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Abstract
We study digital signatures with revocation capabilities and show two results. First, we define and
construct digital signatures with revocable signing keys from the LWE assumption. In this primitive,
the signing key is a quantum state which enables a user to sign many messages and yet, the quantum
key is also revocable, i.e., it can be collapsed into a classical certificate which can later be verified.
Once the key is successfully revoked, we require that the initial recipient of the key loses the ability to
sign. We construct digital signatures with revocable signing keys from a newly introduced primitive
which we call two-tier one-shot signatures, which may be of independent interest. This is a variant
of one-shot signatures, where the verification of a signature for the message “0” is done publicly,
whereas the verification for the message “1” is done in private. We give a construction of two-tier
one-shot signatures from the LWE assumption. As a complementary result, we also construct digital
signatures with quantum revocation from group actions, where the quantum signing key is simply
“returned” and then verified as part of revocation.

Second, we define and construct digital signatures with revocable signatures from OWFs. In this
primitive, the signer can produce quantum signatures which can later be revoked. Here, the security
property requires that, once revocation is successful, the initial recipient of the signature loses the
ability to find accepting inputs to the signature verification algorithm. We construct this primitive
using a newly introduced two-tier variant of tokenized signatures. For the construction, we show a
new lemma which we call the adaptive hardcore bit property for OWFs, which may enable further
applications.
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1 Introduction

1.1 Background
The exotic nature of quantum physics, such as quantum superposition, no-cloning, entan-
glement, and uncertainty relations, enables many new cryptographic applications which are
impossible in a classical world. These include quantum money [43], copy-protection [1, 2],

© Tomoyuki Morimae, Alexander Poremba, and Takashi Yamakawa;
licensed under Creative Commons License CC-BY 4.0

19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024).
Editors: Frédéric Magniez and Alex Bredariol Grilo; Article No. 5; pp. 5:1–5:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomoyuki.morimae@yukawa.kyoto-u.ac.jp
https://kdb.iimc.kyoto-u.ac.jp/profile/en.0345e7ff26dc30a7.html
mailto:poremba@mit.edu
http://www.mit.edu/~poremba/
https://orcid.org/0000-0002-7330-1539
mailto:takashi.yamakawa@ntt.com
https://sites.google.com/view/takashiyamakawa
https://orcid.org/0000-0003-1712-3026
https://doi.org/10.4230/LIPIcs.TQC.2024.5
https://eprint.iacr.org/2023/1937
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Revocable Quantum Digital Signatures

secure software leasing [5], unclonable encryption [20, 15], certified deletion [14], and more.
Here, a common approach is to encode information into a quantum state which prevents it
from being copied by the no-cloning principle. [42, 14, 23, 24, 6, 11, 9, 30, 35, 8, 7]

Following this line of research, Ananth, Poremba, and Vaikuntanathan [6] and Agrawal,
Kitagawa, Nishimaki, Yamada, and Yamakawa [3] concurrently introduced the concept of
key-revocable public key encryption (PKE),1 which realizes the following functionality: a
decryption capability is delegated to a user in the form of a quantum decryption key in such
a way that, once the key is returned, the user loses the ability to decrypt. They constructed
key-revocable PKE schemes based on standard assumptions, namely quantum hardness of
the learning with errors problem (LWE assumption) [6] or even the mere existence of any
PKE scheme [3]. They also extended the idea of revocable cryptography to pseudorandom
functions [6] and encryption with advanced functionality such as attribute-based encryption
and functional encryption [3]. However, neither of these works extended the idea to digital
signatures despite their great importance in cryptography. This state of affairs raises the
following question:

Is it possible to construct digital signature schemes with revocation capabilities?

The delegation of privileges is of central importance in cryptography, and the task of
revoking privileges in the context of digital signatures and certificates, in particular, remains a
fundamental challenge for cryptography [41, 39]. One simple solution is to use a limited-time
delegatable signature scheme, where a certified signing key is generated together with an
expiration date. Note that this requires that the expiration date is known ahead of time and
that the clocks be synchronized. Moreover, issuing new keys (for example, each day) could
potentially also be costly. Quantum digital signature schemes with revocation capabilities
could potentially resolve these difficulties by leveraging the power of quantum information.

To illustrate the use of revocable digital signature schemes, consider the following scenarios.
Suppose that an employee at a company, say Alice, takes a temporary leave of absence and
wishes to authorize her colleague, say Bob, to sign a few important documents on her behalf.
One thing Alice can do is to simply use a (classical) digital signature scheme and to share
her signing keys with Bob. While this naïve approach would certainly allow Bob to produce
valid signatures while Alice is gone, it also means that Bob continues to have access to the
signing keys – long after Alice’s return. This is because the signing key of a digital signature
scheme is classical, and hence it can be copied at will. In particular, a malicious Bob could
secretly sell Alice’s signing key to a third party for a profit. A digital signature scheme with
revocable signing keys can remedy this situation as it enables Alice to certify that Bob has
lost access to the signing key once and for all.

As a second example, consider the following scenario. Suppose that a company or a
governmental organization wishes to grant a new employee certain access privileges throughout
their employment; for example to various buildings or office spaces. One solution is to
use an electronic ID card through a mobile device, where a digital signature is used for
identity management. Naturally, one would like to ensure that, once the employee’s contract
is terminated, their ID card is disabled in the system and no longer allows for further
unauthorized access. However, if the signature corresponding to the employee’s ID is a digital
object, it is conceivable that the owner of the card manages to retain their ID card even after
it is disabled. This threat especially concerns scenarios in which the verification of an ID

1 Agrawal et al. [3] call it PKE with secure key leasing.
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card is performed by a device which is not connected to the internet, or simply not updated
frequently enough. A digital signature scheme with revocable signatures can remedy this
situation as it enables revocable quantum ID cards; in particular, it allows one to certify that
the initial access privileges have been revoked once and for all.

1.2 Our Results

In this paper, we show the following two results on revocable digital signatures.

Revocable signing keys. First, we define digital signatures with revocable signing keys
(DSR-Key). In this primitive, a signing key is encoded in the form of a quantum state which
enables the recipient to sign many messages. However, once the key is successfully revoked
from a user, they no longer have the ability to generate valid signatures. Here, we consider
classical revocation, i.e., a classical certificate is issued once the user destroys the quantum
signing key with an appropriate measurement. In addition, the verification of the revocation
certificate takes place in private, which means that the verification requires a private key
which should be kept secret. We construct DSR-Key based solely on the quantum hardness
of the LWE problem [38]. We remark that our scheme is inherently stateful, i.e., whenever a
user generates a new signature, the user must update the singing key for the next invocation
of the signing algorithm. Indeed, we believe that digital signatures with revocable signing
keys must be inherently stateful since a user must keep the quantum signing key as a “state”
for generating multiple signatures. An undesirable feature of our scheme is that the signing
key and signature sizes grow with the number of signatures to be generated.

As complementary result, we also consider DSR-Key with quantum revocation. In this
primitive, not a classical deletion certificate but the quantum signing key itself is returned for
the revocation. In the full version of the paper, we construct the primitive from group actions
with the one-wayness property [26]. The existence of group actions with the one-wayness
property is incomparable with the LWE assumption.

Revocable signatures. Second, we define digital signatures with revocable signatures
(DSR-Sign). In this primitive, signatures are encoded as quantum states which can later be
revoked. The security property guarantees that, once revocation is successful, the initial
recipient of the signature loses the ability to pass the signature verification. We construct
digital signatures with revocable signatures based on the existence of (quantum-secure)
one-way functions (OWFs). In our scheme, the revocation is classical and private, i.e., a user
can issue a classical certificate of revocation, which is verified by using a private key.

1.3 Comparison with Existing Works

To our knowledge, there is no prior work that studies digital signatures with quantum
signatures. On the other hand, there are several existing works that study digital signatures
with quantum signing keys. We review them and compare them with our DSR-Key.

