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Preface

The 19th Conference on The Theory of Quantum Computation, Communication and Cryp-
tography (TQC) was hosted by the Okinawa Institute for Science and Technology in Japan,
and held from September 9 to September 13, 2024.

The TQC conference is a leading annual international conference for students and
researchers working in the theoretical aspects of quantum information science. The scientific
objective of TQC is to bring together the theoretical quantum information science community
to present and discuss the latest advances in the field.

Areas of interest for TQC include, but are not restricted to: quantum algorithms, models
of quantum computation, quantum complexity theory, simulation of quantum systems,
quantum cryptography, quantum communication, quantum information theory, quantum
estimation and measurement, quantum error correction and fault-tolerant quantum computing,
intersection of quantum information and condensed-matter theory, intersection of quantum
information and machine learning.

A list of the previous editions of TQC follows:
TQC 2023, University of Aveiro, Portugal
TQC 2022, University of Illinois at Urbana-Champaign, USA
TQC 2021, University of Latvia, Latvia (virtual conference)
TQC 2020, University of Latvia, Latvia (virtual conference)
TQC 2019, University of Maryland, USA
TQC 2018, University of Technology Sydney, Australia
TQC 2017, Université Pierre et Marie Curie, France
TQC 2016, Freie Universität Berlin, Germany
TQC 2015, Université libre de Bruxelles, Brussels, Belgium
TQC 2014, National University of Singapore, Singapore
TQC 2013, University of Guelph, Canada
TQC 2012, University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan
The conference consisted of invited talks, contributed talks, a poster session, a rump ses-

sion, and a business meeting. The invited talks were given by Jens Eisert (FU Berlin), Zheng-
feng Ji (Tsinghua University), Dakshita Khurana (University of Illinois Urbana-Champaign),
and Tomoyuki Morimae (Yukawa Institute for Theoretical Physics, Kyoto University). Sub-
missions were solicited for two tracks: With Proceedings (talk and proceedings) and Without
Proceedings (talk only).

There were 460 submissions for talks, 44 of which were also submitted to the With
Proceedings track. The program committee selected 92 submissions for talks, including
12 from the With Proceedings track. This year, the program committee also selected 19
submissions for outstanding posters.

We wish to thank the members of the Program Committee and all subreviewers for their
incredible work towards composing the program of the conference. We would also like to
thank the Local Organizing Committee for all their efforts in organizing the conference, as
well as the Steering Committee for maintaining the conference’s high standards. Last but
not least, we thank the authors of all the TQC 2024 submissions.
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Outstanding Paper Award

From the submission of the track With Proceedings, the Program Committee selected as the
TQC 2024 Outstanding Papers, by order of publication in the proceedings:

Multi-qubit Lattice Surgery Scheduling, by Allyson Silva, Xiangyi Zhang, Zachary Webb,
Mia Kramer, Chan Woo Yang, Xiao Liu, Jessica Lemieux, Kawai Chen, Artur Scherer,
Pooya Ronagh
Stochastic error cancellation in analog quantum simulation, by Yiyi Cai, Yu Tong, John
Preskill
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Abstract
Fault-tolerant quantum computation using two-dimensional topological quantum error correcting
codes can benefit from multi-qubit long-range operations. By using simple commutation rules, a
quantum circuit can be transpiled into a sequence of solely non-Clifford multi-qubit gates. Prior
work on fault-tolerant compilation avoids optimal scheduling of such gates since they reduce the
parallelizability of the circuit. We observe that the reduced parallelization potential is outweighed
by the significant reduction in the number of gates. We therefore devise a method for scheduling
multi-qubit lattice surgery using an earliest-available-first policy, solving the associated forest packing
problem using a representation of the multi-qubit gates as Steiner trees. Our extensive testing on
random and various Hamiltonian simulation circuits demonstrates the method’s scalability and
performance. We show that the transpilation significantly reduces the circuit length on the set of
circuits tested, and that the resulting circuit of multi-qubit gates has a further reduction in the
expected circuit execution time compared to serial execution.
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1 Introduction

Fault-tolerant quantum computation (FTQC) aims to ensure reliable quantum computing
despite faulty physical qubits. In FTQC, quantum error correction (QEC) is used to protect
a logical Hilbert space within a much larger one. Topogical quantum error correcting codes
in two dimensions, such as surface codes [8], are of particular interest given the convenience
of nearest neighbour interactions for physical realization of quantum computers. FTQC
can be achieved on topological error correction codes using lattice surgery, which facilitates
long-range entanglement via auxiliary topological patches [12].

At the physical level, the circuits executed during FTQC, are repeated rounds of parity
check operations that are scheduled to perform desired logical gates. The logical qubits
(codes) that are not involved in a logical gate must still be protected using rounds of parity
checks. Therefore, minimizing the depth of the logical circuit by parallelizing the gates
reduces the total accumulated error during computation. Our work addresses the problem of
scheduling these quantum operations on a fault-tolerant architecture using lattice surgery,
which we refer to as the lattice surgery scheduling problem (LSSP). Efficient methods for
solving the LSSP not only serve as foundations for future quantum compilers but are also
immediately applicable for predicting the quantum resources required for target quantum
algorithms. We will focus on surface codes in the rest of this paper; however, our approach
to the LSSP is easily generalizable to other two-dimensional topological codes.

A fault-tolerant algorithm can be represented as a sequence of Clifford and non-Clifford
Pauli rotations [17]. The Clifford gates are commuted to the end of the circuit and past
the logical measurements, resulting in a solely non-Clifford sequence of logical gates. We
call this step transpilation. This procedure is perceived to have two drawbacks: (1) it
is computationally expensive to iteratively apply a set of commutation rules to pairwise
consecutive gates to achieve this circuit, and (2) the resulting non-Clifford gates are highly
non-local and therefore less parallelizable. The latter caveat motivates [2, 26] to avoid this
transpilation and use algorithms for solving various shortest path problems to parallelize
circuits involving single- and two-qubit gates.

The first drawback can be rectified using a result known to the community (explicitly
explained in Appendix D of [13]) using the symplectic representation of Clifford gates
to implement an efficient transpiler. By sweeping over the entire circuit, a symplectic
representation is updated through commutation events. This procedure scales linearly with
the total number of logical gates (as opposed to quadratic scaling of naïve usage of pairwise
commutation rules). Then commuting layers of non-Clifford gates are formed, and used
to combine some of these gates into Clifford ones. The procedure of commuting Clifford
operations out is then repeated on the new sequence, until convergence is achieved.

As for the second perceived drawback, we show in Section 5 that the reduction in gate
count from the transpilation process greatly exceeds the reduction in parallelizability of
realistic circuits. We also observe that there is still a significant parallelizability potential
between the highly non-local resultant gates, motivating us to solve the LSSP by devising
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greedy heuristics for solving the NP-hard terminal Steiner tree problem [16]. We do so by
decomposing the LSSP into forest packing problems, another variant in the Steiner tree
problem family [15, 9]. This entails generating Steiner trees that connect the qubits required
by each parallelized operation without involving overlapping resources.

Our scheduling algorithm’s performance is evaluated on a diverse set of circuits, including
some generated to simulate real quantum systems, such as in the field of quantum chemistry,
with up to nearly 23 million gates prior to optimization. We analyze the scalability and
performance of our proposed algorithms to reduce gate count and to schedule operations.
Our algorithm also allows us to compare the performance of various layouts of arrays of
logical qubits surrounded by bus qubits (see Section 2 for more details). As a corollary,
we propose a layout that provides a good balance for the space–time cost trade-off against
previously suggested layouts. We draw the following conclusions from our study:

The transpilation algorithm [17] for gate count reduction will be essential for enabling
large-scale FTQC as it reduces circuit length by around one order of magnitude for the
circuits tested.
Despite the transpilation reducing parallelizability of operations, the resulting circuits
do not require prohibitive runtimes, unlike as stated in [2]. Across all tested circuits,
lower bounds calculated for the optimal number of logical cycles required to run pre-
transpiled circuits are between about two and 12 times higher than upper bounds found
for post-transpiled ones.
Our proposed algorithm can schedule the multi-qubit gates at a rate of tens of thousands
of operations per second in the computational environment tested, meaning that large
quantum circuits can be scheduled in between a few minutes and a couple of hours using
the proposed method.
The parallel scheduling also results in solutions that are better than those of serial
scheduling, with some circuits among those tested having as many as a third of their
operations benefiting from parallelization, while others have as few as 0.1%.

This paper is organized as follows. Section 2 presents the surface code layouts studied,
which are necessary for understanding the scheduling problem we solve. In Section 3,
we mathematically define the LSSP using a decomposition method which guided us in
designing our heuristics. Section 4 describes the algorithms proposed to generate dependency
constraints and to solve the LSSP. In Section 5, we present the results and an analysis of
our computational experiments and assess the performance of the proposed algorithms for a
variety of circuits. We conclude the paper in Section 6 with some remarks on our research.

2 The surface code layout

Following [17], a circuit described in the Clifford + T gate set consisting of the Pauli
gates (X, Y , Z), Hadamard gates (H), phase gates (S), controlled-NOT gates (CNOT),
and T gates is first converted to a sequence of π/4 (Clifford) and π/8 (non-Clifford) Pauli
rotations, represented as Pθ := exp(iθP ), where P is a Pauli operator and θ is a rotation
angle (Figure 1). The next step is a procedure called transpilation, in which the Clifford
operations are moved through the circuit using commutation rules and eventually removed
from the circuit, leaving only π/8 rotations. This process generally makes the operations less
parallelizable, but also reduces the total number of rotations in the circuit. The naïve method
for performing this transpilation in [17] takes O(m2) time, where m is the length of the
circuit, as each Clifford operation needs to be commuted through each π/8 rotation. However,
there is a faster algorithm [13] that employs techniques similar to efficient simulations of
Clifford operations that reduces this runtime to O(m), which for the sake of completeness is
described in Appendix A.

TQC 2024
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Gate Conversion rule

Hadamard H Z X Z=

Phase S Z=

T T Z
π/8

=

CNOT

π/4

π/4

π/4 π/4 π/4

-π/4

-π/4

Z

X

Z

X
=

Figure 1 Rules for converting Clifford + T gates into Pauli product rotations. The letters within
the boxes on the right (X, Z) represent the Pauli matrix, while the box colour represents the rotation
angle, either π/4 (purple) or π/8 (green).

Z

Z

Z X

ZX

X

X X X1

Z1Z2

X1X2

X2

Z1 Z2

Z

(a)

(b)

(c)

Figure 2 Three types of surface code patches within a 3 × 2 grid of tiles. The edges of the
patches represent the Pauli operators X (dashed) and Z (solid). Shown are example (a) single-tile
single-qubit, (b) two-tile single-qubit, and (c) two-tile two-qubit patches. Single-qubit patches follow
an XZXZ pattern initialized in any position desired, such as (a) and (b). Patches can be extended
to multiple tiles using lattice surgery.

After transpilation, all Clifford rotations are removed from the circuit. In our study, the
input for the LSSP is a circuit composed of π/8 rotations and the final qubit measurements.
Optionally, π/4 rotations are also accepted for the scheduling of non-transpiled circuits
containing Clifford gates. In our experiments described in Section 5.3, we generate schedules
for circuits both before and after the transpilation described in Appendix A, and analyze the
challenges and benefits of using this optimization procedure prior to scheduling.

We consider a large array of physical qubits partitioned into patches of surface codes of a
desired distance (see Figure 2). Two-qubit patches provide a surface code layout where both
qubits can have both X and Z operators accessible from each side of the patch [17]. This
way, Y operators can be performed in a single step by connecting the ancilla patch to both
X and Z operators simultaneously. Operations like patch initialization, patch measurement,
and patch deformation can manipulate qubits associated with these patches [17, 26]. Lattice
surgery using ancilla patches enable long-range entangling gates between the logical qubits.
We call the set of tiles dedicated to ancilla patch generation the quantum bus, with each tile
in the quantum bus hosting a bus qubit. The qubits associated with those required by the
quantum operations are called data qubits. Ancilla patches, generated during measurements,
can be discarded afterwards, freeing up bus qubits for reuse by newer ancilla patches generated
for another operation.
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d1d2 d3d4

Figure 3 Example of two parallel multi-qubit measurements performed using lattice surgery in a
surface code grid with data qubits (shown in purple), bus qubits (green), a magic state storage qubit
(red), and an ancillary qubit (pink). The π/4 rotation corresponds to an X ⊗ I ⊗ I ⊗ Z rotation
connected to the ancillary qubit available using eight bus qubits, and the π/8 rotation corresponds
to an I ⊗ Y ⊗ Y ⊗ I rotation connected to the magic state storage qubit available using five bus
qubits.

Ancilla patches can be generated in parallel to perform multiple multi-qubit measurements
simultaneously, as long as they do not share a bus or a data qubit1. Quantum operations
involving π/4 and π/8 rotations require the entanglement of the qubits required to an extra
qubit in a special state [5]. An operation Pπ/4 corresponds to a P ⊗ Y operation involving
an ancillary qubit in the zero state. Meanwhile, an operation Pπ/8 corresponds to a P ⊗ Z

operation involving a qubit in a special state called a magic state. Figure 3 shows an example
of two quantum operations – a π/4 and a π/8 rotation – performed in parallel. Operations
involving π/8 rotations may still require an additional corrective π/2 rotation operation for
all qubits originally measured with a probability of 50%, but this correction would take no
logical cycles as they are tracked classically [17].

While zero states can be instantly initialized in an ancillary qubit, magic states are
prepared through magic state distillation [4, 18] which is a costly procedure. Therefore
it is customary to assume that this procedure is performed in a separate dedicated zone
that interacts with the area comprising the data qubits on which the logical operations are
performed. We call this area the central zone, which is connected to magic state storage
qubits located at the boundaries of this zone. Having enough magic state factories providing
a distillation rate high enough to meet the magic state consumption rate within the central
zone guarantees a continuous supply of magic states to the magic state storage qubits with
no overhead required to be taken into account in the LSSP.

Figure 4 illustrates central zones comprising data qubits surrounded by a quantum bus.
Magic state storage qubits may be located anywhere at the boundary of a central zone,
assuming that magic state distillation is performed externally. Similarly, ancillary qubits
are located around the central zone, although this is not a constraint in our models. In
Figure 4(a), we show the fast block layout proposed in [17], while in Figure 4(b), we propose a
slight modification to Litinski’s layout by creating aisles of bus qubits between the data qubit
patches and adding a top aisle to the layout to facilitate the parallelization of multi-qubit
measurements, as qubits can be connected using multiple paths. Note that, for similar
layouts in which multiple qubits are encoded in a number of tiles, Litiski’s layout in which
two qubits are encoded in two tiles is essentially optimal due to the fact that the number of
qubits is related to the size of the boundary.

1 It is unclear to us whether, with standard lattice surgery operations, a data qubit can contribute to one
measurement with an X or Z operator and a second commuting measurement with the other operator
simultaneously. Nevertheless, in Section 5.2 we show that scheduling solutions can be improved by
about 2% in randomly generated circuits if this case is allowed compared to when it is forbidden.

TQC 2024
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(a) Compact (b) Parallelizable

Figure 4 Examples of central zones comprising data qubits surrounded by bus qubits, and with
ancillary and magic state storage qubits located at the boundary of the central zone. Given a layout
of type (a) with A aisles of data qubits and P data qubit patches in each aisle, a modification can
be done to transform it into a layout of type (b) by adding P (2A + 1) extra bus qubit tiles. Layout
(b) facilitates the parallelization of multi-qubit measurements, as qubits can be connected using
multiple paths.

3 The lattice surgery scheduling problem

The LSSP is defined with two necessary inputs: a quantum circuit with Pauli operations
and a logical map of the layout. The input quantum circuit is given by a sequence of m

Pauli operations R = {R1, R2, . . . , Rm} on N qubits considering their order. Each operation
R ∈ R is characterized by an angle (or measurement) from the set {±π/4, ±π/8, M},
representing π/4 rotations, π/8 rotations, and measurement operations, respectively, as well
as a Pauli string of length N (e.g., an assignment of a single-qubit Pauli element to each
qubit n ∈ {1, 2, . . . , N}). Let Rπ/4 denote the set of ±π/4 rotations in R and Rπ/8 be the
±π/8 counterpart. We use Rin to represent the single-qubit Pauli operator used by operation
Ri on qubit n. Therefore, a rotation Ri requires a qubit n if Rin ̸= I.

In quantum circuits, dependency constraints dictate the order in which quantum operations
must be performed. Operations are independent if there is no precedence relationship between
them according to the logical constraints of the circuit. Let a dependency check function
c : R × R → B be used to verify whether a pair of rotations is independent. If c(Ri, Rj) = 1
for operations Ri, Rj ∈ R, i ≤ j, then Ri must be completed before starting Rj , that is, Rj

depends on Ri. The rules defining the dependency check function are discussed in Section 4.1.
Here, it suffices to state that the dependency constraints can be abstracted into a dependency
graph Gdep = (M, A), where the nodes M represent operations. A directed arc aij ∈ A if
c(Ri, Rj) = 1.

