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Abstract
We present a framework for quantum computation, similar to Adiabatic Quantum Computation
(AQC), that is based on the quantum Zeno effect. By performing randomised dephasing operations
at intervals determined by a Poisson process, we are able to track the eigenspace associated to a
particular eigenvalue.

We derive a simple differential equation for the fidelity, leading to general theorems bounding
the time complexity of a whole class of algorithms. We also use eigenstate filtering to optimise the
scaling of the complexity in the error tolerance ϵ.

In many cases the bounds given by our general theorems are optimal, giving a time complexity
of O(1/∆m) with ∆m the minimum of the gap. This allows us to prove optimal results using very
general features of problems, minimising the problem-specific insight necessary.

As two applications of our framework, we obtain optimal scaling for the Grover problem (i.e.
O(

√
N) where N is the database size) and the Quantum Linear System Problem (i.e. O(κ log(1/ϵ))

where κ is the condition number and ϵ the error tolerance) by direct applications of our theorems.
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1 Introduction

It has long been appreciated that the ability to prepare a ground state of a given Hamiltonian
is useful for a large number computational tasks. Many NP-hard problems, including various
types of partitioning, covering, and satisfiability problems, can be solved by finding the
ground state of an Ising system [14]. There are also many applications in the fields of quantum
chemistry, where finding the ground state of molecules is a common task, and physics, where
knowledge of the ground state helps to understand low-temperature phenomena such as
superconductivity and superfluidity.

For computational problems we have the following strategy: (1) find a physical system
such that the ground state encodes useful information for solving the problem, (2) prepare
the ground state using some physical process and (3) use the information contained in the
ground state to solve the problem. This paper is about performing the second step of this
strategy.

The most famous way to perform the second step is known as Adiabatic Quantum
Computation (AQC) [8]. Suppose HP is the Hamiltonian whose ground state is of interest.
This procedure requires a second Hamiltonian, H0, with an easily preparable ground state.
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7:2 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

Now consider the following interpolated Hamiltonian: H(s) = (1 − s)H0 + sHP and pick a
large time T . We start with the system in the ground state of H0 and evolve according to the
time-dependent Hamiltonian H(t/T ), for time t ∈ [0, T ]. The adiabatic theorem says that if
T is large enough, then the resulting state will be close to the ground state of H(1) = HP .
See [11] for results detailing how large T has to be. Clearly we want to take T as small as
possible, since a larger T means our computation takes longer.

While AQC is polynomially equivalent to the quantum circuit model [1], it suffers from
a few drawbacks. The most significant one being that it requires the system to evolve
under a very specific time-dependent Hamiltonian. It is typically very hard to physically
implement a system that evolves under exactly this Hamiltonian. Often the complicated
time-dependent dynamics are approximated by a sequence of simpler evolutions, which
introduces discretisation error. In particular this is necessary when implementing AQC on a
conventional quantum computer. Bounding the discretisation error analytically is typically
hard to do. In contrast, our method only requires the evolution under a finite number of
time-independent Hamiltonians for finite time and thus has no discretisation cost.

There exist alternatives to AQC that are also based on an interpolation H(s) between a
Hamiltonian whose ground state is easy to prepare and one whose ground state is difficult to
prepare. These approaches use alternate ways to transform the ground state of H(0) into
that of H(1), or, more generally some eigenstate of H(0) into the corresponding eigenstate
of H(1). They often make use of a variant of the quantum Zeno effect. For instance [5] uses
measurement and [4] simulates the quantum Zeno effect by applying Hamiltonian evolutions
for random amounts of time in a procedure known as the Randomisation Method (RM).

Our framework builds on the RM of [4] in the following way: instead of performing a
fixed sequence of phase randomising steps, we stochastically choose when to perform phase
randomisation, based on a Poisson process with rate λ(s), see algorithm 1. This has a
number of advantages. Firstly it yields a simple differential equation for the state evolution,
which fits in the general framework of non-unitary adiabatic theorems of [3], and greatly
simplifies the analysis. It allows us to obtain general theorems, see in particular theorems 4
and 5, that in many cases yield optimal results with minimal extra work or problem-specific
insight. Also, we only need very minimal technical assumptions on H(s): it only needs to be
twice continuously differentiable and we need to know some estimate of the gap between the
eigenvalue of interest and the rest of the spectrum. We do not assume precise knowledge of
the spectrum or gap. We allow the eigenspace of interest to be degenerate.

Our theorem 4 deals with the case where the rate of the Poisson process λ is taken to
be constant. The result we obtain is better than the corresponding result for AQC with
a constant-speed linear interpolation. In theorem 5 we describe a variable λ(s) that can
significantly improve the time complexity, up to O(1/∆m) in the minimum gap ∆m. Finally
theorem 7 improves the dependence of the time complexity on the error tolerance. Typically
algorithms based on AQC and the RM have a complexity that scales as O(1/ϵ) in the error
tolerance ϵ. Eigenstate filtering, introduced in [13], can be used to reduce this to O(log(1/ϵ)).
This has been used before to RM-inspired algorithms that use the circuit model, see [13] and
[12], but we provide a version native to our cost model.

From theorem 5, we see that the following property is very useful to obtain fast algorithms:∫ 1
0

1
∆(s)p ds = O(∆1−p

m ), where ∆ is the gap, ∆m = infs∈[0,1] ∆ and p > 1. This property
seems to be quite generic, in particular it holds for both the Grover search problem and the
Quantum Linear System Problem (QLSP).

In the Grover search problem, [9], the goal is to prepare a specific state in an N -dimensional
space with the help of an oracle. It is well-known that this can be done in O(

√
N) queries

to the oracle. When AQC was first used to tackle this problem, a complexity of O(N)
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was obtained [8]. The trick to achieving a complexity of O(
√

N) was to use an adapted
schedule [17, 20]. In our framework, the algorithm using constant λ already achieves a scaling
of O

(√
N log(N)

)
by theorem 4, which is significantly better than the corresponding case for

AQC. Using a variable λ(s), we recover the scaling O(
√

N) by theorem 5. It is interesting to
note that, by the generality of our theorems, we actually obtain a whole family of schedules,
parametrised by some value 0 < q < 1, that solve the problem optimally. This is analogous
to the range of adiabatic schedules considered in [2] and [7]. The original schedule of [17]
actually corresponds to a choice of q = 1. It seems like the RM can be considered as the
q = 1 case of a family of methods, at least in the case of linear interpolation. This falls
outside the range of our theorem, but it turns out that q = 1 is in fact good enough to give
optimality for the Grover problem, which explains why the RM was already known to be
able to perform Grover search with optimal complexity O(

√
N), [4].

