c ≈? c). Then, find the mgu of c ≈? c and x2 ≈? x2 in x2 ≈? x2 → ⊤,
which is σ3 = {x2 7→ c}. This yields the narrowing step c ≈? c⇝σ3 ⊤.

We see that σ := σ3 ◦ σ2 ◦ σ1 is an R-unifier (or an E-unifier) of f(x, y) and c, where
σ = {x 7→ b, y 7→ 0, x1 7→ b, x2 7→ c}.

Now, given a semi-complete TRS R, if θ is an R-unifier of s and t (i.e., sθ ≈R tθ),
then sθ ≈? tθ →∗

R ⊤ because R is confluent. By the semi-completeness of R, a normal
substitution θ′ of θ exists such that sθ′ ≈? tθ′ →∗

R ⊤, and thus θ′ is also an R-unifier of s

and t. Applying the lifting lemma yields a narrowing sequence s ≈? t ⇝∗
σ,R ⊤ such that

σ ≤ θ′ [V(s)∪V(t)]. By Lemma 4(ii), we have sσ ≈? tσ →∗
R ⊤, and thus σ is also an R-unifier

of s and t. Since we have θ ≈R θ′ and σ ≤ θ′ [V(s) ∪ V(t)], we see that σ ≤R θ [V(s) ∪ V(t)].
This observation implies that for every R-unifier of s and t, a more general R-unifier can be
found by narrowing. The completeness of narrowing for E-unification was originally proposed
by Hullot [18], where E is represented by a complete TRS. Later, it was shown that the
semi-completeness of TRS suffices for the completeness of narrowing for E-unification [23].

▶ Theorem 7 ( [23]). Let R be a semi-complete TRS. If sθ ≈R tθ, then there is a narrowing
derivation s ≈? t⇝∗

σ,R ⊤ such that σ ≤R θ [V(s) ∪ V(t)]. §

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Reachability.html#lem:narrowing_based_reachable'
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Reachability.html#lem:equational_narrowing_based_reachability_pre
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Unification.html#lem:narrowing_based_E_unifiable
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Unification.html#thm:narrowing_based_completeness_of_E_unification
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Unfortunately, the completeness of narrowing for E-unification alone does not imply
E-unifiability by narrowing, which is also important in equational reasoning. In the remainder
of this section, we show that given a semi-complete TRS R, if narrowing terminates, then it
provides a decision procedure for E-unifiability.

▶ Lemma 8. Given a TRS R, if there is no narrowing derivation s ≈? t⇝∗
σ,R ⊤ for any

substitution σ, then there is no normal substitution θ satisfying sθ ≈? tθ →∗
R ⊤. §

Proof. Suppose to the contrary that there is a normal substitution θ satisfying sθ ≈? tθ →∗
R

⊤. Let V =: V(S)∪Dθ, where S = s ≈? t. Then, by Lemma 2, there exists some substitution
σ such that s ≈? t⇝∗

σ,R ⊤, which is the required contradiction. ◀

▶ Example 9. Consider R = {a → b, f(a, b) → c} and s = f(x, x) and t = c. Then
s ≈? t is not narrowable, so there is no narrowing derivation s ≈? t ⇝∗

σ,R ⊤ for any
substitution σ. By Lemma 8, there is no normal substitution θ satisfying sθ ≈? tθ →∗

R ⊤.
However, there is a non-normal substitution δ := {x 7→ a} satisfying sδ ≈? tδ →∗

R ⊤, i.e.,
f(a, a) ≈? c→R f(a, b) ≈? c→R c ≈? c→R ⊤, where sδ = f(a, a) and tδ = c.

The following lemma is immediate by observing that given a confluent TRS, s
∗←→R t

implies that s and t are joinable.

▶ Lemma 10. Given a confluent TRS R, s
∗←→R t implies s ≈? t→∗

R ⊤. §

▶ Lemma 11. Given a semi-complete TRS R, if there is no narrowing derivation s ≈?

t⇝∗
σ,R ⊤ for any substitution σ, then s and t have no R-unifier. §

Proof. Assume that there is no narrowing derivation s ≈? t ⇝∗
σ,R ⊤ for any substitution

σ. Then, by Lemma 8, there is no normal substitution θ satisfying sθ ≈? tθ →∗
R ⊤. Now,

suppose, towards a contradiction, that s and t have an R-unifier. Then, there is some
substitution τ such that sτ

∗←→R tτ . Since R is semi-complete, there is a normal substitution
τ ′ of τ such that sτ ′ ∗←→R tτ ′. Now, we have sτ ′ ≈? tτ ′ →∗

R ⊤ by Lemma 10, which is the
required contradiction. ◀

From Lemmas 5 and 11, we have the following theorem of E-unifiability by narrowing.

▶ Theorem 12. Given a semi-complete TRS R, if all narrowing derivations starting from
s ≈? t terminate (or simply ⇝ terminates), then we can decide whether s ≈? t has an
R-unifier or not. §

5 Reachability and Infeasibility

The reachability problem [14,27] is one of the fundamental problems in term rewriting systems,
which originally has the following form: Given a TRS R and a source term s, does s reach t by
a rewriting sequence, written s→∗

R t? This problem has the following generalization [21, 27]
for s and t containing variables: Is there a substitution σ such that sσ →∗

R tσ? If there
is no such substitution, then the problem is called infeasible [21,27]. In this paper, by the
reachability problem, we mean the generalized reachability problem discussed above. In our
Isabelle/HOL formalization, reachable and infeasible for a pair of terms are formalized as
follows:

definition "reachable eq ←→ (∃τ.((fst eq) · τ, (snd eq) · τ ∈ (rstep R)∗)

definition "infeasible eq ←→ (¬(∃τ.((fst eq) · τ, (snd eq) · τ ∈ (rstep R)∗))
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The following lemma provides a sufficient condition of satisfying the reachability problem
using narrowing, which requires neither the confluence nor the termination of the underlying
TRS.

▶ Lemma 13.
(i) If there is some substitution σ such that s⇝∗

σ,R tσ, then the reachability problem from
s to t is satisfiable. §

(ii) If there is some substitution σ such that s⇝∗
σ,R t′σ and t′σ and tσ are unifiable, then

the reachability problem from s to t is satisfiable. §

Proof. The proof of (i) is immediate using Lemma 4. For the proof of (ii), we have sσ →∗
R t′σ

from s⇝∗
σ,R t′σ using Lemma 4. Since t′σ and tσ are unifiable, there is some mgu δ such

that (t′σ)δ = (tσ)δ. Then, we have (sσ)δ →∗
R (t′σ)δ = (tσ)δ, and thus the reachability

problem from s to t is satisfiable using substitution δ ◦ σ. ◀

▶ Example 14. Let R = {f(x, x)→ g(x), a→ b}. For the reachability problem from f(y, a)
to g(b), we have f(y, a)⇝σ1,R g(a), where σ1 = {x 7→ a, y 7→ a} is the mgu of f(x, x) and
f(y, a). Then, we have g(a)⇝ε,R g(b), so the reachability problem from f(y, a) to g(b) is
satisfiable by Lemma 13(i) using substitution σ1 = {x 7→ a, y 7→ a}.

Lemma 13(ii) provides a means to compute a solution of the reachability problem from
s to t using a narrowing tree starting from s. Since a narrowing derivation along with
its substitution are computed incrementally, a typical way of computing a solution of the
reachability problem using a narrowing tree is to use the breadth-first search for each length
of narrowing derivations and expand the narrowing tree (if it is possible) when a solution
of the reachability problem cannot be found. (A more efficient way of solving reachability
problems is considered in the next section.)

However, narrowing is known to be weakly complete [22] in reachability analysis in the
sense that it may fail to find a solution of the reachability problem even if it exists. In
particular, narrowing may fail to find a non-normalized solution of a reachability problem.

▶ Example 15. Given R = {a → b, a → c, g(f(b), f(c)) → a}, consider the reach-
ability problem from g(f(x), f(x)) to a. The problem is satisfiable using substitution
{x 7→ a} (i.e., g(f(a), f(a)) →R g(f(b), f(a)) →R g(f(b), f(c)) →R a), but we may not
apply Lemma 13(ii) because there is neither a narrowing step from g(f(x), f(x)) nor is it
unifiable with a.

In what condition the reachability problem is shown to be either satisfiable or infeasible
using narrowing? In the remainder of this section, if R is semi-complete and t is a strongly-
irreducible term (e.g. a constructor term), then we show that a narrowing derivation s ≈?

t⇝∗
σ,R ⊤ for some substitution σ implies the reachability from s to t, while no narrowing

derivation s ≈? t⇝∗
σ,R ⊤ for any substitution σ implies the infeasibility of the reachability

problem from s to t, assuming that all narrowing derivations from s ≈? t terminates.

▶ Lemma 16. Let R be a semi-complete TRS and t be a strongly irreducible term. If there
is some substitution σ such that s ≈? t⇝∗

σ,R ⊤, then the reachability problem from s to t is
satisfiable. §

Proof. Suppose that there is some substitution σ such that s ≈? t ⇝∗
σ,R ⊤. Then, by

Lemma 4(ii), we have sσ ≈? tσ →∗
R ⊤. Since R is semi-complete, there is a normal

substitution σ′ of σ such that sσ ≈? tσ →∗
R sσ′ ≈? tσ′ and sσ′ ≈? tσ′ →∗

R ⊤. Also, tσ′ is a
normal form of R because t is strongly irreducible. Since sσ′ ≈? tσ′ →∗

R ⊤ and tσ′ is normal
form of R, we may infer that sσ′ →∗

R tσ′, and thus the conclusion follows. ◀

http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Reachability.html#lem:narrowing_based_reachable
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Reachability.html#lem:narrowing_based_reachable_with_unification
http://cl-informatik.uibk.ac.at/experiments/ITP2024/Narrowing/Equational_Narrowing_Reachability.html#lem:equational_narrowing_based_reachable
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▶ Lemma 17. Let R be a semi-complete TRS and t be a strongly irreducible term. If there is
no narrowing derivation s ≈? t⇝∗

σ,R ⊤ for any substitution σ, then the reachability problem
from s to t is infeasible. §

Proof. Assume that there is no narrowing derivation s ≈? t ⇝∗
σ,R ⊤ for any substitution

σ. Then, by Lemma 8, there is no normal substitution θ satisfying sθ ≈? tθ →∗
R ⊤. Now,

suppose, towards a contradiction, that the reachability problem from s to t is satisfiable.
Then, there is a substitution τ such that τ such that sτ →∗

R tτ . SinceR is weakly normalizing,
there is a normal substitution τ ′ of τ such that sτ ′ ∗

R← sτ →∗
R tτ →∗

R tτ ′. We see that tτ ′ is
a normal form because t is a strongly irreducible term and τ ′ is a normal substitution. Since
R is confluent and tτ ′ is a normal form of R, we have sτ ′ →∗

R tτ ′, and thus sτ ′ ≈? tτ ′ →∗
R ⊤,

which is the required contradiction. ◀

From Lemmas 16 and 17, we have the following decidability result of the reachability
problem using narrowing. (Note that Lemma 13 only provides a sufficient condition of
satisfying the reachability problem using narrowing.)

▶ Theorem 18. Let R be a semi-complete TRS and t be a strongly irreducible term. If all
narrowing derivations starting from s ≈? t terminate (or simply ⇝ terminates), then we can
decide whether the reachability problem from s to t is satisfiable or not (i.e., infeasible). §

6 Multiset Narrowing

In this section, we consider multiset narrowing for multiset reachability analysis and multiple
goals in the reachability and E-unification problems. Our multiset narrowing4 is adapted
from Narrowing Calculus (NC) in [24], but it is also concerned with multisets of ordinary
terms, equational terms, and pairs of terms. Note that a multiset is a generalization of a set,
allowing elements in the multiset to occur more than once. It has an additional flexibility
because identical elements (or states) in a multiset can reach different elements (or states).

Now, we consider multiset narrowing for multisets of terms (or equational terms). First,
we consider multiset rewriting for multisets of terms (or equational terms).

▶ Definition 19. Let S and T be multisets of terms. We write S →[R,M ] T if there exists a
term s ∈ S such that s→R t and T = (S − {s}) ∪ {t}.

▶Definition 20. Given a multiset of terms S = {t1, . . . , tn}, the multiset reachability problem
is described as follows: is there a substitution σ such that Sσ := {t1σ, . . . , tnσ} reaches the
target multiset of terms G = {t′

1, . . . , t′
n} using multiset rewriting, i.e., Sσ →∗

[R,M ] G? If
there is such a substitution σ, then we say that the multiset reachability problem from S to G

is satisfiable. Otherwise, we say that it is infeasible.

In the above definition, the source multiset S and the target multiset G are fixed for
multiset reachability analysis which can be done using the following multiset narrowing.

▶ Definition 21. A multiset of terms S is narrowable into a multiset of terms T if there
exist a term s ∈ S and a substitution σ such that

s⇝σ,R t,
T = ((S − {s})σ ∪ {t}.

4 Narrowing in a multiset environment is also considered in CHR [16], but it is considered in the context
of logic programming, which does not consider multisets of ordinary terms.
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Then, we write S ⇝σ,R,M T . Also, we write S ⇝∗
σ,R,M S′ if there exists a narrowing

derivation S = S1 ⇝σ1,R,M S2 ⇝σ2,R,M · · ·⇝σn−1,R,M Sn = S′ such that σ = σn−1 ◦ · · · ◦
σ2 ◦ σ1. If n = 1, then σ = ε.

Intuitively speaking, S →[R,M ] T if T is obtained by replacing one element (term) in S

using a rewriting step inR, while S ⇝σ,R,M T if T is obtained by replacing one element (term)
in S using a narrowing step in Definition 1 and then applying the narrowing substitution to
the remaining multiset S − {s}.

In our Isabelle/HOL formalization, we use finite multisets for multiset narrowing, where
a finite multiset is a finite collection of elements, denoted by {#x1, . . . , xn#} in isabelle.
Duplication is allowed and orders are irrelevant in multisets, i.e., {#s, t, t, s#} = {#t, t, s, s#}.
Also, + denotes multiset sum and - denotes multiset difference. Now, the multiset reduction
in Definition 19 can be used for multisets of both ordinary and equational terms. Then,
S →[R,M ] T iff (S, T ) ∈ multiset_reduction_step (see below).

inductive_set multiset_reduction_step where

"s ∈# S ∧ T = (S − {#s#}+ {#t#})∧ (s, t) ∈ rstep R⇒ (S, T ) ∈ multiset_reduction_step"

The corresponding multiset narrowing in Definition 21 is formalized as follows, where
S ⇝σ,R,M T iff (S, T, σ) ∈ multiset_narrowing_step.

inductive_set multiset_narrowing_step where

"(s, t)∈# S ∧ T = (subst_term_multiset σ (S−{#s#})+{#t#})∧(s, t, σ) ∈ narrowing_step

⇒ (S, T, σ) ∈ multiset_narrowing_step"

The lifting lemma for multisets of terms can be easily adapted from Lemma 2.5

▶ Lemma 22. Let R be a TRS. Suppose we have two multisets of terms S and T , a normalized
substitution θ and a set of variables V such that V(S)∪Dθ ⊆ V and T = Sθ. If T →∗

[R,M ] T ′,
then there exist a multiset of terms S′ and substitutions θ′, σ such that

S ⇝∗
σ,R,M S′,

S′θ′ = T ′,
θ′ ◦ σ = θ[V ],
θ′ is normalized. §

The following lemma can be proved by induction on the length of the multiset narrowing
derivation S ⇝∗

σ,R,M T using the observation that S′σ′ →[R,M ] T ′ whenever S′ ⇝σ′,R,M T ′

(cf. Lemma 4).

▶ Lemma 23. Let R be a TRS and S be a multiset of terms (or equational terms). Then,
S ⇝∗

σ,R,M T implies Sσ →∗
[R,M ] T . §

▶ Lemma 24. If there are some substitutions σ and η such that S ⇝∗
σ,R,M S′ and S′η = G,

then the multiset reachability problem from S to G is satisfiable. §

Proof. Suppose that there are some substitution σ and η such that S ⇝∗
σ,R,M S′ and S′η = G.

Then, by Lemma 23, we have Sσ →∗
[R,M ] S′. By Definition 19 and easy induction on the

length of multiset rewriting steps, we may infer that →∗
[R,M ] is closed under substitutions.

Now, we have Sση →∗
[R,M ] S′η = G, and thus the conclusion follows. ◀

5 The lifting lemma for multisets of equational terms is also a slight variation of the lifting lemma for
multisets of terms, where Definition 3 needs to be checked.
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▶ Example 25. We consider the multiset reachability problem introduced in Section 1.
Let S = {f(x, y), f(x, y)}, the (renamed) rewrite system R = {f(a, b) → d, f(a, z1) →
g(z1), f(z2, a)→ d, g(a)→ c}, and the target multiset G = {c, d}. Multiset narrowing starts
with S = {f(x, y), f(x, y)} and narrow into S1 = {g(z1), f(a, z1)} using the rule f(a, z1)→
g(z1) with substitution σ1 = {x 7→ a, y 7→ z1}. Then, it narrows into S2 = {c, f(a, a)} using
the rule g(a)→ c with substitution σ2 = {z1 7→ a}. Finally, it narrows into S3 = {c, d} using
the rule f(z2, a) → d, with substitution σ3 = {z2 7→ a}. Then by Lemma 24, the above
multiset reachability problem is satisfied with substitution σ = σ3 ◦ σ2 ◦ σ1 = {x 7→ a, y 7→
a, z1 7→ a, z2 7→ a}.

▶ Lemma 26. If there is no multiset narrowing derivation S ⇝∗
σ,R,M S′ for any substitution σ

and η with S′η = G, then there is no normal substitution θ satisfying the multiset reachability
problem from S to G. §

The above lemma describes the weak completeness of multiset narrowing w.r.t. multiset
reachability analysis. For example, the multiset reachability problem from {g(f(x), f(x))}
to {a} using R in Example 15 is satisfiable using substitution {x 7→ a}, but there is no
multiset narrowing step from {g(f(x), f(x))} nor is there some substitution η such that
{g(f(x), f(x))η} = {a}.

▶ Lemma 27.
(i) If R is strongly normalizing, then →[R,M ] is strongly normalizing. §

(ii) If R is complete, then →[R,M ] is confluent. §

▶ Lemma 28. Given a complete TRS R, if there is no multiset narrowing derivation
S ⇝∗

σ,R,M S′ for any substitution σ and η with S′η = G and G is in normal form
w.r.t.→[R,M ], then there is no substitution θ satisfying the multiset reachability problem from
S to G. §

Proof. Assume that there is no multiset narrowing derivation S ⇝∗
σ,R,M S′ for any sub-

stitution σ and η with S′η = G. Then, by Lemma 26, there is no normal substitution θ

satisfying the multiset reachability problem from S to G. Now, suppose to the contrary
that there is some substitution θ satisfying the multiset reachability problem from S to
G, i.e., Sθ →∗

[R,M ] G. By Lemma 27, →[R,M ] is strongly normalizing and confluent. Now,
we have Sθ →∗

[R,M ] Sθ′, where θ′ is the normal substitution of θ. (This can be shown
using a straightforward induction on the size of Sθ.) Since →[R,M ] is strongly normalizing
and confluent and G is in normal form w.r.t.→[R,M ], we have Sθ →∗

[R,M ] Sθ′ →∗
[R,M ] G,

contradicting that there is no normal substitution satisfying the multiset reachability problem
from S to G. ◀

From Lemmas 24 and 28, we have the following decidability result of multiset reachability
analysis using multiset narrowing.

▶ Theorem 29. Let R be a complete TRS R, S and G be multisets of terms, and G be in
normal form w.r.t.→[R,M ]. If all multiset narrowing derivations starting from S terminate,
then we can decide whether the multiset reachability problem from S to G is satisfiable or not
(i.e., infeasible). §

Meanwhile, multiset narrowing can also be used for E-unification problems consisting
of multiple goals. In the following, by a slight abuse of notation, we denote by ⊤ a finite
multiset consisting only of ⊤′s or simply ⊤ in Definition 3. The next theorem provides the
completeness of multiset narrowing for E-unification problems consisting of multiple goals.
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▶ Theorem 30. Let R be a complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of
equational terms. If there is some R-unifier θ satisfying skθ ≈R tkθ for all 1 ≤ k ≤ n, then
there is some multiset narrowing derivation S ⇝∗

σ,R,M ⊤ such that σ ≤R θ [V(S)]. §

Next, we consider E-unifiability consisting of multiple goals using multiset narrowing.
The following lemma provides a sufficient condition of satisfying an E-unifiability problem
(consisting of multiple goals) using multiset narrowing.

▶ Lemma 31. Let R be a TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of equational
terms. If S ⇝∗

σ,R,M ⊤ for some substitution σ, then sk and tk for all 1 ≤ k ≤ n are
R-unifiable. §

Proof. Suppose S ⇝∗
σ,R,M ⊤. Then, we have Sσ →∗

[R,M ] ⊤ by Lemma 23. Also, Sσ →+
[R,M ]

⊤ because it needs at least one step including the step using the rule x ≈ x→ ⊤. Now, observe
that for any nonempty S′ ⊂ Sσ, we have S′ →+

[R,M ] ⊤. Therefore, for any 1 ≤ k ≤ n, we
have {skσ ≈ tkσ} →+

[R,M ] ⊤. Now, we proceed by induction on the number of →+
[R,M ]-steps

in {skσ ≈ tkσ} →+
[R,M ] ⊤ and show that skσ

∗←→R tkσ.
The base case is obvious, i.e., skσ = tkσ. For the inductive case, consider s′ and t′,

where {skσ ≈ tkσ} →[R,M ] {s′ ≈ t′} and {s′ ≈ t′} →+
[R,M ] ⊤. The induction hypothesis

yields s′ ∗←→R t′. Since {skσ ≈ tkσ} →[R,M ] {s′ ≈ t′}, we see that either skσ →R s′ with
tkσ = t′ or tkσ →R t′ with skσ = s′ by Definition 19, and thus the conclusion follows from
skσ

∗−→R s′ ∗←→R t′ ∗←−R tkσ. ◀

▶ Lemma 32. Let R be a complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset
of equational terms. If there is no multiset narrowing derivation S ⇝∗

σ,R,M ⊤ for any
substitution σ, then there is no R-unifier σ satisfying skσ ≈R tkσ for all 1 ≤ k ≤ n, where
R is viewed as a set of equations. §

From Lemmas 31 and 32, we have the following theorem of E-unifiability (consisting of
multiple goals) by multiset narrowing.

▶ Theorem 33. Let R be a complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of
equational terms. If all multiset narrowing derivation starting from S terminate, then we
can decide whether there is an R-unifier σ satisfying skσ ≈R tkσ for all 1 ≤ k ≤ n. §

Next, we adapt the narrowing discussed in [22] for (ordinary) reachability analysis using
multisets of pairs of terms. Given a rewrite system R and pairs of terms (s1, t1), . . . , (sn, tn),
the purpose of reachability analysis is to determine whether there is a substitution σ such
that s1σ →∗

R t1σ ∧ · · · ∧ snσ →∗
R tnσ. Here, the reachability problem is represented by the

multiset {(sk, tk) | 1 ≤ k ≤ n}.

▶ Definition 34. Let S and T be multisets of the pairs of terms. We write S →[R,Mp] T if
there exists a pair of terms (s, t) ∈ S such that s→R u and T = (S − {(s, t)}) ∪ {(u, t)}.

▶ Definition 35. A multiset of pairs of terms S is narrowable into a multiset of pairs of
terms T if there exists a pair of terms (s, t) ∈ S and a substitution σ such that

s⇝σ,R u, and
T = (S − {(s, t)})σ ∪ {(u, tσ)}.

Then, we write S ⇝σ,R,Mp
T . Also, we write S ⇝∗

σ,R,Mp
S′ if there exists a narrowing

derivation S = S1 ⇝σ1,R,Mp S2 ⇝σ2,R,Mp · · ·⇝σn−1,R,Mp Sn = S′ such that σ = σn−1 ◦ · · · ◦
σ2 ◦ σ1. If n = 1, then σ = ε.
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Intuitively, S →[R,Mp] T if T is obtained by replacing one pair of elements (s, t) in S with
(u, t) using s→R u. Only the first element in a pair can be rewritten by R, while the second
element serves as a target and is intact for →[R,Mp]-steps. Meanwhile, S ⇝σ,R,Mp

T if T is
obtained by replacing one pair of elements (s, t) in S with (u, tσ) from s⇝σ,R u and then
applying the narrowing substitution to the remaining multiset S − {(s, t)}.

In our Isabelle/HOL formalization, for the multiset reduction in Definition 34, we
use the following inductive set in Isabelle such a way that S →[R,Mp] T iff (S, T ) ∈
multiset_pair_reduction_step. (Here, R is implicitly included as a parameter of
multiset_pair_reduction_step in the locale.)

inductive_set multiset_pair_reduction_step where

"(s, t) ∈# S ∧ T = (S − {#(s, t)#} + {#(u, t)#}) ∧ (s, u) ∈ rstep R ⇒ (S, T ) ∈
multiset_pair_reduction_step"

Similarly, for the multiset narrowing in Definition 35, we use the following inductive set
in such a way that S ⇝σ,R,Mp

T iff (S, T, σ) ∈ multiset_pair_narrowing_step.

inductive_set multiset_pair_narrowing_step where

"(s, t)∈# S ∧ T = (subst_pairs_multiset σ (S − {#(s, t)#}) + {#(u, t · σ)#}) ∧ (s, u, σ) ∈
narrowing_step⇒ (S, T, σ) ∈ multiset_pair_narrowing_step"

▶ Definition 36.
(i) We say that a multiset of pairs of terms {(sk, tk) | 1 ≤ k ≤ n} is trivially unifiable if

sk = tk for all 1 ≤ k ≤ n.
(ii) We say that a multiset of pairs of terms {(sk, tk) | 1 ≤ k ≤ n} is syntactically unifiable

with a substitution θ if skθ = tkθ for all 1 ≤ k ≤ n.
(iii) We say that a substitution τ is a solution of the reachability problem represented by

S = {(s1, t1), . . . , (sn, tn)} if s1τ →∗
R t1τ ∧ · · · ∧ snτ →∗

R tnτ .

▶ Lemma 37. Let R be a TRS and S = {(s1, t1), . . . , (sn, tn)} be a multiset of pairs of terms.
If S →∗

[R,Mp] S′ and S′ is trivially unifiable, then s1 →∗
R t1 ∧ · · · ∧ sn →∗

R tn. §

Proof. We proceed by induction on the number of →∗
[R,Mp]-steps in S →∗

[R,Mp] S′. The base
case is trivial, i.e., S = S′. For the inductive case, consider S →[R,Mp] U and U →∗

[R,Mp] S′.
From S →[R,Mp] U , we have some (s, t) ∈ S, s→R u, and U = (S − {(s, t)}) ∪ {(u, t)}. By
the induction hypothesis, for all pairs (v, w) in U , we have v →∗

R w. This means that u→∗
R t

and for all pairs (v′, w′) ∈ (S − {(s, t)}), we have v′ →∗
R w′. Therefore, it remains to show

that s→∗
R t, which is obvious from s→R u and u→∗

R t. ◀

▶ Proposition 38. Let R be a TRS and S = {(s1, t1), . . . , (sn, tn)} be a multiset of pairs of
terms. If S ⇝∗

σ,R,Mp
S′ and S′ is syntactically unifiable with θ, then θ ◦ σ is a solution of

the reachability problem represented by S = {(s1, t1), . . . , (sn, tn)}. §

Proof. Suppose S ⇝∗
σ,R,Mp

S′. Then, we have Sσ →∗
[R,Mp] S′ by adapting the proof of

Lemma 4. Also, the relation →∗
[R,Mp] is closed under substitutions, which can be shown using

induction on the number of →[R,Mp]-steps. Then, we have (Sσ)θ →∗
[R,Mp] S′θ, where S′θ is

trivially unifiable. Thus, the conclusion follows by Lemma 37. ◀

The above proposition provides a sufficient condition of satisfying a reachability problem
consisting of multiple goals using multiset narrowing on multisets of pairs of terms. However,
it alone does not provide the decidability of a reachability problem consisting of multiple
goals.
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Next, we consider multiset narrowing on multisets of equational terms again (instead of
multisets of pairs of terms) for ordinary reachability problems. Similarly to Definition 36(iii),
we say that a substitution σ is a solution of the reachability problem represented by a multiset
S = {s1 ≈? t1, . . . , sn ≈? tn} if s1σ →∗

R t1σ ∧ · · · ∧ snσ →∗
R tnσ. If σ is a solution of the

reachability problem represented by S, then we say that the reachability problem represented
by S is satisfiable. Otherwise, if there is no solution of the reachability problem represented
by S, then we say that the reachability problem represented by S is infeasible.

▶ Lemma 39. Let R be a TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of equational
terms such that s1 →∗

R t1 ∧ · · · ∧ sn →∗
R tn and each tk, 1 ≤ k ≤ n, is a normal form of R.

Then, S →∗
[R,M ] ⊤. §

▶ Lemma 40. Let S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset of equational terms. If there
is no multiset narrowing derivation S ⇝∗

σ,R,M ⊤ for any substitution σ, then there is no
normal substitution θ satisfying Sθ →∗

[R,M ] ⊤. §

▶ Lemma 41. Let R be a semi-complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset
of equational terms, where each tk, 1 ≤ k ≤ n, is a strongly irreducible term. If there is
no multiset narrowing derivation S ⇝∗

σ,R,M ⊤ for any substitution σ, then the reachability
problem represented by S is infeasible. §

Proof. Assume that there is no multiset narrowing derivation S ⇝∗
σ,R,M ⊤ for any substitu-

tion σ. Then, by Lemma 40, there is no normal substitution θ satisfying Sθ →∗
[R,M ] ⊤. Now,

suppose, towards a contradiction, that the reachability problem represented by S is satisfiable.
Then, there is a substitution τ such that s1τ →∗

R t1τ ∧ · · · ∧ snτ →∗
R tnτ . Since R is weakly

normalizing, there is a normal substitution τ ′ of τ such that skτ ′ ∗
R← skτ →∗

R tkτ →∗
R tkτ ′

for all 1 ≤ k ≤ n. We see that each tkτ ′, 1 ≤ k ≤ n, is in normal form (w.r.t. R) because tk

is a strongly irreducible term and τ ′ is a normal substitution. Since R is confluent and each
tkτ ′, 1 ≤ k ≤ n, is in normal form (w.r.t. R), we have skτ ′ →∗

R tkτ ′ for all 1 ≤ k ≤ n. Now,
we have Sτ ′ →∗

[R,M ] ⊤ by Lemma 39, which is the required contradiction. ◀

▶ Lemma 42. Let R be a semi-complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a multiset
of equational terms, where each tk, 1 ≤ k ≤ n, is a strongly irreducible term. If S ⇝∗

σ,R,M ⊤
for some substitution σ, then the reachability problem represented by S is satisfiable. §

Now, we have the following decidability result of a reachability problem (consisting of
multiple goals) using multiset narrowing on multisets of equational terms by Lemmas 41
and 42.

▶ Theorem 43. Let R be a semi-complete TRS and S = {s1 ≈? t1, . . . , sn ≈? tn} be a
multiset of equational terms, where each tk, 1 ≤ k ≤ n, is a strongly irreducible term. If all
multiset narrowing derivations starting from S terminate, then we can decide whether the
reachability problem represented by S is satisfiable or not (i.e., infeasible). §

7 Related Work and Discussion

In this paper, we have focused on an Isabelle/HOL formalization of narrowing and multiset
narrowing. There are other important narrowing techniques, such as basic [23], conditional [6],
constrained [8], nominal [2], and folding variant [12] narrowing, which have not been discussed
in this paper. For E-unification and reachability analysis, there are also existing narrowing-
based computational tools (not using an Isabelle/HOL proof assistant); in particular, see the
Maude system [11] using folding variant narrowing.
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Meanwhile, multiset narrowing presented in this paper provides a natural method for
multiset reachability analysis. Note that there are some limitations on simulating multiset
rewriting (resp. multiset narrowing) using ordinary rewriting (resp. ordinary narrowing).
Consider, for example, S = {s1, s2, s3, s4} and T = {t1, s2, s3, s4}, where all si, 1 ≤ i ≤ 4, are
distinct, s1 →R t1, and thus S →[R,M ] T . If we simulate the multiset rewriting S →[R,M ] T

using ordinary rewriting with a new function symbol f̄ , we have to consider the following
cases: (1) f̄(s1, s2, s3, s4) →R f̄(t1, s2, s3, s4), (2) f̄(s2, s1, s3, s4) →R f̄(s2, t1, s3, s4), . . . ,
(24) f̄(s4, s3, s2, s1) →R f̄(s4, s3, s2, t1). Here, S →[R,M ] T is a compact representation of
the above 24 cases. Similarly, let S = {s1, s2, s3, s4} as above and U = {u1, u2, u3, u4}, where
all ui, 1 ≤ i ≤ 4, are distinct. Now, determining whether S ⇝∗

σ,R,M U using some σ exists is
a compact representation of determining whether one of the following 24 cases of ordinary
narrowing using some σi exists with a new function symbol ḡ: (1) ḡ(s1, s2, s3, s4) ⇝∗

σ1,R
ḡ(u1, u2, u3, u4), (2) ḡ(s1, s2, s3, s4) ⇝∗

σ2,R ḡ(u2, u1, u3, u4), . . . , (24) ḡ(s1, s2, s3, s4) ⇝∗
σ24,R

ḡ(u4, u3, u2, u1). Here, without using multiset narrowing, one may have to create 24 (ordinary)
narrowing trees in the worst case (with possibly many duplicated narrowing steps) for the
corresponding multiset reachability problem.

When considering multiset reachability problems by determining whether a substitution
σ exists such that Sσ →∗

[R,M ] U , multiset narrowing provides a simple and compact sufficient
condition of satisfying the multiset reachability problem, i.e., S ⇝∗

σ,R,M U using some σ.

8 Conclusion

Although narrowing plays an important role in equational unification and reachability
analysis, formalization of narrowing and its related results on equational unification and
reachability analysis has not been much done in the proof assistants. We have presented
a new Isabelle/HOL formalization of narrowing and multiset narrowing for E-unifiability
and (multiset) reachability analysis. The results discussed in this paper are built on IsaFoR
(Isabelle/HOL Formalization of Rewriting) [1].

Given a semi-complete rewrite system R representing E and two terms s and t, we show
a formalized correctness proof that if all narrowing derivations starting from s ≈? t terminate
(or simply ⇝ terminates), then we can decide whether s and t are E-unifiable.

We have also presented multiset narrowing and its formalization for multiset reachability
analysis. Our multiset narrowing is generic in the sense that it encapsulates (the ordinary)
rewriting and narrowing for multiset rewriting and multiset narrowing. It is also applicable
to E-unifiability/E-unification and reachability problems consisting of multiple goals. In
particular, given a complete rewrite system R, it provides a complete method forR-unifiability
problems consisting of multiple goals, where R is viewed as a set of equations. Furthermore,
if R is semi-complete and the right-hand sides of multiple goals in a reachability problem are
strongly irreducible terms, then it provides a decision procedure for the reachability problem
if it terminates. (Recall that if R is complete, then R is semi-complete, but not vice versa.)

Finally, much work still remains ahead. In particular, developing and formalizing parallel
multiset rewriting/narrowing is a potential future research direction. It is also interesting to
see whether multiset narrowing encapsulating other rewriting and narrowing strategies (such
as basic narrowing [23]) can improve the multiset narrowing discussed in this paper.

References
1 An Isabelle/HOL Formalization of Rewriting for Certified Tool Assertions. Computational

Logic group at the University of Innsbruck, http://cl-informatik.uibk.ac.at/isafor/.

ITP 2024

http://cl-informatik.uibk.ac.at/isafor/


24:18 Formalization of Narrowing-Based E-Unifiability, Reachability, and Infeasibility

2 Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. Nominal narrow-
ing. In Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal
Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal,
volume 52 of LIPIcs, pages 11:1–11:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.FSCD.2016.11.

3 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
Cambridge, UK, 1998.

4 Franz Baader and Wayne Snyder. Unification Theory. In Handbook of Automated Reasoning,
Volume I, chapter 8, pages 445–532. Elsevier, Amsterdam, 2001.

5 Clemens Ballarin. Tutorial to Locales and Locale Interpretation. URL: http://isabelle.in.
tum.de/doc/locales.pdf.

6 Alexander Bockmayr. Contributions to the Theory of Logic-Functional Programming. PhD
thesis, Fakultät für Informatik, Universität Karlsruhe, 1990.

7 Andrew Cholewa, Santiago Escobar, and José Meseguer. Constrained narrowing for conditional
equational theories modulo axioms. Sci. Comput. Program., 112:24–57, 2015. doi:10.1016/J.
SCICO.2015.06.001.

8 Hubert Comon and Claude Kirchner. Constraint Solving on Terms. In Gerhard Goos, Juris
Hartmanis, Jan van Leeuwen, Hubert Comon, Claude Marché, and Ralf Treinen, editors,
Constraints in Computational Logics: Theory and Applications International Summer School,
CCL ’99 Gif-sur-Yvette, France, September 5–8, 1999 Revised Lectures, pages 47–103. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001. doi:10.1007/3-540-45406-3_2.

9 Hubert Comon-Lundh and Stéphanie Delaune. The Finite Variant Property: How to Get
Rid of Some Algebraic Properties. In Jürgen Giesl, editor, Term Rewriting and Applications,
16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings,
volume 3467 of Lecture Notes in Computer Science, pages 294–307. Springer, 2005. doi:
10.1007/978-3-540-32033-3_22.

10 Nachum Dershowitz and David A. Plaisted. Rewriting. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), pages 535–610. Elsevier
and MIT Press, 2001.

11 Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet, José Meseguer, Rubén
Rubio, and Carolyn L. Talcott. Equational Unification and Matching, and Symbolic Reach-
ability Analysis in Maude 3.2 (System Description). In Jasmin Blanchette, Laura Kovács,
and Dirk Pattinson, editors, Automated Reasoning - 11th International Joint Conference,
IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, volume 13385 of Lecture Notes in
Computer Science, pages 529–540. Springer, 2022. doi:10.1007/978-3-031-10769-6_31.

12 Santiago Escobar, Ralf Sasse, and José Meseguer. Folding Variant Narrowing and Optimal
Variant Termination. In Peter Csaba Ölveczky, editor, Rewriting Logic and Its Applications -
8th International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Paphos,
Cyprus, March 20-21, 2010, Revised Selected Papers, volume 6381 of Lecture Notes in Computer
Science, pages 52–68. Springer, 2010. doi:10.1007/978-3-642-16310-4_5.

13 M. Fay. First-Order Unification in Equational Theories. In Fourth International Workshopon
Automated Deduction, Austin, Texas, Proceedings, pages 161–167, 1979.

14 Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. J. Autom. Reason., 33(3-4):341–383, 2004. doi:10.1007/
S10817-004-6246-0.

15 Jean H Gallier and Wayne Snyder. Complete sets of transformations for general E-unification.
Theoretical Computer Science, 67(2-3):203–260, 1989. doi:10.1016/0304-3975(89)90004-2.

16 Michael Hanus. CHR(Curry): Interpretation and Compilation of Constraint Handling Rules
in Curry. In Enrico Pontelli and Tran Cao Son, editors, Practical Aspects of Declarative
Languages - 17th International Symposium, PADL 2015, Portland, OR, USA, June 18-19,
2015. Proceedings, volume 9131 of Lecture Notes in Computer Science, pages 74–89. Springer,
2015. doi:10.1007/978-3-319-19686-2_6.

https://doi.org/10.4230/LIPICS.FSCD.2016.11
http:// isabelle.in.tum.de/doc/locales.pdf
http:// isabelle.in.tum.de/doc/locales.pdf
https://doi.org/10.1016/J.SCICO.2015.06.001
https://doi.org/10.1016/J.SCICO.2015.06.001
https://doi.org/10.1007/3-540-45406-3_2
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/978-3-031-10769-6_31
https://doi.org/10.1007/978-3-642-16310-4_5
https://doi.org/10.1007/S10817-004-6246-0
https://doi.org/10.1007/S10817-004-6246-0
https://doi.org/10.1016/0304-3975(89)90004-2
https://doi.org/10.1007/978-3-319-19686-2_6


D. Kim 24:19

17 Nao Hirokawa, Aart Middeldorp, and Christian Sternagel. A New and Formalized Proof of
Abstract Completion. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem
Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes
in Computer Science, pages 292–307. Springer, 2014. doi:10.1007/978-3-319-08970-6_19.

18 Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and Robert A.
Kowalski, editors, 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980,
Proceedings, volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer, 1980.
doi:10.1007/3-540-10009-1_25.

19 Hélène Kirchner. On the Use of Constraints in Automated Deduction. In Andreas Podelski,
editor, Constraint Programming: Basics and Trends, Châtillon Spring School, Châtillon-sur-
Seine, France, May 16 - 20, 1994, Selected Papers, volume 910 of Lecture Notes in Computer
Science, pages 128–146. Springer, 1994. doi:10.1007/3-540-59155-9_8.

20 John W. Lloyd. Foundations of Logic Programming, 3rd Edition. Springer, 2012.
21 Salvador Lucas and Raúl Gutiérrez. Use of logical models for proving infeasibility in term

rewriting. Inf. Process. Lett., 136:90–95, 2018. doi:10.1016/J.IPL.2018.04.002.
22 José Meseguer and Prasanna Thati. Symbolic reachability analysis using narrowing and its

application to verification of cryptographic protocols. High. Order Symb. Comput., 20(1-2):123–
160, 2007. doi:10.1007/S10990-007-9000-6.

23 Aart Middeldorp and Erik Hamoen. Completeness results for basic narrowing. Appl. Algebra
Eng. Commun. Comput., 5:213–253, 1994. doi:10.1007/BF01190830.

24 Aart Middeldorp, Satoshi Okui, and Tetsuo Ida. Lazy Narrowing: Strong Completeness and
Eager Variable Elimination. Theor. Comput. Sci., 167(1&2):95–130, 1996. doi:10.1016/
0304-3975(96)00071-0.

25 Robert Nieuwenhuis. Decidability and Complexity Analysis by Basic Paramodulation. Inf.
Comput., 147(1):1–21, 1998. doi:10.1006/INCO.1998.2730.

26 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

27 Christian Sternagel and Akihisa Yamada. Reachability Analysis for Termination and Confluence
of Rewriting. In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I, volume 11427 of Lecture Notes
in Computer Science, pages 262–278. Springer, 2019. doi:10.1007/978-3-030-17462-0_15.

28 Prasanna Thati and José Meseguer. Complete Symbolic Reachability Analysis Using Back-and-
Forth Narrowing. In José Luiz Fiadeiro, Neil Harman, Markus Roggenbach, and Jan J. M. M.
Rutten, editors, Algebra and Coalgebra in Computer Science: First International Conference,
CALCO 2005, Swansea, UK, September 3-6, 2005, Proceedings, volume 3629 of Lecture Notes
in Computer Science, pages 379–394. Springer, 2005. doi:10.1007/11548133_24.

29 Emanuele Viola. E-unifiability via Narrowing. In Antonio Restivo, Simona Ronchi Della Rocca,
and Luca Roversi, editors, Theoretical Computer Science, 7th Italian Conference, ICTCS 2001,
Torino, Italy, October 4-6, 2001, Proceedings, volume 2202 of Lecture Notes in Computer
Science, pages 426–438. Springer, 2001. doi:10.1007/3-540-45446-2_27.

30 Akihiro Yamamoto. Completeness of extended unification based on basic narrowing. In Koichi
Furukawa, Hozumi Tanaka, and Tetsunosuke Fujisaki, editors, Logic Programming ’88, pages
1–10, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

ITP 2024

https://doi.org/10.1007/978-3-319-08970-6_19
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-59155-9_8
https://doi.org/10.1016/J.IPL.2018.04.002
https://doi.org/10.1007/S10990-007-9000-6
https://doi.org/10.1007/BF01190830
https://doi.org/10.1016/0304-3975(96)00071-0
https://doi.org/10.1016/0304-3975(96)00071-0
https://doi.org/10.1006/INCO.1998.2730
https://doi.org/10.1007/978-3-030-17462-0_15
https://doi.org/10.1007/11548133_24
https://doi.org/10.1007/3-540-45446-2_27




Formalizing the Cholesky Factorization Theorem
Carl Kwan #

The University of Texas at Austin, TX, United States of America

Warren A. Hunt Jr. #

The University of Texas at Austin, TX, United States of America

Abstract
We present a formal proof of the Cholesky Factorization Theorem, a fundamental result in numerical
linear algebra, by verifying formally a Cholesky decomposition algorithm in ACL2. Our mechanical
proof of correctness is largely automatic for two main reasons: (1) we employ a derivation which
involves partitioning the matrix to obtain the desired result; and (2) we provide an inductive invariant
for the Cholesky decomposition algorithm. To formalize (1), we build support for reasoning about
partitioned matrices. This is a departure from how typical numerical linear algebra algorithms are
presented, i.e. via excessive indexing. To enable (2), we build a new recursive recognizer for a matrix
to be Cholesky decomposable and mathematically prove that the recognizer is indeed necessary
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1 Introduction

We present an ACL2-based formalization of the Cholesky Factorization Theorem. Our
approach implements a Cholesky decomposition algorithm, chol, in the ACL2 logic, and
we verify its correctness using the ACL2 theorem prover. Our formalization is built on
existing ACL2 libraries and theories for basic vector and matrix operations (e.g. addition,
multiplication, transpose, etc.), but embedding a Cholesky decomposition algorithm required
a significant extension over existing theories. In addition to building support for a partitioned
matrix environment and functions for accessing the lower triangular part of a matrix, we also
had to develop alternate definitions for matrix operations (e.g. multiplication) and verify
them against existing definitions.

We base our Cholesky formalization on the Formal Linear Algebra Methods Environment
(FLAME) [8]. FLAME is an approach to systematically deriving numerical linear algebra
algorithms and proving1 them correct. We follow a FLAME derivation for a Cholesky

1 FLAME is “formal” in the systematic sense, not in the theorem proving sense.
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25:2 Formalizing the Cholesky Factorization Theorem

decomposition algorithm but modify the algorithm to better suit ACL2’s strength in re-
cursion and induction. The advantage to using the FLAME approach is that it represents
linear algebra algorithms in terms of operations on components of a matrix’s partitioned
representation. One common pitfall with how typical matrix algorithms are presented is
the over-reliance on indexing. Intricate indices are a common cause of bugs in programs.
Introducing indices for matrix / vector entries can also introduce numerous variables causing
formal and automated processes to become intractable. Instead, a partitioned representation
of a matrix abstracts away details that are irrelevant to the operations of interest. Another
advantage to using FLAME’s partitioned representation is that it exposes loop invariants.
This enables us to more readily derive inductive invariants and verify the correctness of our
Cholesky decomposition algorithm.

One departure from typical proofs of the Cholesky Factorization Theorem, including the
one from FLAME, is that we develop a variant of Sylvester’s criterion, a characterization
for symmetric matrices to be positive definite, for use as a hypothesis in our main result.
Sylvester’s criterion states that a symmetric matrix is positive definite iff its principal
leading submatrices have positive determinants. However, determinants do not readily lend
themselves to numerical computation. Instead, we look at the diagonal of each principal
leading submatrix and posit their positivity. The advantage of using this definition of
symmetric positive definite is that it is recursive, amenable to ACL2 formalization, and helps
automate the ACL2 proof of correctness for the decomposition algorithm. By correctness,
we mean the following:

▶ Theorem 1. Let A be a symmetric positive definite matrix. Let L be the lower triangular
part of chol(A). Then A = LLT .

Theorem 1 permits us to prove the Cholesky Factorization Theorem.

▶ Theorem 2 (Cholesky Factorization Theorem). If A is a symmetric positive definite matrix,
then A = LLT for some lower triangular matrix L.

The Cholesky Factorization Theorem states that symmetric positive definite matrices can be
decomposed into the product of a lower triangular matrix and its transpose. While the two
theorems are similar, their differences are enhanced when viewed through the lens of ACL2.
One distinction is that Theorem 2 is a quantified statement and ACL2 support for quantifiers
is limited. Propositional statements about functions, such as Theorem 1, is typically the
preferred approach for reasoning in ACL2. The discussion in this paper focuses on issues
such as these and our ACL2 formalization.

There are two primary advantages to our choice of ACL2.2 First, ACL2 is highly
automated with extensive support for rewriting. To discharge the proof of Theorem 1
in ACL2, the only knowledge necessary is the matrix partitioning and a recognizer for
the class of matrices on which the algorithm is expected to operate. Our efforts required
relatively few user-defined hints, lemmas, or events. Second, ACL2 supports the execution
of its functions via an underlying Lisp interpreter defined within the theorem prover logic.
Few theorem provers are capable of natively executing formalized functions. This makes
verifying a computational algorithm such as the Cholesky decomposition in ACL2 particularly
meaningful.

2 Technically, we use ACL2(r), a version of ACL2 with support for real numbers via nonstandard analysis,
which is only necessary for taking square roots in the Cholesky decomposition.
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The Cholesky decomposition is fundamental to numerical linear algebra and scientific
computing. For example, a common problem involves solving linear systems of the form
Ax = b, where x and b are vectors of dimension compatible with A. If A is symmetric positive
definite, then it has a Cholesky decomposition A = LLT and we obtain LLT x = Ax = b.
Finding x can be efficiently done by first solving Ly = b via forwards substitution and then
LT x = y via backwards substitution. Another practical application of Cholesky is in solving
the linear least squares problem ∥y −Bx̂∥2 = minx∈Rn ∥y −Bx∥2 for x̂. By setting A = BT B

and b = BT y, we can find the solution to the linear least squares problem by solving Ax̂ = b

in much the same way as before. In addition to these basic applications, Cholesky can be
used to find matrix inverses, perform Monte Carlo simulations, and optimize quadratic forms.
This makes Cholesky a vital tool in areas such as engineering, finance, and machine learning.

2 Related Work

To our knowledge, there is no other formal proof for the Cholesky Factorization Theorem.
There are a few theorem prover formalizations of other decomposition algorithms. In ACL2,
there is a verified executable implementation of an LU decomposition algorithm [13]. Lean’s
mathlib contains a formalization of LDL decomposition, but the matrix functions used in the
LDL decomposition are not computable [15]. In Isabelle’s Archive of Formal Proofs, there
is also a formalization of Schur decomposition [20]. Basic matrix theories have long been
formalized using theorem provers, including Coq [17], HOL4 [18], HOL Light [9] and the
aforementioned ACL2 [10, 6, 14], Lean [16], and Isabelle [19]. Notably, ACL2’s and Isabelle’s
theories of basic matrices provide executable operations.

Our work is inspired heavily by FLAME. While FLAME is “formal” in that it system-
atically derives numerical algorithms, no formal method or verification is involved with
FLAME. The relevance of FLAME to our work is that FLAME introduces a partitioned
matrix environment (PME), which enables us to approach Cholesky without the burden of
indices. Our derivation is similar to FLAME’s in that it begins with a PME, which naturally
leads to a recursive Cholesky variant. However, FLAME’s algorithm is loop based. The
FLAME approach to systematically proving the correctness of its algorithms is to identify
loop invariants. Since our Cholesky algorithm is recursive, we perform an analogous analysis
to guide the verification of our Cholesky algorithm, but with induction invariants. Note
a loop-invariant verification approach for a loop-based Cholesky algorithm may also be
possible in ACL2 using ACL2’s analogue of Common Lisp loops [2]. Because of ACL2’s
long tradition with recursion and the natural correspondence between the derivation and a
recursive Cholesky algorithm, we opted to directly verify the recursive algorithm.

3 Deriving a Verifiable Cholesky Decomposition Algorithm

A core idea behind FLAME is to recast algorithms in terms of operations on components of
a matrix’s partitioned form. This is called a partitioned matrix environment (PME). PME is
meant to make linear algebra code more intelligible, and enable the systematic derivation
and pen-and-paper proofs of numerical linear algebra algorithms. However, PME also lends
itself well to developing recursive matrix algorithms and induction proofs of their correctness.
To demonstrate this, we derive a Cholesky decomposition algorithm in this section and verify
it formally in Section 4.

ITP 2024
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Let lower-case Greek letters (e.g. α) denote real numbers, lower-case Latin letters (e.g. v)
denote vectors, and upper-case Latin letters (e.g. A) denote matrices. Since Cholesky only
deals with symmetric matrices, all matrices will be square. For ease of notation, assume any
vectors and matrices in a posed expression are compatible (e.g. if Ax = b and A is n × n,
then x and b are n × 1).

Given a (real) symmetric positive definite matrix A, i.e. A = AT and vT Av > 0 for all
nonzero v, a Cholesky decomposition for A is a lower triangular matrix L such that A = LLT .
To derive the desired Cholesky decomposition algorithm, partition A and L as follows:

A :=
(

α11 aT
12

a21 A22

)
, L :=

(
λ11
ℓ21 L22

)
.

Note that a12 = a21 since A is symmetric. Moving forward, we drop the “bars” for simplicity.
If A = LLT , then(

α11 aT
12

a21 A22

)
= A = LLT =

(
λ11
ℓ21 L22

) (
λ11 ℓT

21
LT

22

)
. (1)

This is equivalent to

α11 = λ2
11, aT

12 = λ11ℓT
21, a21 = λ11ℓ21, A22 = ℓ21ℓT

21 + L22LT
22.

We want Equation (1) to hold. Since a potential algorithm which computes L is given A, we
solve for the components of L:

λ11 = ±
√

α11, ℓ21 = a21λ−1
11 , L22LT

22 = A22 − ℓ21ℓT
21.

For our purposes, we pick λ11 = √
α11. Note that L22LT

22 is a Cholesky decomposition
for A22 − ℓ21ℓT

21. This suggests a algorithm which updates α11 and a21, and recurses on
A22 − ℓ21ℓT

21. Indeed, Algorithm 1 computes a Cholesky decomposition. The three “if”
branches handle base cases where the matrix is empty or only α11 and a21 are updated. The
recursive step updates A22 as well. Note that the algorithm accepts non-square matrices.
Even though we are only interested in the output of the algorithm under symmetric positive
definite inputs, we nonetheless deal with the non-square cases in order to simplify the
acceptance of our algorithm into the ACL2 logic.

Highlighted in Algorithm 1 are the components α11, a21, aT
12, and A22 of A prior to and

after their updates in the algorithm. Note that the only component of A that is passed
to the recursive call is A22, the “bottom right” part of A. This suggests the remaining
components need not be updated anymore. Indeed, highlighted in red are the components
of A that still need to be updated. Prior to entering the main body of the algorithm, all
components still need to be updated. But after the updates to α11, a21, and A22, the only
component that still needs to be updated is A22. The other components are already in
Cholesky decomposition form. As the recursive algorithm progresses, “layers” of the matrix
are replaced by its Cholesky decomposition.3 Visually, this progression is represented in
Figure 1. Step (1) represents a matrix prior to the updates in a recursive iteration. Green
indicates portions of the matrix that are already Cholesky decomposed and red indicates
portions of the matrix that still need to be updated. Step (2) represents the matrix within
the main body of a recursive iteration of Algorithm 1. Purple indicates the portions of the

3 This also means Algorithm 1 computes a Cholesky decomposition in place.
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Algorithm 1 A recursive Cholesky decomposition algorithm.

procedure chol(A ∈ Rn×m)

Partition A =
(

α11 aT
12

a21 A22

)
▷ If n, m > 1, then α ∈ R, a21 ∈ R(n−1)×1,

aT
12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1)

if m = 0 or n = 0 then ▷ Edge case

return
( )

▷ Return an empty matrix

else if n = 1 then ▷ Base case

return
( √

α11
a21α−1

11

)
else if m = 1 then ▷ Base case

return
(√

α11 aT
21

)
else ▷ Recursive case

α11 := √
α11

a21 := a21α−1
11

A22 := A22 − a21aT
21

return
(

α11 aT
12

a21 chol(A22)

)

Figure 1 Progress of Algorithm 1: (1) prior to updates; (2) during updates; (3) after updates.

(1) (2) (3)

matrix that are being updated. Step (3) represents the matrix after the updates are made.
As the algorithm progresses, the proportion of the matrix not yet Cholesky decomposed
decreases, until no part of the matrix needs to be updated, at which point the algorithm
terminates.

The derivation and visual progression of Algorithm 1 suggests an induction invariant,
that is, performing the updates in the algorithm computes a Cholesky decomposition for
all matrix components except for the “bottom right”. Since the recursive call operates on
a smaller matrix, the procedure eventually terminates and indeed computes a Cholesky
decomposition for A. An inductive argument, with induction hypothesis stating essentially
A22 − ℓ21ℓT

21 = L22LT
22 is Cholesky decomposable, would be sufficient to discharge a proof

of the correctness of Algorithm 1, thus providing a roadmap to verifying the Cholesky
Factorization Theorem formally.

ITP 2024
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Table 1 Common ACL2 functions, macros, and other commands used in this paper.

Command Description
define Define a function symbol, enforce guard checking, and more
defthm Name and prove a theorem, e.g. (defthm <-add-1 (< x (add-1 x)))
list Define a list, e.g. (list 1 2 3) returns (1 2 3)
car Returns the head of a list, e.g. (car (list 1 2 3)) returns 1
cons Construct a pair, e.g. (cons 1 (list 2)) returns (1 2)

/ Divide two numbers or return the reciprocal of a number, e.g. (/ 1 2) or (/ 2)
acl2-sqrt Square root of an ACL2 number, e.g. (acl2-sqrt 2)

b* Binder for local variables; often used to simplify control flow statements

4 Formally Verifying the Cholesky Factorization Theorem

To verify the Cholesky Factorization Theorem formally we need to demonstrate that
every symmetric positive matrix has a Cholesky decomposition. We embed our Cholesky
decomposition algorithm into the ACL2 logic, verify it, and apply it to compute a witness
for the desired theorem. Table 1 lists some commonly used ACL2 functions, macros, and
commands in general. Comprehensive ACL2 documentation is freely available and searchable
online [3].

We employ some existing ACL2 primitive matrix functions [10] in order to formalize
Algorithm 1, and we define our own functions to support reasoning about decomposition
algorithms in general, accessing their results, and executing them. We also formalize alternate
definitions for primitive matrix operations and prove them equivalent to the existing ones.
Table 2 lists some of these ACL2 matrix functions.

4.1 Formalizing the Decomposition Algorithm
Our ACL2 formalization of Algorithm 1 is shown in Program 1. The b* in the definition

of chol is an ACL2 macro for binding local variables with support for control flow. The first
argument to b* is a list of “bindings” and the second argument is the ACL2 expression to
which the bindings apply. For example, the third binding in Program 1’s b* is

(alph (car (col-car A)))

which declares the local variable alph to be equal to (car (col-car A)), i.e. the first element
of the first column in A. The b* macro also supports early-exit bindings. For example, the
first binding in the same b* is

((unless (mbt (matrixp A))) (m-empty))

which is triggered when A is not an ACL2 matrix and an empty matrix (m-empty) is
returned. The macro mbt is logically equivalent to its argument (i.e. (mbt x) equals x) but
immediately evaluates to t during runtime (ignoring x). This optimization is permitted by
guard verification (discussed later). Provided no early exit bindings are triggered, the b*
expression returns the second argument – in Program 1, this is

(row-cons (cons alph a12)
(col-cons a21 (chol A22)))

Note extra edge cases, such as those handling when A is not a matrix, appear in Program 1
but not Algorithm 1. In ACL2, logical functions are total, that is, all functions map all objects



C. Kwan and W. A. Hunt Jr. 25:7

Table 2 ACL2 linear algebra functions.

Function Intended Signature Description
matrixp Rn×m → {t, nil} Matrix recognizer, e.g. (matrixp (list (list 1 0))

returns t
m-emptyp Rn×m → {t, nil} Empty matrix recognizer, e.g. (m-emptyp nil) returns t
m-empty {} → R0×0 Returns an empty matrix, e.g. (m-empty) returns nil
mzero N × N → Rn×m Returns a zero matrix, e.g. (mzero 1 2) returns ((0 0))

row-car Rn×m → Rm Returns the first row of a matrix, e.g.

(row-car (list (list 1 2) (list 3 4)))

returns (1 2)
col-car Rn×m → Rn Returns the first column of a matrix, e.g. replacing

row-car with col-car in the previous example returns
(1 3)

row-cdr Rn×m → R(n−1)×m Remove a matrix’s first row, e.g.

(row-cdr (list (list 1 2) (list 3 4)))

returns ((3 4))
col-cdr Rn×m → Rn×(m−1) Remove a matrix’s first column, e.g. replacing row-cdr

with col-cdr in the previous example returns ((2) (4))
row-cons Rn×m → R(n+1)×m Append a row to a matrix, e.g.

(row-cons (list 1 2) (list (list 3 4)))

returns ((1 2) (3 4))
col-cons Rn×m → Rn×(m+1) Append a column to a matrix, e.g.

(col-cons (list 1 3) (list (list 2) (list 4)))

returns ((1 2) (3 4))
m+ Rn×m × Rn×m → Rn×m Matrix addition, e.g.

(m+ (list (list 0 1) (list 2 3))
(list (list 2 3) (list 4 5))

returns ((2 4) (6 8))
m* Rn×m × Rm×ℓ → Rn×ℓ Matrix multiplication, e.g., replacing m+ with m* in the

previous example returns ((4 5) (16 21))
sm* R × Rn×m → Rn×m Scalar-matrix multiplication, e.g.

(sm* 2 (list (list 1 2) (list 3 4)))

returns ((2 4) (6 8))
sv* R × Rn → Rn Scalar-vector multiplication, e.g. (sv* 2 (list 1 2))

returns (2 4)
out-* Rn × Rn → Rn×n Outer product, e.g. (out-* (list 1 2) (list 3 4))

returns ((3 4) (6 8))
get-L Rn×m → Rn×m Get a matrix’s lower triangular part, e.g.

(get-L (list (list 1 2) (list 3 4)))

returns ((1 0) (3 4))
mtrans Rn×m → Rm×n Matrix transpose, e.g. (mtrans (list (list 1 2)))

returns ((1) (2))

ITP 2024
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Program 1 ACL2 implementation of a Cholesky decomposition algorithm (Algorithm 1).

(define chol ((A matrixp))
:guard (and (equal (col-count A) (row-count A))

(equal (mtrans A) A))
:measure (and (col-count A) (row-count A)) ...
(mbe
:logic
(b* (;; BASE CASES

((unless (mbt (matrixp A))) (m-empty)) ;; If A not a matrix, return empty
((if (m-emptyp A)) A) ;; If A empty, return A
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((unless (realp alph)) ;; If alph not real, return a zero

(mzero (row-count A) ;; matrix of the same dimensions
(col-count A))) ;; as A

((if (<= alph 0)) ;; If alph not positive, return a
(mzero (row-count A) ;; zero matrix of the same

(col-count A))) ;; dimensions as A

;; PARTITION
(a21 (col-car (row-cdr A))) ;; [ alph | a12 ] := A
(a12 (row-car (col-cdr A))) ;; [ ---------- ]
(A22 (col-cdr (row-cdr A))) ;; [ a21 | A22 ]
(alph (acl2-sqrt alph)) ;; alph := sqrt(alph)

;; BASE CASES
((if (m-emptyp (col-cdr A))) ;; If A is a column, return
(row-cons (list alph) ;; [ 1 ] [ a1 ] = [ a1 ] = A

(sm* (/ alph) ;; [ a2/a1 ] [ a2 ]
(row-cdr A)))) ;; [ ... ] [ ...]

((if (m-emptyp (row-cdr A))) ;; If A is a row, return
(row-cons (cons alph a12) ;; [ alph a12 ]

(m-empty)))

;; UPDATE
(a21 (sv* (/ alph) a21)) ;; a21 := a21 / alph
(A22 (m+ A22 (sm* -1 (out-* a21 a21))))) ;; A22 := A22 - a21 * a21T

;; RECURSE ;; [ alph | a12 ]
(row-cons (cons alph a12) ;; [ ---------------- ]

(col-cons a21 (chol A22)))) ;; [ a21 | CHOL(A22) ]
:exec
(b* ... ) ...) ...)

in the logic. In Program 1, the logic of chol is required to handle cases where it is passed
non-matrix objects. Extra branches require more computational resources. To alleviate some
of this overhead, we can use guards to prevent the execution of functions on unintended
inputs. The macro define is a wrapper for defun that simplifies common hygienic practices,
such as using guards, when introducing new ACL2 functions. In Program 1, the guards for
chol are

(and (equal (col-count A) (row-count A))
(equal (mtrans A) A))

as indicated by the :guard key and (matrixp A) as indicated by the formal arguments
to chol. We deploy guard checking to prevent code execution under inappropriate or
unexpected circumstances, helping catch potential issues early during program execution and
avoiding unintended consequences, thus enhancing the robustness and reliability of ACL2
code. Another advantage of providing guards is it can reduce the computation performed
by the Lisp back-end. For example, if A is known to be matrixp, then we no longer need
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to perform the first check in the b* macro. If we know A is square, then we can reduce the
number of base cases. The mbe macro enables a user to introduce a function logically defined
by the term passed to the :logic key but executed with the code passed to the :exec key
when the guards are satisfied. Of course, it must be proven that the logical definition and
executed code are equivalent under these conditions.

4.2 Modifying Sylvester’s Criterion
Recall that Theorems 1 and 2 hypothesize A to be symmetric positive definite. The usual
definition for positive definiteness states that vT Av > 0 for all nonzero v ∈ Rn, which is a
quantified statement. In symbols, this is

∀v ∈ Rn, v ̸= 0 =⇒ vT Av > 0 .

This condition is not optimal for our theorem proving needs. On one hand, variables in ACL2
theorem statements are implicitly universally quantified at the top level. Quantifiers are
also further supported via Skolem functions. However, Skolem functions are not executable.
We want a recognizer for positive definite matrices to be executable because it can serve as
guard for future functions,4 and an executable recognizer more readily triggers the automatic
rewrite rules which enable us to verify the Cholesky decomposition.

Instead of using the typical definition of positive definiteness, we use a definition which
involves looking at the leading principal submatrices. Informally, the leading principal
submatrices of a matrix A are the “top left” submatrices of size k × k for k ∈ [1, n]. For
example, if a square matrix A is partitioned as

A =
(

A11 A12
A21 A22

)
and A11 is k ×k, then A11 would be the k-th leading principal submatrix of A. This approach
is particularly useful for our computational purposes because it enables us to exploit the
block structures of a matrix and restate matrix properties in terms of the same properties on
smaller submatrices, such as determinants by Schur’s formula.

▶ Proposition 3 (Schur’s formula). Let A =
(

A11 A12
A21 A22

)
. Then

det(A) = det(A11) det
(
A22 − A21A−1

11 A12
)

if A11 is invertible. Similarly,

det(A) = det(A22) det
(
A11 − A12A−1

22 A21
)

if A22 is invertible. [4]

Schur’s formula enables us to use the following alternate definition for positive definiteness.

▶ Definition 4 (Sylvester’s criterion). A symmetric matrix is positive definite iff all its leading
principal submatrices have positive determinants.

4 We could also place ACL2’s Cholesky decomposition implementation in a wrapper function with a
recognizer for symmetric positive matrices as a guard.
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Algorithm 2 An algorithm for checking whether symmetric matrices are positive definiteness.

procedure pd(A)

Partition A =
(

α11 aT
12

a21 A22

)
▷ If n, m > 1, then α ∈ R, a21 ∈ R(n−1)×1,

aT
12 ∈ R1×(m−1), A22 ∈ R(n−1)×(m−1).

if m = 0 or n = 0 then ▷ Base case

return True

if α ≤ 0 then ▷ Check if determinant is nonpositive

return False

return pd(A22 − a21α−1
11 aT

12) ▷ Recursive case

This is also a quantified statement with the added issue that determinants are known to be
computationally uncooperative. To avoid quantifiers, note the (k − 1)-th leading principal
submatrix of A is also the (k − 1)-th leading principal submatrix of the k-th leading principal
submatrix of A. The positivity of the former affects the positivity of the latter. This line of
reasoning leads to a recursive (and, in particular, executable) recognizer.

Instead of explicitly computing determinants, we recursively check the positivity of the
leading principal submatrix’s determinant as shown in Algorithm 2. To understand this
algorithm intuitively, consider the following partition

A =

A11 a12 A13
aT

21 α22 aT
23

A31 a32 A33

 .

Suppose A11 is the (k − 1)-th leading principal submatrix of A and suppose we know
det(A11) > 0. Then the determinant of the k-th leading principal submatrix of A is

det
(

A11 a12
aT

21 α22

)
= det(A11) det

(
α11 − aT

21A−1
11 a12

)
= det(A11)

(
α11 − aT

21a12/ det(A11)
)

(2)

is positive iff α11 −aT
21a12/ det(A11) > 0. In Algorithm 2, this check is performed immediately

after the recursive call.
To see an (informal) mathematical proof for why Algorithm 2 works, we require one more

result.

▶ Proposition 5. Suppose A is symmetric and partition A =
(

A11 A12
A21 A22

)
. Then A is

positive definite iff A11 is positive definite and A22 − A21A−1
11 A12 is positive definite. [4]

We are now ready to (informally) prove the correctness of Algorithm 2.

▶ Theorem 6. Algorithm 2 returns “True” on a symmetric matrix A iff every leading
principle submatrix of A has a positive determinant.

Proof. To see the forwards direction, proceed by induction on the size n of A. For n = 1, we
have A = (α11) > 0 when Algorithm 2 recognizes α > 0. Let n = k and suppose Algorithm 2
recognizes positive definiteness on symmetric matrices of size k − 1. Partition

k =
(

α11 aT
21

a21 A22

)
.
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Program 2 ACL2 function for checking positive definiteness.

(define positive-definite-p ((A matrixp))
:guard (equal (col-count A) (row-count A))
:measure (and (row-count A) (col-count A))
:returns (pd booleanp)
(b* (;; BASE CASES

((unless (matrixp A)) nil) ;; If A not a matrix, return empty
((if (m-emptyp A)) t) ;; If A empty, return A

;; CHECK IF DETERMINANT SO FAR IS POSITIVE
(alph (car (col-car A))) ;; alph := "top left" scalar in A
((unless (realp alph)) nil) ;; If alph not real, return nil
((unless (< 0 alph)) nil) ;; If alph not positive, return nil

;; BASE CASES
((if (m-emptyp (row-cdr A))) t) ;; If A is a row, return t
((if (m-emptyp (col-cdr A))) t) ;; If A is a column, return t

;; PARTITION
(a12 (row-car (col-cdr A))) ;; [ alph | a12 ] := A
(a21 (col-car (row-cdr A))) ;; [ ---------- ]
(A22 (col-cdr (row-cdr A))) ;; [ a21 | A22 ]

;; COMPUTE THE SCHUR COMPLEMENT
(alph (acl2-sqrt alph))
(a12 (sv* (/ alph) a12))
(a21 (sv* (/ alph) a21))
(A22 (m+ A22 (sm* -1 (out-* a12 a21))))) ;; A22 := A22 - a12 * a21T / alph

;; RECURSE
(positive-definite-p A22)) ;; Check if A22 is positive definite

/// ...)

Thanks to Proposition 5, A is positive definite iff α11 and A22 − a21α−1
11 aT

21 are both pos-
itive definite. If Algorithm 2 returns “True” on A, then we must have α11 > 0 and
PD

(
A22 − a21α−1

11 aT
21

)
is true. Clearly, α11 is positive definite. Note A22 and a21α−1

11 aT
21 are

both symmetric and (k − 1) × (k − 1). By the induction hypothesis, A22 − a21α−1
11 aT

21 is also
positive definite.

To see the other direction, we prove the contrapositive. Suppose Algorithm 2 returns
“False” after k recursive calls, i.e. Algorithm 2 returned “True” k − 1 times. Then some α11
must have been zero or negative. But we’ve already seen from Equation (2) that α11 is a
factor in the determinant of the k-th leading principal submatrix. Since Algorithm 2 returned
“True” all the other k − 1 times, any other factor in the expansion via Schur’s formula must
be positive. Thus the determinant of the k-th leading principal submatrix must be zero or
negative. ◀

The ACL2 implementation of Algorithm 2 is shown in Program 2. Visually, the progress
of Program 2 is demonstrated in Figure 2. The structure of the program is similar to that of
Program 1 in that it also progresses diagonally from the “top left” to the “bottom right”.
This similarity enables certain rewrite rules to fire and automatically verify the correctness
of Program 1.

4.3 Verifying the Decomposition Algorithm
Given an executable and recursive condition for positive definiteness, we are now ready to
formally prove Theorem 1 in ACL2. However, let’s first look at the informal mathematical
proof.
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Figure 2 Progress of Program 2; A(k) denotes the k-th leading principal submatrix.

Check A(1) Check A(2) Check A(3)

Program 3 ACL2 theorem for the correctness of a Cholesky decomposition program (Program 1).

(defthm chol-correctness
(b* ((L (get-L (chol A)))

(Lt (mtrans L)))
(implies (and (equal (mtrans A) A)

(positive-definite-p A)
(equal (col-count A) (row-count A)))

(equal (m* L Lt) A))))

▶ Theorem 1. Let A be a symmetric positive definite matrix. Let L be the lower triangular
part of chol(A). Then A = LLT .

Proof. Verifying the correctness of Program 1 amounts to induction on the size of A. The
case where n = 1 is straightforward. Suppose chol computes the Cholesky decomposition
for symmetric positive definite matrices of dimension (k − 1) × (k − 1). To see that chol
computes the appropriate decomposition when A is k × k, we just need to unravel one “layer”
of LLT and apply our induction hypothesis. Again partition

A =
(

α11 aT
12

a21 A22

)
so that

chol(A) =
( √

α11 aT
12

a21/
√

α11 chol
(
A22 − a21aT

12/α11
))

according to Algorithm 1. Let L be the lower triangular part of chol(A) and let L22 be
the lower triangular part of chol(A22 − a21aT

12/α11). Since A22 − a21aT
12/α11 is a symmetric

positive definite (k − 1) × (k − 1) matrix, the lower triangular part of chol on the same
matrix is its own Cholesky decomposition, i.e. L22LT

22 = A22 − a21aT
12/α11. Then

LLT =
( √

α11
a21/

√
α11 L22

) ( √
α11

a21/
√

α11 L22

)T

=
(

α11 aT
21

a21 L22LT
22 + a21aT

21/α11

)
=

(
α11 aT

21
a21 A22

)
= A (3)

as desired. ◀

Program 3 contains the ACL2 theorem for verifying the correctness of Program 1. In
addition to (positive-definite-p A), the hypothesis posits that A = AT and that A

is square. The extra symmetry condition is necessary because positive-definite-p in
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Program 4 ACL2 Skolem function positing the existence of an LU decomposition.

(defun-sk chol-fact-exists (A)
(exists (L) (and (lower-tri-p L) (equal (m* L (mtrans L)) A))))

Program 5 Theorem event automatically introduced into ACL2 by defun-sk in Program 4.

(defthm chol-fact-exists-suff
(implies (and (lower-tri-p L) ;; L is lower triangular

(equal (m* L (mtrans L)) A)) ;; L * L^T = A
(chol-fact-exists A))) ;; A has a Cholesky decomposition

Program 2 doesn’t assume that a12 is equal to a21. Similarly, Equation (3) in the proof of
Theorem 1 requires a21 = a12 in order to recover A. Ultimately, the similarity between the
structure of positive-definite-p in Program 2 and chol in Program 1 is what enables us
to discharge chol-correctness in Program 3 automatically.

4.4 From Decomposition Algorithm to Factorization Theorem

Theorem 1 is distinct from statement of Theorem 2, which posits the existence of a Cholesky
decomposition in its conclusion.

▶ Theorem 2 (Cholesky Factorization Theorem). If A is a symmetric positive definite matrix,
then A = LLT for some lower triangular matrix L.

Reasoning in ACL2 typically takes place by making propositional statements about functions,
such as Program 3 or, equivalently, Theorem 1. One advantage to this is that ACL2 is highly
automated. One disadvantage to this is that expressing statements such as Theorem 2 can
be a challenge.

While the ACL2 logic is quantifier-free, reasoning about quantified statements is still
supported by way of Skolem functions. A Skolem function in ACL2, introduced by defun-sk,
is a function whose body has an outermost quantifier. For example, an ACL2 Skolem function
for the latter part of Theorem 2 is Program 4. The function chol-fact-exists states “there
exists an L such that L is lower triangular and LLT = A”. The function lower-tri-p is
simply a recognizer for lower triangular matrices, the ACL2 code for which we omit for brevity.
To state Theorem 2 then amounts to placing a call to chol-fact-exists in the conclusion
of a typical ACL2 theorem. Strictly speaking, we are still reasoning by asserting a function
within a propositional statement; the function simply describes a quantified statement. The
specifics of defun-sk are beyond the scope of this paper. The upshot is that a theorem
of the form seen in Program 5 is automatically introduced into the ACL2 logical universe.
Essentially, the theorem chol-fact-exists-suff states that if L is lower triangular and
L multiplied by its transpose equals A, then there exists a Cholesky decomposition for A.
Ultimately, we want to eliminate the hypotheses involving L and have the conclusion hold
conditioned purely on A. If a witness is provided for L, then we can prove Theorem 2. Given
Program 3, the clear witness is the lower triangular part of (chol A). We pass the witness
by instantiating chol-fact-exists-suff and replacing L with (get-L (chol A)) using a
hint in the desired theorem. The desired theorem is Program 6.
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Program 6 The Cholesky Factorization Theorem in ACL2.

(defthm cholesky-factorization-theorem
(implies (and (equal (mtrans A) A)

(positive-definite-p A)
(equal (col-count A) (row-count A)))

(chol-fact-exists A))
:hints (("Goal" :use ((:instance chol-fact-exists-suff (L (get-L (chol A))))))))

Table 3 ACL2 statistics related to the Cholesky Factorization Theorem.

Lines of code 1140
Events 192
Prover steps 5 029 675
Verification time (s) 7.91
Memory allocated (GB) 1.37

5 Conclusion

In this paper, we formalize and verify a Cholesky decomposition algorithm. Our work is
open sourced as an ACL2 “book”, which can be found in the ACL2 GitHub repository [12]
and as part of future ACL2 releases [11]. We invite interested readers to try decomposing
their own matrices using ACL2. A summary of ACL2 statistics for this work is shown in
Table 3. Events are updates to the ACL2 logical world, such as new definitions or theorems.
Prover steps are the number of steps to justify the events. Verification was performed on a
laptop with an Apple M1 Pro CPU.

Few theorem prover formalizations of numerical linear algebra algorithms exist; this
is likely because typical numerical algorithms heavily employ indexing and few theorem
provers are equipped to reason in this manner. We embed the FLAME environment into
ACL2 so that we may verify the veracity of such algorithms. FLAME separates itself from
other approaches by presenting algorithms which are designed to be proven correct, in no
small part due to how matrices are partitioned in the derivation. The FLAME approach
facilitates a useful derivation that enables us to develop an elegant ACL2 proof for the
Cholesky Factorization Theorem.

Our Cholesky decomposition algorithm takes square roots in each recursive update which
is why we use ACL2(r). Otherwise, using the vanilla version of ACL2 (without support
for real and complex irrationals) would be sufficient. The presentation in this paper used
our logical definition of Cholesky, which involves taking square roots by way of operations
involving a nonstandard objects. To make execution more amenable, we define an alternate
Cholesky program which employs an iterative square root function sqrt-iter. This iterative
square root has been verified to converge to the logical square root acl2-sqrt [7]. It is also
possible to reason about square roots in vanilla ACL2 using only its algebraic properties, e.g.
by augmenting the field of ACL2 numbers with √ . Instead of developing a new theory
in ACL2, we decided to simply use ACL2(r). Moreover, a theory of infinitesimals, such as
the one supported by the non-standard analysis in ACL2(r), would be useful for any future
attempt at verifying the backwards error analysis of formalized numerical linear algebra
algorithms.

One major future direction for our work is to develop an ACL2 framework for reasoning
about backwards error analysis. Backwards error analysis is paramount to ensuring the
stability of numerical algorithms, thus providing a form of safety to their critical applications.



C. Kwan and W. A. Hunt Jr. 25:15

Recent ACL2 developments have enabled support for ACL2 computations involving floating-
point numbers [1], providing us with an appropriate framework to reason about floating-point
implementations of numerical algorithms. Moreover, expressing stability involves taking the
norms of vectors and matrices, which motivates our future ACL2 investigation into these
topics.

In addition to formalizing stability, we want to develop an ACL2 theory of norms
because they are used in other numerical algorithms which deserve verification, such as
QR decomposition. The QR decomposition is another fundamental algorithm in scientific
computing with numerous applications and is usually introduced by the Gram-Schmidt
process. However, we anticipate the Householder QR decomposition algorithm, a more
stable alternative to Gram-Schmidt, to share the structure of Algorithm 1. The similar
structures suggest that Householder QR may find an ACL2 verification in much the same
way as our Cholesky decomposition algorithm in this paper. We will target a Householder
QR decomposition algorithm for verification as future work.

Thus far we have discussed the use of ACL2 as a proof assistant for verifying theorems
and formalizing theories. Indeed, the relatively low ratio of lines of code to theorem prover
steps from Table 3 indicates that ACL2 has a high degree of automation in the context of
proving pure mathematical results. But another future direction is to use our work (for not
just the verification of, but also) in scientific computing’s most critical applications, which
span fields such as machine learning, medical imaging, bioengineering, finance, structural
engineering, aerospace, and much more. To make a verified numerical linear algebra library
practical, it also needs to be efficient. A concrete optimization we can make in Algorithm 1
is to ignore the strictly upper triangular part of A. Note that because A is assumed to be
symmetric and only symmetric updates are performed, namely A22 := A22 − a21aT

21, there is
no need to update both the lower triangular and the upper triangular parts. Moreover, once
the algorithm terminates, we are only interested in the lower triangular part of the result.
Instead, we can update merely the lower triangular part of A22 := A22 − a21aT

21, performing
a so-called symmetric rank-one update, to halve the computational cost of the algorithm.

Improvements can also be made to improve the baseline execution speed of our matrix
programs. By default, numeric computations are offloaded to Lisp. Significant efforts, now
part of the standard ACL2 toolbox, have been made to improve the executional efficiency of
certain kinds of models. One such improvement is the development of single-threaded objects
(stobjs) [5]. Logically, a stobj is a standard ACL2 association list; on the backend, updates
to a stobj are made via destructive memory assignments, making them highly practical in
situations where execution speed is vital. Stobjs were originally developed to improve the
simulation speeds of ACL2 microprocessor models. Given our simple “list of lists” model of
matrices, stobjs and its supporting framework, such as “access” and “update” functions, can
also be used to represent ACL2 matrices and matrix operational semantics, respectively. The
efficiency of destructive assignments in memory during field updates is ample motivation to
investigate the potential use of stobjs for numerical linear algebra algorithms, especially those
which involve computing a result in place, such as the Cholesky decomposition algorithm we
formalize in this paper.

There are very few theorem prover formalizations of numerical linear algebra algorithms
– even fewer have support for execution. Developing non-executable libraries of numerical
algorithms (formal or otherwise) seems antithetical to their computational nature. In addition
to presenting the first formalization of a major theorem in linear algebra, our work in this
paper sets a precedent for verified scientific computing in the future.
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Abstract
In dependently typed proof assistants, users can declare axioms to extend the ambient logic locally
with new principles and propositional equalities governing them. Additionally, rewrite rules have
recently been proposed to allow users to extend the logic with new definitional equalities, enabling
them to handle new principles with a computational behaviour. While axioms can only break
consistency, the addition of arbitrary rewrite rules can break other important metatheoretical
properties such as type preservation. In this paper, we present an implementation of rewrite rules on
top of the Coq proof assistant, together with a modular criterion to ensure that the added rewrite
rules preserve typing. This criterion, based on bidirectional type checking, is formally expressed in
PCUIC – the type theory of Coq recently developed in the MetaCoq project.
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1 Introduction

Dependently typed languages are the basis of major proof assistants like Agda [11], Coq [15]
and Lean [5]. In these systems, since general equality is undecidable, it is split into a decidable
fragment called definitional and the complete but undecidable propositional equality. While
propositional equality can be extended through axioms, definitional equality is defined upfront
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recently proposed by Cockx et al. [3], can mitigate these limitations, by allowing users
to extend definitional equality in a powerful way through custom reductions. A standard
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Symbol pplus : N → N → N.
Infix "++" := pplus.
Rewrite Rules pplus_rew :=
| 0 ++ ?n ⇝ ?n | S ?m ++ ?n ⇝ S (?m ++ ?n)
| ?m ++ 0 ⇝ ?m | ?m ++ S ?n ⇝ S (?m ++ ?n).

The symbol pplus behaves as standard addition, but with additional definitional equalities,
that only hold propositionally for standard addition. For instance, n ++ 0 and 0 ++ n are
both definitionally equal to n. This example shows the definition of a function that could
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the logic of Coq with new powerful constructions like inductive-recursive types using rewrite
rules. As an illustration, consider the definition of (a simple version of) a universe of types:

Axiom U : Type.
Symbol El : U → Type.
Symbols (N : U) (Pi : ∀ a : U, (El u → U) → U).
Symbol U_rect : ∀(P : U → Type), P N → (∀ a b, (∀ A : El a, P (b A)) → P (Pi a b)) → ∀ u, P u.
Rewrite Rules U_rect_rew :=
| U_rect ?P ?pN ?pPi N ⇝ ?pN
| U_rect ?P ?pN ?pPi (Pi ?a ?b) ⇝ ?pPi ?a ?b (fun (A : El ?a) ⇒ U_rect ?P ?pN ?pPi (?b A)).
Rewrite Rules El_red :=
| El N ⇝ N
| El (Pi ?a ?b) ⇝ ∀ (A : El ?a), El (?b A).

Without rewrite rules, this construction can be fully postulated with axioms using proposi-
tional equality, but in practice neither the elimination principle U_rect nor function El will
compute, which makes the construction much less convenient to use. From this point of
view, strictly positive indexed inductive types currently available in Coq can be seen as one
particular class of inductive constructions that have been anticipated, justified and provided
natively in the system. Rewrite rules allow users to go outside this fragment, for instance by
defining a non-strictly positive inductive type.1

However, contrarily to axioms which can only endanger consistency, the power of rewrite
rules needs to be put in check or important metatheoretical properties can be broken. The
work of Cockx et al. puts in light that the first property that rewrite rules must verify is
confluence, otherwise subject reduction can be broken and type checking quickly becomes
undecidable. They develop a criterion that can be checked to determine if a rewriting system
satisfies confluence, namely the triangle property [3].

To preserve subject reduction of the complete theory, rewrite rules must also verify a
second property, type preservation, that is if t : T and t rewrites to t′, then t′ : T . In [3], type
preservation of rewrite rules is simply postulated, and one of the main contributions of this
paper is to present a criterion to decide type preservation. A simple and intuitive check for
type preservation is to require that the equality induced by the rewrite rule should be well
typed for every possible instance (∀x⃗, p = r). There are however problems with this criterion
as terms don’t have a unique type in Coq because of the subtyping introduced by universe
cumulativity (Type@{u} is a subtype of Type@{v} when u ⩽u v). Let us see a few examples
of how rewrite rules may break type preservation in ways that are difficult to notice.

▶ Example 1. If we consider an identity function on types, which simply returns its argument,
cumulativity should mandate that the domain universe be smaller than the codomain universe.
However, in the following example with a rewrite rule, this restriction is not enforced.

Symbol id@{u v} : Type@{u} → Type@{v}.
Rewrite Rule id_rew := id ?T ⇝ ?T.
Universe a.
Check id Type@{a} : id Type@{a}.

The reason is that the naive check only mandates that both universes share a common bigger
universe – something which is always verified. Thus, the check doesn’t forbid this rule which
nonetheless breaks consistency by allowing the existence of a term U : U [8, 9].

1 The fact that general non-strictly positive inductive types are unsafe is due to Coquand and Paulin [4],
but the argument uses impredicativity.
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This paper demonstrates that establishing a sound criterion for type checking, in the absence
of unique types, requires an asymmetry between both sides side of the rewrite rules. Indeed,
having a common type is not enough, but the correct criterion rather ensures that the
right-hand side of a rewrite rule checks against the principal type inferred from the pattern
on the left-hand side.

Another issue with the naive criterion is that the type of the variables x⃗ that appear in
the pattern might also not be unique, and just testing for one possibility that works is not
enough.

▶ Example 2. Let us consider a symbol which extracts the domains of product types, which
can be defined as follows:

Symbol dom : Prop → Prop.
Rewrite Rule dom_rew := dom (∀ (x : ?A), ?B) ⇝ ?A.
Eval compute in dom (∀ (x : N), True). (* N : Prop *)

The problem here is that no information tells us what sort ?A has in the pattern in general,
since the domain of a product type may have any sort quality (SProp, Prop or Type). Our
naive criterion, however, fails to detect the issue because the equality is well typed when
both ?A and ?B have type Prop, since then both the pattern and the replacement term will
have that type, and this problematic rule can then be accepted.

The correct criterion will make use of typing in patterns to try to find equalities between
pattern variables, so they can be used when typing the replacement term. We can however
also face an issue if we use the existing unification algorithm as is on patterns, since it uses
shortcut heuristics which don’t always assume the worst.

▶ Example 3. Consider the following:

Inductive Box (b : B) : Type := box. (* box : ∀ (b : B), Box b *)
Symbol I : B → B.
Symbol C : ∀ (b : B), Box b → Box (I b).
Symbol D : ∀ (b : B), Box (I b) → Box b.
Rewrite Rule D_C := D _ (C _ ?b) ⇝ ?b.

Rewrite Rule I_rew := I _ ⇝ false.

Definition a : Box false := (D false (C _ (box true))).
Eval compute in a. (* box true : Box false *)

The rewrite rule D _ (C _ ?b) ⇝ ?b looks enticing, if the box is not to be considered as a
truncation. However, we don’t know the behaviour of I at that point, and as we add rule
I _ ⇝ false, our first rule loses its type preservation property, so it should not in fact have
been accepted in the first place.

The last meta-theoretical property that is not endangered by adding axioms but may break
with additional rewrite rules is termination. However, non-termination cannot introduce
proofs of ⊥; these can only come from the declaration of symbols and rules which are
inconsistent propositionally from the start [3, Section 6.4]. It does not break subject
reduction either, and we can derive a type checker that is valid irrespective of termination,
in the sense that if it answers, the answer is correct. Non-termination can at worst result
in type checking divergence. Therefore, we can show subject reduction with our criterion
without relying on termination.

ITP 2024
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A, B, P, T, c, t, . . . ::= x variable
| ?x{t⃗} metavariable
| s sort
| A axiom
| C constructor
| I inductive
| t t′ application
| λ(x : A : s), t abstraction
| ∀(x : A : s), (B : s′) product
| case c return P : s with t⃗ case destruction
| fix f : T := t fixpoint

s, s′ ::= □q
u sort

q ::= SProp
∣∣ Prop

∣∣ Type qualities

Figure 1 The (annotated) syntax of PCUIC, extended with metavariables.

In this paper, we present how rewrite rules can be added to PCUIC, the theory of the
kernel of Coq as defined in the MetaCoq project [13, 14] Coq, and extend the work of Cockx
et al. [3] by providing a criterion for type preservation in presence of cumulativity. Rewrite
rules, as described in this paper and using the syntax demonstrated in the examples, have
been implemented and recently integrated into the development branch of the Coq proof
assistant.2 This means they are expected to be available in the upcoming release 8.20 of Coq.

Outline of the paper. We begin by presenting an extension of PCUIC with metavariables
in Section 2. We then define rewrite rules in Section 3 before explaining the type preservation
criterion in Sections 4 and 5. Finally, we explore the implementation in Section 6 and
conclude with related and future work in Sections 7 and 8.

2 PCUIC with Metavariables

2.1 Syntax
PCUIC, whose syntax is given in Figure 1, is a formal description of the kernel of Coq,
as defined in the MetaCoq project [14]. It is a dependent type theory with inductive
types, where inductive elimination is split between fixpoints and case analysis. Its sorts
are of three different so-called qualities: the usual Type hierarchy, with universe levels u

as index, and two additional sorts Prop and SProp. These two last sorts are impredicative,
and SProp also has definitional uniqueness of proofs, i.e., any two elements of a type in
SProp are convertible. Universes are ordered with ⩽u, but when the quality of a sort is
Prop or SProp, its universe becomes irrelevant. This defines an ordering ⩽s on sorts with
□q

u ⩽s □
q′

u′ ⇐⇒ q = q′ ∧ (q ∈ {SProp, Prop} ∨ u ⩽u u′). We also order □Prop
u <s □

Type
u′ .

One should note that λ-abstractions, products and cases are heavily annotated; the type
annotation on the domains is standard for PCUIC, but the additional sort annotations are

2 https://github.com/coq/coq/pull/18038

https://github.com/coq/coq/pull/18038
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only required for the proof of our type preservation criterion and should be considered as
virtual. They can be unambiguously obtained from the typing judgment on the term and
will also be omitted when they aren’t useful.

To account for higher-order rewrite rules, the syntax needs to be extended with higher-
order variables – henceforth called metavariables. A metavariable ?x{t⃗} is meant to live
in an extended context, where said context extension is to be instantiated by the context
instantiation t⃗ that the metavariable carries. While regular variable substitution will be
denoted as t[τ ], metasubstitution – substitution for metavariables – will be denoted as
t{σ}. Regular substitutions do nothing to metavariables, they only propagate to the context
instantiation: (?x{t⃗})[τ ] = ?x{

−→
t[τ ]}. Dually, metasubstitutions do nothing to variables

and operate solely on metavariables as (?x{t⃗}){σ} = σ(?x)[
−−→
t{σ}], they also propagate

transparently to subterms on all other grammar constructions. Note that metasubstitutions
need to be defined on all metavariables of the substituted term, a condition that will be
verified for metasubstitutions appearing in rewrite rules.

2.2 Typing

The typing judgment of PCUIC is described in Figure 2. Judgement Σ; Θ; Γ ⊢ t : T states
that term t has type T in local context Γ, metavariable context Θ and environment Σ; its
rules are standard. The type of sorts needs to take into account qualities : □Prop

− and □SProp
−

both have type □Type
0 and □Type

u has type □Type
u+1 ; this is condensed in the universe successor

function ↑q u which equals u + 1 when q = Type and 0 otherwise. Similarly, the sort of a
product has the quality of its codomain, but its universe level depends on both sorts: u ∗q

q′ u′

is max(u, u′) if q = q′ = Type and u′ otherwise.

Environment Σ can contain axiom declarations and inductive declarations. An axiom
declaration simply gives a name and a type associated with it. An inductive declaration
contains a name I, a context of parameters Γp, a context of indices Γi and a list of constructors,
each with its name Ck, context Γk and instantiation of the indices ı⃗k. Note that ı⃗k may
depend on Γp, Γk. Rule (Case) asks for a scrutinee c of type I with some instantiation of
the parameters p⃗ and some instantiation of the indices ı⃗, a return type P which depends on
a generic instance of the inductive with the given parameters and branches at the return
type specialized with the indices of the associated constructor, in the extended context of the
constructor. Typing of environment Σ should enforce the usual strict positivity condition on
inductive type declarations in order to preserve consistency.

In order to define typing of metavariables, the typing judgement needs to take as input
a metavariable context Θ. Its elements are of the form (Γ?x ⊢ ?x : T ), which reads as “?x

is of type T in context extension Γ?x”; which means in turn that the context instantiation
associated to ?x must instantiate Γ?x. Technically, the typing rule for metavariables (Rule
Meta) differs from the rule for variables (Rule Var) in that it additionally checks that
Σ; Θ; Γ ⊢ t⃗ : Γ?x, where typing is extended to substitution in a pointwise way.

Note that we remained abstract in our notion of guard condition for fixpoints. Indeed,
fixpoints need to recurse on structurally smaller arguments in order to avoid inconsistencies.
Moreover to ensure termination, the computation rule for fix is typically guarded so that
fixpoints only unfold when they can consume a constructor. We forego this condition as we
do not worry about termination in this paper.

