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Abstract
The polynomial and the adversary methods are the two main tools for proving lower bounds on
query complexity of quantum algorithms. Both methods have found a large number of applications,
some problems more suitable for one method, some for the other.

It is known though that the adversary method, in its general negative-weighted version, is tight
for bounded-error quantum algorithms, whereas the polynomial method is not. By the tightness of
the former, for any polynomial lower bound, there ought to exist a corresponding adversary lower
bound. However, direct reduction was not known.

In this paper, we give a simple and direct reduction from the polynomial method (in the form of
a dual polynomial) to the adversary method. This shows that any lower bound in the form of a dual
polynomial is actually an adversary lower bound of a specific form.
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1 Introduction

Proving lower bounds on quantum query complexity is a task that has attained significant
attention. The reason is that it is essentially the only known way to prove limitations
on the power of quantum algorithms. For instance, Bennett, Bernstein, Brassard, and
Vazirani [14] proved a quantum query lower bound for the OR function using what later
became known as the hybrid method. This demonstrates that there is no way to attain a
better than Grover’s [21] quadratic speed-up for an NP-search problem if we treat the latter
as a black-box (an oracle). Powerful tools for proving quantum query lower bounds have
been developed consequently: the polynomial method, and the adversary method, both in
its original (positive-weighted) and improved (negative-weighted) formulations.

The polynomial method is due to Beals, Buhrman, Cleve, Mosca, and de Wolf [9], and it
was inspired by a similar method used by Nisan and Szegedy [27, 28] to prove lower bounds
on randomized query complexity. The method builds on the following observation: if A is a
T -query quantum algorithm, then its acceptance probability on input x can be expressed as a
degree-2T multivariate polynomial in the input variables xi. Beals et al. [9] used this method
to re-prove the lower bound for the OR function from [14], and establish other results like a
tight lower bound for all total symmetric Boolean functions. A landmark result obtained by
this method is the lower bound for the collision problem by Aaronson and Shi [3]. Similarly
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11:2 A Direct Reduction from the Polynomial to the Adversary Method

as Bennett et al.’s result [14], it shows that a black-box approach to finding a collision in a
hash function by a quantum computer is doomed as well. This method has been popular
ever after.

The original adversary method is due to Ambainis [4], and it is an improvement on
the aforementioned hybrid method. The bound was strengthened by Ambainis himself [5]
and Zhang [35] shortly afterwards. One of the appealing features of this method is its
convenient combinatorial formulation, which resulted in a number of applications [7, 20, 15, 19].
However, the original formulation of the adversary bound was subject to several important
limitations [35].

Partly in order to overcome these limitations, Høyer, Lee, and Špalek generalised the
adversary bound in [22]. Departing from the semidefinite formulation of the original adversary
bound by Barnum, Saks, and Szegedy [8], Høyer et al. showed that the same expression
still yields a lower bound if one replaces non-negative entries by arbitrary real numbers.
This negative-weighted formulation of the bound is strictly more powerful than the positive-
weighted one, but it lacks the combinatorial convenience of the latter. The bound turned
out to be useful for composed functions [22] and sum-problems [13, 12]. In a series of
papers [31, 29, 30], Reichardt et al. surprisingly proved that the negative-weighted version
of the bound is tight for bounded-error algorithms!

The polynomial method, on the other hand, is known to be non-tight. Ambainis [5]
constructed a first super-linear separation between the two for total Boolean functions.
This was later improved to an almost quartic separation by Aaronson, Ben-David, and
Kothari [1], which is essentially tight [2]. For partial functions, the separations can be even
more impressive [6].

The history of relationship between the adversary and the polynomial methods is rather
interesting. For instance, the AND of ORs function allows for a very simple adversary lower
bound [4], but its polynomial lower bound is more complicated and was only obtained more
than a decade later. It was achieved independently by Sherstov [33], and Bun and Thaler [17]
using the technique of dual polynomials [32]. The latter is the dual of an approximating
polynomial in the sense of linear programming. Therefore, by strong duality, their optimal
values are exactly equal, and every lower bound on polynomial degree can, in principle, be
stated as a dual polynomial. The technique of dual polynomials has been used by Bun,
Kothari, and Thaler [16] to prove strong lower bounds for a number of problems like k-
distinctness, image size testing, and surjectivity. The first of them was later improved in [26].
Similarly strong adversary lower bounds for these problems are not known.

Since the adversary method is tight, for every polynomial lower bound, there ought to exist
a similarly good adversary lower bound. However, a direct reduction was not known. In this
paper, we prove a simple direct reduction, giving a mechanical way of converting every dual
polynomial into an adversary lower bound of a specific form. We hope that this connection
will give a better understanding of both techniques, and should enable their combined use,
which could result in better lower bounds. Contrary to a large number of papers dealing
with the general adversary method, all proofs in this paper are fairly elementary.

