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Abstract

Given that reliable cloud quantum computers are becoming closer to reality, the concept of delegation
of quantum computations and its verifiability is of central interest. Many models have been proposed,
each with specific strengths and weaknesses. Here, we put forth a new model where the client trusts
only its classical processing, makes no computational assumptions, and interacts with a quantum
server in a single round. In addition, during a set-up phase, the client specifies the size n of the
computation and receives an untrusted, off-the-shelf (OTS) quantum device that is used to report
the outcome of a single measurement.

We show how to delegate polynomial-time quantum computations in the OTS model. This also
yields an interactive proof system for all of QMA, which, furthermore, we show can be accomplished in
statistical zero-knowledge. This provides the first relativistic (one-round), two-prover zero-knowledge
proof system for QMA.

As a proof approach, we provide a new self-test for n EPR pairs using only constant-sized Pauli
measurements, and show how it provides a new avenue for the use of simulatable codes for local
Hamiltonian verification. Along the way, we also provide an enhanced version of a well-known
stability result due to Gowers and Hatami and show how it completes a common argument used in
self-testing.
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12:2 Quantum Delegation with an Off-The-Shelf Device

1 Introduction

In an interactive proof system, a computationally-bounded verifier interacts with a powerful
prover in order to verify the truthfulness of an agreed-upon problem instance. Starting with
QMA, and followed by QIP and QMIP (among others), quantum interactive proof system, (in
which the verifier is quantum polynomial-time) were defined and studied [48, 49, 30].

Yet, these quantizations depend crucially on the tacit assumption that the verifier has
access to trusted quantum polynomial-time verification. Given the current state-of-the-art in
quantum computation development, the inherent difficulty at characterizing quantum systems,
and the fact that there is no way to reliably verify the trace of a quantum computation, there
is ample evidence that this assumption may be questionable. Indeed, despite impressive
technological improvements, we may ultimately have to contend with a reality where quantum
computers are never as trustworthy or reliable as classical devices. This prospect has
motivated consideration of models where the verifier has access to very limited but trusted
quantum functionality [1, 4, 18], or where the verifier is entirely classical and the prover is
computationally bounded [31], while another class called MIP∗ models an efficient classical
verifier interacting with several isolated, unbounded quantum provers [14]. Each approach
provides advantages and encounters challenges: early quantum servers will be expensive
and thus all else equal, requiring a single prover is preferable; on the other hand, existing
single-prover protocols either require a trusted device or make computational assumptions.
Multi-prover protocols utilize powerful device-independence techniques which avoid these
assumptions but at the high cost of requiring several powerful provers and requiring isolation.

The current zeitgeist in this field allows for imaginative considerations of how we describe
and model tasks in a quantum world. These approaches have in common that instead of
considering the straightforward quantum analog of classical protocols, we strive to make
considerations that are naturally motivated in the quantum setting1. Here, we continue
on this momentum and introduce a novel approach to proof verification, where the set-up
itself can only be motivated in the quantum setting. To this end, we consider the following
question:

▶ Question 1. What is the expressive power of the class of relativistic, interactive proof
systems with a single quantum prover, and a classical verifier having access to an off-the-shelf
untrusted quantum device?

Off-the-shelf Device. We call the above model the off-the-shelf (OTS) model since it models
the fact that the verifier, in addition to interacting with a standard prover, has access to a
device that is (1) generic (it does not depend on the instance of the problem to be solved,
only on the instance size), (2) efficient (for completeness, polynomial resources suffice), (3)
completely untrusted (for soundness, there are no assumptions on its computational power
or inner-workings). Importantly, relativistic refers to a 1-round protocol; this is desirable for
its relative ease in enforcing isolation2.

Operationally, we imagine the OTS model as the prover providing the verifier with such
a generic, off-the-shelf device ahead of the proof verification. In particular, the preparation
of such a device in terms of its capabilities is independent of the particular problem instance,
although we do allow dependence on its size. Once in possession of this device, the verifier

1 See, for instance, the recent work on the complexity of preparing quantum states and unitaries [42].
2 A relativistic protocol is highly desirable in the multi-prover scenario since isolation can be enforced

using relative position and response times [10, 22].
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may query the prover and simultaneously use a single measurement from the off-the-shelf
device, which leads the verifier to accept or reject. The figures of merit for the interactive
proof system are the usual completeness and soundness.

Figure 1 During the set-up the verifier selects an off-the-shelf device based on the required size of
the problem instance. Afterward, the verifier is free to select any language and instance and interacts
in a single round with both the prover and the off-the-shelf device, leading to the accept/reject
output of the verifier.

Since the OTS scenario models aspects of near-term proof verification using untrusted
quantum devices, we naturally wish to understand how it relates to some of the most relevant
and studied properties of interactive proof systems:

▶ Question 2. Can the OTS model provide novel approaches to zero-knowledge proof
systems and to delegated quantum computation?

Classical and Quantum Interactive Proof Systems. In the model of interactive proof
systems (IP), an efficient classical verifier interacts with an all-powerful and untrusted prover
in order to verify the correctness of a statement [20]. We note that class NP corresponds to
a single-message interaction (with MA being in probabilistic version), while AM incorporates
a single round (i.e., two messages).

In a multiprover interactive proof system (MIP), a verifier interacts with multiple isolated
provers [3]. Each of the models above has been quantized, i.e., extended to the setting
where some (or all) of the parties are quantum. This is captured, e.g. by the classes
QMA (the quantum version of MA), QIP (the quantum version of IP) and MIP∗ (a version
of a multi-prover interactive proof system (MIP) where the unbounded provers share en-
tanglement). Groundbreaking results have characterized some these quantum classes, e.g.
QIP = PSPACE [24] and MIP∗ = RE [27].

Zero-Knowledge Proof Systems. A strong motivation for the study of interactive proof
systems is the connections to the counter-intuitive concept of a zero-knowledge proof sys-
tem [19, 2]. Informally, a proof system is zero-knowledge when the verifier is unable to
learn anything beyond the fact that the agreed-upon instance is true. This is more formally
treated by establishing the existence of a simulator which can reproduce the transcript of
the interaction.

Zero-knowledge proof systems were first extended to the quantum setting by Watrous [50],
who considered the setting where the verifier has access to a trusted polynomial-time quantum
device. Subsequently, it was shown that under certain cryptographic assumptions, all problems
in QMA admit a zero-knowledge proof system [7, 8, 5] (again, assuming the verifier has
trusted polynomial-time quantum computation). There have been several approaches in
the case of a fully classical verifier. Vidick and Zhang showed that argument protocols
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12:4 Quantum Delegation with an Off-The-Shelf Device

can be made to satisfy the zero-knowledge property [47]. Recent work by Crépeau and
Stuart [17] provides a two-prover one-round zero-knowledge proof system for NP. The work
of Chiesa, Forbes, Gur and Spooner provides a two-prover zero-knowledge proof system for
NEXP [12], however, their work requires polynomially many rounds of interaction. Work
due to Grilo, Yuen, and Slofstra [23] shows that any proof system for MIP∗ can be made
zero-knowledge at the cost of adding four additional provers. Although these works provide
inspiration for studying zero-knowledge proof systems in the OTS model, as far as we are
aware, they do not directly contribute to our main question on ZK. In fact, according to
the current state-of-the-art, an implicit open question [22] is the following: “Does there
exists a relativistic zero-knowledge proof system for QMA with two provers and a classical
verifier?”. We emphasize that our OTS model takes this question further, by requiring one
of the provers to operate generically and independently of the problem instance.

Delegated Quantum Computation. Delegated quantum computation allows a computa-
tionally-weak classical client to delegate a computational task to an untrusted, polynomial-
time quantum server. Under certain conditions, an interactive proof system leads in a
straightforward way to a protocol for delegated quantum computation. Typically, this is
achieved if the interactive proof system captures e.g. QMA, and furthermore, given the
witness, the prover is efficient; it is also relevant that the QMA witness is used in such a way
that we can scale down the proof system in order to achieve a delegation protocol for BQP
(e.g. [22])3. The sketch above is also applicable to the scenario of multiple servers. Note that
because of the resemblance between the models of the interactive proof system and delegated
quantum computation, we occasionally confound the two – using the complexity class acronym
to refer to the interaction pattern between prover(s) and verifier – but we emphasize that in
delegated quantum computation protocols, the server is always computationally bounded (as
opposed to a prover in interactive proof systems).