In general, for other problems, q = 1 does not give optimal scaling. The Quantum Linear
System Problems (QSLP) is an example of a problem where q = 1 does not work, neither
in our framework, nor in AQC [2]. In QLSP, [10], the goal is to prepare a quantum state
|x⟩ that is proportional to the solution of a system of linear equations Ax = b. In [19] the
randomisation method was used to construct an algorithm with complexity O

(
κ log(κ)/ϵ

)
,

where κ is the condition number and ϵ the error tolerance. This is improved to O
(
κ log(κ/ϵ)

)
in [12]. In [7] an algorithm based on a discrete adiabatic theorem was proposed which scales
as O

(
κ log(1/ϵ)

)
. We are able to match this in our framework.

There has actually been some discussion recently on the merits of these two approaches
to QLSP, i.e. the approach based on the RM of [19] and the approach based on the discrete
adiabatic theorem [7]. The approach based on the discrete adiabatic theorem has the better
asymptotic scaling, but it turns out that the proven complexity for reasonable values of κ is
very large. The paper [12] presents an algorithm that is based on the RM and has a better
proven complexity for reasonable values of κ, but is asymptotically suboptimal. Finally [6]
uses numerical methods to determine the actual performance of the algorithm based on the
discrete adiabatic theorem. They claim that it works much better than the proven bound
and in fact better than the algorithm based on the RM. We can contribute to this discussion
by noting that our framework gives an algorithm that is based on the RM and has optimal
asymptotic scaling. In addition, since the RM seems to correspond to q = 1, which we know
to be suboptimal, it is likely that the algorithm of [12] can be made asymptotically optimal
by changing the scheduling.

1.1 General setup
We assume we have a physical system and a set of (time-independent) Hamiltonians, i.e.
self-adjoint operators, such that we can evolve the system under e−itH at a cost of t for
any Hamiltonian H in this set.1 We call the Hamiltonians in this set admissible. Which
Hamiltonians are admissible will depend on the device or setup, but typically they will be
bounded in norm.

This is not the cost model used by references [7] and [12], which use a query complexity
rather than a time complexity. We discuss a translation of our results to this model using
optimal Hamiltonian simulation in appendix B. The asymptotic complexities are mostly
unaffected, but there are different constants involved.

For a given instance of a problem, we assume that we have a continuous, twice differentiable

1 We set ℏ = 1.
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7:4 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

path of admissible Hamiltonians H(s), where s ∈ [0, 1]. We also assume that we can prepare
the ground state of H(0).

We are interested in the asymptotic scaling of the time complexity, as measured by the
total length of time we apply unitaries of the form e−itH . We produce theorems that give
bounds on the complexity in terms of the spectral gap and the derivatives ∥H ′∥ and ∥H ′′∥.

Our main tool will be the randomised application of unitaries of the form e−itH . Since
we are using classical randomness, it will be useful to use the density matrix formalism.
Using this formalism, we can derive differential equations for these new procedures that share
essential features with the Liouville–von Neumann equation in the adiabatic limit. This
allows us to use many of the same mathematical tricks to study these procedures and we can
derive “generalised” adiabatic theorems in the sense of [3].

1.1.1 Cost and error model
It is clear what the cost of one run of the algorithm is: it is just the total time spent evolving
the system under some Hamiltonian. In order to state the time complexity we have the
additional problem that the running time of the algorithm is not deterministic. That is, even
for a fixed input, multiple runs of the algorithm will take different amounts of time. Our
time complexity uses the expected run time of each input. Thus we say our algorithm has
time complexity T if, for all relevant inputs I, the expected time taken by the algorithm
with input I is less than T . In other words, we may consider this a worst-case expected-time
complexity.

In order to guarantee that the algorithm does not take too long, we could abort if the
chosen amount of time was too long. This would yield an additional error, which can be
bounded by Markov’s inequality.

Our algorithms are also not guaranteed to give the correct answer, rather we aim to
produce the target state with at least a certain target fidelity.

1.1.2 Technical assumptions on the spectrum
We assume the existence of the following objects: a number ∆m > 0 and functions ω0 :
[0, 1] → R and ∆ : [0, 1] → [0, 1] such that

ω0 continuous;
ω0(s) is an eigenvalue of H(s) for all s ∈ [0, 1];
∆(s) ≥ ∆m for all s ∈ [0, 1];
the intersection of [ω0(s) − ∆(s), ω0(s) + ∆(s)] with the spectrum of H(s) is exactly
{ω0(s)}.

Let P (s) be the projector on the eigenspace associated to the eigenvalue ω(s). We also set
Q(s) = id −P (s).

In order to perform our algorithm, we assume knowledge of ∆, which bounds the gap. We
do not assume more detailed knowledge of the gap, ω0, or any other part of the spectrum.

2 Poisson-distributed phase randomisation

Our algorithms are built using a finite number of steps, where at each step a Zeno-like
dephasing operation is performed. This dephasing operation is given by the following
proposition:
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▶ Proposition 1 (Phase randomisation [4]). Let H be a Hamiltonian and ω0, ∆, P and Q

as above. Assume we can simulate e−itH for any positive or negative time t at a cost of |t|.
Then we can construct a stochastic variable τ such that for all states ρ,

⟨e−iτHρeiτH⟩ = PρP + Q⟨e−iτHρeiτH⟩Q, (1)

with cost ⟨|τ |⟩ = t0/∆, where t0 = 2.32132.

The angled brackets mean taking the average over τ . The result is originally from [4]. The
value for t0 was obtained in theorem 2 of [12].

The algorithm is now simple to state:

Algorithm 1 Poisson-distributed phase randomisation.

1 Pick a Poisson process N : [0, 1] × (Ω, A, P ) → N with rate λ(s);
2 At each jump point s of the Poisson process, pick an instance t of the random

variable T as defined in proposition 1 and evolve the system under the Hamiltonian
evolution e−itH(s);

The density matrix describing the system is a random variable that satisfies the stochastic
differential equation dρ =

(
e−iτ(s)H(s)ρeiτ(s)H(s) − ρ

)
dN. Averaging over realisations, we get

d⟨ρ⟩ =
(
P ⟨ρ⟩P + Q⟨e−iτHρeiτH⟩Q − ⟨ρ⟩

)
λ ds. (2)

Note that this should properly be thought of as a “marginalised” density matrix, rather
than an “average” density matrix. This is entirely analoguous to the situation for classical
probability distributions, where integrating out a variable gives the marginal distribution. In
this case we are marginalising over the choice of Poisson process N . In the rest of the paper,
we will use ρ to refer to the marginalised distribution ⟨ρ⟩. This corresponds to the density
matrix you would observe if you were not told which Poisson process N was chosen.