The LSSP takes a logical map of the surface code layout as another necessary input, which
specifies the resources available for running the circuit at the logical level. The layout can be
abstracted into an undirected graph Gadj = (V, E), called the adjacency graph, representing
the logical resources, where the vertices V represent logical qubit patches and the edges E
connect adjacent vertices in the lattice. Vertices are classified according to the type of qubit
patch associated with them according to V = {VB, VD, VS, VA}, where each vertex type is
associated with the qubit types bus (B), data (D), magic state storage (S), or ancillary (A).
Figure 5 shows an example of the qubit adjacencies represented by an adjacency graph. It
should be noted that the assignment of the qubits required by the circuit to the logical data
qubits in the hardware should be known before solving the LSSP. Related studies usually
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d1d2

a1

s1

d3d4

s1Z

a1X

a1Z

d1X d3X

d1Z d3Z

d2X d4X

d2Z d4Z

(a) Logical qubit layout. (b) Adjacency graph.

Figure 5 Example layout for (a) the logical resources in the central zone converted to (b) an
adjacency graph. Qubit patches and their accessible Pauli operators are converted into vertices in
the adjacency graph, and edges represent the adjacencies between patches. The operators ZiZj (top)
and XiXj (bottom) of the two-tile, two-qubit patches can be represented by their own vertices, but
additional constraints would be required to be added to our models to account for the choice of
vertices to use when there is a possibility of connecting the ancilla patch to these operators. We
therefore disregard these operators to simplify the generation of the ancilla patches.

randomly assign qubits to patches [2]. However, more-elaborate methods for qubit placement
may be used, such as minimizing qubit communication overhead by solving a variant of the
quadratic assignment problem [14].

A solution for the scheduling problem is represented by a sequence of time-ordered sets of
operations T = {t1, t2, . . . , tT }, where T represents the number of time steps for executing all
scheduled operations and each t ∈ T is the set of operations scheduled at the respective time
step. The duration of a time step is defined by the longest operation scheduled for that time
step, measured in logical cycles. As all operations represented by Pauli rotations take one
logical cycle, the expected duration of each time step i is equal to one logical cycle regardless
of the number of operations scheduled in parallel within i, and the expected number of
logical cycles E(N) to run all time steps is equal to T . The expected number of logical cycles
E(N) can be converted into a concrete time measure, for example, in seconds, by using the
wall-clock time of logical cycles.

The LSSP can now be formally stated as follows. Given a dependency graph Gdep and
an adjacency graph Gadj, for any rotation R ∈ R, the LSSP seeks the time step at which
R should be performed to minimize the expected number of total logical cycles E(N). The
LSSP involves making two decisions: sequencing the operations and defining the resources at
the logical level needed to perform each operation. We decompose the LSSP based on these
decisions, where the sequencing decisions comprise the main problem while the resource
usage decisions comprise subproblems to be solved at each time step.

3.1 The primary problem
Let a pack be a set of mutually independent logical operations that meet the layout constraints,
such as those defined in Section 2. In other words, a pack p = R̂ ⊆ R, where c(Ri, Rj) =
0, ∀Ri, Rj ∈ R̂, and p is a valid solution for the subproblem defined in Section 3.2 given the
adjacency graph Gadj. Let P be the collection of all packs. For any pack p ∈ P , we define a
coefficient Aip = 1 if rotation Ri ∈ p, or 0 otherwise. The mathematical formulation that
we introduce concerns selecting the optimal combination of packs P∗ ⊆ P such that each
operation is covered exactly once. Thus, for any pack p ∈ P , the decision variable xp = 1 if
p ∈ P∗, or 0 otherwise.

TQC 2024
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In the LSSP, a pack pi must be scheduled before another pack pj if there exists a pair of
rotations Ri ∈ pi, Rj ∈ pj such that c(Ri, Rj) = 1. However, if there is also any c(Rj , Ri) = 1,
then a contradiction exists as this implies that pj must also be scheduled before pi. For a
set of packs P ′ ⊆ P, consider a graph where nodes are the packs in P ′ and arcs are the
precedence relationships defined. A contradiction exists if a tour in the graph can be found
between any subset of packs in P ′. Therefore, a feasible solution for the LSSP must not
involve such a contradiction. Let us define P̂ as all collections of packs in P that have a
contradiction. A mathematical formulation for the LSSP is defined as follows:

min
∑
p∈P

xp (1)

s.t.
∑
p∈P

Aipxp = 1, ∀Ri ∈ R, (2)

∑
p∈η

xp ≤ |η| − 1, ∀η ∈ P̂, (3)

xp ∈ {0, 1}, ∀p ∈ P. (4)

The objective function (1) is defined such that it minimizes the number of packs chosen given
that each pack requires the same amount of time to be executed. Constraints (2) impose that
each rotation must be scheduled exactly once. Constraints (3), where η refers to packs with
a contradiction, ensure that the packs selected will not involve a contradiction by eliminating
the formation of tours in the selected packs. Finally, constraints (4) define the domain of the
decision variables.

3.2 The subproblem

Defining the set of valid packs P for the main problem requires solving a packing subproblem.
This subproblem involves checking if a set of mutually independent operations can be
performed in parallel by verifying whether ancilla patches can be generated on the topological
code layout to connect the qubits required by the operations without violating the layout
constraints. While checking if a given packing is feasible is enough to define a valid pack for
the main problem, we model the packing subproblem such that the usage of logical resources
is minimized to reduce the error rate for the operation.

Given R̂, a set of mutually commuting rotations, where R̂π/8, R̂π/4 ⊆ R′ represent the
subsets of π/8 and π/4 rotations, respectively, let VD

i be the set of data qubit vertices
required by the rotation Ri in the adjacency graph Gadj = (V, E). Let the set of incident
edges to a vertex v ∈ V be defined as δ(v) = {(i, j) | i = v ∨ j = v, ∀(i, j) ∈ E}. For any edge
e ∈ E and rotation Ri ∈ R̂, we define a set of decision variables specifying the assignment of
the edges as yi

e = 1 if the ancilla patch for Ri uses edge e, or 0 otherwise. Similarly, for any
bus qubit v ∈ VB, another set of decision variables is defined as zi

v = 1 if Ri uses vertex v, or
0 otherwise. The packing subproblem is then defined as follows:
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min
∑

v∈VB

∑
Ri∈R̂

zi
v (5)

s.t.
∑

e∈δ(v)

yi
e = 1, ∀v ∈ VD

i , Ri ∈ R̂, (6)

∑
e∈δ(v)

yi
e = 1, ∀v ∈ VS, Ri ∈ R̂π/8, (7)

∑
e∈δ(v)

yi
e = 1, ∀v ∈ VA, Ri ∈ R̂π/4, (8)

∑
Ri∈R̂

zi
v ≤ 1, ∀v ∈ VB, (9)

2yi
(j,k) ≤ zi

j + zi
k, ∀(j, k) ∈ E , Ri ∈ R̂, (10)∑

e∈E
yi

e =
∑
v∈V

zi
v − 1, ∀Ri ∈ R̂, (11)

yi
e, zi

v ∈ {0, 1}, ∀e ∈ E , v ∈ V , Ri ∈ R̂, (12)

The objective function (5) minimizes the total number of bus qubits used to build the ancilla
patches. Constraints (6) ensure that all data qubits required by each rotation are connected
to the ancilla patch generated for that rotation by a single edge, which guarantees that no
data qubit required is crossed by the ancilla patch. Constraints (7) and (8) indicate that
there must be exactly one magic state storage qubit and ancillary qubit connected to the
π/8 and π/4 rotations, respectively. Constraints (9) impose that a bus qubit can be used by
no more than one ancilla patch. Constraints (10) ensure the connection between the two
variable sets by stating that if the edge (j, k) is used by any ancilla patch, then vertices j

and k are also used by it. Constraints (11) guarantee that the ancilla patch generated is a
tree. One property of trees is that the number of edges they contain is equal to their number
of vertices minus one. The vertices of ancilla patches are composed of the required qubits
and all bus qubits used to connect them. Finally, constraints (12) define the domain of the
binary decision variables.

Enumerating all O(2m) possible packs and solving the packing subproblem for all of
them is usually impractical. Although it is possible to address the main problem and the
enumeration of the contradicting packs for constraints (3) in real time by using techniques
like column generation or cutting-plane algorithms, considering the scale of real quantum
circuits, solving the main problem exactly is also impractical. Therefore, we next present an
algorithm that schedules operations using a scalable heuristic.

4 A greedy approach to lattice surgery scheduling

To address the LSSP, a crucial step involves building the dependency graph for searching for
valid packs. This requires a fast algorithm to perform dependency checks while preserving
the true dependency of operations.

Scheduling a long-range multi-qubit operation requires the generation of an ancilla patch
connecting the multiple qubits required, called terminals. Although any ancilla patch meeting
the connectivity requirement is valid, smaller patches are desired as they result in lower
error rates. While connecting pairs of qubits is computationally easy, as it requires solving
a shortest path problem, connecting to more terminals introduces the NP-hard terminal

TQC 2024



1:10 Multi-qubit Lattice Surgery Scheduling

Steiner tree problem [16, 6], as the connected qubits are required to be leaf nodes in a tree.
Due to the hardness of generating Steiner trees, heuristics are often employed to quickly find
near-optimal solutions [22, 25, 7, 21, 19]. Scaling tree generation for potentially millions of
operations is essential.

Operations can be scheduled in parallel with the aim of reducing the expected circuit
execution time. Checking the feasibility of scheduling multiple operations in parallel poses a
challenge, since it requires efficiently packing trees into the adjacency graph. This problem is
related to the Steiner forest packing problem, which, along with the Steiner tree packing
problem, has been extensively investigated [15, 9, 11, 3, 24].

To tackle these challenges, we have developed fast heuristics for creating the dependency
graph, searching for Steiner trees, and packing multiple trees in parallel. The LSSP is solved
using an earliest-available-first (EAF) algorithm based on the EAF policy, where operations
are scheduled as they become available, given the dependency constraints. We employ a
greedy heuristic to solve the forest packing problem, maximizing operations packed among
the available candidates. This process is repeated until all operations have been scheduled,
considering layout constraints and updated dependency graphs. Algorithm 1 outlines the
EAF algorithm for the LSSP, providing a high-level view of our designed approach. Further
details on its steps are presented below.

Algorithm 1 Earliest-Available-First Scheduling Algorithm.

1: input Pauli rotation circuit and adjacency graph;
2: Identify dependencies among operations to build a dependency graph;
3: while dependency graph is not empty do
4: Candidates ← root nodes of the dependency graph;
5: Solve the forest packing problem for the candidates, considering the adjacency graph;
6: Remove scheduled operations from the dependency graph;
7: end while
8: return operations schedule and trees generated for multi-qubit operations

4.1 Dependency graph generation
The order in which operations appear in a quantum circuit determines their dependency
relationships; in general, operations must be scheduled following this order. However, the
qubits and the Pauli operators required by the operations may allow some operations to
commute with others, meaning that they can be applied in any order without affecting
the final quantum state. This creates an opportunity to schedule commuting operations in
parallel considering their relative positions within the circuit. This section explores different
methods for generating dependency constraints, each of which has its own advantages and
trade-offs.

As previously stated, the dependency constraints can be abstracted into a dependency
graph Gdep = (V, A). The vertices, which represent quantum operations, are divided into
the subsets {Vπ/8, Vπ/4, and VM}, where each vertex type is associated with a quantum
operation type among the π/8 rotation, the π/4 rotation, and the qubit measurement (M).

The commutation check for Pauli rotations is defined as follows based on the symplectic
representation of Pauli operators as shown in Appendix A. Given two Pauli operators with
symplectic representations P = (θP |xP |zP ) and Q = (θQ|xQ|zQ), P and Q commute if
xP · zQ + xQ · zP mod 2 = 0.

A straightforward way to generate the dependency graph following the definition above,
which we refer to as the general rule, is by visiting each pair of nodes and verifying whether
they commute, which requires O(|V|2) commutation checks. Whenever a pair of nodes i

and j does not commute, then an arc aij is added to the graph. The dependency graph
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(a) General. (b) Serial. (c) Trivial.

Figure 6 Dependency graphs generated for a circuit with four operations and four qubits, where
R1 = {I, X, Y, I}, R2 = {Z, I, Z, I}, R3 = {I, Y, I, Y }, and R4 = {X, X, X, Y }. Even though R1

and R4 do not commute, the graph for the general rule (a) has only non-redundant arcs. The graph
for the serial rule (b) has a single path that respects the order of the operations in the circuit. The
graph for the trivial rule (c) restricts commutation and provides a faster way to approximate the
general graph.

generated through commutation checks is a directed acyclic graph. Therefore, it can be
generated in a transitive reduced form by avoiding redundant arcs that are inferred from
the existing arcs in the graph while preserving the relationships of connectivity between
nodes. Thus, if aij , ajk ∈ A, then a dependency constraint exists between i and k regardless
of their commutativity, that is, the dependency check function c(i, k) = 1. This graph
can be generated in a transitive reduced form using a depth-first search algorithm for the
commutation checks. In this way, the number of commutation checks is reduced by O(|A|).

Other rules can be employed to generate dependency graphs that impose dependency
constraints, even if operations commute. The serial rule guarantees that operations are
scheduled sequentially and only requires O(|V|) operations to be generated by adding the
arcs ai(i+1), ∀i ∈ {1, . . . , |V| − 1}. Another rule, the trivial rule, enforces commutation only
when qubits required by one operation are disjoint from those required by the other. From
the symplectic representation of rotations Ri and Rj , trivial commutation is only possible
when (xRi

∨ zRi
) · (xRj

∨ zRj
) = 0. We note that if data qubits cannot contribute to different

measurements simultaneously, as stated in a footnote in Section 2, the trivial rule results in
the true dependency constraints for the scheduling, as operations commuting according to
the general rule might violate this condition. Figure 6 shows a comparison of the dependency
graphs generated using the rules described for a small circuit. Different rules introduce some
trade-offs in terms of parallelization potential, but the trivial rule proves to be scalable for
circuits of a size suitable for practical applications, as discussed in Section 5.2.

4.2 Solving forest packing problems
The LSSP is addressed by employing an EAF algorithm that prioritizes the scheduling of
operations as early as possible. An operation becomes a candidate for being scheduled at the
subsequent time step if it is not dependent on any other operation that has not yet been
scheduled. This condition implies that only operations at the root node of the dependency
graph are candidates for being scheduled to occur in the same time step. As the dependency
graph is a directed acyclic graph, there must be always at least one node that meets the
condition described unless all operations have been scheduled or when qubit availability is
considered. In the latter case, waiting until all qubits required by at least one root node are
available would circumvent this issue.
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Given the set of candidate operations and the adjacency graph, the scheduling of the
candidates requires solving a forest packing problem if at least one multi-qubit operation
is a candidate, where each tree to be packed represents the ancilla patch to be used to
generate the multi-qubit entanglements. Algorithm 2 presents the greedy algorithm designed
to solve the forest packing problem. For the sake of brevity, we describe the greedy algorithm
implemented only for the scheduling of π/8 rotations, but the steps are applicable for π/4
rotations.

Algorithm 2 Greedy Forest Packing Algorithm.

1: input set of candidate operations (R̂) and adjacency graph (Gadj = (V, E));
2: Initialize forest packed S ← ∅;
3: for all Ri ∈ R̂ do
4: Temporarily update V ← VD

i ;
5: Initialize current tree Gi = (VD

i , ∅);
6: if |VD

i | > 1 then
7: Gi ← the solution to the terminal Steiner tree problem connecting terminals VD

i in the graph
Gadj;

8: end if
9: if Gi ̸= ∅ then

10: if Ri ∈ Vπ/8 then
11: if |VD

i | > 1 then
12: Replace Gi by a node g in Gadj and s← g else s← v, v ∈ VD

i ;
13: end if
14: m∗ = arg minm∈VS d(s, m);
15: if m∗ = ∅ then
16: Go to line 3;
17: end if
18: Update Gi with the path found to m∗;
19: VS ← VS \ {m∗};
20: end if
21: S ← S ∪ (Ri,Gi) and V ← V \ {VB

i };
22: end if
23: end for
24: return S

First, the set of candidate operations R̂ and the adjacency graph Gadj = (V, E) are input
(line 1). We initialize the forest packing set S as empty (line 2). The greedy algorithm
tentatively schedules one random operation Ri ∈ R̂ at a time (line 3). The data qubits
VD

i ⊂ V required by Ri define the terminals to be used to generate each tree. For each
candidate operation, we temporarily remove from V all data qubits not required by Ri to
avoid using them when generating the trees (line 4).