A related result is a direct reduction from the polynomial method to multiplicative
adversary by Magnin and Roland [25], while we give a reduction to a more widely-used
additive adversary. We also note that our construction has similarities to a recent powerful
lower bound technique by Zhandry [34, 24]. It would be interesting to understand the
connection between the two better.

The following result is the cornerstone of our reduction. Here, we consider the task of
distinguishing whether an input x ∈ [q]n belongs to a set X ⊆ [q]n or Y ⊆ [q]n. Informally,
the result states that X and Y cannot be distinguished by a quantum query algorithm if
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they are perfectly indistinguishable by assignments of a corresponding weight. Recall that an
assignment is a function α : S → [q] defined on a subset S of the set of indices [n]. We write
x ∼ α if x ∈ [q]n agrees with the assignment α, that is, xj = α(j) for all j ∈ S. The weight
|α| of the assignment is the size of its domain S. It is possible to have an empty assignment
∅ of zero weight, in which case, every input string agrees to it.

▶ Theorem 1. Let X, Y ⊆ [q]n be sets of inputs, and µ and ν be probability distributions
on X and Y , respectively. Assume that, for any assignment α of weight ≤ 2m, we have the
following perfect indistinguishability

Pr
x←µ

[x ∼ α] = Pr
y←ν

[y ∼ α]. (1)

That is, the probability that x agrees to α does not depend on whether x is sampled from µ or
from ν. Then, the quantum query complexity of distinguishing X and Y is Ω(m).

The result itself is actually known. We will give two proofs in this paper. The first one
in Section 2 uses the method of dual polynomials and it is purely for illustrative purposes.
The second proof is new and is done using the adversary method. This is the main technical
contribution of this paper. Let us give a very short outline here. The proof uses the following
collection of vectors:

vX
α =

∑
x∈X:x∼α

√
µx|x⟩ and vY

α =
∑

y∈Y :y∼α

√
νy|y⟩,

where α is an assignment. By the indistinguishability, for every k ≤ m, there exists a
linear isometry W≤k that maps vX

α into vY
α for all α with |α| ≤ k. The adversary matrix is

Γ =
∑m−1

k=0 W≤k. It is not hard to show it has norm m, and we prove that ∥Γ ◦∆j∥ ≤ 1 for
all j. This proof is contained in Sections 3 and 4. In Section 3, we only consider the space
RX , and in Section 4, we substitute RX with RY using indistinguishability.

In Section 5, we show how to use this result to transform a dual polynomial into an
adversary bound. The idea is that a dual polynomial gives probability distributions µ and ν

on two sets X̃ and Ỹ that are “close” to X and Y and that satisfy the promise of Theorem 1.
We first prove the lower bound in the form of the adversary for distinguishing two probability
distributions from [11], as we think it is conceptually closer to the dual polynomial. Obtaining
a standard worst-case adversary bound is also easy.

2 Preliminaries

For a positive integer m, let [m] denote the set {1, 2, ..., m}. For a predicate P , we write 1P

to denote the indicator variable that is 1 if P is true, and 0 otherwise.
We consider partial functions f : D → {0, 1} with D ⊆ [q]n. We denote X = f−1(1) and

Y = f−1(0). Thus, the function f distinguishes X and Y . An element x = (x1, x2, . . . , xn) ∈
[q]n, is called an input, the set [q] is called the input alphabet, and xj ∈ [q] are individual
input symbols.

A measure on a finite set X is a function µ from X to the set of non-negative real
numbers. We denote the value of µ on x ∈ X by µx. The measure is a probability
distribution if

∑
x∈X µx = 1. We use x← µ to denote that x is sampled from the probability

distribution µ.1

1 A more standard notation is x ∼ µ. But since we use x ∼ α for agreement with an assignment α, we
opted to use a different piece of notation.
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2.1 Linear Algebra

An X × Y matrix is a matrix with rows labelled by the elements of X and columns by the
elements of Y . The element of an X × Y matrix A at the intersection of the x-th row and
the y-th column is denoted by A[[x, y]]. For X ′ ⊆ X and Y ′ ⊆ Y , the matrix A[[X ′, Y ′]] is
the restriction of A to the rows in X ′ and the columns in Y ′. We use ∥A∥ to denote spectral
norm of matrices. We identify a subspace and the corresponding orthogonal projector, which
we usually denote by Π with additional decorations. An isometry is a linear operator that
preserves inner product. We need the following well-known result:

▶ Lemma 2. Assume H and K are two inner-product spaces. Let (vi)i∈A ⊆ H and (wi)i∈A ⊆
K be two collections of vectors indexed by the same index set A. Assume ⟨vi, vj⟩ = ⟨wi, wj⟩
for all i, j ∈ A. Then, there exists an isometry T : spani vi → spani wi such that Tvi = wi

for all i.

