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Abstract
We systematically investigate quantum algorithms and lower bounds for mean estimation given query
access to non-identically distributed samples. On the one hand, we give quantum mean estimators
with quadratic quantum speed-up given samples from different bounded or sub-Gaussian random
variables. On the other hand, we prove that, in general, it is impossible for any quantum algorithm
to achieve quadratic speed-up over the number of classical samples needed to estimate the mean
µ, where the samples come from different random variables with mean close to µ. Technically, our
quantum algorithms reduce bounded and sub-Gaussian random variables to the Bernoulli case, and
use an uncomputation trick to overcome the challenge that direct amplitude estimation does not
work with non-identical query access. Our quantum query lower bounds are established by simulating
non-identical oracles by parallel oracles, and also by an adversarial method with non-identical oracles.
Both results pave the way for proving quantum query lower bounds with non-identical oracles in
general, which may be of independent interest.
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1 Introduction

The problem of estimating the mean µ of a random variable X given its i.i.d. samples is a
fundamental problem in statistics. For any random variable X with finite variance σ2, the
median-of-means estimator can estimate µ to within additive error ϵ with failure probability
≤ δ using O(σ2

ϵ2 log
( 1

δ

)
) samples. This sample complexity is known to be tight up to a

constant multiplicative factor [7].
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9:2 Quantum Non-Identical Mean Estimation

On the other hand, suppose that a quantum computer has access to a unitary U and its
inverse such that U |0⟩ encodes the random variable X coherently, and each application of U
and U† as a black-box oracle can be regarded as a quantum analogue of getting a sample
of the random variable X. Therefore, the application of U is sometimes called a quantum
experiment [11]. Under this assumption, a quantum computer can estimate the mean of X
with O( σ

ϵ log
( 1

δ

)
) quantum experiments [17], which achieves quadratic speed-up compared

to the classical counterpart. Such quantum mean estimators embrace various applications,
including approximate counting [17, 6], data stream estimation [12], derivative pricing in
finance [5], etc.

In some cases, we are interested in estimating the mean of “close” random samples,
such as random samples with the same mean but different distributions. For example, it
is ubiquitous that the measurements of random samples have small systematic errors. In
such cases there may be small difference between the means of the actual distributions of
the measured random samples, and our algorithms and lower bounds also take this into
account. One specific example is to learn a linear system discussed below. In classical mean
estimation, the same method for identical random variables also works for non-identical
random variables. As long as the variance of all random variables is bounded by σ2, the
median-of-means estimator can be directly adapted to these situations , yielding an algorithm
with the same complexity. However, it is unclear whether similar results hold in the regime
of quantum mean estimation. Therefore, it is a natural question whether we can achieve
quantum speed-up for the mean estimation problem with non-identically distributed samples.

Below we provide a potential application for the quantum mean estimation with non-
identically distributed samples.

Quantum Linear System

A classical linear dynamical system (LDS) is defined as

xt+1 = Axt + wt, xt ∈ Rn, wt ∼ N (0, σ2
w), ∥A∥2 < 1, x1 = 0 (1)

where xt is the state at time step t, and wt is a random noise at step t. A well-known
problem in LDS is to do the system identification: estimating the transition matrix A given
a series of states starting from step 1. The standard approach to estimate transition matrix
A in the classical linear system is ordinary least squares (OLS) [8, 20].

Consider the quantum counterpart of LDS (for example, when simulating a LDS on a
quantum computer):

Uf |ψx⟩|0⟩ =
∫
Rn

√
fw(w)|ψx⟩|ψAx+w⟩dw, (2)

Uo|ψx⟩|0⟩ = |ψx⟩|x⟩, (3)

here fw(w) is the probability density function (pdf) of N (0, σ2
w), and |ψx⟩ is an arbitrary

embedding of the raw state x. It is natural to ask whether it is possible to estimate A by a
quantum algorithm with desired speed-up in quantum linear systems. Actually, it is indeed
possible with a procedure presented in Section 4.1.3. This estimation procedure uses multiple
calls to Uf to construct a new oracle Ut0 for some step t0, which encodes a probability
distribution over the matrix space with A as the mean value. However, the distribution
encoded by Ut0 is different for different t0, though their means are all equal to A. Therefore,
this problem presents another motivation of the quantum non-identical mean estimation
problem.
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In general, the quantum linear system problem described above is a special class of
quantum estimation problem in which quantum probability oracles have a time-varying
zero-mean noise. The distribution of noise at each step is different but all zero-mean. The
number of samples at each step is limited.

1.1 Contributions
In this paper, we systematically analyze the sample complexity of the quantum non-identical
mean estimation problem (see its formal definition in Task 8). Roughly speaking, the quantum
algorithm is given T different random variables in turn and can get m ∈ N samples from each
random variable. Suppose that the mean of every random variable is in (µ− cϵ, µ+ cϵ) for
some constant 0 < c < 1, the quantum non-identical mean estimation problem is to estimate
µ up to additive error ϵ. If all random variables are bounded or sub-Gaussian (see definition
in Definition 14), for accuracy ϵ and m = Ω(log

( 1
ϵ

)
), we give quantum algorithms solving

the quantum non-identical mean estimation problem with quadratic speed-up.

▶ Theorem 1 (Informal versions of Theorem 12 and Theorem 16). For the quantum non-
identical mean estimation problem with sufficiently small accuracy ϵ,

if all random variables are bounded in [L,H] and m = Ω(log
(

H−L
ϵ

)
), there is a quantum

algorithm that estimates µ to within additive error ϵ if T = Ω( H−L
ϵ ). The algorithm uses

O( H−L
ϵ log

(
H−L

ϵ

)
) samples in total;

if all random variables are sub-Gaussian with parameter K and m = Ω̃(log
(

K
ϵ

)
), there

is a quantum algorithm that estimates µ to within additive error ϵ if T = Ω̃(K
ϵ ). The

algorithm uses Õ( K
ϵ ) samples in total.

In the worst case, the variance of random variables bounded in [L,H] can be (H − L)2/4, so
the optimal classical estimator needs Θ((H − L)2/ϵ2) samples to estimate µ up to additive
error ϵ. For normal random variables, their sub-Gaussian parameter K equals their standard
deviation σ, so the optimal classical estimator needs Θ(K2/ϵ2) samples to estimate µ up to
additive error ϵ. Therefore, the quantum estimators in Theorem 1 achieve nearly quadratic
speed-up compared to classical estimators.

On the other hand, for m = 1, we show that any algorithm with relatively small working
register have no speed-up compared to classical estimators.

▶ Theorem 2 (Informal version of Theorem 23). Suppose all random variables in the quantum
non-identical mean estimation problem with m = 1 have mean bounded by R and variance
bounded by σ2. Let A be a quantum query algorithm acting on query register Q, working
register W such that the number of qubits in Q is larger than that in W by Ω(log

(
R
ϵ

)
). It

requires T = Ω( σ2

ϵ2 ) if there exists an algorithm A solving this problem. The sample complexity
of A is T = Ω( σ2

ϵ2 ).

For general m ≥ 1, we give another sample complexity lower bound of estimating mean
of Bernoulli random variables.

▶ Theorem 3 (Informal version of Theorem 25). Suppose all random variables in the quantum
non-identical mean estimation problem with m ≥ 1 are Bernoulli random variables with mean
µ ∈ (0, 1), and the accuracy ϵ satisfies ϵ ≤ µ(1 − µ) and ϵ = O( 1

m2 ). It requires T = Ω( 1
ϵm2 )

if there exists a quantum query algorithm solving this problem. The sample complexity is
mT = Ω( 1

ϵm ) in total.