The forest packing problem requires that all trees generated are element-disjoint, meaning
that they can share terminal vertices but not internal vertices or edges. Each tree must be a
subgraph of Gadj. The tree generation may require two steps. First, if multiple terminals are
required, a Steiner tree is generated to connect only the required terminals (lines 6–8). Next,
if the candidate is a π/8 rotation, a vertex associated with a magic state storage qubit is
added to the tree (lines 10–20).

The Steiner tree is generated in line 7 by solving the terminal Steiner tree problem
to connect the terminals VD

i within the graph Gadj. We implement a modified version of
Mehlhorn’s algorithm [20] for the terminal Steiner tree problem variant. Our algorithm
generates a complete graph with all terminal vertices, where each edge represents the shortest
path between the connected vertices, which is found using a bidirectional Dijsktra algorithm.
Then, it finds the minimum spanning tree using the Kruskal algorithm to connect all vertices
in the complete graph. The Steiner tree generated Gi is provided, connecting all shortest
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paths chosen for the minimum spanning tree. Since terminals are required to be leaves in the
final tree, we ensure that only bus qubits are used as internal vertices in the shortest paths
generated by temporarily disconnecting non-bus qubits from the quantum bus. If no feasible
tree is found (line 9), then the algorithm moves on to the next candidate, as Ri cannot be
scheduled at this time step.

If the candidate Ri is a π/8 rotation (line 10), one of the magic state storage qubits in
VS must be added to the tree as a terminal. If this is the case, the magic state storage
qubit chosen is the one that is closest to the tree previously generated or to the single qubit
required, if this is the case. For the latter, we replace all vertices and edges used for the
tree by a single vertex gi and associate this vertex with the source vertex s. Otherwise, s

is associated with the single qubit required by Ri (lines 11–13). Then, we solve a shortest
path problem for each magic state storage qubit m ∈ VS from the source s to the magic
state storage qubit m. Given the distance d(s, m) between the source s and a magic state
storage qubit m, the magic state storage qubit chosen m∗ is the one closest to s (line 14);
however if no magic state storage qubit can be connected to the tree, this operation is skipped
(lines 15–17). If a feasible connection is found, the algorithm connects the shortest path
found to the tree (line 18) and removes m∗ from the set of storage qubits available (line 19).

Once a tree connecting all terminals is generated, this operation is considered to be
scheduled at the current checked time step, by adding the operation Ri and the tree Gi. This
process is repeated for another candidate operation using an updated version of the adjacency
graph in which all bus qubits GB

i used by the set of trees generated in this time step are
removed from the graph (line 21). Whenever a tree cannot be generated for a candidate,
then the candidate is not scheduled at this time step and waits until the next one. Once all
candidates have been checked, the algorithm returns the set of operations scheduled and the
trees generated for each of them (line 24).

The scheduling generation is significantly sped up by caching solutions found during the
process, such as those for the shortest path problem, for the terminal Steiner tree problem,
and for the forest packing problem. Thus, whenever a problem arises for inputs that have
already been checked, the previous solution can quickly be retrieved from the cache and
checked if it is feasible for the current time step.

5 Computational experiments

This section describes the results of the extensive computational experiments we performed
to test the greedy approach proposed to solve the LSSP. The experiments were run using
the Google Cloud Platform with nodes comprising an Intel Xeon Gold 6268CL CPU with
a 2.80 GHz clock and 256 GB of RAM, limited to a single computing core per run. We
implemented the greedy scheduling algorithm in Python and used the NetworkX library for
graph operations.

5.1 Test circuits
Two sets of circuits were used to test the implemented algorithms. The first set contains
random circuits generated using a structure we defined, while the second contains circuits
generated in the Clifford + T basis to represent quantum circuits with real applications.
In particular, we used Hamiltonian simulation of various systems as example circuits with
real-world applications.

The random circuits were created using a scripted approach to follow the characteristics
of circuits that emulate valid outputs of transpilation. An N -qubit circuit consists of many
π/8 rotations requiring a specified number of qubits followed by N final qubit measurements.
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Key characteristics considered during circuit generation include the circuit length m, the
total number of qubits required N , and the average percentage of qubits involved in each
operation N%.

When sampling a rotation for a random circuit, the process begins by determining the
number of qubits in its Pauli operator, drawn from a normal distribution N(N × N%, 2).
Subsequently, the qubits assigned to a Pauli operator according to the specified number
of qubits required are randomly chosen. Then, a Pauli operators among X, Y , and Z is
assigned to the chosen qubits. For our computational experiments, the random circuits were
generated with combinations from the sets m = {10,000, 20,000, 30,000}, N = {10, 30, 50},
and N% = {0.15, 0.50, 0.85}. This totals 27 combinations, where each was generated by five
seeds, resulting in 135 random circuits.

The application-inspired circuits followed well-known quantum algorithms for simulating
quantum dynamics. They were generated using Hamiltonian simulation for a single step
of a Suzuki–Trotter decomposition. Five types of Hamiltonians were generated: electronic
structure Hamiltonians of interest in quantum chemistry, one-dimensional chains of random
Pauli interactions, transverse-field Sherrington–Kirkpatrick model (TFSK) Hamiltonians,
rotated surface code (RSC) Hamiltonians, and one-dimensional Heisenberg XYZ Hamiltonians.
For quantum chemistry circuits, we used the electronic structure Hamiltonians of the molecules
H2, LiH, and H2O. The representations of the Hamiltonians for these molecules were generated
using Tangelo [23], an open source Python module for quantum chemistry. We implemented
a single step of a Trotter decomposition using PennyLane [1], another open source Python
module for quantum algorithms, ensuring an error rate below 10−5. The circuits for one-
dimensional chains of random Pauli interactions were generated by randomly selecting Pauli
interactions between all sets of three neighbouring qubits, with each interaction having a
different random interaction strength between −1 and 1, along with a fixed X-type interaction
on each qubit of strength 1, with an evolution time of 1. We considered one-dimensional
chains with 10, 20, 30, 40, and 50 qubits. The TFSK Hamiltonian circuits involved X-type
interactions of strength 1 on all qubits and ZZ interactions between all pairs of qubits
with interaction strength randomly chosen between −1 and 1, and evolved for a time of 1.
We explored 10- and 15-qubit circuits. The circuits using RSC Hamiltonians comprise all
the check operators of the RSC of distances 3, 5, and 7, with each of the X and Z check
operators given a uniformly random weight between 0 and 1, and evolved for a time of 1. The
one-dimensional Heisenberg XYZ Hamiltonians consisted of Heisenberg XYZ interactions,
with weights for the XX, Y Y , and ZZ terms randomly chosen using an uniform distribution
between −1 and 1, and were evolved for a time of 1. One-dimensional chains with 5, 10, 20,
30, and 40 qubits were considered. All these circuits were decomposed using a Solovay–Kitaev
algorithm that decomposes gates with arbitrary rotations into Clifford + T gates, with at
L2-norm error of at most 2.5 × 10−2. They were then converted to Pauli rotations using
the rules shown in Figure 1 and optimized using the transpilation algorithm described in
Appendix A. A table summarizing the characteristics of these circuits, before and after the
transpilation, is given in Appendix B.

5.2 Analysis of dependency graph generation rules
In this round of experiments, we solved the LSSP using the dependency graph generation rules
described in Section 4.1. The layouts considered were generated following the architecture
presented in Section 2, with the number of data qubits equal to N and a fixed number of
magic state storage qubits |VS| = 3 located around the central zone. The percentage gap
used to compare solutions is defined as gap = 100(S − S∗)/S∗, for a solution S compared to
another solution S∗.
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Table 1 Average statistical values for the experiments performed using each dependency graph
generation rule. W : the average dependency graph width; tdep: the dependency graph generation
time, in seconds; tsch: the scheduling time using the earliest-available-first algorithm, in seconds; ttot:
the total time (tdep + tsch); gap: the percentage gap of an LSSP solution S for a circuit compared to
the best solution among the three rules S∗. Times are not reported for the serial rule, as solutions for
the LSSP found after the dependency graph is generated using the serial rule are trivially determined
by multiplying the circuit depth by the expected time needed to execute each operation.

Dep. graph generation rule W tdep (s) tsch (s) ttot (s) gap (%)
General 1.63 133.4 386.4 519.8 0.00
Trivial 1.06 0.3 340.5 340.8 1.91
Serial 1.00 − − − 6.11

Before presenting the results of our experiments, we define a metric to analyze the
dependency graphs generated by each rule. Let us denote the depth of a node i in the
dependency graph Gdep = (N , A) as D(i) = max(i,j)∈A[D(j) + 1], where (i, j) ∈ A indicates
a directed arc from node i to node j. Then, the width Wd of Gdep at the depth d is defined
as the total number of nodes with depth d in Gdep, that is, Wd = |{i ∈ N |D(i) = d}|. Given
that Dmax = maxi∈N D(i) is the maximum depth of Gdep, we define the average width of
Gdep as

W = 1
Dmax

Dmax∑
d=1

Wd. (13)

In other words, if we were to relax the layout constraints, D(i) would denote at which time
step the operation i is scheduled, Wd would be the number of operations scheduled for time
step d, and W would represent the average number of operations scheduled per time step.
Based on these definitions, max(D) = maxi∈R D(i) represents the circuit depth and is a
lower bound for the number of time steps in the optimal solution of the LSSP. In addition,
W is a measure of the parallelization potential of a circuit. Therefore, for the serial rule
(see Section 4.1), W = 1 and max(D) = R, that is, the circuit depth is equal to the circuit
length.

Table 1 displays the average results obtained in the set of experiments for each rule used
to generate the dependency graph. We note that serial scheduling can be considered an
upper bound for the LSSP. Complementary data generated from this round of experiments
are presented in Table 2 and Figure 7.

The trivial rule is computationally lighter than the general rule, with a shorter average
wall-clock time for dependency graph generation and scheduling. Its efficiency increases with
the number of rotations, making it ideal for large-scale circuits. Although its solutions are,
on average, 1.91% worse than the best known solutions, there is potential for improvement if
simultaneous data qubit contributions to multiple measurements are allowed. Serial solutions
are, on average, 6.11% worse than the best known solutions, but the gap varies with circuit
characteristics. For circuits with N = 10 and N% = 0.15, parallel solutions can be 30–38%
better than serial ones. However, as more qubits are requested per operation, optimal
solutions tend to align with serial scheduling due to reduced parallelization potential.

Based on these observations, we conclude that the trivial rule offers better scalability for
circuits with greater length without having a significant impact on the solution quality. In
Appendix B, we show that, even after the transpilation, the Hamiltonian simulation circuits
generated can require millions of operations to be scheduled. Consequently, for the remaining
experiments, we use the trivial rule as the dependency graph generation rule.
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Figure 7 Time needed, in seconds, to generate the dependency graph and the schedule versus
circuit size, for the general rule and the trivial rule. The time to generate the dependency graph
using the trivial rule does not scale with the number of operations, making it particularly suitable
for large-scale circuits.

Table 2 Average gap to the LSSP solution generated using the serial rule. As the total required
number of qubits N and the average percentage of qubits required per operation N% increase, solutions
tend to become serialized as the average gap converges to 0%. Therefore, better dependency graph
generation rules have no advantage over the serial rule. Conversely, with fewer qubits required per
operation, the potential for circuit parallelization increases.

Dep. graph generation rule N N% = 0.15 N% = 0.50 N% = 0.85

General
10 38.73 2.26 3.98
30 9.05 0.00 0.01
50 1.00 0.00 0.00

Trivial
10 30.35 0.84 0.00
30 4.34 0.00 0.00
50 0.16 0.00 0.00

5.3 Transpilation analysis

In Table 3, we provide a comparison of solutions for the LSSP on the Hamiltonian simulation
circuits using the trivial rule. To capture substantial parallelizability without dramatically
increasing space costs, we set |VS| = |VA| =

⌈
W

⌉
for these runs. The columns with the

headings Pre-transpiled Circuit and Post-transpiled Circuit present the scheduling results for
the circuits before and after the transpilation described in Appendix A, respectively. The
following are some key observations from the data in the table.

Our proposed algorithm efficiently solves the LSSP for the Hamiltonian simulation circuits
within a reasonable length of time. It can schedule approximately 20,000 operations per
second, on average, with a 60% faster performance on post-transpiled circuits compared
to pre-transpiled ones.
Serial scheduling (column UB) solutions are improved by 29.5%, on average, when
operations are parallelized. This reduction is more pronounced for pre-transpiled cir-
cuits (37.3%) compared to post-transpiled ones (21.7%), exemplifying the benefits of
parallelization, regardless of transpilation.
Across all tested circuits, the lower bound of pre-transpiled circuits exceeds the upper
bound of post-transpiled ones significantly. This highlights the effectiveness of transpila-
tion in reducing E(N), contradicting arguments that reduced parallelizability leads to
prohibitive runtimes [2]. On average, our experiments demonstrate an 89% reduction in
circuit length and an 84% reduction in E(N) after transpilation.
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Table 3 Summary of results for the Hamiltonian simulation circuits. E(N): the expected number
of logical cycles needed to execute the generated schedule; LB: the lower bound for E(N) given
by the circuit depth; UB: the upper bound for E(N) given by the circuit length; t (s): the total
wall-clock time taken to execute the earliest-available-first scheduling algorithm, in seconds.

Pre-transpiled Circuit Post-transpiled Circuit

Circuit E(N) LB UB t (s) E(N) LB UB t (s)
H2 126,874 111,458 155,845 3.5 17,967 16,004 20,190 0.6
LiH 5,996,028 5,969,511 6,165,707 235.2 499,056 498,242 499,956 16.0
H2O 18,342,657 18,308,449 18,674,983 876.6 1,570,803 1,568,627 1,572,334 54.1
Chain10 161,381 127,456 245,558 34.1 16,209 11,850 26,094 3.7
Chain20 1,480,722 1,210,702 2,439,547 1401.0 178,039 134,262 276,383 43.5
Chain30 2,289,993 1,845,468 3,718,281 4244.8 266,178 205,402 421,462 148.0
Chain40 3,047,568 2,494,727 5,025,943 11764.1 362,395 276,593 568,238 184.3
Chain50 3,787,624 3,128,340 6,286,923 20,774.4 457,277 345,321 712,165 322.3
TFSK10 1,255,636 1,045,161 3,171,274 103.2 356,734 322,515 405,152 9.1
TFSK15 2,235,327 1,630,190 6,916,378 1084.8 793,954 716,148 890,287 23.0
Heisenberg5 1,051,046 989,580 1,451,190 35.4 161,605 145,974 177,390 3.4
Heisenberg10 2,062,007 1,876,235 2,914,850 144.1 309,846 279,904 349,330 7.1
Heisenberg20 4,042,805 3,598,315 5,790,940 1346.1 610,760 523,780 707,142 23.2
Heisenberg30 5,980,488 5,343,285 8,689,920 4735.9 802,016 685,194 1,023,910 25.4
Heisenberg40 7,838,221 7,027,555 11,528,200 13,629.8 1,196,034 1,028,524 1,394,720 56.5
RSC3 83,002 69,610 145,781 4.0 10,332 7800 16,175 0.7
RSC5 712,734 587,120 1,961,200 86.5 143,902 75,726 216,642 31.4
RSC7 1,042,185 804,273 3,707,678 566.0 255,207 130,736 396,707 77.1
Average 3,418,683 3,120,413 4,943,900 3392.8 444,906 387,367 537,460 57.2

6 Conclusion

Our study has investigated the lattice surgery scheduling problem (LSSP), which determines
the sequencing of lattice surgery operations on a two-dimensional architecture consisting
of topological error correcting codes. A logical layout of the architecture guides resource
allocation for quantum operations. Operations requiring multiple qubits require the creation
of ancilla patches for the entanglement of the required qubits. We optimize ancilla patches by
solving terminal Steiner tree problems to minimize the execution time. Parallel scheduling
is investigated by involving ancilla patches representing a quantum bus surrounding data
qubits within a dedicated central zone on the layout.

We decompose the LSSP into subproblems based on a forest packing problem. Since
enumerating all sets of candidate operations for parallelization is impractical, an algorithm
based on the earliest-available-first policy is implemented to select candidates for parallel-
ization, after which a greedy algorithm is used to solve the forest packing problem for the
selected operations, taking layout constraints into account.

