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Abstract
We study “Merlinized” versions of the recently defined Guided Local Hamiltonian problem, which
we call “Guidable Local Hamiltonian” problems. Unlike their guided counterparts, these problems
do not have a guiding state provided as a part of the input, but merely come with the promise
that one exists. We consider in particular two classes of guiding states: those that can be prepared
efficiently by a quantum circuit; and those belonging to a class of quantum states we call classically
evaluatable, for which it is possible to efficiently compute expectation values of local observables
classically. We show that guidable local Hamiltonian problems for both classes of guiding states
are QCMA-complete in the inverse-polynomial precision setting, but lie within NP (or NqP) in the
constant precision regime when the guiding state is classically evaluatable.

Our completeness results show that, from a complexity-theoretic perspective, classical Ansätze
selected by classical heuristics are just as powerful as quantum Ansätze prepared by quantum
heuristics, as long as one has access to quantum phase estimation. In relation to the quantum PCP
conjecture, we (i) define a complexity class capturing quantum-classical probabilistically checkable
proof systems and show that it is contained in BQPNP[1] for constant proof queries; (ii) give a no-go
result on “dequantizing” the known quantum reduction which maps a QPCP-verification circuit
to a local Hamiltonian with constant promise gap; (iii) give several no-go results for the existence
of quantum gap amplification procedures that preserve certain ground state properties; and (iv)
propose two conjectures that can be viewed as stronger versions of the NLTS theorem. Finally, we
show that many of our results can be directly modified to obtain similar results for the class MA.
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1 Introduction

Quantum chemistry and quantum many-body physics are generally regarded as two of the
most promising application areas of quantum computing [1, 12]. Whilst perhaps the original
vision of the early pioneers of quantum computing was to simulate the time-dynamics of
quantum systems [13,26], for many applications one is interested in stationary properties.
One particularly noteworthy quantity is the ground state energy (which corresponds to
the smallest eigenvalue) of a local Hamiltonian describing a quantum mechanical system of
interest, say a small molecule or segment of material. The precision to which one can estimate
the ground state energy plays a crucial role in practice: for instance, in chemistry the relative
energies of molecular configurations enter into the exponent of the term computing reaction
rates, making the latter exceptionally sensitive to small (non-systematic) errors in energy
calculations. The problem of estimating the smallest eigenvalue of a local Hamiltonian up to
some additive error relative to the operator norm (the decision variant of which is known as
the local Hamiltonian problem) is well-known to be QMA-hard when the required accuracy
scales inversely with a polynomial. Therefore, it is generally believed that, without any
additional help or structure, quantum computers are not able to accurately estimate the
smallest eigenvalues of general local Hamiltonians, and there is some evidence that this
hardness carries over to those Hamiltonians relevant to chemistry and materials science [40].
A natural question to ask is then the following: how much “extra help” needs to be provided
in order to accurately estimate ground state energies using a quantum computer?

In the quantum chemistry community, it is often suggested that this extra help could come
from a classical heuristic that first finds some form of guiding state: a classical description
of a quantum state that can be used as an input to a quantum algorithm to compute the
ground state energy accurately [38]. Concretely, this comes down to the following two-step
procedure [17]:

Step 1 (Guiding state preparation): A classical heuristic algorithm is applied to obtain a
guiding state |ψ⟩, which is hoped to have “good”1 fidelity with the ground space.
Step 2: (Ground state energy approximation): The guiding state |ψ⟩ is used as input to
Quantum Phase Estimation (QPE) to efficiently and accurately compute the corresponding
ground state energy.

Step 2 of the above procedure can be formalised by the Guided k-local Hamiltonian problem (k-
GLH), which was introduced in [28] and shown to be BQP-complete under certain parameter
regimes that were subsequently improved and tightened in [17]. The problem k-GLH is stated
informally as follows: given a k-local Hamiltonian H, an appropriate classical “representation”
of a guiding state |u⟩ promised to have ζ-fidelity with the ground space of H, and real
thresholds b > a, decide if the ground state energy of H lies above or below the interval [a, b].

In a series of works [17, 18, 28], it was shown that 2-GLH is BQP-complete for inverse
polynomial precision and fidelity, i.e. b− a ≥ 1/poly(n) and ζ = 1 − 1/poly(n) respectively.
In contrast, when b− a ∈ Θ(1) and ζ = Ω(1), k-GLH can be efficiently solved classically by
using a dequantized version of the quantum singular value transformation [28].

The GLH problem forms the starting point of this work. We study “Merlinized” versions
of GLH – in which guiding states are no longer given as part of the input but instead are only
promised to exist – and use these as a way to gain some insight into important theoretical
questions in quantum chemistry and complexity theory. In the subsequent paragraphs, we
introduce some of the motivating questions guiding the study of the complexity of these
so-called “guidable” local Hamiltonian problems.

1 “Good” here means at least inverse polynomial in the number of qubits the Hamiltonian acts on.
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Ansätze for state preparation. Step 1 of the aforementioned two-step procedure generally
requires one to have access to classical heuristics capable of finding guiding states whose
energies can be estimated classically (as a metric to test whether candidate states are expected
to be close to the actual ground state or not). Furthermore, these “trial states” should
also be preparable as quantum states on a quantum computer, so that they can be used as
input to phase estimation in Step 2. In [28], inspired by a line of works that focused on the
dequantization of quantum machine learning algorithms [20,33,44], a particular notion of
“sampling-access” to the guiding state |u⟩ is assumed. Specifically, it is assumed that one can
both query the amplitude of arbitrary basis states, and additionally that one can sample
basis states according to their l2 norm with respect to the overall state |u⟩. This can be a
somewhat powerful model [22], and it is closely related to the assumption of QRAM access
to classical data, and thus in the context of quantum machine learning (where such access is
commonly assumed), it makes sense to compare quantum machine learning algorithms to
classical algorithms with sampling access to rule out quantum speed-ups that come merely
from having access to quantum states that are constructed from exponential-size classical
data. However, for quantum chemistry and quantum many-body applications, this type of
access to quantum states seems to be somewhat artificial. From a theoretical perspective, one
might wonder to what extent this sampling access model “hides” some complexity, allowing
classical algorithms to perform well on the problem when they otherwise would not.

Moreover, one may ask whether the fact that the ground state preparation in Step 1
considers only classical heuristics might be too restrictive. Quantum heuristics for state
preparation, such as variational quantum eigensolvers [46] and adiabatic state preparation
techniques [8], have received considerable attention as possible quantum approaches within
the NISQ era, and one can argue that even in the fault-tolerant setting, such heuristics will
likely still be viable approaches to state preparation, in particular when used in conjunction
with Quantum Phase Estimation.

The quantum PCP conjecture. Arguably the most fundamental result in classical com-
plexity theory is the Cook-Levin Theorem [21,36], which states that constraint satisfaction
problems (CSPs) are NP-complete. The PCP theorem [10, 11], which originated from a
long line of research on the complexity of interactive proof systems, can be viewed as a
“strengthening” of the Cook-Levin theorem. In its proof-checking form, it states that all
decision problems in NP can be decided, with a constant probability of error, by only checking
a constant number of bits of a polynomially long proof string y (selected randomly from the
entries of y). There are also alternative equivalent formulations of the PCP theorem. One is
in terms of hardness of approximation: it states that it remains NP-hard to decide whether an
instance of CSP is either completely satisfiable, or whether no more than a constant fraction
of its constraints can be satisfied.2 Naturally, quantum complexity theorists have proposed
proof-checking and hardness of approximation versions of PCP in the quantum setting. Given
the close relationship between QMA and the local Hamiltonian problem, the most natural
formulation is in terms of hardness of approximation: in this context, the quantum PCP
conjecture roughly states that energy estimation of a (normalized) local Hamiltonian up to
constant precision, relative to the operator norm of the Hamiltonian, remains QMA-hard.
This conjecture is arguably one of the most important open problems in quantum complexity
theory and has remained unsolved for nearly two decades.

2 The transformation of a CSP to another one which is hard to approximate is generally referred to as
gap amplification, and is realised in Dinur’s proof of the PCP theorem [24].

