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Abstract
This study examines clusterability testing for a signed graph in the bounded-degree model. Our
contributions are two-fold. First, we provide a quantum algorithm with query complexity Õ(N1/3)
for testing clusterability, which yields a polynomial speedup over the best classical clusterability
tester known [1]. Second, we prove an Ω̃(

√
N) classical query lower bound for testing clusterability,

which nearly matches the upper bound from [1]. This settles the classical query complexity of
clusterability testing, and it shows that our quantum algorithm has an advantage over any classical
algorithm.
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1 Introduction

Property testing [24, 39] deals with the setting where we wish to distinguish between objects,
e.g., functions [2, 8, 32] or graphs [5, 7, 6, 9, 12, 3], that satisfy a predetermined property
and those that are far from satisfying this property. For certain properties, this relaxed
setting allows algorithms to query only a small part of (sometimes huge) data sets. Indeed,
the goal in property testing is to design so-called property testers to solve a property testing
problem within sublinear time complexity. Property testing has been studied in many settings,
such as computational learning theory [25, 13, 38, 27, 20, 22], quantum information theory
[35, 16, 17, 15, 36, 10], coding theory [23, 41, 29, 31, 34, 37, 21], and so on. This witnesses
the significant attention that property testing has drawn from the academic community.

An interesting setting is that of graph property testing. In the dense graph model, it was
shown that a constant number of queries are needed to test a wide range of graph partition
properties [25], including k-colorability, ρ-clique, and ρ-cut for any fixed k ≥ 2 and ρ > 0. For
comparison, in the bounded-degree model [26] similar graph properties such as bipartiteness
and expansion testing require sublinear Θ̃(

√
N) classical queries. Moreover, some graph

properties even have a (trivial) Ω(N) query complexity, as Ref. [14] showed for 3-colorability
in the bounded-degree model. While there have been numerous studies on testing graph
properties, there has been little work on testing the properties of signed graphs.

A signed graph is a graph where each edge is assigned a positive or a negative label.
They can be applied to model a variety of problems including correlation clustering problems
[13, 19], modeling the ground state energy of Ising models [30], and social network problems
[28, 33, 40]. Signed graphs have different properties than unsigned graphs. One of these is
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8:2 (Quantum) Complexity of Testing Signed Graph Clusterability

the important property of clusterability, which was introduced by Davis [18] to describe the
correlation clustering problem. We call a signed graph clusterable if it can be decomposed
into several components such that (1) the edges in each component are all positive, and (2)
the edges connecting the vertices belonging to different components are all negative. This
property is equivalent to not having a “bad cycle”, which is a cycle with exactly one negative
edge [18]. An algorithm for testing clusterability in the bounded-degree model with only
Õ(
√

N) queries was proposed in [1]. The optimality of this clusterability tester was left as an
open question. Here, we prove that any classical algorithm requires at least Ω̃(

√
N) queries

to test clusterability, showing that the tester from [1] is nearly-optimal.
As a natural extension of past studies, we are interested in whether quantum computing

can provide any advantages in testing clusterability for signed graphs. To the best of our
knowledge, we are not aware of any previous work on the quantum advantage for testing the
properties of signed graphs. However, in work by Ambainis, Childs and Liu [11], a quantum
speedup for testing bipartiteness and expansion of bounded-degree graphs was shown. We
adopt these techniques to obtain a quantum algorithm for testing clusterability in signed
graphs. More specifically, we combine their quantum approach with the classical property
testing techniques provided by Adriaens and Apers [1] to obtain a quantum algorithm for
testing the clusterability of bounded-degree graphs in time Õ(N1/3). This outperforms
the Õ(

√
N) query complexity of the classical tester in [1] (which is optimal by our lower

bound). We leave optimality of the quantum algorithm for testing clusterability as an
open question. Indeed, settling the quantum query complexity of property testing in the
bounded-degree graph model has been a long open question, and even for the well-studied
problem of bipartiteness testing no matching lower bound is known [11].

1.1 Overview of Main Results
Here we formally state our main results (precise definitions are deferred to Section 2). First,
we prove a lower bound on the classical query complexity of clusterability testing for a signed
graph.

▶ Theorem 2 (Restated). Any classical clusterability tester with error parameter ϵ = 0.01
must make at least

√
N/10 queries.

Up to polylogarithmic factors this matches the upper bound from [1], thus proving that
their clusterability tester is optimal in the classical computing regime. However, taking
inspiration from this classical clusterability tester, we reduce the clusterability testing problem
to a collision finding problem which can be solved faster by quantum computing. As a result,
we propose a quantum clusterability tester with a query complexity Õ(N1/3).

▶ Theorem 6 (Restated). We propose a quantum clusterability tester with query complex-
ity Õ(N1/3).

This improves over the classical lower bound, implying a quantum advantage over classical
algorithms for testing clusterability.