Our computational experiments reveal that employing a trivial rule to generate dependency
constraints enhances scalability for larger circuits. Application-inspired large-scale circuits,
comprising up to 18 million quantum gates and 50 qubits, are successfully scheduled within
reasonable time frames. We show that parallel scheduling reduces the expected circuit
execution time, but it is heavily dependent on the structure of the logical circuit being
scheduled. Also, LSSP solutions for optimized circuits outperform scheduling for non-
transpiled circuits, reducing the expected number of logical cycles needed to execute the
generated schedule by around one order of magnitude in all circuits tested.
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There exist cases where transpilation can increase circuit depth, such as in circuits with
sequential CNOT gates acting on different qubits followed by sequences of commuting T

gates, which would make them lose commutativity after transpilation. However, in general,
the removal of Clifford gates is expected to be highly beneficial in reducing FTQC execution
time. While our approach considers the scheduling of operations in the Clifford + T gate set,
there exist architectures that might improve runtimes using operations in a different basis,
such as when arbitrary-angle gates are left in the circuit to be synthesized using resources
generated externally to the central zone. In such cases, partial transpilation can still be used
to reduce circuit depth in parts of the circuit involving Clifford + T gates.

Finally, the proposed layout considers Y operators to be common in the transpiled circuit.
In cases where this is not observed, using more-compact layouts with a smart placement of
qubits may be desirable to reduce space costs. A future research direction could be to perform
a similar scheduling analysis as was performed in this paper on a colour code lattice, as
colour codes allow for easy access to each Pauli measurement, and may lead to more-compact
layouts. Our study is a contribution to research on the development of scalable quantum
compilers and provides valuable insights into estimating quantum resources required for
future fault-tolerant computations.
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A Efficient transpilation

The transpilation of Clifford operations out of the circuit works by transforming all of the
gates in a circuit into Pauli rotations, and then commuting the Clifford operations past each
π/8 rotation arising from a T gate [17]. The main difficulty with this approach is that the
set of rotation gates is not closed under multiplication, even when the rotation gates are
restricted to Clifford operations, and since we need to preserve the order of commutation
this requires an algorithm reminiscent of bubble sort. Hence, the runtime is O(m2), where m

is the length of the circuit, since we need to push each Clifford gate past each π/8 rotation
gate individually.

This O(m2) algorithm can be avoided, however, if we use the symplectic representation of
Clifford gates [13]. Since Clifford gates can be combined, this allows us to perform operations
corresponding to multiple rotation commutations in a single step. We perform a simple pass
through the circuit, keeping an accumulated Clifford operation representing all of the Clifford
operations seen thus far, and at each step either commute this accumulator through a π/8
gate or combine it with the Clifford gate, depending on the gate present at that particular
step. This reduces the runtime of the main optimization step from O(m2) to O(m), leading
to massive reductions in computational costs.
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A.1 Commuting Clifford and rotation gates
It is important to understand how commuting a Clifford rotation past a π/8 rotation affects
it. Let us assume that U is an n-qubit unitary and P is an n-qubit Pauli operator. Given an
arbitrary angle θ, we can then expand the conjugation of the Pauli rotation about P by U as

U exp(iθP ) = U exp(iθP )U†U = U [cos(θ)I + i sin(θ)P ] U†U

=
[
cos(θ)UIU † + i sin(θ)UPU †]

U = exp(iθUPU †)U. (14)

Hence, if U is a Clifford operation such that UPU † is also a Pauli matrix (a defining feature
of Clifford operations), commuting U past a Pauli rotation results in U remaining unchanged,
while the Pauli operator is updated through conjugation. Since this works for arbitrary
angles, it also works in the case of π/8 rotations.

A.2 Representing Clifford operations
The tableau representation of Clifford gates has been extremely useful in simulating stabilizer
circuits and states [10], and is extremely useful in optimizing transpilation [13]. We leverage
the ease of representing multiplication of Clifford operators and the conjugation of a given
Pauli matrix by Clifford operators. We also note that it is straightforward to transform a
given π/4 rotation into such a representation. Conjugation can be understood as a relatively
straightforward combination of rows of the tableau, along with some bookkeeping to keep
track of the phase, and multiplication as a sequence of conjugation calls. Further, the
initialization of π/4 rotations can be instantiated through multiplication of Pauli matrices.

For a given n-qubit Pauli operator P , its symplectic representation is a list of 2n + 1 bits,
where the first bit corresponds to the phase of the Pauli operator, the next n bits represent
the X generators of the Pauli matrix, and the last n bits represent the Z generators of the
Pauli matrix. In particular, we say that P = (θ|x|z), where x and z are each n-bit strings.
We can then determine the Pauli element to which P corresponds by inspecting the values of
x and z. For a given qubit j, P acts on qubit j as: the identity matrix if xj and zj are equal
to 0; X if xj = 1 and zj = 0; Y if xj = 1 and zj = 1; and Z if xj = 0 and zj = 1. Note that,
since iXZ = Y , if both xj and zj are equal to 1, we have acquired an additional factor of i

that is not accounted for elsewhere in the representation.

A.3 An improved transpilation algorithm
We keep track of the image of a generating set of the Pauli group under conjugation by
the Clifford operator C. While the specific order of the generators does not matter, in our
representation we alternate between single-qubit X and Z operations acting on qubits of
increasing indices. As an example,

C =


0 1 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 1


represents a CNOT operation from the first qubit to the second. In this representation, an X

generator on the first qubit is mapped to an XX generator when conjugated by this Clifford
operator. The improved transpilation algorithm is shown in Algorithm 3. We simply sweep
through the circuit, either updating the given gate through conjugation or updating the
accumulated Clifford operator, resulting in a runtime that grows linearly with the length of
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the circuit. In this pseudo-code, for a given rotation R, Rθ denotes the angle of the rotation
and RPauli denotes the Pauli operator of the rotation. We now describe the various update
procedures needed on the Clifford tableau representations to implement this algorithm.

Conjugation

With this representation, we can determine the action of conjugation by this Clifford operator
on an arbitrary Pauli operator by analyzing the action of each generator making up the given
Pauli operator. In particular, if the Pauli operator is given by the symplectic representation
P = (θ|x|z), where x and z are bit strings of length n and θ is a single bit, then there are
two main computations we need to determine: to which Pauli operator the operation gets
mapped and the overall phase to which to map.

To determine the particular Pauli operator to which P gets mapped under the Clifford
operator C, we look at the bits of x and z that are nonzero and perform an XOR operation
between the rows of C that correspond to nonzero bits. If we represent the row of C

corresponding to a Pauli operator P as CP , and if Cb
P refers to the all-zeroes string if b is zero

or refers to CP if b is one, we can define the Pauli operators Px = Cx1
X1

⊕ Cx2
X2

⊕ · · · ⊕ Cxn

Xn
=

(θx|xx|zx) and Pz = Cz1
Z1

⊕ Cz2
Z2

⊕ · · · ⊕ Czn

Zn
= (θz|xz|zz). Then, the Pauli operator to which

P is mapped is Px ⊕ Pz.
After determining the basis of the given Pauli operator, we must still determine its phase

under the mapping. One necessary component is determining the number of commutations
that occur when combining each of the CXi

and CZi
, which can be found by iteratively

calculating the z operator for increasing i, and taking the inner product with the x operator
of the CXi

.
Another feature that affects the final phase is the result of the factors of i. The number

of i’s initially in P , the number of i’s created when mapping to Px and Pz, and the number
of i’s in the representation of Px ⊕ Pz combine to define the final phase of the operator.
Specifically, the number of initial i’s is given by ni,i = |x · z|, the number of intermediate
i’s is ni,m =

∑
j |CXj ,x · CXj ,z| + |CZj ,x · CZj,z|, and the number of final i’s is given by

ni,f = |(xx ⊕ xz) · (zx ⊕ zz)|. The final change in the phase resulting from the number of i’s is
then given by (ni,i+ni,m−ni,f )/2 mod 2 = θi. Putting all of the above together, the mapping
of P under the conjugation of C is given by CPC† = (θ ⊕ θx ⊕ θz ⊕ θc ⊕ θi|xx ⊕ xz|zx ⊕ zz).

Algorithm 3 Efficient Transpilation Algorithm.

1: input Pauli rotation circuit (R);
2: Let C = tableau(I);
3: Let R′ be an empty set of rotations;
4: for R ∈ R do
5: if Rθ = π/8 then
6: Let RPauli = C.conjugate(RPauli);
7: Append R to R′;
8: else if Rθ = π/4 or π/2 then
9: Let C′ = tableau(R);

10: Let C = C × C′;
11: else if r is a measurement then
12: Let RPauli = C.conjugate(RPauli);
13: Append R to R′;
14: end if
15: end for
16: return R′
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Multiplication
Another attribute needed to implement the improved transpilation algorithm is the ability to
multiply Clifford operations. In particular, if U and V are Clifford operations, the mapping of
UV PV †U† for each generator of the Pauli group must be determined. Fortunately, we already
have the mapping V PV † from the representation of V . To determine the full mapping, we
need to determine the conjugation of this operation by U , for which we can use the previous
algorithm for conjugation. A given row of UV is then determined by the conjugation of the
corresponding row of V by U .

Initialization
The attribute needed is the ability to initialize a Clifford representation from our repres-
entation of Pauli rotations, that is, how given π/4 and π/2 rotations affect each Pauli
generator under conjugation. To understand how a π/2 rotation about a Pauli operator P

affects another Pauli operator Q under conjugation requires an explicit calculation of the
commutation according to the equation

exp(iπ/4P )Q exp(−iπ/4P ) = (cos(π/4)I + i sin(π/4)P ) Q (cos(π/4)I − i sin(π/4)P )

= 1
2 (Q + iPQ − iQP + PQP ) . (15)

From this expression, we can deduce that if P and Q commute, the π/4 rotation maps Q to
itself. Similarly, if P and Q do not commute, then this rotation maps to iPQ.

B Characteristics of the Hamiltonian simulation circuits

Table 4 summarizes the key characteristics of the Hamiltonian simulation circuits generated,
as described in Section 5.1, before and after the transpilation described in Appendix A.

Table 4 Summary of the Hamiltonian simulation circuits. “Circuit”: the name of the circuit; N :
the total number of qubits required by the circuit; |R|: the circuit length (the number of operations
in the circuit); |Rπ/4| and |Rπ/8|: the number of π/4 and π/8 rotations in the circuit, respectively;
W : the average dependency graph width (Section 5.2); and N%: the average number of qubits per
operation.

Pre-transpiled Circuit Post-transpiled Circuit

Circuit N |R| |Rπ/4| |Rπ/8| W N% |R| W N%

H2 4 155,845 103,441 52,404 1.40 1.00 20,190 1.26 2.31
LiH 12 6,165,707 3,394,011 2,771,696 1.03 1.00 499,956 1.00 8.68
H2O 14 18,674,983 9,750,953 8,924,030 1.02 1.00 1,572,334 1.00 10.35
Chain10 10 245,558 155,418 90,140 1.93 1.00 26,094 2.20 1.89
Chain20 20 2,439,547 1,522,062 917,485 2.01 1.00 276,383 2.06 2.31
Chain30 30 3,718,281 2,334,375 1,383,906 2.01 1.00 421,462 2.05 2.52
Chain40 40 5,025,943 3,137,085 1,888,858 2.01 1.00 568,238 2.05 2.14
Chain50 50 6,286,923 3,920,154 2,366,769 2.01 1.00 712,165 2.06 2.18
TFSK10 10 3,171,274 2,204,520 966,754 3.03 1.00 405,152 1.26 3.78
TFSK15 15 6,916,378 4,806,264 2,110,114 4.24 1.00 890,287 1.24 4.89
Heisenberg5 5 1,451,190 959,415 491,775 1.47 1.00 177,390 1.22 2.82
Heisenberg10 10 2,914,850 1,935,570 979,280 1.55 1.00 349,330 1.25 2.90
Heisenberg20 20 5,790,940 3,818,520 1,972,420 1.61 1.00 707,142 1.35 2.57
Heisenberg30 30 8,689,920 5,735,250 2,954,670 1.63 1.00 1,023,910 1.49 1.84
Heisenberg40 40 11,528,200 7,563,480 3,964,720 1.64 1.00 1,394,720 1.36 2.49
RSC3 9 145,781 88,299 57,482 2.09 1.00 16,175 2.07 1.98
RSC5 25 1,961,200 1,167,711 793,489 3.34 1.00 216,642 2.86 2.63
RSC7 49 3,707,678 2,166,480 1,541,198 4.61 1.00 396,707 3.03 3.15
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2:2 Stochastic Error Cancellation in Analog Quantum Simulation

1 Introduction

Quantum computers are expected to outperform classical computers at solving certain
problems of interest in physics, chemistry, and materials science. Simulating the dynamics of
many-body quantum systems is an especially hard problem for classical computers, making
quantum dynamics a particularly promising arena for seeking quantum advantage. Eventually,
scalable fault-tolerant quantum computers will be able to perform accurate simulations of
quantum dynamics, but these robust large-scale quantum machines are not likely to be
available for many years. Meanwhile, what are the prospects for reaching quantum advantage
using near-term quantum simulators that are not error-corrected?

Circuit-based quantum algorithms for quantum simulation offer great flexibility and can
be error-corrected, but with current quantum technology analog quantum simulators may offer
substantial advantage in the system size and time that can be achieved in simulation [15,17,35].
Analog quantum processors have tunable Hamiltonians running on quantum platforms, but
need not have universal local control to perform informative simulations [15,18,20]. However,
because these devices are not error-corrected, it is especially important to understand how
errors accumulate during analog simulations of quantum dynamics.

Recently Trivedi et al. used the Lieb-Robinson bound to show that the errors in expectation
values of local observables can be independent of system size for short time evolution [47].
They used an error model in which the actual Hamiltonian realized in the device differs from
the desired target Hamiltonian by small local perturbations. More precisely, they considered
a geometrically local Hamiltonian on a d-dimensional lattice with N sites (each occupied by
a qubit), and assumed that the actual Hamiltonian H ′ and the target Hamiltonian H are
related through

H ′ = H + δ
M∑

i=1
Vi. (1)

Here each Vi is a local term with ∥Vi∥ ≤ 1, M = O(N) denotes the number of independent
error terms, and δ is a small number characterizing the magnitude of the local perturbations.
One of their main conclusions is that the error in the expectation value of a local observable
at time t is at most O(td+1δ), where td+1 is essentially the volume of the local observable’s
Lieb-Robinson past light cone, and is independent of the system size. For a general observable
that is not necessarily local, or for t large enough so that information has the time to reach
every part of the system, the error is at most O(Ntδ) as expected from first-order perturbation
theory.

This result can be seen as a worst-case bound, which applies even if the small local
perturbations are chosen adversarially to produce the largest possible error. However, this
worst-case choice is unlikely to occur in practice. For estimating the accumulated error
that should be anticipated under realistic conditions, it is often beneficial to consider a
probabilistic error model rather than an adversarial one. To be concrete, we consider the
error model

H ′ = H +
M∑

i=1
giVi. (2)

where in contrast to (1), we assume that the local perturbations are stochastic and statistically
independent, e.g., each gi is an independent Gaussian random variable with mean 0 and
standard deviation δ. Instead of the worst case, we may now consider the accumulation of
error in the average case. That is, we envision sampling H ′ from an ensemble of possible
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Figure 1 Numerical study of observable error of a 18-qubit system time-evolving under a
Heisenberg XXX Hamiltonian H = −J

∑
i
σ⃗i · σ⃗i+1 +

∑
i
(h+gi)Xi. Local observable Y2 is measured

on the second qubit at time t, with the system initial state being |0⟩⊗N , and the local perturbations
are Vi = Xi. The coupling strength J between qubits is set to be (0.2)π, and h = 2π. We compare
the case of gi = δ = 0.01 (symmetric error), with a Gaussian model of random local perturbations,
where gi ∼ N (0, δ2) (random error). The rapid oscillations of the error as a function of time are
discussed in Appendix A.

Hamiltonians that might be realized in the device, estimating the error that is typical for
this ensemble. In other scenarios, for example in the analysis of the Trotter error in digital
quantum simulations [10, 48], the average-case error is found to be much better than the
worst case, and the same can be expected in this analog setting. As an example, Fig. 1 shows
the difference between the worst-case and average-case error accumulation for time evolution
in a one-dimensional Heisenberg spin system perturbed by a site-dependent magnetic field.

Simple classical reasoning provides an intuitive understanding of this finding. The
cumulative effect of M error sources, each contributing a Gaussian error with standard
deviation δ and mean 0, produces a total Gaussian error with mean 0 and standard deviation√

Mδ. For M ≫ 1, this O(
√

M) cumulative error, resulting from stochastic error cancellations,
is significantly suppressed compared to the O(M) cumulative error which would occur in the
absence of such cancellations. Because of the stochastic cancellations, we can tolerate more
hardware error (larger δ) than the worst-case error bound suggests.