Tokenized signatures [12, 17]. In a tokenized signature scheme, the signing key
corresponds to a quantum state which can be used to generate a signature on at most one
message. At first sight, the security notion seems to imply the desired security guarantee
for DSR-Key, since a signature for a dummy message may serve as the classical deletion
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certificate for the signing key.2 However, the problem is that tokenized signatures do
not achieve the correctness for DSR-Key; namely, in tokenized signatures, a user who
receives a quantum signing key can generate only a single signature, whereas in DSR-Key,
we require that a user can generate arbitrarily many signatures before the signing key is
revoked. Thus, tokenized signatures are not sufficient for achieving our goal. A similar
problem exists for semi-quantum tokenized signatures [40] and one-shot signatures [4] as
well.
Copy-protection for digital signatures [31] (a.k.a. single-signer signatures [4].3)
In this primitive, a signing key corresponds to a quantum state which cannot be copied.
More precisely, suppose that a user is given one copy of the signing key and tries to split it
into two signing keys. The security property requires that at most one of these two signing
keys is capable at generating a valid signature on a random message. Amos, Georgiou,
Kiayias, and Zhandry [4] constructed such a signature scheme based on one-shot signatures.
However, the only known construction of one-shot signatures is relative to classical oracles,
and there is no known construction without oracles. Liu, Liu, Qian, and Zhandry [31]
constructed it based on indistinguishability obfuscation (iO) and OWFs. Intuitively, copy-
protection for digital signatures implies DSR-Key, because checking whether a returned
signing key succeeds at generating valid signatures on random messages can serve a means
of verification for revocation.4 Compared with this approach, our construction has the
advantage that it is based on the standard assumption (namely the LWE assumption),
whereas they require the very strong assumption of iO or ideal oracles. On the other
hand, a disadvantage of our construction is that revocation requires private information,
whereas theirs have the potential for public revocation. Another disadvantage is that the
size of the signing key (and signatures) grows with the number of signatures, whereas
this is kept constant in [31] (but not in [4]).

1.4 Technical Overview
Here we give intuitive explanations of our constructions.

Construction of DSR-Key. Our first scheme, DSR-Key, is constructed using two-tier one-
shot signatures (2-OSS), which is a new primitive which we introduce in this paper.5 2-OSS
are variants of one-shot signatures [4] for single-bit messages. The main difference with
regard to one-shot signatures is that there are two verification algorithms, and a signature
for the message “0” is verified by a public verification algorithm, whereas a signature for
the massage “1” is verified by a private verification algorithm. We believe that the notion of
2-OSS may be of independent interest. Our construction of 2-OSS is conceptually similar to
the construction of two-tier quantum lightning in [29], and can be based solely on the LWE
assumption.

2 Note, however, that tokenized signatures offer public verification of signatures, whereas certifying
revocation in our DSR-Key scheme takes place in private.

3 Technically speaking, [31] and [4] require slightly different security definitions, but high level ideas are
the same.

4 While this sounds plausible, there is a subtlety regarding the security definitions. Indeed, we believe
that the security of copy-protection for digital signatures [31] or single-signer signatures [4] does not
readily imply our security definition in Definition 4, though they do seem to imply some weaker but
reasonable variants of security. See also Remark 5.

5 The term “two-tier” is taken from [29] where they define two-tier quantum lightning, which is a similar
variant of quantum lightning [44].
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From 2-OSS, we then go on to construct DSR-Key. We first construct DSR-Key for
single-bit messages from 2-OSS as follows.6 The signing key sigk of DSR-Key consists of a
pair (sigk0, sigk1) of signing keys of a 2-OSS scheme. To sign a single-bit message m ∈ {0, 1},
the message “0” is signed with the signing algorithm of a 2-OSS scheme using the signing key
sigkm. Because the signature on m corresponds to a particular signature of “0” with respect
to the 2-OSS scheme, it can be verified with the public verification algorithm of 2-OSS. To
delete the signing key, the message “1” is signed with the signing algorithm of 2-OSS by using
the signing key. The signature for the message “1” corresponds to the revocation certificate,
and it can be verified using the private verification algorithm of 2-OSS.

Our aforementioned construction readily implies a one-time version of a DSR-Key scheme,
namely, the correctness and security hold when the signing is used only once. We then
upgrade it to the many-time version by using a similar chain-based construction of single-
signer signatures from one-shot signatures as in [4]. That is, it works as follows. The
signing key and verification key of the many-time scheme are those of the one-time scheme,
respectively. We denote them by (ot.sigk0, ot.vk0). When signing on the first message m1, the
signer first generates a new key pair (ot.sigk1, ot.vk1) of the one-time scheme, uses ot.sigk0
to sign on the concatenation m1∥ot.vk1 of the message and the newly generated verification
key to generate a signature ot.σ1 of the one-time scheme. Then it outputs (m1, ot.vk1, ot.σ1)
as a signature of the many-time scheme.7 Similarly, when signing on the k-th message mk

for k ≥ 2, the signer generates a new key pair (ot.sigkk, ot.vkk) and uses ot.sigkk−1 to sign
on mk∥ot.vkk to generate a signature ot.σk. Then the signature of the many-time scheme
consists of {mi, ot.vki, ot.σi}i∈[k]. The verification algorithm of the many-time scheme verifies
ot.σi for all i ∈ [k] under the corresponding message and verification key, and accepts if all
of these verification checks pass. To revoke a signing key, the signer generates revocation
certificates for all of the signing keys of the one-time scheme which have previously been
generated, and the verification of the revocation certificate simply verifies that all these
revocation certificates are valid.8 It is easy to reduce security of the above many-time scheme
to that of the one-time scheme.

Construction of DSR-Sign. Our second scheme, DSR-Sign, is constructed from what we
call two-tier tokenized signatures (2-TS), which is a new primitive introduced in this paper.
2-TS are variants of tokenized signatures [12] for single-bit messages where two signature
verification algorithms exist. One verification algorithm is used to verify signatures for the
message “0”, and it uses the public key. The other verification algorithm is used to verify
signatures for the message “1”, and it uses the secret key.

We construct 2-TS from OWFs by using a new lemma that we call the adaptive hardcore
bit property for OWFs, inspired by a similar notion which was shown for a family of noisy
trapdoor claw-free functions by Brakerski et al. [13]. We believe that our lemma may be of
independent interest, and enable further applications down the line. The adaptive hardcore
bit property for OWFs roughly states that given |x0⟩+(−1)c |x1⟩ and (f(x0), f(x1)), no QPT
adversary can output (x, d) such that f(x) ∈ {f(x0), f(x1)} and d · (x0 ⊕ x1) = c, where f is
a OWF, x0, x1 ← {0, 1}ℓ, and c← {0, 1}.9 The adaptive hardcore bit property for OWFs is
shown by using a theorem which is implicit in a recent work [10].

6 The scheme can be extended to the one for multi-bit messages by using the collision resistant hash
functions.

7 We include m1 in the signature for notational convenience even though this is redundant.
8 The ability to verify all previously generated signing keys (e.g., as part of a chain) may require secret

trapdoor information.
9 We actually need its amplified version, because in this case the adversary can win with probability 1/2

by measuring the state to get x0 or x1, and randomly choosing d.
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From the adaptive hardcore bit property for OWFs, we construct 2-TS as follows: The
quantum signing token is |x0⟩+ (−1)c |x1⟩ with random x0, x1 ← {0, 1}ℓ and c← {0, 1}.10

The public key is (f(x0), f(x1)), where f is a OWF, and the secret key is (x0, x1, c). To
sign the message “0”, the token is measured in the computational basis to obtain either x0
or x1. To sign the message “1”, the token is measured in the Hadamard basis to obtain a
string d such that d · (x0 ⊕ x1) = c. The measurement result in the computational basis is
then verified with the public key, whereas the measurement result in the Hadamard basis is
verified with the secret key. Due to the adaptive hardcore bit property for OWFs (formally
shown in Theorem 9), no QPT adversary can output both signatures at the same time.

Finally, we observe that DSR-Sign can be constructed from any 2-TS scheme by considering
the quantum signature of DSR-Sign as a quantum signing token of 2-TS. To verify the quantum
signature, we sign the message “0” by using the quantum token, and verify it. To delete the
quantum signature, we sign the message “1” by using the quantum token. The verification
of the revocation certificate requires one to check whether the deletion certificate is a valid
signature for message “1” or not.

