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Abstract
One of the founding results of lattice based cryptography is a quantum reduction from the Short
Integer Solution (SIS) problem to the Learning with Errors (LWE) problem introduced by Regev. It
has recently been pointed out by Chen, Liu and Zhandry [12] that this reduction can be made more
powerful by replacing the LWE problem with a quantum equivalent, where the errors are given in
quantum superposition. In parallel, Regev’s reduction has recently been adapted in the context
of code-based cryptography by Debris, Remaud and Tillich [14], who showed a reduction between
the Short Codeword Problem and the Decoding Problem (the DRT reduction). This motivates the
study of the Quantum Decoding Problem (QDP), which is the Decoding Problem but with errors in
quantum superposition and see how it behaves in the DRT reduction.

The purpose of this paper is to introduce and to lay a firm foundation for QDP. We first show
QDP is likely to be easier than classical decoding, by proving that it can be solved in quantum
polynomial time in a large regime of noise whereas no non-exponential quantum algorithm is known for
the classical decoding problem. Then, we show that QDP can even be solved (albeit not necessarily
efficiently) beyond the information theoretic Shannon limit for classical decoding. We give precisely
the largest noise level where we can solve QDP giving in a sense the information theoretic limit for
this new problem. Finally, we study how QDP can be used in the DRT reduction. First, we show
that our algorithms can be properly used in the DRT reduction showing that our quantum algorithms
for QDP beyond Shannon capacity can be used to find minimal weight codewords in a random code.
On the negative side, we show that the DRT reduction cannot be, in all generality, a reduction
between finding small codewords and QDP by exhibiting quantum algorithms for QDP where this
reduction entirely fails. Our proof techniques include the use of specific quantum measurements,
such as q-ary unambiguous state discrimination and pretty good measurements as well as strong
concentration bounds on weight distribution of random shifted dual codes, which we relate using
quantum Fourier analysis.

2012 ACM Subject Classification Theory of computation → Quantum information theory; Theory
of computation → Error-correcting codes; Security and privacy → Cryptanalysis and other attacks

Keywords and phrases quantum information theory, code-based cryptography, quantum algorithms

Digital Object Identifier 10.4230/LIPIcs.TQC.2024.6

Related Version Full Version: https://arxiv.org/pdf/2310.20651

1 General cryptographic context

Error correcting codes appeared first as the fundamental tool to transmit information reliably
through a noisy channel [25] and has found numerous applications in information theory
and complexity. The hardness - even for quantum computers - of decoding random linear
codes is also the core of code-based cryptography. In the cryptographic context, the decoding
problem corresponds to decoding the k-dimensional vector space C (i.e., the code) generated
by the rows of a randomly generated G ∈ Fk×n

q (which is called a generating matrix of the
code):

C
△=

{
uG : u ∈ Fk

q

}
. (1)
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6:2 The Quantum Decoding Problem

Here Fq denotes the finite field with q elements. In the decoding problem, we are given the
noisy codeword c + e where c belongs to C and we are asked to find the original codeword c.

▶ Problem 1 (DP(q, n, k, f)). The decoding problem with positive integer parameters q, n, k
and a probability distribution f on Fn

q is defined as:
Input: (G, c + e) where G ∈ Fk×n

q and u ∈ Fk
q are sampled uniformly at random over

their domain - which generates a random codeword c = uG - and e is sampled from the
distribution f .
Goal: from (G, c + e), find c.

This problem for random codes has been studied for a long time and despite many efforts
on this issue, the best (even quantum) algorithms are exponential in the codelength n for
natural noise distributions f in the regime where k is linear in n and the rate R△= k

n bounded
away from 0 and 1 [23, 27, 15, 19, 5, 20, 18, 9, 8]. This remains true even if we consider
quantum algorithms

The most common noise distribution studied in this context is the uniform distribution
over the errors of fixed Hamming weight t, but there are also other distributions, like in the
binary case (q = 2) the i.i.d Bernoulli distribution model which is frequently found in the
Learning Parity with Noise problem (LPN) [16]. In code-based cryptography, the regime
which is almost always relevant is a fixed number of samples n (or codelength) in the linear
regime i.e. k = Θ(n). We will focus on this case here. While the security of many code-based
cryptosystems relies on the hardness of the decoding problem, it can also be based on finding
a “short” codeword (as in [21] or in [2, 7, 29] to build collision resistant hash functions), a
problem which is stated as follows.