In Theorem 3, we take the Bernoulli random variables as a hard instance for the quantum
non-identical mean estimation problem. Note that if ϵ = Θ(µ(1 − µ)), the classical optimal
estimator needs Θ(µ(1−µ)

ϵ2 ) = Θ( 1
ϵ ) samples to estimate the mean of the Bernoulli random
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9:4 Quantum Non-Identical Mean Estimation

variable. Therefore, Theorem 3 shows that there is no quantum speed-up in this case if
m = O(1). However, it does not rule out the possibility of quantum speed-up for estimating
the mean of Bernoulli random variables with ϵ = o(µ(1 − µ)) or m = Ω(1). For example,
if µ = Θ(1), ϵ = o(1), and m = Ω(log

( 1
ϵ

)
), the quantum estimator for bounded random

variables in Theorem 1 can estimate µ up to error ϵ using O( 1
ϵ log

( 1
ϵ

)
) samples while classical

estimators need Ω( 1
ϵ2 ) samples.

In addition, Theorem 2 and Theorem 3 give two different lower bounds when m = 1.
Compared with Theorem 3, the lower bound in Theorem 2 matches the classical upper bound
for general distributions with variance σ2, but an additional requirement is that the register
W has relatively small dimension.

Finally, we use Bernoulli random variable as an example to summary our systematical
investigation on the quantum non-identical mean estimation problem.

▶ Corollary 4. For Bernoulli random variable with mean µ such that ϵ = Θ(µ(1 − µ)),
if m = Ω(log(1/ϵ)) and T = Ω(1/ϵ), there exists an algorithm solving this problem using
O( 1

ϵ log(1/ϵ)) quantum samples, achieving a near-quadratic speed-up;
if m = Ω(log(1/ϵ)) and T = o(1/ϵm2), there is no quantum algorithm solving this problem.
There is an additional requirement that ϵ = O(1/m2);
if m = O(1), there is no quantum speed-up for this problem.

Proof. This corollary comes directly from Theorem 1, Theorem 2, and Theorem 3. ◀

1.2 Techniques
1.2.1 Upper Bound
From a high-level perspective, our quantum algorithms for non-identical mean estimation
encode the mean to an amplitude, use an uncomputation trick to be introduced below to
align different oracles, and then use amplitude estimation to estimate the mean.

We start with the bounded case. Recall that this paper studies non-identically distributed
samples and assumes that we have access to unitaries OX1 , . . . , OXT

, where

OXi |0⟩ =
∑

x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩. (4)

The mean µ = µi =
∑

x∈Ei
pi(x)x is equal for different i ∈ [T ] (In fact, these µi can be

slightly different – see Remark 13 for more details), but each OXi
has potentially different

garbage states |ψ(i)
x ⟩ and each can only be used for very limited times. Suppose that for any

i ∈ [T ], the bounded random variable Xi satisfies Xi ∈ [L,H]. If we have sufficient access to
any specific OXi

, we can construct a unitary

Ui|0⟩|0⟩ = √
q|ψ(i)

1 ⟩|1⟩ +
√

1 − q|ψ(i)
0 ⟩|0⟩ (5)

by one call to OXi
and a series of controlled rotations [17], where q = (µ − L)/(H − L).

Consequently, the mean is encoded to an amplitude and direct amplitude estimation provides
mean estimation with quadratic quantum speedup. However, in the non-identical case,
we do not have sufficient number of calls to any specific Ui to provide quadratic speedup.
Furthermore, it is very difficult to use a mixture of different Ui in amplitude estimation [3].
This is due to the reason that amplitude estimation is based on Grover’s algorithm [9], which
is essentially rotation in a two-dimensional plane spanned by two specific quantum states
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related to Ui. In our case, different Ui may have different |ϕ(i)
1 ⟩ and |ϕ(i)

0 ⟩, which forms
different rotation planes and thus their mixed use is invalid. However, we can use a small
number of calls to Ui to construct a unitary such that

Si|0⟩ =
√

1 − ϵi|0⟩
(√

r|1⟩ +
√

1 − r|0⟩
)

+
√
ϵi|1⟩|garbagei⟩ (6)

with r being a bijective function of q (the concrete value to be shown later) and ϵi being
sufficiently small. Since the garbage state is small enough to be handled as an approximation
error, Si can be seen as an approximation of an unitary S : |0⟩ →

√
r|1⟩+

√
1 − r|0⟩. Therefore,

We can then use these Si instead of S to perform amplitude estimation, which provides
estimation for r and thus q and µ.

The construction of Si can be accomplished by an uncomputation trick [6] and fixed-point
search [22]. Specifically, the uncomputation trick is to perform a unitary

Vi = (U†
i ⊗ I)(I ⊗ CNOT)(Ui ⊗ I) (7)

instead of Ui, which enjoys a property that it extracts the value of q separated from a garbage
state related to |ϕ(i)

1 ⟩ and |ϕ(i)
0 ⟩. The computing result of ⟨b|⟨0|⟨0|Vi|0⟩|0⟩|0⟩ for b ∈ {0, 1}

tells that Vi|0⟩|0⟩|0⟩ only has components |0⟩|0⟩|0⟩, |0⟩|0⟩|1⟩, and a garbage state orthogonal
to them. Besides, the amplitudes of the first two components are determined by q. In
particular, it satisfies

Vi|0⟩|0⟩|0⟩ =
√

2q2 − 2q + 1|0⟩|0⟩
(

q√
2q2 − 2q + 1

|1⟩ + 1 − q√
2q2 − 2q + 1

|0⟩
)

+
√

2q − 2q2|garbagei⟩, (8)

where |garbagei⟩ is a unit garbage state and (I⊗⟨0|⟨0|)|garbagei⟩ = 0. Therefore, we can use
fixed-point quantum search [22] to stably amplify the amplitude of the state q√

2q2−2q+1
|1⟩ +

1−q√
2q2−2q+1

|0⟩ and thus Si is constructed with r = q2

2q2−2q+1 . See Theorem 12 for more details.
For a sub-Gaussian random variable with the absolute value of mean bounded by the

sub-Gaussian parameter K, the probability of the random variable being more than a
threshold related to K is sufficiently small and the mean of a truncated random variable
can be a good enough approximation. Therefore, this case can be reduced to the case
of bounded random variables. For general sub-Gaussian random variables X1, . . . , XT , a
constant number of classical experiments provide an estimation µ̂ within K-additive error,
thus X1 − µ̂, . . . , XT − µ̂ are sub-Gaussian random variables with the absolute value of mean
bounded by K, which has been solved (see Theorem 16 for more details).

1.2.2 Lower Bound
We prove our two quantum query lower bounds using different techniques: the case m = 1
(Theorem 2) is established by simulating non-identical oracles by parallel oracles, and the
case m ≥ 1 (Theorem 3) is established by an adversarial method with non-identical oracles.