ITP 2024
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Σ; Θ ⊢ Γ (x : T ) ∈ Γ
Σ; Θ; Γ ⊢ x : T

Var
Σ; Θ ⊢ Γ (C : T ) ∈ Σ

Σ; Θ; Γ ⊢ C : T
EnvVar

Σ; Θ ⊢ Γ (Γ?x ⊢ ?x : A) ∈ Θ Σ; Θ; Γ ⊢ t⃗ : Γ?x

Σ; Θ; Γ ⊢ ?x{t⃗} : A
Meta

Σ; Θ ⊢ Γ
Σ; Θ; Γ ⊢ □q

u : □Type
↑qu

Sort

Σ; Θ; Γ ⊢ f : ∀(x : A), B Σ; Θ; Γ ⊢ t : A

Σ; Θ; Γ ⊢ f t : B[x := t]
App

Σ; Θ; Γ ⊢ A : □q
u Σ; Θ; Γ, x : A ⊢ t : B

Σ; Θ; Γ ⊢ λ(x : A : □q
u), t : ∀(x : A), B

Lambda

Σ; Θ; Γ ⊢ A : □q
u Σ; Θ; Γ, x : A ⊢ B : □q′

u′

Σ; Θ; Γ ⊢ ∀(x : A : □q
u), (B : □q′

u′) : □q′

u∗q

q′ u′

Forall

(Γp, Γi, [I : ∀Γp, ∀Γi,□
qI
uI

], Γ⃗k, [Ck : ∀(p⃗ : Γp), ∀Γk, I p⃗ ı⃗k]k) ∈ Σ Σ; Θ; Γ ⊢ c : I p⃗ ı⃗

Σ; Θ; Γ, (⃗ı : Γi), (x : I p⃗ ı⃗) ⊢ P : □q
u Σ; Θ; Γ, (⃗a :Γk) ⊢ bk : P [Γi := ı⃗k, x := Ck p⃗ a⃗]k

Σ; Θ; Γ ⊢ case c return P : □q
u with b⃗k : P [Γi := ı⃗, x := c]

Case

Σ; Θ; Γ ⊢ T : □q
u Σ; Θ; Γ, f : T ⊢ t : T t guarded
Σ; Θ; Γ ⊢ fix f : T := t : T

Fix

Σ; Θ; Γ ⊢ t : A Σ; Θ; Γ ⊢ A ⩽ B Σ; Θ; Γ ⊢ B : □q
u

Σ; Θ; Γ ⊢ t : B
Cumul

Σ; Θ; Γ ⊢ (λ(x : A), t) a→ t[x := a]
β

Σ; Θ; Γ ⊢ fix f := t→ t[f := fix f := t]
FixRed

(Γp, Γi, [I : ∀Γp, ∀Γi,□
qI
uI

], Γ⃗k, [Ck : ∀(p⃗ : Γp), ∀Γi, I p⃗ ı⃗k]k) ∈ Σ
Σ; Θ; Γ ⊢ case Cj p⃗ a⃗ return P with b⃗k → bj [Γj := a⃗]

ι

Σ; Θ; Γ ⊢ □q
u ⩽s □

q′

u′

Σ; Θ; Γ ⊢ □q
u ⩽α □

q′

u′

Σ; Θ; Γ ⊢ T : SProp Σ; Θ; Γ ⊢ t : T Σ; Θ; Γ ⊢ u : T

Σ; Θ; Γ ⊢ t ⩽α u

?x ∈ Θ Σ; Θ; Γ ⊢ t⃗ ≡α t⃗′

Σ; Θ; Γ ⊢ ?x{t⃗} ⩽α ?x{t⃗′}
Σ; Θ; Γ ⊢ f ⩽α f ′ Σ; Θ; Γ ⊢ a ≡α a′

Σ; Θ; Γ ⊢ f a ⩽α f ′ a′

Σ; Θ; Γ ⊢ A ≡α A Σ; Θ; Γ ⊢ t ⩽α t′

Σ; Θ; Γ ⊢ λ(x : A : □q
u), t ⩽α λ(x : A′ : □q′

u′), t′

Σ; Θ; Γ ⊢ A ≡α A′ Σ; Θ; Γ ⊢ B ⩽α B′

Σ; Θ; Γ ⊢ ∀(x : A : □q
u), (B : □q1

u1
) ⩽α ∀(x : A′ : □q′

u′), (B′ : □q′
1

u′
1
)

Figure 2 Typing, reduction and cumulativity judgment in PCUIC with metavariables.
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p ::= x variable
| □q

?x sort
| C constructor
| I inductive
| S symbol
| p a application
| λ(x : a : s), p abstraction
| ∀(x : a : s), (b : s′) product
| case p return a : s with b⃗ case destruction

a, b ::= p | ?x pattern / pattern variable
q ::= SProp

∣∣Prop
∣∣Type

∣∣?x explicit quality / quality variable
s, s′ ::= □?y

?x pattern sort annotation

Figure 3 Syntax of patterns p and argument patterns a, b.

2.3 Cumulativity
Our typing judgment contains a cumulativity rule (Cumul), instead of the more traditional
conversion rule. Cumulativity is defined similarly to conversion, except that we allow
subtyping on sorts: □q

u ⩽s □
q′

u′ . Formally, cumulativity is defined as the transitive closure
⩽ of → ∪ ← ∪ ⩽α where → is reduction, ← antireduction (the relation symmetric to →)
and ⩽α is α-cumulativity. We also define conversion ≡ by replacing α-cumulativity with
α-conversion. The reduction is generated by β and ι-reductions, unfolding of fixpoints (Rule
FixRed) and is allowed to happen in any subterm. α-cumulativity is roughly α-equality
with the cumulativity rule on sorts explained above, closed by congruence. However, most
subterms need to be convertible and not only cumulative in the congruence. Formally,
cumulativity ⩽α is defined with the rules described in Figure 2 and the other congruences
where all subterms need to be related with ≡α, where t ≡α t′ is defined as t ⩽α t′ ∧ t′ ⩽α t.

PCUIC also supports SProp’s proof irrelevance in α-cumulativity. The rule given is more
idealistic than the real presentation with relevance marks [7] but the differences won’t matter
here.

3 Rewrite Rules

A rewrite rule is composed of a left-hand side, called pattern, and a right-hand side, called
replacement term, and written p⇝ r. When it is applied, a term t is matched against the
pattern p to extract subterms at the holes of the pattern to form a metasubstitution σ, which
is then substituted in the replacement term r, resulting in reduction t→ r{σ}. As explained
in the introduction, restrictions are needed so that the metatheory of PCUIC does not break.

3.1 Pattern
The syntax of patterns is described in Figure 3. As a separation from axioms, that never
reduce, we introduce in PCUIC a new class of constants named symbols, which is a specific
subclass of axioms on which rewrite rules operate.

Patterns corresponds to a subset of terms that need to be rigid. Their holes are denoted
as metavariables (?x, also called pattern variables) in the pattern. Note that, unlike
metavariables, pattern variables don’t carry context instantiations. Thus to see a pattern

ITP 2024
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t
∣∣ ?x {[?x := t]} x

∣∣ x {[]}
C ∈ Σ (not a def. or axiom)

C
∣∣ C {[]}

q explicit quality
□q

u

∣∣□q
?xu
{[?xu := u]} □q

u

∣∣□?xq

?xu
{[?xq := q; ?xu := u]}

f
∣∣ p {σ1} t

∣∣ a {σ2}
f t

∣∣ p a {σ1 + σ2}

A
∣∣ a {σ1} t

∣∣ p {σ2}

λ(x : A : □q′

u′), t
∣∣ λ(x : a : □q

u), p {[q := q′; u := u′]+σ1 + σ2}

A
∣∣ a {σ1} B

∣∣ b {σ2}

∀(x : A : □q′
1

u′
1
), (t : □q′

2
u′

2
)

∣∣ ∀(x : a : □q1
u1

), (b : □q2
u2

) {[q⃗i := q⃗′
i; u⃗i := u⃗′

i]+σ1 + σ2}

c
∣∣ p {σc} P

∣∣ a {σP } bi

∣∣ bi {σi}

case c return P : □q′

u′ with b⃗i

∣∣ case p return a : □q
u with b⃗i {[q := q′; u := u′]+σc + σP +

∑
σi}

Figure 4 Description of pattern matching.

variable as a term, we have to add the identity instantiation {|∆| := ∆} for ∆ the context in
which the pattern variable lives. This gives us an injection p 7→ p from patterns to terms.
From now on, we will simply use the change of color to represent this injection.

The rigidity requirements manifest as limitations on where holes may appear, so patterns
are split into bona fide patterns, where holes will not be allowed, and argument patterns
where they will be allowed. Since term reduction happens in a stack machine, the reduction
of rewrite rules has to work on the machine representation of terms which have already been
reduced to weak head normal form. For instance, having a hole at the head of eliminations
(e.g., pattern ?f ?a against term (λx f, f x) 0 S) would be unstable (does ?a match with 0
or S?) and would not commute with other reductions (?f can match with S after reductions),
so it must be forbidden. This means that argument patterns may be anywhere but at the
main subterm of an elimination construction, that is an application or a case destruction.

We also have to impose additional restrictions to prove confluence; they are listed and
justified in Section 4.1. Finally, since we don’t want to try all rewrite rules at all steps in
reduction, we restrict patterns such that the head of their main branch of the pattern needs
to be a symbol, which will be the starting point to pattern matching during reduction.

In the end, each rewrite rule induces the following reduction rule:

(p⇝ r) ∈ Σ t
∣∣ p {σ}

Σ; Θ; Γ ⊢ t→ r{σ}
Rew

where t
∣∣ p {σ} denotes the matching of p against a term t as described in the following

section.

3.2 Pattern-Matching
Pattern matching is the operation that tries to match a term t against a pattern p, resulting
in a metasubstitution σ when it succeeds. Each pattern constructor can match against the
associated term constructor, trying to match recursively, and pattern variable match against
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any term to fill the metasubstitution. It is denoted as t
∣∣ p {σ} and is formally defined in

Figure 4. Actually, pattern matching can also match universes against universe variables and
sort qualities against quality variables, so the resulting σ contains in fact a metasubstitution,
a universe substitution and a sort quality substitution. These last two substitutions are
defined transparently on terms, only having effect on the quality and universe variables they
carry. Pattern matching verifies one crucial property: ∀p t σ, t

∣∣ p {σ} =⇒ t ≡α p{σ}. This
α-conversion would be an equality if not for the fact that some technical information is lost
by pattern matching, such as names of binders.

Note that patterns are as heavily annotated as terms, but in this case it is required in
the normal course of operations. Indeed, during the typing pass, we need to give a type to
argument patterns so they can be provided to all pattern variables. This means that all type
fields need an annotation to name the quality and universe of said type. These annotations
can however not be used during pattern matching, as they contain no computational content;
the quality and universe that are matched from the virtual annotation of terms can be
considered virtual as well. These type annotations are used to avoid the issue presented
in Example 2 where the type of a pattern variable may vary depending on the term being
matched.

4 A Criterion to Guarantee that Rewrite Rules are Type Preserving

This section presents the criterion to ensure that rewrite rules preserve typing. To be
able to prove any property surrounding subject reduction, we first have to ensure crucial
properties like injectivity of product types, which are the consequences of the completeness
of algorithmic cumulativity (defined as →∗;⩽α;←∗). Informally, this means that for a given
proof of cumulativity, we have to build a standardization of it that starts with repeated →,
then repeated ⩽α, then repeated ← (that is, we reduce both sides before applying ⩽α). To
achieve this, we prove in Section 4.1 that we can move the different relations around, which
needs confluence and postponement of α-cumulativity after reduction. This idea follows
exactly the proof performed in MetaCoq [14].

Then, we define in Section 4.2 (bidirectional) type inference of patterns which is at the
heart of the definition of our criterion for subject reduction. Section 4.3 is devoted to the
proof that the criterion indeed ensures subject reduction.

4.1 Confluence and Postponement of α-cumulativity
We first turn to the proof of confluence and postponement of α-cumulativity after reduction.
To ensure confluence, we want to use the triangle criterion [3]. The criterion only applies
with left-linear rewrite rules, which means that patterns variable will be required to appear
at most once in the pattern. The triangle criterion on rewrite rules says that when t

∣∣ p {σ},
with (p ⇝ r) ∈ Σ and t′

∣∣ p′ {σ′} with (p′ ⇝ r′) ∈ Σ for t′ a subterm of t (t = C[t′]) not
in σ (so inspected by pattern p), then C[r′{σ′}]⇛ r{σ} where ⇛ is the parallel reduction
(reduction of several redexes at the same time).

However, since PCUIC and the grammar of patterns are richer than the theory of Cockx
et al., there are additional concerns we have to consider. First, the pattern syntax is rich
enough to allow for β- and ι-redexes, which introduce critical pairs with the rewrite rule
being created. One way to fix the issue would be to include these reductions in the triangle
criterion, but since the reducts do not fit as patterns, this would be as restrictive as outright
forbidding them, the approach we chose. Second, our system includes the sort SProp and
its conversion rule, so rewriting needs to account for it. This means that patterns whose
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(Γ ⊢ ?x : A) ∈ Θ
Σ; Θ; Γ ⊢p ?x ◁ A

PatVar
Σ; Θ; Γ ⊢p p ▷ A Σ; Θ; Γ ⊢p A ⩽p B

Σ; Θ; Γ ⊢p p ◁ B
Conv

(x : A) ∈ Γ
Σ; Θ; Γ ⊢p x ▷ A

Var
(C : T ) ∈ Σ

Σ; Θ; Γ ⊢p C ▷ T
Ax-Symb

Σ; Θ; Γ ⊢p □
q
u ▷□Type

↑qu

Sort

Σ; Θ; Γ ⊢p p ▷ ∀(x : A), B Σ; Θ; Γ ⊢p a ◁ A

Σ; Θ; Γ ⊢p p a ▷ B[x := a]
App

Σ; Θ; Γ ⊢p a ◁□q
u Σ; Θ; Γ, (x : a) ⊢p p ▷ B

Σ; Θ; Γ ⊢p λ(x : a : □q
u), p ▷ ∀(x : a), B

Lambda

Σ; Θ; Γ ⊢p a ◁□q
u Σ; Θ; Γ, (x : a) ⊢p b ◁□q′

u′

Σ; Θ; Γ ⊢p ∀(x : a : □q
u), b : □q′

u′ ▷□q′

u∗q

q′ u′

Forall

(Γp, Γi, [I : ∀Γp, ∀Γi,□
qI
uI

], Γ⃗k, [Ck : ∀(p⃗ : Γp), ∀Γk, I p⃗ ı⃗k]k) ∈ Σ Σ; Θ; Γ ⊢p p ▷ I p⃗ ı⃗

Σ; Θ; Γ, (⃗ı : Γi), (x : I p⃗ ı⃗) ⊢p a ◁□q
u Σ; Θ; Γ, Γk ⊢p bk ◁ a[Γi := ı⃗, x := Ck p⃗ ı⃗k]

Σ; Θ; Γ ⊢p case p return a : □q
u with b⃗k ▷ a[Γi := ı⃗, x := p]

Case

Figure 5 Type inference of patterns.

type is in SProp (or equivalently, patterns which are syntactically irrelevant) can never be
inspected reliably since the term could always be swapped by any other term of the same
type. Therefore, irrelevant patterns need to be forbidden as well. Note that pattern holes
may appear at irrelevant positions, since they do not inspect the term and thus do not
conflict with the conversion rule, so the ban is specifically on patterns and not on argument
patterns.

Once this is done, the proof of confluence follows exactly the proof done by Cockx et al.,
which was already a variation on the proof done in [14]. The triangle criterion is used to
show that one-step parallel reduction satisfies the triangle lemma saying that for any term t,
there exists an optimally reduced term ρ(t) (that performs all possible reductions in parallel)
such that t⇛ ρ(t) and for any t⇛ u, u⇛ ρ(t). Confluence is then a direct consequence of
this triangle lemma and the fact that parallel reduction entails reduction.

Let us now prove postponement of α-cumulativity after reduction. The use of α-
cumulativity needs to be moved after all reductions, so we need the following property:
t→ t′ ∧ t ⩽α u =⇒ ∃u′, u→∗ u′ ∧ t′ ⩽α u′ (and the same one if we change the direction of
⩽α). Starting from the proof for regular PCUIC which does an induction on t→ t′, the only
additional case of reduction is the application of a rewrite rule. So long as ⩽α consists of
congruence rules and cumulativity, there is no issue for reapplying the rewrite rule on u (⩽α

can be postponed after pattern matching and is stable under metasubstitutions). However,
when the irrelevance rule of SProp is used, we are only able to reapply the rewrite rule if the
pattern doesn’t inspect the irrelevant subterm. With the restriction introduced above, we
ensure that the rewrite rule can be reapplied to u once more.
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4.2 Type Inference of Patterns
As mentioned in Section 1, the typing criterion on rewrite rules to ensure subject reduction
cannot be solely based on the typing judgment of PCUIC. Actually, what needs to be checked
is that the most general type that can be given to a term matching a pattern is a valid type
for the right-hand side of the rewrite rule, when its variables also have the most general type
allowed by the pattern.

To define this formally, we introduce the notion of type inference in a pattern. This
notion is based on bidirectional typing as presented for instance in [10]. Technically, the
type of a pattern will be inferred, denoted as Σ; Θ; Γ ⊢p p ▷ T , while the type of an argument
pattern will only be checked, denoted as Σ; Θ; Γ ⊢p a ◁ T . The rules for pattern inference are
given in Figure 5.

Most of the rules follow the standard bidirectional discipline. For instance, the type of a
variable (Var) is directly inferred from the local context, and the type of an application (App)
is inferred by inferring the type for the function and checking the type of the argument
pattern against the domain of the function.

Let us remark once again that the sort annotations which correspond to the virtual
annotations of terms (e.g., the domain in rule (Forall)) are needed to check the associated
type fields, whereas the usual discipline would have been to infer them and coerce them to
sorts.

The main specificity with respect to standard bidirectional typing lies in the rule (PatVar)
for checking a pattern variable. In our presentation, we consider that Θ is given and mentions
exactly the pattern variables occurring in the pattern. The rule then checks that the type
mentioned in Θ is exactly the one that is checked. Since our criterion needs for pattern
variables to have the most general type they can have, we need this rule to be in checking
mode. In an algorithmic presentation, Θ can in fact be constructed solely from the typing of
the pattern and can then be considered an output of the typing procedure, along with the
inferred type of the whole pattern.

One last crucial rule is (Conv), which allows changing bidirectional modes. It makes use
of the pattern cumulativity relation, which will be characterised and defined in Section 5, but
can for the moment be approximated with regular term cumulativity (they both compare
regular terms).

Using this notion of type inference of patterns, we define the following criterion for
subjection reduction.

▶ Definition 4 (Type-preservation criterion). A rewrite rule p⇝ r is said to be type-preserving
in the global environment Σ when there exists a metavariable context Θ and type Tp such
that Σ; Θ; [] ⊢p p ▷ Tp and Σ; Θ; [] ⊢ r : Tp.

We now turn to the proof that this criterion is enough to deduce subject reduction.

4.3 Subject Reduction
In this section, we consider a fixed rewrite rule p ⇝ r that satisfies the type-preservation
criterion in environment Σ0 for the metavariable environment Θ at type Tp. To show that the
type system has subject reduction, we have to show that the rewrite rule is type preserving
in all extended environments and all local contexts, which means:

∀Σ ⊇ Σ0, Γ, t, T , σ, Σ; []; Γ ⊢ t : T ∧ t
∣∣ p {σ} =⇒ Σ; []; Γ ⊢ r{σ} : T .

We first determine the properties that type inference ⊢p needs to satisfy before proving
the implication. Let us fix an environment Σ ⊇ Σ0 and a local context Γ.
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1. We need to work under environment Σ instead of Σ0. Fortunately, ⊢ satisfies environment
weakening and we can verify that ⊢p also satisfies it, so we can really work under
assumptions Σ; Θ; [] ⊢p p ▷ Tp and Σ; Θ; [] ⊢ r : Tp.

2. We can use the substitution property of ⊢ and the fact that types are well typed to remove
all mentions of r in our implication: since ∀σ, Σ; []; Γ ⊢ σ : Θ =⇒ Σ; []; Γ ⊢ r{σ} : Tp{σ}
and Σ; []; Γ ⊢ T : □q

u for some q and u, implying that (Σ; []; Γ ⊢ r{σ} : Tp{σ} ∧
Tp{σ} ⩽ T ) =⇒ Σ; []; Γ ⊢ r{σ} : T , it only remains to prove the following anti-
substitution lemma:

∀t, T , σ, Σ; []; Γ ⊢ t : T ∧ t
∣∣ p {σ} =⇒ Σ; []; Γ ⊢ σ : Θ ∧ Σ; []; Γ ⊢ Tp{σ} ⩽ T .

3. We need σ to completely instantiate Θ, so we make use of the fact that Θ contains exactly
one entry per pattern variable of p.

4. Since the types in Θ and Tp can refer to the additional sort annotations in patterns, we
need to consider the virtual parts of t and σ in the following.

It is well known that the typing judgment of PCUIC satisfies environment weakening [14].
In fact, our extension with metavariables changes nothing to the proof (the rule on metavari-
ables doesn’t mention the environment), so the property still stands in our system. Even
better, since our pattern typing judgment resembles regular typing, the same proof can be
adapted to work on it, proving that pattern typing also satisfies environment weakening. Let
us now prove the anti-substitution lemma.

We first need to introduce more elements and strengthen our property so that the
induction can go through. We first split Γ into Γ, ∆ and σ into σ0, σ such that Γ is fixed
while ∆ is the context extension which corresponds to ∆p as we go into the pattern and σ0
corresponds to the already matched portion of the pattern, which will affect ∆ and Θ while
σ corresponds to the currently matched portion of the pattern. The proof goes by induction
on the typing derivation of p, with induction predicate:

Σ; Θ; ∆p ⊢p p ▷ Tp =⇒

∀∆, t, T, σ0, σ, Σ; []; Γ, ∆ ⊢ t : T ∧ t
∣∣ p {σ} ∧∆p{σ0} ≡ ∆ =⇒

Σ; []; Γ ⊢ σ : Θ{σ0} ∧ Tp{σ0, σ} ⩽ T

and the corresponding predicate on argument patterns:

Σ; Θ; ∆p ⊢p p ◁ Tp =⇒

∀∆, t, T , σ0, σ, Σ; []; Γ, ∆ ⊢ t : T ∧ t
∣∣ p {σ} ∧ Tp{σ0, σ} ≡ T ∧∆p{σ0} ≡ ∆ =⇒

Σ; []; Γ ⊢ σ : Θ{σ0}

Let us give a representative subset of all cases needed to prove the induction.
Case ?x:
Hypotheses: Σ; []; Γ, ∆ ⊢ t : T , σ = [?x := t], Tp{σ0} ≡ T , ∆p{σ0} ≡ ∆
Goal: Σ; []; Γ ⊢ (∆p ⊢ ?x : Tp){σ0, σ} which simplifies to Σ; []; Γ, ∆p{σ0, σ} ⊢ t : Tp{σ0, σ}
Proof: Neither ∆p nor Tp mention ?x, so they are respectively convertible to ∆ and T by
hypothesis, which proves our goal.
Case p a

Hypotheses: Σ; Θ; ∆ ⊢p p ▷ ∀(x : Ap), Bp, Σ; Θ; ∆ ⊢p a ◁ Ap, Tp = Bp[x := a],
Σ; []; Γ, ∆ ⊢ f t : T , f

∣∣ p {σ1}, t
∣∣ a {σ2}, ∆p{σ0} ≡ ∆.
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By inversion of typing on an application, there exists A and B such that ∀(x : A), B ⩽ T ,
Σ; []; Γ, ∆ ⊢ f : ∀x : A, B and Σ; []; Γ, ∆ ⊢ t : A.
Then, by induction hypothesis on p, we get (∀x : Ap, Bp){σ0, σ1} ⩽ ∀x : A, B and
Σ; []; Γ ⊢ σ1 : Θ{σ0}.
By the definition of substitution and injectivity of products for ⩽, Ap{σ0, σ1} ≡ A and
Bp{σ0, σ1} ⩽ B. Since ∆p does not contain any metavariable in |σ1|, ∆p{σ0, σ1} ≡ ∆.
This means we can use the induction hypothesis on a and get Σ; []; Γ ⊢ σ2 : Θ{σ0, σ1}
Goal: Bp[x := a]{σ} ⩽ B[x := t] and Σ; []; Γ ⊢ σ1, σ2 : Θ{σ0}. The second goal is
immediately proved by concatenating the induction hypotheses.
Proof: by commuting the substitution and metasubstitution,

Bp[x := a]{σ} = Bp{σ}[x := a{σ}] ≡ Bp{σ}[x := t] ⩽ B[x := t]

(a contains only metavariables in |σ2| and t
∣∣ a {σ2}, so a{σ} = a{σ2} ≡ t)

Case ∀(x : a : □?q
?u), b : □?q′

?u′

Hypotheses: Σ; Θ; ∆ ⊢p a ◁□?q
?u, Σ; Θ; ∆ ⊢p b ◁□?q′

?u′ , Tp = □?q′

?u∗?q

?q′ ?u′ ,

Σ; []; Γ, ∆ ⊢ ∀(x : A : □q
u), (B : □q′

u′) : T , A+
∣∣ a {σ1}, B+

∣∣ b {σ2}, ∆p{σ0} ≡ ∆ with
σ = [?q := q; ?q′ := q′; ?u := u; ?u′ := u′]+σ1 + σ2.
By inversion of typing on a product, we get □q′

u∗q

q′ u′ ⩽ T , Σ; []; Γ, ∆ ⊢ A : □q
u and

Σ; []; Γ, ∆, (x : A) ⊢ B : □q′

u′ .
Since ∆p does not contain any metavariable in |σ1|, (∆p, x : a){σ0, σ1} ≡ ∆, (x : A).
This means we can use both induction hypotheses to get Σ; []; Γ ⊢ σ1 : Θ{σ0} and
Σ; []; Γ ⊢ σ2 : Θ{σ0, σ1}
Goal: □?q′

?u∗?q

?q′ ?u′{σ} ⩽ □
q′

u∗q

q′ u′ and Σ; []; Γ ⊢ σ1, σ2 : Θ{σ0}. The second goal is immedi-

ately proved by concatenating the induction hypotheses.
Proof: We didn’t define yet how ∗ should behave when its quality arguments are variables.
Evidently, they need to return the minimal universe, so they must behave as Prop to
satisfy the required inequality.
Case Conv:
Hypotheses: Σ; []; Γ, ∆ ⊢ t : T , t

∣∣ p {σ}, T ′
p{σ0} ≡ T , ∆p{σ0} ≡ ∆, Tp{σ} ⩽ T , Tp ⩽p T ′

p,
Σ; []; Γ ⊢ σ : Θ{σ0}.
Goal: Σ; []; Γ ⊢ σ : Θ{σ0}. It is one of our hypotheses, our cumulativity hypotheses are
useless for now. In Section 5 however, we present the definition of pattern cumulativity
to extract some information from these unused hypotheses. Let us simply note that, by
symmetry of ≡ and transitivity, Tp{σ} ⩽ T ′

p{σ}, which we will use alongside Tp ⩽p Tp′ .

5 Pattern Cumulativity and Equality Extraction

Currently, our criterion is more limited than the one we seek. For instance, it doesn’t allow
us to infer the type of slightly complex rewrite rules on vectors of natural numbers like

vtail ?n (vcons ?n′ ?a ?v)⇝ ?v

since the pattern has type vector ?n while the replacement term has type vector ?n′.
However, typing ensures that we always have ?n = ?n′, so we could extract this equality
during pattern typing, in the same way that unification is used to collect constraints during
the elaboration of a Coq term [16]. This way, we can modify the subject reduction criterion
to take advantage of these additional conversion hypotheses when checking the type of the
right-hand side of the rewrite rule.
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Σ; Θ; Γ ⊢ t→∗ t′ Σ; Θ; Γ ⊢ u→∗ u′ Σ; Θ; Γ ⊢p t′ ⩽p u′ ▷ E
Σ; Θ; Γ ⊢p t ⩽p u ▷ E

Red

C is injective
Σ; Θ; Γ ⊢p C ⩽p C ▷ []

Inj
x ∈ Γ

Σ; Θ; Γ ⊢p x ⩽p x ▷ []
Rel

Σ ⊢ q =q q′ ∧ u ⩽u u′ possible

Σ; Θ; Γ ⊢p □
q
u ⩽p □

q′

u′ ▷ [u ⩽u u′; q =q q′]
Sort

Σ; Θ; Γ ⊢p A ≡p B ▷ E Σ; Θ; Γ, (x : A) ⊢p t ⩽p u ▷ E ′ B ∈ {λ, ∀}
Σ; Θ; Γ ⊢p B(x : A), t ⩽p B(x : B), u ▷ E ∪ E ′ Lambda/Forall

Σ; Θ; Γ ⊢p f ⩽p f ′ ▷ E Σ; Θ; Γ ⊢p a ≡p a′ ▷ E ′ Σ; Γ ⊢ f, f ′ whne
Σ; Θ; Γ ⊢p f a ⩽p f ′ a′ ▷ E ∪ E ′ App

Σ; Θ; Γ ⊢p c ≡p c′ ▷ Ec

Σ; Θ; Γ, Γi ⊢p P ≡p P ′ ▷ Er

[
Σ; Θ; Γ, Γk ⊢p bk ≡p b′

k ▷ Eb,k

]
Σ; Γ ⊢ c, c′ whne

Σ; Θ; Γ ⊢p case c return P with b⃗ ⩽p case c′ return P ′ with b⃗′ ▷ Ec ∪ Er ∪
⋃

i

Eb,i

Case

Σ; Θ; Γ ⊢p ?x ≡p t ▷ [∆ ⊢ ?x := t]
PatVar

t or u contains a pattern variable or a symbol in head position
Σ; Θ; Γ ⊢p t ⩽p u ▷ []

Failsafe

x ∈ Γ
Σ; Γ ⊢ x whne

Σ; Γ ⊢ f whne
Σ; Γ ⊢ f a whne

Σ; Γ ⊢ c whne
Σ; Γ ⊢ case c return P with b⃗ whne

Figure 6 The rules for conversion judgments ⩽p and ≡p (replace all ⩽p with ≡p in the rules).

We proceed by defining a notion of pattern conversion and cumulativity (≡p and ⩽p) that
collect the set of equalities E necessarily satisfied by substituted terms: we replace the binary
relation t ⩽p u with the ternary relation t ⩽p u ▷ E , which satisfies the following property:

∀t, u, E , Σ0; Θ; ∆p ⊢p t ⩽p u ▷ E =⇒
∀Σ ⊇ Σ0, Ξ, Γ, σ, Σ; Ξ; Γ ⊢ σ : Θ ∧ Σ; Ξ; Γ, ∆p{σ} ⊢ t{σ} ⩽ u{σ}

=⇒ ∀(∆i ⊢ ti ≡ ui) ∈ E , Σ; Ξ; Γ, ∆{σ} ⊢ ti{σ} ≡ ui{σ}.

Note that we are still very free in the implementation of ⩽p because, as long as we
don’t claim any equality (E = []), even the full relation would be sound. However, we must
remember that our primary goal is to extract as many enforced equalities as possible.

Our main objective is thus to apply safe inversions of conversion, to make sure that our
equalities necessarily hold:

If t1{σ} ≡ u and t1 →∗ t2, then by reflexivity of ≡ and substitutivity t1{σ} ≡ t2{σ} and
thus t2{σ} ≡ u. This means that we are allowed to reduce in ≡p.
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When a term is in weak head normal form, its congruence rule is invertible. This includes
products, sorts, λ-abstractions, inductives, constructors and all weak head neutral terms
(whne). Therefore, the general strategy for pattern conversion will be to reduce our
arguments to weak head normal form and then to invert the congruence rule of the head
constructor.
Non-injective symbols may be equipped with any rule in the future, so the congruence
rules of their elimination context (as would-be neutral terms) are not invertible. This
means we cannot extract information in this case and should simply accept with no
equality (Failsafe). This approach is a way to avoid the failure of subject reduction
described in Example 3.
Metavariables may take any (well-typed) value, so the congruence rules of their elimination
context (as would-be neutral terms) are not invertible. However, the conversion can
be extracted as an equality. To keep the procedure easily decidable, we only keep the
equality when the elimination context is empty (?x{∆ := ∆} ≡ t). Also, if we extract
more than one equality for a pattern variable, we will discard all but one.

The definition of t ⩽p u ▷ E is formally given in Figure 6. We use this notion of
cumulativity on patterns producing equality constraints to extend inference of patterns to
also produce a set of equalities: Σ; Θ; [] ⊢p p ▷ Tp, E .

In the setting we consider, all equations are of the form ∆ ⊢ ?x := a and can then be used in
the regular typing judgment by adding reduction (∆ ⊢ ?x := a) ∈ E =⇒ ?x{t⃗} → a[∆ := t⃗]
in the definition of cumulativity. We note ⊢E the typing judgment where cumulativity is
extended with the equalities in E .

▶ Definition 5 (Extended type-preservation criterion). A rewrite rule p ⇝ r is said to be
type-preserving in the global environment Σ when there exists a metavariable context Θ and
type Tp and set of equalities E such that Σ; Θ; [] ⊢p p ▷ Tp, E and Σ; Θ; [] ⊢E r : Tp.

The proof of subject reduction can be extended easily to this setting.

6 Implementation

Rewrite rules have been implemented and integrated into the Coq proof assistant with pull
request #18038. The criterion for type preservation has been implemented but pull request
#19290 is yet to be integrated to the Coq proof assistant.

Let us describe a more complete example now possible thanks to rewrite rules: excep-
tions [12]. Previously, one could define an exception as an axiom and merely state how it
behaves against other term constructors, now one can do the following:

Symbol raise : ∀ (A : Type), A.
Rewrite Rules raise_rew :=

| raise (∀ (x : ?A), ?B) ?a ⇝ raise ?B@{x := ?a}
| if raise B as b return ?P then _ else _ ⇝ raise ?P@{b := raise B}
| match raise N as n return ?P with 0 ⇒ _ | S _ ⇒ _ end ⇝ raise ?P@{n := raise N}
| fst (raise (?A ∗ ?B)) ⇝ raise ?A | snd (raise (?A ∗ ?B)) ⇝ raise ?B.

Note that the second and third rules would currently raise a warning complaining about
a potential universe inconsistency, since the return predicates ?P could have a universe level
larger than the one raise expects, but this issue can only happen if one mentions that level
explicitly, and we plan to introduce solutions to make this impossible (and thus make the
rules safe) in the future.
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A few extensions were made from the theory exposed in this paper, the first of which being
the support of the full grammar of Coq terms. This includes notably primitive projections
(see the rules on the product type in the example above), universe polymorphism and sort
polymorphism where universe instances can be matched against.

An extension has been made so that users can make some symbols unfold fixpoints. In
Coq, fixpoints are guarded to prevent infinite loops and the guard condition operates on
inductive values. This means that fixpoint unfolding may only happen when the guarded
argument has a head constructor. However, a user may want to add new values of an
inductive type that should behave as a constructor in this regard, for instance an exception
as in the example above. To this end, a flag called unfold_fix can be given when declaring a
symbol:

(* Supersedes the declaration shown previously *)
#[unfold_fix] Symbol raise : ∀ (A : Type), A.
(* ... same set of rewrite rules ... *)
Eval compute in raise N + 5. (* raise N *)

In practice, metavariables can be used to bind terms on the left-hand side and mention
them in the right-hand side, but they are also convenient to avoid describing explicitly
sub-patterns that are “forced” and will be found by the extraction of equalities mechanism
described in Section 5. To this end, we have added the _ to produce metavariables that are
not relevant to the right-hand side, as the two branches of the example above.

In this setting, another extension has been added to the type preservation criterion to
mitigate the inference requirements for application and cases: while the theory requires that
the pattern infers respectively a product and an inductive, it is in fact safe to allow inferring a
pattern variable. This way, the user can still put _ at places where a product or an inductive
is expected, and we automatically add an equality between this implicit pattern variable and
the product/inductive with “fresh” pattern variables (respectively for the domain/codomain
and for the arguments to the inductive). Since we cannot generate fresh variables during
type checking, these additional pattern variables have to be added to the pattern from the
start, giving for application a virtual annotation (p : ∀(x : ?A), ?B) a, with typing rule

Σ; Θ; Γ ⊢ p ◁ ∀(x : ?A), ?B Σ; Θ; Γ ⊢ a ◁ ?A

Σ; Θ; Γ ⊢ (p : ∀(x : ?A), ?B) a ▷ ?B{x := a}

7 Related Work

Cockx et al. [3] introduce a system for rewrite rules in dependently typed λ-calculus, which
forms the foundation for this work. Their system employs simpler rewrite rules (lacking
higher-order rules and cumulativity) and doesn’t provide a criterion for type preservation. In
this paper, we extend their setting with higher-order rewrite rules in presence of cumulativity
and definitional proof-irrelevance We also provide a decidable criterion to ensure type
preservation which has been implemented in the Coq proof assistant. It is important to
note that the argument by Cockx et al. regarding the consistency of the theory extended
with rewrite rules, under the assumption that these rules are admissible as propositional
equalities, also applies to our system. This is because their argument relies on an encoding
in extensional type theory, and does not depend on the complexity or richness of the rewrite
rules syntax.
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In Andromeda 2, users manually describe definitional equality by providing equality
judgments, which must either be extensional equalities or get interpreted as rewrite rules [1].
During this transformation, the system checks type preservation in a manner similar to ours,
but since their system is more permissive, it has fewer guarantees (such as substitutivity
which always holds for us) and thus needs to check equalities before applying a rewrite rule.

Felicissimo introduces a bidirectional system with rewriting [6], where rewrite rules are
also checked to preserve typing. Both systems are close, but our pattern grammar is more
expressive, we have fewer constraints on erased arguments (e.g., our virtual sort annotations
can’t be recovered from the type of the products) and we extract equalities from the typing
of the pattern. The bidirectional approach has some interesting advantages such as the
possibility to implement rewrite rules that would typically be non-left-linear. In the case of
Coq it would require a redesign of the syntax and thus it’s not clear how applicable it would
be to our case.

Blanqui’s decision procedure for type safety in rewrite rules [2] also checks type preserva-
tion and extracts equalities in a simpler theory, the λΠ-calculus, thus without a (cumulative)
hierarchy of universes or inductive types. In particular, there is no notion of subtyping and
thus no need for bidirectional inference. However, this simpler setting makes it possible to
extract more enforced equalities from the pattern.

8 Conclusion and Future Work

We introduced and implemented a new framework for users to define their own rewrite
rules within the Coq proof assistant. Additionally, we developed a method to ensure these
user-defined rules maintain type safety, guaranteeing the integrity of Coq’s core functionalities
like subject reduction and completeness of type-checking.

From a practical point of view, our most immediate goal is to port to Coq the confluence
checker that has been written by Jesper Cockx for Agda, to improve the safety of rewrite
rules. Another meaningful extension is to define a notion of justified rewrite rules, which
corresponds to the mapping of existing terms to the declaration of symbols and a proof of
propositional equality on those terms to rewrite rules on those symbols. For instance, parallel
pplus is justified with the standard notion of addition. This way, justified rewrite rules can
be considered as a safe extension instead of their current status of additional axioms.
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Abstract
We present Verbose Lean, a library using the flexibility of the Lean programming language and proof
assistant to teach undergrad mathematics students how to read and write traditional paper proofs.
After explaining our main pedagogical goals, we explain how students use the library with varying
levels of assistance to write proofs that are easy to transfer to paper because they look like natural
language. We then describe how teachers can customize the student experience based on their
specific pedagogical goals and constraints. Finally we describe some aspects of the implementation
of the library, emphasizing how new aspects of the very recently released version 4 of Lean allow a
lot of flexibility that could benefit many new creative uses of a proof assistant.
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1 Introduction

The transition from high-school mathematics to proof-based university mathematics is a
well-known challenge for students. In the recent past, there have been several experiments
using proof assistants to help students in this transition [1, 2, 4, 7, 12, 16, 17]. Here we really
mean courses that consider the proof assistant only as an intermediate tool, not as a final
goal. Note this tool is applicable to any kind of mathematics in principle, but this account
and the library it describes are biased towards elementary real analysis which is used in
France as the main introduction to rigorous proofs.
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Verbose Lean1 is a teaching library and meta library for the Lean programming language
and proof assistant. Lean is due mostly to Leonardo de Moura at Microsoft Research and
then Amazon Web Service and the Lean Focussed Research Organization2. Our library
has three main layers. The bottom one is a set of tactics (i.e., proof producing programs)
mimicking the granularity of proofs on paper. The middle one is a controlled natural language
syntax whose goal is to ease the transition to paper proofs, at the cost of being slightly more
difficult to write. The third layer is made of mechanisms that help students to write proofs
by suggesting potential next steps. All layers are customizable, even without programming
knowledge, and everything exists in French and English and is translatable to other languages.

This paper is intended for mathematics teachers and for people who want to see examples
of using Lean’s flexibility. It is organized roughly in order of decreasing importance. We
first explain our pedagogical goals, then describe the student experience, then the teacher
experience before concluding with some aspects of the implementation. That last section is
more technical but could be useful to anyone interested in what can be done with Lean.

2 Main pedagogical goals

The first main goal is to train students to have a clear view of the current state of the proof:
what is currently being proven, what are the current assumptions, which mathematical
objects are fixed. The next pedagogical goal is to train students to automatically perform
proof steps depending of the syntactic structure of the current goal. For instance, a direct
proof of a universally quantified statement starts with fixing an object of the relevant type.

A basic requirement here is to make sure that every statement has a clear status: is it
something that is known to be true? Something that we assume? Something that will be
proven soon? We claim that this goal is much easier to achieve if there is a clear separation
between stating, proving and using. For any given logical operator or quantifier, there are
syntactic rules that explain how to form a mathematical statement using it together with
some previously existing statements. Then there are rules that explain how to prove such
a statement. Finally there are rules about how to use such a statement. This distinction
seems obvious, but in practice it is very blurred, both by students and by professional
mathematicians. Of course the difference is that mathematicians know what they are doing
even when they are very sloppy about this distinction. We think that enforcing a clear
distinction is very useful for beginners, although it can feel pedantic to more advanced people.
One of the most frequent cases is failing to distinguish between stating the existence of a
mathematical object satisfying some condition and fixing a witness. An example would be
to say or write “since f is continuous and ε is positive, there exists δ such that. . . ” and
then refer to some δ on the following line. The other very common one is more tied to
using symbols instead of text. It uses the implication symbol as an abbreviation of the word
“hence” or “therefore”, and more generally mixing using an implication and stating one. An
example would be writing on a blackboard “f is polynomial =⇒ f is continuous” instead
of “f is polynomial hence continuous”. This misuse of a symbol is extremely problematic
for beginners since this alternative meaning of the symbol turns every legitimate use into
nonsense, and beginners lack the expertise required to understand which meaning is used.
For instance reading the definition of convergence of a function f towards a number l at
some point x0 with this interpretation for the implication symbol gives “for every positive ε,

1 https://github.com/PatrickMassot/verbose-lean4
2 https://lean-fro.org/

https://github.com/PatrickMassot/verbose-lean4
https://lean-fro.org/
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there exists some positive δ such that for every x, |x− x0| < δ hence |f(x)− l| < ε”. A less
ubiquitous but still common example is a confusion between stating a claim starting with a
universal quantifier and beginning a proof of such a statement.

All those logical errors (or at least sloppy writing) also impact achieving a third pedagogical
goal which is to train students to make a clear distinction between bound and free variables.
This is very related to keeping track of what is fixed in the current state of the proof, but with
the additional twist that some variable name can appear simultaneously as the name of a
free variable and as a bound variable in some assumption or in the current target statement.

The next teaching goal that we want to achieve with this technology is to train students
to classify proof steps into safe reversible steps that require no initiative and risky irreversible
steps that require some creativity. Here irreversible means it can lead to a goal that is not
provable. An example in the first category is fixing a positive number at the beginning
of a proof using the definition of continuity, or extracting a witness out of an existential
assumption. An example in the second category would be announcing an existential witness
or specializing a universally quantified assumption to a unique object. The alternation
between routine safe steps and risky creative steps is a crucial aspect of mathematical proof
creation. This is not necessarily emphasized when presenting a proof on a blackboard.

On top of that there is a final goal which is to learn how to choose indirect strategies
instead of simply following the syntax of the current target. Those includes stating and
proving an intermediate fact, using a lemma instead of reproving everything, and the use of
the excluded middle axiom, e.g. through proofs by contradiction or contraposition.

The usual interfaces of proof assistants have many qualities that help achieving those
goals. Near the beginning of the proof of sequential continuity from continuity, the proof
assistant can display something like:

f : R → R
u : N → R
x0 : R
hu : u converges to x0
hf : f is continuous at x0
ε : R
ε_pos : ε > 0
δ : R
δ_pos : δ > 0
hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε
⊢ ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε

This display is called the tactic state. Most lines describe either a mathematical object that
is fixed in the proof or an assumption. The last line shows the current goal.

This is already tremendously useful to students, and completely impractical to emulate
on a blackboard or in print. But there are also many challenges. The most obvious one
is the need to learn the syntax of the software. In order to progress in proofs, one need
to use tactics that are commands which usually do not look like mathematics but rather
like programming. This is not a crucial problem, especially with students who also learn
programming in other courses. But it does take time, so this issue prevents using a proof
assistant on the side of a regular course with no dedicated time. A much more serious issue
is that having a proof assistant syntax that is very different from paper proofs makes it a lot
harder to transfer proving skills to paper. This is true in the direct case of transcribing a
proof done on the computer but also in the longer run when students try to prove things on
paper without writing a formal proof first.

ITP 2024



27:4 Teaching Mathematics Using Lean and Controlled Natural Language

A second challenge is to set up the right kind of automation. Traditional paper proofs are
very far from mentioning every lemma that is used. Mentioning every lemma systematically
is counter-productive with respect to the goals listed above. An extreme example would
be lemmas asserting the commutativity and associativity of addition and multiplication of
numbers. More generally, things that are too obvious to be mentioned on paper should be
done automatically by the proof assistant, whereas things that we want to see justified on
paper should not. But this is an extremely vague specification. In practice it is even often
inconsistent because it is pretty difficult to be consistent about what we want to see on
paper. Powerful automation is also potentially problematic for students who have very slow
computers with little memory, and it can make error reporting more complicated. But it is
crucial for the success of that kind of use of proof assistants in teaching.

A last challenge is that most countries do not use English as their main language. This is
especially relevant for very young students.

3 Using the library as a student

3.1 Tactic language
In this section we will show what Verbose Lean looks like from the point of view of student
users. We will show several possible variations but it is probably unwise to show all those
variations to students. The following is a typical exercise solution.

Exercise "Continuity implies sequential continuity"
Given: (f : R → R) (u : N → R) (x0 : R)
Assume: (hu : u converges to x0) (hf : f is continuous at x0)
Conclusion: (f ◦ u) converges to f x0

Proof:
Let′s prove that ∀ ε > 0, ∃ N, ∀ n ≥ N, |f (u n) - f x0| ≤ ε
Fix ε > 0
By hf applied to ε using that ε > 0 we get δ such that

δ_pos : δ > 0 and Hf : ∀ x, |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε
By hu applied to δ using that δ > 0 we get N such that

Hu : ∀ n ≥ N, |u n - x0| ≤ δ
Let′s prove that N works : ∀ n ≥ N, |f (u n) - f x0| ≤ ε
Fix n ≥ N
By Hf applied to u n it suffices to prove |u n - x0| ≤ δ
We conclude by Hu applied to n using that n ≥ N

QED

In this simple proof, all steps correspond directly to ordinary Lean tactics. Hence we can
compare with the following code that builds exactly the same proof.

example (f : R → R) (u : N → R) (x0 : R) (hu : u converges to x0)
(hf : f is continuous at x0) : (f ◦ u) converges to f x0 := by

change ∀ ε > 0, ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε
intro ε ε_pos
rcases hf ε ε_pos with ⟨δ, δ_pos, Hf⟩
rcases hu δ δ_pos with ⟨N, Hu⟩
use N
intro n n_ge
suffices |u n - x0| ≤ δ from Hf (u n) this
exact Hu n n_ge
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The first difference with the default syntax of Lean is that the statement clearly distin-
guishes the objects, the assumptions and the conclusion. Then each proof line looks like
natural mathematical language, but it is actually as rigid as any programming language.
Remember the goal of this language is not to be easier to write, it is to be easier to transfer
to paper.

The first line is completely optional, it only unfolds a definition. The second line shows
how bounded quantifiers are handled by the library. The core logic of Lean does not involve
those quantifiers. Given a predicate P , say on real numbers, the statement ∀ε > 0, P (ε) is a
notation for ∀ε, ε > 0 =⇒ P (ε). In Verbose Lean, introducing a positive number can be
done in one step (of course it can also be done in two steps). This generates a name ε_pos
for the assumption that ε is positive. The next tactic, that spans the third and fourth lines
above, uses that positivity but in a declarative way. However it does use the name hf that
was assigned to the continuity assumption on f . We will refer to the approach that states
claims without referring to names of assumptions as the nameless approach. A syntactic
variant here would be to write

Since f is continuous at x0 and ε > 0 we get δ such that
δ_pos : δ > 0 and Hf : ∀ x, |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε

which only list claims and does not even explicitly mention ε before mentioning its positivity.
Another important style choice is the use of backward reasoning at the end, witnessed by

the words “it suffices to prove”. One could also replace the last two lines with

Since ∀ n ≥ N, |u n - x0| ≤ δ and n ≥ N we get h : |u n - x0| ≤ δ
Since ∀ x, |x - x0| ≤ δ → |f x - f x0| ≤ ε and |u n - x0| ≤ δ we

conclude that |f (u n) - f x0| ≤ ε

which uses both the nameless approach and forward reasoning only (those two aspects are
independent, we gathered them only to prevent a combinatorial explosion of examples).
The nameless approach is not purely stylistic, it also involves some implicit reasoning. For
instance, with the same assumptions, we could write since ε ≥ 0 and the library would
silently derive this from ε > 0.

The example used so far only uses two definitions and the rules of logic. It features both
using and proving statements formed using quantifiers and implication. Stating a universally
quantified claim on line one and starting its proof on line 2 are very distinct operations. The
first one involves the quantifier symbol while the second one involves the word “Fix”.

The distinction between stating existence and extracting a witness is handled in a more
subtle way. We could first state the existence using the symbols ∃ δ and then have something
like “Let us fix such a δ”. Nothing prevents a teacher from implementing this syntax, but the
trick of saying we get δ such that is a very nice compromise which distinguishes fixing a
witness from merely stating existence and which stays very light to read.

The distinction between claiming an implication and using it is handled very simply.
First the implication symbol is used only when stating. Then both backward and forward
uses of implication mention both the implication and its premise. This applies both to the
style referring to assumption names and to the nameless style.

Let us now consider another example: proving the squeeze theorem.

Example "The squeeze theorem."
Given: (u v w : N → R) (l : R)
Assume: (hu : u converges to l) (hw : w converges to l)

(h : ∀ n, u n ≤ v n) (h′ : ∀ n, v n ≤ w n)
Conclusion: v converges to l

ITP 2024
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Proof:
Fix ε > 0
Since u converges to l and ε > 0 we get N such that

hN : ∀ n ≥ N, |u n - l| ≤ ε
Since w converges to l and ε > 0 we get N′ such that

hN′ : ∀ n ≥ N′, |w n - l| ≤ ε
Let′s prove that max N N′ works : ∀ n ≥ max N N′, |v n - l| ≤ ε
Fix n ≥ max N N′

Since n ≥ max N N′ we get hn : n ≥ N and hn′ : n ≥ N′

Since ∀ n ≥ N, |u n - l| ≤ ε and n ≥ N we get
hNl : -ε ≤ u n - l and hNd : u n - l ≤ ε

Since ∀ n ≥ N′, |w n - l| ≤ ε and n ≥ N′ we get
hN′l : -ε ≤ w n - l and hN′d : w n - l ≤ ε

Let′s prove that |v n - l| ≤ ε
Let′s first prove that -ε ≤ v n - l
Calc -ε ≤ u n - l by assumption

_ ≤ v n - l since u n ≤ v n
Let′s now prove that v n - l ≤ ε
Calc v n - l ≤ w n - l since v n ≤ w n

_ ≤ ε by assumption
QED

The beginning of the proof uses the same tactics as our first example. New things start
with the line Since n ≥ max N N′ we get hn : n ≥ N and hn′ : n ≥ N′. Here we are
using a lemma claiming that n ≥ max(N, N ′) implies that n ≥ N and n ≥ N ′. But this
lemma is not mentioned explicitly. The tactic saw that the claim n ≥ max(N, N ′) is not a
conjunction so it tried splitting it into the announced conclusions using so-called anonymous
fact splitting lemmas. Here anonymous refers to the fact that their names do not appear
in the proof script, but of course they actually do have names. The next two tactics (each
spanning two lines) use the exact same mechanism using an anonymous lemma that splits
an inequality with shape |x| ≤ y into −y ≤ x and x ≤ y.

The next tactic Let′s prove that |v n - l| ≤ ε is completely optional, it recalls
what is the current goal since it was never explicitly spelled out and we just went through
three tactics that created new facts without changing current goal. This tactic could also
have been used right after Fix n ≥ max N N′.

The next line is something new: Let′s first prove that -ε ≤ v n - l. This tactic
can be used to start a conjunction proof. But here the current goal is not a conjunction, it is
turned into a conjunction by a so-called anonymous goal splitting lemma, which happens to
be the converse of the anonymous fact splitting lemma used before (but those are completely
separate lemmas from the framework’s point of view).

This tactic does a bit more than applying the lemma and splitting the resulting conjunction.
Indeed we want to force students to announce the second part of the conjunction when
the first one is proven. So instead of showing directly the second goal, the tactic state
displays: You need to announce: Let′s now prove that v n - l ≤ ε and refuses3 any
other tactic.

Returning to what happens during the proof of the first inequality, we see some computa-
tion introduced by the Calc word. This is based on the builtin Lean calc tactic, but the
justifications are specific to our library. The first one in the example is by assumption which

3 We were hesitant to make this mandatory, but seeing it in the Coq waterproof project convinced us.
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implicitly refers to the hNl assumption. A more explicit justification could be from hNl.
What comes after the word from could also contain the words applied to and using that
as in the third tactic of our first example. The next justification uses since which indicates
a nameless approach: we claim that u n ≤ v n without explaining why; the tactic has to
instantiate the assumption h to the free variable n. But there is more to it since this fact
by itself is not sufficient to justify that calculation step. The tactic has to secretly invoke a
lemma saying that ∀x, y, z, x ≤ y =⇒ x− z ≤ y − z. This is handled internally by calling
the gcongr tactic of Carneiro and Macbeth.

Those two examples illustrate the main mechanisms that we use to get students to develop
proof skills that are easier to transfer to paper than using the native Lean tactics. Of course
they do not exhaust the list of tactics provided by our library. In particular there are tactics
that allow to prove things by case disjunctions, using contraposition or proof by contradiction,
or using the axiom of choice.

3.2 Assisted modes
The above examples can all be typed in the editor (typically VSCode to avoid teaching at the
same time how to use Lean and a powerful editor such as vim or emacs). Lean then answers
by updating the proof state and displaying error messages if needed. But mastering a lot of
syntax is challenging, even if only one proof style is taught (for instance only the nameless
variant that do not use assumption names). So Verbose Lean offers two levels of assistance.

The fist level is the help tactic that can be used inside the proof. For instance, if the
current target is (f ◦ u) converges to f x0 as at the beginning of our first example then
the help tactic displays:

Help
· The goal starts with the application of a definition.

One can make it explicit with:
Let′s prove that ∀ ε > 0, ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε

· The goal starts with “∀ ε > 0”
Hence a direct proof starts with:
Fix ε > 0

The above has two help messages and two suggestions. Clicking on a suggestion replaces the
help tactic with the suggestion.

In the same example, there is a local assumption named hu saying that u converges to
x0. The answer to help hu is

Help
· This assumption starts with the application of a definition.

One can make it explicit with:
We reformulate hu as ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - x0| ≤ ε

· The assumption hu starts with “∀ ε > 0, ∃ N, . . .”
One can use it with:
By hu applied to ε0 using hε0 we get N such that

(hN : ∀ n ≥ N, |u n - x0| ≤ ε0)
where ε0 is a real number and hε0 is a proof of the fact that ε0 > 0
The names N and hN can be chosen freely among available names.

Using this tactic with students suggests it already does a lot to tame the syntactic
complexity of our controlled natural language. One could fear that students will constantly
use it instead of analysing the goal or assumptions themselves, but this was not observed.
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Especially in situations where there is not much time allocated to the use of a proof
assistant, one can use a more assisted mode where proofs can be assembled at least partly
through clicking. In this interaction mode, students click on expressions in the tactic state
and get tactics suggestions in return. This subsumes the help tactic: when clicking on the
full target or on a full assumption, the suggestions that are given are the same that appear
in the help command (assuming the default configuration is used). But one can also click on
multiple assumptions, or on sub-expressions inside the target or inside an assumption.

For instance the example that proved sequential continuity from continuity can be done
entirely by clicking. Clicking on the full goal suggests the first two lines of the proof. Then
one needs to specialize the continuity assumption to the positive ε that was just introduced.
This is done by clicking on the assumption and then clicking on ε. With this selection in the
tactic state, one gets the following suggestions:

· By hf applied to ε using that ε > 0 we get δ such that (δ_pos : δ > 0)
(hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε)

· By hf applied to ε / 2 using that ε / 2 > 0 we get δ such that (δ_pos : δ
> 0) (hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε / 2)

Those two suggestions have the same shape but use either ε or ε/2 since specializing
to half a given number is a very common move in elementary analysis and the default
configuration is biased towards this kind of mathematics.

In the above example, the library does not check that it will be able to automatically
prove the positivity side condition that appears after using that. This lets students judge
the different suggestions.

4 Using the library as a teacher

4.1 Basic configuration
In this section we explain various mechanisms used for configuration which do not require
programming expertise from teachers (of course a lot more is possible with programming).
The goal is not to document every configuration possibility – since this is not a manual –
but to show the configuration mechanisms that we use. We also show how this configuration
depends on specific pedagogical goals, students expertise and time constraints.

The first decision to make is how much automation, if any, is desired when implicitly
using lemmas. As explained in the previous section, there are two kinds of such lemmas,
depending on whether they split a given fact or the current goal. For instance lemmas in
the second category can be configured using configureGoalSplitingLemmas Iff.intro
Subset.antisymm. Listing a lot of lemmas in these commands could become very tedious.
So we allow defining lemmas lists and referring to them in the configuration commands. We
also pre-define some lists. Defining a list named MyList which contains the pre-defined list
LogicIntros and the lemma proving set equality from double inclusion is done using

AnonymousGoalSplittingLemmasList MyList := LogicIntros Subset.antisymm

Those commands and all configuration commands are meant to be “hidden” in the teacher
file. When changes are needed in the middle of an exercise file, one can use a macro. For in-
stance macro "switchConf" : command => ‵(configureGoalSplittingLemmas x) would
allow to simply write switchConf between two exercises to avoid a long distracting line.
Note that teachers will probably want to tell students about the list of anonymous lemmas,
at least informally, in order to avoid creating confusion about what needs to be justified.
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Tactics can also have configuration flags. For instance, say the goal is ¬ ∃ x:Q, x^2 = 2.
By default, starting the proof with Assume for contradiction H : ∃ x : Q, x^2 = 2
will lead to the error message: “The goal is a negation, there is no point in proving it by
contradiction. You can directly assume ∃ x : Q, x^2 = 2”. Teachers who fully embrace
the confusion between a direct proof of a negation and a proof by contradiction, or simply
need to focus on other topics, can use allowProvingNegationsByContradiction.

The next thing to configure is the assisted modes (help tactic and suggestion widget).
First there are commands to disable those modes for teachers who want students to write
everything by hand (in an exam setting, one can simply delete the relevant file for extra
safety). Assuming they are enabled, many aspects are configurable. Each help message comes
from a function, and one can configure the available functions using the same kind of lists
as with anonymous lemmas. For instance, in a basic course which progressively introduces
different kinds of reasoning, one can disable messages suggesting a proof by contradiction in
the beginning. One can also modify existing help functions with no programming knowledge
by copy-pasting and editing only the text.

If the current lecture focuses on students knowing definitions then one can completely
disable the help that unfolds definitions. One can also control in detail which definitions
participate in unfolding suggestions. This has to be an opt-in mechanism to avoid having
suggestions unfolding fundamental definitions such as the definition of real numbers or even
the definition of addition of natural numbers. For instance the teacher file could contain:
configureUnfoldableDefs continuous seq_limit assuming the teacher library defined
continuous and seq_limit.

The suggestion widget is also fully configurable. Really changing its behavior requires
programming. But an easy tweak is to change how to produce data from the selection. We
saw that selecting a real number ε and a universally quantified assumption h does not only
propose to specialize h to ε but also to ε/2. The configuration for this can look like:

dataProvider mkSelf a := a
dataProvider mkHalf a := a/2
dataProvider mkMin a b := min a b
dataProvider mkMax a b := max a b
DataProviderList CommonProviders := mkSelf mkMin mkMax

configureDataProviders {
R : [CommmonProviders, mkHalf],
N : [CommmonProviders] }

In addition to a declaration list CommonProviders analogous to the one we use for
anonymous lemmas, there are two new kinds of micro–DSLs (domain specific languages)
here. First we define four “functions” with the dataProvider command which features no
type information at all. Those are purely syntactic objects. They only participate in creating
the widget suggestions on the syntactic level. Writing meaningless functions there would
of course create trouble when accepting suggestions. Finally there is a JSON-like syntax in
the configureDataProviders that registers data providers for different types. The goal of
those DSL is to allow configuring this even for teachers who basically know nothing about
Lean, maybe not even enough to write a function that can perform an algebraic operation
either on natural numbers or on reals.

All the configuration options mentioned so far are specific to the Verbose library, but of
course they come on top of the usual Lean configuration. A lot of the flexibility offered by
Lean out of the box is very relevant to the kind of teaching targeted by our library.
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This includes the whole parsing and elaboration pipelines. For instance Verbose Lean
overwrites the notation for implication to use the double arrow symbol that is normally
used in mathematics instead of a single arrow. The examples in this paper also use an infix
notation for continuity and limits as in u tendsto x.

Overriding notation is not only about having a nice output. It also help mitigating
unwanted side-effects of using type theory. For instance say we want to use the sequence
of real numbers n 7→ 1/(n + 1). Using its default configuration, Mathlib may need help
to understand that 1/(n + 1) is a real number and not a natural number. The correct
interpretation can be enforced using a type ascription such as 1/(n + 1 : R). But this is
distracting for students in the provided code, and failing to use such ascription in their own
code can lead to inscrutable error messages. In this case it is much easier to override the
meaning of the division symbol to always mean division or real numbers. One can also use
a custom notation for function abstraction specialized to sequences of real numbers. For
instance one can ensure seq n 7→ . . . gets expanded to fun n : N 7→ (. . . : R).

Note there is no way to completely avoid type ambiguities in the input without type
ascriptions. We have seen students feeling the need to state as an intermediate fact something
like 0 < 1. Here there is no way Lean can guess whether this is meant as an inequality of
real numbers or of natural numbers. And there is no way students can be aware of this issue
without discussing the subtle status of the “inclusion” of N into R. Lean will interpret the
above statement as an inequality of natural numbers and our tactics will happily prove it.
But then using this intermediate fact will fail if the intended meaning was an inequality of
real numbers. Note that Lean has an option, namely pp.numeralTypes, to always decorate
literal numbers such as 0 or 1 when it displays them. This helps making the above problem
easier to spot, but it does not fix the input issue and does not avoid discussing the subtlety.

4.2 Translating to a new language
The English language can be a huge barrier for undergraduate students. One can also
imagine teachers who want to use a dialect of English. Verbose Lean comes with an English
version and a French version. Adding a new language can be done by imitation without any
knowledge of Lean programming. The process is to copy the English folder of the Verbose
library and replace English words. In case of doubt, comparing the French and English
versions can show the required modifications. For instance we see4 in the English version:

declare_syntax_cat maybeApplied
syntax term : maybeApplied
syntax term "applied to " term : maybeApplied
syntax term "applied to " term " using " term : maybeApplied
syntax term "applied to " term " using that " term : maybeApplied

def maybeAppliedToTerm : TSyntax ‵maybeApplied → MetaM (TSyntax ‵term)
| ‵(maybeApplied| $e:term) => pure e
| ‵(maybeApplied| $e:term applied to $x:term) => ‵($e $x)
| ‵(maybeApplied| $e:term applied to $x:term using $y) => ‵($e $x $y)
| ‵(maybeApplied| $e:term applied to $x:term using that $y) =>

‵($e $x (strongAssumption% $y))
| _ => pure default

elab "We" " conclude by " e:maybeApplied : tactic => do
concludeTac (← maybeAppliedToTerm e)

4 The actual code has some more cases that were removed here for conciseness.
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We will comment more on this code in the next section. Our point here is that we see a lot
of mysterious things but understanding them is not required to write the French version:

declare_syntax_cat maybeAppliedFR
syntax term : maybeAppliedFR
syntax term "appliqué à " term : maybeAppliedFR
syntax term "appliqué à " term " en utilisant " term : maybeAppliedFR
syntax term "appliqué à " term " en utilisant que " term : maybeAppliedFR

def maybeAppliedFRToTerm : TSyntax ‵maybeAppliedFR → MetaM Term
| ‵(maybeAppliedFR| $e:term) => pure e
| ‵(maybeAppliedFR| $e:term appliqué à $x:term) => ‵($e $x)
| ‵(maybeAppliedFR| $e:term appliqué à $x:term en utilisant $y) => ‵($e $x $

y)
| ‵(maybeAppliedFR| $e:term appliqué à $x:term en utilisant que $y) =>

‵($e $x (strongAssumption% $y))
| _ => pure default

elab "On" " conclut par " e:maybeAppliedFR : tactic => do
concludeTac (← maybeAppliedFRToTerm e)

5 Some implementation mechanisms

The previous sections have been all about the pedagogical choices of the library, about how
they can be tweaked by teachers and how students can use them. We now switch gears and
turn to the question of the Lean mechanisms that allow all this. Many of those mechanisms
are specific to Lean 4, the new family of versions of Lean that was officially released for the
first time in September 2023 and puts flexibility of use in the center [5].

The flexibility of Lean as a proof assistant rests on two main pillars. The first one is that
Lean is also a programming language and that almost all of Lean is implemented in Lean.
This allows in particular to override a lot of what Lean is doing, even pretty deep down, but
we don’t really use that directly. However we certainly use Lean as a programming language
here, so we need a very quick introduction to that.

Lean is a pure functional programming language. So, fundamentally, it never does
anything but defining and applying functions. However Lean makes extensive use of the
monad pattern together with an extremely sophisticated notation system that can make it
look a lot like imperative programming, but without the bad surprises [15]. An important
inspiration is Haskell here. For our purposes, one can think of a monad M as a programming
environment with a well specified state that can be read or written during program execution,
a well specified way it can fail or not, and a well specified way of interacting or not with the
outside world (such interactions could include reading files or printing things for instance).
For any type α, the type M α is the type of programs that can do all this and return an
element of type α (when they don’t throw an exception if M includes the exception throwing
capability). Running such a program requires providing an initial state and actually also
return the new state if the state includes writable parts.

An important example is the CoreM monad defined by Lean itself. It allows to describe
and run programs that have read and write access to all definitions in scope, read only access
to options, can fail by throwing certain kinds of exceptions, and can interact with the outside
world (of course it has a more precise definition, we only give the flavor here).
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On top of this CoreM monad sits the MetaM monad which mainly adds read and write
access to the meta-variable context. A meta-variable is a place-holder that can be used
in particular in a partially constructed proof. For instance at the very beginning of an
interactive proof of a lemma, the full proof is a single meta-variable. By itself a meta-variable
only stores a unique identifier. The meta-variable context is a data structure holding in
particular for each meta-variable its expected type (that would be the conclusion of the
lemma in our example) and its local context (that would be the assumptions of the lemma).
On top of MetaM sits the TacticM monad which describes tactics, with additional access to
all the relevant goals.

The second pillar of flexibility is the existence of typed concrete syntax objects as first
class citizens [14, 13]. Here an important source of inspiration is the family of LISP languages,
especially modern incarnations such as Racket. This is crucial for us. First it is crucial to our
translation system that the syntax of tactics is clearly separated from their implementation.
It also allows the assisted modes to provide suggestions that are guaranteed to be syntactically
correct, because they produce syntax objects that are then printed as strings. This is seen in
the snippets above that use syntax quotations such as ‵(maybeApplied| $e:term). Syntax
objects can also be turned into other syntax objects, either by macros such as the one showed
in Section 4 or by functions in the library.

We will now explain part of the implementation of: By hu applied to δ using that
δ > 0 we get N such that Hu : ∀ n ≥ N, |u n - x0| ≤ δ that we saw earlier. The
place where the corresponding syntax is hooked to the tactic implementation is

elab "By " e:maybeApplied " we get " news:newStuff : tactic =>
do obtainTac (← maybeAppliedToTerm e) (newStuffToArray news)

The elab command is a shortcut that allows to define a syntax in the first line and immediately
assign it some meaning in the second line. On the first line we see two literal strings and two
variables e and news. Those variables hold syntax objects with some syntax categories that
are defined in Verbose Lean. They are based in the crucial syntax category term which is
used for syntax representing Lean expressions. The (simplified) definition of maybeApplied
representing functions that may be applied to arguments, and then a function turning such
syntax objects into terms syntax objects have been seen in the first code snippet in Section 4.2.
The first line of that snippet registers our syntax category and the next four lines describe
four ways to build a syntax object in this syntax category. Those four ways are very simple
and combine terms and literal words.

Now we can move to the second line of our elab command that calls the actual tactic.
The do keyword starts a monadic program. Here it is a TacticM Unit program, i.e. a
program in the TacticM monad that returns nothing – its only purpose is to manipulate the
state of this monad. The type of the three involved functions are

obtainTac : TSyntax ‵term → Array MaybeTypedIdent → TacticM Unit
maybeAppliedToTerm : TSyntax ‵maybeApplied → MetaM (TSyntax ‵term)
newStuffToArray : TSyntax ‵newStuff → Array MaybeTypedIdent

We will ignore the third function. Note that the return type of the second one does not match
the type of the first input to the first function. We need a term and not only a program
computing a term in the MetaM monad. Fortunately, a program in this monad can be used in
the TacticM monad which extends it. And the arrow in (← maybeAppliedToTerm e) tells
Lean to run the maybeAppliedToTerm e program and feed the result at this spot.

The definition of the maybeAppliedToTerm function was shown in Section 4.2. It is
of course defined by pattern matching on the four possibilities to create a maybeApplied
syntax object (plus a wild card possibility that is required because the syntax category



P. Massot 27:13

could in principle be extended after the definition of this function). Note that the last
interesting case also uses the strongAssumption\lstinline{(by strongAssumption : $
y) where strongAssumption is one of our tactics. Of course we could have used the expanded
version here but the macro is used in several other places. Hence this example is a library
function turning some syntax objects into other syntax objects using pattern matching and a
macro that also does such a transformation.

The result type is not directly TSyntax ‵term but a program in the MetaM monad. This
is because the quotation mechanism includes hygiene guarantees, a mechanism preventing
accidental name capture and requiring some information from the surrounding context.

Note that one could inline this function into the obtainTac function. But this would
make the latter into a language dependent function. As we saw in Section 4.2, Verbose Lean
contains a French maybeAppliedFR syntax category and a function to turn syntax objects in
this category into terms. It then uses the exact same obtainTac function from the language
agnostic part of the library. Hopefully this already illustrate how we put to good use the
monadic meta-programming framework of Lean and, crucially, its treatment of syntax objects.
Syntax objects are also used to implement all the little DSLs we saw earlier.

We now want to discuss part of the implementation of obtainTac. Its first task is to
turn the term it got as its first argument into a Lean expression, i.e. an abstract syntax
object whose type Expr is an inductive type whose main constructors correspond to the
fundamental operations of lambda calculus: function application, function abstraction. . .
This process is possible in the TacticM monad which has access to all definitions in scope as
well as to the local context of the proof where this tactic is used.

Then obtainTac first tries to decompose the type of this expression. In our example this
type is ∃ N, ∀ n ≥ N, |u n - x0| ≤ δ which can indeed be decomposed as a witness N
and its property. This job of obtainTac is a trivial wrapper around a standard Lean tactic.

More interestingly, when such a decomposition does not make sense, the tactic will try to
apply an anonymous splitting lemma. We saw already how to configure the lemmas that are
tried. Now we want to discuss how this configuration is stored and updated. We saw that
programs in the CoreM monad have access to existing declarations. More generally they have
access to the so-called environment that stores declarations but also a lot more information.
Lean allows to declare environment extensions storing user information for later use. In the
case at hand, the stored information is simply a list of lists of declaration names. But our
library also uses more interesting extensions for assisted modes.

The multilingual support for help and suggestions is based on a multilingual function
dispatch framework by Mario Carneiro. Multilingual functions are first registered using the
register_endpoint command. This gives a function that can immediately be used to define
other functions. But running those functions requires implementing the endpoint in the
current language, which is en by default but can be changed using setLang. For instance:

/-- Multilingual hello function. -/
register_endpoint hello : CoreM String

/-- Greeting function refering to our endpoint before any implementation
is defined. -/

def greet (name : String) : CoreM String :=
return (← hello) ++ " " ++ name

#eval greet "Patrick" -- throws error: no implementation of hello found
for language en
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implement_endpoint (lang := en) hello : CoreM String := return "Hello"

implement_endpoint (lang := fr) hello : CoreM String := return "Bonjour"

#eval greet "Patrick" -- returns "Hello Patrick"

setLang fr

#eval greet "Patrick" -- returns "Bonjour Patrick"

Note that above example creates three declarations: hello, hello.en and hello.fr,
but only the first one is explicitly used. The implementations in this example are silly since
they do no perform anything inside the CoreM monad, they simply return a value without
reading or writing any CoreM state. But the hello function itself, which is created by the
register_endpoint command, crucially uses CoreM to fetch the relevant information from
the environment after reading the current language setting.

The way this is achieved illustrates an important point about Lean’s flexibility. Lean
as a proof assistant has very strong soundness guarantees, and the whole proof checking is
handled by its type system. This translates to the default behavior of Lean as a programming
language. We saw that being a pure functional programming language does not prevent
us from accessing state and having side-effects. One simply has to be honest about it by
announcing in which monad we are working. Lean also allows to throw away type safety
as long as we clearly announce it. And of course functions which do that cannot appear in
proofs (they can participate in creating proofs, but can’t appear in the end result).

A very simple version of the trick used in the multilingual framework is implemented
in the example below. The runFunctionOn takes a string and a natural number, searches
the environment for a declaration whose name is that string, then forcefully tells the Lean
type system that this declaration is a function from natural numbers to natural numbers
and applies it to the given number. The result is in CoreM N rather than N since it needs
access to the environment to search for the relevant declaration and it could fail to find it
so it needs to be able to throw errors – this is what happens in the second example below.
But the new piece is the unsafe signpost in front of def. Indeed the declaration could be
found but not with type N → N, bringing us into undefined behavior territory. This is what
happens in the third example below where a function concatenating strings is found.

unsafe def runFunctionOn (function : String) (a : N) : CoreM N := do
let myFun ← evalConst (N → N) (Name.mkSimple function)
return myFun a

def foo (a : N) := 2∗a + 1

#eval runFunctionOn "foo" 1 -- returns 3

#eval runFunctionOn "baz" 1 -- fails with error message: unknown
declaration baz

def bar (a : String) := a ++ a

#eval runFunctionOn "bar" 1 -- crashes Lean

The moral is that programming in Lean allows to do very unsafe things that completely
bypass the guarantees offered by the type system, but this must be clearly flagged and
cannot be used as a proof (explaining how soundness is protected is beyond the scope of this
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discussion). Note that our actual multilingual dispatch is much more careful and checks that
types match before calling functions so that teachers don’t crash Lean when they make a
type mistake in the implementation of a new help message. For performance reasons we
don’t want to perform this check at every function call, so we also use an extension that
keeps track of a list of endpoints and type-checked implementations.

Although we insisted on our use of concrete syntax objects, we also use abstract ones,
with type Expr, in the tactic backends. We even have a custom version VExpr with many
more constructors that are useful when analysing goals and assumptions in assisted modes.
For instance bounded quantifiers have dedicated constructors. We have a function parsing
an Expr into a VExpr, hence factoring out work that many help functions would need to do.
The type of help functions that analyse the goal is MVarId → VExpr → SuggestionM Unit
where MVarId is used to indicate the relevant goal and the SuggestionM monad accumulates
suggestions while providing access to the MetaM monad. Such functions are registered as
part of the configuration by teachers, together with a pattern indicating (coarsely) which
kind of goal they comment on. Calling the help tactic uses a discrimination tree to quickly
locate functions with the relevant pattern and then check whether they are active in the
configuration. This use of discrimination trees is not necessary until someone implements
thousands of help functions, but the infrastructure is provided by Lean so it is free.

The last piece of Lean infrastructure that we want to comment on is the framework that
allows us to build the suggestion widget. There are quite a few layers here. Lean implements
the Language Server Protocol (LSP) with many extensions related to the so called info view
which gather the tactic state display, various messages and user-defined widgets. Deep down,
widgets are Javascript modules that export a React component that is displayed by the
VSCode extension, can access information from Lean and modify the current document.
However the ProofWidgets library [9] offers a powerful abstraction that allows us to ignore
Javascript. In particular it features a JSX-like DSL as well as React components written in
Lean and having a Lean interface. As a result, Verbose Lean does not contain a single line of
actual Javascript or HTML. For instance the loop printing the suggestions is:
for ⟨linkText, newCode, range?⟩ in suggs do

let p : MakeEditLinkProps := .ofReplaceRange doc.meta
⟨params.pos, params.pos⟩ (ppAndIndentNewLine curIndent newCode) range?

children := children.push
<li style={json% {"margin-bottom": "1rem"}}>

<MakeEditLink
edit={p.edit} newSelection?={p.newSelection?} title?={p.title?}>

{.text linkText}
</MakeEditLink>

</li>

The li tag is directly turned into an HTML list item, whereas MakeEditLink refers to
a ProofWidgets component. This component is rendered as an HTML link which, upon
getting clicked, edits the proof script. All this is fully type-correct Lean code, with real-time
typechecking and the expected editor support (for instance ctrl-clicking on MakeEditLink
jumps to the relevant declaration).

The tactic state natively allows to select names or sub-expressions in the local context or
the goal. It records this information as an array where each element inhabits an inductive type
Lean.SubExpr.GoalLocation having a constructor for each kind of selection, for instance
a constructor for an element of the local context, one for a sub-expression in the type of
such an element, etc. This layout is not convenient for our purposes so we introduce another
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datatype SelectionInfo which gather the same information by type of selections. We
also have many functions querying this information. Each suggestion provider has type
SelectionInfo → MVarId → WidgetM Unit analogous to the help function type.

6 Related work

Both the dream of using proof assistants for teaching and the work on alternative interfaces
are very common. However most teaching uses focus on computer science, logic or discrete
mathematics, or even on proof assistants for themselves.

One notable exception is the work of Heather Macbeth at Fordham university [8]. However
her course is more focused on computations and less on reasoning, so the need for a controlled
natural language is less pressing. What is common to both contexts is the need for automation
that is adapted to the level of details expected from students. And indeed some of our tactics
rely on tactics developed for Macbeth’s course.

Even more relevant is the comparison with the Coq-Waterproof project [16] that was
developed independently and shares many goals with Verbose Lean. Discussing with its
authors led to several improvements in our work. One thing that we still do not have is a
nice custom text editor to mix rendered comments and interactive exercises. On the other
hand, we do benefit from using a very flexible proof assistant that easily allows syntactic
freedom and interactive interfaces, as explained in this paper. The resulting proof scripts are
closer to paper proofs and the user interaction model is richer.

Also very relevant and interesting is the Diproche system [3, 4]. Its focus on controlled
natural language is even greater than in Verbose Lean. Proofs are sequences of assertions in
a more flexible language. Those assertions are sent to an automated prover that complains if
it cannot justify a step. The main downside is that the proof structure is much less clear.

On the topic of alternative interfaces, there are again many attempts that seem practicable
only for pure logic. For instance this is the case of the Actema project [6] which proposes a
drag and drop interface that is partly a more graphical version of our suggestion widget and
can interface with Coq. However it seems difficult to integrate with computations as in our
squeeze theorem example (which was chosen as the simplest example involving computations).
And it very explicitly targets leaving no written trace at all, hence has a very different goal.

Also in the same category but explicitly targeting teaching very young university students
is the d∀∃duction project [11]. It features a graphical interface based on selecting sub-
expressions and clicking buttons, with a completely invisible Lean backend. Again there is
no written trace so the transfer of skills to paper is not completely clear.

Edukera [10] is another point and click interface that produces a written text. It is a web
interface based on Coq. Its first main drawback is that teachers cannot write exercises or
configure anything, they simply have access to a fixed set of exercises. In addition, there is
no possibility to directly input text. The interface is only based on clicks and the text is
purely on the output side. Also the development of Edukera stopped in 2018.

As far as we know, none of those very nice projects have multilingual support except for
Edukera. Most of them are only in English, Diproche is only in German and d∀∃duction is
only in French.

7 Conclusion and future work

We end this paper with remarks about the effects of this work on students, on colleagues
and on other proof assistant users, and then with remarks about future work.
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Although some version of this library has been used for five years in University Paris-
Saclay at Orsay, it is still a work in progress, especially since the switch to Lean 4 made it
a lot more flexible. The suggestion widget in particular has not been used with students
yet, and will need refinements and extensions. However the Lean 3 version, including a
help tactic but no widget, has been used a lot. The move from standard Lean tactics to
controlled natural language tactics seemed pretty risky to us, and was tried only because
of our frustration with the difficulty to transfer skills from the computer to paper. But it
has been a lot more effective than what we anticipated, and really seemed to help with the
pedagogical objectives we described in Section 2. One limitation of those experiments, besides
their anecdotal nature, is that we did not try to use this tool with really weak students.

Compared to other reports about the use of proof assistants in mathematics teaching,
it is also worth mentioning that we met almost no resistance from colleagues or students.
The only exceptions came in the early years of this experiment when we used some pure
propositional logic exercises. Our students simply could not see the point of making efforts
to prove tautologies. As a result, they mostly did not try and, more importantly, they lost
faith in the usefulness of rigorous logical reasoning. After we removed those exercises, the
problem was solved. Of course such exercises can be pertinent in other contexts.

One can wonder whether such a tactic library could be used for regular Lean input,
say in Mathlib, the mathematical library of Lean. We do not believe such a use would
be productive. The usual tactics of Lean are more concise and flexible, and learning the
fragment corresponding to what we can do with Verbose Lean is not the most time consuming
task for new users. The main difficulties rather come from switching to a formal mindset,
navigating the library to find relevant definitions and lemmas, and finding the most efficient
encodings of mathematical definitions and statements in Lean’s type theory. The tactic
language described here do not really make these things easier (and was not at all built for
this purpose). More generally, past experiences with programming languages, going at least
as far back as COBOL, suggest that controlled natural languages are not sufficiently efficient
as a general input format. So it seems unlikely that this tactic language would significantly
facilitate access to formalized mathematics for mathematicians. One could still argue that it
could make formalized mathematics more accessible to readers that do not want to learn the
language but still want to access precise definitions, statements and proofs. But we think
that this goal is much more likely to be achieved by translating formalized mathematics to
natural language a posteriori. In particular such a translation can give access to information
that was automatically inferred and to proofs that were automatically generated.

Concerning future work, there are plans to rigorously assess the benefits of using this
library next year with the APPAM5 team which includes specialists in education sciences.
Error reporting is also a never-ending work in progress. Each new interface or piece of
automation requires more care in case of incorrect input, and students always find new ways
to trigger unexpected error messages. On the multi-lingual side, one short-term goal is to
make it easier to create variants of an existing language. Another project is to offer more
exercises that are ready to use or modify for teachers. Existing exercises are not yet all ported
to Lean 4, and new ones should be created in different fields of elementary mathematics.
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Abstract
Coalition Logic (CL) is a well-known formalism for reasoning about the strategic abilities of groups
of agents in multi-agent systems. Coalition Logic with Common Knowledge (CLC) extends CL
with operators from epistic logics, and thus with the ability to model the individual and common
knowledge of agents. We have formalized the syntax and semantics of both logics in the interactive
theorem prover Lean 4, and used it to prove soundness and completeness of its axiomatization. Our
formalization uses the type class system to generalize over different aspects of CLC, thus allowing
us to reuse some of to prove properties in related logics such as CL and CLK (CL with individual
knowledge).
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1 Introduction

Computers rarely work in isolation, rather they constantly interact with both human users
and other devices. Such interconnected systems can range from household Internet of Things
(IoT) devices, working towards creating a useful digital home for a user [2], to safety-critical
systems for metros that need to account for multiple trains [15]. Correctly designing and
verifying such systems is an important goal of research in Artificial Intelligence, specifically
in the field of Multi Agent Systems (MAS) [11, 13, 27]. The large number of agents and
simultaneous goals involved in these interactions make them highly complex. Furthermore,
computers in such systems must often operate with imperfect information [26], for instance
because they have limited input about the external environment [13]. It can therefore be
difficult to maintain an overview of whether a system has been correctly programmed to
always meet its requirements, highlighting the need for formal modelling and programmatic
verification [27].
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28:2 Formalizing Completeness of CLC in Lean

In this paper we focus on Coalition Logic with Common Knowledge (CLC) to model
such systems and their requirements. Coalition Logic (CL) was introduced by Marc Pauly
in 2002 [22] for reasoning about abilities of agents, and is a popular logic in MAS research [1].
CL introduces an effectivity operator, which describes whether some group of agents is
effective for ensuring some outcome, regardless of the actions of other agents. CL was later
extended by Ågotnes and Alechina [1] into CLC by adding operators from epistemic logic for
individual and common knowledge.

The current paper aims to build a foundation for CLC formalizations for MAS by
investigating how CLC can be defined and reasoned over using the Lean prover [8]. Lean is
an interactive proof assistant based on dependent type theory, and its mathematical library
Mathlib [25] is a rapidly growing community-driven project that we made thankful use of.
In this work, we use Lean to formalize the syntax and semantics of CLC and formalize the
soundness and completeness theorem together with the finite model property of CLC as
given by Ågotnes and Alechina [1]. Formalizing these proofs allows us to check that the
syntax and semantics of CLC defined in Lean relate to one another as expected. Additionally,
doing so demonstrates that these definitions can be used in nontrivial proofs about CLC.

Since we closely follow the Ågotnes and Alechina proof in our formalization, we will
focus on the larger scale proof engineering aspects and show only relevant excerpts of these
proofs. A full, sorry-free, version of our code is available online at https://github.com/
kaiobendrauf/cl-lean. The formalization of CLC is part of a larger work [21], where the
entire proofs and their formalization are given in as much detail as possible. This larger
work [21] also formalizes soundness and completeness of CL. Although the current paper
focuses on CLC, we give special attention to lemmas and definitions that are also used in the
completeness proof for CL. Thus we illustrate the ways in which we prioritize generalizability
and reusability in our Lean implementation. The intention of this design choice is to make
our formalization easier for future work to extend.

In the following sections we give a brief overview of existing work formalizing logics
related to CLC in Section 2 and an overview of the Lean prover and its mathematical library
in Section 3. We give a detailed description of the syntax, semantics and axiomatic system of
CLC in Section 4. We describe our definition of CLC in Lean in Section 5. Our formalization
of the soundness of CLC is described in some detail in Section 6. Section 7 notes a method
of making our formalization reusable for other logics. Finally, using these definitions we will
prove in Lean that CLC is complete in Section 8.

2 Related work

The formalization of modal logics in proof assistants is an active area of research. To our
knowledge, CLC has not yet been formalized in any proof assistant, however our work builds
on related work on formalizing Epistemic Logics (EL) and CL. We start by describing work
on CL. Nalon et al. [18] present a prototype automated reasoning tool for CL, based on a
sound, complete, and terminating resolution-based calculus for CL in SWI-Prolog. On the
other hand, Baston and Capretta [5] propose how to formalize the relation between strategic
games and the effectivity operator in CL. These works provide support that CL can be
defined and reasoned with in proof assistants. However, to the best of our knowledge, at
this point in time there are no current works that formalize completeness of CL in any proof
assistant, nor has any project formalized CL in Lean.

In contrast there are several existing formalizations of EL both in Lean [6, 17, 19] and
other proof assistants [7, 9, 16]. In Lean, the first of these is the completeness proof of EL
(S5) by Bentzen [6]. Following this, both Neeley [19] and Li [17] formalized completeness
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again, but with different approaches, showing how flexibly such proofs can be implemented
in Lean. We will, when possible, defer to these existing works on formalizing EL in Lean for
guidance on implementation choices. Most often, we use ideas by Neeley [19] as she uses the
same type of proof as Ågotnes and Alechina [1] while being particularly detailed about her
design decisions. Furthermore, this work formalizes several logics, thus we know the design
decisions generalize to multiple types of logic.

3 The Lean prover and Mathlib

We used the Lean theorem prover [8] in our formalization. Lean is an interactive theorem
prover based on the Calculus of Inductive Constructions, featuring proof irrelevance, quotient
types and classical reasoning. These features are used ubiquitously throughout the flagship
mathematical library for Lean, Mathlib [25], which we used as a starting point for our own
formalization. An introduction to Lean can be found at [3].

A characteristic aspect of Mathlib is its use of typeclasses to organize mathematical
theories. Lean’s typeclass system extends the class mechanism introduced for operator
overloading in Haskell [28], and are used to associate types with both operators and axioms
about these operators. Moreover, the typeclass system permits extending structures, so that,
for example, any theorem declared for a Monoid M will automatically apply to a type G for
which a Group G instance exists. The typeclass system is invoked by placing parameters
to declarations between square brackets. An instance synthesis algorithm is used to supply
values for these parameters automatically, through a variation on depth-first search [23].

In 2023, Mathlib was ported from Lean 3 to the newly released Lean 4, a port that
required substantial changes in notation and design choices. Our project was originally
written for Lean 3 and after the proofs were completed, we ported it to Lean 4. The code we
present in our paper is an abridged version of the Lean 4-compatible source code, using Lean
version 4.4.0-rc1 and Mathlib commit 98fe17fd. Although this paper omits many proof
steps for presentational purposes, in our accompanying formalization all proofs are complete
and sorry-free.

4 Coalition Logic with Common Knowledge

We recall the syntax and semantics of CLC, as well as the axiomatization, following Ågotnes
and Alechina [1], in their work extending CL [22].

Based on a finite, non-empty set N of agents, and a set Φ0 of atomic propositions, CLC
formulas are constructed using the usual propositional logic operators, the CL effectivity
operator [G], where G ⊆ N , and two epistemic operators: Ki for individual knowledge, where
i ∈ N , and CG for common knowledge. Formally, CLC formulas are defined by the following
BNF grammar:

φ := ⊥ | p | φ ∧ φ | φ → φ | [G]φ | Kiφ | CGφ

where p ∈ Φ0, G ⊆ N and i ∈ N . We note that our syntax here is slightly different from
that of Ågotnes and Alechina [1], as we allow the case when G = ∅ for the CGφ operator.
Additionally, based on Neeley [19], we use a non-minimal set of propositional operators as
this simplifies our proofs in Lean.

[G]φ expresses the effectivity of a coalition to achieve φ. Intuitively, [G]φ can be read as
“coalition group G can ensure φ, regardless of the actions of agents not in the coalition”. Ki

expresses the knowledge of an agent i ∈ N . Thus, Kiφ can be intuitively read as “agent i
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knows φ”. This individual knowledge can be extended to groups via the derived operator EG,
using the the conjunction of individual knowledge. Specifically, for G ⊆ N , the notation EGφ
is defined as EGφ :=

∧
i∈GKiφ and reads as “everyone in group G knows φ”. CGφ expresses

that group G has common knowledge of φ. Intuitively this can be read as “everyone in group
G knows φ, and they all know that they all know φ, and they all know that they all know
that they all know φ and so on”.

The semantics of CLC is based on epistemic coalition frames and models. An epistemic
coalition model contains an epistemic accessibility relation ∼i for each agent i ∈ N . These
are equivalence relations that model what each agent knows. Specifically, if (s, t) ∈∼i for
some agent i, written as s ∼i t, then agent i cannot differentiate state s and state t.

Additionally epistemic coalition frames and models contain an effectivity structure E

which represents the effectivity of coalitions. Given a non-empty set S of states, E maps a
state and subset of N to a set of subsets of S, i.e. E : S → P(N) → P(P(S)). Note that,
given some state s ∈ S and set of agents G ⊆ N , E(s)(G) denotes a set of sets of states.
Intuitively, if X ∈ E(s)(G), the coalition G must have some joint strategy in state s such
that, no matter the strategy of agents not in the coalition, we are guaranteed to end up in
some t ∈ X. In this way the effectivity structure models the ability of coalitions to ensure
some (sets of) outcomes while abstracting away specific actions and strategies. In order
adequately model a coalition’s effectivity we require specific properties to hold, which are
collectively defined by the concept of true playability.

▶ Definition 1 (True Playability). A truly playable effectivity structure is an effectivity
structure E such that for any state s, E(s) meets the following 6 conditions [1, Section 2.1].
1. E(s) is live: for every G ⊆ N , ∅ /∈ E(s)(G)
2. E(s) is safe: for every G ⊆ N , S ∈ E(s)(G)
3. E(s) is N -maximal: for every X ⊆ S, if (S \X) /∈ E(s)(∅), then X ∈ E(s)(N)
4. E(s) is outcome monotonic: for every G ⊆ N and X,Y ⊆ S, if X ∈ E(s)(G) and X ⊆ Y ,

then also Y ∈ E(s)(G)
5. E(s) is superadditive: for all C,D ⊆ N where C ∩ D = ∅, and all X,Y ⊆ S, if

X ∈ E(s)(C) and Y ∈ E(s)(D), then X ∩ Y ∈ E(s)(C ∪D)
6. E(s)(∅) is principal: there exists an X ∈ E(s)(∅) such that for every Y ∈ E(s)(∅), we

have X ⊆ Y .

We have now everything to define epistemic coalition frames and models formally.

▶ Definition 2. An epistemic coalition frame is a tuple F = (S,E, {∼i: i ∈ N}), where
S is a non-empty set of states,
E : S → (P(N) → P(P(S))) is a truly playable effectivity structure, and
∼i ⊆ S × S is an equivalence relation, the epistemic accessibility relation over S for
agent i.

▶ Definition 3. An epistemic coalition model is a tuple M = (F, V ), where:
F is an epistemic coalition frame, and
V : Φ0 → P(S) is the usual valuation function, assigning to each p ∈ Φ0 some set of
states V (p) ⊆ S.

Based on an epistemic coalition model M = (F, V ), where F = (S,E, {∼i: i ∈ N}), and
some state s ∈ S, we can now define what it means for a CLC formula ϕ to be true in s

(written as M, s |= ϕ). Truth of [G]φ relates to the effectivity structure: if in state s group
G is effective in bringing about φ, then G must be able to restrict the possible next states to
some set containing only states where φ is true. Kiφ relates intuitively to the ∼i relation: if
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Table 1 Axiomatization of CLC.

(Prop) Prop. tautologies (K) ⊢ Ki(φ → ψ) → (Kiφ → Kiψ) (T) ⊢ Kiφ → φ

(4) ⊢ Kiφ → KiKiφ (5) ⊢ ¬Kiφ → Ki¬Kiφ (C) ⊢ CGφ → EG(φ ∧ CGφ)

(⊥) ⊢ ¬[G]⊥ (⊤) ⊢ [G]⊤ (N) ⊢ (¬[∅]¬φ) → [N ]φ (M) ⊢ [G](φ ∧ ψ) → [G]φ
(S) ⊢ ([G]φ ∧ [F ]ψ) → [G ∪ F ](φ ∧ ψ), if G ∩ F = ∅

(MP) ⊢ φ,φ → ψ ⇒ ⊢ ψ (RN) ⊢ φ ⇒ ⊢ Kiφ (Eq) ⊢ φ ↔ ψ ⇒ ⊢ [G]φ ↔ [G]ψ
(RC) ⊢ ψ → EG(φ ∧ ψ) ⇒ ⊢ ψ → CGφ

agent i knows φ in state s, then φ must be true in all states that i cannot distinguish from
s. The operator CGφ is a little more complex, as here we need to consider paths through
epistemic relations. For readability, we write (s, t) ∈ (

⋃
i∈G ∼i)∗ as s ≈G t. If group G has

common knowledge of φ in state s, then φ must be true in all states t such that s ≈G t.
Truth in M, s now defined as follows.

