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Abstract
Analog quantum simulation is a promising path towards solving classically intractable problems
in many-body physics on near-term quantum devices. However, the presence of noise limits the
size of the system and the length of time that can be simulated. In our work, we consider an error
model in which the actual Hamiltonian of the simulator differs from the target Hamiltonian we
want to simulate by small local perturbations, which are assumed to be random and unbiased. We
analyze the error accumulated in observables in this setting and show that, due to stochastic error
cancellation, with high probability the error scales as the square root of the number of qubits instead
of linearly. We explore the concentration phenomenon of this error as well as its implications for
local observables in the thermodynamic limit. Moreover, we show that stochastic error cancellation
also manifests in the fidelity between the target state at the end of time-evolution and the actual
state we obtain in the presence of noise. This indicates that, to reach a certain fidelity, more noise
can be tolerated than implied by the worst-case bound if the noise comes from many statistically
independent sources.
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2:2 Stochastic Error Cancellation in Analog Quantum Simulation

1 Introduction

Quantum computers are expected to outperform classical computers at solving certain
problems of interest in physics, chemistry, and materials science. Simulating the dynamics of
many-body quantum systems is an especially hard problem for classical computers, making
quantum dynamics a particularly promising arena for seeking quantum advantage. Eventually,
scalable fault-tolerant quantum computers will be able to perform accurate simulations of
quantum dynamics, but these robust large-scale quantum machines are not likely to be
available for many years. Meanwhile, what are the prospects for reaching quantum advantage
using near-term quantum simulators that are not error-corrected?

Circuit-based quantum algorithms for quantum simulation offer great flexibility and can
be error-corrected, but with current quantum technology analog quantum simulators may offer
substantial advantage in the system size and time that can be achieved in simulation [15,17,35].
Analog quantum processors have tunable Hamiltonians running on quantum platforms, but
need not have universal local control to perform informative simulations [15,18,20]. However,
because these devices are not error-corrected, it is especially important to understand how
errors accumulate during analog simulations of quantum dynamics.

Recently Trivedi et al. used the Lieb-Robinson bound to show that the errors in expectation
values of local observables can be independent of system size for short time evolution [47].
They used an error model in which the actual Hamiltonian realized in the device differs from
the desired target Hamiltonian by small local perturbations. More precisely, they considered
a geometrically local Hamiltonian on a d-dimensional lattice with N sites (each occupied by
a qubit), and assumed that the actual Hamiltonian H ′ and the target Hamiltonian H are
related through

H ′ = H + δ

M∑
i=1

Vi. (1)

Here each Vi is a local term with ∥Vi∥ ≤ 1, M = O(N) denotes the number of independent
error terms, and δ is a small number characterizing the magnitude of the local perturbations.
One of their main conclusions is that the error in the expectation value of a local observable
at time t is at most O(td+1δ), where td+1 is essentially the volume of the local observable’s
Lieb-Robinson past light cone, and is independent of the system size. For a general observable
that is not necessarily local, or for t large enough so that information has the time to reach
every part of the system, the error is at most O(Ntδ) as expected from first-order perturbation
theory.

This result can be seen as a worst-case bound, which applies even if the small local
perturbations are chosen adversarially to produce the largest possible error. However, this
worst-case choice is unlikely to occur in practice. For estimating the accumulated error
that should be anticipated under realistic conditions, it is often beneficial to consider a
probabilistic error model rather than an adversarial one. To be concrete, we consider the
error model

H ′ = H +
M∑

i=1
giVi. (2)

where in contrast to (1), we assume that the local perturbations are stochastic and statistically
independent, e.g., each gi is an independent Gaussian random variable with mean 0 and
standard deviation δ. Instead of the worst case, we may now consider the accumulation of
error in the average case. That is, we envision sampling H ′ from an ensemble of possible
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Figure 1 Numerical study of observable error of a 18-qubit system time-evolving under a
Heisenberg XXX Hamiltonian H = −J

∑
i
σ⃗i · σ⃗i+1 +

∑
i
(h+gi)Xi. Local observable Y2 is measured

on the second qubit at time t, with the system initial state being |0⟩⊗N , and the local perturbations
are Vi = Xi. The coupling strength J between qubits is set to be (0.2)π, and h = 2π. We compare
the case of gi = δ = 0.01 (symmetric error), with a Gaussian model of random local perturbations,
where gi ∼ N (0, δ2) (random error). The rapid oscillations of the error as a function of time are
discussed in Appendix A.

Hamiltonians that might be realized in the device, estimating the error that is typical for
this ensemble. In other scenarios, for example in the analysis of the Trotter error in digital
quantum simulations [10, 48], the average-case error is found to be much better than the
worst case, and the same can be expected in this analog setting. As an example, Fig. 1 shows
the difference between the worst-case and average-case error accumulation for time evolution
in a one-dimensional Heisenberg spin system perturbed by a site-dependent magnetic field.

Simple classical reasoning provides an intuitive understanding of this finding. The
cumulative effect of M error sources, each contributing a Gaussian error with standard
deviation δ and mean 0, produces a total Gaussian error with mean 0 and standard deviation√

Mδ. For M ≫ 1, this O(
√

M) cumulative error, resulting from stochastic error cancellations,
is significantly suppressed compared to the O(M) cumulative error which would occur in the
absence of such cancellations. Because of the stochastic cancellations, we can tolerate more
hardware error (larger δ) than the worst-case error bound suggests.

In this paper, we explore the role of such error cancellations in analog quantum simulators
and show that with high probability an error bound with square-root dependence on the
system size N can be achieved for general observables, in contrast to the linear N -dependence
for the worst-case error bound. That is, the error bound is improved from O(Ntδ) to
O(

√
Ntδ). From this result, we derive an improved bound for local observables in the

thermodynamic limit as well. Using the Lieb-Robinson bound, we show that the average-case
error of local observables in the thermodynamic limit is bounded above by O(td/2+1δ) as
opposed to the O(td+1δ) bound on the worst-case error. For fidelity, we show that the fidelity
decays as exp(−O(

√
Nδt)) for small δ as N increases, as observed in [40], and is therefore

slower than the exponential decay one would expect from the worst-case bound.
We are only aware of a few works besides [47] that analyze the error in analog simulation.