TQC 2024
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One way to shed light on the validity of the quantum PCP conjecture can be to study PCP-
type conjectures for other “Merlinized” complexity classes. Up until this point, PCP-type
conjectures have not been considered for other classes besides NP and QMA.3 However, there
is the beautiful result of [7], which studies the possibility of a gap amplification procedure
for the class MA by considering a particular type of Hamiltonian: uniform stoquastic local
Hamiltonians. The authors show that deciding whether the energy of such a Hamiltonian is
exactly zero or inverse polynomially bounded away from zero is MA-hard, but that the problem
is in NP when this interval is increased to be some constant. Consequently, this implies that
there can exist a gap-amplification procedure for uniform stoquastic Local Hamiltonians
(in analogy to the gap amplification procedure for constraint satisfaction problems in the
original PCP theorem) if and only if MA = NP – i.e. if MA can be derandomized. Since
MA ⊆ QMA, this result also shows that if a gap amplification procedure for the general local
Hamiltonian problem would exist that “preserves stoquasticity”, then it could also be used
to derandomize MA.

1.1 Summary of main results

1.1.1 Completeness results for guidable local Hamiltonian problems
Inspired by classical heuristics that work with Ansätze to approximate the ground states of
local Hamiltonians, we define a general class of states that we call classically evaluatable and
quantumly preparable.

▶ Definition 1 (Classically evaluatable and quantumly preparable states). We say that an
n-qubit state |u⟩ is ϵ-classically evaluatable if

(i) it has an efficient classical description which requires at most a polynomial number of
bits to write down and

(ii) one can, given such a description classically efficiently compute expectation values of
O(logn)-local observables of |u⟩ up to precision ϵ and with probability ≥ 1 − 1/poly(n).

In addition, we say that the state is also quantumly preparable if (iii) there exists a quantum
circuit that prepares |u⟩ using only a polynomial number of two-qubit gates. Furthermore, if
ϵ = 0 the algorithm in (ii) is deterministic instead of probabilistic and we simply say that |u⟩
is classically evaluatable.

This definition of states is very closely related to the definition of query and sampling
access to quantum states given by Gharibian and Le Gall [28], which slightly generalizes
the original definition as first proposed by Tang used to dequantize quantum algorithms for
recommendation systems [44]. There are three main motivations for introducing this new
class of states:
1. It seems rather difficult to find Ansätze that are used in practice for ground state energy

estimation that satisfy all conditions of query and sampling access. As one of the main
motivations of this work is to investigate the power of quantum versus classical state
preparation when one has access to Quantum Phase Estimation, we want to define a
class of states that can both be prepared efficiently on a quantum computer and which
contains a large class of Ansätze commonly used in practice.

3 Barring a result by Drucker which proves a PCP theorem for the class AM [25]; though there is no
direct relationship between QMA and AM and hence it is not clear whether this gives any intuition
about the likely validity of the quantum PCP conjecture.
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Figure 1 Visualization of the (conjectured) relations between classes of quantum states considered
in this work, given a Hilbert space of a fixed dimension. For MPS, we only consider states with
polynomially-bounded bond and local dimension. We take ξ ≤ ϵ/8 ≤ 1/3, such that by Theorem 2
we have that (i) all ξ-samplable states are also ϵ-classically evaluatable and (ii) constant-depth and
IQP circuits are not ξ-samplable.

2. Analogous to Dinur’s construction, one would expect that determining if a local Hamilto-
nian has ground state energy (exponentially close to) zero or some constant away from
zero is QMA-hard if the quantum PCP conjecture is true. However, there are arguments
from physics4 as to why one might expect this problem to be in NP [41]. To study the
question of containment in NP it is necessary to be able to work with states within a
deterministic setting, and therefore it does not make sense to rely on a form of sampling
access which inherently relies on a probabilistic model of computation.

3. To add to the previous point, being able to study containment in NP comes with the
additional advantage of being able to make statements about whether the problem admits
a PCP by the classical PCP theorem. No such theorem is currently known for MA.

To strengthen the first point we find four concrete examples of Ansätze that satisfy all
three conditions: matrix product states (MPS), stabilizer states, constant-depth quantum
circuits and IQP circuits [15]. Explicit definitions of these classes of states as well as proofs of
containment can be found in [48]. The first two examples are in fact also perfectly samplable.
However, constant-depth quantum circuits are not even approximately samplable (under
the conjecture that BQP ̸⊂ AM [45]). We can formalize this in the following theorem which
relates ξ-samplable states to ξ-classically evaluatable states

4 In this setting the LH problem becomes equivalent to determining whether the free energy of the system
becomes negative at a finite temperature. One expects then that at such temperatures, the system
loses its quantum characteristics on the large scale, making the effects of long-range entanglement
become negligible. Hence, this means that the ground state of such a system should have some classical
description, which places the problem in NP [9].

TQC 2024
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▶ Theorem 2. For any ξ > 0, any ξ-samplable state is also O(ξ)-classically evaluatable. On
the other hand, there exist states that are perfectly classically evaluatable but not ξ′-samplable
for all 0 < ξ′ < 1/3, unless BQP ⊆ AM.

The proof of this theorem can be found in the full version of this paper [48]. This theorem
gives rise to a (conjectured) hierarchical structure of states as depicted in Figure 1. For the
remainder of our work, we will focus on (0-)classically evaluatable states, which by Definition 1
means that there exists a deterministic classical algorithm for computing expectation values.
A notable advantage of this approach is, as opposed to 0-samplable states, that this allows
us to give NP containment results.

Our main focus is on a new family of Hamiltonian problems, in which we are promised
that the ground state is close (with respect to fidelity) to some state from a particular class
of states, called guiding states. We make a distinction between different types of promises
one can make with respect to the existence of guiding states: we either assume that the
guiding states are of the form of Definition 1 (with or without the promise that the states are
also quantumly preparable), or that there exists an efficient quantum circuit that prepares
the guiding state.

▶ Definition 3 (Guidable Local Hamiltonian problems). Guidable Local Hamiltonian Problems
are problems defined by having the following input, promise, output and some extra promise
to be precisely defined below for each of the problems separately:
Input: A k-local Hamiltonian H with ∥H∥ ≤ 1 acting on n qubits, threshold parameters

a, b ∈ R such that b− a ≥ δ > 0 and a fidelity parameter ζ ∈ (0, 1].
Promise: We have that either λ0(H) ≤ a or λ0(H) ≥ b holds, where λ0(H) denotes the

ground state energy of H.
Extra promises: Let Πgs be the projection on the subspace spanned by the ground states of

H. Then for each problem, we have that either one of the following promises holds:
1. There exists a classically evaluatable state u ∈ C2n for which ∥Πgsu∥2 ≥ ζ. Then

the problem is called the Classically Guidable Local Hamiltonian Problem,
shortened as CGaLH(k, δ, ζ). If |u⟩ is also quantumly preparable, we call the problem
the Classically Guidable and Quantumly Preparable Local Hamiltonian
Problem, shortened as CGaLH∗(k, δ, ζ).

2. Quantumly Guidable k-LH (QGaLH(k, δ, ζ)): There exists a quantum circuit of
polynomially many two-qubit gates that produces the state |ϕ⟩ for which ∥Πgs |ϕ⟩∥2 ≥ ζ.

Output: If λ0(H) ≤ a, output yes.
If λ0(H) ≥ b, output no.

We note that a guidable local Hamiltonian problem variant for a different class of guiding
states was already introduced in Section 5 of [28] without giving any hardness results. Using
techniques from Hamiltonian complexity we obtain the following completeness results.5

▶ Theorem 4 (Complexity of guidable local Hamiltonian problems). For k = 2 and δ =
1/poly(n), we have that both CGaLH∗(k, δ, ζ) and QGaLH(k, δ, ζ) are QCMA-complete when
ζ ∈ (1/poly(n), 1 − 1/poly(n)).

A basic version of the hardness proof can be found in Section 3.1, with the remainder
written down in the full version [48]. A direct corollary of the above theorem is the following.

