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Abstract
The optimal control problem for open quantum systems can be formulated as a time-dependent
Lindbladian that is parameterized by a number of time-dependent control variables. Given an
observable and an initial state, the goal is to tune the control variables so that the expected value of
some observable with respect to the final state is maximized. In this paper, we present algorithms
for solving this optimal control problem efficiently, i.e., having a poly-logarithmic dependency on the
system dimension, which is exponentially faster than best-known classical algorithms. Our algorithms
are hybrid, consisting of both quantum and classical components. The quantum procedure simulates
time-dependent Lindblad evolution that drives the initial state to the final state, and it also provides
access to the gradients of the objective function via quantum gradient estimation. The classical
procedure uses the gradient information to update the control variables.

At the technical level, we provide the first (to the best of our knowledge) simulation algorithm
for time-dependent Lindbladians with an ℓ1-norm dependence. As an alternative, we also present
a simulation algorithm in the interaction picture to improve the algorithm for the cases where
the time-independent component of a Lindbladian dominates the time-dependent part. On the
classical side, we heavily adapt the state-of-the-art classical optimization analysis to interface with
the quantum part of our algorithms. Both the quantum simulation techniques and the classical
optimization analyses might be of independent interest.
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1 Introduction

The ability to control the dynamics of a quantum system to maximize its property has been a
persistent pursuit in quantum physics and chemistry [18]. This endeavor has recently gained
momentum, spurred by the growing interest in designing quantum information processing
devices. One remarkable obstacle in controlling a quantum system’s behavior stems from
the reality that quantum systems typically evolve in the presence environmental noise.
Consequently, the control strategy must take into account system/bath interactions. In the
Markovian regime, this problem can be formulated as an optimal control problem based on
the Lindblad master equation [38, 24] acting on n qubits,

d

dt
ρ = L(t)(ρ) := −i

[
H0 +

nc∑
β=1

uβ(t)µβ , ρ

]
+

m∑
j=1

(
LjρL

†
j − 1

2{L†
jLj , ρ}

)
, (1)

in conjunction with a control functions uβ(t) that enters the system Hamiltonian through
the operator µβ , and we have nc control functions. Here ρ is a density operator on n qubits,
and the second term in Eq. (1) is a result of system/bath interactions with Lj ’s being the
jump operators. The quantum optimal control (QOC) is then formulated as an optimization
problem following [2]:

max
u

f [u(t)], f [u(t)] := tr
(
Oρ(T )

)
− α

nc∑
β=1

∫ T

0
|uβ(t)|2dt. (2)

The Hermitian operator O represents the property to be maximized. The term u(t) embodies
all the control variables {uβ} and the last term in the objective function f [u(t)] is regarded
as a regularization. It is worthwhile to point out that there are other choices of the objective
function [8] in the formulation of the QOC problem. For example, one can guide the Lindblad
dynamics (1) toward a target state ρ̄(T ). In this case, one can minimize the difference
between ρ̄(T ) and ρ(T ),

min
u
f [u(t)], f [u] := ∥ρ(T ) − ρ̄(T )∥2 + α

∑
β

∫ T

0
|uβ(t)|2dt. (3)

Implicit in both optimization problems Eqs. (2) and (3) is that ρ(T ) has to be obtained from
the Lindblad equation (1). Thus the main computational challenge comes from the repeated
computation of the solution of the Lindblad equation. In this paper, we mainly focus on the
optimal control problem with the objective function Eq. (2).

To be able to clearly illustrate the computational complexity, we assume that the
Hamiltonian H(t) and the jump operators Lj(t)’s are sparse. Moreover, the sparsity structure
for each operator does not change over time (i.e., the positions of nonzero entries do not
change with time). For a sparse matrix A, we assume we have access to a procedure PA that
can apply the following oracles:

OA,loc |i, j⟩ = |i, νA(i, j)⟩ , and (4)
OA,val |t, i, j, z⟩ = |t, i, j, z ⊕Ai,j(t)⟩ , (5)
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where νA(i, j) is the index of the j’s nonzero entry of column i in A. Particularly for the
optimal control problem, we assume we have access to PH0 , Pµβ

, and PLj
for all j ∈ [m], as

well as PO for the observable O.

Main contributions

We will present a hybrid quantum/classical algorithm for the QOC problem (1) and (2). The
overall algorithm consists of the following elements:
1. A Lindblad simulation algorithm [14, 15, 36] that prepares ρ(T ) in a purification form.

The complexity of our algorithm exhibits a linear scaling with respect to T with a scaling
factor proportional to the L1 norm of the Lindbladians instead of the Lmax norm. The
dependence of the complexity on the precision ϵ is only poly-logarithmic. Alternatively,
we can also simulate time-dependent Lindbladian using interaction picture [41]. This
algorithm applies to important models in experimental physics. For instance, in an ion
trap system, it is common to have a time-independent Hamiltonian with norm much
larger than the rest of the Lindbladian terms, and thus our algorithm can make the
simulation more efficient.

2. The construction of a quantum phase oracle of the gradient of the function f . This is
achieved by incorporating the quantum gradient computation algorithms in [21]. This
phase oracle will then be interfaced with a classical optimization algorithm.

3. Having approximates of gradients ∇f(u(t)), we use an accelerated gradient descent (AGD)
method [27] to solve the optimization problem. In particular, we analyze the influence of
the statistical error from the gradient estimation and provide a precise complexity analysis
for solving the optimization problem, which essentially characterizes the robustness of
AGD for reaching second-order stationary points and may be of independent interest.

In addition to the proposed algorithms, we provide rigorous analysis of the numerical error
and precise overall complexity estimates for the hybrid algorithm. Formally, we establish the
following result for optimal control of open quantum systems:

▶ Theorem 1 (main theorem). Assume there are nc control functions uβ(t) ∈ C2([0, T ]).
Further assume1 that ∥H0∥, ∥O∥, ∥µβ∥, ∥Lj∥ ≤ 1, and α ≥ 2/T . There exists a quantum
algorithm that, with probability at least 2/32, solves problem (2) by:

reaching a first-order stationary point ∥∇f∥ < ϵ with (1) using Õ
(

nc∥L∥be ,1T

ϵ23/8 ∆f

)
queries

to PH0 and Pµβ
, β = 1, 2, . . . , nc, and Õ

(
mn

nc∥L∥be ,1T

ϵ23/8 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1-

and 2-qubit gates; or
reaching a second-order stationary point using Õ

(
nc∥L∥be ,1T 7/4

ϵ5 ∆f

)
queries to PH0 and

Pµβ
, β = 1, 2, . . . , nc and Õ

(
mn

nc∥L∥be ,1T 7/4

ϵ5 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1- and 2-qubit

gates.
Here nc and m are respectively the number of control variables and jump operators.

Techniques

Our technical contributions are outlined as follows.

1 More generally, if ∥H0∥, ∥µ∥ = Θ(Λ), it is equivalent to enlarge the time duration T by a factor O(Λ).
2 Using standard techniques, the success probability can be boosted to a constant arbitrarily close to 1