Simulating T Non-Identical Oracles by Constant T -Parallel Oracles

For the quantum non-identical mean estimation problem with m = 1, we give a sample
complexity lower bound in Theorem 23 by constructing a quantum circuit with constant
query depth simulating the original quantum circuit querying non-identical oracles. For
any quantum query algorithm A using the state preparation oracle Ux such that the state

TQC 2024



9:6 Quantum Non-Identical Mean Estimation

Ux|0⟩ encodes the input, suppose that there is a sequence of unitary oracles that maps |0⟩
to the same state but have different effects acting on other states orthogonal to |0⟩. Suppose
that the working register of A is relatively small and A queries T non-identical oracles. In
Theorem 21, we prove that for any projection Π with small image space, there is a quantum
algorithm A′ using two T -parallel queries such that

∥ΠA|0⟩∥2 = ∥(Π ⊗ ⟨0|)A′|0⟩|0⟩∥2, (9)

where a T -parallel query is to query T oracles simultaneously. This theorem builds a bridge
between quantum algorithms with non-identical state preparation oracles and quantum
algorithms with low query depth. If for any input x correct outputs of A lie in a small space
Vx, and let Im(Π) = Vx, then Theorem 21 shows that A and A′ have the same probability
to output a correct answer.

In Theorem 23, we prove that any quantum query algorithm A starting from an efficiently
preparable state |0⟩ can be modified to recover the query register to |0⟩ with a small overhead.
This reduces the dimension of the subspace that the correct outputs of A lie in, and then we
use Theorem 21 to give a sample complexity lower bound of the quantum non-identical mean
estimation problem with m = 1 based on the facts that parallelization only brings classical
advantage to solving the quantum approximate counting problem [4], and the quantum
approximate counting problem can be reduced to estimating the mean of Bernoulli random
variables.

Adversarial Method with Non-Identical Oracles

Given a boolean function f : {0, 1}n → {0, 1} and access to a unitary oracle Ox which encodes
the information of some x ∈ {0, 1}n, the generalized adversarial method [13] gives a tight
query complexity lower bound of computing f(x). For any quantum query algorithm A
and x ∈ {0, 1}n, let |ψ(t)

x ⟩ be the quantum state after A queries Ox for t times. Suppose
A can compute f(x) with high probability for all x ∈ {0, 1}n using T queries, then we
have ⟨ψ(T )

x |ψ(T )
y ⟩ = 1 − Ω(1) for all x ∈ f−1(0) and y ∈ f−1(1). Since ⟨ψ(0)

x |ψ(0)
y ⟩ = 1,

to give a lower bound of T , it suffices to give an upper bound on the progress at time t,
⟨ψ(t−1)

x |ψ(t−1)
y ⟩ − ⟨ψ(t)

x |ψ(t)
y ⟩, for all x ∈ f−1(0), y ∈ f−1(1), and t ∈ [T ]. The generalized

adversarial method assigns a weight Γxy to every pair of x ∈ f−1(0), y ∈ f−1(1), which
proves an upper bound for the weighted progress at time t:

St−1 − St =
∑

x∈f−1(0), y∈f−1(1)

Γxy(⟨ψ(t−1)
x |ψ(t−1)

y ⟩ − ⟨ψ(t)
x |ψ(t)

y ⟩), (10)

and hence gives a lower bound on T . However, they regard |ψ(t−1)
x ⟩, |ψ(t−1)

y ⟩ as free variables
independent of previous states |ψ(t′)

x ⟩, |ψ(t′)
y ⟩ for t′ < t − 1 while bounding the weighted

progress at t, so their upper bound of St−1 − St is independent of t. Therefore, if the
algorithm queries different oracles at different times, the adversarial method cannot give
better lower bound than the case that all oracles are the same. In Lemma 24, we apply the
adversarial method on the quantum approximate counting problem, but analyze the progress
in another way which utilizes the connection between |ψ(t)

x ⟩ and |ψ(t′)
x ⟩ for different t and t′.

Specifically, we show that any quantum query algorithm solving the quantum approximate
counting problem has progress upper bounded by O( t

n ) at time t, where n is the number
of items. The original adversarial method gives an O( 1√

n
) upper bound of the progress at

any time t. Boyer et al. [2] gave a similar analysis of quantum search which utilizes the
connection between states at different time t, and got a tight lower bound of quantum search
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with a better constant factor compared to the hybrid argument. Since Reichardt [19] proved
that the generalized adversarial method is asymptotically tight, we cannot expect more by
exploring connections between states at different time with identical query oracles. However,
if each oracle can only be queried a limited number of times, our bound in Lemma 24 is
better than that obtained by the generalized adversarial method, since the progress bound
O( t

n ) is smaller in the early stages of the algorithm. We use this result to prove a query
complexity lower bound of the quantum approximate counting problem with non-identical
oracles. Since the quantum approximate counting problem can be reduced to estimating
the mean of a Bernoulli random variable, we get a sample complexity lower bound of the
quantum non-identical mean estimation problem in Theorem 3 for general m.

1.3 Organization
The rest of the paper is organized as follows. In Section 2 we formally define the input model
and the quantum non-identical mean estimation problem, introduce the concept of parallel
quantum query algorithms, and introduce quantum subroutines used in our algorithms. In
Section 3 we give quantum algorithms for estimating the mean of non-identically distributed
bounded or sub-Gaussian random variables with quadratic speed-up. In Section 4 we give
two quantum query lower bounds of the quantum non-identical mean estimation problem
based on reductions to low-depth quantum algorithms and the adversarial method with
non-identical oracles, respectively.

2 Preliminaries

2.1 Notations
We denote {1,2,. . . ,n} by [n]. We use |ψ⟩A,B to indicate that the state |ψ⟩ is in quantum
registers A and B. For a quantum register A, we denote its number of qubits by nA. For a
boolean string x ∈ {0, 1}n, we denote its Hamming weight |{i ∈ [n] | xi = 1}| by |x|. We
abbreviate |0k⟩ as |0⟩ if k can be inferred from the context.

2.2 Input Model
We first recall the definition of random variables and the input model of the classical mean
estimation problem.

▶ Definition 5 (Random variable). A finite random variable X is a function X : Ω → E for
some probability space (Ω, p), where Ω is the finite sample space, p is a probability measure
on Ω, and E ⊂ R.

Next, we assume that the random variable is the output of a quantum process OX , and
we can query OX as an oracle to access X.

▶ Definition 6 (Quantum random variable). For any finite random variable X, a quantum
random variable encoding X is a pair (H, OX), where H is a Hilbert space and OX is a
unitary operator on H that performs the mapping

OX |0⟩ =
∑
x∈E

√
p(x)|ψx⟩|x⟩ (11)

for some unknown garbage unit state |ψx⟩.

TQC 2024



9:8 Quantum Non-Identical Mean Estimation

Following the notation in [11], we call each application to U and U† a quantum experiment.
We use the number of quantum experiments to measure the sample complexity of a quantum
query algorithm.

▶ Definition 7 (Quantum experiment). Let (H, OX) be a quantum random variable. A
quantum experiment is the process of applying OX or its inverse O†

X or their controlled
versions to a state in H.

Performing a quantum experiment of a quantum random variable (H, OX) can be regarded
as a query to the unitary oracle OX in the quantum query model, so the sample complexity is
equivalent to the query complexity in this context, and we use the two terms interchangeably.

This input model is widely used in previous quantum mean estimation algorithms. The
same oracle as defined in Definition 6 is used in [17]. Kothari and O’Donnell [16] used a
similar input model except that they encode the probability distribution and the random
variable mapping Ω → R in two oracles separately, and their algorithm also works well with
the oracle in Definition 6. Hamoudi and Magniez [12, 11] used a more general input model
called “q-random-variable”, where the value of the random variable is implicitly encoded in a
register and can be compared with a constant or performed conditional Pauli rotations, and
our oracle can be regarded as an instance of the “q-random-variable”. Since the oracle in
Definition 6 already covers many common cases, we use it instead of the “q-random-variable”
for simplicity and clarity. In fact, our quantum algorithm in Theorem 12 can also apply to
the general “q-random-variable”.