M, s ⊭ ⊥
M, s ⊨ p iff p ∈ Φ0 and s ∈ V (p)
M, s ⊨ φ ∧ ψ iff M, s ⊨ φ and M, s ⊨ ψ

M, s ⊨ φ → ψ iff M, s ⊨ φ ⇒ M, s ⊨ ψ

M, s ⊨ [G]φ iff {s ∈ S | M, s ⊨ φ} ∈ E(s)(G)
M, s ⊨ Kiφ iff ∀t ∈ S, s ∼i t ⇒ M, t ⊨ φ

M, s ⊨ CGφ iff ∀t ∈ S, s ≈G t ⇒ M, t ⊨ φ

As usual, φ is valid in a model (M ⊨ φ) if it is true in every state of the model and is
globally valid (⊨ φ) if it is valid in all models.

The axiomatization of CLC can be seen in Table 1.

5 Formalizing the Syntax and Semantics in Lean

To formalize the syntax of CLC in Lean, we use a deep embedding, which allows us to prove
metatheoretical results about the logic such as soundness and completeness [14, 19]. Thus,
in Lean, the language of CLC formulas is defined as an inductive type, meaning the smallest
type closed under the operators bot, var, and, imp, eff, K and C.

inductive formCLC (agents : Type) : Type
| bot : formCLC agents
| var (n : Nat) : formCLC agents
| and (φ ψ : formCLC agents) : formCLC agents
| imp (φ ψ : formCLC agents) : formCLC agents
| eff (G : Set agents) (φ : formCLC agents) : formCLC agents
| K (a : agents) (φ : formCLC agents) : formCLC agents
| C (G : Set agents) (φ : formCLC agents) : formCLC agents

The inductive type is parameterized over an arbitrary type agents. At this point we do not
require that only finitely many agents appear in the formula. Instead, we will apply this
assumption only to those theorems whose proofs require it, guided by the automated proof
checking done by Lean.
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To define the semantics, we first define effectivity structures:

def effectivity_struct (agents states : Type) :=
states → Set agents → Set (Set states)

To represent a playable effectivity structure, we create a 6-tuple to link the effectivity function
itself to the 5 playability requirements. Thus, we need to store tuples of a certain shape,
which in Lean we do using a structure data type:

structure truly_playable_effectivity_struct (agents states : Type) :=
(E : effectivity_struct agents states)
(liveness : ∀ s : states, ∀ G : Set agents, ∅ ̸∈ E s G)
(safety : ∀ s : states, ∀ G : Set agents, univ ∈ E s G)
(N_max : ∀ s : states, ∀ X : Set states, Xc ̸∈ E s ∅ → X ∈ E s univ)
(mono : ∀ s : states, ∀ G : Set agents, ∀ X Y : Set states,

X ⊆ Y → X ∈ E s G → Y ∈ E s G)
(superadd : ∀ s : states, ∀ G F : Set agents, ∀ X Y : Set states,

X ∈ E s G → Y ∈ E s F → G ∩ F = ∅ →
X ∩ Y ∈ E s (G ∪ F))

(principal_E_s_empty : ∀ s, ∃ X, X ∈ E s ∅ ∧ ∀ Y, Y ∈ E s ∅ → X ⊆ Y)

Comparing the semantics defined in Section 4, we can see a particular difference in the
treatment of sets: where informally we write X ∈ E(s)(N), Lean writes X ∈ E s univ.
Since Lean is based on type theory, it distinguishes agents : Type from its universal set
univ : Set agents. Apart from this distinction, the conditions translate straightforwardly.

Epistemic coalition frames and models are then defined as follows:

structure frameECL (agents : Type) :=
(states : Type)
(hs : Nonempty states)
(E : truly_playable_effectivity_struct agents states)
(rel : agents → states → Set states)
(rfl : ∀ i s, s ∈ rel i s)
(sym : ∀ i s t, t ∈ rel i s → s ∈ rel i t)
(trans : ∀ i s t u, t ∈ rel i s → u ∈ rel i t → u ∈ rel i s)

structure modelECL (agents : Type) :=
(f : frameECL agents)
(v : N → Set f.states)

To encode semantic entailment, we first formalize the common knowledge path recursively
defined predicate that we call a C_path.

inductive C_path {agents : Type} {m : modelECL agents} (G : Set agents) :
m.f.states → m.f.states → Prop

| done (hi : i ∈ G) (hst : t ∈ m.f.rel i s) : C_path G s t
| next (hi : i ∈ G) (hsu : u ∈ m.f.rel i s) (ih : C_path G u t) :

C_path G s t

Intuitively, we say given a coalition G that there is a path from state s to state t if we
can give, for some n ≥ 1, some list i0, i1, ...in of agents in G, as well as some list u1, u2, ..., un
of states, such that s ∼i0 u1, u1 ∼i1 u2, . . ., un ∼in t. s ≈G t then means that there is a
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C_path from s to t, where every agent in the list of agents is also in G. From here, defining
semantic entailment is straightforward, so we show only the non-propositional cases:

def s_entails_CLC {agents : Type} (m : modelECL agents) (s : m.f.states) :
formCLC agents → Prop

...
| (_[G] φ) => {t : m.f.states | s_entails_CLC m t φ} ∈ m.f.E.E s G
| (.K i φ) => ∀ t : m.f.states, t ∈ m.f.rel i s → s_entails_CLC m t φ

| (.C G φ) => ∀ t : m.f.states, C_path G s t → s_entails_CLC m t φ

6 Formalizing Soundness

The axiomatization of CLC (Table 1) is defined as an inductive predicate, that is, as an
inductively defined proposition [4]. An inductive predicate is defined as the smallest predicate
closed under a set of proof steps. Thus, an inductive predicate contains all proofs constructed
from a finite tree of proof steps. This mirrors how the set of formulas provable in an axiomatic
system is the smallest set closed under rule applications. The translation to Lean is thus
very straightforward and omitted here. Before we come to the more challenging proof of
completeness of this system, we prove its soundness.

▶ Theorem 4 (Soundness of CLC [1, Lemma 1]). ∀φ,⊢ φ ⇒ ⊨ φ

Despite the proof itself being simple, translating it into Lean is not entirely straightforward.
We prove this theorem by structural induction on the proof of ⊢ φ. Most of the cases can be
proven directly from the given axiom. Note that axioms (⊥), (⊤), (N), (M) and (S) relate
directly to the first five true playability requirements, and axioms (T), (4) and (5) relate to
the fact that epistemic relations are equivalence relations.

The cases (C) and (RC) are a little more complex, as they involve the CG operator. To
show that a formula of the form CGφ is true, we need to reason about the common knowledge
relation ≈G. More specifically, in Lean we have to look for C_paths between states. To
illustrate how this is done, we look closer at the case for Axiom (C). Given M, s ⊨ CGφ, we
need to show M, s ⊨ EG(φ ∧ CGφ), which gives the following goal after simplifying:

h : M, s ⊨ C G φ

hi : i ∈ G
hts : t ∈ M.f.rel i s
⊢ M, t ⊨ φ ∧ C G φ

For the first half of the conjunction, we apply the hypothesis h, so it remains to prove
that C_path G s t holds. In this case the path will have length one, so that the constructor
C_path.done applies, and our existing hypothesis hts : t ∈ M.f.rel i s concludes this
case.

For the second half of the conjunction, we get the following goal after simplification:

h : M, s ⊨ C G φ

hi : i ∈ G
hts : t ∈ M.f.rel i s
htu : C_path G t u
⊢ M, u ⊨ φ

Intuitively for any state u such that t ≈G u, we must show M,u ⊨ φ. Again we apply h,
leaving us to show C_path G s u which must hold when we extend C_path G t u by first
using agent i to pass from s to t. This corresponds to the C_path.next constructor of
C_path, using the hypotheses hts and htu to discharge the remaining goals.
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7 Creating reusable definitions in Lean

Before tackling the completeness proof for CLC, we note that the proof relies in large part
on lemmas and definitions taken from Pauly’s completeness for CL [22]. In paper proofs such
reuse is trivial, but in Lean lemmas and definitions only apply to the syntax they are defined
on, since the syntax and proof system for each logic form a distinct inductive type. Our
formalization therefore gives special attention to reusability using the typeclass system of
Lean, to limit the need for redundant copies of code for each logic. Specifically, we make use
of the fact that one logic commonly extends another by adding new operators and axioms.
In Lean we define a class for some logic in such a way that all extensions of that logic are
an instance of that class. We can then construct definitions and proofs in Lean that apply
to any logic that is an instance of that class. Doing so allows our Lean results to be reused
across different logics.

We start by creating a typeclass for logics whose syntax extends that of propositional
logic. More precisely, an instance of Pformula form

class Pformula (form : Type) :=
(bot : form)
(var : N → form)
(and : form → form → form)
(imp : form → form → form)

We also introduce notation for formulas: ⊥', ∧', →', ⊤', ¬', ∨',⇐⇒'. Next, we demon-
strate that the language of CLC formulas formCLC extends propositional logic by registering
an instance.

instance formulaCLC {agents : Type} : Pformula (formCLC agents) :=
{ bot := formCLC.bot,

var := formCLC.var,
and := formCLC.and,
imp := formCLC.imp, }

We can then make our formula constructions generic over all syntaxes that have a Pformula
instance, and Lean will automatically infer this instance when applying these constructions.
For instance, the following definition gives the conjunction of a finite list of formulas.

def finite_conjunction {form : Type} [Pformula form] : List form → form
| [] := ⊤'
| (f :: fs) := f ∧' finite_conjunction fs

Since all provable propositional formulas are also provable in logics that extend propos-
itional logic, we also introduce a class Pformula_ax (form : Type) [Pformula form]
that denotes the existence of a provability predicate ⊢' such that ⊢' φ holds for all formulas
φ provable by the axioms of propositional logic.

We create three more typeclasses relevant to CLC. Logics (extending) CL are instances
of class CLformula (agents : outParam Type) (form : Type) [Pformula_ax form],
which specifies the additional operator and axioms associated with CL. Note that this type-
class inherits from Pformula_ax as CL extends propositional logic. Similarly we introduce
class Kformula (agents : outParam Type) (form : Type) [Pformula_ax form]
representing logics that extend propositional logic with individual knowledge. Lastly we create
a typeclass for logics with common knowledge, which must therefore also contain individual
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knowledge. This typeclass must therefore inherit from both Pformula_ax and Kformula:
Cformula (agents : outParam Type) [hN : Fintype agents] (form : Type)
[pf : Pformula_ax form] [kf : Kformula agents form].

8 Formalizing Completeness

We begin by sketching the completeness proof for CLC [1, Corollary 1], which is based on
a canonical model construction. For each consistent formula, we create a finite model for
which that formula is true at some state. We focus on finite models because the 6th true
playability condition, that E(s)(∅) is principal, is always met in finite models [12]. Doing so
simplifies the proof that the effectivity structure in these models is truly playable. In the
process we demonstrate that CLC has the finite model property.

We create such a finite model by first creating a single infinite canonical coalition model
where every consistent formula is true in some state. This canonical coalition model is defined
analogously to an epistemic coalition model, but without epistemic relations, and where the
effectivity structure only meets the first 5 true playability conditions. Then, given some
consistent formula φ, we filter the canonical coalition model and add epistemic relations to
form a finite epistemic coalition model for which φ is true in some state.

8.1 Formalizing the canonical coalition model
We start by building the canonical coalition model. We define MC := (F C , V C), where
F C := (SC , EC) as follows:

SC is the set of all maximal CLC-consistent sets of formulas.
EC is the playable effectivity structure:
X ∈ EC(s)(N) iff ∀φ, φ̃ ⊆ Xc → [∅]φ /∈ s, where φ̃ := {t ∈ SC | φ ∈ t}
X ∈ EC(s)(G) iff ∃φ, φ̃ ⊆ X ∧ [G]φ ∈ s, when G ̸= N

V C is the usual valuation function : s ∈ V C(p) iff p ∈ s.
A playable effectivity structure must meet the first 5 true playability conditions. A set Σ of
formulas is consistent iff there are no σ1, ..., σn ∈ Σ such that ⊢ (σ1 ∧ ...∧σn) → ⊥. The proof
that MC is indeed a coalition model is analogous to the proof by Pauly [22, Lemma 5.2] for
CL. In Lean, we use our generic classes for propositional logic and CL to define a canonical
coalition model for any logic that extends CL, so long as that logics axiomatic system is
consistent (as required by the hypotheses hnpr : ¬ ⊢ (⊥ : form)):

def canonical_model_CL [Nonempty agents]
[Pformula_ax form] [CLformula agents form]
(hnpr : ¬ ⊢ (⊥ : form)) : modelCL agents

Note that this definition includes the proof that the defined effectivity structure is playable.

8.2 Filtering the canonical model
Given some φ, we filter SC into a finite set of states Sf . We will prove the properties of SC

transfer to Sf and shows it enjoys some additional properties essential to constructing a
playable model. We achieve this by creating a finite closure cl(φ), defined as the smallest set
satisfying the following:
1. For any ψ ∈ cl(φ), all subformulas of ψ are also contained in cl(φ).
2. For any ψ ∈ cl(φ), if ψ is not of the form ¬χ, then ¬ψ ∈ cl(φ).

(cl(φ) is thus closed under single negations.)
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3. If CGφ ∈ cl(φ), then for all i ∈ G, KiCGφ ∈ cl(φ).
4. If [G]φ ∈ cl(φ), then CG[G]φ ∈ cl(φ).
This definition is adjusted slightly compared to the work by Ågotnes and Alechina [1], as
we allow the formula C∅ψ, and thus do not need to consider the case G = ∅ separately.
Additionally, we change the first requirement such that all subformulas of any ψ ∈ cl(φ) are
contained in the closure, rather than just subformulas of φ. This change is needed to prove
the truth lemma, where we will perform induction on an arbitrary ψ ∈ cl(φ). For Ågotnes
and Alechina [1] this adjusted requirement is already met when cl(φ) contains all subformuals
of φ, because their syntax is defined from different base operators. The closure definition
thus illustrates that small implementation choices early in the formalization process can
have unintended effects later in the proof that may not be immediately obvious. Luckily, the
interactive environment of a theorem prover made the consequences of this change clear, and
made the necessary changes easy to implement and test.

The set cl(φ) can be built recursively on the structure of φ, and this is also how we define it
in Lean. For instance, for the case cl(CGψ), the closure must include cl(ψ)∪{CGψ,¬(CGψ)}∪
{KiCGψ : i ∈ G} ∪ {¬(KiCGψ) : i ∈ G}. Note that the sets {KiCG[G]ψ : i ∈ G} and
{¬(KiCGψ) : i ∈ G} are finite, because G is finite. In Lean we define the union of these two
sets as follows:

noncomputable def cl_C {agents : Type} [Fintype agents] (G : Set agents)
(φ : formCLC agents) : Finset (formCLC agents) :=

Finset.image (fun i => K i (C G φ)) (toFinset G) ∪
Finset.image (fun i => (¬ K i (C G φ))) (toFinset G)

In addition to defining a set, the above definition also guarantees that the set is finite, using
the Finset datatype. We create this resulting Finset by first mapping the set of agents G
from a Set to a Finset. Lean can infer this is possible, because N is finite, as indicated by
the hypothesis [Fintype agents]. Then we can take the image of G as desired.

In Lean, we then need to prove that our closure cl(ϕ), defined recursively on the structure
of the formula ϕ indeed meets the four requirements described above. To do so, we first
define a subformula as an inductive proposition with cases for each operator. For instance
we define two cases for the ∧-operator: and_left {φ ψ} : subformula φ (φ '∧ ψ) and
and_right {φ ψ} : subformula ψ (φ '∧ ψ). Additionally, we add two cases for the re-
quirements that our sub-formula definition must be reflexive and transitive. Given this
definition, we tackle the four proofs about the closure. Although in a paper proof all four
requirements are trivially met by definition of the closure, in Lean this is only the case for
the last two. The first two requirements both need inductive proofs on φ where for every
case we iteratively consider all possible ψ ∈ cl(φ). For instance if φ = χl ∧ χr, we consider
the cases where ψ = χl ∧ χr, ψ = ¬(χl ∧ χr), ψ ∈ cl(χl) and ψ ∈ cl(χr). These proofs are
not difficult, but considering each case creates long and tedious proofs.

Now that we have defined the closure, given some φ, we can can filter MC through
cl(φ), to construct a finite model Mf := (F f , V f ), where F f := (Sf , Ef , {∼f

i : i ∈ N}). We
construct Mf as follows:
Sf := {(sf ) | s ∈ SC}, where sf := (s ∩ cl(φ))
Ef := X ∈ Ef (s)(N) iff ∃t ∈ SC , sf = tf and ϕ̃X ∈ EC(t)(N)

X ∈ Ef (s)(G ⊂ N) iff ∀t ∈ SC , sf = tf ⇒ ϕ̃X ∈ EC(t)(G)
∼f

i := (sf ) ∼f
i (tf ) iff {φ | Kiφ ∈ sf } = {φ | Kiφ ∈ tf }

V f := s ∈ V (p) iff p ∈ s,
where ϕX :=

∨
sf ∈X ϕ

sf is the disjunction of a set of filtered states, ϕsf :=
∧
ψ∈sf ψ is the
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conjunction of the formulas in a filtered state, and ψ̃ := {t ∈ SC | ψ ∈ t}. Note that Sf is
finite because cl(φ) is, and that ∼f

i is an equivalence relation by definition. For this model
we will use the notation sf ≈f

G tf := (sf , tf ) ∈ (
⋃
i∈G ∼f

i )∗ for the common knowledge path.
These definitions can be translated quite directly into Lean, although it might not look

so direct, due to again having to distinguish between sets and finite sets in Lean. Thus, to
define Sf in Lean, we start with cl(φ), as this is a Finset. We take the powerset of cl(φ),
which Lean knows must also be finite. This finite powerset is filtered with Finset.filter to
include only those elements sf for which there exists some s ∈ SC such that sf = s ∩ cl(φ).
In order to check sf = s ∩ cl(φ), we need both to be of the same data type and therefore
convert both to sets. Finally, we pair each state sf with a proof that it is produced by the
filter, using Finset.attach.

def S_f {agents form : Type} (m : modelCL agents) [SetLike m.f.states form]
(cl : form → Finset (form)) (φ : form) : Type :=

Finset.attach (Finset.filter
(λ sf => ∃ s: m.f.states, {x | x ∈ cl φ ∧ x ∈ s} = {x | x ∈ sf})
(Finset.powerset (cl φ)))

Note that we do impose strong requirements on the model in the definition of Sf , so long as the
states contain a set of formulas, as enforced by the hypothesis [SetLike m.f.states form].
Doing so allows us to keep our definition simpler and more generic, by removing the need for
hypotheses needed to create our canonical model (for instance that N is nonempty).

Next we define the subformulas ϕX and ϕs
f which are needed to define Ef :

variable {agents form : Type} [Pformula form]
{m : modelCL agents} [SetLike m.f.states form]
{cl : form → Finset (form)} {φ : form}

noncomputable def phi_s_f (sf : S_f m cl φ) : form :=
finite_conjunction (Finset.toList (sf.1))

noncomputable def phi_X_list : List (S_f m cl φ) → List form
| List.nil => List.nil
| (sf :: ss) => ((phi_s_f sf) :: phi_X_list ss)

noncomputable def phi_X_finset (X : Finset (S_f m cl φ)) : form :=
finite_disjunction (phi_X_list (Finset.toList X))

noncomputable def phi_X_set (X : Set (S_f m cl φ)) : form :=
phi_X_finset (Finite.toFinset (Set.toFinite X))

Here the variable statement adds the hypotheses to each subsequent declaration. Defining
ϕs

f in Lean (phi_s_f) is as simple as converting our finite set to a list (putting the elements
in an arbitrary order) and then creating a conjunction from that list. We then define ϕX
in several steps. First we define a function phi_X_list to map X to {ϕsf : sf ∈ X}. Next,
we define ϕX for finite sets, as we can convert that finite set to a list, map it to formulas
with phi_X_list, and then return the disjunction of that mapped list. Lastly, for the Set
datatype, we define ϕX by converting to a Finset, which we can do because X ⊆ Sf is a set
of a finite type.

Although it would suffice logically to work with a List of filtered states, we provide
the definition phi_X_set in higher generality for two reasons. Firstly, this approach more
closely matches the definitions in the paper proof. Secondly, the definition should intuitively
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not depend on a choice of order on the states, so we make this independence explicit in
the datatypes. Splitting this definition up into three parts may seem to add complexity.
However, it allows us to define lemmas about each data type, thereby breaking proofs down
into smaller steps. We can prove lemmas more easily for a list, which is ordered, finite, and
allows induction. Then, it is easy to show that if some lemma holds for a list, it must work
for a list created from a (finite) set. Keeping track of the converted datatypes and how
they relate to one another within a single lemma is non-trivial (and not always possible) in
Lean. Thus in Lean we often prove some result about ϕX across three lemmas, one for each
datatype: Set, Finset and List.

Given our definition(s) for ϕX , it is straightforward to define Ef , and then our whole
model Mf . We thus omit these Lean translations.

8.3 Playability of the filtered canonical model
We prove that Mf meets the requirements for being a CLC model. We have to show that
for an arbitrary state sf in the filtered model, Ef (sf ) is truly playable [1, Proposition 1].
This proof relies on the fact that Ef is defined from EC . We are therefore able to exploit
the fact that the first five true playability conditions hold in EC to prove that they must
also hold in Ef . In Lean we really benefit from our generic typeclasses here, as our proofs
that EC meets those playability conditions are written to hold for any logic that extends CL.
Recall that the final true playability condition must hold in Ef because Mf is finite [12].

To formalize this proof, we first expand the proof by Ågnotes and Alechina, into a proof
with similar levels of detail to a Lean formalization. We aim for a level of detail such that
each step in our extended paper proof translates roughly into one step in Lean, possibly with
some reshaping. To illustrate this procedure and the level of detail required we present our
extended paper proof for Condition 3 of true playability (Definition 1), which was the most
interesting to formalize in Lean.

Ef (sf ) is N -maximal (for every X ⊆ Sf , if (Sf \X) /∈ Ef (sf )(∅), then X ∈ Ef (sf )(N))
is shown by the following sequence of proof steps:
1. Pick some X ⊆ Sf such that Xc = (Sf \X) /∈ Ef (sf )(∅).
2. ¬(Xc ∈ Ef (sf )(∅)), from Step 1.
3. ¬

(
∀t ∈ SC : sf = tf ⇒ ϕ̃Xc ∈ EC(t)(∅)

)
, from Step 2 and by definition of Ef .

4. ∃t ∈ SC : sf = tf and ϕ̃Xc /∈ EC(t)(∅), from Step 3.
5. ⊢ ϕXc ↔ ¬ϕX , because ⊢ ϕSf and ∀s, t ∈ SC′

, sf ̸= tf ⇒ ⊢ ϕs
f → ¬ϕtf .

6. ∃t ∈ SC , sf = tf and ¬̃ϕX /∈ EC(t)(∅), from Step 4 and 5.
7. ∃t ∈ SC , sf = tf and (ϕ̃X)

c
/∈ EC(t)(∅), from Step 6, because all s ∈ SC are maximally

consistent.
8. ∃t ∈ SC , sf = tf , and ϕ̃X ∈ EC(t)(N), provided s = t, from Step 7, because EC(t) is

N -maximal: (ϕ̃X)
c
/∈ EC(t)(∅) ⇒ ϕ̃X ∈ EC(t)(N)

9. X ∈ Ef (sf )(N), from Step 8, by definition of Ef .

In this expanded proof the only step that is not straightforward to formalize in Lean
is Step 5. We elaborate on the process of formalizing this step as it is a good illustra-
tion of working with our Lean definition(s) of ϕX . For space we do not expand on the
proofs that ⊢ ϕSf and ∀s, t ∈ SC′

, sf ̸= tf ⇒ ⊢ ϕs
f → ¬ϕtf . In Lean these proofs

are given in the lemmas univ_disjunct_provability and unique_s_f respectively. To
show ⊢ ϕXc ↔ ¬ϕX , in the ⇐ direction we first use a lemma defined elsewhere called
phi_X_set_disjunct_of_disjuncts, which proves that ⊢ (¬ϕX → ϕY ) ⇔ ⊢ (ϕX∪Y ), to
change the goal to ⊢ ϕX∪Xc . This lemma is trivial on paper by definition of ϕX , but requires
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unfolding the definitions and their respective datatype in Lean. Next we change the goal to
⊢ ϕSf , with the lemma union_compl_self, because the union of a set and its compliment is
the universe. Lastly, we can use univ_disjunct_provability to prove this goal:

apply (phi_X_set_disjunct_of_disjuncts _ _).mpr
rw [union_compl_self X]
apply univ_disjunct_provability

For the ⇒ direction, we cannot so immediately apply the relevant lemma unique_s_f,
as this lemma refers to single elements (filtered states) in our sets X and Xc. We will
eventually use an inductive proof to consider a single element in X. In Lean we will
therefore need to work with a list datatype and will need to unfold our definitions of ϕX
accordingly. We create a lemma per data type: phi_X_set_unique, phi_X_finset_unique
and phi_X_list_unique, which show the slightly generalized result that ⊢ ϕX → ¬ϕY holds
for any disjoint sets X,Y ⊆ Sf . Our actual proof simply applies this first lemma:

apply phi_X_set_unique hcl (compl_inter_self X)

where compl_inter_self is a lemma proving that a set and its compliment are disjoint,
and hcl is a proof that our closure is closed under single negations. The need to pass this
condition of our closure forward highlights how verification makes explicit exactly when and
for which purpose specific hypotheses are used. In this case we will eventually pass this
hypothesis to the lemma unique_s_f.

The interesting work is within phi_X_list_unique. We have converted X into
sfs : List (S_f M cl φ), where S_f M cl φ corresponds to Sf for the canonical model
M and Y into tfs : List (S_f M cl φ). The proof is first inductive on X. The case
when X is empty is trivial because ϕ[] is defined as ⊥ in Lean. Thus we unfold the
definitions phi_X_list and finite_disjunction, and then use explosion, which represents
the propositional lemma ∀ψ,⊢ ⊥ → ψ.

induction' sfs with sf sfs ihsfs generalizing tfs
· -- sfs = []

simp only [phi_X_list, finite_disjunction, explosion]

So let sfs contain at least one element sf at the head of the list, and call the rest of the
list sfs'. Then we can split ⊢ (ϕsf ∨ ϕX′) → ¬ϕY into two cases, where the latter follows
from the induction hypothesis ihsfs. Note that the sorry keyword in the snippet below
indicates a proof omitted from the paper for presentation purposes; the omitted proof is
included below and in the full formalization source code.

· -- sfs = sf :: sfs'
simp only [phi_X_list, finite_disjunction]
apply or_cases
-- ⊢ phi sf → ¬ phi tfs
· sorry -- Proof included below
-- ⊢ phi sfs' → ¬ phi tfs
· apply ihsfs

apply List.disjoint_of_disjoint_cons_left hdis

Here the lemma List.disjoint_of_disjoint_cons_left shows that sfs' and tfs must
be disjoint when sfs and tfs are disjoint (represented by hdis in Lean).
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For the case ⊢ ϕs
f → ¬ϕY , we perform induction on Y (tfs). Again here the base case

of an empty list holds by propositional logic, so assume tfs contains at least one element tf
at the head of the list, and call the rest of the list tfs'. We now look at the contrapositive
of our goal: ⊢ (ϕtf ∨

∨
uf ∈tfs′ ϕu

f ) → ¬ϕsf . Again we have two cases. For the former we can
apply lemma unique_s_f where we prove sf ̸= tf by contradiction, based on the disjointness
of both lists. The latter case is solved with the (new) induction hypothesis (ihtfs).

· induction' tfs with tf tfs ihtfs
· simp only [phi_X_list, finite_disjunction]

exact mp _ _ (p1 _ _) iden -- applying propositional lemmas
· simp [finite_disjunction] at *

-- contrapositive
refine contrapos.mp (cut dne (or_cases ?_ ?_))
-- ⊢ phi tf → ¬ phi sf
· apply unique_s_f hcl

by_contra h
simp only [h] at hdis

-- ⊢ phi tfs' → ¬ phi sf (proved with ihtfs and propositional lemmas)
· rw [←contrapos]

exact cut dne (ihtfs hdis.2.1 hdis.2.2)

8.4 Truth lemma
Next we show that in the filtered canonical model all formulas contained in a state are also
true in that state. Recall that Mf is the model created when filtering MC through cl(φ).

▶ Lemma 5 (CLC Truth Lemma [1, Theorem 1]). For all s ∈ SC and ψ ∈ cl(φ), we have
Mf , sf ⊨ ψ iff ψ ∈ sf .

This proof is by induction on ψ. For space reasons we include only the proof for CGψ:
Mf , sf ⊨ CGψ iff CGψ ∈ sf , and specifically the ⇐ direction, as this was the most interesting
to formalize. Given CGψ ∈ sf , and some state tf such that sf ≈f

G tf , we need to show
Mf , tf ⊨ ψ. This proof is inductive on the common knowledge path from sf to tf . Thus, the
details of this proof depend on how exactly we defined the common knowledge path in Lean.

Let the length of a common knowledge path be the number of states in the path
between our first state (sf ) and our last state (tf ). In this case we may describe a
common knowledge path from sf to tf as ⟨sf ,∼f

i0
, uf1 ,∼

f
i1
, uf2 , . . . , u

f
n,∼f

n, t
f ⟩, such that

sf0 ∼f
i0
uf1 , u

f
1 ∼f

i1
uf2 , . . . , u

f
n ∼f

in
, tf and {i0, i1, . . . , in} ⊆ G. We will perform induction on

the length n of this path.
For the base case of our inductive proof, let n = 0. Thus, we consider a path ⟨sf ,∼f

i0
, tf ⟩,

matching the base case of our Lean implementation:

| done (hi : i ∈ G) (hst : t ∈ m.f.rel i s) : C_path G s t

Thus we need to prove that M, t ⊨ ψ, given that sf ∼f
i0
, tf , for some i0 ∈ G. This base case

differs from a more traditional inductive proof on a common knowledge path, like the proof
by Ågotnes and Alechina [1], where the base case is simply the starting state, with the path
being ⟨sf ⟩. Note that this is equivalent to our base case with the additional assumption that
sf = tf , as we must by reflexivity have sf ∼f

i0
sf .

Next our inductive step needs to match our recursive case in Lean:

| next (hi : i ∈ G) (hsu : u ∈ m.f.rel i s) (ih : C_path G u t) :
C_path G s t
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Here we build the path recursively from the front: so when looking at the path from sf to
tf , we consider first the individual knowledge relation from sf to the second state in the
path. Then we recursively define the rest of the path from the second state to tf . Our
inductive step must match this format. Let the first state between sf and tf be uf , where
sf ∼f

i u
f for some i ∈ G, and let the common knowledge path for group G of length n be

⟨uf ,∼f
i0
, uf1 ,∼

f
i1
, uf2 , . . . , u

f
n,∼

f
in
, tf ⟩. The inductive hypothesis states that if CGψ ∈ uf , then

Mf , tf ⊨ ψ. Again, this approach to the inductive step is different from the more usual
inductive proof on a common knowledge path by Ågotnes and Alechina [1]. In their case the
inductive step splits a path of length n+ 1 into a path from the starting state (sf ) to the
nth state in the path, and a single knowledge relation from the nth to the end state (tf ).

Note that for our inductive proof on the common knowledge path, both in the base
case and in the inductive case we need to prove something (that ψ holds in the base case,
that it contains CGψ for the inductive step) about a state (tf for the base case, uf for the
inductive step) which is connected from sf by an individual knowledge relation for some
agent in G. Thus we now show that for any state wf , where there is a relation sf ∼f

j w
f

for some j ∈ G, we must have both Mf , wf ⊨ ψ and CGψ ∈ wf . From CGψ ∈ sf we must
have Kj(CGψ) ∈ sf by definition of cl(CGψ), propositional logic, and axioms (C), (K) and
(RN). Thus by definition of ∼f

i we must also have Kj(CGψ) ∈ wf . Then we must also have
CGψ ∈ wf by axiom (T). Hereby we have proven Mf , tf ⊨ ψ for the inductive step in our
proof. Additionally, from CGψ ∈ wf , we know ψ ∈ wf , by axioms (T), (C), (K) and (RN).
Note that by the inductive hypothesis for the truth lemma (∀s ∈ SC , Mf , sf ⊨ ψ ↔ ψ ∈ sf ),
we must then also have Mf , wf ⊨ ψ. Therefore we have proven Mf , tf ⊨ ψ for the base case
in our proof.

8.5 Finalizing the completeness proof
It remains to prove the final theorem:

▶ Theorem 6 (Completeness of CLC [1, Corollary 1]). ∀φ,⊨ φ ⇒ ⊢ φ

We prove the contrapositive by showing that every formula not provable by CLC is not
globally valid: ⊬ φ ⇒ ⊭ φ. From ¬ ⊢ φ we know that {¬φ} must be a consistent set. By
Lindenbaum’s lemma [24] the set can thus be extended into some maximally consistent set Σ
that is equal to some state s ∈ SC . Note that when filtered through cl(φ), we will still have
¬φ ∈ sf . By Lemma 5 ¬φ is true in that filtered state, and thus φ is not. Thus φ is not
globally valid.

We have thus verified the proof theory and model theory of CLC relate to each other
as expected by proving both soundness and completeness. All Lean lemmas and definitions
about (filtered) canonical model construction can be reused to prove that CL and CLK are
also sound and complete (see [21] for details). For CL, as mentioned previously, this is done
by proving the truth lemma for the canonical coalition model for CL. For Coalition Logic
with individual knowledge (CLK), the proofs are analogous to the proofs presented here,
omitting any parts related to common knowledge.

9 Conclusion and Discussion

In this paper, we have described the successful implementation of soundness and completeness
proofs for CLC in Lean. Our project consists of approximately 6,000 lines of code. Of these,
approximately 300 lines are specific to Coalition Logic (CL), 700 are specific to Coalition Logic
with Knowledge operators (CLK), and 1,100 to Coalition Logic with Common knowledge
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operators (CLC). The remaining almost 4,000 lines are shared between the three. In addition,
we make extensive use of the Lean mathematical library Mathlib. We will not mention a
De Bruijn factor for our development, as there is no direct comparison possible between the
scope of our work and any of the relevant papers.

Much of the complexity of our formalization comes from the need to deal with finiteness
in Lean. To access properties of finiteness in Lean, we needed to use specific data types.
This is most notable in our formalization of ϕX , where we create three different definitions
for when X is a Set a Finset (finite set) and a List. Of the three mentioned data types
only the List is ordered in Lean (in our case, when converting from a (finite) set the order
is arbitrary) and therefore allows us to iterate over elements. However when translating
some (finite) set into a list we often need to keep track of relevant properties about the
initial Set. For instance, we may need to remember that our resulting List contains no
repeating elements. We are therefore often required to create separate lemmas for each data
type, and manually pass such information forward. These translations consequently add a
lot of work. However, each individual step was relatively simple with the existing Mathlib
library [25]. Additionally, some of these challenges are likely exacerbated by our goal to keep
our Lean proofs reasonably similar to their respective paper proofs. For instance, in our
formalization we define finite conjunctions and disjunctions recursively. However to show a
finite conjunction is provable or is contained in some state, we simply need to show that all
conjuncts are provable or are contained within that state. Similarly for finite disjunctions
we aim to show that one disjunct is provable or contained within the state. Thus a deeper
embedding using Lean’s native ∀ and ∃ quantifiers may have been more natural.

Another difficulty with formalization is that there are many trivial lemmas that need
detailed proofs in Lean, which makes formalization cumbersome and time-consuming. This is
especially notable with the lemmas about the finite closure (cl), for instance that it is closed
under single negations. Despite being trivial by our definition of cl, the proof in Lean is long
because of how many cases need to be considered. This highlights the need for continued
work on increasing automation in Lean. Specifically, these long but trivial inductive proofs
would be ideal candidates for better automation.

Despite these challenges, one of the main advantages of formalizing this proof is that it
required us to be precise about exactly when we were using hypotheses and assumptions.
In our case, this led to us easily showing that the completeness proof for CLC described by
Ågotnes and Alechina [1] also holds if we extend the syntax to also allow formulas of the
form C∅φ. Programmatic formalization lends itself well to these tests of generalization: it
automates the work of re-checking an entire proof every time a hypothesis is slightly changed
or removed [4, 10].

Aside from dealing with the nature of formalization itself, one of the goals of our research
was to allow for reuse of lemmas and definitions across different logics. To this end we
introduced Lean classes for each logics syntax and axiomatic system. Importantly, we were
able to define the canonical model MC for these classes, such that the model can be built for
CL and any of its extensions. Additionally we provided a large number of lemmas defined
using our classes for propositional logic, CL, CLK and CLC. We hope that an increasing
library of these kinds of proofs can aid future research into formalizing modal logics, especially
work on formalizing the other types of Epistemic Coalition Logic described by Ågotnes and
Alechina [1].

We note, however, that we did not add semantics to our class definitions. This choice
was made as the semantics are only used in inductive proofs. We could not use classes for
inductive proofs, as they act as minimum requirements for the syntax and proof system of
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the logic. However, each individual case in an inductive proof could be separated into its own
lemma if the semantics was added to the generic classes. Future work could thus look into
expanding our classes and creating such generic proofs. Even more interesting would be to
define the logics in such a way that we can use generic data structures for inductive proofs.
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Abstract
The proper class of Conway’s surreal numbers forms a rich totally ordered algebraically closed field
with many arithmetic and algebraic properties close to those of real numbers, the ordinals, and
infinitesimal numbers. In this paper, we formalize the construction of Conway’s numbers in Mizar
using two approaches and propose a bridge between them, aiming to combine their advantages
for efficient formalization. By replacing transfinite induction-recursion with transfinite induction,
we streamline their construction. Additionally, we introduce a method to merge proofs from both
approaches using global choice, facilitating formal proof. We demonstrate that surreal numbers
form a field, including the square root, and that they encompass subsets such as reals, ordinals, and
powers of ω. We combined Conway’s work with Ehrlich’s generalization to formally prove Conway’s
Normal Form, paving the way for many formal developments in surreal number theory.
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1 Introduction

Surreal Numbers, developed by John Conway [5], are fascinating for several reasons. Their
construction relies on two intuitively simple recursive definitions: as new numbers are built,
an order relation on the numbers is extended. They form a totally ordered algebraically closed
field, denoted by No that contains (up to isomorphism) the reals, the ordinals, infinitesimal
numbers, as well as great ones, for example 1

ω ,
√

ω, ωω··ω

. Despite their intuitively simple
definition, they form a proper class of numbers inductively while simultaneously defining an
order on the class recursively. In the seventies, when they were first considered, mathematics
was not ready for such definitions, considering them unsure or even unsafe. Even Conway
[5] wondered if such definitions were meaningful and later referred to their construction as
“remarkable”.

Fortunately, the informal concept intrigued several mathematicians and gave rise to work
on the foundations of such concepts [7, 11, 23]. Conway saw the possibility of defining a
model for surreal numbers in Neumann-Bernays-Gödel (NBG) set theory with global choice.
This has later been completed by Ehrlich [8]. There are also several more detailed proofs of
the properties of surreal numbers as a field; however, the more formal ones only cover their
simpler properties [1, 11, 23]. Among these, Schleicher’s work [22] has been essential for our
formalization.

There are two approaches to defining surreal numbers. The first approach is closer to
Conway’s convention: it begins by considering the quotient of surreal numbers with respect to
the equivalence relation (defined by x ≤ y ∧y ≤ x) and proceeds to demonstrate that it forms
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a pre-order, employing switching between representatives of the equivalence classes. On the
other hand, the second approach defines the class of surreal numbers using a tree-theoretic
definition [8]. Both approaches have their advantages and disadvantages, with the former
allowing for the free selection of equivalence class representatives, while the latter ensures
the uniqueness of elements. This means that fomalization of certain proofs is more intricate
and challenging in one approach compared to the other.

In this paper, we define a bridge that allows us to combine formal proofs about surreal
number in the general sense with the tree-theoretic proofs. This allows us to efficiently
formalize a large number of properties of surreal numbers. In particular:

We propose an easier approach to constructing the general surreal numbers where
transfinite induction-recursion is replaced by transfinite induction.
We propose an approach to conveniently combine the general approach proofs with
tree-theoretic approach using global choice.
We show that this is a convenient representation by proving that the surreals form a field
including the square root.
We show that reals, ordinals, and powers of ω are subsets of the surreals.
We combine the Conway Normal Form proof skeleton [5] with Erlich’s generalization
of Conway’s theory of surreal numbers [8] expressed in NBG set theory to prove it in
Tarski-Groethendieck set theory [4].
We present the details of the formalization in the Tarski-Grothendieck set theory formalized
in the Mizar proof system. The same approach can be used to work effectively with
surreal numbers in systems that only support transfinite induction, e.g. Isabelle/ZF [18]
and MetaMath [15].
We proved a large number of surreal number properties needed for the above results.
This amounts to 335 proved top-level Mizar theorems totaling 1099 KB. The parts of
the formalization corresponding to the proofs that surreals form a ring is already in the
Mizar library [19, 20, 21].

To our knowledge, this is the most in-depth formalization of surreal numbers today.

2 Mizar

The Mizar proof system operates within the framework of classical first-order logic, augmented
with limited second-order schemes requiring explicit instantiation by users [3, 10]. Within
that logic, Mizar introduces the axioms of Tarski-Grothendieck set theory [2], which extends
ZFC by incorporating Tarski’s Axiom A. This axiom implies the Axiom of Choice (AC) [4]
and enables the existence of arbitrarily large strongly inaccessible cardinals, thus providing
models of ZFC and circumventing the necessity for proper classes in certain formalizations.

Unlike traditional foundational type systems, Mizar treats types as first-order predicates,
supplemented with automation implemented through user-programmable Horn clauses. These
clauses facilitate the propagation of various properties, known as adjectives, throughout Mizar
terms in a bottom-up fashion [12]. The fact that an object X satisfies the type predicate t is
written x be t. Mizar adopts a Jaśkowski-style natural deduction approach, complemented
by a fast and type-aware refutational first-order prover with several extensions [9] known as
the Mizar obvious inference by.

The Mizar system is accompanied by the Mizar Mathematical Library (MML), a large
corpus of formal mathematics, that among many other topics includes formalizations of reals
and ordinals that we will use in this work.
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Mizar allows the definition of several kinds of meta-level objects. We briefly revisit the
definition of meta-level functions by means, as we will utilize them several times throughout
the paper. This mechanism enables the definition of a function based on a predicate. The
predicate can then reference the object being defined using the special keyword it within
the definition body. This methodology closely resembles defining functions using the choice
operator found in other proof systems. However, unlike the direct use of the choice operator,
function definitions by means in Mizar permit the specification of additional conditions and
require the explicit declaration of the result type. Two key proof obligations accompany
such definitions: the proof of existence and the proof of uniqueness of the function’s result.
We illustrate the syntax of function definitions by means in Mizar through an example. For
two sets X and Y of type set, the MML defines a meta-level function (keyword func) union,
denoted as X ∪ Y. This function returns a set (return type indicated after the → keyword).
The semantics of the function (following the means keyword) are given by the predicate
stating that elements belong to the union if they are in any of its arguments. While the
Mizar input syntax for universal and existential quantifiers is for and ex, respectively, we
present them using more standard quantifier symbols in this paper:

let X, Y be set;
func X ∪ Y → set means

∀x be set. x ∈ it ⇔ (x ∈ X ∨ x ∈ Y);

Each meta-function definition requires showing that the defined object exists and is unique.
For the details of these proofs see the formalization.

Meta-level predicates and types (as mentioned above types are just predicates) are defined
in an analogous way, with the only exception that the keyword func is replaced by pred and
attr respectively.

One of the restrictions we will consider in this paper is that, in Mizar (as well as in similar
systems based on set theory), everything is considered to be a set, in accordance with Tarski’s
first axiom. Additionally, any set is an element of a set in the von Neumann hierarchy of
sets. However, this does not imply that reasoning about certain classes is impossible, as
meta-level functions and predicates (in Mizar also attributes/types) are not sets. This means
that, according to the grammar, x is set can only be written when x is a term. Consequently,
we can define a type such as Ordinal even if there is no set of ordinals. Similarly, we can
define meta-level functions on a type whose elements form a proper class, for example, a
successor function of the type Ordinal → Ordinal. In Mizar (as in Isabelle/ZF or Megalodon),
we can even quantify over such meta-level functions and predicates using second-order logic,
but only with the universal quantifier.

3 Introduction to Surreal Numbers

Conway introduced the surreal numbers using two interleaving definitions: The way to build
a new surreal number relies on two sets of surreal numbers, for which appropriate ordering
constraints hold. And the way to check if two numbers are related in the order relies on
checking the relation for the underlying sets of numbers. More precisely:
Concept: If L, R are any two sets of numbers, and no member of R is ≤ any member of L,

then there is a number {L | R}. All numbers are constructed in this way.
Comparison: If x = {L | R}, x′ = {L′ | R′}, then x ≤ x′ if and only if x′ ̸≤ any member of

L and no member of R is ≤ x′.

We introduce several notations that allow describing the various properties and proofs
more concisely. We write L ≪ R iff for each x ∈ L and y ∈ R, y ̸≤ x. We introduce the
relation x ≈ y to denote x ≤ y ∧ y ≤ x. It is easy to see that it is an equivalence relation.

ITP 2024
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Note, that several works quoted in the introduction Sec. 1 use the same symbol for identity
= and equivalence ≈ of surreal numbers. As we aim to formalize these using interactive
proof systems we will precisely separate the two. We also follow Conway’s original notation
{L | R} for pairs ⟨L, R⟩. Let x = {L | R} a surreal number, we use Lx and Rx to refer to
the left L and the right component R of x, respectively.

Conway constructs surreal numbers in so-called days indexed by ordinals. He starts by
defining the first number, denoted 0No, as the pair { | } (:= ⟨∅, ∅⟩). Note that the relation
∅ ≪ ∅ obviously holds. This number is then used to initialize day zero as the only number
present at this stage. In the next iteration, Day 1, we could consider three more pairs
−1No := { | 0No}, 1No := {0No | }, and {0No | 0No}. The last one of those is not a number
since already in Day 0 we can prove that 0No ≤ 0No, and relations between numbers are
preserved across days. Generally, Day α is defined by all surreal numbers x for which
Lx, Rx ⊆

⋃
β<α Day β and Lx ≪ Rx. Additionally, we introduce the concept of the birthday

of a surreal number x, denoted by b x, i.e, the smallest ordinal α such that x ∈ Day α.
To show the main differences between Conway’s approach and the tree-theoretic one, that

we address in our contribution, we present the construction of Day 2. When generating the
numbers present in Day 2, we can place any of the numbers already in Day 1 (i.e., −1No, 0No,
1No) in the left and in the right set. This gives (23)2 = 64 candidates for new numbers x.
Only 20 of these numbers satisfy the criterion Lx ≪ Rx. Note, that checking this criterion
requires knowing the ordering on all the numbers in the preceding Day 1. In general, this
number grows exponentially, that is given n different numbers, there are (n + 2)2n−1 new
ones that satisfy the comparison criterion. These 20 numbers are different, however, not all
are different in the quotient ≈. There are, in fact, only 4 new numbers, namely −2No, − 1

2No
,

1
2No

, 2No (see Fig. 1). This is because some of the newly generated numbers are equivalent
in the ≈ sense to each other, e.g., 1

2No
:= {0No | 1No} ≈ {−1No, 0No | 1No}, and some are

equivalent to already existing ones, e.g., 0No = { | } ≈ {−1No | } ≈ { | 1No} ≈ {−1No | 1No}.
More generally, in Day n for any n ∈ N there are 2n new numbers.

We next need to characterize the comparison relation on the new numbers. To do this
for the new numbers in Day α, it is not sufficient to directly (without recursion) use the
order for the previous days Day β for β < α. As the tree has depth α, we need to perform
up to α steps of recursion in order to use the information from previous days. Indeed,
to justify that {−1No | 1No} ≤ {0No | 1No} (compare with 0No ≤ 1

2No
) we need to show

−1No ≤ {0No |1No} ∧ {−1No | 1No} ≤ 1No, and that happens because −1No ≤ 1No which we
know from Day 1.

For any surreal number x in Fig. 1, we can always construct two new numbers in the ≈
sense using x1 = {Lx ∪ {x} | Rx} and x2 = {Lx | Rx ∪ {x}} to represent them. Naturally, if
x is youngest w.r.t. ≈, then b x1 = b x2 = 1+b x. Note, that the new numbers in Day α,
where α is a limit ordinal, cannot have a direct predecessor. They are created as cuts, similar
to Dedekind reals. Nevertheless, if b x is not a limit ordinal and x is youngest w.r.t. ≈, we
can construct y that corresponds to the direct predecessor of x in the ≈ sense, for which
x ≈ {Ly ∪ {y} | Ry} or x ≈ {Ly | Ry ∪ {y}}. This allows interpreting the equivalence classes
of the ≈ relation, as the class of all possible maps from an ordinal (including limit ordinals) to
the set {+++,−−−}, where +++ and −−− correspond to these two alternatives. This is the foundation
of the tree-theoretic approach. As ordinals can be thought of as sequences, we can use the
standard lexicographic order, with −−− ≺ undefined ≺ +++. As the sequences are of different
length for different ordinals, the undefined come up outside of the domain of the maps: If x

is a subsequence of length α of the sequence y then the first index where they differ is α + 1.
At that index x(α + 1) is undefined while y(α + 1) has a value.

In the tree-theoretic approach, the comparison is defined as below. We will not analyse it
in our work, but it helps compare the approaches.
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Figure 1 The relations between the numbers created in the first four days. The bottom part of
each node give a representative of the equivalence class w.r.t. the ≈ relation. The edge labels +++ and
--- correspond to the tree-theoretic interpretation of surreal numbers.

▶ Definition 1 (tree-theoretic comparison). Let x, y be maps from an ordinal to {+++,−−−}, that
represent surreal numbers in the tree-theoretic approach. Suppose that x ̸= y and α is the
smallest ordinal where x(α) ̸= y(α). Then x < y if and only if

(x(α) = −−− ∧ y(α) is undefined)∨(x(α) = −−− ∧ y(α) = +++)∨(x(α) is undefined ∧ y(α) = +++) . (1)

The construction of surreal numbers in this approach is significantly easier to formalize [16].
We can even define the negation operator −x by exchanging +++ and --- in any map x. However,
the construction of the remaining field operations becomes much more involved. In order to
define x ⋆ y, it is needed to build a kind of bridge to the Conway approach. This starts with
some representation x, y, for which we define x ⋆ y using the Conway method. Finally, one
needs to show the existence of a map for x ⋆ y, rather than use direct recursion. A similar
approach is required to prove all the field properties. This is much more involved than in the
Conway approach, where we can freely represent numbers by their different representatives
in their ≈ class.

4 Formal Set-theoretic Construction of Surreal Numbers

In the previous Section, we pointed out that the surreal numbers are not a set and their
ordering relation ≤ cannot be a set. However, the restriction of this relation to any particular
day is a set. To work with such sets, we will index the order α using a relation Ord that
is a set. The notation x ≤Ord y simply means that ⟨x, y⟩ ∈ Ord and L ≪Ord R means
∀ l ∈ L. ∀ r ∈ R. ⟨r, l⟩ ̸∈ Ord. Remember, that constructing the surreal numbers in Day 2
proceeded in two steps: First the candidates were selected using the ordering on Day 1
surreals; subsequently the order in Day 2 was computed. In the construction, as well as in
the uniqueness proof, we need to modify the Ord relations with a given set of candidates to
construct Day α. For this, we define the sets of pairs Games α for any ordinal α as follows
(P stands for powerset):

Games α = P

 ⋃
β<α

Games β

 × P

 ⋃
β<α

Games β

 . (2)
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29:6 Conway Normal Form for the Formalization of Surreal Numbers

Clearly, Games 0 = {∅}×{∅} = {⟨∅, ∅⟩} and Day α ⊆ Games α. Now we can define DayOrd α

even if Ord does not satisfy the Comparison condition as follows:

DayOrd α = {x ∈ Games α | Lx ⊆
⋃

β<α

DayOrd β ∧ Rx ⊆
⋃

β<α

DayOrd β ∧ Lx ≪Ord Rx}. (3)

The recursive definition relies on a very complicated recursion scheme that combines unions
over all previous ordinals. As this is very hard to express in several systems, including Mizar,
we use a helper sequence S.

▶ Definition 2 (DayOrd α). Let Ord be relation, α be an ordinal and a α-length sequence S

that satisfies:

S(β) = {x ∈ Games β | Lx ⊆
⋃

γ<β

S(γ) ∧ Rx ⊆
⋃

γ<β

S(γ) ∧ Lx ≪Ord Rx} (4)

for any ordinal β ≤ α. Then DayOrd α = S(α).

We give the formal definition of DayOrd α in Mizar and explain several used concepts
below:

let α be Ordinal, Ord be Relation;
func Day(Ord,α) → Subset of Games α means

∃ S be Sequence. it = S.α ∧ dom S = succ α ∧ (∀ β be Ordinal. β ∈ succ α ⇒
S.β = {x where x is Element of Games β: Lx ⊆ union rng (S|β) ∧ Rx ⊆ union rng (S|β) ∧ Lx ≪Ord Rx});

The length of S is α (equivalently dom S = succ α),
S.β is the set-theoretic function application, corresponding to DayOrd β for β ∈ succ α

(β < α).
union rng (S|β) is the union of the values of the sequence S restricted to the ordinal β

which corresponds to
⋃

γ<β DayOrd γ,
it refers to the defined object, equal to S.α which also is a subset of Games α.

The definition implies that DayOrd α ⊆ DayOrd β if α ≤ β, but it is also possible to use
transfinite induction to show a “monotonicity”-like property:

▶ Lemma 3. Let Ord be a relation, α be an ordinal and x ∈ Games α such that x ̸∈ DayOrd α.
Then for all ordinals β, x ̸∈ DayOrd β.

We also restrict the concept of birthday of a surreal number x to a relation Ord.

▶ Definition 4. Let Ord be relation, x be element of DayOrd β for some ordinal β. Then
the birthday of a object x with respect to a relation Ord is an ordinal α that satisfies two
conditions:

o ∈ DayOrd α,
∀ β. (x ∈ DayOrd β → α ≤ β).

assume ∃ β be Ordinal. x ∈ Day(Ord,β);
func born(Ord,x) → Ordinal means

x ∈ Day(Ord,it) ∧ (∀ β be Ordinal. x ∈ Day(Ord,β) ⇒ it ⊆ β);

Even if we construct the Ord relation that satisfies the Comparison condition, we cannot
use that single relation for all days. Indeed, each day DayOrd α corresponds to at least one
new number {

⋃
β<α DayOrd β | } and ⟨0No, {

⋃
β<α DayOrd β | }⟩ ∈ Ord. As such, we can only

assume that Ord satisfies the Comparison condition on some set. At this point, we could
already talk about the surreal numbers, but only until a certain birthday, after which we
would have to modify the relation.
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Conway, uses a special induction over n-tuples of arguments (referred to as Conway’s
induction) when constructing the surreal numbers, their order, the operations, as well as
when proving their properties. The induction is similar to ∈-induction, where the truth of
P (x1, x2, . . . , xn) follows from the truth of P for all modified tuples x1, x2, . . . , xn where at
least one xi is replaced by its left or right component. Unfortunately, some proofs require
changing the order of the elements in a sequence with additional properties. This has
already been observed by Mamane [14]: In his Coq formalization he refers to such induction
arguments as permuting inductions. Such an induction could be expressed as a transfinite
induction over sums of b applied to these arguments, however, standard ordinal sum is not
symmetric nor monotonous on its both arguments.

In our formalization, we tackle this problem by using the natural Hessenberg sum of
ordinals. This is a variant of ordinal sum that is symmetric and monotonic on both arguments.
In fact, Hessenberg invented his ordinal sum, inspired by surreal numbers and the use of
Cantor Normal Form1, but it became a concept in mathematics in general and has already
been formalized [13]. In our work, wherever possible, we use subsets of Cartesian product in
the construction, but full Hessenberg sum is necessary for example in the definitions of the
arithmetic operation.

▶ Definition 5 (Prod C and Prod O). Let Ord be a relation and α, β be ordinals. Then we
define two subsets of the Cartesian product DayOrd α × DayOrd α as follows:

Prod C
Ord(α, β) = {⟨x, y⟩ | x, y ∈ DayOrd α ∧ ((bOrd x < α ∧ bOrd y < α)∨

(bOrd x = α ∧ bOrd y ≤ β) ∨ (bOrd x ≤ α ∧ bOrd y = β))} (5)
Prod O

Ord(α, β) = {⟨x, y⟩ | x, y ∈ DayOrd α ∧ ((bOrd x < α ∧ bOrd y < α)∨
(bOrd x = α ∧ bOrd y < β) ∨ (bOrd x < α ∧ bOrd y = β))} (6)

The O and C superscripts are used, since the concepts are somewhat similar to open and
closed intervals respectively. Observe two properties of Prod C and Prod O: Prod C

Ord(α, α) =
DayOrd α × DayOrd α and

⋃
γ<β Prod C

Ord(α, γ) = Prod O
Ord(α, β).

As we already discussed, the order relation on surreals ≤ is too big to be a set, so
reasoning about it is complicated. For this reason, we will consider its subsets that are sets.
A restriction of the ≤ relation to any set, will be a subset of Day α × Day α for some α, so
we introduce a natural restriction:

▶ Definition 6 (AlmostNo-order). A relation Ord is an almostNo-order if Ord ⊆ DayOrd α×
DayOrd α for some ordinal α.

▶ Definition 7. Let A be a set. A relation Ord preserves the Comparison condition on A

(written Comp(Ord, A)) if and only if

∀ x. ∀ y. x ≤Ord y ⇔ Lx ≪Ord {y} ∧ {x} ≪Ord {y}. (7)

One of the crucial properties of our formalization is that we can complete the proofs
using only (transfinite) induction, without requiring any complex techniques available only in
selected systems (e.g. we do not use induction-recursion or complicated recursion schemes).
Apart from the construction we here show the first proof done this way in full. The
following Theorem 8 gives a form of uniqueness of the order on the surreal numbers, uses two
applications of (transfinite) induction. Many proofs in our formalization use two inductions
in a similar way.

1 Cantor Normal Form is the unique representation of any ordinal x as n1ωα1 + n2ωα2 + . . . + nkωαk for
some k ∈ N, where {ni}k

i=0 is a sequence of positive naturals and {αi}k
i=0 a decreasing ordinal sequence.
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▶ Theorem 8. Let R,S be relation. The following facts hold.
1. if R ∩

⋃
γ<α Games γ = S ∩

⋃
γ<α Games γ where α is any ordinal, then:

Day (R, α) = Day (S, α),
∀ x∈Day (R, α). bR (a) = bS (a),
∀ β. R ∩ Prod O

R(α, β) = S ∩ Prod O
S (α, β) ∧ R ∩ Prod C

R(α, β) = S ∩ Prod C
S (α, β).

2. if R, S are almost No-order, Comp(R, Prod C
R(α, β)), Comp(S, Prod C

S (α, β)) then R ∩
Prod C

R(α, β) = S ∩ Prod C
S (α, β).

Proof. Fact 1 is proved by transfinite induction. Let x = {Lx | Rx} ∈ DayR α. Every
element of Lx ∪ Rx is a memeber of DayR β for some β < α, so by induction hypothesis it
is also a member of DayS β. Similarly, Lx ≪S Rx (equivalently ∀ l ∈ Lx. ∀ r ∈ Rx. l ̸≤S r)
is a consequence of Lx ≪R Rx and R ∩

⋃
γ<α Games γ = S ∩

⋃
γ<α Games γ, therefore

x ∈ DayS α. Since ∀ β ≤α. DayR β = DayS β the remaining part of Fact 1 is straightforward.
To show Fact 2, first consider the following subclaim. If R, S are almost No-orders, then

∀ α. ∀ β. β ≤ α ∧ Comp(R, Prod C
R(α, β)) ∧ Comp(S, Prod C

S (α, β))∧
R ∩ Prod O

R(α, β) = S ∩ Prod O
S (α, β) ⇒

R ∩
(
Prod C

R(α, β) \ Prod O
R(α, β)

)
⊆ S ∩

(
Prod C

S (α, β) \ Prod O
S (α, β)

)
(8)

Let β, α such that β ≤ α, Comp(R, Prod C
R(α, β)), Comp(S, Prod C

S (α, β)) and

R ∩ Prod O
R(α, β) = S ∩ Prod O

S (α, β). (9)

Let x, y such that ⟨x, y⟩ ∈ R ∩
(
Prod C

R(α, β) \ Prod O
R(α, β)

)
. Then, by definition 5, there

are only two possible cases: bR x = α ∧ bR y = β or bR x = β ∧ bR y = α. Without
loss of generality we assume that bR x = α ∧ bR y = β. By Lemma 3 we know that
R ∩

⋃
γ<α Games γ = S ∩

⋃
γ<α Games γ, hence ⟨x, y⟩ ∈ Prod C

S (α, β)\Prod O
S (α, β), bS x = α,

bS y = β. It remains to prove ⟨x, y⟩ ∈ S. Since Comp(S, Prod C
S (α, β)), this is equivalent to

Lx ≪S {y} ∧ {x} ≪S Ry.
To prove the first conjunct, suppose contrary to our claim, that y ≤S l for some l ∈ Lx.

Then either β < α or β = α. In both cases we get ⟨y, l⟩ ∈ S ∩ Prod O
S (α, β) since bS l < bS x.

Hence y ≤R l by (9) contrary to Lx ≪R {y} (by ⟨x, y⟩ ∈ R). To show the secound conjunct,
{x} ≪S Ry, suppose contrary to our claim, that r ≤S x for some r ∈ Ry. Then bS r < bS y,
⟨r, x⟩ ∈ S ∩ Prod O

S (α, β), and finally r ≤R x by (9) contradicting x ≪R {y} (by ⟨x, y⟩ ∈ R).
We can now easily infer R ∩ Prod C

R(α, β) = S ∩ Prod C
S (α, β) from R ∩ Prod O

R(α, β) =
S ∩ Prod O

S (α, β). Next, using transfinite induction we can simplify the assumption, obtaining

∀ α. ∀ β. β ≤ α ∧ Comp(R, Prod C
R(α, β)) ∧ Comp(S, Prod C

S (α, β))∧
R ∩ Prod O

R(α, 0) = S ∩ Prod O
S (α, 0) ⇒ R ∩ Prod C

R(α, β) = S ∩ Prod C
S (α, β) (10)

with the help of the equation
⋃

γ<β Prod C
Ord(α, γ) = Prod O

Ord(α, β). A second use of transfin-
ite induction together with the equation

⋃
β<α Prod C

Ord(β, β) = Prod O
Ord(α, 0) completes the

proof of fact 2. ◀

The above Theorem 8 allows defining the order using its selected properties. We only show
the main step in the construction, the remaining part are two applications of transfininte
induction, analogously to what we did in the proof of the second part of the lemma 8.
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▶ Theorem 9. Let α, β ordinals, R be relation such that Comp(R, Prod O
R(α, β)) and R ⊆

Prod O
R(α, β). Then

S := R ∪ {⟨x, y⟩ | x, y ∈ DayR α ∧ ((bR x = α ∧ bR y = β)∨
(bR x = β ∧ bR y = α)) ∧ Lx ≪R {y} ∧ {x} ≪R Ry} (11)

satisfies Comp(S, Prod C
S (α, β)) and S ⊆ Prod C

S (α, β).

We can now define the order relation. Proving that it is a function (its existence and
uniqueness) relies on the properties of Comp(Ord, Prod C

Ord(α, α)) and Ord ⊆ Prod C
Ord(α, α):

let α be Ordinal;
func No≤α → Relation means :: SURREALO:def 12

it preserves_No_Comparison_on [:Day(it,α),Day(it,α):] ∧ it ⊆ [:Day(it,α),Day(it,α):];

For a given α, this relation is still a set with all usual restrictions of sets. However, in the
formalization we can consider a different relation for each particular day. We define the type
surreal as the members of at least one day of the form Day

No
≤

α α. Similarly, we can define
the order x ≤ y (as a predicate and not a set-theoretic relation) as true when ⟨x, y⟩ is an
element of at least one No≤α as follows:

let x be object;
attr x is surreal means

∃ α be Ordinal. x ∈ Day
No

≤
α α;

let x,y be surreal object;
pred x ≤ y means

∃ α be Ordinal. x ≤
No

≤
α y;

This gives us the Concept and Comparison properties, that encapsulate the constructed
surreals. With just the help of standard (transfinite) induction, we created a theoretical
heaven, where the properties of Conway numbers are satisfied. In the next section, we will
also introduce the canonical representation [8] that links this to the tree-theoretic approach.

5 The Surreal Numbers as a Field

For a surreal number x, Conway introduces the somewhat confusing concept of a typical
member of Lx and Rx denoted by xL and xR, respecively. We will use these only to define
how functions affect the left and right parts of a surreal number. More formally f(xL) will
denote {f(y) | y ∈ Lx} (analogous for xR in Rx).2

With this notation, the unary negation can be simply written as −x = {−xR | −xL}
and unfolds to the full −x = {{−xr | xr ∈ Rx} | {−xl | xl ∈ Lx}}. We write the
definitions of the remaining operations only using the typical member notation: x + y =
{xL + y, x + yL | xR + y, x + yR}, x · y = {xL · y + x · yL −xL · yL, xR · y + x · yR −xR · yR |
xL · y + x · yR −xL · yR, xR · y + x · yL −xR · yL} where the comma corresponds to the different
possible ways how elements are constructed, formally corresponding to a union.

The definion of any arithmetic operation on the surreal numbers would require some
complicated recursion principle, a different one for each operation. To avoid this, all arithmetic
operations defined in our formalization are introduced in three phases. To define operation ⋆

(such as +, −, ·, −1) we first define ⋆α on a specific domain of surreal numbers restricted to
Day α. We will denote this domain by Xα so that we can uniformly cover unary and binary
operations. In particular, Xα will be a subset of surreal numbers for unary ⋆ and a set of
pairs for binary operations. Subsequently, we prove that the application of the operator ⋆α

on surreal arguments is also surreal. For this proof we recursively use the properties of ⋆β

for β < α as well as for ⋆α. Finally, we can define ⋆ as ⋆α, where α is determined by the
arguments given to ⋆.

2 Conway also uses typical members in more ambiguous ways, i.e., x = {xL | xR}. We will avoid these in
this paper.
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The second step of each of the definitions is typically most involved and often requires
proving several additional properties. For example, consider the proof that multiplication
restricted to Xα preserves the surreal type (the definition of multiplication relies on addition,
so this is of course done after addition is defined and its basic properties are proved). The
formal goal is: ∀ x. ∀ y. ⟨x, y⟩ ∈ Xα ⇒ x ·α y is surreal. For this, we only have to show
that x ·α y satisfies the Concept condition and (following Conway’s work for ·) requires the
following four properties of ·β for any β < α:

∀ x. ∀ y. ⟨x, y⟩ ∈ Xβ ⇒ x ·β y is surreal,
∀ x. ∀ y. ⟨x, y⟩ ∈ Xβ ⇒ x ·β y = y ·β x,
∀ x1. ∀ x2. ∀ y. ⟨x1, y⟩ ∈ Xβ ∧ ⟨x2, y⟩ ∈ Xβ ∧ x1 ≈ x2 ⇒ x1 ·β y1 ≈ x2 ·β y1,
∀ x1. ∀ x2. ∀ y1. ∀ y2. . . . ∧ x1 < x2 ∧ y1 < y2 ⇒ x1 ·β y2 + x2 ·β y1 < x1 ·β y1 + x2 ·β y2

3,
necessary in the proof for ·α (proof by induction over β of the conjunction of these properties).

In the final step of each definition, that is to define ⋆ based on ⋆α, we need to specify
the Xα on which it is defined. For the unary operations −, −1 (but also the square root √

.,
unique element Uniq. for each class [x]≈ introduced in Section 6, and ω. in Section 7) we can
define ⋆α on the set Xα := Day α. For binary operations, we introduce Xα := α, i.e., the
set of pairs ⟨x, y⟩ where b x ⊕ b y ≤ α and ⊕ is the natural Hessenberg sum of ordinals. The
ordinals are not a set, so we use the same trick as in Definition 2, namely a monotonously
increasing sequence of functions (they need to be monotonous, that is only add new pairs
to the set-theoretic functions in order to preserve consitency). The sequence {Day α} is
naturally increasing, and { α} is monotonously increasing since ⊕ is monotonous. With
this, we can show that the sequence of functions ⋆α is increasing w.r.t. set inclusion. We
call this property ⊆-monotone. More precisely, a sequence of functions S is ⊆-monotone iff
∀ α ∈ domain(S). ∀ β ∈ domain(S). β ≤ α ⇒ S(β) ⊆ S(α). As a consequence

⋃
β<α ⋆β is

a function defined on
⋃

β<α Xβ . It already has the necessary properties, but we still have
to show that the results of the function are surreal numbers. The above shows the main
stages of the proposed approach to defining functions on the surreal numbers. The initial
construction does not know the properties of the results; subsequently these are proved; and
finally we show that the result is surreal.

In order to efficiently proceed with the formalization, we prove a second-order theorem
(referred to as a scheme in Mizar) that will allow us to efficiently define all these operations.
The scheme constructs a sequence, where the definition has access to all previous elements.

▶ Theorem 10. Let X be a function from ordinals that returns an arbitrary set, and H a
binary function (the first argument is an arbitrary set but the second must be a ⊆-monotone
sequence of functions) such that

∀ S be ⊆−monotone sequence of functions. (∀ α∈domain(S). domain(S(α)) = X(α)) ⇒
(∀ α ∈ domain(S). ∀ x ∈ domain(S(α)). H(x, S) = H(x, S|α)),

∀ α. ∀ β. β ≤ α ⇒ X(β) ⊆ X(α).
Then for every ordinal θ, there exists a unique ⊆-monotone sequence S of functions of length
θ where ∀ α ∈ domain(S). domain(S(α)) = X(α) ∧ (∀ x ∈ X(α). S(α)(x)=H(x, S)).

Recall, that −x = {−xR | −xL}, or more precisely −α(x) = {(
⋃

β<α −β)⧹Rx |
(
⋃

β<α −β)⧹Lx}, where the image of a set is denoted by ⧹. Thus −α(x) depends on x

and
⋃

β<α −β . However, we define −α(x) as H(x, {−β}β≤α) to be able to access the whole se-
quence and not just its union. Additionally, the constraint x ∈ X(α) ⇒ H(x, S) = H(x, S|α)
intuitively means that we expect −α(x) = H(x, {−β}β≤α) = H(x, {−β}β≤θ).

3 where . . . is the union of assumptions of the form ⟨xi, yj⟩ ∈ Xβ for every occurrence of xi ·β yj .
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We show the details of the definition of −x and x+y using this theorem. For −x, we
simply use θ = b x, X(α) = Day α, H(o, S) = ⟨(

⋃
rng S)⧹Ro, (

⋃
rng S)⧹Lo⟩. Finally,

define −x to be −b xx. To define addition x+y, we use θ = b x ⊕ b y, X(α) = α, H(o, S) =
⟨(

⋃
rng S)⧹((LLo×{Ro})∪({Lo}×LRo)), (

⋃
rng S)⧹((RLo×{Ro})∪({Lo}×RRo))⟩ and define

x + y as x +b x⊕b y y. To clarify the second case, notice that o as a member of the triangle
operator is a pair o = ⟨a, b⟩ for some surreal a, b, so the expression H can be represented as
⟨+⧹((La×{b}) ∪ ({a}×Lb)), +⧹(Ra×{b}) ∪ ({a}×Rb))⟩ equal {La+b, a+Lb | Ra+b, a+Rb}.
This is well-defined and reduces to Conway’s definition of a + b.

After defining all the operations, we show that their results are surreal numbers. Like
Schleicher [22], we show the properties of the operations alongside the properties of the order.
We covered all of Schleicher’s chapter 3 [22], additionally making use of some more detailed
proofs found in Grimm [11] and Tondering [23]. We finally formally show that No has all
the properties of an ordered field:

x + y = y + x x + 0No = x x · (y + z) ≈ x · y + x · z

x · y = y · x x · 1No = x (x · y) · z ≈ x · (y · z)
(x + y) + z = x + (y + z) x + (−x) ≈ 0No x ̸≈ 0No → x · x−1 ≈ 1No

(12)

The inverse operation deserves special attention. Conway uses changing the equivalence class
representative and hides a secondary recursion. Let x > 0No. Then x ≈ p := {0No, xL | xR}
where xL, xR are restricted to positive typical members. More formally, p is constructed
by eliminating the non-positive elements from Lx, Ry and adding 0No in its left component.
Then Conway defines y := x−1 using a strongly informal recursive property, that expresses
the transitive closure of subsequent generations of typical members of y as follows:

y = {0No,
1No + (pR − p)yL

pR
,

1No + (pL − p)yR

pL
| 1No + (pL − p)yL

pL
,

1No + (pR − p)yR

pR
} (13)

where pL, pR are reserved only for positive typical members4. We imitate Schleicher and
Stoll’s proof [22], formalizing using transitive closures of subsequent right and left closures of
typical members. For details, see the SURREALI.miz formalization.

A somewhat similar approach for highly-recursive definitions has been used to define the
square root. According to Conway [5], Clive Bach defined the square root of a non-negative
number as follows:

√
x = y = {

√
xL,

x + yL · yR

yL + yR
|
√

xR,
x + yL · yL•

yL + yL• ,
x + yR · yR•

yR + yR• } (14)

where xL, xR are non-negative typical members of x, and yL, yL•, yR, yR• are options of y

chosen so that no one of the three denominators is zero. Conway leaves the correctness proof
to the reader [5].

We formally define this in two steps. First, we designate the initial sets L := {√
xL |

0No ≤ xL ∈ Lx}, R := {
√

xR | 0 ≤ xR ∈ Rx}, and then we perform a transitive closure. We
focus on the second step. For the square root definition, we introduce a helper definition S.

4 To show the intricacy of the definition, consider x = 5No ≈ p := {0No, 4No | } where there is no pR and
pL = 4No. Since y = {0No, . . . | . . .} we start by yL = 0No and obtain a new yR = 1No+(4No−5No)·1No

4No
=

1
4No

. Then 1No+(4No−5No)· 1
4No

4No
= 3

16No
is a new yL, and 1No+(4No−5No)· 3

16No

4No
= 13

64No
is a new yR and so

on, creating y = {0No, 3
16No

, 51
256No

, . . . | 1
4No

, 13
64No

, 205
1024No

. . .}.
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▶ Definition 11 (Square root). Let x be a surreal numbers, L, R be surreal number sets. We
define S(x, A, B) to be { x+a·b

a+b | a ∈ A∧b ∈ B ∧0No ̸≈ a+b}. Consider the sequences {Ln}n∈N,
{Rn}n∈N defined as follows:

L0 = L, R0 = R, Ln+1 = Ln ∪ S(x, Ln, Rn), Rn+1 = Rn ∪ S(x, Ln, Ln) ∪ S(x, Rn, Rn). (15)

Then, we can define
√

x, L, R := {
⋃

n∈N Ln |
⋃

n∈N Rn}.

With the above definition, we can apply Theorem 10 using θ = b x, X(α) = Day α,

H(o, S) =
√

o, {(
⋃

rng S)(oL) | 0No ≤ oL ∈ Lo}, {(
⋃

rng S)oR | 0No ≤ oR ∈ Ro} (16)

to obtain the final function
√

x.
We have proved the usual properties of the square root, such as

√
x · x ≈ x for non-

negative surreals and
√

x −1 ≈
√

x−1 for positive surreals. The definition proposed by
Clive Bach can even be applied even to negative surreal numbers. As expected, it does
not behave well for these: rather than give us the surcomplex numbers we instead show
that different representatives of the same equivalence class of a negative number give
different square roots. Indeed, consider an arbitrary positive x. Then −1No ≈ y = { |
(
√

x · x + 1No − x) · (
√

x · x + 1No − x)} but
√

−1No = −1No and √
y < −x. With this, for

any negative number x we can construct a number ≈ −1No, whose square root is less than x.

6 Reals and Ordinals as Subsets of Surreal

Conway [5] showed that the real numbers are a subset of No without focusing on their
construction. Starting with a construction of ∗integers (that include the ∗naturals) and
inverse, an x would be called ∗real if x ≈ {x − 1No

nNo
| x + 1No

nNo
}0<n and −kNo < x < kNo for

some natural k. This was later restricted to dyadic numbers. Grimm [11] directly constructed
the dyadic numbers and defined a bijection from *real surreal into real.

We formalize these constructions, additionally showing the set inclusions (similar to the
MML’s property N ⊆ Z ⊆ Q ⊆ R but with dyadic numbers D and ordinals):

sZ(i) =


0No if i = 0,

{sZ(i − 1) | } if i > 0,

{ | sZ(i + 1)} if i < 0,

sD(d) =


sZ(d) if d ∈ Z,

{sD( j
2p ) | sD( j+1

2p )} if d = 2j+1
2p+1 for

some j ∈ Z, p ∈ N.

(17)

and construct sR(r) which selects the ≈ equivalence class representative of the number, such
that {sD( ⌈r·(2n)−1⌉

2n ) | sD( ⌊r·(2n)+1⌋
2n )}n∈N, sR|D = sD, sD|Z = sZ, and the basic operations +, ·

are preserved. We discuss only two most important points: the set-theoretic definition of
sD : D 7→ Day ω and the choice operator.

We denote the set of dyadic numbers of the form j
2n (where j ∈ Z) as Dn. Observe that the

sequence D0 = Z, Dn is increasing and
⋃

n∈N Dn = D. Then, for any n we define a recursive
operator In : (Day ω ⊕ n)Dn 7→ (Day ω ⊕ (n+1))Dn+1 which extends the domain of Dn to Dn+1,
assigning Dn+1 \ Dn values according to (17). It easily follows that {a | b} ∈ Day ω ⊕ (n+1)
if a, b ∈ Day ω ⊕ n. Then using sZ on D0 with MML’s fixed point combinator NAT_1:sch 11
we construct sD and prove that the values belong to

⋃
n∈N Day n.

We now want to obtain sR|D = sD. To choose a representative of the equivalence class [x]
for a given x we can use “gluing” sR(r) = sD(r) for dyadic r and use global choice otherwise
(taking special care, since choosing c from [x]≈ is a proper class). Using an adaptation
of Scott’s trick, we can expect c to be the youngest (in the sense of b). We therefore can
replace the proper class [x]≈ by the set {y ∈ Day b x : y ≈ x}. However, this set still can
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have several elements, so in the first place we aim to reduce the cardinality of Lc, Rc and
the cardinality of their union. Using the Hessenberg sum, we can minimize all three. For
this, we will use Lc ⊕ Rc instead of Lc ∪ Rc and use properties of ≈. Finally, we would like
the globally selected c to be suitable. By suitable, we mean minimal w.r.t. b as well as
having only suitable elements in Lc, Rc. For this, we again use a transfinite sequence, the
last element of which has only suitably selected elements of Day α

let α be Ordinal;
func Uniq_op α → Sequence means :: SURREALO:def 29

dom it = succ α ∧ ∀ β be Ordinal. β ∈ succ α ⇒ (it.β ⊆ Day β ∧
(∀ x be Surreal. x ∈ it.β ⇔ (x ∈ union rng (it|β) ∨ (β = born_eq x ∧

∃ Y be non empty surreal-membered set .
Y = born_eq_set x ∩ made_of union rng (it|β) ∧ x = the Y -smallest Surreal))));

where the is the global choice operator, born_eq x is the b of youngest surreal that is ≈ x,
born_eq_set x is the set of youngest surreal that is ≈ x, made_of X is the set of such surreals
that their both left and right members belong to X, and Y-smallest means that it has the
smallest cardinality, that is Lc ⊕ Rc.

The definition implicitly assumes that born_eq_set x ∩ made_of
⋃

rng (it|β) is non-
empty because Y is non-empty. In consequence, Y-smallest Surreal is also non-empty and we
can use global choice. Finally, we can use transfinite induction to select a unique element for
each class [x]≈, denoted Uniqx.

It is important to notice, that the properties that need to be proved about the globally
selected numbers (such as youngest, smallest cardinality, suitable member) must be proved
by simultaneous induction, just like it was the case with the correctness of multiplication
proofs in Section 5. We call the type of such elements uSurreal. This type is crucial for the
definition of sR, as values of sD are uSurreal, and before Day ω there are no more uSurreal.
This means that sR can be defined using Uniq without “gluing”.

Next, we define ∗ordinal numbers to be all the surreal numbers x, for which Rx = ∅
(following Conway). Subsequently, again using a transfinite sequence, we define the operator
sOn from ordinals to ∗ordinal. We additionally apply Uniq to it, so that the values are uSurreal
(this is justified, as we constructed Uniq to be ∗ordinal on ∗ordinal). The proposed construction
of uSurreal builds a bridge that helps us formally combine proofs about the surreal numbers
in the general sense with the proofs that use the tree-theoretic definition that uses real and
ordinal. This will be important for several results in the next section.

7 Conway Normal Form (CNF)

Conway has partitioned No using a property similar to Archimedianness. Under this partition,
the surreals behave somewhat similarly to a vector space with arbitrary (ordinal-indexed)
dimensions. The Conway Normal Form theorem will give a concept akin to coordinates
in that space. These are all weak analogies, however, they give a hint as to why CNF is
important for surreal numbers.

The most common ordered field, the real numbers, has the Archimedean property, i.e.,
for all x, y ∈ R+, x < n · y for some n ∈ N. However, this is not true for infinite cardinals, so
the Archimedian-like partition of surreal is defined somewhat differently (remember that sZ
is the natural embedding of integers into surreal, as defined in the previous Section):

▶ Definition 12 (commensurate, infinitely less). Let x, y be surreal numbers. We say x, y are
commensurate if x < sZ(n) · y ∧ y < sZ(m) · x for some n, m ∈ N. We say x is infinitely less
than y and write x <∞ y if x · sZ(n) < y for all n ∈ N \ {0}.
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As the definition of commensurate numbers only makes sense for positive numbers, we
will refer to x, y as commensurate in absolute terms if |x|, |y| are commensurate, where
| · | is the standard absolute value. (Similarly <∞ is defined in general, but only used for
non-negative numbers.) We next define the power of ω (also called ω-map [5]) as follows:

▶ Definition 13 (ω·). Let x be a surreal. Then the x power of ω, written ωx is defined as:

ωx = {0No, sR(r) · ωxL | sR(s) · ωxR} (18)

where r, s range over all positive reals and ω = sOn(ω).

To define the function formally, we again use Theorem 10 with θ = b x, X(α) = Day α, and

H(o, S) = {{0No} ∪ {(
⋃

rng S)(oL) · sR(r) | oL ∈ Lo ∧ r ∈ R+},

{(
⋃

rng S)(oR) · sR(s) | oR ∈ Ro ∧ s ∈ R+}}. (19)

Note, that ωx is different from exponentiation (the differences are subtle, see [5, page 38]),
but many of its properties are similar: ω0 = 1No, ωx+y = ωx · ωy, and ωx ≤ ωy if x ≤ y

and additionally ωx <∞ ωy if x < y.
The underlying idea for Conway’s Normal Form of x ̸≈ 0No is the observation that using

the power of ω we can determine a unique leader ωy commensurate in absolute terms with x:

▶ Theorem 14. Let x ̸≈ 0No. Then there exists a unique y being uSurreal such that r ∈ R\{0}
for which |x − sR(r) · ωy| <∞ ωy.

Notice that when x1, x2 ̸≈ 0No have the same leader ωy then |x1|, |x2| are commensurate.
Additionally ωy is the leader for x1 · sR(r), x1 + x2 for arbitrary r ∈ R \ {0}.

Fix x ̸≈ 0No. We can approximate x using powers of ω, i.e., x = sR(r0) · ωy0 + x1
and x1 <∞ ωy0 . Further, if x1 ̸≈ 0No, we obtain a better approximation by a sum:
x = sR(r0) ·ωy0 +sR(r1) ·ωy1 +x2, where x2 <∞ ωy1 <∞ ωy0 and so forth. As a consequence,
x can be represented in a form (already close to Cantor Normal Form):

x = sR(r0) · ωy0 + sR(r1) · ωy1 + sR(r2) · ωy2 + . . . sR(rk−1) · ωyk−1 + xk. (20)

Unfortunately, a finite number of iterations does not guarantee xk ≈ 0No. As such, an infinite
sum will be necessary (infinite in the ordinal sense, so not just ω). To state the CNF theorem,
we must define this sum formally. Conway assumes its existence, but the formal proof of its
convergence is actually more involved than the CNF proof. We adapt Erlich’s approach [8]:

▶ Definition 15 (θ-term). Let x be a surreal, α, α′ be ordinals. Let r := {rβ}β≤α be a sequence
of non-zero reals, y := {yβ}β≤α be a decreasing sequence of surreals, and s := {sβ}β≤α′

be a sequence of surreals where α ≤ α′ (i.e., s can be longer than r, y). We call x the
(θ, s, y, r)-term if |x − (sθ + sR(rθ) · ωyθ )| <∞ ωyθ where θ ≤ α. Additionally, we write
x ∈

⋂
θ,s,y,r if θ ≤ α and x is (γ, s, y, r)-term for arbitrary γ < θ.

Note, that for any a ≤ b ≤ c, if a ∈
⋂

θ,s,y,r and c ∈
⋂

θ,s,y,r then b ∈
⋂

θ,s,y,r. Conway calls
classes with this property convex.

Now we can formally express Conway’s sentence the simplest number whose β-term is
rβ · ωyβ in Erlich’s way [8]. We say that a triple s, y, r is simplest on β if

sβ = 0No for β = 0,
if 0 < β holds: sβ is uSurreal, sβ ∈

⋂
β,s,y,r and for every uSurreal a ̸= sβ , if b ∈

⋂
β,s,y,r

then b sβ < b a.
The expression

⋂
β,s,y,r depends on all sγ for γ <β, so we can use it to specify sβ .
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Let θ be an ordinal. Consider, as previously, {rβ}β<θ, {yβ}β<θ and let {sβ}β≤θ be a
sequence of uSurreal where additionally the triple s, y, r is simplest on β for β ≤ θ. Then∑

β<θ ωyβ ·rβ is defined to be sθ [8, 5]. As usual, to construct a suitable θ-long sequence s we
apply transfinite induction, first showing the existence of a suitable β-long sequence for β ≤ θ.
Indeed, using the β-step assumption we can construct a suitable sequence p := {pγ}γ<β

and extend it by the assignment pβ = Uniqe for some e ∈
⋂

β,p,y,r. The existence of such
e is the key problem: If β is a limit ordinal, i.e., the sequence {pγ}γ<β does not have a
last element5. Conway introduced it highly informally [5]. Erlich [8] does it formally using
an approach where the class of every e where e ∈

⋂
β,p,y,r corresponds to a non-empty

intersection of the descending transfinite sequence of convex subclasses of No. This assumes
a stronger foundation and is not possible in Mizar (nor Isabelle/ZF or Metamath). Indeed,
his surreal numbers with lexicographic order are full, equivalently complete or equivalently
every nested sequence {Iγ}γ<β of non-empty convex subclasses has a non-empty intersection
(see Theorem 4 in [8]). We cannot do this for γ < β when β is a limit ordinal. To solve this
in standard set theory, we defined two somewhat complicated sequences {lγ}γ<β , {uγ}γ<β ,
defined by, lγ := p1+γ + (sR(r1+γ) − 1No) · ωy1+γ , uγ := p1+γ + (sR(r1+γ) + 1No) · ωy1+γ for
γ < β that in contrast to p are monotonous (increasing and decreasing, respectively) and
{
⋃

γ<β{lβ} |
⋃

γ<β{uβ}} is a member of the intersection.
With these, the formalization of the following theorem is attainable. It says that the

approximation of x in ω way can be performed at most b x times, since their b-s of subsequent
partial approximating sums give an increasing sequence bounded by b x.

▶ Theorem 16 (Conway’s Normal Form Theorem, Mizar ID: SURREALC:100,102). For every
surreal x there exists a unique {rβ}β<θ sequence of non-zero real, {yβ}β<θ decreasing sequence
of uSurreal such that x ≈

∑
β<θ ωyβ · sR(rβ). Moreover b of the sum ≤ b x.

Conway’s Normal Form allows characterizing any x using a sum of two transfinite sequences
r, y. Rather than a regular sum, it is interpreted more as a Hahn-Mal’cev-Neumann infinite
series sum. This characterization is key to the further formalization of Conway [5], in
particular it will allow constructing the nth-root of x, showing that odd-degree polynomials
have roots, characterizing omnific surreal integers and further results as discussed in the
conclusion, Section 9.

8 Related Work

There are several formalization pertinent to surreal numbers in various systems. Mamane’s
formalization in Coq [14], Obua’s in Isabelle/HOLZF [17], and Carneiro, Morrison, and
Nakade’s6 in Lean follow an approach closer to Conway. All three avoid induction-recursion by
starting with games. Mamane motivates his work as a “stress-test” of Coq in the formalization
of a very set-theoretic definition. He proved that surreal numbers form a commutative ring
(without associativity), and without permuting induction, that was only formulated in the
article. Without this induction, the formalization needs to cover 2n cases corresponding to
the edges of an n-dimensional cube. Our work deal with this using Prod O, Prod C inductively
to cover the cartesian product.

5 We focus on the case of β being the limit ordinal, where γ < β ⇐⇒ 1+γ < β.
6 https://github.com/leanprover-community/mathlib/blob/master/src/set_theory/surreal/
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Obua’s work focues on the development of the infrastructure for surreal numbers. The
formalization only reachers the fact that surreals form an additive group. Similarly, the Lean
formalization defines surreal numbers with addition and show that they form a commutative
group. It also includes an embedding of ordinals into surreal, a manually defined halving
operator and an embedding of dyadic numbers into surreal.

Induction-recursion, as studied in intuitionistic type theory [6], could allow a more direct
definition of the surreal numbers. However, we are not aware of any formalizations of the
surreal numbers that make use of induction-recursion.

Nittka followed the tree-theoretic approach in Mizar [16]. After showing the involutiveness
of minus, further definitions and properties became too involved in this approach in Mizar
and made us abandon this method. With the uSurreal obtained in our formalization, it is
possible to easier continue with that approach.

The largest formalization of surreal numbers focusing solely on the tree-theoretic approach
has been developed in the Megalodon proof system7. Without the use of permuting induction,
it shows that surreals form a field and defines the square root. Megalodon stands out as
the only system where integers, reals and ordinals used throughout the system are carved
out of the surreal numbers, rather than being added on top. In comparison to our work,
the Megalodon formalization lacks the Conway Normal Form theorem and the theorems
and definitions leading up to it. Additionally, we formalized morphisms between the MML
numbers and Conway numbers, enabling transfer of theorems between them. The Megalodon
formalization of the inverse and square root operations has been completed based on the
ones done in our Mizar formalizations, demonstrating the adaptability of our approach to
other systems.

9 Conclusion

We formalized a large number of properties of surreal numbers in the Mizar proof assistant
system. We initially focused on Conway’s approach to introduce the concept, which simplifies
the definitions of arithmetic operations, and then showed the equivalence of our approach to
the tree-theoretic approach. For this, we built a bridge that allows joining the proofs in both
approaches (uSurreal) and using it, we were able to reach Conway’s Normal Form. Due to the
relatively weak foundations of Mizar (first, there is no induction-recursion; second, reasoning
must be explicitly conducted on sets rather than classes), we believe that our approach can
be useful for other formal systems.

CNF is crucial for further formalization of Conway’s results [5]. Future work includes a
formalization of nth-root of x. We are considering two approaches. First, to combine the use
of Kruskal-Gonshor exponential function with logarithms. Alternatively, a more direct use of
CNF, following [5], is possible. With the nth-root of x, one can show that No is algebraically
real-closed, i.e., that odd-degree polynomials have roots. CNF is also needed to characterize
omnific surreal integers (i.e., surreals that satisfy x ≈ {x − 1 | x + 1}). It is then possible to
show that every surreal number can be represented as the quotient of two omnific integers.
This can lead to the formalization of surcomplexes. Finally, CNF is fundamental for further
works on s-hierarchical ordered field No [7, 8].

7 http://grid01.ciirc.cvut.cz/~chad/100thms/100thms.html

http://grid01.ciirc.cvut.cz/~chad/100thms/100thms.html


K. Pąk and C. Kaliszyk 29:17

References
1 Maan T. Alabdullah, Essam El-Seidy, and Neveen S. Morcos. On numbers and games.

International Journal of Scientific & Engineering Research, 11, February 2022.
2 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman

Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical
Library for interactive proof development in Mizar. Journal of Automated Reasoning, 2017.
doi:10.1007/s10817-017-9440-6.

3 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman
Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art
and Beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker
Sorge, editors, Intelligent Computer Mathematics - International Conference, CICM 2015,
volume 9150 of LNCS, pages 261–279. Springer, 2015. doi:10.1007/978-3-319-20615-8_17.

4 Chad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin C. Brady,
Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics -
12th International Conference, CICM 2019, volume 11617 of LNCS, pages 44–60. Springer,
2019. doi:10.1007/978-3-030-23250-4_4.

5 John H. Conway. On Numbers And Games. A K Peters Ltd., 2nd edition, 2001. First Edition:
1976.

6 Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type
theory. J. Symb. Log., 65(2):525–549, 2000. doi:10.2307/2586554.

7 Philip Ehrlich. The absolute arithmetic continuum and the unification of all numbers great
and small. Bulletion Symbolic Logic, 18(1):1–45, 2012. doi:10.2178/bsl/1327328438.

8 Philp Ehrlich. Number systems with simplicity hierarchies: A generalization of Conway’s
theory of surreal numbers. J. Symb. Log., 66(3):1231–1258, 2001. doi:10.2307/2695104.

9 Adam Grabowski and Artur Korniłowicz. Implementing more explicit definitional expansions
in mizar (short paper). In Adam Naumowicz and René Thiemann, editors, 14th International
Conference on Interactive Theorem Proving, ITP 2023, July 31 to August 4, 2023, Białystok,
Poland, volume 268 of LIPIcs, pages 37:1–37:8. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.ITP.2023.37.

10 Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal
of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

11 Gretchen Grimm. An introduction to surreal numbers, 2012.
12 Cezary Kaliszyk and Karol Pąk. Semantics of Mizar as an Isabelle object logic. Journal of

Automated Reasoning, 63(3):557–595, 2019. doi:10.1007/S10817-018-9479-Z.
13 Sebastian Koch. Natural addition of ordinals. Formalized Mathematics, 27(2):139–152, 2019.

doi:10.2478/forma-2019-0015.
14 Lionel Elie Mamane. Surreal numbers in Coq. In Jean-Christophe Filliâtre, Christine Paulin-

Mohring, and Benjamin Werner, editors, Types for Proofs and Programs, TYPES 2004, volume
3839 of LNCS, pages 170–185. Springer, 2004. doi:10.1007/11617990_11.

15 Norman D. Megill. Metamath: A Computer Language for Pure Mathematics. Lulu Press,
Morrisville, North Carolina, 2007.

16 Robin Nittka. Conway’s games and some of their basic properties. Formalized Mathematics,
9(2):73–71, 2011.

17 Steven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti, and
Antonio Cerone, editors, Theoretical Aspects of Computing - ICTAC 2006, volume 4281 of
LNCS, pages 272–286. Springer, 2006.

18 Lawrence C. Paulson. Set theory for verification: I. From foundations to functions. J. Autom.
Reasoning, 11(3):353–389, 1993. doi:10.1007/BF00881873.

19 Karol Pąk. Conway numbers – formal introduction. Formalized Mathematics, 31(1):193–203,
2023. doi:10.2478/forma-2023-0018.

20 Karol Pąk. Integration of game theoretic and tree theoretic approaches to Conway numbers.
Formalized Mathematics, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019.