Following Reichardt, Unger, and Vazirani [41], who showed a delegated quantum compu-
tation for the setting of MIP∗, much progress was made, aiming at improving parameters
and techniques; despite these efforts, as far as we are aware, none of the existing works are
applicable to our model. Notable here is the work of [16] which uses quasilinear resources for
both servers, and achieves at best a constant round complexity, as well as [22] which is the
first 2-server, 1-round (relativistic) protocol for delegated quantum computations, but uses
the full polynomial-power of both servers.

1.1 Summary of results
In this work, we make important steps towards answering the above questions:

We show that any language in QMA has a statistical ZK proof system in the OTS model.
We show that the above OTS proof system can be adapted for delegated quantum
computation for any problem in BQP, while remaining ZK and in the OTS model.

We now give more details and motivation for our model and an overview of our main
contributions at the conceptual level.

Model. As introduced earlier, we are interested in modeling near-term proof verification
and delegation of quantum computations. To this end, we propose a new paradigm that is
particularly relevant to the quantum scenario: a verifier having access to an OTS device. To

3 BQP is closed under complementation, hence this is sufficient for delegation
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motivate the model, consider that the complexity class QMA models a verifier having access
to fully-trusted polynomial-time quantum computation. While such a verifier is skeptical
of the prover (and thus needs to verify the claimed proof independently), in the quantum
case, a new level of skepticism is possible, namely that the verifier’s quantum processing
is untrusted. A common solution in this case is to postulate two (or more) untrusted and
all-powerful devices together with a classical verifier; this is the realm of MIP∗. In this
work, we propose a new paradigm that treats the provers asymmetrically. Starting with a
conventional two-prover interactive proof system, we ask that only one of the provers do
the heavy lifting (via its unbounded computational capabilities), with the second prover
becoming efficient and completely generic (for completeness, this prover need not even be
given a description of the task at hand; soundness, however, is shown against two unbounded
provers).

The inspiration for our model finds its roots in the elegant 2-prover, 1-round protocol
introduced by Grilo [22]. The approach Grilo uses is a game that involves an energy test
and the Pauli braiding test to verify the shared EPR pairs’ integrity and the accuracy of
Pauli-X/Z measurements on local terms Hi. Although in [22] the analysis assumes that
players Alice and Bob are randomly assigned roles, it is natural to consider an asymmetric
version of this game where one prover’s functionality can be made independent of the problem
instance. Grilo’s work motivates the formal introduction and study of a new class which one
may expect to be lower-bounded by QMA. As we outline in Section 1.2 there are substantial
technical obstructions to extending this game to obtain a zero-knowledge protocol.

We denote OTS the set of all languages L that can be decided under a constant
completeness-soundness gap, in the model that follows. Before the instance x ∈ L is
selected, the classical verifier is provided with an untrusted off-the-shelf device which only
depends on a parameter n, indicating the size of the problem instance (without loss of
generality, we can assume that the prover provides such OTS device). For completeness,
such a device shares an entangled state |ψ⟩n with a quantum prover and will be purported to
perform efficient measurements from a predetermined list of available options4. The verifier
may select any choice x ∈ L provided |x| ≤ n and simultaneously uses a single question to
the prover and to the device; the verifier then determines whether or not to accept based
on the responses. We stress that OTS proof systems are sound against both an unbounded
prover and unbounded OTS.

We observe that OTS is a refinement of and thus contained in MIP∗, and is also a
generalization of AM, where the otherwise classical verifier has additional 1-round query
access to a small, off-the-shelf quantum device. In summary, we have AM ⊆ OTS ⊆ MIP∗

(see also Figure 2).
In a classical proof system, an OTS can be understood as an instance-independent

hardware token. This device can be used to provide a commitment for a zero-knowledge
proof system for NP [19]; what is more, the one-time property of the OTS can be used
as an oblivious transfer device, which then yields a non-interactive zero-knowledge proof
system for NP [28]. We note that in the quantum case, our model requires a fully classical
verifier and hence the case of zero-knowledge for QMA [7, 5] in the OTS model is much
more complex, and a classical-verifier analogue to the NP proof systems above is not directly
applicable. Other approaches based on using the OTS as a one-time memory [6] also run
into a roadblock due to the fact that we require a fully classical verifier.

4 The entangled state |ψn⟩ is consumed during the interactive proof, hence a new OTS must be obtained
for subsequent evaluations (equivalently, the entanglement must eventually be replenished). This
situation is entirely analogous to the case of shared randomness which is also consumed in an interactive
proof system and must also eventually be replenished.
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12:6 Quantum Delegation with an Off-The-Shelf Device

Figure 2 Off-the-shelf (OTS) proof system. P is the quantum prover, V is the classical verifier,
and D a rudimentary off-the-shelf device which is entangled with the prover; each arrow represents
a single classical message.

OTS Proof Systems for QMA. Our first result is that any language in QMA is also in
OTS.

▶ Theorem 3 (Restated as part of Theorem 31). QMA ⊆ OTS .

An interpretation of this result is that starting with a conventional proof system for QMA,
we can exchange the unwavering trust of the verifier in its quantum verification process for
a classical verifier with two new features: (1) the verifier has access to an untrusted, and
instance-independent, off-the-shelf quantum device; and (2) the verifier interacts with the
prover (and the device) in a single simultaneous round.

Zero-knowledge OTS Proof System for QMA. What is more, we show that the OTS
proof system for QMA is also statistical zero-knowledge, meaning that we can simulate in
classical polynomial time the verifier’s transcript when interacting with the provers on a
yes-instance.

▶ Theorem 4 (Restated in Theorem 31). For every language L in QMA, there exists a
statistical zero-knowledge OTS proof system for L.

Delegated Quantum Computation in the OTS Model. As our final conceptual contribution,
we show how our OTS proof system for QMA (Theorem 3) can be adapted to the setting of
delegated quantum computation; note that the ZK property as described above also extends
to the delegated quantum computation paradigm.

▶ Theorem 5 (Restated as Theorem 32). BQP has a relativistic delegated quantum computation
protocol in the OTS model with the statistical zero-knowledge property.

We believe that this result is of particular impact since it addresses a new model for
delegated quantum computation that has distinct conceptual benefits over existing protocols:
1. Comparing to single-server protocols, we note that we make an extra assumption of an

off-the-shelf, isolated device. However, the benefits are:
a. We achieve soundness against an unbounded server; existing single-server, classical-

client delegation protocols require computational assumptions [31].
b. The client does not trust any quantum device at all; existing single-server, statistically

secure protocols require trust in a small quantum preparation device [4, 18].
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2. Comparing to existing multiple-server (MIP∗) protocols, we note that:
a. Our approach only requires a single high-performance quantum server that handles

the bulk of the computations; with a secondary efficient and generic device which need
not even be given a description of the problem instance. This has practical advantages,
especially when we consider that the off-the-shelf device can be acquired ahead of the
verification stage (Figure 1).

b. Our approach is a single round, which means that relativistic means to enforce
isolation are possible. The only other known relativistic protocol requires full quantum
computational power for both servers and is not ZK [22].

1.2 Proof approach and technical contributions
We first introduce two important techniques.

Self-testing. Self-testing (also called device-independence) is a ubiquitous and powerful
technique in the study of MIP∗ and related delegation protocols. The concept was introduced
by Mayers and Yao [33]. Informally, a protocol self-tests a particular state or measurement
when this state/measurements (or an equivalent version thereof) are required for obtaining
the maximal acceptance probability. The most well-known examples are the non-local games
known as the CHSH game and the Magic Square game [13, 36, 40, 45]. Subsequently,
numerous works have enriched our understanding of self-testing and its applications to
delegated quantum computation, e.g., [34, 35, 15, 11, 16, 37, 38]. Current approaches to
formalizing self-testing use the theory of approximate representation theory of groups and C∗-
algebras [43, 44, 32]. These formalisms, and especially their operationally-useful approximate
versions utilize a key stability result due to Gowers and Hatami which allows one to relate
approximate representations to exact representations [21].

