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Abstract
The existence of one-way functions is one of the most fundamental assumptions in classical cryp-
tography. In the quantum world, on the other hand, there are evidences that some cryptographic
primitives can exist even if one-way functions do not exist [Kretschmer, TQC 2021; Morimae
and Yamakawa, CRYPTO 2022; Ananth, Qian, and Yuen, CRYPTO 2022]. We therefore have
the following important open problem in quantum cryptography: What is the most fundamental
assumption in quantum cryptography? In this direction, [Brakerski, Canetti, and Qian, ITCS 2023]
recently defined a notion called EFI pairs, which are pairs of efficiently generatable states that are
statistically distinguishable but computationally indistinguishable, and showed its equivalence with
some cryptographic primitives including commitments, oblivious transfer, and general multi-party
computations. However, their work focuses on decision-type primitives and does not cover search-
type primitives like quantum money and digital signatures. In this paper, we study properties of
one-way state generators (OWSGs), which are a quantum analogue of one-way functions proposed
by Morimae and Yamakawa. We first revisit the definition of OWSGs and generalize it by allowing
mixed output states. Then we show the following results.
1. We define a weaker version of OWSGs, which we call weak OWSGs, and show that they are

equivalent to OWSGs. It is a quantum analogue of the amplification theorem for classical weak
one-way functions.

2. (Bounded-time-secure) quantum digital signatures with quantum public keys are equivalent to
OWSGs.

3. Private-key quantum money schemes (with pure money states) imply OWSGs.
4. Quantum pseudo one-time pad schemes imply both OWSGs and EFI pairs. For EFI pairs,

single-copy security suffices.
5. We introduce an incomparable variant of OWSGs, which we call secretly-verifiable and

statistically-invertible OWSGs, and show that they are equivalent to EFI pairs.
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1 Introduction

One-way functions (OWFs) are functions that are easy to compute but hard to invert. The
existence of OWFs is one of the most fundamental assumptions in classical cryptography.
OWFs are equivalent to many cryptographic primitives, such as commitments, digital
signatures, pseudorandom generators (PRGs), symmetric-key encryption (SKE), and zero-
knowledge, etc. Moreover, almost all other cryptographic primitives, such as collision-resistant
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4:2 One-Wayness in Quantum Cryptography

hashes, public-key encryption (PKE), oblivious transfer (OT), multi-party computations
(MPCs), etc., imply OWFs. In the quantum world, on the other hand, it seems that
OWFs are not necessarily the most fundamental element. In fact, recently, several quantum
cryptographic primitives, such as commitments, (one-time secure) digital signatures, quantum
pseudo one-time pad (QPOTP)1, and MPCs are constructed from pseudorandom states
generators (PRSGs) [18, 3]. A PRSG [13], which is a quantum analogue of a PRG, is a QPT
algorithm that outputs a quantum state whose polynomially-many copies are computationally
indistinguishable from the same number of copies of Haar random states. Kretschmer [14]
showed that PRSGs exist even if BQP = QMA (relative to a quantum oracle), which
means that PRSGs (and all the above primitives that can be constructed from PRSGs)
could exist even if all quantum-secure (classical) cryptographic primitives including OWFs
are broken.2 Kretschmer, Qian, Sinha, and Tal [15] also showed that 1-PRSGs (which are
variants of PRSGs secure against adversaries that get only a single copy of the state) exist
even if NP = P. We therefore have the following important open problem in quantum
cryptography:

Question 1: What is the most fundamental assumption in quantum cryptography?

In classical cryptography, a pair of PPT algorithms whose output probability distri-
butions are statistically distinguishable but computationally indistinguishable is known
to be fundamental. Goldreich [8] showed the equivalence of such a pair to PRGs, which
also means the equivalence of such a pair to all cryptographic primitives in Minicrypt [11].
It is natural to consider its quantum analogue: a pair of QPT algorithms whose output
quantum states are statistically distinguishable but computationally indistinguishable. In
fact, such a pair was implicitly studied in quantum commitments [20]. In the canonical form
of quantum commitments [22], computationally hiding and statistically binding quantum
commitments are equivalent to such pairs. The importance of such a pair as an independent
quantum cryptograpic primitive was pointed out in [20, 4]. In particular, the authors of [4]
explicitly defined it as EFI pairs,3 and showed that EFI pairs are implied by several quantum
cryptographic primitives such as (semi-honest) quantum OT, (semi-honest) quantum MPCs,
and (honest-verifier) quantum computational zero-knowledge proofs. It is therefore natural
to ask the following question.

Question 2: Which other quantum cryptographic primitives imply EFI pairs?

PRSGs and EFI pairs are “decision type” primitives, which correspond to PRGs in
classical cryptography. An example of the other type of primitives, namely, “search type”
one in classical cryptography, is OWFs. Recently, a quantum analogue of OWFs, so called
one-way states generators (OWSGs), are introduced [18]. A OWSG is a QPT algorithm that,
on input a classical bit string (key) k, outputs a quantum state |ϕk⟩. As the security, we
require that it is hard to find k′ such that |⟨ϕk|ϕk′⟩|2 is non-negligible given polynomially
many copies of |ϕk⟩. The authors showed that OWSGs are implied by PRSGs, and that
OWSGs imply (one-time secure) quantum digital signatures with quantum public keys. In
classical cryptography, OWFs are connected to many cryptographic primitives. We are
therefore interested in the following question.

1 QPOTP schemes are a one-time-secure SKE with quantum ciphertexts where the key length is shorter
than the massage length. (For the definition, see Definition 29.)

2 If QMA = BQP, then NP ⊆ BQP. Because all quantum-secure classical cryptographic primitives are
in NP, it means that they are broken by QPT algorithms.

3 It stands for efficiently samplable, statistically far but computationally indistinguishable pairs of
distributions.
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Question 3: Which quantum cryptographic primitives are related to OWSGs?

In classical cryptography, PRGs (i.e., a decision-type primitive) and OWFs (i.e., a search-
type primitive) are equivalent. In quantum cryptography, on the other hand, we do not know
whether OWSGs and EFI pairs (or PRSGs) are equivalent or not. We therefore have the
following open problem.

Question 4: Are OWSGs and EFI pairs (or PRSGs) equivalent?

1.1 Our Results
The study of quantum cryptography with complexity assumptions has became active only
very recently, and therefore we do not yet have enough knowledge to answer Question 1.
However, as an important initial step towards the ultimate goal, we give some answers to
other questions above. Our results are summarized as follows. (See also Fig. 1.)

1. We first revisit the definition of OWSGs. In the original definition in [18], output states
of OWSGs are assumed to be pure states. Moreover, the verification is done as follows: a
bit string k′ from the adversary is accepted if and only if the state |ϕk⟩⟨ϕk| is measured
in the basis {|ϕk′⟩⟨ϕk′ |, I − |ϕk′⟩⟨ϕk′ |}, and the first result is obtained. (Note that in
classical OWFs, the verification is implicit because it is trivial: just computing f(x′) for
x′ given by the adversary, and check whether it is equal to f(x) or not. However, in the
quantum case, we have to explicitly define the verification.) In this paper, to capture
more general settings, we generalize the definition of OWSGs by allowing outputs to be
mixed states. A non-trivial issue that arises from this modification is that there is no
canonical way to verify input-output pairs of OWSGs. To deal with this issue, we include
such a verification algorithm as a part of syntax of OWSGs.

2. We show an “amplification theorem” for OWSGs. That is, we define weak OWSGs
(wOWSGs), which only requires the adversary’s advantage to be 1− 1/poly(λ) instead
of negl(λ), and show that a parallel repetition of wOWSGs gives OWSGs. This is an
analogue of the equivalence of weak one-way functions and (strong) one-way functions in
classical cryptography [23].