In this paper, we explore the role of such error cancellations in analog quantum simulators
and show that with high probability an error bound with square-root dependence on the
system size N can be achieved for general observables, in contrast to the linear N -dependence
for the worst-case error bound. That is, the error bound is improved from O(Ntδ) to
O(

√
Ntδ). From this result, we derive an improved bound for local observables in the

thermodynamic limit as well. Using the Lieb-Robinson bound, we show that the average-case
error of local observables in the thermodynamic limit is bounded above by O(td/2+1δ) as
opposed to the O(td+1δ) bound on the worst-case error. For fidelity, we show that the fidelity
decays as exp(−O(

√
Nδt)) for small δ as N increases, as observed in [40], and is therefore

slower than the exponential decay one would expect from the worst-case bound.
We are only aware of a few works besides [47] that analyze the error in analog simulation.

In [34] the error is analyzed by averaging over Haar random states, while in [37] the leading-
order error in a Gibbs state is expressed in terms of Fisher information. In contrast, we study
how errors accumulate during time evolution of a quantum state. The exp(−O(

√
Nδt)) decay
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2:4 Stochastic Error Cancellation in Analog Quantum Simulation

of fidelity is observed in [40] both experimentally and numerically, though in a setting different
from ours. In [40], the dominant noise comes from the variation of the Rabi frequency, which
is described by a single random variable. Using additional randomness introduced through
the eigenstate thermalization hypothesis (ETH) [16] and neglecting oscillatory contributions,
the authors are able to provide an explanation of the non-exponential decay. In our setting,
we do not assume ETH or neglect any error term, but model the noise as coming from
multiple statistically independent sources, and obtain a similar non-exponential decay of
fidelity.

2 Main results

Following (2), we consider a generalized setup of the local perturbation model, where each gi

in (2) is a χ-deformed Gaussian defined as follows:

▶ Definition 1 (χ-deformed Gaussian random variable). A random variable g is a χ-deformed
Gaussian random variable if there exists θ ∼ N (0, 1) such that g = χ(θ), and χ : R → R is a
strictly monotonic increasing differentiable function satisfying

|dχ(θ)/dθ| ≤ δ,

χ(0) = 0,

χ(+∞) = Γ, χ(−∞) = −Γ,

E[χ(θ)] = 0.

(3)

Such a random variable g has the nice properties that |g| ≤ Γ with probability 1, and
|g| ≤ δ|θ|. We allow choosing Γ = +∞. This definition helps us generalize beyond the
Gaussian noise model. Notably, we have the following examples that can be obtained as
χ-deformed Gaussian: (1) the uniform distribution gi ∼ U([−δ′, δ′]) where δ =

√
2/πδ′,

χ(θ) = δ′ erf(θ/
√

2), and Γ = δ′; (2) the truncated Gaussian distribution for which gi obeys
the Gaussian distribution N (0, δ′2) conditional on |gi| ≤ Γ, where δ = δ′ (one can in fact
choose δ to be slightly smaller than δ′), and χ(θ) = erf−1(erf( θ√

2 )erf( γ√
2δ′ ))

√
2δ′.

Denoting H as a target Hamiltonian to be simulated and H ′ as the actual Hamiltonian
implemented, we show in Section 3 and 4 that

▶ Theorem 2. On a lattice consisting of N -sites, for Hamiltonians H and H ′ related
through (2) (M = O(N)), with each gi being an independent χ-deformed Gaussian with
|dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞] (as defined in Definition 1), and

√
Ntδ ≤ O(1), we have∣∣tr[ρeiH′tOe−iH′t] − tr[ρeiHtOe−iHt]

∣∣ ≤ O(a
√

Ntδ∥O∥) + O(Nt2δ2∥O∥) (4)

with probability 1 − 2e−ca2 , for arbitrary a > 0 and some absolute constant c > 0.

Note that Theorem 2 holds even when Γ = ∞. We assume
√

Ntδ ≤ O(1), which gives the
time scale in which the simulation provides meaningful results. This result is stronger than
the O(Ntδ∥O∥) scaling one would get without error cancellation, i.e. gi = δ. This indicates
that for given system size N and time t, we can tolerate higher local perturbations up to

1√
Nt

instead of 1
Nt .

Additionally, one may be interested in the thermodynamic limit (N → ∞) as opposed to
a finite system [3] and explore quantum simulation tasks that are stable against extensive
errors. More precisely, for a local observable O that is supported only on a constant number
of sites, and a geometrically local Hamiltonian H , we want the error bound to be independent
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of the size of the system. With such an error bound, computing the expectation value of
local observables in time evolution falls into the category of “stable quantum simulation
tasks” as defined in [47, Prop. 4].

An system-size independent error bound implies that the hardware error (δ) does not
need to be scaled down with system size, which is highly desirable for analog simulators.
Specifically, we consider a bound for local observables acting on O(1) adjacent sites in a
quantum system on a lattice Zd

L, where d is the lattice dimension and L is the number of
sites in each direction. Combining Theorem 2 with the Lieb-Robinson bound [28], we show
in Section 5 that the stability of the quantum task can be stated:

▶ Theorem 3. We consider a geometrically local Hamiltonian H on a d-dimensional lattice
Zd

L with L sites in each direction, and a local observable O supported on O(1) sites. The
Hamiltonian can be written as H =

∑
α∈Zd

L
Hα, where ∥Hα∥ = O(1) and Hα acts non-

trivially only on sites that are within distance r0 from α, with r0 = O(1). For a H ′ related to
H through (2) (M = O(N)), with each gi being an independent χ-deformed Gaussian with
|dχ(θ)/dθ| ≤ δ, Γ = O(1) (as defined in Definition 1), td/2+1δ ≤ O(1), and each site being
acted on by only O(1) of the error terms Vi, we have∣∣tr[ρeiH′tOe−iH′t] − tr[ρeiHtOe−iHt]

∣∣ = O
(

at
d
2 +1δ∥O∥

)
+ O

(
atδ logd/2(δ−1)∥O∥

)
(5)

with probability 1 − 2e−ca2 , for any a > 0 and some absolute constant c > 0.

This is a stronger bound than the previously established one without error cancellation
with leading term of O

(
td+1δ

)
[47]. Note that in the above theorem we require that Γ = O(1),

as opposed to Γ ∈ (0, ∞] in Theorem 2. This is to ensure that the Lieb-Robinson bound
can be applied to the Hamiltonian H ′. Γ = O(1) is physically justifiable because in realistic
systems we do not expect to encounter an error that can be arbitrarily large. For the fidelity
decay, we have the following theorem:

▶ Theorem 4. On a lattice consisting of N -sites, for Hamiltonians H and H ′ related
through (2) (M = O(N)), with each gi being an independent χ-deformed Gaussian with
|dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞] (as defined in Definition 1), and a

√
Ntδ ≤ ∆, where ∆ is a

constant that is independent of a, N, t, the fidelity

F = | ⟨ϕ(t)|ϕ′(t)⟩ |2,

where |ϕ(t)⟩ = e−iHt |ϕ0⟩, |ϕ′(t)⟩ = e−iH′t |ϕ0⟩, for initial state |ϕ0⟩, satisfies

F ≥ e−O(a
√

Nδt)−O(Nδ2t2) (6)

with probability 1 − 2e−ca2 , for arbitrary a > 0 and some absolute constant c > 0.

We can see that up to leading order in δ, the fidelity decays exponentially in
√

N rather than
N , thus showing a non-exponential decay of fidelity. From this we can see that in order to
make the fidelity bounded away from 0 by a constant, it suffices to have δ = O(1/(

√
Nt)),

rather than O(1/(Nt)) that one would have with a worst-case bound. We will prove this
theorem in Section 6.

3 The average error from random noise

We first consider the average observable error accumulated during time evolution and bound∣∣E{gi}[tr[ρO′(t)]] − tr[ρO(t)]
∣∣ (7)
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2:6 Stochastic Error Cancellation in Analog Quantum Simulation

with the notation

O(t) = eiHtOe−iHt, O′(t) = eiH′tOe−iH′t, ρ(t) = e−iHtρeiHt, ρ′(t) = e−iH′tρeiH′t.

(8)

We use the evolution under the target Hamiltonian H as a reference frame, and consider the
local perturbation in the interaction picture:

e−iH′t = e−iHtT e
−i
∫ t

0

∑
i

giVi(s)ds (9)

where Vi(s) = eiHsVie
−iHs and T denotes time ordering.

We assume that δ ≤ O(1/(
√

Nt)) in the analysis below. Because M = O(N), we also
have δ ≤ O(1/(

√
Mt)). We use the Dyson expansion to analyze the accumulation of error:

E[tr[ρO′(t)]] − tr[ρO(t)]

=
∞∑

k=1

ik

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tk−1

0
dtk

∑
i1,··· ,ik

E[gi1 · · · gik ] tr
[
ρ(t)[Vi1 (t1), [· · · [Vik (tk), O] · · · ]

]︸ ︷︷ ︸
C

(k)
i1i2···ik

. (10)

With ∥ρ(t)∥tr ≤ 1,1 Note that E[gi1 · · · gik
] is either 0 (when gi’s do not appear in pairs) or

positive (when gi’s appear in pairs), and therefore to upper bound the above quantity in
absolute value we only need to upper bound

∣∣C(k)
i1i2···ik

∣∣. Because ||[A, B]|| ≤ ∥AB∥+∥BA∥ ≤
2||AB||,∣∣C(k)

i1i2···ik

∣∣ ≤ ||ρ(t)||tr||[Vi1(t1), [· · · [Vik
(tk), O] · · · ]]|| ≤ 2k∥O∥. (11)

Therefore

∣∣E[tr[ρO′(t)]] − tr[ρO(t)]
∣∣ ≤

∞∑
k=1

tk

k!E

(∑
i

gi

)k
 2k∥O∥

= E[e2t
∑M

i=1
gi − 1]∥O∥

=
(

M∏
i=1

E[e2tgi ] − 1
)

∥O∥.

(12)

Without loss of generality we assume that ∥O∥ ≤ 1 hereafter. From the above bound we
can see that we only need to focus on bounding E[e2tgi ] − 1 for each i. Using the fact that
E[gi] = E[χ(θi)] = 0 from (3) and |gi| ≤ δ|θi|, we have

E[e2tgi ] =
∞∑

k=0

(2t)k

k! E[gk
i ] ≤ 1 +

∞∑
k=2

(2δt)k

k! E[|θi|k] = E[e2δt|θi|] − 2δtE[|θi|]. (13)

Using Taylor’s theorem in the Lagrange form, with the fact that

dk

dak
E[ea|θi|] = E[ea|θi||θi|k], (14)

we have

E[e2δt|θi|] − 2δtE[|θi|] ≤ 1 + 2δ2t2E[e2δt|θi||θi|2]. (15)

1 Here ∥ · ∥tr denotes the trace norm.
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Because θi ∼ N (0, 1), for any a ≥ 0,

E[ea|θi||θi|2] = (4a2ea2
)(1 + erf a) + 4

√
2
π

ae−a2/2 −
√

2
π

aea2/2 = 1 + O(a), (16)

we have (using δ ≤ O(1/(
√

Mt)))

E[e2δt|θi|] − 2δtE[|θi|] ≤ 1 + 2δ2t2 + O(δ3t3) = 1 + 2δ2t2 + O(M−3/2). (17)

By (12), (13), and ∥O∥ ≤ 1 we then have

∣∣E[tr[ρO′(t)]] − tr[ρO(t)]
∣∣ ≤

(
1 + 2δ2t2 + O(M−3/2)

)M

− 1 = 2Mδ2t2 + O(M−1/2). (18)

The above derivation leads us to the following theorem:

▶ Theorem 5 (Average error bound). On a lattice consisting of N -sites, for Hamiltonians
H and H ′ related through (2) (M = O(N)), with each gi being an independent χ-deformed
Gaussian with |dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞], and

√
Ntδ ≤ O(1), we have∣∣E{gi}[tr[ρO′(t)]] − tr[ρO(t)]

∣∣ = O(Nδ2t2∥O∥) (19)

This error bound shows that, if we average over multiple instances of the noise, then for
the simulation to yield meaningful result up to time t for a system with size N , we need
local perturbation to be δ = O(1/(

√
Nt)), whereas the naive error bound of O(Ntδ) would

only guarantee a meaningful result only when δ = O(1/(Nt)). Therefore we can significantly
extend the time and system size of the simulation that can be performed with guarantee at
the same level of noise.

4 Concentration of the error

In the above section we focused on the expected error, but can the error be significantly larger
than its expectation value? This is a question about the concentration of the probability
measure, and our main tool is the following lemma:

▶ Lemma 6 (Gaussian concentration inequality for Lipschitz functions). Let f : RM → R be a
function which is Lipschitz-continuous with constant 1 (i.e. |f(x) − f(y)| ≤ |x − y| for all
x, y ∈ RM ), then for any t,

P [|f(X) − E[f(X)]| ≥ t] ≤ 2 exp(−ct2) (20)

for all t > 0 and some absolute constant c > 0, where X ∼ N (0, 1)M .

The origin of this lemma is rather difficult to find, but its proof can be found at many
places, including [41, Theorem 2.1.12] and [7, Chapter 6, Theorem 2.1]. It may appear at
first glance that we might need a non-Gaussian version of this result, given that the noise
we consider in Definition 1 is not necessarily Gaussian. However, later we will see that a
Gaussian version suffices because the noise can be regarded as a function of Gaussian random
variables.

Recall that the expectation value tr[ρO′(t)] is a function of the noise {gi}, which is in
turn a function of Gaussian random variables {θi} through gi = χ(θi). We therefore view
tr[ρO′(t)] as a function of {θi} which we denote by h(θ⃗), where θ⃗ = (θ1, θ2, · · · , θM ). Similarly
we denote g⃗ = (g1, g2, · · · , gM ). We will next proceed to obtain a Lipschitz constant for this
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2:8 Stochastic Error Cancellation in Analog Quantum Simulation

function. Note that the Lipschitz constant can then be chosen to be the supremum of the
2-norm of the gradient, which we will justify below: applying the mean value theorem (for
several variables), for any pair of θ⃗ and θ⃗′ we have

|h(θ⃗) − h(θ⃗′)| = |∇h(sθ⃗ + (1 − s)θ⃗′) · (θ⃗ − θ⃗′)|,

where · denotes the Euclidean inner product (or the dot product). Therefore

|h(θ⃗) − h(θ⃗′)| ≤ sup
θ⃗∗

|∇h(θ⃗∗)||θ⃗ − θ⃗′|,

where the norm | · | on the right-hand side denotes the vector 2-norm, and we have used the
Cauchy-Schwarz inequality in arriving at this bound. One can then choose the Lipschitz
constant to be anything larger than or equal to supθ⃗∗ |∇h(θ⃗∗)|, i.e., any upper bound of |∇h|,
which we will proceed to compute next. We will first bound individual partial derivatives

∂

∂θi
h(θ⃗) = dgi

dθi
∂gi

tr[Oe−iH′(g⃗)tρeiH′(g⃗)t], (21)

where we make explicit the g⃗-dependence in H ′ defined in (2). Because |dgi/dθi| ≤ δ by (3),
we only need to bound ∂gi

tr[Oe−iH′(g⃗)tρeiH′(g⃗)t]:

|∂gi
tr[OeiH′(g⃗)tρe−iH′(g⃗)t]| ≤ ∥(∂gi

eiH′(g⃗)t)Oe−iH′(g⃗)t∥ + ∥eiH′(g⃗)tO(∂gi
e−iH′(g⃗)t)∥

≤ 2∥O∥∥∂gi
e−iH′(g⃗)t∥ ≤ 2∥O∥t.

(22)

In the last inequality above we used the fact that

∥∂gi
e−iH′(g⃗)t∥ = ∥

∫ t

0
e−iH′(g⃗)(t−s)Vie

−iH′(g⃗)sds∥ ≤ t,

where we have used ∥Vi∥ ≤ 1. We therefore have |∂θi
h(θ⃗)| ≤ 2∥O∥tδ. As a result,

|∇h| =

√√√√ M∑
i=1

|∂θi
h|2 ≤ 2∥O∥

√
Mtδ. (23)

Because this holds for all choices of θ⃗, the right-hand side is an upper bound of the supremum
as well. Therefore we can choose the Lipschitz constant of h to be CLip = 2∥O∥

√
Mtδ.

h(θ⃗)/CLip then has Lipschitz constant 1. Through a direct application of Lemma 6, we
obtain that for some absolute constant c > 0 and any a > 0,

P[|h(θ⃗) − E[h(θ⃗)]| ≥ aCLip] ≤ 2e−ca2
. (24)

We then have the following result, where we also use M = O(N):

▶ Theorem 7 (Concentration bound of observable error). On a lattice consisting of N -sites, for
Hamiltonians H and H ′ related through (2) (M = O(N)), with each gi being an independent
χ-deformed Gaussian with |dχ(θ)/dθ| ≤ δ, Γ ∈ (0, +∞], and

√
Ntδ ≤ 1, we have∣∣tr[ρO(t)] − E[tr[ρO′(t)]]

∣∣ ≤ 2a∥O∥
√

Mtδ = O(a∥O∥
√

Ntδ) (25)

with probability 1 − 2e−ca2 , for arbitrary a > 0 and some absolute constant c > 0.