▶ Problem 2 (SCP(q, n, k, w)). The short codeword problem with parameters q, n, k, w ∈ N
is defined as:

Given: H ∈ F(n−k)×n
q which is sampled uniformly at random,

Find: c ∈ Fn
q \ {0} such that Hc⊺ = 0 and the weight |c| of c satisfies |c| ≤ w.

Here we are looking for a non-zero codeword c of weight ≤ w in the k-dimensional code
C defined by the so-called parity-check matrix H, namely1 :

C
△=

{
c ∈ Fn

q : Hc⊺ = 0⃗
}
.

The weight function which is generally used here is the Hamming weight, i.e. for a vector
x = (x1, · · · , xn) ∈ Fn

q , its Hamming weight is defined as

|x| △= #{i ∈ J1, nK : xi ̸= 0}.

We will only deal with this weight here. Decoding and looking for short codewords are
problems that have been conjectured to be extremely close. They have been studied for a
long time, and the best algorithms for solving these two problems are the same, namely
Information Set Decoding algorithms [23, 27, 15, 5, 20, 6].

Recently, Debris-Alazard, Remaud and Tillich showed a quantum reduction from SCP
to DP adapting Regev’s reduction from the Short Integer Solution (SIS) problem to the
Learning With Errors problem (LWE). It has recently been pointed out by Chen, Liu and

1 The short codeword problem is usually defined by picking a random parity-check matrix H ∈ F(n−k)×n
q

and not a random generating matrix G ∈ Fk×n
q but the differences are minor (see for example [13])

and one could also define this problem via the generating matrix of a code as we did for the decoding
problem.
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Zhandry [12] that Regev’s reduction can be made more powerful by replacing the LWE
problem with a quantum equivalent, where the errors are given in quantum superposition. It
is therefore natural to ask whether having errors in quantum superposition in the decoding
problem can be applied to the DRT reduction in order to improve it.

The purpose of this article is to introduce and to lay a firm foundation for the Quantum
Decoding Problem, which is the decoding problem but with errors in quantum superposition.
We first present the DRT reduction for codes, properly define QDP, and then present in
detail our contributions.

2 Regev’s quantum reduction and follow-up work

Regev’s quantum reduction[24] is at the core of complexity reductions for these problems,
which with [1] essentially started lattice-based cryptography. His approach when rephrased
in the coding context is based on the following observation. Suppose that we were able to
construct a quantum superposition

√
1
Z

∑
c∈C

∑
e∈Fn

q

√
f(e)|c+e⟩ of noisy codewords of some

code C over Fq, for a normalization factor Z. By applying the quantum Fourier transform
on such a state, because of the periodicity property of such a state, we get a superposition
concentrating solely on the codewords of the dual C⊥ of C, that is 1√

Z

∑
c⊥∈C⊥

√
f̂(c⊥)|c⊥⟩.

Here f̂ is the (classical) Fourier transform of f . Recall that the dual code is defined as

▶ Definition 1 (dual code). Let C be a k-dimensional linear code over Fq of length n. Let
x · y be the inner product of vectors x, y in Fn

q defined as x · y =
∑

i xiyi. The dual code
C⊥ is an (n− k) dimensional subspace of Fn

q defined by C⊥ △={d ∈ Fn
q : d · c = 0, ∀c ∈ C}

We can expect that if f concentrates on fairly small weights, then f̂ also concentrates on
small weights. This gives a way of sampling low weight (dual) codewords and solve SCP for
the dual code. The point is now that

√
1
Z

∑
c∈C

∑
e∈Fn

q

√
f(e)|c + e⟩ can be obtained by

solving DP on states that are easy to construct. This is the main idea of the DRT reduction.
More precisely, the whole algorithm works as

Step 1. Creation of a superposition of noise tensored with a uniform superposition of
codewords

|ϕ1⟩ =
√

1
qk

∑
e∈Fn

q

√
f(e)|e⟩

∑
c∈C

|c⟩.

Step 2. Entangling the codeword with the noise by adding the second register to the first
one

|ϕ2⟩ =
√

1
qk

∑
c∈C

∑
e∈Fn

q

√
f(e)|c + e⟩|c⟩.