5 In fact QGaLH(k, δ, ζ) remains QCMA-hard all the way up to ζ = 1.
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▶ Corollary 5 (Classical versus quantum state preparation). When one has access to a quantum
computer (and in particular quantum phase estimation), then having the ability to prepare
any quantum state preparable by a polynomially-sized quantum circuit is no more powerful
than the ability to prepare states from the family of classically evaluatable and quantumly
preparable states, when the task is to decide the local Hamiltonian problem with precision
1/poly(n).

It should be noted that our result does not imply that all Hamiltonians which have efficiently
quantumly preparable guiding states also necessarily have guiding states that are classically
evaluatable. All this result says is that for any instance of the guidable local Hamiltonian
problem with the promise that there exist guiding states that can be efficiently prepared
by a quantum computer, there exists an (efficient) mapping to another instance of the
guidable local Hamiltonian problem with the promise that there exist guiding states that are
classically evaluatable and quantumly preparable. Whilst this reduction is efficient in the
complexity-theoretic sense, it might not be for practical purposes, as it would likely remove
all the physical structure present in the original Hamiltonian. Hence, the main implication of
our result is not that these kinds of reductions are of practical merit, but that at least from a
complexity-theoretic point of view the aforementioned classical-quantum hybrid approach of
guiding state selection through classical heuristics combined with quantum energy estimation
is at least as powerful as using quantum heuristics for state preparation instead.

We complement our quantum hardness results with classical containment results (of the
classically guidable local Hamiltonian problem), obtained through a deterministic dequantized
version of Lin and Tong’s ground state energy estimation algorithm [37]. Here CGaLH is just
as CGaLH∗ but without the promise of the guiding state being quantumly preparable.

▶ Theorem 6 (Classical containment of the classically guidable local Hamiltonian problem). Let
k = O(logn). When δ is constant, we have that CGaLH(k, δ, ζ) is in NP when ζ is constant
and is in NqP when ζ = 1/poly(n). Here NqP is just as NP but with the Turing machine
being allowed to run in quasi-polynomial time.

Theorem 6 follows directly by applying the spectral amplification technique, as described in
Section 3.2.

1.1.2 Quantum-classical probabilistically checkable proofs
We introduce the notion of a quantum-classical probabilistically checkable proof system in the
following way.

▶ Definition 7 (Quantum-Classical Probabilistically Checkable Proofs (QCPCP)). Let n ∈ N
be the input size and p, q : N → N, c, s : R≥0 → R≥0 with c − s > 0. A promise problem
A = (Ayes, Ano) has a (p(n), q(n), c, s)-QCPCP-verifier if there exists a quantum algorithm
V which acts on an input |x⟩ and a polynomial number of ancilla qubits, plus an additional
bit string y ∈ {0, 1}p(n) from which it is allowed to read at most q(n) bits (non-adaptively),
followed by a measurement of the first qubit, after which it accepts only if the outcome is |1⟩,
and satisfies:
Completeness. If x ∈ Ayes, then there is a y ∈ {0, 1}p(n) such that the verifier accepts with

probability at least c,
Soundness. If x ∈ Ano, then for all y ∈ {0, 1}p(n) the verifier accepts with probability at

most s.
A promise problem A = (Ayes, Ano) belongs to QCPCP[p, q, c, s] if it has a (p(n), q(n), c, s)-
QCPCP verifier. If p(n) = O(poly(n)), c = 2/3, and s = 1/3, we simply write QCPCP[q].

TQC 2024
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QMA
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Figure 2 Complexity characterization of CGaLH∗(k, δ, ζ) over parameter regime δ and ζ, for
k = O(1). Any classification indicates completeness for the respective complexity class, except for
NqP, for which we only know containment (indicated by the “ † ”). Here completeness for certain
parameter combinations means that for all functions of the indicated form, the problem is contained
in the complexity class, and for a subset of these functions the problem is also hard. The results for
QPCP[O(1)] and QMA follow directly from [4] and [35].

We remark that there are likely several ways to characterise a “quantum-classical PCP”,
with some being more or less natural than others. With that said, we believe that the above
characterisation is well-motivated for the following reasons:
1. It is a natural definition following the structure of a QPCP verifier, now with proofs

given as in the standard definition of QCMA. Moreover, one can show that the non-
adaptiveness is not restrictive when the number of queries is constant (this is proved in
the full version [48]).

2. QCPCP[O(1)] captures the power of BQP as well as NP (via the PCP theorem), which are
both believed to be strictly different complexity classes. Since techniques used to prove the
PCP theorem are difficult (or impossible) to translate to the quantum setting [5], studying
QCPCP[O(1)] might provide a fruitful direction with which to obtain the first non-trivial
lower bound on the complexity of QPCP[O(1)]. Indeed, the currently best-known lower
bound on the complexity of QPCP[O(1)] is only NP via the PCP theorem.

Given this definition for QCPCPs, our “quantum-classical” PCP conjecture is naturally
formulated as follows.

▶ Conjecture 8 (quantum-classical PCP conjecture). There exists a constant q ∈ N such that
QCMA = QCPCP[q].

If true, this conjecture would give a “QCMA lower bound” on the power of quantum PCP
systems, showing that a PCP theorem holds for (quantum) classes above NP, taking a step
towards proving the quantum PCP conjecture. If it is false, but the quantum PCP conjecture
is true, then this suggests that QPCP systems must take advantage of the “quantumness”
of their proofs to obtain a probabilistically checkable proof system. In particular, since
QCMA ⊆ QMA, this would imply the existence of a quantum PCP system for every problem
in QCMA, but not a quantum-classical one, even though the problem admits a classical proof
that can be efficiently verified when we are allowed to look at all of its bits.

Our main result regarding QCPCP[O(1)] is that we can provide a non-trivial upper bound
on the complexity of the class.
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▶ Theorem 9 (Upper bound on QCPCP, from Theorem 25). QCPCP[O(1)] ⊆ BQPNP[1].

Here BQPNP[1] is the class of all problems that can be solved by a BQP-verifier that makes a
single query to an NP-oracle. The key idea behind the proof is that a quantum reduction can
be used to transform a QCPCP verification circuit to a local Hamiltonian that is diagonal in
the computational basis, and thus can be solved with a single query to an NP oracle.

An implication of Theorem 9 is that it can be used to show that under the assumption
NP ⊆ BQP and the quantum-classical PCP conjecture being true, we have that PH ⊆ BQP.
This follows from the fact that NPBQP ⊆ QCMA and

NPNP ⊆ NPBQP ⊆ BQPNP ⊆ BQPBQP = BQP,

where the first and the third “⊆” are by assumption, the second is by the assumption of
Conjecture 8 to be true and the last equality follows from the fact that BQP is self-low. We
then have that PH ⊆ BQP follows by induction, just as is the case for BPP [50].6 Moreover,
this would also imply that under these assumptions QCMA ⊆ BQP, since

QCMA ⊆ QCPCP[O(1)] ⊆ BQPNP ⊆ BQPBQP ⊆ BQP.

Both of these implications would provide further evidence that it is unlikely that NP ⊆ BQP.
However, it is known that there exists an oracle relative to which NPBQPA

̸⊂ BQPNPA

[3].
Nevertheless, this does not necessarily mean the premise (i.e. the quantum-classical PCP
conjecture) is false: one can also easily construct an oracle separation between PCP and NP,
and both classes are now known to be equal [27]. However, this suggests that, if Conjecture 8
is true, showing so requires non-relativizing techniques, just as was the case for the PCP
theorem.

1.1.3 Three implications for the quantum PCP conjecture
We use our obtained results on QCPCP and CGaLH to obtain two new results and a new
conjecture with respect to the quantum PCP conjecture. First, we give evidence that it
is unlikely that there exists a classical reduction from a QPCP-system (see [4] or [16] for
a formal definition) to a local Hamiltonian problem with a constant promise gap having
the same properties as the known quantum reduction (see for example [16, 31]), unless
BQP ⊆ QCPCP[O(1)] ⊆ NP, something that is not expected to hold [2, 42].