1.5 Related Works
We have already explained relations between our results and existing works on digital
signatures with quantum signing keys. Here, we give a brief review on other related quantum
cryptographic primitives.

Certified deletion and revocation. Unruh [42] first initiated the study of quantum revocable
encryption. This allows the recipient of a quantum ciphertext to return the state, thereby
losing all information about the encrypted message. Quantum encryption with certified
deletion [23, 36, 8, 22, 7, 11], first introduced by Broadbent and Islam [14], enables the
deletion of quantum ciphertexts, whereby a classical certificate is produced which can be
verified. In particular, [8, 22, 24] study the certified everlasting security where the security is
guaranteed even against unbounded adversary once a valid deletion certificate is issued. [30]
and [10] recently showed a general conversion technique to convert the certified everlasting
lemma by Bartusek and Kurana [8] for the private verification to the public one assuming
only OWFs (or even weaker assumptions such as hard quantum planted problems for NP or
the one-way states generators [33]).

The notion of certified deletion has also been used to revoke cryptographic keys [28, 3,
7, 6, 16]. Here, a key is delegated to a user in the form of a quantum state which can later
be revoked. Once the key is destroyed and a valid certificate is issued, the functionality
associated with the key is no longer available to the user.

Finally, we remark that the notion of revocation has also been considered in the context
of more general programs. Ananth and La Placa [5] introduced the notion of secure software
leasing. Here, the security guarantees that the functionality of a piece of quantum software
is lost once it is returned and verified.

Copy-protection. Copy-protection, introduced by Aaronson [1], is a primitive which al-
lows one to encode a functionality into a quantum state in such a way that it cannot be
cloned. [2] showed that any unlearnable functionality can be copy-protected with a classical

10 Again, we actually consider its amplified version so that the winning probability of the adversary is
negligibly small.
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oracle. [18] constructed copy-protection schemes for (multi-bit) point functions as well as
compute-and-compare programs in the quantum random oracle model. [17] constructed
unclonable decryption schemes from iO and compute-and-compare obfuscation for the class
of unpredictable distributions, which were previously constructed with classical oracle in
[19]. [17] also constructed a copy-protection scheme for pseudorandom functions assuming
iO, OWFs, and compute-and-compare obfuscation for the class of unpredictable distribu-
tions. [31] constructed bounded collusion-resistant copy-protection for various functionalities
(copy-protection of decryption, digital signatures and PRFs) with iO and LWE.

2 Preliminaries

2.1 Basic Notation
We use the standard notations of quantum computing and cryptography. We use λ as the
security parameter. For any set S, x ← S means that an element x is sampled uniformly
at random from the set S. We write negl to mean a negligible function. PPT stands for
(classical) probabilistic polynomial-time and QPT stands for quantum polynomial-time. For
an algorithm A, y ← A(x) means that the algorithm A outputs y on input x. For two bit
strings x and y, x∥y means the concatenation of them. For simplicity, we sometimes omit
the normalization factor of a quantum state. (For example, we write 1√

2 (|x0⟩+ |x1⟩) just as
|x0⟩+ |x1⟩.) I := |0⟩⟨0|+ |1⟩⟨1| is the two-dimensional identity operator. For the notational
simplicity, we sometimes write I⊗n just as I when the dimension is clear from the context.
For two density matrices ρ and σ, the trace distance is defined as

∥ρ− σ∥tr := 1
2∥ρ− σ∥1 = 1

2Tr
[√

(ρ− σ)2
]
,

where ∥ · ∥1 is the trace norm. We also make use of the following result.

▶ Theorem 1 (Holevo-Helstrom, [25, 21]). Consider an experiment in which one of two
quantum states, either ρ or σ, is sent to a distinguisher with probability 1/2. Then, any
measurement which seeks to discriminate between ρ and σ has success probability psucc at
most psucc ≤ 1

2 + 1
2∥ρ− σ∥tr.

3 Two-Tier One-Shot Signatures

In this section, we define two-tier one-shot signatures (2-OSS), and construct it from the
LWE assumption [38]. Broadly speaking, this cryptographic primitive is a variant of one-shot
signatures [4], where the verification of a signature for the message “0” is done publicly,
whereas that for the message “1” is done only privately.

3.1 Definition
The formal definition of 2-OSS is as follows.

▶ Definition 2 (Two-Tier One-Shot Signatures (2-OSS)). A two-tier one-shot signature scheme
is a set (Setup,KeyGen,Sign,Ver0,Ver1) of algorithms such that

Setup(1λ)→ (pp, sk) : on input the security parameter λ, it outputs a classical parameter
pp and a classical secret key sk.
KeyGen(pp) → (sigk, vk) : on input pp, it outputs a quantum signing key sigk and a
classical verification key vk.

TQC 2024



5:8 Revocable Quantum Digital Signatures

Sign(sigk,m) → σ : on input sigk and a single-bit message m ∈ {0, 1}, it outputs a
classical signature σ.
Ver0(pp, vk, σ)→ ⊤/⊥ : on input pp, vk, and σ, it outputs ⊤/⊥.
Ver1(pp, sk, vk, σ)→ ⊤/⊥ : on input pp, sk, and σ, it outputs ⊤/⊥.

We require the following properties.
Correctness:

Pr

⊤ ← Ver0(pp, vk, σ) :
(sk, pp)← Setup(1λ)

(sigk, vk)← KeyGen(pp)
σ ← Sign(sigk, 0)

 ≥ 1− negl(λ) (1)

and

Pr

⊤ ← Ver1(pp, sk, vk, σ) :
(sk, pp)← Setup(1λ)

(sigk, vk)← KeyGen(pp)
σ ← Sign(sigk, 1)

 ≥ 1− negl(λ). (2)

Security: For any QPT adversary A,

Pr
[
⊤ ← Ver0(pp, vk, σ0) ∧ ⊤ ← Ver1(pp, sk, vk, σ1) : (sk, pp)← Setup(1λ)

(vk, σ0, σ1)← A(pp)

]
≤ negl(λ). (3)

3.2 Construction
We show that 2-OSS can be constructed from the LWE assumption [38]. Specifically, we
make use of noisy trapdoor claw-free function (NTCF) families which allow us to generate
quantum states that have a nice structure in both the computational basis, as well as the
Hadamard basis. For a detailed definition of NTCF families, we refer to [13].

Our 2-OSS scheme is based on the two-tier quantum lightning scheme in [29] and leverages
this structure to sign messages: to sign the message “0”, we output a measurement outcome
in the computational basis, whereas if we wish to sign “1”, we output a measurement outcome
in the Hadamard basis. Crucially, the so-called adaptive hardcore-bit property ensures that
it is computationally difficult to produce the two outcomes simultaneously. In this context,
we use the amplified adaptive hardcore bit property which was shown in [37, 29].

In the full version of the paper, we show the following result.

▶ Theorem 3. Assuming the quantum hardness of the LWE problem, there exists two-tier
one-shot signatures.

4 Digital Signatures with Revocable Signing Keys

In this section, we define digital signatures with revocable signing keys (DSR-Key) and give
its construction from 2-OSS.

4.1 Definition
Let us now present a formal definition of DSR-Key. Note that we consider the stateful setting
which requires that the signer keep a state of all previously signed messages and keys.

▶ Definition 4 ((Stateful) Digital Signatures with Revocable Signing Keys (DSR-Key)). A
(stateful) digital signature scheme with revocable signing keys is the following set of algorithms
(Setup,KeyGen,Sign,Ver,Del,Cert) consisting of:
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Setup(1λ) → (ck, pp) : on input the security parameter λ, it outputs a classical key ck
and a classical parameter pp.
KeyGen(pp) → (sigk0, vk) : on input pp, it outputs a quantum signing key sigk0 and a
classical verification key vk.
Sign(pp, sigki,m) → (sigki+1, σ) : on input pp, a message m and a signing key sigki, it
outputs a subsequent signing key sigki+1 and a classical signature σ.
Ver(pp, vk,m, σ)→ ⊤/⊥ : on input pp, vk, m, and σ, it outputs ⊤/⊥.
Del(sigki)→ cert : on input sigki, it outputs a classical certificate cert.
Cert(pp, vk, ck, cert, S) → ⊤/⊥ : on input pp, vk, ck, cert, and a set S consisting of
messages, it outputs ⊤/⊥.