while only introducing a logarithmic factor in the complexity.
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In Section 3, we give efficient quantum algorithms for simulating time-dependent Lindbla-
dians with a scaling factor in time proportional to the L1-norm of the Lindbladians instead
of the Lmax-norm, as well as poly-logarithmic ϵ dependence. Our simulation algorithm is
based on the higher-order series expansion from Duhamel’s principle as sketched in [36].
A notable difference from [36] is that in their paper, Gaussian quadratures are used to
approximate integrals; however, in our time-dependent case, Gaussian quadratures can no
longer be used as, unless upper bounds on the higher-order derivatives of the operators are
given in advance. The techniques for obtaining the L1-norm dependence follow from the
rescaling trick in [5], while generalized to Lindbladians. Our time-dependent Lindbladian
simulation techniques might be of independent interest.
In Section 4, we show how to simulate time-dependent Lindbladian using interaction
picture [41]. This technique is suited for simulating a Lindbladian L = L1 + L2 where
L1(·) = −i [H1, ·] is a Hamiltonian with complexity linear in norm of L2 (up to poly-
logarithmic factors) and similar number of simulations of the Hamiltonian H1 . The
simulation scheme is based on a mathematical treatment of the Lindblad equation as a
differential equation, and the construction leverages the simulation algorithms shown in
Section 3 without rescaling the evolution time. It turns out that using our simulation
algorithm in the interaction picture, we obtain better gate complexity compared with
directly using the simulation in Section 3 even with the ℓ1-norm dependence. To the
best of our knowledge, this is the first Lindblad simulation algorithm in the interaction
picture, which can also be of independent interest.
In Section 5, we adapt a nonconvex optimization algorithm that can reach first-order
stationary points with Õ(1/ϵ7/4) noisy gradient queries with ℓ2-norm error at most
O(ϵ9/8), and reach second-order stationary points with Õ(1/ϵ7/4) noisy gradient queries
with ℓ2-norm error at most Õ(ϵ3). Our setting is different from either gradient descent
(GD) or stochastic gradient descent (SGD): Compared to GD we only have access to noisy
gradients, while in standard SGD the noise can be adjusted and there is no Lipschitz
condition for the noisy gradient. With this novel setting, we successfully design an
optimization algorithm based on perturbed accelerated gradient descent (PAGD) [27].
We carefully analyze the error bound in different cases and it turns out that our algorithm
reaches an optimal error scaling for PAGD (up to poly-logarithmic factors) in finding a
first-order stationary point.

Related work

In addition to the large variety of conventional applications [20], quantum optimal control
problems are crucial in near-term quantum computing, because in the architecture of quantum
computers, the underlying physical operations such as microwave control pulses and the
modulated laser beam can be abstracted as control pulse sequences (see the survey [47]
for more detailed discussions), and hence the are inherently quantum control problems.
Quantum optimal control also plays a vital role in quantum computing algorithms. For
instance, Magann et al. [42] studied the relationship between variational quantum algorithms
(VQAs) and quantum optimal control, and showed that the performance of VQAs can
be informed by quantum optimal control theory. Banchi and Crooks [4] demonstrated
how gradients can be estimated in a hybrid quantum-classical optimization algorithm, and
quantum control is used as one important application. In Ref. [40] the authors showed that
for a quantum many-body system, if it exists an efficient classical representation, then the
optimal control problems on this quantum dynamics can be solved efficiently with finite
precision.
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There exist heuristic classical methods for solving the quantum optimal control problem,
including the monotonically convergence algorithms [48], the Krotov method [45], the
GRadient Ascent Pulse Engineering (GRAPE) algorithm [29, 17], the Chopped RAndom-
Basis (CRAB) algorithm [9], etc. Furthermore, such heuristics can be extended to quantum
optimal control of open quantum systems [31, 32, 46, 23], including [1, 33, 6]. However, these
algorithms do not establish provable guarantees for the efficiency of solving the quantum
optimal control problem. Meanwhile, the landscape of the quantum control problem has
been analyzed in [13, 16, 19], which suggests that for closed quantum systems, the landscape
may not involve suboptimal optimizers. However, the implication to the computational
complexity still remains open.

Quantum algorithms, due to their natural ability to simulate quantum dynamics, have
been developed for quantum control problems [43, 34, 12, 35]. Liu and Lin [39] developed an
efficient algorithm to output the integral of the observable in Eq. (2), which can potentially
solve a more generalized optimal control problem. These approaches employ hybrid quantum-
classical algorithms that combine a quantum algorithm for the time-dependent Schrödinger
equation with a classical optimization method. However, these efforts have been focused on
closed quantum systems, and quantum control algorithms for open quantum systems require
separate techniques.

Open questions

Our paper leaves several open questions for future investigations:
Are there efficient quantum algorithms for the optimal control of other master equations
beyond the Lindbladian equation?
How to extend the current framework to the control problems with a target density
operator ρ̄(T )? The challenge in such a control problem (3) is the estimation of the
Frobenius norm from the quantum circuit.
Gaussian quadrature was used in the Lindblad simulation method [36], which significantly
suppressed the number of terms in a Dyson-series type of approach, and implies the
implementation. The extension of Gaussian quadrature to the current framework with
time-dependent Lindbladians would require derivative bounds for the evolution operator
from both the drift and jump terms, which is not trivial.

2 Preliminaries

2.1 Notations
For a positive integer m, we use [m] to denote the set {1, . . . ,m}. In this paper, we use
two types of notations to denote vectors. For a quantum state, we use the Dirac notation
|·⟩ to denote the corresponding state vector. For vectors involved in classical information,
e.g., the gradient vector, we use bold font, such as u, to denote them. For such a vector
u ∈ Cd, we use subscripts with a norm font to indicate its entries, i.e., u1, . . . , ud are the
entries of u. When we use subscripts with a bold font, such as, u1, . . . ,uk, they are a list
of vectors. For a vector v ∈ Cd, we use ∥v∥ to denote its Euclidean norm. For a matrix
M ∈ Cd×d, we use ∥M∥ to denote its spectral norm, and use ∥M∥1 to denote its trace
norm, i.e., ∥A∥1 = Tr(

√
M†M). We also use [·, ·] to denote the operator commutator, i.e.,

[A,B] := AB −BA, and use {·, ·} to denote the anticommutator, i.e., {A,B} := AB +BA.
In addition, we use calligraphic fonts, such as L, to denote superoperators, which is also

referred to as quantum maps. Superoperators are linear maps that take matrices to matrices.
The induced trace norm of a superoperator M, denoted by ∥M∥1, is defined as

∥M∥1 := max{∥M(A)∥1 : ∥A∥1 ≤ 1}. (6)

TQC 2024



3:6 Efficient Optimal Control of Open Quantum Systems

The diamond norm of a superoperator M, denoted by ∥M∥⋄, is defined as

∥M∥⋄ := ∥M ⊗ I∥1, (7)

where I acts on the space with the same size as the space M acts on.
We denote by C2[0, T ] the class of twice continuously differential functions in [0, T ].

2.2 Algorithmic tools
2.2.1 Block-encoding and implementing completely-positive maps
Although we assume that the input of the operators of the Lindbladian are given by sparse-
access oracles, it is convenient to use a more general input model when presenting the
simulation algorithm. For a matrix A ∈ C2n×2n , we say that a unitary, denoted by UA, is
an (α, b, ϵ)-block-encoding of A if ∥A− α(⟨0|⊗b ⊗ I)UA(|0⟩⊗b ⊗ I)∥ ≤ ϵ, where the identity
operator I is acting on n qubits. Intuitively, this unitary UA is acting on (n + b) qubits
and A appears in the upper-left block of it, i.e., UA =

(
A/α ·

· ·
)
. Here, we refer to α as the

normalizing factor.
Our simulation algorithm relies on the following technical tool from [37] for implementing

completely positive maps given the block-encodings of its Kraus operators, which generalizes
a similar tool in [15] where the Kraus operators are given as linear combinations of unitaries.

▶ Lemma 2 (Implementing completely positive maps via block-encodings of Kraus operators [37]).
Let A1, . . . , Am ∈ C2n be the Kraus operators of a completely positive map. Let U1, . . . , Um ∈
C2n+n′

be their corresponding (sj , n
′, ϵ)-block-encodings, i.e.,

∥Aj − sj(⟨0| ⊗ I)Uj |0⟩ ⊗ I)∥ ≤ ϵ, for all 1 ≤ j ≤ m. (8)

Let |µ⟩ := 1√∑m

j=1
s2

j

∑m
j=1 sj |j⟩. Then (

∑m
j=1 |j⟩⟨j| ⊗ Uj) |µ⟩ |0⟩ ⊗ I implements this com-

pletely positive map in the sense that∥∥∥∥∥∥I ⊗ ⟨0| ⊗ I

 m∑
j=1

|j⟩⟨j| ⊗ Uj

 |µ⟩ |0⟩ |ψ⟩ − 1√∑m
j=1 s

2
j

m∑
j=1

|j⟩Aj |ψ⟩

∥∥∥∥∥∥ ≤ mϵ√∑m
j=1 s

2
j

(9)

for all |ψ⟩.

We also need the following lemma from [37] for obtaining a block-encoding of a linear
combination of block-encodings.