▶ Theorem 10 (No-go for classical polynomial-time reductions). For any ϵ < 1/6 there cannot
exist a classical polynomial-time reduction from a QPCP[O(1)] verification circuit V to a
local Hamiltonian H such that, given a proof |ψ⟩,

|P[V accepts |ψ⟩] − (1 − ⟨ψ|H |ψ⟩)| ≤ ϵ,

unless QCPCP[O(1)] ⊆ NP (which would imply BQP ⊆ NP).

The proof is given in the full version [48]. This provides strong evidence that allowing
for reductions to be quantum is indeed necessary to show equivalence between the gap
amplification and proof verification formulations of the quantum PCP conjecture [5].

Second, our classical containment results of CGaLH with constant promise gap can
be viewed as no-go theorems for a gap amplification procedure for QPCP having certain
properties, as illustrated by the following result.

6 See also https://blog.computationalcomplexity.org/2005/12/pulling-out-quantumness.html.

TQC 2024
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▶ Theorem 11 (No-go results for Hamiltonian gap amplification). There cannot exist a
polynomial time classical gap amplification procedure for the local Hamiltonian problem
that preserves the fidelity between the ground space of the Hamiltonian and any classically
evaluatable state up to a

multiplicative constant, unless QCMA = NP, or
multiplicative inverse polynomial, unless QCMA ⊆ NqP.

The theorem follows directly from Theorem 6. This result is analogous to the result
of [7], which rules out a gap amplification procedure that preserves stoquasticity under the
assumption that MA ̸= NP (or taking a different view, proving the existence of such gap
amplifications would allow one to simultaneously prove that MA can be derandomized).
Moreover, we point out that many Hamiltonian gadget constructions do satisfy such fidelity-
preserving conditions, and indeed are precisely those that were used in [17] to improve the
hardness results for the guided local Hamiltonian problem. We obtain similar results for the
class MA by considering a variant of CGaLH that restricts the Hamiltonian to be stoquastic
(See Appendix C in the full version [48]).

Third, we can use our results to formulate a stronger version of the NLTS theorem (and
an alternative to the NLSS conjecture [28]), which we will call the No Low-energy Classically
evaluatable States conjecture. This conjecture can hopefully provide a new stepping stone
towards proving the quantum PCP conjecture.

▶ Conjecture 12 (NLCES conjecture). There exists a family of local Hamiltonians {Hn}n∈N
on n qubits, and a constant β > 0, such that for sufficiently large n for every classically
evaluatable state u ∈ C2n as per Definition 1, we have that ⟨u|Hn |u⟩ ≥ λ0(Hn) + β .

Just as is the case for the NLSS conjecture and the NLTS theorem, the NLCES conjecture
would, if proven to be true, not necessarily imply the quantum PCP conjecture. For example,
it might be that there exist states that can be efficiently described classically but for which
computing expectation values is hard (just as, for example, tensor network contraction is
#P-hard in the worst case [14,43]). Furthermore, as we have shown in this work, states with
high energy but also a large fidelity with the ground state suffice as witnesses to decision
problems on Hamiltonian energies, and these would not be excluded by a proof of the NLCES
conjecture above. To make this more concrete, in the full version [48] we also formulate an
even stronger version of the NLCES conjecture, which states that there must be a family of
Hamiltonians for which no classically evaluatable state has good fidelity with the low energy
spectrum.

2 Preliminaries

2.1 Notation
We write λi(A) to denote the ith eigenvalue of a Hermitian matrix A, ordered in non-
decreasing order, with λ0(A) denoting the smallest eigenvalue (ground state energy). When
we write ∥·∥ we refer to the operator norm when its input is a matrix and Euclidean norm
for a vector.

2.2 Complexity theory
All complexity classes will be defined with respect to promise problems. To this end, we take a
(promise) problem A = (Ayes, Ano) to consist of two non-intersecting sets Ayes, Ano ⊆ {0, 1}∗

(the yes and no instances, respectively). We have that Ainv = {0, 1}∗ \ Ayes ∪ Ano is the
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set of all invalid instances, and we do not care how a verifier behaves on problem instances
x ∈ Ainv (i.e. it can accept or reject arbitrarily). We assume that the reader is familiar with
the complexity classes used in this work, and else suggest reading the formal definitions in [48]
or the complexity theory zoo (https://complexityzoo.net/Complexity_Zoo). However,
since it is crucial to our construction, we will explicitly state the class UQCMA, which is just
as QCMA but with a unique accepting witness in the Yes-case.

▶ Definition 13 (UQCMA). A promise problem A = (Ayes, Ano) is in UQCMA[c,s] if and only
if there exists a polynomial-time uniform family of quantum circuits {Vn} and a polynomial p,
where Vn takes as input a string x ∈ {0, 1}∗ with |x| = n, and a p(n)-qubit witness quantum
state |ψ⟩ and decides on acceptance or rejection of x such that

if x ∈ Ayes then there exists a unique y∗ ∈ {0, 1}p(n) such that Vn accepts (x, |y∗⟩) with
probability ≥ c, and for all y ̸= y∗ we have that Vn accepts (x, |y⟩) with probability ≤ s;
if x ∈ Ano then for every witness state y ∈ {0, 1}p(n), Vn accepts (x, |y⟩) with probability
≤ s,

where c− s = 1/poly(n). If c = 2/3 and s = 1/3, we abbreviate to UQCMA.

In [6] it was shown that there exists a randomized reduction from QCMA to UQCMA,
analogous to the Valiant-Vazirani theorem for NP [47].

Oracle access. For a (promise) class C with complete (promise) problem A, the class
PC = PA is the class of all (promise) problems that can be decided by a polynomial-time
verifier circuit V with the ability to query an oracle for A. If V makes invalid queries
(i.e. x ∈ Ainv), the oracle may respond arbitrarily. However, since V is deterministic, it is
required to output the same final answer regardless of how such invalid queries are answered
[29,30]. Hence, the answer to any query outside of the promise set should not influence the
final output bit. For a function f , we define PC[f ] to be just as PC but with the additional
restriction that V may ask at most f(n) queries on an input of length n. One defines NPC

or NPC[f ] in the same way but replacing the polynomial-time deterministic verifier V by a
nondeterministic polynomial-time verifier V ′, taking an additional input y ∈ {0, 1}p(n) for
some polynomial p(n).

3 (Partial) proofs of a selection of results

In this section we will give some of the key lemmas and theorems which are behind the
results presented in Section 1. The full proofs as well as in-depth discussions can be found in
the full version [48].

3.1 QCMA-completeness of guidable local Hamiltonian problems
We prove a basic version of the reduction that shows that Guidable Local Hamiltonian
problems are QCMA-hard in the inverse polynomial precision regime. Our construction is
based on a combination of the ideas needed to show BQP-hardness for the Guided Local
Hamiltonian problem [17,18,28] and the small penalty clock construction of [23].

The first obstruction one encounters in adopting the ideas from the BQP-hardness proofs
of the Guided Local Hamiltonian problem to the guidable setting is the fact that QCMA
verifiers, unlike BQP, have a proof register. In QCMA the promises of completeness and
soundness are always with respect to computational basis state witnesses. Hence, these
might no longer hold when any quantum state can be considered as witness: for example,
in the no-case there might be highly entangled states which are accepted with probability
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≥ 2/3. When considering a circuit problem, the verifier can easily work around this by simply
measuring the witness and then proceeding to verify with the resulting computational basis
state. However, there is also another trick, which retains the unitarity of the verification
circuit – and which we will denote as the “CNOT-trick” from now on – to force the witness
to be classical, first used in proving QCMA-completeness of the Low complexity low energy
states problem in [49].