1.2 Technical contributions
A sketch of the proof of our two results is given in this section. The first result is the classical
query lower bound for testing clusterability. While the bound follows the blueprint of the
lower bound for bipartiteness testing by Goldreich and Ron [26], we have to deal with a
number of additional complications in the signed graph setting.
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The main idea of the lower bound is to show that, with less than
√

N/10 queries, we
cannot distinguish two families of graphs with degree d: one family GN

1 that is ϵ-far from
clusterable, and another family GN

2 that is clusterable. The design of these two families of
graphs must take into account two constraints. The first constraint is that the graphs in
GN

2 cannot contain a bad cycle, while those in GN
1 must have at least one bad cycle, even

if we remove ϵNd edges of the graph. This ensures that GN
2 is clusterable, while GN

1 is far
from clusterable. The second constraint relates to the fact that both graph should be locally
indistinguishable. This requires for instance that vertices in each graph in both families are
incident to the same number of positive and negative edges. If in addition we can ensure
that each cycle in these graphs contains many edges with a constant probability, then we
can use this to show that no algorithm can distinguish the graphs in these two families with
o(
√

N) queries. Indeed, we show that these two families of graphs are indistinguishable with
less than

√
N/10 queries as follows. First, we propose two random processes P1 and P2, one

generates a uniformly random graph in GN
1 , and the other generates a uniformly random

graph in GN
2 . Specifically, Pα for α ∈ {1, 2} takes a query given from an algorithm as input

and returns a vertex while “on-the-fly” or “lazily” constructing a graph from GN
α . In other

words, Pα simulates how an algorithm interacts with a graph sampled uniformly in GN
α . We

observe that these random processes are statistically identical if the answer to each query is
not found in the past answers or queries, which is equivalent to not finding a cycle when
exploring a graph. Second, we demonstrate that the probability of these random processes
being statistically identical is greater than 1/4 within

√
N/10 queries. In other words, no

classical algorithm can distinguish between these two families with a probability exceeding
3/4 within

√
N/10 queries to the input graph.

Our second result is a quantum algorithm for clusterability testing with a better query
complexity. To this end, we reduce the main procedure in the algorithm proposed by Adriaens
and Apers [1] to a collision finding algorithm. This collision finding problem can then be
solved using the quantum collision finding algorithm, similar to [11]. The main idea is that
if we implement several random walks on the positive edges of a graph that is far from
clusterable, then there exists a negative edge between the vertices belonging to distinct
random walks with a constant probability. We define finding such a negative edge between
random walks as finding a collision, a process that can be solved by using a quantum collision
finding algorithm. This yields a quantum speedup for clusterability testing.

2 Preliminaries

This section contains two parts. Section 2.1 defines some of the basic terminology associated
with the graphs used in this paper. In Section 2.2, we introduce the graph clusterability
testing problem.

2.1 Terminology
A graph G = (V, E) is a pair of sets. The elements in V = [N ] are vertices, and the elements
in E, denoted by edges, are paired vertices. The vertices v ∈ V and u ∈ V of an edge
(v, u) ∈ E are the endpoints of (v, u), and (v, u) is incident to u and v. The vertices u and v

are adjacent if there exist an edge (v, u) ∈ E. The number of edges incident with v, denoted
by d(v), is the degree of a vertex, and the maximum degree among the vertices in G is the
degree of the graph G(V, E).

Given a graph G = (V, E), a walk is a sequence of edges ((v1, v2), (v2, v3), · · · , (vJ−1, vJ ))
where (vj , vj+1) ∈ E for all 1 ≤ j ≤ J − 1 and vj ∈ V for all 1 ≤ j ≤ J . This walk can also
be denoted as a sequence of vertices (v1, v2, . . . , vJ ). A trail is a walk in which all edges are

TQC 2024



8:4 (Quantum) Complexity of Testing Signed Graph Clusterability

distinct. A cycle is a non-empty trail in which only the first and last vertices are equal. A
Hamiltonian cycle is a cycle of a graph in which every vertex of the graph is visited exactly
once.

A signed graph G = (V, E, Σ) consists of the vertex set V , the edge set E ⊆ V × V , and
a mapping Σ : E → {+,−} that indicates the sign of each edge. We say that a signed graph
G = (V, E, Σ) is clusterable if we can partition vertices into components such that (i) every
edge that connects two vertices in the same components is positive, and (ii) every edge that
connects two vertices in different components is negative.

2.2 Clusterability testing for signed graphs
We can easily modify the usual graph query model to signed graphs. Given a signed graph
G with maximum degree d, the bounded-degree graph model is defined as follows. A query
is a tuple (v, i) where v ∈ [N ] is a vertex in the graph and i ∈ [d]. The oracle answers this
query with (i) the ith neighbor of the vertex v if the degree of v is at least i (otherwise it
returns an error symbol), and (ii) the sign of the corresponding edge.

Property testing in the bounded-degree model is described as follows. Given oracle access
to a graph G with degree bound d and |V | = N , we wish to distinguish whether the graph G

satisfies a certain property, or whether it is ϵ-far from any graph having that property, where
ϵ ∈ (0, 1] is an error parameter. Here we say that two graphs G and G′ are ϵ-far from each
other if we have to add or remove at least ϵNd edges to turn G into G′. The specific case of
clusterability testing is defined formally as follows.

▶ Definition 1. A clusterability testing algorithm is a randomized algorithm that has query
access to a signed graph G(V, E, Σ) with |V | = N and maximum degrees d. Given an error
parameter ϵ, the algorithm behaves as follows:

If G is clusterable, then the algorithm should accept with probability at least 2/3.
If G is ϵ-far from clusterable, then the algorithm rejects with probability at least 2/3.