▶ Lemma 3 (Block-encoding of a sum of block-encodings [37]). Suppose A :=
∑m

j=1 yjAj ∈
C2n×2n , where Aj ∈ C2n×2n and yj > 0 for all j ∈ {1, . . .m}. Let Uj be an (αj , a, ϵ)-
block-encoding of Aj, and B be a unitary acting on b qubits (with m ≤ 2b − 1) such that
B |0⟩ =

∑2b−1
j=0

√
αjyj/s |j⟩, where s =

∑m
j=1 yjαj . Then a (

∑
j yjαj , a+ b,

∑
j yjαjϵ)-block-

encoding of
∑m

j=1 yjAj can be implemented with a single use of
∑m−1

j=0 |j⟩⟨j| ⊗ Uj + ((I −∑m−1
j=0 |j⟩⟨j|) ⊗ IC2a ⊗ IC2n ) plus twice the cost for implementing B.

2.2.2 Optimization
For the current quantum-classical hybrid algorithm, we will couple a Lindblad simulation with
a classical optimization algorithm. For this purpose, we work with the PAGD algorithm [27],
which is based on Nesterov’s accelerated gradient descent idea [44],

uk+1 = uk − η∇f(uk) + (1 − θ)vk, vk+1 = uk+1 − uk. (10)



W. He, T. Li, X. Li, Z. Li, C. Wang, and K. Wang 3:7

Here uk is the kth iterate of the control variable. The idea in PAGD is to introduce a
perturbation to the iterate when ∥∇f∥ > ϵ for some iterations, along with a negative
curvature exploitation step.

There are two common goals for solving (nonconvex) optimization problems:
x is called an ϵ-approximate first-order stationary point if ∥∇f(x)∥ ≤ ϵ.
x is called an ϵ-approximate second-order stationary point if ∥∇f(x)∥ ≤
ϵ, λmin(∇2f(x)) ≥ −√

ϱϵ. Here f is a ϱ-Hessian-Lipschitz function, i.e., ∥∇2f(x) −
∇2f(y)∥ ≤ ϱ∥x − y∥ for any x and y.

2.2.3 Quantum gradient estimation
With copies of ρ(T ), which will be obtained from Lindblad simulation algorithms, and sparse
access to O, we can obtain an estimated gradient value of J̃1(u). The high-level strategy
is to construct a probability oracle first, then construct a phase oracle with the probability
oracle, and finally obtain the gradient by the phase oracle. The probability oracle and the
phase oracle are defined as follows.

The Lindblad simulation algorithm leads to a purification of ρ(T ), i.e., ρ(T ) = tr(|ρT ⟩⟨ρT |).
It is clear that the regularization term in (2) is easy to compute. With the purification, we
can express the first term as,

J̃1(u) := ⟨ρT |O ⊗ I |ρT ⟩ . (11)

Suppose UO denotes the block encoding of O, i.e. ⟨0 |⟨ψN |UO| 0⟩|ψN ⟩ = ⟨ψN |O|ψN ⟩. Let
c-UO be the controlled UO. Applying Hadamard test circuit (H ⊗ I) (c−UO) (H ⊗ I) acting
on |ρT ⟩ produces√

f(u) |1⟩ |ϕ1(u)⟩ +
√

1 − f(u) |0⟩ |ϕ0(u)⟩ (12)

where f(u) := − 1
2 ⟨ρT |O|ρT ⟩ + 1

2 = − 1
2 J̃1(u) + 1

2 . By Lemma 48 of [22], we can efficiently
construct a block encoding of O with sparse access to O. The 1/2 factor does not matter
because the gradient will only be multiplied by a constant factor.

▶ Definition 4 (Probability oracle). Consider a function f : Rd → [0, 1]. The probability
oracle for f , denoted by Uf , is a unitary defined as

Uf |x⟩|0⟩ = |x⟩
(√

f(x)|1⟩ |ϕ1(x)⟩ +
√

1 − f(x)|0⟩ |ϕ0(x)⟩
)
,

where |ϕ1(x)⟩ and |ϕ0(x)⟩ are arbitrary states.

▶ Definition 5 (Phase oracle). Consider a function f : Rd → R. The phase oracle for f ,
denoted by Of , is a unitary defined as

Of |x⟩|0⟩ = eif(x)|x⟩|0⟩

▶ Theorem 6 (Constructing phase oracle with probability oracle, Theorem 14 of [21]). Consider
a function f : Rd → [0, 1]. Let Uf be the probability oracle for f . Then, for any ϵ ∈ (0, 1/3),
we can implement an ϵ-approximate of the phase oracle Of for f , denoted by Õf , such
that ∥Õf |ψ⟩|x⟩ − Of |ψ⟩|x⟩∥ ≤ ϵ, for all state |ψ⟩. This implementation uses O(log(1/ϵ))
invocations to Uf and U†

f , and O(log log(1/ϵ)) additional qubits.

In order to interface the Lindblad simulation algorithm with a classical optimization
method, one needs to estimate the gradient of the objective function. Similar to the
approach in [35], we first represent the control variable as a piecewise linear function in time

TQC 2024
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uβ(t) ≈
∑N

j=1 ujBj(t) with Bj(t) being the standard shape function and uj being a nodal
function. The total number of steps N is proportional to the time duration T. We will use the
improved Jordan’s algorithm [28] using high order finite difference formulas [21]. Basically,
the gradient estimation in [21] produces an estimate g(u), such that, ∥∇J1(u) − g(u)∥ < ϵ

with complexity O(d/ϵ), which is clearly better than a direct sampling approach. However,
to achieve this complexity, the objective function needs to satisfy a derivative bound. Toward
this end, we first establish an a priori bound for the derivative.

▶ Lemma 7. Let α = (α1, . . . , αk) ∈ [N + 1]k be an index sequence3. The derivatives of the
control function J̃1 with respect to the control variables satisfy:∥∥∥∥∥ ∂αJ̃1

∂uα1uα2 · · ·uαk

∥∥∥∥∥ ≤ (k + 1)! (δt∥µ∥)k
. (13)

This smoothness provides a basis for estimating the complexity of Jordan’s algorithm [21],

▶ Lemma 8 (Rephrased from Theorem 23 of [21]). Suppose the access to f : [−1, 1]N → R is
given via a phase oracle Of . If f is (2m+ 1)-times differentiable and for all x ∈ [−1, 1]N ,
and |∂2m+1

r f(x)| ≤ B for r = x/∥x∥, then there exists a quantum algorithm that outputs an
approximate gradient g such that ∥g − ∇f(0)∥∞ ≤ ϵ with probability at least 1 − ρ using

Õ

(
max

{
N1/2B1/(2m)N1/(4m) log(N/ρ)

ϵ1+1/(2m) ,
m

ϵ

})
(14)

queries to Of , and Õ(N) additional 1- and 2-qubit gates.
In particular, when f(x) is a polynomial of degree no greater than 2m, the query complexity

to Of becomes, Õ
(

m
ϵ

)
.

After adapting this algorithm to the objective function in Eq. (11), we find that,

▶ Lemma 9. Let J̃1 be defined as in Eq. (11). Suppose we are given access to the phase oracle
O

J̃1
for J̃1. Then, there exists a quantum algorithm that outputs an approximate gradient g

such that ∥g − ∇J̃1∥ ≤ ϵg with probability at least 1 − γ using Õ (ncT log(N/γ)/ϵg) queries
to O

J̃1
, and Õ(N) additional 1- and 2-qubit gates.

Proof. Although the derivative bound in Lemma 7 does not fulfill the condition in [21], we
can apply Theorem 23 in [21]. By choosing the optimal value m, we arrive at the complexity
bound. ◀

With the gradient estimated, we can now move to the optimization algorithm. The
PAGD algorithm in [27] assumes the gradient- and Hessian-Lipschitz condition, which we
will prove here for the control problem. In particular, the smoothness constant ℓ and the
Hessian-Lipschitz constant ϱ can be approximated by the same technique as Lemma 7.

▶ Lemma 10. Let α = (α1, . . . , αk) ∈ [N + 1]k be an index sequence, then J̃1 is l-smooth
and ρ-Hessian Lipschitz continuous, i.e.