3. We show that one-time-secure quantum digital signatures (QDSs) with quantum public
keys are equivalent to OWSGs.4 Moreover, we can generically upgrade one-time-secure
QDSs into bounded-time-secure one.5

4. We show that private-key quantum money schemes (with pure money states or with
verification algorithms that satisfy some symmetry) imply OWSGs.

5. We show that QPOTP schemes imply OWSGs. This in particular means that IND-CPA
secure quantum SKE or quantum PKE implies OWSGs.

6. We show that single-copy-secure QPOTP schemes imply EFI pairs. Single-copy-security
means that the adversary receives only a single copy of the quantum ciphertext. This
in particular means that IND-CPA secure quantum SKE or quantum PKE implies EFI
pairs.

7. We introduce an incomparable variant of OWSGs, which we call secretly-verifiable
and statistically-invertible OWSGs (SV-SI-OWSGs), and show that SV-SI-OWSGs are
equivalent to EFI pairs.

4 A construction of QDSs from OWSGs was already shown in [18], but in this paper, we generalize the
definition of OWSGs, and we give the proof in the new definition.

5 We thank Or Sattath for asking if we can get (stateless) bounded-time QDSs.
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4:4 One-Wayness in Quantum Cryptography

We remark that we consider the generalized definition of OWSGs with mixed state
outputs by default. However, all the relationships between OWSGs and other primitives
naturally extend to the pure state version if we consider the corresponding pure state variants
of the primitives.

PRSGs

QPOTP

AQY21

OWSGs

EFI

QDSs
Qcomm

Yan20
BCQ22

Qmoney

JLS18

SV-SI-OWSGs

1copy QPOTP

trivial

Figure 1 Summary of results. The dotted line means some restrictions: OWSGs are implied by
quantum money schemes with pure money states or with symmetric verification algorithms.

2 Preliminaries

2.1 Basic Notations

We use the standard notations of quantum computing and cryptography. We use λ as the
security parameter. [n] means the set {1, 2, ..., n}. For any set S, x ← S means that an
element x is sampled uniformly at random from the set S. negl is a negligible function, and
poly is a polynomial. PPT stands for (classical) probabilistic polynomial-time and QPT
stands for quantum polynomial-time. If we say that an adversary is QPT, it implicitly means
non-uniform QPT. A QPT unitary is a unitary operator that can be implemented in a QPT
quantum circuit.

For an algorithm A, y ← A(x) means that the algorithm A outputs y on input x. In
particular, if x and y are quantum states and A is a quantum algorithm, y ← A(x) means the
following: a unitary U is applied on x⊗ |0...0⟩⟨0...0|, and some qubits are traced out. Then,
the state of remaining qubits is y. This, importantly, means that the state y is uniquely
decided by the state x. If A is a QPT algorithm, the unitary U is QPT and the number of
ancilla qubits |0...0⟩ is poly(λ). If x is a classical bit string, y is a quantum state, and A is a
quantum algorithm, y ← A(x) sometimes means the following: a unitary Ux that depends
on x is applied on |0...0⟩, and some qubits are traced out. The state of the remaining qubits
is y. This picture is the same as the most general one where x is given as input, but we
sometime choose this picture if it is more convenient.
∥X∥1 := Tr

√
X†X is the trace norm. TrA(ρA,B) means that the subsystem (register)

A of the state ρA,B on two subsystems (registers) A and B is traced out. For simplicity,
we sometimes write TrA,B(|ψ⟩A,B) to mean TrA,B(|ψ⟩⟨ψ|A,B). I is the two-dimensional
identity operator. For simplicity, we sometimes write I⊗n as I if the dimension is clear from
the context. For the notational simplicity, we sometimes write |0...0⟩ just as |0⟩, when the
number of zeros is clear from the context. For two pure states |ψ⟩ and |ϕ⟩, we sometimes
write ∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 as ∥|ψ⟩ − |ϕ⟩∥1 to simplify the notation. F (ρ, σ) := ∥√ρ

√
σ∥2

1 is the
fidelity between ρ and σ. We often use the well-known relation between the trace distance
and the fidelity: 1−

√
F (ρ, σ) ≤ 1

2∥ρ− σ∥1 ≤
√

1− F (ρ, σ).
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2.2 EFI Pairs
The concept of EFI pairs was implicitly studied in [20], and explicitly defined in [4].

▶ Definition 1 (EFI pairs [4]). An EFI pair is an algorithm StateGen(b, 1λ) → ρb that, on
input b ∈ {0, 1} and the security parameter λ, outputs a quantum state ρb such that all of the
following three conditions are satisfied.

It is a uniform QPT algorithm.
ρ0 and ρ1 are computationally indistinguishable. In other words, for any QPT adversary
A, |Pr

[
1← A(1λ, ρ0)

]
− Pr

[
1← A(1λ, ρ1)

]
| ≤ negl(λ).

ρ0 and ρ1 are statistically distinguishable, i.e., 1
2∥ρ0 − ρ1∥1 ≥ 1

poly(λ) .

▶ Remark 2. Note that in the above definition, the statistical distinguishability is defined
with only ≥ 1/poly(λ) advantage. However, if EFI pairs with the above definition exist, EFI
pairs with ≥ 1 − negl(λ) statistical distinguishability exist as well. In fact, we have only
to define a new StateGen′ that runs StateGen n times with sufficiently large n = poly(λ),
and outputs ρ⊗n

b . The ≥ 1 − negl(λ) statistical distinguishability for StateGen′ is shown
from the inequality [4], 1

2∥ρ
⊗n − σ⊗n∥1 ≥ 1 − exp(−n∥ρ− σ∥1/4). The computational

indistinguishability for StateGen′ is shown by the standard hybrid argument.

2.3 Quantum Commitments
We define canonical quantum bit commitments [20] as follows.

▶ Definition 3 (Canonical quantum bit commitments [20]). A canonical quantum bit commit-
ment scheme is a family {Q0(λ), Q1(λ)}λ∈N of QPT unitaries on two registers C (called the
commitment register) and R (called the reveal register). For simplicity, we often omit λ and
simply write {Q0, Q1} to mean {Q0(λ), Q1(λ)}λ∈N.

▶ Remark 4. Canonical quantum bit commitments are used as follows. In the commit phase,
to commit to a bit b ∈ {0, 1}, the sender generates a state Qb|0⟩C,R and sends C to the
receiver while keeping R. In the reveal phase, the sender sends b and R to the receiver. The
receiver projects the state on (C,R) onto Qb|0⟩C,R, and accepts if it succeeds and otherwise
rejects. (In other words, the receiver applies the unitary Q†

b on the registers C and R, and
measure all qubits in the computational basis. If all result are zero, accept. Otherwise,
reject.)

▶ Definition 5 (Hiding). We say that a canonical quantum bit commitment scheme {Q0, Q1}
is computationally (rep. statistically) hiding if TrR(Q0 |0⟩C,R) is computationally (resp.
statistically) indistinguishable from TrR(Q1 |0⟩C,R). We say that it is perfectly hiding if they
are identical states.

▶ Definition 6 (Binding). We say that a canonical quantum bit commitment scheme {Q0, Q1}
is computationally (rep. statistically) binding if for any QPT (resp. unbounded-time) unitary
U over R and an additional register Z and any polynomial-size state |τ⟩Z, it holds that∥∥∥(⟨0|Q†

1)C,R(IC ⊗ UR,Z)((Q0 |0⟩)C,R |τ⟩Z)
∥∥∥ = negl(λ). (1)

We say that it is perfectly hiding if the LHS is 0 for all unbounded-time unitary U . 6

6 The above definition is asymmetric for 0 and 1, but it is easy to show that Equation (1) implies∥∥(⟨0|Q†
0)C,R(IC ⊗ UR,Z)((Q1 |0⟩)C,R |τ⟩Z)

∥∥ = negl(λ)

for any U and |τ⟩.