The unitary OX is a quantum generalization of the process generating a sample of X.
Bennett [1] proved that any classical algorithm using time T and space S can be modified
to be a reversible algorithm using time O(T ) and space O(ST ϵ) for any ϵ > 0, and hence
can be simulated by a quantum circuit. Therefore, for any randomized algorithm A, we can
implement the oracle OX in Definition 6 encoding the output distribution of A with a small
overhead.

Another natural way for a quantum algorithm to access a random variable is to assume
that several copies of |ψX⟩ =

∑
x∈E

√
p(x)|x⟩ encoding the information of X are given as

the initial quantum state. This model is weaker than the one in Definition 6 since it does
not provide access to a unitary preparing |ψX⟩. Hamoudi [11] demonstrated that there is
no quantum speed-up for the original mean estimation problem in this model. Therefore,
it can be inferred that there is no quantum speed-up for the mean estimation problem of
non-identically distributed random variables in this model, as it is a harder problem.

Based on the definition of quantum random variable, we define the mean estimation
problem of non-identically distributed random variables formally as the following task.

▶ Task 8 (Quantum non-identical mean estimation). Let (H, OX1), . . . , (H, OXT
) be a sequence

of quantum random variables on the same Hilbert space H. Assume there exists µ and δ ∈ (0, 1)
such that each µi := E[Xi] satisfies |µi −µ| ≤ δ for all i ∈ [T ]. Given the repetition parameter
m ∈ N and accuracy ϵ such that δ < cϵ for some constant c < 1, the quantum non-identical
mean estimation problem is to estimate µ to within additive error ϵ with probability at least
2/3 using each OXi

or O†
Xi

or their controlled versions at most m times.

The non-identity of quantum random variables means more than the non-identity of
classical random variables. Specifically, the difference between two quantum random variables
(H, OX), (H, OY ) lies in the following three aspects: the results of applying OX and OY

to states orthogonal to |0⟩, the garbage state |ψx⟩, and the random variables they encode.
In contrast, the difference between two classical random variables is solely determined by
the third aspect. Consequently, the quantum mean estimation problem of non-identically
distributed random variables is more challenging than its classical counterpart.
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2.3 Parallel Quantum Query Algorithms
The classical parallel algorithm implies that the algorithm can perform multiple operations
simultaneously, which has become increasingly important in recent years with the development
of multi-core processors. In the quantum setting, there is an additional reason to consider
parallel algorithms: quantum states are fragile and susceptible to disruption by environmental
factors, specifically decoherence. By reducing the computation time, parallel quantum
algorithms can reduce the probability of decoherence. One example is parallel quantum
query algorithms which can make multiple queries simultaneously, where a p-parallel query is
defined as making p parallel queries simultaneously. Zalka [23] gave an algorithm that makes√

n
p p-parallel queries to solve the unstructured search problem with 1 marked item among

n items and showed that its query complexity is optimal. Subsequent works also analyzed
the parallel quantum query complexity of quantum search [10], quantum walk [15], quantum
counting [4], and Hamiltonian simulation [24].

2.4 Quantum Subroutines
▶ Lemma 9 (Approximating unitary operators, Eq. (4.63) of [18]). Let || · || be the operator
2-norm. For unitary operators {Ui}m

i=1, {Vi}m
i=1, it holds that

∥UmUm−1 . . . U1 − VmVm−1 . . . V1∥ ≤
m∑

j=1
∥Uj − Vj∥.

▶ Lemma 10 (Amplitude estimation, Theorem 12 of [3]). Given a unitary U satisfying

U |0⟩ = √
p|ϕ1⟩|1⟩ +

√
1 − p|ϕ0⟩|0⟩ (12)

for some p ∈ [0, 1], there exists a quantum circuit C on a larger space such that the
measurement outcome of C|0⟩|0⟩, p̃, satisfies

|p̃− p| ≤
2π
√
p(1 − p)
M

+ π2

M2 (13)

with probability 8
π2 , where C has M calls to the controlled versions of I−2U |0⟩⟨0|U†. Denote

the algorithm by AmpEst(U,M).

▶ Lemma 11 (Fixed-point quantum search, [22]). Let A be a unitary and Π be an orthogonal
projector such that ΠA|0⟩ = λ|ϕ⟩, where λ ∈ R and |ϕ⟩ is a normalized quantum state. There
exists a quantum circuit SL = FixSearch(A,Π, ϵ) such that |||ϕ⟩ − SL|0⟩|| ≤ ϵ, consisting
of O(log(1/ϵ)/λ) queries to A, A†, and CΠNOT. Here CΠNOT is the Π-controlled NOT
operator

CΠNOT = X ⊗ Π + I ⊗ (I − Π),

where X is the Pauli-X matrix.

3 Upper Bound

In this section, we first introduce an algorithm that solves Task 8 for bounded random
variables, and then generalize it to sub-Gaussian variables.
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Algorithm 1 Mean Estimation of Bounded Random Variables.

1: Input: sequence of random variable oracle {OXi}T
i=1, accuracy ϵ, mean difference δ,

repetition parameter m, lower bound L, upper bound H

2: Output: mean estimation µ̃

// Construct quantum circuit Si

3: Construct unitary Ui

Ui : |0⟩|0⟩
OXi

⊗I
−−−−→

∑
x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩|0⟩

controlled rotation−−−−−−−−−−−→
∑

x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩

(√
x− L

H − L
|1⟩ +

√
H − x

H − L
|0⟩

)

4: Let Vi = (U†
i ⊗ I)(I ⊗ CNOT)(Ui ⊗ I)

5: Let Si = FixSearch(Vi, |0⟩|0⟩⟨0|⟨0| ⊗ I, ϵ′ = O(ϵ2/(H − L)2))
// Mean estimation using Si

6: Let p̃ be the output of AmpEst(S,M = O(H−L
ϵ )), where S is arbitrarily replaced by

S1, . . . , ST .
7: Output µ̃ = p̃−

√
p̃(1−p̃)

2p̃−1 (H − L) + L

3.1 Mean Estimation of Bounded Random Variables

In this subsection, we introduce an algorithm that solves Task 8 with quadratic speed-up
given the condition that random variables X1, . . . , XT are bounded in [L,H]. According to
the task, for each i ∈ [T ], oracle OXi can be used at most m times.

For clarity, we describe the algorithm with two phases. Let

|ϕi⟩ = qi√
2q2

i − 2qi + 1
|1⟩ + 1 − qi√

2q2
i − 2qi + 1

|0⟩.

Here qi = µi−L
H−L ∈ [0, 1]. For each i ∈ [T ], We will construct a quantum circuit Si that

satisfies Si|0⟩ ≈ |ϕi⟩ with m calls to OXi
. Then we will prove that performing amplitude

estimation with these Si gives an ϵ-additive estimation of µ.

▶ Theorem 12. Assume that all random variables X1, . . . , XT in Task 8 are bounded in
[L,H]. Let m, ϵ, δ in Algorithm 1 satisfy m = Ω(log

(
H−L

ϵ

)
), ϵ = O

( (µ−L)(H−µ)
H−L

)
, and

δ < ϵ/2. Algorithm 1 solves this task if T = Ω(H−L
ϵ ), using O(H−L

ϵ log
(

H−L
ϵ

)
) quantum

experiments in total.

Proof. We first prove that Si in Line 5 satisfies Si|0⟩|0⟩|0⟩ =
√

1 − ϵi|0⟩|0⟩|ϕi⟩+
√
ϵi|garbagei⟩.