3 Main Results and Proofs

In this section, we give the formal statements and proofs of our two main results – a classical
query lower bound for clusterability testing and a quantum clusterability tester. In Section 3.1,
we first give the classical query lower bound of Ω(

√
N) for clusterability testing. This result

claims the optimality of the classical clusterability tester in [1]. In Section 3.2, we provide a
quantum clusterability tester with query complexity Õ(N1/3) which outperforms the classical
clusterability tester in [1].

3.1 Classical query lower bound for testing clusterability
In this section, we derive a classical query lower bound for the clusterability testing problem.
Specifically, we show that testing the clusterability of a signed graph with N vertices requires
at least

√
N/10 queries.

▶ Theorem 2. Given a signed graph G with N vertices, testing clusterability of G with error
parameter ϵ = 0.01 requires at least

√
N/10 queries.

Proof. The proof consists of three main steps. First, we construct two families of graphs
denoted as GN

1 and GN
2 , each possessing specific desirable properties. In particular, we require

that most graphs within GN
1 are at least 0.01-far from being clusterable, while graphs within

GN
2 are inherently clusterable. The construction and analysis of these families is deferred to

Section 4.1.
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To prove Theorem 2, we illustrate the interaction between an arbitrary T -query cluster-
ability testing algorithm A and a graph g uniformly sampled from GN

α as follows:
For all t ≤ T , each query qt is represented as a tuple (vt, it), and the answer to qt

is denoted as at, where vt, at ∈ [N ] and it ∈ [6]. It is crucial to note that each query
qt corresponds to an edge in g, specifically the edge (vt, at). We additionally denote a
list of pairs h = [(q1, a1), (q2, a2), . . . , (qt, at)] as the query-answer history. This history is
generated by the interaction between A and g in the following manner: For each t ≤ T ,
A maps h to qt+1 and ultimately to either accept or reject for t = T . For a given history
h = [(q1 = (v1, i1), a1), . . . , (qt = (vt, it), at)], we say that a vertex u is in h if u = vt′ or
u = at′ for some t′ ∈ [t].

Secondly, we introduce two processes, denoted as Pα for α ∈ {1, 2}, which simulate how
an algorithm A interacts with a graph sampled uniformly from GN

α . To be more specific, we
consider that A interacts with a graph g sampled from GN

α and generates the query-answer
history h. We must have that the graph g is uniformly distributed in GN

α,h ⊆ GN
α , where

GN
α,h includes all graphs that produce the query-answer history h during interactions with A.

Therefore, if A makes a query qt+1 /∈ {qi}t
i=1 to a graph uniformly sampled from GN

α,h, we can
determine that the answer corresponds to a certain vertex u ∈ [N ] with a specific probability
denoted as pu. The random processes Pα are precisely defined to return the answer u with
the corresponding probability pu when responding to the query qt+1 (initiated by A) and
considering the history h. As a result, these two random processes, Pα, interact with A,
providing responses to A’s queries while simultaneously constructing a graph uniformly
distributed in GN

α . The description and analysis of these random processes are deferred to
Section 4.2.

In the third part, we demonstrate that no algorithm can with high probability differentiate
between query-answer histories generated during the interactions of A with P1 and P2 while
making less than

√
N/10 queries. To prove such indistinguishability, we examine the

distribution of query-answer histories of length T denoted as DA
α , where each element in DA

α

is generated through the interactions of A and Pα. The statistical difference between DA
1

and DA
2 is defined as follows:

1
2 ·

∑
x

∣∣Prob
[
DA

1 = x
]
− Prob

[
DA

2 = x
]∣∣ ,

where x is some query-answer history of length T . We then provide an upper bound on this
statistical difference in the following lemma. The proof of this lemma is a modification of
the proof of Lemma 7.4 in [26], and we defer its proof to Section 4.3.

▶ Lemma 3 (based on [26], Lemma 7.4)). Let δ < 1
2 , T ≤ δ

√
N and N ≥ 40T . For every

algorithm A that uses T queries, the statistical distance between DA
1 and DA

2 is at most 10δ2.

Finally, we establish Theorem 2 through a proof by contradiction. Let us assume the
existence of a clusterability tester A that requires only

√
N/10 queries. Consequently, we

can infer that the probability of A accepting a graph from GN
2 is at least 2/3. By referring

to Lemma 3, we determine that the statistical difference between DA
1 and DA

2 is at most
10δ2 = 1/10 where δ is set 1/10 for a

√
N/10-query algorithm. Hence, A accepts a graph

distributed uniformly in GN
1 with a probability of at least 2/3− 1/10 > 0.4.

Furthermore, as indicated by Proposition 7, more than 99% of the graphs in GN
1 are at

least 0.01-far from being clusterable. Consequently, by the definition of a clusterability tester,
we can conclude that A accepts a graph distributed uniformly in GN

1 with a probability of at
most 0.99 · 1/3 + 0.01 < 0.35. This contradicts the earlier finding that A accepts a graph

TQC 2024



8:6 (Quantum) Complexity of Testing Signed Graph Clusterability

distributed uniformly in GN
1 with a probability of at least 0.4. Hence, we can deduce that

there does not exist a clusterability tester capable of distinguishing between a graph sampled
from GN

1 and GN
2 using only

√
N/10 queries, and the theorem follows. ◀

3.2 Quantum clusterability tester

Algorithm 1 Quantum clusterability tester.