2.2 Adversary Bound

We use two different flavours of the negative-weighted adversary bound. Here we give the
canonical version from [22] and later we state the distributional version from [11].

Assume we want to distinguish two sets of inputs X, Y ⊆ [q]n as above. Let Γ be a real
X × Y matrix. For j ∈ [n], denote by Γ ◦∆j the matrix of the same dimensions as Γ whose
(x, y)-th entry is given by Γ[[x, y]] · 1xj ̸=yj . In other words, the entries with xj = yj are being
erased (replaced by zeroes).

▶ Theorem 3 ([22]). Assume that Γ is an X × Y real matrix such that ∥Γ ◦∆j∥ ≤ 1 for all
j ∈ [n]. Then, the (bounded-error) quantum query complexity of evaluating f is Ω(∥Γ∥).

The matrix Γ from Theorem 3 is called the adversary matrix, and it is known that the
bound of this theorem is tight [30].

As it can be guessed from the notation, the mapping Γ 7→ Γ ◦∆j is usually expressed as
an Hadamard product with a 01-matrix ∆j of dimensions X × Y . However, we find it more
convenient to think of it as a mapping. In particular, we don’t have to formally re-define the
matrix ∆j for matrices Γ of different dimensions, and the matrix ∆j almost never appears
by itself.

The norm of the matrix Γ◦∆j is not always easy to estimate. The following trick from [12]
based on [23, Fact 2.4] is of help here. With some stretch of notation, we write Γ ∆j7−→ B if
(Γ− B) ◦∆j = 0. In other words, we are allowed to arbitrary change the (x, y)-entries of
Γ with xj = yj in order to obtain B. Note that this is a relation, since B is not uniquely
defined by Γ. The idea is as follows:

▶ Proposition 4. For any B with Γ ∆j7−→ B, we have ∥Γ ◦∆j∥ ≤ 2∥B∥. Moreover, if f is a
Boolean function, i.e., D ⊆ {0, 1}n, then ∥Γ ◦∆j∥ ≤ ∥B∥.

Hence, we can bound ∥Γ ◦∆j∥ from above by estimating ∥B∥, which is often easier. We
repeatedly use the following easy properties of thus defined relation ∆j :

▶ Proposition 5. For any X × Y matrices A, B, C, D and real numbers a and c, we have
(a) A

∆j7−→ A and A
∆j7−→ A ◦∆j;

(b) if A
∆j7−→ B and C

∆j7−→ D, then aA + cC
∆j7−→ aB + cD.
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2.3 Distributional Adversary
We also use the version of the adversary bound for distinguishing two probability distributions.
This version is rather versatile as it allows the probability distributions to overlap and to
have arbitrary acceptance probabilities.

▶ Theorem 6 ([11]). Assume A is a quantum algorithm that makes T queries to the input
string x = (x1, . . . , xn) ∈ [q]n, and performs a measurement at the end with two outcomes:
“accept” or “reject”. Let µ and ν be two probability distributions on [q]n, and denote by sµ

and sν the acceptance probability of A when x is sampled from µ and ν, respectively. Then,

T = Ω
(

min
j∈[n]

δ∗µΓδν − τ(sµ, sν)∥Γ∥
∥Γ ◦∆j∥

)
, (2)

for any [q]n × [q]n matrix Γ with real entries. Here,

δµ[[x]] = √µx and δν [[y]] = √νy (3)

are unit vectors in R[q]n , and

τ(sµ, sν) =
√

sµsν +
√

(1− sµ)(1− sν) ≤ 1− |sµ − sν |2

8 . (4)

2.4 Polynomials
In the polynomial method, we have to assume that the function f : D → {0, 1} is Boolean:
D ⊆ {0, 1}n. If this does not hold, one has to make the function Boolean. A popular option
is to introduce new variables x̃i,a with i ∈ [n] and a ∈ [q], defined by x̃i,a = 1xi=a.

For S ⊆ [n], the corresponding character is the function χS : {0, 1}n → {±1} defined by
χS(x) =

∏
i∈S(−1)xi . The characters form a basis of the space of functions R{0,1}n . Hence,

every function f : {0, 1}n → R has a unique representation as a (multilinear) polynomial:
f =

∑
S⊆[n] αSχS . The size of the largest S with non-zero αS is called the degree of f .

A degree-d polynomial is any function p : {0, 1}n → R of degree at most d. A degree-d
dual polynomial is a function ϕ : {0, 1}n → R satisfying∑

x∈{0,1}n

|ϕ(x)| = 1 and
∑

x∈{0,1}n

ϕ(x)χS(x) = 0 for all |S| ≤ d. (5)

It is easy to check that the second condition above is equivalent to the following one:∑
x∼α

ϕ(x) = 0 for all assignments α with |α| ≤ d. (6)

Dual polynomials [32] can be used to show inapproximability for real-valued total functions.
We may assume d < n, since every function can be represented by a degree-d polynomial.