We require the following properties.
Many-time correctness: For any polynomial p = p(λ), and any messages (m1,m2, ...,mp),

Pr


∧

i∈[p]

⊤ ← Ver(pp, vk,mi, σi) :

(pp, ck)← Setup(1λ)
(sigk0, vk)← KeyGen(pp)

(sigk1, σ1)← Sign(pp, sigk0,m1)
(sigk2, σ2)← Sign(pp, sigk1,m2)

...

(sigkp, σp)← Sign(pp, sigkp−1,mp)

 ≥ 1− negl(λ). (4)

We say that the scheme satisfies one-time correctness if the above is satisfied for p = 1.
EUF-CMA security: For any QPT adversary A,

Pr

⊤ ← Ver(pp, vk,m∗, σ∗) :
(pp, ck)← Setup(1λ)

(sigk0, vk)← KeyGen(pp)
(m∗, σ∗)← AOSign(vk)

 ≤ negl(λ), (5)

where OSign is a stateful signing oracle defined below and A is not allowed to query the
oracle on m∗:
OSign: Its initial state is set to be (pp, sigk0). When a message m is queried, it proceeds

as follows:
Parse its state as (pp, sigki).
Run (sigki+1, σ)← Sign(pp, sigki,m).
Return σ to A and update its state to (pp, sigki+1).

We say that the scheme satisfies one-time EUF-CMA security if Equation (5) holds for
any A that submits at most one query to the oracle.

Many-time deletion correctness: For any polynomial p = p(λ), and any messages
(m1,m2, ...,mp), the quantity

Pr


⊤ ← Cert(pp, vk, ck, cert, {m1,m2, ...,mp}) :

(pp, ck)← Setup(1λ)
(sigk0, vk)← KeyGen(pp)

(sigk1, σ1)← Sign(pp, sigk0,m1)
(sigk2, σ2)← Sign(pp, sigk1,m2)

...

(sigkp, σp)← Sign(pp, sigkp−1,mp)
cert← Del(sigkp)


(6)

is at least 1− negl(λ). We remark that we require the above to also hold for the case of
p = 0, in which case the fifth component of the input of Cert is the empty set ∅. We say
that the scheme satisfies one-time deletion correctness if the above property is satisfied
for p ≤ 1.
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Many-time deletion security: For any QPT adversary A,

Pr

 ⊤ ← Cert(pp, vk, ck, cert, S)
∧ m∗ /∈ S
∧ ⊤ ← Ver(pp, vk,m∗, σ∗)

: (pp, ck)← Setup(1λ)
(vk, cert, S,m∗, σ∗)← A(pp)

 ≤ negl(λ).

(7)

We say that the scheme satisfies one-time deletion security if the above property is satisfied
if we additionally require |S| ≤ 1.

▶ Remark 5. Following the definition of single signer security in [4] or copy-protection security
in [31], it is also reasonable to define deletion security as follows:

For any pair (A1,A2) of QPT adversaries and any distribution D with super-logarithmic
min-entropy over the message space, the following probability is negligible in λ:

Pr

⊤ ← Cert(pp, vk, ck, cert, S) ∧ ⊤ ← Ver(pp, vk,m, σ) :

(pp, ck)← Setup(1λ)
(vk, cert, S, st)← A1(pp)

m← D
σ ← A2(m, st)

 .
(8)

It is easy to see that our definition implies the above, but the converse is unlikely. This is
why we define deletion security as in Definition 4.

4.2 One-Time Construction for Single-Bit Messages

In the full version of the paper, we construct one-time DSR-Key for single-bit messages from
2-OSS in a black-box way.

▶ Theorem 6. If two-tier one-shot signatures exist, then digital signatures with revocable
signing keys with the message space {0, 1} that satisfy one-time variants of correctness,
EUF-CMA security, deletion correctness, and deletion security in Definition 4 exist.

4.3 From Single-Bit to Multi-Bit Messages

In the full version of the paper, we also show the following theorem which says that we can
expand the message space to {0, 1}∗ using collision-resistant hashes.

▶ Theorem 7. If collision-resistant hash functions and digital signatures with revocable
signing keys with the message space {0, 1} that satisfy one-time variants of correctness,
EUF-CMA security, deletion correctness, and deletion security in Definition 4 exist, then a
similar scheme with the message space {0, 1}∗ exists.

The proof of correctness is immediate and the proof of one-time EUF-CMA security
follows from standard techniques which allow conventional signature schemes to handle
messages of arbitrarily length, see [27] for example. Therefore, it suffices to show that the
scheme Σ′ satisfies the one-time variants of deletion correctness and deletion security. We
show this in the full version.
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4.4 From One-Time Schemes to Many-Time Schemes
In this section, we show how to extend any one-time scheme into a proper many-time
scheme as in Definition 4. The transformation is inspired by the chain-based approach for
constructing many-time digital signatures, see [27] for example.11

Let OT = (OT.Setup,OT.KeyGen,OT.Sign,OT.Ver,OT.Del,OT.Cert) be a scheme which
satisfies the one-time variants of correctness, EUF-CMA security, deletion correctness, and
deletion security according to in Definition 4, and has the message space {0, 1}∗. Then,
we construct MT = (MT.Setup,MT.KeyGen,MT.Sign,MT.Ver,MT.Del,MT.Cert) with the
message space {0, 1}n as follows:

MT.Setup(1λ)→ (ck, pp): This is the same as OT.Setup.
MT.KeyGen(pp)→ (sigk, vk): run (ot.sigk0, ot.vk0)← OT.KeyGen(pp) and output sigk :=
ot.sigk0 as the quantum signing key and vk := ot.vk0 as the classical verification key.
MT.Sign(pp, sigki,m) → (sigki+1, σ) : on input the public parameter pp, a quantum
signing key sigki, and a message m ∈ {0, 1}n proceed as follows:

1. Parse sigki as (ot.sigki, {ot.sigk′
j}j∈{0,1,...,i−1}, {mj , ot.vkj , ot.σj}j∈[i])

2. Generate (ot.sigki+1, ot.vki+1)← OT.KeyGen(pp).
3. Run

(ot.sigk′
i, ot.σi+1)← OT.Sign(pp, ot.sigki,m∥ot.vki+1).

4. Set mi+1 := m and output a subsequent signing key

sigki+1 := (ot.sigki+1, {ot.sigk′
j}j∈{0,1,...,i}, {mj , ot.vkj , ot.σj}j∈[i+1])

and a signature

σ := {mj , ot.vkj , ot.σj}j∈[i+1].

MT.Ver(pp, vk,m, σ) → ⊤/⊥ : on input pp, a key vk, a message m, and signature σ,
proceed as follows.

1. Parse σ as {mj , ot.vkj , ot.σj}j∈[i] and let ot.vk0 = vk.
2. Output ⊤ if m = mi and OT.Ver(pp, ot.vkj−1,mj∥ot.vkj , ot.σj) = ⊤ for every j ∈ [i].
MT.Del(sigki)→ cert : on input sigk, proceed as follows:

1. Parse sigki as (ot.sigki, {ot.sigk′
j}j∈{0,1,...,i−1}, {mj , ot.vkj , ot.σj}j∈[i]).

2. For j ∈ {0, 1, ..., i− 1}, run ot.certj ← OT.Del(ot.sigk′
j).

3. Run ot.certi ← OT.Del(ot.sigki).
4. Output cert := {ot.certj ,mj , ot.vkj , ot.σj}j∈[i].
MT.Cert(pp, vk, ck, cert, S)→ ⊤/⊥ : on input pp, vk, ck, cert, and S, parse the certificate
cert as a tuple {ot.certj ,mj , ot.vkj , ot.σj}j∈[i], let ot.vk0 = vk, and output ⊤ if the
following holds:
S = {m1,m2, ...,mi},
OT.Cert(ot.vkj−1, ck, ot.certj−1, {mj∥ot.vkj}) = ⊤ for every j ∈ [i], and
OT.Cert(ot.vki, ck, ot.certi, ∅) = ⊤.