Input: Oracle access to a signed graph G(V, E, Σ) with N vertices and degree bound d; an
accuracy parameter ϵ ∈ (0, 1].

1: for O(1/ϵ) times do
2: Pick a vertex s ∈ V randomly.
3: Let K = O

(√
N poly(log N/ϵ)

)
, L = poly (log N/ϵ), n = KL, and k = Θ(L).

4: Adopt Proposition 4 to construct k-wise independent random variables bij taking
values in [2d] for i ∈ [K] and j ∈ [L].

5: Run the quantum collision finding algorithm in Lemma 5 with the following setting:
X := [K] × [L]; Y is the set of pairs (v, vneb) where v ∈ V and vneb is the set of
vertices adjacent to v.
A function f that takes (i, j) ∈ X as input, and returns the endpoint of a random
walk that starts at s with random coin flips (bi1, . . . , bij).
Symmetric binary relation R ⊆ Y × Y defined as follows:

((v, vneb), (v′, v′
neb)) ∈ R iff (v ∈ v′

neb and the edge between v and v′ is negative).

6: if quantum collision finding algorithm finds a collision then
7: return false
8: end if
9: end for

10: return true

In this section, we present our second result: a quantum clusterability tester (Algorithm 1)
with a query complexity of O

(
N1/3 poly (log N/ϵ)

)
. We begin by introducing the quantum

clusterability tester, followed by the proof of its correctness in Theorem 6.
Algorithm 1 takes a signed graph G(V, E, Σ) with N vertices and a bound on the maximum

degree d, along with an accuracy parameter ϵ ∈ (0, 1], as input. The goal is to determine
whether G(V, E, Σ) is clusterable or ϵ-far from clusterable. The algorithm consists of four
major steps.

First, Algorithm 1 randomly selects a vertex s ∈ V . Second, it constructs random
variables that determine the direction of movement in each step of these random walks.
To achieve this, we need to prepare O(K · L) random variables (K and L are defined in
Algorithm 1); however, we can derandomize and reduce the number of random bits from
O(K · L) to O(L) because Algorithm 1 only depends on each pair of walks that are selected
from K random walks. Therefore, it is sufficient to construct k-wise independent random
variables 1 bij mapping to [2d] for i ∈ [K] and j ∈ [L], where k = Θ(L). This construction
can be realized by the following proposition.

1 A set of random variables is k-wise independent if any subset of k variables is independent.
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▶ Proposition 4 ([4], Proposition 6.5). Let n + 1 be a power of 2 and k be an odd integer such
that k ≤ n. In this scenario, there exists a uniform probability space denoted as Ω = {0, 1}m,
where m = 1 + 1

2 (k− 1) log2(n + 1). Within this space, there exist k-wise independent random
variables, represented as ξ1, . . . , ξn over Ω, such that Pr [ξj = 1] = Pr [ξj = 0] = 1

2 .
Moreover, an algorithm exists that, when provided with i ∈ Ω and 1 ≤ j ≤ n, can compute

ξj(i) in a computational time of O(k log n).

Third, we define a function f that implements random walks according to these random
variables. f returns the endpoint of a random walk and the neighborhood of this endpoint.
Specifically, we let X = {1, . . . , K} × {1, . . . , L}, and Y be the set of pairs (v, vneb) where
v ∈ {1, . . . , N} and vneb is the set of vertices adjacent to v. Then, we define the function f

as follows. f takes (i, j) ∈ X as input, then it runs a random walk according to the random
variables (bi1, . . . , bij) such that (i) this walk starts at s and (ii) each edge in this walk is
positive. The function f finally returns (v, vneb). Fourth, we define the symmetric binary
relation R ⊆ Y × Y such that ((v, vneb), (v′, v′

neb)) ∈ R iff (i) v ∈ v′
neb, and (ii) the edge

between v and v′ is negative. In other words, detecting a collision is equivalent to detecting a
bad cycle. The last step is to detect two distinct elements x1, x2 ∈ X such that (f(x1), f(x2))
satisfies the symmetric binary relation R. The collision finding problem can be improved by
a quantum collision finding algorithm proposed by Ambainis et al. [11] as follow.

▶ Lemma 5 ([11], Theorem 9). Given a function f : X → Y , and a symmetric binary relation
R ⊆ Y × Y which can be computed in poly(log |Y |) time steps where X and Y are some
finite sets, we denote a collision by a distinct pair x, x′ ∈ X such that (f(x), f (x′)) ∈ R.
There exists a quantum algorithm that can find a collision with a constant probability when a
collision exists, and always returns false when there does not exist a collision. The running
time of the quantum algorithm is O

(
|X|2/3 · poly(log |Y |)

)
.

By this lemma we can identify a bad cycle within K random walks, with a query complexity
of O(|X|2/3) = O((K · L)2/3) = O

(
(
√

N poly(log N/ϵ))2/3
)

= O(N1/3 poly(log N/ϵ)). Next,
we establish the correctness of this algorithm and present its time complexity in the following
theorem.

▶ Theorem 6. Algorithm 1 is a quantum algorithm that tests the clusterability of a signed
graph with query complexity and running time O(N1/3 poly(log N/ϵ)).

Following our first result, we conclude that our quantum clusterability tester outperforms
any classical clusterability tester.