Simulatable Codes. Recent works by Grilo, Yuen, and Slofstra [23], as well as Broadbent
and Grilo [5] introduce the notion of simulatable codes as a tool for establishing zero-
knowledge proof systems and protocols in the quantum setting. The idea is to use techniques
from quantum error-correcting codes to create a “simulatable” witness or proof for use
in the verification process. Here the witness is simulatable in the sense that there is an
efficient classical algorithm which can reproduce the description of the local density matrix
of the witness on any small enough subspace. This is a pivotal tool in establishing zero-
knowledge, and the application of the technique consists in developing a verification protocol,
(or verification circuit in the case of [5]) which verifies such simulatable witnesses; this can
then be applied to the situation of encoding e.g., a witness for QMA into a simulatable
code [5].

1.2.1 Obstructions to the straightforward approach
In delegating quantum computations in two- or multi-server models, the classical verifier is
able to command quantum provers [41] using two intertwined tests: (1) a computational test,
with acceptance probability based on the required quantum computation (e.g., computation-
by-teleportation [41] or energy checking of a local Hamiltonian [26, 22]); (2) a rigidity test,
ensuring provers’ actions stay within a known range (e.g., self-test via CHSH game or
Pauli braiding test). In order to establish the ZK property, we must show that responses
from the provers can be simulated using a classical probabilistic polynomial-time (PPT)
device. Generally, approaches used for the rigidity test can be simulated in a straightforward

TQC 2024



12:8 Quantum Delegation with an Off-The-Shelf Device

way, hence the difficulty in obtaining ZK in this setting is in simulating the energy test.
Furthermore, even if both tests are simulatable in isolation, this does not guarantee the ZK
property since a malicious verifier may form question pairs emanating from different tests,
during a single round.

Grilo [22] presents a game G(H) determined by an “XZ-type”5 Hamiltonian H. Honest
provers for this game share suitably many EPR pairs, and one prover privately holds a ground
state for H. The game G(H) combines an energy test with the Pauli braiding test [37, 46].
During the energy test, one prover reports measurement results of a randomly chosen term
Hi on their side of EPR pairs, and the other provides teleportation keys from a Bell basis
measurement on the other EPR pairs and the ground state. Combining the energy test with
the Pauli braiding test allows the verifier to ensure that provers share n EPR pairs and
that the required Pauli-X/Pauli-Z measurements are performed when measuring the local
term Hi.

The straightforward approach to obtaining a two-prover ZK proof system would be to
combine recent results on simulatable codes in order to make the measurement results in
Grilo’s energy test simulatable. More specifically, one could apply the well-known circuit-to-
Hamiltonian construction using the family of simulatable verification circuits given in [5].
Given such a circuit V , it is shown that local measurements on the ground state of the
corresponding Hamiltonian HV are simulatable and thus this approach would make the
results of the energy test simulatable. Unfortunately, this approach fails for two technical
reasons.

The Choice of Encoding. Firstly, one cannot employ previously-known self-testing tech-
niques to show the players perform the required measurements on the simulatable ground
states given in [5]. On the one hand, previously-studied single-round self-testing techniques
can only be used to show the players perform Pauli-X, and Pauli-Z measurements. On the
other hand, the choice of physical gates used by Broadbent and Grilo during the encoding of
logic gates may result in a local Hamiltonian that is not of XZ-type and thus local terms Hi

may require measurements that have no known self-test.

The Size of the Measurement. The second obstruction arises from the fact that existing
rigidity tests in this setting require both players to make large-sized measurements on their
shared state. These large measurements can provide an avenue for attack by a malicious
verifier which compromises the zero-knowledge property. In particular, since the Pauli
braiding test allows for requests for measurements on all qubits, a malicious verifier may
indicate to one player that an energy test is being played and simultaneously request Pauli-X
and Pauli-Z measurements on a large number of qubits. Such a measurement result cannot be
simulated using simulatable codes, which only protect against constant-sized measurements,
and thus this compromises zero-knowledge.

1.2.2 Overview of proof and technical results
In order to correct for an appropriate choice of encoding, we prove that one can re-instantiate
the verification circuit given by Broadbent and Grilo using an approach to simulatable codes
given in [23]. This change allows us to encode logical gates of the verification circuit given

5 These are Hamiltonians where each local term Hi is a real linear combination of tensor products of the
Pauli-X and Pauli-Z operators.
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by Broadbent and Grilo using a different set of physical gates and consequently, we show
that the local Hamiltonian corresponding to the circuit is of XZ-type, while preserving
simulatability.

▶ Theorem 6 (Informal version of Theorem 27). For any language L = (Lyes, Lno) in
QMA, there is a family of verification circuits Vx satisfying (1) the circuit-to-Hamiltonian
construction applied to Vx produces a Hamiltonian Hx which is of XZ-type, and (2) if
x ∈ Lyes there exists a polynomial-time algorithm that can approximate the reduced density
matrix obtained by tracing out all but 6 qubits of the ground state of Hx.

In order to overcome the large measurement problem, we introduce a new self-test
called the low-weight Pauli braiding test (LWPBT) which can self-test the low-weight tensor
products of Pauli measurements and n EPR pairs but only requires the players to make
measurements on a constant number of qubits.

▶ Theorem 7 (Informal version of Theorem 18). The low-weight Pauli braiding test can
self-test for n EPR pairs and 6-qubit Pauli measurements. This self-test is robust in the
sense that any ε-perfect strategy must be poly(n)

√
ε close to the canonical strategy.

We use a group-theoretical approach to prove the rigidity of the LWPBT. It can be
shown that the canonical perfect strategy S̃ for LWPBT defines an irreducible representation
of the Weyl-Heisenberg group H and every near-perfect strategy S for LWPBT forms an
approximate homomorphism f of H. The well-known Gowers-Hatami theorem [21] and its
variant [46] imply that the approximate homomorphism f of a finite group is close to a
representation ϕ, so S must be close to S̃. However, some subtle mathematical problems
have come up in earlier approaches. In particular, one may need to discard some irreducible
constituents of ϕ that do not correspond to S̃. To tackle this problem, we make further
improvements to the state-of-art understanding of the stability of groups. In particular, in
Theorem 18 we state and prove an enhanced version of the Gowers-Hatami theorem that can
be used for the stability analysis of the Weyl-Heisenberg group. Aside from our use case,
this new version can simplify previous approaches to self-testing.

We use the above technical results to derive a modified version of [22] by interleaving the
following tests: (1) a computational test consisting of an energy test in which a simulatable
witness uses low-weight Pauli-X and Pauli-Z measurements and, (2) a rigidity test consisting
of the LWPBT. The result of this modified Grilo protocol gives a ZK OTS protocol with
an inverse polynomial completeness-soundness gap. Finally, we apply a threshold parallel
repetition theorem to the above protocol to amplify the completeness-soundness gap to be
constant, thus demonstrating both Theorem 3 and Theorem 4. We then show that the proof
system is of a form that can be scaled down to yield a delegation protocol, yielding Theorem 5.

2 Preliminaries

We take [n] to denote the set {1, . . . n}. Given two real valued functions f, g : R → R, we
write f = O(g) (resp. f = Ω(g)) if there exists a positive real number M and an x0 ∈ R such
that |f(x)| ≤ Mg(x) (resp. |f(x)| ≥ Mg(x)) for all x ≥ x0. We call a function f negligible,
and write f = negl(n), if for all constants c > 0 we have f = O(n−c). For two distributions P
and Q on a finite set X the statistical differences of P and Q is given by

∑
x∈X |P (x) −Q(x)|.

In this paper, all Hilbert spaces are finite-dimensional. Given a Hilbert space H, we use
B(H) to denote the set of bounded linear operators acting on H, use U(H) to denote the
group of unitary operators on H, and use 1H to denote the identity operator on H. Given
an operator A ∈ B(H) we take A∗ to denote the adjoint operator (equivalently the conjugate
transpose) and define the trace norm ∥A∥tr := Tr

√
A∗A.