▶ Lemma 14 (The “CNOT-trick”). Let p(n) : N → R>0, q(n) : N → R>0 be polynomials. Let
Un be a quantum polynomial-time verifier circuit that acts on an n-qubit input register A, a
p(n)-qubit witness register B and a q(n)-qubit workspace register C, initialized to |0⟩⊗q(n).
Denote Π0 for the projection on the first qubit being zero. Let Q be the Marriott-Watrous
operator of the circuit, defined as

Q =
(

⟨x| ⊗ Iw ⊗ ⟨0|⊗q(n)
)
U†

nΠ0Un

(
|x⟩ ⊗ Iw ⊗ |0⟩⊗q(n)

)
. (1)

Consider yet another additional p(n)-qubit workspace D initialized to |0⟩⊗p(n), on which
Un does not act. Then by prepending Un with p(n) CNOT-operations, each of which is
controlled by a single qubit in register B and targeting the corresponding qubit in register D,
the corresponding Marriott-Watrous operator becomes diagonal in the computational basis.

The corresponding lemma and proof can be found in the full version [48]. The next obstruction
one faces is that in the QCMA setting there might be multiple proofs which all have
exponentially close, or even identical, acceptance probabilities. The analysis of the BQP-
hardness proof fails to translate directly to this setting, and another technique is needed.
For this, we resort to (i) using the fact that QCMA is equal to UQCMA under randomized
reductions and (ii) use a small-penalty clock construction of [23]. The key idea is to use a
Feynman-Kiteav circuit-to-Hamiltonian mapping modified with a tunable parameter ϵ, which
maps a quantum verification circuit Un, consisting of T gates from a universal gate set of
at most 2-local gates, taking input x and a quantum proof |ψ⟩ ∈

(
C2)⊗poly(n) to a k-local

Hamiltonian of the form

Hx
F K = Hin +Hclock +Hprop + ϵHout. (2)

The value of k depends on the used construction. Intuitively, the first three terms check
that the Hamiltonian is faithful to the computation and the last term shifts the energy level
depending on the acceptance probability of the circuit. Just as in [23], we will use Kempe and
Regev’s 3-local construction. A precise description of the individual terms in (2) can be found
in [34], and will not be relevant for our work, except for the fact that Hx

FK has a polynomially
bounded operator norm. The ground state of the first three terms H0 = Hin +Hclock +Hprop
is given by the so-called history state, which is given in [34] by

|η(ψ)⟩ = 1√
T + 1

T∑
t=0

Ut . . . U1 |ψ⟩ |0⟩
∣∣t̂〉 , (3)

where |ψ⟩ is the quantum proof and t̂ the unary representation of the time step of the
computation given by

t̂ = | 1 . . . 1︸ ︷︷ ︸
t

0 . . . 0︸ ︷︷ ︸
T −t

⟩.
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From the construction in [34], it is easily verified that if Un accepts (x, |ψ⟩) with probability
p then we have that the corresponding history state has energy

⟨η(ψ)|Hx
F K |η(ψ)⟩ = ϵ

1 − p

T + 1 . (4)

Though the core idea behind the small-penalty clock construction is identical to the one used
in the BQP-hardness proof – rescaling the weight of the Hout term as compared to the other
terms in a Feynman-Kiteav circuit-to-Hamiltonian mapping – the analysis differs: using tools
from the Schrieffer-Wolff transformation one can find precise bounds on intervals in which
the energies in the low-energy sector must lie, gaining fine control over the relation between
the acceptance probabilities of the circuit and the low-energy sector of the Hamiltonian. The
main lemma we use from [23] is adopted from the proof of Lemma 26 in their work.

▶ Lemma 15 (Small-penalty clock construction, adopted from Lemma 26 in [23]). Let Un be a
quantum verification circuit for inputs x, |x| = n, where Un consists of T = poly(n) gates
from some universal gate-set using at most 2-local gates. Denote P (ψ) for the probability
that Un accepts (x, |ψ⟩), and let Hx

FK be the corresponding 3-local Hamiltonian from the
circuit-to-Hamiltonian mapping in [34] with a ϵ-factor in front of Hout, as in Eq. (2). Then
for all ϵ ≤ c/T 3 for some constant c > 0, we have that low-energy subspace Sϵ of H, i.e.

Sϵ = span{|Φ⟩ : ⟨Φ|H |Φ⟩ ≤ ϵ}

has that its eigenvalues λi satisfy

λi ∈
[
ϵ
1 − P (ψi)
T + 1 − O(T 3ϵ2), ϵ1 − P (ψi)

T + 1 + O(T 3ϵ2)
]
, (5)

where {|ψi⟩} are the eigenstates of the Mariott-Watrous operator of the circuit Un given by
Eq. (1).

Having a QCMA-verifier with the CNOT-trick of Lemma 14 ensures that in Lemma 15 all
|ψi⟩ are computational basis states, as the CNOT-trick diagonalizes the Mariott-Watrous
operator. The small-penalty clock construction, in combination with the CNOT-trick and
some properties of the class QCMA, allows us to show QCMA-hardness of guidable local
Hamiltonian problems in a wide range of parameter settings.

▶ Theorem 16. CGaLH(k, δ, ζ) is QCMA-hard under randomized reductions for k ≥ 2,
ζ ∈ (1/poly(n), 1 − 1/poly(n)) and δ = 1/poly(n).

Proof. We will only state a “basic version” reduction, which uses basis states as guiding
states which trivially satisfy the conditions of Definition 1, for which we prove completeness
and soundness. One can improve its parameters in terms of the achievable fidelity and
locality domains, which is done in the full manuscript [48].

The basic reduction. Let ⟨Un, p1, p2⟩ be a QCMA promise problem. By the result of [6],
there exists randomized reduction to a UQCMA (which is QCMA but with a unique accepting
witness in the Yes-case) promise problem ⟨Ûn, p̂1, p̂2⟩, p̂1 − p̂2 ≥ 1/q(n) for some polynomial
q, which uses witnesses y ∈ {0, 1}p(n) for some polynomial p(n) and uses at most T = poly(n)
gates. We will now apply the following modifications to the UQCMA instance:
1. First, we force the witness to be classical by adding another register to which we “copy”

all bits of y (through CNOT operations), before running the actual verification protocol –
i.e. we use the CNOT trick of Lemma 14, which diagonalizes the corresponding Marriot-
Watrous operator in the computational basis.

TQC 2024
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2. We apply error reduction to the circuit. This is done by applying the so-called “Marriot
and Watrous trick” for error reduction, described in [39], which allows one to repeat the
verification circuit several times whilst re-using the same witness. It is shown in [39],
Theorem 3.3, that for any quantum circuit Vn using T = poly(n) 2-qubit gates which
decides on acceptance or rejectance of an input x, |x| = n, using a p(n)-qubit witness
|ψ⟩ for some polynomial p, satisfying completeness and soundness probabilities c, s such
that c− s ≥ 1/q(n) there is another circuit Ṽn that again uses a p(n)-qubit witness |ψ⟩
but has completeness and soundness 1 − 2−r and 2−r, respectively, at the cost of using
T̃ = O(q2rT ) gates.

Let the resulting protocol be denoted by ⟨Ũn, c̃, s̃⟩, where Ûn has an input register A, a
witness register W and ancilla register B, uses T̃ = O(q2rT ) gates and has completeness
and soundness C = 1 − 2−r and ŝ = 2−r. We denote y∗ for the (unique) witness with
acceptance probability ≥ C in the yes-case. We keep r as a parameter to be tuned later in
our construction. We will also write P (y) := Pr[Û accepts (y)]. Now consider the 4-local
Hamiltonian

Hx = Hyes ⊗ |0⟩ ⟨0|D +Hyes ⊗ |1⟩ ⟨1|D , (6)

where Hyes = Hx
FK is the Hamiltonian given by Eq. (2) using the circuit Ûn and parameter ϵ

and Hno is given by

Hno =
R−1∑
i=0

|1⟩⟨1|i + bI, (7)

where R is the total size of the registers A, W , B and the clock register C, and b > 0 is yet
another tunable parameter. Note that Hno has a unique ground state with energy b given by
the all zeros state, and the spectrum after that increases in steps of 1 (and so it in particular
has a spectral gap of 1). We also have that ∥Hno∥ = R+ b = poly(n). As a guiding state in
the yes-case we will use the following basis state

|uyes⟩ = |x⟩A |y∗⟩W |0 . . . 0⟩B |0⟩C |0⟩D , (8)

which satisfies (⟨η(y∗)| ⟨0|D) |uyes⟩ = 1/
√

(T + 1) = O(1/poly(N)), with |η(y∗)⟩ being the
history state of witness y∗ for Hamiltonian Hyes. In the no-case, we will show that the state

|uno⟩ = |0 . . . 0⟩AW BC |1⟩D , (9)

will be in fact the ground state. We will now show that setting b := O(1/T̃ 7) and ϵ := O(1/T̃ 5),
our reduction achieves the desired result.