∥∇J̃1(u) − ∇J̃1(v)∥ ≤ l∥u − v∥, and ∥∇2J̃1(u) − ∇2J̃1(v)∥ ≤ ϱ∥u − v∥. (15)

The smoothness parameters are given by, l = 3!(N+1)δt2∥µ∥2∥O∥, ϱ = 4!(N+1)δt3∥µ∥3∥O∥.

We refer the readers to the full version of this paper [26, Appendix B] for the proof of this
lemma.

3 For a precise definition of an index sequence, see Definition 4 of [21].
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3 Simulating open quantum systems with time-dependent Lindbladian

Ref. [36, Section 6] sketched a method for simulating open quantum systems with time-
dependent Lindbladian. In this section, we present the details of this simulation algorithm.

Motivated by the time scaling idea in [5], we define a change-of-variable function as

var(t) :=
∫ t

0
ds ∥L(s)∥be. (16)

By simulating the Lindblad dynamics on the new time scale, the overall complexity exhibits
a better dependence on the norm of the Lindbladians in time. To this end, we need the
following oracle to perform the inverse change-of-variable:

Ovar |t⟩ |z⟩ = |t⟩
∣∣z ⊕ var−1(t)

〉
. (17)

In addition, we need the following oracle to obtain the normalizing constant α0(t) for H(t)
and αj(t) for Lj(t): for all j = [m],

OH,norm |t⟩ |z⟩ = |t⟩ |z ⊕ α0(t)⟩ , and OLj ,norm |t⟩ |z⟩ = |t⟩ |z ⊕ αj(t)⟩ . (18)

As in [36], we define the block-encoding norm for a Lindbladian L, denoted by ∥L∥be for
normalization purposed:

∥L∥be := α0 + 1
2

m∑
j=1

α2
j . (19)

The goal of this section is to prove the following theorem.

▶ Theorem 11. Suppose we are given an (α0(t), a, ϵ′)-block-encoding UH(t) of H(t), and an
(αj(t), a, ϵ′)-block-encoding ULj(t) for each Lj(t) for all 0 ≤ t ≤ T . Let ∥L∥be,1 be defined as
∥L∥be,1 :=

∫ T

0 dτ ∥L(τ)∥be, Suppose further that ϵ′ ≤ ϵ/(2t(m+1)). Then, there exists a quan-

tum algorithm that outputs a purification of ρ̃T of ρ̃(T ) where
∥∥∥∥ρ̃(T ) − T e

∫ T

0
dτ L(τ)(ρ0)

∥∥∥∥
1

≤ ϵ

using

O

∥L∥be,1

 log
(

∥L∥be,1/ϵ
)

log log
(

∥L∥be,1/ϵ
)
2 (20)

queries to UH(t), ULj(t), Ovar, OH,norm, and OLj ,norm, and Õ
(

(m+ n)∥L∥be,1

)
additional

1- and 2-qubit gates, where n is the number of qubits the Lindbladian is acting on.

3.1 High-level overview of the simulation algorithm
Here we briefly outline the techniques that led to the stated complexity. Let the Hamiltonian
H(t) = H0 +

∑
β uβ(t)µβ , we rewrite equation (1) as follows

d

dt
ρ = L(t)(ρ) := −i[H(t), ρ] +

m∑
j=1

(Lj(t)ρL†
j(t) − 1

2{Lj(t)†Lj(t), ρ}) (21)

= LD(t)(ρ) + LJ(t)(ρ). (22)

TQC 2024
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Here we have decomposed the Lindbladian into a drift term LD(t) and a jump term LJ(t):

LD(t)(ρ) = −i[H(t), ρ] − 1
2

m∑
j=1

{Lj(t)†Lj(t), ρ} = J(t)ρ+ ρJ(t)†, (23)

LJ(t)(ρ) =
m∑

j=1
Lj(t)ρLj(t)†, (24)

where J(t) := −iH(t) − 1
2
∑m

j=1 Lj(t)†Lj(t).
With the known initial value ρ(0) = ρ0, the solution of Eq. (22) can be written as the

linear combination of the following equations.{
∂tρ = LD(t)(ρ)
ρ(0) = ρ0

, and
{
∂tρ = LD(t)(ρ) + LJ(t)(ρ)
ρ(0) = 0

. (25)

Specifically, for the first part of Eq. (25), the density operator follows ρ(t) =
V (0, t)ρ0V (0, t)† = K[V (0, t)](ρ0), where V (s, t) = T e

∫ t

s
J(τ)dτ is the time-ordered expo-

nential of J . A brief introduction of time-ordered exponential can be found in in the full
version of this paper ([26, Appendix A]). For the second part of Eq. (25), the density operator
follows ρ(t) =

∫ t

0 g(t, s)ds, where the function g(t, s) satisfying

∂tg(t, s) = LD(t)(g(t, s)), and lim
t→s

g(t, s) = LJ(s)(ρ(s)). (26)

By using time-ordered evolution operator and Duhamel’s principle, the solution of Eq. (21)
can be expressed as

ρ(t) = K[V (0, t)](ρ0) +
∫ t

0
K[V (s, t)](LJ(s)(ρ(s))) ds. (27)

The time-ordered exponential V (0, t) can be approximated by the truncated Dyson series
(see the full version of this paper [26, Appendix A.1] for details),

V (0, t) = T e
∫ t

0
J(τ)dτ ≈

K∑
k=0

1
k!T

∫ t

0
dτJ(τk) · · · J(τ1), (28)

where T
∫ t

0 dτ (·) denote an integration over a k-tuple of time variables (τ1, . . . , τk) while
keeping the time ordering: τ1 ≤ τ2 ≤ · · · ≤ τk. Thus,

V (s, t) = T e
∫ t

s
J(τ)dτ = T e

∫ t−s

0
J(s+τ)dτ (29)

≈
K∑

k=0

1
k!

∫ t−s

0
dτT [J(τk) · · · J(τ1)]. (30)

As in [30], we use the rectangle rule to approximate the integral in the truncated Dyson
series. Note that more efficient quadratures could be potentially used as we use later
approximation the integral in Eq. (27), for instance, the scaled Gaussian quadrature; however
such methods require upper bounds on higher-order derivatives of J(t), which are not readily
available.

By applying Duhamel’s principle (see Eq. (27)) several times, we obtain the following
approximation with notations introduced in [10].

GK(t) := K[V (0, t)] +
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk, (31)
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where

Fk(sk, . . . , s1) := K[V (sk, t)]LJ(sk) · · · K[V (s1, s2)]LJ(s1)K[V (0, s1)]. (32)

This yields an approximation of the evolution superoperator ρ(t) ≈ GK(t)(ρ(0)). The key
observation is that Fk is a composition of CPTP maps. The second term of GK(t) can be
approximated by using truncated Dyson series.

3.2 Detailed constructions
In this subsection, we present the construction of the time-dependent Lindbladian simulation
algorithm. For the sake of conciseness, we omit the convoluted details in treating the
time-ordering of the truncated Dyson series. All these details can be found in the full version
of this paper [26, Appendix D].

The scaled evolution time

Recall that we introduced the rescaled time in Eq. (16), and let define t̂ as

t̂ = var(t) =
∫ t

0
ds ∥L(s)∥be. (33)

Correspondingly, we follow the rescaled Lindblad equation, by defining ρ̂(t̂) = ρ((var−1(t̂)),
which, from Eq. (1), satisfies the equation

d
dt̂
ρ̂(t̂) = L̂(t̂)ρ̂(t̂), (34)

where the rescaled Lindbladian is as,

L̂(t̂) = L(var−1(t̂))∥∥L(var−1(t̂))
∥∥

be
. (35)

This rescaling can be achieved by defining

Ĥ(t̂) := H(var−1(t̂))∥∥L(var−1(t̂))
∥∥

be
, and L̂(t̂) := L(var−1(t̂))√∥∥L(var−1(t̂))

∥∥
be

. (36)

The scaled effective Hamiltonian (not Hermitian), denoted by Ĵ(t̂), is therefore defined as

Ĵ(t̂) := J(var−1(t̂))∥∥L(var−1(t̂))
∥∥

be
. (37)

As a result, simulating L̂ for time t̂ = var(t) is equivalent to simulating L for time t. Moreover,
the block-encoding-norm of L̂ is at most 1 because of Eq. (35).