In [34] the error is analyzed by averaging over Haar random states, while in [37] the leading-
order error in a Gibbs state is expressed in terms of Fisher information. In contrast, we study
how errors accumulate during time evolution of a quantum state. The exp(−O(

√
Nδt)) decay

TQC 2024



2:4 Stochastic Error Cancellation in Analog Quantum Simulation

of fidelity is observed in [40] both experimentally and numerically, though in a setting different
from ours. In [40], the dominant noise comes from the variation of the Rabi frequency, which
is described by a single random variable. Using additional randomness introduced through
the eigenstate thermalization hypothesis (ETH) [16] and neglecting oscillatory contributions,
the authors are able to provide an explanation of the non-exponential decay. In our setting,
we do not assume ETH or neglect any error term, but model the noise as coming from
multiple statistically independent sources, and obtain a similar non-exponential decay of
fidelity.

2 Main results

Following (2), we consider a generalized setup of the local perturbation model, where each gi

in (2) is a χ-deformed Gaussian defined as follows:

▶ Definition 1 (χ-deformed Gaussian random variable). A random variable g is a χ-deformed
Gaussian random variable if there exists θ ∼ N (0, 1) such that g = χ(θ), and χ : R → R is a
strictly monotonic increasing differentiable function satisfying

|dχ(θ)/dθ| ≤ δ,

χ(0) = 0,

χ(+∞) = Γ, χ(−∞) = −Γ,

E[χ(θ)] = 0.

(3)

Such a random variable g has the nice properties that |g| ≤ Γ with probability 1, and
|g| ≤ δ|θ|. We allow choosing Γ = +∞. This definition helps us generalize beyond the
Gaussian noise model. Notably, we have the following examples that can be obtained as
χ-deformed Gaussian: (1) the uniform distribution gi ∼ U([−δ′, δ′]) where δ =

√
2/πδ′,

χ(θ) = δ′ erf(θ/
√

2), and Γ = δ′; (2) the truncated Gaussian distribution for which gi obeys
the Gaussian distribution N (0, δ′2) conditional on |gi| ≤ Γ, where δ = δ′ (one can in fact
choose δ to be slightly smaller than δ′), and χ(θ) = erf−1(erf( θ√

2 )erf( γ√
2δ′ ))

√
2δ′.

Denoting H as a target Hamiltonian to be simulated and H ′ as the actual Hamiltonian
implemented, we show in Section 3 and 4 that

▶ Theorem 2. On a lattice consisting of N-sites, for Hamiltonians H and H ′ related
through (2) (M = O(N)), with each gi being an independent χ-deformed Gaussian with
|dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞] (as defined in Definition 1), and

√
Ntδ ≤ O(1), we have∣∣tr[ρeiH′tOe−iH′t] − tr[ρeiHtOe−iHt]

∣∣ ≤ O(a
√

Ntδ∥O∥) + O(Nt2δ2∥O∥) (4)

with probability 1 − 2e−ca2 , for arbitrary a > 0 and some absolute constant c > 0.

Note that Theorem 2 holds even when Γ = ∞. We assume
√

Ntδ ≤ O(1), which gives the
time scale in which the simulation provides meaningful results. This result is stronger than
the O(Ntδ∥O∥) scaling one would get without error cancellation, i.e. gi = δ. This indicates
that for given system size N and time t, we can tolerate higher local perturbations up to

1√
Nt

instead of 1
Nt .

Additionally, one may be interested in the thermodynamic limit (N → ∞) as opposed to
a finite system [3] and explore quantum simulation tasks that are stable against extensive
errors. More precisely, for a local observable O that is supported only on a constant number
of sites, and a geometrically local Hamiltonian H, we want the error bound to be independent
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of the size of the system. With such an error bound, computing the expectation value of
local observables in time evolution falls into the category of “stable quantum simulation
tasks” as defined in [47, Prop. 4].

An system-size independent error bound implies that the hardware error (δ) does not
need to be scaled down with system size, which is highly desirable for analog simulators.
Specifically, we consider a bound for local observables acting on O(1) adjacent sites in a
quantum system on a lattice Zd

L, where d is the lattice dimension and L is the number of
sites in each direction. Combining Theorem 2 with the Lieb-Robinson bound [28], we show
in Section 5 that the stability of the quantum task can be stated:

▶ Theorem 3. We consider a geometrically local Hamiltonian H on a d-dimensional lattice
Zd

L with L sites in each direction, and a local observable O supported on O(1) sites. The
Hamiltonian can be written as H =

∑
α∈Zd

L
Hα, where ∥Hα∥ = O(1) and Hα acts non-

trivially only on sites that are within distance r0 from α, with r0 = O(1). For a H ′ related to
H through (2) (M = O(N)), with each gi being an independent χ-deformed Gaussian with
|dχ(θ)/dθ| ≤ δ, Γ = O(1) (as defined in Definition 1), td/2+1δ ≤ O(1), and each site being
acted on by only O(1) of the error terms Vi, we have∣∣tr[ρeiH′tOe−iH′t] − tr[ρeiHtOe−iHt]

∣∣ = O
(

at
d
2 +1δ∥O∥

)
+ O

(
atδ logd/2(δ−1)∥O∥

)
(5)

with probability 1 − 2e−ca2 , for any a > 0 and some absolute constant c > 0.