In the full version of the paper, we prove the following theorem.

11 We could also use the tree-based construction [32], which has a shorter (logarithmic) signature length.
We describe the chain-based construction here for ease of presentation.
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▶ Theorem 8. Suppose that (OT.Setup,OT.KeyGen,OT.Sign,OT.Ver,OT.Del,OT.Cert) sat-
isfies the one-time variants of correctness, EUF-CMA security, deletion correctness, and
deletion security in Definition 4. Then, the “many-time scheme” which consists of the tuple
(MT.Setup,MT.KeyGen,MT.Sign,MT.Ver,MT.Del,MT.Cert) satisfies many-time variants of
each of the properties.

5 Adaptive Hardcore Bit Property for OWFs

In this section, we introduce a new concept, which we call adaptive hardcore bit property for
OWFs, and show it from the existence of OWFs. This property is inspired by the adaptive
hardcore bit property which was shown for a family of noisy trapdoor claw-free functions
by Brakerski et al. [13]. Our notion of the adaptive hardcore bit property for OWFs will be
used to construct two-tier tokenized signatures.

5.1 Statements
The formal statement of the adaptive hardcore bit property for OWFs is given as follows.
(Its proof is given later.)

▶ Theorem 9 (Adaptive Hardcore Bit Property for OWFs). Let λ ∈ N be the security parameter
and let ℓ(λ), κ(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a (quantumly-secure)
OWF. Then, for any QPT adversary {Aλ}λ∈N, it holds that

Pr

 f(x) ∈ {f(x0), f(x1)}∧
d · (x0 ⊕ x1) = c

:

x0 ← {0, 1}ℓ(λ), x1 ← {0, 1}ℓ(λ)

c← {0, 1}

(x, d)← Aλ

(
|x0⟩+(−1)c|x1⟩√

2 , f(x0), f(x1)
)

 ≤ 1
2 + negl(λ).

(9)

We actually use its amplified version, which is given as follows. (Its proof is given later.)

▶ Theorem 10 (Amplified Adaptive Hardcore Bit Property for OWFs). Let λ ∈ N be the security
parameter and let ℓ(λ), κ(λ), n(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a
(quantumly-secure) OWF. Then, for any QPT adversary {Aλ}λ∈N, it holds that

Pr

 ∧i∈[n]f(xi) ∈ {f(x0
i ), f(x1

i )}∧
∧i∈[n]di · (x0

i ⊕ x1
i ) = ci

:

∀i ∈ [n] : x0
i ← {0, 1}ℓ(λ), x1

i ← {0, 1}ℓ(λ)

∀i ∈ [n] : ci ← {0, 1}

{xi, di}i∈[n] ← Aλ

(⊗n

i=1
|x0

i ⟩+(−1)ci |x1
i ⟩

√
2 , {f(xb

i )}i,b

)


(10)

is at most negligible in λ.

5.2 Theorem of [10]
In order to show adaptive hardcore bit property for OWFs, we use the following theorem
which is implicit in [10, Theorem 3.1]. The only difference is that we additionally reveal both
pre-images as part of the distribution

{
Z̃Aλ

λ (b)
}

λ∈N,b∈{0,1}
. We remark that the proof is the

same.

▶ Theorem 11 (Implicit in [10], Theorem 3.1). Let λ ∈ N be the security parameter, and let
ℓ(λ), κ(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a OWF secure against QPT
adversaries. Let {Zλ(·, ·, ·, ·)}λ∈N be a quantum operation with four arguments: an ℓ(λ)-bit
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string z, two κ(λ)-bit strings y0, y1, and an ℓ(λ)-qubit quantum state |ψ⟩. Suppose that for
any QPT adversary {Aλ}λ∈N, z ∈ {0, 1}ℓ(λ), y0, y1 ∈ {0, 1}κ(λ), and ℓ(λ)-qubit state |ψ⟩,∣∣∣∣ Pr [Aλ(Zλ(z, y0, y1, |ψ⟩)) = 1]− Pr

[
Aλ(Zλ(0ℓ(λ), y0, y1, |ψ⟩)) = 1

] ∣∣∣∣ = negl(λ).

That is, Zλ is semantically-secure with respect to its first input. Now, for any QPT
adversary {Aλ}λ∈N, consider the distribution

{
Z̃Aλ

λ (b)
}

λ∈N,b∈{0,1}
over quantum states,

obtained by running Aλ as follows.

Sample x0, x1 ← {0, 1}ℓ(λ), define y0 = f(x0), y1 = f(x1) and initialize Aλ with

Zλ

(
x0 ⊕ x1, y0, y1,

|x0⟩+ (−1)b |x1⟩√
2

)
.

Aλ’s output is parsed as a string x′ ∈ {0, 1}ℓ(λ) and a residual state on register A′.
If f(x′) ∈ {y0, y1}, then output (x0, x1,A′), and otherwise output ⊥.

Then, it holds that∥∥∥Z̃Aλ

λ (0)− Z̃Aλ

λ (1)
∥∥∥

tr
≤ negl(λ). (11)

We can show the following parallel version. (It can be shown by the standard hybrid
argument. A detailed proof is given in the full version of the paper.)

▶ Theorem 12 (Parallel version of Theorem 11). Let λ ∈ N be the security parameter. Let
ℓ(λ), κ(λ), n(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a OWF secure against
QPT adversaries. Let {Zλ(·, ·, ·, ·)}λ∈N be a quantum operation with four arguments: an
ℓ(λ)-bit string z, two κ(λ)-bit strings y0, y1, and an ℓ(λ)-qubit quantum state |ψ⟩. Suppose
that for any QPT adversary {Aλ}λ∈N, z ∈ {0, 1}ℓ(λ), y0, y1 ∈ {0, 1}κ(λ), and ℓ(λ)-qubit state
|ψ⟩,∣∣∣∣ Pr [Aλ(Zλ(z, y0, y1, |ψ⟩)) = 1]− Pr

[
Aλ(Zλ(0ℓ(λ), y0, y1, |ψ⟩)) = 1

] ∣∣∣∣ = negl(λ).

That is, Zλ is semantically-secure with respect to its first input. Now, for any QPT
adversary {Aλ}λ∈N, consider the distribution

{
Z̃Aλ

λ (b1, ..., bn(λ)

}
λ∈N,bi∈{0,1}

over quantum
states, obtained by running Aλ as follows.

Sample x0
i , x

1
i ← {0, 1}ℓ(λ) for each i ∈ [n(λ)], define y0

i = f(x0
i ), y1

i = f(x1
i ) and initialize

Aλ with⊗
i∈[n(λ)]

Zλ

(
x0

i ⊕ x1
i , y

0
i , y

1
i ,
|x0

i ⟩+ (−1)bi |x1
i ⟩√

2

)
. (12)

Aλ’s output is parsed as strings x′
i ∈ {0, 1}ℓ(λ) for i ∈ [n(λ)] and a residual state on

register A′.
If f(x′

i) ∈ {y0
i , y

1
i } for all i ∈ [n(λ)], output ({x0

i }i∈[n(λ)], {x1
i }i∈[n(λ)],A′), and otherwise

output ⊥.

Then, there exists a negligible function negl(λ) such that for any b1, ..., bn(λ) ∈ {0, 1},∥∥∥Z̃Aλ

λ (b1, ..., bn(λ))− Z̃Aλ

λ (0, ..., 0)
∥∥∥

tr
≤ negl(λ). (13)
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5.3 Proof of Theorem 9
By using Theorem 11, we can show Theorem 9 as follows. Here, we leverage the fact that
any algorithm that simultaneously produces both a valid pre-image of the OWF, as well as a
string which leaks information about the relative phase between the respective pre-images,
must necessarily violate Theorem 11.