To simplify the notation, in the remainder of this section we assume the Lindbladian is
already scaled so that we can drop the ·̂ notation for the scaled operators and evolution time.

LCU construction

Let UJ(t) be an (α, a, ϵ)-block-encoding of J(t). Given the oracles as in Eqs. (4) and (5),
the unitary

∑
t |t⟩⟨t| ⊗ UJ (t) for discretized times t can be implemented. Using Lemma 3, a

block-encoding of V (s, t) can also be implemented. More specifically, we use the rectangle
rule as in [30] to approximate the integrals in Eq. (30):

Ṽ (s, t) =
K′∑

k=0

(t− s)k

Mkk!

M−1∑
j1,...,jk=0

T J(tjk
) · · · J(tj1). (38)
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Here the time-ordered term is defined as follows, for each tuple tk, tk−1, . . . , t1,

T J(tk) · · · J(t1) = J(tjk
) · · · J(tj1),

where tjk
, . . . , tj1 is the permutation of tk, tk−1, . . . , t1 that is in ascending order.

The error of the above approximation is bounded by∥∥∥V (s, t) − Ṽ (s, t)
∥∥∥ ≤ O

(
(t− s)K′+1

(K ′ + 1)! + (t− s)2J̇max

M

)
, (39)

where J̇max := maxτ∈[0,t]

∥∥∥dJ(τ)
dτ

∥∥∥.
Now, we need to approximate the integrals in Eq. (31). In [36], Gaussian quadratures were

used to approximate similar integrals in the time-independent case, which yields a simpler
LCU construction. Unfortunately, using such efficient quadrature rules in the time-dependent
case requires bounding the norm of high-order derivatives of V (s, t), which is not directly
given. Instead, we use the simple Riemann sums for treating the integrals, where the LCU
constructions follow closely from the ones in [30].

More specifically, we uniformly divide the evolution time t into q intervals, and let
tj = tj/q for j ∈ {0, . . . ,M − 1}. Assuming V (s, t) is implemented perfectly, we consider the
following superoperator,

tk

k!qk

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1), (40)

which approximates the integrals in Eq. (31). To bound the quality of this approximation,
we need to bound the derivative of Fk. We begin by bounding ∥V (0, t)∥, which can be
deduced from the stability of the differential equation d

dt y = J(t)y, which can be studied by
examining the eigenvalues of the Hermitian part of J(t) [7, Lemma 1]. Since the Hermitian
part of J(t) is semi-negative definite, one has ∥y(t)∥ ≤ ∥y(0)∥, which implies that

∥V (0, t)∥ ≤ 1. (41)

Since d
dtV (0, t) = J(t)V (0, t), the derivative of V (0, t) can be bounded by∥∥∥∥ d

dtV (0, t)
∥∥∥∥ ≤ J̇max. (42)

We further consider d
dt K[V (0, t)]. For any operator A with ∥A∥1 = 1, we have

d
dtK[V (0, t)](A) =

(
d
dtV (0, t)

)
AV (0, t)† + V (0, t)A d

dtV (0, t)†. (43)

We then have
∥∥ d

dt K[V (0, t)](A)
∥∥

1 ≤ 2J̇max, which follows from Eqs. (41) and (42) and the
fact that ∥BAC∥1 ≤ ∥B∥∥A∥1∥C∥ for matrices A,B,C. This bound easily extends to the
diamond norm by tensoring the Kraus operator with an identity operator to extend it to a
larger space. Hence, we have∥∥∥∥ d

dtK[V (0, t)](A)
∥∥∥∥

⋄
≤ 2J̇max. (44)

Let L̇j,max be defined as L̇j,max := maxτ∈[0,t]
∥∥ d

dτLj(τ)
∥∥. Then, using similar arguments, we

can bound the derivative of LJ(t) as∥∥∥∥ d
dtLJ(t)

∥∥∥∥
⋄

≤ 2
m∑

j=1
L̇j,max, (45)
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where we have assumed that the Lindbladian is scaled as in Eq. (35), i.e., ∥Lj∥ ≤ 1. For the
derivative of Fk, we have

d
dtj

Fk

= K[V (tk, t)]LJ(tk) · · · d
dtj

(K[V (tj , tj+1)]LJ(tj)K[V (tj−1, tj)]) LJ(tj−1) · · · K[V (0, t1)]

= K[V (tk, t)]LJ(tk) · · · d
dtj

(K[V (tj , tj+1)])LJ(tj)K[V (tj−1, tj)]LJ(tj−1) · · · K[V (0, t1)]

+ K[V (tk, t)]LJ(tk) · · · K[V (tj , tj+1)] d
dtj

(LJ(tj))K[V (tj−1, tj)]LJ(tj−1) · · · K[V (0, t1)]

+ K[V (tk, t)]LJ(tk) · · · K[V (tj , tj+1)]LJ(tj) d
dtj

(K[V (tj−1, tj)])LJ(tj−1) · · · K[V (0, t1)].

(46)

Again, assume the Lindbladian is scaled as in Eq. (35), the above expression of d
dtj

Fk

together with Eqs. (44) and (45) implies that
∥∥∥ d

dtj
Fk

∥∥∥
⋄

≤ 4J̇max + 2
∑m

j=1 L̇j,max. This
implies that the error for using the Riemann sums can be bounded by∥∥∥∥∥∥GK − K[V (0, t)] − tk

k!qk

K∑
k=1

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1)

∥∥∥∥∥∥
⋄

=

∥∥∥∥∥∥
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk − tk

k!qk

K∑
k=1

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1)

∥∥∥∥∥∥
⋄

≤
K∑

k=1

t2

q
·

4J̇max + 2
m∑

j=1
L̇j,max

 (47)

= Kt2

q
·

4J̇max + 2
m∑

j=1
L̇j,max

 . (48)

In addition, it is easy to see that the error caused by using Duhamel’s principle is∥∥∥∥eT
∫ t

0
dτ L(τ) − GK

∥∥∥∥
⋄

≤ (2t)K+1

(K + 1)! . (49)

It follows from Eqs. (48) and (49) that∥∥∥∥∥∥eT
∫ t

0
dτ L(τ) − K[V (0, t)] − tk

k!qk

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1)

∥∥∥∥∥∥
⋄

≤ (2t)K+1

(K + 1)! + Kt2

q

4J̇max + 2
m∑

j=1
L̇j,max

 .

(50)

Finally, we have the following LCU form:

G̃K := K[Ṽ (0, t)] +
K∑

k=1

tk

qk

q∑
j1,...,jk=0

F̃k(tjk
, . . . , tj1), (51)
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where F̃K is an approximation of Eq. (32) by using Ṽ (s, t) instead of V (s, t), i.e.,

F̃k(sk, . . . , s1) := K[Ṽ (sk, t)]LJ(sk)K[Ṽ (sk−1, sk)] · · · K[Ṽ (s1, s2)]LJ(s1)K[Ṽ (0, s1)]. (52)

We use the same compression scheme as in [30] to deal with the time-ordering in Eqs. (38)
and (51). Note that implementing the LCU requires additional O(KK ′m(logM + log q+ n))
1- and 2-qubit gates.