This is a stronger bound than the previously established one without error cancellation
with leading term of O

(
td+1δ

)
[47]. Note that in the above theorem we require that Γ = O(1),

as opposed to Γ ∈ (0, ∞] in Theorem 2. This is to ensure that the Lieb-Robinson bound
can be applied to the Hamiltonian H ′. Γ = O(1) is physically justifiable because in realistic
systems we do not expect to encounter an error that can be arbitrarily large. For the fidelity
decay, we have the following theorem:

▶ Theorem 4. On a lattice consisting of N-sites, for Hamiltonians H and H ′ related
through (2) (M = O(N)), with each gi being an independent χ-deformed Gaussian with
|dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞] (as defined in Definition 1), and a

√
Ntδ ≤ ∆, where ∆ is a

constant that is independent of a, N, t, the fidelity

F = | ⟨ϕ(t)|ϕ′(t)⟩ |2,

where |ϕ(t)⟩ = e−iHt |ϕ0⟩, |ϕ′(t)⟩ = e−iH′t |ϕ0⟩, for initial state |ϕ0⟩, satisfies

F ≥ e−O(a
√

Nδt)−O(Nδ2t2) (6)

with probability 1 − 2e−ca2 , for arbitrary a > 0 and some absolute constant c > 0.

We can see that up to leading order in δ, the fidelity decays exponentially in
√

N rather than
N , thus showing a non-exponential decay of fidelity. From this we can see that in order to
make the fidelity bounded away from 0 by a constant, it suffices to have δ = O(1/(

√
Nt)),

rather than O(1/(Nt)) that one would have with a worst-case bound. We will prove this
theorem in Section 6.

3 The average error from random noise

We first consider the average observable error accumulated during time evolution and bound∣∣E{gi}[tr[ρO′(t)]] − tr[ρO(t)]
∣∣ (7)

TQC 2024



2:6 Stochastic Error Cancellation in Analog Quantum Simulation

with the notation

O(t) = eiHtOe−iHt, O′(t) = eiH′tOe−iH′t, ρ(t) = e−iHtρeiHt, ρ′(t) = e−iH′tρeiH′t.

(8)

We use the evolution under the target Hamiltonian H as a reference frame, and consider the
local perturbation in the interaction picture:

e−iH′t = e−iHtT e
−i
∫ t

0

∑
i

giVi(s)ds (9)

where Vi(s) = eiHsVie
−iHs and T denotes time ordering.

We assume that δ ≤ O(1/(
√

Nt)) in the analysis below. Because M = O(N), we also
have δ ≤ O(1/(

√
Mt)). We use the Dyson expansion to analyze the accumulation of error:

E[tr[ρO′(t)]] − tr[ρO(t)]

=
∞∑

k=1

ik

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tk−1

0
dtk

∑
i1,··· ,ik

E[gi1 · · · gik ] tr
[
ρ(t)[Vi1 (t1), [· · · [Vik (tk), O] · · · ]

]︸ ︷︷ ︸
C

(k)
i1i2···ik

. (10)

With ∥ρ(t)∥tr ≤ 1,1 Note that E[gi1 · · · gik
] is either 0 (when gi’s do not appear in pairs) or

positive (when gi’s appear in pairs), and therefore to upper bound the above quantity in
absolute value we only need to upper bound

∣∣C(k)
i1i2···ik

∣∣. Because ||[A, B]|| ≤ ∥AB∥+∥BA∥ ≤
2||AB||,∣∣C(k)

i1i2···ik

∣∣ ≤ ||ρ(t)||tr||[Vi1(t1), [· · · [Vik
(tk), O] · · · ]]|| ≤ 2k∥O∥. (11)

Therefore

∣∣E[tr[ρO′(t)]] − tr[ρO(t)]
∣∣ ≤

∞∑
k=1

tk

k!E

(∑
i

gi

)k
 2k∥O∥

= E[e2t
∑M

i=1
gi − 1]∥O∥

=
(

M∏
i=1

E[e2tgi ] − 1
)

∥O∥.

(12)

Without loss of generality we assume that ∥O∥ ≤ 1 hereafter. From the above bound we
can see that we only need to focus on bounding E[e2tgi ] − 1 for each i. Using the fact that
E[gi] = E[χ(θi)] = 0 from (3) and |gi| ≤ δ|θi|, we have

E[e2tgi ] =
∞∑

k=0

(2t)k

k! E[gk
i ] ≤ 1 +

∞∑
k=2

(2δt)k

k! E[|θi|k] = E[e2δt|θi|] − 2δtE[|θi|]. (13)

Using Taylor’s theorem in the Lagrange form, with the fact that

dk

dak
E[ea|θi|] = E[ea|θi||θi|k], (14)

we have

E[e2δt|θi|] − 2δtE[|θi|] ≤ 1 + 2δ2t2E[e2δt|θi||θi|2]. (15)

1 Here ∥ · ∥tr denotes the trace norm.
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Because θi ∼ N (0, 1), for any a ≥ 0,

E[ea|θi||θi|2] = (4a2ea2
)(1 + erf a) + 4

√
2
π

ae−a2/2 −
√

2
π

aea2/2 = 1 + O(a), (16)

we have (using δ ≤ O(1/(
√

Mt)))

E[e2δt|θi|] − 2δtE[|θi|] ≤ 1 + 2δ2t2 + O(δ3t3) = 1 + 2δ2t2 + O(M−3/2). (17)

By (12), (13), and ∥O∥ ≤ 1 we then have

∣∣E[tr[ρO′(t)]] − tr[ρO(t)]
∣∣ ≤

(
1 + 2δ2t2 + O(M−3/2)

)M

− 1 = 2Mδ2t2 + O(M−1/2). (18)

The above derivation leads us to the following theorem:

▶ Theorem 5 (Average error bound). On a lattice consisting of N-sites, for Hamiltonians
H and H ′ related through (2) (M = O(N)), with each gi being an independent χ-deformed
Gaussian with |dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞], and

√
Ntδ ≤ O(1), we have∣∣E{gi}[tr[ρO′(t)]] − tr[ρO(t)]

∣∣ = O(Nδ2t2∥O∥) (19)

This error bound shows that, if we average over multiple instances of the noise, then for
the simulation to yield meaningful result up to time t for a system with size N , we need
local perturbation to be δ = O(1/(

√
Nt)), whereas the naive error bound of O(Ntδ) would

only guarantee a meaningful result only when δ = O(1/(Nt)). Therefore we can significantly
extend the time and system size of the simulation that can be performed with guarantee at
the same level of noise.