According to the construction of Ui in Line 3 of Algorithm 1, we have

Ui|0⟩|0⟩ = √
qi|ψ(i)

1 ⟩|1⟩ +
√

1 − qi|ψ(i)
0 ⟩|0⟩ (14)

for some unit states |ψ(i)
1 ⟩ and |ψ(i)

0 ⟩. Consider the Vi in Line 4 where we append a qubit to
the register. For any b ∈ {0, 1} we have
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⟨b|⟨0|⟨0|Vi|0⟩|0⟩|0⟩ = ((Ui ⊗ I)|0⟩|0⟩|b⟩)†(I ⊗ CNOT)(Ui ⊗ I)|0⟩|0⟩|0⟩

=
(√

qi⟨b|⟨1|⟨ψ(i)
1 | +

√
1 − qi⟨b|⟨0|⟨ψ(i)

0 |
)(√

qi|ψ(i)
1 ⟩|1⟩|1⟩ +

√
1 − qi|ψ(i)

0 ⟩|0⟩|0⟩
)

=
{
qi b = 1
1 − qi b = 0, (15)

which implies that

Vi|0⟩|0⟩|0⟩ =
√

2q2
i − 2qi + 1|0⟩|0⟩

(
qi√

2q2
i − 2qi + 1

|1⟩ + 1 − qi√
2q2

i − 2qi + 1
|0⟩
)

+
√

2qi − 2q2
i |garbagei⟩, (16)

where |garbagei⟩ is a unit garbage state and (I ⊗ ⟨0|⟨0|)|garbagei⟩ = 0. Moreover, we define

|ϕi⟩ = qi√
2q2

i − 2qi + 1
|1⟩ + 1 − qi√

2q2
i − 2qi + 1

|0⟩, |si⟩ = Vi|0⟩|0⟩|0⟩. (17)

Under these notations, we have

(|0⟩|0⟩⟨0|⟨0| ⊗ I)Vi|0⟩|0⟩|0⟩ =
√

2q2
i − 2qi + 1|0⟩|0⟩|ϕi⟩. (18)

Together with Lemma 11 and the fact that
√

2q2
i − 2qi + 1 ≥ 1√

2 , we know that Si in Line 5
satisfies

Si|0⟩|0⟩|0⟩ =
√

1 − ϵi|0⟩|0⟩|ϕi⟩ +
√
ϵi|garbagei⟩, (19)

where ϵi ≤ ϵ′ and Si contains O
(

log 1
ϵ′

)
= O

(
log
(

H−L
ϵ

))
calls to Vi.

Let

q = µ− L

H − L
∈ [0, 1], |ϕ⟩ = q√

2q2 − 2q + 1
|1⟩ + 1 − q√

2q2 − 2q + 1
|0⟩,

and S be a unitary such that

S|0⟩|0⟩|0⟩ = |0⟩|0⟩|ϕ⟩. (20)

Performing an amplitude estimation using {Si}T
i=1 provides a result similar to an amplitude

estimation using S, and thus provides a mean estimation with additive error O(ϵ). See the
details in [14] appendix A.1.

Each Vi uses two quantum experiments, each Si uses O(log
(

H−L
ϵ

)
) calls to Vi, and C ′ uses

M = O( H−L
ϵ ) calls to controlled Si. Therefore, the total number of quantum experiments is

O
(

H−L
ϵ log

(
H−L

ϵ

))
. ◀

▶ Remark 13. For every i ∈ [T ], Si can be seen as an approximation of unitary S. The slight
difference δ among different µi only causes a part of approximation error which is bounded
by ϵ. Therefore, this difference is tolerable in our algorithm. See [14] equation (73) and (78)
for more details.

3.2 Mean Estimation of Sub-Gaussian Random Variables
In this subsection, we consider the quantum non-identical mean estimation problem of
sub-Gaussian random variables.
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Algorithm 2 Mean Estimation of Mean-Bounded sub-Gaussian Random Variable.

1: Input: sequence of random variable oracle {OXi}T
i=1, accuracy ϵ, mean difference δ,

repetition parameter m, upper bound for mean R, sub-Gaussian parameter K
2: Output: mean estimation µ̃

3: Let ∆ = K max
{√

4 log
( 128K

ϵ

)
,
√

2 log
( 32R

ϵ

)}
, L = −R− ∆, H = R+ ∆

4: Construct unitary OX̃i

OX̃i
: |0⟩|0⟩

OXi
⊗I

−−−−→
∑

x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩|0⟩

CNOT−−−−→
∑

x∈[L,H]

√
pi(x)|ψ(i)

x |x⟩|x⟩ +
∑

x∈Ei\[L,H]

√
pi(x)|ψ(i)

x |x⟩|0⟩

5: Output µ̃ =Algorithm 1({OX̃i
}T

i=1, accuracy ϵ, mean difference δ = ϵ/2, m, L, H)

▶ Definition 14. A random variable X is sub-Gaussian with parameter K if for all t ≥ 0

P[|X − E[X]| ≥ t] ≤ 2 exp
(

− t2

2K2

)
. (21)

We first give a quantum algorithm estimating the mean of non-identically distributed sub-
Gaussian random variables with quadratic speed-up if the mean of the random variables are
bounded by their sub-Gaussian parameter. This case can be reduced to the case of bounded
random variables by truncation. Then, we show that this algorithm can be generalized to
any sub-Gaussian random variable.

▶ Lemma 15. Suppose all random variables X1, . . . , XT in Task 8 are sub-Gaussian with
parameter K and their mean satisfies |µi| ≤ R, R ≤ K. Let m,R,K, ϵ, δ in Algorithm 2

satisfies that m = Ω
(

log
(

K
√

log( K
ϵ )

ϵ

))
, ϵ = O(K), and δ < ϵ/4. Algorithm 2 solves Task 8

if T = Ω(
K
√

log( K
ϵ )

ϵ ), using O
(

K
√

log( K
ϵ )

ϵ log
(

K
√

log( K
ϵ )

ϵ

))
quantum experiments in total.

Quantum random variable X̃i generated by oracle OX̃i
in Algorithm 2 is a truncated

version of Xi. Calculation shows that the mean difference is within ϵ
2 , thus Algorithm 2

provides an estimation with O(ϵ) additive error.

Proof. See [14] appendix A.2. ◀

For general sub-Gaussian distributions, we first use O(1) classical samples to estimate the
mean of these sub-Gaussian random variables up to additive error K/2, and then shift the
random variables by subtracting the approximate mean so that the shifted random variables
have mean bounded by their sub-Gaussian parameter. After that, we can use Lemma 15 to
estimate the mean of the shifted random variables.

▶ Theorem 16. Assume all random variables X1, . . . , XT in Task 8 are sub-Gaussian

with parameter K. Let m,K, δ, ϵ in Algorithm 3 satisfy that m = Ω
(

log
(

K
√

log( K
ϵ )

ϵ

))
,

ϵ = O(K), and δ < ϵ/4. Algorithm 3 solves Task 8 if T = Ω(
K
√

log( K
ϵ )

ϵ ), using

O
(

K
√

log( K
ϵ )

ϵ log
(

K
√

log( K
ϵ )

ϵ

))
quantum experiments in total.
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Algorithm 3 Mean Estimation of sub-Gaussian Random Variable.