The total time taken by one run of the algorithm is a random variable T satisfying

dT = τ dN. (3)

In order to find the time complexity, we take the average. This gives dT = t0∆−1λ ds, so
T =

∫ 1
0

t0λ
∆ ds.

2.1 Analysis
▶ Lemma 2. Under the assumptions in 1.1.2, the algorithm 1 with rate λ(s) produces a state
with an infidelity that is bounded by

ϵ ≤
∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥P ′∥
)

ds. (4)

Proof. The infidelity is given by ϵ = 1 − Tr
(
P (1)ρ(1)

)
= Tr

(
P (0)ρ(0)

)
− Tr

(
P (1)ρ(1)

)
=∣∣∣Tr(Pρ)

∣∣1
0

∣∣∣, so it makes sense to track how the fidelity Tr
(
P (s)ρ(s)

)
changes in time.

We construct a differential equation for Tr(Pρ) by taking the derivative with respect to
s, Tr(Pρ)′ = Tr(P ′ρ) + Tr(Pρ′). This can be simplified using the fact that PP ′P = 0 and
QP ′Q = 0.2 Indeed, we have

Tr(Pρ′) = λ Tr
(
P (PρP + Q⟨e−iτHρeiτH⟩Q − ρ)

)
= Tr(PρP ) − Tr(Pρ) = 0 (5)

2 We have P ′ = (P P )′ = P ′P + P P ′, so P P ′P = 2P P ′P and QP ′Q = 0.
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7:6 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

and

Tr(P ′ρ) = Tr
(

P ′(PρP + Q⟨e−iτHρeiτH⟩Q − λ−1ρ′)
)

(6)

= Tr(PP ′Pρ) + Tr
(
(QP ′Q)⟨e−iτHρeiτH⟩

)
− Tr(λ−1P ′ρ′) (7)

= − Tr(λ−1P ′ρ′), (8)

so Tr(Pρ)′ = − Tr(λ−1P ′ρ′). Integrating gives

Tr(Pρ)
∣∣1
0 = −

∫ 1

0
Tr(λ−1P ′ρ′) ds (9)

= −λ−1 Tr(P ′ρ)
∣∣1
0 +

∫ 1

0

(
Tr
(P ′′

λ
ρ
)

+ Tr
(( 1

λ

)′
P ′ρ
))

ds, (10)

which we can bound by

ϵ =
∣∣∣Tr(Pρ)

∣∣1
0

∣∣∣ ≤
∣∣∣Tr(λ−1P ′ρ)

∣∣1
0

∣∣∣+
∫ 1

0

(
Tr
(∣∣P ′′

λ
ρ
∣∣)+

∣∣∣( 1
λ

)′∣∣∣Tr
(∣∣P ′ρ

∣∣))ds (11)

≤
(∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥)Tr(ρ)

+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥P ′∥
)

Tr(ρ) ds (12)

≤
∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥
+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥P ′∥
)

ds. (13)

◀

The next step is to bound ∥P ′∥ and ∥P ′′∥ by more useful quantities. We make use of the
following lemma:

▶ Lemma 3. Under the assumptions stated in 1.1.2, we have
1. ∥P ′∥ ≤ 2 ∥H′∥

∆ ;

2. ∥P ′′∥ ≤ 8 ∥H′∥2

∆2 + 2 ∥H′′∥
∆ .

This is fairly standard. See for example [16]. A proof is provided in appendix A. We are now
ready to use lemma 2 in two distinct contexts, leading to theorems 4 and 5.

2.1.1 Constant λ

We first derive a theorem under the assumption that λ is constant. In this case we obtain
the following result:

▶ Theorem 4. Under the assumptions in 1.1.2, the algorithm 1 produces the target state
with fidelity of at least 1 − ϵ if λ is constant and

ϵ−12
(∥H ′(0)∥

∆(0) + ∥H ′(1)∥
∆(1) +

∫ 1

0
4∥H ′∥2

∆2 + ∥H ′′∥
∆ ds

)
≤ λ. (14)

In this case the time complexity of the procedure is given by T = λt0
∫ 1

0
1
∆ ds.
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Proof. Let ϵ0 be the actual error of the algorithm. We need ϵ0 ≤ ϵ. We can use lemma 3 to
rewrite the inequality in lemma 2 as

ϵ0 ≤ λ−1( ∥P ′(0)∥ + ∥P ′(1)∥
)

+ λ−1
∫ 1

0
∥P ′′∥ ds (15)

≤ λ−1
(

2∥H ′(0)∥
∆(0) + 2∥H ′(1)∥

∆(1) +
∫ 1

0
8∥H ′∥2

∆2 + 2∥H ′′∥
∆ ds

)
. (16)

Set B := 2
(

∥H′(0)∥
∆(0) + ∥H′(1)∥

∆(1) +
∫ 1

0 4 ∥H′∥2

∆2 + ∥H′′∥
∆ ds

)
. Then we have

ϵ0 ≤ λ−1B ≤ ϵB−1B = ϵ, (17)

so the algorithm works. The time complexity is simply given by T =
∫ 1

0
t0λ
∆ ds = λt0

∫ 1
0

1
∆ ds.

◀

This result can be compared to theorem 15 in the circuit model.

2.1.2 Scaling λ with the gap
We know from [17] and [20] that the performance of AQC can be improved with an adapted
schedule, taking more time when the gap is small. Similarly we expect it to be possible to
improve the performance of our procedure by varying λ. Indeed this is the case.

▶ Theorem 5. Under the assumptions in 1.1.2, we additionally assume that there exists
0 ≤ q ≤ 1 and B1, B2 such that

∫ 1
0

1
∆1+q ds ≤ B1∆−q

m and
∫ 1

0
1

∆2−q ds ≤ B2∆q−1
m for all

instances of the problem. Then algorithm 1 produces the target state with a fidelity of at least
1 − ϵ if

λ = ϵ−1 C

∆q∆1−q
m

, (18)

where C := 2 sups∈[0,1]

(
2 ∥H ′(s)∥ + 4 ∥H ′(s)∥2

B2 + ∥H ′′(s)∥ + q|∆′(s)| ∥H ′(s)∥ B2

)
.

In this case the time complexity of the procedure is given by

T ≤ ϵ−1 t0B1C

∆m
.

▶ Corollary 6. If
∫ 1

0
1

∆p ds = O(∆1−p
m ) holds for all p > 1, |∆′| = O(1), ∥H ′∥ = O(1) and

∥H ′′∥ = O(1), then algorithm 1 with the rate defined in theorem 5 produces the target state
with fidelity 1 − ϵ and a time complexity of O(∆−1

m ) for all 0 < q < 1.