Completeness. Let us first analyse the yes-case. By Lemma 15, we have that the eigenvalue
λ(y) corresponding to the witness y∗ is upper bounded by

λ(y∗) ≤ ϵ
2−r

T̃ + 1
+ O(T̃ 3ϵ2).

On the other hand, we have that for any y ̸= y∗

λ(y) ≥ ϵ
1 − 2−r

T̃ + 1
− O(T̃ 3ϵ2) = Ω

(
1
T̃ 6

)
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for our choice of ϵ and r ≥ 1. Hence, for our choice of ϵ we must have that the ground state
|ψ⟩ of Hyes is unique and has a spectral gap that can be bounded as

γ(Hyes) ≥ ϵ
1 − 2−r+1

T̃ + 1
− O

(
T̃ 3ϵ2

)
= Ω

(
1
T̃ 6

)
, (10)

for some r ≥ Ω(1) (we will pick r to be much larger later). Let us consider the fidelity of the
history state |η(y∗)⟩ with the actual ground state. First, we have that the energy of |η(y∗)⟩
is upper bounded by

⟨η(y∗)|Hyes |η(y∗)⟩ ≤ ϵ
2−r

T̃ + 1
= O

(
2−r

T̃ 6

)
,

which follows directly from Eq. 4 and the fact that P (y∗) ≥ 1 − 2−r. We can write |η(y∗)⟩
in the eigenbasis of Hyes as |η(y∗)⟩ = α |ψ⟩ +

√
1 − α2|ψ⊥⟩, for some real number α ∈ [0, 1],

where |ψ⟩ is the actual ground state of Hyes and |ψ⊥⟩ another state orthogonal to |ψ⟩. We
have that the energy of |η(y∗)⟩ is upper bounded by

⟨η(y∗)|Hyes |η(y∗)⟩ ≤ ϵ
2−r

T̃ + 1
= O

(
2−r

T̃ 6

)
.

On the other hand, the energy of |η(y∗)⟩ is lower bounded by

⟨η(y∗)|Hyes |η(y∗)⟩ = α2 ⟨ψ|Hyes |ψ⟩ + (1 − α2)⟨ψ⊥|Hyes|ψ⊥⟩ ≥ Ω
(

1 − α2

T̃ 6

)
,

using the fact that Hyes is PSD. Combining the upper and lower bounds, we find

α2 = | ⟨η(y∗)|ψ⟩ |2 ≥ 1 − O
(
2−r
)
, (11)

which can be made ≥ 1 − 2−cT̃ for some r = cT̃ + O(1). Hence, we have that the fidelity of
|uyes⟩ with the unique ground state of H can be lower bounded as

|⟨uyes|ψ⟩|2 ≥ 1 −
(√

1 − | ⟨uyes| (|η(y∗)⟩ |0⟩)|2 +
√

1 − |(⟨η(y∗)| ⟨0|) |ψ⟩ |2
)2

≥ 1 −
(√

1 − 1
T̃ + 1

+ 2−cT̃ /2
)2

≥ Ω
(

1
T̃

)
,

as desired.

Soundness. We have that all witnesses y get accepted by Û with at most an exponentially
small probability, and hence have that Hyes ⪰ Ω(1/T̃ 6). By our choice b we have therefore
ensured that the ground state in the no-case must be the state given by Eq. (9), which has
energy b = Ω(1/T̃ 7). Hence, the promise gap between yes and no cases is δ = Ω(1/T̃ 7) =
Ω(1/q2T 8) = 1/poly(n).

In the full version [48] the rest of the proof can be found, which uses similar tricks as
in [17,18] to improve the basic construction in terms of the fidelity range and locality. ◀

Now that we have established QCMA-completeness for CGaLH∗, we get QCMA-completeness
for QGaLH for free for the same range of parameter settings, as the latter is a generalization
of the former (containing CGaLH∗ as a special case), and containment holds by the same
argument as used in the proof of Theorem 2 in [18]. However, with just a little bit more
work we can see that QCMA-hardness for QGaLH actually persists even when the overlap is
exponentially close to one. A proof of this is given in the full version [48].
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3.2 Spectral amplification
In this subsection we will discuss spectral amplification, which is the key technique behind
showing the containment results of Theorem 6. Let H =

∑m−1
i=0 Hi be a Hamiltonian on n

qubits which is a sum of k-local terms Hi, which satisfies ∥H∥ ≤ 1. Since H is Hermitian,
we can write H as

H =
2n−1∑
i=0

λi |ψi⟩ ⟨ψi| ,

where λi ∈ [−1, 1] (by assumption on the operator norm) denotes the i’th eigenvalue of H
with corresponding eigenvector |ψi⟩. Consider a polynomial P ∈ R[x] of degree d, and write

P (x) = a0 + a1x+ · · · + adx
d.

The polynomial spectral amplification of H for P is then defined as

P (H) = a0I + a1H + · · · + adH
d

= a0I + a1

2n−1∑
i=0

λi |ψi⟩ ⟨ψi| + · · · + ad

2n−1∑
i=0

λd
i |ψi⟩ ⟨ψi|

=
2n−1∑
i=0

P (λi) |ψi⟩ ⟨ψi| .

Now for α ∈ [−1, 1], denote

Πα =
∑

{i:λi≤α}

|ψi⟩ ⟨ψi| (12)

for the projection on all eigenstates of H which have eigenvalues at most α, which we
will call a low-energy projector of H. Note that for any α ≥ λ0, we must have that
ΠgsΠα = ΠαΠgs = Πgs. We can utilize such a projector to solve CGaLH(k, δ, ζ), simply by
computing ∥Πα |u⟩∥ for α = a given a classically evaluatable state |u⟩. To see why this works,
note that in the yes-case, for the witness desc(u) we have that ∥Πa |u⟩∥ ≥ ∥Πgs |u⟩∥ ≥

√
ζ

and in the no-case we have that ∥Πa |v⟩∥ = 0 for all states, which means that the two cases
are separated by

√
ζ. However, it is unlikely that an efficient description exists of Πa, and

even if it did, it would not be k-local and therefore ∥Πa |u⟩∥ would not even be necessarily
efficiently computable.

The idea is now to approximate this low-energy projector Πα by a polynomial in H. To
see this, note that Πα can be written exactly as

Πα = 1
2 (1 − sgn(H − αI)) ,

where sgn(x) is the sign function, which for our purposes is defined on R :→ R as

sgn(x) =
{

1 if x > 0,
−1 if x ≤ 0.

From [32] we can then use the polynomial approximation of the sign function, which can
subsequently be shifted to obtain the desired approximate low-energy projector Π̃a.
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▶ Lemma 17 (Polynomial approximation to the sign function, from [32]). For all δ′ >

0, ϵ′ ∈ (0, 1/2) there exists an efficiently computable odd polynomial P ∈ R[x] of degree

d = O
(

log(1/ϵ′)
δ′

)
, such that

for all x ∈ [−2, 2] : |P (x)| ≤ 1, and
for all x ∈ [−2, 2] \ (−δ′, δ′) : |P (x) − sgn(x)| ≤ ϵ′.