Complexity analysis

We first analyze the normalizing constant for the LCU implementation. Recall that we are
working with scaled operators, so the normalizing factors are at most 1. For the implement
of V (0, t̂), we can use, for example, the LCU construction involving quantum sort as in [30]
for implement Eq. (38). If we further assume the implementation uses an infinite Dyson
series, the normalizing constants of the block-encoding K[V (0, t)] is upper bounded by

∞∑
k=0

tk

k! = et. (53)

As a result, the sum-of-squares of the normalizing constants of the Kraus operators of
Fk(t̂k, . . . , t̂1) can be bounded by

m∑
j1,...,jk=0

e2(t−sk)e2(sk−sk−1) . . . e2(s1−0) = e2t. (54)

Recall that the normalizing constant for Lj is 1 since the Lindbladian is rescaled. For
the second term in Eq. (31), the sum-of-squares of the normalizing constants of the Kraus
operators can be bounded by

e2t tk

k!qk
qk = e2t t

k

k! . (55)

By Eqs. (53) and (55), we have that the sum-of-squares of the normalizing constants of the
Kraus operators of the LCU in Eq. (31) can then be bounded by e2t +

∑K
k=1 e

2t tk

k! ≤ e2t + e3t.
Therefore, it suffices to set t = Ω(1) to achieve constant success probability when using

Lemma 2. Then, we use the oblivious amplitude amplification for channels [15] to boost
the success probability to 1 with constant applications of Lemma 2. For the error bound
in Eq. (50), assume for now that the second error term is dominated by the first (by some
choice of q to be determined). It suffices to set K = log(1/ϵ)

log log(1/ϵ) to make the total error at
most ϵ/2, because of the choice of t = Ω(1). The choice of q satisfies

q = Θ

2K
ϵ

4J̇max + 2
m∑

j=1
L̇j,max

 . (56)

Now, we deal with the error from truncated Dyson series and Riemann sum to implement
V (s, t). By Eq. (38), we can choose M large enough (determined later) so that the second
error term is dominated by the first. Then, using [36, Lemma 7], we have∥∥∥Fk(sk, . . . , s1) − F̃k(sk, . . . , s1)

∥∥∥
⋄

≤ 8et

(K ′ + 1)!2
k+1tK

′+1. (57)
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Further, using the analysis as in [36], we can bound the total approximation error (with
appropriate choice of M to be determined later) as∥∥∥∥T e

∫ t

0
L(τ)dτ − G̃K

∥∥∥∥
⋄

≤ 32e5ttK
′+2

(K ′ + 1)! . (58)

With the choice of t = Ω(1), we can choose K ′ = log(1/ϵ)
log log(1/ϵ) so that the total error is bounded

by ϵ. For the choice of M , we need to make sure the second error term in Eq. (38) is
dominated by the first term. Hence we can choose M = Θ

(
J̇max

ϵ

)
.

It remains to analyze the cost for the LCU implementation, which is the same as the
analyses in [36] and [30]. Note that the dependence on M is logarithmic if the compressed
scheme is used in [30] for implementing Ṽ (s, t). The total gate cost is now upper bounded by
O(KK ′m(logM + log q + n)). Further note that the error ϵ′ brought by the block-encoding
can be eventually transferred to L causing an (m+ 1)ϵ′ error on L in terms of the diamond
norm, and the accumulated error for evolution time t is then at most t(m+ 1)ϵ′. As a result,
choosing ϵ′ ≤ ϵ/(2t(m+ 1)) suffices to ensure the total error is at most ϵ.

Recall that the above analysis is based on the scaled version of L defined in Eq. (35),
and the evolution time is scaled as in Eq. (33). For arbitrary evolution time t̂, we apply the
above procedure O(t̂) times with precision ϵ′ = ϵ/t̂. This gives the desired complexity in
Theorem 11. Lastly, it is important to note that the LCU circuit yields a purification of ρ(t).
This completes the proof of Theorem 11.

Note that the above analysis easily extends to the simulation of the original Lindbladian
without any scaling, where the complexity depends linearly on the product of evolution time
and the maximum of the block-encoding norm of the Lindbladian. More specifically, we have
the following corollary.

▶ Corollary 12. Suppose we are given an (α0(t), a, ϵ′)-block-encoding UH(t) of H(t), and an
(αj(t), a, ϵ′)-block-encoding ULj(t) for each Lj(t) for all t ≥ 0. Define ∥L∥be,∞ as ∥L∥be,∞ :=
maxτ∈[0,T ] ∥L(τ)∥be. Suppose further that ϵ′ ≤ ϵ/(2T (m + 1)). There exists a quantum

algorithm that outputs a purification of ρ̃(T ) where ∥ρ̃(T ) − e
T
∫ T

0
dτ L(τ)(ρ0)∥ 1 ≤ ϵ using

O

T∥L∥be,∞

 log
(
T∥L∥be,∞/ϵ

)
log log

(
T∥L∥be,∞/ϵ

)
2 (59)

queries to UH(t), ULj(t), Ovar, OH,norm, and OLj ,norm, and Õ
(

(m+ n)T∥L∥be,∞

)
additional

1- and 2-qubit gates. Here, n is the number of qubits the Lindbladian is acting on.

4 Simulations in the Interaction Picture

Many control problems involve a system Hamiltonian that contains a time-independent
Hamiltonian that dominates the spectral norm H(t), and thus the overall computational
complexity. Motivated by the interaction picture approach for Hamiltonian simulations [41],
we devise an approach to simulate the Lindblad dynamics. To formulate the problem, we
assume that the Lindbladian admits the following decomposition:

L(·) = −i [H1 +H2(t), ·] +
∑

j

Lj(·)L†
j − 1

2

{
L†

jLj , ·
}
, (60)

TQC 2024



3:16 Efficient Optimal Control of Open Quantum Systems

where H1 is a time-independent free Hamiltonian, H2(t) is the coupling Hamiltonian which
contains the control variables, and the dissipative terms still come from the interaction with
the environment.

One such example is the control of an ion trap system [25], in which the model Hamiltonian
consists of the following terms,

H1 = ℏ
N∑

i=1
(ω01|1⟩i ⟨1 |+ω0e| e⟩i ⟨e|) + ℏ

∑
k

ωka
†
kak (61)

H2(t) = ℏΩ1 cos (k1 · rj − ω1t− φ1) (|0⟩j⟨e| + |e⟩j⟨0|) (62)
+ ℏΩ2 cos (k2 · rj − ω2t− φ2) (|1⟩j⟨e| + |e⟩j⟨1|) , (63)

and Ljs includes λheata
†
j , λdampaj and λdephasenj . The observation in [25] is that ω0e ≫

|Ω1| , |Ω2| ≫ λheat, λdamp, λdephase.
Motivated by such applications, we assume that in Eq. (60),

∥H1∥ ≫ ∥H2(t)∥ ≫ ∥Lj∥. (64)

In the interaction approach, e.g., [41], one simulates the density operator in the interaction
picture, where the large magnitude of H1 is absorbed into the slow Hamiltonian H2(t) and
the jump operators. In this section, we provide detailed quantum algorithms for simulating
the Lindbladian Eq. (60) in the interaction picture.

4.1 Lindbladian simulation in interaction picture
In light of Eq. (60), we first write the Lindbladian into two parts

L(t) = L1 + L2(t) (65)

where L1 contains a time-independent Hamiltonian term and L2(t) can be a general Lindbla-
dian term

L1(·) = −i [H1, ·] (66)

L2(t)(·) = −i [H2(t), ·] +
∑

j

Lj(·)L†
j −

{
L†

jLj , ·
}
. (67)

Then the Lindblad master equation in Eq. (1) is equivalent to:

d
dtV1†(t0, t)ρV1(t0, t) = V †

1 (t0, t)L2(t)V1(t0, t)V †
1 (t0, t)ρV1(t0, t), (68)

where V1(t0, t) = e−iH1(t−t0), and t ≥ t0.
We can define ρI = V †

1 (t0, t)ρV1(t0, t) as the density operator in the interaction pic-
ture, and it satisfies the Lindblad equation, d

dtρI(t) = L2,I(t)ρI(t), where L2,I(t) :=
V †

1 (t0, t)L2(t)V1(t0, t). Effectively, this transforms H2 and Lj(t) in Eq. (67) into an interaction
picture as well.

By simulating the time evolution in the interaction picture and transforming it back to
the original picture at last, we have

ρ(t) =
(
eL1(t−t0)

)(
T e
∫ t

t0
L2,I(s)ds

ρ(t0)
)
, (69)
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where
(
eL1(b−a)) (·) = V1 (a, b) (·)V −1

1 (a, b). We can further decompose this evolution into
N Trotter steps (with τ = (t− t0)/N),

ρ(t) =
N−1∏
i=0

(
eL1τ T e

∫ t0+(i+1)τ

t0+iτ
L2,I(s)ds

)
ρ(t0). (70)

At a high level, Eq. (70) summarizes our simulation strategy in the interaction picture. The
total time complexity is determined by the number of time steps N , and the time complexity
in each step, which follows from our Lindbladian simulation algorithm in Section 3.