TQC 2024



4:6 One-Wayness in Quantum Cryptography

▶ Remark 7. One may think that honest-binding defined above is too weak because it only
considers honestly generated commitments. However, somewhat surprisingly, [20] proved
that it is equivalent to another binding notion called the sum-binding [5].7 The sum-binding
property requires that the sum of probabilities that any (quantum polynomial-time, in the
case of computational binding) malicious sender can open a commitment to 0 and 1 is at
most 1+negl(λ). In addition, it has been shown that the honest-binding property is sufficient
for cryptographic applications including zero-knowledge proofs/arguments (of knowledge),
oblivious transfers, and multi-party computation [22, 6, 18, 21]. In this paper, we refer to
honest-binding if we simply write binding.

In this paper, we use the following result.

▶ Theorem 8 (Converting flavors [20, 10]). Let {Q0, Q1} be a canonical quantum bit commit-
ment scheme. Then there exists a canonical quantum bit commitment scheme {Q′

0, Q
′
1}, and

the following hold for X, Y ∈ {computationally,statistically,perfectly}:
If {Q0, Q1} is X hiding, then {Q′

0, Q
′
1} is X binding.

If {Q0, Q1} is Y binding, then {Q′
0, Q

′
1} is Y hiding.

3 OWSGs

In this section, we first define OWSGs (Section 3.1). We then define weak OWSGs and show
that weak OWSGs are equivalent to OWSGs (Section 3.2).

3.1 Definition of OWSGs
In this subsection, we define OWSGs. Note that the definition below is a generalization of
the one given in [18] in the following three points. First, in [18], the generated states are
pure, but here they can be mixed. Second, in [18], the secret key k is uniformly sampled at
random, but now it is sampled by a QPT algorithm. Third, in [18], the verification algorithm
is the specific algorithm that accepts the alleged key k′ with probability |⟨ϕk|ϕk′⟩|2, while
here we consider a general verification algorithm. We think the definition below is more
general (and therefore more fundamental) than that in [18]. Hence hereafter we choose the
definition below as the definition of OWSGs.

▶ Definition 9 (One-way states generators (OWSGs)). A one-way states generator (OWSG)
is a set of algorithms (KeyGen,StateGen,Ver) such that

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical key k ∈ {0, 1}κ.
StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit quantum
state ϕk.
Ver(k′, ϕk)→ ⊤/⊥ : It is a QPT algorithm that, on input ϕk and a bit string k′, outputs
⊤ or ⊥.

We require the following correctness and security.
Correctness: Pr

[
⊤ ← Ver(k, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k)

]
≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t8,

Pr
[
⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(1λ, ϕ⊗t

k )
]
≤ negl(λ).

7 The term “sum-binding” is taken from [19].
8 StateGen is actually run t times to generate t copies of ϕk, but for simplicity, we just write ϕk ←

StateGen(k) only once. This simplification will often be used in this paper.
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▶ Remark 10. If ϕk is pure, StateGen runs as follows. Apply a QPT unitary U on |k⟩|0...0⟩
to generate |ϕk⟩ ⊗ |ηk⟩, and output |ϕk⟩. In this case, the existence of the “junk state”
|ηk⟩ is essential, because otherwise it is not secure against a QPT adversary who does the
application of U† and the computational-basis measurement.

▶ Remark 11. Note that statistically-secure OWSGs do not exist. In other words, there
exists an unbounded algorithm A that can break the security of OWSGs as follows:
1. Given ϕ⊗t

k with a certain polynomial t as input, run the shadow tomography algorithm [1]
to find k′ such that Pr[Ver(k′, ϕk)→ ⊤] ≥ 1− 1

poly(λ) . If there exists such k′, such k′ can
be found with only a certain polynomial t. If there is no such k′, choose k′ uniformly at
ramdom.

2. Output k′.

3.2 Hardness Amplification for OWSGs
In this subsection, we define a weaker variant called weak one-way states generators
(wOWSGs), and show that they are equivalent to OWSGs.

wOWSGs are defined as follows.

▶ Definition 12 (Weak one-way states generators (wOWSGs)). A weak one-way states generator
(wOWSG) is a tuple of algorithms (KeyGen,StateGen,Ver) defined similarly to OWSGs except
that the security is replaced with the following weak security.
Weak Security: There exists a polynomial p such that for any QPT adversary A and any

polynomial t,
Pr

[
⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(1λ, ϕ⊗t

k )
]
≤ 1− 1

p
.

We prove that the existence of wOWSGs imply the existence of OWSGs. This is an
analogue of Yao’s amplification theorem for OWFs in the classical setting [23, 9].

▶ Theorem 13. OWSGs exist if and only if wOWSGs exist.

For its proof, see the full version.

4 QDSs

In this section, we first define QDSs (Section 4.1), and show that one-time-secure QDSs can
be extended to q-time-secure ones (Section 4.2). We then show that one-time-secure QDSs
are equivalent to OWSGs (Section 4.3).

4.1 Definition of QDSs
Quantum digital signatures are defined as follows.

▶ Definition 14 (Quantum digital signatures (QDSs) [18]). A quantum digital signature (QDS)
scheme is a set of algorithms (SKGen,PKGen,Sign,Ver) such that

SKGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical secret key sk.
PKGen(sk)→ pk : It is a QPT algorithm that, on input sk, outputs a quantum public key
pk.
Sign(sk,m)→ σ : It is a QPT algorithm that, on input sk and a message m, outputs a
classical signature σ.
Ver(pk,m, σ)→ ⊤/⊥ : It is a QPT algorithm that, on input pk, m, and σ, outputs ⊤/⊥.

TQC 2024



4:8 One-Wayness in Quantum Cryptography

We require the correctness and the security as follows.
Correctness: For any m,

Pr

⊤ ← Ver(pk,m, σ) :
sk← SKGen(1λ),
pk← PKGen(sk),
σ ← Sign(sk,m)

 ≥ 1− negl(λ).

q-time security: Let us consider the following security game, Exp, between a challenger C
and a QPT adversary A:
1. C runs sk← SKGen(1λ).
2. C runs pk← PKGen(sk) t times, and sends pk⊗t to A.
3. For i = 1 to q, do:

a. A sends a message m(i) to C.
b. C runs σ(i) ← Sign(sk,m(i)), and sends σ(i) to A.

4. A sends σ′ and m′ to C.
5. C runs pk← PKGen(sk) and v ← Ver(pk,m′, σ′). If m′ /∈ {m(1), . . . ,m(q)} and v = ⊤,

the output of the game is 1. Otherwise, the output of the game is 0.
For any QPT adversary A and any polynomial t, Pr[Exp = 1] ≤ negl(λ).

▶ Remark 15. By using the shadow tomography, we can show that statistically-secure QDSs
do not exist.

4.2 Extension to q-time Security
▶ Theorem 16. If one-time-secure QDSs exist, then q-time-secure QDSs exist for any
polynomial q.

The idea is similar to the one-time to q-time conversion for attribute-based encryption
in [12]. We first consider a scheme where we generate q2 key pairs of one-time-secure scheme
and uniformly chooses one of q2 signing keys to generate a signature whenever we run the
signing algorithm. This scheme is not q-bounded-secure because the probability that the same
signing key is used more than once is non-negligible. However, by a simple combinatorial
argument, we can upper bound the probability of such a “bad” event by some constant
smaller than 1. Thus, by repeating this construction λ times, we can amplify the security to
get q-bounded-secure scheme.