Step 3. Disentangling the two registers by decoding c + e and therefore finding c which
allows to erase the second register (a different normalization Z arises when decoding is
imperfect and we condition on measuring 0 in the last register).

|ϕ3⟩ =
√

1
Z

∑
c∈C

∑
e∈Fn

q

√
f(e)|c + e⟩|0⟩.

TQC 2024



6:4 The Quantum Decoding Problem

Step 4. Applying the quantum Fourier transform on the first register and get

1√
Z

∑
d∈C⊥

√
f̂(d)|d⟩|0⟩

Step 5. Measure the first register and get some d in C⊥.

This approach is at the heart of the quantum reductions obtained in [24, 26, 14]. It
is also a crucial ingredient in the paper [28] proving verifiable quantum advantage by
constructing - among other things - one-way functions that are even collision resistant
against classical adversaries but are easily invertible quantumly. In [24, 26, 14], the crucial
erasing/disentangling step is performed with the help of a classical decoding algorithm.
Indeed any (classical or quantum) algorithm that can recover c from c + e can be applied
coherently to erase the last register in step 32 .

A key insight observed in [12] is that it is actually enough to recover |c⟩ from the state∑
e∈Fn

q

√
f(e)|c + e⟩ so we are given a superposition of all the noisy codewords c + e and

not a fixed one. This means we have to solve the following problem

▶ Problem 3 (QDP(q, n, k, f)). The quantum decoding problem with positive integer para-
meters q, n, k and a probability distribution f on Fn

q is defined as:
Input: Take G ∈ Fk×n

q and u ∈ Fk
q sampled uniformly at random over their domain.

Let c = uG and |ψc⟩ △=
∑

e∈Fn
q

√
f(e)|c + e⟩. The (quantum) input to this problem is

(G, |ψc⟩).
Goal: given (G, |ψc⟩), find c.

It’s not clear a priori whether this is helpful or not. If one measures the state |ψc⟩ then
one recovers a noisy codeword and we are back to the classical decoding problem. However,
in the context of lattices, [12] showed that this approach can lead to improvements. A final
small remark on the motivation of the quantum decoding problem. We are not in the context
of noise coming from a realistic quantum channel so we do not need our noise model to
emulate real quantum noise (which would certainly not be a q-ary symmetric channel with
the same phases). The motivation of this definition really comes from an algorithmic and
complexity perspective, as well as a quantum information-theoretic perspective but not from
a quantum error correcting perspective.

3 Contributions

Here we focus on the noise model which is relevant for the Hamming metric in SCP, namely
the Bernoulli noise of parameter p. This means we consider the error function

f(e) = (1 − p)n−|e|
(

p

q − 1

)|e|

.

which in turn means that for any c = (c1, . . . , cn) ∈ Fn
q , we can rewrite

|ψc⟩ △=
∑

e∈Fn
q

√
f(e)|c + e⟩ =

n⊗
i=1

√
1 − p|ci⟩ +

∑
α∈F∗

q

√
p

q − 1 |ci + α⟩

 .

2 Indeed, having such an algorithm means we can construct the unitary U : |c + e⟩|0⟩ → |c + e⟩|c⟩.
Applying the inverse of this unitary will give the erasure operation.
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For this Bernoulli noise with parameter p, the associated quantum decoding problem is
written QDP(q, n, k, p). We will lay out a firm foundation for this quantum decoding problem
by focusing on the case which is generally relevant in code-based cryptography, namely in
the fixed code rate R△= k/n regime and will show that QDP departs significantly from the
classical decoding problem because we show that

(i) QDP is likely to be easier than classical decoding, by proving that it can be solved in
polynomial time in a large regime of noise whereas no non-exponential algorithm is
known for the classical decoding problem.

(ii) the problem can even be solved (albeit not necessarily efficiently) beyond the information
theoretic Shannon limit for classical decoding. We will give precisely the largest noise
level where we can solve QDP giving in a sense the information theoretic limit for the
new problem.