ITP 2024

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-030-23250-4_4
https://doi.org/10.2307/2586554
https://doi.org/10.2178/bsl/1327328438
https://doi.org/10.2307/2695104
https://doi.org/10.4230/LIPICS.ITP.2023.37
https://doi.org/10.1007/s10817-015-9345-1
https://doi.org/10.1007/S10817-018-9479-Z
https://doi.org/10.2478/forma-2019-0015
https://doi.org/10.1007/11617990_11
https://doi.org/10.1007/BF00881873
https://doi.org/10.2478/forma-2023-0018
https://doi.org/10.2478/forma-2023-0019


29:18 Conway Normal Form for the Formalization of Surreal Numbers

21 Karol Pąk. The ring of Conway numbers in Mizar. Formalized Mathematics, 31(1):215–228,
2023. doi:10.2478/forma-2023-0020.

22 Dierk Schleicher and Michael Stoll. An introduction to Conway’s games and numbers. Moscow
Mathematical Journal, 6, 2004. doi:10.17323/1609-4514-2006-6-2-359-388.

23 Claus Tøndering. Surreal numbers–an introduction. HTTP, version 1.7, December 2019.

https://doi.org/10.2478/forma-2023-0020
https://doi.org/10.17323/1609-4514-2006-6-2-359-388


A Coq Formalization of Taylor Models and Power
Series for Solving Ordinary Differential Equations
Sewon Park
Graduate School of Informatics, Kyoto University, Japan

Holger Thies
Graduate School of Human and Environmental Studies, Kyoto University, Japan

Abstract
In exact real computation real numbers are manipulated exactly without round-off errors, making
it well-suited for high precision verified computation. In recent work we propose an axiomatic
formalization of exact real computation in the Coq theorem prover. The formalization admits an
extended extraction mechanism that lets us extract computational content from constructive parts
of proofs to efficient programs built on top of AERN, a Haskell library for exact real computation.

Many processes in science and engineering are modeled by ordinary differential equations (ODEs),
and often safety-critical applications depend on computing their solutions correctly. The primary goal
of the current work is to extend our framework to spaces of functions and to support computation
of solutions to ODEs and other essential operators.

In numerical mathematics, the most common way to represent continuous functions is to use
polynomial approximations. This can be modeled by so-called Taylor models, that encode a function
as a polynomial and a rigorous error-bound over some domain. We define types of classical functions
that do not hold any computational content and formalize Taylor models to computationally
approximate those classical functions. Classical functions are defined in a way to admit classical
principles in their constructions and verification. We define various basic operations on Taylor
models and verify their correctness based on the classical functions that they approximate. We
then shift our interest to analytic functions as a generalization of Taylor models where polynomials
are replaced by infinite power series. We use the formalization to develop a theory of non-linear
polynomial ODEs. From the proofs we can extract certified exact real computation programs that
compute solutions of ODEs on some time interval up to any precision.
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1 Introduction

A typical problem in numerical analysis with vast applications across various fields such
as physics, engineering, biology, and economics, is to approximate solutions to initial value
problems (IVPs) of the form

ẏ(t) = f(y(t)) ; y(t0) = y0
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where ẏ(t) denotes the derivative of the function y(t) with respect to the time variable t.
Approximating the solution accurately can be challenging as small perturbations in the
initial condition can lead to large changes in the solution. Traditional numerical methods
therefore often lack the robustness required in safety-critical applications. Thus, approaches
to rigorously solve ODEs have been studied extensively. For example, methods from interval
arithmetic such as [31] allow to compute the solution reliably in the sense that the resulting
intervals are promised to contain the exact solutions. However, accumulation of over-
estimations in interval computations make it challenging to obtain solutions in arbitrarily
high accuracy. Exact real computation, based on the theory of constructive [4] and computable
analysis [36], solves this problem by using infinite representations of real numbers. Instead
of approximating a real number by an interval, real numbers are expressed exactly e.g. by an
infinite stream of nested shrinking intervals. In this way, real numbers can be represented
and manipulated exactly, without round-off errors and other sources of numerical uncertainty
inherent in finite precision arithmetic. Implementations of exact real computation such as,
for example, [30, 3, 22], provide abstract data types for real numbers hiding representation-
specific details from their users. Consequently, users can write and reason about their
programs intuitively regarding exact real numbers as the familiar abstract entities from
mathematics. See [6, 32] for more about this aspect of exact real computation.

Recently, we have worked on axiomatically formalizing exact real computation in a type-
theoretical setting [19] and implementing the idea as the Coq library cAERN [20]. By making
use of Coq’s code extraction features, we map axiomatically defined types and operations
to abstract data types and primitive operations in AERN, a Haskell library for exact real
computation [22]. As primitive real number operations are optimized in the implementation
of AERN, the extracted certified exact real computation programs are usually more efficient
than mapping everything to primitive data-types. For example, in [19] we show that the
execution time of extracted programs is comparable to hand-written AERN programs.

The main goal of this work is to extend the cAERN formalization of exact real computation
to solution operators for IVPs and other higher-order problems. When dealing with function
spaces, representing functions accurately is essential for efficient computation. In numerics,
the predominant approach to represent continuous real functions is through polynomial
approximations. Taylor models [27] provide a systematic approach to approximating functions
by polynomials. A Taylor model represents a function on some interval as a polynomial
approximation (typically derived from the function’s Taylor series expansion) together with
a rigorous error bound on the interval. Many mathematical operations can be directly
implemented on Taylor models, accounting for dependencies between variables and thus
ensuring more accurate enclosures of function values. Recently the use of Taylor models has
also been shown to be beneficial in efficient exact real computation [7].

In this work, we implement a solver for initial value problems for polynomial first-order
ODEs and verify its correctness. The solver is based on computing the power series expansion
of the solution up to an arbitrarily high degree. To this end we formalize Taylor models
and their generalization as infinite power series. We use these to locally represent analytic
functions exactly. Thus, our solver computes a functional representation of the solution y(t)
on a small time interval [0, t0], which can be used to approximate the value of the function in
the interval up to any desired precision. We can then extend the solution by computing the
value y(t0) and use it as as a new initial value to continue the procedure, similar to single
step methods in numerics. Note that since we get an exact representation of the real number
y(t0) we do not have to deal with approximations in this step (see Section 6 for details).
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Although the solution method is generic, for simplicity we currently only consider
one-dimensional ODEs in the Coq implementation. While this excludes most interesting
applications, we think it demonstrates well how the method works, and it should not be
difficult to extend to higher dimension.

Since we work on a constructive setting, saying R to be the type of exact real numbers,
having a function f : R → R means that we already have a way to compute, in a sense, the
function f exactly. Thus, it does not make much sense to develop a theory of approximating
them using Taylor models or power series. In other words, the standard function type R → R
is stronger than the type of functions that our Taylor models and power series intend to
approximate. We therefore formalize a type of classical (partial) functions that is weaker than
the standard functions. Classical functions can be constructed based on classical reasoning,
e.g. the sign function of reals, but do not yield any computational contents. We define our
Taylor models and power series to approximate such classical functions instead and use them
as classical specifications which we can reason about based on the classical analysis.

The paper is structured as follows. In the rest of this section, we review the setting of
our Coq development and some related works. In Section 2, we formalize classical partial
functions and in Section 3 we define the notions of their continuity and differentiability.
In Section 4 we formalize a variant of simple univariate Taylor models with real-valued
polynomials and a real-valued error bound which we use to approximate classical partial
functions. In Section 5 we then further extend this to analytic functions, which we can
represent exactly by infinite sequences of polynomials. Finally, in Section 6 we use this to
define polynomial initial value problems and solution operators for them.

All results in this paper have been implemented in Coq as an extension of the cAERN
library [20]. The new formalization presented consists of approximately 8000 lines of code,
while the complete cAERN library consists of approximately 29000 lines of code. The files
relevant for the new formalization are ClassicalMonads, ClassicalPartiality, and ClassicalParit-
alReals for Section 2; ClassicalTopology, ClassicalContinuity, and ClassicalDifferentiability for
Section 3; Poly and Taylormodel for Section 4; Powerseries for Section 5; and Ode for Section 6.

1.1 Background
In this paper, we focus mostly on our Coq development, and thus present most results directly
in the syntax of Coq. However, it is also straightforward for readers who are not familiar
with Coq syntax to translate it using type-theoretic constructions. For example, we use Prop
for an impredicative type universe (of propositions) without large eliminations and Type for
a type universe of (small) types. We write (A ∨ B) : Prop for the disjunction in Prop whereas
we write A + B : Type for the usual sum type. Similarly, by (exists x : A, B x) : Prop, we
refer to the existence in Prop whereas {x : A | B x} : Type and {x : A & B x} : Type denote
the usual Σ-type. The Π-types are written as forall x : A, B x.

As in our previous works [19, 21], we assume axioms that make Prop classical, in particular
the law of excluded middle of the form (forall P : Prop, P ∨ ¬P ) : Prop. We further
assume the dependent function extensionality, classical propositional extensionality saying
that for any two types P Q : Prop, (P → Q) ∧ (Q → P ) implies P = Q, and proof-
irrelevance of classical propositions saying that any type P in Prop is a subsingleton type
forall x y : P, x = y. We say a type P is a classical proposition when P : Prop. We also
often write a : A such that B x classically exists to mean that exists a : A, B x holds and
write P or Q holds classically to mean that (P ∨ Q) : Prop holds. Otherwise, we refer to the
constructive variants.
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As a direct consequence of making Prop classical, equality types become classical and
proof-irrelevant. Therefore, we refer a map f : A → B being a type-theoretic equivalence by
the (constructive) existence of its inverse g : B → A such that for all x : A, g (f x) = x and
for all y : B, f (g y) = y hold.

In the previous works, based on this setting we axiomatically formalize types and
operations used in exact real number computation. Most importantly, we assume that
there is a type R for real numbers containing two distinct constants 0 and 1, the standard
arithmetical operators and a semi-decidable comparison operator <. We restrict the reciprocal
function x−1 to require a classical proof that x ̸= 0 and the limit operator to receive a
classical proof of the rapid convergence of a given sequence. The axioms are chosen carefully
in a way that allows to reason about properties of real numbers classically, without breaking
computational content. Hence, one important feature of the cAERN library (and thus the
name) is that we can extract Haskell programs on top of the AERN library which is proven
to be correct under the assumption that the basic operations in AERN are implemented
correctly. This approach has the advantage that extracted programs are more efficient than
extracting everything to basic types like integers, that programs are more readable, and that
we can easily integrate certified code with non-verified code in the AERN library. Interesting
examples we have formalized and extracted include the maximum function, the absolute
value function, a root-finding functional from a constructive intermediate value theorem [17],
real and complex square roots [18], computing fractals from proofs related to open, closed,
compact, overt, located subsets of Euclidean spaces, and so on [21].

An important note to make here is that, to simplify presentation, the notations we use in
this paper are not completely identical to the notations we use in the implementation. For
example, we use the notationˆReal in the source code for exact real numbers not R as in
this paper. However, the modifications are minimal and thus such correspondence should be
clear for readers who also read the source code.

1.2 Related work
Approximating solution trajectories for ordinary differential equations is a key problem in
numerical mathematics and methods for rigorous computation have been studied extensively
(e.g. [2, 12]) and several rigorous tools have been developed (e.g. [23, 9]). In particular, formal
verification of numerical methods for ODEs in proof assistants has been considered previously,
e.g. in Isabelle [14, 13] and Coq [24]. The above mentioned works are based on interval
arithmetic, thus verify that ODE solutions can be rigorously enclosed in some interval. Our
work, on the other hand, is based on computable analysis and therefore, in a sense, uses
a stronger notion of correctness, i.e. we need to show that we can make the enclosure at
each point arbitrarily small. In this sense, our work is similar to constructive approaches to
analysis. A larger formalization of constructive analysis in Coq can be found in the CoRN
library [11] which also includes some previous results on constructive formalizations of ODE
solutions in Coq [25]. In contrast to CoRN our goal is not to compute inside the proof
assistant, but to extract exact real computation programs and to adhere to an abstract
axiomatic formalization of real numbers similar to real number types in implementations of
exact real computation (see [18] for details). Further, [25] uses the Picard Iteration algorithm,
while our proposed method is based on high-order power series expansions. The method is
motivated by results from real number complexity theory which suggests that it should be
more efficient if the desired output precision is high [29, 8, 16]. We are not aware of any
formal verification of this method.
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Many verified solvers for ODEs use Taylor models. Taylor models are typically used
to deal with the dependency problem of interval arithmetic and to get tighter enclosures
of function values than what is achieved with simple intervals [27]. There already exist
several formalizations of Taylor models in proof assistants, e.g. [35, 28]. In particular, [28]
presents a formally verified implementation of univariate Taylor models in Coq. However, it
should be mentioned that both our use case and implementation are quite different from the
usual approaches in interval arithmetic. First, as our polynomials and error terms are exact
reals, we do not need to deal with issues arising when implementing them using interval
arithmetic. Second, while our Taylor models could also be used to compute (real-valued)
interval enclosures of functions, our main motivation is to use them to represent certain types
of functions exactly as an infinite sequence of polynomials and operate on them efficiently,
more similar to the idea of a function space representation in computable analysis [33].

Lastly, although our main aim is to formalize computational results, to verify correctness
a substantial amount of classical analysis is needed. While there already is a large number
of Coq libraries that deal with classical analysis, e.g. the Coquelicot [5] and MathComp
Analysis [1] libraries, making use of them directly is challenging, as we define our own type of
(computational) real numbers. Formalizing classical facts about real numbers and functions
is therefore also a significant part of our Coq development. On one hand, this allows us to
formalize the statements exactly in the way we need them, and make them integrate well
with our computational theorems. On the other hand, we do not aim to provide a complete
library for classical analysis and do not think that our classical results exceed what has
already been proven in the above mentioned libraries. Thus, better integration with these
existing formalizations is a goal for future work.

2 Classical Functions

Under our setting, the standard function type of real numbers R → R denotes a structured set
of continuously realizable or computable real functions, and thus excludes any discontinuous
classical function. However, often discontinuous classical functions play an important role in
specifying and developing a meta-theory for computable procedures. For example, though
the sign function of real numbers is not computable or continuous, it is used everywhere for
specifying a computation on the signs of its real number inputs.

2.1 Classicalizing Monad
Recall the classical singleton subset monad which also appears in [18]:

Definition ∇ (A : Type) := {S : A → Prop | exists! x : A, S x}

and its monad operations that are defined naturally. In this paper, we write [x] for the monad
unit on x and Ã as an abbreviation for ∇ A. Notice that this monad acts as an eraser that
erases the computational contents such that A → B̃ denotes the set of classical functions
from A to B. Though for different x and y we can prove [x] and [y] are distinct, both of
the terms will be removed in program extraction. Note also that any classical function
from constructive domain f : A → B̃ can be extended to be a function from the classical
domain f† : Ã → B̃ by the monadic bind. It is noteworthy that this mapping f 7→ f† is a
type-theoretic equivalence between A → B̃ and Ã → B̃.

As a simple sanity-check of our construction of the so-called classicalizing monad, we
prove that under our set of axioms, any classical proposition P : Prop is classical also in the
sense that the monad unit [·] : P → P̃ admits an inverse. To construct the inverse, for any
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t : P̃ , we destruct t to obtain its unique classical existential witness of P : Prop. Note that
this construction is allowed because P is of type Prop. This construction defining the inverse
follows straightforwardly from function extensionality and propositional extensionality.

Coq with our set of base axioms now admits three different ways to make a type A : Type
classical: (1) by reflecting the type as a classical proposition

Definition Propize (A : Type) : Prop := exists _ : A, True

(2) by applying the double negation (¬¬A) : Prop (as a notation for (A → False) → False)
and (3) by the classicalizing monad Ã : Type. An advanced sanity-check is to verify their
equivalences on subsingletons.

▶ Lemma 1. For any subsingleton type A : Type, Ã is again a subsingleton. Moreover, the
three constructions of making A classical are equivalent:

A

¬¬A PropizeA Ã≃≃

Proof. The type Ã being a subsingleton follows directly from the extensionality axioms. As
the three classical types are all subsingleton, we only need to construct mappings between
each types where mappings between ¬¬A and PropizeA can be constructed trivially as both
are of type Prop.

Given t : PropizeA, define an element of type Ã with fun x : A ⇒ True. It being
classically singleton follows from t : PropizeA and that A is a subsingleton. For its inverse,
we lift the trivial mapping A → PropizeA w.r.t. the classicalizing monad to get a mapping of
type Ã → ˜PropizeA. Since PropizeA is of type Prop, we apply the previous observation that
there is an inverse ˜PropizeA → PropizeA to the monad unit [·] : PropizeX → ˜PropizeA.
Hence, post-composing this yields the desired inverse. ◀

Note that A being a subsingleton is necessary here because in the model when A is not a
subsingleton, Ã is also not a subsingleton while ¬¬A and PropizeA are.

The classicalizing monad being classical not only on subsingletons but for every types
can be formalized in Coq as the following lemma:

▶ Lemma 2. For any type A : Type and a subsingleton type P : Type there is a mapping
that maps any f : P → Ã to f̂ : ¬¬P → Ã such that the following diagram commutes:

P Ã

¬¬P

f

¬¬-intro
f̂

where ¬¬-intro : P → ¬¬P := fun x : P ⇒ fun f : P → False ⇒ f x is the double
negation introduction. Moreover, the mapping is a type-theoretic equivalence

(P → Ã) ≃ (¬¬P → Ã)

where precomposing ¬¬-intro is the inverse. I.e., for each f : P → Ã it holds that f =
f̂ ◦ ¬¬-intro and for each g : ¬¬P → Ã it holds that g = ̂g ◦ ¬¬-intro.
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Proof. First, we construct the mapping f̂ of type ¬¬P → Ã given f : P → Ã and that P is
a subsingleton. We apply the monadic bind on f and get f† : P̃ → Ã reducing the goal to
constructing a term of type P̃ from ¬¬P . Let us write j : ¬¬P → P̃ for the mapping from
Lemma 1. We conclude the construction with f̂ := f† ◦ j.

Suppose any f : P → Ã and x : P . We prove the equality between f̂(¬¬-intro x) ≡
f†(j(¬¬-intro x)) and f x. As P is a subsingleton type, due to Lemma 1, P̃ is also a
subsingleton type. Hence, we can prove that j(¬¬-intro x) = [x] in P̃ . That means we have
f†(j(¬¬-intro x)) = f† [x] = f x due to the monad axiom of ∇.

Suppose any g : ¬¬P → Ã and x : ¬¬P . We need to prove (g◦¬¬-intro)†(j x) = g x. Since
we are proving an equality as of type Prop, we can locate y : P such that x = ¬¬-intro y. Then,
similarly to the previous case, j x = [y]. Therefore, (g◦¬¬-intro)†(j x) = (g◦¬¬-intro)†([y]) =
g(¬¬-intro y) = g x concludes the proof. ◀

A side note worth mentioning here is that thus the monad ∇ behaves like the double-negation
sheafification in the setting of topos theory. As long as Ã is concerned, for a subsingleton P ,
the double negated classical version of it ¬¬P is equivalent to P itself.

For any subsingleton type P , the double negated excluded middle ¬¬(P + ¬P ) is
constructively provable and also is a subsingleton. Therefore, for any such P and a type
A : Type, one can construct a term of type Ã by a case distinction on P or ¬P . Let us write
lem(f) : Ã for this construction from f : P + ¬P → Ã.

▶ Example 3. For a real number x : R, define f x : (x < 0) + ¬(x < 0) → b̃ool by

f p := match p with
| inl _ ⇒ [false]
| inr _ ⇒ [true]
end.

that returns [true] when its input is an evidence that x ≥ 0 and returns [false] when its
input is an evidence that x < 0. Then, (fun x : R ⇒ lem(f x)) : R → b̃ool denotes the
classical sign function.

Lemma 2 is effective enough to construct the reduction:

▶ Example 4. Suppose we have constructed lem(f : P + ¬P → Ã) : Ã but know either P

holds or not by having a term t : P + ¬P . In this case, we can prove

lem(f) = f t

as a direct consequence of Lemma 2. Another important reduction case is when the value
is irrelevant to the case distinction and is already known to be y : Ã. When we have that
f (inl t) = y for all t : P and f (inr t) = y for all t : ¬P , then we can obtain lem(f) = y.
When we apply this to the classical sign function in Example 3, given t : x < 0 for example,
we can obtain that the value of the sign function equals to [false].

2.2 Classical Partial Functions
We define a classical partial function as

f : A → B̃⊥

where B⊥ denotes option B in Coq, a maybe monad meaning that B⊥ is an inductive type
with two constructors Some : B → B⊥ and None : B⊥. We define some obvious operations
on partial functions such as f x ↓ y when y : B to denote f x = [Some y] saying that f x is
defined to be y. We write f x↓ for ∃(y : Y ). f x ↓ y.
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An important way of constructing a classical partial function is from its classical graph
or specification:

▶ Lemma 5. Given a classical binary relation G : A → B → Prop, such that for each x : A,
{y : B | G x y} is a subsingleton type, we can define the corresponding classical partial
function Ĝ : A → B̃⊥ satisfying forall (x : A) (y : B), f x ↓ y ↔ Ĝ x y.

Proof. Let us construct a mapping Ĝ : A → B̃⊥ from G by assuming any x : A and
constructing y : B̃⊥ such that there (classically) exists y′ : Y where y ↓ y′. We apply
Lemma 2 to the procedure of performing a case distinction on the constructive existence
{y : B | G x y}, and returns the first projection [Some y] if there exists and returns [None] if
not. This application is feasible as {y : B | G x y} despite not being a classical proposition,
is a subsingleton type. Proving that this resulting mapping satisfying the desired property is
done by applying Example 4. ◀

2.3 Classical Partial Reals
Before concluding this section of introducing the formalization of classical partial functions,
we present a special case when the classicalizing monad is applied to partial real numbers.

We define constants and arithmetical operations on classical partial reals R̃⊥ naturally
using the monad operations. Being natural here means that we can reason about the
operations to be the exact values if and only if all the operands are defined.

An interesting operation that becomes possible using classical partial reals is the reciprocal
operation where now we can define 0−1 = [None] similarly to Example 3. Another interesting
partial operation is the limit operation. Recall that the limit operation we have as primitive
for computational R has to be provided a proof that the given sequence is rapidly converging.
However, since we can prove for any sequence that there classically exists at most one
limit point, we can make the classical partial operation of type (N → R̃⊥) → R̃⊥ to obtain
limit classically for any converging sequences. We further extend the distance function
dist : R̃⊥ → R̃⊥ → R̃⊥, the absolute value function abs : R̃⊥ → R̃⊥, and so on.

Classical relations on classical partial real numbers are defined in a way that they fail
when the partial real numbers are not defined. For example, we define x < y on R̃⊥ such
that exists x′ y′ : R, x ↓ x′ ∧ y ↓ y′ ∧ x′ < y′. Of course, in the precise Coq formalization,
we have to deal with the scopes but to simplify the presentation of this paper, we use the
same function names and notations for both classical partial and exact real numbers as long
as it is clear from the context or the formulation.

3 Classical Analysis: Continuity and Differentiability

We need a few more definitions from classical analysis to define the problems we are interested
in. In particular, we need to define derivatives. We define classical (pointwise) continuity and
differentiability closely to the standard definitions from analysis. However, in this work we
only need those notions on compact intervals [−r, r] around the origin. Classically, continuity
and differentiability on compact domains correspond to their uniform versions. As the
uniform versions are much easier to work with formally, we mostly formulate our results with
respect to them. In our formal development we also show some results regarding pointwise
continuity and differentiability, but we decided to omit them from this paper.

For any r > 0, we define the subset type I r := {x : R | |x| ≤ r} with a coercion to
R by the first projection. We use the following definitions for (uniform) continuity and
differentiability on I r of a classical partial function f : R → R̃⊥. Note that both properties
automatically imply that f is defined on the interval.
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Definition uniformly_continuous f r := forall ϵ, (ϵ > 0) → exists δ,
δ > 0 ∧ forall (x y : I r), dist x y ≤ δ → dist (f x) (f y) ≤ ϵ.

Definition uniform_derivative f g r := forall ϵ, (ϵ > 0) → exists δ,
δ > 0 ∧ forall (x y : I r), dist x y ≤ δ

→ abs (f y − f x − g x ∗ (y − x)) ≤ ϵ ∗ abs (y − x).

We show some classical results, such as that every continuous function is bounded on
I r and that uniform_derivative f f’ r implies that both f and f ′ are uniformly continuous
(and thus bounded). We also show basic properties of derivatives, such as the sum, product
and chain rules. Although formal proofs of those statements get quite lengthy, they are very
similar to classical textbook proofs and we thus omit them from the paper.

We further define higher derivatives inductively:

Fixpoint nth_derivative f g r n :=
match n with
| 0 ⇒ forall (x : I r), f x = g x
| S n′ ⇒ exists f′, uniform_derivative f f′ r ∧ nth_derivative f′ g r n′

end.

▶ Remark 6. By replacing classical existence by the constructive one, we can get constructive
versions of the above definitions which can sometimes be useful for functions f : R → R. We
also show a few constructive statements in our Coq development, but as they are not needed
for the results in this paper, we also decided to omit them here.

4 Polynomials and Taylor models

By the Stone-Weierstrass theorem, any continuous function on a closed interval can be
uniformly approximated with arbitrarily small error (with respect to the supremum norm) by
polynomials. In interval computation, a polynomial approximation together with a rigorous
error bound is sometimes called a Taylor model [27]. Taylor models are usually used to
approximate smooth functions using Taylor polynomials as the polynomial approximation
(hence the name). Many mathematical operations (e.g. arithmetic, integrals, etc.) can be
defined on Taylor models. When those operations are applied, dependencies between the
variables are retained, giving tighter approximations for function values than simple intervals
[26]. Our purpose for using Taylor models is slightly different from how they are used in
interval computation. First, as we have exact real numbers in our formalization, we do not
need to deal with intervals and can have a real-valued error bound. Secondly, we are mostly
interested in sequences of Taylor models, that we use to approximate functions up to any
absolute error, instead of mere approximations with fixed error bounds. Consequently, the
operations we consider differ from what is usually considered in interval computation.

Before we use polynomials to approximate real valued functions, we need to define the
polynomial functions themselves and some operations on them. We identify a polynomial
with the list of its coefficients and define evaluation of the polynomial using Horner’s scheme.

Definition poly := list R.
Fixpoint eval_poly (p : poly) (x : R) := match p with

| [] ⇒ 0
| h :: t ⇒ h + x ∗ (eval_poly t x)
end.
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That is, we identify the list [a0, a1, . . . , ad] with the polynomial function
∑d

i=0 aix
i, and the

empty list with the zero polynomial. We allow the leading coefficient ad to be zero, thus
the length of the list can be larger than the actual degree of the polynomial. Nonetheless
we sometimes use the notion deg p for the length of the list. As checking if a real number is
equal to zero is undecidable, requiring that the leading coefficient is nonzero would lead to
rather complicated and unnatural domains for most operations. We further define the norm
∥p∥ := max |pi| and prove some of its properties, which will be useful later.

For most inductive proofs, it is simpler to consider straight-forward evaluation, i.e.,
compute

∑d
i=0 aix

i by directly summing up the terms of the sum. We therefore also define
this evaluation method, and show that they result in the same number.

For polynomials p1, p2 and a real number λ : R, we define arithmetic operations p1 + p2,
p1 ·p2 and λp1. We currently do not use a sophisticated algorithm for multiplication. However,
the statements are formulated in an abstract way, without explicit mention of the method:
Lemma mult_poly p1 p2 : {p3 | forall x, eval_poly p3 x = eval_poly p1 x ∗ eval_poly p2 x}.

Thus, if we replace the algorithm encoded in the proof at some point, other parts of the
formalization are not affected.

In this paper we are mostly concerned with results over compact intervals. For simplicity,
we show most statements only with respect to intervals of the form [−r, r] centered at 0.
However, this easily generalizes to arbitrary intervals by shifting the polynomial accordingly:
Lemma shift_poly p1 c : {p2 | forall x, eval_poly p2 x = eval_poly p1 (x−c)}.

We often need to bound the values of a polynomial on intervals:
Lemma bound_polynomial p r : {B | forall x, abs x ≤ r → abs (eval_poly p x) ≤ B}.

Again, the explicit bound is only encoded in the proof and not given in the statement, so
that it can be replaced easily. For now, we use the simple bound B :=

∑d
i=0 |ai| ri.

For any polynomial
∑d

i=0 aix
i, we can compute its derivative

∑d−1
i=0 (i + 1)ai+ix

i, which
is the uniform derivative of the polynomial on any interval [−r, r].

Lemma derive_poly p : {p′ | forall r, uniform_derivative (eval_poly p) (eval_poly p′) r}

As a corollary, we also get that polynomials are uniformly continuous.
A central tool to approximate functions by polynomials is Taylor’s theorem. We define a

polynomial p to be the Taylor polynomial for a function f : R → R̃⊥ at x0 = 0 as follows.
Definition is_taylor_polynomial p f r := forall n, (n < length p) →

(exists g, nth_derivative f g r n ∧ nth n p 0 = inv_factorial n ∗ (g 0)).

The following variant of Taylor’s theorem will be useful later.
is_taylor_polynomial p f r M →

(exists g, nth_derivative f g r (length p) ∧ (forall (x : I r), abs (g x) ≤ M))
→ forall (x : I r), dist (eval_poly p x) (f x)

≤ inv_factorial (length p) ∗ M ∗ r length p.

After having defined polynomials, we can now proceed to define Taylor models. A Taylor
model for a function f consists of a polynomial p, a radius r and an error bound ϵ.

▶ Definition 7. We define a Taylor model t : tm f for a classical partial function f : R → R̃⊥
as a record consisting of a polynomial pt, two real numbers rt, ϵt : R and a proof of the
specification that |f x − pt x| ≤ ϵt for all x with |x| ≤ rt. The name of the field for rt is
tm_radius the name of the field for ϵt is tm_error.



S. Park and H. Thies 30:11

Arithmetic operations on functions can be extended to their Taylor model representation.
For example, we show

Definition sum_tm f1 f2 (t1 : tm f1) (t2 : tm f2) : tm (fun x ⇒ f1 x + f2 x).
Definition mult_tm f1 f2 (t1 : tm f1) (t2 : tm f2) : tm (fun x ⇒ f1 x ∗ f2 x).

Proving those statements consists of two parts. The first is to define a polynomial that
approximates the resulting function. Here, we can just use the corresponding operations on
polynomials. The second is to define the radius and error bound. For both operations we
can use the minimum of the two radii as the new radius. For addition we can simply add the
error bounds. For multiplication we choose the error bound ϵ := B1ϵt1 + B2ϵt2 + ϵ1ϵ2, where
B1 and B2 are bounds for the polynomials pt1 and pt2 , respectively.

Note that we do not prune the degree of the resulting polynomial in our definition of
multiplication. This means, however, that operating on Taylor models can increase the
degree quickly, leading to performance issues. Thus, it might be necessary to reduce the
degree at some point, for which we introduce the following operation.

Definition swipe_tm f (t : tm f) (m : N) : {t′ : tm f | deg t′ ≤ m}.

Here, deg t is defined as the length of the polynomial. The operation is performed by splitting
the polynomial into two polynomials p1 and p2 such that pt x = (p1 x) + xm(p2 x), compute
a bound B for p2 on the interval and “swiping” the bound into the error, i.e. defining the
new Taylor model t′ by the polynomial p1 and error bound ϵt′ = ϵt + B.

5 Exact Computation with Power Series

While Taylor models are interesting for computations with rigorous error bounds, we are
mostly interested in representing certain functions exactly in the sense of computable analysis.
That is, our main interest is to use sequences of polynomials that allow us to evaluate
functions with any desired absolute precision. Formally, we will use a sequence of Taylor
models that converges rapidly towards the function. That is, we say a sequence of Taylor
models for a function f represents the function on I r if all sequence elements have radius at
least r and the n-th element has error at most 2−n:

Definition represents f (t : nat → (tm f)) r :=
forall n, (tm_error f (t n)) ≤ 2−n ∧ (tm_radius f (t n)) ≥ r.

Let us proof a few facts about functions represented in that way.

▶ Lemma 8 (represents_cont). 1. Any function that can be represented on I r in the above
sense is uniformly continuous on I r.

2. Whenever we have representations for f and g, we can compute representations for f + g

and fg, respectively.

Proof. To show the first claim, let t : N → tm f be a sequence of Taylor models that represents
f and let ϵ > 0 be arbitrary. By the Archimedean axiom there is some n : N, such that 2−n < ϵ.
Choose the polynomial p := t(n + 2) and recall that any polynomial is uniformly continuous.
Thus, there is some δ > 0, such that for all x, y ∈ I r, |x − y| ≤ δ → |(p x) − (p y)| ≤ 2−(n+1).
But then |(f x) − (f y)| = |(f x) − (p x) + (p y) − (f y) + (p x) − (p y)| < ϵ holds.

To prove the second claim, we can simply perform the operations on the corresponding
Taylor models and increase the index accordingly. For multiplication, this works as (by
1.) the function is bounded and thus the approximating polynomials can not grow much
larger than that bound, showing that the error bound for the product of the approximating
polynomials defined above gets arbitrarily small when increasing the index. ◀

ITP 2024



30:12 Taylor Models and Power Series for ODE Solving in Coq

Now assume that we have a sequence of Taylor models t representing a function f and
a sequence t′ of derivatives of t. The notion behaves well with respect to differentiability,
in the sense that whenever the sequence t′ converges to some function f ′, then f ′ is the
derivative of f .
Lemma differentiable_limit f t f′ t′ r :

(represents f t r) →
(represents f′ t′ r) →
(forall n, uniform_derivative_fun (eval_tm (t n)) (eval_tm (t′ n))) r) →
uniform_derivative f f′ r.

Here, eval_tm is the evaluation of the polynomial recorded in the Taylor model.
However, note that in general the sequence of derivatives of a representation does not

need to be convergent. Thus, let us now focus on a large class of functions where we can use
the theorem to compute the derivatives, namely functions analytic at 0.

Analytic functions allow a canonical approximation by polynomials in the following sense.
A function f : R → R is called analytic at 0 if f is locally defined by a power series, i.e.,

f(x) =
∑

akxk on the interval (−R, R) for some R > 0 called radius of convergence. Any
analytic function is smooth and the power series coincides with the Taylor series.

We want to represent analytic functions locally by their power series and define a calculus
of function operations on that representation. Before we do that, let us first consider infinite
sequences a : N → R and series

∑∞
i=0 ai in a general sense. Note that for brevity, we use ak

instead of (a k) to denote the k-th element of a sequence a : N → R.
For an infinite sequence a : N → R we define a partial sum operation in the obvious way:

Fixpoint partial_sum a n := match n with
| 0 ⇒ (a 0)
| (S n′ ) ⇒ (a n) + partial_sum a n′

end.

We can then define that the infinite sum
∑∞

i=0 ak classically exists.
Definition is_sum a x := forall ϵ, ϵ > 0 →

exists N, forall n, (n ≥ N) → dist (partial_sum a n) x ≤ ϵ.

We show a few classical results about sums, such as that the sum of a sequence is unique.
Further, when the sequence decreases rapidly, we can compute the sum.

Let us proceed to power series, that is infinite series of the form
∑∞

n=0 akxk. For any
sequence a : N → R and x : R, we define ps a x :≡ (fun n ⇒ anxn). For any power series a,
we define a canonical partial function fa by fa x = y ↔ is_sum (ps a x) y. On the other
hand, we can also define a series to be the power series for some classical function g by

is_ps_for g a :⇔ ∃(r > 0). ∀(x : I r). fa x = g x.

To compute the value
∑∞

n=0 anxn, we need to approximate how close the partial sums
are to the limit, which in general can not be computed from the series alone [36, Sect. 6.5].
However, if the power series corresponds to some function that is analytic at 0, there is some
R > 0 such that the series converges for all x with |x| < R. This gives us the following fact.

▶ Fact 1. Assume there is some R > 0 such that
∑∞

n=0 anxn converges whenever |x| < R.
Then there exist constants M, r ∈ R such that |an| ≤ Mr−n for all n ∈ N.

Proof. Choose any 0 < r < R. Then the series converges absolutely on [−r, r]. In particular,
there is some M ∈ R such that

∑∞
i=0 |an| rn = M . As all summands are positive, |an| rn ≤ M

must hold for all n and thus the claim holds. ◀
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On the other hand, assume we are given constants M, r as in Fact 1. Then for any x : R
with |x| < r and any N : N, we can get the tail estimate∣∣∣∣∣

∞∑
n=N+1

anxn

∣∣∣∣∣ ≤ M
∞∑

n=N+1
(x

r
)n = M

( x
r )N+1

1 − x
r

. (1)

In particular, if we choose |x| ≤ r
2 , we get

∣∣∑∞
n=N+1 anxn

∣∣ ≤ M2−N , or put differently the
sequence fun n ⇒ partial_sum (ps a x) (n + ⌈log M⌉) defines a fast Cauchy sequence.

We call the constants M, r from Fact 1 a series bound for (ak)k∈N and encode power
series together with the bound:

Record bounded_ps : Type := mk_bounded_ps
{ series : N → R;

bounded_ps_M : N;
bounded_ps_r : R;
bounded_ps_rgt0 : bounded_ps_r > 0;
bounded_ps_bounded: forall n, abs (a n) ≤ bounded_ps_M ∗ bounded_ps_r−n }.

Note that we chose r to be a real and M to be an integer. The main reason for that is
that M is used to find the (integer valued) degree necessary to get a good approximation.
If we chose M as real-valued, we could only compute an integer upper bound for log M

non-deterministically, which would have made the statements slightly more complicated.
Using the tail bound from Equation (1), we can evaluate the power series on any r′ < r.

However, for simplicity we chose the fixed evaluation interval [− r
2 , r

2 ]:

Lemma eval_val (a : bounded_ps) x :
abs x ≤ (bounded_ps_r a) / 2 → {y | is_sum (ps series a x) y}.

To show that this is true, we show that computing the partial sum up to n + ⌈log M⌉
coefficients defines a fast Cauchy sequence, for which we compute the limit. Similarly, for
any n : N, we can canonically transform a bounded power series to a Taylor model for fa

with radius r
2 and error bound 2−n. We denote this operation as to_taylor_model.

▶ Remark 9. The choice r
2 is somewhat arbitrary, but leads to simple bounds and evaluation

is efficient in the region. While it would be possible to replace it by any r′ < r, in most cases
shifting the power series to a new center is more effective.

We next aim to define operations uniformly on power series, in a similar way as we did
for Taylor models. In many cases, we can directly generalize results on Taylor models to
results on power series by using the following lemma.

Lemma approx_ps f a :
(forall n x, dist (eval_tm (to_taylor_model a n) x) (f x) ≤ 2−n)
→ is_ps_for f a.

Thus, whenever we define an operation on power series, we only need to show that the
operation does what it is supposed to do on the Taylor model approximations. Let us
demonstrate this by showing that we can add power series. Other, more complicated
operations like multiplication can be done similarly.

Lemma sum_ps (a b : bounded_ps) : {c : bounded_ps | is_ps_for (fa + fb) c }.

Proof. We define the bounded power series c by adding the coefficients of a and b and
defining rc := min ra rb and Mc := Ma + Mb. It is easy to see that this choice is a valid
bound for the series. To show that the series converges to the sum, we use approx_ps, thus
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we have to show that the distance of the 2−n Taylor model approximation to fa + fb is at
most 2−n. However, the Taylor model is identical to summing Taylor models for 2−(n+1)

approximations of fa and fb, thus the claim holds. ◀

The representation for power series further allows us to compute derivatives.

Lemma derive_ps (a : bounded_ps) : {b : bounded_ps | uniform_derivative fa fb rb}.

Proof. Let us first show how to bound the power series b :=
∑∞

n=0(n + 1)an+1xn of the
derivative. We choose rb := ra

2 . Then

|bn| ≤ (n + 1)Mar−(n+1)
a = (n + 1)2−n(Mara)r−n

b ≤ (Mara)r−n
b .

Thus taking any Mb > Mara works. To show that the power series converges to the derivative
of fa, it suffices to show that the sequence of Taylor models of b is a sequence of derivatives
of the Taylor models for a. ◀

6 Ordinary Differential Equations

Let us now consider initial value problems (IVPs) for autonomous ordinary differential
equations of the form ẏ = f(y(t)); y(0) = y0. We call f the right-hand side function, y0 the
initial value and y the solution of the IVP. It is well known that an initial value problem with
analytic right-hand side function has an analytic solution. For simplicity we currently only
consider polynomial right-hand side, which already includes many interesting applications.
With a few minor adaptions, the same method works for general analytic functions. Note
that as polynomials are analytic functions, the solution will again be analytic. However, in
general the solution does not need to be polynomial.

In numerics, so-called single step methods such as Euler’s method or Runge-Kutta methods
are commonly used to solve initial value problems for ordinary differential equations. These
methods approximate the solution by taking one step at a time from the current point to
the next point, using information from the current point to approximate the solution at the
next point. To approximate this solution, often polynomial approximations of a fixed degree
are used, and to improve the accuracy the step size is reduced. However, such a method
does usually not work well for high precisions as the number of steps grows exponentially
with the precision. In exact real computation therefore a different method is more applicable
[16, 8]. In this section we show how to implement a variant of this method in our formal
development. The method is similar to a single step method, but instead of varying the
step size for higher accuracy, we compute a local power series for the solution valid on a
small interval around the current point. We can thus keep the step size fixed and get more
accurate approximations by using more terms of the power series. This also integrates well
with the tools in our library, as the evaluation of the power series can be defined by the limit
operation as described in the previous section.

Let us first define a function to be the solution of a polynomial IVP as follows.

Definition pivp_solution p y y0 r :=
(y 0) = y0 ∧ uniform_derivative y (fun t ⇒ (eval_poly p (y t))) r.

That is, pivp_solution p y y0 r says that the function y : R → R is a solution to the
polynomial IVP ẏ = p(y(t)); y(0) = y0 on the interval (−r, r).
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It further suffices to only consider the case y0 = 0, as we can always transform a general
IVP to an IVP with initial value 0 by replacing y(t) by y(t) − y0 and p(x) by p(x + y0). Also
note that we can always assume that we start at time t = 0, as the ODE is autonomous.

Note that, although classically true, we have not formalized the proof of existence and
uniqueness of the solution in our Coq development yet. As the focus of this work is to compute
the solution, and thus the classical proof is less important, currently our formal statements
include the additional assumption that the solution exists, which we plan to remove later.
This is, however, irrelevant for the extracted programs as this non-computational assumption
is removed in the extracted code anyway.

A well-known method to solve an IVP is the so-called Taylor series method (see e.g. [31]).
The idea behind the method is to automatically generate the coefficients of the power series
for the solution y(t). To this end, let us define the following sequence of polynomials.

Fixpoint pn p n := match n with
| 0 ⇒ p
| S n′ ⇒ n−1 ∗ (p ∗ (derive_poly (pn p n′)))
end.

We show that for each n, the polynomial (pn p n) applied to y(t) gives the (n+1)-st derivative
of the solution function y divided by (n + 1)!:

pivp_solution p y 0 r → nth_derivative y (fun t ⇒ (n+1)! ∗ ((pn p n) (y t))) r (n+1)

The proof is by induction and is essentially an application of the chain rule for derivatives.
It follows that evaluating the polynomial at y0 = 0 gives the coefficients of the Taylor series
of the solution:

Definition yn p n := match n with
| 0 ⇒ 0
| S n′ ⇒ (eval_poly (pn p n′) 0)
end.

Lemma pivp_ps_taylor_series p y r : pivp_solution p y 0 r →
forall n, (is_taylor_polynomial (to_poly (yn p) n) y r).

However, the error bounds for the truncated Taylor series depend on the range of y(t),
which we do not know yet. In interval arithmetic, estimating the value of the solution y(t)
for an IVP thus usually consists of two steps. The first step is to find a coarse a priori
enclosure for y(t) on some interval. This bound can then be used in a second step to find
a tighter bound for y(t), e.g., by using it for the error bound in the power series method.
Finding a good a priori enclosure is important, as it essentially determines the step size that
can be used in the algorithm. An often used simple but effective method is the high order
enclosure method [10]. However, its correctness depends on an application of Banach’s fixed
points theorem, and a formal proof seems challenging. We propose an alternative method,
by bounding the coefficients of the Taylor series. Note, however, that a more sophisticated
approach would give us better bounds, and thus should be considered in the future. We show

▶ Lemma 10 (yn_bound). Let p = [a1, . . . , ad] be a polynomial. For all n : N, we get the
bound |(yn p n)| ≤ (d2∥p∥)n.

Proof. Let p = [a1, . . . , ad] and recall that ∥p∥ = max |ak|. For any polynomials p, q it
holds ∥pq∥ ≤ deg p∥p∥∥q∥ and ∥derive_poly p∥ ≤ deg p∥p∥ We show for all n, ∥pn p n∥ ≤
(d2∥p∥)n+1 from which the claim follows. The proof is by induction on n. For n = 0, we get
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∥p∥ ≤ d2∥p∥ which holds trivially. Now assume ∥pn p n∥ ≤ (d2∥p∥)n+1. We have to show

∥ 1
n + 1p · (derive_poly (pn p n))∥ ≤ (d2∥p∥)n+2.

We can further show that deg (pn p n) = (n + 1)d − 2n. Thus we get

∥ 1
n + 1p · (derive_poly (pn p n))∥ ≤ 1

n + 1∥p∥(n + 1)d2∥(pn p n)∥

from which the claim follows. ◀

Thus, putting the above results together, yn defines a bounded power series for the solution
y with bounds r = 1

(d2∥p∥) and M = 1.

Definition pivp_ps_exists p :
{a:bounded_ps | exists r, r > 0 ∧ forall y, pivp_solution p y y0 r → is_ps_for (y−y0) a}.

Note that this also shows that the resulting function is analytic, as we can compute its
power series and a positive lower bound on its radius of convergence. We can then use this
bounded power series to compute a local solution y(t) for some small t > 0. An important
property of this method is that we do not need to evaluate the function on additional steps
to increase the precision. More precisely, the precision is controlled by applying the limit
operator on the sequence of partial sums of the power series at the point t. Thus, we get
an exact representation of the number y(t) as a converging sequence of values that only
depend on the power series at 0. In contrast, when using the Euler or Runge-Kutta methods,
the function needs to be evaluated on additional points to increase the precision, and the
methods are therefore harder to adapt to our system.

Next, we want to extend the solution to a larger interval. To this end, we first define an
operation that gives us one specific pair (t1, y(t1)) with y1 > 0 from the local solution.

Lemma local_solution p y0 :
{ty1 : R ∗ R | (fst ty) > 0 ∧

exists r, r > 0 ∧ forall y, pivp_solution p y y0 r → (snd ty1) = (y (fst ty1))}.

The method works by simply applying the evaluation algorithm for the power series on the
largest possible point in the evaluation interval and adding y0.

▶ Example 11. Consider the initial value problem

ẏ(t) = 1 + y(t)2 ; y(0) = y0.

It has the explicit solution y(t) = tan(t + arctan y0). From the term (local_solution [1 0 1] y0)
we can extract a program that computes the pair (t1, y1). The extracted program proceeds
as follows. The first step is to transform the system to an equivalent one with initial value
0. Application of the shifting procedure yields the new system ẏ(t) = p(y(t)) ; y(0) = 0
with p(x) = 1 + y2

0 + 2y0x + x2. The operator then computes the power series of the local
solution. We get the evaluation interval 1

8∥p∥ where ∥p∥ = max (1 + y2
0) (2y0) for the power

series, which is a rather coarse under-approximation of the actual radius of convergence
π
2 − arctan y0 of the series. The solution operator will produce the value and time for this
maximal point in the evaluation domain.

Next, we can turn this into a single step method to solve the IVP on a larger interval by
repeatedly applying the local solution operator to get a new initial value.

That is, we prove the following statement.
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Lemma solve_ivp p y0 n : {l : list (R ∗ R) |
length l = n+1 ∧
forall m, m < n → (fst (nth m l (0,0)) < fst (nth (m+1) l (0,0)))
forall y r, pivp_solution p y y0 r → forall ty, In ty l → (snd ty) = (y (fst ty))}.

The method produces a list [(t0, y0), . . . , (tn, yn)] such that the t0 are increasing and y(ti) = yi.
The step size is adaptive as when the growth of the function is faster in a region, the evaluation
radius we compute gets smaller. Note that each y(ti) is given as an exact representation of
the number and thus the step size only depends on parameters of the function and the initial
value and not on the desired precision of the solution. Thus, we do not need to consider error
propagation due to working with approximations, allowing for a simple proof of correctness.

If we consider again Example 11, we can see that starting with y0 = 0, in each step the
interval will get smaller and smaller as we approach π

2 .

7 Conclusion and Future Work

We presented an extension of our formalization of exact real computation to include rigorous
approximations of classical partial functions by polynomials, analytic functions and solutions
to initial value problems for non-linear polynomial ordinary differential equations. One of
the main limitations of the current work is that we only consider univariate functions, while
most interesting problems for differential equations occur at higher dimensions. Technically,
all the algorithms presented in this paper generalize directly to the multivariate setting and
even certain forms of partial differential equations [34]. Extending the formalization should
therefore not be too challenging, although it might require formalizing additional results
from multivariate analysis. Another possible extension for which one dimensional functions
suffice, is to consider holonomic functions. A function is holonomic if it is the solution to a
linear differential equation of the form pr(x)f (r)(x) + pr−1(x)f (r−1)(x) + · · · + a1(x)f ′(x) +
a0(x)f(x) = 0 where p0, . . . , pr are polynomials. Similar to the analytic case, it is possible
to compute the power series of solutions to such equations [15] and thus it might be simpler
to include in our formalization than extending to higher dimension.

Lastly, many of the algorithms currently encoded in the proofs are rather simple and not
very efficient. Replacing them by more sophisticated algorithms would yield better extracted
programs. In particular, the bound we currently use for the radius of convergence of an
ODE solution is a very coarse approximation, and improving this bound would increase the
step size and thus the efficiency of the algorithm drastically. Thus, we plan to verify better
methods such as the higher-order enclosure method [10] in future work. Due to the abstract
formulation of most results, exchanging algorithms in one part should have little effect on
other parts of the formalization, allowing to replace those methods easily in the future.
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Abstract
An Earley parser is a top-down parsing technique that is capable of parsing arbitrary context-free
grammars. We present a functional implementation of an Earley parser verified using the interactive
theorem prover Isabelle/HOL. Our formalization builds upon Cliff Jones’ extensive, refinement-based
paper proof. We implement and prove soundness and completeness of a functional recognizer
modeling Jay Earley’s original imperative implementation and extend it with the necessary data
structures to enable the construction of parse trees following the work of Elizabeth Scott. Building
upon this foundation, we develop a functional parser and prove its soundness. We round off the
paper by providing an informal argument and empirical data regarding the running time and space
complexity of our implementation.
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1 Introduction

Parsing is fundamental. Nearly every application interacts with its environment, and usually
by means of parsing textual input into a structured data format. In the age of big data,
applications handle enormous amounts of data and any parser bugs or vulnerabilities entail
severe security risks. Although the semantics of a parser are relatively easy to specify,
correctly implementing a parser is a difficult task. Attackers regularly exploit parsing bugs
to obtain sensitive user data [1, 3, 2]. Hence, parsing algorithms are well-suited for formal
verification which allows us to precisely specify the semantics of a parser and obtain strong
correctness guarantees.

A zoo of parsing algorithms exists, and one of the core trade-offs one has to make when
deciding on a parser is between performance and usability. Earley [12] parsing, originally
conceived by Jay Earley in 1968, is an algorithm that allows the full range of context-free
grammars while still being very performant for a large subset. In this paper, we present the,
to our knowledge, first formalization of an Earley parser. Our formalization builds upon Cliff
Jones’ [20] extensive, refinement-based paper proof.

Section 2 shortly introduces Isabelle/HOL [29, 28]. Section 3 contains the formalization
of context-free grammars and derivations. Section 4 defines and proves correct an inductive
definition of an Earley recognizer. Section 5 refines this definition to an executable algorithm.
Section 6 extends the recognizer to a parser. Section 7 contains an analysis of the running
time. Sections 8 and 9 discuss related work and conclude.

The whole formalization, including all proofs, can be found online in the Archive of
Formal Proofs [33]. The size of the formalization (more than 6000 lines) prohibits a detailed
exposition in this paper, especially of the proofs. The interested reader is referred to the
online material.
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2 Isabelle/HOL

Isabelle [29, 28] is an interactive theorem prover based on a fragment of higher-order logic.
It supports core concepts commonly found in functional programming languages.

The notation t :: τ indicates that term t has type τ . Basic types include bool and nat,
while type variables are written ′a, ′b etc. Pairs are expressed as (a, b), and triples as
(a, b, c), and so forth. Functions fst and snd return the first and second components of a
pair, while the operator (×) is used for pairs at the type level. Most type constructors are
written postfix, such as ′a set and ′a list, and the function space arrow is ⇒. Function set
converts a list to a set.

Algebraic data types are defined using the datatype keyword. Non-recursive definitions
are introduced with the definition keyword. Lists are constructed from the empty list [] using
the infix cons-operator (#). The operator (@) appends two lists, |xs| denotes the length of
xs, xs ! n returns the n-th item of the list xs (starting with n = 0 ), and xs[i := x ] returns an
updated list by setting the n-th item to the value x.

3 Context-free Grammars and Derivations

A symbol, either non-terminal or terminal, is represented as an arbitrary type ′a. We use
lowercase letters a, b, c to denote terminals and capital letters A, B, C to denote non-
terminals. Additionally, we use the letters s, t to represent arbitrary symbols. A sentence
is defined as a list of symbols and can be represented by either Greek letters α, β, γ or
lowercase letters u, v, w.

The data type cfg represents context-free grammars. An instance G comprises a list of
production rules R G, where each rule is a pair consisting of a left-hand side, lhs_rule, a
single symbol, and a right-hand side, rhs_rule, a list of symbols. Additionally, the instance G
contains the start symbol S G.

We formalize the set of non-terminals as the union of all left-hand sides of a grammar’s
production rules and its start symbol. A word is a sentence that consists only of terminal
symbols, meaning is_word G ω = (nonterminals G ∩ set ω = ∅). The empty word is denoted
by [].

Given a grammar G, the sentence β can be derived from the sentence α in a single step,
denoted by G ⊢ α ⇒ β, if G contains a production rule (A, γ) such that α is of the form u @
[A] @ v and β = u @ γ @ v. Defining derivations G = {(α, β) | G ⊢ α ⇒ β}∗ we abbreviate
(α, β) ∈ derivations G by G ⊢ α ⇒∗ β.

Some of the core proofs of this work make use of an analogous formalization of derivations.
The term Derivation G α D β signifies that the grammar G allows the sentence β to be
derived from the sentence α via the derivation D. In this context, D is a list containing
pairs of production rules and indices, which constitute the specific rewriting steps. When
applied in sequence to α, these steps lead to β. Both definitions of derivations are indeed
equivalent, meaning G ⊢ α ⇒∗ β, if and only if, there exists a derivation D such that the
predicate Derivation G α D β holds. We omit the proof.

4 Defining the Set of Earley Items

An Earley recognizer determines whether the input ω is in the language defined by the
grammar G by following a two-step process: first, it generates a set of items, then it checks if
there exists a finished item. In the following, we consider a fixed grammar G and input ω.
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An item takes the form Item r d i j, which consists of four components: a production rule
r from the grammar G, referred to as the rule_item, a natural number d, or dot_item, marking
how far the algorithm has processed the right-hand side of r, and two natural numbers i, j,
start_item and end_item, representing the start index and the end index (exclusive) of the
sublist of the input ω recognized by the item. Alternatively, an item with a production rule
A → αβ, which recognizes the subsequence of the input from index i up to but excluding j

by processing α, is written A → α • β, i, j.
The functions lhs_item and rhs_item project the lhs_rule and rhs_rule of an item.

Functions α_item and β_item split the production rule body at the position of the dot. An
item is complete, is_complete, when the dot is at the end of the production rule body, as in
A → α•, i, j. The next_symbol of an item can either be None, if it is complete, or Some s,
where s is the symbol in the production rule body following the dot.

An item x is well-formed, wf_item, if the item’s rule belongs to the grammar G, the item
dot must be within the length of the item’s right-hand side, the item start does not exceed
the item end, and finally, the item end must be at most the length of the input ω.

An item is finished, is_finished, if it is of the form S G → α•, 0, |ω|, meaning the left-hand
side of the item is the start symbol of the grammar G, the item is complete, and the entire
input ω has been recognized; or the item start is zero, and the item end is the length of ω.

The set of Earley items, Earley G ω, is an inductive definition of Earley’s recognizer,
i.e. an inductively defined set. The four defining rules are: the initial set of items, and one
rule for each of the core operations that expand the set of items: scanning, prediction, and
completion.

(S G, α) ∈ set (R G)
S G → •α, 0, 0 ∈ Earley G ω

Init

A → α • aβ, i, j ∈ Earley G ω ω ! j = a j < |ω|
A → αa • β, i, j + 1 ∈ Earley G ω

Scan

A → α • Bβ, i, j ∈ Earley G ω (B, γ) ∈ set (R G)
B → •γ, j, j ∈ Earley G ω

Predict

A → α • Bβ, i, j ∈ Earley G ω B → γ•, j, k ∈ Earley G ω

A → αB • β, i, k ∈ Earley G ω
Complete

The Init rule specifies all initial items S G → •α, 0, 0. There is one item for each grammar
rule that begins with the grammar’s start symbol. For these items, the dot, start, and end
indices are all initialized to 0. This signifies that we haven’t processed the right-hand side of
the rule at all, started the recognition process at the beginning of the word, and still are at
this initial position.

The Scan rule applies if there is a terminal symbol to the right of the dot: A → α•aβ, i, j.
In this case, if the j-th symbol of ω is the next_symbol of the item, we add a new item
A → αa • β, i, j + 1, moving the dot over the recognized terminal symbol.

The Predict rule is applicable to an item when there is a non-terminal symbol to the
right of the dot: A → α • Bβ, i, j. It adds a new item B → •γ, j, j for each production rule
(B, γ) of the grammar. Similar to the initial items, the dot is set to 0, but the start and end
indices are set to j to indicate that we are beginning recognition at position j in the input ω.

The Complete rule is applied to all complete items B → γ•, j, k. These items indicate
successful recognition of a subsequence of ω starting at index j and ending at index k. Now,
we consider any items where we already predicted the non-terminal symbol B. Specifically,
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we look for items A → α • Bβ, i, j with a matching end index j and a dot in front of the
non-terminal B. Since we have successfully recognized the predicted non-terminal, we are
allowed to move the dot, resulting in the addition of a new item A → αB • β, i, k.

We will prove soundness and completeness of Earley:
1. Soundness: If x ∈ Earley G ω and is_finished G ω x, then G ⊢ [S G] ⇒∗ ω.
2. Completeness: If G ⊢ [S G] ⇒∗ ω, then there exists an item x ∈ Earley G ω such that

is_finished G ω x .

Two further important properties that we will need:
1. Well-formedness: For all x ∈ Earley G ω, wf_item G ω x holds.
2. Finiteness: The set Earley G ω is finite.

4.1 Proving Well-formedness and Finiteness
The proof of the well-formedness of the set of Earley items is straightforward by induction
on the definition of Earley. We omit it.

Furthermore, there exist only a finite number of Earley items: Given that all Earley
items are well-formed, it suffices to prove that there is only a finite number of well-formed
Earley items. We define the set T as set (R G) × {0 ..m} × {0 ..|ω|} × {0 ..|ω|}, where m

denotes the maximum length of all right-hand sides of production rules from the grammar
G. The set T is finite as there is only a finite number of production rules, and both the
right-hand side of each production rule and the input ω are finite. Furthermore, T is an
over-approximation of Earley G ω, as every well-formed Earley item is contained within T

by definition of well-formedness.

4.2 Proving Soundness
An item A → α•β, i, j is considered sound, sound_item, if it satisfies G ⊢ [A] ⇒∗ (ωi/j @ β),
where ωi/j is the subsequence of ω from index i to (but excluding) j. Let x denote an
arbitrary item in Earley G ω. We prove sound_item G ω x by induction on the definition of
Earley.

For the Init rule, we have x = SG → •α, 0, 0. Furthermore, we know that ω0/0 equals
the empty list. Our goal is to show that there exists a derivation from S G to α. This
is immediately evident as (S G, α) is a production rule from the grammar due to the
well-formedness of the item.

For the Scan rule, we deal with an item x = A → α • aβ, i, j, and the induction
hypothesis is that G ⊢ [A] ⇒∗ ωi/j @ (a # β). Since we have that ω ! j = a, this is
equivalent to G ⊢ [A] ⇒∗ ωi/j + 1 @ β, which, in turn, implies the soundness of the new
item x = A → αa • β, i, j + 1.

For the Prediction rule, the new item is x = B → •α, j, j. Since ωj/j equals the empty
list, our task is to show that G ⊢ [B] ⇒∗ α. This follows directly as (B, α) is a production
rule of the grammar.

For the Complete rule, we have two items: x = A → α • Bβ, i, j and y = B → γ•, j, k.
The two induction hypothesises are G ⊢ [A] ⇒∗ ωi/j @ (B # β) and G ⊢ [B] ⇒∗ ωj/k.
Combining these statements yields G ⊢ [A] ⇒∗ ωi/j @ ωj/k @ β, which is equivalent to
G ⊢ [A] ⇒∗ ωi/k @ β, and thus, implies the soundness of the new item A → αB • β, i, k,
concluding the soundness proof.
theorem soundness_Earley:

assumes ∃ x ∈ Earley G ω. is_finished G ω x
shows G ⊢ [S G] ⇒∗ ω



M. Rau and T. Nipkow 31:5

4.3 Proving Completeness
Completeness is the most intricate proof obligation, and we begin by providing some intuition
about the fundamental proof idea. We call a set I of items partially completed if for every
item A → α • sβ, i, j in I and every derivation G ⊢ [s] ⇒∗ ωj/k, the set I also contains the
item A → αs • β, i, k.

Now, consider the item A → •s0s1 . . . sn, i, i0. If this item is present in a partially
completed set of items I, and there exists a derivation G ⊢ [s0] ⇒∗ ωi0/i1 , then the
item A → s0 • s1 . . . sn, i, i1 is also included in the set. If there exists another deriva-
tion G ⊢ [s1] ⇒∗ ωi1/i2 , the statement holds again for the item A → s0s1 • . . . sn, i, i2,
and so on. This continues until, for a derivation G ⊢ [sn] ⇒∗ ωin/j, the completed item
A → s0s1 . . . sn•, i, j is in I, provided that we have i ≤ i0 ≤ i1 ≤ · · · ≤ in ≤ j.

The definitions of partially_completed and the subsequent theorem that captures the
outlined proof idea are more intricate in their details. They also encompass the necessary
bounds for the indices, and make use of the analogous definition of derivations through
the predicate Derivation, which contains an actual derivation D. They also incorporate an
additional predicate on D. Its purpose is to limit the length of the derivation D. This is
crucial because the proof of the partial completeness of the set of Earley items is by induction
on the length of the derivation.

partially_completed l G ω I P = (∀ r d i j k x s D.

j ≤ k ∧ k ≤ l ∧ l ≤ |ω| ∧
x = Item r d i j ∧ x ∈ I ∧ next_symbol x = Some s ∧
Derivation G [s] D (ωj/k) ∧ P D −→ Item r (d+1 ) i k ∈ I )

theorem partially_completed_upto:
assumes j ≤ k and k ≤ |ω|
assumes x = Item (A,α) d i j and x ∈ I and ∀ x ∈ I . wf_item G ω x
assumes Derivation G (β_item x) D (ωj/k)
assumes partially_completed k G ω I ( λD ′. |D ′| ≤ |D| )
shows Item (A,α) |α| i k ∈ I

theorem partially_completed_Earley:
shows partially_completed |ω| G ω (Earley G ω) (λ_. True)

To establish the completeness of the inductive definition for the set of Earley items,
we apply both of the preceding theorems. By assumption, there exists a derivation of
the input ω from the grammar’s start symbol. We can decompose this derivation into a
single initial production rule (S G, α) and a subsequent derivation Derivation G α D ω.
Additionally, we know, by definition of the Init rule, that the item S G → •α, 0, 0 is in
Earley G ω. Moreover, considering that each Earley item is well-formed and the set of Earley
items is partially completed, as proved by the theorem partially_completed_Earley, we can
consequently discharge the assumptions of the theorem partially_completed_upto. As a result,
we know that the finished item S G → α•, 0, |ω| is indeed present in Earley G ω.

theorem completeness_Earley:
assumes G ⊢ [S G] ⇒∗ ω and is_word G ω

shows ∃ x ∈ Earley G ω. is_finished G ω x

theorem correctness_Earley:
assumes is_word G ω

shows (∃ x ∈ Earley G ω. is_finished G ω x) ←→ G ⊢ [S G] ⇒∗ ω
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5 An Executable Earley Recognizer

We refine the inductive Earley definition of the previous section to an executable algorithm,
a recognizer that tells us if the input ω is in the language specified by the grammar G.
Our Earley recognizer is a functional algorithm modeled after Earley’s original imperative
implementation. We start with an informal explanation. The algorithm processes the input
ω = a0, . . . , an−1 while maintaining a list of n+1 bins. An initial bin B0 and one bin Bi+1 for
each symbol ai in the input. Each bin is a variable length list of Earley entries. Each entry
is a pair consisting of an Earley item and “pointers”, i.e. indices, indicating the originating
entry needed for the construction of parse trees. These pointers are elements of a data type
with three alternatives:

A pointer can either be a null pointer, denoted by ⊥, a predecessor pointer representing
a single index i, or a nonempty list of reduction pointers containing triples of indices,
(a, b, c), (d, e, f), . . . . We define the exact semantics in the following paragraphs. To improve
readability we omit showing any constructors of the entry and pointer data types and only
use the shorthand notation. For example, an entry comprising the item A → α • β, i, j and
the reduction pointer (a, b, c) is written A → α • β, i, j; (a, b, c).

The algorithm generates the bins in ascending order, starting at bin B0. Each bin serves
a dual purpose: as a worklist of entries to be processed, and as a set of items that are already
present, ensuring that no two entries with identical items are present within the same bin.
An entry with the item A → α • β, i, j is always in bin Bj , in other words, the end index of
the item equals the index of the bin.

Initially, the algorithm populates bin B0 with the items corresponding to the Init rule of
the inductive Earley definition. Each initial item is accompanied by a null pointer. Table 1
illustrates the executable algorithm by example for the toy grammar G : S → x | S + S and
input: ω = x + x + x, showcasing the complete bins after a run of the algorithm. In the
example, the bins contain the two initial entries S → •x, 0, 0; ⊥ and S → •S + S, 0, 0; ⊥ in
bin B0. The algorithm proceeds to process the worklist, from top to bottom, until the bin
stabilizes. Then, it moves on to the next bin.

For each item x of the current entry at index l in the k-th bin, the algorithm applies
operations corresponding to the three rules Scan, Predict, Complete.

Case x = A → α • aβ, j, k: if the symbol at position k in ω is the terminal symbol a, the
entry A → αa • β, j, k + 1; l is inserted into the next bin Bk+1. The index l indicates the
predecessor index, signifying that the originating entry of this new entry resides in the
previous bin at index l. Table 1 contains the entry S → x•, 0, 1; 0 at index 0 in bin B1,
and its predecessor is the entry S → •x, 0, 0; ⊥ at index 0 in bin B0.
Case x = A → α • Bβ, j, k: for each production rule (B, γ) of the grammar G, an entry
B → •γ, k, k; ⊥ is inserted into the current bin Bk. A null pointer is added to the entry,
as no origin information is required for constructing parse trees. Table 1 contains the
entries S → •x, 2, 2; ⊥ and S → •S + S, 2, 2; ⊥ in bin B2, both predicted by the entry
S → S + •S, 0, 2; 1 in the same bin.
Case x = B → γ•, j, k: if an item is complete, the algorithm searches the origin bin
Bj for any entries with items of the form A → α • Bβ, i, j. If it finds such an entry
at index l′, it inserts one new entry A → αB • β, i, k; (j, l′, l) into the current bin. The
origin information (j, l′, l) is a reduction pointer. The first two indices, j and l′, indicate
that the predecessor entry resides in bin Bj at index l′. The last index, l, describes the
position of the reduction entry at index l in the current bin Bk. An entry may contain
more than one reduction pointer in cases where the grammar is ambiguous and there are
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multiple ways to derive the input corresponding to the item. Table 1 contains the entry
S → S + S•, 0, 5; (4, 1, 0), (2, 0, 1), capturing the two possible derivations of ω: (x + x) + x

and x + (x + x). The entry, with a single reduction pointer (4, 1, 0), was initially created
due to the reduction entry S → x•, 4, 5; 2 at index 0 in bin B5 and the predecessor entry
S → S + •S, 0, 4; 3 at index 1 in bin B4. However, the second reduction pointer (2, 0, 1)
was later added due to the reduction entry S → S + S•, 2, 5; (4, 0, 0) at index 1 in bin B5
and the predecessor entry S → S + •S, 0, 2; 1 at index 0 in bin B2.

The algorithm inserts an entry into a bin as follows: Iterate through the bin, and, for each
entry, check if its item matches the item of the entry to be inserted. If a match is found, and
the pointer of the entry to be inserted is a reduction pointer, merge the items by adding the
reduction pointer to the already present entry. Otherwise, if there is no match or the pointer
is not a reduction pointer, do not make any additions. In both cases, terminate the insertion
process. If there are no entries with matching items, append the entry to the end of the bin.

Table 1 Earley bins for G: S → x |S + S, and ω = x + x + x.

B0 B1 B2

0 S → •x, 0, 0;⊥ S → x•, 0, 1; 0 S → S + •S, 0, 2; 1
1 S → •S + S, 0, 0;⊥ S → S •+S, 0, 1; (0, 1, 0) S → •x, 2, 2;⊥
2 S → •S + S, 2, 2;⊥

B3 B4 B5

0 S → x•, 2, 3; 1 S → S + •S, 2, 4; 2 S → x•, 4, 5; 2
1 S → S + S•, 0, 3; (2, 0, 0) S → S + •S, 0, 4; 3 S → S + S•, 2, 5; (4, 0, 0)
2 S → S •+S, 2, 3; (2, 2, 0) S → •x, 4, 4;⊥ S → S + S•, 0, 5; (4, 1, 0), (2, 0, 1)
3 S → S •+S, 0, 3; (0, 1, 1) S → •S + S, 4, 4;⊥ S → S •+S, 4, 5; (4, 3, 0)
4 S → S •+S, 2, 5; (2, 2, 1)
5 S → S •+S, 0, 5; (0, 1, 2)

5.1 Recognizer Implementation
We now examine the formal definition of the recognizer. There are four functions InitL,
ScanL, PredictL, and CompleteL implementing list-based versions of the four corresponding
rules of the inductive Earley definition. Due to space restrictions we only show the function
InitL, constructing the initial bins, and the function PredictL that returns a list of new
entries to be inserted into the bins. Functions ScanL and CompleteL have the same return
type.

InitL G ω = (
let rs = filter (λr . lhs_rule r = S G) (remdups (R G)) in
let b0 = map (λr . (Item r 0 0 0 , Null)) rs in
let bs = replicate ( |ω| + 1 ) ([]) in bs[0 := b0 ])

PredictL k G A = (
let rs = filter (λr . lhs_rule r = A) (R G) in
map (λr . (Item r 0 k k, Null)) rs)

The central piece of the implementation is the function EarleyL
_bin ′. The function

computes the entries of the k-th bin starting at the entry at index i. It examines the symbol
following the dot of the item of the entry and, depending on the type of the symbol or
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whether such a symbol exists at all, applies one of the three executable operations, obtaining
a list of potentially new entries. These entries are subsequently inserted into the bins using
the function upd_bins (definition omitted). Function EarleyL_bin starts this process at the
beginning of the bin at index 0.

EarleyL
_bin ′ k G ω bs i = (

if i ≥ |(items (bs!k))| then bs
else

let x = items (bs!k) ! i in
let bs ′ =

case next_symbol x of
Some s ⇒ (

if s /∈ nonterminals G then
if k < |ω| then upd_bins bs (k+1 ) (ScanL k ω s x i) else bs

else upd_bins bs k (PredictL k G s))
| None ⇒ upd_bins bs k (CompleteL k x bs i)

in EarleyL_bin ′ k G ω bs ′ (i+1 ))

EarleyL_bin k G ω bs = EarleyL_bin ′ k G ω bs 0

The function EarleyL_bin ′ is defined as a partial function as it might not terminate if it
keeps inserting newly generated entries forever into the bin it currently operates on. However,
we know that the newly generated entries do not contain arbitrary but only well-formed bin
items. In other words, each bin Bk contains only entries with items that are well-formed and
additionally have the end index k. We have already proved that the number of well-formed
Earley items is finite, and the implementation ensures that a new entry is added to the bin
only if its item is not already present in one of the bin’s entries. Therefore, the function
will eventually run out of new entries to insert into the bin it currently operates on and
terminate.

Although HOL is a logic of total functions, Isabelle supports the definition of potentially
non-terminating functions provided they are tail-recursive (like EarleyL_bin ′) or their result
is an optional value (like function build_tree ′ below). The underlying domain-theoretic
definitional constructions are due to Krauss [24]. However, we cannot prove anything about
such a function because Isabelle does not know for which inputs it terminates, or if it
terminates at all. As a result, Isabelle does not generate an appropriate induction schema
for it. Such a schema must be proved by hand by specifying a suitable type and measure
for which the function terminates. For the function EarleyL_bin ′ we define the measure
earley_measure (k, G, ω, bs) i = |{x | wf_item G ω x ∧ end_item x = k}| − i and prove
that it is strictly decreasing for every tail-recursive function call.

The function EarleyL
_bins computes the bins upto a specific index starting at bin zero.

And finally, function EarleyL computes the complete bins.
EarleyL_bins 0 G ω = EarleyL_bin 0 G ω (InitL G ω)
EarleyL_bins (Suc n) G ω = EarleyL_bin (Suc n) G ω (EarleyL_bins n G ω)

EarleyL G ω = EarleyL_bins |ω| G ω

5.2 Recognizer Correctness Proof
We follow Jones’ [20] refinement approach, proving that the set of items formed by the imple-
mentation’s bins is exactly the inductive set of Earley items, thereby establishing soundness
and completeness. The main complications arise since the deterministic implementation
necessarily generates the set of Earley items in a particular order. It starts with the initial
items in bin zero and constructs the subsequent bins in a horizontal ascending order. But each
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bin is computed top to bottom, introducing a second vertical order. Our refinement approach
reflects these two orders. We first refine the inductive definition to an intermediate fixpoint
algorithm, and then refine this algorithm further to the actual list-based implementation.

Let bin I k denote the subset of the set of items I that end with index k. Furthermore,
let base ω I k denote the subset of I that forms the k-th base of a bin, meaning the subset of
I containing only items of the form A → αa • β, i, j, where a is a terminal symbol preceding
the dot. If k is zero, base ω I 0 consists of all initial items S G → •α, 0, 0.

For the intermediate fixpoint algorithm we define the set of initial items InitF and three
functions PredictF , ScanF , and CompleteF mirroring the rules of the inductive definition.
Using EarleyF _bin_step k G ω I = I ∪ ScanF k ω I ∪ CompleteF k I ∪ PredictF k G I we
define the computation of a single bin as a fixpoint computation. The remaining functions
EarleyF _bins and EarleyF are defined analogously to the list-based implementation. The
following lemma states the completeness argument for the first refinement step.

lemma Earley_bin_base_sub_EarleyF _bin:
assumes InitF G ⊆ I and ∀ k ′ < k. bin (Earley G ω) k ′ ⊆ I
assumes base ω (Earley G ω) k ⊆ I and is_word G ω

shows bin (Earley G ω) k ⊆ bin (EarleyF _bin k G ω I ) k ∧
base ω (Earley G ω) (k+1 ) ⊆ bin (EarleyF _bin k G ω I ) (k+1 )

The fixpoint computation of the k-th bin yields a superset of the k-th bin and base k+1 of
the inductive definition. We omit the proof, and the analogous but much simpler soundness
lemma. As both the inductive and fixpoint definition commence with the same items, (base)
ω (Earley G ω) 0 = InitF G, we apply this argument |ω| times (i.e. by induction), yielding
the correctness proposition Earley G ω = EarleyF G ω.

Refining the algorithm further to the list-based implementation uncovers a well-known
problem concerning the computation of a single bin. Consider an item A → •, j, k for
an epsilon rule (A, []). Since the item is by definition complete the algorithm applies the
CompleteL operation. It identifies the origin bin j of the item. Due to the epsilon rule this is
the k-th bin, meaning the bin that the algorithm is currently computing. It then searches
this bin for any items B → α • Aβ, i, j. However, the bin might not be fully constructed at
this point, and some of these items could be missing. Consequently, the algorithm may not
generate all items B → αA • β, i, j, when applying the completion operation for the item
A → •, j, k. Moreover, there could be transitively dependent items that the algorithm fails
to compute. Various solutions have been proposed:

Earley [12] suggests that the implementation keeps track of items with epsilon rules and
considers this information in the subsequent execution of the algorithm.
Grune and Jacobs [18] and Aho and Ullman [4] propose to interleave the prediction and
completion operations until the algorithm stabilizes.
Kegler [22] addresses the problem by internally rewriting the grammar into epsilon-free
form.
Aycock and Horspool [6] precompute nullable non-terminals and modify the prediction
operation.
Polat et al. [32] roughly follow the work of Aycock and Horspool.

We follow Jones [20], define ε_free G = (∀ r∈set (R G). rhs_rule r ̸= []), and consequently
restrict the grammar to be epsilon free. If we disallow any production rules of the form (A, []),
then the function EarleyL_bin is idempotent and in particular the result of the completion
operation is invariant of state of the current bin.

On paper this argument is straightforward, but the formalization is surprisingly tricky in
the details. The function EarleyL_bin k G ω bs = EarleyL_bin ′ k G ω bs 0 is defined in
terms of EarleyL_bin ′ which may start its computation at an arbitrary index i instead of 0.
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We need the following two generalized lemmas for the completeness proof.

lemma EarleyF
_bin_step_sub_EarleyL

_bin ′:
assumes (k, G, ω, bs) ∈ wf_earley_input and is_word G ω

assumes ∀ x ∈ bins bs. sound_item G ω x and ε_free G
assumes EarleyF

_bin_step k G ω (bins_upto bs k i) ⊆ bins bs
shows EarleyF

_bin_step k G ω (bins bs) ⊆ bins (EarleyL
_bin ′ k G ω bs i)

If applying a single step step of the fixpoint computation, EarleyF _bin_step, to the bins
including the items of the first k bins but only up (but not including) the i-th item of the
k-th bin doesn’t change the content of the bins, or, in other words, those items are already
correctly processed, then the list-based implementation computes at least the same items as
applying one step of the fixpoint computation.

lemma EarleyL_bin ′_idem:
assumes (k, G, ω, bs) ∈ wf_earley_input
assumes i ≤ j ∀ x ∈ bins bs. sound_item G ω x and ε_free G
shows bins (EarleyL_bin ′ k G ω (EarleyL_bin ′ k G ω bs i) j) = bins (EarleyL_bin ′ k G ω bs i)

Using those two lemmas we can prove completeness of the list-based algorithm for a
single bin. Since the list-based algorithm follows the same horizontal order as the fixpoint
algorithm the completeness proof for all bins is then straightforward. The soundness proof is
again similar in structure, but once more much simpler.

We then define recognizer G ω = (∃ x∈set (items (EarleyL G ω ! |ω|)). is_finished G ω x),
prove the equivalence of Earley and EarleyL and obtain a corollary stating the correctness
of the recognizer under the assumption of an epsilon-free grammar.

theorem Earley_eq_EarleyL:
assumes is_word G ω and ε_free G
shows Earley G ω = bins (EarleyL G ω)

corollary correctness_recognizer :
assumes is_word G ω and ε_free G
shows recognizer G ω ←→ G ⊢ [S G] ⇒∗ ω

6 An Earley Parser

We now upgrade our recognizer to a parser. Extending an Earley recognizer to a parser is no
simple task. Tomita [36] even pointed out a bug in Earley’s original implementation that
may lead to erroneous derivations.

A major complication is that Earley’s parser allows for ambiguous grammars, which
may lead to exponentially many or even infinitely many parse trees. For the ambiguous
grammar S → SS | a, the number of possible parse trees corresponds to the Catalan number
Cn = 1

n+1
(2n

n

)
for an input of length n − 1. For the cyclic grammar A → B | a, B → A the

input a has infinitely many parse trees because of the by cycle of non-terminals A and B.
An Earley recognizer can be made to run in at most quadratic space and cubic time. Any

extension of the recognizer to a parser, especially for ambiguous or cyclic grammars, must
choose a suitable data representation and be implemented carefully, in order not to degrade
those time and space bounds too much.

Probably the most well-known data representation is the shared packed parse forest
(SPPF), as described and used by Tomita [37]. However, Johnson [19] showed that these forests
are of unbounded polynomial size in the worst case. On the other hand, Scott [35] introduced
a slightly different version of SPPFs, and proved that her Earley parser implementation runs
in cubic time and space.
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Following Aho and Ullman [4], we choose to construct only a single parse tree, showing
correctness but not completeness. Our formalization implements the parser as a separate
algorithm that extracts the parse trees from the bins via the pointers that our recognizer
maintains but does not utilize. The pointer implementation follows the work of Scott [35].

Our parse trees and two basic operations are defined like this:

datatype ′a tree = Leaf ′a | Branch ′a ( ′a tree list)

yield (Leaf a) = [a] root (Leaf a) = a
yield (Branch _ ts) = concat (map yield ts) root (Branch N _) = N

We introduce three notions of well-formedness for parse trees:
A parse tree must represent a valid derivation tree according to the rules of the grammar:

wf_rule_tree _ (Leaf a) = True
wf_rule_tree G (Branch N ts) =
((∃ r∈set (R G). N = lhs_rule r ∧ map root ts = rhs_rule r) ∧
(∀ t∈set ts. wf_rule_tree G t))

A tree corresponds to an Earley item in structure and in yield:

wf_item_tree _ uu (Leaf a) = True
wf_item_tree G x (Branch N ts) =
((N = lhs_item x ∧ map root ts = take (dot_item x) (rhs_item x)) ∧
(∀ t∈set ts. wf_rule_tree G t))

wf_yield ω x t = (yield t = ωstart_item x/end_item x)

6.1 Parser Implementation
After executing the EarleyL function, we obtain bins that represent the complete set of
Earley items. The null, predecessor and reduction pointers of the entries serve as a means to
navigate through these bins.

The semantics of the pointers is as follows: a null pointer accompanies an item if that
item was predicted. An entry contains a predecessor pointer, Pre pre, if its item was obtained
by applying the Scan operation to the item of the entry in the previous bin at index pre. An
entry contains reduction pointers, PreRed p ps, if its item was computed by the completion
operation. For any (k ′, pre, red) ∈ set (p # ps), there exists a predecessor item in bin k ′ at
index pre and a complete reduction item in the same bin at index red.

The function build_tree ′ constructs a single parse tree corresponding to the item x in
entry e at index i of the k-th bin:

build_tree ′ bs ω k i = (let e = bs ! k ! i in
case snd e of

Null ⇒ Some (Branch (lhs_item (fst e)) [])
| Pre pre ⇒

do { t ← build_tree ′ bs ω (k−1 ) pre;
case t of Branch A ts ⇒ Some (Branch A (ts @ [Leaf (ω!(k−1 ))])) }

| PreRed (k ′, pre, red) _⇒
do { t ← build_tree ′ bs ω k ′ pre;

case t of Branch A ts ⇒
do { t ← build_tree ′ bs ω k red;

Some (Branch A (ts @ [t])) }})

ITP 2024



31:12 A Verified Earley Parser

If the pointer of e is a null pointer, the algorithm begins building a new branch. Specifically,
it constructs a branch Branch A [], where A is the left-hand side symbol of the production
rule of the item x. If the algorithm encounters a predecessor pointer Pre pre, it recursively
calls itself for the previous bin, k − 1, at index pre. This recursive call results in a partially
completed parse branch. Following the semantics of the predecessor pointer, the algorithm
appends a new Leaf containing the terminal symbol at index k − 1 of the input ω to the list
of subtrees of this branch. In the case of a reduction pointer, the algorithm considers only
the first triple (k ′, pre, red). It calls itself recursively for the predecessor entry in bin k ′ at
index pre and the completed entry in the same bin at index red. These recursive calls yield
respectively a partially completed parse branch Branch A ts and a complete parse tree t.
Following the semantics of the reduction pointer, the complete branch t is appended to the
list of subtrees ts.

The final algorithm build_tree (definition omitted) first computes the complete bins using
the function EarleyL. It then searches the last bin for any finished item x, and calls the
function build_tree ′ at the index of x in the final bin, returning the resulting parse tree as an
optional value, if such a tree exists, or None in case of non-termination.

6.2 Proving Termination
The function build_tree ′ is a partial function. It calls itself recursively, following the informa-
tion provided by the pointers. Intuitively, it terminates because predecessor pointers lead
to earlier bins, and reduction pointers point upwards within a bin. Consequently, we define
a measure build_tree ′_measure (bs, ω, k, i) = foldl (+) 0 (map length (take k bs)) + i,
counting the number of entries in the first k bins up to the i-th entry in bin k+1. But in the
case of malformed input, the pointers might result in a cycle of recursive calls and thus the
measure is not strictly decreasing. And even for well-formed input, complications arise.

Consider an entry at index i in the k-th bin. If the entry contains a reduction triple (k ′,

pre, red), the algorithm calls itself recursively for the reduction entry at index red in bin
k. Now consider the cyclic grammar A → B | a, B → A and the input ω = a. In this case,
the last bin contains a cycle of reductions: there is an entry B → A•, 0, 1; (0, 2, 0), (0, 2, 2) at
index 1, and its second reduction triple (0, 2, 2) leads to index 2 of the same bin. There, we
find the entry A → B•, 0, 1; (0, 0, 1) with a reduction triple to index 1, completing the cycle,
and leading to potential non-termination of the algorithm.

We constrain the input of the function build_tree ′ to wf_tree_input = {(bs, ω, k, i) |
sound_ptrs ω bs ∧ mono_red_ptr bs ∧ k < |bs| ∧ k ≤ |ω| ∧ i < |bs ! k|} where the definition
of sound_ptrs and mono_red_ptr is the following:

sound_ptrs ω bs = (∀ k < |bs|. ∀ e ∈ set (bs!k).
(snd e = Null −→ predicts (fst e)) ∧
(∀ pre. snd e = Pre pre −→

k > 0 ∧ pre < |bs!(k−1 )| ∧ scans ω k (fst (bs!(k−1 )!pre)) (fst e)) ∧
(∀ p ps k ′ pre red. snd e = PreRed p ps ∧ (k ′, pre, red) ∈ set (p#ps) −→

k ′ < k ∧ pre < |bs!k ′| ∧ red < |bs!k| ∧ completes k (fst (bs!k ′!pre)) (fst e) (fst (bs!k!red))))

mono_red_ptr bs = (∀ k < |bs|. ∀ i < |bs!k|.
∀ k ′ pre red ps. snd (bs!k!i) = PreRed (k ′, pre, red) ps −→ red < i)

The predicate sound_ptrs defines the semantics for the pointer datatype, ensuring that the
pointers do not exceed the bounds of the bins and that related items follow the semantics of
the respective operation. The function build_tree ′ always follows the first reduction triple (k ′,

pre, red) ∈ set (p # ps) for a reduction pointer PreRed p ps, and the predicate mono_red_ptr
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guarantees that the reduction pointer red of this reduction triple always points strictly
upwards within the bin, even for cyclic grammars as in the example above, enabling us to
prove termination of the algorithm.

lemma build_tree ′_termination:
assumes (bs, ω, k, i) ∈ wf_tree_input
shows ∃A ts. build_tree ′ bs ω k i = Some (Branch A ts)

6.3 Proving Correctness
To prove the correctness of the parse tree algorithm, we first show that the resulting tree
corresponds in derivation and yield to the Earley item where the construction originated.

theorem wf_item_yield_build_tree ′:
assumes (bs, ω, k, i) ∈ wf_tree_input and wf_bins G ω bs
assumes build_tree ′ bs ω k i = Some t and x = fst (bs!k!i)
shows wf_item_tree G x t ∧ wf_yield ω x t

The predicate wf_bins states that each bin only contains entries with distinct items, all
items are well-formed and their end index equals the index of the bin they reside in. The
proof is by induction on build_tree ′_measure (bs, ω, k, i).

As a corollary, we obtain the first correctness statement for epsilon-free grammars: any
constructed parse tree adheres to the rules of the grammar, is rooted at its start symbol and
yields the complete input:

corollary wf_rule_root_yield_build_tree_EarleyL:
assumes ε_free G and build_tree G ω (EarleyL G ω) = Some t
shows wf_rule_tree G t ∧ root t = S G ∧ yield t = ω

The build_tree function scans the last bin for any finished item x, and calls the function
build_tree ′. Given that the function EarleyL guarantees well-formed tree inputs, the resulting
tree conforms both in derivation and yield to the item x, as proved in the preceding theorem.
Since x is a finished item, the root of the tree corresponds to the start symbol of the grammar,
the tree’s yield encompasses the complete input, and the definition of wf_item_tree aligns
with the definition of wf_rule_tree.

The second and final correctness theorem follows: the algorithm returns a parse tree, if
and only if, there exists a derivation of ω from the grammar’s start symbol.

theorem correctness_build_tree_EarleyL:
assumes is_word G ω and ε_free G
shows (∃ t. build_tree G ω (EarleyL G ω) = Some t) ←→ G ⊢ [S G] ⇒∗ ω

The function build_tree finds a finished item in the last bin and returns a parse tree, if
and only if, the bins generated by the function EarleyL contain a finished item. These items
align precisely with those items specified by the inductive definition. Lastly, the inductive
set of Earley items contains a finished item, if and only if, there exists a derivation of the
input from the grammar’s start symbol.

7 Evaluation

We present an informal argument for the algorithm’s running time, and empirically access its
efficiency. Given that we construct solely a single parse tree, the running time is dominated
by the function EarleyL.
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Let n denote the length of the input ω. Each bin Bj (0 ≤ j ≤ n) exclusively contains
well-formed items Item r d i j. The number of possible production rules r, and possible dot
positions d, are both constants independent of n, although they may be rather large. The
index i is bounded by 0 ≤ i ≤ j, and thus depends on j, which is bounded by n. The end
index j always equals the index of the bin. Thus, the number of items in each bin Bj is O(n).
The initial bin construction takes linear time. Scanning is also a linear operation, producing
at most one new entry. Prediction runs in time proportional to the grammar, or constant
time, adding a constant amount of new entries. Lastly, completion takes linear time as it
scans the entire origin bin for applicable items. However, as the size of the origin bin is linear,
this operation adds O(n) new entries to the current bin. The algorithm implements a bin as
a list, so inserting e new entries into any bin takes time e × O(n). The time for one execution
of the body of the function EarleyL_bin ′ is dominated by the time it takes to update the
bins with e new items. In the worst case, this is completion, resulting in a running time of
e × O(n), for e ∈ O(n). Moreover, the function calls itself at most n times due to the size of
the bin it operates on, resulting in cubic time complexity. Finally, the algorithm iterates
over all n bins, leading to a final upper bound on the running time of O(n4).

The space complexity for an Earley recognizer is quadratic: n bins of linear size. However,
as each entry may have n reduction pointers in the worst case, the space required to represent
all Earley entries with pointers becomes cubic in n.

It is worth noting that the running time is not optimal. Earley’s [12] original implement-
ation achieves an optimal running time of O(n3) by implementing a bin as an imperative
singly-linked list and additionally maintaining a cache of already inserted items. This cache
reduces the insertion time of a new entry into a bin from linear to constant time such that
computing a single bin takes in the worst case quadratic time. Further refinement of our
functional implementation to an imperative algorithm with cache is future work.

Additionally, we evaluate the running time of the exported recognizer Isabelle code in
comparison to a hand-written imperative implementation of Earley’s recognizer. Our target
language is Scala (verified as well as handwritten) and the verified code can be integrated
easily into existing code bases. Alternatively, Isabelle also supports Haskell, ML, and OCaml.
We then conducted tests on five different grammars, averaging the execution of ten runs for
each data point. The grammars and running times for Earley’s [12] original implementation
are:
1. An ambiguous grammar S → SS | a, cubic running time.

2. A right-recursive grammar S → aS | a, quadratic running time.

3. A palindrome grammar S → aSa | a, quadratic running time.

4. A left recursive grammar S → Sa | a, linear running time.

5. A grammar with bounded-ambiguity S → SX | a, X → Y | Z, Y → a, Z → a, linear
running time.

Figure 1 depicts the running times in milliseconds for the exported Isabelle code on
all five grammars. Figure 2 compares the verified code against the handwritten recognizer
implementation for grammars one, two, and four. In both cases, the input is ω = an. For
sufficiently large inputs the hand-written implementation exhibits optimal running time,
while the verified code exhibits a linear slowdown in the size of the input . This is also
confirmed by a regression analysis. It is possible to fit polynomial models of the respective
order, capturing the expected running time, to the data set, depicted as solid lines in the
figures.
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Figure 1 Isabelle: all grammars. Figure 2 Isabelle vs Handwritten.

8 Related Work

We highlight related work on formalization of parsing algorithms, starting with LL-based
parsing: Lasser et al. [25] verify an LL(1) parser generator using the Coq proof assistant.
Edelmann et al. [13] formalize a derivative-based LL(1) parsing algorithm, proving correctness
using the Coq proof assistant.

There also exist verified LR-based algorithms: Barthwal et al. [7] formalize background
theory about context-free languages and grammars, and subsequently verify an SLR auto-
maton and parser produced by a parser generator with the HOL4 proof assistant. Jourdan et
al. [21] present a validator which checks if a context-free grammar and an LR(1) parser agree,
producing correctness guarantees required by verified compilers.

Furthermore, there is relevant work on the verification of PEGs [17, 16], an alternative
representation to CFGs. Blaudeau et al. [8] formalize the meta theory of PEGs. They build a
verified parser interpreter based on higher-order parsing combinators for expression grammars
using the PVS specification language and verification system. Koprowski et al. [23] present
TRX: a PEG interpreter formally developed in Coq which also parses expression grammars.

Lastly, there exist a variety of verified parsers for general context-free grammars. Ridge [34]
constructs a generic parser generator based-on combinator parsing. His approach has a worst
case complexity of O(n5) and is verified using the HOL4 theorem prover. Obua formalizes
Local Lexing [31, 30] in Isabelle, a parsing concept that interleaves lexing and parsing allowing
the lexing phase to be dependent on the parsing process. Firsov and Uustalu [14, 15] rewrite
a context-free grammar into an equivalent one in Chomsky normal form and implement the
CYK parsing algorithm. They verify their work in Agda. The CYK algorithm had already
been verified by Bortin [9]. Danielsson [11] develops and verifies a monadic parser combinator
library in Agda.

9 Conclusions

We formalized and verified a functional implementation of an Earley recognizer and parser
based on Earley’s [12] original imperative implementation, the refinement-based paper proof
of Jones [20], and the work of Scott [35]. Initially, we defined an Earley recognizer inductively
and proved soundness and completeness. We refined the inductive definition to a functional
recognizer implementation (proving equivalence between the two levels). We also enhanced
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the implementation with “pointers”, following the work of Scott [35]. Following Aho and
Ullman [4], we implemented a functional algorithm that constructs a single parse tree, and
proved its termination and correctness. Finally, we argued informally about the running time
of our functional implementation, comparing it to an asymptotically optimal, hand-written,
imperative implementation and providing empirical evidence supporting our claims.

Future work is mainly centered around improving the algorithm’s efficiency. A first step
is a refinement to an imperative implementation that incorporates a cache to achieve optimal
cubic time and space bounds. Further performance optimizations include improving the
representation of the grammar for faster prediction [32] and grouping the items of a bin
based on their next symbol [12]. This avoids searching the complete origin bin during the
completion operation. Leo [26] describes an extension applicable to an Earley recognizer and
parser that improves the complexity for grammars containing right recursion from quadratic
to linear time and space. Earley [12] suggested using lookhead for the completion operation
to improve the performance of his algorithm. However, Bouckaert et al. [10] argued that
lookahead is better suited for the prediction operation. McLean and Horsool [27] claimed that
lookahead actually slowed down an Earley parser, and Aycock and Horspool [5] concluded
that the necessity of lookahead is at least controversial. Lastly, we would like to incorporate
the work of Aycock and Horspool [6] and Polat et al. [32] to lift the minor restriction to
epsilon-free grammars.
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Abstract
Formalizing a typed programming language in a proof assistant requires to choose representations
for variables and typing. Variables are often represented as de Bruijn indices, where substitution
is usually defined in terms of renamings to allow for proofs by structural induction. Typing can
be represented extrinsically by defining untyped terms and a typing relation, or intrinsically by
combining syntax and typing into a single definition of well-typed terms. For extrinsic typing, there
is again a choice between extrinsic scoping, where terms and the notion of free variables are defined
separately, and intrinsic scoping, where terms are indexed by their free variables.