For a formal proof, see the full version.

4.3 Equivalence of OWSGs and QDSs
▶ Theorem 17. OWSGs exist if and only if one-time-secure QDSs exist.

▶ Remark 18. By using the equivalence between OWSGs and wOWSGs (Theorem 13), the
result that one-time-secure QDSs imply OWSGs can be improved to a stronger result (with a
similar proof) that one-time-secure QDSs with weak security imply OWSGs. Here, the weak
security of QDSs means that there exists a polynomial p such that for any QPT adversary A
and any polynomial t, Pr[Exp = 1] ≤ 1− 1

p .
It is proven in [18] that OWSGs implies one-time-secure QDSs. However, since we

generalize the definition of OWSGs, we need to reprove it. Fortunately, almost the same
construction as that in [18] works with the generalized definition of OWSGs. Roughly, the
construction is as follows when the message space is one-bit: a secret key is sk = (k0, k1),
a public key is pk = (ϕk0 , ϕk1), and a signature for a bit b ∈ {0, 1} is kb. The verification
algorithm of QDSs simply runs that of the OWSG.

For the other direction, we construct OWSGs from QDSs by regarding sk and pk of QDSs
as k and ϕk of OWSGs.

For a formal proof, see the full version.
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5 Quantum Money

In this section, we first define private-key quantum money schemes (Section 5.1). We then
construct OWSGs from quantum money schemes with pure money states (Section 5.2).
We also show that OWSGs can be constructed from quantum money schemes where the
verification algorithms satisfy a certain symmetric property (Section 5.3).

5.1 Definition of Private-key Quantum Money
Private-key quantum money schemes are defined as follows.

▶ Definition 19 (Private-key quantum money [13, 2]). A private-key quantum money scheme
is a set of algorithms (KeyGen,Mint,Ver) such that

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical secret key k.
Mint(k)→ $k : It is a QPT algorithm that, on input k, outputs an m-qubit quantum state
$k.
Ver(k, ρ)→ ⊤/⊥ : It is a QPT algorithm that, on input k and a quantum state ρ, outputs
⊤/⊥.

We require the following correctness and security.
Correctness:

Pr
[
⊤ ← Ver(k, $k) : k ← KeyGen(1λ), $k ← Mint(k)

]
≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t,
Pr

[
Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗t

k )
]
≤ negl(λ),

where ξ is a quantum state on ℓ registers, R1, ..., Rℓ, each of which is of m qubits, and
Count is the following QPT algorithm: on input ξ, it runs ⊤/⊥ ← Ver(k, ξj) for each
j ∈ [1, 2, ..., ℓ], where ξj := TrR1,...,Rj−1,Rj+1,...,Rℓ

(ξ), and outputs the total number of ⊤.

▶ Remark 20. Private-key quantum money schemes are constructed from PRSGs [13].
▶ Remark 21. As is shown in [1], private-key quantum money schemes are broken by an
unbounded adversary, and therefore statistically-secure private-key quantum money schemes
do not exist. (The idea is as follows: the unbounded adversary first finds all {ki}i such
that Ver(ki, $k) is large with the shadow tomography, and then searches a state ρ by the
brute-force such that Ver(ki, ρ) is close to Ver(ki, $k) FOR ALL i. Finally, the adversary
outputs many copies of ρ.)

5.2 OWSGs from Quantum Money with Pure Money States
▶ Theorem 22. If private-key quantum money schemes with pure quantum money states
exist, then OWSGs exist.

▶ Remark 23. For example, the private-key quantum money scheme of [13] has pure quantum
money states.
▶ Remark 24. By using the equivalence between OWSGs and wOWSGs (Theorem 13), this
result can be improved to a stronger result (with a similar proof) that private-key quantum
money schemes with pure quantum money states and with weak security imply OWSGs.
Here, the weak security means that there exists a polynomial p such that for any QPT
adversary A and any polynomial t,

Pr
[
Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗t

k )
]
≤ 1− 1

p
.
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Proof of Theorem 22. Let (QM.KeyGen,QM.Mint,QM.Ver) be a private-key quantum
money scheme with pure money states. From it, we construct a OWSG as follows.

KeyGen(1λ)→ k : Run k ← QM.KeyGen(1λ). Output k.
StateGen(k)→ ϕk : Run |$k⟩ ← QM.Mint(k). Output ϕk := |$k⟩⟨$k|.
Ver(k′, ϕk) → ⊤/⊥ : Parse ϕk = |$k⟩⟨$k|. Measure |$k⟩ with the basis {|$k′⟩⟨$k′ |, I −
|$k′⟩⟨$k′ |}, and output ⊤ if the first result is obtained. Output ⊥ if the second result
is obtained. (This measurement is done in the following way: generate U(|k′⟩|0...0⟩) =
|$k′⟩|ηk′⟩, and discard the first register. Then apply U† on |$k⟩|ηk′⟩, and measure all
qubits in the computationl basis. If the result is k′0...0, accept. Otherwise, reject.)

The correctness is clear. Let us show the security. Assume that it is not secure. Then, there
exists a QPT adversary A, a polynomial t, and a polynomial p such that

∑
k,k′

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2 ≥ 1

p
.

Define the set S :=
{

(k, k′)
∣∣∣ |⟨$k|$k′⟩|2 ≥ 1

2p

}
. Then, we have

∑
(k,k′)∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
>

1
2p .

This is shown as follows.

1
p
≤

∑
k,k′

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2

=
∑

(k,k′)∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2

+
∑

(k,k′)/∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2

<
∑

(k,k′)∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
+ 1

2p .

Let us also define T :=
{
k

∣∣∣ Pr[⊤ ← QM.Ver(k, |$k⟩)] ≥ 1 − 1
8p

}
. Then,∑

k∈T Pr
[
k ← QM.KeyGen(1λ)

]
> 1− negl(λ). This is shown as follows.

1− negl(λ) ≤
∑

k

Pr
[
k ← QM.KeyGen(1λ)

]
Pr[⊤ ← QM.Ver(k, |$k⟩)]

=
∑
k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr[⊤ ← QM.Ver(k, |$k⟩)]

+
∑
k /∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr[⊤ ← QM.Ver(k, |$k⟩)]

<
∑
k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
+

(
1− 1

8p

)(
1−

∑
k∈T

Pr
[
k ← QM.KeyGen(1λ)

])
.

Here, the first inequality is from the correctness of the quantum money scheme.
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Let us fix (k, k′) such that (k, k′) ∈ S and k ∈ T . The probability of having such (k, k′)
is, from the union bound,∑

(k,k′)∈S∧k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
>

1
2p + 1− negl(λ)− 1

= 1
2p − negl(λ).