Proof. First, we prove that Algorithm 1 is indeed a clusterability tester. When G is
clusterable, signifying the absence of one bad cycle, Algorithm 1 fails to discover a collision.
Consequently, it returns true. On the contrary, when G is ϵ-far from clusterable, the assertion
in Claim 14 from [1] suggests that the algorithm can pinpoint a bad cycle within the sampled
random walks with a constant probability. This leads Algorithm 1 to return false with a
constant probability.

To bound the time complexity (and hence query complexity), we need to bound the
following quantities:

The time required to evaluate the k-wise independent random variables.
The time required to evaluate f .
The number of queries required to find a collision.

TQC 2024



8:8 (Quantum) Complexity of Testing Signed Graph Clusterability

For the first requirement, it takes O (poly(log N/ϵ)) time to evaluate a k-wise independent
random variable, as indicated by Proposition 4. Moving to the second requirement, it
is evident that each evaluation of f consumes time poly(log N/ϵ) since f is a procedure
implementing a random walk, and the length of the walk is L ∈ poly(log N/ϵ). Concerning
the last requirement, we are aware that detecting a collision requires O

(
N1/3 poly (log N/ϵ)

)
time, as derived from Lemma 5. In conclusion, the query and time complexity of Algorithm 1
is O

(
N1/3 poly (log N/ϵ)

)
. ◀

4 Proof details

In this section, we detail the construction and lemmas in Theorem 2. In Section 4.1, we
generate two distinct families of graphs, each exhibiting different property of clusterability.
In Section 4.2, we introduce two random processes that interact with an arbitrary algorithm
A during the generation of graphs selected uniformly from the aforementioned families. In
Section 4.3, we demonstrate that the statistical difference of query answer histories produced
by A and these two random processes is bounded by the number of queries.

4.1 Graph construction

Here we detail the construction and analysis of the graph families GN
1 and GN

2 .

4.1.1 Construction of two families of signed graphs

We detail the construction of two families of signed graphs denoted as GN
1 and GN

2 . In both
families, each signed graph consists of N vertices, where N is a multiple of 10. Each vertex
v is assigned a label pv chosen from the set {0, 1, . . . , 9} in such a way that there are exactly
N/10 vertices for each possible label.

For the edge set, we embed them in a manner such that each vertex is incident to precisely 6
edges. We construct edge sets based on cycles associated to a permutation σ = (r1 r2 . . . rL),
where 0 ≤ L ≤ 9 and rl ∈ {0, 1, . . . , 9} are distinct for 1 ≤ l ≤ L. With some abuse of
notation, we also denote by σ the bijective function σ : {r1, r2, . . . , rL} → {r1, r2, . . . , rL}
defined as

σ(rl) =
{

rl+1 if l < L.

r1 if l = L.

With this notation, we define a family Dσ such that each member of this family is a union of
cycles satisfying two properties: (i) the union of cycles contains all vertices in [N ] labeled
with values from r0 to rL, and (ii) for each cycle (v1, v2, . . . , vJ) in the union of cycles, the
label for each vertex must satisfy pvj+1 = σ(pvj ) for 1 ≤ j ≤ J (where we set vJ+1 = v1).
We then employ these cycles to define the edge sets for the graphs in the family GN

α . See
Figure 1 for an illustration for G40

1 .

For GN
1 : Each graph in GN

1 consists of one Hamiltonian cycle and two unions of cycles (we
later comment on the particular choice of σ’s):

The Hamiltonian cycle ∈ Dσ1st with σ1st = (0 1 2 3 4 5 6 7 8 9). We call this the arc
cycle. All of its edges are positive, and we refer to these edges as arc edges.
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One union of cycles ∈ Dσ2nd with σ2nd = (2 4 6 0 8 1 3 7 9 5),2 with each of its edges
being positively signed. We call these edges connecting edges.
A second union of cycles ∈ Dσ3rd with σ3rd = (1 6 3 8 5 0 7 2 9 4), and all edges are
negatively signed.

For GN
2 : In the family of graphs GN

2 , each graph contains one Hamiltonian cycle and 12
unions of cycles:

The Hamiltonian cycle ∈ Dσ1st with each of its edges negatively signed.
There are ten additional unions of cycles ∈ Dσs with σs = (s) for s taking values in
the set {0, 1, . . . , 9}. These edges are positive.
The last two unions of cycles are disjoint. One belongs to Dσ10 with σ10 = (0 2 4 6 8).
The other belongs to Dσ11 with σ11 = (1 3 5 7 9). These edges are positive.

Figure 1 An instance of G40
1 . The green lines indicate the edges in one Hamiltonian cycle

belonging to Dσ1st
, the orange lines indicate the edges in one union of cycles belonging to Dσ2nd

,
and the red lines indicate the edges in one union of cycles belonging to Dσ3rd

.

In every graph within GN
α , each vertex is incident to precisely six edges, and these edges are

labeled according to the following convention: For a pair of adjacent vertices, represented as
vj and vj+1 for 1 ≤ j ≤ J − 1, within any cycle (v1, v2, . . . , vJ ), we label the edge connecting
them as k for vm and as k + 1 for vm+1, for some k ∈ N. This labeling effectively associates
an orientation to the cycle. More specifically, in a graph from GN

1 :
The edges in the Hamiltonian cycle from Dσ1st are labeled with 1 and 2.
For the edges in the union of cycles ∈ Dσ2nd , we use labels 3 and 4.
For the edges in the union of cycles ∈ Dσ3rd , we use labels 5 and 6.