TQC 2024



12:10 Quantum Delegation with an Off-The-Shelf Device

2.1 Quantum information
A quantum state ρ on H is a positive operator in B(H) with Tr(ρ) = 1. It induces a semi-norm
∥A∥ρ :=

√
Tr(A∗Aρ) on B(H) which we call the ρ-norm. This norm is left unitarily invariant,

meaning that ∥UA∥ρ = ∥A∥ρ for all U ∈ U(H) and A ∈ B(H). Given two quantum states ρ
and σ we define their trace distance D(ρ, σ) = 1

2 ∥ρ− σ∥tr = maxP Tr(P (ρ− σ)) where the
max is taken over all projections P ∈ B(H).

We use |ΦEPR⟩ to denote the EPR pair in C2 ⊗ C2 and use |Φ⊗n
EPR⟩ to denote the n-qubit

EPR pair. We also take σI , σX , and σZ to denote the following Pauli operators:

σI =
[
1 0
0 1

]
, σX =

[
0 1
1 0

]
, and σZ =

[
1 0
0 −1

]
. (1)

For every a ∈ {0, 1}n and W ∈ {I,X,Z}n, we use σW (a) to denote the operator ⊗i∈[n]σ
ai

Wi

on (C2)⊗n where σ0
I = σ0

X = σ0
Z = σI . Definitions of these gates and other fundamental

concepts from quantum computing can be found in [39].

Families of Quantum Circuits. A unitary quantum circuit is simply a unitary which can
be written as a product of gates from some universal gate set U . Unless otherwise specified
we will assume the universal gate set is the following universal gate set {H,Λ(X),Λ2(X)},
where H is the Hadamard gate, Λ(X) is the controlled σX gate, and Λ2(X) is the Toffoli
gate. A general quantum circuit or simply a quantum circuit is a unitary quantum circuit
that can additionally apply non-unitary gates which, introduce qubits initialized in the 0
state, trace out qubits, or measure qubits in the standard basis.

▶ Definition 8 (Polynomial-time uniform circuit family). We say a family of quantum circuits
{Qn}n∈N is a polynomial-size family of quantum circuits if there exists polynomial r such
that Qn has size at most r(n). A family of quantum circuits {Qn} is called polynomial-time
uniform family if there exists a polynomial time Turing machine that on input 1n outputs a
description of Qn. In this case, the family will also be a polynomial-size family of quantum
circuits.

Given a quantum circuit Q, we denote its size (number of gates and number of wires)
by |Q|. The task of delegating the computation of Q is captured by the following promise
problem:

▶ Definition 9 (Q-CIRCUIT). The input is a quantum circuit Q on n qubits. The problem is
to decide between the following two cases:

Yes. ∥((|1⟩⟨1| ⊗ In−1)Q|0n⟩∥2 ≥ 1 − γ

No. ∥((|1⟩⟨1| ⊗ In−1)Q|0n⟩∥2 ≤ γ

when we are promised that one of the two cases holds.

Problem in Definition 9 is known to be BQP-complete for 1 − 2γ > 1
poly(n) .

2.2 Non-local games and rigidity
A two-player6 one-round nonlocal game G is a tuple

(
λ, µ, IA, IB ,OA,OB

)
, where IA, IB

are finite input sets, and OA,OB are finite output sets, µ is a probability distribution on
IA × IB, and λ : OA × OB × IA × IB → {0, 1} determines the win/lose conditions. A

6 These two players are commonly called Alice and Bob.
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quantum strategy S for G is given by finite-dimensional Hilbert spaces HA and HB , a unit
vector |ψ⟩ ∈ HA ⊗ HB, Alice’s POVMs {Ex

a : a ∈ OA}, x ∈ IA on HA, and Bob’s POVMs
{F y

b : b ∈ OB}, y ∈ IB on HB . The winning probability of S for game G is given by

ω(G,S) :=
∑

a,b,x,y

µ(x, y)λ(a, b|x, y) ⟨ψ|Ex
a ⊗ F y

b |ψ⟩ .

A quantum strategy S for a non-local game G is said to be perfect if ω(G,S) = 1. When the
game is clear from the context we simply write ω(S) to refer to the winning probability. The
quantum value of a non-local game G is defined as

ω∗(G) := sup{ω(S) : S a quantum strategy for G}.

In this paper, we assume all measurements employed in a quantum strategy are PVMs.
An m-outcome PVM {P1, · · · , Pm} corresponds to an observable

∑
j∈[m] exp( 2πi

m j)Pj , so a
quantum strategy for a game G =

(
λ, µ, IA, IB ,OA,OB

)
can also be specified by a triple

S = (τA, τB , |ψ⟩ ∈ HA ⊗ HB)

where τA(x), x ∈ IA are OA-outcome observables on HA, and τB(y), y ∈ IB are OB-outcome
observables on HB .

Here we introduce the well-known Mermin-Peres Magic Square game, in which Alice and
Bob are trying to convince the verifier that they have a solution to a system of equations
over Z2. There are 9 variables v1, . . . , v9 in a 3 × 3-array whose rows are labeled r1, r2, r3
and columns are labeled c1, c2, c3.

Each row or column corresponds to an equation: variables along the rows or columns
in {r1, r2, r3, c1, c2} sum to 0; variables along the column c3 sum to 1. In each round, Bob
receives one of the 6 possible equations and he must respond with a satisfying assignment
to the given equation. Alice is then asked to provide a consistent assignment to one of the
variables contained in the equation Bob received. The following table describes an operator
solution for this system of equations:

Table 1 Operator solution for Magic Square game.

A1 = σI ⊗ σZ A2 = σZ ⊗ σI A3 = σZ ⊗ σZ

A4 = σX ⊗ σI A5 = σI ⊗ σX A6 = σX ⊗ σX

A7 = σX ⊗ σZ A8 = σZ ⊗ σX A9 = σXσZ ⊗ σZσX

2.3 Complexity classes and zero knowledge
▶ Definition 10 (QMA). A promise problem L = (Lyes, Lno) is in QMA if there exist
polynomials p and q, and a polynomial-time uniform family of quantum circuits {Qn} where
Qn takes as input a string x ∈ Σ∗ with |x| = n, a p(n)-qubit quantum state |ψ⟩, and q(n)
auxiliary qubits in state |0⟩⊗q(n), such that:

(Completeness) if x ∈ Lyes, then there exists some |ψ⟩ such that Qn accepts (x, |ψ⟩) with
probability at least 1 − negl(n), and
(Soundness) if x ∈ Lno, then for any state |ψ⟩, Qn accepts (x, |ψ⟩) with probability at
most negl(n).

We sometimes refer to the family of circuits {Qn} in Definition 10 simply as a family of
verification circuits.

The following local Hamiltonian problem is QMA-complete for parameters k = 5 and
β − α = 1

poly(n) [29].
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▶ Definition 11. Let k ∈ N, α, β ∈ R with α < β, the k-Local Hamiltonian problem with
parameters α and β is the following promise problem. Let n be the number of qubits of
a quantum system. The input is a set of m(n) Hamiltonians H1, . . . ,Hm(n) where m is a
polynomial in n and each Hi acts on k qubits out of the n qubit system with ∥Hi∥ ≤ 1. For
H =

∑m(n)
j=1 Hj the promise problem is to decide between the following.

Yes. There exists an n-qubit state |φ⟩ such that ⟨φ|H |φ⟩ ≤ a ·m(n).
No. For every n-qubit state |φ⟩ it holds that ⟨φ|H |φ⟩ ≥ b ·m(n).

In this work, we also deal with MIP∗ proof systems that involve two provers and one
round.

▶ Definition 12. A promise language L = (Lyes, Lno) is in MIP∗[2, 1]c,s if there exists a
polynomial-time computable function that takes an instance x ∈ L to a description of a
non-local game Gx satisfying the following conditions.

(Completeness) For every x ∈ Lyes we have ω∗(Gx) ≥ c.
(Soundness) For every x ∈ Lno we have ω∗(Gx) < s.