From the A, we construct a QPT adversary B that breaks the security of the private-key
quantum money scheme as follows: On input |$k⟩⊗t, it runs k′ ← A(|$k⟩⊗t). It then runs
|$k′⟩ ← QM.Mint(k′) ℓ times, where ℓ is a polynomial specified later, and outputs ξ := |$k′⟩⊗ℓ.
Let us show that thus defined B breaks the security of the private-key quantum money
scheme. Let vj be the bit that is 1 if the output of QM.Ver(k, ξj) is ⊤, and is 0 otherwise.
Then, for any (k, k′) such that (k, k′) ∈ S and k ∈ T ,

Pr[vj = 1] = Pr[⊤ ← QM.Ver(k, ξj)] = Pr[⊤ ← QM.Ver(k, |$k′⟩)]

≥ Pr[⊤ ← QM.Ver(k, |$k⟩)]−
√

1− 1
2p ≥ 1− 1

8p −
√

1− 1
2p ≥

1
8p

for each j ∈ [1, 2, ..., ℓ]. Here, in the first inequality, we have used the fact that
Pr[1← D(|$k⟩)] − Pr[1← D(|$k′⟩)] ≤

√
1− 1

2p for any algorithm D. This is because
|⟨$k|$k′⟩|2 ≥ 1

2p for any (k, k′) ∈ S.9 Moreover, in the second inequality, we have used
the fact that Pr[⊤ ← QM.Ver(k, |$k⟩)] ≥ 1− 1

8p for any k ∈ T . Finally, in the last inequality,
we have used the Bernoulli’s inequality.10

Let us take ℓ ≥ max(16p(t+ 1), 162p3). Then, for any (k, k′) such that (k, k′) ∈ S and
k ∈ T ,

Pr
[
Count(k, |$k′⟩⊗ℓ) ≥ t+ 1

]
= Pr

[ ℓ∑
j=1

vj ≥ t+ 1
]
≥ Pr

[ ℓ∑
j=1

vj ≥
ℓ

16p

]
= Pr

[ ℓ∑
j=1

vj ≥
ℓ

8p −
ℓ

16p

]
≥ Pr

[ ℓ∑
j=1

vj ≥ E(
ℓ∑

j=1

vj)− ℓ

16p

]
≥ 1− 2 exp

[
− 2ℓ

162p2

]
≥ 1− 2e−2p.

Here, in the third inequality, we have used Hoeffding’s inequality. The probability that B
breaks the security of the quantum money scheme is therefore∑

k,k′

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
Pr

[
Count(k, |$k′⟩⊗ℓ) ≥ t+ 1

]
≥

∑
(k,k′)∈S∧k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
Pr

[
Count(k, |$k′⟩⊗ℓ) ≥ t+ 1

]
≥ (1− 2e−2p)

∑
(k,k′)∈S∧k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
≥ (1− 2e−2p)

( 1
2p − negl(λ)

)
,

which is non-negligible. The B therefore breaks the security of the private-key quantum
money scheme. ◀

9 Due to the relation between the fidelity and the trace distance, we have 1
2∥|$k⟩⟨$k| − |$k′⟩⟨$k′ |∥1 ≤√

1− |⟨$k|$k′⟩|2, which means that ⟨$k|Π|$k⟩ − ⟨$k′ |Π|$k′⟩ ≤
√

1− |⟨$k|$k′⟩|2 for any POVM ele-
ment Π.

10 (1 + x)r ≤ 1 + rx for any real r and x such that 0 ≤ r ≤ 1 and x ≥ −1.
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5.3 OWSGs from Quantum Money with Symmetric Verifiability
We consider the following restriction for quantum money.

▶ Definition 25 (Symmetric-verifiability). We say that a private-key quantum money scheme
satisfies the symmetric-verifiability if Pr[⊤ ← Ver(k, $k′)] = Pr[⊤ ← Ver(k′, $k)] for all k ̸=
k′.

▶ Remark 26. For example, if all money states are pure, and Ver(α, ρ) is the following
algorithm, the symmetric-verifiability is satisfied: Measure ρ with the basis {|$α⟩⟨$α|, I −
|$α⟩⟨$α|}. If the first result is obtained, output ⊤. Otherwise, output ⊥.

▶ Theorem 27. If private-key quantum money schemes with symmetric-verifiability exist,
then OWSGs exist.

▶ Remark 28. By using the equivalence between OWSGs and wOWSGs (Theorem 13), this
result can be improved to a stronger result (with a similar proof) that private-key quantum
money schemes with symmetric-verifiability and with weak security imply OWSGs. Here,
the weak security means that there exists a polynomial p such that for any QPT adversary
A and any polynomial t,

Pr
[
Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗t

k )
]
≤ 1− 1

p
.

The proof of Theorem 27 is similar to that of Theorem 22. For a proof, see the full
version.

6 QPOTP

In this section, we first define (IND-based) QPOTP schemes (Section 6.1). We then show
that QPOTP schemes imply OWSGs (Section 6.2), and that single-copy-secure QPOTP
schemes imply EFI pairs (Section 6.3).

6.1 Definition of QPOTP
Quantum pseudo one-time pad schemes are defined as follows.

▶ Definition 29 ((IND-based) quantum pseudo one-time pad (QPOTP)). An (IND-based)
quantum pseudo one-time pad (QPOTP) scheme with the key length κ and the plaintext
length ℓ (ℓ > κ) is a set of algorithms (KeyGen,Enc,Dec) such that

KeyGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical secret key sk ∈ {0, 1}κ.
Enc(sk, x)→ ct : It is a QPT algorithm that, on input sk and a classical plaintext message
x ∈ {0, 1}ℓ, outputs an ℓn-qubit quantum ciphertext ct.
Dec(sk, ct)→ x′ : It is a QPT algorithm that, on input sk and ct, outputs x′ ∈ {0, 1}ℓ.

We require the following correctness and security.
Correctness: For any x ∈ {0, 1}ℓ, Pr

[
x← Dec(sk, ct) : sk← KeyGen(1λ), ct← Enc(sk, x)

]
≥

1− negl(λ).
Security: For any x0, x1 ∈ {0, 1}ℓ, any QPT adversary A, and any polynomial t,

|Pr
[
1← A(ct⊗t

0 ) : sk← KeyGen(1λ), ct0 ← Enc(sk, x0)
]

−Pr
[
1← A(ct⊗t

1 ) : sk← KeyGen(1λ), ct1 ← Enc(sk, x1)
]
| ≤ negl(λ).
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▶ Definition 30. We say that a QPOTP scheme is single-copy-secure if the security holds
only for t = 1.

▶ Remark 31. Note that the above definition of QPOTP is different from that of [3] in the
following two points. First, we consider a general secret key generation QPT algorithm, while
they consider uniform sampling of the secret key. Second, we consider the IND-based version
of the security, while the security definition of [3] is as follows: For any x ∈ {0, 1}ℓ, any QPT
adversary A, and any polynomial t,

|Pr
[
1← A(ct⊗t) : sk← {0, 1}κ, ct← Enc(sk, x)

]
−Pr

[
1← A((|ψ1⟩ ⊗ ...⊗ |ψℓ⟩)⊗t) : |ψ1⟩, ..., |ψℓ⟩ ← µn

]
| ≤ negl(λ),

where |ψ⟩ ← µn means the Haar random sampling of n-qubit states. It is clear that the
security definition of [3] implies our IND-based security, and therefore if QPOTP schemes of
[3] exist, those of Definition 29 exist. Since our results are constructions of OWSGs and EFI
pairs from QPOTP, the above modification only makes our results stronger.
▶ Remark 32. QPOTP is constructed from PRSGs [3].

6.2 OWSGs from QPOTP
▶ Theorem 33. If QPOTP schemes with κ < ℓ exist, then OWSGs exist.

Proof of Theorem 33. Let (OTP.KeyGen,OTP.Enc,OTP.Dec) be a QPOTP scheme with
κ < ℓ. From it, we construct a wOWSG as follows.11 (From Theorem 13, it is enough for
the existence of OWSGs.)

KeyGen(1λ)→ k : Run sk← OTP.KeyGen(1λ). Choose x← {0, 1}ℓ. Output k := (sk, x).
StateGen(k) → ϕk : Parse k = (sk, x). Run ctsk,x ← OTP.Enc(sk, x). Output ϕk :=
ctsk,x ⊗ |x⟩⟨x|.
Ver(k′, ϕk) → ⊤/⊥ : Parse k′ = (sk′, x′). Parse ϕk = ctsk,x ⊗ |x⟩⟨x|. Run x′′ ←
OTP.Dec(sk′, ctsk,x). If x′′ = x′ = x, output ⊤. Otherwise, output ⊥.