The proof of the following theorem, as well as that of Theorem 10 are based on linear
programming duality, and are given in Appendix A for completeness.

▶ Theorem 7. Let d < n. For any function f : {0, 1}n → R, we have

min
p

max
x∈{0,1}n

|f(x)− p(x)| = max
ϕ

∑
x∈{0,1}n

ϕ(x)f(x), (7)

where p ranges over all degree-d polynomials and ϕ ranges over all degree-d dual polynomials.

TQC 2024
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Let us now turn to the case of partial functions f : D → {0, 1} with D ⊆ {0, 1}n. Again,
we let X = f−1(1) and Y = f−1(0).

▶ Definition 8. We say that a polynomial p : {0, 1}n → R ε-approximates a partial function
f : D → {0, 1} with D ⊆ {0, 1}n if

for every x ∈ D, we have |p(x)− f(x)| ≤ ε;
for every x ∈ {0, 1}n, we have 0 ≤ p(x) ≤ 1.

The importance of this definition stems from the following result:

▶ Theorem 9 ([9]). If a partial function f : D → {0, 1} with D ⊆ {0, 1}n can be evaluated
by a T -query quantum algorithm with error at most ε, then f can be ε-approximated by a
polynomial of degree at most 2T .

The corresponding analogue of Theorem 7 is slightly more involved. A similar result
previously appeared in [18].

▶ Theorem 10. The best approximation distance ε as in Definition 8 of the function f by a
degree-d polynomial is given by

max
{

max
ϕ

(∑
x∈X

ϕ+(x)−
∑
x/∈Y

ϕ−(x)
)

, 0
}

, (8)

where the maximisation is over functions ϕ : {0, 1}n → R satisfying∑
x∈X

ϕ+(x) +
∑
x∈Y

ϕ−(x) = 1 and
∑

x∈{0,1}n

ϕ(x)χS(x) = 0 for all |S| ≤ d. (9)

Here ϕ+(x) = max{0, ϕ(x)} and ϕ−(x) = max{0,−ϕ(x)} are the positive and the negative
parts of ϕ, respectively. We will still call ϕ a degree-d dual polynomial in this case, although
it need not satisfy the first (normalisation) condition of (5).

Proof of Theorem 1 using Dual Polynomials. We may assume the function f is Boolean.
It suffices to show that it cannot be approximated by a polynomial of degree less than 2m.
Let

ϕ(x) =


µx/2, if x ∈ X;
−νx/2, if x ∈ Y ;
0, otherwise.

This function satisfies (9) with d = 2m. Indeed, the first condition follows from µ and ν

being probability distributions, and the second one follows from (6) since∑
x∼α

ϕ(x) = 1
2 Pr

x←µ
[x ∼ α]− 1

2 Pr
y←ν

[y ∼ α] = 0

by (1). The value of (8) is 1/2, hence, by Theorem 10, it is impossible to get a better than
trivial approximation. ◀

3 ∆-decomposition of RX

Let X ⊆ [q]n be a set of inputs, and let µ be some measure on X. We assume in this section
that X is the support of µ, i.e., µx > 0 for all x ∈ X. The goal of this section is to develop a
decomposition of the space RX convenient for the ∆j operation and that takes into account
the measure µ. Let us remind that we use the same notation, like Π≤k, to denote both the
subspace and the corresponding orthogonal projector.
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3.1 Definition of subspaces
For each assignment α, define the following vector in RX :

vα =
∑
x∼α

√
µx|x⟩. (10)

Based on these vectors, we define a number of subspaces. First, for k ∈ {0, 1, . . . , n}:

Π≤k = span
α : |α|=k

vα. (11)

▷ Claim 11. We have Π≤k−1 ⊆ Π≤k and Π≤n = RX .

Proof. Let α be an assignment of weight k− 1, and i be an element of [n] outside the domain
of α. Then,

vα =
∑
a∈[q]

vα∪{i 7→a},

proving the first claim.
For the second claim, note that an assignment α of weight n defines an individual input.

◁

This gives an orthogonal decomposition of RX into subspaces

Πk = Π≤k ∩Π⊥≤k−1 = Π≤k −Π≤k−1.

3.2 Example
A simple example is X = [q]n with the uniform distribution µx. Define two orthogonal
projectors on Rq: E0 = Jq/q and E1 = Iq − E0, where Jq is the all-1 matrix. Then,

Πk =
∑

s∈{0,1}n:|s|=k

Es1 ⊗ Es2 ⊗ · · · ⊗ Esn
,

where |s| is the Hamming weight. These operators are similar to the ones used in the
construction of the adversary lower bound for element distinctness [10] and sum-problems [12].