▶ Theorem 13 (Modified from Corollary 12). Suppose we are given an (α0, a, ϵ
′)-block-

encoding UH of H, and an (αj , a, ϵ
′)-block-encoding ULj

for each Lj. For all τ, ϵ′ ≥ 0 and

t∥L(τ)∥be,∞ = Θ(1), there exists a quantum algorithm for simulating eLτ using O
( log(1/ϵ′)

log log(1/ϵ′)
)

queries to UH and ULj
and O

(
m
( log(1/ϵ′)

log log(1/ϵ′)
)2) additional 1- and 2-qubit gates.

▶ Lemma 14 (Error accumulation). Given that Aj = Wj and Bj = T
[
e

∫ tj

tj−1
L1(s)ds

]
are

bounded ∥Wj∥ ≤ 1, ∥Bj∥ ≤ 1, and error in each segment is bounded by δ ∥Aj −Bj∥ ≤ δ.
Then the accumulated error is∥∥∥∥∥∥

L∏
j

Wj − T
[
e

∫ t

0
L(s)ds

]∥∥∥∥∥∥ ≤ Lδ. (71)

Proof. The lemma holds by applying the triangle inequality∥∥∥∥∥∥
L∏

j=1
Aj −

L∏
j=1

Bj

∥∥∥∥∥∥ ≤
L∑

k=1

k−1∏
j=1

∥Aj∥

 ∥Ak −Bk∥

 L∏
j=k+1

∥Bj∥

 . (72)

◀

These results imply the following result for Lindbladian simulation in the interaction
picture:

▶ Theorem 15 (Query complexity of Lindbladian simulation in the interaction picture). Let
L(t) = L1(t)+L2(t), with L1(t) and L2(t) defined by Eqs. (66) and (67) respectively. Assume
the existence of a unitary oracle that implements the Hamiltonian and Lindbladian within
the interaction picture, denoted UHI and ULI

j
which implicitly depends on the time-step size

τ ∈ O
(
||L2||−1

be
)

and number of quadrature points q, such that

(⟨0|a ⊗ 1s)UHI (|0⟩a ⊗ 1s) =
q∑

jk=1
|jk⟩⟨jk| ⊗ eiH1τx̂(jk)H2e

−iH1τx̂(jk)

αH
(73)

(⟨0|a ⊗ 1s)ULI
j

(|0⟩a ⊗ 1s) =
q∑

jk=1
|jk⟩⟨jk| ⊗ eiH1τx̂(jk)Lje

−iH1τx̂(jk)

αLj

, (74)

For t ≥ ||L2(t)||beτ , the time-evolution operator T e
∫ t

0
L1(s)+L2(s)ds may be approximated to

error ϵ with the following cost.
1. Simulations of e−iH1τ : O (t||L2(t)||be,∞),
2. Queries to UHI and ULI

j
: O

(
t||L2(t)||be,∞

log(t||L2(t)||be,∞/ϵ)
log log(t||L2(t)||be,∞/ϵ)

)
,

3. Primitive gates: O
(
mt||L2(t)||be,∞( log(t||L2(t)||be,∞/ϵ)

log log(t||L2(t)||be,∞/ϵ) )2
)

.
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Proof. Consider simulation strategy shown in Eq. (70), we uniformly divide the evolution
time [0, t] into M = ⌈t ∥L2(t)∥be,∞⌉, time step τ = t/M . Then τ ∥L2(t)∥be,∞ = Θ(1), which
satisfies the pre-condition of Theorem 13. Therefore, using Theorem 13, the time and gate

complexity of each time interval is O
(

log(1/ϵ′)
log log(1/ϵ′)

)
and O

(
m

(
log(1/ϵ′)

log log(1/ϵ′)

)2
)

, respectively.

Furthermore, by the error accmulation in Lemma 14, we choose ϵ′ = ϵ/t (∥L∥be) in order to
bound the overall error by ϵ.

In addition, since we need to invoke e−iH1τ once every step, the invoking number equals
to M and is hence bounded as claimed. ◀

4.2 Comparison of the simulation complexity with and without
interaction picture

In this subsection, we compare the complexity with simulations of Lindblad dynamics with
and without the interaction picture. For the Lindbladian decomposition shown in Eq. (65),
suppose we have access to the oracles UH1 ,UH2(t), and ULj

. According to Theorem 11, a
direct simulation involves a time complexity

Cdirect = O

(
t(C1 + C2)(αL1 + αL2)( log (t(αL1 + αL2)/ϵ)

log log (t(αL1 + αL2)/ϵ) )2
)

(75)

where α1 = ∥L1(t)∥be,1 , αL2 = ∥L2(t)∥be,1; C1 and C2 representing the gate complexity of
implement UH1 and the maximum gate complexity of implement UH2(t), ULj

respectively.
Meanwhile for the simulation algorithm in interaction picture, the time complexity is

given by the following theorem.

▶ Theorem 16 (Gate complexity of Lindbladian simulation in the interaction picture). Suppose
we are given UH1 ,UH2(t) and ULj

block encoding of H1, H2(t) and Lj respectively, such that
e−iHs is approximated to error ϵ using Ce−iH1s [ϵ] ∈ O (|s| logγ(s/ϵ)) gates for some γ > 0
and any |s| ≥ 0.

For all t > 0, the time-evolution Eq. (70) may be approximated to error ϵ with gate
complexity

Cinteract

= O
(
αL2t

(
C2 + C

e
−iA/αL2

[
ϵ

αL2t log (αL2)

]
log
(
t (αL1 + αL2)

ϵ

))
log (αL2t/ϵ)

log log (αL2t/ϵ)

)
= O

(
αL2t

(
C2 + C

e
−iA/αL2 [ϵ]

)
polylog (t (αL1 + αL2) /ϵ)

)
(76)

where α1 = ∥L1(t)∥be,∞ , αL2 = ∥L2(t)∥be,∞ = ∥L2,I(t)∥be,∞ .

The proof follows by using αL1 , αL2,I to substitute αA and αB in Theorem 7 in [41],
respectively.

We highlight that the assumption Ce−iH1s [ϵ] = O (|s| logγ(s/ϵ)) imposes strong require-
ment on simulating the H1 dynamics. With Hamiltonian simulation algorithm [5], gate
complexity should be Ce−iH1s [ϵ] = Õ(||H1||s). But here the assumption removes the ||H1||
dependence. This implies that the simulation of H1 is supposed to be easy, the dynamics can
be fast-forwarded. Nevertheless this assumption is valid in some common settings [41], for
instance when H1 is diagonal. Another assumption is Eq. (64), which implies that α2 ≪ α1.
By comparing Eq. (75) and Eq. (76) with this relation, we find the simulation strategy using
the interacting picture has a better gate complexity. As long as these two assumptions hold,
the simulation algorithm in the interaction picture can serve as an alternative to reduce the
simulation complexity.
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5 The Optimization Algorithm for Quantum Optimal Control

In this section, we present our main results for finding first- and second-order stationary points
of the optimization problem induced by the quantum optimal control problem (2), which
in general is nonconvex. We consider the accelerated gradient descent (AGD) method [27].
A key departure from a direct implement of AGD is that the gradient has to be estimated
using the quantum algorithm [21], in which case, the gradient input is subject to noise. We
believe that this result may be of general interest to the optimization community.