Proof of Theorem 9. Let ℓ(λ), κ(λ) ∈ N be polynomials, and let f : {0, 1}ℓ(λ) → {0, 1}κ(λ)

be a (quantumly-secure) OWF. Suppose there exist a QPT algorithm {Aλ}λ∈N and a
polynomial p(λ) such that, for random x0, x1 ← {0, 1}ℓ and c← {0, 1}, it holds that

Pr
[

f(x)∈{f(x0),f(x1)}∧
d·(x0⊕x1)=c

: (x, d)← Aλ

(
|x0⟩+ (−1)c |x1⟩√

2
, f(x0), f(x1)

)]
≥ 1

2 + 1
p(λ) (14)

for infinitely many λ. We now show how to construct an algorithm that violates Theorem 11.
For simplicity, we define the quantum operation {Zλ(·, ·, ·, ·)}λ∈N in Theorem 11 as

Zλ

(
x0 ⊕ x1, f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
:=

(
f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
.

Evidently, our choice of Zλ is trivially semantically secure with respect to the first argument.
Consider the following QPT algorithm Bλ:
1. On input

(
f(x0), f(x1), |x0⟩+(−1)c|x1⟩√

2

)
, run

(x, dc)← Aλ

(
|x0⟩+ (−1)c |x1⟩√

2
, f(x0), f(x1)

)
.

2. Output x and assign |dc⟩⟨dc| as the residual state.12

Adopting the notation from Theorem 11, we define Z̃Bλ

λ (c).13 Consider the following
distinguisher that distinguishes Z̃Bλ

λ (c) for c ∈ {0, 1}:
1. Get Z̃Bλ

λ (c) as input.
2. If it is ⊥, output ⊥ and abort.
3. Output dc · (x0 ⊕ x1) (mod 2).
From Equation (14), there exists a polynomial p(λ) such that both f(x) ∈ {f(x0), f(x1)} and
dc · (x0 ⊕ x1) = c (mod 2) occur with probability at least 1

2 + 1
p(λ) . Thus, the distinguisher

can distinguish Z̃Bλ

λ (0) and Z̃Bλ

λ (1) with probability at least 1
2 + 1

p(λ) , but this means

∥∥∥Z̃Bλ

λ (0)− Z̃Bλ

λ (1)
∥∥∥

tr
≥ 2
p(λ) .

from Theorem 1. This violates Theorem 11. ◀

5.4 Proof of Theorem 10
In this subsection, we show Theorem 10 by using Theorem 12.

12 Note that we can think of dc as a classical mixture (i.e., density matrix) over the randomness of
x0, x1 ← {0, 1}ℓ, c← {0, 1} and the internal randomness of the algorithm Aλ.

13 It is, roughly speaking, |x0⟩⟨x0| ⊗ |x1⟩⟨x1| ⊗ |dc⟩⟨dc| for c ∈ {0, 1} when f(x) ∈ {f(x0), f(x1)}, and is
⊥ when f(x) /∈ {f(x0), f(x1)}.
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Proof of Theorem 10. For the sake of contradiction, assume that there is a QPT adversary
{Aλ}λ∈N such that the following quantity

Pr

[
∧i∈[n]f(xi) ∈ {f(x0

i ), f(x1
i )}∧

∧i∈[n]di · (x0
i ⊕ x1

i ) = ci

:
∀i ∈ [n] : x0

i ← {0, 1}ℓ, x1
i ← {0, 1}ℓ, ci ← {0, 1}

{xi, di}i∈[n] ← Aλ

(⊗n

i=1
|x0

i ⟩+(−1)ci |x1
i ⟩√

2 , {f(xb
i )}i,b

) ]
(15)

is at least 1/poly(λ) for infinitely many λ. We consider the quantum operation {Zλ(·, ·, ·, ·)}λ∈N
in Theorem 12 as

Zλ

(
x0 ⊕ x1, f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
:=

(
f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
,

(16)

which is trivially semantically secure with respect to the first argument. From such {Aλ}λ∈N
and {Zλ}λ∈N, we construct the following QPT adversary {Bλ}λ∈N for fixed each (c1, ..., cn) ∈
{0, 1}n:

1. Get {f(xb
i )}i∈[n],b∈{0,1} and

⊗
i∈[n]

|x0
i ⟩+(−1)ci |x1

i ⟩√
2 as input.

2. Run ({xi}i∈[n], {di}i∈[n])← Aλ

(⊗n
i=1

|x0
i ⟩+(−1)ci |x1

i ⟩√
2 , {f(xb

i )}i∈[n],b∈{0,1}

)
.

3. Output {xi}i∈[n]. Set its residual state as
⊗

i∈[n] |di⟩⟨di|.
Then, by using the notation of Theorem 12, we define Z̃Bλ

λ (c1, ..., cn).14 Let us consider the
following QPT distinguisher {Dλ}λ∈N:
1. Get Z̃Bλ

λ (c1, ..., cn) as input.

2. If it is ⊥, output ⊥. Otherwise, parse it as
(⊗

i∈[n],b∈{0,1} |xb
i ⟩⟨xb

i |
)
⊗

(⊗
i∈[n] |di⟩⟨di|

)
.

3. Compute c′
i := di · (x0

i ⊕ x1
i ) for each i ∈ [n]. Output {c′

i}i∈[n].
Then, from Equation (15),

1
2n

∑
(c1,...,cn)∈{0,1}n

Pr[(c1, ..., cn)← D(Z̃Bλ

λ (c1, ..., cn))] ≥ 1
poly(λ) (17)

for infinitely many λ. Now we show that it contradicts Theorem 12.
If Theorem 12 is correct, there exists a negligible function negl such that∥∥∥Z̃Bλ

λ (c1, ..., cn)− Z̃Bλ

λ (0, ..., 0)
∥∥∥

tr
≤ negl(λ) (18)

for all (c1, ..., cn) ∈ {0, 1}n. However, in that case, there exists a negligible function negl such
that∣∣∣Pr

[
(c1, ..., cn)← D(Z̃Bλ

λ (c1, ..., cn))
]
− Pr

[
(c1, ..., cn)← D(Z̃Bλ

λ (0, ..., 0))
]∣∣∣ ≤ negl(λ)

(19)

for all (c1, ..., cn) ∈ {0, 1}n. Then we have

14 Roughly speaking, it is
(⊗

i∈[n],b∈{0,1} |x
b
i ⟩⟨xb

i |
)
⊗

(⊗
i∈[n] |di⟩⟨di|

)
if f(xi) ∈ {f(x0

i ), f(x1
i )} for all

i ∈ [n], and it is ⊥ otherwise.
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1
poly(λ) ≤

1
2n

∑
(c1,...,cn)∈{0,1}n

Pr[(c1, ..., cn)← D(Z̃Bλ

λ (c1, ..., cn))] (20)

≤ 1
2n

∑
(c1,...,cn)∈{0,1}n

(
Pr[(c1, ..., cn)← D(Z̃Bλ

λ (0, ..., 0))] + negl(λ)
)

(21)

≤ 1
2n

∑
(c1,...,cn)∈{0,1}n

Pr[(c1, ..., cn)← D(Z̃Bλ

λ (0, ..., 0))] + negl(λ) (22)

≤ 1
2n

+ negl(λ) (23)

for infinitely many λ, which yields a contradiction. Here, the first inequality is from
Equation (17), the second inequality is from Equation (19), and the last inequality is from
the fact that

∑
(c1,...,cn)∈{0,1}n Pr[(c1, ..., cn)← A] = 1 for any algorithm A. ◀

6 Two-Tier Tokenized Signatures

In this section, we will first give the formal definition of two-tier tokenized signatures (2-TS),
and then show that they can be constructed from OWFs. For the construction, we use the
(amplified) adaptive hardcore bit property for OWFs (Theorem 10).