4 Concentration of the error

In the above section we focused on the expected error, but can the error be significantly larger
than its expectation value? This is a question about the concentration of the probability
measure, and our main tool is the following lemma:

▶ Lemma 6 (Gaussian concentration inequality for Lipschitz functions). Let f : RM → R be a
function which is Lipschitz-continuous with constant 1 (i.e. |f(x) − f(y)| ≤ |x − y| for all
x, y ∈ RM ), then for any t,

P [|f(X) − E[f(X)]| ≥ t] ≤ 2 exp(−ct2) (20)

for all t > 0 and some absolute constant c > 0, where X ∼ N (0, 1)M .

The origin of this lemma is rather difficult to find, but its proof can be found at many
places, including [41, Theorem 2.1.12] and [7, Chapter 6, Theorem 2.1]. It may appear at
first glance that we might need a non-Gaussian version of this result, given that the noise
we consider in Definition 1 is not necessarily Gaussian. However, later we will see that a
Gaussian version suffices because the noise can be regarded as a function of Gaussian random
variables.

Recall that the expectation value tr[ρO′(t)] is a function of the noise {gi}, which is in
turn a function of Gaussian random variables {θi} through gi = χ(θi). We therefore view
tr[ρO′(t)] as a function of {θi} which we denote by h(θ⃗), where θ⃗ = (θ1, θ2, · · · , θM ). Similarly
we denote g⃗ = (g1, g2, · · · , gM ). We will next proceed to obtain a Lipschitz constant for this

TQC 2024



2:8 Stochastic Error Cancellation in Analog Quantum Simulation

function. Note that the Lipschitz constant can then be chosen to be the supremum of the
2-norm of the gradient, which we will justify below: applying the mean value theorem (for
several variables), for any pair of θ⃗ and θ⃗′ we have

|h(θ⃗) − h(θ⃗′)| = |∇h(sθ⃗ + (1 − s)θ⃗′) · (θ⃗ − θ⃗′)|,

where · denotes the Euclidean inner product (or the dot product). Therefore

|h(θ⃗) − h(θ⃗′)| ≤ sup
θ⃗∗

|∇h(θ⃗∗)||θ⃗ − θ⃗′|,

where the norm | · | on the right-hand side denotes the vector 2-norm, and we have used the
Cauchy-Schwarz inequality in arriving at this bound. One can then choose the Lipschitz
constant to be anything larger than or equal to supθ⃗∗ |∇h(θ⃗∗)|, i.e., any upper bound of |∇h|,
which we will proceed to compute next. We will first bound individual partial derivatives

∂

∂θi
h(θ⃗) = dgi

dθi
∂gi

tr[Oe−iH′(g⃗)tρeiH′(g⃗)t], (21)

where we make explicit the g⃗-dependence in H ′ defined in (2). Because |dgi/dθi| ≤ δ by (3),
we only need to bound ∂gi

tr[Oe−iH′(g⃗)tρeiH′(g⃗)t]:

|∂gi
tr[OeiH′(g⃗)tρe−iH′(g⃗)t]| ≤ ∥(∂gi

eiH′(g⃗)t)Oe−iH′(g⃗)t∥ + ∥eiH′(g⃗)tO(∂gi
e−iH′(g⃗)t)∥

≤ 2∥O∥∥∂gi
e−iH′(g⃗)t∥ ≤ 2∥O∥t.

(22)

In the last inequality above we used the fact that

∥∂gi
e−iH′(g⃗)t∥ = ∥

∫ t

0
e−iH′(g⃗)(t−s)Vie

−iH′(g⃗)sds∥ ≤ t,

where we have used ∥Vi∥ ≤ 1. We therefore have |∂θi
h(θ⃗)| ≤ 2∥O∥tδ. As a result,

|∇h| =

√√√√ M∑
i=1

|∂θi
h|2 ≤ 2∥O∥

√
Mtδ. (23)

Because this holds for all choices of θ⃗, the right-hand side is an upper bound of the supremum
as well. Therefore we can choose the Lipschitz constant of h to be CLip = 2∥O∥

√
Mtδ.

h(θ⃗)/CLip then has Lipschitz constant 1. Through a direct application of Lemma 6, we
obtain that for some absolute constant c > 0 and any a > 0,

P[|h(θ⃗) − E[h(θ⃗)]| ≥ aCLip] ≤ 2e−ca2
. (24)

We then have the following result, where we also use M = O(N):

▶ Theorem 7 (Concentration bound of observable error). On a lattice consisting of N -sites, for
Hamiltonians H and H ′ related through (2) (M = O(N)), with each gi being an independent
χ-deformed Gaussian with |dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞], and

√
Ntδ ≤ 1, we have∣∣tr[ρO(t)] − E[tr[ρO′(t)]]

∣∣ ≤ 2a∥O∥
√

Mtδ = O(a∥O∥
√

Ntδ) (25)

with probability 1 − 2e−ca2 , for arbitrary a > 0 and some absolute constant c > 0.

Combining Theorem 5 and Theorem 7, we arrive at the result stated in Theorem 2.
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5 Local observables

In this section, we will take locality into consideration to obtain an error bound for local
observables that is independent of the system size. Such an error bound is needed to make
the simulation meaningful in the thermodynamic limit. We restrict ourselves to spin systems
with spatial locality, i.e. systems with Hamiltonians defined on a d-dimensional lattice with
N sites in total and L sites in each direction, written as

H =
∑

α∈Zd
L

Hα (26)

where ∥Hα∥ ≤ ζ and Hα only acts on spins within a distance r0 from α, and r0 = O(1). A
key tool we are going to use is the Lieb-Robinson bound:

▶ Lemma 8 (Lieb-Robinson Bound, Refs. [9, 24,47]). For any local operator O with support
SO, and for any R > 0, there exist positive constants u, v that depend only on the lattice
such that

∥O(t) − OR(t)∥ ≤ ∥O∥|SO|e−µR(evζt − 1) (27)

where OR(t) = eiHRtOe−iHRt with HR = H −
∑

α|d(SHα ,SO)≥R Hα being the restriction of
the Hamiltonian to a region within distance R of SO.