Proof of Theorem 5. Let ϵ0 be the actual error of the algorithm, we need ϵ0 ≤ ϵ. In this
case the inequality in lemma 2 becomes

ϵ0 ≤ ϵC−1∆1−q
m

(
∆(0)q

∥∥P ′(0)
∥∥+∆(1)q

∥∥P ′(1)
∥∥ )+ϵC−1

∫ 1

0
∆q∆1−q

m

∥∥P ′′∥∥+
∣∣∣(∆q∆1−q

m

)′∣∣∣ ∥∥P ′∥∥ds.

(19)

We bound the terms separately, using lemma 3. For the first, we have

∆1−q
m ∆q ∥P ′∥ ≤ 2∆1−q

m ∆q ∥H ′∥
∆ = 2∆1−q

m

∥H ′∥
∆1−q

≤ 2∆1−q
m

∥H ′∥
∆1−q

m

= 2 ∥H ′∥ ≤ 2 sup
s∈[0,1]

∥H ′∥

(20)
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7:8 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

at both s = 0 and s = 1, so we bound the sum by 4 sups∈[0,1] ∥H ′∥.

The second term splits into two, since we bound ∥P ′′∥ by 8∥H′∥2

∆2 + 2∥H′′∥
∆ . For the first

part we have

8
∫ 1

0
∆q∆1−q

m

∥H ′∥2

∆2 ds ≤ 8 sup
s∈[0,1]

∥H ′(s)∥2 ∆1−q
m

∫ 1

0

1
∆2−q

ds (21)

≤ 8 sup
s∈[0,1]

∥H ′(s)∥2
B2∆1−q

m ∆q−1
m = 8 sup

s∈[0,1]
∥H ′(s)∥2

B2. (22)

The second part gives

2
∫ 1

0
∆q∆1−q

m

∥H ′′∥
∆ ds ≤ 2 sup

s∈[0,1]
∥H ′′(s)∥ ∆1−q

m

∫ 1

0

1
∆1−q

ds (23)

≤ 2 sup
s∈[0,1]

∥H ′′(s)∥ ∆1−q
m ∆q−1

m = 2 sup
s∈[0,1]

∥H ′′(s)∥ . (24)

Finally, for the third term,∫ 1

0

∣∣∣(∆q∆1−q
m

)′∣∣∣ ∥P ′∥ ds =
∫ 1

0
q∆q−1∆1−q

m

∣∣∆′∣∣ ∥P ′∥ ds (25)

≤ 2q∆1−q
m

(
sup

s∈[0,1]
|∆′(s)| ∥H ′(s)∥

)∫ 1

0

∆q−1

∆ ds (26)

= 2q∆1−q
m

(
sup

s∈[0,1]
|∆′(s)| ∥H ′(s)∥

)∫ 1

0

1
∆2−q

ds (27)

≤ 2q
(

sup
s∈[0,1]

|∆′(s)| ∥H ′(s)∥
)

∆1−q
m B2∆q−1

m (28)

= 2qB2

(
sup

s∈[0,1]
|∆′(s)| ∥H ′(s)∥

)
. (29)

Plugging everything back into equation (19), gives

ϵ0 ≤ ϵC−1 sup
s∈[0,1]

(
4 ∥H ′(s)∥ + 8 ∥H ′(s)∥2

B2 + 2 ∥H ′′(s)∥ + 2q|∆′(s)| ∥H ′(s)∥ B2

)
(30)

= ϵC−1C = ϵ, (31)

so the procedure works. We can then calculate the time complexity

T =
∫ 1

0

t0λ

∆ ds = ϵ−1t0

∫ 1

0

C

∆q∆1−q
m ∆

ds = ϵ−1t0C∆q−1
m

∫ 1

0

1
∆q+1 ds

≤ ϵ−1t0C∆q−1
m B1∆−q

m = ϵ−1t0CB1∆−1
m . (32)

◀

These results can be compared to theorem 16 and corollary 17 in the circuit model.

3 Improving the scaling in the error with eigenstate filtering

The use of eigenstate filtering was introduced in [13] to improve scaling in the error tolerance
for algorithms based on adiabatic principles and the quantum Zeno effect, in particular with
application to QLSP.

A similar technique was used in [7] to achieve optimal scaling, but using Linear Com-
binations of Unitaries (LCU) instead of Quantum Signal Processing (QSP). We adapt the
technique of [7] to the present situation.
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▶ Theorem 7. Let H be a Hamiltonian with ∥H∥ ≤ 1 and 0 in the spectrum of H, σ(H).
Suppose

∆ ≥ 0 is such that [−∆, ∆] ∩ σ(H) = {0};
P is the orthogonal projector on the eigenspace associated to the eigenvalue 0, we set
Q := 1 − P ;
ρ is a density matrix of the form Pρ0P + Qρ1Q with Tr(Pρ0) > 1/2, that we can prepare
at cost T0;
ϵ > 0.

Further, suppose
we can adjoin two ancilla qubits to ρ;
we can can measure and reprepare the ancilla qubits;
we can evolve the system under H ⊗ R and 1 ⊗ R for time t for all Hermitian operators
R on C2×2 with ∥R∥ ≤ 1 at a cost of t.

Then we can prepare a state ρ2 such that Tr(Pρ2) ≥ 1−ϵ at a cost of T = O(T0+∆−1 log(1/ϵ)).

The idea of the procedure is relatively simple. With these assumptions, we can apply controlled
versions of the unitary e−itH , i.e. eitH⊗Π for some projector Π on C2×2. This means that
we can apply linear combinations of eitH⊗Π using the technique of linear combinations of
unitaries, see lemmas 8 and 9. In particular we can apply a polynomial that has a large peak
at 0 and is very small everywhere else. We use this to filter out the part of the state that we
do not want.

▶ Lemma 8 (LCU with arbitrarily large ancilla register). Let f(x) =
∑n

k=−n akxk be a rational
polynomial with complex coefficients such that

∑n
k=−n |ak|2 = 1. Let H be a Hamiltonian

and ρ the state of the system. Assume we have access to an ancilla register with orthonormal
basis {|k⟩ | k ∈ Z}. Then, at a cost of O(nt), we can do an operation which either

succeeds and applies
∑n

k=−n |ak|2e−itkH to the system,

or fails, with a probability of 1 − Tr
((∑n

k=−n |ak|2e−itkH
)

ρ
(∑n

k=−n |ak|2eitkH
))

. We

can see when this has happened thanks to the measured contents of the ancilla register.