(iii) We study how these QDP algorithms fit in the DRT reduction. We show using our
quantum polynomial algorithm in this reduction in order to obtain quantum polynomial
algorithms recovering Prange’s bound. Even more interestingly, we show that our
quantum algorithm for QDP of (ii) can be used in order to find small codewords of
weight as small as the minimal distance of the code, which is the best we can hope for.
On the negative side, we show that the DRT reduction cannot be, in all generality, a
reduction between QDP and finding small codewords by exhibiting quantum algorithms
for QDP that make this reduction entirely fail.

We now perform a detailed description of our contributions.

3.1 Polynomial time quantum algorithm for QDP in a large parameter
regime

Our first result is the following

▶ Theorem 2. Let R ∈ [0, 1]. For any p <
(

(q−1)R
q

)⊥
, there exists a quantum algorithm that

solves QDP(q, n, ⌊Rn⌋, p) wp. 1 − 2−Ω(n) in time poly(n, log(q)), where for a real number

x ∈ [0, 1], x⊥ =
(√

(1−x)(q−1)−
√

x
)2

q .

Let us dive in how we obtain this result. We start from an input of QDP(q, n, ⌊Rn⌋, p),
which, for an (unknown) codeword c = c1, . . . , cn is the state

|Ψc⟩ =
n⊗

i=1
|ψci

⟩ with |ψci
⟩ △=

√
1 − p|ci⟩ +

∑
α∈F∗

q

√
p

q − 1 |ci + α⟩

and the goal is to recover c. Our algorithm performs Unambiguous State Discrimination
(USD) on each of the n registers. USD is a quantum measurement that, on input |ψci

⟩, will
output or the correct value ci, or an abort symbol ⊥ but will never output a value α ∈ Fq

different from ci. Then, if we have enough correct values of ci (essentially more than ⌈Rn⌉),
then one can recover the whole c using the description of the code and basic linear algebra.

Optimal unambiguous state discrimination is very well understood in the binary case
(q = 2) but is not known in general for more than 2 states. In certain situations where we
have a symmetric set of states [10] we know how to perform optimal USD. This would apply
in our case case where q is prime. We have generalized the approach of [10] to be able to
apply it to any finite field size q, and prove the following.

TQC 2024



6:6 The Quantum Decoding Problem

▶ Proposition 3. Let q be a prime power, and f : Fq → C st. ||f ||2 = 1. For each y ∈ Fq,
we define |ψy⟩ =

∑
α∈Fq

f(α)|y + α⟩. There exists a quantum measurement that, when given
|ψy⟩, outputs y wp. pUSD and ⊥ wp. 1 − pUSD where pUSD = q · minα∈Fq

|f̂(α)|2, and this
is optimal. Moreover, if f corresponds to a Bernoulli noise of parameter p, this measurement

can be done in time polylog(q) and we have pUSD = qp⊥

q−1 , where p⊥ =
(√

(1−p)(q−1)−√
p
)2

q .

Notice that [12] proposed a USD measurement with pUSD = 1
q minα∈Fq

|f̂(α)|2. Their
measurement does not scale well with q contrarily to our measurement which has basically
the right scaling with q. For instance, [12] requires that q = poly(n). We have no such
restriction in our case and our algorithms work in polynomial time even for q = 2Ω(n).

3.1.1 Interpretation as changing the noise channel
A nice interpretation of the above algorithm is that when the error is in quantum superposition,
one can use quantum measurements to change the noise model. For instance, when we are
given |ψci

⟩ =
√

1 − p|ci⟩ +
∑

α∈F∗
q

√
p

q−1 |ci + α⟩ then
One can measure in the computational basis to obtain ci that has been flipped wp. p to
one of the other q − 1 values at random.
One can use unambiguous state discrimination in which case ci has been erased wp.
1 − qp⊥

q−1 .

What we show in Theorem 2 is that the second strategy is actually much more powerful
for recovering the codeword c. A natural question to ask is whether this can further be
generalized to other measurements. In the binary setting we actually generalize USD as
follows: given |ψci⟩, the measurement sometimes outputs ⊥ but it can also fail with some
small probability. We prove the following

▶ Proposition 4 (Partial USD). Let p, s ∈ [0, 1
2 ) with s ≤ p and let u = p⊥

s⊥ . There exists a
quantum measurement that when applied to |ψci⟩ =

√
1 − p|ci⟩ + √

p|1 − ci⟩ outputs ci wp.
u(1 − s), (1 − ci) wp. us and ⊥ wp. 1 − u.