Note that while the vectors vα in (10) only have non-negative entries, the projectors Π≤k

can have negative entries. For instance, such are matrices Π≤1 in the above example.

3.3 Action of ∆j

Let us consider the action of ∆j with j ∈ [n]. For that, we define the following variant of the
above subspaces Π≤k:

Ξ≤k,◦j = span
α : |α|=k, α defined on j

vα.

In particular, we again have Ξ≤n,◦j = RX . This time, however, Ξ≤0,◦j is the empty subspace.

▷ Claim 12. We have the following:
(a) Ξ≤k−1,◦j ⊆ Ξ≤k,◦j ;
(b) Π≤k−1 ⊆ Ξ≤k,◦j ⊆ Π≤k;
(c) ∆j ◦ Ξ≤k,◦j = 0.

TQC 2024
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Proof. The proof of (a) is analogous to the proof of Claim 11.
The second inclusion of (b) holds because Ξ≤k,◦j is a span of a subset of vectors of Π≤k.

To prove the first inclusion of (b), it suffices to show that an arbitrary vα with |α| = k − 1 is
contained in Ξ≤k,◦j . The proof of that is analogous to the proof of Claim 11. However, this
time we take i = j if α is not defined on j (and an arbitrary i as before, otherwise).

Now let us prove (c). Note that Ξ≤k,◦j can be written as a direct sum

Ξ≤k,◦j =
⊕
b∈[q]

Ξ≤k,j 7→b (12)

of orthogonal projectors

Ξ≤k,j 7→b = span
α : |α|=k, α(j)=b

vα.

Each Ξ≤k,j 7→b acts on the subspace spanned by x ∈ X with xj = b. Hence, ∆j ◦Ξ≤k,j 7→b = 0.
By linearity, ∆j ◦ Ξ≤k,◦j = 0. ◁

3.4 Standard Form of Adversary
As a warm-up for the next sections, we describe the following “standard” form of the
“adversary” matrix on RX :

m−1∑
k=0

Π≤k =
m∑

k=0
(m− k)Πk. (13)

Clearly, the norm of this matrix is m. The action of ∆j is defined as

m−1∑
k=0

Π≤k
∆j7−→

m−1∑
k=0

(
Π≤k − Ξ≤k,◦j

)
, (14)

where we use Proposition 5 and point (c) of Claim 12.

▷ Claim 13. The norm of the operator on the right-hand side of (14) is 1.

Proof. The operator in question is the sum of projectors Π≤k − Ξ≤k,◦j . By point (b) of
Claim 12, we know that Π≤k is contained in Ξ≤k+1,◦j . Hence, these projectors are pairwise
orthogonal, and the norm of the operator is 1. ◁

In the following section, we will transfer this construction for X × Y -matrices.

4 Second Proof of Theorem 1

Here, we give a proof of Theorem 1, which is based on the adversary method. In this section,
we use upper indices X and Y in the following way. If the upper index X is used, the
corresponding object is equal to the one without the upper index as defined in Section 3. If
the upper index Y is used, we use the same object but with the probability distribution ν on
Y instead of µ on X. For example:

vX
α =

∑
x∈X:x∼α

√
µx|x⟩ ∈ RX and vY

α =
∑

y∈Y :y∼α

√
νy|y⟩ ∈ RY .

Similarly, ΠX
≤k and ΞX

≤k,◦j are projectors in RX , and ΠY
≤k and ΞY

≤k,◦j are projectors in RY .
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▶ Lemma 14. In the assumptions of Theorem 1, there exists a linear isometry W : ΠY
≤m →

ΠX
≤m that maps vY

α into vX
α for each |α| ≤ m.

Proof. Let α and β be assignments of weight at most m. Note that〈
vX

α , vX
β

〉
= Pr

x∼µ
[x ∼ α ∧ x ∼ β] = Pr

y∼ν
[y ∼ α ∧ y ∼ β] =

〈
vY

α , vY
β

〉
.

Indeed, either α and β contradict each other, in which case the both sides of the above
equality are zero, or they can be merged into one assignment of weight at most 2m, in which
case (1) applies. Hence, by Lemma 2, there exists a linear isometry W that maps vY

α into
vX

α for each |α| ≤ m. ◀

The following theorem defines the adversary matrix Γ which, when plugged into Theorem 3,
gives Theorem 1. This matrix will be important in the next section for the reduction from
the polynomial method.

▶ Theorem 15. In the assumptions of Theorem 1, the following X × Y matrix

Γ = W

(
m−1∑
k=0

ΠY
≤k

)
. (15)

has the following properties:
(a) its norm is m, as witnessed by ∥Γ∥ = δ∗µΓδν = m with δµ and δν as defined in (3); and
(b) the action of ∆j is given by

Γ ∆j7−→W

(m−1∑
k=0

(
ΠY
≤k − ΞY

≤k,◦j
))

, (16)

where the norm of the matrix on the right-hand side is 1.