Proof. The procedure is as follows: we first prepare the ancilla in the state |f⟩ :=∑n
k=−n ak|k⟩, then apply

∑n
k=−n kH ⊗ |k⟩⟨k| for time t and finally measure the state

|f⟩. If we measure any other state than |f⟩, the procedure fails.
The result then follows from the following identity:

n∑
k,l=−n

(
1 ⊗ ak⟨k|

)
e

−it
∑n

m=−n
mH⊗|m⟩⟨m|

(
1 ⊗ al|l⟩

)
=
∑
m

|am|2e−itmH . (33)

Defining

Π0
m = 1 −

m∑
k=0

|k⟩⟨k| and Π1
m = 1 −

0∑
k=−m

|k⟩⟨k|, (34)

we can write e
−it
∑n

m=−n
mH⊗|m⟩⟨m| =

∏n−1
m=0 e−itH⊗Π0

meitH⊗Π1
m , which we can clearly apply

at a cost of 2nt.
The cost of ancilla preparation depends on the admissible operations on the ancilla

register, but in a worst-case scenario, each ak needs to be set separately3 which means that
the cost is O(n). The total cost is then still O(nt). ◀

3 This is the case for the procedure used in lemma 9.
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▶ Lemma 9 (LCU with two ancilla qubits). We can achieve the results of 8 only using two
ancilla qubits at a time.

The construction is identical to the one in [7].

Proof of theorem 7. Let Q := 1 − P and write Q =
∑

j Qj , where each Qj is an eigenpro-
jector of H associated to the eigenvalue ωj . Now we observe( n∑

k=−n

|ak|2e−ikH
)

Qj =
( n∑

k=−n

|ak|2e−ikωj

)
Qj = A(ωj)Qj , (35)

where A(ω) is the Fourier transform of the sequence |ak|2. Thus( n∑
k=−n

|ak|2e−ikH
)

QρQ
( n∑

k=−n

|ak|2eikH
)

=
∑

j,l

( n∑
k=−n

|ak|2e−ikH
)

QjρQl

( n∑
k=−n

|ak|2eikH
)
(36)

=
∑

j,l

A(ωj)A(−ωl)QjρQl. (37)

Taking the trace gives Tr
(∑

j,l A(ωj)A(−ωl)QjρQl

)
≤ maxω /∈[−∆,∆] A(ω)2 Tr(QρQ) ≤

maxω /∈[−∆,∆] A(ω)2. The goal then becomes to find a sequence and its Fourier transform
such that A(ω0) = 1, maxω /∈[−∆,∆] A(ω)2 ≤ ϵ and whose window n is as small as possible.
The answer to this optimisation problem is well-known and is given by the Dolph-Chebyshev
window [15]. In this case we need a window of4

n = cosh−1(1/
√

ϵ)
cosh−1 ( sec(∆)

) ≤ 1
2∆ log

(4
ϵ

)
. (38)

By lemma 8, we can implement this at a cost of O(n). Note that this procedure terminates
succesfully with a probability of at least Tr(Pρ0) (which is bounded below) and we can check
to see whether the procedure failed. If it failed, we repeat. On average we need to repeat
fewer than Tr(Pρ0)−1 times, which is O(1). ◀

4 Applications

4.1 Grover search
For the Grover problem, we have an N -dimensional vector space we want to find an element
of an M -dimensional subspace M. In order to help us, we assume we have access to an
oracle Hamiltonian H1 = 1 − PM, where PM is the orthogonal projector on M. In other
words, we assume H1 is admissible. We also assume H0 = 1 − |u⟩⟨u| is admissible, where
|u⟩ = 1√

N

∑N
i=1 |i⟩ is the uniform superposition. The aim is now to use the interpolation

H(s) = (1 − s)H0 + sH1 to prepare as state in M. For more details see [8] and [18].
We see that H(s) has four eigenvalues:

λ1,2 = 1
2

(
1 ±

√
1 − 4(1 − M

N
)s(1 − s)

)
with multiplicity 1 (39)

λ3 = 1 − s with multiplicity M − 1 (40)
λ4 = 1 with multiplicity N − M − 1. (41)

4 We note that we improve the scaling by a factor of two compared to [7]. This is because we are able to
start from a state where P ρQ = 0 = QρP .
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The eigenvectors corresponding to λ3 are the eigenvectors in M with zero overlap with |u⟩.
The eigenvectors corresponding to λ4 are the eigenvectors in M⊥ with zero overlap with |u⟩.
Since the initial state has zero overlap with any of these vectors and they are eigenvectors
of each H(s), none of them are prepared by the procedure and everything happens in the
two-dimensional space spanned by the eigenvectors associated to λ1 and λ2.

We have explicitly computed the gap, so we can use this as the bound ∆:

∆(s) =
√

1 − 4(1 − M

N
)s(1 − s). (42)

We can set ∆m = mins∈[0,1] ∆(s) =
√

M/N . In order to give bounds on the time-complexity,
we use the following result:

▶ Lemma 10. For all p > 1 and ∆ given by (42), we have∫ 1

0

1
∆(s)p

ds = O
(√

N/M
p−1)

= O
(
∆1−p

m

)
, (43)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(N/M)

)
. (44)

We provide a proof in appendix C.1. For constant λ, we apply theorem 4 and use the lemma
10 to get a time complexity O

(√
N/M log(N/M)

)
.

We are able to take the q in corollary 6 to be anywhere in the range 0 < q < 1, since for
any such q both 1 + q and 2 − q are strictly greater than 1. This is related to the range of
schedules described in [2]. The time complexity of the algorithm for any such q is O(

√
N/M),

since it is easy to check that to other conditions hold: ∥H ′∥ = ∥H1 − H0∥, ∥H ′′∥ = 0 and

|∆′| =
∣∣∣4(1 − M

N )( 1
2 − s)

∆

∣∣∣ (45)

≤
2
√

4(1 − M
N )( 1

2 − s)2

∆ (46)

≤
2
√

M
N + 4(1 − M

N )( 1
2 − s)2

∆ = 2∆
∆ = 2. (47)

4.2 Solving linear systems of equations
The Quantum Linear Systems Problem (QLSP) was introduced in [10]. Suppose A is an
invertible N × N matrix b ∈ CN a vector. The goal is to prepare the quantum state

A−1|b⟩
∥A−1|b⟩∥ . We express the time complexity of our algorithm in terms of the condition number
κ = ∥A∥

∥∥A−1
∥∥.

We may restrict ourselves to Hermitian matrices because we can use the following trick

from [10]: If A is not Hermitian, we consider the matrix
(

0 A

A∗ 0

)
, which has the same

condition number, and solve the equation
(

0 A

A∗ 0

)
|y⟩ =

(
|b⟩
0

)
.