6.1 Definition
The formal definition is as follows.

▶ Definition 13 (Two-Tier Tokenized Signatures (2-TS)). A two-tier tokenized signature
scheme is a tuple (KeyGen,StateGen,Sign,Ver0,Ver1) of algorithms such that

KeyGen(1λ)→ (sk, pk) : It is a QPT algorithm that, on input the security parameter λ,
outputs a classical secret key sk and a classical public key pk.
StateGen(sk)→ ψ : It is a QPT algorithm that, on input sk, outputs a quantum state ψ.
Sign(ψ,m) → σ : It is a QPT algorithm that, on input ψ and a message m ∈ {0, 1},
outputs a classical signature σ.
Ver0(pk, σ)→ ⊤/⊥ : It is a QPT algorithm that, on input pk and σ, outputs ⊤/⊥.
Ver1(sk, σ)→ ⊤/⊥ : It is a QPT algorithm that, on input sk and σ, outputs ⊤/⊥.

We require the following properties.
Correctness:

Pr

⊤ ← Ver0(pk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← StateGen(sk)
σ ← Sign(ψ, 0)

 ≥ 1− negl(λ) (24)

and

Pr

⊤ ← Ver1(sk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← StateGen(sk)
σ ← Sign(ψ, 1)

 ≥ 1− negl(λ). (25)

Security: For any QPT adversary A,

Pr

⊤ ← Ver0(pk, σ0) ∧ ⊤ ← Ver1(sk, σ1) :
(sk, pk)← KeyGen(1λ)

ψ ← StateGen(sk)
(σ0, σ1)← A(ψ, pk)

 ≤ negl(λ). (26)
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We can show that the following type of security, which we call one-wayness, is also
satisfied by two-tier tokenized signatures.

▶ Lemma 14 (One-wayness of two-tier tokenized signatures). For any QPT adversary A,

Pr

⊤ ← Ver0(pk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← A(pk)
σ ← Sign(ψ, 0)

 ≤ negl(λ). (27)

Proof. Assume that there exists a QPT adversary A such that

Pr

⊤ ← Ver0(pk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← A(pk)
σ ← Sign(ψ, 0)

 ≥ 1
poly(λ) (28)

for infinitely many λ. Then, from such A, we can construct a QPT adversary B that breaks
the security of the two-tier tokenized signature scheme as follows:
1. Get ψ and pk as input.
2. Run ψ′ ← A(pk).
3. Run σ0 ← Sign(ψ′, 0) and σ1 ← Sign(ψ, 1).
4. Output (σ0, σ1).
It is clear that B breaks the security of the two-tier tokenized signature scheme. ◀

6.2 Construction

We show that 2-TS can be constructed from OWFs.

▶ Theorem 15. If OWFs exist, then two-tier tokenized signatures exist.

Proof. Let f be a OWF. From it, we construct a two-tier tokenized signature scheme as
follows:

KeyGen(1λ)→ (sk, pk) : Choose x0
i , x

1
i ← {0, 1}ℓ for each i ∈ [n]. Choose ci ← {0, 1} for

each i ∈ [n]. Output sk := {ci, x
0
i , x

1
i }i∈[n] and pk := {f(x0

i ), f(x1
i )}i∈[n].

StateGen(sk)→ ψ : Parse sk = {ci, x
0
i , x

1
i }i∈[n]. Output ψ :=

⊗
i∈[n]

|x0
i ⟩+(−1)ci |x1

i ⟩√
2 .

Sign(ψ,m) → σ : If m = 0, measure ψ in the computational basis to get the result
{zi}i∈[n] (where zi ∈ {0, 1}ℓ for each i ∈ [n]), and output it as σ. If m = 1, measure ψ in
the Hadamard basis to get the result {di}i∈[n] (where di ∈ {0, 1}ℓ for each i ∈ [n]), and
output it as σ.
Ver0(pk, σ) → ⊤/⊥ : Parse pk = {f(x0

i ), f(x1
i )}i∈[n] and σ = {zi}i∈[n]. If f(zi) ∈

{f(x0
i ), f(x1

i )} for all i ∈ [n], output ⊤. Otherwise, output ⊥.
Ver1(sk, σ)→ ⊤/⊥ : Parse sk = {ci, x

0
i , x

1
i }i∈[n] and σ = {di}i∈[n]. If di · (x0

i ⊕ x1
i ) = ci

for all i ∈ [n], output ⊤. Otherwise, output ⊥.
The correctness is clear. The security is also clear from Theorem 10. ◀

7 Digital Signatures with Revocable Signatures

In this section, we define digital signatures with revocable signatures (DSR-Sign). We also
show that it can be constructed from 2-TS, and therefore from OWFs.
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7.1 Definition
We first give its formal definition as follows.

▶ Definition 16 (Digital Signatures with Revocable Signatures (DSR-Sign)). A digital signature
scheme with revocable signatures is a set (KeyGen,Sign,Ver,Del,Cert) of algorithms that
satisfy the following.

KeyGen(1λ)→ (sigk, vk) : It is a QPT algorithm that, on input the security parameter λ,
outputs a classical signing key sigk and a classical public verification key vk.
Sign(sigk,m) → (ψ, ck) : It is a QPT algorithm that, on input a message m and sigk,
outputs a quantum signature ψ and a classical check key ck.
Ver(vk, ψ,m)→ ⊤/⊥ : It is a QPT algorithm that, on input vk, m, and ψ, outputs ⊤/⊥.
Del(ψ) → cert : It is a QPT algorithm that, on input ψ, outputs a classical certificate
cert.
Cert(ck, cert)→ ⊤/⊥ : It is a QPT algorithm that, on input ck and cert, outputs ⊤/⊥.

We require the following properties.
Correctness: For any message m,

Pr
[
⊤ ← Ver(vk, ψ,m) : (sigk, vk)← KeyGen(1λ)

(ψ, ck)← Sign(sigk,m)

]
≥ 1− negl(λ). (29)

Deletion correctness: For any message m,

Pr

⊤ ← Cert(ck, cert) :
(sigk, vk)← KeyGen(1λ)
(ψ, ck)← Sign(sigk,m)

cert← Del(ψ)

 ≥ 1− negl(λ). (30)

Many-time deletion security: For any adversary A consisting of a pair of QPT algorithms
(A1,A2):

Pr

⊤ ← Cert(ck∗, cert) ∧ ⊤ ← Ver(vk, ψ,m∗) :

(sigk, vk)← KeyGen(1λ)
(m∗, st)← ASign(sigk,·)

1 (vk)
(ψ∗, ck∗)← Sign(sigk,m∗)

(cert, ψ)← ASign(sigk,·)
2 (st, ψ∗)

 ≤ negl(λ),

(31)

where A is not allowed to query m∗ to the signing oracle.

▶ Remark 17. The above definition does not capture the situation where the adversary gets
more than one signatures on m∗ but deleted all of them. Actually, our construction seems to
also satisfy security in such a setting. However, we choose to not formalize it for simplicity.
▶ Remark 18. We can define the standard EUF-CMA security as follows, but it is trivially
implied by many-time deletion security, and therefore we do not include EUF-CMA security
in the definition of digital signatures with revocable signatures.

▶ Definition 19 (EUF-CMA Security). For any QPT adversary A,

Pr
[
⊤ ← Ver(vk, ψ∗,m∗) : (sigk, vk)← KeyGen(1λ)

(m∗, ψ∗)← ASign(sigk,·)(vk)

]
≤ negl(λ), (32)

where A is not allowed to query m∗ to the signing oracle.

We define a weaker version of many-time deletion security, which we call no-query deletion
security as follows.
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▶ Definition 20 (No-Query Deletion Security). It is the same as many-time deletion security,
Equation (31), except that A cannot query the signing oracle.

The no-query security notion actually implies the many-time case:

▶ Lemma 21 (Many-Time Deletion Security from No-Query Deletion Security). Assume that
EUF-CMA secure digital signature schemes exist. Then following holds: if there exists a
digital signature scheme with revocable signatures which satisfies no-query deletion security,
then there is a scheme that satisfies many-time deletion security.