This paper describes an Agda framework for formalizing programming languages with extrinsic
typing, intrinsic scoping, and de Bruijn Indices for variables. The framework supports object
languages with arbitrary many variable sorts and dependencies, making it suitable for polymorphic
languages and dependent types. Given an Agda definition of syntax and typing, the framework
derives substitution operations and lemmas for untyped terms, and provides an abstraction to prove
type preservation of these operations with just a single lemma. The key insights behind the framework
are the use of multi-sorted syntax definitions, which enable parallel substitutions that replace all
variables of all sorts simultaneously, and abstractions that unify the definitions, compositions, typings,
and type preservation lemmas of multi-sorted renamings and substitutions. Case studies have been
conducted to prove subject reduction for System F with subtyping, dependently typed lambda
calculus, and lambda calculus with pattern matching.
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1 Introduction

Formalizing programming languages in proof assistants quickly gets repetitive. Almost every
programming language supports variables with static binding, and hence requires numerous
definitions and lemmas related to variable substitution.

Additionally, repetition can also occur within a single formalization. This can be seen
with polymorphic languages, where multiple sorts of variables are present. Consider for
example System F, which supports both expression- and type-variables. With a naive
approach, the whole substitution machinery needs to be duplicated three times! We need to
substitute expression-variables in expressions, type-variables in types, but also type-variables
in expressions. Even worse, having two substitutions acting on expressions requires to also
prove lemmas about their interactions. If we would additionally introduce kind-variables, we
would end up with a total of six duplications of the substitution machinery and corresponding
interaction lemmas!
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Further repetition can occur due to the choice of variable representation. For example,
for de Bruijn indices, substitution is usually defined in terms of renamings1 to allow for
structural induction. With a naive approach, this would again double the amount of
substitution machinery, as all definitions and lemmas need to be written first for renamings
and then again for substitutions.

Similarly, for a typed language formalized via extrinsic typing we need type preservation
lemmas for each substitution and renaming operation, which again doubles the number of
definitions.

If one is not careful, a formalization of a language with type and kind polymorphism can
easily end up with 24 slightly changed copies of the whole substitution machinery! Clearly,
this situation is in need of automation.

Our framework approaches this problem by using a combination of abstractions and
reflection in the context of extrinsically typed, intrinsically scoped syntax with de Bruijn
indices. The user can write a language specification using regular Agda definitions (no
encodings via generic programming[2]) and our framework derives definitions and lemmas
for untyped substitution, and provides an abstraction to prove type preservation for all
substitution operations with only a single lemma. For System F, our framework allows to
prove subject reduction with only a single handwritten lemma for type preservation.

Compared to standard practices, we do not derive substitutions for each of the variable
sorts and syntactic categories, but instead use a novel approach for defining syntax, which
directly supports substitutions that replace all variable sorts in parallel and can be applied
to all syntactic categories. By further unifying renamings and substitutions, we gain the
ability to talk abstractly about any kind of renaming or substitution that can occur in
the formalization. This generality is key to then define abstractions for typing and type
preservation on the same level of generality, allowing to prove type preservation for renamings
and substitutions of all variable sorts and syntactic categories in a single lemma for many
typing relations, including those of our case studies.

1.1 Structure
The rest of this paper introduces our framework using System F as a running example for a
substitution-preserves-typing proof.

Code of the framework is displayed in gray boxes. Code of examples is displayed in yellow
boxes. Code of the System F formalization is displayed without boxes. The latter is the only
code a user of our framework has to write.

In this paper, we present a simplified version of the full framework, focusing on the core
concepts. We present all necessary definitions and lemmas, but omit some proofs for the sake
of space. The omitted proofs can be found in our supplementary material, which includes
the simplified framework (365 lines of code) and the System F formalization (212 lines of
code, where 79 can be derived by using the full framework). The full framework including
the case studies is available on Github: https://github.com/m0rphism/kitty

The rest of this paper is structured as follows: Section 2 introduces the multi-sorted
syntax and compares it to the more common unsorted syntax. Section 3 introduces multi-
sorted substitutions and renamings, and an abstraction to unify them. Section 4 introduces
composition of multi-sorted substitutions and renamings, and an abstraction to unify all four
compositions. Section 5 shows how to define types, type contexts, and typing relations, and

1 Renamings are substitutions that are only allowed to replace variables with variables

https://github.com/m0rphism/kitty
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presents an abstraction for unifying type preservation lemmas for renamings and substitutions.
Section 6 describes the class of object languages covered by our reflection algorithm. Section 7
discusses our case studies. Section 8 discusses related work. Section 9 concludes.

1.2 Contributions

1. a novel approach for formalizing intrinsically-scoped syntax with multiple variable sorts
as a special kind of intrinsically-typed syntax, we call multi-sorted syntax ;

2. a novel abstraction for composition and its metatheory, unifying the four compositions
between renamings and substitutions;

3. a novel abstraction for typing, unifying type preservation of renaming and substitution;
4. a formalized specification of a large class of object languages for which untyped substitution

and lemmas can be derived generically.
5. an implementation as an Agda framework featuring a reflection algorithm, representa-

tion independence for substitutions and type contexts, heterogeneous equality between
renamings and substitutions, and absence of postulated axioms.

6. three case studies in using our approach to prove subject reduction for System F with
subtyping, a dependently-typed lambda calculus, and pattern matching.

2 Syntax

2.1 Unsorted Syntax

The following shows a typical intrinsically-scoped syntax of System F:

data Kind : Set where
⋆ : Kind -- Type Kind

data Type (n : N) : Set where
‘_ : Fin n → Type n -- Type variable
∀[α:_]_ : Kind → Type (suc n) → Type n -- Universal quantification
_⇒_ : Type n → Type n → Type n -- Function type

data Expr (n m : N) : Set where
‘_ : Fin m → Expr n m -- Expression variable
λx_ : Expr n (suc m) → Expr n m -- Expression abstraction
Λα_ : Expr (suc n) m → Expr n m -- Type abstraction
_·_ : Expr n m → Expr n m → Expr n m -- Expression application
_•_ : Expr n m → Type n → Expr n m -- Type application

Types are indexed by the number of free type variables n. Expressions are additionally
indexed by the number of free expression variables m. Variables ‘_ are represented as de
Bruijn indices, where Fin n is the type of n elements.

We identify two drawbacks with this style of syntax:
1. the syntactic categories (Kind, Type, and Expr) have different types, which makes it

difficult to treat them uniformly; and
2. the different sorts of variables are modeled separately, which requires to define not

just type-in-type and expression-in-expression substitution, but also type-in-expression
substitution. Consequently, interaction lemmas between the substitutions are required.

To avoid these drawbacks, we instead use a multi-sorted syntax.
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2.2 Multi-Sorted Syntax
A multi-sorted syntax is defined by a single type of sort-indexed terms.

A sort describes to which syntactic category a term belongs and is itself indexed by a
sort type, which describes whether the syntax permits variables of this sort:

data SortTy : Set where Var NoVar : SortTy

data Sort : SortTy → Set where -- Our syntax supports:
: Sort Var -- expressions and expression variables;

≈ : Sort Var -- types and type variables; and
ℸ : Sort NoVar -- kinds, but no kind variables.

The term type S ⊢ s is indexed by its sort s and the sorts of its free variables S. For
example, [≈, ≈] ⊢ is the type of expressions () with two free type-variables (≈).

data _⊢_ : List (Sort Var) → Sort st → Set where
‘_ : S ∋ s → S ⊢ s -- Expression and type variables
λx_ : ( :: S) ⊢ → S ⊢ -- Expression abstraction
Λα_ : (≈ :: S) ⊢ → S ⊢ -- Type abstraction
∀[α:_]_ : S ⊢ ℸ → (≈ :: S) ⊢ ≈ → S ⊢ ≈ -- Universal quantification
_·_ : S ⊢ → S ⊢ → S ⊢ -- Expression application
_•_ : S ⊢ → S ⊢ ≈ → S ⊢ -- Type application
_⇒_ : S ⊢ ≈ → S ⊢ ≈ → S ⊢ ≈ -- Function type
⋆ : S ⊢ ℸ -- Type kind

The notation _⊢_ is often used for terms in intrinsically-typed languages. This is no
accident: in effect, we defined an intrinsically-typed language with the twist that the typing
relation assures exactly that the syntactic categories are followed. Sorts s correspond to
types, and lists of sorts S correspond to type environments.

As it is typical in intrinsic typing, variables are represented as typed (in our case sorted)
de Bruijn indices S ∋ s, i.e. values of the usual proof-relevant list-membership relation:

data _∋_ {ℓ} {A : Set ℓ} : List A → A → Set ℓ where
zero : ∀ {xs x} → (x :: xs) ∋ x
suc : ∀ {xs x y} → xs ∋ x → (y :: xs) ∋ x

Note that there is no straightforward way to construct a multi-sorted syntax with intrinsic
typing: in a direct translation, the type of terms _⊢_ would be indexed by itself, which most
proof assistants forbid to avoid breaking logical consistency.

2.3 A Structure for Multi-Sorted Syntax
The regularity of the multi-sorted syntax makes it easy to define a structure for arbitrary
syntaxes, i.e. syntaxes with arbitrarily many syntactic categories and variable types:

record Syntax : Set1 where
field Sort : SortTy → Set

_⊢_ : ∀ {st} → List (Sort Var) → Sort st → Set
‘_ : ∀ {S} {s : Sort Var} → S ∋ s → S ⊢ s
‘-injective : ∀ {S s} {x y : S ∋ s} → ‘ x ≡ ‘ y → x ≡ y

The first three fields record the definitions of sorts, terms, and variable introduction. The last
field records that variable introduction ‘_ is injective, which is trivially true for constructors.
Syntax has type Set1, because the Sort and _⊢_ fields have type Set.
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The instantiation for our System F syntax is straightforward:

SystemF-Syntax : Syntax
SystemF-Syntax = record { Sort = Sort ; _⊢_ = _⊢_ ; ‘_ = ‘_ ; ‘-injective = λ { refl → refl } }

3 Renamings & Substitutions

3.1 Multi-Sorted Renamings & Substitutions

Working with a sort-indexed syntax allows us to define renamings and substitutions that
replace all variables of all sorts simultaneously:

_→r_ _→s_ : List (Sort Var) → List (Sort Var) → Set
S1 →r S2 = ∀ s → S1 ∋ s → S2 ∋ s
S1 →s S2 = ∀ s → S1 ∋ s → S2 ⊢ s

A renaming S1 →r S2 maps variables from S1 to variables from S2. A substitution S1 →s S2
maps variables from S1 to terms with free variables from S2.

This representation has the benefit that there is no combinatory explosion of substitutions
and renamings, e.g. no extra lemmas have to be proved between an expression-in-expression
and a type-in-expression substitution, because both are simply substitutions.

3.2 Unifying Renamings & Substitutions

To avoid the duplication between renamings and substitutions, McBride[6, 15] introduced
the kit abstraction. A kit is a structure that allows to abstract over whether something is
a term or a variable. The intention is to instantiate this structure exactly twice (once for
variables and once for terms), and then write definitions, which are parameterized over a kit
and consequently can be used for both variables and terms.

record Kit (_∋/⊢_ : List (Sort Var) → Sort Var → Set) : Set where
field id/‘ : S ∋ s → S ∋/⊢ s

‘/id : S ∋/⊢ s → S ⊢ s
wk : ∀ s’ → S ∋/⊢ s → (s’ :: S) ∋/⊢ s
‘/‘-is-‘ : ∀ (x : S ∋ s) → ‘/id (id/‘ x) ≡ ‘ x
id/‘-injective : id/‘ x1 ≡ id/‘ x2 → x1 ≡ x2

‘/id-injective : ∀ {x/t1 x/t2 : S ∋/⊢ s} → ‘/id x/t1 ≡ ‘/id x/t2 → x/t1 ≡ x/t2

wk-id/‘ : ∀ s’ (x : S ∋ s) → wk s’ (id/‘ x) ≡ id/‘ (suc x)

As we intend to have exactly two Kit instances, we choose names of the form x/y, where
x is the name we choose for the variable instance, and y is the name we choose for the term
instance. For example the parameter type _∋/⊢_ will be instantiated to _∋_ for the variable
kit, and to _⊢_ for the term kit.

A kit consists of the following components:
id/‘ converts a variable S ∋ s into a S ∋/⊢ s. For the variable kit, _∋/⊢_ is instantiated
to _∋_, so this operation is the identity. For the term kit, _∋/⊢_ is instantiated to _⊢_,
so this operation is the variable constructor ‘_.
‘/id converts a S ∋/⊢ s into a term S ⊢ s and is analogous to the id/‘ operation.
wk shifts the de Bruin indices in a variable or term. The new, unused variable zero can
assume any sort s’. For variables, wk is the successor suc. For terms, wk means applying
a shifting renaming to the term.
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_→k_ : List (Sort Var) → List (Sort Var) → Set
S1 →k S2 = ∀ s → S1 ∋ s → S2 ∋/⊢ s

_&_ : S1 ∋ s → S1 →k S2 → S2 ∋/⊢ s
x & ϕ = ϕ _ x

_↑_ : S1 →k S2 → ∀ s → (s :: S1) →k (s :: S2)
(ϕ ↑ s) _ zero = id/‘ zero
(ϕ ↑ s) _ (suc x) = wk _ (ϕ _ x)

L_M : S ∋/⊢ s → (s :: S) →k S
L x/t M _ zero = x/t
L x/t M _ (suc x) = id/‘ x

weaken : ∀ s → S →k (s :: S)
weaken s _ x = wk s (id/‘ x)

_~_ : (ϕ1 ϕ2 : S1 →k S2) → Set
_~_ {S1} ϕ1 ϕ2 = ∀ s (x : S1 ∋ s) →

ϕ1 s x ≡ ϕ2 s x

postulate ~-ext : ∀ {ϕ1 ϕ2 : S1 →k S2}
→ ϕ1 ~ ϕ2 → ϕ1 ≡ ϕ2

id : S →k S
id s x = id/‘ x

id↑~id : (id {S} ↑ s) ~ id {s :: S}

Figure 1 Map Operations.

‘/‘-is-‘ states that converting a variable first to a “variable-or-term” and then further to a
term is the same as converting it directly to a term using the variable constructor ‘_.
‘/id-injective and id/‘-injective state that ‘/id and id/‘ are injective.
wk-id/‘ characterizes the behaviour of the wk function by how it acts on variables: injecting
a variable and then shifting it, is the same as injecting a shifted variable.

Figure 1 shows the usual operations for renamings and substitutions. The definitions are
included directly in the record module of Kit, so they are implicitly parameterized over a
kit. The type S1 →k S2 unifies renamings S1 →r S2 and substitutions S1 →s S2. We call
a value of type S1 →k S2 a map and use the meta-variable ϕ for it. The operation ϕ & x
applies a map to a variable. The operation ϕ ↑ s lifts a map under a binder of sort s. The
operation L x/t M constructs a singleton map that replaces zero with x/t and decreases all
other variables by one. The weaken map increases all variables by one. The ϕ1 ∼ ϕ2 type
expresses extensional equality of maps. For simplicity, we postulate functional extensionality
∼-ext.2 There is an identity map id. The lemma id↑-id states that a lifted identity map is
again an identity map.

To make it easier to talk about a specific kit, we introduce the following notations:
we write S1 –[ K ]→ S2 for the S1 →k S2 of some specific Kit K; and
we write S ∋/⊢[ K ] s for the S ∋/⊢ s of some specific Kit K.

The operation of applying a map to a term depends on the concrete object language. It
is captured by the following structure:

record Traversal : Set1 where
field _···_ : ∀ {{ K : Kit _∋/⊢_ }} → S1 ⊢ s → S1 –[ K ]→ S2 → S2 ⊢ s

···-var : ∀ {{ K : Kit _∋/⊢_ }} (x : S1 ∋ s) (ϕ : S1 –[ K ]→ S2) → (‘ x) ··· ϕ ≡ ‘/id (x & ϕ)
···-id : ∀ {{ K : Kit _∋/⊢_ }} (t : S ⊢ s) → t ··· id {{ K }} ≡ t

2 The actual implementation does not use any postulates. Functional extensionality can be avoided by
proving that ϕ1 ∼ ϕ2 implies (t ··· ϕ1) ≡ (t ··· ϕ2), i.e. that if two maps are extensionally equal, then
their applications (···) to the same term are intensionally equal. The downside of this approach is
boilerplate, because for each operation on maps, it needs to be proved that the operation preserves
extensional equality, e.g. that ϕ1 ∼ ϕ2 implies (ϕ1 ↑ s) ∼ (ϕ2 ↑ s). None of those lemmas are necessary
with functional extensionality.
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The fields of this structure have the following meaning:
t ··· ϕ applies the map ϕ (a renaming or substitution) to the term t.
···-var states that applying a map ϕ to a variable term ‘ x, is the same as applying ϕ to
the variable x, and then converting the result to a term via id/‘.
···-id states that applying the identity map id to a term does not change the term.

Finally, we define the actual kit instances. The variable kit definition is straightforward:

Kr : Kit _∋_
Kr = record { id/‘ = λ x → x ; ‘/id = ‘_

; wk = λ s’ x → suc x ; ‘/‘-is-‘ = λ x → refl
; id/‘-injective = λ eq → eq ; ‘/id-injective = ‘-injective
; wk-id/‘ = λ s’ x → refl }

The term kit requires both the variable kit and the Traversal to be defined, because
shifting a term with wk means applying the shifting renaming to the term. Hence, we define
the term kit in the record module of Traversal:
Ks : Kit _⊢_
Ks = record { id/‘ = ‘_ ; ‘/id = λ t → t

; wk = λ s’ t → t ··· weaken {{ Kr }} s’ ; ‘/‘-is-‘ = λ x → refl
; id/‘-injective = ‘-injective ; ‘/id-injective = λ eq → eq
; wk-id/‘ = λ s’ x → ···-var x (weaken {{ Kr }} s’) }

3.3 Instantiation for System F

In this subsection, we show how to instantiate the Traversal abstraction for System F. In
practice, this is done by our reflection algorithm automatically (Section 6), but it can be
instructive to see what happens under the hood.

First, we define the operation of applying a map to a term:

_···_ : ∀ {{ K : Kit _∋/⊢_ }} → S1 ⊢ s → S1 –[ K ]→ S2 → S2 ⊢ s
(‘ x) ··· ϕ = ‘/id (x & ϕ)
(λx t) ··· ϕ = λx (t ··· (ϕ ↑ ))
(Λα t) ··· ϕ = Λα (t ··· (ϕ ↑ ≈))
(∀[α: t1 ] t2) ··· ϕ = ∀[α: t1 ··· ϕ ] (t2 ··· (ϕ ↑ ≈))
(t1 · t2) ··· ϕ = (t1 ··· ϕ) · (t2 ··· ϕ)
(t1 • t2) ··· ϕ = (t1 ··· ϕ) • (t2 ··· ϕ)
(t1 ⇒ t2) ··· ϕ = (t1 ··· ϕ) ⇒ (t2 ··· ϕ)
⋆ ··· ϕ = ⋆

The interesting cases are those with variables and binders:
In the variable case (‘ x) ··· ϕ, we first apply the map ϕ to the variable x. If ϕ is a
renaming, we get back a variable and need to apply the variable constructor ‘_. If ϕ is a
substitution, we get back a term that we can use directly. This is exactly what ‘/id does.
In cases where the operation needs to go under a binder, like (λx e) ··· ϕ, we lift the map
using _↑_ to account for the bound variable before we apply it to the subterm.

We then prove that applying an identity map does not change the term:

···-id : ∀ {{ K : Kit _∋/⊢_ }} (t : S ⊢ s) → t ··· id ≡ t
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···-id (‘ x) = ‘/‘-is-‘ x
···-id (λx e) = λx (e ··· (id ↑ )) ≡〈 cong (λ ϕ → λx (e ··· ϕ)) (~-ext id↑~id) 〉

λx (e ··· id) ≡〈 cong (λ e → λx e) (···-id e) 〉
λx e ■

We only display and discuss the interesting cases:
in the variable case ‘ x, the id/‘ from the identity map meets the ‘/id from the traversal
operation, so we need to use ‘/‘-is-‘.
in the lambda abstraction case λx e, the traversal lifts the identity under its binder. Here
we need to use id↑-id to show that a lifted identity map is again an identity map.

Finally, we instantiate the Traversal structure:

SystemF-Traversal : Traversal
SystemF-Traversal = record { _···_ = _···_ ; ···-id = ···-id ; ···-var = λ x ϕ → refl }

3.4 Extension Kits
As we defined the Kit structure before the Traversal structure, the fields of Kit could not use
map application _···_ in their types. This prevented us to include another useful axiom into
the Kit structure. As this axiom also needs to be proved separately for variables and terms,
we define a new structure for it which extends a Kit:
record WkKit (K : Kit _∋/⊢_): Set1 where
field wk-‘/id : ∀ s {S s’} (x/t : S ∋/⊢ s’) → ‘/id x/t ··· weaken s ≡ ‘/id (wk s x/t)

The wk-‘/id axiom explains the wk function by how it acts on terms. It is the counterpiece
to the Kit axiom wk-id/‘, which explains the wk function by how it acts on variables. This
lemma is useful for proving extensional equalities between maps involving weakening, where
‘/id-injective allows to add ‘/id on both sides of the equation, such that wk-‘/id can be used
to make further progress. The instantiations of the WkKit are straightforward:

Wr : WkKit Kr ; Ws : WkKit Ks

Wr = record { wk-‘/id = λ s x → ···-var x (weaken s) }
Ws = record { wk-‘/id = λ s t → refl }

As the variable and term Kits are the only two Kits, and both have WkKit instances, it is
always safe to assume that a Kit also supports the WkKit extension.

4 Map Composition

In this section, we extend our framework with an abstraction for the composition of arbitrary
maps. The core property of composition is the fusion lemma, which states that applying two
maps ϕ1 and ϕ2 in sequence to a term t, is the same as applying their composition (ϕ1 ·k ϕ2)
to t, i.e. (t ··· ϕ1) ··· ϕ2 ≡ t ··· (ϕ1 ·k ϕ2). This property gives our framework the ability to
reason about the application of multiple maps by reasoning about the application of a single
map. As such it forms the basis for all lemmas involving multiple maps, e.g. that applying a
weakening and then a singleton substitution cancel each other out.

As we defined substitution in terms of renamings, we need to consider all four compositions
between renamings and substitutions. While the composition operations can be defined
independently of each other, the fusion lemma for two substitutions, depends on the fusion
lemmas for a renaming and a substitution, which in turn depend on the fusion lemma for
two renamings.



H. Saffrich 32:9

Previous work on kits[6] addresses this issue by duplicating the definitions and using
tactics to reduce boilerplate in proofs. In contrast, we define structures similar to Kit and
Traversal, which allow us to abstract over all four compositions and use the same trick as
before to eliminate the dependencies. With the help of a general map composition, we can
prove lemmas about the interactions of general maps, which is crucial for proving a type
preservation lemma for general map application instead of individual lemmas for renamings
and substitutions.

4.1 An Examination of Composition

To motivate our abstraction, we first look at the four compositions individually:
_r·r_ : (S1 →r S2) → (S2 →r S3) → (S1 →r S3)
_r·s_ : (S1 →r S2) → (S2 →s S3) → (S1 →s S3)
_s·r_ : (S1 →s S2) → (S2 →r S3) → (S1 →s S3)
_s·s_ : (S1 →s S2) → (S2 →s S3) → (S1 →s S3)

(ϕ1 r·r ϕ2) _ x = (x & ϕ1) & ϕ2

(ϕ1 r·s ϕ2) _ x = (x & ϕ1) & ϕ2

(ϕ1 s·r ϕ2) _ x = (x & ϕ1) ··· ϕ2

(ϕ1 s·s ϕ2) _ x = (x & ϕ1) ··· ϕ2

The definitions reveal two interesting properties:
1. If we compose two maps ϕ1 and ϕ2, then the resulting map is a renaming, iff both ϕ1 and

ϕ2 are renamings. In other words: if ϕ1 is a K1-map and ϕ2 is a K2-map, then the result
is a (K1 ⊔ K2)-map, where ⊔ refers to the lattice for { Kr , Ks } generated by Kr < Ks.

2. All four compositions first apply ϕ1 to x, and then apply ϕ2 to the result. If ϕ1 is a
renaming, this result is another variable, but if ϕ1 is a substitution, this result is a term.

With the Kit abstraction, we can easily abstract over ϕ2 being a renaming or a substitution:
_r·_ : (S1 →r S2) → (S2 –[ K ]→ S3) → (S1 –[ K ]→ S3)
_s·_ : (S1 →s S2) → (S2 –[ K ]→ S3) → (S1 →s S3)

(ϕ1 r· ϕ2) _ x = (x & ϕ1) & ϕ2

(ϕ1 s· ϕ2) _ x = (x & ϕ1) ··· ϕ2

But to abstract over ϕ1, the Kit abstraction is not sufficient: while it allows us to abstract
over what we are applying, i.e. a renaming or a substitution, it does not allow us to abstract
over what we are applying it to, i.e. a variable or a term. For the latter we have two distinct
operations _&_ and _···_.

To fill this gap, we introduce a new abstraction that we call a compose kit (CKit), which
provides an operation _&/···_ that unifies _&_ and _···_. This allows us to define a general
composition as follows:

_·k_ : S1 –[ K1 ]→ S2 → S2 –[ K2 ]→ S3 → S1 –[ K1⊔K2 ]→ S3

(ϕ1 ·k ϕ2) _ x = (x & ϕ1) &/··· ϕ2

4.2 An Abstraction for Composition

A compose kit CKit K1 K2 K1⊔K2 describes the operations necessary for definining the
composition of a K1-map with a K2-map that results in a K1⊔K2-map:

record CKit (K1 : Kit _∋/⊢1_) (K2 : Kit _∋/⊢2_) (K1⊔K2 : Kit _∋/⊢_) : Set where
field _&/···_ : S1 ∋/⊢[ K1 ] s → S1 –[ K2 ]→ S2 → S2 ∋/⊢[ K1⊔K2 ] s

&/···-··· : (x/t : S1 ∋/⊢[ K1 ] s) (ϕ : S1 –[ K2 ]→ S2) →
‘/id (x/t &/··· ϕ) ≡ ‘/id x/t ··· ϕ

&/···-wk-↑ : (x/t : S1 ∋/⊢[ K1 ] s) (ϕ : S1 –[ K2 ]→ S2) →
wk s’ (x/t &/··· ϕ) ≡ wk s’ x/t &/··· (ϕ ↑ s’)

The third parameter K1⊔K2 can be seen as a functional dependency[12] and is determined
by the choice of K1 and K2. The fields of a compose kit have the following meaning:
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The _&/···_ operation takes a variable or term x/t (according to K1) and a renaming
or substitution ϕ (according to K2) and applies ϕ to x/t resulting in a variable or term
(according to K1⊔K2). From this operation we derive map composition _·k_ as shown
in the previous subsection.
The &/···-··· lemma describes the behavior of _&/···_ in terms of _···_, allowing sub-
sequent lemmas to make use of the lemmas that we have already proved for _···_.
The &/···-wk-↑ lemma states that applying a map and then weakening is the same as
weakening first and then lifting the map over the variable introduced by the weakening.
From this lemma, we can derive that lifting distributes over composition:

dist-↑-· : ∀ s (ϕ1 : S1 –[ K1 ]→ S2) (ϕ2 : S2 –[ K2 ]→ S3) →
((ϕ1 ·k ϕ2) ↑ s) ~ ((ϕ1 ↑ s) ·k (ϕ2 ↑ s))

A CTraversal provides a fusion lemma that works for the composition of any CKit:
record CTraversal : Set1 where

field fusion :
∀ {{ K1 : Kit _∋/⊢1_ }} {{ K2 : Kit _∋/⊢2_ }} {{ K : Kit _∋/⊢_ }} {{ W1 : WkKit K1 }}

{{ C : CKit K1 K2 K }} (t : S1 ⊢ s) (ϕ1 : S1 –[ K1 ]→ S2) (ϕ2 : S2 –[ K2 ]→ S3) →
(t ··· ϕ1) ··· ϕ2 ≡ t ··· (ϕ1 ·k ϕ2)

Given a CTraversal, we can prove the usual lemmas about interactions of multiple maps:
A map ϕ followed by a weakening is equivalent to a weakening followed by ϕ that has
been lifted over the weakened variable:
···-↑-wk : ∀ {{ K : Kit _∋/⊢_ }} {{ W : WkKit K }} {{ C1 : CKit K Kr K }} {{ C2 : CKit Kr K K }}

(t : S1 ⊢ s) (ϕ : S1 –[ K ]→ S2) s →
t ··· ϕ ··· weaken s ≡ t ··· weaken s ··· (ϕ ↑ s)

A weakening followed by a singleton substitution act as an identity map:

wk-cancels-LM-··· : ∀ {{ K : Kit _∋/⊢_ }} (t : S ⊢ s’) (x/t : S ∋/⊢[ K ] s) →
t ··· weaken s ··· L x/t M ≡ t

A singleton map can be swapped with any map ϕ:

dist-↑-LM-··· : ∀ {{ K1 : Kit _∋/⊢1_ }} {{ K2 : Kit _∋/⊢2_ }} {{ K : Kit _∋/⊢_ }}
{{ W1 : WkKit K1 }} {{ W2 : WkKit K2 }}
{{ C1 : CKit K1 K2 K }} {{ C2 : CKit K2 K K }}
(t : (s :: S1) ⊢ s’) (x/t : S1 ∋/⊢[ K1 ] s) (ϕ : S1 –[ K2 ]→ S2) →

t ··· L x/t M ··· ϕ ≡ t ··· (ϕ ↑ s) ··· L x/t &/··· ϕ M

Similarly, as it was the case for the Kit and Traversal structures, the idea is that we instantiate
the CTraversal for our object language, and in return the framework defines the concrete CKit
instances for us. Hence, we define the CKit instances in the record module of CTraversal:
Cr : {{ K : Kit _∋/⊢_ }} → CKit Kr K K
Cr = record { _&/···_ = _&_

; &/···-··· = λ x ϕ → sym (···-var x ϕ)
; &/···-wk-↑ = λ x ϕ → refl }

Cs : {{ K : Kit _∋/⊢_ }} {{ C : CKit K Kr K }} {{ W : WkKit K }} → CKit Ks K Ks

Cs = record { _&/···_ = _···_
; &/···-··· = λ t ϕ → refl
; &/···-wk-↑ = λ t ϕ → ···-↑-wk t ϕ _ }
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Cr is the compose kit between a renaming and another kit K. Cs is the compose kit between a
substitution and another kit K, and requires that we already know how to compose a K-map
with a renaming. The following verifies that Cr and Cs indeed get us all four compositions:
Crr : CKit Kr Kr Kr

Crr = Cr {{ K = Kr }}
Crs : CKit Kr Ks Ks

Crs = Cr {{ K = Ks }}
Csr : CKit Ks Kr Ks

Csr = Cs {{ C = Crr }}
Css : CKit Ks Ks Ks

Css = Cs {{ C = Csr }}

4.3 Instantiation for System F
In this subsection, we show how to instantiate the CTraversal abstraction for System F. In
practice, this is done by our reflection algorithm automatically (Section 6), but it can be
instructive to see, as it motivates the axioms of the CKit.
fusion : ∀ {{ K1 : Kit _∋/⊢1_ }} {{ K2 : Kit _∋/⊢2_ }} {{ K : Kit _∋/⊢_ }} {{ W1 : WkKit K1 }}

{{ C : CKit K1 K2 K }} (t : S1 ⊢ s) (ϕ1 : S1 –[ K1 ]→ S2) (ϕ2 : S2 –[ K2 ]→ S3) →
(t ··· ϕ1) ··· ϕ2 ≡ t ··· (ϕ1 ·k ϕ2)

fusion (‘ x) ϕ1 ϕ2 = sym (&/···-··· (ϕ1 _ x) ϕ2)
fusion (λx t) ϕ1 ϕ2 =

λx ((t ··· (ϕ1 ↑ )) ··· (ϕ2 ↑ )) ≡〈 cong (λ t → λx t) (fusion t (ϕ1 ↑ ) (ϕ2 ↑ )) 〉
λx (t ··· ((ϕ1 ↑ ) ·k (ϕ2 ↑ ))) ≡〈 cong (λ ϕ → λx (t ··· ϕ)) (sym (~-ext (dist-↑-· ϕ1 ϕ2))) 〉
λx (t ··· ((ϕ1 ·k ϕ2) ↑ )) ■

We only show the interesting cases, which are:
variables, where we need to use the &/···-··· lemma provided by the CKit; and
bindings, where the traversal operation _···_ needs to lift the map via _↑_, requiring us
to distribute the lifting over the composition using dist-↑-·.

5 Types & Typing

5.1 Types
In the context of multi-sorted syntax, the notion of a type can be described as a mapping
between sorts. For System F, the expression sort maps to the type sort ≈, which in turn
maps to the kind sort ℸ. The following structure is used to teach our framework about types:

record Types : Set1 where
field ↑t : ∀ {st} → Sort st → ∃[ st’ ] Sort st’

For System F, the instantiation is

SystemF-Types : Types
SystemF-Types = record { ↑t = λ { → _ , ≈ ; ≈ → _ , ℸ ; ℸ → _ , ℸ } }

There are two things to discuss:
1. The ↑t function maps a sort of arbitrary sort type, to a sort of a potentially different

sort type, which is expressed by the use of an existential. For System F we require this
generality, as the sort ≈ can have variables, whereas its corresponding type sort ℸ cannot.

2. Some sorts, like ℸ, do not have corresponding type sorts, but we still need to provide
one, as ↑t is a total function. For such sorts, we can simply use arbitrary sort types, as
the formalization will have no typing rules that use them.

To hide the existential, we define S :⊢ s, which represents the type for a term S ⊢ s.
_:⊢_ : ∀ {t} → List (Sort Var) → Sort t → Set
S :⊢ s = S ⊢ proj2 (↑t s)
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5.2 Type Contexts
Equipped with a notion of types, we are ready to define type contexts. As we want our
framework to support dependent types, we allow a type in the context to use all variables
bound previously in the context:

data Ctx : List (Sort Var) → Set where
[] : Ctx []
_::_ : S :⊢ s → Ctx S → Ctx (s :: S)

When looking up the type of a variable, we need to weaken it for each binding that comes
after the variable3

lookup : Ctx S → S ∋ s → S :⊢ s
lookup (t :: Γ) zero = t ··· weaken {{ Kr }} _
lookup (t :: Γ) (suc x) = lookup Γ x ··· weaken {{ Kr }} _

Finally, a variable typing Γ ∋ x : t states that looking up x in Γ yields t:
_∋_:_ : Ctx S → S ∋ s → S :⊢ s → Set
Γ ∋ x : t = lookup Γ x ≡ t

5.3 Typing
Now that we have a notion of types and type contexts, we are ready to define the multi-sorted
typing relation for System F, which describes both typing and kinding:

data _⊢_:_ : Ctx S → S ⊢ s → S :⊢ s → Set where
⊢‘ : ∀ {x : S ∋ s} {T : S :⊢ s} → Γ ∋ x : T → Γ ⊢ ‘ x : T
⊢λ : ∀ {e : ( :: S) ⊢ } → (t1 :: Γ) ⊢ e : (wk t2) → Γ ⊢ λx e : t1 ⇒ t2

⊢Λ : (k :: Γ) ⊢ e : t2 → Γ ⊢ Λα e : ∀[α: k ] t2

⊢· : Γ ⊢ e1 : t1 ⇒ t2 → Γ ⊢ e2 : t1 → Γ ⊢ e1 · e2 : t2

⊢• : ∀ {Γ : Ctx S} → (k2 :: Γ) ⊢ t1 : k1 → Γ ⊢ t2 : k2 → Γ ⊢ e1 : ∀[α: k2 ] t1 →
Γ ⊢ e1 • t2 : t1 ··· L t2 M

⊢τ : Γ ⊢ t : ⋆

The interesting cases are:
the variable rule ⊢‘, which covers both expression- and type-variables, analogously to the
variable term constructor;
the lambda rule ⊢λ, which weakens the codomain type t2. This is necessary, because
multi-sorted syntax allows types to depend on expressions, so the typing derivation for e
has to account for a variable, which is not used by the type; and
the kinding rule ⊢τ states that all types have kind ⋆. This is sufficient for System F as
types are automatically well-kinded due to intrinsic scoping.

To teach the framework about typing, we create a structure analogously to Syntax:

record Typing : Set1 where
field _⊢_:_ : ∀ {s : Sort st} → Ctx S → S ⊢ s → S :⊢ s → Set

⊢‘ : ∀ {Γ : Ctx S} {x : S ∋ s} {t} → Γ ∋ x : t → Γ ⊢ ‘ x : t

The instantiation for System F is straightforward:

SystemF-Typing : Typing
SystemF-Typing = record { _⊢_:_ = _⊢_:_ ; ⊢‘ = ⊢‘ }

3 This includes the variable itself, which is not allowed to appear in its own type.
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5.4 An Abstraction for Type Preservation
By now, the reader probably knows what comes next: we build an abstraction to unify type
preservation for renamings and substitutions, eliminating the dependencies by yet another
type of kits.

We start with TKits, which abstract over variable and term typing, and then define a
TTraversal, which provides substitution-preserves-typing for all TKits.
record TKit (K : Kit _∋/⊢_) : Set1 where

field _∋/⊢_:_ : Ctx S → S ∋/⊢ s → S :⊢ s → Set
id/⊢‘ : ∀ {t : S :⊢ s} {Γ : Ctx S} → Γ ∋ x : t → Γ ∋/⊢ id/‘ x : t
⊢‘/id : ∀ {e : S ∋/⊢ s} {t : S :⊢ s} {Γ : Ctx S} → Γ ∋/⊢ e : t → Γ ⊢ ‘/id e : t
⊢wk : ∀ (Γ : Ctx S) (t’ : S :⊢ s) (e : S ∋/⊢ s’) (t : S :⊢ s’) →

Γ ∋/⊢ e : t → (t’ :: Γ) ∋/⊢ wk _ e : (t ··· weaken _)

The first field abstracts over variable and term typing. The other fields express typings
for the fields of a Kit. Building on the fields of a TKit, we define map typing and type
preservation for map lifting and the singleton map in the record module of TKit:

Using the variable/term typing, we can define a renaming/substitution typing:

_:_⇒k_ : S1 –[ K ]→ S2 → Ctx S1 → Ctx S2 → Set
_:_⇒k_ {S1} {S2} ϕ Γ1 Γ2 = ∀ {s1} (x : S1 ∋ s1) (t : S1 :⊢ s1) →

Γ1 ∋ x : t → Γ2 ∋/⊢ (x & ϕ) : (t ··· ϕ)

ϕ : Γ1 ⇒k Γ2 states that ϕ is a map that takes terms from Γ1 to terms in Γ2.
Lifting a map preserves its typing:

_⊢↑_ : ∀ {{ W : WkKit K }} {{ C1 : CKit K Kr K }}
{Γ1 : Ctx S1} {Γ2 : Ctx S2} {ϕ : S1 –[ K ]→ S2} →

ϕ : Γ1 ⇒k Γ2 → (t : S1 :⊢ s) → (ϕ ↑ s) : (t :: Γ1) ⇒k ((t ··· ϕ) :: Γ2)

If a variable/term has a typing, then so does its singleton renaming/substitution:

⊢L_M : ∀ {s S} {Γ : Ctx S} {x/t : S ∋/⊢ s} {T : S :⊢ s} →
Γ ∋/⊢ x/t : T → L x/t M : (T :: Γ) ⇒k Γ

We then define a TTraversal analogously to Traversal, but instead of defining the application
of maps, it defines that the application of a typed map to a typed term yields a typed term:

record TTraversal : Set1 where
field _⊢···_ : ∀ {{ K : Kit _∋/⊢_ }} {{ W : WkKit K }} {{ TK : TKit K }}

{{ C1 : CKit K Kr K }} {{ C2 : CKit K K K }} {{ C3 : CKit K Ks Ks }}
{S1 S2 st} {Γ1 : Ctx S1} {Γ2 : Ctx S2} {s : Sort st}
{e : S1 ⊢ s} {t : S1 :⊢ s} {ϕ : S1 –[ K ]→ S2} →

Γ1 ⊢ e : t →
ϕ : Γ1 ⇒k Γ2 →
Γ2 ⊢ (e ··· ϕ) : (t ··· ϕ)

Given a term e with typing ⊢e and a renaming/substitution ϕ with typing ⊢ϕ, the term
⊢e ⊢··· ⊢ϕ is a typing for e ··· ϕ.

As before, we define the TKit instances in the record module of TTraversal:
TKr : TKit Kr ; TKs : TKit Ks

TKr = record { _∋/⊢_:_ = _∋_:_ ; ⊢‘/id = ⊢‘
; id/⊢‘ = λ ⊢x → ⊢x ; ⊢wk = λ { Γ t’ x t refl → refl } }

TKs = record { _∋/⊢_:_ = _⊢_:_ ; ⊢‘/id = λ ⊢x → ⊢x
; id/⊢‘ = ⊢‘ ; ⊢wk = λ Γ t’ e t ⊢e → ⊢e ⊢··· ⊢wk Γ t’ }
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The large amount of kit-parameters of _⊢···_ does not impose any restriction, as both
our Kits support the WkKit extension and can be composed arbitrarily. Agda’s instance
resolution allows us to easily instantiate a concrete substitution-preserves-typing lemma:

_⊢···s_ : Γ1 ⊢ e : t → σ : Γ1 ⇒s Γ2 → Γ2 ⊢ (e ··· σ) : (t ··· σ)
_⊢···s_ = _⊢···_

5.5 Instantiation for System F
In this subsection, we show how to instantiate the TTraversal abstraction for System F. This
is the only structure that is not instantiated automatically via reflection, as typing relations
can be arbitrary complex in general.

⊢‘ ⊢x ⊢··· ⊢ϕ = ⊢‘/id (⊢ϕ _ _ ⊢x)
⊢λ {t2 = t2} ⊢e ⊢··· ⊢ϕ = ⊢λ (subst (λ t → _ ⊢ _ : t)

(sym (···-↑-wk t2 _ _))
(⊢e ⊢··· (⊢ϕ ⊢↑ _)))

⊢Λ ⊢e ⊢··· ⊢ϕ = ⊢Λ (⊢e ⊢··· (⊢ϕ ⊢↑ _))
⊢· ⊢e1 ⊢e2 ⊢··· ⊢ϕ = ⊢· (⊢e1 ⊢··· ⊢ϕ) (⊢e2 ⊢··· ⊢ϕ)
⊢• {t1 = t1} {t2 = t2} ⊢t1 ⊢t2 ⊢e1 ⊢··· ⊢ϕ = subst (λ t → _ ⊢ _ : t)

(sym (dist-↑-LM-··· t1 t2 _))
(⊢• (⊢t1 ⊢··· (⊢ϕ ⊢↑ _))

(⊢t2 ⊢··· ⊢ϕ) (⊢e1 ⊢··· ⊢ϕ))
⊢τ ⊢··· ⊢ϕ = ⊢τ

The type of _⊢···_ is the same as in the record definition and hence omitted. The
interesting parts of the proof are:

There is a strong similarity to the instantiation of map traversal _···_: where _···_ used
‘/id or _↑_, our _⊢···_ uses their preservation lemmas ⊢‘/id or _⊢↑_.
The lambda typing constructor ⊢λ weakens the type t2 to shield it from expression-
substitution, requiring us to use ···-↑-wk to move the map under the weakening.
The type application constructor ⊢• substitutes t1 into t2, requiring us to use dist-↑-LM to
move the map under the singleton substitution.

6 Reflection & Generics

We use Agda’s reflection mechanism to derive instantiations related to all structures for
untyped substitution, i.e. Syntax, Traversal and CTraversal. The user only needs to define
syntax and typing, and can then move on to proving that substitution preserves typing,
where all substitution lemmas are already available.

To gain insight into the class of object languages supported by our reflection algorithm,
we have instantiated the structures for a generic syntax similar to the one in Allais et al.[2].
Our reflection algorithm derives proofs with the same structure as the generic proofs, giving
high confidence that it covers the same class of languages.

Informally, all objects languages with multi-sorted syntax are supported that
1. have a variable constructor of type ∀ {S s} → S ∋ s → S ⊢ s;
2. use subterms only directly (e.g. not in lists); and
3. only extend the scope-context of subterms, but never modify it otherwise.
The formal definition of the generic syntax can be found in the supplementary material.
Restriction 2 is purely technical and can be lifted with a more sophisticated reflection
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algorithm. In the current system, this restriction can be worked around by inlining the data
structure constructors into the syntax definition as terms of a new sort. For example, to
allow lists of terms, we can add a polymorphic list sort

⋖ℶ∼≈ : Sort st → Sort NoVar

and corresponding syntax constructors for lists

[] : S ⊢ ⋖ℶ∼≈ s
_::_ : S ⊢ s → S ⊢ ⋖ℶ∼≈ s → S ⊢ ⋖ℶ∼≈ s

This allows us to model, e.g., a multi-argument function call expression as

call : S ⊢ → S ⊢ ⋖ℶ∼≈ → S ⊢

Function types cannot be inlined, but require an extension of the reflection algorithm.

7 Case Studies

Using our full implementation of the framework, we proved subject reduction for the following
object languages:

For lambda calculus with dependent function types, the framework works out of the box
for both deriving untyped substitution and instantiating the TTraversal. As types are
terms, only a single sort is required. In the proof of confluence, the CKit abstraction
allowed us to unify lemmas about the reduction of renamings and substitutions.
For System F with subtyping, the main challenges are how to represent subtyping
constraints and how to deal with the fact that substitution-preserves-typing is not
generally true, as type variables have subtyping bounds that need to be respected. While
it would be possible to use our framework only to derive untyped substitution and define
typing contexts and type preservation lemmas by hand, we instead used an encoding that
allows us to use the the TKit abstraction directly. Instead of binding a type variable with
a subtyping constraint α <: t, we first bind the type variable as α : ⋆, and then bind
the constraint as c : (α <: t). This description is similar to first-class constraints, but
restricted enough to be isomorphic to the original formalization, as constraint variables
cannot be accessed by the user. With this encoding, substitution-preserves-typing is
generally true again: replacing a type variable α <: t with a type t’, which is not a
subtype of t, results in a term that is still well-typed, but in a context with an unsatisfiable
constraint t’ <: t.
Object languages with pattern matching can be modeled by adding the sorts of the
variables bound by a pattern to the pattern sort p itself. A pattern matching clause p ⇒ e
can then be defined as

_⇒_ : S ⊢ p S’ → (S’ ++ S) ⊢ → S ⊢

where S’ describes the variables bound by the pattern and is the sort of a clause.

8 Related Work

As the amount of related work is rather large, we focus on work that is closely related to
ours and refer to other papers for the broader picture[21, 2].
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8.1 Variable Binding
There is a plethora of different methods for representing variable binders: de Bruijn
indices[10], co de Bruijn indices[16], locally nameless[8], locally named[17], higher order
abstract syntax[18] and its parametric variant[9], nominal logic[23], shifted names[11], name-
less painless[19], and scope graphs[24]. Many of these representations have been studied in
solutions to the POPLMark challenges[4, 1].

8.2 Unifying Renamings & Substitution
The kit abstraction for unifying renamings and substitutions appeared first in an unpublished
manuscript by McBride[15], and later in Benton et al.[6]. Wood and Atkey[25] propose an
extension to kits that supports linear types via resource vectors. In all three cases kits are
formulated for intrinsic typing and scenarios with polymorphism are not considered.

8.3 Extrinsically Typed Approaches
Autosubst[20] is a Coq framework, which derives parallel substitution definitions and lemmas
for languages from annotated Coq syntax definitions using extrinsic typing, extrinsic scoping,
and de Bruijn indices. The framework is implemented in Coq’s tactic language Ltac and
comes with a decision procedure for all assumption-free, equational substitution-lemmas.
The implementation of Autosubst deals with multiple variable sorts by generating multiple
substitutions and corresponding interaction lemmas.

Autosubst 2 [21] is a standalone code generator, which translates second-order HOAS
specifications into mutual inductive term sorts. Compared to Autosubst 1, it features mutually
recursive object languages, intrinsic scoping, and vectorized substitutions. Compared to our
work, the syntax they generate takes the form of what we described as unsorted syntax in
Section 2, i.e. different syntactic categories are described by different types with different
amount of indices for variable counts. To eliminate the need for interaction lemmas, they
define the notion of vectorized substitution, which combines the individual substitutions by
putting them in a vector. We believe their great work of creating a decision procedure for
vectorized substitutions should also translate to our setting with multi-sorted substitutions.

Needle and Knot[13] is a code generator for unscoped syntax with de Bruijn indices. They
generate substitution and interaction lemmas for single-pointed substitution for languages
with multiple variable sorts and binders that bind lists of variables.

All of the above work does not provide machinery to model typing and type preserva-
tion and does not unify renaming and substitution and their compositions. Hence, type
preservation needs to be modeled manually and individually for renamings and substitutions.

8.4 Intrinsically Typed Approaches
Allais et al.[3] propose a powerful abstraction for denotational semantics and semantic fusion
lemmas. In later work[2], they use generic programming to instantiate this abstraction for
a class of object languages comparable to ours. They demonstrate how both renamings
and substitutions can be described as semantics, how the four composition lemmas follow
from their generic fusion lemma, and also provide an abstraction to unify renamings and
substitutions. They show how to use their framework for both intrinsic and extrinsic typing,
but are missing a story for polymorphism.

With only a slight modification to their framework, we can instantiate it for multi-sorted
syntax, enabling the definition of polymorphic languages. However, as the intrinsic typing
is then used to describe syntactic categories (and not the actual typing), the semantic
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abstractions then refer to untyped terms, so typing and type preservation lemmas have to be
modeled entirely manually. We believe it would be worthwhile to explore how their semantic
abstractions can be lifted to typing relations similar to how our typing kits lift regular kits
from terms to typing relations.

8.5 Pure Type Systems
Pure Type Systems[5, 7, 22] describe a class of typed lambda calculi parameterized over a set
of sorts, dependencies between sorts, and rules for quantification. While pure type systems
may seem very similar to multi-sorted syntax, they are actually quite different:

In multi-sorted syntax, sorts describe syntactic categories of terms. Terms of different
sorts are kept syntactically different, e.g. the set of expressions S ⊢ and types S ⊢ ≈ in
our System F example.
In pure type systems, sorts are universe types, e.g. like Set in Agda or Prop in Coq. Terms
which have different sorts as types, do still belong to the same syntactic category.

We can model pure type systems as a multi-sorted syntax with a single sort, where the
sorts of the pure type system occur as terms representing universe types.

9 Conclusion

We have presented an Agda framework, which automatically derives definitions and lemmas
for untyped substitution, and provides an abstraction for proving type preservation of
renaming and substitution for all syntactic categories with a single lemma (_⊢···_).

Compared to many extrinsically typed approaches, our framework also models typing
and type preservation. Compared to many intrinsically typed approaches, our framework
gracefully extends to polymorphic scenarios.

The main limitation of our framework is the shape of typing relations, similarly as it is the
case with approaches based on intrinsic typing: we can only model classical ternary typing
relations. To adapt our framework to more complicated typing relations, the machinery
for untyped substitution can be reused, but the abstractions related to typing need to be
modified. We found that this works surprisingly well in practice, where we have already made
extended typing abstractions that support linear typing ala Wood and Atkey[25] and general
substructural typing ala Licata et al[14]. In both cases, the typing relation is extended with
a fourth component that models usage restrictions on the type context.

While intrinsic typing allows to unify definitions with their type preservation proofs,
extrinsic typing allows to unify substitutions across different syntactic categories, as we have
demonstrated. We believe this makes our framework particularly suited for polymorphic
languages, where the downside of extrinsic typing is automated away, and where we have
variables across multiple syntactic categories, so the benefits of a unified substitution bear
fruits.
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Abstract
Guaranteeing correct compilation is nearly synonymous with compiler verification. However, the
correctness guarantees for certified compilers and translation validation can be stronger than we
need. While many compilers do have incorrect behavior, even when a compiler bug occurs it may
not change the program’s behavior meaningfully with respect to its specification. Many real-world
specifications are necessarily partial in that they do not completely specify all of a program’s behavior.
While compiler verification and formal methods have had great success for safety-critical systems,
there are magnitudes more code, such as math libraries, compiled with incorrect compilers, that
would benefit from a guarantee of its partial specification.

This paper explores a technique to get guarantees about compiled programs even in the presence
of an unverified, or even incorrect, compiler. Our workflow compiles programs, specifications, and
proof objects, from an embedded source language and logic to an embedded target language and
logic. We implement two simple imperative languages, each with its own Hoare-style program logic,
and a system for instantiating proof compilers out of compilers between these two languages that
fulfill certain equational conditions in Coq. We instantiate our system on four compilers: one that is
incomplete, two that are incorrect, and one that is correct but unverified. We use these instances to
compile Hoare proofs for several programs, and we are able to leverage compiled proofs to assist
in proofs of larger programs. Our proof compiler system is formally proven sound in Coq. We
demonstrate how our approach enables strong target program guarantees even in the presence of
incorrect compilation, opening up new options for which proof burdens one might shoulder instead
of, or in addition to, compiler correctness.
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1 Introduction

Program logic systems help proof engineers do more advanced reasoning about program-
specific properties. Iris [18, 24], VST [8], CHL [11], and Sepref [27] are just a few examples
of such program logics. Traditionally, strong guarantees for compiled programs required com-
posing program logics with verified compilers [8]. However, because functional specifications
are often partial, preserving them through compilation sometimes does not require a correct
compiler pass, much less global compiler correctness.

To see an example of where correct compilation becomes too strict, consider a Hoare triple{
0 ≤ a ∧ 0 ≤ ϵ

}
y := 42; x := source_sqrt(a)

{
|a − x2| ≤ ϵ

}
, which says that after setting

y to 42 and calling source_sqrt on a, the variable x stores a square root approximation of
a within ϵ. Suppose that source_sqrt is compiled to some program target_sqrt such that
if 0 ≤ a ∧ 0 ≤ ϵ, then after target_sqrt(a) runs, we have |a − x2| ≤ ϵ

2 . In the end, we still
have |a − x2| ≤ ϵ for target_sqrt since ϵ

2 ≤ ϵ, which meets the specification. Moreover, the
42 on the right-hand side of the assignment to y could be (mis)compiled to anything, and
the specification would still be preserved. However, this compilation would be rejected by
both certified compilation and translation validation, illustrating that compiler correctness is
significantly more restrictive than specification preservation.

In order to achieve guaranteed specification-preserving compiler passes, we present the
proof compiler system PotPie. PotPie takes an existing compiler and produces a proof
compiler. A proof compiler takes a program, a specification, and a proof of the specification
and compiles all three such that (1) the specification’s meaning is preserved, and (2) the
compiled proof shows that the compiled program meets the compiled specification.

PotPie is formally verified in Coq [45], and allows for partial specification-preserving
compilation, even of incorrectly compiled programs. To get a sense of how PotPie differs
from similar techniques, imagine a proof engineer has already shown the Hoare triple
{0 ≤ a ∧ 0 ≤ ϵ}x := source_sqrt(a){|x2 − a| ≤ ϵ} and wants to prove an analogous Hoare
triple about the compiled square root approximation. Suppose also that the proof engineer
has a compiler T on hand, which happens to have a small bug that switches < to ≤ in
programs and specifications. The square root program uses a while loop to approximate
square roots, and the while loop condition contains at least one <. At this point, PotPie
provides two options:
1. Tree workflow: use T to instantiate a proof tree compiler that produces a target proof

tree. After compiling the square root Hoare tree, they invoke the Tree Coq plugin which
will check the proof tree, and if possible, produce a certificate that is checkable in Coq.
Tree has only one proof obligation to invoke the plugin, but may fail in certain cases.

2. CC workflow: use T to instantiate a correct-by-construction proof compiler by showing
that it satisfies the equations in Figure 5 on Page 8. To call this proof compiler, the proof
engineer must show that the square root program is well-formed. CC is complete in that
if the translation preserves the specification, then it is possible to perform.

Both methods work, even though the compiler T has a bug that causes miscompilation
in the square root program. Because of this miscompilation, we cannot use translation
validation, the state of the art for ensuring correct compilation for an unverified compiler.
But the miscompilation does not affect our specification, so with PotPie, we can get strong
guarantees about our compiled code regardless of miscompilation.

We make the following contributions:
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a ::= N | x | param k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | x := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return x)
p ::= ({λ, . . . , λ}, i)

a ::= N | #k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | push | pop | #k := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return a n)
p ::= ({λ, . . . , λ}, i})

Figure 1 Imp (left) and Stack (right) syntax, where a describes arithmetic expressions, b boolean
expressions, i imperative statements, λ function definitions, and p whole programs, which consist of
a set of functions and a “main” body. The evaluation of the main body yields the result of program.
For Imp functions, (f ,k,i,return x) is a function named f with k parameters that returns the value
of the variable x after executing the function body, i. For Stack functions (f, k, i, return a n), we
return the result of evaluating a after executing the body i, and then pop n indices from the stack.

1. We present the PotPie system for specification-preserving proof compilation.
2. We describe two workflows for the PotPie system: CC and Tree.
3. We demonstrate PotPie on several case studies, using code compilers with varying

degrees of incorrectness to correctly compile proofs. Our case studies include various
mathematical functions, such as infinite series and square root approximation.

4. We prove the CC and Tree workflows sound in Coq.

Non-Goals and Limitations. Our work aims to complement, not replace, certified compi-
lation. One potential motivation for alternative compiler correctness techniques is to ease
the burden of compiler verification. However, easing the burden of compiler verification is
not our goal, nor do we think that this is the case for our work at this time. Rather, our
goal is demonstrate a complementary approach of specification-preserving compilation for
program-specific specifications, even when the program itself is incorrectly compiled. Our
work currently focuses on simple and closely related languages, and the compilers are likewise
simple, though we do not believe that these choices are central to our approach. Currently,
our work imposes significant limitations the kinds of control flow optimizations that can be
performed. This simplifying decision made the problem initially tractable, but we do not
believe it is inherent to our approach; we discuss a potential way of handling it in Section 7.

2 Programs, Specifications, and Proofs

In this section, we briefly present our six languages and how to compile programs and
specifications, with Section 2.1 describing the programming languages and program compiler,
Section 2.2 describing the specification languages and compiler, and Section 2.3 describing the
proof languages (the proof compiler system is described in Section 3). Here and throughout
the paper, we include links such as 42 to relevant locations in our code, which you can find
on GitHub: https://github.com/uwplse/potpie/tree/v0.4.

2.1 Programs
Our languages Imp and Stack are both simple imperative languages that are similar in
syntax (Figure 1) yet have differing memory models. Imp has an abstract environment
with two components: a mapping of identifiers to their nat values, and function parameters
(accessed via the param k construct), whereas Stack has a single function call stack, where
new variables are pushed to the low indices and stack indices are accessed with the #k

ITP 2024
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compφ
a (n) ≜ n compφ

a (x) ≜ #φ(x)
compφ

a (param k) ≜ #(|V | + k + 1)
compφ

a (a1 op a2) ≜ compφ
a (a1) op compφ

a (a2)
compφ

a (f(a1, . . . , an)) ≜ f(compφ
a (a1), . . . , compφ

a (an))

compφ
b (T ) ≜ T compφ

b (F ) ≜ F

compφ
b (¬b) ≜ ¬compφ

b (b)
compφ

b (b1 op b2) ≜ compφ
b (b2) op compφ

b (b2)
compφ

b (a1 ≤ a2) ≜ compφ
a (a1) ≤ compφ

a (a2)

Figure 2 An arithmetic expression compiler compa (left) and a boolean expression compiler
compb (right). op stands for the appropriate binary operators: + and −, and ∧ and ∨, respectively.

M ::= T | F | pn [e, . . . , e]
| M ∧ M | M ∨ M

σ ⊨ T
True map_evalσ [ai]n1 [vi]n1 pn vlist

σ ⊨ pn [a1, . . . , an]
N-ary

Figure 3 Syntax (left) and semantics (right) for base assertions for both Imp and Stack.
map_evalσ is a relation from lists of expressions to lists of values. The semantic interpretation is
parametric over the types of v, σ, and map_evalσ. Interpretations for ∧ and ∨ are standard.

construct. Function calls in Imp are always mutation-free since functions are limited to their
(immutable) parameters and local scope. Stack’s functions can access the entire stack.

Bridging the Abstraction Gap. The difference in memory model must be taken into account
when compiling from Imp to Stack. We define an equivalence between variable environments
and stacks 4 so that “sound translation” is a well-defined concept.

▶ Definition 1. Let V be a finite set of variable names, and let φ : V → {1, . . . , |V |} be
bijective with inverse φ−1. Then for all variable stores σ, parameter stores ∆, and stacks σs,
we say that σ and ∆ are φ-equivalent to σs, written (σ, ∆) ≈φ σs, if (1) for 1 ≤ i ≤ |V |, we
have σs[i] = σ(φ−1(i)), and (2) for |V | + 1 ≤ i ≤ |V | + |∆|, we have σs[i] = ∆ [i − |V |].

This equivalence is entirely dependent on our choice of mapping between variables and stack
slots. It has this form since parameters are always at the top of the stack at the beginning
of a function call, and are then pushed down as space for local variables is allocated, so
parameters appear “after” (i.e., appended to) the local variables. Note that this implies
|V | + |∆| ≤ |σs| while saying nothing about stack indices beyond |V | + |∆|.

Compiling Programs. Although the PotPie system allows for some choice of compiler
between Imp and Stack, most of our compilers follow a common structure. We give a
translation for Imp arithmetic and boolean expressions (which we will refer to in sum as
expressions from now on) in Figure 2. This infrastructure is a straightforward extension of
the variable mapping function φ from Definition 1. The program compilers we deal with in
our case studies (Section 4) define variations on this common structure.

2.2 Specifications
The specification languages both embed Imp or Stack expressions inside of them, respectively.
Base assertions are modeled as n-ary predicates over the arithmetic and boolean expressions
of the given language. The semantics for assigning a truth value to a formula (Figure 3,
right) parameterize predicates over the value types. For example, if we have the assertion
p1 a where a is an Imp expression that evaluates to v, then p1 a is true if and only if calling

https://uwplse.org/potpie/docs/Imp_LangTrick.SpecCompiler.LogicTranslationBase.html#state_to_stack
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compφ,k
spec(T ) ≜ (k, T )

compφ,k
spec(F ) ≜ (k, F )

compφ,k
spec(pn (e1, . . . , en)) ≜ (k, pn (compφ

expr(e1), . . . , compφ
expr(en)))

compφ,k
spec(S1 op S2) ≜ compφ,k

spec(S1) op compφ,k
spec(S2)

Figure 4 The specification compiler compφ,k
spec(S), which is parameterized over compφ

expr (which
can be either compφ

a or compφ
b , depending on the type of expressions e). op is either ∧ or ∨.

the Coq definition of p1 with v is a true Prop. We can define a program logic S for the
source language this way by using the atoms in Figure 3 to embed arithmetic and boolean
expressions in Coq propositions. We add conjunction and disjunction connectives at the
logic level. We can define T for the target language similarly. We then use this to construct
the following specification grammars:

S ::= Se | S1 ∧ S2 | S1 ∨ S2 T ::= (n, Te) | T1 ∧ T2 | T1 ∨ T2 (1)

where Se and Te are instances of the logic described in Figure 3 using Imp and Stack
arithmetic and boolean expressions respectively.

Because the minimum stack size required by the compilation might not be captured by
language expressions contained within the formula itself, we also want to specify a minimum
stack size in Stack specifications. This is represented by the following judgment:

|σ| ≥ n σ ⊨ Te

σ ⊨ (n, Te)
Stack Base

We made the decision to allow function calls within specifications. This is not essential to
our approach – one could disallow effectful constructs from expressions as in CLight [6]. For
the current system, we find it more natural to reason about effectful expressions in Imp.

Compiling Specifications. We can reuse φ : V → {1, . . . , |V |} and the expression compilers
from Section 2.1 to define a specification compiler (see Figure 4): recurse over the source
logic formula and compile the leaves, i.e., Imp expressions. If k is the number of function
arguments, give each assertion a minimal stack size, |V | + k, to ensure well-formedness of the
resulting Stack expressions within the specification, which is given as the maximum value
of φ plus k, where k is the number of arguments. Note that this definition is parameterized
over an expression compiler, which need not be fully correct. To guarantee correctness of a
translated proof in the sense that the target proof “proves the same thing”, users must show
that the specification compiler must be sound with respect to the user’s source specification
(see Definition 3 and Section 3.2.2). This ensures that the compiled proof proves an analogous
property even when the program is compiled incorrectly.

2.3 Proofs
Our logics are based on standard Hoare logic and are proven sound in Coq. Automatically
ensuring that the rule of consequence’s implications are preserved by compilation would
usually require correctness of compilation. To remove this requirement, we modify the rule
of consequence so that implications must be in an implication database I, which is a list of
pairs of specifications that satisfy the following definition:

▶ Definition 2. I is valid if for each pair (P, Q) in I, ∀σ, σ ⊨ P ⇒ σ ⊨ Q.

ITP 2024
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Table 1 Proof obligations and their relationship to the requirements for instantiating and invoking
proof compilers (PC) for each of our workflows, and what properties may be guaranteed for Tree by
these proof obligations. P means a user proof is required, A means that the plugin will attempt an
automated check, × means the condition is not required, and - means the condition is not applicable
to that column. “Trees WF” means the compiled code and assertions within the Stack Hoare tree
have the right syntactic shape for Hoare rule application. “Valid Tree” means that the tree is a
valid Stack Hoare proof (which is implied by a typechecked certificate). “CGC” indicates what is
needed to ensure that once a certificate is generated and typechecks, that it is correct, i.e., preserves
the meaning of the pre and postcondition. Since CC is correct-by-construction, all of the proof
obligations are required.

Tree CC
Create Invoke Guaranteeing Properties Create PC Invoke PCPC PC Plugin Trees WF Valid Tree CGC

Comp. Comm. × - - A A - P -

User

Spec DB - × P × P - - P
Pre/Post - × × × × P - P
Imp WF - × × - - - - P
preservesStack - × × A A - - P

This implication database, which is present for both Imp and Stack, serves to (1) identify
which implications must be preserved through compilation, and (2) make it easy to identify
which source implication corresponds to which target implication across compilation. For the
Stack logic, as a simplifying assumption, we further require all expressions in assignments,
if conditions, or while conditions to be side effect-free, i.e., preserve the stack.

3 Compiling Proofs

PotPie’s two workflows share the same goal: to produce a term at the target representing
a proof tree for the desired Stack-level property. To achieve this, both workflows have
their own soundness theorems (Section 3.1), which need certain properties to be true of
compiled programs and specifications. The workflows obtain these in different ways. Before
being called, CC requires the user to prove certain equational properties about the compiler
(Section 3.2.1) and well-formedness properties of the source program and proof (Section 3.2.3),
and combines these to acquire the required syntactic and stack-preserving conditions for
applying Stack Hoare rules. Tree simply compiles the Hoare proof tree, and its plugin
performs an automated check (that can possibly fail) of whether the compiled tree is a
valid Hoare proof. Additionally, both workflows require the user to manually translate the
implication databases (Section 3.2.2) to retrieve Stack-level rule-of-consequence applications.
A breakdown of which proof obligations are required for which workflow and the guarantees
they provide can be found in Table 1. None of these proof obligations require full semantic
preservation; they allow for some miscompilation of programs as long as compilation does
not break the (possibly partial) specification.

3.1 Soundness Theorems and Overview
Consider the Imp Hoare triple {5 < 10}x := 5{x < 10}, which can be derived via a simple
application of the Imp-level assignment rule. If we map x to stack slot #1, the “natural”
translation of this Imp triple is the Stack triple {5 < 10}#1 := 5{#1 < 10}, which can
be derived via Stack’s assignment Hoare rule. This translation seems “natural” for two
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reasons: it is derived using the “same” rules, and it is proving the “same” thing. We use
the former to compile the proofs, and we use the latter to define a notion of soundness for
specification translation 30 31 , which each workflow can guarantee in a different way:

▶ Definition 3. For a given P , a specification compilation function compφ,k
spec is sound with

respect to P if for all σ, ∆, σs such that (σ, ∆) ≈φ σs, we have σ, ∆ |= P ⇔ σs |= compφ,k
spec(P ).

We can also define an informal notion of soundness for a proof compiler:

▶ Definition 4. Given an Imp Hoare proof pf that proves the triple {P}c{Q}, a proof
compiler PC is sound with regards to it if PC(pf) = pf ′ and pf ′ proves the triple
{compspec(P )}compcode(c){compspec(Q)}.

Combining both notions of soundness lets us arrive at our definition of soundness for a proof
compiler : if a specification and proof compiler are sound with regards to a specification and
proof in the sense of Definitions 3 and 4, then the compiled version of that proof is both
a valid proof at the target and proves the same thing that the source proof proved. The
Tree workflow can achieve these guarantees in piecewise progression when certain proof
obligations are met, and CC always guarantees both when it is called. The form Definition 4
takes in our implementation is a method of constructing a term of type hl_stk (the Stack
correct-by-construction Hoare proof type) from a term of type hl_Imp_Lang.

Tree Proof Compiler. The Tree workflow utilizes a proof compiler that separates proof
and compilation, and has two components: a compiler that produces a proof tree 2 and a
Coq plugin, implemented in OCaml 5 , that checks the proof tree’s validity 6 . The compiler
is parameterized over the code and specification compilers from Imp to Stack. The proof
tree compiler component is sound in the sense that if the proof obligations for the CC proof
compiler are satisfied, then it will always produce a sound tree 12 . The plugin can be used
on any Stack proof tree and can optionally produce a certificate, which can be used to
produce a Stack Hoare logic proof via this theorem 13 :

1 Theorem valid_tree_can_construct_hl_stk
2 (P Q: AbsState) (i: imp_stack) (facts': implication_env_stk)
3 (fenv': fun_env_stk) (T: stk_hoare_tree):
4 ∀ (V: stk_valid_tree P i Q facts' fenv' T), (* certificate type*)
5 hl_stk P i Q facts' fenv'.

An instance of Definition 4 can be retrieved by an appropriate substitution of variables.
We note that Tree is not complete: the requisite target-level properties could be true,

and yet Tree will still fail. This can occur in the case of mutually recursive functions,
along with some edge cases that we talk more about in Section 5.1. While Tree requires
fewer proof obligations, it also provides fewer guarantees. One such guarantee it lacks is
preservation of the pre and postcondition, i.e., specification-preserving compilation. This
and other guarantees can be gained by showing the proof obligations indicated in Table 1.

CC Proof Compiler. This workflow is correct by construction. Given an Imp Hoare proof
(hl_Imp_Lang) along with the CC proof obligations (described in Section 3.2), CC produces a
Stack Hoare proof (hl_stk) of the same property 1 (some detail is omitted for brevity):

1 Definition proof_compiler :
2 ∀ (P Q: AbsEnv) (i: imp_Imp_Lang) (fenv: fun_env) (facts: implication_env)
3 (var_to_stack_map: list string) (num_args: nat)
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compφ,k
spec(P [x → a]) = (compφ,k

spec(P ))[φ(x) → compφ
a (a)] (2)

compφ,k
spec((p1 [b]) ∧ P ) =

(
k + |V |, (p1 [compφ

b (b)]) ∧ compφ,k
spec(P )

)
(3)

compφ,k
code(x := a) = #φ(x) := compφ

a (a) (4)
compφ,k

code(skip) = skip (5)
compφ,k

code(i1; i2) = compφ,k
code(i1); compφ,k

code(i2) (6)
compφ,k

code(if b then i1 else i2) = if compφ
b (b) then compφ,k

code(i1) else compφ,k
code(i2) (7)

compφ,k
code(while b do i) = while compφ

b (b) do compφ,k
code(i) (8)

Figure 5 Equations compilers must satisfy to be used to instantiate a proof compiler.

4 (proof: hl_Imp_Lang P i Q facts fenv) (translate_facts: valid_imp_trans_def),
5 (* well-formedness conditions and specification translation soundness *) →
6 hl_stk (comp P) (comp i) (comp Q) (comp facts) (comp fenv).

Since the CC proof compiler is correct-by-construction, the type signature in the above Coq
code guarantees the validity of the produced target Hoare proof. However, as compared
to Tree, CC requires far more proof obligations before a CC proof compiler can even be
instantiated, with invocation requiring several on top of the instantiation burden.

3.2 Proof Obligations
PotPie’s workflows both require some proof obligations in order to get target-level correctness
guarantees. Table 1 breaks down these requirements for both workflows.

3.2.1 Commutativity Equations – CC Only
These code and specification compiler proof obligations relate the compiled programs and
specifications. CC requires that proof-compilable Imp programs and specifications satisfy the
equations in Figure 5 – Tree has no such requirement (Table 1) and will simply fail if these
equations don’t hold. For example, consider the substitution performed by the assignment
rule. Given some P , in order to compile an application of the assignment rule, we want (2)
to hold. If we have this equality, we have the following, where P ′ = compφ,k

spec(P ):

compφ,k
pf ({P [x → a]} x := a {P}) =

{
P ′[φ(x) → compφ,k

code(a)]
}

φ(x):= a
{

P ′
}

This compiler proof obligation lets a CC proof compiler mechanically apply the Hoare rules.
In practice, as long as the program compilers are executable, these conditions are provable
using reflexivity. These equations are the reason for the control-flow restrictions mentioned
in the introduction and in Section 7. These equations also ensure that the specification
compiler is “aware” of the way that expressions are compiled. For example, consider a code
compiler that adds 1 to assignment statements’ right hand sides. This breaks the compilation
of the assignment rule, as the specification compiler is “unaware” of a transformation that
affects a Hoare rule application. Equations 2-4 and 7-8 in Figure 5 are to prevent such cases.

3.2.2 Specification Translation Conditions – Tree & CC
As we described in Section 2.3, the rule of consequence is the only Hoare rule that depends
on the semantics of the program, and thus would require a completely correct compiler pass
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to completely automate. Our solution is to have the user specify which implications they
are using in their Hoare proof in an implication database. Then the user proves that these
implications are compiled soundly 7 (this is the “Spec DB” proof obligation in Table 1):

▶ Definition 5. Given φ, k, and a function environment, an Imp implication P ⇒ Q has a
valid translation if for all σ, ∆, σs, if (σ, ∆) ≈φ σs, then σs |= compφ,k

spec(P ) ⇒ compφ,k
spec(Q).

While it lets us construct a proof in the target about the compiled program, it does not
necessarily construct a proof of the same property, as the meaning of the precondition and
postcondition could be destroyed by, for instance, compiling them both to ⊥.

To prevent this, another proof obligation is to prove the pre/postcondition of the Imp
Hoare proof sound with regards to the specification compiler (Definition 3). This guarantees
that while program behavior can change, the specification remains the same. This is in
Table 1 as the “Pre/Post” row. While it is required by CC, it is optional for Tree but is
needed to guarantee correctness of a certificate, hence the P in the CGC column of Table 1.

These conditions only need for compilation to preserve Definitions 3 and 5 and require
no proofs of language-wide properties, nor of full compiler correctness. Rather, they require
specific correctness properties for a finite set of assertions. In practice, we have found these
proofs to be repetitive, and have built some tactics to solve these goals 28 29 . We have
not built proof automation to generate a given proof’s implication database as a verification
condition but we suspect this could be done via a weakest precondition calculation.

3.2.3 Well-formedness Conditions – CC Only
The last set of user proof obligations is specific to our choice of languages and logics.
Specifically, while the syntax of Imp prevents most type errors, there are other ways a
program can be malformed, e.g., calling a function with an incorrect number of arguments.
These obligations show that all components of the source proof be well-formed. Additionally,
any compiled functions should preserve the stack, so as to meet the preservesStack condition
of the Stack logic. We have largely automated these proof burdens in our case studies.

4 Case Studies

We have two sets of case studies that highlight the trade-offs of the PotPie framework:
1. Partial Correctness with Incorrect Compilation (Section 4.1): We prove meaningful

partial correctness properties of arithmetic approximation functions that are slightly
incorrectly compiled. This set of case studies highlights two benefits of PotPie:
a. Specification-Preserving Compilation: We invoke PotPie with a slightly buggy

program compiler to produce proofs that meaningfully preserve the correctness specifi-
cations down to the target level. Importantly, we obtain these meaningful target-level
correctness proofs of our specification even though the program compiler does not
preserve the full semantic behavior of the arithmetic approximation functions.

b. Compositional Proof Compilation. We use PotPie to separately compile the
correctness proofs of helper functions common to both approximation functions. Com-
position of those helper proofs within the target-level proof of the arithmetic function
comes essentially “for free,” modulo termination conditions.

2. PotPie Three Ways (Section 4.2): We instantiate PotPie with three different variants
of a program compiler (incomplete, incorrect, and correct but unverified), and
briefly explore the trade-offs of each of these instantiations.
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Table 2 The lines of code, number of theorems, and the time it took for the Tree plugin to
generate and check our case studies in Section 4.1. “Core” refers to proving the source Hoare triple.
“Tree” refers to how much work it took to get to the point where one could call the Tree plugin
(which is different from calling the tree compiler, which is simply a one-liner), and “TreeC” the
additional effort needed to ensure correctness. “CC” gives how much more work it would take to be
able to use the CC workflow after ensuring tree compilation correctness.

Multiplication Exponentiation Series Square Root
Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC

LOC 209 104 56 508 478 107 54 362 679 174 45 630 406 154 43 286
Theorems 3 1 2 28 9 1 2 26 14 1 2 48 6 1 2 29

Tree CG (s) 0.172 0.154 2.781 4.279
Tree Check (s) 0.131 0.098 0.534 1.946

4.1 Partial Correctness with Incorrect Compilation
We have written and proven correct two mathematics approximation programs in Imp.
Both approximation programs use common helper functions, which we also prove correct
(Section 4.1.1). We then build on and compose the helper proofs to prove our approximation
programs correct up to specification even in the face of incorrect compilation (Sections 4.1.2
and 4.1.3). Our incorrect compiler has the following bug, miscompiling < to ≤:

compφ
badb(a1 < a2) ≜ compφ

a(a1) ≤ compφ
a(a2)

compbadb is a buggy boolean expression compiler that turns our less-than macro into a
less-than-or-equal-to expression. While we do not have a less than operator in the Imp
language, we have a less than macro defined as a1 ≤ a2 ∧¬(a1 ≤ a2 ∧a2 ≤ a1). For simplicity,
we will use < in this paper. The resulting program compiler 8 is correct for programs that
do not contain <, and we use it throughout this subsection. We give a short summary of the
proof effort that it took to prove these case studies in Table 2.

4.1.1 Helper Functions
We describe how we compile proofs about two helper functions: multiplication and exponen-
tiation. For clarity, we omit environments in the lemmas we state here.

Multiplication. The first helper function is a multiplication function, which behaves as
expected (code in green is actually wrapped Coq terms, whereas code in black is an expression
in our language substituted into a Coq term as per the semantics of our logic in Figure 3):

1 { ⊤ }
2 x := param 0; y := 0;
3 while (1 ≤ x) do
4 y := y + param 1;
5 x := x - 1;
6 { y = (param 0) · (param 1) }

The proof of this Imp Hoare triple is straightforward since the body of the function does
not encounter the incorrect behavior of the compiler. By combining this triple with a
termination proof, we are able to generate a helper lemma 9 that relates applications of the
Imp multiplication function to Coq’s Nat.mul:
Lemma mult_aexp_wrapper a1 a2 n1 n2: a1 ⇓ n1 → a2 ⇓ n2 → mult(a1, a2) ⇓ (n1 ∗ n2)%nat.

https://uwplse.org/potpie/docs/Imp_LangTrick.CodeCompiler.EnvToStackLTtoLEQ.html#compile_bexp
https://uwplse.org/potpie/docs/Imp_LangTrick.Examples.rsa_impLang.html#mult_aexp_wrapper


A. Seo, C. Lam, D. Grossman, and T. Ringer 33:11

This lemma lets us reason more directly about nats. We use this lemma in the subsequent
case studies, demonstrating how PotPie enables us to reuse the source Hoare proof of this
triple to get the target-level version of this lemma almost for free – we still have to reprove
termination at the target level, something we hope to address in future work.

Exponentiation. Exponentiation is similarly straightforward, except we use multiplication
as defined above as a function in its body and thus must use the multiplication function
wrapper to prove the loop invariant, and we obtain the following wrapper 10 :

Lemma exp_aexp_wrapper : forall a1 a2 n1 n2, a1 ⇓ n1 → a2 ⇓ n2 → exp(a1, a2) ⇓ n2n1.

4.1.2 Geometric Series
One example use case for partial correctness specifications is floating point estimation of
mathematical functions, like sin(x) and ex, by way of computing infinite series with well-
behaved error terms. Since floating point numbers are unable to represent all of the reals,
we must approximate these functions within some error bound. As a simple version of this
use case, we consider a program for calculating the geometric series

∑∞
i=1

1
xi within an error

bound of ϵ = δn

δd
. We require x ≥ 2 so that the series converges, which simplifies some of our

assertions for this example. While this is a toy example that would be easier to compute in
its closed form – the series

∑∞
i=0 a · ri is known to converge to a

1−r for |r| < 1, it suffices as a
simple example of using PotPie with an interesting partial specification. We cover a more
realistic example in Section 4.1.3. The program we use to compute this series is as follows:

1 { 2 ≤ x ∧ x = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ 1 = 1; ∧x = x ∧ 2 = 2 }
2 x := x; // the series denominator
3 rn := 1; // the result numerator
4 rd := x; // the result denominator (for i = 1)
5 i := 2; // the next exponent
6 { rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i } // loop invariant
7 // the loop condition is equivalent to ϵ < 1

x−1 − rn
rd , and 1

x−1 =
∑∞

i=1
1
x

8 while (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd)) do
9 d := exp(x, i);

10 rn := frac_add_numerator (rn , rd , 1, d); // a/b + c/d = (ad + cb)/(
bd)

11 rd := frac_add_denominator (rd , d); // fraction addition denominator
12 i := i + 1;
13 { ¬ (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd))
14 ∧ (rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i) } // loop

postcondition
15 { δd · rd ≤ δn · (x − 1) · rd + δd · (x − 1) · rn } // program postcondition : 1

x−1 − rn
rd ≤ δn

δd

For brevity, we omit assertions outside of the pre/postcondition, loop invariant, and loop
postcondition. We show wrapped Coq Props and arithmetic terms in green, i.e. δn · (x − 1).
Terms in black are Imp expressions. Note that we encounter the bug in our program
compiler, which miscompiles the < in the while loop conditional. However, we are still able to
compile this program and its proof to Stack because (1) the pre/postconditions’ meaning is
preserved by compilation, and (2) the implication database is still valid, i.e., every compiled
Imp implication is still an implication in Stack.

To see (1), we will need to look at the underlying representation of our assertions. As
given in Figure 3, our precondition and postcondition actually have the following form:

(fun x’ rn’ rd’ i’ => 2 ≤ x’ ∧ x’ = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ rn’ = 1 ∧ rd’ = x ∧ i’ = 2) x 1 x 2
(fun rn’ rd’ => δd · rd’ ≤ δn · (x − 1) · rd’ + δd · (x − 1) · rn’) rn rd

Everything after the anonymous function is actually an expression in the Imp language.
These are the only parts of the assertions that are compiled by the specification compiler.
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For instance, x is a constant arithmetic expression in Imp, which wraps Coq’s nat type. The
arithmetic compiler, compa, from Figure 2 compiles these to nat constants in the Stack
language. For the variables rn and rd, compφ,k

a (rn) = #φ(rn). After compiling, we get the
postcondition δd · #5 ≤ δn · (x − 1) · #5 + δd · (x − 1) · #2, or symbolically: 1

x−1 − #2
#5 ≤ δn

δd
.

For (2), we have to show that every implication in the Imp implication database is
compiled to a valid implication in Stack. The implication most relevant to the successful
compilation of the proof is the last one, which implies the program’s postcondition. Since
the Imp loop condition < gets compiled to <= in Stack, our negated loop condition becomes

¬ (mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≤ mult(#5, δd))

This is equivalent to the below inequality (where ≡ denotes “is numerically equivalent to”),
which still implies the compiled postcondition. This is easily proved with the Psatz.lia tactic.

mult(#5, δd) < mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≡ 1
x−1 − #2

#5 < δn

δd

4.1.3 Square Root
The second approximation program we consider interacts with the same miscompilation and
still meaningfully preserves the source specification. Given numbers a, b, ϵn, ϵd, we consider a
square root approximation program that calculates some x, y such that | x2

y2 − a
b | ≤ ϵn

ϵd
. We

can project the postcondition entirely into Coq terms, multiplying through both sides by the
denominator so we can express it in our language. After writing the program, we come up
with the following loop condition, which represents ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣ (· is syntactic sugar for
mult, and < is actually the Imp less-than macro):

loop_cond ≜ (y ·y ·b·ϵn < y ·y ·a·ϵd − x·x·a·ϵd) ∨ (y ·y ·b·ϵn < x·x·b·ϵd − y ·y ·a·ϵd)

Our Imp square root program and specification is given by the following.
1 {⊤}
2 x := a; y := mult (2, b);
3 inc_n := a; inc_d := mult (2, b);
4 while ( loop_cond ) do
5 inc_d := mult (2, inc_d);
6 if (mult(mult(y, y), mult(a, ϵd)) ≤ mult(mult(x, x), mult(b, ϵd)))
7 then x := frac_sub_numerator (x, y, inc_n , inc_d );
8 else x := frac_add_numerator (x, y, inc_n , inc_d );
9 y := frac_add_denominator (y, inc_d);

10 { ¬loop_condition ∧ ⊤ } =⇒
11 { ((x · x · b · ϵd) − (y · y · a · ϵd) ≤ y · y · b · ϵn) ∧ ((y · y · a · ϵd) − (x · x · b · ϵd) ≤ y · y · b · ϵn) }

Most of the rules of consequence are straightforward. The only nontrivial implication
involved is the final rule of consequence for the postcondition. The loop’s postcondition is
¬

(
ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣) ≡
∣∣∣ x2

y2 − a
b

∣∣∣ ≤ ϵn

ϵd
, which directly gets us the program postcondition.

During compilation, the loop condition is miscompiled: the program compiler changes <

to ≤. This results in the following target loop condition, where again, mult is represented
by ·. Note this is not green since it represents an expression in Stack, not a Coq one.

stk_loop_cond ≜ #1 · #1 · b · ϵn ≤ #1 · #1 · a · ϵd − #4 · #4 · b · ϵd

∨ #1 · #1 · b · ϵn ≤ #4 · #4 · b · ϵd − #1 · #1 · a · ϵd

Compared to the target program and proof, the main difference is in the final application of
the rule of consequence, where the incorrect behavior of the compiler appears and changes
the semantics of the loop condition. The programs have meaningfully different semantics,
and those meaningfully different semantics do manifest in the application of the while rule.
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1 {(⊤, ⊤)}
2 push; push; push; push;
3 #4 := a; #1 := mult (2, b);
4 #3 := a; #2 := mult (2, b);
5 {4, ⊤}
6 while ( stk_loop_cond ) do
7 #2 := mult (2, #2);
8 if (mult(mult (#1 , #1) , mult(a, ϵd)) ≤ mult(mult (#4 , #4) , mult(a, ϵd)

))
9 then #4 := frac_sub_numerator (#4, #1, #3, #2);

10 else #4 := frac_add_numerator (#4, #1, #3, #2);
11 #1 := frac_add_denominator (#1 , #2)
12 {(4, ¬target_loop_condition )) /\ (4, ⊤)} =⇒
13 {4, (#4·#4·b· ϵd) − (#1·#1· a·ϵd) ≤ (#1·#1·b·ϵn) ∧ ((#1 · #1·a·ϵd) − (#4·#4·b·ϵd) ≤ #1·#1·b·ϵn)}

While the loop condition is indeed miscompiled, the postcondition uses Coq’s ≤, so
the postcondition is not. Even though the unsound behavior of the compiler changes the
semantics of the loop invariant, it is not enough to break the implication between the
loop condition and the Coq-wrapped loop condition. Further, because of the way that the
postcondition projects into Coq, the final implication is almost completely provable via
applications of helper lemmas from Section 4.1.1 and the tactics inversion and Psatz.lia.

4.2 PotPie Three Ways
PotPie makes it easy to swap out control-flow-preserving program compilers and still reuse
the same infrastructure. We instantiate PotPie with three variants of a program compiler,
and use these on three small programs: shift (left-shift) 14 , max 15 16 , and min 17 :
1. An incomplete program compiler 18 that is missing entire cases of the source

language grammar. Only shift can be compiled using the incomplete proof compiler.
2. An incorrect program compiler 19 that contains a mistake and an unsafe optimization,

in a similar vein to the previous examples. We can compile max using it, but not min.
3. An unverified correct program compiler 20 that always preserves program and

specification behavior. This can be used to proof compile all of the programs.
These examples show we are able to instantiate the PotPie framework for several different
compilers, and PotPie is compatible with correct compilers as well. We are able to invoke
the CC and Tree compilers with all of these case studies as well.

5 Implementation

While much of our proof development for PotPie is implemented in Coq, the Tree plugin
is implemented in OCaml (Section 5.1). We prove that PotPie is sound for both workflows
(Section 5.2) and keep PotPie’s trusted computing base small (Section 5.3).

5.1 The Tree Plugin
The Tree plugin is implemented in OCaml, and consists of about 2.2k lines of code (LOC).
Much of the code (∼1.1k LOC) is simply copied from the reusable plugin library coq-plugin-
lib1 and updated to Coq 8.16.1. Additionally, such a plugin only has to be created once per
target language-logic pair, and is completely independent from compilation. Indeed, the plugin
can be called on any Stack Hoare tree – the tree need not be the result of compilation. While

1 https://github.com/uwplse/coq-plugin-lib
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Table 3 The proof engineering effort that went into stating and formalizing PotPie, including
the infrastructure to support the code and spec languages, logics, the compilers, the case studies,
and automation. Here, “Thms” means the number of Theorems and Lemmas, while “Specs” means
the number of Definitions, Fixpoints, and Inductives. “WF” stands for well-formed, “Insts.” for
instantiations of CC compilers, “Cases” for our case studies, and “Auto” for automation. “Base
Props” refers to code related to the base assertions seen in Figure 3.

Imp Stack Base Compiler Insts. Cases Auto Misc TotalLang Logic WF Lang Logic WF Props Code Spec Tree CC
LOC 808 1948 3605 2593 1077 5635 941 1102 159 780 3045 2133 6971 2914 3225 36936
Thms 15 67 103 91 17 204 37 44 2 17 93 52 288 31 105 1166
Specs 43 32 51 29 51 63 31 25 14 13 40 100 238 50 107 887

Table 1 indicates that the plugin automates a check for the commutativity equations from
Section 3.2.1, this is because the properties checked by the plugin imply the commutativity
equations for the included Tree proof compiler in our code 2 – it never actually checks the
commutativity equations themselves. This makes Tree more flexible than the CC approach.

The plugin is called on a Stack tree, function environment, implication database (with
proof of its validity), and list of functions. Here we call it on our multiplication example:

1 Certify (MultTargetTree.tree) (MultTargetTree.fenv) (ProdTargetTree.facts)
2 (MultValidFacts.valid_facts) (MultTargetTree.funcs) as mult.
3 Check mult.

mult contains the answer returned by the plugin. If the plugin is set to generate certificates
and it is successful, mult has type stk_valid_tree. Otherwise, mult is a Coq bool.

The plugin recurses over the input tree and attempts to construct the certificate 21 .
This may fail if the tree is malformed or there are mutually recursive functions. As we saw
in Section 2.2, the Stack logic requires that all expressions preserve the stack, which is
represented by the relation exp_stack_pure_rel 3 . However, due to the semantics of Stack
functions, we need to know that all function calls preserve the stack, and showing that
exp_stack_pure_rel is true in the presence of mutually recursive functions would lead to an
infinite loop. If certificate generation fails, the plugin tries to provide a boolean answer as
a fallback mechanism. It does this by checking each function for stack-preserving behavior
modulo the behavior of other functions 23 , then checking the proof tree recursively 24 .

As we saw in Table 2, the certificate generator and tree checking algorithms are fairly
performant. This is due to several caching and reduction algorithm optimizations we made.
Before applying optimizations, the series and square root examples took >10 minutes to
generate certificates, and now take <5 seconds. The main bottleneck was Coq’s δ-reductions,
which unfold constants. Our plugin provides an option to treat certain functions as “opaque”
inside the plugin 27 , leaving their constants folded and speeding up normalization. This
does not change the user’s Coq environment. The plugin also uses unification (for example,
to match with constructors of option types 32 ) to avoid all but one call to normalization,
which we found to significantly improve performance.

5.2 Formal Proof
Our Coq formalization includes two proofs of soundness, one for each of the workflows, as
well as all of the case studies from Section 4. The CC soundness proof 1 takes the form
of a correct-by-construction function that takes a source Hoare proof, the well-formedness
conditions, and the implication translation, and produces a verified Hoare proof in the target,
as described in Section 3.1. For Tree, we prove that if all of the obligations for CC are

https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.TreeProofCompiler.html#TreeProofCompiler
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/checker.ml#L81
https://uwplse.org/potpie/docs/Imp_LangTrick.Stack.StackPurestBase.html#bexp_stack_pure_rel
https://uwplse.org/potpie/docs/Imp_LangTrick.Stack.FuncsFrame.html#funcs_frame
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/boolChecker.ml#L
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satisfied, then the compiled tree is valid 12 . As we mentioned in Section 3.1, we additionally
show that when the OCaml plugin 5 generates a certificate that typechecks, the certificate
can be used to obtain an hl_stk proof.

We loosely based our code on Xavier Leroy’s course on mechanized semantics [30]. The
LOC numbers for our proof development in Table 3 are large when compared to the size of
Leroy’s course materials, but there are several key differences. First, our languages include
functions, making our semantics more difficult to reason about than the course’s semantics.
The trade-off is that functions give us the opportunity to reason about the composition of
programs and their proofs (Section 4.1). Second, our target language is far less well-behaved
than either of the languages in the course. Third, PotPie supports two different workflows,
two separate proof compilers that work to get guarantees even for incorrect compilation.

5.3 Trusted Computing Base (TCB)
PotPie’s two workflows for proof compilation have different TCBs and provide different levels
of guarantees. The CC proof compiler’s TCB consisting of the Coq kernel, the mechanized
semantics, the definition of the Hoare triple, and two localized Uniqueness of Identity Proofs
(UIP) axioms for reasoning about the equalities between dependent types. UIP, which is
consistent with Coq, states that any two equality proofs are equal for all types – we instead
assume that equality proofs are equal to each other for two particular types, AbsEnvs 25
(the implementation of SM from Section 2.2) and function environments 26 . This does not
imply universal UIP but is similarly convenient for proof engineering. Whenever all of its
proof obligations can be satisfied, the correct-by-construction proof compiler is guaranteed to
produce a correct proof. However, the resulting proof object may not be independent from
the source semantics, due to various opaque proof terms that cannot be further reduced.

The Tree plugin can either generate a certificate or run a check on a proof tree, returning
its validity as a boolean. The certificate generator has a strictly smaller TCB than CC since
it does not assume any form of UIP. The certificate generator works by generating a term
of type stk_valid_tree 22 . Since this term must still be type-checked in Coq for it to be
considered valid, this does not add to the TCB. The Tree boolean proof tree checker has its
own “kernel,” also implemented in OCaml, for checking proof trees, which adds to its TCB.
While it does not imply formal correctness, it can boost confidence in compiled proofs.