We can then apply the Lieb-Robinson bound (Lemma 8) to approximate the Heisenberg
picture evolution of local observables with that corresponding to the Hamiltonian truncated
within their light cones. Specifically, we consider the Heisenberg picture of observable O

under the truncated Hamiltonian HR and H ′
R, denoted as:

OR(t) = eiHRtOe−iHRt, O′
R(t) = eiH′

RtOe−iH′
Rt (28)

where we denote HR as the truncated Hamiltonian acting non-trivially only on sites within
distance R from SO, and H ′

R as the Hamiltonian obtained from H ′ through the same
procedure. Assuming |SO| ≤ O(1), and with ∥Hα∥ ≤ ζ and e−µk ≥ 0, we arrive at

∥O′(t) − O′
R(t)∥ ≤ O(∥O∥e−µR+vζt), ∥O(t) − OR(t)∥ ≤ O(∥O∥e−µR+vζt) (29)

These bounds then allow us to upper bound the resulting errors in the expectation values
through∣∣tr[ρO′(t)] − tr[ρO′

R(t)]
∣∣ ≤ ∥O′(t) − O′

R(t)∥,
∣∣tr[ρO(t)] − tr[ρOR(t)]

∣∣ ≤ ∥O(t) − OR(t)∥,

which is true for any quantum state ρ. This is a consequence of the duality between the
Schatten 1-norm (the trace distance) and ∞-norm (the spectral norm).

Note that the Lieb-Robinson bound only holds when the strength of local terms does
not grow with the size of the system, and this is the reason why we choose Γ = O(1) in
Theorem 3, which ensures that all local terms in the Hamiltonian are bounded by a constant
that is independent of the system size.

Since now HR and H ′
R acts non-trivially only on O(Rd), making this the effective system

size. We also need to assume that the noise is spread evenly across the whole system, which
can be rigorously stated as each site being acted on by only O(1) of the error terms Vi.
Therefore there are only O(Rd) terms Vi that come into the difference between HR and H ′

R.
Consequently we can apply Theorem 2 to get∣∣tr[ρO′

R(t)] − tr[ρOR(t)]
∣∣ ≤ O(a

√
Rdtδ∥O∥) + O(Rdt2δ2∥O∥) (30)
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with probability 1 − 2e−ca2
, for some absolute constant c > 0 and any a > 0. Combining the

above bounds (29) and (30) together, we obtain∣∣tr[ρO′(t)] − tr[ρO(t)]
∣∣ ≤ O(aRd/2tδ∥O∥ + ∥O∥e−µR+vζt) (31)

Note that if we choose R = 1
µ (vζt + log(δ−1)), then we get

∣∣tr[ρO′(t)] − tr[ρO(t)]
∣∣ ≤ O

(
a∥O∥

(
vζ

µ
t + 1

µ
log(δ−1)

)d/2
tδ + δ∥O∥

)
. (32)

Using the fact that (α + β)d ≤ O(αd + βd) when α, β are constants, we arrive at∣∣tr[ρO′(t)] − tr[ρO(t)]
∣∣ ≤ O

(
at

d
2 +1δ∥O∥

)
+ O

(
atδ logd/2(δ−1)∥O∥

)
(33)

with probability 1 − 2e−ca2
. Theorem 3 then follows.

6 Non-exponential fidelity decay

The stochastic error cancellation can also be observed in the fidelity between the target
state and the actual state we get at the end of time-evolution, leading to a surprising
non-exponential decay of the fidelity for small δ. This is similar to the non-exponential
fidelity decay observed in [40]. We consider the fidelity metric as

F = |⟨ϕ(t)|ϕ′(t)⟩|2 (34)

where

|ϕ(t)⟩ = e−iHt |ϕ0⟩ , |ϕ′(t)⟩ = e−iH′t |ϕ0⟩ (35)

are pure states with |ϕ(t)⟩ denoting the time-evolved state of interest and |ϕ′(t)⟩ denoting
the state under local perturbation. Here |ϕ0⟩ is the initial state of the system. We will then
prove Theorem 4.

Proof of Theorem 4. We are interested in upper-bounding

1 − F = 1 − |⟨ϕ(t)|ϕ′(t)⟩|2. (36)

We follow similar steps as previous proofs and first bound its expectation value:∣∣E{gi}[⟨ϕ(t)|ϕ′(t)⟩] − 1
∣∣

=
∣∣E[⟨ϕ0| eiHte−iH′t |ϕ0⟩] − 1

∣∣
=
∣∣E[⟨ϕ0| T e

−i
∫ t

0

∑
i

giVi(s)ds |ϕ0⟩] − 1
∣∣

=
∣∣∣ ∞∑

k=1

(−i)k

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tk−1

0
dtk

∑
i1,··· ,ik

E[gi1 · · · gik ] ⟨ϕ0| Vi1 (t1)Vi2 (t2) · · · Vik (tk) |ϕ0⟩
∣∣∣

(37)

Here, | ⟨ϕ0| Vi1(t1)Vi2(t2) · · · Vik
(tk) |ϕ0⟩ | ≤ 1 since each local term ∥Vi∥ ≤ 1. Note that

∑
i1,··· ,ik

E[gi1 · · · gik
] = E

 ∑
i1,··· ,ik

gi1 · · · gik

 = E

( M∑
i=1

gi

)k
 ≥ 0.
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Therefore,

∣∣E{gi}[⟨ϕ(t)|ϕ′(t)⟩] − 1
∣∣ ≤ E

 ∞∑
k=1

tk

k!