▶ Theorem 17. Assume that the function f(·) is ℓ-smooth and ϱ-Hessian Lipschitz. There
exists an absolute constant cmax such that for any δ > 0, ϵ ≤ ℓ2

ϱ ,∆f ≥ f (x0) − f⋆, if

χ = max
{

1, log dℓ∆f

ϱ∈δ

}
, c ≥ cmax and such that if we run modified PAGD ([26, Algorithm

2]) with the choice of parameters in [26, Appendix C.1] using an approximate gradient ∇̂f(x)
with error bounded at every step: ∥∇f(x) − ∇̂f(x)∥ ≤ ϵg with

ϵg = ϱ1/8
√

2ℓ1/4χ3/2c3/2
ϵ9/8, (77)

then with probability at least 1 − δ, one of the iterates xt will be an ϵ-first order stationary
point in the following number of iterations:

O

(
ℓ1/2ϱ1/4 (f (x0) − f∗)

ϵ7/4 log6
(
dℓ∆f

ϱϵδ

))
. (78)

Furthermore, if the error bound of the gradient is chosen as, ϵg = δχ−11c−16

64ℓ
ϵ3
√

d
1

∆f
, then with

probability at least 1 − δ, one of the iterates xt will be an ϵ-second order stationary point.

The proof of this theorem can be found in the full version of this paper [26, Appendix
C.7]. Note that the complexity Õ(1/ϵ7/4) in [27] is the currently best-known result for
finding first- and second-order stationary points using only gradient queries, and there
is not much space to improve as [11] proved a lower bound Ω(1/ϵ12/7) for deterministic
algorithms with gradient queries when the function is gradient- and Hessian-Lipschitz. Our
error bound Õ(1/ϵ9/8) in (77) is optimal (up to poly-logarithmic factors) for PAGD because
up to a concentration inequality, it can give an algorithm for stochastic gradient descent
with complexity Õ(1/ϵ7/4 · (1/ϵ9/8)2) = Õ(1/ϵ4), which is optimal as there is a matching
lower bound Ω(1/ϵ4) [3]. In other words, if the error ϵ9/8 can be further improved, it implies
an algorithm for finding stationary points with better convergence than [27], the current
state-of-the-art work on this.

The AGD algorithm relies on an estimate of the gradient. Toward this end, we first
show that the objective function (11) from the quantum control problem is essentially a
polynomial. The polynomial nature of the objective function allows us to use high-order
finite difference methods to compute the gradient. In particular, a centered difference scheme
with 2m+ 1 points will produce an exact gradient for a polynomial of degree 2m.

▶ Lemma 18. Assume that the control function is expressed as a linear combination of shape
function bj(t): u(t) =

∑N
j=0 ujbj(t) and let u = (u0, u1, . . . , uN ). Then the expectation in

Eq. (11) from the Lindblad simulation algorithms from the previous section is a polynomial
with degree d = O

(
T polylog 1

ϵ

)
.

Proof. We begin by examining the time-dependent unitary V (0, t) in Duhamel’s represen-
tation. Specifically, from Eq. (28), we see that the Dyson series approximation yields a
polynomial of degree at most K. In addition, in the Kraus form approximation in Eq. (31),
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the operators LJ(s) do not involve the control variable u. Overall, the approximation GK(t)
in Eq. (31) constitutes a polynomial of degree at most K2. Therefore, after applying GK(δ)
for T/δ times to approximate the density operator at time T , we obtain a polynomial of
degree at most Tpolylog 1

ϵ . Here we have used the fact that K = log(1/ϵ)
log log(1/ϵ) . Furthermore,

when the gradient estimation algorithm in Lemma 8 is applied, the query complexity Õ
(

m
ϵ

)
in Lemma 8 becomes Õ(T/ϵ). ◀

6 Proof of Main Theorem

Finally, we outline the proof of our main theorem (Theorem 1). We first summarize our
quantum algorithm as follows,

Algorithm 1 Quantum Algorithm for Open System Quantum Control.

1: Given kmax, ϵg as in Theorem 17; set u(t) = 0
2: for t = 0,1,...,kmax do
3: Use Theorem 11 and strategy in Section 2.2.3 to construct the phase oracle for J̃1(u);
4: Use Lemma 9 to estimate g(k) ≈ ∇J

(
u(k)) with ||g(k) − J

(
u(k)) || ≤ ϵg;

5: Update control variable with one step of modified PAGD ([26, Algorithm 2]);
6: end for

Now, we restated the main theorem and give its proof:

▶ Theorem 19 (main theorem, restated). Assume there are nc control functions uβ(t) ∈
C2([0, T ]). Further assume4 that ∥H0∥, ∥O∥, ∥µβ∥, ∥Lj∥ ≤ 1, and α ≥ 2/T . There exists a
quantum algorithm that, with probability at least 2/35, solves problem (2) by:

reaching a first-order stationary point ∥∇f∥ < ϵ with (1) using Õ
(

nc∥L∥be ,1T

ϵ23/8 ∆f

)
queries

to PH0 and Pµβ
, β = 1, 2, . . . , nc, and Õ

(
mn

nc∥L∥be ,1T

ϵ23/8 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1-

and 2-qubit gates; or
reaching a second-order stationary point using Õ

(
nc∥L∥be ,1T 7/4

ϵ5 ∆f

)
queries to PH0 and

Pµβ
, β = 1, 2, . . . , nc and Õ

(
mn

nc∥L∥be ,1T 7/4

ϵ5 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1- and 2-qubit

gates.
Here nc and m are respectively the number of control variables and jump operators.

Proof. We denote gate complexity of control UO by Cc−UO
, gate complexity of UH , ULj

by CUH ,ULj
, and gate complexity of quantum simulation by Cϱ(t). The gate complexity of

preparing a state after Lindblad evolution is given by Theorem 11,

Cϱ(t) = O

(
∥L∥be,1

log (∥L∥be,1/ϵ)
log log (∥L∥be,1/ϵ)

)
CUH ,ULj

+ Õ (m∥L∥be,1n) . (79)

With copies of states ϱ(t) and access to control UO oracle, we can construct the gradient
following Section 2.2.3. According to that section, we can construct the probability oracle
with ϱ(t), construct the phase oracle with probability oracle, and calculate the gradient with
the phase oracle. The corresponding complexity is listed below:

4 More generally, if ∥H0∥, ∥µ∥ = Θ(Λ), it is equivalent to enlarge the time duration T by a factor O(Λ).
5 Using standard techniques, the success probability can be boosted to a constant arbitrarily close to 1

while only introducing a logarithmic factor in the complexity.
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CUJ1
= Cϱ(t) +O(1) + Cc−UO

, (80)
COJ1

= O(log 1/ϵ)CUJ1
, (81)

C∇J = Õ(ncT log(N/γ)/ϵ)COJ1
+ Õ(N), (82)

where 1 − γ is the successful probability of obtaining a gradient, nc is the number of
parameters, and N is the time steps N = O

(
t3/2/ϵ1/2) as in [35, Corollary 2.2]. Here we

define γ = ν/k, where ν is a small finite number and k is the iteration steps, which we will
give below. Combining them together, we have

C∇J = Õ

(
nc

∥L∥be,1T log N
γ

ϵ

)
CUH ,ULj

+ Õ(nc
T log N

γ

ϵ
)Cc−UO

+Õ(mnnc
∥L∥be,1T log N

γ

ϵ
+N). (83)

Here we reassign the gradient noise ϵ with ϵg to distinguish from the other errors.

C∇J = Õ

(
nc

∥L∥be,1T log N
γ

ϵg

)
CUH ,ULj

+ Õ(nc
T log N

γ

ϵg
)Cc−UO

+ Õ(mnnc
∥L∥be,1T log N

γ

ϵg
+N). (84)

With modified PAGD method ([26, Algorithm 2]), we can find a first or second order
ϵ-stationary point within

k = Õ

(
ℓ1/2ϱ1/4 (f (x0) − f∗)

ϵ7/4

)
(85)

iterations by Theorem 17. For first ϵ-order stationary point, the gradient noise tolerance is
ϵg = ϱ1/8

√
2ℓ1/4χ3/2c3/2 ϵ

9/8. For second order ϵ-order stationary point, it is ϵg = δχ−11c−16

64ℓ
ϵ3
√

d
1

∆f
.

In each iteration, we need to calculate ∇J once and calculate J once. Noticing that
CJ = O(C(ϱ(t))), we have

Ctotal = k × (C∇J + Cϱ(t)). (86)

Substitute Eqs. (79) and (84), (85) into Eq. (86) we finish the proof. Notice that in
optimization, dimension d = N , and here we regard ℓ and ϱ as constants. ◀
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