First we rescale the matrix A to A
∥A∥ . We do this because typically admissible matrices

need to be uniformly bounded. This has the effect of shifting the lowest singular value from
1

∥A−1∥ to 1
∥A∥∥A−1∥ = κ−1. Now we consider a path of Hamiltonians that was introduced in
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[19]. Define A(s) := (1−s)σz⊗1+sσx⊗A, Qb,+ := 1−
(
|+⟩|b⟩

)(
⟨+|⟨b|

)
and σ± := 1

2
(
σx±iσy

)
.

Set H(s) = σ+ ⊗
(
A(s)Qb,+

)
+σ− ⊗

(
Qb,+A(s)

)
. This can be written as a linear interpolation

H(s) = (1 − s)H0 + sH1, where

H0 := σ+ ⊗
(
(σz ⊗ 1)Qb,+

)
+ σ− ⊗

(
Qb,+(σz ⊗ 1)

)
(48)

H1 := σ+ ⊗
(
(σx ⊗ A)Qb,+

)
+ σ− ⊗

(
Qb,+(σx ⊗ A)

)
. (49)

Following the analysis of [19], we see that H(s) has 0 as an eigenvalue for all s ∈ [0, 1]. The
corresponding eigenspace is spanned by {|0⟩⊗|x(s)⟩, |1⟩⊗|+⟩|b⟩}, where |x(s)⟩ := A(s)−1|b⟩

∥A(s)−1|b⟩∥ .
Since H(s) does not allow transition between these states, we are sure to not prepare
|1⟩ ⊗ |+⟩|b⟩, so long as we start with |0⟩ ⊗ |x(0)⟩.

In [19] it was also shown that the eigenvalue zero is separated from the rest of the
spectrum by a gap that is at least

∆(s) =
√

(1 − s)2 +
( s

κ

)2
. (50)

If κ is large enough, then we can take ∆m := 1
2κ ≤

√
1

κ2+1 = mins∈[0,1] ∆(s).
In order to give bounds on the time-complexity, we use the following result:

▶ Lemma 11. For all p > 1, we have∫ 1

0

1
∆(s)p

ds = O
(
κp−1) = O

(
∆1−p

m

)
, (51)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(κ)

)
. (52)

We provide a proof in appendix C.2.
For constant λ, we apply theorem 4 and use the lemma 11 to get a time complexity

O
(
κ log(κ)

)
. This is also the complexity that was obtained in [19].

As before, we have a full order reduction for p > 1 and thus we are able to take the q in
corollary 6 to be anywhere in the range 0 < q < 1, since for any such q both 1 + q and 2 − q

are strictly greater than 1. If q = 0 or q = 1, the complexity gains a factor of log(κ). This
exactly mirrors the situation in [2] and is the reason why the algorithms for QLSP based on
the RM have an extra factor of log(κ) in the asymptotic complexity, see [19] and [12].

We can apply 6 since ∥H ′∥ = ∥H1 − H0∥, ∥H ′′∥ = 0 and

|∆′| =
∣∣∣s − 1 + s/κ2

∆

∣∣∣ (53)

=
√

(s − 1 + s/κ2)2

∆ (54)

=
√

(1 + 1/κ2)2s2 − (1 + 1/κ2)2s + 1
∆ (55)

≤
√

(1 + 1/κ2)2s2 − (1 + 1/κ2)2s + (1 + 1/κ2)
∆ (56)

=
√

1 + 1/κ2 ∆
∆ =

√
1 + 1/κ2 = O(1). (57)
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This yields a time complexity of O(κ) for fixed error tolerance. The scaling on both condition
number and error tolerance is O(ϵ−1κ). By a straightforward application of theorem 7 at
s = 1, we get a scaling of O

(
log(ϵ−1)κ

)
. This is possible, since we know the eigenvalue of

interest is 0.
This result is optimal and matches the complexity reported in [7], where it was achieved

using a very different method.
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∥∥∥ 1

2πi

∮
Γ

RH(z)′ dz
∥∥∥

≤ 1
2π

∮
Γ
∥RH(z)′∥dz

≤ 1
2π

∮
Γ
∥RH(z)∥ · ∥H ′∥ · ∥RH(z)∥ dz

= 1
2π

( 2
∆

)2
∥H ′∥

∮
Γ

dz

= 1
2π

( 2
∆

)2
2π

∆
2 ∥H ′∥

= 2∥H ′∥
∆ .
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B Comparison with the circuit model

So far we have assumed access to a device that can evolve a system under a given Hamiltonian
in real time, i.e. it takes time t to apply e−itH . This is the typical setting of AQC and is
also the setting of [4] and [19].

Many papers use a slightly different setup. In [7] and [12] the setting is a standard
quantum computer which is given access to block encodings of H(s) for all s ∈ [0, 1]. In this
case the complexity is given by the number of times such a block-encoded Hamiltonian is
used. In other words, the complexity is a query complexity rather than a time complexity.

Given access to only a block encoding of a Hamiltonian H, it is generally not possible to
simulate e−itH exactly. Instead, we can use proposition 12, which is taken from [12].

▶ Proposition 12 (Theorem 4 from [12]). Given access to an (α, m, 0)–block-encoding UH of
a Hermitian operator H with ∥H∥ ≤ 1, we can realise a (1, m + 2, δ)–block-encoding of e−itH

for t ∈ R with

3
⌈e

2α|t| + log
(2c

δ

)⌉
calls to UH , U∗

H with c = 4(
√

2πe
1

13 )−1 ≈ 1.47762.

In this proposition δ gives the error of the block encoding, i.e. if U is the block encoding,
then

∥∥U − e−itH
∥∥ ≤ δ.

This motivates replacing the algorithm 1 by the algorithm 2, which now depends on both
a rate λ(s) and an allowable simulation error δ(s).

Algorithm 2 Poisson-distributed phase randomisation with imperfect time evolution.

1 Pick a Poisson process N : [0, 1] × (Ω, A, P ) → N with rate λ(s);
2 At each jump point s of the Poisson process, pick an instance t of the random variable

T as defined in proposition 1 and use proposition 12 to simulate the evolution under
the time-independent Hamiltonian H(s) for a time t with error at most δ(s);

In this case the number of queries is bounded by a quantity Q is a random variable with
stochastic differential equation dQ = 3

(
e
2 α|τ | + log

( 2c
δ

)
+ 1
)

dN . Taking the average yields

Q = 3
∫ 1

0

(
eαt0
2∆ + log

( 2c
δ

)
+ 1
)

λ ds.
To analyse algorithm 2, we prove lemma 13, which is analogous to lemma 2.