Proof. Eq. (13) gives the decomposition of
∑m−1

k=0 ΠY
≤k into eigenspaces since the subspaces

ΠY
k are pairwise orthogonal. The maximal eigenvalue m is achieved on ΠY

0 , which is spanned
by vY

∅ = δν , where ∅ denotes the empty assignment. Also, W is an isometry that maps vY
∅

into vX
∅ = δµ, which proves point (a) of the theorem.

The validity of the action of ∆j in (16) follows from the claim that ∆j ◦ (WΞY
≤k,◦j) = 0.

The proof of this claim is similar to the point (c) of Claim 12. We use decomposition (12) for
ΞY
≤k,◦j , and observe that the range of WΞY

≤k,j 7→b is ΞX
≤k,j 7→b. Hence, ∆j ◦ (WΞY

≤k,j 7→b) = 0,
and the first half of point (b) follows by linearity.

The second half of point (b) follows from Claim 13 and the fact that W is an isometry. ◀

5 Reduction from Dual Polynomial to Adversary

In this section, we demonstrate a direct conversion of a polynomial lower bound into an
adversary lower bound. We do so by taking a dual polynomial that witnesses degree at least
d and convert it into an adversary bound of value Ω(d).

For warm-up, we consider the case of total functions in Section 5.1, and then the general
case of partial functions in Section 5.2. In both cases, we use the distributional version of
the adversary bound, Theorem 6, which we find conceptually more appropriate in this case.
However, it is not hard to reduce to the usual version of the bound, Theorem 3, as well,
which we do in Section 5.3.
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5.1 Total Functions
We start with the case when f : {0, 1}n → {0, 1} is a total Boolean function. Assume it
cannot be 1/3-approximated by a polynomial of degree d. In this case, we can use Theorem 7.
Let ϕ be a degree-d dual polynomial attaining the maximum in (7). Thus,∑

x∈{0,1}n

ϕ(x)f(x) ≥ 1/3. (17)

Our goal is to prove an adversary lower bound of Ω(d).
Let us define

X̃ = {x ∈ {0, 1}n | ϕ(x) ≥ 0} and Ỹ = {y ∈ {0, 1}n | ϕ(y) < 0}, (18)

and two measures

µ : X̃ → R, x 7→ 2ϕ(x) and ν : Ỹ → R, y 7→ −2ϕ(y).

From (6) applied to empty α, we get that
∑

x ϕ(x) = 0. Also,
∑

x |ϕ(x)| = 1. Hence,∑
x∈X̃

µx =
∑
y∈Ỹ

νy = 1, (19)

that is, both µ and ν are probability distributions.
Using (6) again, we get that for each assignment α of weight at most d, we have

Pr
x←µ

[x ∼ α] = Pr
y←ν

[y ∼ α]. (20)

Thus, by Theorem 1, the quantum query complexity of distinguishing X̃ and Ỹ is Ω(d).
This is a nice development, but we would really like to prove the same result for the sets
X = f−1(1) and Y = f−1(0). Luckily, by condition (17), these sets are sufficiently well
correlated.

Define the X̃ × Ỹ matrix Γ̃ as in (15) with the sets X̃ and Ỹ , the distributions µ and ν,
and m = d/2. By Theorem 15, we have

∥Γ̃∥ = δ∗µΓ̃δν = d/2, and ∥Γ̃ ◦∆j∥ ≤ 1 for all j ∈ [n]. (21)

Since Theorem 6 requires an {0, 1}n × {0, 1}n adversary matrix, we extend Γ̃ with zeroes to
fit this requirement.

▶ Proposition 16. In the above notations, Theorem 6 with the adversary matrix Γ̃ and the
distributions µ and ν gives an Ω(d) lower bound on the number of queries made by any
quantum query algorithm A that distinguishes X and Y with error probability at most 1/6.

Proof. Note that (17) is equivalent to∑
x∈f−1(1)

µx −
∑

y∈f−1(1)

νy ≥ 2/3.

This is the difference between the “ideal” acceptance probabilities of A on µ and ν, i.e, in
the hypothetical case when the algorithm never errs. Since the actual error of the algorithm
A is at most 1/6, we get

sµ − sν ≥ 1/3

in notations of Theorem 6. From (4), we get that τ(sµ, sν) ≤ 1−Ω(1). Pluging this and (21)
into (2), we get that the query complexity of A is Ω(d). ◀
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5.2 Partial Functions
Now let us consider the case of partial functions f : D → {0, 1} with D ⊆ {0, 1}n. Again, we
assume that the best optimisation distance by a degree-d polynomial is more than 1/3. Let
ϕ be the optimal degree-d dual polynomial from Theorem 10. Then we have from (8):∑

x∈X

ϕ+(x)−
∑
x/∈Y

ϕ−(x) ≥ 1/3. (22)

The sets X̃ and Ỹ are still defined as in (18). By (9), we still have that∑
x∈{0,1}n

ϕ+(x) =
∑

x∈{0,1}n

ϕ−(x).