(
M∑

i=1
gi

)k


= E
[
e
∑M

i=1
tgi

]
− 1

=
M∏

i=1
E
[
etgi
]

− 1

≤
M∏

i=1
(E[eδt|θi|] − δtE[|θi|]) − 1

≤
(

1 + δ2t2 + O(M−3/2)
)M

− 1

= O(Mδ2t2).

(38)

We can now bound the concentration of the fidelity, i.e, by how much ⟨ϕ(t)|ϕ′(t)⟩ can deviate
from its expectation value with large probability. Following the previous setup, we treat
⟨ϕ(t)|ϕ′(t)⟩ as a function of {θi}, denoted by h(θ⃗), where θ⃗ = (θ1, θ2, ..., θM ). We aim to find
a Lipschitz constant for this function. We have

|∂gi ⟨ϕ0| eiHte−iH′(g)t |ϕ0⟩ | ≤
∣∣∣∣∫ t

0
⟨ϕ0| eiHte−iH′(g)(t−s)(−i)Vie

−iH′(g)s |ϕ0⟩ ds

∣∣∣∣ ≤ t (39)

and |dgi/dθi| ≤ δ, giving us |∂θi
h(θ⃗)| ≤ tδ. The Lipschitz constant can then be chosen as√√√√ M∑

i=1
|∂θi

h|2 ≤
√

Mtδ = CLip. (40)

h(θ⃗)/CLip then has Lipschitz constant 1. We then obtain the following bound from Lemma 6:

P[|⟨ϕ(t)|ϕ′(t)⟩ − E[⟨ϕ(t)|ϕ′(t)⟩]| ≥ a
√

Mtδ] ≤ 2e−ca2
. (41)

for some absolute constant c > 0 and any a > 0. Combining the two bounds 38 and (41)
derived above, we arrive at

|⟨ϕ(t)|ϕ′(t)⟩ − 1| ≤ a
√

Mδt + O(Nδ2t2)

with probability 1 − 2e−ca2
. This gives us

|⟨ϕ(t)|ϕ′(t)⟩|2 ≥ (1 − a
√

Mδt + O(Nδ2t2))2

= 1 − 2a
√

Mδt + O(Nδ2t2)

= e−2a
√

Mδt−O(Nδ2t2),

(42)

for a
√

Mδt = O(1). Using M = O(N), we prove the inequality in the statement of the
theorem. ◀
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7 Conclusion

In this work, we considered the observable error bounds for analog quantum simulation under
random coherent noise coming from independent sources. We showed that such randomness
leads to improved scaling in error bounds due to stochastic error cancellation. We studied
general observables without locality constraints as well as local observables, finding in both
cases that average-case error bounds scale more favorably than worst-case error bounds. Such
cancellation indicates a higher tolerance of noise for simulation tasks on near-term analog
quantum simulators than suggested by the worst-case bound.

Although our result substantially improves the previous state-of-the-art error bounds,
there are still many factors that are not taken into consideration in our analysis. For
example, in many-body localized systems [1, 2, 5, 8, 19,23, 32], our error bound based on the
Lieb-Robinson light cone will not be able to capture the slow propagation of information,
thus leading to an over-estimation of the error. In general, a tight analysis of the error would
require understanding how operators spread in the system, which is a highly non-trivial and
system-specific problem [12,33,38,39]. Phenomena such as thermalization should also play
an important role, because if a subsystem thermalizes then the error on local operators in
the subsystem should no longer accumulate over time. Symmetry has also been shown to
be helpful in reducing error in both analog and digital quantum simulations [36,46], and so
has randomness in the simulation algorithm and the initial state [4, 10,14]. Our results for
geometrically local Hamiltonians should be generalizable to the situation with power-law
decaying interactions [11,13,22,31,43–45], where the Lieb-Robinson bound is still available
when the decay is fast enough. These observations indicate that we may still be able to
obtain more accurate characterizations of error accumulation in practical analog simulators.

In this work we focused on quantum systems consisting of qubits or qudits, but many
realistic quantum systems involve infinitely many local degrees of freedom and unbounded
operators in the Hamiltonian, which makes analysis more difficult [27,42]. We hope to tackle
this problem in future works.

Furthermore, we note that an approximate ground-state projection operator can be
written as a linear combination of time evolution operators (a fact which is instrumental
in the proof of the exponential clustering theorem and 1D area law [6, 25, 26]) and that
approximate ground-state projectors may be used in algorithms for preparing the ground
state [21, 29, 30]. We therefore expect our results to be useful for analyzing how errors in the
Hamiltonian affect expectation values of observables in the ground state. We also hope to
extend our result to thermal states using the techniques employed in [47].

References

1 Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. Colloquium: Many-
body localization, thermalization, and entanglement. Rev. Mod. Phys., 91:021001, May 2019.
doi:10.1103/RevModPhys.91.021001.

2 Dmitry A. Abanin and Zlatko Papić. Recent progress in many-body localization. Annalen der
Physik, 529(7):1700169, 2017. doi:10.1002/andp.201700169.

3 Dorit Aharonov and Sandy Irani. Hamiltonian complexity in the thermodynamic limit. In
Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 750–763. ACM,
2022. doi:10.1145/3519935.3520067.

4 Dong An, Di Fang, and Lin Lin. Time-dependent unbounded hamiltonian simulation with
vector norm scaling. Quantum, 5:459, 2021. doi:10.22331/q-2021-05-26-459.

https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1002/andp.201700169
https://doi.org/10.1145/3519935.3520067
https://doi.org/10.22331/q-2021-05-26-459


Y. Cai, Y. Tong, and J. Preskill 2:13

5 P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492–1505,
March 1958. doi:10.1103/PhysRev.109.1492.

6 Itai Arad, Alexei Kitaev, Zeph Landau, and Umesh Vazirani. An area law and sub-exponential
algorithm for 1d systems. arXiv preprint, 2013. arXiv:1301.1162.

7 Afonso S Bandeira. Lecture notes for mathematics of data science, 2020.
8 D.M. Basko, I.L. Aleiner, and B.L. Altshuler. Metal–insulator transition in a weakly interacting

many-electron system with localized single-particle states. Annals of Physics, 321(5):1126–1205,
2006. doi:10.1016/j.aop.2005.11.014.