Notice that this generalizes both the computational basis measurement (by taking s = p)
and unambiguous state discrimination (by taking s = 0 giving u = 2p⊥). This seems a very
natural way of generalizing USD but is not something we have found in the literature and
could be of independent interest. We can use this measurement not to provide new polynomial
time algorithms but rather to give a reduction between different Quantum Decoding problems,
which we detail in the full text.

3.2 Determining exactly the tractability of the quantum decoding
problem

We are now interested in the tractability of QDP(q, n, k, p) meaning when is it possible
from an information theoretic perspective to solve this problem. A fundamental quantity is
relavant here, namely the Gilbert-Varshamov distance δmin(R) defined below

▶ Notation 1. Let R ∈ [0, 1]. We define δmin(R) △=h−1
q (1−R), where hq(x) △= −(1−x) logq(1−

x) − x logq

(
x

q−1

)
. hq is a bijection from x ∈

[
0, q−1

q

]
to [0, 1] and h−1

q : [0, 1] →
[
0, q−1

q

]
is

the inverse of hq.
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For the classical setting, it is well understood that DP(q, n, k, p) is not tractable when
p > δmin( k

n ), meaning that even an unbounded algorithm will solve the problem wp. o(1).
We would like now to understand what happens in the quantum setting. Techniques based
on (partial) USD will not work in the regime p > δmin(R). Since we are only interested in the
tractability of the problem, we can consider optimal quantum algorithms for discriminating
between the states |Ψc⟩ =

∑
e∈Fn

q

√
f(e)|c + e⟩ where f accounts for the Bernoulli noise of

parameter p. This problem can be addressed by using the Pretty Good Measurement (PGM)
which has turned out to be a very useful tool in quantum information. If we define PPGM
as the probability that the pretty good measurement succeeds in solving our problem and
define POPT as the maximal probability that any measurement succeeds, we have [4, 22]

P2
OPT ≤ PPGM ≤ POPT.

This means that in order to study the tractability of the quantum decoding problem, it is
enough to look at the PGM associated with the problem of distinguishing the states {|Ψc⟩}.
We show that

▶ Theorem 5. Let R ∈ (0, 1).
For p < (δmin(1 −R))⊥, QDP(q, n, ⌊Rn⌋, p) can be solved using the PGM wp. PPGM =
1 − o(1) hence the problem is tractable.
For p > (δmin(1 −R))⊥, the probability that the PGM solves this problem is PP GM = o(1)
hence POP T = o(1) and the problem is intractable.

In order to prove this theorem, we study the Pretty Good Measurement associated to the
states |Ψc⟩ which are the possible inputs of QDP. In order to study our PGM, we define the
shifted dual codes of C

C⊥
s

△={x ∈ Fn
q : Gx⊺ = s}

We show the following

▶ Proposition 6. We consider the Pretty Good Measurement associated to the states {|Ψc⟩}c∈C
with |Ψc⟩ =

∑
e f(e)|c + e⟩. This measurement outputs c given |Ψc⟩ wp.

pP GM = 1
qk

 ∑
s∈Fk

q

ns

2

where ns =
√ ∑

y∈C⊥
s

|f̂(y)|2.

This shows an interesting and unexpected link between the Pretty Good Measurement
associated to the states {|Ψc⟩} and the shifted dual codes C⊥

s . In the particular case of a
Bernoulli noise of parameter p, the value of ns will be dominated by a quantity related to
the number of words of weight close to p⊥ in the shifted dual code C⊥

s . In order to conclude,
we use strong concentration bounds on the weight distribution of shifted dual codes.

3.2.1 Comparing the complexity of DP and QDP
With this full characterization, we compare the hardness, and tractability of the classical and
quantum decoding problems. For p = 0, we have of course a polynomial time algorithm to
solve DP(q, n, ⌊Rn⌋, 0). For 0 < p ≤ δmin(R), the problem is tractable and the best known
classical or quantum algorithms run in time 2Ω(n). For p > δmin(R), we know the problem
is intractable. For the Quantum Decoding Problem, we obtain a very different picture.
A comparison of these results is presented in Figures 1 and 2 where we use the following
terminology

TQC 2024



6:8 The Quantum Decoding Problem

Easy: there exists an algorithm that runs in time poly(n).
Hard: the best known (classical or quantum) algorithm runs in time 2Ω(n), but there
could potentially be more efficient algorithms.
Intractable: we know that any (even unbounded) algorithm can solve the problem wp. at
most o(1).