But, in order to define µ and ν, we have to choose a different scaling factor. We have∑
x∈{0,1}n

ϕ−(x) =
∑
x∈Y

ϕ−(x) +
∑
x/∈Y

ϕ−(x) ≤
∑
x∈Y

ϕ−(x) +
∑
x∈X

ϕ+(x)− 1/3 = 2/3,

where we used (22) and the first condition from (9). Let us denote the left-hand side of the
above inequality by M . Then, we can define probability distributions

µ : X̃ → R, x 7→ ϕ(x)/M and ν : Ỹ → R, y 7→ −ϕ(y)/M. (23)

So that (22) becomes∑
x∈X

µx −
∑
y /∈Y

νy ≥ 1/2. (24)

The equation (20) still holds, and we use the same construction of Γ̃, which still satis-
fies (21).

Let A be an algorithm that evaluates f with error ε. Denote by px the acceptance
probability of the algorithm on an input x ∈ {0, 1}n. So, we have px ≥ 1 − ε for x ∈ X,
px ≤ ε for x ∈ Y , and 0 ≤ px ≤ 1 for all x. Thus,

sµ − sν =
∑
x∈X

µxpx +
∑
x/∈X

µxpx −
∑
y∈Y

νypy −
∑
y /∈Y

νypy

≥ (1− ε)
∑
x∈X

µx − ε
∑
y∈Y

νy −
∑
y /∈Y

νy ≥
∑
x∈X

µx −
∑
y /∈Y

νy − 2ε ≥ 1/2− 2ε ≥ 1/4,

assuming ε ≤ 1/8.
In the same way as in Section 5.1, Theorem 6 implies that the query complexity of A is

Ω(d).

5.3 Usual Version of the Adversary
In this section, we obtain a usual version of the adversary bound from a dual polynomial.
Let us recap the construction.

We assume f : D → {0, 1} with D ⊆ {0, 1}n is a partial Boolean function, where we define
X = f−1(1) and Y = f−1(0). Assume ϕ is a degree-d dual polynomial that satisfies (9) of
Theorem 10 and attains value at least 1/3 in (8).

Let X̃, Ỹ ⊆ {0, 1}n be as in (18), and µ and ν be probability distributions in (23). They
satisfy (20), therefore, we can apply Theorem 15 with m = d/2, and obtain an X̃ × Ỹ -matrix
Γ̃ as in (15) for the sets X̃ and Ỹ with the probability distributions µ and ν on them. This
matrix satisfies (21). We extend it with zeroes to form an {0, 1}n ×{0, 1}n-matrix, which we
still denote Γ̃.
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▶ Theorem 17. In the above assumptions, the X × Y -matrix

Γ = Γ̃[[X, Y ]]

satisfies ∥Γ∥ = Ω(d) and ∥Γ ◦∆j∥ ≤ 1 for all j ∈ [n].

Proof. As Γ is a sub-matrix of Γ̃, we get ∥Γ ◦∆j∥ ≤ 1 for all j from (21). By the same
equation (21), it suffices to show that ∥Γ∥ = Ω

(
∥Γ̃∥

)
.

We know that Γ̃δν = ∥Γ̃∥δµ by point (a) of Theorem 15. This gives us∥∥∥Γ̃[[X, {0, 1}n]] δν

∥∥∥ =
∥∥Γ̃
∥∥ · ∥∥δµ[[X]]

∥∥.

On the other hand,∥∥∥Γ̃[[X, {0, 1}n]] δν

∥∥∥ ≤ ∥∥∥Γ̃[[X, Y ]] δν [[Y ]]
∥∥∥+

∥∥∥Γ̃[[X, Y ]] δν [[Y ]]
∥∥∥ ≤ ∥∥Γ̃[[X, Y ]]

∥∥+
∥∥Γ̃
∥∥ · ∥∥δν [[Y ]]

∥∥,

where Y = {0, 1}n \ Y . Thus,

∥∥Γ̃[[X, Y ]]
∥∥ ≥ ∥∥Γ̃

∥∥(∥∥δµ[[X]]
∥∥− ∥∥δν [[Y ]]

∥∥) =
∥∥Γ̃
∥∥∥∥δµ[[X]]

∥∥2 −
∥∥δν [[Y ]]

∥∥2∥∥δµ[[X]]
∥∥+

∥∥δν [[Y ]]
∥∥ .

From (24), we get that∥∥δµ[[X]]
∥∥2 −

∥∥δν [[Y ]]
∥∥2 =

∑
x∈X

µx −
∑
y /∈Y

νy ≥ 1/2.