Since Lemma 17 holds on the entire interval [−2, 2], choosing any α ∈ [−1, 1] and scaling
the sgn(x) function with the factor 1/2 will ensure that the error, as in the lemma, will
be ≤ ϵ/2. Let qα(x) : R → [0, 1] defined as qα(x) = 1

2 (1 − sgn(x − α)) be this function,
with polynomial approximation Qα ∈ R[x] of degree d. Note that Qα can be written as a
function of P as Qα(x) = 1

2 (1 −P (x−α)). We will write Π̃α = Qα(H) for the corresponding
polynomial approximation of the approximate low-energy ground state “projector”. Note
that Π̃α is Hermitian (since H is Hermitian), but that Π̃α is no longer necessarily a projector
and therefore Π̃2

α ̸= Π̃α. If we now replace Πα in ∥Πα |u⟩∥ by Π̃α, we get
∥∥Π̃α |u⟩

∥∥ =√
⟨u| Π̃†

αΠ̃α |u⟩ =
√

⟨u| Π̃2
α |u⟩ =

√
⟨u| (Qα(H))2 |u⟩, which means that we have to evaluate

up to degree 2d powers of H. The next lemma (proof in full version [48]) will give an upper
bound on the number of expectation values that have to be computed when evaluating a
polynomial of H of degree d.

▶ Lemma 18. Given access to a classically evaluatable state |u⟩, a Hamiltonian H =∑m−1
i=0 Hi, where each Hi acts on at most k qubits non-trivially, and a polynomial P [x] of

degree d, there exists a classical algorithm that computes ⟨u|P (H) |u⟩ in O(md) computations
of ⟨u|Oi |u⟩, where the observables {Oi} are at most kd-local.

All that remains to show is that for constant promise gap δ, using a good enough
approximation Π̃α with a suitable choice of α, will ensure that we can still distinguish the
two cases in the CGaLH(k, δ, ζ) problem in a polynomial (resp. quasi-polynomial number of
computations in m when ζ = Ω(1) (resp. ζ = 1/poly(n)).

▶ Theorem 19. Let H =
∑m−1

i=0 Hi be some Hamiltonian, and desc(u) be a description of a
classically evaluatable state u ∈ C2n . Let a, b ∈ [−1, 1] such that b− a ≥ δ, where δ > 0 and
let ζ ∈ (0, 1]. Consider the following two cases of H, with the promise that either one holds:

(i) H has an eigenvalue ≤ a, and ∥Πgs |u⟩∥2 ≥ ζ holds, or
(ii) all eigenvalues of H are ≥ b.

Then there exists a classical algorithm that distinguishes between cases (i) and (ii) using

O
(
m

c
(

log
(

1/
√

ζ
)

)/δ
))

computations of local expectation values, for some constant c > 0.

Proof. Let Π̃α := Qα(H), where Q is a polynomial of degree d, be the approximate low-
energy projector that approximates Πα = 1

2 (1 − sgn(H − (αI))). We set α := a+b
2 , δ′ := δ/2

and ϵ′ = 1/10. We propose the following algorithm:
1. Compute

∥∥Π̃a |u⟩
∥∥ using a polynomial of degree 2d where d = O(log(1/ϵ′))/δ′, for

ϵ′ := 1
10

√
ζ and δ′ = δ/2.

2. If
∥∥Π̃α |u⟩

∥∥ ≥ 9
10

√
ζ output (i), and otherwise output (ii).

Clearly, by Lemma 18, we have that this can be done in at most O
(
m

c
(

log
(

1/
√

ζ
)

)/δ
))

computations of expectation values of local observables, for some constant c. Let us now
prove the correctness of the algorithm. Note that we can write Π̃α as
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Π̃α =
2n−1∑
i=0

Q(λi) |ψi⟩ ⟨ψi| ,

where we have that
1 −

√
ζ/2 ≤ Q(λi) ≤ 1 if λi ≤ a,

0 ≤ Q(λi) ≤ ζ/2 if λi ≥ b,

0 ≤ Q(λi) ≤ 1 else,

by Lemma 17. Let us analyse both cases (i) and (ii) separately.
(i) H has an eigenvalue ≤ a, and ∥Πgs |u⟩∥2 ≥ ζ holds.∥∥Π̃α |u⟩

∥∥ ≥
∥∥Π̃αΠgs |u⟩

∥∥
=
∥∥ΠαΠgs |u⟩ − (Πα − Π̃α)Πgs |u⟩

∥∥
=

∥∥∥∥∥Πgs |u⟩ −

( ∑
i:λi≤α

(1 −Q(λi)) |ψi⟩ ⟨ψi| −
∑

i:λi>α

Q(λi) |ψi⟩ ⟨ψi|

)
Πgs |u⟩

∥∥∥∥∥
≥

∥∥∥∥∥Πgs |u⟩ −

( ∑
i:λi≤α

1
10 |ψi⟩ ⟨ψi|

)
Πgs |u⟩

∥∥∥∥∥
=
∥∥∥Πgs |u⟩ − 1

10ΠαΠgs |u⟩
∥∥∥

= (1 − 1
10)∥Πgs |u⟩∥

≥ 9
10
√
ζ.

(ii) All eigenvalues of H are ≥ b. We must have that
∥∥Π̃α |u⟩

∥∥ ≤ 1
2
√
ζ, since λi ≥ b for all

i ∈ {0, . . . , 2n − 1}.
Hence, we have that the promise gap between both cases is lower bounded by 9

10
√
ζ − 1

2
√
ζ =

2
5
√
ζ, which is 1/poly(n) when ζ ≥ 1/poly(n). ◀

▶ Remark 20. It should be straightforward to adopt the same derivation as above to a more
general setting by considering sparse matrices, a promise with respect to the fidelity with
the low-energy subspace (i.e. all states with energy ≤ λ0 + γ for some small γ), as well as
ϵ > 0 for ϵ-classically evaluatable states.

3.3 Upper bound on QCPCP with constant proof queries
Here we show that QCPCP with a constant number of proof queries is contained in BQPNP[1],
i.e. in BQP with only a single query to an NP-oracle. The full proof is rather long, but the
idea is simple: just as is the case for QPCP, a quantum reduction can be used to transform a
QCPCP system into a local Hamiltonian problem. However, since the proof is now classical,
one can directly learn a diagonal (i.e. classical) Hamiltonian that captures the input/output
behaviour of the QCPCP-circuit on basis state inputs. The main technical work required is
to derive sufficient parameters in the reduction, thereby ensuring that the reduction succeeds
with the desired success probability.

We will use the following two lemmas, whose proofs can be bound in the full version [48].
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▶ Lemma 21. Let H =
∑

i∈[m] wiHi be a k-local Hamiltonian consisting of weights wi ∈ [0, 1]
such that

∑
i∈[m] wi = W , and k-local terms Hi for which ∥Hi∥ ≤ 1 for all i ∈ [m].

Let Ω≥γ = {i|wi ≥ γ} and Ω<γ = [m] \ Ω≥γ, for some parameter γ ∈ [0, 1]. Suppose
H̃ =

∑
i∈Ω≥γ

w̃iH̃i is another Hamiltonian such that, for all i ∈ Ω≥γ , we have |w̃i − wi| ≤ ϵ0

and
∥∥Hi − H̃i

∥∥ ≤ ϵ1. Then∥∥H − H̃
∥∥ ≤ m(γ + ϵ0) + (W +mϵ0)ϵ1

▶ Lemma 22 (Upper bound on the non-uniform double dixie cup problem). Given samples
from the set N = [n], according to a distribution P, consider the subset Mγ ⊆ N such that
Mγ = {i ∈ N : P(i) ≥ γ}, for some γ ∈ [0, 1]. Let TP

m(M) be the random variable indicating
the first time that all elements in Mγ have been sampled at least m times when sampling from
N over the distribution P. Write Tm(S) when the distribution over some set S is uniform.
Then we have that

E[TP
m(Mγ)] ≤ E[Tm(⌈1/γ⌉)],

where E[Tm(⌈1/γ⌉)] = ⌈1/γ⌉ ln⌈1/γ⌉ + (m− 1)⌈1/γ⌉ ln ln⌈1/γ⌉ + O (⌈1/γ⌉) .