In the case of a graph from GN
2 :

The edges in the Hamiltonian cycle corresponding to Dσ1st are labeled as 5 and 6.

2 The choice of σ2nd and σ3rd is not unique; we only require that these edge sets are disjoint when we
fix the label of each vertex. This forbids picking for example σ2nd = (0 2 4 6 8 1 3 5 7 9), since the
edges connecting vertices labeled 9 and 0 can be found in both Dσ1st

and Dσ2nd
, meaning they are not

disjoint. However, we could replace σ2nd with (2 6 4 0 8 1 3 7 9 5), where exchanging 6 and 4 would
not violate the disjoint property.
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For the edges in the union of cycles within Dσs for s ranging from 0 to 9, we assign labels
1 and 2.
For the edges in the union of cycles ∈ Dσ10 and Dσ11 , we label them with 3 and 4.

4.1.2 Clusterability of two families of signed graphs
We initially observe that all graphs within GN

2 are clusterable with the following rationale.
All vertices with even (odd, respectively) labeling are interconnected via positive edges.
Consequently, two connected components emerge: one component comprises all vertices with
even labeling, and the other includes all vertices with odd labeling, each with positive edges.
We further note that these two components can only be connected through negative edges.
Hence, any graph within GN

2 satisfies the clusterability definition. As a result, all graphs in
the second family are clusterable.

Regarding the graphs in GN
1 , we will demonstrate that they are at least 0.01-far from

being clusterable with probability at least 1− exp(−Ω(N)) in the following Proposition 7.

▶ Proposition 7. The graphs in GN
1 are 0.01-far from clusterable with probability at least

1− exp(−Ω(N)).

Proof. We commence our proof by providing a description of the random process used to
uniformly generate a graph denoted as g from GN

1 . We begin by constructing the set of
vertices [N ] and refer to the resulting (empty) graph as sg. The graph sg is equipped with
its edges set through a three-step process:
1. (One Hamiltonian cycle): In the first step, we uniformly select a Hamiltonian cycle

from all possible Hamiltonian cycles on the vertices set [N ] and assign each vertex a label
from the set {0, 1, . . . , 9}, based on the rule of cycles ∈ Dσ1st . All edges constructed in
this step are positive.

2. (Second edge set from Dσ2nd): In the second step, we repeat the following processes
N times:
a. Select an arbitrary vertex ui that lacks an edge labeled as 3 where the index i ∈ [N ]

represents the label of iteration.
b. Uniformly select a vertex vi from a set that includes all vertices labeled as σ2nd(pui)

and that lack an edge labeled as 4.
c. Add the edge (ui, vi).
This adds an edge set from Dσ2nd . We make these edges positive.

3. (Third edge set from Dσ3rd): Similar to the previous procedure, we add an edge set
from Dσ3rd . We make these edges negative.

We call the resulting graph g, and note that g is a uniformly random element from GN
1 .

We proceed to observe that each graph g in GN
1 is inherently non-clusterable. Indeed, unless

we remove arc edges from the Hamiltonian cycle, every negative edge of a cycle in Dσ3rd

contributes to a bad cycle. We show that, with high probability over the random graph in
GN

1 , removing less than 0.01dN = 0.06N edges cannot make the graph clusterable.
More precisely, we will establish that after removing less than 0.06N arc edges, with high

probability, all vertices remain connected through (positive) connecting edges in Dσ2nd , and
so the graph cannot be clustered. To prove this, let us delve into a more detailed description
of the random process used to generate a graph g.

In the first step, we construct a Hamiltonian cycle and eliminate x < 0.06N arc edges,
resulting in a graph with x components. There are CN

x =
(

N
x

)
possible possibilities for these

x components.



K.-C. Chen, S. Apers, and M.-H. Hsieh 8:11

During the first iteration of the second step, we select the arbitrary vertex u1 from the
component with the fewest vertices and designate this component as C. It becomes evident
that, in the first iteration of step 2(c), the edge (u1, v1) connects the component C to another
component, with a probability exceeding 1/2. Consequently, the number of components in
the graph sg decreases by 1, and the number of vertices in C increases with a probability
greater than 1/2.

In the subsequent iterations, we select the vertex ui for 2 ≤ i ≤ N based on the following
rule: If the number of vertices labeled as σ2nd(pvi−1) and lacking edges labeled as 4 within
the component C is fewer than the number of vertices labeled as σ2nd(pvi−1) not in C, then
we set the vertex ui equal to vi−1. Subsequently, in 2(b) and 2(c), the process embeds an
edge connecting ui to some vertex vi that is not a resident in C with a probability greater
than 1/2. Otherwise, we choose ui from any arbitrary vertex labeled as σ2nd(pvi−1) and not
in C. Subsequently, in 2(b), the process selects vi in C with a probability greater than 1/2,
as C has more vertices capable of connecting with ui than the set of vertices not in C.