Also,
∥∥δµ[[X]]

∥∥+
∥∥δν [[Y ]]

∥∥ ≤ 2, hence, we obtain∥∥Γ̃[[X, Y ]]
∥∥ ≥ 1

4
∥∥Γ̃
∥∥,

as required. ◀
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A Linear Programming for Dual Polynomials

A.1 Proof of Theorem 7
The left-hand side of (7) is equal to the optimal value of the following linear optimisation
problem:

minimise ε

subject to f(x)−
∑

S

αSχS(x) ≤ ε for all x ∈ {0, 1}n; (25a)

f(x)−
∑

S

αSχS(x) ≥ −ε for all x ∈ {0, 1}n; (25b)

αS ∈ R for all S ⊆ [n], |S| ≤ d;
ε ∈ R.

Let us write the Lagrangian with the dual variables ax ≥ 0 for (25a) and bx ≥ 0 for (25b):

ε−
∑

x

ax

(
ε− f(x) +

∑
S

αSχS(x)
)
−
∑

x

bx

(
ε + f(x)−

∑
S

αSχS(x)
)

(26)

Let us denote ϕ(x) = ax − bx, so that we can rewrite the last expression as

∑
x

ϕ(x)f(x) + ε

(
1−

∑
x

ax −
∑

x

bx

)
−
∑

S

αS

(∑
x

ϕ(x)χS(x)
)

. (27)

In the dual optimisation problem, all of the brackets in (27) must be zero.
We can turn any dual polynomial into a feasible solution to the dual (27) by taking

ax = ϕ+(x) and bx = ϕ−(x).
For the opposite direction, consider optimal primal and dual solutions, whose values are

equal due to strong duality. If ε > 0, then, by complementary slackness, at most one of ax

and bx is non-zero for each x, therefore, |ϕ(x)| = ax + bx. Hence, ϕ is a dual polynomial
satisfying

∑
x ϕ(x)f(x) = ε. If ε = 0, we can take ϕ equal to the normalised parity function.
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A.2 Proof of Theorem 10
In this case, we have the following linear programming problem:

minimise ε

subject to
∑

S

αSχS(x) ≥ 1− ε for all x ∈ X; (28a)∑
S

αSχS(x) ≤ ε for all x ∈ Y ; (28b)∑
S

αSχS(x) ≥ 0 for all x /∈ X; (28c)∑
S

αSχS(x) ≤ 1 for all x /∈ Y ; (28d)

αS ∈ R for all S ⊆ [n], |S| ≤ d;
ε ∈ R.

Let us write the Lagrangian with the dual variables ax, bx, cx, dx ≥ 0 for (28a) – (28d),
respectively:

ε −
∑
x∈X

ax

(∑
S

αSχS(x)− 1 + ε

)
−

∑
x∈Y

bx

(
ε−

∑
S

αSχS(x)
)

−
∑
x/∈X

cx

(∑
S

αSχS(x)
)
−

∑
x/∈Y

dx

(
1−

∑
S

αSχS(x)
) (29)

Let us define

ϕ(x) =


ax − dx if x ∈ X;
cx − bx if x ∈ Y ;
cx − dx if x /∈ X ∪ Y .

Then, we can rewrite (29) as∑
x∈X

ax −
∑
x/∈Y

dx + ε

(
1−

∑
x∈X

ax −
∑
x∈Y

bx

)
−
∑

S

αS

( ∑
x∈{0,1}n

ϕ(x)χS(x)
)

. (30)

Again, in the dual optimisation problem, all the brackets in (30) must be zero.
If ϕ satisfies (9), then we can take ax = ϕ+(x) for x ∈ X, bx = ϕ−(x) for x ∈ Y ,

cx = ϕ+(x) for x /∈ X, and dx = ϕ−(x) for x /∈ Y , and get a feasible solution to the dual.
For the opposite direction, consider optimal primal and dual solutions, whose values are

equal by strong duality. We may assume ε > 0. By complementary slackness, for each x,
at most one of the dual variables is non-zero, except for the case when ε = 1/2, in which
case both ax and bx can be non-zero. Either way, we get ax = ϕ+(x) for x ∈ X, bx = ϕ−(x)
for x ∈ Y , and dx = ϕ−(x) for x /∈ Y . Thus we obtain the required dual formulation of
Theorem 10.

Let us note that maximisation with 0 is required in (8). For example, consider the case
d = n− 1, and X and Y are of size 1. The function can be approximated by a polynomial of
degree at most 1, thus ε = 0. On the other hand, by the second condition of (9), ϕ must be
equal to a multiple of the parity function. It is easy to see that

∑
x∈X ϕ+(x)−

∑
x/∈Y ϕ−(x)

is actually negative in this case.
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