We refer to the mapping, x 7→ Gx, as a MIP∗[2, 1]c,s proof system, or in some places a
MIP∗[2, 1]c,s protocol. When the parameters are clear from the context we simply call it an
MIP∗ proof system.

Next, we discuss zero knowledge. In an interactive proof system, a malicious verifier V̂ is
a probabilistic polynomial-time Turing machine which on input x and randomness θ samples
question q1 for either Alice or Bob. Given reply r1, the malicious verifier samples question
q2 in a way that may depend on q1 and r1. For a given quantum strategy S and malicious
verifier V̂ , we take V iew(V̂ (x),S) to be the random variable corresponding to the transcript
of questions and answers (x, θ, q1, r1, q2, r1). A protocol is zero-knowledge when for all “yes”
instances a simulator can sample from the distribution above.

▶ Definition 13. An MIP∗[2, 1]c,s proof system is statistical zero-knowledge if for every
x ∈ Lyes there exists an honest prover strategy S satisfying the following:
1. ω∗(S) ≥ c.
2. For any PPT malicious verifier V̂ there exists a PPT simulator Sim

V̂
with output

distribution that is ε-close to V iew(V̂ (x), S) in statistical distance for some negligible
function ε(|x|).

2.4 Simulatable codes and encodings of gates
Recall that a quantum error-correcting code (QECC) C = [[n, k]] is a map Enc : (C2)⊗k →
(C2)⊗n, which encodes a k-qubit state |ψ⟩ into an n-qubit state Enc(|ψ⟩) where n ≥ k.
The code is said to have distance d if the original state can be recovered from the encoded
state that has transformed under any quantum operation which acts on at most (d− 1)/2
qubits. Given an [[m, 1]] QECC with map Enc, we abuse notation and also write Enc for the
corresponding [[mn, n]] encoding that is obtained by applying Enc to each of the qubits in
an n-qubit system.

We use Ak
n to denote the set of k distinct numbers between 1 and n through this section.

Then Ak :=
⋃

n≥k A
k
n is the set of k distinct numbers. Given a k-qubit logical gate U and an

element a = (a1, . . . , ak) ∈ Ak, let U(a) denote the gate U applied to qubits a1, · · · ak.
Below we recall the definition of simulatable codes introduced in [23].

▶ Definition 14. Given a k-qubit logical gate U and a quantum error-correcting code C =
[[m, 1]], let (σU , σ

′
U ) be a pair of states, and let ℓ be a positive integer. For each 1 ≤ i ≤ ℓ,

let Oi be a mapping from elements a = (a1, · · · , ak) in Ak to unitaries Oi(a) acting only on
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(i) the physical qubits of codewords in C that corresponds to logical qubits a1, · · · , ak, and
(ii) the register that holds σU .

We say the tuple (σU , σ
′
U , ℓ,O1, · · · ,Oℓ) is an encoding of U in code C if

(Oℓ(a) . . .O1(a))(Enc(ρ) ⊗ σU )(Oℓ(a) . . .O1(a))∗ = Enc
(
U(a)ρU(a)∗)

⊗ σ′
U (2)

for all n ≥ k, elements a ∈ Ak
n, and n-qubit states ρ. If in addition, the unitaries

O1(a), · · · ,Oℓ(a) are gates in some set U for all A ∈ Ak, then we say the encoding
(σU , σ

′
U , l,O1, · · · ,Oℓ) uses physical gates in U .

Given a circuit of logical gates V = U1 . . . Uk we refer to an encoding of V as the
corresponding circuit of physical gates obtained by applying an encoding of each gate Ui.

▶ Definition 15. An encoding (σU , σ
′
U ,O1, . . . ,Oℓ) of a k-qubit logical gate U in a QECC

C is called s-simulatable if for all 0 ≤ t ≤ ℓ, n-qubit states ρ, and subsets S of the physical
qubits of Enc(ρ) ⊗ σU with |S| ≤ s, the partial trace

TrS

(
Ot(a) . . .O1(a))(Enc(ρ) ⊗ σU )(Ot(a) . . .O1(a))∗

)
is a 2|S | × 2|S | matrix whose entries are rational and can be computed in polynomial time
from t, a and S. In particular, this matrix is independent of ρ if C can correct arbitrary
errors on s qubits.

▶ Theorem 16 (Theorem 6 in [23]). Let U = {H,Λ(X),Λ2(X)}. For every s ∈ N, there exists
a constant n ∈ N and a [[n, 1]] QECC C such that any logical gate in U has an s-simulatable
encoding in C using physical gates in U .

3 Low-weight Pauli braiding test and its rigidity

For any a ∈ {0, 1}n and W ∈ {X,Z}n, we use W (a) to denote the sequence W a1
1 W a2

2 · · ·W an
n

where X0 = Z0 = I. Let IA := {W (a) : W ∈ {X,Z}n, a ∈ {0, 1}n such that |a| ≤ 6} and let
IB := {(W (a),W (a′)) : W ∈ {X,Z}n, a, a′ ∈ {0, 1}n such that |a|, |a′ | ≤ 6} be the question
sets for Alice and Bob respectively. We first describe the low-weight linearity test in Figure 3.

1. The verifier selects uniformly at random W ∈ {X,Z}n and strings a, a′ ∈ {0, 1}n

satisfying |a|, |a′| ≤ 6 (i.e. a, a′ both have at most 6 non-zero entries).
2. The verifier sends (W (a),W (a′)) to Bob. If a + a′ has weight at most 6 then the

verifier selects W ′ ∈ {W (a),W (a′),W (a+a′)} uniformly at random to send to Alice.
Otherwise, the verifier uniformly at random sends W ′ ∈ {W (a),W (a′)} to Alice.

3. The verifier receives two bits (b1, b2) from Bob and one bit c from Alice.
4. If Alice receives W (a) then the verifier requires b1 = c. If Alice receives W (a′) then

the verifier requires b2 = c. If Alice receives W (a + a′) then the verifier requires
b1 + b2 = c.

Figure 3 Low-weight linearity test.

Next, we introduce a natural version of the anti-commutation test in Figure 4. This test
is built from the well-known Magic Square game which we described in Section 2.2.

Combining the low-weight linearity test and low-weight anti-commutation test, we now
construct the low-weight Pauli braiding test and state its rigidity result.
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1. The verifier samples uniformly at random a string a ∈ {0, 1}n with exactly two non-
zero entries i < j. The verifier also samples a row or column q ∈ {r1, r2, r3, c1, c2, c3},
and a variable vk contained in q as in the Magic Square game.

2. Bob receives the question (q, a).
3. If k ̸= 9 then Alice receives W (a) = Ii−1WiI

j−iWjI
n−j ∈ IA with σWi ⊗ σWj = Ak.

If k = 9 then Alice receives question (v9, a).
4. The players win if and only if Bob responds with a satisfying assignment to q and

Alice provides an assignment to variable vk that is consistent with Bob’s.

Figure 4 Low-weight anti-commutation test.

▶ Definition 17. The low-weight Pauli braiding test (LWPBT) is played by executing with
probability 1/2 either the low-weight anti-commutation test or the low-weight linearity test.

The n-qubit LWPBT has a canonical perfect strategy S̃ in which Alice and Bob share
the n-qubit EPR pair |Φ⊗

EP R⟩ and Alice perform σW (a) := ⊗n
i=1σ

ai

Wi
on question W (a) ∈ IA.

We have the following rigidity result for near-perfect strategies of LWPBT.

▶ Theorem 18. There exists a constant Clw > 0 such that the following holds. For any ε > 0,
n ∈ N, and strategy S = (τA, τB , |ψ⟩ ∈ HA ⊗ HB) for the n-qubit LWPBT with winning
probability 1 − ε, there are isometries VA : HA → (C2)⊗n ⊗ Haux

A , VB : HB → (C2)⊗n ⊗ Haux
B

and a unit vector |aux⟩ ∈ Haux
A ⊗ Haux

B such that

∥(VA ⊗ VB)
(
τA(W (a)) ⊗ IdHB

|ψ⟩
)

−
(
σW (a) ⊗ IdC2n |Φ⊗n

EPR⟩
)

⊗ |aux⟩∥ ≤ Clwn
6ε1/4

for all W (a) ∈ IA.