6 Related Work and Discussion

Early work on compiling proofs positioned itself as an extension of proof-carrying code [35].
A 2005 paper [4] stated a theorem relating source and target program logics. Early work [33]
transformed Hoare-style proofs about Java-like programs to proofs about bytecode imple-
mented in XML. Later work [37] implemented proof-transforming compilation, trans-
forming proof objects from Eiffel to bytecode, and formalizing the specification compiler in
Isabelle/HOL, with a hand-written proof of correctness of the proof compiler. Subsequent
work [16] showed how to embed the compiled bytecode proofs into Isabelle/HOL. Our work
is the first we know of to formally verify the correctness of the proof compiler, and to use it
to support specification-preserving compilation in the face of incorrect program compilation.
Existing work on certificate translation [3, 26], which is similar but focuses on compiler
optimizations, may help us relax control-flow restrictions.

There is a lens through which our work is related to type-preserving compilation:
compiling programs in a way that preserves their types. There is work on this defined on a
subset of Coq for CPS [7] and ANF [21] translations. As the source and target languages
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both have dependent types, this can likewise be used to compile proofs while preserving
specifications. A similar line of work can be found for compilations of proof languages in
Metamath Zero [9]. Our work focuses on compiling program logic proofs instead.

Our work implements a certified proof transformation in Coq for an embedded program
logic. Proof transformations were introduced in 1987 to bridge automation and usability [39],
and have since been used for proof generalization [15, 20, 17], reuse [31], and repair [41].

The golden standard for correct compilation is certified compilation: formally proving
compilers correct. The CompCert verified C compiler [29, 28] lacks bugs present in other
compilers [47]. The CakeML [25] verified implementation of ML includes a verified compiler.
Oeuf [32] and CertiCoq [2] are certified compilers for Coq’s term language Gallina. Certified
compilation is desirable when possible, but real compilers may be unverified, incomplete, or
incorrect. Our work complements certified compilation by exploring an underexplored part of
the design space of compiler correctness: compilation that is specification-preserving for a
given source program and (possibly partial) specification, even when the compilation may not
be fully meaning-preserving for that program. The original CompCert paper [28] brought
up the possibility of specification-preserving compilation as part of a design space that is
complementary to, not in competition with, certified compilation. We agree; it expands the
space of guarantees one can get for compiled programs – even when those programs are
incorrectly compiled. It also expands the means by which one may get said guarantees.

Our work implements a kind of certifying compilation: producing compiled code and
a proof that its compilation is correct. For example, COGENT’s certifying compiler proves
that, for a given program compiled from COGENT to C, target code correctly implements a
high-level semantics embedded in Isabelle/HOL [1, 42]. Certifying compilation shares the
benefit that the compiler may be incorrect or incomplete, yet still produce proofs about the
compiled program. Most prior work on certifying compilation that we are aware of targets
general properties (like type safety) rather than program-specific ones. One exception is
Rupicola [40], a framework for correct but incomplete compilation from Gallina to low-level
code using proof search, which focuses on preservation of program-specific specifications
proven at the source level like we do. But it does not appear to address the case when the
program itself is incorrectly compiled, nor the case where there already exists an unverified
complete program compiler. Our work adds to the space of certifying compilation by
preserving program-specific partial specifications proven at the source level even when the
program itself is compiled incorrectly, with the added benefit of compositionality.

One immensely practical method for showing that programs compiled with unverified
compilers preserve behavior is translation validation. In translation validation, the
compiler produces a proof of the correctness of a particular program’s compilation, which
then needs to be checked [36]. Our work is in a similar spirit, but distinguishes itself in that
our method does not rely on functional equivalence for the particular compiled program.
Our method makes it possible to show that a compiler preserves a partial specification when
the program is miscompiled in ways that are not relevant to the specification.

Section 4.1.1 shows in a limited context our method’s potential for compositionality.
Similar motivation is behind (much more mature) work in compositional certified compila-
tion [46, 14, 19]. DimSum [43] defines an elegant and powerful language-and-logic-agnostic
framework for language interoperability, though to get guarantees, it leans heavily on data
refinement arguments that show a simulation property stronger than what our framework
requires. We hope that in the future, we will make our compositional workflow more sys-
tematic and fill the gap of compositional multi-language reasoning in a relaxed correctness
setting – by linking compiled proofs directly in a common target logic. Similar motivations
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are behind linking types [38], which are extensions to type systems for reasoning about
correct linking in a multilanguage setting. We expect tradeoffs similar to those between our
work and type-preserving compilation to arise in this setting.

Frameworks based on embedded program logics (e.g., Iris [18, 24], VST-Floyd [8],
Bedrock [12, 13], YNot [34], CHL [11], Sepref [27], and CFML [10]) help proof engineers
write proofs in a proof assistant about code with features that the proof assistant lacks. C
programs verified in the VST program logic are, by composition with CompCert, guaranteed
to preserve their specifications even after compilation to assembly code [5]. Our work aims to
create an alternative toolchain for preserving guarantees across compilation that allows the
program compiler to be unverified or even incorrect, even for the program being compiled.
Relative to practical frameworks like Iris and VST, the program logics we use for this are
much less mature. We hope to extend our work to more practical logics and lower-level
target languages in the future, so that users of toolchains like VST can get guarantees about
compiled programs even in the face of incorrect compilation.

7 Conclusion

We showed how compiling proofs across program logics can empower proof engineers to
reason directly about source programs yet still obtain proofs about compiled programs – even
when they are incorrectly compiled. Our implementation PotPie and its two workflows, CC
and Tree, are formally verified in Coq, providing guarantees that compiled proofs not only
prove their respective specifications, but also are correctly related to the source proofs. Our
hope is to provide an alternative to relying on verified program compilers without sacrificing
important correctness guarantees of program specifications.

Future Work. In this work, we have not tackled the problem of control flow optimizations.
We believe the challenges of bridging abstraction levels and verifying control flow-modifying
optimizations are mostly orthogonal, and that the latter is out of our scope. In future work,
we would like to investigate ways our work could be composed with control flow optimizations.
For example, we may be able to leverage Kleene algebras with tests (KAT) [22] to reason
about control flow optimizations. An optimization pass could extract a proof subtree and
return the optimized subprogram, while preserving semantic equality via KAT. This approach
may even be able to leverage a Hoare triple’s preconditions to apply optimizations that
would be otherwise unsound [23]. For an example of KATs applied to existing compiler
optimizations, see existing work [22]. Beyond relaxing control flow restrictions, other next
steps include supporting more source languages and logics, supporting additional linking of
target-level proofs, implementing optimizing compilers, and bringing the benefits of proof
compilation to more practical frameworks.

We also have not addressed the issue of scalability. As we outlined in Section 1, that was
not in the scope of this paper. We do however have some ideas for expanding scalability. There
are two main issues of scale: (1) applying the methodology here to more complex programming
languages and program logics, and (2) how easily proof compilers can be implemented and
used. For more complex languages and logics, we are currently implementing a language
with pointers and an accompanying separation logic, as well as a stack language with stack
pointer expressions. This will give us a better idea of the effort involved to scale to more
languages. As for implementing and using proof compilers, we found that the Tree version
of the proof compiler was very easy to write, and the plugin consists of only 1.1k new LOC
as we saw in Section 5.1. We believe that significant parts of that code could have been
automatically generated as well, which would further decrease the time needed to create such
a proof compiler. We are excited to explore these directions, as well as others, in the future.
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inclusion of Redex features absent in Klein et al., such as the Kleene’s closure operator.
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1 Introduction

Redex [5] is a DSL built on top of the Racket programming language, which allows for the
mechanization of reduction semantics models and formal systems. It includes a variety of
tools for testing the models, including: unit testing; random testing of properties; and a
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The approach of Redex to semantics engineering involves a lightweight development of
models that focuses on a quick transition between specification of models and testing of their
properties. These virtues of Redex enable it as a useful tool with which to perform the first
steps of a formalization effort. Nonetheless, when a given model seems to be thoroughly
tested and mature, one still might need to prove its desired properties, since no amount of
testing can guarantee the absence of errors [3].

Redex does not offer tools for formal verification of a given model, and there are no
fully developed automatic tools to export the model into some proof assistant. Hence, for
verification purposes, it is common for a given model to be written again entirely into a proof
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assistant. Besides being a time-consuming process, another downside is that the translation
into the proof assistant may be guided just by an intuitive understanding of the behavior of
the mechanization in Redex. And that intuitive understanding could differ from the actual
behavior of the model in Redex. This is so, since the tool implements a particular meaning
of reduction semantics with evaluation contexts, offering an expressive language to the user
that includes several features, useful to express concepts like context-dependent syntactic
rules. The actual semantics of this language may not coincide with what the researcher
understands, as exposed in [4].

In this work, we propose to build a tool to automatically translate a given model in
Redex into an equivalent model in Coq, where the interpretation of the resulting model is
done through a shallow embedding in Coq of Redex’s actual semantics, as formalized in [4].
That is, we propose a Redex within Coq approach, where the pattern-matching engine is an
algorithm verified against a formal specification of the semantics of each pattern. In addition,
we propose to develop reasoning tools within Coq to help the user verify a model just in
terms of the same concepts from the Redex formalism. The approach does not limit the kind
of patterns that can be represented, nor the structure of the grammars that can be translated
(beyond Redex’s own limitations). The downside is that, in order to help the user verify
properties of a given model, we need to develop our own theory about patterns in Redex.

Summary of the Contributions

In this work we present a first step into the development of a tool to automate the translation
of a Redex model into a semantically equivalent model in Coq, and to provide automation to
the proof of essential properties of such models. The present work is heavily based on the
model of Redex’s semantics developed by [4] (which we will denote as RedexK). Essential to
RedexK are a specification of the process of matching between Redex patterns and terms,
and an algorithmic interpretation of this specification.

The contributions of the present work are:

We mechanize a modified version of RedexK in Coq. In the process, we develop a proof
of termination for the matching algorithm, which enables its mechanization into Coq as a
regular primitive recursion.

We modify RedexK to prepare it for the future addition of features, like the Kleene’s
closure operator, and the development of tactics to decide about properties of reduction
semantics models.

We prove soundness properties of the matching algorithm with respect to its specification.

We verify the correspondence between our modified specification of matching and the
original version presented in RedexK.

The reader is invited to download the accompanying source code from https://github.
com/Mallku2/redex2coq.

The remainder of this paper is structured as follows: §2 presents a brief introduction to
reduction semantics, as presented in Redex; §3 offers a general overview of our mechanization
in Coq; §4 presents the main soundness results proved within our mechanization; §5 discuss
about related work from the literature of the area; finally, §6 summarizes the results presented
in this paper and discusses future venues of research enabled by this first iteration of our tool.

https://github.com/Mallku2/redex2coq
https://github.com/Mallku2/redex2coq
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Figure 1 Definition of a language in Redex.

2 Redex

In this section, we present a brief introduction to Redex’s main concepts, limiting our attention
to the concepts that are relevant to our tool in this first iteration of the development. As a
running example, we show how to mechanize in Redex a fragment of λ-calculus with normal
order call-by-value reduction. For a better introduction to these topics, the reader can consult
[5, 7] and the original paper on which our mechanization is based [4].

Redex can be viewed as a particular implementation of Reduction Semantics with
Evaluation Contexts (RS), in which semantical aspects of computations are described as
relations over syntactic elements (terms) of the language.

As a simple introductory example, Figure 1 shows part of a specification for a call-
by-value λ-calculus. The grammar of the language is defined with the first command,
define−language. The language called lambda contains non-terminals e (representing any
λ-term), v (values; in this case only λ-abstractions), x (variables; defined with pattern
variable−not−otherwise−mentioned, meaning the symbols that are not used as literals
elsewhere in the language) and E (evaluation contexts, to be explained below). The right-hand
side of the productions of each non-terminal are shown to the right of the ::= symbol.

The productions of non-terminal E indicate that an evaluation context could be a single
hole, or a context of the form E’ e, where E’ is another evaluation context; or a context of the
form v E’. Note that the consequence of this definition is that we are imposing normal-order
reduction.

The reduction relation is defined with the keyword reduction−relation. It defines a
relation between terms (e), from the previously defined lambda language, consisting of a
single contraction, beta_contraction. This rule explains two things: how β-contractions
are done; and the order in which those contractions can occur, effectively imposing the
order of evaluation. The rule states that if a term can be decomposed into context E and
an abstraction application ((λ x e) v) (pattern (in−hole E ((λ x e) v))), then, the original
term reduces to the phrase resulting from plugging the result of substituting x by v in e into
the context E (pattern in−hole E (substitute e x v)).

As an example, consider the term ((λ w w) (λ y y)) (λ z z). In order to match the left-
hand side of the rule, it decomposes the term into context E = hole (λ z z), matching x with
w, e with w, and v with (λ y y). The result is the term (λ y y) (λ z z).

We won’t delve into the details of the substitute meta-function, but it will be useful
to explain one of its components: the list of free variables of a term, fv, partially shown
in Figure 1. This meta-function is defined using the define−metafunction keyword. The
signature of the function, fv : e → (x ...) , states that fv receives a λ-term, and returns a
list of 0 or more variables (pattern x ... , to be explained below). After the signature, we
have 2 equations explaining which are the free variables: in a term that is a single variable
x or an application e1 e2. For reasons of space, we do not show equations referring to the
cases where the term under consideration is a λ-abstraction.

ITP 2024
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Inductive term := lit_term : lit → term | list_term_c : list_term → term
| contxt_term : contxt → term

with list_term := nil_term_c : list_term | cons_term_c : term → list_term → list_term
with contxt := hole_contxt_c : contxt | list_contxt_c : list_contxt → contxt
with list_contxt := hd_contxt : contxt → list_term → list_contxt

| tail_contxt : term → list_contxt → list_contxt.

Figure 2 Language of terms.

The pattern p ... is called the Kleene’s closure of a pattern, and expresses the idea of
“zero or more terms” that match a given pattern p. For example, the first where clause of
the second equation imposes a condition that holds only when the expression fv e1 matches
the pattern x1 ..., meaning that fv e1 must evaluate to a list of 0 or more variables. Redex
binds that list with x1 ..., and we can use this pattern to refer to this list. In particular, in
this case we return x1 ... followed by the variables resulting from evaluating fv e2 (that is,
x2 ...). As a last comment, it is possible to express context-dependent restrictions by using
specific indexes: for example, pattern (x_1 x_1) only matches a list of two equal variables;
and pattern (x_!_ x_!_) only matches a list of two different variables.

3 Expressing Redex in Coq

In this section, we introduce the main ideas behind our implementation in Coq. Later, in §4,
we describe the main soundness properties that we mechanized.

Coq’s literals and constructions will be presented with Coq’s concrete syntax, using
listings or embedded in the text itself. Elements belonging to our meta-language (for example,
some variables quantified over terms or patterns) will be presented with usual Latex’s math
fonts. Further notation will be introduced when needed.

3.1 Language of Terms and Patterns
We begin the presentation by introducing our mechanized version of the language of terms
and patterns. We ask for some reasonable decidability properties about the language that
we use to describe a given reduction semantics model. These standard properties will be
useful to develop our mechanization in its present version, and more so in the prospective
future of the development.

3.1.1 Terms
The module type Symbols describes abstractly the atomic elements of the language of terms
and patterns: literals (lit), non-terminals (nonterm), and pattern variables var, which also
play the role of sub-indexes in the patterns. We require that these types are also instances of
the stdpp’s typeclass EqDecision [18]. This encompasses showing that definitional equality
between atomic elements is decidable. Details can be found in file patterns_terms.v.

In RedexK, terms are classified according to their structure, or if they act as a context or
not. According to their structure, terms are classified as atomic literals or with a binary-tree
structure. In our case, we will generalize the notion of “terms with structure”. One of the
most prominent features absent in RedexK is the Kleene’s closure operator, which matches
(or describes) lists of zero or more terms. In order to be able to include this feature in a
future iteration of our model, we begin by generalizing the notion of structured terms. We
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Inductive pat := lit_pat : lit → pat | hole_pat : pat
| list_pat_c : list_pat → pat | name_pat : var → pat → pat
| nt_pat : nonterm → pat | inhole_pat : pat → pat → pat
with list_pat := nil_pat_c : list_pat | cons_pat_c : pat → list_pat → list_pat.

Figure 3 Language of patterns.

will allow them to be lists of 0 or more terms. Non-empty lists can also be considered as
binary trees, but where the right sub-tree of a given node is always a list. We will enforce
that shape through types.

The language of terms is presented in Figure 2. A term consisting of a literal is built with
constructor lit_term, while structured terms are captured and enforced through a type,
list_term. Structured terms can be an empty list, built with nil_term_c (which would be
denoted simply as () in Redex), or a list with one term as its head, and some list as its tail,
using constructor cons_term_c. For example, a Redex pattern like (x x), for some literal x,
would be built as: cons_term_c (lit_term x) (cons_term_c (lit_term x) nil_term_c). Finally,
we define an injection into terms, list_term_c.

The other kind of terms considered in RedexK are contexts. Contexts include information
about where to find the hole, to help the algorithms of decomposition and plugging. That
information consists in a path from the root of the term (seen as a tree) to the leaf that
contains the hole. To that end, RedexK defines a notion of context that, if it is not just a
single hole, contains a tag indicating where to look for the hole: either into the left or the
right sub-tree of the context. We preserve the same idea, adapted to our presentation of
structured terms.

We introduce the type contxt, to represent and enforce through types the notion of
contexts. These contexts can be just a single hole (hole_contxt_c; denoted with the pattern
hole in Redex, as shown in §2) or a list of terms with some position marked with a hole. In
order to guarantee the presence of a hole into this last kind of contexts, we introduce the type
list_contxt. These contexts can point into the first position of a given list (hd_contxt;
like in (hole (λ y y))) or the tail (tail_contxt; like in ((λ w w) hole)). Finally, we have
the injections from list_contxt into contxt (list_contxt_c), and from contxt into term
(contxt_term). These injections, naturally, are used later as coercions.

3.1.2 Patterns
As mentioned in §2, Redex offers a language of patterns with enough expressive power

to state context-dependent restrictions. We mechanize the same language of patterns as
presented in RedexK, with the required change to accommodate our generalization done
to structured terms, as explained in the previous sub-section. The language of patterns is
presented in Figure 3.

Pattern lit_pat l matches only a single literal l . Pattern hole_pat matches a context
that is just a single hole. In order to describe the new category of structured terms that we
presented in the previous subsection, we add a new category of patterns enforced through
type list_pat. From this category of patterns, pattern nil_pat_c matches a list of 0 terms,
while pattern cons_pat_c phd ptl matches a list of terms, whose first term matches pattern
phd, and whose tail matches the pattern ptl. Finally, we have an injection from this category
of patterns into the type pat: list_pat_c.

ITP 2024
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Context-dependent restrictions are imposed through pattern name_pat x p. This pattern
matches a term t that, in turn, must match pattern p. As a result, the pattern name_pat x
p introduces a context-dependent restriction in the form of a binding, that assigns pattern
variable x to term t. Data-structures to keep track of this information will be introduced
later, but for the moment, just consider that during matching some structures are used
to keep track of all of this context-dependent restrictions that have the form of a binding
between a pattern variable and a term. If, at the moment of introducing the binding to x ,
there exists another binding for the same variable but with respect to a term different than t,
the whole matching fails. Note that this semantics accounts for the behavior of the pattern
(x_1 x_1), mentioned in §2. Also, a pattern like (x_!_ x_!_), also mentioned in §2, could
be described in terms of similar concepts, though it is currently not supported in RedexK
nor within our mechanization.

Pattern nt_pat e matches a term t, if there exists a production from non-terminal e,
whose right-hand-side is a pattern p that matches term t.

Finally, pattern inhole_pat pc ph matches some term t, if t can be decomposed between
some context C , that matches pattern pc, and some term t’, that matches pattern ph. It
should be possible to plug t’ into context C , recovering the original term t. Note that the
information contained in the tag of each kind of non-empty context, that indicates where to
find the hole, helps in this process: at each step the process looks, either, into the head of
the context or into its tail.

3.1.3 Decidability of predicates about terms and patterns
We want to put particular emphasis on the development of tools to recognize the decidability
of predicates about terms and patterns. This could serve as a good foundation for the future
development of tactics to help the user automate as much as possible the process of proving
arbitrary statements about the user’s reduction semantics models.

As a natural consequence of our first assumptions about the atomic elements of the
languages of terms and patterns, presented in §3.1.1, we can also prove decidability results
about definitional equalities among terms and patterns. Another straightforward consequence
involves the decidability of definitional equalities between values of the many data-structures
involved in the process of matching. Future efforts will be put in developing further this
minimal theory about decidability (see §6).

3.1.4 Grammars
The notion of grammar in Redex, as presented in §2, is modeled in RedexK as a finite mapping
between non-terminals and sets of patterns. Our intention is not to force some particular
representation for grammars, beyond the previous description. As a first step, we axiomatize
some assumptions about grammars through a module type. We begin by defining a production
of the grammar, simply, as a pair inhabiting nonterm ∗ pat, and we define a productions
type as a list of type production. We also ask for the existence of computational type
grammar, a constructor for grammars (inhabiting productions → grammar), the possibility
of testing membership of a production with respect to a grammar, and to be possible to
remove a production from a grammar (remove_prod). We ask for some notion of length of
grammars, and that remove_prod actually affects that length in the expected way. This
will be useful to guarantee the termination property of the matching algorithm (see §3.2.1).
Finally, we ask for some reasonable decidability properties for these types and operations:
decidability of definitional equalities among values of the previous types, and, naturally, for
the testing of membership of a production with respect to a given grammar.
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Abstracting these previous types and properties in a module type (Grammar), could
serve in the future when developing further our theory of decidability for the notion of
RS implemented in Redex. As a simple example, separating the type productions from
the actual definition of the type grammar, allows for the encapsulation of properties in
the type grammar itself, that specifies something about the inhabitants of productions.
Some decidability results depend on a grammar whose productions are restricted in some
particular way.1

For this first iteration, we provide an instantiation of the previous module type with a
grammar implemented using a list of productions: module GrammarLists from grammar.v. Here,
the type grammar does not impose new properties over the inhabitants of type productions.
We also provide a minimal theory to reason about grammars as lists, that helps in proving the
required termination and soundness properties of the matching algorithm. This is required
since our previous axiomatization of grammars, through module type Grammar, is not strong
enough to prove every desired property of our algorithm. A goal for a next iteration would be
to take advantage of the experience with this development, and strengthen our axiomatization
of grammars.

3.2 Matching and Decomposition
The first challenge we encountered when trying to mechanize RedexK, was finding a primitive
recursive algorithm to express matching and decomposition. The original algorithm from
RedexK is not a primitive recursion, for reasons that will be clear below. However, the
theory developed in the paper to check the soundness of this algorithm and to characterize
the inputs over which it converges to a result, helped us to recapture the matching and
decomposition process as a well-founded recursion.

3.2.1 Well-founded Relation Over the Domain of
Matching/Decomposition

In Coq, a well-founded recursion is presented as a primitive recursion over the evidence of
accessibility of a given element (from the domain of the well-founded recursion), with respect
to a given well-founded relation R. That is, it is a primitive recursion over the proof of a
statement that asserts that, from a given actual parameter x over which we are evaluating a
function, there is only a finite quantity of elements which are smaller than x, according to
relation R. These smaller elements are the ones over which the function can be evaluated
recursively.

The actual steps of matching/decomposition will be presented in detail below. But,
for the moment, in pursuing a well-founded recursive definition for the matching/decom-
position process, let us observe that, for a given grammar G , pattern p and term t, the
matching/decomposition of t with p involves, either:
1. Steps where the input term t is decomposed or consumed.
2. Steps where there is no input consumption, but, either:

a. The pattern p is decomposed or consumed.
b. The productions of the grammar G are considered, searching for a suitable pattern

that allows matching to proceed.

1 For example, while the general language intersection problem for context-free grammars (CFG) is
non-decidable, the intersection problem between a regular CFG and a non-recursive CFG is decidable
[9].
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Step 1 corresponds, for example, to the case where t is a list of terms of the form
cons_term_c thd ttl, and p is a list of patterns of the form cons_pat_c phd ptl. Here, the
root of each tree (t and p) match, and the next step involves checking if thd matches pattern
phd, and if ttl matches ptl.

Step 2a corresponds, for example, to the case where pattern p has the form name_pat
x p’: as described in §3.1.2, the next step in matching/decomposition involves checking if
pattern p’ matches t. Here, the step does not involve consumption of input term t, but it
does involve a recursive call to matching/decomposition over a proper sub-pattern of p.

Finally, step 2b corresponds to the case of pattern nt_pat n, which implies looking for
productions of n in G that match t. Here, there is no reduction of terms and this process
does not neccessarily imply the reduction of patterns.

If not because for the pattern nt_pat, it could be easily argued that the process previously
described is indeed an algorithm.2 Now, if we do take into account nt_pat patterns,
termination in the general case no longer holds. In particular, non-termination can be
observed with a left-recursive grammar G and a given non-terminal n that witnesses the
left-recursion of G . Matching pattern nt_pat n, following the described process, could get
stuck repeating the step of searching into the productions of n, without any consumption of
input: from pattern nt_pat n we could reach to the same pattern nt_pat n.

The previous problem with left-recursion is described in [4]. There, the property of
left-recursion is captured by providing a relation →G that order patterns as they appear
during the previously described phase of the matching process when the input term is not
being consumed, but there is a decomposition of a pattern and/or searching into the grammar,
looking for a proper production to continue the matching. Then, a left-recursive grammar
would make the chains of the previous relation to contain a repeated pattern.

Then, if, for a non-left-recursive grammar G it is the case that p ̸→+
G p for any

pattern p (where →+
G is the transitive closure of →G), it must be the case that also

nt_pat n ̸→+
G nt_pat n, for a non-terminal n from G . This means that, when searching for

productions of n in G , and as long as the matching/decomposition is in the stage captured
by →G , it should be possible to discard the productions from the grammar G being tested.

The previous observation helps us argue that, provided that G is non-left-recursive, when
the matching process enters the stage of non-consumption of input, this phase will eventually
finalize: either, the pattern under consideration is totally decomposed and/or we run out
of productions from G . In what follows, we will assume only non-left-recursive grammars.
This does not impose a limitation over our model of Redex, since it only allows such kind of
grammars.

We will exploit the previous to build a well-founded relation over the domain of our
matching/decomposition function. The technique that we will use will consist in, first,
modeling each phase in isolation through a particular relation. There will be a relation <t:
term → term → Prop explaining what happens to the input when it is being consumed, and
a relation <p×g : pat × grammar → pat × grammar → Prop, explaining what happens to the
pattern and the grammar when there is no consumption of input. We will also prove the well-
foundedness of each relation. The final well-founded relation for the matching/decomposition
function will be the lexicographic product of the previous relations, a well-known method to
build new well-founded relations out of other such relations [10]. We will parameterize this
relation by the original grammar, to be able to recover the original productions when needed
(see §3.2.4 for details). For a given grammar g , we will denote this last relation with <g

t×p×g.
Note that its type will be term × pat × grammar → term × pat × grammar → Prop.

2 Algorithm as an effective procedure that also terminates on every input.
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(pc, G) <p×g (inhole_pat pc ph, G) (ph, G) <p×g (inhole_pat pc ph, G)

(p, G) <p×g (name_pat x p, G)
p ∈ G(n) G’ = G \ (n, p)
(p, G’) <p×g (nt_pat n, G)

Figure 4 Consumption of pattern and productions.

For a tuple (t, p, G) to be related with another smaller tuple (t’, p’, G’), according to
<g

t×p×g, it must happen that t’ <t t ∨ (t’ = t ∧ (p’, G’) <p×g (p, G)). This expresses the
situations where there is actual progress in the matching/decomposition algorithm towards
a result: either there is consumption of input or the phase of production searching and
decomposition of the pattern progresses towards its completion. Note that this definition
shows that the lexicographic product is a more general relation, that contains chains of
tuples that do not necessarily model what happens during matching and decomposition: if
t’ <t t, then (t’, p’, G’) <g

t×p×g (t, p, G), for some grammar g , regardless of what (p’, G’)
and (p, G) actually are. Later, when presenting the relations that form this lexicographic
product, we will also specify which are the actual chains that we will consider when modeling
the process of matching and decomposition. We will refer to this last kind of chains as the
chains of interest.

3.2.2 Input consumption

We define the relation <t to be exactly <subt, where <subt will denote the relation subterm_rel
: term → term → Prop, that links a term with each of its sub-terms. This describes an
order that coincides with that in which the input is consumed, for the actual specification
of matching and decomposition. This does not avoid for more exotic patterns, that could
be introduced in the future, to have a different behavior on input consumption. Hence, the
distinction between what constitutes a relation like <t and what simply is <subt.

3.2.3 Pattern and production consumption

The specification of <p×g, shown in Figure 4, matches the cases 2a and 2b described in §3.2.1.
Recall that, in this case, the algorithm entered a phase where the pattern is being decomposed
or productions from some non-terminal are being tested, to see if matching/decomposition
can continue. Matching a term t with a pattern of the form inhole_pat pc ph, means
trying to decompose the term between some context that matches pattern pc, and some
sub-term of t that matches pattern ph. In doing so, the first step involves a decomposition
process (to be specified later in §3.2.5), that begins working over the whole term t, and with
respect to just the sub-pattern pc. Hence, this step does not involve input consumption, but
it does involve considering a reduced pattern: pc. We just capture this simple fact through
<p×g, by stating that (pc, G) <p×g (inhole_pat pc ph, G) holds, for any grammar G . Note
that we preserve the grammar.

In the particular case that pc matches hole_contxt_c, then there is no actual decom-
position of the term t. This means that, when looking for said sub-term of t that matches
pattern ph, we will still being considering the whole input term t. Again, we just capture this
simple fact by stating that (ph, G) <p×g (inhole_pat pc ph, G) holds, for any grammar G .
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p ∈ G’(n) G ⊢ t : pG’ \ (n, p) | b
G ⊢ t : (nt_pat n)G’ | ⊘

G ⊢ thd : (phd)G | bhd G ⊢ ttl : (ptl)G | btl

G ⊢ cons_term_c thd ttl : (cons_pat_c phd ptl)G’ | bhd ⊔ btl

G ⊢ t = C [[th]] : (pc)G’ | bc th <subt t G ⊢ th : (ph)G | bh

G ⊢ t : (inhole_pat pc ph)G’ | bc ⊔ bh

Figure 5 Generalized specification of matching.

The case for the pattern name_pat x p can be explained on the same basis as with the
previous cases.

Finally, the last case refers to the pattern nt_pat n: it involves considering each pro-
duction of non-terminal n in G (which are denoted as G(n)). Here it is assumed that G
contains the correct set of productions that remain to be tested (an invariant property about
G through our algorithm). Then, we continue the process considering a grammar G’ that
contains every production from G , except for (n, p): the already considered production of
non-terminal n with right-hand-side p. We denote it stating that G’ equals the expression
G \ (n, p).

3.2.4 Specification of matching

We now explain our specification for matching and decomposition, which is a slight general-
ization from that of RedexK [4]. In the original specification, the judgment about matching
has the form G ⊢ t : p | b, stating that term t matches pattern p, under the productions from
grammar G , producing the bindings b (which could be an empty set of bindings, denoted
with ⊘). A seemingly obvious fact is that the non-terminals that may appear on pattern
p will be interpreted in terms of the productions from G . In our presentation, we relax
this assumption, and allow the non-terminals to be interpreted in terms of some arbitrary
grammar G’, which in practice will be a subset of G .

Therefore, our judgment is of the form G ⊢ t : pG’ | b, with the particular difference
that, initially, we interpret the non-terminals from p with grammar G’. Only when input
consumption begins, we restore the original grammar G . Figure 5 presents a simplified
fragment of our formal system. Following a top-down order, the first rule applies when a
term t matches a pattern nt_pat n, when the non-terminals of this pattern (in this case,
just n) are initially interpreted in terms of the productions of G’: then, that matching is
successful if there exists some p ∈ G’(n), such that t matches p, when its non-terminals
are initially interpreted under the productions from the grammar G’ \ (n, p). Recall that
this means that this last grammar will be used as long as there is no input consumption, or
there is no other occurrence of a pattern nt_pat. Again, we are following the chains from
<p×g. Also, the non-left-recursivity of the grammars being considered guarantees that this
replacement of the grammars is semantics-preserving: we will not need another production
from n, as long as there is no input consumption. Finally, note that this match does not
produce bindings.
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G ⊢ thd = C [[t’hd]] : (phd)G | bhd G ⊢ ttl : (ptl)G | btl

G ⊢ cons_term_c thd ttl = (hd_contxt C ttl)[[t’hd]] : (cons_pat_c phd ptl)G’ | bhd ⊔ btl

G ⊢ t = C c[[tc]] : (pc)G’ | bc tc <subt t G ⊢ tc = Ch[[th]] : (ph)G | bh

G ⊢ t = (C c + + Ch)[[th]] : (inhole_pat pc ph)G’ | bc ⊔ bh

Figure 6 Generalized specification of decomposition.

The second rule can be understood in terms of the previously introduced concepts. Note
that, for each recursive proof of matching over sub-terms and sub-patterns, we re-install the
original grammar G . We denote with ⊔ the union of bindings, which is undefined if the same
name is bound to different terms.

The last case in Figure 5 refers to the matching of a term t with a pattern of the form
inhole_pat pc ph. This operation is successful when we can decompose term t between
some context that matches pattern pc, and some sub-term, that matches pattern ph. In
order to fully formalize what this matching means, we need to explain what decomposition
means. RedexK specifies this notion through another formal system, whose adaptation to our
work we present in the following sub-section. The original system allows us to build proofs
for judgments of the form G ⊢ t = C [[t’]] : p | b, meaning that we can decompose term t,
between some context C , that matches pattern p, and some sub-term t’. The decomposition
produces bindings b, and the non-terminals from pattern p are interpreted through the
productions present in grammar G . In our case, we modify this judgment by generalizing
it in the same way done for the matching judgment: G ⊢ t = C [[t’]] : pG’ | b, including the
possible interpretation of non-terminals in p, initially, using grammar G’.

Returning to the case about inhole_pat patterns in Figure 5, note that our intention
is to distinguish the case where the decomposition step actually consumes some portion
from t (shown in the rule), from the case where it does not (not shown in Figure 5). The
first situation (described in the rule for inhole_pat) means that context C is not simply
a hole, and th is an actual proper sub-term of t: i.e., th <subt t. Also, note that the
decomposition is proved interpreting (initially) the non-terminals from pc with production
from the arbitrary grammar G’ ((pc)G’). And the proof of the matching between th and ph

is done interpreting the non-terminals of this last pattern with productions from the original
grammar G ((pc)G). On the contrary, when the decomposition step does not consume some
input (pattern pc matches against a hole, and the resulting term th is exactly t), the proof
of the matching between th and ph is done considering the arbitrary grammar G’.

3.2.5 Specification of decomposition
The final part of the specification concerns the decomposition judgment required for the
inhole_pat pattern. We already mentioned what it does and how it is generalized; we
proceed to explain the relevant rules listed in Figure 6.

The first rule explains the decomposition of a list of terms cons_term_c thd ttl, between
a context that matches a list of patterns cons_pat_c phd ptl, and some sub-term. In the
particular case of the first rule, the hole of the resulting context is pointing to somewhere
in the head of the list of terms. This information is indicated by the constructor of the
resulting context: hd_contxt C ttl, where C is some context that must match pattern phd,
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Definition binding := var ∗ term.
Inductive decom_ev : term → Set :=

| empty_d_ev : forall (t : term), decom_ev t
| nonempty_d_ev : forall t (c : contxt) subt,

{subt = t ∧ c = hole_contxt_c} + {subterm_rel subt t} → decom_ev t.
Inductive mtch_ev : term → Set :=

mtch_pair : forall t, decom_ev t → list binding → mtch_ev t.

Figure 7 Mechanization of decomposition and matching results.

as indicated in the premise of the inference rule. Note that the whole premise is stating that
the decomposition occurs in the head of the list of terms (thd), and the resulting sub-term
is t’hd. Then, the side-condition from the inference rule states that the tail of the original
input term, ttl, must match the tail of the list of patterns ptl. Finally, note that in the
decomposition through sub-pattern phd, and the matching sub-pattern ptl, the non-terminals
of these patterns are interpreted in terms of productions from the original grammar, G .

With respect to the remaining rule, the case of the inhole_pat pattern, it handles
the matching of pattern inhole_pat (inhole_pat pc ph) ph′ with some term t. The
semantics of this case involves a first step of decomposition of t between some context that
matches sub-pattern inhole_pat pc ph, and some sub-term that matches sub-pattern ph′ .
In the rule shown in Figure 6, we are describing what it means, in this situations, that
first step of decomposing t in terms of a context that matches pattern inhole_pat pc ph.
Since the whole pattern must match some context, it means that, both, pc and ph, are
patterns describing contexts. Note that we distinguish the case where pc produces an empty
context, from the case where it does not (not shown in Figure 6). This distinction allows us
to recognize whether we should interpret non-terminals from patterns through the original
grammar G or the arbitrary grammar G’.

The last piece of complexity of the rule for the inhole_pat pattern resides in the actual
context that results from the decomposition. Here, the authors of RedexK, expressed this
context as the result of plugging one of the obtained contexts within the other, denoted
with the expression C c + + Ch: this represents the context obtained by plugging context Ch

within the hole of context C c, following the information contained in the constructor of this
last context to find its actual hole. For reasons of space we elide this definition, though it
presents no surprises.

3.2.6 Matching and decomposition algorithm

We close this section presenting a simplified description of the matching and decomposition
algorithm adapted for its mechanization in Coq. We remind the reader that this algorithm
is just a modification of the one proposed for RedexK [4].

The previous specification of the algorithm cannot be used directly to derive an actual
effective procedure to compute matching and decomposition. In particular, the rules for
decomposition of lists of terms (second and third rules from Figure 6) do not suggest effective
meanings to determine whether to decompose on the head, and match on the tail, or vice
versa. To solve this issue and the complexity problem that could arise from trying to naively
perform both kinds of decomposition simultaneously, the algorithm developed for RedexK
performs matching and decomposition simultaneously, sharing intermediate results.



M. Soldevila, R. Ribeiro, and B. Ziliani 34:13

Supporting Data-Structures

In Figure 7 we show some of the implemented data-structures used to represent the results
returned by RedexK’s algorithm. The result of a matching/decomposition of a term t (with
some given pattern) will be represented through a value of type mtch_ev t. Making the type
dependent on t is done for soundness checking.

For reasons of brevity, when presenting the algorithm we will avoid the actual concrete
syntax from our mechanization. A value of type mtch_ev t will be denoted as (d , b), where
d is a value of type decom_ev t (explained below), and b is a list of bindings (also shown
in Figure 7). For a value of the list type mtch_powset_ev t, we will denote it decorating it
with its dependence on the value t: [(d , b), ...]t

Values inhabiting type decom_ev t represent a decomposition of a given term t, between
a context and a sub-term. We include in the value some evidence of the soundness of the
decomposition: a sub-term subt extracted in the decomposition is either t itself, or a proper
sub-term of t .

Since a value of type mtch_ev t could represent a single match or a single decomposition,
following [4] we distinguish an actual match using an empty decomposition empty_d_ev t.
Otherwise, a decomposition is represented through the value nonempty_d_ev t C subt ev , for
context C , sub-term subt and soundness evidence ev . We denote such values as (C , subt)ev

t .

Matching and Decomposition Algorithm as a Least-Fixed-Point

We capture the intended matching/decomposition algorithm as the least fixed-point of a
generator function or functional of the following type:

forall (g1 : grammar) (tpg1 : (term ∗ pat ∗ grammar)),
(forall tpg2 : (term ∗ pat ∗ grammar),

matching_tuple_order g1 tpg2 tpg1 → list (mtch_ev (fst tpg2)))
→ list (mtch_ev (fst tpg1))

The family of generator functions Mev_gen of this type is parameterized over grammars
and tuples of terms and patterns. Also, these functions receive a candidate of matching/-
decomposition that they will improve: they will construct the result by optionally calling
the candidate over tuples that are provably smaller than the given tuple tpg1, according to
the well-founded order (matching_tuple_order g1 tpg2 tpg1, see §3.2.1). Hence, Mev_gen
will build a function that performs the matching indicated in tpg1, using, if necessary, a
candidate function that performs matching for tuples smaller than tpg1.

Figure 8 shows 2 of the equations that capture Mev_gen. The first equation explains
the matching and/or decomposition of a list of terms (cons thd ttl) with a list of patterns
(cons phd ptl). We describe by comprehension the list of results. Note that, to explain this
case, we need to consider the approximation function Map that Mev_gen receives as its last
parameter. We begin by using Map to compute matching and decomposition for smaller
tuples: tphd = (thd, phd, g1) and tptl = (ttl, ptl, g1). Note that, given that these tuples
represent a matching/decomposition over a proper sub-term of the input term, we consider
the original grammar g1 (first parameter of Mev_gen). In order to be able to fully evaluate
Map, we need to build proofs lthd and lttl of type tphd <

g1
t×p×g tpcons and tptl <

g1
t×p×g tpcons,

respectively, where tpcons is the original tuple over which we evaluate Mev_gen. Then, for
each value of type mtch_ev thd and mtch_ev ttl of the results obtained from evaluating Map,
the algorithm queries if they are decompositions or not, and if it is possible to combine these
results, using the helper function select.
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Mev_gen(g1, (t, p, g2), Map) = [(d , b) | d ∈ select(thd, dhd, ttl, d tl, t, sub),
sub : subterms t thd ttl, b = bhd ⊔ btl,

(dhd, bhd)thd
∈ Map(tphd, lthd), (d tl, btl)ttl

∈ Map(tptl, lttl),
lthd : tphd <

g1
t×p×g tpcons, lttl : tptl <

g1
t×p×g tpcons,

tpcons = (t, p, g2), tphd = (thd, phd, g1), tptl = (ttl, ptl, g1)]t
with t = cons thd ttl p = cons phd ptl

Mev_gen(g1, (t, p, g2), Map) = [(d , b) | d = combine (t, C , tc, ev , dh),
b = bc ⊔ bh, (dh, bh)tc ∈ Map(tph, lth),
lth : tph <

g1
t×p×g tpinhole, tph = (tc, ph, gh),

gh according to Figure 5,

((C , tc)ev
t , bc)t ∈ Map(tpc, ltc), ltc : tpc <

g1
t×p×g tpinhole,

tpinhole = (t, p, g2), tpc = (t, pc, g2)]t
with p = in-hole pc ph

Figure 8 Generator function for the matching and decomposition algorithm.

The original select helper function from RedexK receives as parameters thd, dhd, ttl and
d tl. It analyses dhd and d tl: if none of them represent actual decompositions, then the whole
operation will be considered just a matching of the original list of terms and select must build
an empty decomposition of the proper type to represent this. If only dhd is a decomposition,
then the whole operation is interpreted as a decomposition of the original list of terms on
the head of the list. In that case, select builds a value of type decom_ev (cons thd ttl).

The remaining equation, that of the in-hole pattern, can be understood on the same
basis as the previous one, requiring only some explanation for the auxiliary function combine:
it helps in deciding if the result is a decomposition against pattern in-hole, or if it is just a
match against said pattern, depending on whether dh is a decomposition or not.

Finally, we define the desired matching/decomposition algorithm, Mev, as the least
fixed-point of the previous generator function. For reasons of space, we do not show its
definition, but it presents no surprises. The resulting implementation can be seen on file
./match_impl.v.

3.3 Semantics for Context-Sensitive Reduction Rules

The last component of RedexK consists in a semantics for context-sensitive reduction rules,
with which we define semantics relations in Redex. The proposed semantics makes use of
the introduced notion of matching, to define a new formal system that explains what it
means for a given term to be reduced, following a given semantics rule. We have mechanized
the previous formal system, though, for reasons of space, we do not introduce it here in
detail. The reader is invited to look at the mechanization of this formal system, in module
./reduction.v.
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Theorem completeness_Mev : ∀ G1 G2 p t sub_t b C,
(G1 |− t : p, G2 | b → In (mtch_pair t (empty_d_ev t) b) (M_ev G1 (t, (p, G2))))
∧
(G1 |− t1 = C [ t2 ] : p , G2 | b → ∃ (ev_decom : {sub_t = t} + {subterm_rel sub_t t}),

In (mtch_pair t (nonempty_d_ev t C sub_t ev_decom) b) (M_ev G1 (t, (p, G2)))).

Theorem from_orig : ∀ G t p b,
non_left_recursive_grammar →
G |− t : p | b → G |− t : p, G | b

with from_orig_decomp : ∀ G C t1 t2 p b,
non_left_recursive_grammar →
G |− t1 = C [ t2 ] : p | b → G |− t1 = C [ t2 ] : p , G | b.

Figure 9 The statement of completeness of Mev and completeness of our formal systems, in Coq.

3.4 Extra Material

In the README.md file of the repository the interested reader will find the correspondence
between the source code and this paper. Additionally, besides from the results shown here,
we included a mechanization of a lambda-calculus with normal-order reduction similar to
the one presented in §2. It serves mainly to showcase the actual capabilities of Redex that
are mechanized in the present version of the tool, and how to invoke them to implement
a reduction-semantics model. We note that the performance of our implementation of
the matching/decomposition algorithm is subpar. In particular, the resources in time and
space consumed for matching grow too fast to be able to test even some simple patterns.
The amount of information built and carried within the algorithm to guarantee soundness
properties could be playing some part, and it could be addressed by code extraction, or by
the implementation within Coq of a simpler pattern-matching engine, in correspondence with
the verified version. Though, it is an issue we plan to better study and tackle in a future
iteration of the tool. We note that this is not a problem observed in Redex itself.

4 Soundness and Completeness of Matching

In the original paper of RedexK the authors prove the correspondence between the
algorithm and its specification. In our mechanization we reproduced this result, for the
least-fixed-point of Mev_gen g (t, p, g’) and our extended definition of matching (§3.2.4).
In what follows, Mev g (t, p, g’) represents the least-fixed-point of Mev_gen g (t, p, g’).
Naturally, for a given grammar g , the original intention of matching and decomposition
corresponds to Mev g (t, p, g). We show the statement of completeness of the algorithm in
Figure 9. Note that we represent and manipulate results returned from Mev through Coq’s
standard library implementation of lists. Also, the shape of the tuples of terms, patterns
and grammars, is the result of the way in which we build our lexicographic product: the
product between a relation with domain term, and a relation with domain pat × grammar.
Completeness can be proved by rule induction on the evidences of match and decomposition.

The converse, the soundness property, is not shown, but it is the expected converse of
the completeness statement. The proof presents no surprises: since we have a well-founded
recursion over the tuples from term × pat × grammar, we also have an induction principle
to reason over them.
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We also verified the correspondence between our specifications and the original formal
systems from the paper. We can’t do it for the general case: we followed the proposal
of the authors of RedexK, explained in §3.2, and only consider those grammars that are
non-left-recursive. In Coq, we name this predicate non_left_recursive_grammar (see file
wf_rel.v).

We show in Figure 9 the completeness result mapping our formal systems with the original
ones from RedexK. Note the hypothesis non_left_recursive_grammar, which asks for every
grammar to be non-left-recursive. We do not parameterize this predicate over a specific
grammar, since, during the proofs, we may obtain several different grammars by removing
productions from the original grammar, and we still need to show that these “intermediate”
grammars are non-left-recursive. A more elegant solution could be, first, to prove that by
removing a production from a non-left-recursive grammar, we still get a non-left-recursive
grammar; and, second, to parameterize non_left_recursive_grammar over G. We left this
as a future work.

For the converse, soundness, we need to restrict the result to those grammars G’ (over which
we begin interpreting the non-terminals) which are smaller or equal (gleq) to the original
one G: that is, every production in G’ is also in G (see ./verification/match_spec_equiv.v
for more details).

5 Related Work

Redex-Plus [19] is, to the best of our knowledge, the only tool proposed to export Redex
models to proof assistants. The approach followed involves translating a given model, first,
into an intermediate representation where some elements of the model are described through
types. For example, non-terminals of a grammar are captured as types, and the right-hand-
side of each production is captured as a constructor of the corresponding type. Having
an intermediate representation of a Redex model allows Redex-Plus to export to several
different targets: Agda, Coq, Beluga and SMT-LIB. It can handle definitions of languages,
meta-functions and formal systems.

The downside of Redex-Plus approach is that it limits the scope of Redex patterns that
can be supported, and restricts the structure of the grammars that are allowed. From its
reference manual: “In general, only patterns that can be represented in proof assistants
are supported”. In particular, it is not possible to have overlapping non-terminals: that is,
different non-terminals that can generate the same phrases (for example, a syntactic category
value as a sub-category of terms). The reason is that, since each non-terminal is represented
through a type, a given “phrase” (value) cannot inhabit such two different non-terminals
(types).

In our case, every pattern inhabits the same “pattern” type, and everything about their
semantics (pattern matching) is mechanized within Coq itself. This approach does not limit
the kind of Redex patterns or structure of grammars that can be represented within Coq.
Nonetheless, the technique employed by Redex-Plus is an interesting take at representing
elements of a Redex model into a proof assistant, that should be able to better leverage the
type system of the target proof assistant.

Another difference with Redex-Plus is that its translation and representation of patterns
in the target proof assistant involves an informal Racket implementation. The implementation
is not verified against some formal specification of the semantics of patterns. In [19] it is
argued that the patterns supported in the current version have a well-understood semantics,
and that it should be possible to accurately translate them into proof assistants. This seems
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to hold for the subset of patterns currently supported by Redex-Plus, though it remains to
be seen what would happen when more complex features are added. In our case, we follow
the concerns raised in [4] and we offer a pattern-matching algorithm mechanically verified
against its specification. And, since we implement Redex itself within Coq, the translation
between a Redex pattern and its representation within Coq is a straightforward process.

CoLoR [2] is a mechanization in Coq of the theory of well-founded rewriting relations over
the set of first-order terms, applied to the automatic verification of termination certificates.
It presents a formalization of several fundamental concepts of rewriting theory, and the
mechanization of several results and techniques used by termination provers. Its notion of
terms includes first-order terms with symbols of fixed and varyadic arity, strings, and simply
typed lambda terms. CoLoR does not implement a language of patterns offering support for
context-sensitive restrictions, something that is ubiquitous in a Redex mechanization. Also,
Redex is not focused just on well-founded rewriting relations.

Sieczkowski et. al present in [13] a verified implementation in Coq of the technique of
refocusing, with which it is possible to extract abstract machines from a specification of a
reduction semantics that satisfies certain characteristics. In order to characterize a reduction
semantics that can be automatically refocused, the authors provide an axiomatization cap-
turing the sufficient conditions. Hence, the focus is put in allowing the representation of a
certain class of reduction semantics rather than allowing for the mechanization of arbitrary
models, as is the case with Redex. Nonetheless, future development of our tool could take
advantage of this library, since testing of Redex’s models that are proved to be deterministic
could make use of an optimization as refocusing, to extract interpreters that run efficiently
in comparison with the expensive computation model of reduction semantics.

Matching logic is a formalism used to specify logical systems and their properties. It is
mechanized in Coq in [1], including its syntax, semantics, formal system and the corresponding
soundness result. At its heart, matching logic has a notion of patterns and pattern matching.
Redex could be explained as a matching logic, with formulas that represent Redex’s patterns
to capture languages and relations, and whose model refer to the terms (or structures
containing terms) that match against these patterns. While this representation could be of
interest for the purpose of studying the underlying semantics of Redex, this is not satisfactory
for the purpose of providing users with a direct explanation in Coq of their mechanization
in Redex.

6 Conclusion

We adapted RedexK [4] to be able to mechanize it into Coq. In particular, we obtained a
primitive recursive expression of its matching algorithm; we introduced modifications to its
language of terms and patterns, to better adapt it to the future inclusion of features of Redex
absent in RedexK; we reproduced the soundness results shown in [4], but adapted to our
mechanization, while also verifying the expected correspondence between our adapted formal
systems, that capture matching and decomposition, and the originals from the cited work.

A natural next step in our development could consist in the addition of automatic routines
to transpile a Redex model into an equivalent model in Coq. In order to be practical, we
also must extend the language with capabilities of Redex absent in RedexK.

Finally, the user can specify properties expressed using judgments about matching, or
in terms of the results of the matching algorithm. To prove these properties, the user have
some results at hand (for example, soundness and completeness of the algorithm, and of our
formal specification of matching with regard to the original specification), but a richer theory
is in order.
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Abstract
A recent breakthrough in computer-assisted mathematics showed that every set of 30 points in the
plane in general position (i.e., no three points on a common line) contains an empty convex hexagon.
Heule and Scheucher solved this problem with a combination of geometric insights and automated
reasoning techniques by constructing CNF formulas ϕn, with O(n4) clauses, such that if ϕn is
unsatisfiable then every set of n points in general position must contain an empty convex hexagon.
An unsatisfiability proof for n = 30 was then found with a SAT solver using 17 300 CPU hours of
parallel computation. In this paper, we formalize and verify this result in the Lean theorem prover.
Our formalization covers ideas in discrete computational geometry and SAT encoding techniques
by introducing a framework that connects geometric objects to propositional assignments. We see
this as a key step towards the formal verification of other SAT-based results in geometry, since the
abstractions we use have been successfully applied to similar problems. Overall, we hope that our
work sets a new standard for the verification of geometry problems relying on extensive computation,
and that it increases the trust the mathematical community places in computer-assisted proofs.
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1 Introduction

Mathematicians are often rightfully skeptical of proofs that rely on extensive computation
(e.g., the controversy around the four color theorem [42]). Nonetheless, many mathematically-
interesting theorems have been resolved with the help of computers. SAT solving in particular
has been a powerful tool for mathematics, successfully resolving Keller’s conjecture [2], the
packing chromatic number of the infinite grid [35], the Pythagorean triples problem [20],
Lam’s problem [3], and one case of the Erdős discrepancy conjecture [25]. Notably, all of
these proofs follow the same two-step structure:
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(Reduction) Show that the mathematical theorem of interest is true if a concrete
propositional formula ϕ is unsatisfiable.
(Solving) Show that ϕ is indeed unsatisfiable.

Formal methods researchers have developed techniques that make the solving step
reliable, reproducible, and trustworthy. For example, modern SAT solvers produce proofs of
unsatisfiability in formal proof systems such as DRAT [43] that can in turn be checked with
verified proof checkers such as cake_lpr [41]. These tools ensure that when a SAT solver
declares a formula ϕ to be unsatisfiable, the formula is indeed unsatisfiable. In contrast, the
reduction step is not as trustworthy, as it can use problem-specific mathematical insights that,
when left unverified, threaten the correctness of the proof. A perfect example of a complex
reduction can be found in a recent breakthrough in discrete computational geometry due to
Heule and Scheucher [21]. They constructed (and solved) a formula ϕ whose unsatisfiability
implies that every set of 30 points in the plane, without three in a common line, must
contain an empty convex hexagon. However, as is common with such results, their reduction
argument was only sketched, relied heavily on intuition, and had several gaps.

In this paper we complete and formalize their reduction in the Lean theorem prover [10].
We do so by connecting existing geometric definitions in the mathematical proof library
mathlib [29] to the unsatisfiability of a particular SAT instance, thus setting a new standard
for verifying results which rely on extensive computation. Our formalization is publicly
available at https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024.

Verification of SAT proofs. Formal verification makes the SAT solving step trustworthy. For
example, theorem provers and formal methods tools have been used to verify solvers [27,31,33]
and proof checkers [26, 41]. However, the reduction step has not received similar scrutiny,
with only a few reductions having been verified. For instance, Cruz-Filipe and coauthors [8,9]
used the Coq proof assistant to verify the reduction of the Pythagorean triples problem [20]
to SAT, and Delemazure and colleagues [11] used Isabelle/HOL to verify SAT-based results in
social choice theory for which minimal unsatisfiable sets of clauses were too large to extract
human-readable proofs. More generally, Giljegård and Wennerbreck [16] built a CakeML
library of verified SAT encodings, which they used to write verified SAT reductions for
different puzzles, such as the N-queens problem. In this paper, we use reduction verification
techniques based on those of Codel, Avigad, and Heule [6], which they developed in Lean.

Formal verification for SAT-based combinatorial geometry was pioneered by Marić [28].
He formally verified a reduction of a case of the Happy Ending Problem (see below) to SAT
in Isabelle/HOL. We compare our work to his in Section 7.

Lean. Initially developed by Leonardo de Moura in 2013 [10], the Lean theorem prover has
become a popular choice for formalizing modern mathematical research. Recent successes
include the Liquid Tensor Experiment [5] and the proof of the polynomial Freiman-Ruzsa
conjecture [17,34], both of which brought significant attention to Lean. A major selling point
for Lean is the mathlib project [29], a monolithic formalization of foundational mathematics.
By relying on mathlib for definitions, lemmas, and proof tactics, mathematicians can focus
on the interesting components of a formalization while avoiding duplication of proof efforts.
In turn, by making a formalization compatible with mathlib, future proof efforts can rely on
work done today. In this spirit, we connect our results to mathlib as much as possible.

The Empty Hexagon Number. In the 1930s, Erdős and Szekeres, inspired by Esther Klein,
showed that for any k ≥ 3, one can find a sufficiently large number n such that every n points
in the plane in general position (i.e., with no three points collinear) contain a convex k-gon,

https://github.com/bsubercaseaux/EmptyHexagonLean/tree/itp2024
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i.e., a convex polygon with k vertices [13]. The minimal such n is denoted g(k). The same
authors later showed that g(k) > 2k−2 and conjectured that this bound is tight [12]. Indeed,
it is known that g(5) = 9 and g(6) = 17, with the latter result obtained by Szekeres and
Peters 71 years after the initial conjecture via exhaustive computer search [40]. Larger cases
remain open, with g(k) ≤ 2k+o(k) being the best known upper bound [22,38]. This problem
is now known as the Happy Ending Problem, as it led to the marriage of Klein and Szekeres.

In a similar spirit, Erdős defined h(k) to be the minimal number of points in general
position that is guaranteed to contain a k-hole, or empty k-gon, meaning a convex k-gon
with no other point inside. It is easy to check that h(3) = 3 and h(4) = 5. In 1978, Harborth
established that h(5) = 10 [19]. Surprisingly, in 1983, Horton discovered constructions of
arbitrarily large point sets that avoid k-holes for k ≥ 7 [23]. Only h(6) remained. The Empty
Hexagon Theorem, establishing h(6) to be finite, was proven independently by Gerken [15]
and Nicolás [30] in 2006. In 2008, Valtr narrowed the range of possible values down to
30 ≤ h(6) ≤ 1717, where the problem remained until the breakthrough by Heule and
Scheucher [21], who used a SAT solver to prove that h(6) ≤ 30, a result we refer to as the
Empty Hexagon Number.

2 Outline of the proof

We will incrementally build sufficient machinery to prove the following theorem.

▶ Theorem. Any finite set of 30 or more points in the plane in general position has a 6-hole.

Outline of the proof. We begin Section 3 with a precise statement in Lean of the above
theorem and involved geometric terms. In a nutshell, the proof consists of building a CNF
formula ϕn such that from any set S of n points in general position without a 6-hole we can
construct a satisfying assignment τS for ϕn. Then, checking that ϕ30 is unsatisfiable implies
that no such set S of size 30 exists, thus implying the theorem. In order to construct ϕn,
one must first discretize the continuous space R2. Triple orientations, presented in Section 4,
are a way to achieve this. Concretely, any three points p, q, r in general position correspond
to either a clockwise turn, denoted by σ(p, q, r) = −1, or a counterclockwise turn, denoted
by σ(p, q, r) = +1, depending on whether r is above the directed line −→pq or not. In this way,
every set S of points in general position induces an assignment σS : S3 → {−1, +1} of triple
orientations. We show in Section 4 that whether S contains a k-hole (i.e., HasEmptyKGon k S)
depends entirely on σS . As each orientation σ(p, q, r) can only take two values, we can
represent each orientation σ(p, q, r) with a boolean variable. Any set of points S in general
position thus induces an assignment τS over its orientation variables. Because HasEmptyKGon
k S depends only on σS , it can be written as a boolean formula over the orientation variables.
Unfortunately, it is practically infeasible to determine if such a formula is satisfiable with a
naïve encoding. In order to create a better encoding, Section 5 shows that one can assume,
without loss of generality, that the set of points S is in canonical position. Canonicity
eliminates a number of symmetries from the problem – ordering, rotation, and mirroring –
significantly reducing the search space. In Section 6, we show the correctness of the efficient
encoding of Heule and Scheucher [21] for constructing a smaller CNF formula ϕn. Concretely,
we show that any finite set of n points in canonical position containing no 6-hole would give
rise to a propositional assignment τS satisfying ϕn. However, ϕ30 (depicted in Section 6) is
unsatisfiable; therefore no such set of size 30 exists and the theorem follows by contradiction.
As detailed in Section 6, to establish unsatisfiability of ϕ30 we passed the formula produced
by our verified encoder to a SAT solver, and used a verified proof checker to certify the
correctness of the resulting unsatisfiability proof. The construction of ϕn and τS involves
sophisticated optimizations which we justify using geometric arguments. ◀

ITP 2024
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3 Geometric Preliminaries

We identify points with elements of R2. Concretely, abbrev Point := EuclideanSpace R
(Fin 2). The next step is to define what it means for a k-gon to be empty (with respect to a
set of points) and convex, which we do in terms of mathlib primitives.

/-- ‘EmptyShapeIn S P’ means that ‘S’ carves out an empty shape in ‘P’:
the convex hull of ‘S’ contains no point of ‘P’ other than those already in ‘S’. -/
def EmptyShapeIn (S P : Set Point) : Prop :=

∀ p ∈ P \ S, p /∈ convexHull R S

/-- ‘ConvexIndep S’ means that ‘S’ consists of extremal points of its convex hull,
i.e., the point set encloses a convex polygon. -/
def ConvexIndep (S : Set Point) : Prop :=

∀ a ∈ S, a /∈ convexHull R (S \ {a})

/-- ‘ConvexEmptyIn S P’ means that ‘S’ forms a convex empty polygon in ‘P’ -/
def ConvexEmptyIn (S P : Set Point) : Prop :=

ConvexIndep S ∧ EmptyShapeIn S P

/-- ‘HasEmptyKGon k P’ means that ‘P’ has a convex, empty ‘k’-gon -/
def HasEmptyKGon (k : Nat) (P : Set Point) : Prop :=

∃ S : Finset Point, S.card = k ∧ ↑S ⊆ P ∧ ConvexEmptyIn S P

Let SetInGenPos be a predicate that states that a set of points is in general position, i.e.,
no three points lie on a common line (made precise in Section 4). With this we can already
state the core theorem.

theorem hole_6_theorem : ∀ (pts : Finset Point),
SetInGenPos pts → pts.card = 30 → HasEmptyKGon 6 pts

At the root of the encoding of Heule and Scheucher is the idea that the ConvexEmptyIn
predicate can be determined by analyzing only triangles. In particular, that a set s of k

points in a pointset S form an empty convex k-gon if and only if all the
(

k
3
)

triangles induced
by vertices in s are empty with respect to S. This is discussed informally in [21, Section 3,
Eq. 4]. Concretely, we prove the following theorem:

theorem ConvexEmptyIn.iff_triangles {s : Finset Point} {S : Set Point}
(sS : ↑s ⊆ S) (sz : 3 ≤ s.card) :
ConvexEmptyIn s S ↔
∀ (t : Finset Point), t.card = 3 → t ⊆ s → ConvexEmptyIn t S

Proof sketch. We first prove a simple monotonicity lemma: if ConvexIndep(s), then
ConvexIndep(s′) for every s′ ⊆ s, and similarly EmptyShapeIn(s, S) ⇒ EmptyShapeIn(s′, S)
for every set of points S. By instantiating this monotonicity lemma over all subsets t ⊆ s

with |t| = 3 we get the forward direction of the theorem. For the backward direction it is
easier to reason contrapositively: if the ConvexIndep predicate does not hold of s, or if s is
not empty w.r.t. S, then we want to show that there is a triangle t ⊆ s that is also not empty
w.r.t. S. To see this, let H be the convex hull of s, and then by Carathéodory’s theorem (cf.
theorem convexHull_eq_union from mathlib), every point in H is a convex combination of at
most 3 points in s, and consequently, of exactly 3 points in s. If s is non-empty w.r.t. S,
then there is a point p ∈ S \ s that belongs to H, and by Carathéodory, p is a convex
combination of 3 points in s \ {a}, and thus lies inside a triangle t ⊆ s (Figure 1a). If s does
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(a) (b)

Figure 1 Illustration of the proof for ConvexEmptyIn.iff_triangles. The left subfigure shows
how a point in S \ s that lies inside s will be inside one of the triangles induced by the convex hull
of s (orange triangle). The right subfigure shows how if the ConvexIndep predicate does not hold of
s, then some point a ∈ s will be inside one of the triangles induced by the convex hull of s \ {a}.

not hold ConvexIndep, then there is a point a ∈ s such that a ∈ convexHull(s \ {a}), and by
Carathéodory again, a is a convex combination of 3 points in s, and thus lies inside a triangle
t ⊆ s \ {a} (Figure 1b). ◀

In the next section, we show how to use boolean variables to encode which triangles (and,
by the above theorem, which k-holes) are empty in a pointset.

4 Triple Orientations

An essential step for obtaining computational proofs of geometric results is discretization:
problems concerning the existence of an object O in a continuous search space like R2 must
be reformulated in terms of the existence of a discrete, finitely-representable object O′ that a
computer can search for. It is especially challenging to discretize problems in which the desired
geometric object O is characterized by very specific coordinates of points, thus requiring
the computer to use floating-point arithmetic, which suffers from numerical instability.
Fortunately, this is not the case for Erdős-Szekeres-type problems such as determining the
value of h(k), as their properties of interest (e.g., convexity and emptiness) can be described
in terms of axiomatizable relationships between points and lines (e.g., point p is above the
line −→qr, lines −→qr and −→st intersect, etc.) that are invariant under rotation, translation, and
even small perturbations of the coordinates. We can discretize these relationships with
boolean variables, thus making us agnostic to the specific coordinates of the points. The
combinatorial abstraction that has been most widely used in Erdős-Szekeres-type problems is
that of triple orientations [21,32], also known as signotopes [14,36], Knuth’s counterclockwise
relation [24], or signatures [39]. Given points p, q, r, their triple-orientation is defined as:

σ(p, q, r) = sign det

px qx rx

py qy ry

1 1 1

 =


1 if p, q, r are oriented counterclockwise,

0 if p, q, r are collinear,
−1 if p, q, r are oriented clockwise.

.

We define σ in Lean using mathlib’s definition of the determinant.

inductive Orientation : Type where
| cw -- Clockwise turn
| ccw -- Counter-clockwise turn
| collinear -- Collinear

ITP 2024
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p

q

r

s

t

Figure 2 Illustration of triple orientations, where σ(p, r, q) = −1, σ(r, s, q) = 1, and σ(p, s, t) = 0.

noncomputable def σ (p q r : Point) : Orientation :=
let det := Matrix.det !![p.x, q.x, r.x ; p.y, q.y, r.y ; 1, 1, 1]
if 0 < det then ccw
else if det < 0 then cw
else collinear

Using the function σ we can define the notion of general position for collections (e.g.,
finite sets, lists, etc.) of points, simply postulating that σ(p, q, r) ̸= 0 for every three distinct
points p, q, r in the collection. Furthermore, we can start formalizing sets of points that are
equivalent with respect to their triple orientations, and consequently, properties of pointsets
that are fully captured by their triple orientations (orientation properties).

structure σEquiv (S T : Set Point) where
f : Point → Point
bij : Set.BijOn f S T
parity : Bool
σ_eq : ∀ (p ∈ S) (q ∈ S) (r ∈ S), σ p q r = parity ^^^ σ (f p) (f q) (f r)

def OrientationProperty (P : Set Point → Prop) :=
∀ {{S T}}, S ≃σ T → P S → P T -- ‘≃σ‘ is infix notation for ‘σEquiv‘

Our notion of σ equivalence allows for all orientations to be flipped. The ^^^ (xor)
operation does nothing when parity is false, and negates the orientation when parity is true.
See Section 5 for more details.

To illustrate how these notions will be used, let us consider the property πk(S) ≜
“pointset S contains an empty convex k-gon”, formalized as HasEmptyKGon.

Based on ConvexEmptyIn.iff_triangles, we know that πk(S) can be written in terms of
whether certain triangles are empty w.r.t S. We can define triangle membership using σ,
and prove its equivalence to the geometric definition.

/-- ‘Means that ‘a’ is in the triangle ‘pqr’, possibly on the boundary. -/
def PtInTriangle (a : Point) (p q r : Point) : Prop :=

a ∈ convexHull R {p, q, r}

/-- ‘Means that ‘a’ is in the triangle ‘pqr’ strictly, not on the boundary. -/
def σPtInTriangle (a p q r : Point) : Prop :=

σ p q a = σ p q r ∧ σ p a r = σ p q r ∧ σ a q r = σ p q r

theorem σPtInTriangle_iff {a p q r : Point} (gp : InGenPos4 a p q r) :
σPtInTriangle a p q r ↔ PtInTriangle a p q r
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Heule and Scheucher used the orientation-based definition [21] and, as it is common in
the area, its equivalence to the ground-truth mathematical definition was left implicit. This
equivalence, formalized in theorem σPtInTriangle_iff is not trivial to prove: the forward
direction in particular requires reasoning about convex combinations and determinants. Using
the previous theorem, we can generalize to k-gons as follows.

def σIsEmptyTriangleFor (a b c : Point) (S : Set Point) : Prop :=
∀ s ∈ S, ¬σPtInTriangle s a b c

def σHasEmptyKGon (n : Nat) (S : Set Point) : Prop :=
∃ s : Finset Point, s.card = n ∧ ↑s ⊆ S ∧ ∀ (a ∈ s) (b ∈ s) (c ∈ s),
a ̸= b → a ̸= c → b ̸= c → σIsEmptyTriangleFor a b c S

theorem σHasEmptyKGon_iff_HasEmptyKGon {n : Nat} (gp : ListInGenPos pts) :
σHasEmptyKGon n pts.toFinset ↔ HasEmptyKGon n pts.toFinset

Then, because σHasEmptyKGon is ultimately defined in terms of σ, we can prove

lemma OrientationProperty_σHasEmptyKGon {n : Nat} : OrientationProperty
(σHasEmptyKGon n)

Which in combination with theorem σHasEmptyKGon_iff_HasEmptyKGon, provides

theorem OrientationProperty_HasEmptyKGon {n : Nat} : OrientationProperty
(HasEmptyKGon n)

The previous theorem is important for two reasons. First, if σ is invariant under certain
point transformations (e.g., rotations, translations, etc.), then any orientation property is
invariant under the same transformations. This is a powerful tool for performing symmetry
breaking (see Section 5). For a concrete example, consider a proof of an Erdős-Szekeres-type
result that starts by saying “we assume without loss of generality that points p1, . . . , pn all
have positive y-coordinates.” Since σ is invariant under translation, we can see that this
assumption indeed does not impact the validity of the proof.

Second, as introduced at the beginning of this section, SAT encodings for Erdős-Szekeres-
type problems use triple orientations to capture properties like convexity and emptiness,
thus discretizing the problem. Because we have proved that πk(S) is an orientation property,
the values of σ on the points in S contain enough information to determine whether πk(S)
holds. Therefore, we have proved that given n points, it is enough to analyze the values
of σ over these points, a discrete space with at most 2n3 possibilities, instead of grappling
with a continuous search space on n points,

(
R2)n. This is the key idea that will allow us to

transition from the finitely-verifiable statement “no set of triple orientations over n points
satisfies property πk” to the desired statement “no set of n points satisfies property πk.”

4.1 Properties of orientations
We now prove, assuming points are sorted left-to-right (which is justified in Section 5), that
certain σ-implication-properties hold. Consider four points p, q, r, s with px < qx < rx < sx.
If p, q, r are oriented counterclockwise, and q, r, s are oriented counterclockwise as well, then
it follows that p, r, s must be oriented counterclockwise (see Figure 3). We prove a number
of properties of this form:

ITP 2024
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Figure 3 Illustration for σ(p, q, r) = 1 ∧ σ(q, r, s) = 1 =⇒ σ(p, r, s) = 1. As we have assumptions
θ3 > θ2 > θ4 by the forward direction of the slope-orientation equivalence, we deduce θ3 > θ4, and
then conclude σ(p, r, s) = 1 by the backward direction of the slope-orientation equivalence.

theorem σ_prop1 (h : Sorted4 p q r s) (gp : InGenPos4 p q r s) :
σ p q r = ccw → σ q r s = ccw → σ p r s = ccw

[. . .]

theorem σ_prop3 (h : Sorted4 p q r s) (gp : InGenPos4 p q r s) :
σ p q r = cw → σ q r s = cw → σ p r s = cw

Our proofs of these properties are based on an equivalence between the orientation
of a triple of points and the slopes of the lines that connect them. Namely, if p, q, r

are sorted from left to right, then (i) σ(p, q, r) = 1 ⇐⇒ slope(−→pq) < slope(−→pr) and
(ii) σ(p, q, r) = 1 ⇐⇒ slope(−→pr) < slope(−→qr). By first proving these slope-orientation
equivalences we can then easily prove σ_prop1 and others, as illustrated in Figure 3.

These properties will be used in Section 6 to justify clauses (4) and (5) of the SAT
encoding; these clauses are commonly added in orientation-based SAT encodings to reduce
the search space by removing some “unrealizable” orientations [21,32,36,39].

(¬oa,b,c ∨ ¬oa,c,d ∨ oa,b,d) ∧ (oa,b,c ∨ oa,c,d ∨ ¬oa,b,d)

5 Symmetry Breaking

Symmetry breaking plays a key role in SAT solving by reducing the search space of satisfying
assignments for a formula [1, 7], thus making a wider range of formulas practical to solve.
For example, if one proves that all satisfying assignments to a formula ϕ have either (i)
x1 = 0, x2 = 1, or (ii) x1 = 1, x2 = 0, and that there is a bijection between satisfying
assignments of forms (i) and (ii), then one can assume, without loss of generality, that
x1 = 0, x2 = 1, and thus add unit clauses x1 and x2 to the formula ϕ while preserving its
satisfiability. There are several techniques that can automatically find symmetry-breaking
clauses, such as structured bounded variable addition [18], but it is accepted wisdom in the
SAT-solving community that problem-specific symmetry breaking is more effective.

In their proof of the Empty Hexagon Number, Heule and Scheucher showed that for any
list of points in general position, there exists a list of points in canonical position with the
same triple-orientations. Canonical position is defined as follows.

▶ Definition 1 (Canonical Position). A list of points L = (p1, . . . , pn) is said to be in canonical
position if it satisfies all of the following properties:
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f ′

(d)

Figure 4 The pointsets depicted in Figures 4a and 4b are σ-equivalent with parity := false
since the bijection f defined by (a, b, c, d) 7→ (b′, d′, c′, a′) satisfies σ(pi, pj , pk) = σ(f(pi), f(pj), f(pj))
for every {pi, pj , pk} ⊆ {a, b, c, d}. On the other hand, no orientation-preserving bijection exists
for Figures 4c and 4d, which are only σ-equivalent with parity := true.

(General Position) No three points are collinear, i.e., for all 1 ≤ i < j < k ≤ n, we have
σ(pi, pj , pk) ̸= 0.

(x-order) The points are sorted with respect to their x-coordinates, i.e., x(pi) < x(pj) for all
1 ≤ i < j ≤ n.

(CCW-order) All orientations σ(p1, pi, pj), with 1 < i < j ≤ n, are counterclockwise.
(Lex-order) The list of orientations

(
σ

(
p⌈ n

2 ⌉−1, p⌈ n
2 ⌉, p⌈ n

2 ⌉+1

)
, . . . , σ (p2, p3, p4)

)
is not lex-

icographically smaller than the list
(

σ
(

p⌊ n
2 ⌋+1, p⌊ n

2 ⌋+2, p⌊ n
2 ⌋+3

)
, . . . , σ (pn−2, pn−1, pn)

)
.

The three ordering properties each break a different symmetry. First, the x-order property
breaks symmetry due to how we label the points by ensuring that the points are labeled
from left to right. The x-order property also simplifies the encoding of clauses (1)–(5), as
they rely on the points being sorted. Second, the CCW-order property breaks symmetry due
to rotation by fixing the orientations involving the leftmost point p1.

Third, the lex-order property breaks symmetry due to reflection. Reflecting a set of
points S over a line (e.g., with the map (x, y) 7→ (−x, y)) preserves the presence of k-holes
and convex k-gons. This operation does not quite preserve orientations, but rather flips
them (clockwise orientations become counterclockwise and vice versa). Our definition of
σ-equivalence includes a parity flag for this purpose: parity := false corresponds to the
case that orientations are the same, and parity := true corresponds to the case that all
orientations have been flipped. See the point sets in Figure 4 for an example.

The lex-order property, then, picks between a set of points and its reflection over x = 0.
The vector of consecutive orientations from the middle to the left is assumed to be at least
as big as the vector of consecutive orientations from the middle to the right. This constraint
is not geometrically meaningful, but is easy to implement in the SAT encoding.

We prove that there always exists a σ-equivalent point set in canonical position.

theorem symmetry_breaking : ListInGenPos l →
∃ w : CanonicalPoints, Nonempty (l.toFinset ≃σ w.points.toFinset)

ITP 2024
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(b) There always exists a rotation
(in this case by 45◦) that makes
all the x-coordinates different.
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(c) After translating, the leftmost
point is at (0, 0).
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(d) Result after applying the map
(x, y) 7→ (y/x, 1/x).
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(e) Point 2 is brought back into
the real plane.
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(f) Points are relabeled from left
to right.

Figure 5 Illustration of the proof of the symmetry breaking theorem. Note that the highlighted
holes are preserved as σ-equivalence is preserved. For simplicity we have omitted the illustration of
the Lex order property.

Proof Sketch. The proof proceeds in 6 steps, illustrated in Figure 5. In each of the steps,
we construct a new list of points that is σ-equivalent to the previous one, with the last one
being in canonical position.1 The main justification for each step is that, given that the
function σ is defined as a sign of the determinant, applying transformations that preserve
(or, when parity := true, uniformly reverse) the sign of the determinant will preserve (or
uniformly reverse) the values of σ.

For example, given the identity det(AB) = det(A) det(B), if we apply a transformation
to the points that corresponds to multiplying by a matrix B such that det(B) > 0, then
sign(det(A)) = sign(det(AB)), and thus orientations will be preserved. Step 1: we transform
the list of points so that no two points share the same x-coordinate. This can be done by
applying a rotation to the list of points, which corresponds to multiplying by a rotation
matrix. Rotations always have determinant 1. Step 2: we translate all points by a constant
vector t, which corresponds to multiplying by a translation matrix, to bring the leftmost
point p1 to position (0, 0). As a result, every other point has a positive x-coordinate.

1 Even though we defined σ-equivalence for sets of points, our formalization goes back and forth between
sets and lists. Given that symmetry breaking distinguishes between the order of the points e.g., x-order,
this proof proceeds over lists. All permutations of a list are immediately σ-equivalent.
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Let L2 be the list of points excluding p1 after Step 2. Step 3: we apply the projective
transformation f : (x, y) 7→ (y/x, 1/x) to every point in L2, showing that this preserves
orientations within L2. To see that this mapping is a σ-equivalence consider that

sign det

px qx rx

py qy ry

1 1 1

 = sign det

0 0 1
1 0 0
0 1 0

 py/px
qy/qx

ry/rx

1/px
1/qx

1/rx

1 1 1

 px 0 0
0 qx 0
0 0 rx


= sign

1 · det

py/px
qy/qx

ry/rx

1/px
1/qx

1/rx

1 1 1

 · pxqxrx

 = sign det

py/px qy/qx ry/rx

1/px 1/qx 1/rx

1 1 1

 .

To preserve orientations with respect to the leftmost point (0, 0), we set f((0, 0)) = (0,∞), a
special point that is treated separately as follows. As the function σ takes points in R2 as

arguments, we need to define an extension σ(0,∞)(q, r) =
{

1 if qx < rx

−1 otherwise.
, We then show

that σ((0, 0), q, r) = σ(0,∞)(f(q), f(r)) for all points q, r ∈ L2.
Step 4: we sort the list L2 by x-coordinate in increasing order, thus obtaining a list L3.

This can be done while preserving σ-equivalence because sorting corresponds to a permutation,
and all permutations of a list are σ-equivalent by definition. Step 5: we check whether the
Lex order condition above is satisfied in L3, and if it is not, we reflect the pointset, which
preserves σ-equivalence with parity := true. Note that in such a case we need to relabel
the points from left to right again.

Step 6: we bring point (0,∞) back into the range by first finding a constant c such that
all points in L3 are to the right of the line y = c, and then finding a large enough value M

such that (c, M) has the same orientation with respect to the other points as (0,∞) did,
meaning that σ((c, M), q, r) = σ(0,∞)(q, r) for every q, r ∈ L3.

Finally, we note that the list of points obtained in step 6 satisfies the CCW-order property
by the following reasoning: if 1 < i < j ≤ n are indices, then

σ(p1, pi, pj) = 1 ⇐⇒ σ((c, M), pi, pj) = 1
⇐⇒ σ(0,∞)(pi, pj) = 1 (By step 6)
⇐⇒ (pi)x < (pj)x (By definition of σ(0,∞))
⇐⇒ true. (By step 4, since points are sorted and i < j)

This concludes the proof. ◀

Compared to the symmetry-breaking transformation described by Heule and Scheucher,
our transformation is simpler. Nonetheless, proving the above theorem in Lean was tedious,
as we had to show that the properties from the previous steps were preserved at each new
step, which carried substantial proof burden. In particular, steps 3 through 6 required careful
bookkeeping and special handling of the distinguished point p1.

6 The Encoding and Its Correctness

Having established the reduction to orientations, and the symmetry-breaking assumption of
canonicity, we now turn to the construction of a CNF formula ϕn whose unsatisfiability would
imply that every set of n points contains a 6-hole.2 The formula is detailed in Section 6.

2 Satisfiability of ϕn would not necessarily imply the existence of a point set without a 6-hole, due to the
realizability problem (see e.g., [36]).
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ci;a,b,c → ((oa,b,c ↔ oa,i,c) ∧ (oa,b,c ↔ oa,i,b)) for all 2 ≤ a < i < b < c ≤ n (1)

ci;a,b,c → ((oa,b,c ↔ oa,i,c) ∧ (oa,b,c ↔ ob,i,c)) for all 2 ≤ a < b < i < c ≤ n (2)

( ∧
a<i<c

i̸=b

ci;a,b,c

)
→ ha,b,c for all 2 ≤ a < b < c ≤ n (3)

oa,b,c ∧ oa,c,d → oa,b,d for all 2 ≤ a < b < c < d ≤ n (4)

oa,b,c ∧ oa,c,d → oa,b,d for all 2 ≤ a < b < c < d ≤ n (5)

(
o⌈ n

2 ⌉−1,⌈ n
2 ⌉,⌈ n

2 ⌉+1, . . . , o2,3,4

)
⪰lex

(
o⌊ n

2 ⌋+1,⌊ n
2 ⌋+2,⌊ n

2 ⌋+3, . . . , on−2,n−1,n

)
(6)

oa,b,c ∧ ob,c,d → u4
a,c,d for all 2 ≤ a < b < c < d ≤ n (7)

oa,b,c ∧ ob,c,d → v4
a,c,d for all 2 ≤ a < b < c < d ≤ n (8)

u4
a,b,c ∧ ob,c,d ∧ ha,b,d → u5

a,c,d for all 2 ≤ a < b < c < d ≤ n, a + 1 < b (9)

u4
a,c,d → oa,c,d for all 2 ≤ a < c < d ≤ n, a + 1 < c (10)

v4
a,c,d → oa,c,d for all 2 ≤ a < c < d ≤ n, a + 1 < c (11)

¬(u5
a,d,e ∧ oa,p,e) for all 2 ≤ a < d < e ≤ n, a < p < e, a + 2 < d (12)

¬(u5
a,d,e ∧ od,e,f ) for all 2 ≤ a < d < e < f ≤ n, a + 2 < d (13)

¬(u4
a,c,d ∧ v4

a,c′,d ∧ ha,c,c′) for all 2 ≤ a < c < c′ < d ≤ n, a + 1 < c (14)

¬(u4
a,c,d ∧ v4

a,c′,d ∧ ha,c′,c) for all 2 ≤ a < c′ < c < d ≤ n, a + 1 < c′ (15)

¬(v4
a,c,d ∧ oc,d,e ∧ ha,c,e) for all 2 ≤ a < c < d < e ≤ n, a + 1 < c (16)

Figure 6 Encoding based on that of Heule and Scheucher for the Empty Hexagon Number [21].
Each line determines a set of clauses. Unsatisfiability of the formula below for n = 30 implies
h(6) ≤ 30, as detailed throughout the paper.
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a

∃b c

d

(a) u4
a,c,d

a

∃b c

d

(b) v4
a,c,d

a

∃b
∃c

d

e

(c) u5
a,d,e

Figure 7 Illustration of the 4-cap (7a), 4-cup (7b), and 5-cap (7c) variables. The highlighted
region denotes an empty triangle.

Variables. Let S = (p1, . . . , pn) be the list of points in canonical position. We explain the
variables of ϕn by specifying their values in the propositional assignment τS that is our
intended model of ϕn corresponding to S. We then have:

For every 2 ≤ a < b < c ≤ n, oa,b,c is true iff σ(pa, pb, pc) = +1.3
The first optimization observes that orientations are antisymmetric: if (p, q, r) is counter-
clockwise then (q, p, r) is clockwise, etc. Thus one only needs oa,b,c for ordered triples
(a, b, c), reducing the number of orientation variables by a factor of 3! = 6 relative to
using all triples. The second optimization uses the CCW-order property of canonical
positions: since all o1,a,b are true, we may as well omit them from the encoding.
Next, for every a < b < c with a < i < b or b < i < c, the variable ci;a,b,c is true iff
σPtInTriangle S[i] S[a] S[b] S[c] holds. By σPtInTriangle_iff, this is true exactly iff
pi is inside the triangle papbpc. The reason for assuming (a, b, c) to be ordered is again
symmetry: papbpc is the same triangle as papcpb, etc. Furthermore thanks to the x-order
property of canonical positions, if pi is in the triangle then x(pa) < x(pi) < x(pc). This
implies that a < i < c, leaving one case distinction permuting (i, b).
For every a < b < c, ha,b,c is true iff σIsEmptyTriangleFor S[a] S[b] S[c] S holds. By a
geometro-combinatorial connection analogous to ones above, this is true iff papbpc is a
3-hole.
Finally, one defines 4-cap, 5-cap, and 4-cup variables. For a + 1 < c < d, u4

a,c,d is true
iff there is b with a < b < c with σ(pa, pb, pc) = σ(pb, pc, pd) = −1. v4

a,c,d is analogous,
except in that the two orientations are required to be counterclockwise. These are the
4-caps and 4-cups, respectively. The 5-cap variables u5

a,d,e are defined for a + 2 < d < e.
We set u5

a,d,e to true iff there exists c with a + 1 < c < d such that u4
a,c,d, oc,d,e, and ha,c,e

are all true. Intuitively, 4-caps and 4-cups are clockwise and counterclockwise arcs of
length 4, respectively, whereas 5-caps are clockwise arcs of length 5 containing a 3-hole.
All three are depicted in Figure 7. The usage of these variables is crucial to an efficient
encoding: we will show below that a hexagon can be covered by only 4 triangles, so one
need not consider all

(6
3
)

triangles contained within it.

Satisfaction. We now have to justify that the clauses of ϕn are satisfied by the intended in-
terpretation τS for a 6-hole-free point set S. The variable-defining clauses (1)–(3) and (7)–(11)
follow essentially by definition combined with boolean reasoning. The orientation proper-
ties (4) and (5) have been established in the family of theorems σ_propi. The lexicographic
ordering clauses (6) follow from the Lex order property of canonical positions. Thus we are
left with clauses (12)–(16) which forbid the presence of certain 6-holes.4 We illustrate why

3 Since the point set is in general position, we have ¬oa,b,c ⇐⇒ σ(pa, pb, pc) = −1.
4 They are intended to forbid all 6-holes, but proving completeness is not necessary for an unsatisfiability-

based result.
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a

∃b
∃c

d

e

p

(a) (u5
a,d,e ∧ oa,p,e)

a

∃b
c

d

c′

∃b′

(b) (u4
a,c,d ∧ v4

a,c′,d ∧ ha,c,c′ )

a

∃b c

d

1

e

(c) (v4
a,c,d ∧ oc,d,e ∧ ha,c,e)

Figure 8 Illustration of some forbidden configurations that imply 6-holes. Figure 8a corresponds
to the configuration forbidden by clause (12), Figure 8b to the one forbidden by clause (14),
and Figure 8c to clause (16). All highlighted regions denote empty triangles.

clause (12) is true. The contrapositive is easier to state: if τS satisfies u5
a,d,e ∧ oa,p,e, then

S contains a 6-hole. The intuitive argument is depicted in Figure 8a. The clause directly
implies the existence of a convex hexagon apedcb such that ace is a 3-hole. It turns out that
this is enough to ensure the existence of a 6-hole by “flattening” the triangles ape, edc, and
cba, if necessary, to obtain empty triangles ap′e, ed′c, and cb′a, which can be assembled into
a 6-hole ap′ed′cb′.

Justifying this formally turned out to be complex, requiring a fair bit of reasoning about
point Arcs and σCCWPoints: lists of points winding around a convex polygon. Luckily, the
main argument can be summarized in terms of two facts: (a) any triangle abc contains an
empty triangle ab′c; and (b) empty shapes sharing a common line segment can be glued
together. Formally, (a) can be stated as

theorem σIsEmptyTriangleFor_exists (gp : ListInGenPos S)
(abc : [a, b, c] ⊆ S) : ∃ b’ ∈ S, σ a b’ c = σ a b c

∧ (b’ = b ∨ σPtInTriangle b’ a b c) ∧ σIsEmptyTriangleFor a b’ c S.toFinset

Proof. Given points p, q, say that p ≤ q iff p is in the triangle aqc. This is a preorder.
Now, the set S′ = {x ∈ S | σ(a, x, c) = σ(a, b, c) ∧ x ≤ b} is finite and so has a weakly
minimal element b′, in the sense that no x ∈ S′ has x < b′. Emptiness of ab′c follows by
minimality. ◀

Moving on, (b) follows from a triangulation lemma: given any convex point set S and a
line
←→
ab between two vertices of S, the convex hull of S is contained in the convex hulls of

points on either side of
←→
ab . That is:

theorem split_convexHull (cvx : ConvexIndep S) :
∀ {a b}, a ∈ S → b ∈ S →

convexHull R S ⊆ convexHull R {x ∈ S | σ a b x ̸= ccw}
∪ convexHull R {x ∈ S | σ a b x ̸= cw}

Proof. Let S+ = {x ∈ S | σ(a, b, x) ≥ 0} and S− = {x ∈ S | σ(a, b, x) ≤ 0} be the two
sets in the theorem, and let p ∈ S, where S denotes the convex hull of S. Assume WLOG
that σ(a, b, p) ≥ 0. (We would like to show that p ∈ S+.) Now p is a convex combination
of elements of S+ and elements of S−, so there exist points u ∈ S− and v ∈ S+ such
that p lies on the uv line. Because {x | det(a, b, x) ≤ 0} ⊇ S− is convex, it follows that
det(a, b, u) ≤ 0, and likewise det(a, b, v) ≥ 0, so they lie on opposite sides of the

←→
ab line and

hence uv intersects
←→
ab at a point z. The key point is that z must in fact be on the line
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Figure 9 Illustration of the proof for split_convexHull. (a) Given point p, we obtain points
u and v inside the two halves and z as the point of intersection with the line ab. (b) In this
(contradictory) situation, the point z has ended up outside the segment ab, because S is not actually
convex. In this case we construct w such that z is on the wa segment, and observe that w, z, a, b are
collinear.

segment ab; assuming that this was the case, we could obtain z as a convex combination of a

and b, and p as a convex combination of v and z, and since v is in S+ and a, b ∈ S+ ⊆ S+

we can conclude p ∈ S+. To show that z ∈ ab, suppose not, so that a lies between z and
b (see Figure 9b). (The case where z is on the b side is similar.) We can decompose z as
a convex combination of some w ∈ S \ {a} and a, which means that w, z, a, b are collinear
and appear in this order on the line. Therefore a is a convex combination of w and b, which
means that a ∈ S \ {a} which violates convexity of S. ◀

By contraposition, the triangulation lemma directly implies that if {x ∈ S | σ(a, b, x) ̸= +1}
and {x ∈ S | σ(a, b, x) ̸= −1} are both empty shapes in P , then S is an empty shape in P .

6.1 Running the CNF

Having now shown that our main result follows if ϕ30 is unsatisfiable, we run a distributed
computation to check its unsatisfiability. We solve the SAT formula ϕ30 produced by
Lean using the same setup as Heule and Scheucher [21], although using different hardware:
the Bridges 2 cluster of the Pittsburgh Supercomputing Center [4]. Following Heule and
Scheucher, we partition the problem into 312 418 subproblems. Each of these subproblems
was solved using CaDiCaL version 1.9.5. CaDiCaL produced an LRAT proof for each execu-
tion, which was validated using the cake_lpr verified checker on-the-fly in order to avoid
writing/storing/reading large files. The total runtime was 25 876.5 CPU hours, or roughly
3 CPU years. The difference in runtime relative to Heule and Scheucher’s original run is
purely due to the difference in hardware. Additionally, we validated that the subproblems
cover the entire search space as Heule and Scheucher did [21, Section 7.3]. This was done by
verifying the unsatisfiability of another formula that took 20 seconds to solve.

The artifact for this paper includes scripts to validate any individual subproblem, as
well as the summary proof that the subproblems cover the search space. However, the
unsatisfiability of ϕ30 depends on the unsatisfiability of all (hundreds of thousands of)
subproblems. A skeptical reader might wish to examine the proof files for all subproblems,
but we estimated the total proof size to be tens or hundreds of terabytes, far too much to
reasonably store and distribute. Instead, the skeptical reader must run the entire 3 CPU
year computation. We believe this trust story can be somewhat improved, but we leave such
a challenge to future work.
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7 Related Work

Our formalization is closely related to a prior development in which Marić put proofs of
g(6) ≤ 17 on a more solid foundation [28]. The inequality, originally obtained by Szekeres
and Peters [40] using a specialized, unverified search algorithm, was confirmed by Marić
using a formally-verified SAT encoding. Marić introduced an optimized encoding based on
nested convex hull structures, which, when combined with performance advances in modern
SAT solvers, significantly improved the search time over the unverified computation.

Our work focuses on the closely-related problem of determining k-hole numbers h(k).
Rather than devise a new SAT encoding, we use essentially the same encoding presented by
Heule and Scheucher [21]. Interestingly, a formal proof of g(6) ≤ 17 can be obtained as a
corollary of our development. We can assert the hole variables ha,b,c as true while leaving
the remainder of the encoding in Section 6 unchanged, which trivializes constraints about
emptiness so that only the convexity constraints remain.5 The resulting CNF formula asserts
the existence of a set of n points with no convex 6-gon. We checked this formula to be
unsatisfiable for n = 17, giving the same result as Marić:

theorem gon_6_theorem : ∀ (pts : Finset Point),
SetInGenPos pts → pts.card = 17 → HasConvexKGon 6 pts

Since both formalizations can be executed, we performed a direct comparison against
Marić’s encoding. On a personal laptop, we found that it takes negligible time (below 1s) for
our verified Lean encoder to output the full CNF. In contrast, Marić’s encoder, extracted
from Isabelle/HOL code,6 took 437s to output a CNF. To improve encoding performance,
Marić wrote a C++ encoder whose code was manually compared against the Isabelle/HOL
specification. We do not need to resort to an unverified implementation.

As for the encodings, ours took 28s to solve, while the Marić encoding took 787s (both
using cadical). This difference is likely accounted for by the relative size of the encodings,
in particular their symmetry breaking strategies. For k = 6 and n points, the encoding of
Heule and Scheucher uses O(n4) clauses, whereas the one of Marić uses O(n6) clauses. They
are based on different ideas: the former as detailed in Section 5, whereas the latter on nested
convex hulls. The different approaches have been discussed by Scheucher [32]. This progress
in solve times represents an encouraging state of affairs; we are optimistic that if continued,
it could lead to an eventual resolution of g(7).