Combining Theorem 5 and Theorem 7, we arrive at the result stated in Theorem 2.
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5 Local observables

In this section, we will take locality into consideration to obtain an error bound for local
observables that is independent of the system size. Such an error bound is needed to make
the simulation meaningful in the thermodynamic limit. We restrict ourselves to spin systems
with spatial locality, i.e. systems with Hamiltonians defined on a d-dimensional lattice with
N sites in total and L sites in each direction, written as

H =
∑

α∈Zd
L

Hα (26)

where ∥Hα∥ ≤ ζ and Hα only acts on spins within a distance r0 from α, and r0 = O(1). A
key tool we are going to use is the Lieb-Robinson bound:

▶ Lemma 8 (Lieb-Robinson Bound, Refs. [9, 24,47]). For any local operator O with support
SO, and for any R > 0, there exist positive constants u, v that depend only on the lattice
such that

∥O(t) − OR(t)∥ ≤ ∥O∥|SO|e−µR(evζt − 1) (27)

where OR(t) = eiHRtOe−iHRt with HR = H −
∑

α|d(SHα ,SO)≥R Hα being the restriction of
the Hamiltonian to a region within distance R of SO.

We can then apply the Lieb-Robinson bound (Lemma 8) to approximate the Heisenberg
picture evolution of local observables with that corresponding to the Hamiltonian truncated
within their light cones. Specifically, we consider the Heisenberg picture of observable O

under the truncated Hamiltonian HR and H ′
R, denoted as:

OR(t) = eiHRtOe−iHRt, O′
R(t) = eiH′

RtOe−iH′
Rt (28)

where we denote HR as the truncated Hamiltonian acting non-trivially only on sites within
distance R from SO, and H ′

R as the Hamiltonian obtained from H ′ through the same
procedure. Assuming |SO| ≤ O(1), and with ∥Hα∥ ≤ ζ and e−µk ≥ 0, we arrive at

∥O′(t) − O′
R(t)∥ ≤ O(∥O∥e−µR+vζt), ∥O(t) − OR(t)∥ ≤ O(∥O∥e−µR+vζt) (29)

These bounds then allow us to upper bound the resulting errors in the expectation values
through∣∣tr[ρO′(t)] − tr[ρO′

R(t)]
∣∣ ≤ ∥O′(t) − O′

R(t)∥,
∣∣tr[ρO(t)] − tr[ρOR(t)]

∣∣ ≤ ∥O(t) − OR(t)∥,

which is true for any quantum state ρ. This is a consequence of the duality between the
Schatten 1-norm (the trace distance) and ∞-norm (the spectral norm).

Note that the Lieb-Robinson bound only holds when the strength of local terms does
not grow with the size of the system, and this is the reason why we choose Γ = O(1) in
Theorem 3, which ensures that all local terms in the Hamiltonian are bounded by a constant
that is independent of the system size.

Since now HR and H ′
R acts non-trivially only on O(Rd), making this the effective system

size. We also need to assume that the noise is spread evenly across the whole system, which
can be rigorously stated as each site being acted on by only O(1) of the error terms Vi.
Therefore there are only O(Rd) terms Vi that come into the difference between HR and H ′

R.
Consequently we can apply Theorem 2 to get∣∣tr[ρO′

R(t)] − tr[ρOR(t)]
∣∣ ≤ O(a

√
Rdtδ∥O∥) + O(Rdt2δ2∥O∥) (30)
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with probability 1 − 2e−ca2
, for some absolute constant c > 0 and any a > 0. Combining the

above bounds (29) and (30) together, we obtain∣∣tr[ρO′(t)] − tr[ρO(t)]
∣∣ ≤ O(aRd/2tδ∥O∥ + ∥O∥e−µR+vζt) (31)

Note that if we choose R = 1
µ (vζt + log(δ−1)), then we get

∣∣tr[ρO′(t)] − tr[ρO(t)]
∣∣ ≤ O

(
a∥O∥

(
vζ

µ
t + 1

µ
log(δ−1)

)d/2
tδ + δ∥O∥

)
. (32)

Using the fact that (α + β)d ≤ O(αd + βd) when α, β are constants, we arrive at∣∣tr[ρO′(t)] − tr[ρO(t)]
∣∣ ≤ O

(
at

d
2 +1δ∥O∥

)
+ O

(
atδ logd/2(δ−1)∥O∥

)
(33)

with probability 1 − 2e−ca2
. Theorem 3 then follows.

6 Non-exponential fidelity decay

The stochastic error cancellation can also be observed in the fidelity between the target
state and the actual state we get at the end of time-evolution, leading to a surprising
non-exponential decay of the fidelity for small δ. This is similar to the non-exponential
fidelity decay observed in [40]. We consider the fidelity metric as

F = |⟨ϕ(t)|ϕ′(t)⟩|2 (34)

where

|ϕ(t)⟩ = e−iHt |ϕ0⟩ , |ϕ′(t)⟩ = e−iH′t |ϕ0⟩ (35)

are pure states with |ϕ(t)⟩ denoting the time-evolved state of interest and |ϕ′(t)⟩ denoting
the state under local perturbation. Here |ϕ0⟩ is the initial state of the system. We will then
prove Theorem 4.

Proof of Theorem 4. We are interested in upper-bounding

1 − F = 1 − |⟨ϕ(t)|ϕ′(t)⟩|2. (36)

We follow similar steps as previous proofs and first bound its expectation value:∣∣E{gi}[⟨ϕ(t)|ϕ′(t)⟩] − 1
∣∣

=
∣∣E[⟨ϕ0| eiHte−iH′t |ϕ0⟩] − 1

∣∣
=
∣∣E[⟨ϕ0| T e

−i
∫ t

0

∑
i

giVi(s)ds |ϕ0⟩] − 1
∣∣

=
∣∣∣ ∞∑

k=1

(−i)k

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tk−1

0
dtk

∑
i1,··· ,ik

E[gi1 · · · gik ] ⟨ϕ0| Vi1 (t1)Vi2 (t2) · · · Vik (tk) |ϕ0⟩
∣∣∣

(37)

Here, | ⟨ϕ0| Vi1(t1)Vi2(t2) · · · Vik
(tk) |ϕ0⟩ | ≤ 1 since each local term ∥Vi∥ ≤ 1. Note that

∑
i1,··· ,ik

E[gi1 · · · gik
] = E

 ∑
i1,··· ,ik

gi1 · · · gik

 = E

( M∑
i=1

gi

)k
 ≥ 0.
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Therefore,

∣∣E{gi}[⟨ϕ(t)|ϕ′(t)⟩] − 1
∣∣ ≤ E

 ∞∑
k=1

tk

k!

(
M∑

i=1
gi

)k


= E
[
e
∑M

i=1
tgi

]
− 1

=
M∏

i=1
E
[
etgi
]

− 1

≤
M∏

i=1
(E[eδt|θi|] − δtE[|θi|]) − 1

≤
(

1 + δ2t2 + O(M−3/2)
)M

− 1

= O(Mδ2t2).

(38)

We can now bound the concentration of the fidelity, i.e, by how much ⟨ϕ(t)|ϕ′(t)⟩ can deviate
from its expectation value with large probability. Following the previous setup, we treat
⟨ϕ(t)|ϕ′(t)⟩ as a function of {θi}, denoted by h(θ⃗), where θ⃗ = (θ1, θ2, ..., θM ). We aim to find
a Lipschitz constant for this function. We have

|∂gi ⟨ϕ0| eiHte−iH′(g)t |ϕ0⟩ | ≤
∣∣∣∣∫ t

0
⟨ϕ0| eiHte−iH′(g)(t−s)(−i)Vie

−iH′(g)s |ϕ0⟩ ds

∣∣∣∣ ≤ t (39)

and |dgi/dθi| ≤ δ, giving us |∂θi
h(θ⃗)| ≤ tδ. The Lipschitz constant can then be chosen as√√√√ M∑

i=1
|∂θi

h|2 ≤
√

Mtδ = CLip. (40)

h(θ⃗)/CLip then has Lipschitz constant 1. We then obtain the following bound from Lemma 6:

P[|⟨ϕ(t)|ϕ′(t)⟩ − E[⟨ϕ(t)|ϕ′(t)⟩]| ≥ a
√

Mtδ] ≤ 2e−ca2
. (41)

for some absolute constant c > 0 and any a > 0. Combining the two bounds 38 and (41)
derived above, we arrive at

|⟨ϕ(t)|ϕ′(t)⟩ − 1| ≤ a
√

Mδt + O(Nδ2t2)

with probability 1 − 2e−ca2
. This gives us

|⟨ϕ(t)|ϕ′(t)⟩|2 ≥ (1 − a
√

Mδt + O(Nδ2t2))2

= 1 − 2a
√

Mδt + O(Nδ2t2)

= e−2a
√

Mδt−O(Nδ2t2),

(42)

for a
√

Mδt = O(1). Using M = O(N), we prove the inequality in the statement of the
theorem. ◀
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7 Conclusion

In this work, we considered the observable error bounds for analog quantum simulation under
random coherent noise coming from independent sources. We showed that such randomness
leads to improved scaling in error bounds due to stochastic error cancellation. We studied
general observables without locality constraints as well as local observables, finding in both
cases that average-case error bounds scale more favorably than worst-case error bounds. Such
cancellation indicates a higher tolerance of noise for simulation tasks on near-term analog
quantum simulators than suggested by the worst-case bound.

Although our result substantially improves the previous state-of-the-art error bounds,
there are still many factors that are not taken into consideration in our analysis. For
example, in many-body localized systems [1, 2, 5, 8, 19,23, 32], our error bound based on the
Lieb-Robinson light cone will not be able to capture the slow propagation of information,
thus leading to an over-estimation of the error. In general, a tight analysis of the error would
require understanding how operators spread in the system, which is a highly non-trivial and
system-specific problem [12,33,38,39]. Phenomena such as thermalization should also play
an important role, because if a subsystem thermalizes then the error on local operators in
the subsystem should no longer accumulate over time. Symmetry has also been shown to
be helpful in reducing error in both analog and digital quantum simulations [36,46], and so
has randomness in the simulation algorithm and the initial state [4, 10,14]. Our results for
geometrically local Hamiltonians should be generalizable to the situation with power-law
decaying interactions [11,13,22,31,43–45], where the Lieb-Robinson bound is still available
when the decay is fast enough. These observations indicate that we may still be able to
obtain more accurate characterizations of error accumulation in practical analog simulators.

In this work we focused on quantum systems consisting of qubits or qudits, but many
realistic quantum systems involve infinitely many local degrees of freedom and unbounded
operators in the Hamiltonian, which makes analysis more difficult [27,42]. We hope to tackle
this problem in future works.

Furthermore, we note that an approximate ground-state projection operator can be
written as a linear combination of time evolution operators (a fact which is instrumental
in the proof of the exponential clustering theorem and 1D area law [6, 25, 26]) and that
approximate ground-state projectors may be used in algorithms for preparing the ground
state [21, 29, 30]. We therefore expect our results to be useful for analyzing how errors in the
Hamiltonian affect expectation values of observables in the ground state. We also hope to
extend our result to thermal states using the techniques employed in [47].
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Figure 2 (Left) Comparing the oscillation part | ⟨F (t)⟩ | and the growth part | ⟨G(t)⟩ | in Eq. (43)
that describes the evolution of the error operator. The setup is the same as in Figure 1 except
that the system now contains 8 qubits and the observable is (1/N)

∑N

i=1 Yi. (Right) Error in the
observable expectation value for symmetric and random local errors. The simulation is performed
with the same parameter setup as in Fig. 1, except with h = (0.5)π.

A Separation of oscillation and growth in the observable error

In Fig. 1 we observed that the error displays rapid oscillation in time. In this appendix we
will investigate the cause of it.

We will examine how the operator O, the operator whose expectation value we want to
estimate at the end of the evolution, evolves differently under the target Hamiltonian H and
the actual Hamiltonian H ′. Using the notation introduced in Eq. (8), we denote by O(t) the
time-evolved operator O at time t in the Heisenberg picture under the target Hamiltonian
H , and by O′(t) the corresponding operator under the actual Hamiltonian H ′. We can write
down an equation governing the error O′(t)−O(t), from taking the time derivative in Eq. (8):

d
dt

(O′(t) − O(t)) = i[H, O′(t) − O(t)]︸ ︷︷ ︸
F (t)

+ i
M∑

i=1
gi[Vi, O′(t)]︸ ︷︷ ︸

G(t)

. (43)

We will show that only the second part G(t) contributes to the growth of the error. Writing
down the solution to the above differential equation using Duhammel’s principle, for 0 < s < t

we have

O′(t) − O(t) = eiH(t−s)(O′(s) − O(s))e−iH(t−s) +
∫ t

s

eiH(t−u)G(u)e−iH(t−u)du. (44)

We observe that if G(u) = 0 for s < u < t, then we would have ∥O′(t)−O(t)∥ = ∥O′(s)−O(s)∥,
and the error would not grow in magnitude. This shows that G(t) is solely responsible for the
growth of the error. The first term on the right-hand side of (43) only rotates O′(t) − O(t).

While F (t) does not contribute to the growth of the error, it nevertheless plays a part in
how the derivative changes, as can be seen from (43), which tells us that d

dt ⟨O′(t) − O(t)⟩ =
⟨F (t)⟩ + ⟨G(t)⟩. If | ⟨F (t)⟩ | ≫ | ⟨G(t)⟩ |, then the error ⟨O′(t) − O(t)⟩ will be changing at a
rate much faster than its growth, which indicates an oscillatory behavior. We numerically
found that this is indeed the case. In Fig. 2, we compare the magnitude of the oscillation part
| ⟨F (t)⟩ | and the growth part | ⟨G(t)⟩ |. We can see from the figure that | ⟨F (t)⟩ | ≫ | ⟨G(t)⟩ |,
which explains the rapid oscillation we see in Fig. 1. In particular, in the parameter setup of
Fig. 1, we applied a large X-field whose strength is ten times the coupling constants. This
X-field only contributes to F (t) but not G(t), which resulted in | ⟨F (t)⟩ | ≫ | ⟨G(t)⟩ |. When
we decrease the X-field strength the oscillation frequency decreases accordingly, as can be
seen from the right panel of Fig. 2.
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classical side, we heavily adapt the state-of-the-art classical optimization analysis to interface with
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1 Introduction

The ability to control the dynamics of a quantum system to maximize its property has been a
persistent pursuit in quantum physics and chemistry [18]. This endeavor has recently gained
momentum, spurred by the growing interest in designing quantum information processing
devices. One remarkable obstacle in controlling a quantum system’s behavior stems from
the reality that quantum systems typically evolve in the presence environmental noise.
Consequently, the control strategy must take into account system/bath interactions. In the
Markovian regime, this problem can be formulated as an optimal control problem based on
the Lindblad master equation [38, 24] acting on n qubits,

d

dt
ρ = L(t)(ρ) := −i

[
H0 +

nc∑
β=1

uβ(t)µβ , ρ

]
+

m∑
j=1

(
LjρL

†
j − 1

2{L†
jLj , ρ}

)
, (1)

in conjunction with a control functions uβ(t) that enters the system Hamiltonian through
the operator µβ , and we have nc control functions. Here ρ is a density operator on n qubits,
and the second term in Eq. (1) is a result of system/bath interactions with Lj ’s being the
jump operators. The quantum optimal control (QOC) is then formulated as an optimization
problem following [2]:

max
u

f [u(t)], f [u(t)] := tr
(
Oρ(T )

)
− α

nc∑
β=1

∫ T

0
|uβ(t)|2dt. (2)

The Hermitian operator O represents the property to be maximized. The term u(t) embodies
all the control variables {uβ} and the last term in the objective function f [u(t)] is regarded
as a regularization. It is worthwhile to point out that there are other choices of the objective
function [8] in the formulation of the QOC problem. For example, one can guide the Lindblad
dynamics (1) toward a target state ρ̄(T ). In this case, one can minimize the difference
between ρ̄(T ) and ρ(T ),

min
u
f [u(t)], f [u] := ∥ρ(T ) − ρ̄(T )∥2 + α

∑
β

∫ T

0
|uβ(t)|2dt. (3)

Implicit in both optimization problems Eqs. (2) and (3) is that ρ(T ) has to be obtained from
the Lindblad equation (1). Thus the main computational challenge comes from the repeated
computation of the solution of the Lindblad equation. In this paper, we mainly focus on the
optimal control problem with the objective function Eq. (2).