The correctness is clear. Let us show the security. Assume that it is not secure. It means
that for any polynomial p there exist a QPT adversary A and a polynomial t such that

Pr

x′ = x′′ = x :

sk← OTP.KeyGen(1λ),
x← {0, 1}ℓ,

ctsk,x ← OTP.Enc(sk, x),
(sk′, x′)← A(ct⊗t

sk,x ⊗ |x⟩⟨x|⊗t)
x′′ ← OTP.Dec(sk′, ctsk,x)

 ≥ 1− 1
p
. (2)

From this A, we construct a QPT adversary B that breaks the security of the QPOTP
scheme as follows. Let b ∈ {0, 1} be the parameter of the following security game.
1. B chooses x0, x1 ← {0, 1}ℓ, and sends them to the challenger C.
2. C runs sk← OTP.KeyGen(1λ).
3. C runs ctsk,xb

← OTP.Enc(sk, xb) t+ 1 times.
4. C sends ct⊗t+1

sk,xb
to B.

5. B runs (sk′, x′)← A(ct⊗t
sk,xb
⊗ |x0⟩⟨x0|⊗t).

6. B runs x′′ ← OTP.Dec(sk′, ctk,xb
). If x′ = x′′ = x0, B outputs b′ = 0. Otherwise, it

outputs b′ = 1.

11 A similar proof idea was given in Lemma 4.6 of [7]. However, the direct application of the proof will not
work, because ciphertexts (and therefore output states of OWSGs) are quantum and the verification of
“preimages” is done by the additional verification algorithm.
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It is clear that Pr[b′ = 0|b = 0] is equivalent to the left-hand-side of Eq. (2). On the other
hand,

Pr
[
b′ = 0|b = 1

]
= 1

22ℓ

∑
x0,x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

]
Pr

[
sk′ ← A(ct⊗t

sk,x1 ⊗ |x0⟩⟨x0|⊗t)
]

×Pr
[
x0 ← OTP.Dec(sk′, ctsk,x1 )

]
≤ 1

22ℓ

∑
x0,x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

]
Pr

[
x0 ← OTP.Dec(sk′, ctsk,x1 )

]
= 1

22ℓ

∑
x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

] ∑
x0

Pr
[
x0 ← OTP.Dec(sk′, ctsk,x1 )

]
= 1

22ℓ

∑
x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

]
= 2κ

2ℓ
≤ 1

2 .

Therefore |Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| is non-negligible, which means that the B
breaks the security of the QPOTP. ◀

6.3 EFI Pairs from Single-Copy-Secure QPOTP
▶ Theorem 34. If single-copy-secure QPOTP schemes with κ < ℓ exist then EFI pairs exist.

We prove this theorem based on a result shown by Lai and Chung [16], which gives a
quantum analogue of Shannon’s impossibility. Roughly speaking, they show that if a SKE
scheme for n-qubit messages and κ-bit secret keys is information theoretically one-time-secure,
then we must have κ ≥ 2n. By a reduction to their result via a hybrid encryption of QPOTP
and quantum one-time pads, we can show that any QPOTP scheme with κ < ℓ is not
one-time-secure against unbounded-time adversaries. On the other hand, we assume that it
is one-time-secure against QPT adversaries. This computationally-secure and information-
theoretically-insecure encryption scheme can be directly used to construct EFI pairs. For a
formal proof, see the full version.

7 SV-SI-OWSGs

In this section, we define SV-SI-OWSGs (Section 7.1), and show that SV-SI-OWSGs are
equivalent to EFI pairs (Section 7.2). In Section 7.1, before defining SV-SI-OWSGs, we first
define SV-OWSGs for a didactic purpose. We will point out that SV-OWSGs seem to need a
more constraint so that they become equivalent to EFI. We then define SV-SI-OWSGs.

7.1 Definition of SV-SI-OWSGs
We first define secretly-verifiable OWSGs (SV-OWSGs) as follows.

▶ Definition 35 (Secretly-verifiable OWSGs (SV-OWSGs)). A secretly-verifiable OWSG (SV-
OWSG) is a set of algorithms (KeyGen,StateGen,Ver) as follows.

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a key k ∈ {0, 1}κ.
StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit state ϕk.
Ver(k′, k)→ ⊤/⊥ : It is a QPT algorithm that, on input k and k′, outputs ⊤/⊥.

We require the following two properties.
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Correctness:

Pr
[
⊤ ← Ver(k, k) : k ← KeyGen(1λ)

]
≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t,
Pr

[
⊤ ← Ver(k′, k) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(ϕ⊗t

k )
]
≤ negl(λ).

The following lemma shows that, without loss of generality, Ver can be replaced with the
algorithm of just checking whether k = k′ or not.

▶ Lemma 36. Let (KeyGen,StateGen,Ver) be a SV-OWSG. Then, the following SV-OWSG
(KeyGen′,StateGen′,Ver′) exists.

KeyGen′ and StateGen′ are the same as KeyGen and StateGen, respectively.
Ver′(k′, k)→ ⊤/⊥ : On input k and k′, output ⊤ if k = k′. Otherwise, output ⊥.

For a proof, see the full version.
Note that statistically-secure SV-OWSGs are easy to realize. For example, consider the

following construction:
KeyGen(1λ) : Sample k ← {0, 1}λ.
StateGen(k) : Output I⊗m

2m .
Ver(k′, k) : Output ⊤ if k′ = k. Otherwise, output ⊥.

We therefore need a constraint to have a meaningful primitive. We define secretly-verifiable
and statistically-invertible OWSGs (SV-SI-OWSGs) as follows. Introducing the statistical
invertibility allows us to avoid trivial constructions with the statistical security.

▶ Definition 37 (Secretly-verifiable and statistically-invertible OWSGs (SV-SI-OWSGs)). A
secretly-verifiable and statistically-invertible OWSG (SV-SI-OWSG) is a set of algorithms
(KeyGen,StateGen) as follows.

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a key k ∈ {0, 1}κ.
StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit state ϕk.

We require the following two properties.
Statistical invertibility: There exists a polynomial p such that, for any k and k′ (k ̸= k′),

1
2∥ϕk − ϕk′∥1 ≥ 1

p .

Computational non-invertibility: For any QPT adversary A and any polynomial t,
Pr

[
k ← A(ϕ⊗t

k ) : k ← KeyGen(1λ), ϕk ← StateGen(k)
]
≤ negl(λ).

The following lemma shows that the statistical invertibility with advantage 1
poly(λ) can

be amplified to 1− 2−q for any polynomial q.

▶ Lemma 38. If a SV-SI-OWSG exists then a SV-SI-OWSG with statistical invertibility
larger than 1− 2−q with any polynomial q exists.