The proof Theorem 18 uses a group-theoretical approach and can be found in the full
version of our paper [9]. The idea is that we can round an approximate homomorphism
(defined by a near-perfect stategy) of the Weyl-Heisenberg group to an exact representation
using an enhanced Gowers-Hatami theorem.

3.1 An enhanced Gowers-Hatami theorem
For a finite group G, we use Irr(G) to denote the unique (up to unitary equivalence of
elements) complete set of inequivalent irreducible representations. Given a finite group G,
a function f : G → U(H) from G to unitaries on a Hilbert space H, and an irreducible
representation ϕ : G → U(Cd), the Fourier transform of f at ϕ is the operator

f̂(ϕ) := 1
|G|

∑
g∈G

f(g) ⊗ ϕ(g), (3)

where ϕ(g) is the conjugate of the matrix ϕ(g) ∈ Md(C) in the standard basis.
Let f : G → U(H) be a function of a finite group G. Given a quantum state ρ on H and

a positive real number ε, we say f is an (ε, ρ)-homomorphism provided that f(g−1) = f(g)∗

and 1
|G|

∑
h∈G∥f(g)f(h) − f(gh)∥2

ρ ≤ ε for all g ∈ G. In this case, by the well-known
Gowers-Hatami theorem [21, 46], there is a Hilbert space K, an isometry V : H → K,
and a representation ϕ : G → U(K) such that ∥f(g) − V ∗ϕ(g)V ∥ρ ≤ ε for all g ∈ G.
The following enhanced version of this theorem allows us to disregard all one-dimensional
irreducible representations of the Weyl-Heisenberg group. Earlier works dealt with these
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one-dimensional representations by invoking a truncation of the isometry given by the
Gowers-Hatami theorem. Unfortunately, in general, truncation of an isometry can fail to be
an isometry.

▶ Theorem 19. For any (ε, ρ)-homomorphism f : G → U(H) of a finite group G on a
finite-dimensional space H, there exists a finite-dimensional Hilbert space K, an isometry
I : H → K, and a representation π : G → U(K) such that

(i) ∥f(g) − I∗π(g)I∥2
ρ ≤ ε for all g ∈ G, and

(ii) ξ ∈ Irr(G) is an irreducible constituent of π only if f̂(ξ) ̸= 0.

We refer the readers to the full paper [9] for the proof details.

4 Modified Hamiltonian game

In this section, we show that for some local Hamiltonian H, one can construct a nonlocal
game G(H) whose winning probability is closely related to the ground state energy λ0(H)
of H. Our game is based on the Hamiltonian game introduced by Grilo [22]. We employ
LWPBT against dishonest quantum provers and then perform parallel repetition to achieve a
constant completeness-soundness gap. To incorporate LWPBT in our modified Hamiltonian
test, we consider Hamiltonians with specific structures:

▶ Definition 20. We say a Hamiltonian H is of XZ-type if it can be decomposed as
H = 1

m

∑m
ℓ=1 γℓHℓ where each γℓ ∈ [−1, 1] and each term Hℓ is a tensor product of operators

σX , σZ or σI .

Next, we define the relevant energy test which is analogous to the energy test used in [22].

▶ Definition 21 (Energy test). Given an n-qubit 6-local Hamiltonian H = 1
m

∑m
ℓ=1 γℓHℓ of

XZ-type we define the following energy test:
1. The verifier picks a term Hℓ for ℓ ∈ [m] taken uniformly at random, and selects uniformly

at random from the pairs {(W, r) ∈ {X,Z}n × {0, 1}n : σW (r) = Hℓ}.
2. The verifier sends W (r) to Alice, and tells Bob that the players are playing the energy

test.
3. Alice responds with a single value c ∈ {−1, 1} and Bob responds with 2n bits

a1, . . . an, b1, . . . bn.
4. The verifier next computes bit string d as follows. Take di = (−1)ai if ri = 1 and Wi = X,

take di = (−1)bi if ri = 1 and Wi = Z, and take di = 0 in all other cases.
5. The verifier accepts if c ·

∏
i di ̸= sign(γl), and rejects with probability |γl | otherwise.

Combining the LWPBT and Energy test we define our modified Hamiltonian test:

▶ Definition 22 (Hamiltonian test). Let H = 1
m

∑m
ℓ=1 γℓHℓ be a k-local Hamiltonian of

XZ-type and let p ∈ (0, 1). We define the following game G(H, p): with probability (1 − p)
the players play LWPBT introduced in Section Section 3, and with probability p the players
play energy test described in Definition 21.

We refer to a strategy S for G(H, p) as a semi-honest strategy if the players employ the
canonical perfect strategy when playing LWPBT. Hence in a semi-honest strategy Alice and
Bob hold n EPR pairs and Alice must perform σW (r) on question W (r) since she cannot
distinguish questions from LWPBT or energy test. We also define the honest strategy Sh for
G(H, p) in which the players employ the canonical perfect strategy when playing LWPBT,
and in the energy test, Bob honestly teleports the ground state of H to Alice and provides
the verifier with the teleportation keys.
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Below we analyze the players’ ability to win the overall game G(H, p) assuming the players
are using a semi-honest strategy.

▶ Lemma 23 (Lower bound on semi-honest strategies). Suppose H = 1
m

∑m
l=1 γlHl is an

n-qubit 6-local XZ Hamiltonian, and Alice and Bob are performing a semi-honest strategy S
for G(H, p). Then

ω(S) ≤ ω(Sh) = 1 − p( 1
2m

∑
l

|γl| + 1
2λ0(H)).

Proof. Suppose the players are employing a semi-honest strategy S = (τA, τB , |ψ⟩ ∈ HA ⊗
HB) for G(H, p). Let τ := TrHB

(|ψ⟩ ⟨ψ|). Since the players win the LWPBT perfectly,
they can only lose the overall game if they are playing an instance of the energy test. Let
a, b ∈ {0, 1}n be the answers Bob provides in the energy test, and let ρ := σb

Xσ
a
Zτσ

a
Zσ

b
X .

Suppose in a round of the energy test, the verifier picks an ℓ ∈ [m] and selects a W (r)
for Alice. As discussed above, since Alice cannot distinguish questions from LWPBT and
the energy test, she must perform σW (r) = Hℓ on her registers. Hence E(c ·

∏
i di) =

Tr(Hℓσ
b
Xσ

a
Zτσ

a
Zσ

b
X) = Tr(Hℓρ). Let pℓ be the probability of c

∏
i di = sign(γℓ). Then

E(c
∏

i di) = pℓsign(γℓ) − (1 − pℓ)sign(γℓ), or in other words, γℓE(c
∏

i di) = (2pℓ − 1)|γℓ |.
This implies the verifier rejects with probability

pℓ|γℓ | =
|γℓ | + γℓE(c

∏
i di)

2 = |γℓ | + γℓTr(Hℓρ)
2 .

Thus by averaging over ℓ ∈ [m] we see that the players lose the energy test with probability

1
m

∑
ℓ∈[m]

|γℓ | + γℓTr(Hℓρ)
2 = 1

2m
∑

ℓ∈[m]

|γℓ | + 1
2Tr(Hρ).

This probability is minimized if and only if ρ is indeed the density matrix of the ground state
of H and in such case, the probability of winning the overall game is at most

1 − p
( 1

2m
∑

ℓ∈[m]

|γℓ | + 1
2λ0(H)

)
.

This probability can be achieved if Bob teleports over the ground state and supplies the
verifier with the verification keys in the energy test. ◀

▶ Lemma 24 (Upper bound on dishonest strategies). Let H = 1
m

∑m
ℓ=1 γℓHℓ be a 6-local,

n-qubit Hamiltonian of XZ-type. For any η ∈ (0, 1), let p = 4n−6η3/4

(Clw+1)33/4 where Clw is
the constant given in Theorem 18. Then ω∗(

G(H, p)
)

≤ ω(Sh) + η, where ω(Sh) = 1 −
p
( 1

2m

∑
ℓ∈[m]|γℓ | + 1

2λ0(H)
)

as in Lemma 24.