Figure 1 Hardness and tractability of the decoding problem DP(q, n, ⌊Rn⌋, p), for any fixed
R ∈ [0, 1], as a function of p.

Hard Intractable
p

0 δmin(R) q−1
q

Figure 2 Hardness and tractability of the quantum decoding problem QDP(q, n, ⌊Rn⌋, p), for
any fixed R ∈ [0, 1], as a function of p.

Easy Hard Intractable
p

0
(

(q−1)R
q

)⊥
(δmin(1 −R))⊥ (q−1)

q

This gives a proper characterization of the difficulty of QDP. In our next contribution,
we will apply them in the DRT quantum reduction in order to derive some results for the
short codeword problem. As we will show, the results from Figure 2 will match exactly our
knowledge for the short codeword problem.

3.3 Using our algorithms in Regev’s reduction
We are now interested in solving the short codeword problem using Regev’s reduction and
the algorithms we described in the previous section. The known (classical and quantum)
hardness of the short codeword problem is summarized in Fig. 3. In our coding context, the

Figure 3 Hardness and tractability of the short codeword problem SCP(q, n, ⌊Rn⌋, p) for a fixed
R ∈ (0, 1), as a function of p.

Intractable Hard Easy
p

0 δmin(R) (q−1)(1−R)
q

(q−1)
q

only known reduction is the following

▶ Proposition 7 ([14], informal). Fix integers n, q ≥ 2 as well as parameters R, p ∈ (0, 1)
st. p ≤ δmin(R). From any quantum algorithm that solves DP(q, n, ⌈(1 − R)n⌉, p) with
high probability, there exists a quantum algorithm that solves SCP(q, n, ⌊Rn⌋, p⊥) with high

probability where recall that p⊥ =
(√

(1−p)(q−1)−√
p
)2

q .

In some sense, this reduction is far from tight. Indeed, if we take the best known
algorithms for DP (see Figure 1) and we apply the above proposition, we get quantum
algorithms much worst than the best known ones from Figure 3. On the other hand, if we
could plug in our algorithms for QDP in this reduction, we would obtain quantum algorithms
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for SCP that have the same complexities as the one in Figure 3. From our discussion in
Section 2, it seems that one could perform the same reduction as above but replacing DP
with QDP. The reality is quite more tricky. Indeed, if the quantum algorithm for QDP
succeeds wp. 1 then the reduction works. However, even a small error in the quantum
algorithm for QDP can lead to large error in the corresponding algorithms for SCP.

We first show that this is not an issue when we use the quantum algorithms for QDP we
described in the previous section in the DRT reduction.

▶ Theorem 8. For any p <
(

(q−1)R
q

)⊥
, if we plug the quantum polynomial time algorithm

of Theorem 2 for QDP(q, n, ⌊(1 − R)n⌋, p⊥) in Regev’s reduction, we obtain a quantum
polynomial time algorithm for SCP(q, n, ⌊R⌋, p).

▶ Theorem 9. For any p < δmin(1 − R), if we plug (a slight variant of) the quantum
algorithm of Theorem 5 for QDP(q, n, ⌊(1 − R)n⌋, p⊥) in Regev’s reduction, we obtain a
quantum polynomial time algorithm for SCP(q, n, ⌊R⌋, p).

3.3.1 Efficiency of the reduction
We graphically compare here the DRT reduction using DP and using our algoirthms for
QDP.

Hard Intractable
p DP(q, n, ⌈(1 −R)n⌉, p)

0 δmin(1 −R) q−1
q

Intractable Hard
p SCP(q, n, ⌈Rn⌉, p)

0 (δmin(1 −R))⊥ q−1
q

Figure 4 On the top, best known (classical or quantum) algorithms for DP(q, n, ⌈(1−R)n⌉, p). On
the bottom, complexity of a quantum algorithm for SCP(q, n, ⌈Rn⌉, p) that uses the best algorithm
for DP(q, n, ⌈(1 − R)n⌉, p) and then uses Proposition 7.