9 Sergey Bravyi, Matthew B Hastings, and Frank Verstraete. Lieb-robinson bounds and the
generation of correlations and topological quantum order. Physical review letters, 97(5):050401,
2006.

10 Chi-Fang Chen and Fernando GSL Brandão. Concentration for trotter error. arXiv preprint,
2021. arXiv:2111.05324.

11 Chi-Fang Chen and Andrew Lucas. Finite speed of quantum scrambling with long range
interactions. Physical review letters, 123(25):250605, 2019.

12 Chi-Fang Chen and Andrew Lucas. Operator growth bounds from graph theory. Communica-
tions in Mathematical Physics, 385(3):1273–1323, 2021.

13 Xiao Chen and Tianci Zhou. Quantum chaos dynamics in long-range power law interaction
systems. Physical Review B, 100(6):064305, 2019.

14 Andrew M Childs, Aaron Ostrander, and Yuan Su. Faster quantum simulation by randomiza-
tion. Quantum, 3:182, 2019.

15 J. Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation. Nature
Physics, 8:264–266, 2012.

16 Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Marcos Rigol. From quantum chaos and
eigenstate thermalization to statistical mechanics and thermodynamics. Advances in Physics,
65(3):239–362, 2016.

17 Andrew J. Daley, Immanuel Bloch, Christian Kokail, Stuart Flannigan, Natalie Pearson,
Matthias Troyer, and Peter Zoller. Practical quantum advantage in quantum simulation.
Nature, 607(7920):667–676, July 2022.

18 Giacomo De Palma, Milad Marvian, Cambyse Rouzé, and Daniel Stilck França. Limitations
of variational quantum algorithms: A quantum optimal transport approach. PRX Quantum,
4:010309, January 2023.

19 L. Fleishman and P. W. Anderson. Interactions and the anderson transition. Phys. Rev. B,
21:2366–2377, March 1980. doi:10.1103/PhysRevB.21.2366.

20 Daniel Stilck França and Raul García-Patrón. Limitations of optimization algorithms on noisy
quantum devices. Nature Physics, 17(11):1221–1227, October 2021.

21 Yimin Ge, Jordi Tura, and J Ignacio Cirac. Faster ground state preparation and high-precision
ground energy estimation with fewer qubits. Journal of Mathematical Physics, 60(2), 2019.

22 Zhe-Xuan Gong, Michael Foss-Feig, Spyridon Michalakis, and Alexey V Gorshkov. Persistence
of locality in systems with power-law interactions. Physical review letters, 113(3):030602, 2014.

23 I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov. Interacting electrons in disordered wires:
Anderson localization and low-t transport. Phys. Rev. Lett., 95:206603, November 2005.
doi:10.1103/PhysRevLett.95.206603.

24 Matthew B Hastings. Lieb-schultz-mattis in higher dimensions. Physical review b,
69(10):104431, 2004.

25 Matthew B Hastings. An area law for one-dimensional quantum systems. Journal of statistical
mechanics: theory and experiment, 2007(08):P08024, 2007.

26 Matthew B Hastings and Tohru Koma. Spectral gap and exponential decay of correlations.
Communications in mathematical physics, 265:781–804, 2006.

27 Tomotaka Kuwahara, Tan Van Vu, and Keiji Saito. Optimal light cone and digital quantum
simulation of interacting bosons. arXiv preprint, 2022. arXiv:2206.14736.

TQC 2024

https://doi.org/10.1103/PhysRev.109.1492
https://arxiv.org/abs/1301.1162
https://doi.org/10.1016/j.aop.2005.11.014
https://arxiv.org/abs/2111.05324
https://doi.org/10.1103/PhysRevB.21.2366
https://doi.org/10.1103/PhysRevLett.95.206603
https://arxiv.org/abs/2206.14736


2:14 Stochastic Error Cancellation in Analog Quantum Simulation

28 Elliott H. Lieb and Derek W. Robinson. The finite group velocity of quantum spin systems.
Communications in Mathematical Physics, 28(3):251–257, 1972.

29 Lin Lin and Yu Tong. Near-optimal ground state preparation. Quantum, 4:372, 2020.
doi:10.22331/q-2020-12-14-372.

30 Lin Lin and Yu Tong. Heisenberg-limited ground-state energy estimation for early fault-tolerant
quantum computers. PRX Quantum, 3(1):010318, 2022.

31 David J Luitz and Yevgeny Bar Lev. Emergent locality in systems with power-law interactions.
Physical Review A, 99(1):010105, 2019.

32 Rahul Nandkishore and David A. Huse. Many-body localization and thermalization in
quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6(1):15–38, 2015.
doi:10.1146/annurev-conmatphys-031214-014726.

33 Daniel E Parker, Xiangyu Cao, Alexander Avdoshkin, Thomas Scaffidi, and Ehud Altman. A
universal operator growth hypothesis. Physical Review X, 9(4):041017, 2019.

34 Pablo M Poggi, Nathan K Lysne, Kevin W Kuper, Ivan H Deutsch, and Poul S Jessen.
Quantifying the sensitivity to errors in analog quantum simulation. PRX Quantum, 1(2):020308,
2020.

35 John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018.

36 Caleb G Rotello. Symmetry Protected Subspaces in Quantum Simulations. PhD thesis, Colorado
School of Mines, 2022.

37 Mohan Sarovar, Jun Zhang, and Lishan Zeng. Reliability of analog quantum simulation. EPJ
quantum technology, 4(1):1–29, 2017.

38 Thomas Schuster, Bryce Kobrin, Ping Gao, Iris Cong, Emil T Khabiboulline, Norbert M
Linke, Mikhail D Lukin, Christopher Monroe, Beni Yoshida, and Norman Y Yao. Many-body
quantum teleportation via operator spreading in the traversable wormhole protocol. Physical
Review X, 12(3):031013, 2022.