Further differences include what exactly was formally proven. As with most work in this
area, we use the combinatorial abstraction of triple orientations. We and Marić alike show
that point sets in R2 satisfy orientation properties (Section 4). However, our work goes further
in building the connection between geometry and combinatorics: our definitions of convexity
and emptiness (Section 3), and consequently the theorem statements, are geometric ones
based on convex hulls as defined in Lean’s mathlib [29]. In contrast, Marić axiomatizes these
properties in terms of σ. A skeptical reviewer must manually verify that these combinatorial
definitions correspond to the desired geometric concept.

A final point of difference concerns the verification of SAT proofs. Marić fully reconstructs
some of the SAT proofs on which his results depend, though not the main one for g(6), in an
NbE-based proof checker for Isabelle/HOL. We make no such attempt for the time being,

5 This modification was performed by an author who did not understand this part of the proof, nevertheless
having full confidence in its correctness thanks to the Lean kernel having checked every assertion.

6 We used Isabelle/HOL 2016. Porting the encoder to more recent versions of the prover would require
broader adaptations due to breaking changes in the HOL theories.



B. Subercaseaux et al. 35:17

instead passing our SAT proofs through the formally verified proof checker cake_lpr [41]
and asserting unsatisfiability of the CNF as an axiom in Lean. Thus we trust that the CNF
formula produced by the verified Lean encoder is the same one whose unsatisfiability was
checked by cake_lpr.

8 Concluding Remarks

We have proved the correctness of the main result of Heule and Scheucher [21], implying
h(6) ≤ 30. Given that the lower bound h(6) > 29 can be checked directly (see [21]), we
conclude the result h(6) = 30 is indeed correct. We believe this work puts a happy ending to
one line of research started by Klein, Erdős and Szekeres in the 1930s. Prior to formalization,
the result of Heule and Scheucher relied on the correctness of various components of a
highly sophisticated encoding that are hard to validate manually. We developed a significant
theory of combinatorial geometry that was not present in mathlib. Beyond the main theorem
presented here, we showed how our framework can be used for other related theorems such
as g(6) = 17, and we hope it can be used for proving many further results in the area.

Our formalization required approximately 300 hours of work over 3 months by researchers
with significant experience formalizing mathematics in Lean. The final version of our proofs
consists of approximately 4.7k lines of Lean code; about 26% are lemmas that should be
moved to upstream libraries, about 40% develops the theory of orientations in plane geometry,
and the remaining 34% (1550 LOC) validates the symmetry breaking and SAT encoding.

We substantially simplified the symmetry-breaking argument presented by Heule and
Scheucher, and derived in turn from Scheucher [32]. Moreover, we found a small error in
their proof, as their transformation uses the mapping (x, y) 7→ (x/y,−1/y), and incorrectly
assumes that x/y is increasing for points in CCW-order, whereas only the slopes y/x are
increasing. Similarly, we found a typo in the statement of the Lex order condition that did
not match the (correct) code of Heule and Scheucher. Our formalization corrects this.

Future Work. We hope to formally verify the result h(7) = ∞ due to Horton [23], and
other results in Erdős-Szekeres style problems.

We also want to improve the trust story of importing “cube and conquer”-style results
into an ITP. Importing these kinds of proofs is a significant engineering task when the proof
certificate is hundreds of terabytes in size, as it was for this result (see Section 6.1). Although
we are confident that our results are correct, more work needs to be done to strengthen the
trust in this connection point.
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Abstract
We propose a concrete (“pointer as integer”) memory semantics for C that supports verified
compilation to a target environment having simple “public vs. private” data protection based on
tagging or sandboxing (such as the WebAssembly virtual machine). Our semantics gives definition
to a range of legacy programming idioms that cause undefined behavior in standard C, and are
not covered by existing verified compilers, but that often work in practice. Compiler correctness
in this context implies that target programs are secure against all control-flow attacks (although
not against data-only attacks). To avoid tying our semantics too closely to particular compiler
implementation choices, it is parameterized by a novel form of oracle that non-deterministically
chooses the addresses of stack and heap allocations. As a proof-of-concept, we formalize a small
RTL-like language and verify two-way refinement for a compiler from this language to a low-level
machine and runtime system with hardware tagging. Our Coq formalization and proofs are provided
as supplementary material.
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1 Introduction

Undefined memory behaviors (UBs) in C programs, notably buffer overflows, are a major
source of bugs and security exploits in real world systems. One approach to this problem
is to detect or prevent memory UBs at runtime, turning silent violations into observable
failures. A wide variety of hardware and software mechanisms have been proposed to achieve
this [11, 29, 30, 12, 18, 42, 33, 13]. These mechanisms offer complex and non-obvious trade-
offs between execution overhead and implementation complexity on one hand, and precision
and reliability of memory safety enforcement on the other. For example, we might naively
wish to trap all violations of spatial and temporal safety [37] at the granularity of individual
C memory objects, but this may cause unacceptable execution overhead; moreover, it may
break running systems, because lots of legacy C code relies on UB idioms that (usually) work
in practice. Thus, we may be driven to employ more coarse-grained protection.

One simple idea is to classify all in-memory data as either public or private [41]. Public
data consists of stack-allocated arrays and variables whose addresses are taken, heap objects
allocated by malloc, and globals. Private data includes everything else the compiler puts in
memory: control information such as saved return addresses or heap metadata, unaddressable
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variables, function parameters and return values, spilled temporaries, etc. Public vs. Private
(PvP) protection enforces that program loads and stores via C data pointers can touch only
public data; private data is protected and accessed only by (trustworthy) compiler-generated
or runtime system code. However, no protection boundaries are enforced between different
pieces of public data; e.g., an out-of-bounds store to one array might overwrite the contents
of another array. PvP can be implemented by a variety of techniques, including sandboxing
or tagging (see §2). It is essentially the memory model provided by the WebAssembly virtual
machine [14], and it has been proposed as the minimal “backstop” protection model for the
Tagged C system of security policy enforcement [9, 2].

When properly used by a compiler, PvP (combined with a mechanism for preventing
corruption or forging of function pointers) should suffice to prevent all control-flow attacks [37]
i.e., it should be impossible for a compiled program to corrupt its own control flow. It would
be natural to formalize this intuition as part of the specification and verification of compiler
correctness. But conventional C compilers, including the CompCert verified compiler [20],
make no guarantees at all about programs that exhibit UB. Indeed, compilers like gcc
and Clang notoriously take advantage of the assumption that “UB cannot happen” to
perform aggressive optimizations that often surprise programmers and can lead to serious
security vulnerabilities [43, 36]. Hence, if we want to use compiler semantic preservation
to characterize the security guarantees provided by PvP, we need to start from a source
semantics that defines more memory behaviors than standard C.

To this end, we describe the design of a concrete memory semantics for C and a strategy
for verified compilation from C with this semantics to a target machine and runtime system
that enforce PvP protections. The concrete semantics treats (data) pointers as word-size
machine integers. Load and store are well-defined at every address (i.e., every integer),
possibly as an explicit out-of-bounds (OOB) failstop. Memory is finite, so out-of-memory
(OOM) failstops are also possible. Since pointers are integers, the concrete semantics supports
arbitrary arithmetic operations over them, including many useful low-level programming
idioms that are UB in ISO standard C (see §3).

Using concrete pointers distinguishes us from most verified C compiler efforts, which
follow the pioneering example of CompCert [22] by modeling pointers as a pair of abstract
block identifier and offset. CompCert’s use of a single, abstract, infinite memory model
across all compiler phases considerably eases verification; making do without this is part of
the challenge we take up in this work. More fundamentally, changing to a concrete pointer
semantics inhibits some useful compiler optimizations (see §3), which may make compiled
code run more slowly. The payoff is that we significantly widen the set of source programs
for which a verified compiler guarantees to preserve correct control-flow behavior.

At the same time, we don’t want our C semantics to be too concrete: it obviously should
not depend on the choice of PvP enforcement mechanism or the details of the compiler or
runtime system. This goal motivates the most novel aspect of our approach, which is the
treatment of memory allocation. The concrete source semantics must assign a well-defined
integer address to each stack and heap object. These integers must not change during
compilation – otherwise, semantics preservation would break. But stack frame offsets are not
determined until late in the compilation pipeline, and heap locations not until the malloc
implementation executes at run time. So the source semantics must somehow predict where
each object will actually live by using the details of exactly how the compiler and runtime
work. Yet putting these details in the semantics itself would pollute it horribly, making the
source language definition implementation-dependent. Our solution is to parameterize the
source semantics with an oracle – essentially an external source of non-determinism – which
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Figure 1 Proof Architecture. Dotted lines represent information dependencies; the thick double-
headed arrow is bi-directional refinement.

it consults to obtain the addresses of allocated objects. The oracle is packaged into a memory
model with an abstract interface equipped with a small set of axioms that characterize its
behavior, which is carefully designed to be independent of the PvP enforcement mechanism.
The C semantics can be understood (and used to reason about C program behavior) based
just on the memory model interface and axioms; it is entirely independent of how the oracle
is instantiated. For any given implementation (compiler and runtime system for a particular
PvP target), we will be able to construct a corresponding memory model instantiation that
validates the model’s axioms. A proof of semantic preservation for a compiler connects the
behavior of the source semantics equipped with a particular instantiation to the behavior of
the corresponding implementation (see Figure 1). The design and axiomatization of the
oracular memory model is our first technical contribution (§4).

Our second technical contribution is a proof-of-concept verified compiler, fully
formalized in Coq [10], that prototypes key aspects of our approach (§5). We start by
formalizing the oracular memory model’s interface and axiomatic properties. We then define
a small toy source language RTL with functions and concrete memory, and give it a semantics
parameterized by the memory model. We define a simple RISC-like target machine Mach
and runtime system with tag-based memory protection, and a compiler from source to
target. Then we instantiate the memory model so that its allocation behavior matches the
target implementation and verify that the instantiation obeys the axioms. Finally, we prove
bi-directional refinement between the source semantics, operating under that instantiation,
and the target implementation. Much of our formal framework is borrowed from CompCert,
but our memories use concrete addresses rather than abstract blocks and offsets, and, unlike
in CompCert, the source and target model memory quite differently.

Determinizing the memory behavior of RTL with an oracle introduces some technical
complexity in our proofs, but having a deterministic source language lets us use a forward
simulation to prove semantic equivalence, which is much easier to construct than a backward
one. As usual in CompCert [21], we rely on determinism of the target language Mach to
derive a backward simulation automatically from the forward one. In a full compiler, RTL
might itself be the target language for an earlier pass to be verified by forward simulation,
giving another reason for wanting it to be deterministic. Moreover, defining an explicit oracle
lets us prove that the memory model axiomatization is consistent.

We view this work as just an initial step in a larger project of building a “boring” [4]
but fully secure C compiler. In particular, this paper considers only data pointers; function
pointer protection is also essential to guarantee correct control flow (see §7). More broadly, to
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get formal guarantees for the full range of programs accepted by standard compilers, we need
a source semantics from which all UB has been removed (including non-memory UB such
as integer overflow). Ultimately, we would like to show a secure compilation property [32]
for systems that link C code against arbitrary machine code restricted to access only public
data.

2 Background: PvP Enforcement

Our memory oracle can be instantiated using a wide range of PvP mechanisms, both hardware
and software. These fall into two main categories: tagging and sandboxing. Our formal proof-
of-concept compiler development assumes a tagged target, but could readily be retargeted
for sandboxing.

Tagging mechanisms adjoin a metadata tag to each byte (or chunk of adjacent bytes) in
memory, and to each pointer, and compare them at load and store operations. A one-bit
tag suffices to distinguish public from private addresses. Using tagging lets the compiler
keep the ordinary unified single-stack layout, with public and private data interleaved freely
within each stack frame. Similarly, the runtime system can use tags to protect private
metadata (e.g. block lengths, free list pointers, etc.) appearing in heap block headers or
within unused blocks, as is common in conventional heap allocator implementations. To
be secure and reasonably efficient, tagging requires hardware support, which is becoming
increasingly common, e.g. via ARM MTE [34, 3, 24] or the PIPE ISA extension [13, 1].

Sandboxing places all public data in a contiguous region of memory and then forces
all public loads and stores to lie within that region. It has been widely used for browser
protection [44] and has recently been popularized as part of the WebAssembly virtual
machine [14]. To use sandboxing, the compiler must adopt a non-standard memory layout
that places just the public parts of the stack and heap in the sandbox. While direct hardware
support for sandboxing is possible (e.g. via x86 segment-based addressing [44]), it is often
implemented using software instrumentation. The simplest approach is just to add explicit
bounds checks around each public access; this is expensive, but gives a hard failstop in the
event of an error. Software Fault Isolation (SFI) [40, 17] is a cheaper alternative based on
the assumption that the sandbox size and base address alignment have the form 2n; then any
arbitrary integer can be “warped” to an address within the sandbox by zeroing all but its
low-order n bits and or-ing in the base address. OOB accesses do not failstop, but memory
outside the sandbox is never corrupted.

3 Concrete Memory Semantics for C

In this section, we sketch the form of concrete memory semantics we envisage for C, and
examine some of its consequences. Public memory is structured into regions, which are
used to store scalars, structs, or unions whose address is (potentially) taken, arrays, and
malloced heap objects. Region allocation and deallocation can occur either implicitly, e.g.
for locals during function entry/exit and for globals at program start, or explicitly, for heap
data managed by malloc and free calls in program code. The semantics assigns a concrete
integer address to the base of each allocated region by consulting an oracular memory model,
which is a parameter of the semantics.

The semantics makes no distinction between data pointers and word-sized machine
integers. Thus pointers support the same arithmetic and bitwise operations as ordinary
integers, and casts between pointers and integers are semantic no-ops. Loads and stores
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void *memmove(void *s1,
const void *s2,
size_t n) {

char *dest = (char *) s1;
const char *src = (const char *) s2;
if (dest <= src) // UB in standard C

while (n--)
*dest++ = *src++;

else {
src += n;
dest += n;
while (n--)

*--dest = *--src;
}
return s1;

}

extern char hash(void *p);
int main() {

int *p = (int *) malloc(sizeof(int));
*p = 0;
int *q = // UB in standard C

(int *) ((uintptr_t) p | (hash(p) & 0xF));
int *r = (int *) (((uintptr_t) q >> 4) << 4);
return *r;

}

void bad() {
char p[4], q[4]; // may failstop with OOM
q[2] = 0;
p[6] = 1; // may failstop with OOB
print(q[2]); // if reached, prints number

}

Figure 2 Concrete pointer examples (adapted from [6, 19]).

through any integer that points into a public region succeed and obey the usual “good
variables” properties (i.e., a load from a given location returns the value most recently stored
there). Loads or stores though an integer that points at an unallocated location might not
obey the good variables properties, and might also cause execution to failstop, again based
on a decision by the oracle. Accesses that would make the implementation halt due to a
PvP violation or an unmapped page fault should correspond to source OOB failstops; those
that the implementation deems harmless or “warps” into allocated locations can be allowed.
At a minimum, for the semantics preservation theorems to hold, the oracle must refuse
to overwrite any location that contains private compiler-generated data. But the source
semantics doesn’t know anything about private data, just that accesses outside allocated
regions are unreliable.

Figure 2 illustrates some code that has memory-related UB in ISO standard C and in
CompCert, but is well defined in our concrete semantics. Function main performs bit-level
operations on the representation of p, “stealing” the low order 4 bits to hold a hash code;
it relies on the result of malloc being 16-byte aligned, so the low order bits can be safely
zeroed again before the pointer is used. Function memmove works even when source and
target buffers overlap; it relies on making a comparison between dest and src. Function bad
performs an out-of-bounds write; in our semantics, depending on where p and q live in the
stack frame, the code will either failstop with OOB on the assignment to p[6], or continue
and print some number (0 or 1 in any reasonable instantiation of our memory model) – but
it won’t behave arbitrarily.

Out of Memory. Since actual machine memory is finite and pointers are represented
as machine integers with limited range [28], any oracle instance will need to refuse some
allocation requests due to stack overflow or heap exhaustion. Running out of memory causes
execution to enter a failstop state. This is different from getting stuck, which corresponds to
a UB for which the compiled code can do anything; failstopping is a well-defined behavior
that must be preserved by compiled code. Thus a target will always run out of memory when
the source does; this is essential for the preservation of safety properties (since otherwise the
target could perform a bad behavior even though the source failstops).

To avoid polluting its axiomatization with implementation-specific details about memory
consumption, we allow the oracle to fail with OOM at any time. To gain confidence that
our compiler correctness results are not vacuous, we have also proven reverse refinement
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extern void f(int *p);
void g(int c) {

int x[10], y[10], u, v, w;
x[0] = 42; y[0] = 99; u = x[0]; // optimize to u = 42 ?
y[c] = 99; v = x[0]; // optimize to v = 42 ?
f(y); w = x[0]; // optimize to w = 42 ?

}

Figure 3 Potential Redundant Load Optimizations.

from target to source – showing that the source runs out of memory only when the target
does. We can confirm that the resulting allocation behavior is reasonable by inspecting the
(completely concrete) target semantics and the generated target code.

Optimization. Using concrete semantics inevitably limits a compiler’s optimization opportu-
nities. Most significantly, any store to an unknown location and any function call potentially
overwrites arbitrary public locations. (Private data, including ordinary scalars whose ad-
dresses are not taken, are preserved across unknown stores and function calls just as in
ordinary C semantics.) This invalidates non-aliasing analyses, and so can prevent removal of
some redundant public data loads and stores and also reduce the applicability of register
promotion optimizations [25].

For example, in the code in Figure 3, all the suggested redundant load optimizations are
valid in standard C (and performed by gcc and Clang): the first two because the stores to y
can be assumed to be in bounds and the last because the address of x does not escape to f.
But only the first is valid in our semantics, because in a concrete world, an out-of-bounds
store to y[c] might indeed overwrite x[0], and the unknown function f might overwrite any
public location. The desire to maintain these optimizations while supporting more liberal
pointer arithmetic has led to considerable work on hybrid models that allow some form of
interoperation between block-based and concrete views [16, 15, 27]. Despite this, we are
unaware of any empirical studies that assess how important alias-based optimizations actually
are for real C workloads. We note that CompCert [23] doesn’t perform the second or third
optimizations in Figure 3 either, although they are valid under its memory model.

A second limit on optimization is a subtle consequence of working with finite memory
while preserving refinement [19]. In our oracular approach, the source semantics locates
each in-memory object at exactly the same address as in the target implementation. If the
compiler were allowed to remove an allocation operation as part of dead code elimination,
the oracle would have no idea where to put the object! Nor could it just announce OOM,
since then the source would failstop whereas the target might continue, violating forward
refinement. The upshot is that the compiler cannot optimize away dead allocations; this is
unfortunate, but perhaps not too important in practice (e.g., CompCert doesn’t currently
perform such optimizations either).

Fortunately, many other optimizations involving allocations are still valid; in particular,
CompCert-style function inlining and tail-call elimination should both be possible in our
framework because they only adjust the locations of public stack allocations, not their total
size. (Tail call elimination can also change the order of allocations and deallocations, but
only for zero-sized blocks, which does not matter.)
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4 Axiomatic Memory Model

The C memory model used by our concrete semantics gives an abstract characterization of
memories that are modified and inspected using a set of operator functions. We now describe
the model in detail, giving the signatures of the operators and a set of axioms specifying
their behavior. The design goal for the axiomatization is to capture just those properties
that are necessary for a C semantics and program logic to employ the memory model, while
constraining possible instantiations as little as possible.

The model interface consists of an abstract type M of memories, with the following
constants and operators:

initm :: M
stkAlloc :: M → L → S → G → ⌊(R, M)⌋
stkFree :: M → ⌊M⌋
hpAlloc :: M → L → S → G → ⌊(R, M)⌋

hpFree :: M → A → ⌊M⌋
perturb :: M → L → ⌊M⌋
load :: M → A → ⌊V⌋
store :: M → A → V → ⌊M⌋

Notation: These functions are all partial, as indicated by the fact that they return option
types, where we write ⌊T ⌋ for (Option T), ⌊t⌋ for (Some t) and ∅ for None. Memories
M ∈ M are byte-indexed. Addresses A and sizes S are non-negative integers. Values V are
machine bytes. Labels L are an arbitrary type, explained further below. Alignments G are
positive integral powers of two. Regions r ∈ R = A × S are half-open intervals with base
bs r and size sz r; we say a is in the footprint of r, written a ∈ r, iff bs r ≤ a < bs r + sz r.

The basic meaning of most of these operations should be clear from their names and
type signatures. Memory is organized into (allocated) regions, which are intended to hold
public data. Stack regions are intended for public data associated with function activations,
allocated and freed as part of compiler-generated function call/entry and exit/return code.
Heap regions are intended for explicitly allocated storage, allocated and freed by the C library
malloc and free calls; they are also used for globals allocated at program start-up time
(and never freed). Formally, the only difference between them is how a region to be freed is
identified: for the stack, it is implicitly the most recently allocated region; for the heap, it is
explicitly specified by a region base address.

Load and store are single-byte operations taking a concrete address. This byte-based
interface can be used as a foundation on which a semantics can build a higher-level interface
supporting reads and writes of multi-byte types, assuming suitable functions for encoding
and decoding these in terms of bytes, and additional alignment checks where needed [22].

Figure 4 gives the full axiomatization of the memory operators. Although the precise
layout of memory is deliberately kept abstract, the axioms use two observation functions that
expose information about the allocated regions. SM is the stack of allocated stack regions
in M , represented as a list in stack order (with most recently pushed region at the head).
HM is the set of the allocated heap regions in M , represented as an (unordered) list with no
duplicates. We write AM for SM ++ HM , the full (multi)set of allocated regions in M .

Further notation: We write :: for list cons, [] for the empty list, ∈ for list membership,
++ for list concatenation, and L1 ∼= L2 if L1 and L2 are equal considered as multisets
(i.e., are permutations of each other). M ′ is value-stable on M , written M ⪅ M ′, iff
∀a ∈ r ∈ AM , load M a = load M ′ a. We assume that machine addresses have w bits.

We start with the basic invariants on memories that are maintained by all operations.
RWF specifies basic well-formedness conditions on regions. It implies that:

(i) all addresses in a region (and the address immediately following) are representable in
an unsigned machine word, allowing them to be computed using machine arithmetic;
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r ∈ AM

0 < bs r ≤ bs r + sz r < 2w − 1
(RWF)

AM = rs1 ++ r1 :: rs2 ++ r2 :: rs3

∀a.a ∈ r1 ⇒ a ̸∈ r2
(RDisj)

HM = rs1 ++ r1 :: rs2 ++ r2 :: rs3

bs r1 ̸= bs r2
(HpRDist) Ainitm = [] (Init)

stkAlloc M lbl s g = ⌊(r, M ′)⌋
SM′ = r :: SM ∧ HM′ ∼= HM

(StkA)
hpAlloc M lbl s g = ⌊(r, M ′)⌋
HM′ ∼= r :: HM ∧ SM′ = SM

(HpA)

stkAlloc M lbl s g = ⌊(r, M ′)⌋
sz r ≥ s ∧ (bs r) mod g = 0

(StkAR)
hpAlloc M lbl s g = ⌊(r, M ′)⌋

sz r ≥ s ∧ (bs r) mod g = 0
(HpAR)

stkAlloc M lbl s g = ⌊(r, M ′)⌋
M ⪅ M ′ (StkAV)

hpAlloc M lbl s g = ⌊(r, M ′)⌋
M ⪅ M ′ (HpAV)

SM ̸= []
stkFree M ̸= ∅

(StkFOK)
hpFree M a = ⌊M ′⌋

∃r ∈ HM .bs r = a ∧ HM
∼= r :: HM′ ∧ SM′ = SM

(HpF)

stkFree M = ⌊M ′⌋
∃r.SM = r :: SM′ ∧ HM′ ∼= HM

(StkF)
r ∈ HM

hpFree M (bs r) ̸= ∅
(HpFOK)

stkFree M = ⌊M ′⌋
M ′ ⪅ M

(StkFV)
hpFree M a = ⌊M ′⌋

M ′ ⪅ M
(HpFV)

perturb M lbl = ⌊M ′⌋
SM = S′

M ∧ HM
∼= H ′

M ∧ M ⪅ M ′ ∧ M ′ ⪅ M
(Pert)

a ∈ r ∈ AM

store M a v ̸= ∅
(StOK)

a ∈ r ∈ AM

load M a ̸= ∅
(LdOK)

store M a v = ⌊M ′⌋
load M ′ a = ⌊v⌋

(LdStEq)
store M a v = ⌊M ′⌋

SM = S′
M ∧ HM

∼= H ′
M

(StR)

a ∈ r ∈ AM store M a v = ⌊M ′⌋ a′ ̸= a

load M ′ a′ = load M a′ (LdStNeq)

Figure 4 Axiomatization of memory constants and operators.

(ii) the C NULL pointer, which we assume to be 0 (as is natural on almost all current
machines), does not point into any region;

(iii) regions may be empty (have size 0), which can help avoid special cases in a semantics.
RDisj states the basic property that no address can be within the footprint of two allocated
regions, which is essential for reasoning about separation. Combined with RWF it further
implies that the total amount of allocated memory is bounded. Since the address passed
to hpFree should unambiguously identify a single region, we impose a further invariant
HpRDist to guarantee this (and hence HM is indeed a set).

The heap and stack are initially empty (Init). A successful allocation pushes a new
region onto the stack regions (StkA) or adds a new region to the heap (HpA), preserving
the values in existing allocated regions (StkAV,HpAV). The new region is of at least the
requested size and alignment (StkAR, HpAR). Standard malloc behavior can be obtained
by using hpAlloc with the maximum required alignment for any primitive type (typically
w/4, allowing the lower-order log2 w − 2 bits to be “stolen” for other uses).

Each allocation operation carries a label from some type L, which is a parameter of the
entire model. Labels are contextual clues that an instantiation can use to place allocations at
the same locations as an actual target implementation. For example, if public stack allocation
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occurs as part of function entry, the labels on stkAlloc might carry the name or definition
of the function, giving an instantiation access to the size of the function’s private data and
hence enabling it to calculate the location of the public region. Crucially, labels have no
impact at all on the axiomatized behavior of the interface. In this sense, they do not affect
the source semantics; they just make it possible to prove compiler semantic preservation for
a particular choice of labeling scheme, instantiation, and target implementation.

The axioms make no guarantees about when stkAlloc or HpAlloc will succeed; as
discussed in §3, they may return ∅ at any time, to indicate OOM. On the other hand,
StkFree is guaranteed to succeed iff the stack is non-empty (StkFOK, StkF) and HpFree
succeeds iff the heap contains an allocated region at the specified address (HpFOK, HpOK).
Again, these operations do not affect values in other allocated regions (StkFV,HpFV).

The load and store operations always succeed in allocated regions (StOK,LdOK). They
might also succeed at unallocated addresses. It is important not to require failure on these
accesses, because trapping them may be expensive or impossible in some implementations.
The usual “good variables” properties hold for stores into an allocated region (LdStEq,
LdStNeq). In fact, LdStEq holds even for addresses outside allocated regions, although
this is not likely to be useful in practice. The restriction to allocated addresses for LdStNeq
is essential to allow implementations like SFI masking that “warp” out-of-bounds stores into
essentially unpredictable (but in-bounds) stores. Note that the axioms say nothing about
initial values; that is, freshly allocated regions (and all unallocated addresses) start with
defined but unpredictable contents.

Since all the operations (except load) return a potentially changed memory, they destroy
any guarantees about the contents of unallocated locations, reflecting the fact that an
implementation may change the layout or contents of private data at these points. But an
implementation might also do this at other points that do not correspond to a source-level
memory operation. For example, the stack pointer might change during function call/entry
or exit/return sequences, even if no public data is allocated (or even accessed) at these points.
To account for this, a source semantics can use the perturb pseudo-operation to signal places
where such changes may occur in the target, without altering the status and contents of
allocated data (Pert). A semantics should sprinkle perturb calls generously, as this allows
a wider range of target implementations to support an instantiation of the model.

5 Verified Proof-of-Concept Compiler
We now describe the Coq implementation and verification of a proof-of-concept compiler
and runtime based on the memory model. The implementation is coded in Coq’s internal
functional language, Gallina. Our source and target languages are highly simplified, while
still containing enough features to exercise the memory model and to illustrate the interesting
and challenging parts of the semantics preservation proof.

The formalisation of the memory model closely follows the design given in §4, except that
memory is 64bit-word-indexed rather than byte-indexed, so values V are 64-bit words and
pointers occupy a single location, and there are no alignments.

5.1 Source language
The source language (Figure 5, left) is a simple Register Transfer Language (RTL). A program
is a list of named functions, each with an unbounded number of local pseudo-registers, jointly
operating on a word-addressed memory. Registers and memory contain 64-bit machine words;
there is absolutely no distinction between integers and pointers. Function call is an atomic
operation passing all arguments at once, and the call stack is implicit. Since intrafunction
control flow is unimportant for the compilation issues we wish to explore, we dispense with
it altogether: function bodies are just straight-line instruction sequences.
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i := mov rs rd move register
| movi n rd move immediate
| mov& rd move array base
| op⊕ rs1 rs2 rd binary operation
| ld ra rd load
| st rs ra store
| call f r⃗ rd call

⊕ := + | - binary operator
f := f(r⃗a, n) = i⃗ ret rr function
pr := f⃗ RTL program

r := SP | RV | RA | GP1 | GP2 | GP3
i := mov rs rd move register

| movi n rd move immediate
| op⊕ rs1 rs2 rd binary operation
| ld p ofs(ra) rd load
| st p t rs ofs(ra) store
| jal id jump-and-link
| builtin b built-in

p := hi | lo privilege
t := pro | unpro protection tag
b := malloc | free built-in
f := id : i⃗ function
pr := f⃗ Mach program

Figure 5 Syntax for RTL (left) and Mach (right).

There are two ways of allocating memory. For the stack, each function activation
implicitly allocates a local array of statically fixed size. Just as with C local arrays or
address-taken scalars, this storage can be used by the function itself and by callees who are
given a pointer to it. For the heap, there are C-like built-in functions malloc:words →
ptr and free:ptr → void that do explicit allocation and deallocation. The RTL semantics
implements these features using calls to the corresponding memory model operations.

Function f(r⃗a, n) = i⃗ ret rr takes its arguments in r⃗a, allocates a local array of constant
size n, executes the straight-line sequence of instructions i⃗, deallocates its local array, and
returns the value in register rr. Functions can use any number of additional local registers,
which are implicitly initialized to 0. The mov& rd instruction moves the base address of the
local array into rd. Other instructions should be self-explanatory.

Programs can have one of four behaviors:
Terminate with a result value. The first function in the program is taken to be the
program’s entry point and its final return value is the program’s overall result.
Failstop with a memory error. This can be either a failed allocation (OOM) or an unsuc-
cessful access to an unallocated memory address (OOB).
Diverge. Despite the lack of control-flow instructions, this can happen via an infinite
recursion, provided the functions involved have zero-size local arrays (otherwise the
program will eventually run out of memory).
Get stuck. This can only happen if the program calls a function that does not exist or
has the wrong number of arguments. It is easy to define a static typing judgement that
rules out such programs.

The formal semantics of RTL is given by a straightforward instruction stepping relation
over machine states. We include an explicit Failstop state. The state maintains an implicit
call stack of pending activations, including return addresses and local registers. A single
memory is threaded throughout, with memory model operations invoked at the following
places in the semantics:

Function entry: stkAlloc is invoked to allocate the local array, passing the current code
location (function id and remaining instructions) as the context label. If the allocation
succeeds, the array base is remembered in the state for future use by the mov& instruction.
If it fails, the machine enters the Failstop OOM state.
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Function exit: stkFree is invoked to deallocate the local array. We can use the StkFOK
axiom to prove that this can never fail in this semantics.
Function call and return: perturb is invoked (again with the code location as label) to
reflect the fact that the target implementation may change the stack to pass arguments
or clean up after a call; if either operation fails, the machine enters Failstop OOM.
Execution of malloc built-in: hpAlloc is called with the requested number of words. If
this fails, the machine enters Failstop OOM.
Execution of free built-in: hpFree is called with the specified address; if this fails, the
address must be bogus, and the machine enters Failstop OOB.
Load and store: these are done directly by the memory model’s load and store operations;
if they fail, the machine enters Failstop OOB. Recall that accesses to allocated locations
are guaranteed to succeed, but out-of-bounds accesses will not necessarily fail.

Although the memory model abstracts over the behavior of the allocation oracle, for any
given instantiation of the memory model, RTL itself is deterministic.

5.2 Target machine
The compiler’s target language (Figure 5, right) is a simple RISC-like assembly code (Mach).
The instruction set is very similar to RTL, but operates over a small fixed set of registers,
including a stack pointer (SP), return address register (RA), return value register (RV), and
general-purpose registers (GP1-3). Registers and memory can contain either 64-bit integers
or abstract code pointers (actually just sequences of instructions). Machine code lives
separately from data memory, and is divided into named functions, the first of which is the
program’s entry point main. Again, for simplicity, each function is a straight-line sequence
of instructions, and there are no intrafunction branch instructions. Functions are invoked
by jal, which stores the “return address” (the remaining instructions in the caller) in RA.
After the last instruction in a function, the machine “returns” by continuing execution at
the “address” in RA. RV is intended to hold the result value of a function when it returns.

The machine’s memory is modeled as a single 64bit-word-addressed array. In addition to
a containing a value (the payload), each address has an associated single-bit protection tag,
either protected or unprotected. Store operations set both the payload and the tag. Load and
store operations are parameterized by a corresponding privilege flag: hi or lo. Low-privilege
instructions can only access unprotected locations; high-privilege instructions can access all
locations. Protection violations cause a failstop. This corresponds to a simplified version
of ARM MTE [34, 3] or PIPE [13]. The initial values in memory are defined but arbitrary
and are all tagged as unpro. The intention is that private data such as return addresses,
arguments, and variables will be tagged pro and accessed with hi instructions, whereas public
data such as the per-function arrays will be tagged unpro and accessed with lo instructions.

The overall structure of memory is specified by a small set of parameters defining the
bases and limits of a stack area and a heap area, organized as shown in Figure 6. All loads
and stores are constrained to lie within one of these areas, which correspond to the pages
mapped by a process in a real machine. Accesses outside these areas cause failstops. The
machine initializes SP to StkBase; thereafter, the stack is managed entirely by code generated
by the compiler. The heap is managed by the malloc and free functions that, in a real
system, would be part of the runtime system code. For simplicity (and because our target
language is so impoverished) here we write these functions in Gallina instead and invoke
them via special built-in machine instructions; see §5.4.

Mach programs are deterministic, and can have the same four kinds of behaviors as RTL
programs. Termination is signaled by returning from main; the overall program result value
is in RV. Failstops can be due either to memory errors (protection violation or out-of-bounds
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Figure 6 Layout of memory (center), stack frames (left), and heap (right); orange regions are
pro and blue regions are unpro.

access) or a failure by a built-in function (out of memory in malloc or bad argument to
free). Although real machines don’t get stuck, this one can, by trying to jump to a function
that doesn’t exist or return when RA does not contain a code pointer; these are artifacts of
our abstract view of code that would disappear if we used concrete code addresses.

5.3 Compilation scheme and stack layout

The compiler from RTL to Mach has a very simple structure: each function is translated
independently, and each source instruction is translated to a fixed sequence of target in-
structions. The target code maintains a conventional stack of function activation frames,
growing towards lower addresses. A function’s frame (Figure 6, left) holds its parameters
and local variables, its return address, and its local array; thus private and public data are
interleaved. There is no attempt to perform register allocation; instead, each RTL parameter
and pseudo-register is mapped to a fixed frame offset and loaded/stored each time it is used.
We adopt a calling convention where the entire responsibility for constructing and freeing
stack frames is given to the callee. The size of the frame is computed statically and the SP is
adjusted just once at function entry and again at function exit. We view parameters to any
callees as part of the caller ’s frame, which must include enough space to hold the maximum
number of parameters needed by any call the function makes, computed by a simple pass
over the function body. Since the sizes of all frame components are known statically, they
can be accessed as offsets from the SP; there is no need for a separate frame pointer.

Initially, the entire memory is tagged unpro, but all components of stack frames except
the local array should be tagged pro. The compiler generates function entry code to do this
one word at a time, and matching exit code that retags everything unpro. Setting a tag
also requires writing a payload value; both these operations write zeros. The dual approach
of making pro be the default and unprotecting/reprotecting the array component would
also work, but could be much less efficient, since arrays can be arbitrarily large. To protect
non-stack memory, target code must failstop if the stack overflows its predefined area, i.e. if
SP goes below StkLimit. We achieve this via the usual trick of placing a “guard” area of
invalid addresses between the stack and the heap.
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5.4 Runtime allocator and heap layout

As described in §5.2, the target machine is equipped with a runtime heap memory allocator
packaged as C-like malloc and free functions. For simplicity and convenience, we build
this code into the machine’s semantics, but in a real implementation it would be part of
the runtime system; our Gallina code is “honest” in the sense that it uses only memory
operations already provided by the machine’s instruction set. We use a very simple heap
organization (Figure 6, right). The heap region is divided into objects, each consisting of a
one word header followed by zero or more words of data. The header is an integer whose
absolute value is the size of the object (including the header itself), and whose sign indicates
whether the object is currently allocated (sign +1) or free (sign -1). Headers are tagged pro;
all other head addresses are tagged unpro. Initially, the heap consists of a single free object.

To allocate a new heap region of size s ≥ 0, malloc loops over the objects in increasing
address order, starting at HpBase, until it finds a free object of size n ≥ s. It returns that
object’s address (the first word above the header), after using a privileged write to flip the
sign bit in the header to mark the object as allocated. If n > s, the object is first split
into two objects, which involves changing the size in the header of the existing object and
transforming a data word into a header for the second object, again using privileged writes.
If no sufficiently large object is found before the loop reaches HpLimit, malloc failstops.

To deallocate a heap region at a specified address, free must operate similarly: it loops
over the objects in order starting at HpBase until it finds an allocated object at that address,
and then uses a privileged write to flip the sign bit in that object’s header, marking it as free.
The newly freed object is then coalesced with its neighbors on each side if they were already
free. If no matching address is found, the specified address was invalid, so free failstops.

Obviously this scheme (especially for free) has poor efficiency properties compared to real
C memory manager implementations. But it does illustrate a realistic interleaving of (public)
data and (private) allocator metadata in memory, and shows how a tag-based machine
can protect the metadata, while keeping proofs fairly simple. Extending the algorithms to
manage multiple free lists, etc. would be straightforward but tedious. Implementing a more
realistic O(1) time free safely could be done by storing and protecting metadata separately.

5.5 Memory model instantiation

We now describe how the memory model (§4) can be instantiated so that the addresses it
assigns to stack and heap allocations requested by the source semantics (§5.1) match those
generated by compiled code (§5.3) and the runtime heap allocator (§5.4). This is the most
novel aspect of our approach. In essence, we work backwards from the compiler and runtime
design to identify (just) those aspects of target state that affect public memory layout, and
use these to define instantiations of the M type and the model’s operations and observation
functions that validate the model’s axioms. The semantics preservation proof (§5.6) confirms
that we have done so correctly for this source and target.

The construction of this instantiation is parameterized by an RTL source program, which
is consulted to obtain the definitions of functions passed as labels to StkAlloc, from which
the oracle can calculate private stack data sizes. The instantiation itself is then passed as a
parameter to the definition of the RTL semantics. For the proof-of-concept system, we define
M = {m : (vals : Vals) × (st : St) × (hp : Hp) | MInv m}, i.e. a Coq subset type containing a
triple of value map vals, stack st, and heap hp, which obeys an invariant MInv. We discuss
each component in turn.
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Values. To support the model’s load and store operations, the instantiation simply
maintains a map vals of type Vals = A → V that contains the correct values for all public
(unpro) locations, and is arbitrary at other locations.

Stack. The source semantics uses stack allocation operations only for the local array created
as part of each function entry sequence; the model instantiation must predict the runtime
location of this array. To do this, the instantiation maintains an abstract stack st : St
of function activations kept in one-to-one correspondence with the frames of the concrete
implementation stack. Here St is lists of abstract frames; each invocation of stkAlloc with
size s and label f pushes a new frame (f, s) onto st. The instantiation uses the function
definition for f and knowledge of how the compiler lays out concrete frames (Figure 6) to
compute the array address to return (or ∅ if this address is below StkLimit).

Each stkFree pops the top frame from st. Since the implementation retags private frame
locations as unpro during function exit, resetting their payload values to 0, the instantiation
must also zero the corresponding locations in vals.

In this particular implementation all the work associated with building and tearing down
frames is done in the callee. Although the semantics invokes perturb operations on the
caller side before and after each call, nothing happens to the concrete stack at these points,
so perturb M l always returns ⌊M⌋.

The observation function SM is obtained simply by mapping over st and extracting the
array base and size from each frame. The instantiation also defines a predicate identifying
accessible (i.e. public) addresses in the stack area, which includes both addresses in allocated
regions (i.e. local arrays) and those beyond the end of the stack pointer; load and store on
inaccessible stack area addresses return ∅.

Heap. RTL’s invocations of hpAlloc and hpFree are in one-to-one correspondence with
calls to the “runtime system” primitives malloc and free. Hence, the model instantiation
simply maintains a slightly abstracted version hp : Hp of the runtime’s heap data structure
and executes abstracted versions of the runtime algorithms over it. Hp is lists of objects
maintained in increasing address order, with the first object being understood to start at
HpBase. Each object is described as a pair (s, af ) where s is the object size and af is a boolean
is-allocated flag. The heap accessibility predicate holds for addresses within both allocated
and unallocated objects, but not the private header words. When the implementation of
free performs coalescing, it will retag some private headers as unpro and reset their payload
values to 0, so the model instantiation must also zero the corresponding locations in vals.

Invariant. By design, the type of M allows very little “junk,” but we do need to carry two
simple technical invariants in MInv: for st, the calculated SP must always lie within the
stack area; for hp, the total size of the objects (including headers) always equals HpLimit -
HpBase. Among other things, these let us prove that all accessible addresses are representable
in a machine word (axiom RWF).

5.6 Semantic preservation
We say a pair of RTL and Mach behaviors are equivalent (written ≈) if they both Terminate
with the same value, both Diverge, both get Stuck, or both Failstop (for any reason). Our
notion of semantic preservation is two-way refinement: if an RTL program does not get Stuck,
then each of its behaviors is equivalent to a behavior of the corresponding Mach program,
and vice-versa. Since both Mach and RTL (with a specific memory model instantiation) are
deterministic, this simplifies to the following strong result. For any RTL program P , let I(P )
be the memory model instantiation defined as in §5.5, applied to P . Then we have:
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▶ Theorem 1 (Equivalent Behavior). Let S be an RTL source program and T be the
corresponding compiled Mach target program. Let BRTL[I](S) be the behavior of S under
the RTL semantics with memory model instantiation I, and BMach(T ) be the behavior of
T under the Mach semantics. Finally, let BRTL = BRTL[I(S)](S) and BMach = BMach(T ).
Then, if BRTL is not Stuck, BMach ≈ BRTL.

As noted in §5.1, we can easily define a static typing judgement on RTL programs that rules
out Stuck behavior. Then we have a corollary stating that if S is well-typed, BMach ≈ BRTL.
The proof of this theorem is based on a standard stepwise forward simulation lemma showing
that each RTL step corresponds to one or more Mach steps while preserving a matching
relation between states. Iterating this lemma directly gives forward refinement; coupled with
determinacy of the target semantics it also implies reverse refinement [21].

As usual, the main challenge of the proof lies in defining the matching relation by cases
over the possible RTL states, which all include the memory model’s internal state M as one
component. To describe Mach memory, we use a version of CompCert’s separation logic
library, modified to work for tagged concrete memory. A typical separation logic assertion is
the following characterization of the Mach memory corresponding to a single stack frame, as
the separated conjunction of three simpler assertions:

Definition frame_contents (f:RTL.function) (sp:Z) (retaddr:mval)
(sB:RTL.regbank) (vm:MemInst.valmem) : massert :=

match_env f sB sp ** hasvalue (sp + ra_ofs f) retaddr t_pro
** match_pub vm (sp + arr_ofs f) (sp + arr_ofs f + sz_a f).

Roughly, this says that a frame based at Mach memory address sp contains separate slots
for the private values of parameter and local registers of the RTL function (match_env),
the private saved return address (hasvalue), and the public array contents stored in M ’s
vals component (match_pub). More complex assertions are used to characterize the memory
of the stack as a whole. In addition to matching memory contents, we must maintain a
three-way relation among the RTL call stack, the st component of M , and the Mach SP, in
order to guarantee that source and target share the same notion of accessible stack memory.

Heap matching is easier, because RTL delegates all knowledge of heap structure to M .
The following definition characterizes the heap segment h starting at Mach memory base
address b; note the encoding of the abstract allocation flag af into the sign of the size in the
header.

Fixpoint heap_contents (h:MemInst.heap) (b:Z) (vm:MemInst.valmem) : massert :=
match h with
| [] => pure True
| (sz,af)::rest => hasvalue b (if af then sz+1 else -(sz+1)) t_pro

** match_pub vm (b+1) (b+1+sz)
** heap_contents rest (b+1+sz) vm

end.

The overall matching relation combines stack matching, heap matching, and a rather
large number of purely technical invariants. The simulation proof itself is quite lengthy,
but fairly straightforward. We develop a series of lemmas to show that whenever source
and target are in matching states, each publicly accessible address in M points to an unpro
location in Mach memory with the same value, and each inaccessible address points to a pro
Mach address. These are then used to prove that private (resp. public) stores in RTL can
be simulated by privileged (resp. unprivileged) stores in Mach, preserving state matching;
furthermore, failing stores in RTL can be simulated by failing stores in Mach. We prove
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auxiliary lemmas about fixed sequences of code generated during compilation for function
call, entry and exit. Similarly, we prove that the low-level Mach implementations of malloc
and free correctly simulate those in the M implementation.

The overall structure of our development is inspired by CompCert, and we make direct
use of the following CompCert modules: Separation (modified as noted above), Integers
(for machine integers), Smallstep and Behaviors (both modified to remove traces and add
Failstop states), and various low-level libraries.

6 Related Work

Memory models. Norrish [31] gives a mechanized C semantics with a concrete byte-level
memory, which was later refined by Tuch, et al. [39, 38] to incorporate type-based non-aliasing.
The main focus of this line of work is to support verification of C programs, rather than of C
compilers. Memarian’s Cerberus system [26] includes an (unaxiomatized) C memory model
interface that abstracts over various alternatives for pointer semantics, some fairly concrete.

Several variants of the original CompCert memory model [22] treat memory and pointer
representations more concretely. CompCertTSO [35], which extends CompCert v1.5 to target
a low-level machine with a TSO relaxed memory model, switches from abstract to concrete
pointers early in the compilation pipeline. Since CompCert v1.5 lacked alias analysis, the
impact of concrete addressing on optimization does not seem to have been considered. Mullen
et al. [28] append a new peephole optimization pass to the CompCert pipeline that uses a
low-level version of assembly code in which pointers have been mapped to concrete integers.
Our concrete semantics should validate all of their transformations. CompCertMC [41]
extends the CompCert proof chain to a machine language with a flat, concrete memory
model, similar to our Mach language. None of these systems expose concrete pointers at
source level, or attempt to give meaning to OOB behaviors.

Oracles. Carbonneaux et al. [8] introduce the idea of a memory oracle that collects inform-
ation from the compiler about the size of each target stack frame, and reflects that back to
the source. CompcertMC [41] and CompCertS [6, 5] employ such an oracle to derive a bound
on total stack size from inspection of the source program. Our oracle is much more detailed,
as it says where each allocation goes, not just how big it is; also, unlike these systems, we
describe heap allocation in detail. On the other hand, we deliberately avoid exposing private
data size information in the source semantics itself, so we cannot support bounds calculations
there. Another difference is that these systems treat source level OOM as a stuck behavior
for which the compiler makes no guarantees, whereas we treat OOM as a distinct behavior
that is verifiably preserved by the compiler.

Low-level pointer arithmetic. Kang et al. [15] propose a hybrid quasi-concrete memory
model in which abstract pointers acquire concrete addresses only when they are cast to
integers. The intent is to support both arithmetic operations on cast values and aggressive
optimization when casting has not occurred. As in our semantics, OOM becomes an observable
behavior of the source program, which is guaranteed to be preserved by the target; one
unintuitive feature is that these OOMs occur at cast time rather than at allocation time.
OOB behaviors remain UB, hence not preserved.

Besson et al. [6, 5] propose a memory model that keeps CompCert’s abstract representation
of pointers, but also supports certain bit-level arithmetic computations. Their CompCertS
semantics builds a symbolic representation of each computed pointer value in terms of
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abstract block addresses; this has well-defined semantics iff its value is invariant under all
possible legal block placements. For example, CompCertS gives the expected semantics to
function main of Figure 2, since the value of r does not depend on where p lives, but not to
memmove, since the result of comparing dest and src depends on the relative placements of
the corresponding blocks. Our semantics gives defined semantics to both functions.

In a separate line of work, Besson et al. [7] show how to modify CompCert to turn the
bit-level pointer operations needed for SFI memory address “warping” into well-defined
behaviors that are preserved by compilation, by adding a compiler pass that “arithmetises”
all pointers into integer offsets within a single sandbox block, referenced by a shadow stack
pointer [17]; the behavior of globals and malloc is axiomatized to use the sandbox as well.
They prove in Coq that transformed programs are well-defined and safe. They do not propose
a concrete pointer semantics at source level; indeed, they do not attempt to prove that
their new pass preserves source behavior (which would require adding a notion of OOM at
source level). Their transformation inhibits later optimizations much like our semantics;
their benchmarks suggest that this can have noticeable, though inconsistent, effects on
performance.

7 Conclusions and Future Work

We have proposed a concrete memory semantics for C, with no memory UBs, suitable for
compiling to a target having public vs. private memory enforcement, and equipped with
a novel oracle that predicts the concrete placement of memory allocations based on the
actual behavior of the compiler and runtime system. Our proof-of-concept verified compiler
demonstrates the feasibility of this approach for a very simple, but characteristic, subset of
C and a tag-based enforcement mechanism.

Our next work is to extend this subset by incorporating function pointers, which can
be protected in the target environment using a range of hardware and software tagging or
trampolining techniques [7] analogous to those used for data pointers. Once again, it is
desirable to abstract away the details of enforcement when specifying the source semantics;
we believe this can be done in a style similar to the oracular memory model we use here.

A significant question is whether our oracular approach supports vertical compositionality
across a multi-phase compiler. It is particularly desirable that oracles can be constructed
modularly, i.e. that an oracle instantiation for each stage can be constructed from an arbitrary
instantiation of the successor stage’s oracle. We have some preliminary work on an inlining
phase suggesting that this is indeed possible, but much more experience is needed. Ultimately,
we hope to use this approach to build a complete Concrete C compiler with a UB-free source
semantics and the full scope and depth of CompCert.
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Abstract
We introduce an abstraction which allows arguments involving iterated integrals to be formalized
conveniently in type-theory-based proof assistants. We call this abstraction the marginal construction,
since it is connected to the marginal distribution in probability theory. The marginal construction
gracefully handles permutations to the order of integration (Tonelli’s theorem in several variables),
as well as arguments involving an induction over dimension.

We implement the marginal construction and several applications in the language Lean. The
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1 Introduction

There are two major challenges which appear in the formalization of iterated integration.
First, according to Tonelli’s theorem, the order of integration does not matter on well-
behaved integrands. A formalism for iterated integration should make this convenient to
state and apply. Secondly, iterated integration often turns up in the wild in the context of
analytic arguments involving induction on dimension. Experience suggests such arguments
are intrinsically hard to formalize. A good formalism for iterated integration should provide
auxiliary constructions which enable users to mimic such induction arguments.

In this article we introduce a framework for iterated integration in the Mathlib library
of the interactive proof assistant Lean. We test this framework in several applications, most
notably in a proof of the Gagliardo-Nirenberg-Sobolev inequality, a foundational result from
the theory of elliptic partial differential equations. The proof of the inequality is a tricky
argument whose details are often elided in the literature. It involves both the reordering of
iterated integrals and (something akin to) induction on dimension.

The structure of the article is as follows. As a foundation for this project we construct
the finitary product measure in Lean (Section 3). This is the most general context for which
iterated integration can be considered. This setting includes Rn, whose standard measure is
built as the product of n copies of the Lebesgue measure on R. This work builds on earlier
work of van Doorn [19] defining the binary product measure and a pre-existing measure
theory library developed over the previous several years [3].
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We then develop (Section 4) a notion of iterated integration suitable for type theory,
and implement this in Lean. We refer to our notion of iterated integration as the marginal
construction because it is inspired by the marginal distribution in probability theory. Our
construction permits expression of iterated integrals in a form which is closer to the on-paper
notion, bringing the formalized math into better correspondence with the written form. Our
framework, as mentioned above, allows for arguments involving induction on dimension to
be expressed intuitively. Furthermore, our framework handles Tonelli’s theorem silently,
reducing it to a statement on equalities of sets.

We give several demonstrations (Section 5) of our iterated integration framework. First,
as an example we compute the volume of a ball in Rn (Subsection 5.1), as well as a matrix
change of coordinates argument previously formalized in Lean by Gouëzel [9] as a key step
to prove the change of variables formula for integration. In these examples, we will show
how our framework can handle these arguments elegantly.

Next we provide a more elaborate example (Subsection 5.3), which we name the “grid-lines
lemma.” This is an argument requiring both induction over dimension and Tonelli’s theorem,
and it would be extremely cumbersome to express without an explicit notion of iterated
integration.

The grid-lines lemma is an abstraction of the key argument in the Gagliardo-Nirenberg-
Sobolev inequality [17, 8, 7]. The final component of our project (Section 6) is the deduction
of this inequality from our grid-lines lemma. The Gagliardo-Nirenberg-Sobolev inequality
has not been previously formalized.

In Section 7 we give a sketch of the importance of the Gagliardo-Nirenberg-Sobolev in-
equality to the theory of elliptic partial differential equations and suggest future formalization
work in this direction. Related work is discussed in Section 8.

2 Preliminaries

2.1 Lean and Mathlib

Lean [4] is a theorem proving language; its logical foundation is dependent type theory.
Mathlib [3] is its standard mathematical library, currently totalling 1.4 million lines of code.
The design of Mathlib prioritizes convenience and mathematical generality; a tradeoff is
that no effort is made to work constructively. The development of Mathlib is a distributed
project, with some 300 contributors over the seven years of its existence.

Recently a new version, Lean 4 [15], was introduced and the Mathlib library was ported
from Lean 3 to Lean 4. We refer to the two versions of the library as Mathlib3 and Mathlib4
when there is a possibility of confusion.

The finitary product measure construction described in this article (Section 3) was written
in 2021 in Lean 3 and contributed to the Mathlib3, and was ported to Lean 4 as part of the
broader Mathlib porting effort.

The rest of the work described in the article was written in Lean 4. The marginal
construction (Section 4) and its prerequisites were contributed to Mathlib4 in 2023, and the
Sobolev inequality was contributed in 2024. We will use clickable links to link our paper to
specific results in the library (to the version of Mathlib of June 29, 2024).2 The application
described in Section 5.1 is not part of Mathlib, but on a branch2, since Xavier Roblot had
already contributed the computation of the volume of a ball to Mathlib4, using different
techniques.

We estimate that the whole project comprises some 3,500 lines of code.

https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/
https://github.com/leanprover-community/mathlib4/tree/marginal_itp
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2.2 Basic Measure Theory
In this section we briefly describe the most important parts of the measure theory library in
Mathlib prior to our work. We refer to [19] for a fuller description.

In Mathlib we have the notion of measurable space, which is just a type equipped with
a chosen σ-algebra of sets which we call the measurable sets. On a measurable space we
can consider a measure µ which sends any measurable set A to a number in [0, ∞] which
is a monotone and countably additive. Here [0, ∞] is the type of nonnegative real numbers
extended by a single element ∞, and denoted R≥0∞ in Lean. In Lean we allow µ to be
applied to any set A (even nonmeasurable ones), in which case it is defined as the infimum
of the measures of measurable sets containing A. This makes µ an outer measure on all sets
(i.e. monotone and countably subadditive function that sends ∅ to 0).

Mathlib contains two notions of integration. The Lebesgue integral is for functions
X → [0, ∞] where X is a measurable space equipped with a measure µ. The Bochner integral
is for integrable functions X → E where E is a Banach space. We will denote both of these
integrals using any of the following notations:∫

X

f dµ =
∫

X

f(x) dµ(x) =
∫

X

f =
∫

X

f(x) dx.

In this paper we will be almost exclusively working with the Lebesgue integral.
Given two measurable spaces X and Y , and two σ-finite measures µ and ν, we can

construct a measure µ × ν on the measurable space X × Y , which satisfies

(µ × ν)(A × B) = µ(A)ν(B)

for all sets A and B (we do not need to require that A and B are measurable).
Tonelli’s theorem is an important theorems that states how to compute Lebesgue integrals

with respect to the product measure.

▶ Theorem 1 (Tonelli’s theorem). Let f : X × Y → [0, ∞] be a measurable function. Then 2∫
X×Y

f d(µ × ν) =
∫

X

∫
Y

f(x, y) dν(y)dµ(x) =
∫

Y

∫
X

f(x, y) dµ(x)dν(y)

and all the functions in the integrals above are measurable.2

There is also an analogous theorem for the Bochner integral in Mathlib, called Fubini’s
theorem, but we will not be using that in this paper.

2.3 Notation
In this paper, we will use set-theoretic notation for type-theoretic concepts, writing i ∈ ι or
A ⊆ ι even when ι is a type.

Let ι be a type. If x is a vector of type
∏

i∈ι Xi, and t is of type Xi, then Xi(x, t) denotes
the vector whose i-th coordinate is t and whose j-th coordinate is xj for j ̸= i. In Lean this
vector is denoted Function.update x i t.2

Similarly, if A ⊆ ι and y :
∏

i∈ι Xi, we use the same notation XA(x, y) for the operation
that updates x on A:2

XA(x, y)i :=
{

yi if i ∈ A

xi otherwise.
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https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Prod/Basic.lean#L969-L975
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3 Finite Product Measures

There are a few ways to define the product measure on finite product spaces. Conceptually
this can be done by iterating the binary product measure construction. However, some care
is required, since the spaces X × (Y × Z) and (X × Y ) × Z are not the same space, they are
merely equivalent spaces.

Given a finite family of measurable spaces (Xi)i∈ι with a σ-finite measure µi on Xi, we
want to define the product measure on

∏
i∈ι Xi. We could define the measure by choosing an

arbitrary enumeration of ι as ι = {i1, . . . , ik}, and then by using the measurable equivalence(∏
i∈ι

Xi

)
≃ Xi1 × Xi2 × · · · × Xik

, (1)

to transport the iterated binary product measure from the right-hand side to the left-hand
side. We decide not to do this in order to avoid arbitrary choices in the definition. Instead,
we don’t care too much how we define the measure, as long as it satisfies the property that if
Ai ⊆ Xi for all i ∈ ι, then

(Πiµi)(ΠiAi) =
∏

i

µi(Ai). (2)

We will define the measure as the maximal measure satisfying (2). To do this, we first define
the projection πi(A) of a subset A ⊆

∏
i∈ι Xi as the image of A under the evaluation function

πi :
(∏

i∈ι Xi

)
→ Xi. Then we define an auxiliary function n which sends a set A ⊆

∏
i∈ι Xi

to2

n(A) :=
∏
i∈ι

µi(πi(A)) ∈ [0, ∞].

Note that n will be equal to the measure of the smallest box containing A. Now there is a
unique maximal outer measure m such that m(A) ≤ n(A) for all sets A.2

Next, we want to turn this outer measure m into a measure on the product space. We
say that a subset A ⊆

∏
i∈ι Xi is Carathéodory-measurable w.r.t. m if for all B ⊆

∏
i∈ι Xi

the following equality holds:2

m(B) = m(B ∩ A) + m(B \ A).

We then show that all measurable subsets of
∏

i∈ι Xi are actually Carathéodory-measurable
w.r.t. m,2 and this shows that m allows us to get a measure Πiµi on

∏
i∈ι Xi, such that for

each measurable set A we have (Πiµi)(A) = m(A).2 2

Finally, we need to show that this measure satisfies (2).2 We first do this in the case that
each Ai is measurable. In this case, it is easy to show that

(Πiµi)(ΠiAi) = m(ΠiAi) ≤ n(ΠiAi) =
∏

i

µi(Ai).

We can show the reverse inequality by giving a specific instance of a measure that is bounded
by n and satisfies (2). To do this, we use the idea at the start of this section, by enumerating
ι = {i1, . . . , ik} and using equivalence (1) to construct some specific measure ν.2 It is not
too hard to show that ν ≤ n and that ν(ΠiAi) =

∏
i µi(Ai). Since Πiµi is the maximal

measure bounded by n, we have ν ≤ Πiµi, hence reverse inequality follows.

https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Pi.lean#L158-L159
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/OuterMeasure/OfFunction.lean#L236-L237
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/OuterMeasure/Caratheodory.lean#L52-L53
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Pi.lean#L289-L301
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Measure/MeasureSpace.lean#L722-L724
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Measure/MeasureSpace.lean#L738-L740
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Pi.lean#L397-L399
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Pi.lean#L274-L275
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There are some interesting observations in implementing ν, since it is naively defined
by recursion on the cardinality of ι. However, it is not so easy to perform recursion on
finite types, especially if you define something that depends on the ordering on the type.
Furthermore, it is convenient if we don’t transport along too many equivalences, during our
construction.

Our solution was to define a new way to define product types as an auxiliary construction.2

def TProd {ι : Type∗} (α : ι → Type∗) (l : List ι) : Type∗ :=
l.foldr (fun i β 7→ α i × β) PUnit

So e.g. TProd α [i, j, k] is by definition α i × α j × α k × PUnit, where PUnit is
the (universe polymorphic) unit type. This definition is convenient, since TProd α (i::l)
is by definition the same as α i × TProd α l. This makes it very easy to define the
product measure on TProd α l by induction on l, given measures on each α i.2 We prove
that if l contains each element of ι exactly once, then TProd α l is equivalent to the usual
product Πiαi.2 Finally, we construct ν by transporting the measure on TProd α l along this
equivalence.2 Finally, this definition makes it very easy to show that ν(ΠiAi) =

∏
i µi(Ai).2

In Mathlib we generally try to avoid these auxiliary constructions, because it’s yet another
way to talk about the same mathematical object. The thing to be worried about is that we
would want all the properties for product of types stated both for the usual Π-type and for
TProd, leading to a large duplication of lemmas. However, in this case we explicitly mark
TProd as an implementation detail, and avoid its usage unless you specifically want its precise
definitional behavior. For our construction, this definitional behavior made the construction
particularly easy, since we didn’t have to transport anything along an equivalence in the
recursion argument, only once at the end.

This definition of finitary product measures was completed in 2021 and has since been
used in various analysis formalizations in Lean. It is used to define the Lebesgue measure on
Rn (or, more precisely, ι → R). There is another definition of this measure using the Haar
measure, but we show that these give rise to the same measure.2 And this definition makes
it a lot easier to show some simple properties about this measure, such as (2).

It is also used by Kudryashov [13] as the setting for the Bochner-integrability version
of his divergence theorem, and by Gouëzel [9] in order to use Rn as a setting for certain
measure-theoretic results which are subsequently transferred to a general finite-dimensional
normed space by a choice of basis (see Subsection 5.2).

4 The Marginal Construction

4.1 Approaches to Formalization
We note that the fundamental issues in formalizing iterated integration are the same for
systems based on simple type theory and dependent type theory. In dependent type theory
it is possible directly to express a dependent finitary product

∏
j:ι Aj of measure spaces, but

the issues we address appear already in the setting of a function type ι → A, which can be
expressed in simple type theory.

When working with products of finitely many spaces, one also wants to use the Tonelli
and Fubini theorems. For example, if f : Rn+m → R, then one might want to write∫

Rn+m

f(z) dz =
∫
Rn

∫
Rm

f(x, y) dydx.

People familiar with formalization will note that this is not simply an application of Fubini’s
theorem, since Rn+m is not the same entity as Rn × Rm. One option is to show that there

ITP 2024

https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/Data/Prod/TProd.lean#L47-L48
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Pi.lean#L227-L231
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/MeasurableSpace/Embedding.lean#L514-L518
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Pi.lean#L274-L275
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Constructions/Pi.lean#L278-L284
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean#L120-L124
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is a “canonical” measure-preserving equivalence Rn+m ≃ Rn × Rm. However, this is still
a bit inconvenient to work with, since one has to work explicitly with this equivalence.
Below we will develop a framework that does not require working with any of these measure-
preserving equivalences (of course, to prove that the framework is correct, we will use such
measure-preserving equivalences).

Another expression that one might want to deal with is for f : Rn → R an iterated
integral of the form∫

· · ·
∫

f(x1, . . . , xn) dx1 · · · dxk

where k ≤ n. Here only some of the arguments of f are integration variables, and the
remaining expression is still a function of the remaining variables. Manipulating iterated
integrals like this is a key part of the proof of the grid-lines lemma discussed in Section 5.3.

The solution we implement was suggested in the concluding section of [19], which we will
do in the next section.

4.2 Definition and Properties
We encapsulate this notion in the following definition. In this definition we will generalize
Rn to an arbitrary product space

∏
i∈ι Xi.

▶ Definition 2. Let ι be a indexing set (not necessarily finite), A ⊆ ι a finite subset and
E be a Banach space. For i ∈ ι suppose we are given a measure space (Xi, µi) and let
f : (

∏
i∈ι Xi) → [0, ∞] be a function. Then the marginal of f w.r.t. A∫

· · ·
∫

i∈A

f dµi

is by definition another function (
∏

i∈ι Xi) → [0, ∞] that is defined as (the notation is
explained in Subsection 2.3).2

x 7→
∫∏

i∈A
Xi

f(XA(x, y)) dΠi∈Aµi(y).

Note that
∫
· · ·
∫

i∈A
f dµi is a function that does not depend on the arguments in A. We

could also viewed this as a function on
∏

i∈ι\A Xi instead of
∏

i∈ι Xi. However, it is much
more convenient to view it as a function on the whole product space

∏
i∈ι Xi, since the

alternative makes the statements of the lemmas below much more complicated.
We call this operation the marginal of f because of our intuition from probability theory.

If all the µi are probability measures and f is a random variable, then
∫
· · ·
∫

i∈A
f dµi is the

marginal variable on
∏

i∈ι\A Xi.
Note that we do not assume that ι is finite: this construction works in an infinite product,

as long as we only have finitely many integration variables.

▶ Lemma 3. The following basic properties hold for any function f : (
∏

i∈ι Xi) → [0, ∞].
1.
∫
· · ·
∫

i∈∅ f dµi = f .2
2. If x, x′ ∈

∏
i∈ι Xi and xi = x′

i for all i ∈ ι \ A then
∫
· · ·
∫

i∈A
f dµi will have the same

value on x and x′.2
3.
∫
· · ·
∫

i∈A
f dµi is monotone in f .2

4. If ι is finite then
∫
· · ·
∫

i∈ι
f dµi is the constant function with value

∫
f dΠiµi.2

5. If f is measurable, then so is
∫
· · ·
∫

i∈A
f dµi.2

https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L75-L77
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L98-L102
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L105-L108
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L187-L188
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L190-L196
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L88-L96
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Proof. Parts 2, 3 and 4 follow immediately from the definition.1
For Part 1 note that the marginal of f w.r.t. ∅ is an integral over an empty product

space. Since the empty product of measures is the Dirac measure on the unique point in the
space, this equality follows easily.

For Part 5, to show that
∫
· · ·
∫

i∈A
f dµi is measurable, by Tonelli’s theorem it suffices to

show measurability for (x, y) 7→ f(XA(x, y)), which is an easy exercise. ◀

Using the definition of marginal, we get a very nice formulation of Tonelli’s theorem for
finitary products.

▶ Lemma 4. If f is measurable and A and B are disjoint finite subsets of ι, then 2∫
· · ·
∫

i∈A∪B

f dµi =
∫

· · ·
∫

i∈A

∫
· · ·
∫

j∈B

f dµj dµi

Proof. Since A and B are disjoint, we have a measurable equivalence

e :
(∏

i∈A

Xi

)
×

(∏
i∈B

Xi

)
≃

( ∏
i∈A∪B

Xi

)
.

Note that e maps the measure (Πi∈Aµi) × (Πi∈Bµi) to the measure Πi∈A∪Bµi. Therefore
we compute∫

· · ·
∫

i∈A∪B

f dµi =
∫∏

i∈A∪B
Xi

f(XA∪B(x, y)) dΠi∈A∪Bµi(y)

=
∫

(
∏

i∈A
Xi)×(

∏
i∈B

Xi)
f(XA∪B(x, e(y))) d(Πi∈Aµi) × (Πi∈Bµi)(y)

=
∫∏

i∈A
Xi

∫∏
i∈B

Xi

f(XA∪B(x, e(y, z))) dΠi∈Bµi(z) dΠi∈Aµi(y)

=
∫∏

i∈A
Xi

∫∏
i∈B

Xi

f(XB(XA(x, y), z)) dΠi∈Bµi(z) dΠi∈Aµi(y)

=
∫

· · ·
∫

i∈A

∫
· · ·
∫

j∈B

f dµj dµi.

where the second step uses the properties of e and the third step uses Tonelli’s theorem. ◀

▶ Lemma 5. For i0 ∈ ι, 2∫
· · ·
∫

i∈{i0}
f dµi =

∫
Xi0

f(Xi0(x, y))dµi0(y)

Proof. We have a measurable equivalence
(∏

i∈{i0} Xi

)
≃ Xi0 that maps the measure

Πi∈{i0}µi to µi0 . Therefore,∫
· · ·
∫

i∈{i0}
f dµi (x) =

∫∏
i∈{i0}

Xi

f(X{i0}(x, y)) dΠi∈{i0}µi(y)

=
∫

Xi0

f(Xi0(x, y)) dµi0(y). ◀

1 In Part 4 there is a slight complication in the formalization, because the type ι is not the same type
as the universal subtype of ι (in the definition of marginal, A is used as a subtype of ι). This is not a
problem: the proof is still only a few lines long in the formalization.
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https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L118-L135
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/Marginal.lean#L143-L152
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5 Applications of the Marginal Construction

5.1 Volume of an n-ball
Our first application is a loose port of Manuel Eberl’s Isabelle formalization2 (2017) of the
formula for the volume of a ball in Euclidean n-space.

Let ι be a type of finite cardinality n. In this section x will denote a point in Rι and
(xj) the individual co-ordinates of such a point. Fix a real number R ≥ 0. We will study the
Euclidean ball in Rι,

{x : ∥x∥ ≤ R} =

x :
∑
j:ι

xj
2 ≤ R2

 .

Define a constant Bn := πn/2

Γ( n
2 +1) , where Γ denotes the gamma function (available in Mathlib

due to work of David Loeffler3). In this section we prove:

▶ Proposition 6. volume {x : ∥x∥ ≤ R} = BnRn.2

We introduce the notation 2

Ik(t) :=
{

0, t < 0
tk/2, 0 ≤ t,

for k : N and t : R, and 2

As(x) := B|s|I|s|

R2 −
∑
j∈sc

xj
2

 ,

for a set s in ι and a vector x : Rι.
Observe that (denoting by χU the characteristic function of a set U)∫

· · ·
∫
∅c

A∅ =
∫

x:Rι

B|∅|χ{x:0≤R2−∥x∥2} = volume {x : ∥x∥ ≤ R} ,∫
· · ·
∫

univc

Auniv = BnRn.

(A priori the left-hand sides are functions on Rι. The statements are to be understood as
saying that these functions are constant and equal to the expressions on the right-hand sides.)
So Proposition 6 follows by induction from the following fact:

▶ Proposition 7. For all sets s in ι and all i /∈ s,2∫
· · ·
∫

sc

As =
∫

· · ·
∫

({i}∪s)c

A{i}∪s.

Proof. Given i : ι, x : Rι and t : R,
A computation in single-variable calculus establishes that for all natural numbers k and

all real numbers c,∫
BkIk

(
c − t2) dt = Bk+1Ik+1(c).

2 https://isabelle-dev.sketis.net/rISABELLEc60e3d615b8
3 https://github.com/leanprover-community/mathlib/pull/12917

https://github.com/leanprover-community/mathlib4/blob/marginal_itp/Mathlib/MeasureTheory/Measure/Lebesgue/VolumeBall.lean#L351
https://github.com/leanprover-community/mathlib4/blob/marginal_itp/Mathlib/MeasureTheory/Measure/Lebesgue/VolumeBall.lean#L169
https://github.com/leanprover-community/mathlib4/blob/marginal_itp/Mathlib/MeasureTheory/Measure/Lebesgue/VolumeBall.lean#L314
https://github.com/leanprover-community/mathlib4/blob/marginal_itp/Mathlib/MeasureTheory/Measure/Lebesgue/VolumeBall.lean#L322
https://isabelle-dev.sketis.net/rISABELLEc60e3d615b8
https://github.com/leanprover-community/mathlib/pull/12917
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Therefore for any x : Rι,

∫
As (Xi(x, t)) dt =

∫
B|s|I|s|

R2 −
∑

j∈({i}∪s)c

xj
2

− t2

 dt

= B|{i}∪s|I|{i}∪s|

R2 −
∑

j∈({i}∪s)c

xj
2

 = A{i}∪s (x) .

Integrating this fact over the variables in ({i} ∪ s)c,∫
· · ·
∫

sc

As =
∫

· · ·
∫

({i}∪s)c

(
x 7→

∫
As(Xi(x, t)) dt

)
=
∫

· · ·
∫

({i}∪s)c

A{i}∪s. ◀

5.2 Transvections Preserve the Lebesgue Measure
A transvection is a matrix of the form 1 + A, where 1 is the identity matrix and A is a
matrix that has one, off-diagonal, non-zero entry. Mathlib contains the result that the linear
transformation of Rn induced by a transvection preserves the Lebesgue measure.

This is one step in the proof of the corresponding result for a general matrix M (where
a factor | det(M)| occurs). This result, the infinitesimal version of the change of variables
formula, was contributed to Mathlib by Gouëzel [9, Section 5], and had previously been
formalized in other systems. For example, Harrison [10, Section 7], working in HOL Light,
calls it out as “quite hard work to formalize.” In both cases this result is proved along the
way to a (non-infinitesimal) version of the change of variables formula.

The existing Mathlib proof was pretty long (34 lines) and required reasoning about
explicit equivalences on the indexing set. Using the marginal construction, we gave a proof
in 15 lines with the same mathematical argument. The main mathematical argument lies
in proving equation (3) below. This remains roughly the same in both versions of the
formalization, but the marginal construction allowed us to remove a lot of work for the
remaining part of the argument.

▶ Proposition 8. If ι is a finite indexing set, and T is a transvection on Rι, then T preserves
the Lebesgue measure.2

Proof. We have to show that T∗λ = λ where λ is the Lebesgue measure. Since boxes form
a basis of the σ-algebra on Rn, it is sufficient to show that the measures agree on a box
A = ΠiAi, so we have to show that λ(T −1(A)) = λ(A). Suppose that T = 1 + M where M

has entry c ̸= 0 in position (i, j) for i ̸= j. For a given x ∈ Rn we will first show that the
following equality holds:

λ({y | Xi(x, y) ∈ T −1(A)}) = λ({y | Xi(x, y) ∈ A}). (3)

The intuition of this equality is that we’re fixing all but one of the coordinates, and looking
at the length A when varying only coordinate i. We calculate:

λ({y | Xi(x, y) ∈ T −1(A)}) = λ({y | T (Xi(x, y)) ∈ A})
= λ({y | Xi(x, y) + cxjei ∈ A}) = λ({y | Xi(x, y + cxj) ∈ A}) = λ({y | Xi(x, y) ∈ A}),

where ei is the i-th standard vector and where in the last inequality we use the translation-
invariance of λ, showing (3).
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https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean#L379-L397
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To finish the proof, notice that we want to prove that∫
· · ·
∫

{1,...,n}
χA =

∫
· · ·
∫

{1,...,n}
χT −1(A),

where χX is the characteristic function of X. Equation (3) can be rewritten as∫
· · ·
∫

{i}
χA =

∫
· · ·
∫

{i}
χT −1(A),

and the claim follows from Proposition 4, in the following form:∫
· · ·
∫

{1,...,n}
f =

∫
· · ·
∫

{1,...,n}\{i}

∫
· · ·
∫

{i}
f. ◀

5.3 Grid-lines Lemma
In this section we present our most intricate application of the marginal construction: the
key argument in the Gagliardo-Nirenberg-Sobolev inequality (see Section 6), which for clarity
we have abstracted as a separate proposition and baptized the grid-lines lemma.

This key argument is quite an illuminating test case for the difference between informal
and formal mathematical practice. So before discussing our approach, we describe the
presentations available in the mathematical literature. The argument involves a succession of
uses of Hölder’s inequality with respect to different variables of integration. In the literature,
the argument is either presented in a particular low dimension and left for the reader to
extrapolate, or described as an implicit induction with the actual structure of the induction
being left unstated.

Nirenberg, 1959 [17]: “We shall prove (2.4)’ here for n = 3 . . . . For general n the
inequality is proved in the same way.”
Gilbarg-Trudinger, 1977 [8]: “The inequality (7.27) is now integrated successively
over each variable xi, i = 1, . . . , n, the generalized Hölder inequality (7.11) for m = p1 =
· · · = pm = n − 1 then being applied after each integration. Accordingly we obtain . . . ”
Evans, 1998 [7]: “We continue by integrating with respect to x3, . . . xn, eventually to
find . . . ”
Tsui, 2008 [18]: “To illustrate the main ideas, we discuss the case when n = 3 . . . . For
the general case, we start with . . . . Repeating this process, we get . . . ”
Liu, 2023 [14]: “[T]he inequality (1) for p = 1 is proved by integrating . . . with respect
to x1 and applying the extended Hölder inequality, then repeating this procedure with
respect to x2, x3, . . . xn successively . . . . This tedious procedure is not very transparent,
and is not easy to follow.”

To formalize this argument, we need an explicit statement in general dimension. Given the
appeals to the extrapolation in the presentations quoted above, it is perhaps not surprising
that we did not find this explicit statement in the literature!

We need an ι-indexed family of sigma-finite measure spaces (Ai)i:ι, where ι is a type of
finite cardinality n. The reader may wish to imagine for concreteness that each factor Ai

is R, so that the product type
∏

i:ι Ai is the function type ι → R (or Rι for short). The
essential points of the argument remain unchanged in this special case, which is in fact the
case needed for the Gagliardo-Nirenberg-Sobolev inequality.

We furthermore need a nonnegative real parameter p, which at different times will have
different upper bounds (specified explicitly).

The statement of the lemma in general dimension is as follows.
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▶ Proposition 9 (Grid-lines lemma). Suppose that (n − 1)p ≤ 1. If f :
∏

j:ι Aj → [0, ∞] is a
measurable function, then (the notation is explained in Subsection 2.3) 2

∫
x:
∏

j:ι
Aj

f(x)1−(n−1)p
∏

i

(∫
t:Ai

f(Xi(x, t))
)p

≤

(∫
x:
∏

j:ι
Aj

f(x)
)1+p

.

theorem lintegral_mul_prod_lintegral_pow_le (hp : (#ι - 1 : R) ∗ p ≤ 1)
{f : (∀ i : ι, A i) → R≥0∞} (hf : Measurable f) :∫ − x, f x ^ (1 - (#ι - 1 : R) ∗ p)
∗ ∏ i, (

∫ − xi, f (update x i xi) ∂µ i) ^ p ∂.pi µ
≤ (

∫ − x, f x ∂.pi µ) ^ (1 + p)

Our name for this lemma comes from the integrand on the left-hand side. Note that at
x :
∏

j:ι Aj the integrand is a weighted product of f(x) and expressions of the form∫
t:Ai

f(Xi(x, t));

this expression is the integral of f in the single co-ordinate i, and in Rι such an expression
represents the integral of f over the “grid line” through x obtained by varying the i-th
co-ordinate while fixing the others. See Figure 1.

 

22

Ko X

Figure 1 The left-hand integrand of the grid-lines lemma at a fixed point (blue point) is a
weighted product of the value there with integrals over the lines through it parallel to the axes (blue
dotted lines).

We introduce the notation

Ijf :=
∫

· · ·
∫

{j}
f

for the marginal integral over the singleton set {j} in ι, and 2

Tp,s(f) :=
∫

· · ·
∫

s

f1−(|s|−1)p
∏
j∈s

(Ijf)p
.
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https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/SobolevInequality.lean#L254-L262
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/SobolevInequality.lean#L85-L86
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Observe that

Tp,∅

(∫∏
j:ι

Aj

f

)
=
(∫∏

j:ι
Aj

f

)1+p

Tp,univ(f) =
∫

x:
∏

j:ι
Aj

f(x)1−(n−1)p
∏
j:ι

(∫
t:Ai

f(Xi(x, t))
)p

.

(A priori the left-hand sides are functions on
∏

j:ι Aj . The statements are to be understood
as saying that these functions are constant and equal to the expressions on the right-hand
sides.) So Proposition 9 follows by induction from the following fact:

▶ Proposition 10. For all sets s in ι and all i /∈ s, and for all p such that |s|p ≤ 1,2

Tp,{i}∪s(f) ≤ Tp,s (Iif) .

The proof is a tricky computation that relies on Hölder’s inequality at its heart. Note
that on the left-hand-side we have an |s| + 1-times iterated integral with |s| + 2 factors inside
the integral. If xi denotes the i-th variable, we want to move the integral over xi inside, and
apply Hölder’s inequality to the |s| + 1 factors that depend on xi (whose powers sum exactly
to 1).

Proof. We have that

[1 − |s|p] + |s|p = 1,

so for any x :
∏

j:ι Aj , by Hölder’s inequality,∫
t:Ai

f(Xi(x, t))1−|s|p
∏
j∈s

Ijf(Xi(x, t))p

≤
(∫

t:Ai

f(Xi(x, t))
)1−|s|p∏

j∈s

(∫
t:Ai

Ijf(Xi(x, t))
)p

.

Therefore for any x :
∏

j:ι Aj ,∫
t:Ai

f(Xi(x, t))1−|s|p
∏

j∈{i}∪s

Ijf(Xi(x, t))p

=
∫

t:Ai

Iif(x)p

f(Xi(x, t))1−|s|p
∏
j∈s

Ijf(Xi(x, t))p


= Iif(x)p

∫
t:Ai

f(Xi(x, t))1−|s|p
∏
j∈s

Ijf(Xi(x, t))p

≤ Iif(x)p

(∫
t:Ai

f(Xi(x, t))
)1−|s|p∏

j∈s

(∫
t:Ai

Ijf(Xi(x, t))
)p

= Iif(x)p Iif(x)1−|s|p
∏
j∈s

IiIjf(x)p

= Iif(x)1−(|s|−1)p
∏
j∈s

IjIif(x)p.

https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/SobolevInequality.lean#L105-L207
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Integrating this over the variables in s,

Tp,{i}∪s(f) =
∫

· · ·
∫

{i}∪s

f1−|s|p
∏

j∈{i}∪s

(Ijf)p

=
∫

· · ·
∫

s

x 7→
∫

t:Ai

f(Xi(x, t))1−|s|p
∏

j∈{i}∪s

Ijf(Xi(x, t))p


≤
∫

· · ·
∫

s

(Iif)1−(|s|−1)p
∏
j∈s

(IjIif)p

= Tp,s (Iif) . ◀

6 Gagliardo-Nirenberg-Sobolev Inequality

The version of the inequality we prove is due independently to Nirenberg [17, Lecture II]
and Gagliardo; a variant result with different exponents was proved earlier by Sobolev, and
can be deduced from the Gagliardo-Nirenberg version (although we do not formalize this
deduction).

The Lp norm of a function f w.r.t. a measure µ is defined to be

∥f∥Lp :=
(∫

|f |p dµ

) 1
p

∈ [0, ∞].

▶ Theorem 11 (Gagliardo-Nirenberg-Sobolev inequality). Let E be a real normed space of
finite dimension n ≥ 2 with Haar measure µ. Let 1 ≤ p < n be a real number with Sobolev
conjugate p∗ = np

n−p . Then there exists a nonnegative real number C such that for all
compactly supported C1 functions u : E → R,2

∥u∥Lp∗ ≤ C∥Du∥Lp . (4)

The Lean version, which is displayed below, features a zoo of type classes. The pre-
dicate ContDiff R 1 u states that u is C1, snorm u p′ µ is the Lp′ norm of u (w.r.t.
µ) and fderiv R u is the total derivative of u. The conclusion features a constant
SNormLESNormFDerivOfEqConst F µ p : R≥0. We don’t care about the precise value of
this constant, but it is important that it only depends on F , µ and p (and E, the space on
which µ is a measure).

Note also that in the formalization we generalized the codomain of u to be any finite-
dimensional normed vector space.

theorem lintegral_pow_le_pow_lintegral_fderiv [NormedAddCommGroup E]
[NormedSpace R E] [MeasurableSpace E] [BorelSpace E]
[FiniteDimensional R E] (µ : Measure E) [IsAddHaarMeasure µ]
[NormedAddCommGroup F] [NormedSpace R F] [FiniteDimensional R F]
{u : E → F} (hu : ContDiff R 1 u) (h2u : HasCompactSupport u)
{p p′ : R≥0} (hp : 1 ≤ p) (h2p : 0 < finrank R E)
(hp′ : (p′ : R)−1 = p−1 - (finrank R E : R)−1) :
snorm u p′ µ ≤

SNormLESNormFDerivOfEqConst F µ p ∗ snorm (fderiv R u) p µ

The main difficulty of the proof is for p = 1, and we will first prove that in the case that
E = Rι, where ι is a type of finite cardinality n. In that case, we can prove the following
result.
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https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/SobolevInequality.lean#L498-L634
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▶ Proposition 12. Let ι be a finite type of cardinality n ≥ 2. For all compactly supported C1

functions u : Rι → R,2∫
|u|n/(n−1) ≤

(∫
∥Du∥

)n/(n−1)
.

Proof. The key observation here is that, by a half-infinite version of the Fundamental
Theorem of Calculus, a compactly supported function is bounded pointwise by the integral of
the norm of its gradient along any co-ordinate line. To be precise, for a given x : Rι and i : ι,

|u(x)| =

∣∣∣∣∣
∫ x(i)

−∞
(u ◦ Xi(x, ·))′ (t) dt

∣∣∣∣∣
≤
∫ x(i)

−∞

∣∣(u ◦ Xi(x, ·))′ (t)
∣∣ dt

≤
∫ ∞

−∞

∥∥Du|Xi(x,t)
∥∥ dt.

Here we use Du|𭟋 to denote evaluation of Du at point 𭟋.
We obtain the desired bound by taking the product over all i : ι of these inequalities, for

each x : Rι:∫
|u(x)|n/(n−1)

dx =
∫ ∏

i

|u(x)|1/(n−1)
dx

≤
∫ ∏

i

(∫ ∥∥Du|Xi(x,t)
∥∥ dt

)1/(n−1)
dx;

the last line has exactly the form of the left-hand side of the grid-lines lemma (Proposition
9), with f(x) = ∥Du|x∥, and so, by that Proposition, is bounded above by(∫

∥Du|x∥ dx
)n/(n−1)

. ◀

Proof of Theorem 11. For p = 1, we can raise Proposition 12 to the power n−1
n to obtain

(4) for E = Rι. Then we want to transfer this statement to functions u with as domain an
arbitrary finite-dimensional vector space.2 This argument is not hard: we choose a basis
on E and then use a continuous linear equivalence e : Rn ≃ E, where n is the dimension of
E. Then the measures µ and the pushforward of the Lebesgue measure e∗(λ) are both Haar
measures, so they must be the same up to some constant factor.2 So let us assume that
µ = c · e∗(λ). Then let

C = ∥e∥p

cp−1 ,

where ∥e∥ is the operator norm of e. We then apply 12 to the function u ◦ e : Rn → R.
A straightforward calculation involving the chain rule then shows (4) for p = 1 with the
aforementioned value of C.

For p > 1, Define γ := p(n−1)
n−p . A simple calculation shows that γn

n−1 = p∗ = (γ−1)p
p−1 . We

now apply the version for p = 1 to the function v := |u|γ .

∥v∥
L

n
n−1 ≤ C∥Dv∥L1 ≤ Cγ

∫
|u|γ−1∥Du∥ ≤ Cγ

(∫
|u|p

∗
) p−1

p
(∫

∥Du∥p

) 1
p

https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/SobolevInequality.lean#L291-L341
https://github.com/leanprover-community/mathlib4/blob/9382a75aca1def579a8c5e44ff86fdee5738b2c9/Mathlib/MeasureTheory/Integral/SobolevInequality.lean#L365-L427
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where in the second inequality we use the chain rule and in the third inequality we use
Hölder’s inequality. Hence by using that n−1

n − p−1
p = 1

p∗ we compute

∥u∥Lp∗ = ∥v∥
1

p∗

L
n

n−1
≤ Cγ

(∫
∥Du∥p

) 1
p

= Cγ∥Du∥Lp .

This finishes the proof. ◀

In the formalization, there is one additional step in the proof, since we generalize the
codomain of u. In the proof we use the fact that x 7→ |x|γ is differentiable with derivative
bounded by γ|x|γ−1. This is still true in Hilbert spaces, but not generally in normed spaces,
since the norm there need not be differentiable at all. To solve this, we first prove it for
arbitrary Hilbert spaces,2 and then use the fact that for every finite-dimensional normed
vector space there is a continuous linear equivalence to a Hilbert space (namely Rn). We can
then transfer the result along this equivalence.

Note that in the formalization we transferred the inequality twice along continuous linear
equivalences. However, because of the nature of the statement, this transfer is not at all easy:
it involves steps like the chain rule, the uniqueness of Haar measures and estimates using the
operator norm of a linear map. It would be interesting to see to what extend automated
transfer tactics (such as [20]) would be able to transfer a result like this.

The Gagliardo-Nirenberg-Sobolev inequality (Theorem 11) holds uniformly for all func-
tions on a normed space: the supports of the functions considered must be compact, but they
can be arbitrarily large. For fixed p and n, the Sobolev conjugate p∗ = np

n−p is the unique
exponent for which such an inequality could be true; this is easily seen by a scaling argument.

On the other hand, if one restricts consideration to functions supported within a fixed
bounded region s, there is more flexibility in the choice of exponent. A variant of Theorem 11
then holds for any q such that 1 ≤ q ≤ p∗.2 This follows immediately from the monotonicity
of Lp-membership, which is a consequence of Hölder’s inequality:(∫

s

|f |q
)1/q

≤ Vol(s)1/q−1/p∗
(∫

s

|f |p
∗
)1/p∗

.

The most important special case is the case when q is p itself, which is valid since p ≤ p n
n−p =

p∗.

▶ Theorem 13. Let s be a bounded measurable set in Rι. Let 1 ≤ p < |ι|. There exists a
constant C, such that for all C1 functions u : Rι → R with support in s,2

∥u∥Lp ≤ C∥Du∥Lp .

7 Future Prospects: Sketch of some PDE Theory

Sobolev spaces are a longstanding goal for formalization [1, 2]. They are a standard setting
for the solution of elliptic partial differential equations.

We outline a little of this theory to motivate our interest in the Gagliardo-Nirenberg-
Sobolev inequality. Sobolev spaces are certain Banach spaces of functions, let us say for “nice”
domain Ω ⊆ Rn and codomain R. The simplest example, the Sobolev space H1

0 (Ω,R), is (to
give a nonstandard description) the subspace of the Hilbert space L2(Ω,Rn) consisting of
functions U which are equal to Du, in the sense of weak (distributional) derivatives, for some
element u in L2(Ω,R), and which are L2-approximated by C1 compactly-supported functions
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in Ω. The Gagliardo-Nirenberg-Sobolev inequality (in the variant Theorem 13) implies that
this subspace is a closed subspace of L2(Ω,Rn), thus Banach, and the (necessarily linear)
operation sending U to a suitable u is a bounded linear map, which we notate P0.

It follows by the Fréchet-Riesz representation theorem (see formalizations [16, 1, 6]) that
for any function f in L2(Ω,R), there exists a unique element U of the Sobolev space H1

0
such that for all V in H1

0 ,∫
Ω

⟨U, V ⟩ =
∫

Ω
fP0(V ). (5)

If U = Du for a smooth (not just L2) function u, this condition implies that for all smooth
compactly-supported v,∫

⟨Du, Dv⟩ =
∫

fv.

By integrating by parts, this implies that u solves the Poisson equation −∆u = f . Motivated
by this, we define a solution (5) to be a weak solution to this Poisson equation, even when U

is not smooth, and thus we have proved existence and uniqueness of weak solutions to this
Poisson equation.

In fact, the constant coefficients and high degree of symmetry in Poisson’s equation make
it rather special: it can be solved by a variety of methods and in many cases its solutions can
be represented by semi-explicit formulas. See [5] for a formalization in this spirit of some
theory of the heat equation, another PDE with constant coefficients and a high degree of
symmetry. The notable point of the method described above is that it does not really exploit
these constant coefficients or symmetries, so it continues to work for a large class of other
elliptic second-order linear partial differential equations.

The argument above is representative of the subject as a whole. Most PDEs do not
admit explicit solutions. Instead, researchers prove nonconstructive existence, uniqueness
and regularity theorems for solutions of such PDEs (and, in the best-case scenario, also
prove results about the convergence properties of numerical methods for approximating these
solutions). Inequalities such as the Gagliardo-Nirenberg-Sobolev inequality play a crucial
role, in establishing the functional-analysis preconditions for the nonconstructive existence
theorems which are invoked.

8 Related Work

We refer to [2, Section 1] for a survey of the available formalizations of the binary Tonelli
and/or Fubini theorems.

The first work implementing integration on finitary product types in formal theorem
provers was carried out by Harrison [11, Section 5], whose work in HOL Light covers the
specific case of Rn as part of a broader theory covering calculus on finite-dimensional vector
spaces.

Hölzl and Heller [12] implemented integration on a general finitary product type as
part of a full development of measure theory in the language Isabelle. Their framework
for measure spaces is flexible: σ-algebras and measures are naturally defined on a subspace
of a type. Similarly, when taking product measures, there is a subset of the indexing
set that is considered when taking the product measure. This approach is similar to the
marginal construction described in Section 4, since both allow for proofs by induction over
the dimension. Such an induction is used to calculate the volume of the Euclidean ball in
general dimension, formalized by Manuel Eberl. We re-formalize this in our own framework
in Section 5.1.
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The approaches are not the same; the marginal construction is more expressive than taking
integrals with the notion of measure in Isabelle/HOL. Given a finite family of measurable
spaces (Xi)i∈ι and a measure µi on each Xi, the framework in Isabelle/HOL allows one to
define the integral∫∏

i∈A
Xi

f(XA(x, y)) dΠi∈Aµi(y)

(for sets A in ι, and for x some fixed default element of
∏

i∈ι Xi). In contrast, our marginal
construction x is a variable, which allows us to define the function

x 7→
∫∏

i∈A
Xi

f(XA(x, y)) dΠi∈Aµi(y).

In this comparison we have translated the concepts from Isabelle/HOL to our framework
and notation, but because of differences in foundations, this translation is not exact.