Proof. Suppose the provers are employing a strategy S = (τA, τB , |ψ⟩) for G(H, p) that wins
LWPBT with probability 1−ε and wins the energy test with probability δ+1−

∑
ℓ
|γℓ |

2m − λ0(H)
2 .

Theorem 18 implies δ ≤ Clwn
6ε1/4. Then for p := 4n−6η3/4

(Clw+1)33/4 with η ∈ (0, 1), we have

η + ε = η/3 + η/3 + η/3 + ε ≥ 4( η3ε
33 )1/4 = p(Clw + 1)n6ε1/4. It follows that

pδ − (1 − p)ε ≤ pCn6ε1/4 + pε− ε ≤ pClwn
6ε1/4 + pn6ε1/4 − ε = p(Clw + 1)n6ε1/4 − ε ≤ η.

Hence the overall winning probability is given by

ω(S) = (1 − p)(1 − ε) + p(δ + 1 −
∑

ℓ
|γℓ |

2m − λ0(H)
2 ) = ω(Sh) + pδ − (1 − p)ε ≤ ω(Sh) + η.

This completes the proof. ◀
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In the rest of this paper, given an n-qubit, 6-local Hamiltonian H of XZ-type and
parameters α and β with β − α ≥ 1/poly(n), we use G(H) to denote the game G(H, p) with
p = 32n−6(β−α)24

27(Clw+1)4 .

▶ Theorem 25. Given an n-qubit, 6-local Hamiltonian H = 1
m

∑m
ℓ=1 γℓHℓ and parameters

α, β with β − α ≥ 1/poly(n), let ωα (resp. ωβ) denote the maximum winning probability for
G(H) when λ0(H) ≤ α (resp. λ0(H) ≥ β). Then ωα − ωβ ≥ 1/poly(n).

Proof. Let η := 16(β−α)32

27(Clw+1)4 , and let p := 4n−6η3/4

(Clw+1)33/4 . Then p = 32n−6(β−α)24

27(Clw+1)4 , and hence
G(H) = G(H, p). By Lemma 23 and Lemma 24 we have ω(Sh) ≤ ω∗(

G(H, p)
)

≤ ω(Sh) + η.
This implies ωα ≥ 1 − p( 1

2m

∑
ℓ|γℓ | + 1

2α) and ωβ ≤ 1 − p( 1
2m

∑
ℓ|γℓ | + 1

2β) + η. Since
n6(β − α)7 ≤ O(n−1), it follows that

ωα − ωβ ≥ 1
2p(β − α) − η = 16n−6(β − α)25

27(Clw + 1)4 (1 − n6(β − α)7) ≥ 16n−6(β − α)25

27(Clw + 1)4 .

Hence ωα − ωβ ≥ 1/poly(n). ◀

We apply a threshold parallel repetition theorem due to Yuen for the gap amplification.
For every n ∈ N, let G(H), wα and wβ be as in Theorem 25. By [51, Theorem 41], there
exists a poly(n)-computable transformation, called anchoring, that transforms G(H) to
a two-player game G(H)⊥ with winning probability 1 − 1−w∗(G(H))

2 . So w∗(G(H)⊥) ={
1 − εα/2 if λ0(H) ≤ α

1 − εβ/2 if λ0(H) ≥ β
, where εα := 1−wα and εβ := 1−wβ . Then by [51, Theorem 42],

there is a universal constant C > 0 such that for all integer m ≥ 1, and γ ≥ 0, the probability
that in the game G(H)m

⊥ the players can win more than
(
w∗(G(H)⊥) + γ

)
m games is at

most (1 − γ9/2)Cm. Take γ := εα−εβ

4 and m = max{4γ−2, 2Cγ−9}. Let Ĝ(H) := G(H)m
⊥ be

the m parallel repeated anchoring version of G(H). We show that this nonlocal game has a
constant completeness-soundness gap.

▶ Theorem 26. Let ω̂α (resp. ω̂β) be the maximum winning probability for Ĝ(H) when
λ0(H) ≤ α (resp. λ0(H) ≥ β). Then ω̂α − ω̂β ≥ 1/4.

Proof. If λ0(H) ≥ β, then ω̂β ≤ (1 − γ9

2 )Cm ≤ (1 − γ9

2 )2/γ9
< e−1 < 1/2. Now suppose

λ0(H) ≤ α. An optimal strategy S for G(H)⊥ has winning probability 1 − εα

2 . Let X be the
random variable for the number of games the strategy Sm wins. Then X ∼ Binomial(m, 1 −
εα

2 ), so EX = m(1− εα

2 ) and VarX = m εα

2 (1− εα

2 ). Since (1− εα

2 )−(1− εβ

2 +γ) = εβ−εα

2 −γ = γ,
we obtain that

Pr(X ≤ (1 − εβ

2 + γ)m) ≤ Pr(|X − EX | ≥ γm) ≤
m(1 − εα

2 ) εα

2
(γm)2 = 1

mγ2 ≤ 1/4.

This implies ω̂α ≥ w(Sm) = 1 − Pr(X ≤ (1 − εβ

2 + γ)m) ≥ 3/4, so the theorem follows. ◀

5 Zero-knowledge proof system

In this section, we show that the family of games described in Definition 22 provides a
statistical zero-knowledge MIP∗[2, 1] protocol for QMA with inverse polynomial complete-
ness/soundness gap.
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5.1 Simulation of history states for XZ-Hamiltonians
Before we introduce our MIP∗ protocol and proceed to our result on zero-knowledge, we
reformulate a result, originally introduced by Broadbent and Grilo [5] (Lemma 3.5), so that
it is more amenable to device-independent techniques.

▶ Theorem 27 (Simulation of history states). For any language L = (Lyes, Lno) in QMA and
s ∈ N, there is a family of verification circuits V (s)

x = UT . . . U1 for L that acts on a witness of
size p(|x|) and on q(|x|) ancillary qubits such that there exists a polynomial-time deterministic
algorithm SimV (s) that takes as input an instance x ∈ L and a subset S ⊆ [T + p+ q] with
|S| ≤ 3s+ 2, then outputs a classical description of an |S|-qubit density matrix ρ(x, S) with
the following properties:
1. If x ∈ Lyes, then there exists a p(|x|)-qubit witness ψs such that V (s)

x accept with probability
at least 1 − negl(n) on ψs and ∥ρ(x, S) − TrS(ρ)∥tr ≤ negl(|x|), where

ρ = 1
T + 1

∑
t,t′∈[T +1]

|unary(t)⟩ ⟨unary(t)| ⊗ Ut . . . U1(ψs ⊗ |0⟩ ⟨0|⊗q)U∗
1 . . . U

∗
t′

is the history state of V (s)
x on witness ψs.

2. Let Hi be one of the terms from the circuit-to-local Hamiltonian construction from V
(s)

x ,
and let Si be the set of qubits on which Hi acts non-trivially. Then Tr(Hiρ(x, Si)) = 0
for all x ∈ L.

3. The Hamiltonian H from the circuit-to-local Hamiltonian construction is a 6-local Hamilto-
nian of XZ type.

The first two points were proven by Broadbent and Grilo using simulatable codes constructed
from a different set of physical gates [5]. The last point follows from a similar approach in
[25, Lemma 22]. A detailed proof can be found in the full version of our paper [9].

Below we only need to invoke Theorem 27 for the case of s = 2 in order to our zero-
knowledge protocol. We use Vx to denote V (2)

x throughout the rest of this section.

5.2 A two prover zero-knowledge proof system for QMA
Let L = (Lyes, Lno) be a language in QMA. Figure 5 describes a two-prover one-round
interactive proof system for L with a constant polynomial completeness-soundness gap.

x
Theorem 27−−−−−−−→ Vx

circuit-to-Hamiltonian−−−−−−−−−−−−−−→ Hx
Definition 22−−−−−−−−→ G(Hx) Theorem 26−−−−−−−→ Ĝx := Ĝ(Hx)

Figure 5 x is an instance in L ∈ QMA. Vx is a poly(|x|)-size quantum circuit. Hx is a poly(|x|)-
qubit 6-local Hamiltonian of XZ-type. Ĝx is a nonlocal game with poly(|x|)-bit questions and
poly(|x|)-bit answers.