Consequently, the probability of the graph having more than one component can be
bounded by the probability of obtaining fewer than x heads when flipping N unbiased coins.
This probability can be bounded as follows:

x∑
i=2

CN
i

(
1
2

)N−i

< 2N ·H(0.06)2−N 2x < 2N(−1+0.06+H(0.06)),

where H(p) = −p log(p)− (1− p) log(1− p) is the (binary) entropy function.
At this point, we removed only x < 0.06N edges, and we are permitted to remove

additional 0.06N − x connecting edges from sg. This corresponds to 0.06N − x tests where
the coin flips tails (thus reducing the number of components by 1) can be taken into account
for flips resulting in heads. In other words, the condition of having fewer than x heads can
be extended to having fewer than x + 0.06N − x heads when flipping N unbiased coins.
Consequently, the probability that the resulting graph has more than one component, when
0.06N − x connecting edges are removed, can be bounded as:

x+(0.06N−x)∑
i=2

CN
i

(
1
2

)N−i

< 2N(−1+0.06+H(0.06)).

Given that there are CN
x < 2NH(0.06) possible ways to construct x components in the first

step, we can confidently assert that, after implementing step (2), all vertices in sg are
interconnected by positive edges with a probability of at least 1− exp−Ω(N), even in cases
where 0.06N positive edges (comprising x arc edges and 0.06N − x connecting edges) were
removed. The negative edges are present in the edge set in Dσ3rd , and each of them generates
a bad cycle under the condition that only one component (only positive edges inside) is left
after completing the second step in the process. In other words, under this condition, we
must remove all negative edges to make this graph clusterable. Consequently, the lemma
follows. ◀

4.2 Random processes
Here, we construct and analyze the random processes that play a key role in our lower
bound. The first part describes the interaction of a random process Pα with an algorithm A.
The second part proves that Pα indeed generates a graph uniformly within GN

α , as further
elucidated in Proposition 8.
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We will begin by defining the random process P1, which involves two stages. The first
stage will explain how P1 interacts with an arbitrary T -query algorithm A. The second stage
will elaborate on how P1 constructs a graph uniformly sampled from GN

1 .

First stage of P1: Given a query-answer history h = [(q1, a1), (q2, a2), . . . , (qt−1, at−1)] for
t ≤ T , we define a set of vertices Xp,i, which contains all vertices labeled with p in the
history and lacking edge labeled i. We also use the notation np to represent the count of
vertices in this history that are labeled p. For each query qt = (vt, it) made by A, the
actions of P1 are defined as follows:
1. If vt is not in h, then P1 labels vt with a number p ∈ {0, 1, · · · , 9} with a probability

of (N/10)−np

N−
(∑9

p=0
np

) . Subsequently, P1 answers this query as described in (2) below.

2. If vt belongs to h, there are two possible scenarios:
a. If we can find the edge corresponding to qt in h, then P1 responds with the vertex

connected to this edge. In other words, there exists an edge (vt, u) in h such that
(vt, u) is labeled as it for vertex vt, and P1 responds with u. The query-answer
history remains unchanged in this case.

b. If the edge corresponding to qt = (vt, it) does not exist in h, we follow these steps:
Suppose, without loss of generality, that it = 1. We set the label σ1st(pvt

) as p and
i = it + 1 = 2. P1 decides whether to uniformly select a vertex from Xp,i by flipping

a coin with bias
|X

p,i
|

N/10 − np + |X
p,i

| or to uniformly select a vertex not present in h,
and assigns the label p to it. In either case, P1 responds with the selected vertex u,
and the edge (vt, u) is signed positively. Subsequently, this edge (vt, u) is added to
the query-answer history h.
For the other case (it = 2, 3, 4, 5, 6), P1 acts similarly as described above, except
for the assignment for p, the assignment for i, and the sign of the added edge. The
added edge is positively signed for it = 2, 3, 4, and negatively signed for it = 5, 6.
For i, it is set to it + 1 for it = 3, 5 and to it − 1 for it = 2, 4, 6. The assignment for
p is as follows:

p← (σ1st)−1(pvt
) for it = 2

p← σ2nd(pvt
) for it = 3

p← (σ2nd)−1(pvt) for it = 4
p← σ3rd(pvt

) for it = 5
p← (σ3rd)−1(pvt

) for it = 6

First stage of P2: P2 follows a similar process to P1, with the only differences being the
assignment for p as follows:

p← pvt
for it = 1

p← pvt for it = 2
p← pvt

+ 2 (mod 10) for it = 3
p← pvt

− 2 (mod 10) for it = 4
p← σ1st(pvt) for it = 5
p← (σ1st)−1(pvt

) for it = 6

Second stage of P1: After answering all of these queries and generating a query-answer
history [(q1, a1) , . . . , (qT , aT )], P1 proceeds with the following processes:
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1. Uniformly selecting a feasible way to embed the edges in h on a cycle. The embedding
of these edges adhere to the following conditions: Each vertex is assigned a cycle
position, i.e., an integer in {0, . . . , N −1}, in a manner that ensures each vertex labeled
with p ∈ {0, . . . , 9} is positioned at a position x such that p ≡ x (mod 10). This
assignment implies that all acr edges (labeled 1, 2) are placed on the cycle, and edges
labeled 3, 4, 5, 6 are excluded from the cycle.

2. Randomly positioning all other vertices on the cycle, ensuring that each vertex v with
label pv is positioned at a position x such that pv ≡ x (mod 10). Subsequently, all
cycle edges are assigned a positive sign.