Proof. Let (KeyGen,StateGen) be a SV-SI-OWSG with statistical invertibility larger than 1
p ,

where p is a polynomial. From it, we construct a new SV-SI-OWSG (KeyGen′,StateGen′) as
follows:

KeyGen′(1λ)→ k: Run k ← KeyGen(1λ), and output k.
StateGen′(k)→ ϕ′

k : Run ϕk ← StateGen(k) 2pq times, and output ϕ′
k := ϕ⊗2pq

k .
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First, for any k and k′ (k ̸= k′),

1
2∥ϕ

′
k − ϕ′

k′∥1 = 1
2∥ϕ

⊗2pq
k − ϕ⊗2pq

k′ ∥1 ≥ 1− exp(−2qp∥ϕk − ϕk′∥1/4)

≥ 1− exp(−q) ≥ 1− 2−q,

which shows the statistical invertibility of (KeyGen′,StateGen′) with the advantage larger
than 1− 2−q. Second, from the computational non-invertibility of (KeyGen,StateGen),

Pr
[
k ← A(ϕ′⊗t

k ) : k ← KeyGen′(1λ), ϕ′
k ← StateGen′(k)

]
= Pr

[
k ← A(ϕ⊗2pqt

k ) : k ← KeyGen(1λ), ϕk ← StateGen(k)
]
≤ negl(λ)

for any QPT adversary A and any polynomial t, which shows the computational non-
invertibility of (KeyGen′,StateGen′). ◀

The following lemma shows that the statistical invertibility is equivalent to the existence
of a (unbounded) adversary that can find the correct k given many copies of ϕk except for a
negligible error.

▶ Lemma 39. The statistical invertibility is satisfied if and only if the following is satisfied:
There exists a (not necessarily QPT) POVM measurement {Πk}k∈{0,1}κ and a polynomial t
such that Tr(Πkϕ

⊗t
k ) ≥ 1− negl(λ) and Tr(Πk′ϕ⊗t

k ) ≤ negl(λ) for all k and k′ (k ̸= k′).

Proof. First, we show the if part. Assume that there exists a POVM measurement
{Πk}k∈{0,1}κ and a polynomial t such that Tr(Πkϕ

⊗t
k ) ≥ 1−negl(λ) and Tr(Πk′ϕ⊗t

k ) ≤ negl(λ)
for all k and k′ (k ̸= k′). Then,

t

2∥ϕk − ϕk′∥1 ≥ 1
2∥ϕ

⊗t
k − ϕ

⊗t
k′ ∥1 ≥ Tr

(
Πkϕ

⊗t
k

)
− Tr

(
Πkϕ

⊗t
k′

)
≥ 1− negl(λ)− negl(λ)

= 1− negl(λ),

which means 1
2∥ϕk − ϕk′∥1 ≥ 1

t − negl(λ) ≥ 1
2t .

Next, we show the only if part. Assume that the statistical invertibility is satisfied. Then,
there exists a polynomial p such that 1

2∥ϕk − ϕk′∥1 ≥ 1
p for all k and k′ (k ̸= k′). Let

t := 12pκ. Then,

1
2∥ϕ

⊗t
k − ϕ

⊗t
k′ ∥1 ≥ 1− e−t

∥ϕk−ϕ
k′ ∥1

4 ≥ 1− e−6κ ≥ 1− 2−6κ,

which means F (ϕ⊗t
k , ϕ⊗t

k′ ) ≤ 2−6κ+1. From Theorem 40 below,

max
k

(1− Tr(µkϕ
⊗t
k )) ≤

∑
k ̸=k′

√
F (ϕ⊗t

k , ϕ⊗t
k′ ) ≤ 2−3κ+1(22κ − 2κ) ≤ 2−κ+1,

which means Tr(µkϕ
⊗t
k ) ≥ 1− 2−κ+1 and Tr(µk′ϕ⊗t

k ) ≤ 2−κ+1 for any k and k′ (k′ ≠ k). ◀

▶ Theorem 40 ([17]). Let {ρi}i be a set of states. Define the POVM measurement {µi}i

with µi := Σ−1/2ρiΣ−1/2, where Σ :=
∑

i ρi, and the inverse is taken on the support of Σ.
Then, maxi(1− Tr(µiρi)) ≤

∑
i̸=j

√
F (ρi, ρj).
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7.2 Equivalence of SV-SI-OWSGs and EFI Pairs
▶ Theorem 41. SV-SI-OWSGs exist if and only if EFI pairs exist.

This Theorem is shown by combining the following two theorems.

▶ Theorem 42. If EFI pairs exist then SV-SI-OWSGs exist.

▶ Theorem 43. If SV-SI-OWSGs exist then EFI pairs exist.

Proof of Theorem 42. We show that if EFI pairs exist then SV-SI-OWSGs exist. Let
EFI.StateGen(1λ, b) → ρb be an EFI pair. As is explained in Remark 2, we can assume
without loss of generality that 1

2∥ρ0 − ρ1∥1 ≥ 1− negl(λ), which means F (ρ0, ρ1) ≤ negl(λ).
From the EFI pair, we construct a SV-SI-OWSG as follows.

KeyGen(1λ)→ k : Choose k ← {0, 1}κ, and output k.
StateGen(k) → ϕk : Run EFI.StateGen(1λ, ki) → ρki for each i ∈ [κ]. Output ϕk :=⊗κ

i=1 ρki
.

The statistical invertibility is easily shown as follows. If k ̸= k′, there exists a j ∈ [κ] such
that kj ̸= k′

j . Then,

F (ϕk, ϕk′) =
κ∏

i=1
F (ρki

, ρk′
i
) ≤ F (ρkj

, ρk′
j
) ≤ negl(λ),

which means 1
2∥ϕk − ϕk′∥1 ≥ 1− negl(λ). This shows the statistical invertibility.

Let us next show the computational non-invertibility. From the standard hybrid argument,
and the computational indistinguishability of ρ0 and ρ1, we have∣∣∣ 1

2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

k )
]
− 1

2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

0κ )
]∣∣∣ ≤ negl(λ) (3)

for any QPT adversary A and any polynomial t. (It will be shown later.) Hence

Pr
[
k ← A(ϕ⊗t

k ) : k ← KeyGen(1λ), ϕk ← StateGen(k)
]

= 1
2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

k )
]
≤ 1

2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

0κ )
]

+ negl(λ) = 1
2κ

+ negl(λ),

which shows the computational non-invertibility.
Let us show Eq. (3). For each z ∈ {0, 1}κt, define Φz :=

⊗κt
i=1 ρzi . Let z, z′ ∈ {0, 1}κt be

two bit strings such that, for a single j ∈ [κt], zj = 0, z′
j = 1, and zi = z′

i for all i ̸= j. (In
other words, z and z′ are the same except for the jth bit.) Then, we can show that∣∣∣ 1

2κ

∑
k∈{0,1}κ

Pr[k ← A(Φz)]− 1
2κ

∑
k∈{0,1}κ

Pr[k ← A(Φz′)]
∣∣∣ ≤ negl(λ) (4)

for any QPT adversary A. In fact, assume that∣∣∣ 1
2κ

∑
k

Pr[k ← A(Φz)]− 1
2κ

∑
k

Pr[k ← A(Φz′)]
∣∣∣ ≥ 1

poly(λ)

for a QPT adversary A. Then, from this A, we can construct a QPT adversary B that
breaks the security of the EFI pair as follows: On input ρb, choose k ← {0, 1}κ, and run
k′ ← A((

⊗j−1
i=1 ρzi

)⊗ ρb ⊗ (
⊗κt

i=j+1 ρzi
)). If k′ = k, output b′ = 1. If k′ ̸= k, output b′ = 0.