The computation of the volume of a ball is simple enough that this can be conveniently
done in Isabelle/HOL. For more complicated cases like the grid-lines lemma, a more expressive
notion is needed. It would be interesting to see if the marginal construction can be conveniently
adapted to Isabelle/HOL, by defining a variant of the product measure that depends on a
point in the product space, used to take the “default values”.
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Abstract
We present a formalization of quasi-compact and quasi-separated schemes (qcqs-schemes) in the
Cubical Agda proof assistant. We follow Grothendieck’s functor of points approach, which defines
schemes, the quintessential notion of modern algebraic geometry, as certain well-behaved functors
from commutative rings to sets. This approach is often regarded as conceptually simpler than the
standard approach of defining schemes as locally ringed spaces, but to our knowledge it has not
yet been adopted in formalizations of algebraic geometry. We build upon a previous formalization
of the so-called Zariski lattice associated to a commutative ring in order to define the notion of
compact open subfunctor. This allows for a concise definition of qcqs-schemes, streamlining the
usual presentation as e.g. given in the standard textbook of Demazure and Gabriel. It also lets us
obtain a fully constructive proof that compact open subfunctors of affine schemes are qcqs-schemes.
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1 Introduction

Algebraic geometry developed as the study of solutions to systems of polynomial equations.
Objects of interest would e.g. be “affine complex varieties”, subsets of Cn that can be
described as the common roots of a finite system of polynomials p1, ..., pm ∈ C[x1, ..., xn].
The discipline underwent a fundamental transformation during the latter half of the 20th
century with the introduction of schemes. This development was spear-headed by Alexendre
Grothendieck and led to many incredible achievements in geometry and number theory.
Schemes can be seen as a generalization of varieties in several ways, but their standard
presentation as “locally ringed spaces with an affine cover” somewhat blurs the connection to
classical algebraic geometry, which can make it hard for students learning algebraic geometry
to see in what sense schemes are “geometric” objects at all.
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There is, however, a different angle for generalization, where the original motivation of
studying solutions to polynomials keeps a more prominent place. Take a polynomial with
integer coefficients like xn + yn − zn ∈ Z[x, y, z]. Fermats last theorem tells us that this
polynomial only has the trivial solution x = y = z = 0 for n > 2. This does of course only
hold for solutions in the integers. We might interpret the same polynomial as living in a
polynomial ring A[x, y, z], where A is now any commutative ring (e.g. C), and ask about
solutions in A. The corresponding set of solutions is given by

Vxn+yn−zn(A) = { (a1, a2, a3) ∈ A3 | an1 + an2 = an3 }

Moreover, given a morphism of rings φ ∈ Hom(A,B), we can map a solution in A,
(a1, a2, a3) ∈ Vxn+yn−zn(A), to a solution (φ(a1), φ(a2), φ(a3)) ∈ Vxn+yn−zn(B) in B. In
categorical terms, our polynomial defines a functor from the category of commutative rings
to the category of sets, mapping a ring A to the set Vxn+yn−zn(A) of solutions in A.

This functor Vxn+yn−zn(_) : CommRing → Set turns out to be a very familiar categorical
object. For a ring A, homomorphisms Hom(Z[x, y, z], A) are in bijection with A3 (every
morphism is determined by its values on x, y and z) and this induces a bijection of morphisms
Hom(Z[x,y,z]/⟨xn+yn−zn⟩, A) with Vxn+yn−zn(A). Now, a functor from CommRing to Set is
nothing but a presheaf on the opposite category CommRingop. In this presheaf category we can
look at the Yoneda embedding or representable of the quotient ring R = Z[x,y,z]/⟨xn+yn−zn⟩,
which we will denote by Sp(R). By the above argument, we get a natural isomorphism of
presheaves Sp(R) = Hom(R,_) ∼= Vxn+yn−zn(_).

In the category of functors from commutative rings to sets we can thus study solu-
tions of systems of integer polynomials by looking at representable functors of quotients
Z[x1,...,xn]/⟨p1,...,pm⟩. Algebraic geometers call these representables absolute affine algebraic
spaces [16], which we can generalize to schemes (schemes over Z or absolute schemes to be
more precise). Affine schemes are readily defined as representables of arbitrary commutative
rings. From these we can build general schemes as presheaves on CommRingop that are “local”
and have an “open cover” by affine schemes in some appropriate sense.

Among the proponents of using the functor of points approach as the primary definition
of schemes was Grothendieck himself [16], because, in the terms of Lawvere [22], it does not
require “the baggage of prime ideals and the spectral space, sheaves of local rings, coverings
and patchings, etc.” Yet, most standard sources [13, 15, 17, 33] for students learning algebraic
geometry start with precisely this “baggage”. To our knowledge, the same can be said for
existing formalizations of schemes [3, 4, 5, 7, 39]. We want to close this gap and present a
first formalization of the functor of points approach.

Admittedly, part of the appeal of schemes as locally ringed spaces as a formalization
target for proof assistants is that they are such a layered, involved notion, while at the
same time being a point of departure for formalizing a plethora of interesting research
level mathematics. The first full formalization of schemes in Lean’s mathlib by Buzzard
et. al. [4] revealed certain bottlenecks that occur when defining schemes this way. As these
bottlenecks might be addressed very differently in different proof assistants, schemes have
become somewhat of a benchmark problem, inspiring a formalization in Isabelle/HOL [3],
and partial formalizations in Coq’s UniMath library [5] and Cubical Agda [39].

It is worth noting that, except for the Cubical Agda-formalization [39], all of the above
formalizations are non-constructive as they follow the presentation of Hartshorne’s standard
“Algebraic Geometry” [17]. In [39], the authors manage to stay constructive by using “ringed
lattices” [8] instead of locally ringed spaces, but the formalization only includes affine
schemes. The functor of points approach is often taken to be more amenable for constructive
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mathematics.1 Indeed, to our knowledge we present the first fully constructive formalization
of quasi-compact and quasi-separated schemes (qcqs-schemes), an important subclass of
schemes that is sufficient for a large portion of modern algebraic geometry.2

Nowadays there exist extensive algebra and category theory libraries for many of the
major proof assistants, providing a lot of the necessary tools to formally define schemes using
the functor of points approach. The bottlenecks of defining schemes as locally ringed spaces,
disappear when following the functor of points approach. One problem that occurs, however,
is that the category of functors from rings to sets is not locally small, since arrows between
two such functors are natural transformations, i.e. families of functions indexed by the “big”
type of all rings in a given universe. As a result, one has to address size issues. Dealing
with size issues in a predicative type theory like Cubical Agda’s, one is led to make certain
finiteness assumptions, resulting in the aforementioned restriction to qcqs-schemes.

Our work is completely formalized in Cubical Agda and all results are integrated in the
agda/cubical library.3 We will comment on our usage of Cubical Agda in Section 2.1, but we
want to stress that the formalization does not rely on cubical features. It should be possible to
more or less directly translate the formalization into a system implementing Homotopy Type
Theory and Univalent Foundations of the HoTT book [32] or into UniMath [35]. Our work
can be understood as being in line with the goals of Voevodsky’s Foundations library [38]:
Developing a library of constructive set-level mathematics based on Univalent Foundations.

As a result of working fully constructive and predicative, our presentation deviates from
the standard “Introduction to Algebraic Geometry and Algebraic Groups” by Demazure and
Gabriel [12]. Our main contributions and design choices can be summarized as follows:

In Section 3 we define the category of Z-functors, differing slightly from Demazure and
Gabriel. This is because Agda’s universes are not cumulative and we chose to work with
a fully-faithful spectrum functor with the caveat that it only has a relative adjoint.
In Section 4 we define the notion of coverage and sheaf wrt. a coverage. We define the
Zariski coverage on CommRingop. Restricting from Z-functors to Zariski sheaves can be
seen as introducing a locality condition, akin to restricting from ringed to locally ringed
spaces. We show that affine schemes are local, i.e. that representable presheaves are
sheaves wrt. the Zariski coverage. For this one can reuse some key algebraic lemmas, first
formalized in [39] to show the sheaf property of the structure sheaf of an affine scheme.
In Section 5 we define the notions of compact open subfunctor, cover of compact opens
and finally qcqs-scheme. It is in this section that we deviate substantially from the
standard sources. We argue that the above notions are most conveniently defined by
using an appropriate classifier in the topos theoretic sense. Since we have a small Zariski

1 See e.g. the discussion where the functor of points approach was first suggested as a formalization target
for the agda/cubical-library: https://github.com/agda/cubical/issues/657

2 In particular, every noetherian scheme is qcqs. When applying scheme theory to the classic motivating
problems of algebraic geometry, Hartshorne notes that “practically all the schemes encountered in this
way are noetherian” [17, p. 100]. Deligne’s presentation of étale cohomology [10], a crucial tool for his
proof of the Weil conjectures, assumes schemes to be qcqs throughout: “We consider only schemes that
are quasi-compact (= finite union of open affines) and quasi-separated (= such that the intersection of
two open affines is quasi-compact), and we simply call them schemes.” [11, p. 1].

3 The formalization is summarized in:
https://github.com/agda/cubical/blob/60f18987bb1819a15fccc325343ef7b469bb2eeb/Cubical/
Papers/FunctorialQcQsSchemes.agda
This is a permalink to the library at the time of writing, which type-checks with Agda version 2.6.4.1.
A clickable rendered version that might be subject to change can be found here:
https://agda.github.io/cubical/Cubical.Papers.FunctorialQcQsSchemes.html
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lattice but no small type of radical ideals in Cubical Agda, we can only classify compact
opens. So far, these only appear in the literature on synthetic algebraic geometry ([2, Def.
19.15] and [6, Def. 4.2.1]), but they turn out to be very useful for our purposes as well.
In Section 6 we prove that compact open subfunctors of affine schemes are qcqs-schemes.
We give a point-free proof that the classifier for compact opens is separated, only using
the universal property of the Zariski lattice. This gives us that compact opens of affine
schemes are sheaves. The fact that compact opens of affines have an affine cover essentially
follows from the Yoneda lemma.

2 Background

We begin by giving some helpful background. First, we discuss the Cubical Agda proof
assistant and how it is used in the formalization. We then briefly present two algebraic
constructions from the agda/cubical library, first formalized and described by Zeuner and
Mörtberg in [39], that play a key role in this paper as well: localizations of commutative
rings and the Zariski lattice.

2.1 Univalent type theory in Cubical Agda

For understanding the details of our formalization, it is worth knowing about certain
particularities of the Cubical Agda proof assistant and its library. We will restrict ourselves
to the features that are relevant for this paper. Readers familiar with Cubical Agda or
Homotopy Type Theory and Univalent Foundations (HoTT/UF) can safely skim this section.
Readers interested in more details are referred to [34].

Cubical Agda is a rather recent extension of the Agda proof assistant with fully construc-
tive support of the univalence principle and higher inductive types (HITs). The notation
used in this paper is inspired by Agda’s syntax and the conventions of the agda/cubical
library but we have taken the liberty to simplify the syntax and omit projections whenever
possible in order to increase readability. For example we will write CommRing to denote
both the type and the category of commutative rings and an element R : CommRing will
denote both the ring with its structure and the carrier-type of R, i.e. we write f : R for its
elements. For the universe at level ℓ we write Type ℓ or Typeℓ, and similarly CommRingℓ for
commutative rings whose carrier type lives in Typeℓ. For a family B : A → Type ℓ, we denote
the dependent pair type over this family as Σ[ x ∈ A ] B(x).

For definitional equalities we use =, while propositional equalities are written using ≡.
Note that Cubical Agda does not use Martin-Löf’s inductive identity type [25] for expressing
propositional equalities, but rather so-called path types. These path types are defined in
terms of a primitive interval type I, which allows one to conveniently define dependent path
types. In this formalization we will not make direct use of the interval or dependent path
types. However, path types do entail function extensionality, the right behavior of equalities
of dependent pairs and other useful principles, which we will use freely.4

Cubical Agda does not come with a designated universe of propositions and in fact we
cannot generally expect propositional equality types, or rather path types, to be propositions
in any sensible way. This is because Cubical Agda proves univalence and thus disproves
Uniqueness of Identity Proofs (UIP), also known as Streicher’s axiom K [31]. We can, however,

4 These principles also follow from univalence albeit with a slightly different computational behavior.
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internally define (proof-relevant) propositions as subsingleton types and sets as types whose
equalities are propositions, i.e. as types satisfying UIP:

isProp : Type ℓ → Type ℓ

isProp A = (x y : A) → x ≡ y
isSet : Type ℓ → Type ℓ

isSet A = (x y : A) → isProp (x ≡ y)

The type (universe) of propositions at level ℓ is defined as hProp ℓ = Σ[ A ∈ Type ℓ ] (isProp A),
A subset of A, where isSet A, is a function S : A → hProp ℓ. With some abuse of notation
we will identify a subset S with the corresponding Σ-type Σ[ a ∈ A ] (a ∈ S), where a ∈ S is
the proposition (type of proofs) that a is actually in S. We thus write a : S for elements of
S when the proof of a : A belonging to S can be ignored.

Univalence implies that there are types, which are neither propositions nor sets. These
types are said to have a higher h-level (homotopy level [36]) than sets. One can use the
so-called structure identity principle [32, Sec. 9.8] to prove that this holds true for types of
algebraic or categorical structures like commutative rings or Z-functors.5 However, we want
to stress that this does not affect the formalization presented in this paper.

We do make extensive use higher inductive types (HITs), the other main addition of
HoTT/UF to dependent type theory alongside univalence. In particular, we require two HITs:
set-quotients and propositional truncations. Set-quotients are needed to define localizations
of rings and the Zariski lattice, which we will describe in Section 2.2. We will not go into
details on how set-quotients are defined. It suffices to know that as long as we quotient sets
by proposition-valued equivalence relations and only consider maps from those quotients
into other sets, everything works as one would expect from quotients. The other HIT,
propositional truncation, turns any type into a proposition:

data ∥_∥ (A : Type ℓ) : Type ℓ where
|_| : A → ∥ A ∥
squash : isProp ∥ A ∥

This is needed in HoTT/UF to express existential quantification, as using Σ-types is often
too strong. We follow the convention and say “there merely exists x : A such that P (x)”, if
we have an inhabitant of

∃[ x ∈ A ] P (x) = ∥ Σ[ x ∈ A ] P (x) ∥

Note that in general this does not let us extract a witness x : A, satisfying P (X). We will
discuss an example showcasing the proper use of propositional truncation in Remark 18.

2.2 Localizations and the Zariski lattice
Our formalization builds on a lot of commutative algebra and category theory formalized
in the agda/cubical library that we will presuppose in this paper. In particular, we will
assume familiarity with presheaves, the Yoneda lemma and basic ideal theory of rings and
we will not comment on their implementation in the agda/cubical library. There are two
particular constructions, first described in [39], that are of special importance to this project
and we will briefly describe them here.

5 The implementation of the structure identity principle in the agda/cubical-library is described in [1].
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The first, localizations of commutative rings, are a way of making elements invertible by
adding fractions. In this paper we only need the special case of inverting a single element.
For a ring R and f : R the localization of R away from f is the ring R[1/f] of fractions r/fn

where the denominator is a power of f . Equality of two fractions is slightly different than for
fractions of integers and can be stated as:6

r/fn ≡ r′
/fm iff ∃[ k ∈ N ] (rfk+m ≡ r′fk+n)

Localizations satisfy a universal property and in our special case it can be stated as: R[1/f]
is the initial R-algebra where f becomes invertible. This means that for any ring A with a
homomorphism φ : Hom(R,A) such that φ(f) ∈ A× (i.e. φ(f) is a unit/invertible), there is
a unique ψ : Hom(R[1/f], A) making the following diagram commute

R

R[1/f] A

_/1 φ

∃! ψ

where _/1 : Hom(R,R[1/f]) is the canonical morphism mapping r : R to the fraction r/1. As
shown in [39], formalizing localizations with the help of set-quotients is straightforward.

The second construction, the Zariski lattice associated to a ring is slightly more delicate.
By a standard argument in classical algebraic geometry there is a one-to-one correspondence
between Zariski open sets of Spec(R) and radical ideals of R. An ideal I ⊆ R is radical if
I =

√
I = {x ∈ R | ∃n > 0 : xn ∈ I }. Furthermore, the compact open subsets of Spec(R)

correspond radicals of finitely generated ideals. This correspondence is in fact an isomorphism
of lattices. Set-theoretic union and intersection of compact opens correspond to addition and
multiplication of finitely generated ideals.

This means that we can define this so-called Zariski lattice LR without having to define
Spec(R) and its topology first: Elements of LR are generators f1, ..., fn : R quotiented by the
relation that relates another list of generators g1, ..., gm : R if

√
⟨f1, . . . , fn⟩ ≡

√
⟨g1, . . . , gm⟩.

The equivalence class of the generators f1, ..., fn : R is denoted by D(f1, ..., fn) : LR and
the join on LR is given by D(f1, ..., fn) ∨D(g1, ..., gm) = D(f1, ..., fn, g1, ..., gm). The “basic
open” D(f) is the equivalence class corresponding to the radical of the principle ideal

√
⟨f⟩,

with D(1) being the top element of LR corresponding to the 1-ideal. The basic opens form a
basis of LR, as D(f1, ..., fn) =

∨n
i=1 D(fi).

This definition is due to Español [14], but it has the disadvantage that it uses equality of
ideals to define the quotienting relation. In the predicative type theory of Cubical Agda the
type of ideals of R lives in the universe above R an so does the equality type between two
ideals. This can be avoided by slightly rewriting the equivalence relation, as shown in [39],
giving us LR : DistLatticeℓ for R : CommRingℓ.

Joyal [20] observed that the Zariski lattice has a certain universal property that can be
stated in terms of supports. A map d : R → L from R into a (bounded) distributive lattice L
is called a support if it satisfies:

d(1) ≡ ⊤ and d(0) ≡ ⊥ (1)
∀(f g : R) → d(fg) ≡ d(f) ∧ d(g) (2)
∀(f g : R) → d(f + g) ≤ d(f) ∨ d(g) (3)

6 This is to account for zero-divisors and the case where f is nilpotent.
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The map D : R → LR sending f : R to the equivalence class D(f) satisfies conditions (1)-(3)
and it is a universal support in the sense for any other support d : R → L there is a unique
lattice homomorphism φ : LR → L such that the following commutes

R

LR L

D d

∃! φ

The partial order defined on the Zariski lattice is connected to localizations as for f, g : R

D(g) ≤ D(f) ⇔
√

⟨g⟩ ⊆
√

⟨f⟩ ⇔ g ∈
√

⟨f⟩ ⇔ f/1 ∈ R[1/g]×

In the special case where g = 1, this gives us D(1) ≡ D(f) iff f ∈ R×. We will utilize this
fact in order to interpret the basic opens as affine subschemes in Definition 22. A slight
generalization of this fact that we will use in Section 5 to informally justify that Definition 14
is sensible is that for f1, ..., fn : R

D(1) ≡ D(f1, ..., fn) ⇔ 1 ∈ ⟨f1, ..., fn⟩

This concludes our discussion of the preliminaries required to formalize qcqs-schemes following
the functor of points approach.

3 Z-Functors

Let us turn to our goal of defining qcqs-schemes as well-behaved functors from rings to sets.
As size issues are unavoidable in the functor of points approach, we will be rather explicit
about universe levels in this paper. For the remainder we will fix a universe level ℓ and work
over commutative rings in the corresponding universe CommRingℓ.

▶ Definition 1. The category of Z-functors, denoted ZFunctorℓ, is the category of functors
from CommRingℓ to Setℓ. We write Sp : CommRingopℓ → ZFunctorℓ for the Yoneda embedding
and A1 : ZFunctorℓ for the forgetful functor from commutative rings to sets. We say that
X : ZFunctorℓ is an affine scheme if there merely exists R : CommRingℓ such that X ∼= Sp(R).

▶ Remark 2. It is worth noticing that most modern algebraic geometry sources (see e.g.
[13, 15, 26, 33]) usually omit any reference to universes when discussing the functor of points
approach. The choice of taking functors from rings to sets in the same universe seems
perhaps most natural, but actually differs from the standard reference on the functor of
points approach by Demazure and Gabriel [12]. They essentially take Z-functors to be
functors from CommRingℓ to Setℓ+1.7 Their “big spectrum functor” Sp : CommRingopℓ+1 →
(CommRingℓ → Setℓ+1) is defined much like the Yoneda embedding as Sp(R) = Hom(R,_),
but because of the universe level mismatch it is not fully faithful. However, this functor has
a left adjoint, namely the functor that we will define in Definition 3. We decided to differ in
our definition of Z-functors since Agda’s non-cumulative universes would otherwise require
explicit universe lifts in a lot of places, massively cluttering the code, and it seemed more
convenient to use the fully-faithful Yoneda embedding as our Sp.

7 They actually assume two Grothendieck universes U ⊆ V. As type theoretic universes are usually “lifted”
from Grothendieck universes in presheaf models [18], our translation only seems natural.
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▶ Definition 3. Let X : ZFunctorℓ, the ring of functions O(X) is the type of natural
transformations X ⇒ A1 equipped with the canonical point-wise operations, i.e. for R :
CommRingℓ and x : X(R), addition and multiplication of α, β : X ⇒ A1 are given by

(α+ β)R(x) = αR(x) + βR(x) (α · β)R(x) = αR(x) · βR(x)

This defines a functor O : ZFunctorℓ → CommRingopℓ+1, whose action on morphisms (natural
transformations) is given by precomposition.

The universal property of schemes is often stated to be: The global sections functor Γ is left
adjoint to Spec and the counit of this adjunction is an isomorphism. However, this is already
true for locally ringed spaces. In a similar fashion we would like to have an adjunction
O ⊣ Sp, but unfortunately we run into a universe level mismatch. We still get something that
looks a lot like an adjunction. The proof of the following proposition is straightforward.

▶ Proposition 4. For R : CommRingℓ and X : ZFunctorℓ there is an isomorphism of types

Hom
(
R,O(X)

) ∼=
(
X ⇒ Sp(R)

)
which is natural in both R and X. Moreover, the induced “counit” εR : Hom

(
R,O(Sp(R))

)
,

which is obtained by applying the inverse of above isomorphism to the identity transformation
Sp(R) ⇒ Sp(R), is an isomorphisms of rings for all R : CommRingℓ.

▶ Remark 5. Proposition 4 type-checks because the type of ring homomorphisms is universe
polymorphic, meaning it can take rings living in different universes as arguments. The same
holds for the type of isomorphisms/equivalences between two types. From a categorical
perspective, we get a so-called relative coadjunction [29], written O ⊣ i Sp, with respect to
the inclusion, or lift functor i : CommRingopℓ → CommRingopℓ+1. This is why we only get a
counit, but no unit.

4 Local Z-functors

Functorial (qcqs-) schemes are sheaves with respect to the Zariski coverage. The notion
of coverage (also called a Grothendieck pre-topology) generalizes point-set topologies to
arbitrary categories. Roughly speaking, a coverage on a category C associates to each object
U : C a family Cov(U) of covers. A cover (Ui → U)i:I : Cov(U) is a family of maps into
U . These families Cov(U) should satisfy certain closure properties. If C has pullbacks then
covers should be closed under pullbacks and a presheaf F : Cop → Set can be defined to be a
sheaf if for any (Ui → U)i:I : Cov(U) we get and equalizer diagram

F(U) →
∏
i:I

F(Ui) ⇒
∏
i,j:I

F(Ui ×U Uj)

In the case where C is Open(X), the poset of open subsets of a topological space X, we get a
canonical coverage: A family of opens (Ui ⊆ U)i∈I is in Cov(U) if and only if

⋃
i∈I Ui = U .

Pullbacks in Open(X) are given by set-theoretic intersection ∩ and we recover the usual
definition of when a presheaf F : Open(X)op → Set is a sheaf.

The formalization of coverages and sheaves in the agda/cubical library follows the
nLab [27] and Johnstone’s classic “Sketches of an elephant” [19, C2]. The advantage of this
approach is that it even works for categories without pullbacks. As it turns out, it also lets
us conveniently define the Zariski coverage and prove that representables are Zariski sheaves.
For now, let us fix an arbitrary category C.
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▶ Definition 6. A cover on an object c : C consists of an index type I and for each i : I
an element in the slice category C/c, i.e. an arrow fi : C(ci, c). A coverage on C consist of a
family of covers for each c : C satisfying pullback stability: Given a cover { fi : C(ci, c) }i:I of
c and arrow f : C(d, c), there merely exists a cover { gj : C(dj , d) }j:J of d such that for each
index j : J there merely exists an index i : I and an arrow hij : C(dj , ci) with fi ◦ hij ≡ f ◦ gj .

Pullback stability can also be stated as: Given an arrow f : C(d, c) and a cover on c, we can
take the sieve generated by this cover and pull it back to a sieve on d. Then there exists a
cover on d refining the pulled back sieve on d. Since sieves are not required for the remainder
of the paper, we decided to unfold the definition of pullback stability and state it without
recourse to sieves. We refer the interested reader to the formalization. We now define what
it means to be sheaf with respect to a fixed coverage on C. For a presheaf P on C and arrow
f : C(c, d) we write _↾f : P (d) → P (c) for the restriction map, i.e. the action of P on f .

▶ Definition 7. Let P be a presheaf on C. Let c : C and { fi : C(ci, c) }i:I be a cover. A
compatible family or matching family [28] is a dependent function x : (i : I) → P (ci), i.e. a
family of elements xi : P (ci), such that for each pair of indices i, j : I and arrows gi : C(d, ci)
and gj : C(d, cj) with fjgj ≡ figi, we have xj↾gj

≡ xi↾gi
(in P (d)). We denote the type of

compatible families over a cover { fi : C(ci, c) }i:I by CompatibleFamP
(
{ fi : C(ci, c) }i:I

)
.

For an element x : P (c) we get an induced compatible family by taking the restrictions
xi = x↾fi

for i : I. The compatibility follows directly from the presheaf property of P . This
construction gives us a map σP : P (c) → CompatibleFamP

(
{ fi : C(ci, c) }i:I

)
. We can now

conveniently define sheaves in terms of the map σ.

▶ Definition 8. A presheaf P is a sheaf if for all c : C and covers { fi : C(ci, c) }i:I , the
canonical map σP is an isomorphism.

▶ Definition 9. A coverage on C is called subcanonical if for all c : C the Yoneda embedding
of c is a sheaf with respect to the coverage.

In this paper we are interested in a particular example of a coverage on the opposite category
of commutative rings. Covers of a ring R will come from finite lists of generators of the
1-ideal. Classically, this corresponds to the fact that any open cover of an affine scheme is
of the form Spec(R) =

⋃n
i=1 D(fi) with 1 ∈ ⟨f1, ..., fn⟩ (because Spec(R) is quasi-compact).

We call a finite list of elements f1, ..., fn : R such that 1 ∈ ⟨f1, ..., fn⟩ a unimodular vector.

▶ Definition 10. The Zariski coverage on C = CommRingopℓ is given by:
For each R : CommRingℓ, covers are indexed by the type of unimodular vectors over R.
For each unimodular vector f1, ..., fn : R, the associated cover of R is given by the reversed
canonical morphisms _/1 : R[1/fi] → R, indexed by i : Fin n, the finite n-element type.
For a unimodular vector f1, ..., fn : R the pullback along a morphism φ : Hom(R,A) is
the vector φ(f1), ..., φ(fn) : A, which is easily shown to be unimodular as well.

A presheaf X : ZFunctorℓ is called local if it is a sheaf wrt. the Zariski coverage.

▶ Lemma 11. The Zariski coverage is stable under pullbacks.

Proof. Let R,A : CommRingℓ, f1, ..., fn : R be a unimodular vector and φ : Hom(R,A). The
universal property of localization induces ring morphisms ψi : Hom

(
R[1/fi], A[1/φ(fi)]

)
such

that the following diagram commutes (in CommRingopℓ )

A[1/φ(fi)] R[1/fi]

A R

_/1 _/1

ψi

φ

◀
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The key result of this section uses an algebraic fact that can be found in many textbooks,
such as [23, p. 125], and was already formalized in Cubical Agda to prove [39, Lemma 15].

▶ Theorem 12. The Zariski coverage is subcanonical, i.e. Sp(A) is local for A : CommRingℓ.

Proof. Let R : CommRingℓ and f1, ..., fn : R a unimodular vector be given. For i, j in 1, ..., n,
we denote by χlij : R[1/fi] → R[1/fifj] and χrij : R[1/fj] → R[1/fifj] the canonical morphisms
given by the universal property of localization. We use without proof that the map

R → Σ[ x ∈ (i : Fin n) → R[1/fi] ] ∀ i j → χlij(xi) ≡ χrij(xj)

sending g : R to g/1 : R[1/fi] for i = 1, ..., n, is an isomorphism. Using this, one can construct
a chain of isomorphisms

Hom(A,R) ∼= Σ[ φ ∈ (i : Fin n) → Hom(A,R[1/fi]) ] ∀ i j → χlij ◦ φi ≡ χrij ◦ φj
∼= CompatibleFamSp(A)({ fi}i=1,...,n

)
which factors through the canonical map σSp(A). ◀

5 Compact opens and qcqs-schemes

The standard way to define open subfunctors follows a two step process. First, one defines
them for representables using (radical) ideals. Then, one defines open subfunctors of general
Z-functors by pulling back to representables. Working predicatively in Cubical Agda, we need
to restrict ourselves to finitely generated ideals, which gives us compact open subfunctors. Let
us sketch the idea behind compact opens informally to see why this restriction is necessary:
For a f.g. ideal I ⊆ A, we get the affine compact open subfunctor Sp(A)I ↪→ Sp(A) given by

Sp(A)I(B) = {φ ∈ Hom(A,B) | φ∗I = B} ⊆ Sp(A)(B)

If I = ⟨f1, ..., fn⟩, then the “pullback” along φ ∈ Hom(A,B) is just φ∗I = ⟨φ(f1), ..., φ(fn)⟩.
With this, we can define a subfunctor U ↪→ X to be compact open if pulling back along an
A-valued point of X gives an affine compact open subfunctor of Sp(A), i.e. if for any ring A
and ϕ : Sp(A) ⇒ X there is a f.g. ideal I ⊆ A such that the following is a pullback square

Sp(A)I U

Sp(A) X

⌟

ϕ

Note that the ideal I is not uniquely determined in this case. Indeed, if I = ⟨f1, ..., fn⟩ and
J = ⟨g1, ..., gm⟩ are such that

√
I =

√
J , then for any φ ∈ Hom(A,B) we have

1 ∈ ⟨φ(f1), ..., φ(fn)⟩ iff 1 ∈ ⟨φ(g1), ..., φ(gm)⟩

and thus Sp(A)I ∼= Sp(A)J . In fact, one can prove that the converse also holds. This
means that the compact open U and the A-valued point ϕ : Sp(A) ⇒ X determine a finitely
generated ideal I = ⟨f1, ..., fn⟩ up to equality of radical ideals, i.e. an element D(f1, ..., fn)
of the Zariski lattice LA. Note that we can describe Sp(A)I purely in terms of D(f1, ..., fn),
as the B-valued points are given by

Sp(A)I(B) = {φ ∈ Hom(A,B) | 1 ∈ ⟨φ(f1), ..., φ(fn)⟩}
= {φ ∈ Hom(A,B) | D

(
φ(f1), ..., φ(fn)

)
= D(1)⟩}
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The pullback condition ensures that this mapping is natural in A. In other words, the compact
open subfunctors of X are in one-to-one correspondence with natural transformations from
X to the Z-functor L that sends a ring to its Zariski lattice. Note that we can define this
Z-functor L because of the “small” definition of Zariski lattice. If we drop the finiteness
assumption on ideals to get open subfunctors we cannot hope to define the classifier in
Cubical Agda.8 We will discuss possibilities to do so in other systems in Section 7.1.

For a topos theorist it might not constitute a particularly deep insight that the compact
open subfunctors (sub-objects) of a Z-functor are classified by the “internal Zariski lattice”
L. This means that the compact opens are precisely given by pullbacks of the form

U 1

X L

D(1)
⌟

where D(1) : 1 ⇒ L is the “constant” natural transformation, sending the point of the
terminal Z-functor 1 to the top element of the Zariski lattice. From a formal perspective
however, we found it significantly more convenient to work with natural transformations into
L and the induced subfunctors, as opposed to following the text-book strategy of defining
compact-openness as a property of subfunctors through the two step process outlined above.9
We will thus proceed to describe how compact opens can be formally defined as natural
transformations and how this gives a concise definition of qcqs-schemes.

▶ Definition 13. Let L : ZFunctorℓ be the Z-functor mapping a ring R : CommRingℓ to the
underlying set of the Zariski lattice LR. The action on morphisms is induced by the universal
property of the Zariski lattice, i.e. for φ : Hom(A,B) we take the morphism φL induced by
the support D ◦ φ:

A

LA LB

D D◦φ

∃! φL

▶ Definition 14. Let X : ZFunctorℓ, a compact open of X is a natural transformation
U : X ⇒ L. The realization JU Kco : ZFunctorℓ of a compact open U of X, is given by

JU Kco (R) = Σ[ x ∈ X(R) ] U(x) ≡ D(1)

A compact open U is called affine, if its realization is affine, i.e. if there merely exists
R : CommRingℓ such that JU Kco ∼= Sp(R).

The reader may verify that for U : X ⇒ L, R : CommRingℓ and x : X(R) such that
U(x) = D(f1, ..., fn), we have

Sp(R)⟨f1,...,fn⟩ JU Kco 1

Sp(R) X L

D(1)

U

⌟⌟

ϕx

8 In fact, having such a classifier would imply propositional resizing. By a result of De Jong and Escardó
[9, Cor. 28], the existence of a single ring R : CommRingℓ, such that the frame of radical ideals of R (i.e.
Zariski opens) is ℓ-small, would suffice to prove resizing for hPropℓ.

9 A rare exception to following the standard definition is a blog-post by Madore [24].
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where ϕx corresponds to the R-valued point x by the Yoneda lemma.
Since L is a presheaf that takes values in distributive lattices and its restriction maps are

lattice morphisms, it is an internal lattice in the presheaf topos of Z-functors.10 As such, it
endows the compact opens with a distributive lattice structure.

▶ Definition 15. Let X : ZFunctorℓ, the lattice of compact opens of X, CompOpen(X), is
the type X ⇒ L equipped with the canonical point-wise operations, i.e. for R : CommRingℓ
and x : X(R), top, bottom, join and meet are given by

⊤R(x) = D(1), ⊥R(x) = D(0)
(U ∧ V )R(x) = UR(x) ∧ VR(x)
(U ∨ V )R(x) = UR(x) ∨ VR(x)

This defines a functor CompOpen : ZFunctorℓ → DistLatticeopℓ+1. With the action on mor-
phisms given by pre-composition.

▶ Definition 16. X : ZFunctorℓ is a qcqs-scheme if it is a local Z-functor and has an affine
cover by compact opens. That is, there merely exist compact opens U1, ..., Un : X ⇒ L such
that each Ui is affine and ⊤ ≡

∨n
i=1 Ui in the lattice CompOpen(X).

As an immediate sanity check we get that affine schemes are qcqs-schemes:

▶ Proposition 17. Sp(R) is a qcqs-scheme, for R : CommRingℓ.

Proof. Sp(R) is local by Theorem 12. The top element ⊤ : CompOpen(Sp(R)) is the
“constant” natural transformation, sending everything to D(1), which by the Yoneda lemma
corresponds to D(1) : LR. It thus constitutes a trivial affine cover with J ⊤ Kco ∼= Sp(R). ◀

▶ Remark 18. Of course, a qcqs-scheme X can and will have multiple different covers.
Definition 16 suggests that “having an affine cover” should be expressed using nested
mere existential quantification. In practice, it is more convenient to define the record-type
AffineCover, of all affine covers of X, consisting of a finite list or vector of compact opens and
proofs that these compact opens are affine and cover X. The property of having an affine
cover is then defined as the truncation of this record type:

record AffineCover (X : ZFunctor ℓ)
: Type (ℓ-suc ℓ) where

field
n : N
U : FinVec (CompactOpen X) n
covers : isCompactOpenCover X U
isAffineU : ∀ i → isAffineCompactOpen (U i)

hasAffineCover : ZFunctor ℓ → Type (ℓ-suc ℓ)
hasAffineCover X = ∥ AffineCover X ∥

If we want to prove a proposition about a qcqs-scheme X, we can assume we have a witness
of type AffineCover(X). If we want to map from X into a set by using that X has an affine
cover, we have to show that the mapping is independent of the choice of cover.11 This is
very much in line with informal mathematical practice.

10 It is even an internal lattice the big Zariski topos, i.e. in local Z-functors. However for our purposes, we
do not need that L is a Zariski sheaf.

11 This holds by the general elimination principle of the propositional truncation due to Kraus [21]. When
mapping into types that are not sets, things get complicated very quickly.
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▶ Remark 19. One big advantage of using the internal lattice L to classify compact opens is
that we get the notion of cover for free from the induced lattice operations in Definition 15.
In textbooks, a cover by open subfunctors is usually defined directly using addition of ideals
[12, 26] or by taking the set-theoretic union at field-valued points [13]. The latter is not
an option for our purposes, as the notion of field is not well-behaved constructively. In the
Cubical Agda library, the join _ ∨ _ : LA → LA → LA is also defined in terms of ideal
addition, but we can upstream the necessary constructions and do not have to concern
ourselves with pullbacks of Z-functors.

6 Open subschemes

The benchmark for a workable formal definition of schemes as locally ringed spaces, as in
[3, 4], usually consists of a proof of the “universal property”, i.e. an adjunction Γ ⊣ Spec where
the counit is an isomorphism. Proposition 4, the functorial analogue is rather straightforward
to prove. Instead, we give a proof that compact opens of affine schemes are qcqs-schemes.
This can be seen as a constructive special case of the standard classical result that “open
subfunctors of schemes are themselves schemes” [12, Ch. I, §1, 3.11]. We start by showing
that compact opens of Zariski sheaves are Zariski sheaves. Essentially, this holds because
compact opens are classified by L, which is itself a Zariski sheaf. As it turns out, however, it
is sufficient to prove something weaker.

For the remainder of the paper we adopt the following notation: For a ring R and elements
f : R and u : LR, we write u↾R[1/f]: LR[1/f] for the result of applying L(_/1), the L-action on
the canonical morphism. In particular we have D(g1, ..., gm)↾R[1/f]= D(g1/1, ..., gm/1).

▶ Lemma 20. L is Zariski-separated, i.e. for R : CommRingℓ and f1, ..., fn : R unimodular
the following holds: given u, v : LR, if u↾R[1/fi] ≡ v↾R[1/fi] for all i = 1, ..., n, then u ≡ v.

Proof. Let R : CommRingℓ and f1, ..., fn : R unimodular be given together with u, v : LR
satisfying u↾R[1/fi] ≡ v↾R[1/fi] for all i = 1, ..., n. Recall that for i = 1, ..., n, the restriction
_↾R[1/fi]: LR → LR[1/fi] is induced by the support D(_/1) : R → LR[1/fi]. Now let us fix an
i = 1, ..., n. Much like in classical algebraic geometry, we can identify LR[1/fi] with ↓ D(fi),
the lattice of elements of LR smaller than D(fi).12 The map d : R[1/fi] → ↓ D(fi) given by
d(r/fn

i ) = D(r)∧D(fi) defines a support and thus induces a morphism φ : LR[1/fi] → ↓ D(fi).
Now, consider the map _ ∧ D(fi) : LR → ↓ D(fi). We claim that _ ∧ D(fi) factors

through φ. By the universal property of LR, there is a unique ψ : LR → ↓ D(fi), such that
ψ ◦D ≡ d(_/1). Both _ ∧D(fi) and φ(_↾R[1/fi]) satisfy the same commutativity condition
as ψ, which implies _ ∧D(fi) ≡ ψ ≡ φ(_↾R[1/fi]). Pictorially, this amounts to observing
that the following diagram commutes

R R[1/fi]

LR LR[1/fi] ↓ D(fi)

d

_↾R[1/fi] φ

_∧D(fi)

D

_/1

D

From our assumption it thus follows that

u ∧D(fi) ≡ φ(u↾R[1/fi]) ≡ φ(v↾R[1/fi]) ≡ v ∧D(fi)

12 Showing that Spec(R[1/f]) is homeomorphic to D(f) is a standard exercise in algebraic geometry.
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for all i = 1, ..., n. Since the fi’s are unimodular, we get D(1) ≡
∨
iD(fi) and hence

u ≡ u ∧D(1) ≡
n∨
i=1

(u ∧D(fi)) ≡
n∨
i=1

(v ∧D(fi)) ≡ v ∧D(1) ≡ v ◀

▶ Lemma 21. If X : ZFunctorℓ is local, then for any compact open U : X ⇒ L its realization
JU Kco : ZFunctorℓ is local.

Proof. Let R : CommRingℓ and f1, ..., fn : R be unimodular. We need to construct an inverse
to the map

σU : Σ[ x ∈ X(R) ] U(x) ≡ D(1) → CompatibleFamJU Kco(
{fi}i=1,...,n

)
For x : X(R) with U(x) ≡ D(1), σU (x) is the family of elements x↾R[1/fi]. It is essentially
the same map as the corresponding

σX : X(R) → CompatibleFamX
(
{fi}i=1,...,n

)
but it keeps track of the fact that for each i = 1, ..., n one has U(x↾R[1/fi]) ≡ D(1).

Now, any compatible family of elements xi : X(R[1/fi]) with U(xi) ≡ D(1) can be seen
as a compatible family on X by forgetting that U(xi) ≡ D(1). To this family we apply the
inverse map

σ−1
X : CompatibleFamX

(
{fi}i=1,...,n

)
→ X(R)

that exists since X was assumed local. We claim that U(σ−1
X ({xi}i=1,...,n)) ≡ D(1), thus

allowing us to set σ−1
U ({xi}i=1,...,n) = σ−1

X ({xi}i=1,...,n). From this it also follows immediately
that σU and σ−1

U are mutually inverse. To prove the claim we use Lemma 20 and the fact
that for each i = 1, ..., n:

U
(
σ−1
X ({xi}i=1,...,n)

)
↾R[1/fi] ≡ U

(
σ−1
X ({xi}i=1,...,n)↾R[1/fi]

)
≡ U

(
σX

(
σ−1
X ({xi}i=1,...,n)

)
i

)
≡ U(xi) ≡ D(1) ◀

It remains to prove that compact opens of affine schemes (merely) have an affine cover.
Before treating arbitrary compact opens, we introduce the standard or basic opens of a
representable Z-functor with fair bit of abuse of notation.

▶ Definition 22. Let R : CommRingℓ and f : R, the standard open D(f) : Sp(R) ⇒ L is
given by applying the Yoneda lemma to the basic open D(f) : LR.

▶ Proposition 23. For R : CommRingℓ and f : R, the standard open D(f) is affine. In
particular one has a natural isomorphism JD(f) Kco ∼= Sp

(
R[1/f]

)
.

Proof. The universal properties of localization and Zariski lattice give us for A-valued points

Sp
(
R[1/f]

)
(A) = Hom(R[1/f], A)

∼= Σ[ φ ∈ Hom(R,A) ] φ(f) ∈ A×

∼= Σ[ φ ∈ Hom(R,A) ] D(φ(f)) ≡ D(1)
= JD(f) Kco(A)

We omit the proof that this is natural in A. ◀

▶ Theorem 24. The realization JU Kco of a compact open U : Sp(R) ⇒ L is a qcqs-scheme.
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Proof. We get that JU Kco is local from Lemma 21 and Theorem 12, the subcanonicity of
the Zariski coverage. It remains to show that JU Kco (merely) has an affine cover. By the
Yoneda lemma, the compact open U corresponds to an element u : LR. Every element of LR
can (merely) be expressed as a join of basic opens, i.e. we can assume u ≡

∨
iD(fi) for some

f1, ..., fn : R. Since the Yoneda lemma actually gives us an isomorphism of lattices between
LR and CompOpen(Sp(R)), we get a cover of compact opens U ≡

∨
iD(fi) which is affine

by Proposition 23. Note that this is an equality in the lattice CompactOpen(X). But since
D(fi) ≤ U in CompactOpen(X) for i = 1, ..., n, we may regard the D(fi) as affine compact
opens of JU Kco covering of the top element of CompactOpen

(
JU Kco)

. ◀

7 Conclusion

In this paper we presented a formalization of qcqs-schemes as a full subcategory of the
category of Z-functors. We defined the Zariski coverage on CommRingopℓ and proved it
subcanonical. This let us define locality of Z-functors and conclude that affine schemes, i.e.
representable Z-functors, are local. When formalizing the notion of an open covering, we
introduced compact open subfunctors. We argued that compact opens can conveniently be
classified by the Z-functor that maps a ring to its Zariski lattice. We leveraged this fact to
automatically obtain a notion of covering by compact opens and thus a formal definition
of qcqs-schemes. Finally, we gave a fully constructive proof that compact opens of affine
schemes are qcqs-schemes using only point-free methods.

As mentioned before, our formalization should be regarded as a univalent rather than a
cubical formalization. We do not depend on cubical features of Cubical Agda such as the
interval. However, we are adopting the univalent approach of distinguishing propositions,
sets etc. internally and we do require the propositional truncation and the set-quotient HITs.
Univalence is only used in the guise of its useful consequences like function extensionality.

7.1 Going classical

Cubical Agda’s type theory is fully constructive and predicative. Using set-quotients, we can
define the Zariski lattice over a ring living in the same universe as the base ring, as shown in
[39]. This predicative definition is essential for defining the classifier L : ZFunctorℓ of compact
opens and thus plays a key role in our definition of functorial qcqs-schemes. This makes our
approach easily extensible with the using additional logical assumptions. If one would want
to formalize not only qcqs- but general schemes using the functor of points approach, this
should be directly possible by using a classifier for opens, not only compact opens, instead.

Assuming impredicativity, e.g. in the form of Voevodsky’s resizing axioms [37], one could
define the classifier for open subfunctors as the Z-functor sending a ring R to the frame
of radical ideals of R.13 Alternatively, assuming classical logic, one could use the frame of
Zariski-open subsets of Spec(R) as the classifier. This also induces a notion of cover (not
necessarily finite this time) and hence a notion of general functorial schemes. We expect that
in this situation one can closely follow the approach of Section 6 to get a corresponding proof
that open subfunctors of affine schemes are schemes. The only difference being perhaps the
proof of Lemma 20, the fact that the classifier is separated wrt. the Zariski coverage.

13 Impredicativity is needed to ensure that the type of ideals of a ring R lives in the same universe as R.
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We decided to stick to qcqs-schemes not only because crucial tools like the Zariski lattice
were already available in the agda/cubical library. We hope that the paper contains valuable
insights for constructive mathematicians interested in the foundations of algebraic geometry,
while still being usable as a blue-print for formalizing the functor of points approach in other
(possibly classical) proof assistants.

7.2 Synthetic algebraic geometry
The functor of points approach allows one to develop algebraic geometry synthetically. Here,
the word synthetic means “working in the internal language of a suitable topos”. In our case
this topos is the big Zariski topos, i.e. the sheaf topos of local Z-functors. From the internal
point of view, Zariski sheaves look like simple sets, which can make reasoning about them
easier. The PhD thesis of Blechschmidt [2] contains an excellent introduction to synthetic
algebraic geometry for interested readers familiar with classical algebraic geometry.

This approach can even be axiomatized. Recently, Cherubini, Coquand and Hutzler [6]
have combined the axiomatic approach to synthetic algebraic geometry with HoTT/UF. By
adding the axioms of synthetic algebraic geometry to a dependent type theory with univalence
and HITs one can even study the cohomology of schemes synthetically. They give a model
construction in a “higher” Zariski topos, where they restrict themselves to functors from
finitely presented algebras to sets in order to avoid size issues. Finitely presented algebras over
a ring R are of the form R[x1,...,xn]/⟨p1,...,pm⟩. For a fixed R, the category of f.p. R-algebras
is small and one can thus use it to develop functorial algebraic geometry without having
to worry about universe levels. Repeating the steps outlined in this paper for f.p. algebras
should give rise to a truly predicative formalization of schemes of finite presentation over R.

7.3 A constructive comparison theorem
For algebraic geometers, using the functor of points approach can sometimes be advantageous,
but ultimately one wants to switch seamlessly between schemes as Z-functors and schemes
as locally ringed spaces. This is made possible by the so-called comparison theorem [12, p.
23], giving an adjunction between Z-functors and locally ringed spaces, which becomes an
equivalence of categories when restricted to the respective full subcategories of schemes.

Coquand, Lombardi and Schuster [8] give a point-free reconstruction of geometric qcqs-
schemes that is suitable for constructive study. Instead of using locally ringed spaces, their
“spectral schemes” are given as distributive lattices with a sheaf of rings. The affine scheme
associated to a ring R is just the Zariski lattice LR equipped with the usual structure sheaf.
Classically, these spectral schemes are equivalent to conventional qcqs-schemes because the
topology of a qcqs-scheme is coherent or spectral.14

Our definition of qcqs-scheme can be seen as the functorial counterpart to the lattice-based
definition of spectral scheme due to Coquand, Lombardi and Schuster. One would hope that
these turn out to be equivalent by a constructive comparison theorem à la Demazure and
Gabriel. Proving such a theorem requires a decent amount of novel constructive mathematics
to be developed first. One needs to introduce a point-free notion of locally ringed distributive
lattices that contain spectral schemes as a full subcategory and construct a suitable adjunction
with Z-functors. In our setting, one would only get a relative coadjunction as in Remark 5.
This could be a particularly interesting problem in a univalent setting.

14 Stone’s representation theorem for distributive lattices [30], tells us that all topological information of a
coherent space is encoded in its lattice of compact open subsets.
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Abstract
We report the results of a verification experiment on an algorithm for robust mean estimation, i.e.,
an algorithm that computes a mean in the presence of outliers. We formalize the algorithm in
the Coq proof assistant and devise a pragmatic approach for identifying and solving issues related
to the choice of bounds. To keep our formalization succinct and generic, we recast the original
argument using an existing library for finite probabilities that we extend with reusable lemmas. To
formalize the original algorithm, which relies on a subtle convergence argument, we observe that by
adding suitable termination checks, we can turn it into a well-founded recursion without losing its
original properties. We also exploit a tactic for solving real-valued inequalities by approximation to
heuristically fix inaccurate constant values in the original proof.
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1 Towards formally-verified robust mean estimators

Our motivation is to produce formally-verified programs that perform robust mean estimation
as a first step towards formal robust statistics. The setting for robust mean estimation is
as follows. We are given samples from an unknown distribution, but some fraction of them
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are outliers (data points that differ significantly from other observations) that we want to
discard. A robust mean estimator is an algorithm that computes the mean of a set of data
points while minimizing the effect of outliers. More formally, we say that a mean estimator
is robust when the difference between the computed mean and the optimal mean, without
considering outliers, can be upper-bounded by arbitrarily small positive numbers. There are
several algorithms for robust mean estimation, e.g., the median is a robust estimator, and
the trimmed mean by Tukey [14] is a robust estimator. Both of these estimators work by
excluding samples. The robustness of trimmed mean has already been formalized in Coq [5].

In this paper we verify the robustness of an archetypal algorithm for mean estimation
that operates by iteratively re-weighting the influence of each sample. The algorithm is an
example of an M-estimator [7, Ch. 3], and it is described in Steinhardt’s Ph.D. thesis [11]
under the name filter1d. M-estimators assign weights to each sample instead of excluding
samples. Not all M-estimators are robust: robustness requires that sufficiently low weights
are assigned to outliers.

We identify and resolve two main challenges with the algorithm filter1d. First, through
formalization, we identity and fix issues with the original proofs which contain erroneous
constants and bounds. The second challenge is technical. The original proofs spelled out
calculations in terms of “big sums,” which are the intuitive lingua franca for probability
theory in finite settings. We use and extend existing libraries to keep the formalization
succinct and reusable, and as a consequence, proofs became more modular.

These challenges, checking and occasionally fixing constant bounds, and devising tech-
niques for symbolic calculations, are recurring issues when formalizing paper proofs about
statistical algorithms. In this paper, we formalize the filter1d algorithm and its related
theory in Coq [12]. We leverage this experience to inform a broader discussion of these
recurring issues and to document a general approach. We represent calculations involving
probabilities using an existing library, and we also take advantage of an automated tactic
in Coq (namely interval [9]) to fix erroneous constants in the original proof. In the end,
we are able to formalize filter1d without ambiguity in the language of the Coq proof
assistant.

The paper is organized as follows. First, we present the filter1d algorithm for robust
mean estimation in Sect. 2. In Sect. 3, we explain how we formalize the bound on the mean
using an existing library and using changes of distributional assumptions. In Sect. 4, we
explain how we formalize the bound on the variance by fixing the original proofs, in practice
by using the interval tactic of Coq. Finally, we formalize the algorithm for robust mean
estimation and prove its termination and correctness in Sect. 5. The results presented in this
paper are available online as a Coq formalization [1].

2 An archetypal algorithm for robust mean estimation

The algorithm takes as input a discrete random variable X (with sampled values x1, . . . , xn),
a finite probability distribution P (with probabilities p1, . . . , pn), and a positive value v. It
either computes a mean µ̂ or fails. The computed mean is expected to be close to the mean
of the random variable X for the distribution P with the outliers removed. It is correctly
computed in the following sense: if there exists a subset S of dom(X) such that v = σ2

S

and the probability ε of S (i.e., the set of outliers) is smaller than 1/12.7, then |µ̂− µS | is
bounded by

√
v·2ε
2−ε +

√
16v·2ε

1−ε (where σ2
S

def= V [X|S] and µS
def= E [X|S]). This signifies what

is meant by robustness: as long as the probability of the set of outliers is smaller than a
constant, the result is guaranteed to stay within a reasonable range.
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The algorithm maintains a sequence of weights ci, initialized to 1, which represent the
contribution of each point to the computation. These weights are then updated iteratively,
such that points that deviate the most are given less weight (Algorithm 1).

Algorithm 1 filter1d.

1. Initialize each weight c1, . . . , cn to 1
2. Compute the empirical mean: µ̂c ← (

∑n
i=1 pixici)/(

∑n
i=1 pici)

3. Compute the empirical variance: σ̂2
c ← (

∑n
i=1 piciτi)/(

∑n
i=1 pici) where τi

def= (xi − µ̂c)2

4. If σ̂2
c ≤ 16v then terminate and output µ̂c

5. Otherwise, update ci ← ci(1− τi/τmax) where τmax = maxi∈supp(c) τi

6. If all ci = 0 then terminate with error; otherwise, go back to line 2

Note that at Step 5, we take the maximum over the support of the function c : i 7→ ci

whereas the original algorithm [11, Sect. 1.2.3] does not make this explicit. This makes our
algorithm slightly different from the original algorithm, but it is a reasonable modification
because it does not change the computed values. In Step 6, our algorithm also checks that
not all ci are zero before continuing, because otherwise there is a division by zero in Step 2
(take for example the situation of a positive computed variance and two points of equal
weight). These modifications do not change the property originally stated by Steinhardt,
namely that when filter1d terminates, it results in the desired mean (Step 4). Furthermore,
we generalize the algorithm by giving each point xi a probability pi instead of assuming a
uniform distribution1 as in [11].

Lastly, the robustness of filter1d is a consequence of the following invariant [11, eqn
(I), page 5] being preserved:

∑
i∈S (1− ci)pi ≤ 1−ε

2
∑

i∈S (1− ci)pi (I). It shows that the
amount of “mass” (the sum of the weights) removed from the points in S is less than 1−ε

2
times the amount of mass removed from the outliers. The invariant is key to establishing
the bound between the empirical mean and the mean on the points in S shown in Sect. 3.3,
which delivers the final robustness argument, and the bounding of the empirical variance of
Sect. 4, which in turn is necessary to show that the invariant is preserved when the weights
are updated.

3 Bounding the empirical mean using resilience and changes of
distributional assumptions

In this section, we rework the original proofs so that they can be formalized using InfoTheo [3,
4], a formalization of information theory in Coq.

3.1 Background about formalization of probabilities
InfoTheo introduces a number of definitions and lemmas to deal with finite probabilities.
The type of finite distributions is {fdist U} where U is a finite type (finType as provided by
the MathComp library [8]). A finite set in MathComp is an object of type {set U} where

1 This change does not affect the final computation: for finite samples, pi corresponds to a multiplicity
count of the occurrences of xi. In the case of a uniform distribution, all pi have the value 1/n, so the
original algorithm is a special case. Note that the computation of the updated ci at Step 5 does not
directly depend on the value of pi.

ITP 2024
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U is a finite type; finite sets are used to represent events. A probability space is a finite type
with a function P, which assigns to each point of the type a probability in [0, 1]. The domain
of P can also be extended to finite sets, taking the sum of the pointwise values, resulting in the
corresponding probability measure. A random variable is a function embodying the notion of
probabilistically changing values: it goes from a probability space to a type, the input being
assumed to be sampled from the probability space according to its probability measure. The
type of real-valued random variables is denoted by {RV P -> R} where P is the probability
measure of the ambient probability space and R is the type of real numbers [3, Sect. 2]. The
conditional expectation of the random variable X w.r.t. an event A is `E_[X | A] (see [2] for
conditional probabilities in InfoTheo). We use a resilience lemma that bounds the distance
between two conditional expectations (generalizing [5, Sect. 5.1]):

▶ Lemma 1 (Resilience). Let X be a random variable with probability measure P , and F , G

be two events such that F ⊆ G. Then for any δ such that 0 < δ ≤ P (F )/P (G), we have

|E [X|F ]− E [X|G]| ≤
√

2V [X|G] 1− δ

δ
.

3.2 Changing distributional assumptions

Steinhardt argues for the correctness of his algorithm using big sums. We recast big sums
in terms of expectation and variance, as provided by InfoTheo, to enable the reuse of
existing lemmas. We further extend InfoTheo with lemmas about changes in distributional
assumptions of RVs.

A change of distributional assumption is the transformation of a RV X on a probability
space T1 with probability measure P into another RV on another space T2 with probability
measure Q by precomposing a function f : T1→ T2:

Definition change_dist (T1 T2 : finType) (P : {fdist T1}) (Q : {fdist T2})
(f : T2 -> T1) (X : {RV P -> R}) : {RV Q -> R} := X \o f.

We denote with Q.-RV X \o f the resulting RV and write Q.-RV X when f is the identity.
The main application of changing distributional assumptions is to formalize the empirical

variance (Step 3 of filter1d). Given a probability measure P and (non-negative) weights ci

(i ∈ A), we call the probability measure i 7→ cipi/
∑

j∈A cjpj weighted. In Coq we provide
the weighted probability measure of P as a function wgt whose argument is a proof of∑

j∈A cjpj ̸= 0. We call weighted the change of distributional assumption with a weighted
probability measure. In particular, the empirical mean of X with weights ci can be expressed
as the expectation of a weighted RV.

Similarly, given a probability measure P over U and a function h with codomain ⊆ [0, 1],
we call split the probability measure over U × {F, T} (Split.d P h in Coq):

split(P, h)(i,b)
def=

{
h(i)pi if b = T

(1− h(i))pi if b = F.

We call first-split the RV Q.-RV X \o fst (where Q is Split.d P h). It is possible to change
a conditional expectation by a first-split. (The Coq notation `* is for the Cartesian product
and [set: bool] is for the set of booleans.)

Definition fst_RV (X : {RV P -> R}) : {RV d -> R} := (Split.d P h).-RV X \o fst.
Lemma cEx (X : {RV P -> R}) A : `E_[X | A] = `E_[fst_RV X | A `* [set: bool]].
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3.3 Bounding the empirical mean
We prove the following bound between the mean and the empirical mean under the invari-
ant (I): |µS − µ̂c| ≤ σS

√
2ε

2−ε + σ̂c

√
2ε

1−ε [11, Lemma 1.4].
For that purpose, we introduce an intermediate value µ̃c and first show (µS−µ̃c)2 ≤ σ̂2

c
2ε

1−ε ,
which is formalized as follows, using PC0, a proof that Weighted.total P C != 0:
Let WP := Weighted.d PC0.
Lemma bound_emean : invariantW -> (* A weaker version of the invariant *)

(`E_[WP.-RV X | S] - `E (WP.-RV X))^+2 <= `V (WP.-RV X) * 2 * eps / (1 - eps).

The proof is a direct application of Lemma 1 with δ = 1− ε and G being the full set.
The second bound is (µS− µ̃c)2 ≤ σ2

S
2ε

2−ε , proved using the inequality 1−ε/2 ≤
∑

i∈S
cipi

P (S)
(which we shall call “S-mass”):
Lemma bound_mean : invariant ->

(`E_[X | S] - `E_[WP.-RV X | S])^+2 <= `V_[X | S] * 2 * eps / (2 - eps).

The proof relies on the observation that one can change the distributional assumption of
µS as E [X1|S × {F, T}] and similarly µ̃c = E [X1|S × {T}], where X1 is the first-split of
X. This changing of distributional assumption corresponds to the formalization of the
following proof step in [11, page 63]: “(here we think of µ̃c as the mean of an event occurring
with probability

∑
i∈S ci/|S| under the uniform distribution on |S|)”. Using changing of

distributional assumption, the proof is actually an application of Lemma 1, using “S-mass”
to fulfill its hypothesis:

(E [X1|S × {F, T}]︸ ︷︷ ︸
µ

−E [X1|S × {T}]︸ ︷︷ ︸
µ̃

)2 ≤
↑

Lemma 1

2V [X1|S × {F, T}]︸ ︷︷ ︸
V[X|S]

1− (1− ε/2)
1− ε/2 .

4 Bounding of variance: using interval to fix proofs

In this section, we explain how we formalize and fix the proofs that bound the empirical
variance of filter1d. Precisely, we obtain the following bound for the empirical variance.

▶ Lemma 2. Provided the invariant (I), 16σ2
S ≤ σ̂2

c , and ε ≤ 1/12.7, we have:
(a)

∑
i∈S cipiτi ≤ 1−ε

3.35 σ2
c and (b)

∑
i∈S cipiτi ≥ 2

3.35 σ2
c .

Steinhardt claims an upper-bound of 1/12 for ε and uses 3 in the denominators in (a) and
(b) instead of 3.35 [11, Lemma 1.4 (part 2)/eqn A.6–A.9]. We believe that the lemma cannot
be proved with Steinhard’s bounds because we corrected mistakes in the original proof of
(b) [11, eqn A.10–A.11, page 63], which we discovered when we mechanized an argument
that “consist[s] of straightforward but tedious calculation” [11, page 5].

The correct bounds can be obtained by using the interval tactic [9, 10] of Coq. We
parameterize the Coq statements corresponding to Lemma 2 with a variable eps_max for the
upper-bound to be found and with a variable denom for the denominators in (a) and (b):
Notation eps := Pr P cplt_S. (* cplt_S is the complement of S *)
Notation eps_max := 10 / 127. (* values found by try-and-error, see below *)
Notation denom := 335 / 100.
Hypothesis low_eps : eps <= eps_max.

Lemma bound_empirical_variance_S :
\sum_(i in S) C i * P i * tau i <= (1 - eps)/denom * `V (WP.-RV X).

Lemma bound_empirical_variance_cplt_S :
2/denom * `V (WP.-RV X) <= \sum_(i in cplt_S) C i * P i * tau i.

ITP 2024
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Then, we use two proof scripts (inspired by Steinhard’s proofs) to reduce the proof to
purely arithmetical subgoals depending on the variables eps_max and denom. Finally, we
use Coq to help find optimal values for eps_max and denom by adjusting the parameters
and replaying the proof scripts, deferring subgoals related to arithmetic to interval. In
this way, we obtained the values 3.35 and 1/12.7 for denom and eps_max, respectively, by
iterative trial-and-error. Note that with Steinhard’s parameters (3 and 1/12), the proof
script bound_empirical_variance_S holds, but bound_empirical_variance_cplt_S does
not. It is possible to use the same process to further refine the constants: e.g., we are able to
show the same results for 3.345 and 1/12.65.

5 A formally robust algorithm for mean estimation

5.1 Formalizing filter1d

The algorithm filter1d was presented in Sect. 2 in the form of a loop. To formalize it in
Coq, we turn it into a recursive algorithm by using the Function command [12, Functional
Induction], which can be used for arbitrary well-founded recursion (not just structural).

1 Variables (U : finType) (P : {fdist U}) (X : {RV P -> R}).
2 Function filter1D_rec v (v_ge0 : 0 <= v)
3 (C : nneg_finfun U) (C01 : is01 C) (PC0 : Weighted.total P C != 0)
4 {measure (fun C => #| 0.-support C |) C} :=
5 let WP := wgt PC0 in
6 if `V (WP.-RV X) <=? 16 * v is left _ then
7 Some (`E (WP.-RV X))
8 else
9 let C' := update X PC0 in

10 if Weighted.total P C' !=? 0 is left PC0' then
11 filter1D_rec v_ge0 (is01_update X PC0 C01) PC0'
12 else
13 None.

The parameter U is a finite type, P is a probability measure over U, and X is a random variable
whose probability measure is P. The function takes as parameters the variance v with a proof
that it is non-negative (v_ge0), as well as a (non-negative) weight function C with proofs
that the weights are less than 1 (C01) and that their total is not 0 (PC0). The measure that
controls termination is the size of the support of C. Indeed, an execution of Step 5 sets one
nonzero weight to zero (the weight Ci such that τi = τmax), rendering the nonzero support of
Ci’s (0.-support C at line 4) strictly smaller.

At each iteration, we update the distributional assumption (line 5) and compute the
variance (line 6). Then, we update the weights (line 9) and test if we can recurse by checking
that the total of the new weights is nonzero. A termination is reached if (1) the empirical
variance satisfies the convergence condition σ̂2

c ≤ 16v (line 6), resulting in Some(µ̂c), or
(2) the weighted total after the update is zero, resulting in None (line 13). When neither is
the case, we perform a recursive call at line 11, passing two proof terms that also implicitly
carry the updated C'i’s. The function is01_update computes a term that shows that C'i’s
do not break the invariant that they are between 0 and 1. The proof PC0' directly results
from the case analysis at line 10.

We feed a set of constant weights, all equal to 1, as the base case of Ci to complete the
definition of filter1d (again, in this definition, the constant weights are implicitly passed
by two proof terms C1_is01 U and PC1_neq0 P):

Definition filter1D v (v_ge0 : 0 <= v) := filter1D_rec v_ge0 (C1_is01 U) (PC1_neq0 P).
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5.2 Robustness of filter1d

We can finally prove the robustness of filter1d. The recursive definition based on the
measure #|0.-support C| ensures that the function returns None if and only if the compu-
tation has failed and all Ci’s are set to zero. Otherwise, it returns the empirical mean upon
termination.

The first step in proving robustness is to show the preservation of the invariant (I) w.r.t.
the update performed at Step 5:

Lemma invariant_update : let C' := update X PC0 in
invariant P C S eps -> invariant P C' S eps.

This formalizes [11, Lemma 1.5, page 5]. The proof is a consequence of Lemma 2 (Sect. 4)
used in conjunction with the following property of update (update_removed_weight in [1]):∑

i∈E pi(1− c′
i) =

∑
i∈E pi(1− ci) + 1/τmax

∑
i∈E piciτi where the c′

i’s are the weights after
an update, i.e., c′

i := ci

(
1− τi

τmax

)
.

Using the preservation of the invariant, we show that filter1d is robust with the following
theorem and its corollary:

1 Hypothesis low_eps : eps <= eps_max.
2 Lemma filter1D_correct :
3 let v := `V_[X | S] in
4 if @filter1D U P X v v_ge0 is Some mu_hat
5 then `| `E_[X | S] - mu_hat | <= Num.sqrt (v * (2 * eps) / (2 - eps)) +
6 Num.sqrt (16 * v * (2 * eps) / (1 - eps))
7 else false.
8

9 Corollary filter1D_converges : @filter1D U P X `V_[X | S] v_ge0 != None.

The @ mark (in lines 4 and 9) disables the inference of implicit arguments in Coq. The
theorem shows that, if given the appropriate ε and variance: (i) the algorithm never terminates
with an error; and (ii) when the algorithm terminates, the empirical mean is close enough to
the true mean.

6 Conclusions

This paper describes a mechanized proof of a simple M-estimator in the proof assistant Coq.
The result contributes to the state of the art by improving the pencil-and-paper presentation,
by making explicit all details, by clarifying the termination argument, by fixing errors in the
pencil-and-paper proofs, and by improving the error bounds. Our approach makes use of
the interval tactic, which helped determine the correct bounds in the formulation of the
main lemma (Sect. 4). The formal verification of the M-estimator can be seen as yet another
result in a series of applications of formalized probability, among them the verification of
stochastic algorithms [13] and machine learning algorithms [15].

In future work, we plan to generalize the present work on robust mean estimation to the
multi-dimensional case (as in [6]) and to normed vector spaces.
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Abstract
Apostol’s Modular Functions and Dirichlet Series in Number Theory [2] is a graduate text covering
topics such as elliptic functions, modular functions, approximation theorems and general Dirichlet
series. It relies on complex analysis, winding numbers, the Riemann ζ function and Laurent series.
We have formalised several chapters and can comment on the sort of gaps found in pedagogical
mathematics. Proofs are available from https://github.com/Wenda302/Number_Theory_ITP2024.
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1 Introduction

Number theory is an ideal testbed for techniques in the formalisation of mathematics: it is
central to mathematics, as many Fields medals attest, and its analytic branch requires the
deployment of complex analysis and approximation theory.

Apostol’s popular textbook series is a good choice of source material. His Modular
Functions and Dirichlet Series [2] follows on from his Introduction to Analytic Number
Theory [1], most of which has already been formalised in Isabelle/HOL [4]. By formalising
both volumes we create a good basis for formalising further work in analytic number theory,
while at the same time investigating Apostol’s actual text forensically.

Isabelle/HOL [7] is a popular proof assistant. Based on simple type theory, its advantages
include best-in-class automation, a library of over four million lines of formal proofs, and a
structured proof language offering a good degree of legibility. Users work within a highly
sophisticated interactive development environment.

We report on ongoing work to formalise the book and build a foundation of modular
forms in Isabelle/HOL. We explore the chapters that we formalised fully (1, 2, 3, 7) and
the parts of Chapter 6 that were already completed, commenting on what was covered and
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where we had issues with the text. Except for one technical lemma that we did not need, all
theorems from these chapters have been formalised. In particular, all results mentioned in
this paper have been formalised.

2 Prerequisites: holomorphicity, analyticity, meromorphicity

A complex function is called holomorphic (or analytic) on an open set A ⊆ C if its derivative
exists at every point of A. In the Isabelle library, these notions are defined not only for open
sets and here they do not coincide: f holomorphic_on A means that f is differentiable at
every point of A. On the other hand, f analytic_on A means that f has a power series
expansion at every point of A – or, equivalently, that f is holomorphic on some open superset
of A. For non-open sets, the notion analytic_on turns out to be much more useful.

A weaker condition than holomorphicity is meromorphicity on a set A: the function is
differentiable at every point of A except for some isolated points at which it has poles (i.e. it
tends to infinity). It was not straightforward to extend this definition to non-open sets, and
after some false starts we arrived at the following very simple definition: f is meromorphic
on A if f has a Laurent series expansion at every point of A.

definition meromorphic_on :: "(complex ⇒ complex) ⇒ complex set ⇒ bool"
(infixl "(meromorphic’_on)" 50) where
"f meromorphic_on A ←→ (∀ z∈A. ∃ F. (λw. f (z + w)) has_laurent_expansion F)"

3 Elliptic functions and complex lattices

Two complex numbers ω1 and ω2 such that ω2/ω1 /∈ R generate a lattice Λ = Zω1 + Zω2 in
the complex plane. If we identify all complex numbers that differ by an element of Λ we
obtain a complex torus TΛ.

▶ Definition 1 (elliptic functions). An elliptic function is a meromorphic function TΛ → C.

Apostol defines it as a meromorphic function C → C that is periodic in both ω1 and ω2.
This is also how we formalise it. The simplest non-trivial elliptic function is the following:

▶ Definition 2 (Weierstraß ℘ function). ℘(Λ, z) = 1
z2 +

∑
ω∈Λ\{0}

(
1

(z−ω)2 − 1
ω2

)
.

From this, a collection of related numbers arises:
Eisenstein series: Gn(Λ) =

∑
ω∈Λ\{0} ω−n.

Weierstraß invariants: g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).
Modular discriminant: ∆(Λ) = g2(Λ)3 − 27g3(Λ)2.
Klein’s J invariant: J(Λ) = g2(Λ)3/∆(Λ).

To illustrate the relevance of these numbers, note the following results:

▶ Theorem 3 (Laurent series expansion of ℘ at z = 0). ℘(Λ, z) = 1
z2 +

∑
n≥1(n+1)Gn+2(Λ)zn.

▶ Theorem 4 (Differential equation for ℘). [℘′(Λ, z)]2 = 4℘3(Λ, z) − g2(Λ)℘(Λ, z) − g3(Λ).

▶ Theorem 5 (Non-vanishing of ∆). ∆(z) ̸= 0 for all z.

It is convenient to rotate and scale the lattice such that ω1 = 1 and ω2 = τ (where
Im(τ) > 0) so that we can describe the lattice by a single complex parameter. We can thus also
write Gn(τ), ∆(τ) etc. and view Gn, ∆, etc. as functions H → C, where H = {z | Im(z) > 0}
is the complex upper half plane. Importantly, all functions mentioned in this section are
meromorphic on H.
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The last important results in this section are the Fourier expansions of Gn, ∆, and
J . For example, using the Riemann ζ function and writing σa for the divisor function
σa(n) =

∑
d|n da and q = e2iπτ , we have the following:

▶ Theorem 6 (Fourier expansion of Gn). For even n, Gn(τ) has the following Fourier

expansion at τ = i∞: Gn(τ) = 2
(

ζ(n) + (2iπ)n

(n−1)!
∑

k≥1 σn−1(k)qk

)
.

We also formalised similar Fourier expansions for ∆ and J . The Fourier coefficients of these
do not have such simple closed forms, but we derive useful recurrences for them. These
expansions show that Gn, ∆, and J are “meromorphic at i∞”, which will be important later.

4 Modular forms

4.1 The modular group
The Möbius transformations of the form z 7→ az+b

cz+d form a group under function composition.
This is the projective linear group PSL(2,Z), also known as the modular group Γ. This
group is related to the functions Gn, ∆, J above because they satisfy simple functional
equations under composition with elements from the modular group, namely if h(z) = az+b

cz+d

then Gn(h(z)) = (cz + d)nGn(z) and ∆(h(z)) = (cz + d)12∆(z) and J(h(z)) = J(z).
In Isabelle, we represent the modular group as a type modgrp. This is a quotient type

of the set of tuples (a, b, c, d) with a, b, c, d ∈ Z and ad − bc = 1 modulo a relation that
identifies (a, b, c, d) and (−a, −b, −c, −d). We show that this is a group, which we write
multiplicatively.

Two special kinds of modular transformations are shifts Tn(z) = z + n and “mirror-
inversions” S(z) = −1/z. Notably, any modular transformation can be decomposed (non-
uniquely) into a product of S and Tn. We formalise this fact as an induction rule:

lemma modgrp_induct_S_shift [case_names id S shift]:
fixes P:: "modgrp ⇒ bool"
assumes "P 1 and "

∧
x. P x =⇒ P (S_modgrp * x)"

and "
∧

x n. P x =⇒ P (shift_modgrp n * x)"
shows "P x"

4.2 Fundamental regions
Consider a subgroup G of the modular group. We now consider two points in the upper
half-plane H to be equivalent whenever there exists a transformation in G that maps one to
the other:

▶ Definition 7 (equivalence under a subgroup of the modular group). Let G be a subgroup of
the modular group modgrp, and τ and τ ′ be two points in the upper half-plane H. We consider
τ and τ ′ to be equivalent under G if τ ′ = fτ for some f in G.

We can designate a canonical representative for each equivalence class e.g. by picking
a sub-region of H that contains exactly one representative of each class. The interior of a
region that satisfies this is called a fundamental region.

▶ Definition 8 (Fundamental region). An open subset R of H is a fundamental region of G

provided that:
No two distinct points of R are equivalent under G.
If τ ∈ H then there is a point τ ′ in the closure of R such that τ ′ is equivalent to τ .

ITP 2024
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Next we show that a particular region is indeed a fundamental region of the full modular
group. We call this the standard fundamental region RΓ:

▶ Theorem 9. The open set RΓ = {τ ∈ H | |τ | > 1, |Re(τ)| < 1
2 } is a fundamental region

for Γ.

4.3 Removing removable singularities
One issue that arises in formalising complex analysis is that on paper, removable singularities
are essentially ignored completely. For example, if we have the functions f(z) = z and
g(z) = 1/z then a mathematician would write f(z) · g(z) = 1. In a theorem prover like
Isabelle/HOL, this does not work: at least not if f and g are functions of type C → C.

Our solution is to introduce a special type to capture meromorphic complex functions
modulo removable singularities. Since our main interest later on will be functions on the
upper half plane H = {z | Im(z) > 0}, we additionally restrict the functions to that domain.

To be precise: our type mero_uhp consists of those functions f : C → C that are
meromorphic on H and return 0 at their poles and outside H. This captures exactly the
mathematical idea of meromorphic functions on H.

Conversion of a “normal” complex function f to the mero_uhp type is done by restricting
f to the appropriate domain and fixing removable singularities. The latter is done with the
very useful function remove_sings:

definition remove_sings :: "(complex ⇒ complex) ⇒ complex ⇒ complex" where
"remove_sings f z = (if ∃ c. f −z→ c then Lim (at z) f else 0)"

This function takes a complex function (assumed to be meromorphic) and returns a version
of that function with all removable singularities removed and all poles totalised to 0.

With this, we can now also define basic arithmetic on mero_uhp and prove that it is a
field and a C-vector space, which would not be possible for the normal function type.

This type mero_uhp now forms the basis for our formalisation of modular forms and
modular functions.

4.4 Definition of modular forms
Next we will finally define modular forms and related concepts, namely as “sufficiently nice”
functions that satisfy interesting equations under composition with modular transformations.1

▶ Definition 10. A weakly modular form of integer weight k w.r.t. a subgroup G of the
modular group is a meromorphic function f : H → C that satisfies the functional equation
f(h(z)) = (cz + d)kf(z) for any h(z) = az+b

cz+d with h ∈ Γ.

By adding more conditions, we can define the following concepts.
if f is additionally meromorphic at the cusps, we call it a meromorphic form
if f is even holomorphic (including at the cusps), we call it a modular form
a meromorphic form of weight 0 is called a modular function

Here, “meromorphic at the cusps” means that f(h(z))(cz + d)−k has a meromorphic Fourier
expansion

∑
n≥n0

ane2iπz at z = i∞ for all h ∈ Γ (not just in G). For “holomorphic at the
cusps”, we additionally require n0 ≥ 0.

1 For simplicity, some of our definitions in Isabelle currently only work when G is the full modular group,
but this will be generalised soon.
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In Section 3 we have already seen that Gn is a modular form of weight n for n ≥ 3, ∆ is
a modular form of weight 12, and J is a modular function.

Apostol does not use the terms “weakly modular form” and “meromorphic form” at all,
but we find that they make the formalisation more modular: they allow e.g. the valence
formula (below) to be shown directly for meromorphic forms rather than deriving them
separately for modular forms and modular functions. This is a typical case where the
educational approach of Apostol’s textbook clashes with the needs of formalisation.

4.5 The valence formula

The central result in our formalisation so far is the valence formula for meromorphic forms.
It relates the number of zeros of a modular form to the number of its poles:

▶ Theorem 11. Let f be a non-zero meromorphic form of weight k on the full modular
group Γ. Then the sum of the multiplicities of the zeros of f inside the closure of RΓ minus
the sum of the multiplicities of its poles in the same set is exactly k/12.

Several caveats apply here about how to count zeros and poles directly at the border of the
region: any point on the border is weighted with 1

2 , except for the points ± 1
2 +

√
3

2 i, which
are weighted with 1

6 . It should also be noted that i∞ may also be a zero or pole and must
be counted accordingly (with weight 1).

The proof of the valence formula was the most difficult to formalise so far. The basic idea
is simple: we apply the argument principle and integrate along a contour that is essentially a
finite version of the border of RΓ. Due to the symmetries of RΓ and f , most of the integral
cancels, only k/12 remains plus the contribution of the potential zero or pole at i∞.

The problem is that there may be zeros or poles directly on the border itself and we
need to add little “wiggles” to avoid these and account for the error made by this. This is
easy to justify on paper, but not in a theorem prover. We eventually solved this problem by
using the “Wiggle Framework”, which the first author developed specifically for this proof
(but with similar future applications in mind). It allows deforming integration contours and
relating them to the original contour. We are currently planning to eventually replace this
framework with a much simpler approach based on a generalised residue theorem that allows
singularities on the integration path. [6]

For modular functions, the valence formula is particularly striking: it means that the
number of zeros of a modular function f(z) is exactly the same as the number of its poles.
Moreover, since the number of zeroes in f(z) − c is the same as that of f(z), we can even say
that f takes on all complex values equally often. In particular, J is a bijection between R′

Γ
and C (where R′

Γ denotes the union of RΓ and the left half of its closure).
Apostol uses this last fact to give a relatively simple proof of Picard’s little theorem

(a non-constant entire function takes every value in C with at most one exception). We
formalised this as well, but it turned out to be not quite so simple: in particular, we had to
first prove the stronger fact that J is a covering between H and C, which was a reasonably
simple, but somewhat tedious and definitely non-trivial proof. It is surprising that Apostol
does not mention this seemingly indispensable bit of work in his proof.

Another straightforward application of the valence formula is to determine the dimension
of the vector space of modular forms of weight k, the formalisation of which is ongoing work.
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5 Dedekind’s η function

▶ Definition 12 (The Euler function ϕ and Dedekind’s η function). Define ϕ(q) =
∏

k≥1
(
1−qk

)
and η(z) = eiπz/12ϕ

(
e2iπz

)
. They are holomorphic for |q| < 1 and z ∈ H, respectively.

Dedekind’s η function is not a modular form in the sense that Apostol defines, but it does
display interesting behaviour under the two generators z 7→ z + 1 and z 7→ −1/z of the
modular group:2

▶ Theorem 13. η(z + 1) = eiπ/12η(z) and η(−1/z) =
√

−iz η(z).

Using these two relations and our induction rule for the modular group, one can show the
following more general equation:

▶ Theorem 14. If h(z) = az+b
cz+d is an element of the modular group, then η(h(z)) =

εh

√
cz + d η(z) where εh is a 24th root of unity depending on h but not on z.

This εh has an explicit (albeit complicated) formula in terms of Dedekind sums which we
shall not show here. It is noteworthy that our definition of εh and our version of the theorem
differ somewhat from Apostol’s, since ours work for any value of c while he requires c > 0.

Interestingly, Apostol proves Theorem 14 directly using Iseki’s formula: a technical lemma
whose proof is four pages of dense calculations and which is never used again. We chose
not to formalise Iseki’s formula and to instead follow a simpler approach outlined in the
appendix of the second edition of the book: we first follow Apostol’s proofs for Theorem 13
and then obtain Theorem 14 from it.

An interesting consequence of Theorem 14 is that η24 is a modular form of weight 12.
Combining this with the valence formula, one obtains (relatively easily) a remarkable
connection: ∆(z) = (2π)12η(z)24.

6 Discussion and related work

The tradition of formalising textbooks dates back to Jutting’s formalisation of Landau’s
Foundations of Analysis using AUTOMATH [8] in 1977. The challenge is about the volume of
material but also the obligation to cover everything rather than to pick and choose. Although
we did not have time to formalise the entire text, we did cover half of the eight chapters.

We built upon a huge library of prior material, including Laurent series, winding numbers,
Dirichlet series, polynomial factorisation and Bernoulli numbers, all of which had to interop-
erate. We worked under the handicap that none of us is a number theorist. Perhaps for this
reason, many of the Isabelle/HOL proofs are considerably longer than Apostol’s. We invested
some effort in making the formal proofs clear, through Isabelle’s structured proof language,
hoping to retain some of the pedagogical value of the original text. The four chapters (1, 2,
3, 7) respectively consist of 12K, 10K, 4K, and 3K lines of proof scripts including comments.
Together with other supporting material, the project has already exceeded 53,000 lines.

Much number theory has been formalised in other proof assistants, chiefly Lean. To our
knowledge, ours was the first treatment of elliptic functions and modular forms in a theorem
prover, although we are aware of more recent unpublished work by Birkbeck [3] in Lean
covering mostly the definition of modular forms and Eisenstein series. This work is now also
part of Mathlib 4.

2 Here,
√

denotes the standard branch of the complex square root where Re(
√

z) ≥ 0 for all z ∈ C and
Im(
√

x) > 0 for any real x < 0.
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7 Conclusions

The formalisation of a textbook remains challenging. Our impression was that Apostol’s proofs
were clear overall, and wherever they were, the formalisation process was straightforward,
regardless of the mathematical tools required. There were however some gaps, mistakes, and
informal arguments that took time to overcome, but none that were serious. Graduate-level
analytic number theory can be formalised in Isabelle/HOL without undue effort.
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Abstract
We present Untangle, a Lean4 extension for Visual Studio Code that displays string diagrams for
morphisms inside monoidal categories, allowing users to rewrite expressions by clicking on natural
transformations and morphisms in the string diagram. When the the user manipulates the string
diagram by clicking on natural transformations in the Graphical User Interface, it attempts to
generate relevant tactics to apply which it then inserts into the editor, allowing the user to prove
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extension integrates with the Lean4 proof assistant as an extension that generates tactics
in response to user interaction with the rendered string diagram that it presents in the
Graphical User Interface.

2.2 Penrose

Penrose [14] is a tool for declaratively constructing mathematical diagrams that allows
developers to construct a DSL (Domain Specific Language) that describes the types of
mathematical objects that the developer would like to display and the relations between
them and a stylesheet to describe how the system should render these mathematical objects.
After specifying a DSL, the developer can programmatically construct diagrams containing
instances of these mathematical objects by generating scripts written using this DSL. Penrose
will then generate images depicting these mathematical objects in the manner described by the
user-provided stylesheet. Penrose excels for our use case as it does not rely on a fixed library
of visualisation tools and the DSL allows the developer to define visual representations in its
constraint-based specification language. We use Penrose to visually render string diagrams.
ProofWidgets [13] is a general-purpose framework for building Graphical User Interfaces in
Lean, allowing developers to build visual “widgets” that interact with Lean. ProofWidgets
provides an API that allows for effortless construction of interactive widgets and extensions
for Lean4 by allowing the developer to create composable components and includes a built-in
component that integrates the Penrose system for constructing mathematical diagrams. We
build the extension using the ProofWidgets framework, allowing us to write user interface
logic in JavaScript and relay information from the user interface to the Lean server and
Visual Studio Code using RPCs (Remote Procedure Calls) and also write RPC handlers in
Lean.

2.3 Graphical proof assistants

There are a handful of stand-alone visual proof assistants that allow the user to work
by manipulating string diagrams, such as Globular [2], homotopy.io [5] and Quantomatic
[9]. Graphical proof assistants represent terms as diagrams and allow users to manipulate
diagrams according to rewrite rules that correspond to equalities between two terms. In
these proof assistants, users interact with graphical proof assistants by clicking on diagram
elements that represent mathematical objects in order to apply rewrite rules to them and the
neighbouring elements. These proof assistants typically exist either as online web applications
or downloadable executables as opposed to integrating with pre-existing proof assistants. In
addition to these tools, there is an in-progress Pull Request to Lean’s Mathlib for displaying
string diagrams authored by Yuma Mizuno [11], although it does not aim to rewrite terms in
the goal.

2.4 String diagrams

Commutative diagrams are a graphical representation depicting morphisms inside a category
where, typically, objects are represented as points or vertices, morphisms are represented
as arrows between these points and 2-morphisms are presented as arrows between arrows.
Dualising this representation, one arrives at string diagrams where objects are represented as
faces, morphisms as lines and 2-morphisms as points or vertices.
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B C

A E D

g

α hf

i j
α

Figure 1 The corresponding commutative diagram and string diagram.

For example, let A, B, C, D and E be objects inside a category, let f : A → B, g :
B → C, h : C → D, i : A → E, j : E → D be morphisms inside this category and let
α : h ◦ g ◦ f ⇒ j ◦ i be a 2-morphism between them. As a commutative diagram and as
a string diagram, this would appear as in Figure 1 where every object is represented by a
coloured planar face.

String diagrams allow for reasoning about morphism equalities with soundness guaranteed
by coherence theorems [8] and provide a graphical representation for certain structures
inherent to monoidal categories. For example, the associativity of morphism composition
is inherent to the string diagram representation as the composition of morphisms in string
diagrams is represented by positioning morphisms such that they are adjacent. More generally,
string diagrams are for bicategories of which monoidal categories are a special case.

3 Proof of Concept

We implement “Untangle” as a proof of concept and use it to prove example statements
about monads: monoid objects in the monoidal category of endofunctors and natural
transformations between them. This work is accessible online at https://github.com/
dignissimus/Untangle. When the current proof goal is an equality, untangle renders string
diagrams for the morphisms on both sides of the equality as seen in Figure 2. The user may
then prove the equality of the two morphisms by manipulating the diagram by clicking on
morphisms on either side of the diagram. When the user has selected the section of the
diagram that they would like to rewrite, the extension constructs a tactic to apply a relevant
theorem to rewrite the goal statement in the sub-expressions that the diagram components
represent. After the goal statement updates in the Lean info view, the Graphical User
Interface re-renders the diagram so that it represents the updated goal statement.

3.1 Example workflow
If, for example, one were to prove the equality between µX ◦ f ◦ µX and µX ◦ TµX ◦ TTf for
some monad T equipped with natural transformations µ : T 2 → T and η : 1 → T satisfying
the monad laws and a morphism f : X → TX for some object X. We may begin by using
the naturality of µ to argue that µX ◦ f ◦ µX is equal to µX ◦ µT X ◦ TTf , we could then
proceed to use the associativity law for the µ natural transformation to argue that this equals
µX ◦ TµX ◦ TTf , completing the proof.
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In Lean, this statement would appear as follows:

example [ Category C] {T : Monad C} {X : C} {f : X → T.obj X}
: T.µ.app X ≫ T.map f ≫ T.µ.app X

= T.map (T.map f) ≫ T.map (T.µ.app _) ≫ T.µ.app _
:= by with_panel_widgets [ Untangle ] {

}

When the user places the cursor inside the braces inside Visual Studio Code, the extension
will render string diagrams for both of the morphisms on each side of the equality that appear
inside the Lean infoview as in Figure 2. Visually, the proof of the theorem consists of pulling
up the point that represents the morphism f as a simple planar deformation then using the
monad associativity law to swap the order of the µ natural transformations.

With the extension, clicking on the morphism f and the natural transformation µ

generates the following tactic and enters it into the lean editor:

conv => {
enter [1];
slice 1 2;
rw [
← (Monad.µ T). naturality (f),
CategoryTheory . Functor . comp_map

];
};
try simp only [ CategoryTheory . Category .assoc ];

This tactic does the following:

Selects the left-hand side of the expression

Uses the indices 1 and 2 to select a “slice” containing the subexpression to re-write

Applies the naturality condition for the µ natural transformation to rewrite the goal
statement

Rewrites (T ◦ T )f as TTf

Attempts to simplify the expression using the associativity of morphism composition.

This updates the goal state and the extension renders a new diagram that has the order
of f and µ swapped.

After this, we can click on the two µ morphisms to apply the associativity law which
inserts the following tactic into the editor:

conv => {
enter [1];
slice 2 3;
rw [← Monad.assoc ];

};
try simp only [ CategoryTheory . Category .assoc ];

The equality has now been proved and the Lean type-checker accepts the statement and
proof.
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Figure 2 Using the extension to prove morphism equality.

4 Implementation

4.1 Data structures

In a similar manner to Comfort et al. [4], we represent diagrams as a series of diagram
components without association information where each diagram component is represented
as the number of inputs into the natural transformation, its number of outputs and its
location or “offset” in its level in the string diagram referring to the number of wires or
strings that exist to the left of the component at its level. See Delpeuch and Vicary [6] for
more information about this data structure.

4.2 Parsing morphism expressions

We parse morphisms, natural transformation components and objects from the goal statement
into an internal representation that closely resembles the syntax tree for the Lean expressions
that represent them by using a basic recursive-descent parser. While parsing morphisms, we
use type information from Lean to tag expressions with semantic labels such as “functor”,
“morphism” or “natural transformation component”. We use this semantic information to
infer which tactics to apply when the user interacts with the diagram in the user interface.

4.3 Displaying diagrams

To display string diagrams to the user, we parse expressions into diagram components and
use our representation of diagram components to construct declarative statements in the
extension’s Penrose DSL which Penrose uses to render a diagram according to the specification
in the extension’s stylesheet. We then construct a Penrose component using the ProofWidget
framework and include it in the extension’s section of the info view.

ITP 2024
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4.4 Handling user input

We handle user input by writing JavaScript to listen to click events in Visual Studio Code.
After the user has interacted with the diagram, we send an RPC that contains information
describing the interaction. This includes the location of the the elements that the user clicked
on in the diagram and information about the state of the editor such as the position of the
mouse cursor.

4.5 Pattern matching and tactic selection

We implement a simple rule-based system for deciding which tactic to select by using a
combination of syntactic information from Lean’s representation of the expression and the
inferred semantic tags. For example, if the user selects two µ natural transformations we infer
that the user would like to transform the diagram by swapping their order and rewrite the
expression using the µ associativity law: µX ◦ TµX = µX ◦ µT X . We identify the direction in
which we need to perform the rewrite by looking at the syntactic structure of the expression.
For the example of the µ associativity law, we determine the direction of the rewrite by
comparing the functor lifts of each of the two instances of the µ natural transformation in
the diagram.

4.6 Rewriting up to associativity

A graphical proof interface with Lean faces a unique challenge with rewriting and associativity.
In string diagrams, two expressions that differ only by association are represented identically
however, in Lean, two expressions that differ only by their associations are not necessarily
equivalent and we must associate theorems in the correct way before we may apply them
to expressions. For example, if the context contains a lemma that states f ◦ g = f ′ we
may reduce (f ◦ g) ◦ h to f ′ ◦ h but we may not immediately reduce f ◦ (g ◦ h) without
re-associating the expression. This poses problems as to translate the user’s theorem into a
tactic to rewrite the goal statement as we must get the association right in terms of both the
hypotheses and the resulting goal state. We tackle this by making use of Lean’s “conv” tactic
and in particular, its “slice” command. When parsing the composition of morphisms in the
equalities, we calculate the “location” of each morphism in the expression. We then use this
as input to Lean’s slice command which allows us to specify indices to select subexpressions
in the goal statement and re-associate them into a normal form by repeatedly applying the
Category.assoc lemma which asserts the equality of f ◦ (g ◦ h) and (f ◦ g) ◦ h

4.7 Extensibility

From a Software Engineering perspective, we achieve extensibility in the extension by defining
an abstract GraphicalLanguage structure which developers can implement. A developer
defines graphical languages for new structures by implementing a function that parses Lean
expressions and produces a representation of the expression’s structure, which the extension
uses to render the diagram. Additionally, the developer defines a function to handle click
events, producing a list of tactics to insert into the editor, and implementing functions that
determine the cosmetic styling of elements in the diagram.
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4.8 Entering tactics into the editor
After the RPC handler has received the message describing the user’s interaction with the
diagram and has constructed the tactic that is to be entered into the user interface, we enter
tactics into the Visual Studio Code editor by embedding the generated tactic and information
about where in the document we should insert it in the response to the RPC which we then
handle in the JavaScript code. The JavaScript then uses an “EditorContext” to relay this
information to Visual Studio code.

5 Conclusion and Future Work

In conclusion, we have created a Lean4 extension capable of rendering morphisms inside a
monoidal category as string diagrams to assist users in proving equalities between morphisms
in monoidal categories. Untangle is still in the early stages of development and, in the
future, we seek to implement rewrite rules for other monoidal structures such as comonoids,
bimonoids and Hopf monoids. In addition to supporting more monoidal structures we want
to achieve the following:

At present, the user interface is simple: rewrite rules are applied by clicking on two
morphisms and natural transformations in the diagram. This simplicity limits the type
of rewrite rules that the extension can support while remaining intuitive. In the future,
we want to extend the user interface by implementing a context menu for a more explicit
interface over what tactic the extension selects.
There are simple graphical rules for checking whether certain rewrite rules or transforma-
tions can be applied to a diagram and while the Lean4 type-checker will refuse erroneous
applications of rewrite rules and output an error message, using these simple diagrammatic
checks to alert the user about incorrect rewrites within the graphical interface would
provide the user with a better experience.
While existing Lean tactics continue to work as normal with the assumptions and
hypotheses in scope, the extension doesn’t provide a way to apply these lemmas graphically.
Allowing the user to graphically apply lemmas from the goal state to the diagram via the
user interface would be a great addition to the user experience.
Currently, all rewrite rules are pre-declared for mathematical objects that exhibit monoidal
structure. For example, the extension can render diagrams for classes of expressions
in the language of HopfAlgebra and Monads and we have written rewrite rules for the
monoidal structure of Monads and this would be repeated for new mathematical objects
with monoidal structure. While this process is not tedious, it would be much better if
there were a more general way of building rewrite rules for mathematical objects with
monoidal structures.
The extension lacks parsing for certain types of expressions in the statement. While we
currently parse TTf and Tf ◦ Tg into the internal representation of the syntax tree, we
do not currently parse (T ◦T )f or T (f ◦g). In the future, we want to parse a wider variety
of expressions and provide more comprehensive coverage over the types of expressions
the user can work with diagrammatically.
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