To be able to clearly illustrate the computational complexity, we assume that the
Hamiltonian H(t) and the jump operators Lj(t)’s are sparse. Moreover, the sparsity structure
for each operator does not change over time (i.e., the positions of nonzero entries do not
change with time). For a sparse matrix A, we assume we have access to a procedure PA that
can apply the following oracles:

OA,loc |i, j⟩ = |i, νA(i, j)⟩ , and (4)
OA,val |t, i, j, z⟩ = |t, i, j, z ⊕Ai,j(t)⟩ , (5)
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where νA(i, j) is the index of the j’s nonzero entry of column i in A. Particularly for the
optimal control problem, we assume we have access to PH0 , Pµβ

, and PLj
for all j ∈ [m], as

well as PO for the observable O.

Main contributions

We will present a hybrid quantum/classical algorithm for the QOC problem (1) and (2). The
overall algorithm consists of the following elements:
1. A Lindblad simulation algorithm [14, 15, 36] that prepares ρ(T ) in a purification form.

The complexity of our algorithm exhibits a linear scaling with respect to T with a scaling
factor proportional to the L1 norm of the Lindbladians instead of the Lmax norm. The
dependence of the complexity on the precision ϵ is only poly-logarithmic. Alternatively,
we can also simulate time-dependent Lindbladian using interaction picture [41]. This
algorithm applies to important models in experimental physics. For instance, in an ion
trap system, it is common to have a time-independent Hamiltonian with norm much
larger than the rest of the Lindbladian terms, and thus our algorithm can make the
simulation more efficient.

2. The construction of a quantum phase oracle of the gradient of the function f . This is
achieved by incorporating the quantum gradient computation algorithms in [21]. This
phase oracle will then be interfaced with a classical optimization algorithm.

3. Having approximates of gradients ∇f(u(t)), we use an accelerated gradient descent (AGD)
method [27] to solve the optimization problem. In particular, we analyze the influence of
the statistical error from the gradient estimation and provide a precise complexity analysis
for solving the optimization problem, which essentially characterizes the robustness of
AGD for reaching second-order stationary points and may be of independent interest.

In addition to the proposed algorithms, we provide rigorous analysis of the numerical error
and precise overall complexity estimates for the hybrid algorithm. Formally, we establish the
following result for optimal control of open quantum systems:

▶ Theorem 1 (main theorem). Assume there are nc control functions uβ(t) ∈ C2([0, T ]).
Further assume1 that ∥H0∥, ∥O∥, ∥µβ∥, ∥Lj∥ ≤ 1, and α ≥ 2/T . There exists a quantum
algorithm that, with probability at least 2/32, solves problem (2) by:

reaching a first-order stationary point ∥∇f∥ < ϵ with (1) using Õ
(

nc∥L∥be ,1T

ϵ23/8 ∆f

)
queries

to PH0 and Pµβ
, β = 1, 2, . . . , nc, and Õ

(
mn

nc∥L∥be ,1T

ϵ23/8 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1-

and 2-qubit gates; or
reaching a second-order stationary point using Õ

(
nc∥L∥be ,1T 7/4

ϵ5 ∆f

)
queries to PH0 and

Pµβ
, β = 1, 2, . . . , nc and Õ

(
mn

nc∥L∥be ,1T 7/4

ϵ5 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1- and 2-qubit

gates.
Here nc and m are respectively the number of control variables and jump operators.

Techniques

Our technical contributions are outlined as follows.

1 More generally, if ∥H0∥, ∥µ∥ = Θ(Λ), it is equivalent to enlarge the time duration T by a factor O(Λ).
2 Using standard techniques, the success probability can be boosted to a constant arbitrarily close to 1

while only introducing a logarithmic factor in the complexity.
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In Section 3, we give efficient quantum algorithms for simulating time-dependent Lindbla-
dians with a scaling factor in time proportional to the L1-norm of the Lindbladians instead
of the Lmax-norm, as well as poly-logarithmic ϵ dependence. Our simulation algorithm is
based on the higher-order series expansion from Duhamel’s principle as sketched in [36].
A notable difference from [36] is that in their paper, Gaussian quadratures are used to
approximate integrals; however, in our time-dependent case, Gaussian quadratures can no
longer be used as, unless upper bounds on the higher-order derivatives of the operators are
given in advance. The techniques for obtaining the L1-norm dependence follow from the
rescaling trick in [5], while generalized to Lindbladians. Our time-dependent Lindbladian
simulation techniques might be of independent interest.
In Section 4, we show how to simulate time-dependent Lindbladian using interaction
picture [41]. This technique is suited for simulating a Lindbladian L = L1 + L2 where
L1(·) = −i [H1, ·] is a Hamiltonian with complexity linear in norm of L2 (up to poly-
logarithmic factors) and similar number of simulations of the Hamiltonian H1 . The
simulation scheme is based on a mathematical treatment of the Lindblad equation as a
differential equation, and the construction leverages the simulation algorithms shown in
Section 3 without rescaling the evolution time. It turns out that using our simulation
algorithm in the interaction picture, we obtain better gate complexity compared with
directly using the simulation in Section 3 even with the ℓ1-norm dependence. To the
best of our knowledge, this is the first Lindblad simulation algorithm in the interaction
picture, which can also be of independent interest.
In Section 5, we adapt a nonconvex optimization algorithm that can reach first-order
stationary points with Õ(1/ϵ7/4) noisy gradient queries with ℓ2-norm error at most
O(ϵ9/8), and reach second-order stationary points with Õ(1/ϵ7/4) noisy gradient queries
with ℓ2-norm error at most Õ(ϵ3). Our setting is different from either gradient descent
(GD) or stochastic gradient descent (SGD): Compared to GD we only have access to noisy
gradients, while in standard SGD the noise can be adjusted and there is no Lipschitz
condition for the noisy gradient. With this novel setting, we successfully design an
optimization algorithm based on perturbed accelerated gradient descent (PAGD) [27].
We carefully analyze the error bound in different cases and it turns out that our algorithm
reaches an optimal error scaling for PAGD (up to poly-logarithmic factors) in finding a
first-order stationary point.

Related work

In addition to the large variety of conventional applications [20], quantum optimal control
problems are crucial in near-term quantum computing, because in the architecture of quantum
computers, the underlying physical operations such as microwave control pulses and the
modulated laser beam can be abstracted as control pulse sequences (see the survey [47]
for more detailed discussions), and hence the are inherently quantum control problems.
Quantum optimal control also plays a vital role in quantum computing algorithms. For
instance, Magann et al. [42] studied the relationship between variational quantum algorithms
(VQAs) and quantum optimal control, and showed that the performance of VQAs can
be informed by quantum optimal control theory. Banchi and Crooks [4] demonstrated
how gradients can be estimated in a hybrid quantum-classical optimization algorithm, and
quantum control is used as one important application. In Ref. [40] the authors showed that
for a quantum many-body system, if it exists an efficient classical representation, then the
optimal control problems on this quantum dynamics can be solved efficiently with finite
precision.
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There exist heuristic classical methods for solving the quantum optimal control problem,
including the monotonically convergence algorithms [48], the Krotov method [45], the
GRadient Ascent Pulse Engineering (GRAPE) algorithm [29, 17], the Chopped RAndom-
Basis (CRAB) algorithm [9], etc. Furthermore, such heuristics can be extended to quantum
optimal control of open quantum systems [31, 32, 46, 23], including [1, 33, 6]. However, these
algorithms do not establish provable guarantees for the efficiency of solving the quantum
optimal control problem. Meanwhile, the landscape of the quantum control problem has
been analyzed in [13, 16, 19], which suggests that for closed quantum systems, the landscape
may not involve suboptimal optimizers. However, the implication to the computational
complexity still remains open.

Quantum algorithms, due to their natural ability to simulate quantum dynamics, have
been developed for quantum control problems [43, 34, 12, 35]. Liu and Lin [39] developed an
efficient algorithm to output the integral of the observable in Eq. (2), which can potentially
solve a more generalized optimal control problem. These approaches employ hybrid quantum-
classical algorithms that combine a quantum algorithm for the time-dependent Schrödinger
equation with a classical optimization method. However, these efforts have been focused on
closed quantum systems, and quantum control algorithms for open quantum systems require
separate techniques.

Open questions

Our paper leaves several open questions for future investigations:
Are there efficient quantum algorithms for the optimal control of other master equations
beyond the Lindbladian equation?
How to extend the current framework to the control problems with a target density
operator ρ̄(T )? The challenge in such a control problem (3) is the estimation of the
Frobenius norm from the quantum circuit.
Gaussian quadrature was used in the Lindblad simulation method [36], which significantly
suppressed the number of terms in a Dyson-series type of approach, and implies the
implementation. The extension of Gaussian quadrature to the current framework with
time-dependent Lindbladians would require derivative bounds for the evolution operator
from both the drift and jump terms, which is not trivial.

2 Preliminaries

2.1 Notations
For a positive integer m, we use [m] to denote the set {1, . . . ,m}. In this paper, we use
two types of notations to denote vectors. For a quantum state, we use the Dirac notation
|·⟩ to denote the corresponding state vector. For vectors involved in classical information,
e.g., the gradient vector, we use bold font, such as u, to denote them. For such a vector
u ∈ Cd, we use subscripts with a norm font to indicate its entries, i.e., u1, . . . , ud are the
entries of u. When we use subscripts with a bold font, such as, u1, . . . ,uk, they are a list
of vectors. For a vector v ∈ Cd, we use ∥v∥ to denote its Euclidean norm. For a matrix
M ∈ Cd×d, we use ∥M∥ to denote its spectral norm, and use ∥M∥1 to denote its trace
norm, i.e., ∥A∥1 = Tr(

√
M†M). We also use [·, ·] to denote the operator commutator, i.e.,

[A,B] := AB −BA, and use {·, ·} to denote the anticommutator, i.e., {A,B} := AB +BA.
In addition, we use calligraphic fonts, such as L, to denote superoperators, which is also

referred to as quantum maps. Superoperators are linear maps that take matrices to matrices.
The induced trace norm of a superoperator M, denoted by ∥M∥1, is defined as

∥M∥1 := max{∥M(A)∥1 : ∥A∥1 ≤ 1}. (6)
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The diamond norm of a superoperator M, denoted by ∥M∥⋄, is defined as

∥M∥⋄ := ∥M ⊗ I∥1, (7)

where I acts on the space with the same size as the space M acts on.
We denote by C2[0, T ] the class of twice continuously differential functions in [0, T ].

2.2 Algorithmic tools
2.2.1 Block-encoding and implementing completely-positive maps
Although we assume that the input of the operators of the Lindbladian are given by sparse-
access oracles, it is convenient to use a more general input model when presenting the
simulation algorithm. For a matrix A ∈ C2n×2n , we say that a unitary, denoted by UA, is
an (α, b, ϵ)-block-encoding of A if ∥A− α(⟨0|⊗b ⊗ I)UA(|0⟩⊗b ⊗ I)∥ ≤ ϵ, where the identity
operator I is acting on n qubits. Intuitively, this unitary UA is acting on (n + b) qubits
and A appears in the upper-left block of it, i.e., UA =

(
A/α ·

· ·
)
. Here, we refer to α as the

normalizing factor.
Our simulation algorithm relies on the following technical tool from [37] for implementing

completely positive maps given the block-encodings of its Kraus operators, which generalizes
a similar tool in [15] where the Kraus operators are given as linear combinations of unitaries.

▶ Lemma 2 (Implementing completely positive maps via block-encodings of Kraus operators [37]).
Let A1, . . . , Am ∈ C2n be the Kraus operators of a completely positive map. Let U1, . . . , Um ∈
C2n+n′

be their corresponding (sj , n
′, ϵ)-block-encodings, i.e.,

∥Aj − sj(⟨0| ⊗ I)Uj |0⟩ ⊗ I)∥ ≤ ϵ, for all 1 ≤ j ≤ m. (8)

Let |µ⟩ := 1√∑m

j=1
s2

j

∑m
j=1 sj |j⟩. Then (

∑m
j=1 |j⟩⟨j| ⊗ Uj) |µ⟩ |0⟩ ⊗ I implements this com-

pletely positive map in the sense that∥∥∥∥∥∥I ⊗ ⟨0| ⊗ I

 m∑
j=1

|j⟩⟨j| ⊗ Uj

 |µ⟩ |0⟩ |ψ⟩ − 1√∑m
j=1 s

2
j

m∑
j=1

|j⟩Aj |ψ⟩

∥∥∥∥∥∥ ≤ mϵ√∑m
j=1 s

2
j

(9)

for all |ψ⟩.

We also need the following lemma from [37] for obtaining a block-encoding of a linear
combination of block-encodings.

▶ Lemma 3 (Block-encoding of a sum of block-encodings [37]). Suppose A :=
∑m

j=1 yjAj ∈
C2n×2n , where Aj ∈ C2n×2n and yj > 0 for all j ∈ {1, . . .m}. Let Uj be an (αj , a, ϵ)-
block-encoding of Aj, and B be a unitary acting on b qubits (with m ≤ 2b − 1) such that
B |0⟩ =

∑2b−1
j=0

√
αjyj/s |j⟩, where s =

∑m
j=1 yjαj . Then a (

∑
j yjαj , a+ b,

∑
j yjαjϵ)-block-

encoding of
∑m

j=1 yjAj can be implemented with a single use of
∑m−1

j=0 |j⟩⟨j| ⊗ Uj + ((I −∑m−1
j=0 |j⟩⟨j|) ⊗ IC2a ⊗ IC2n ) plus twice the cost for implementing B.

2.2.2 Optimization
For the current quantum-classical hybrid algorithm, we will couple a Lindblad simulation with
a classical optimization algorithm. For this purpose, we work with the PAGD algorithm [27],
which is based on Nesterov’s accelerated gradient descent idea [44],

uk+1 = uk − η∇f(uk) + (1 − θ)vk, vk+1 = uk+1 − uk. (10)
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Here uk is the kth iterate of the control variable. The idea in PAGD is to introduce a
perturbation to the iterate when ∥∇f∥ > ϵ for some iterations, along with a negative
curvature exploitation step.

There are two common goals for solving (nonconvex) optimization problems:
x is called an ϵ-approximate first-order stationary point if ∥∇f(x)∥ ≤ ϵ.
x is called an ϵ-approximate second-order stationary point if ∥∇f(x)∥ ≤
ϵ, λmin(∇2f(x)) ≥ −√

ϱϵ. Here f is a ϱ-Hessian-Lipschitz function, i.e., ∥∇2f(x) −
∇2f(y)∥ ≤ ϱ∥x − y∥ for any x and y.

2.2.3 Quantum gradient estimation
With copies of ρ(T ), which will be obtained from Lindblad simulation algorithms, and sparse
access to O, we can obtain an estimated gradient value of J̃1(u). The high-level strategy
is to construct a probability oracle first, then construct a phase oracle with the probability
oracle, and finally obtain the gradient by the phase oracle. The probability oracle and the
phase oracle are defined as follows.

The Lindblad simulation algorithm leads to a purification of ρ(T ), i.e., ρ(T ) = tr(|ρT ⟩⟨ρT |).
It is clear that the regularization term in (2) is easy to compute. With the purification, we
can express the first term as,

J̃1(u) := ⟨ρT |O ⊗ I |ρT ⟩ . (11)

Suppose UO denotes the block encoding of O, i.e. ⟨0 |⟨ψN |UO| 0⟩|ψN ⟩ = ⟨ψN |O|ψN ⟩. Let
c-UO be the controlled UO. Applying Hadamard test circuit (H ⊗ I) (c−UO) (H ⊗ I) acting
on |ρT ⟩ produces√

f(u) |1⟩ |ϕ1(u)⟩ +
√

1 − f(u) |0⟩ |ϕ0(u)⟩ (12)

where f(u) := − 1
2 ⟨ρT |O|ρT ⟩ + 1

2 = − 1
2 J̃1(u) + 1

2 . By Lemma 48 of [22], we can efficiently
construct a block encoding of O with sparse access to O. The 1/2 factor does not matter
because the gradient will only be multiplied by a constant factor.

▶ Definition 4 (Probability oracle). Consider a function f : Rd → [0, 1]. The probability
oracle for f , denoted by Uf , is a unitary defined as

Uf |x⟩|0⟩ = |x⟩
(√

f(x)|1⟩ |ϕ1(x)⟩ +
√

1 − f(x)|0⟩ |ϕ0(x)⟩
)
,

where |ϕ1(x)⟩ and |ϕ0(x)⟩ are arbitrary states.

▶ Definition 5 (Phase oracle). Consider a function f : Rd → R. The phase oracle for f ,
denoted by Of , is a unitary defined as

Of |x⟩|0⟩ = eif(x)|x⟩|0⟩

▶ Theorem 6 (Constructing phase oracle with probability oracle, Theorem 14 of [21]). Consider
a function f : Rd → [0, 1]. Let Uf be the probability oracle for f . Then, for any ϵ ∈ (0, 1/3),
we can implement an ϵ-approximate of the phase oracle Of for f , denoted by Õf , such
that ∥Õf |ψ⟩|x⟩ − Of |ψ⟩|x⟩∥ ≤ ϵ, for all state |ψ⟩. This implementation uses O(log(1/ϵ))
invocations to Uf and U†

f , and O(log log(1/ϵ)) additional qubits.