1: Input: sequence of random variable oracle {OXi}T
i=1, accuracy ϵ, repetition parameter

m, sub-Gaussian parameter K
2: Output: mean estimation µ̃

3: Perform N = ⌈8 log(20)⌉ times classical experiments on arbitrary Xi and let the average
of the samples be µ̂

4: Construct unitary OX′
i

OX′
i

: |0⟩|0⟩
OXi

⊗I
−−−−→

∑
x∈Ei

√
pi(x)|ψ(i)

x |x⟩|0⟩

−→
∑

x∈Ei

√
pi(x)|ψ(i)

x |x⟩|x− µ̂⟩

5: Output µ̃ =Algorithm 2({OX′
i
}T

i=1, accuracy ϵ, mean difference δ = ϵ/4, m, upper bound
for mean R = K, sub-Gaussian parameter K)

Proof. Classical experiment in Line 3 can be naturally implemented by quantum access to
random variable. For any i ∈ [T ], by applying OXi

to |0⟩ and measuring the second register
in computational basis, we can get a classical sample of Xi. Since µ̂ is the average value of
N = ⌈8 log(20)⌉ samples, by the Hoeffding inequality for sub-Gaussian distributions [21], we
have

P[|µ̂− E[µ̂]| ≥ K

2 ] ≤ 2 exp
(

− N

2K2
K2

4

)
≤ 1

10 . (22)

In addition, since |µi − µ| ≤ δ for all i ∈ [T ], we have

|E[µ̂] − µ| ≤ δ. (23)

O′
Xi

can be seen as quantum query to random variable X ′
i = Xi − µ̂. With probability at

least 9
10 , we have

|E[X ′
i]| = |E[Xi] − µ̂| ≤ |E[Xi] − E[µ̂]| + |µ̂− E[µ̂]| ≤ δ + K

2 ≤ K. (24)

Therefore, by Lemma 15 with R = K, m = Ω
(

log
(

K
√

log( K
ϵ )

ϵ

))
and X ′

i = Xi − µ̂,
we can estimate µ − µ̂ with additive error O(ϵ) with probability at least 4

5 using

O
(

K
√

log( K
ϵ )

ϵ log
(

K
√

log( K
ϵ )

ϵ

))
quantum experiments. Subtracting µ̂ from the estimate

gives the final output of the algorithm which is an ϵ-additive estimate of µ with probability
at least 4

5 · 9
10 ≥ 2

3 . ◀

4 Lower Bound

In this section, we prove sample complexity lower bounds for the quantum non-identical
mean estimation problem in Task 8.

Let m be the repetition parameter defined Task 8. In Section 4.1, we give a sample
complexity lower bound for m = 1, and show there is no quantum speed-up compared to
classical algorithms. In Section 4.2, we give a sample complexity lower bound for m ≥ 1.
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4.1 Lower Bound for m = 1
Let X be a finite random variable with support E. Let (H, OX) be a quantum random
variable in Definition 6, i.e.,

OX |0⟩ =
∑
x∈E

√
p(x)|ψx⟩|x⟩, (25)

and we denote the output state by |ψX⟩. A p-parallel query to OX is to apply the unitary
O⊗q

X or O†⊗q
X for q ≤ p.

Note that Eq. (25) only restricts the outcome of applying OX on |0⟩, so the quantum
random variable encoding the same X can be different. Throughout Section 4.1, we assume
all quantum random variables encode the same finite random variable X. Given that m = 1,
the algorithm can perform only one quantum experiment for each quantum random variable.

We use the quantum query model to analyze the sample complexity of the quantum
non-identical mean estimation since every quantum experiment can be regarded as a query
to the oracle OX . A T -query quantum algorithm starts from an all-0 state |0⟩Q|0⟩W , and
then interleaves fixed unitary operations U0, U1, . . . , UT with queries. Suppose different
oracles are queried at different time, and we denote the t-th oracle queried by the algorithm
as O(t)

X . Without loss of generality, we assume that all queries are applied to register
|0⟩Q and U0, U1, . . . , UT are applied to |0⟩Q|0⟩W . Whether to apply O

(t)
X or (O(t)

X )† needs
to be determined in advance, and the choices can be represented by T boolean variables
a1, . . . , aT ∈ {−1, 1} such that

(O(t)
X )at =

{
O

(t)
X if at = 1,

(O(t)
X )† if at = −1.

(26)

For any 1 ≤ t ≤ T , let

|ψ(t)⟩ := Ut(O(t)
X )at · · · (O(1)

X )a1U0|0⟩Q|0⟩W . (27)

Hence the final state of the algorithm is |ψ(T )⟩.
At the end of the algorithm, we will measure |ψ(T )⟩ and let the projection onto the correct

outputs be Πc, and the success probability of the algorithm is hence

∥Πc|ψ(T )⟩∥2. (28)

4.1.1 Reduction to Low-depth Quantum Algorithms
For a quantum circuit with oracles, the query depth is the maximum number of queries on
any path from an input qubit to an output qubit. In this section, we prove that the behavior
of a quantum algorithm querying T non-identical oracles can be simulated by a low query
depth quantum algorithm with the same number of queries. Actually, we will show that
the behavior of the algorithm can be simulated by a quantum circuit using two T -parallel
queries.

For any 1 ≤ t ≤ T , let

|ϕ(t)
beg⟩ :=

{
|0⟩ if at = 1,
|ψX⟩ if at = −1,

(29)

|ϕ(t)
end⟩ :=

{
|ψX⟩ if at = 1,
|0⟩ if at = −1,

(30)
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so that

(O(t)
X )at |ϕ(t)

beg⟩ = |ϕ(t)
end⟩. (31)

This is the only subspace that (O(t)
X )at ’s behavior is fixed and defined by Eq. (25).

For any 1 ≤ t ≤ T , let

Π(t)
beg := |ϕ(t)

beg⟩⟨ϕ(t)
beg| ⊗ I, (32)

and

|ψ(t)
eff ⟩Q,W := (O(t)

X )atΠ(t)
begUt−1(O(t−1)

X )at−1Π(t−1)
beg · · ·U1(O(1)

X )a1Π(1)
begU0|0⟩Q|0⟩W (33)

= (|ϕ(t)
end⟩⟨ϕ(t)

beg| ⊗ I)Ut−1 · · ·U1(|ϕ(1)
end⟩⟨ϕ(1)

beg| ⊗ I)U0|0⟩Q|0⟩W . (34)

These states are fixed no matter what the queries O(t)
X are, since all queries in Eq. (33) are

applied to the subspace that its behavior is defined by Eq. (25).
We show in the following lemma that |ψ(t)

eff ⟩ can be prepared by a quantum algorithm
using two t-parallel queries after post-selection.

▶ Lemma 17. Given a T -query quantum algorithm acting on registers Q and W , for any
0 ≤ t ≤ T , |ψ(t)

eff ⟩ defined in Eq. (33) can be prepared by another quantum circuit V low
t

using two t-parallel queries to any unitary oracle OX satisfying Eq. (25) after post-selection,
namely,(

IW,Qt ⊗ ⟨0|Q0,...,Qt−1

)
V low

t |0⟩W,Q0,...,Qt
, (35)

where Q0, . . . , Qt are t+ 1 registers with nQ qubits.