39 Thomas Schuster and Norman Y Yao. Operator growth in open quantum systems. arXiv
preprint, 2022. arXiv:2208.12272.

40 Adam L Shaw, Zhuo Chen, Joonhee Choi, Daniel K Mark, Pascal Scholl, Ran Finkelstein,
Andreas Elben, Soonwon Choi, and Manuel Endres. Benchmarking highly entangled states on
a 60-atom analog quantum simulator. arXiv preprint, 2023. arXiv:2308.07914.

41 Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Society,
2023.

42 Yu Tong, Victor V. Albert, Jarrod R. McClean, John Preskill, and Yuan Su. Provably
accurate simulation of gauge theories and bosonic systems. Quantum, 6:816, 2022. doi:
10.22331/q-2022-09-22-816.

43 Minh C Tran, Chi-Fang Chen, Adam Ehrenberg, Andrew Y Guo, Abhinav Deshpande, Yifan
Hong, Zhe-Xuan Gong, Alexey V Gorshkov, and Andrew Lucas. Hierarchy of linear light
cones with long-range interactions. Physical Review X, 10(3):031009, 2020.

44 Minh C Tran, Andrew Y Guo, Christopher L Baldwin, Adam Ehrenberg, Alexey V Gorshkov,
and Andrew Lucas. Lieb-robinson light cone for power-law interactions. Physical review letters,
127(16):160401, 2021.

45 Minh C Tran, Andrew Y Guo, Yuan Su, James R Garrison, Zachary Eldredge, Michael
Foss-Feig, Andrew M Childs, and Alexey V Gorshkov. Locality and digital quantum simulation
of power-law interactions. Physical Review X, 9(3):031006, 2019.

46 Minh C Tran, Yuan Su, Daniel Carney, and Jacob M Taylor. Faster digital quantum simulation
by symmetry protection. PRX Quantum, 2(1):010323, 2021.

47 Rahul Trivedi, Adrian Franco Rubio, and J Ignacio Cirac. Quantum advantage and stability
to errors in analogue quantum simulators. arXiv preprint, 2022. arXiv:2212.04924.

48 Qi Zhao, You Zhou, Alexander F Shaw, Tongyang Li, and Andrew M Childs. Hamiltonian
simulation with random inputs. Physical Review Letters, 129(27):270502, 2022.

https://doi.org/10.22331/q-2020-12-14-372
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://arxiv.org/abs/2208.12272
https://arxiv.org/abs/2308.07914
https://doi.org/10.22331/q-2022-09-22-816
https://doi.org/10.22331/q-2022-09-22-816
https://arxiv.org/abs/2212.04924


Y. Cai, Y. Tong, and J. Preskill 2:15

0 10 20 30
Time

0.0

0.1

0.2

0.3

Ob
se

rv
ab

le
 e

rro
r

symmetric error
random error

Figure 2 (Left) Comparing the oscillation part | ⟨F (t)⟩ | and the growth part | ⟨G(t)⟩ | in Eq. (43)
that describes the evolution of the error operator. The setup is the same as in Figure 1 except
that the system now contains 8 qubits and the observable is (1/N)

∑N

i=1 Yi. (Right) Error in the
observable expectation value for symmetric and random local errors. The simulation is performed
with the same parameter setup as in Fig. 1, except with h = (0.5)π.

A Separation of oscillation and growth in the observable error

In Fig. 1 we observed that the error displays rapid oscillation in time. In this appendix we
will investigate the cause of it.

We will examine how the operator O, the operator whose expectation value we want to
estimate at the end of the evolution, evolves differently under the target Hamiltonian H and
the actual Hamiltonian H ′. Using the notation introduced in Eq. (8), we denote by O(t) the
time-evolved operator O at time t in the Heisenberg picture under the target Hamiltonian
H, and by O′(t) the corresponding operator under the actual Hamiltonian H ′. We can write
down an equation governing the error O′(t)−O(t), from taking the time derivative in Eq. (8):

d
dt

(O′(t) − O(t)) = i[H, O′(t) − O(t)]︸ ︷︷ ︸
F (t)

+ i

M∑
i=1

gi[Vi, O′(t)]︸ ︷︷ ︸
G(t)

. (43)

We will show that only the second part G(t) contributes to the growth of the error. Writing
down the solution to the above differential equation using Duhammel’s principle, for 0 < s < t

we have

O′(t) − O(t) = eiH(t−s)(O′(s) − O(s))e−iH(t−s) +
∫ t

s

eiH(t−u)G(u)e−iH(t−u)du. (44)

We observe that if G(u) = 0 for s < u < t, then we would have ∥O′(t)−O(t)∥ = ∥O′(s)−O(s)∥,
and the error would not grow in magnitude. This shows that G(t) is solely responsible for the
growth of the error. The first term on the right-hand side of (43) only rotates O′(t) − O(t).

While F (t) does not contribute to the growth of the error, it nevertheless plays a part in
how the derivative changes, as can be seen from (43), which tells us that d

dt ⟨O′(t) − O(t)⟩ =
⟨F (t)⟩ + ⟨G(t)⟩. If | ⟨F (t)⟩ | ≫ | ⟨G(t)⟩ |, then the error ⟨O′(t) − O(t)⟩ will be changing at a
rate much faster than its growth, which indicates an oscillatory behavior. We numerically
found that this is indeed the case. In Fig. 2, we compare the magnitude of the oscillation part
| ⟨F (t)⟩ | and the growth part | ⟨G(t)⟩ |. We can see from the figure that | ⟨F (t)⟩ | ≫ | ⟨G(t)⟩ |,
which explains the rapid oscillation we see in Fig. 1. In particular, in the parameter setup of
Fig. 1, we applied a large X-field whose strength is ten times the coupling constants. This
X-field only contributes to F (t) but not G(t), which resulted in | ⟨F (t)⟩ | ≫ | ⟨G(t)⟩ |. When
we decrease the X-field strength the oscillation frequency decreases accordingly, as can be
seen from the right panel of Fig. 2.
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