To prove the above interactive proof system for L has the statistical zero-knowledge
property, we first establish that any malicious verifier V̂ and x ∈ Lyes, there exists a PPT
simulator that can sample from V iew(V̂ (x),Sh), where Sh is the honest strategy for Gx

defined in Section 4.

▶ Lemma 28. Suppose x ∈ Lyes for some language L = (Lyes, Lno) in QMA. Let Gx be the
corresponding nonlocal game described in Figure 5, and let Sh be the honest strategy for Gx

defined in Section 4. For any malicious verifier V̂ there exists a PPT algorithm Sim
V̂

with
output distribution negligibly close to V iew(V̂ (x),Sh),
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The proof of this lemma can be found in the full version of our paper [9]. All that remains
is to argue that the interactive protocol described in Figure 5 based on the scaled-up game
Ĝx is statistically zero-knowledge.

▶ Theorem 29. The protocol described in Figure 5 is statistical zero-knowledge and has a
constant completeness-soundness gap.

Proof. The constant completeness-soundness gap follows directly from Theorem 26. To show
the statistical zero-knowledge, we first consider the anchoring procedure for the game Gx.
We can specify an honest strategy Sh,⊥ for the anchored version of Gx by fixing a choice
of output for either player who receives question ⊥ in the honest strategy. Then, given
any malicious verifier V̂ (x), the simulator given in Theorem 29 can be trivially modified to
sample from a distribution which is negligibly close to V iew(V̂ (x),Sh,⊥).

In the case of the threshold parallel repeated game Ĝx, the honest strategy Sm
h,⊥ is taken

to be the m-fold product of the honest strategy Sh,⊥. Then, as commented in [23], since
the protocol only queries each player once, a new simulator can be obtained by sampling
according to the m-fold product of the simulator used in the above lemma. ◀

6 Off-the-shelf model

6.1 Formal description of the model
Here we provide a formal description of the OTS model. This model is defined as a refinement
of MIP∗, where the completeness condition is weakened, allowing only one of the provers to
be “all-powerful”, while the other has limited functionality determined independently of the
problem instance.

Off-the-shelf device. We first formalize the definition of a family of off-the-shelf devices.
A verification device D = (|ψ⟩ , {P 1

a }a, . . . , {P q
a }a) consists of a state |ψ⟩ on Hilbert spaces

KA ⊗ KB and a collection of POVMs {P 1
a }a, . . . , {P q

a }a on KA. We say that a quantum
strategy S = ({Ex

a }, {F y
b }, |ϕ⟩ ∈ HA ⊗ HB) can be implemented using D, if three conditions

hold: (i) HA = KA and HB = KB ⊗ KB′ for some Hilbert space KB′ . (ii) The set of
measurements in S which act on HA are a contained in D. (iii) The shared state |ϕ⟩ in S
can be decomposed as |ϕ⟩ = |ψ⟩ ⊗ |ϕ′⟩ where |ψ⟩ is the state in D and |ϕ′⟩ is some auxiliary
state held on a Hilbert space KB′ .

Given a collection of verification devices {Dn}n∈N, where each Dn consists of a state |ψn⟩
and a sequence of POVMs, we say {Dn}n∈N is an efficient family of off-the-shelf devices if
there exists a polynomial-time uniform family of quantum circuits {Qn}n∈N satisfying the
following: Qn generates the state |ψn⟩ from an all 0 state, and on input i measures |ψn⟩
using the i-th POVM from Dn.

▶ Definition 30. A promise language L = (Lyes, Lno) has an off-the-shelf (OTS) proof system
if there exists an efficient family of off-the-shelf devices {Dn}n∈N, and a polynomial-time
computable function that takes an instance x to the description of a non-local game Gx

satisfying the following:
1. Completeness using OTS devices. For any x ∈ Lyes with |x| ≤ n, there exists a

quantum strategy Sx, which can be implemented using Dn, obtaining ω(Gx,Sx) ≥ c.
2. Soundness. For any x ∈ Lno we have ω∗(Gx) < s.

We use OTS to denote the class of all languages L which admits an OTS proof system with a
constant completeness-soundness gap.
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1. Set-up: The client sends a set-up parameter k ∈ N to the server who provides a
verification device Dk from an efficient family of off-the-shelf devices {Dn}n.

2. Choice of computation: The client sends a classical description of circuit Q,
satisfying |Q| ≤ k to the server.

3. Verifiable delegation: The client plays a 1-round game ĜQ, using the server and
device Dk as players. The client accepts if and only if the game is won.

Figure 6 A delegation protocol between a polynomial-time classical client and polynomial-time
quantum server, who provides an untrusted verification device during set-up.

Any OTS proof system is described as a special instance of a 2-player, 1-round MIP∗

proof system with additional constraints regarding the completeness condition and we say
that an OTS proof system is statistically zero-knowledge if it is statistically zero-knowledge
as an MIP∗ proof system (see Definition 13 for details).

6.2 Applications to ZK and delegated computation
In this section, we show that any language in QMA admits a statistical zero-knowledge OTS
proof system. We also consider how the OTS model can be scaled down to provide a protocol
for verifiable delegated quantum computation.

▶ Theorem 31. For every language L in QMA, there exists a statistical zero-knowledge OTS
proof system for L with constant completeness and soundness gap.

Proof. We will be working with the proof system sending an instance x to game Ĝx, as
described in Figure 5. Using the rigidity results in Section 3, we have already shown
completeness and soundness of properties of the individual game Ĝx in Section 4. The ZK
property of this game has also been shown in Section 5. All that remains to show is that this
protocol further satisfies the extra restrictions of completeness using OTS devices outlined in
Definition 30. That is, we need to show that there exists an efficient family of OTS devices
{Dn} which can implement the honest strategy Sx for all yes instances x.

For each L ∈ QMA, there exists a polynomial f such that, for all x ∈ L of size |x| = n the
corresponding Hamiltonian Hx is supported on at most f(n) qubits. Next suppose x ∈ Lyes

with |x| ≤ n. In the honest strategy for the game Gx, Alice and Bob share at most f(n)-EPR
pairs, additionally, Bob privately holds a ground state ρ for Hx. The measurements required
by Alice always correspond to σX or σZ on up to 6 qubits of the shared EPR pairs, or
σXσZ ⊗ σZσX on two qubits. In the honest strategy Sx for the m-fold parallel repeated
anchoring game Ĝx, the players share mf(n)-EPR pairs and Alice’s measures in σX or σZ

on up to 6m qubits or measures with σXσZ ⊗ σZσX on 2m qubits. Since m = poly(n), we
then satisfy the completeness condition required by specifying an efficient family of OTS
devices {Dn}, where for each n the verification device Dn contains mf(n)-EPR pairs and all
of the above required Pauli measurements on up to 6m qubits. ◀

In our application towards delegated quantum computation, we consider a novel type of
interactive protocol, where in addition to exchanging classical messages, the server can send
an untrusted verification device, as defined in Section 6.1, to the client (see Section 1). In
Figure 6, we consider the case where in the first “message”, called a set-up stage, the prover
sends an untrusted verification device, which is followed by classical communication.
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▶ Theorem 32. For every language L in BQP, there is a statistical-zero-knowledge delegation
protocol as outlined in Figure 6 for L with constant completeness and soundness gap.

Proof (Sketch). We can view the BQP-complete problem from Definition 9 as a language
in QMA. This allows us to apply the efficient mapping outlined in Figure 5 to obtain a
corresponding game ĜQ. In this case, the ground state of the underlying Hamiltonian can be
prepared by a polynomial-time quantum prover. Thus, as in the proof of Theorem 31, we
can define the required polynomial-time uniform family of OTS devices {Dn}n∈N by taking
Dn to contain suitably many EPR pairs, as well as the required Pauli measurements. Since
furthermore the required ground state can always be prepared by a polynomial-time quantum
prover, an honest server can obtain the required completeness in Step 3 by generating this
state and teleporting it to the verification device when required. We also have that the above
delegation protocol inherits the ZK property via the results of Theorem 31. ◀
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