Because

Pr[b′ = 1|b = 0] = 1
2κ

∑
k

Pr[k ← A(Φz)], Pr[b′ = 1|b = 1] = 1
2κ

∑
k

Pr[k ← A(Φz′)],

we have |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| ≥ 1
poly(λ) , which means that the B breaks the

security of the EFI pair. From the standard hybrid argument and Eq. (4), we have Eq. (3). ◀

TQC 2024



4:18 One-Wayness in Quantum Cryptography

Proof of Theorem 43. We show that if SV-SI-OWSGs exist then EFI pairs exist. Let
(OWSG.KeyGen,OWSG.StateGen) be a SV-SI-OWSG. Without loss of generality, we can
assume that OWSG.KeyGen is the following algorithm: first apply a QPT unitary U on |0...0⟩
to generate U |0...0⟩ =

∑
k

√
Pr[k ← OWSG.KeyGen(1λ)]|k⟩|µk⟩, and trace out the second

register, where {|µk⟩}k are some normalized states. Moreover, without loss of generality, we
can also assume that OWSG.StateGen is the following algorithm: first apply a QPT unitary
Vk that depends on k on |0...0⟩ to generate Vk|0...0⟩ = |ψk⟩A,B, and trace out the register A.

From the SV-SI-OWSG, we want to construct an EFI pair. For that goal, we construct a
statistically-hiding and computationally-binding canonical quantum bit commitment scheme
from SV-SI-OWSG. Due to Theorem 8 (the equivalence between different flavors of commit-
ments), we then have a statistically-binding and computationally-hiding canonical quantum
bit commitment scheme, which is equivalent to an EFI pair. From the SV-SI-OWSG, we con-
struct a statistically-hiding and computationally-binding canonical quantum bit commitment
scheme {Q0, Q1} as follows.

Q0|0⟩C,R :=
∑

k

√
Pr[k](|k⟩|µk⟩)C1 |ψk⟩⊗t

C2,R2
|0⟩R3 ,

Q1|0⟩C,R :=
∑

k

√
Pr[k](|k⟩|µk⟩)C1 |ψk⟩⊗t

C2,R2
|k⟩R3 ,

where Pr[k] := Pr
[
k ← OWSG.KeyGen(1λ)

]
, C2 is the combination of all “A registers” of

|ψk⟩, R2 is the combination of all “B registers” of |ψk⟩, C := (C1,C2) and R := (R2,R3).
Moreover, t is a polynomial specified later. It is clear that such {Q0, Q1} is implemented in
QPT in a natural way.

Let us first show the computational binding of {Q0, Q1}. Assume that it is not computa-
tionally binding. Then, there exists a QPT unitary U , an ancilla state |τ⟩, and a polynomial
p such that ∥(⟨0|Q†

1)C,RUR,Z(Q0|0⟩C,R ⊗ |τ⟩Z)∥ ≥ 1
p . Then,

1
p2 ≤ ∥(⟨0|Q†

1)C,RUR,Z(Q0|0⟩C,R ⊗ |τ⟩Z)∥2

=
∥∥∥( ∑

k′

√
Pr[k′]⟨k′, µk′ |C1⟨ψk′ |⊗t

C2,R2
⟨k′|R3

)
×

( ∑
k

√
Pr[k]|k, µk⟩C1UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

)∥∥∥2

=
∥∥∥ ∑

k

Pr[k]⟨ψk|⊗t
C2,R2

⟨k|R3UR,Z|ψk⟩⊗t
C2,R2

|0⟩R3 |τ⟩Z
∥∥∥2

≤
( ∑

k

Pr[k]
∥∥∥⟨ψk|⊗t

C2,R2
⟨k|R3UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

∥∥∥)2

≤
∑

k

Pr[k]
∥∥∥⟨ψk|⊗t

C2,R2
⟨k|R3UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

∥∥∥2

≤
∑

k

Pr[k]
∥∥∥⟨k|R3UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

∥∥∥2
. (5)

In the third inequality, we have used Jensen’s inequality.12 From this U , we construct a
QPT adversary B that breaks the computational non-invertibility of the SV-SI-OWSG as
follows: On input the R2 register of |ψk⟩⊗t

C2,R2
, apply UR,Z on |ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z, and

12 For a real convex function f , f(
∑

i
pixi) ≤

∑
i
pif(xi).
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measure the R3 register in the computational basis. Output the result. Then, the probability
that B correctly outputs k is equal to Eq. (5). Therefore, B breaks the computational
non-invertibility of the SV-SI-OWSG.

Let us next show the statistical hiding of {Q0, Q1}. In the following, we construct a (not
necessarily QPT) unitary WR,Z such that

∥WR,ZQ0|0⟩C,R|0⟩Z −Q1|0⟩C,R|0⟩Z∥1 ≤ negl(λ). (6)

Then, we have
∥TrR(Q0|0⟩C,R)− TrR(Q1|0⟩C,R)∥1 = ∥TrR,Z(Q0|0⟩C,R|0⟩Z)− TrR,Z(Q1|0⟩C,R|0⟩Z)∥1

= ∥TrR,Z(WR,ZQ0|0⟩C,R|0⟩Z)− TrR,Z(Q1|0⟩C,R|0⟩Z)∥1

≤ ∥WR,ZQ0|0⟩C,R|0⟩Z −Q1|0⟩C,R|0⟩Z∥1 ≤ negl(λ),

which shows the statistical hiding of {Q0, Q1}.
Now we explain how to construct WR,Z. From Lemma 39, there exists a (not necessarily

QPT) POVM measurement {Πk}k and a polynomial t such that Tr(Πkϕ
⊗t
k ) ≥ 1− negl(λ)

and Tr(Πk′ϕ⊗t
k ) ≤ negl(λ) for all k and k′ (k ̸= k′). Let UR2,Z be a unitary operator that

implements the POVM measurement {Πk}k in the following way

UR2,Z|ψk⟩⊗t
C2,R2

|0...0⟩Z =
√

1− ϵk|k⟩|junkk⟩+
∑

k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩,

where Z is the ancilla register, {ϵi}i are real numbers such that 1 − ϵk ≥ 1 − negl(λ) and
ϵk′ ≤ negl(λ) for all k′ ̸= k, and {|junki⟩}i are “junk” states that are normalized. Measuring
the first register of the state realizes the POVM. Let VR,Z be the following unitary:13

1. Apply UR2,Z on |ψk⟩⊗t
C2,R2

|0...0⟩Z|0⟩R3 :

UR2,Z|ψk⟩⊗t
C2,R2

|0...0⟩Z|0⟩R3 =
[√

1− ϵk|k⟩|junkk⟩+
∑

k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩

]
|0⟩R3 .

2. Copy the content of the first register to the register R3:√
1− ϵk|k⟩|junkk⟩|k⟩R3 +

∑
k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩|k′⟩R3 .

Define WR,Z := U†
R2,ZVR,Z.

Let us show that thus constructed WR,Z satisfies Eq. (6).(
(⟨0|Q†

1)C,R⟨0|Z
)(
WR,ZQ0|0⟩C,R|0⟩Z

)
=

(
(⟨0|Q†

1)C,R⟨0|Z
)(
U†

R2,ZVR,ZQ0|0⟩C,R|0⟩Z
)

=
(

(⟨0|Q†
1)C,R⟨0|ZU†

R2,Z

)(
VR,ZQ0|0⟩C,R|0⟩Z

)
=

( ∑
k

√
Pr[k](⟨k|⟨µk|)C1

[√
1− ϵk⟨k|⟨junkk|⟨k|R3 +

∑
k′ ̸=k

√
ϵk′⟨k′|⟨junkk′ |⟨k|R3

])
×

( ∑
k

√
Pr[k](|k⟩|µk⟩)C1

[√
1− ϵk|k⟩|junkk⟩|k⟩R3 +

∑
k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩|k′⟩R3

])
=

∑
k

Pr[k](1− ϵk) ≥ 1− negl(λ). ◀

13 For simplicity, we define VR,Z by explaining how it acts on |ψk⟩⊗t
C2,R2

|0...0⟩Z|0⟩R3 , but it is clear from
the explanation how VR,Z is defined.
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