3. In the end, uniformly selecting a feasible way to embed the edges sets in Dσ2nd and
Dσ3rd . All edges in the edges sets ∈ Dσ2nd assigned a positive sign, while all edges in
the edges sets ∈ Dσ3rd are assigned a negative sign.

Second stage of P2: P2 follows a process similar to that of P1, with few distinctions: In
(2), we assign each cycle edge a negative sign. In (3), P2 uniformly selects a feasible way
to embed the edges sets ∈ Dσs for s ∈ {0, 1, · · · , 11}, and assigns positive signs to these
edges.

We will show that the above two processes uniformly generate a graph in the corresponding
family in the next lemma.

▶ Proposition 8. For every algorithm A that uses T queries and for each α ∈ {1, 2}, the
process Pα uniformly generates graphs in GN

α when interacting with A.

Proof. We will use induction to prove this lemma. Consider that every probabilistic algorithm
can be viewed as a distribution of deterministic algorithms. Therefore, it is sufficient to
prove this lemma for any deterministic algorithm A. The base case (i.e., T = 0) is correct
because the query-answer history is empty, and the second stage in the process Pα uniformly
generates a graph in GN

α . We assume that the claim is true for T − 1, and we will prove that
the claim is also true for T . Let A′ be the algorithm defined by stopping A before it asks
the T th query. By the inductive assumption, we know that Pα uniformly generates graphs in
GN

α when Pα interacts with A′. We will show that after Pα interacts with A and answers
the T th query, the second stage of Pα also uniformly generates graphs in GN

α .
Assuming, without loss of generality, that the answer to the T th query cannot be obtained

from the query-answer history because this query does not provide additional information.
Denote the T th query of A as qT = (vT , iT ) and consider all actions of the process P1:

(Case 1) iT ∈ {3, 4, 5, 6}, and vT in h:
Assume, without loss of generality, that iT = 3 and denote p = σ2nd(pvT

). The probability
of P1 connecting vT to any vertex is independent of the specific order of vertices on the
cycle but depends on the labeling of the vertices. After considering all possible connecting
edges carried out in the second stage following the interaction with A′, it becomes evident
that the only vertices in h to which vT can connect are those in Xp,4. In any potential
arrangement of the vertices on the cycle, there will be exactly (N/10) − np vertices
labeled p and available for connection to vT . This implies that the probability of vT being
connected to a vertex in Xp,4 is |Xp,4|

|Xp,4|+(N/10)−np

. Furthermore, when vT is connected
to a vertex in Xp,4, this vertex is uniformly distributed within Xp,4. Similarly, when
connected to a vertex not in h, this vertex is uniformly distributed among the vertices
not in h. These probabilities align with the definitions in P1. Therefore, in Case 1, the
induction step holds for P1.
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(Case 2) iT ∈ {1, 2}, and vT in h:
Assume, without loss of generality, that iT = 1 and denote p as σ1st(pvT

). In any
valid embedding of the edges in h onto the cycle, it is evident that vT can be adjacent
with another vertex u in h only if u belongs to Xp,2. Moreover, when vT is adjacent
to a vertex in h, this vertex is uniformly distributed within Xp,2. If vT is adjacency
with another vertex u not in h, it is evident that the number of vertices labeled p but
not in h is (N/10) − np. Consequently, the probability of vT being adjacent to some
u ∈ Xp,2 is |Xp,2|

|Xp,2|+(N/10)−np

, and the probability of it being adjacent to a vertex not in

h is (N/10)−np

|Xp,2|+(N/10)−np

. These probabilities align with the definitions in P1. Therefore, in
this case, the induction step holds for P1.
(Case 3) vT is not in h:
We can reduce this case to case 1 and 2, provided that the label of vT is selected with
the appropriate probability. In the second stage, each vertex is randomly assigned label
based on the proportion of missing vertices with that label. This essentially follows the
assignment rule outlined in case (1) in the first stage of P1.

For P2, we omit the proof since it is similar to the argument in P1, and this lemma
follows. ◀

4.3 Proof of Lemma 3
We may assume that A does not make a query whose answer can be obtained from its query
answer history h since such a query does not update the h. Then, we begin the proof by
proving the following proposition.

▶ Proposition 9. ([26], Claim in lemma 7.4) Both in DA
1 and in DA

2 , the total probability
mass assigned to query-answer histories in which for some t ≤ T a vertex in h is returned as
an answer to the tth query is at most 10δ2.

Proof. We begin the proof by claiming that the probability of the event that the answer in
the tth query is a vertex in h is at most 20(t− 1)/N for every t ≤ T . The statement can be
derived by observing that there are at most 2(t− 1) vertices in h, and uses the definition of
both processes. Then, the probability that the event occurs in an arbitrary query-answer
history of length T is at most

∑δ
√

N
t=1

20(t−1)
N < 10δ2. The proposition follows. ◀

From the proposition, we know that the edges in h will not form a cycle with probability at
least 1− 10δ2. This event implies that for each query, these two processes pick a random
vertex uniformly among the vertices, not in h. In addition, A’s queries can only depend
on the previous query-answer histories. Therefore, the distributions of the query-answer
histories for these two processes are identical, except if we found a cycle, which happens with
probability at most 10δ2. Lemma 3 follows.
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