Proof. For all 1 ≤ t < T , from the definition of |ψ(t)
eff ⟩, it can be written as

|ψ(t)
eff ⟩ = |ϕ(t)

end⟩|ϕ(t)
W ⟩ (36)

for some unnormalized state |ϕ(t)
W ⟩, then we have

|ϕ(t+1)
end ⟩|ϕ(t+1)

W ⟩ = |ψ(t+1)
eff ⟩ = (|ϕ(t+1)

end ⟩⟨ϕ(t+1)
beg | ⊗ I)Ut|ϕ(t)

end⟩|ϕ(t)
W ⟩. (37)

Apply ⟨ϕ(t+1)
end | ⊗ I to both sides we have

|ϕ(t+1)
W ⟩ = (⟨ϕ(t+1)

beg | ⊗ I)Ut|ϕ(t)
end⟩|ϕ(t)

W ⟩. (38)

Define

|ψ(0)
eff ⟩ = |0⟩|0⟩, |ϕ(0)

end⟩ = |0⟩, |ϕ(0)
W ⟩ = |0⟩, (39)

so that Eq. (36) and Eq. (38) also hold for t = 0.
To construct the required circuit, We prove the following stronger statement.

▶ Statement 18. Let OX be any unitary satisfying Eq. (25), and U low
0 , . . . , U low

T be a sequence
of quantum circuits satisfying U low

0 = I and

U low
t+1 =

{
((Ut)Qt,W ⊗ I) · (U low

t ⊗ (OX)Qt+1) if at+1 = 1,
((Ut)Qt,W ⊗ I) · (U low

t ⊗ IQt+1) if at+1 = −1,
(40)
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for all 0 ≤ t < T . The quantum circuit U low
t can prepare |ψ(t)

eff ⟩ after post-selection, namely,

|psi(t)
eff ⟩ =

(
IW,Qt

t⊗
i=1

⟨ϕ(i)
beg|Qi−1

)
U low

t |0⟩W,Q0,...,Qt
, (41)

for any 0 ≤ t ≤ T .

Proof. See [14] appendix B.1. ◀

The number of queries in U low
t is |{ai = 1 | i ∈ [t]}|. Let

V low
t =

⊗
1≤i≤t,ai=−1

(O†
X)Qi

U low
t , (42)

then from Eq. (41) we have(
IW,Qt ⊗ ⟨0|Q0,...,Qt−1

)
V low

t |0⟩W,Q0,...,Qt
, (43)

for all 0 ≤ t ≤ T .
The number of queries in V low

t is

|{ai = 1 | i ∈ [t]}| + |{ai = −1 | i ∈ [t]}| = t. (44)

Conditioning on the state in registers Q0, . . . , Qt−1 to be |0⟩, V low
t prepares |ψ(t)

eff ⟩Qt,W and
uses two t-parallel queries. ◀

Next, we demonstrate that UT |ψ(T )
eff ⟩ is the only useful component in the final state |ψ(T )⟩,

since other parts can be controlled by O(t)
X to make the result worse. Before that, we prove

the following useful lemma.

▶ Lemma 19. For any T -query quantum algorithm acting on registers Q, W , and any finite
random variable X on (Ω, p), if dim HQ > 2 dim HW , there exists a sequence of quantum
random variables (HQ, O

(1)
X ), . . . , (HQ, O

(T −1)
X ) such that for any 0 ≤ t < T

|ψ(t)⟩ = |ϕ(t+1)
beg ⟩|ϕ(t+1)

W ⟩ + |ψ(t)
⊥ ⟩, (45)

for some unnormalized state |ψ(t)
⊥ ⟩ orthogonal to |ϕ(t+1)

beg ⟩ ⊗ HW .

Proof. By induction. See the details in [14] appendix B.2. ◀

Now we prove that UT |ψ(T )
eff ⟩ is the only useful component in the final state |ψ(T )⟩.

▶ Lemma 20. Suppose that X is a finite random variable. For any T -query quantum
algorithm acting on registers Q, W , and any projection Πc, if dim HQ > 2 dim HW

and dim HQ ≥ 2 dim Im(Πc), then there exists a sequence of quantum random variables
(HQ, O

(1)
X ), . . . , (HQ, O

(T )
X ) such that

∥Πc|ψ(T )⟩∥2 = ∥ΠcUT |ψ(T )
eff ⟩∥2. (46)

Proof. Note that

|ψ(T )⟩ = UT (O(T )
X )aT |ψT −1⟩ (47)

= UT (O(T )
X )aT (|ϕ(T )

beg⟩|ϕ(T )
W ⟩ + |ψ(T −1)

⊥ ⟩) (48)

= UT |ϕ(T )
end⟩|ϕ(T )

W ⟩ + UT (O(T )
X )aT |ψ(T −1)

⊥ ⟩ (49)

= UT |ψ(T )
eff ⟩ + UT (O(T )

X )aT |ψ(T −1)
⊥ ⟩. (50)
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To satisfy Eq. (46), we need to find a unitary operator O(T )
X such that

ΠcUT (O(T )
X )aT |ψ(T −1)

⊥ ⟩ = 0, (51)

which means

(O(T )
X )aT |ψ(T −1)

⊥ ⟩ ∈ (U†
T Im(Πc))⊥. (52)

By the same method in the proof of Lemma 19, we can construct oracle O(T )
X . By similar

argument to Lemma 19, we can prove that if

dim HQ > dim HW + dim Im(Πc), (53)

there exists O(T )
X such that Eq. (46) holds. By assumptions that dim HQ > 2 dim HW and

dim HQ ≥ 2 dim Im(Πc), we can conclude that Eq. (46) holds. ◀

In conclusion, there exists a sequence of quantum random variables such that the output of
a T -query quantum algorithm can be simulated by a quantum algorithm using two T -parallel
queries.

▶ Theorem 21. For any T -query quantum algorithm A acting on registers Q, W , and any
projection Πc, suppose that dim HQ > 2 dim HW and dim HQ ≥ 2 dim Im(Πc). Let |ψ(T )⟩
be the final state of the algorithm. There exists another quantum circuit U low using two
T -parallel queries such that for any finite random variable X, there is a sequence of quantum
random variables (HQ, O

(1)
X ), . . . , (HQ, O

(T )
X ) satisfying

∥Πc|ψ(T )⟩∥2 = ∥
(
Πc ⊗ ⟨0|Q0,...,QT −1

)
U low|0⟩W,Q0,...,QT

∥2, (54)

where Q0, . . . , QT are T + 1 registers with nQ qubits.

Proof. Let V low
T be the low-depth quantum circuit defined in Lemma 17, and UT be the

unitary in algorithm A at time step T . By Lemma 17, the unitary U low = ((UT )QT ,W ⊗I)V low
T

satisfies(
I ⊗ ⟨0|Q0,...,QT −1

)
U low|0⟩W,Q0,...,QT

= UT |ψ(T )
eff ⟩QT ,W . (55)

By Lemma 20, there exists a sequence of quantum random variables
(HQ, O

(1)
X ), . . . , (HQ, O

(T )
X ) such that

∥Πc|ψ(T )⟩∥2 = ∥ΠcUT |ψ(T )
eff ⟩∥2 = ∥

(
Πc ⊗ ⟨0|Q0,...,QT −1

)
U low|0⟩W,Q0,...,QT

∥2. (56)

◀

4.1.2 Lower Bounds for Low-depth Quantum Mean Estimation
Algorithms

Given an input x = x0 . . . xn−1 ∈ {0, 1}n, the quantum query to it is a unitary Ox such that

Ox|i⟩|b⟩ = |i⟩|b⊕ xi⟩ (57)

for all i ∈ [n] and b ∈ {0, 1}.
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The approximate counting problem is that given Ox, output an estimate of |x| up to error
ϵ with high probability. From another perspective, we can think of [n] as a sample space Ω
with uniform distribution P , and X : Ω → {0, 1} is a Bernoulli random variable such that
X(i) = xi, and the mean of X is

p = |x|
n
. (58)

Note that

|0⟩|0⟩ Hardmard gates−−−−−−−−−−→
n∑

i=1

1√
n

|i⟩|0⟩ I⊗Ox−−−−→
n∑

i=1

1√
n

|i⟩|X(i)⟩, (59)

which means we can implement the oracle to X with one query to Ox. Hence, the approximate
counting problem can be reduced to the mean estimation problem.