▶ Lemma 13. Given the assumptions in 1.1.2 and that for all s ∈ [0, 1] and t ∈ [0, ∞[, we
can apply an operation A(s, t) such that

∥∥e−itH(s) − A(s, t)
∥∥ ≤ δ(s), the algorithm 1 with

rate λ(s) has an error that is bounded by

ϵ ≤
∫ 1

0
(2δ+δ2)

(
2∥H ′∥

∆ +λ(s)
)

ds+
∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥∥P ′∥∥)ds.

(58)

Proof. The differential equation (2) is then

ρ′ = λ
(

PρP + Q⟨e−iτHρeiτH⟩Q − ρ
)

+ λ
(

A(s, t)ρA(s, t)∗ − e−iτHρeiτH
)

. (59)

We set E := A(s, t)ρA(s, t)∗ − e−iτHρeiτH . Then equations (5) and (8) become Tr(Pρ′) =
λ Tr(E) and Tr(P ′ρ) = Tr(P ′E) − Tr(λ−1P ′ρ′), so

Tr(Pρ)′ = Tr(Pρ′) + Tr(P ′ρ) = λ Tr(E) + Tr(P ′E) − Tr(λ−1P ′ρ′). (60)
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The integral of − Tr(λ−1P ′ρ′) was bounded in the proof of lemma 2.
Using lemma 14, we bound Tr(|E|) ≤ 2δ + δ2. Together with the bound ∥P ′∥ ≤ 2∥H′∥

∆ ,
this yields the result. ◀

In this proof we have made use of the following lemma:

▶ Lemma 14 (Lemma 9 from [12]). Suppose A, B are operators such that ∥A − B∥ ≤ δ.
Then, for each density operators ρ, we have

Tr(|AρA∗ − BρB∗|) ≤ 2δ ∥A∥ + δ2. (61)

▶ Theorem 15. Under the assumptions in 1.1.2, the algorithm 2 produces the target state
with fidelity of at least 1 − ϵ if λ is constant, δ = 4ϵ

27λ and

ϵ−14
(∥H ′(0)∥

∆(0) + ∥H ′(1)∥
∆(1) +

∫ 1

0
4∥H ′∥2

∆2 + ∥H ′′∥
∆ ds

)
≤ λ. (62)

Using the Hamiltonian simulation of proposition 12, this gives a query complexity of

Q = λ
(

eαt0
3
2

∫ 1

0

1
∆ ds + 3 log

(27c

2ϵ

)
+ log(λ) + 1

)
.

Proof. Let ϵ0 be the actual error of the algorithm. We need ϵ0 ≤ ϵ. As in the proof of 4,
rewrite the inequality in lemma 13 as

ϵ0 ≤ (2δ+δ2)
(∫ 1

0
2∥H ′∥

∆ ds+λ
)

+λ−1
(

2∥H ′(0)∥
∆(0) +2∥H ′(1)∥

∆(1) +
∫ 1

0
8∥H ′∥2

∆2 +2∥H ′′∥
∆ ds

)
.

(63)

As in the proof of 4, the second term is bounded by ϵ/2. Since all the terms of equation (62)
are positive, we have

∫ 1
0 2∥H′∥

∆ ds ≤ ϵλ
8 . Then we bound

(2δ + δ2)
(∫ 1

0
2∥H ′∥

∆ ds + λ
)

≤ 3δ
(ϵλ

8 + λ
)

(64)

≤ 27
8 δλ(ϵ + 1) ≤ 27

8 δλ ≤ ϵ

2 . (65)

Finally we consider the query complexity and calculate

Q = 3
∫ 1

0

(eαt0

2∆ + log
(2c

δ

)
+ 1
)

λ ds (66)

≤ λ
(

eαt0
3
2

∫ 1

0

1
∆ ds + 3 log

(27c

2ϵ

)
+ log(λ) + 1

)
. (67)

◀

▶ Theorem 16. Under the assumptions in 1.1.2, we additionally assume that there exists
0 ≤ q ≤ 1 and B1, B2 such that

∫ 1
0

1
∆1+q ds ≤ B1∆−q

m and
∫ 1

0
1

∆2−q ds ≤ B2∆q−1
m for all

instances of the problem. Then algorithm 2 produces the target state with a fidelity of at least
1 − ϵ if

λ = ϵ−1 2C

∆q∆1−q
m

(68)

δ = 2ϵ

15λ
(69)

where C := 2 sups∈[0,1]

(
2 ∥H ′(s)∥ + 4 ∥H ′(s)∥2

B2 + ∥H ′′(s)∥ + q|∆′(s)| ∥H ′(s)∥ B2

)
.
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If, in addition, there exists a constant B3 such that
∫ 1

0
1

∆2q ds ≤ B3∆1−2q
m and the

Hamiltonian simulation of 12 is used, this gives a query complexity of

Q ≤ 1
ϵ∆m

(
12C log(ϵ−1) + 3eαt0CB1 + 6 log(15c)C + 12C2B3

)
.

Proof. As before, we need to bound the inequality in lemma 13. Everything except the first
term has already been bounded in the proof of theorem 5 to be less than ϵ/2. (Notice that
we are taking λ to be twice the rate specified in theorem 5.)

We now need to show that the first term in the inequality in lemma 13 can be bounded
by ϵ/2. Indeed, we calculate∫ 1

0
(2δ + δ2)

(
2∥H ′∥

∆ + λ(s)
)

ds ≤
∫ 1

0
3δ
( C

2∆ + λ
)

ds (70)

=
∫ 1

0

2ϵ

5λ

( C

2∆ + λ
)

ds (71)

= 2ϵ

5

(
1 +

∫ 1

0
ϵ

∆q−1
m

4∆q−1 ds
)

(72)

≤ 2ϵ

5

(
1 + ϵ

4

)
≤ ϵ

2 . (73)

Finally we consider the query complexity and calculate, using the fact that log(x) + 1 ≤ x

for all positive x,

Q = 3
∫ 1

0

(eαt0

2∆ + log
(2c

δ

)
+ 1
)

λ ds (74)

= 3
∫ 1

0

(eαt0

2∆ + log
(15c

ϵ

)
+ log(ϵλ) + 1

)
λ ds (75)

≤ 3
∫ 1

0

(eαt0

2∆ λ + log
(15c

ϵ2

)
λ + ϵλ2

)
ds. (76)

We bound each term separately. First

3
∫ 1

0

eαt0

2∆ λ ds = 3eαt0C

ϵ∆1−q
m

∫ 1

0

1
∆q+1 λ ds (77)

≤ 3eαt0C

ϵ∆1−q
m

B1∆−q
m = 3eαt0CB1

ϵ∆m
. (78)