Easy Hard Intractable
p QDP(q, n, ⌈(1−R)n⌉, p)

0
(

(q−1)(1−R)
q

)⊥
(δmin(R))⊥ (q−1)

qy Theorems 8, 9
Intractable Hard Easy

p SCP(q, n, ⌈Rn⌉, p)
0 δmin(R) (q−1)(1−R)

q
(q−1)

q

Figure 5 On the top, our quantum algorithms for QDP(q, n, ⌈(1 − R)n⌉, p). On the bot-
tom, complexity of a quantum algorithm for SCP(q, n, ⌈Rn⌉, p) that would use our algorithms
QDP(q, n, ⌈(1 − R)n⌉, p) and then Theorems 8 and 9.

What we find quite remarkable is that our algorithm for QDP used at the limit of the
tractability bound can be used to recover minimal weight codewords of weight δmin(R) in
the dual. A natural question is whether we can have generic reductions between SCP and
QDP. We show that the DRT reduction fails for this task and the increase in error in the
reduction can be drastic.

TQC 2024



6:10 The Quantum Decoding Problem

▶ Theorem 10. For any p < δmin(1 − R), there exists a quantum algorithm that solves
QDP(q, n, ⌊(1 −R)n⌋, p⊥) wp. 1 − o(1) st. if we plug it in the DRT reduction, the resulting
algorithm for SCP(q, n, ⌊Rn⌋, p) never succeeds.

These results show that, while it is impossible to have a generic reduction from SCP
to QDP with this method, it is (at least in our examples) possible to find algorithms for
QDP that give results according to Fig. 5, and recover the areas where the problem is easy
or tractable. This can be seen as quite a surprise since our bounds on QDP come from
information theory and best known bounds on SCP comes from classical coding theory and
seem unrelated at first.

4 Related work

Our main starting point is [12] so it natural to compare our contributions with this work.
In [12], they introduce the S-|LWE⟩ problem, the lattice equivalent of QDP. They construct
from it a quantum algorithm for SIS∞ via Regev’s reduction while our work focuses on QDP
mainly for its own sake. Regarding their quantum polynomial time algorithm for S-|LWE⟩, it
is obtained by performing a variant of Unambiguous State discrimination where we only rule
out certain values for the code-symbols, and then they use the Arora-Ge algorithm [3] for
recovering completely the codeword by solving an algebraic system which for the parameters
that are considered there, is of polynomial complexity. Our quantum polynomial time
algorithm is inspired by this approach but since we work with the q-ary Bernoulli noise, we
can directly use unambiguous state discrimination. Also, we perform a more efficient q-ary
USD which allows us to work even when q = 2Ω(n) while the work of [12] works only when
q = poly(n). Our other results on the (in)tractability results, as well as the discussion on
the DRT reduction are entirely novel and do not have an equivalent version in [12].

Another quantum variant has been presented [17] but where they consider a quantum
superposition of samples i.e. superpositions of generating matrices. They show that in this
case the problem can be solved in quantum polynomial time. Their setting is very different
from ours as we fix a code and do not have codes in superposition. Moreover, their techniques
are not applicable to our setting.

A recent result [11] also studies the S-|LWE⟩ problem. They perform a quantum reduction
between LWE and S-|LWE⟩ with extra unknown phases. The parameters of this S-|LWE⟩ are
such that if they did not have these unknown phases, they could solve it with a subexponential
quantum algorithm using a subexponential number of samples. This is very far from our
parameter range and hence not comparable but gives an interesting use of Kuperberg’s sieve
for this kind of problem.

5 Discussion

5.1 A problem which is interesting in its own
Our work lays firm theoretical foundations for the Quantum Decoding Problem, where we
find an interesting parameter range where the problem can be solved in quantum polynomial
time. Moreover, we precisely characterize up to what level of noise the problem is tractable
from an information theoretic point of view. Finally we show how our algorithms can be
used in Regev’s reduction for finding short codewords.