Let us now consider the quantum algorithm used to learn the diagonal Hamiltonian whose
spectrum encodes the acceptance probabilities of the QCPCP-verifier. Let Vx be the QCPCP-
verifier circuit with the input x hardcoded into it. The idea of the algorithm is that it runs Vx

many times, simultaneously gathering statistics on which indices are most likely to be queried
by Vx (which is independent of the proof when the verifier is non-adaptive) as well as the
probability of acceptance given that the proof locally looks like a string z ∈ {0, 1}q. For every
run, indexed by t ∈ [T ] for some T ∈ N, this generates a tuple Ot,z = ((it,z

1 , . . . , it,z
k ), ot,z), in

which the proof y was supposed to be queried at indices i1, . . . , iq, and in which those bits
were assigned the values yi1 = z1, . . . , yiq = zq, and where o is the accept/reject measurement
outcome. It repeats this process T times for every z. The resulting algorithm can be specified
as follows:
1. For z ∈ {0, 1}q:

a. Run Vx for a total of T times to obtain samples {Ot,z}t∈[T ].
b. For all observed (it,z

1 , . . . , it,z
q ), set

λ̃x,(i1,...,iq)(z) := # times ot,z = 1 and i1, . . . , iq observed
# times i1, . . . , iq observed .

2. Set

P̃x(i1, . . . , iq) =
∑

z∈{0,1}q

# times (it,z
1 , . . . , it,z

q ) observed
2qT

,

3. For any estimated P̃x(i1, . . . , iq) ≤ γ remove both P̃x(i1, . . . , iq) and associated
λ̃x,(i1,...,iq)(z) for all z, and output all of the remaining ones.

The resulting diagonal Hamiltonian will then be constructed as

H̃x =
∑

(i1,...,iq)∈Ω≥γ

P̃x(i1, . . . , iq)H̃x,(i1,...,iq),

where

H̃x,(i1,...,iq) =
∑

z∈{0,1}q

(1 − λ̃x,(i1,...,iq))(z)|z⟩⟨z|i1,...,iq
.
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By Lemma 21 we can upper bound the difference between the Hamiltonian and the learned
Hamiltonian. The next lemma shows that all relevant parameters can be learned up to
inverse polynomial precision in polynomial time.

▶ Lemma 23. Let q ∈ N be some constant and x an input with |x| = n. Consider a QCPCP[q]
protocol with verification circuit Vx (which is V but with the input x hardcoded into the
circuit), and proof y ∈ {0, 1}p(n), and let

Px(i1, . . . , iq) = P [Vx queries the proof at indices (i1, . . . , iq)]

and

λx,(i1,...,iq)(z) = P
[
Vx accepts given proof bits i1, . . . , iq are queried

and are given by yi1 = z1, . . . , yiq
= zq

]
.

Let Ω = {(i1, . . . , iq) : ij ∈ [p(n)],∀j ∈ [q]}, Ω≥γ = {(i1, . . . , iq) ∈ Ω|Px(i1, . . . , iq) ≥ γ}
and Ω<γ = Ω \ Ω≥γ , for some parameter γ ∈ [0, 1]. Then there exists a quantum algorithm
that, for all (i1, . . . , iq) ∈ Ω≥γ and all z ∈ {0, 1}q, provides estimates P̃x(i1, . . . , iq) and
λ̃x,(i1,...,iq)(z) such that∣∣P̃x(i1, . . . , iq) − Px(i1, . . . , iq)

∣∣ ≤ ϵ0,

and∣∣λ̃x,(i1,...,iq)(z) − λx,(i1,...,iq)(z)
∣∣ ≤ ϵ1,

with probability 1 − δ, and runs in time poly(n, 1/γ, 1/ϵ0, 1/ϵ1, 1/δ).

Proof. Let us now show that there exists a T not too large such that the criteria of the
theorem are satisfied. Since the Px(i1, . . . , iq) form a discrete distribution over the set Ω,
where |Ω| =

(
n
q

)
≤
(

en
q

)q

which for constant q is polynomial in n, we know by a standard
result in learning theory (see for example [19]) that a total of

Θ
(

|Ω| + log(1/δ0)
ϵ20

)
samples of Ot,z (the “z”-value is in fact irrelevant here) suffices to get, with probability at
least 1 − δ0, estimates P̃x(i1, . . . , iq) which satisfy∣∣P̃x(i1, . . . , iq) − Px(i1, . . . , iq)

∣∣ ≤ ϵ0.

To learn estimates λ̃x,(i1,...,iq)(z) for a single index configuration (i1, . . . , iq) and proof config-
uration z, Hoeffding’s inequality tells us that we only need

O
(

log (1/δ1)
ϵ21

)
samples of Ot,z to have that

∣∣λ̃x,(i1,...,iq)(z) − λx,(i1,...,iq)(z)
∣∣ ≤ ϵ1, with probability 1 − δ1.

This means that any index configuration (i1, . . . , iq) such that Px(i1, . . . , iq) ≥ γ needs to
appear O

(
log(1/δ1)

ϵ2
1

)
many times, to get a good estimate of λ̃x,(i1,...,iq)(z). Lemma 22 shows

that the expected number of samples needed such that this condition is met is upper bounded
by ⌈

1
γ

⌉
ln
⌈

1
γ

⌉
+
(

O
(

log (1/δ1)
ϵ21

)
− 1
)⌈

1
γ

⌉
ln ln

⌈
1
γ

⌉
+ O

(⌈
1
γ

⌉)
,



J. Weggemans, M. Folkertsma, and C. Cade 10:21

which by Markov’s inequality means that

1
δλ

(⌈
1
γ

⌉
ln
⌈

1
γ

⌉
+
(

O
(

log (1/δ1)
ϵ21

)
− 1
)⌈

1
γ

⌉
ln ln

⌈
1
γ

⌉
+ O

(⌈
1
γ

⌉))
samples of Ot,z suffice to turn this into an algorithm that achieves success probability ≥ 1−δλ.
To ensure that our entire algorithm succeeds with probability 1 − δ, we require that

(1 − δλ)2q

(1 − δ0)(1 − δ1)2q⌈ 1
γ ⌉ ≥ 1 − δ,

which can be achieved by setting δλ = δ/(2q+2), δ0 = δ/4 and δ1 = δ/(⌈1/γ⌉2q+2). Both
the statistics for probabilities over the set of indices, as well as the output probabilities, are
gathered at the same time. This means that the requirements on the number of samples
needed for both estimations can be met at the same time, therefore the total number of
samples T that we must take satisfies

T ≥ max{Θ

(⌈
1
γ

⌉
+ log

(
1
δ

)
ϵ2

0

)
,

22(q+1)

δ

(⌈ 1
γ

⌉
ln
⌈ 1
γ

⌉
+ O

(
q log

(⌈
1
γ

⌉
/δ
)

ϵ2
1

)⌈ 1
γ

⌉
ln ln

⌈ 1
γ

⌉)
},

which yields a total runtime of O(poly(n, ⌈1/γ⌉, 1/δ, 1/ϵ1, 1/ϵ0)) when q = O(1). ◀

Lemma 23 can then be combined with Lemma 21 to show that a diagonal Hamiltonian whose
spectrum encodes the acceptance probabilities of Vx can be learned in polynomial time with
high probability.

▶ Lemma 24. Let q ∈ N be some constant, then there exists a quantum algorithm that
can reduce any problem solvable by a QCPCP[q] protocol, without access to the proof y, to a
diagonal Hamiltonian H̃x with the following properties:

x ∈ Pyes ⇒ ∃y ∈ {0, 1}p(n) : ⟨y| H̃x |y⟩ ≤ 1
3 + ϵ

x ∈ Pno ⇒ ∀y ∈ {0, 1}p(n) : ⟨y| H̃x |y⟩ ≥ 2
3 − ϵ .

This reduction succeeds with probability 1 − δ and runs in time poly(n, 1/ϵ, 1/δ).

Finally, from Lemma 24 the main theorem follows, as a BQP verifier can perform the quantum
reduction and, conditioned on succeeding, solve the resulting diagonal local Hamiltonian
problem making only a single query to the NP-oracle.

▶ Theorem 25. For all constant q ∈ N, we have that QCPCP[q] ⊆ BQPNP[1].

The full proofs of Theorem 25 and Lemma 24 are given in the full version [48].
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