A k-parallel query call to x is

O⊗k
x |i1, . . . , ik, b1, . . . , bk⟩ = |i1, . . . , ik, b1 ⊕ xi1 , . . . , bk ⊕ xik

⟩ (60)

[4] proved a k-parallel query lower bound of the approximate counting problem.

▶ Theorem 22 ([4]). For any quantum query algorithm and boolean string x ∈ {0, 1}n,

Ω
( (

n−|x|
ϵn

)(|x|+ϵn
|x|

)
k
(

n−|x|−1
ϵn−1

)(|x|+ϵn−1
|x|

)) = Ω
(p(1 − p)

ϵ2k

)
(61)

k-parallel queries to Ox is necessary to estimate p = |x|
n to within additive error ϵ.

By Theorem 22, if we want to use constant k-parallel queries to estimate p up to additive
error ϵ, k needs to satisfy

p(1 − p)
ϵ2k

= O(1), (62)

which means

k = Ω
(p(1 − p)

ϵ2

)
. (63)

Now we give a sample complexity lower bound of algorithms solving Task 8 with m = 1 using
Theorem 21. The difficulty of directly applying Theorem 21 is that it requires dim Im(Πc)
to be small. To resolve it, we prove that any quantum mean estimator can be modified to
recover the state in query register Q to |0⟩ with a small overhead so that correct answers lie
in a much smaller subspace.

▶ Theorem 23. Suppose all random variables in Task 8 have variance bounded by σ2, and
|µ| ≤ R. Let A be a quantum query algorithm acting on registers Q, W solving the quantum
non-identical mean estimation problem defined in Task 8 with repetition parameter m = 1
and accuracy ϵ/2. Suppose that 1

2nQ > nW + 2 log
( 2R

ϵ

)
+ 1, then it requires T = Ω( σ2

ϵ2 ) for
the existence of such an algorithm A, and A needs T = Ω

(
σ2

ϵ2

)
quantum experiments.

Proof. Use the uncomputation trick to combine Theorem 21 and Theorem 22. See [14]
appendix B.3. ◀
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4.1.3 Implication for Quantum Linear Systems
As mentioned in the introduction, we can possibly estimate A by the following procedure.

For fixed integers t0, γ = Θ(log(
√
n/δ)) and any 0 ≤ t < n, suppose we have a re-

gister storing |ψt0+2γt⟩. We measure |ψt0+2γt⟩ to obtain a classical state xt0+2γt, and get
|ψt0+2γt+1⟩ as the second register of Uf |ψt0+2γt⟩|0⟩ (note that |ψt0+2γt⟩ has collapsed after
the measurement), which encodes the randomness of xt0+2γt+1 given xt0+2γt. Similarly, we
can also obtain |ψ−1

t0+2γt+1⟩ by querying U−1
f . After that, we compute Uf |ψt0+2γt+1⟩|0⟩ and

collect the second register as |ψt0+2γt+2⟩, and do this computation for all t0 + 2γt + 1 to
t0 + 2(γ + 1)t− 1. Then we let t = t+ 1 and repeat this process.

After such process, we have n classical samples at even steps Xt0 :=
[xt0 , xt0+2γ , . . . , xt0+2nγ−2] ∈ Rn×n, and n quantum samples at odd steps. It holds that Xt0

is full rank with probability 1 given that

AXt0 = [xt0+1, . . . , xt0+2nγ−1] +Wt0 + Zt0 (64)

where Wt0 is a zero-mean noise matrix and ∥Zt0∥F ≤ O(δ). The matrix Zt0 denotes the
difference between E[xt0+2γt+1 | xt0+2γt] and E[xt0+2γt+1 | xt0+2γt, xt0+2γ(t+1)], which are
close since ∥An∥2 = O(− exp(n)). We define the quantum unitary Ut0 as

Ut0 |0⟩ :=
∫

W

√
ft0(W )|ψt0+1, . . . , ψt0+2nγ−1⟩X−1

t0
dW (65)

where ft0(W ) is the pdf of random matrix Wt0X
−1
t0

. Then we can use the quantum samples
collected at steps t0 + 1, . . . , t0 + 2nγ − 1 as the return of query to Ut0 (or U−1

t0
). Note

that the mean of the random variable encoded by Ut0 is O(δ)-close to A in Frobenius norm
according to (64). However, the distribution encoded in Ut0 are different for different t0
since Xt0 are different. The lower bound presented in the previous section shows that this
methods cannot achieve a desired quantum speed-up since the oracle Ut0 can only be queried
once for each t0.

4.2 Lower Bounds for m ≥ 1
Given a boolean string |x| ∈ {0, 1}n and k ∈ [n], the task of distinguishing |x| = k and
|x| = k + 1 or |x| = k − 1 can be reduced to estimating |x|

n to within 1
n additive error, which

can be regarded as a mean estimation problem. Therefore, the query complexity lower bound
for the first problem is also a lower bound for the second problem. As a result, we first prove
the query complexity lower bound of the first problem given non-identical oracles.

We use the same quantum query algorithm model in Section 4.1, where the algorithm
pre-determines U0, . . . , UT and needs to distinguish the cases between |x| = k and |x| = k+ 1
or k − 1 for any 1 ≤ k < n.

▶ Lemma 24. Given a sequence of oracles Ox1 , . . . , OxT
encoding boolean strings x1, . . . , xT

in {0, 1}n, suppose all strings have the same Hamming weight w and the algorithm can query
each oracle at most m times in turn. For any 1 ≤ k < n and m = O(

√
n), any quantum

algorithm needs Ω( n
m ) queries in total to distinguish between w = k and w = k − 1 or k + 1

with high probability.

Proof. See [14] appendix B.4. ◀

Now we give a sample complexity lower bound of the quantum non-identical mean
estimation problem with repetition parameter m.
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▶ Theorem 25. Suppose all random variables in Task 8 are Bernoulli random variables with
mean µ ∈ (0, 1) such that ϵ ≤ µ(1 −µ) and ϵ = O( 1

m2 ). It requires T = Ω( 1
ϵm2 ) if there exists

a quantum algorithm which queries each random variable at most m times in turn solves this
problem. Any such quantum query algorithm needs mT = Ω( 1

ϵm ) quantum experiments in
total.

Proof. Let n = 1
ϵ and k = µn. Since ϵ ≤ µ(1 − µ), we have 1 ≤ k ≤ n− 1. Given a boolean

string |x| ∈ {0, 1}n, the task of distinguishing |x| = k and |x| = k + 1 or |x| = k − 1 can be
reduced to estimating |x|

n to within 1
n additive error. The latter problem can be regarded

as estimating the mean of a Bernoulli random variable X to within additive error ϵ = 1
n .

Since one query to OX can be implemented by one query to Ox, the query complexity lower
bound for the first problem is also a lower bound for the second problem. From ϵ = O( 1

m2 ),
we have m = O( 1√

ϵ
) = O(

√
n). Therefore, by Lemma 24, any quantum algorithm solving the

quantum non-identical mean estimation problem with repetition parameter m needs Ω( 1
ϵm )

quantum experiments in total. ◀
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