Beyond this, it seems to us that the quantum decoding problem is a natural and important
problem in its own. We did not study the quantum decoding problem to relate it to the
classical decoding problem so the aim of our results is not to say something about the
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complexity of the classical decoding problem (even though it is linked to the related Short
Codeword Problem via Regev’s reduction). We are actually more interested in the differences
between these two problems. Having errors in quantum superposition can be used to change
the noise model from a q-ary symmetric channel to an erasure channel. We even have a
complete characterization in the binary setting via our notion of partial unambiguous state
discrimination. Also quite surprisingly, we can decode beyond classical information theoretic
limits. Moreover, the optimal bound (δmin(1 −R))⊥ that we exhibit in the binary setting is
exactly the first linear programming which bounds the minimal distance of a code depending
on its size so this bound, which comes from the study of the Pretty Good Measurement has
links, again, with fundamental quantities from classical coding theory.

But as we said, we have another strong motivation for studying the quantum decoding
problem. Indeed, it is the problem which directly appears when performing Regev’s reduction.
This means studying the quantum decoding problem also gives us a better understanding of
this reduction both from a complexity point of view and from a quantum algorithmic point
of view. From a complexity point of view, our results explain why this reduction between
the Decoding Problem and the Short Codeword problem (or equivalently between LWE
and SIS) gives far from tight results. It is because this reduction is genuinely a reduction
between the Quantum Decoding Problem and the Short Codeword and our analysis shows
the former is much simpler than its classical counterpart. Also, Figure 5 shows that with this
reduction, we recover the polynomial zone and the tractability zone of the short codeword
problem which shows in some sense the tightness of this reduction. The fact that bounds on
optimal Unambiguous State Discrimination and on the Pretty Good Measurement leads via
Regev’s reduction to Prange’s bound (for the polynomial case) and to the Gilbert-Varshamov
bound (for the tractability bound) shows interesting and, in our opinion, quite aesthetic links
between quantum and classical information theory.

From an algorithmic point of view, these results can be seen as a new class of quantum
algorithms for the short codeword problem. One might say that we do not improve on
existing algorithms. For example, our quantum polynomial algorithm finds short codeword
for some weights t that can also be found by the classical Prange’s algorithm. Let us just
observe here that if we could find a polynomial quantum algorithm that would beat Prange’s
bound then that would significantly change our understanding of the quantum hardness
of these problems and the post-quantum security claims of code-based cryptography (and
may be even lattice-based cryptography) would be affected. In the exponential regime, we
propose a new family of quantum algorithms for the short codeword problem and there are
many directions (changing the noise function f , determining the complexity of measurements
required in the QDP, strict analysis in Regev’s reduction ...) that look very promising for
future work.

5.2 Technical takeaways
In the first part of the paper, we use binary Unambiguous State Discrimination for constructing
our quantum polynomial algorithm. Once the idea is found, the techniques used are known
and simple. We then extend this to partial unambiguous state discrimination - where we
still allow some probability of failure much less than in Helstrom’s measurement. This is a
technique that we have not seen previously in the literature and could be of independent
interest. In the q-ary setting, we extend optimal bounds for unambiguous state discrimination
of symmetric states to the case q is a prime power and also show how to construct this
measurement in time log(q) for Bernoulli noise. The second part of the paper, which
deals with (in)tractability bounds is arguably the most technical part of the paper. A first
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interesting technical result was to precisely characterize the Pretty Good Measurement used
in the quantum decoding problem of a code C as a projective measurement that involves
the shifted dual codes of C. Then, the most technical part was to actually compute the
success probability of the Pretty Good Measurement as a function of the noise rate which
requires precise and well used concentration and anti-concentration bounds on the weight
distribution of shifted dual codes of a random code. In the third part of the paper, where we
apply our algorithms to Regev’s reduction, we mainly use our analysis of the Pretty Good
Measurement developed in the previous section. Regarding the reduction using Unambiguous
State Discrimination, the analysis is fairly simple. One interesting fact though is that we do
not construct the state

∑
c,e f(e)|c + e⟩ but another state related to a punctured code CJ

which allows us to find small dual codewords. This circumvents many issues arising when
one wants to go from solving QDP (aka S-|LWE⟩) to construct the state

∑
c,e f(e)|c + e⟩

(aka C-|LWE⟩).

6 Proofs

The proofs of this article are presented in the full version of this paper (https://arxiv.
org/pdf/2310.20651), which we omit here due to space restrictions.
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