Next

3
∫ 1

0
log
(15c

ϵ2

)
λ ds = 3 log

(15c

ϵ2

)
ϵ−1

∫ 1

0

2C

∆q∆1−q
m

ds (79)

≤ log
(15c

ϵ2

)
ϵ−1 6C

∆m
. (80)

Finally

3
∫ 1

0
ϵλ2 ds = 12C2

ϵ∆2−2q
m

∫ 1

0

1
∆2q

ds (81)

≤ 12C2B3

ϵ∆2−2q
m

∆1−2q
m = 12C2B3

ϵ∆m
. (82)

Putting everything together yields the query complexity. ◀
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▶ Corollary 17. If
∫ 1

0
1

∆p ds = O(∆1−p
m ) holds for all p > 1, |∆′| = O(1), ∥H ′∥ = O(1) and

∥H ′′∥ = O(1), then algorithm 2 with the Hamiltonian simulation of 12 and the parameters
of 16 for some 1/2 < q < 1, produces a state with fidelity larger than 1 − ϵ using a number of
queries that scales as O

(
∆−1

m ϵ−1 log(ϵ−1)
)
.

The asymptotic scaling in the error ϵ is slightly worse here, since there is an extra logarithmic
factor, but this is not an issue if we want to apply eigenstate filtering. With eigenstate
filtering the scaling in the error is still O(log(1/ϵ)).

C Gap properties

C.1 The gap in the Grover problem
For the Grover problem we have the following gap:

∆(s) =
√

1 − 4(1 − M

N
)s(1 − s). (83)

We can set ∆m = mins∈[0,1] ∆(s) =
√

M/N . We provide a proof of lemma 10.

▶ Lemma. For all p > 1 and ∆ given by (83), we have∫ 1

0

1
∆(s)p

ds = O
(√

N/M
p−1)

= O
(
∆1−p

m

)
, (84)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(N/M)

)
. (85)

Proof. We note that ∆(s) is symmetric about s = 1/2. It is also strictly decreasing on
[0, 1/2], going from 1 to a minimum of

√
M/N . So we can write∫ 1

0

1
∆(s)p

ds = 2
∫ 1/2

0

1
∆(s)p

ds (86)

= 2
(∫ 1/2−

√
M/N

0

1
∆(s)p

ds +
∫ 1/2

1/2−
√

M/N

1
∆(s)p

ds
)

. (87)

Since ∆ has a minimum of
√

M/N , we can bound the second integral by∫ 1/2

1/2−
√

M/N

1
∆(s)p

ds ≤
√

M

N

( 1
mins∈[0,1] ∆(s)

)p

=
√

M/N√
M/N

p =
√

N/M
p−1

.

For the first integral, we write∫ 1/2−
√

M/N

0

1
∆(s)p

ds =
∫ ∆

(
1/2−

√
M/N

)
1

1
∆p

ds

d∆ d∆ (88)

=
∫ 1

∆
(

1/2−
√

M/N
) 1

∆p

(
− ds

d∆

)
d∆. (89)

We can invert (42) to obtain s = 1
2 − 1

2

√
1 − 1−∆2

1−N/M . Then we have

− ds
d∆ = ∆

2
√

(1 − M/N)(∆2 − M/N)
. (90)
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We now calculate

∆
(1

2 −
√

M

N

)
=
√

M

N

√
5 − 4M

N
≥ 2
√

M

N
,

assuming M/N ≤ 1/4. So∫ 1/2−
√

M/N

0

1
∆p

ds ≤
∫ 1

2
√

M
N

1
∆p

(
− ds

d∆

)
d∆ (91)

=
∫ 1

2
√

M
N

1
∆p

∆
2
√

(1 − M/N)(∆2 − M/N)
d∆ (92)

≤
∫ 1

2
√

M
N

1
∆p

∆
2
√

(1 − M/N)(∆2 − ∆2/4)
d∆ (93)

= 1√
3(1 − M/N)

∫ 1

2
√

M
N

1
∆p

d∆. (94)

Now 1√
3(1−M/N)

is O(1) and
∫ 1

2
√

M
N

1
∆p d∆ =

[
1

(p−1)∆p−1

]1

2
√

M/N
is O

(√
N/M

p−1), if p > 1.

If p = 1, then it is O
(

log
√

N/M
)
. ◀

C.2 The gap in QLSP
For the quantum linear system problem we have the following bound on the gap:

∆(s) =
√

(1 − s)2 +
( s

κ

)2
. (95)

If κ is large enough, then we can take ∆m := 1
2κ ≤

√
1

κ2+1 = mins∈[0,1] ∆(s). We provide a
proof of lemma 11.

▶ Lemma. For all p > 1, we have∫ 1

0

1
∆(s)p

ds = O
(
κp−1) = O

(
∆1−p

m

)
, (96)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(κ)

)
. (97)

Proof. We note that ∆(s) is strictly decreasing on
[
0, 1 − 1

κ2+1

]
, going from 1 to a minimum

of
√

1
κ2+1 . So we can write

∫ 1

0

1
∆(s)p

ds =
∫ 1− 1

κ2+1

0

1
∆(s)p

ds +
∫ 1

1− 1
κ2+1

1
∆(s)p

ds.

Since ∆ has a minimum of
√

1
κ2+1 , we can bound the second integral by

∫ 1

1− 1
κ2+1

1
∆(s)p

ds ≤ 1
κ2 + 1

( 1
mins∈[0,1] ∆(s)

)p

= 1
κ2 + 1

(
κ2 + 1

)p/2 =
(
κ2 + 1

)p/2−1
.
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For the first integral, we write

∫ 1− 1
κ2+1

0

1
∆p

ds =
∫ ∆

(
1− 1

κ2+1

)
1

1
∆p

ds

d∆ d∆ (98)

=
∫ 1

∆
(

1− 1
κ2+1

) 1
∆p

(
− ds

d∆

)
d∆ (99)

=
∫ 1√

1
κ2+1

1
∆p

(
− ds

d∆

)
d∆. (100)

We can invert (95) on
[
0, 1 − 1

κ2+1

]
to obtain s = κ2

κ2+1 (1 − ∆). Then we have

− ds
d∆ = κ2

κ2 + 1 , (101)

so ∫ 1− 1
κ2+1

0

1
∆p

ds =
∫ 1√

1
κ2+1

1
∆p

κ2

κ2 + 1 d∆ (102)

= κ2

κ2 + 1

( 1
(p − 1)∆p−1

)∣∣∣∆=
√

1
κ2+1

∆=1
(103)

= O(κp−1). (104)

If p = 1, then the integral is O
(

log(κ)
)
. ◀
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