Proof. Let (NQ.KeyGen,NQ.Sign,NQ.Ver,NQ.Del,NQ.Cert) be a digital signature
scheme with revocable signatures that satisfies no-query deletion security. Let
(MT.KeyGen,MT.Sign,MT.Ver) be a plain EUF-CMA secure digital signature scheme. From
them, we can construct a digital signature scheme Σ := (KeyGen,Sign,Ver,Del,Cert) with
revocable signatures that satisfies many-time deletion security as follows.

KeyGen(1λ) → (sigk, vk) : Run (mt.sigk,mt.vk) ← MT.KeyGen(1λ). Output sigk :=
mt.sigk and vk := mt.vk.
Sign(sigk,m) → (ψ, ck) : Parse sigk = mt.sigk. Run (nq.sigk, nq.vk) ← NQ.KeyGen(1λ).
Run (ϕ, nq.ck) ← NQ.Sign(nq.sigk,m). Run σ ← MT.Sign(mt.sigk, nq.vk∥m). Output
ψ := (ϕ, σ, nq.vk) and ck := nq.ck.
Ver(vk, ψ,m) → ⊤/⊥ : Parse vk = mt.vk and ψ = (ϕ, σ, nq.vk). Run
MT.Ver(mt.vk, σ, nq.vk∥m). If the output is ⊥, output ⊥ and abort. Run
NQ.Ver(nq.vk, ϕ,m). If the output is ⊤, output ⊤. Otherwise, output ⊥.
Del(ψ)→ cert : Parse ψ = (ϕ, σ, nq.vk). Run cert′ ← NQ.Del(ϕ). Output cert := cert′.
Cert(ck, cert)→ ⊤/⊥ : Parse ck = nq.ck. Run NQ.Cert(nq.ck, cert), and output its output.

We show that Σ satisfies many-time deletion security. In other words, we show that if
the many-time deletion security of Σ is broken, then either the no-query deletion security of
the digital signature scheme NQ is broken or the EUF-CMA security of the digital signature
scheme MT is broken. Assume that there exists a pair of QPT algorithms A := (A1,A2)
such that

Pr

⊤ ← Cert(ck∗, cert) ∧ ⊤ ← Ver(vk, ψ,m∗) :

(sigk, vk)← KeyGen(1λ)
(m∗, st)← ASign(sigk,·)

1 (vk)
(ψ∗, ck∗)← Sign(sigk,m∗)

(cert, ψ)← ASign(sigk,·)
2 (st, ψ∗)

 ≥ 1
poly(λ)

(33)

for infinitely many λ, where A is not allowed to query m∗ to the signing oracle. From such
A, we construct a QPT adversary B that breaks the no-query deletion security of the scheme
NQ as follows: Let C be the challenger of the security game of the no-query deletion security.
1. C runs (nq.sigk∗, nq.vk∗)← NQ.KeyGen(1λ).
2. C sends nq.vk∗ to B.
3. B runs (mt.sigk,mt.vk)← MT.KeyGen(1λ).
4. B runs (m∗, st) ← ASign(sigk,·)

1 (mt.vk). When A1 queries m to the signing oracle, B
simulates it as follows:
a. Run (nq.sigk, nq.vk)← NQ.KeyGen(1λ).
b. Run (ϕ, nq.ck)← NQ.Sign(nq.sigk,m).
c. Run σ ← MT.Sign(mt.sigk, nq.vk∥m).
d. Output ψ := (ϕ, σ, nq.vk) and ck := nq.ck.

5. B sends m∗ to C.
6. C runs (ϕ∗, nq.ck∗)← NQ.Sign(nq.sigk∗,m∗), and sends ϕ∗ to B.
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7. B runs σ∗ ← MT.Sign(mt.sigk, nq.vk∗∥m∗).
8. B runs (cert, ψ)← ASign(sigk,·)

2 ((ϕ∗, σ∗, nq.vk∗)). When A2 queries m to the signing oracle,
B simulates it as follows:
a. Run (nq.sigk, nq.vk)← NQ.KeyGen(1λ).
b. Run (ϕ, nq.ck)← NQ.Sign(nq.sigk,m).
c. Run σ ← MT.Sign(mt.sigk, nq.vk∥m).
d. Output ψ := (ϕ, σ, nq.vk) and ck := nq.ck.

9. Parse ψ = (ϕ, σ, η). B outputs cert and ϕ.

Due to the EUF-CMA security of the scheme MT, ⊤ ← MT.Ver(mt.vk, σ, η∥m∗) occurs only
when η = nq.vk∗ except for a negligible probability. Therefore, Equation (33) means that
both Pr[⊤ ← NQ.Ver(nq.vk∗, ϕ,m∗)] and Pr[⊤ ← NQ.Cert(nq.ck∗, cert)] are non-negligible
for the above B, which breaks the no-query deletion security of the scheme NQ. ◀

7.2 Construction
Here we show the following result.

▶ Theorem 22. If two-tier tokenized signatures exist, then digital signatures with revocable
signatures that satisfy no-query deletion security exist.

From Lemma 21, it also means the following:

▶ Corollary 23. Digital signatures with revocable signatures (that satisfy many-time deletion
security) exist if two-tier tokenized signatures and EUF-CMA secure digital signatures exist.

Proof of Theorem 22. Here, we construct the scheme for the single-bit message space. It
is clear that this can be extended to any fixed multi-bit message space case by the parallel
execution of the protocol. Moreover, by using universal one-way hash functions, it can be
extended to unbounded poly-length message space case [34].

Let (TS.KeyGen,TS.StateGen,TS.Sign,TS.Ver0,TS.Ver1) be a two-tier tokenized signature
scheme. From it, we construct a digital signature scheme with revocable signatures Σ :=
(KeyGen,Sign,Ver,Del,Cert) that satisfies no-query deletion security for the single bit message
space as follows.

KeyGen(1λ) → (sigk, vk) : Run (sk0, pk0) ← TS.KeyGen(1λ). Run (sk1, pk1) ←
TS.KeyGen(1λ). Output sigk := (sk0, sk1) and vk := (pk0, pk1).
Sign(sigk,m) → (ψ, ck) : Parse sigk = (sk0, sk1). Run ψ′ ← TS.StateGen(skm). Output
ψ := ψ′ and ck := skm.
Ver(vk, ψ,m) → ⊤/⊥ : Parse vk := (pk0, pk1). Run σ ← TS.Sign(ψ, 0). Run
TS.Ver0(pkm, σ), and output its output.15

Del(ψ)→ cert : Run σ ← TS.Sign(ψ, 1), and output cert := σ.
Cert(ck, cert)→ ⊤/⊥ : Parse ck = skm. Run TS.Ver1(skm, cert), and output its output.

Correctness and the deletion correctness are clear. Let us show the no-query deletion security.
Assume that there is a pair of QPT algorithms (A1,A2) such that

Pr

⊤ ← Cert(ck∗, cert) ∧ ⊤ ← Ver(vk, ψ,m∗) :

(sigk, vk)← KeyGen(1λ)
(m∗, st)← A1(vk)

(ψ∗, ck∗)← Sign(sigk,m∗)
(cert, ψ)← A2(st, ψ∗)

 ≥ 1
poly(λ) (34)

15 The verification algorithm destroys the signature, but it can be done in a non-destructive way by
coherently applying this procedure and then doing the uncomputation.
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for infinitely many λ. From A, we can construct a QPT adversary B that breaks the original
two-tier tokenized signature scheme as follows:
1. Get ψ∗ and pk as input.
2. Run (sk′, pk′) ← TS.KeyGen(1λ). Choose r ← {0, 1}. If r = 0, set vk := (pk, pk′). If

r = 1, set vk := (pk′, pk).
3. Run (m∗, st)← A1(vk). If r ̸= m∗, output ⊥ and abort.
4. Run (cert, ψ)← A2(st, ψ∗).
5. Run σ0 ← TS.Sign(ψ, 0). Define σ1 := cert.
6. Output (σ0, σ1).
It is clear that Pr[B breaks the two-tier tokenized signature scheme] ≥ 1

2 Pr[A breaks Σ].
Therefore, from Equation (34), B breaks the two-tier tokenized signature scheme. ◀
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