In order to interface the Lindblad simulation algorithm with a classical optimization
method, one needs to estimate the gradient of the objective function. Similar to the
approach in [35], we first represent the control variable as a piecewise linear function in time
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uβ(t) ≈
∑N

j=1 ujBj(t) with Bj(t) being the standard shape function and uj being a nodal
function. The total number of steps N is proportional to the time duration T. We will use the
improved Jordan’s algorithm [28] using high order finite difference formulas [21]. Basically,
the gradient estimation in [21] produces an estimate g(u), such that, ∥∇J1(u) − g(u)∥ < ϵ

with complexity O(d/ϵ), which is clearly better than a direct sampling approach. However,
to achieve this complexity, the objective function needs to satisfy a derivative bound. Toward
this end, we first establish an a priori bound for the derivative.

▶ Lemma 7. Let α = (α1, . . . , αk) ∈ [N + 1]k be an index sequence3. The derivatives of the
control function J̃1 with respect to the control variables satisfy:∥∥∥∥∥ ∂αJ̃1

∂uα1uα2 · · ·uαk

∥∥∥∥∥ ≤ (k + 1)! (δt∥µ∥)k
. (13)

This smoothness provides a basis for estimating the complexity of Jordan’s algorithm [21],

▶ Lemma 8 (Rephrased from Theorem 23 of [21]). Suppose the access to f : [−1, 1]N → R is
given via a phase oracle Of . If f is (2m+ 1)-times differentiable and for all x ∈ [−1, 1]N ,
and |∂2m+1

r f(x)| ≤ B for r = x/∥x∥, then there exists a quantum algorithm that outputs an
approximate gradient g such that ∥g − ∇f(0)∥∞ ≤ ϵ with probability at least 1 − ρ using

Õ

(
max

{
N1/2B1/(2m)N1/(4m) log(N/ρ)

ϵ1+1/(2m) ,
m

ϵ

})
(14)

queries to Of , and Õ(N) additional 1- and 2-qubit gates.
In particular, when f(x) is a polynomial of degree no greater than 2m, the query complexity

to Of becomes, Õ
(

m
ϵ

)
.

After adapting this algorithm to the objective function in Eq. (11), we find that,

▶ Lemma 9. Let J̃1 be defined as in Eq. (11). Suppose we are given access to the phase oracle
O

J̃1
for J̃1. Then, there exists a quantum algorithm that outputs an approximate gradient g

such that ∥g − ∇J̃1∥ ≤ ϵg with probability at least 1 − γ using Õ (ncT log(N/γ)/ϵg) queries
to O

J̃1
, and Õ(N) additional 1- and 2-qubit gates.

Proof. Although the derivative bound in Lemma 7 does not fulfill the condition in [21], we
can apply Theorem 23 in [21]. By choosing the optimal value m, we arrive at the complexity
bound. ◀

With the gradient estimated, we can now move to the optimization algorithm. The
PAGD algorithm in [27] assumes the gradient- and Hessian-Lipschitz condition, which we
will prove here for the control problem. In particular, the smoothness constant ℓ and the
Hessian-Lipschitz constant ϱ can be approximated by the same technique as Lemma 7.

▶ Lemma 10. Let α = (α1, . . . , αk) ∈ [N + 1]k be an index sequence, then J̃1 is l-smooth
and ρ-Hessian Lipschitz continuous, i.e.

∥∇J̃1(u) − ∇J̃1(v)∥ ≤ l∥u − v∥, and ∥∇2J̃1(u) − ∇2J̃1(v)∥ ≤ ϱ∥u − v∥. (15)

The smoothness parameters are given by, l = 3!(N+1)δt2∥µ∥2∥O∥, ϱ = 4!(N+1)δt3∥µ∥3∥O∥.

We refer the readers to the full version of this paper [26, Appendix B] for the proof of this
lemma.

3 For a precise definition of an index sequence, see Definition 4 of [21].
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3 Simulating open quantum systems with time-dependent Lindbladian

Ref. [36, Section 6] sketched a method for simulating open quantum systems with time-
dependent Lindbladian. In this section, we present the details of this simulation algorithm.

Motivated by the time scaling idea in [5], we define a change-of-variable function as

var(t) :=
∫ t

0
ds ∥L(s)∥be. (16)

By simulating the Lindblad dynamics on the new time scale, the overall complexity exhibits
a better dependence on the norm of the Lindbladians in time. To this end, we need the
following oracle to perform the inverse change-of-variable:

Ovar |t⟩ |z⟩ = |t⟩
∣∣z ⊕ var−1(t)

〉
. (17)

In addition, we need the following oracle to obtain the normalizing constant α0(t) for H(t)
and αj(t) for Lj(t): for all j = [m],

OH,norm |t⟩ |z⟩ = |t⟩ |z ⊕ α0(t)⟩ , and OLj ,norm |t⟩ |z⟩ = |t⟩ |z ⊕ αj(t)⟩ . (18)

As in [36], we define the block-encoding norm for a Lindbladian L, denoted by ∥L∥be for
normalization purposed:

∥L∥be := α0 + 1
2

m∑
j=1

α2
j . (19)

The goal of this section is to prove the following theorem.

▶ Theorem 11. Suppose we are given an (α0(t), a, ϵ′)-block-encoding UH(t) of H(t), and an
(αj(t), a, ϵ′)-block-encoding ULj(t) for each Lj(t) for all 0 ≤ t ≤ T . Let ∥L∥be,1 be defined as
∥L∥be,1 :=

∫ T

0 dτ ∥L(τ)∥be, Suppose further that ϵ′ ≤ ϵ/(2t(m+1)). Then, there exists a quan-

tum algorithm that outputs a purification of ρ̃T of ρ̃(T ) where
∥∥∥∥ρ̃(T ) − T e

∫ T

0
dτ L(τ)(ρ0)

∥∥∥∥
1

≤ ϵ

using

O

∥L∥be,1

 log
(

∥L∥be,1/ϵ
)

log log
(

∥L∥be,1/ϵ
)
2 (20)

queries to UH(t), ULj(t), Ovar, OH,norm, and OLj ,norm, and Õ
(

(m+ n)∥L∥be,1

)
additional

1- and 2-qubit gates, where n is the number of qubits the Lindbladian is acting on.

3.1 High-level overview of the simulation algorithm
Here we briefly outline the techniques that led to the stated complexity. Let the Hamiltonian
H(t) = H0 +

∑
β uβ(t)µβ , we rewrite equation (1) as follows

d

dt
ρ = L(t)(ρ) := −i[H(t), ρ] +

m∑
j=1

(Lj(t)ρL†
j(t) − 1

2{Lj(t)†Lj(t), ρ}) (21)

= LD(t)(ρ) + LJ(t)(ρ). (22)
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Here we have decomposed the Lindbladian into a drift term LD(t) and a jump term LJ(t):

LD(t)(ρ) = −i[H(t), ρ] − 1
2

m∑
j=1

{Lj(t)†Lj(t), ρ} = J(t)ρ+ ρJ(t)†, (23)

LJ(t)(ρ) =
m∑

j=1
Lj(t)ρLj(t)†, (24)

where J(t) := −iH(t) − 1
2
∑m

j=1 Lj(t)†Lj(t).
With the known initial value ρ(0) = ρ0, the solution of Eq. (22) can be written as the

linear combination of the following equations.{
∂tρ = LD(t)(ρ)
ρ(0) = ρ0

, and
{
∂tρ = LD(t)(ρ) + LJ(t)(ρ)
ρ(0) = 0

. (25)

Specifically, for the first part of Eq. (25), the density operator follows ρ(t) =
V (0, t)ρ0V (0, t)† = K[V (0, t)](ρ0), where V (s, t) = T e

∫ t

s
J(τ)dτ is the time-ordered expo-

nential of J . A brief introduction of time-ordered exponential can be found in in the full
version of this paper ([26, Appendix A]). For the second part of Eq. (25), the density operator
follows ρ(t) =

∫ t

0 g(t, s)ds, where the function g(t, s) satisfying

∂tg(t, s) = LD(t)(g(t, s)), and lim
t→s

g(t, s) = LJ(s)(ρ(s)). (26)

By using time-ordered evolution operator and Duhamel’s principle, the solution of Eq. (21)
can be expressed as

ρ(t) = K[V (0, t)](ρ0) +
∫ t

0
K[V (s, t)](LJ(s)(ρ(s))) ds. (27)

The time-ordered exponential V (0, t) can be approximated by the truncated Dyson series
(see the full version of this paper [26, Appendix A.1] for details),

V (0, t) = T e
∫ t

0
J(τ)dτ ≈

K∑
k=0

1
k!T

∫ t

0
dτJ(τk) · · · J(τ1), (28)

where T
∫ t

0 dτ (·) denote an integration over a k-tuple of time variables (τ1, . . . , τk) while
keeping the time ordering: τ1 ≤ τ2 ≤ · · · ≤ τk. Thus,

V (s, t) = T e
∫ t

s
J(τ)dτ = T e

∫ t−s

0
J(s+τ)dτ (29)

≈
K∑

k=0

1
k!

∫ t−s

0
dτT [J(τk) · · · J(τ1)]. (30)

As in [30], we use the rectangle rule to approximate the integral in the truncated Dyson
series. Note that more efficient quadratures could be potentially used as we use later
approximation the integral in Eq. (27), for instance, the scaled Gaussian quadrature; however
such methods require upper bounds on higher-order derivatives of J(t), which are not readily
available.

By applying Duhamel’s principle (see Eq. (27)) several times, we obtain the following
approximation with notations introduced in [10].

GK(t) := K[V (0, t)] +
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk, (31)
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where

Fk(sk, . . . , s1) := K[V (sk, t)]LJ(sk) · · · K[V (s1, s2)]LJ(s1)K[V (0, s1)]. (32)

This yields an approximation of the evolution superoperator ρ(t) ≈ GK(t)(ρ(0)). The key
observation is that Fk is a composition of CPTP maps. The second term of GK(t) can be
approximated by using truncated Dyson series.

3.2 Detailed constructions
In this subsection, we present the construction of the time-dependent Lindbladian simulation
algorithm. For the sake of conciseness, we omit the convoluted details in treating the
time-ordering of the truncated Dyson series. All these details can be found in the full version
of this paper [26, Appendix D].

The scaled evolution time

Recall that we introduced the rescaled time in Eq. (16), and let define t̂ as

t̂ = var(t) =
∫ t

0
ds ∥L(s)∥be. (33)

Correspondingly, we follow the rescaled Lindblad equation, by defining ρ̂(t̂) = ρ((var−1(t̂)),
which, from Eq. (1), satisfies the equation

d
dt̂
ρ̂(t̂) = L̂(t̂)ρ̂(t̂), (34)

where the rescaled Lindbladian is as,

L̂(t̂) = L(var−1(t̂))∥∥L(var−1(t̂))
∥∥

be
. (35)

This rescaling can be achieved by defining

Ĥ(t̂) := H(var−1(t̂))∥∥L(var−1(t̂))
∥∥

be
, and L̂(t̂) := L(var−1(t̂))√∥∥L(var−1(t̂))

∥∥
be

. (36)

The scaled effective Hamiltonian (not Hermitian), denoted by Ĵ(t̂), is therefore defined as

Ĵ(t̂) := J(var−1(t̂))∥∥L(var−1(t̂))
∥∥

be
. (37)

As a result, simulating L̂ for time t̂ = var(t) is equivalent to simulating L for time t. Moreover,
the block-encoding-norm of L̂ is at most 1 because of Eq. (35).

To simplify the notation, in the remainder of this section we assume the Lindbladian is
already scaled so that we can drop the ·̂ notation for the scaled operators and evolution time.

LCU construction

Let UJ(t) be an (α, a, ϵ)-block-encoding of J(t). Given the oracles as in Eqs. (4) and (5),
the unitary

∑
t |t⟩⟨t| ⊗ UJ (t) for discretized times t can be implemented. Using Lemma 3, a

block-encoding of V (s, t) can also be implemented. More specifically, we use the rectangle
rule as in [30] to approximate the integrals in Eq. (30):

Ṽ (s, t) =
K′∑

k=0

(t− s)k

Mkk!

M−1∑
j1,...,jk=0

T J(tjk
) · · · J(tj1). (38)

TQC 2024



3:12 Efficient Optimal Control of Open Quantum Systems

Here the time-ordered term is defined as follows, for each tuple tk, tk−1, . . . , t1,

T J(tk) · · · J(t1) = J(tjk
) · · · J(tj1),

where tjk
, . . . , tj1 is the permutation of tk, tk−1, . . . , t1 that is in ascending order.

The error of the above approximation is bounded by∥∥∥V (s, t) − Ṽ (s, t)
∥∥∥ ≤ O

(
(t− s)K′+1

(K ′ + 1)! + (t− s)2J̇max

M

)
, (39)

where J̇max := maxτ∈[0,t]

∥∥∥dJ(τ)
dτ

∥∥∥.
Now, we need to approximate the integrals in Eq. (31). In [36], Gaussian quadratures were

used to approximate similar integrals in the time-independent case, which yields a simpler
LCU construction. Unfortunately, using such efficient quadrature rules in the time-dependent
case requires bounding the norm of high-order derivatives of V (s, t), which is not directly
given. Instead, we use the simple Riemann sums for treating the integrals, where the LCU
constructions follow closely from the ones in [30].

More specifically, we uniformly divide the evolution time t into q intervals, and let
tj = tj/q for j ∈ {0, . . . ,M − 1}. Assuming V (s, t) is implemented perfectly, we consider the
following superoperator,

tk

k!qk

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1), (40)

which approximates the integrals in Eq. (31). To bound the quality of this approximation,
we need to bound the derivative of Fk. We begin by bounding ∥V (0, t)∥, which can be
deduced from the stability of the differential equation d

dt y = J(t)y, which can be studied by
examining the eigenvalues of the Hermitian part of J(t) [7, Lemma 1]. Since the Hermitian
part of J(t) is semi-negative definite, one has ∥y(t)∥ ≤ ∥y(0)∥, which implies that

∥V (0, t)∥ ≤ 1. (41)

Since d
dtV (0, t) = J(t)V (0, t), the derivative of V (0, t) can be bounded by∥∥∥∥ d

dtV (0, t)
∥∥∥∥ ≤ J̇max. (42)

We further consider d
dt K[V (0, t)]. For any operator A with ∥A∥1 = 1, we have

d
dtK[V (0, t)](A) =

(
d
dtV (0, t)

)
AV (0, t)† + V (0, t)A d

dtV (0, t)†. (43)

We then have
∥∥ d

dt K[V (0, t)](A)
∥∥

1 ≤ 2J̇max, which follows from Eqs. (41) and (42) and the
fact that ∥BAC∥1 ≤ ∥B∥∥A∥1∥C∥ for matrices A,B,C. This bound easily extends to the
diamond norm by tensoring the Kraus operator with an identity operator to extend it to a
larger space. Hence, we have∥∥∥∥ d

dtK[V (0, t)](A)
∥∥∥∥

⋄
≤ 2J̇max. (44)

Let L̇j,max be defined as L̇j,max := maxτ∈[0,t]
∥∥ d

dτLj(τ)
∥∥. Then, using similar arguments, we

can bound the derivative of LJ(t) as∥∥∥∥ d
dtLJ(t)

∥∥∥∥
⋄

≤ 2
m∑

j=1
L̇j,max, (45)
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where we have assumed that the Lindbladian is scaled as in Eq. (35), i.e., ∥Lj∥ ≤ 1. For the
derivative of Fk, we have

d
dtj

Fk

= K[V (tk, t)]LJ(tk) · · · d
dtj

(K[V (tj , tj+1)]LJ(tj)K[V (tj−1, tj)]) LJ(tj−1) · · · K[V (0, t1)]

= K[V (tk, t)]LJ(tk) · · · d
dtj

(K[V (tj , tj+1)])LJ(tj)K[V (tj−1, tj)]LJ(tj−1) · · · K[V (0, t1)]

+ K[V (tk, t)]LJ(tk) · · · K[V (tj , tj+1)] d
dtj

(LJ(tj))K[V (tj−1, tj)]LJ(tj−1) · · · K[V (0, t1)]

+ K[V (tk, t)]LJ(tk) · · · K[V (tj , tj+1)]LJ(tj) d
dtj

(K[V (tj−1, tj)])LJ(tj−1) · · · K[V (0, t1)].

(46)

Again, assume the Lindbladian is scaled as in Eq. (35), the above expression of d
dtj

Fk

together with Eqs. (44) and (45) implies that
∥∥∥ d

dtj
Fk

∥∥∥
⋄

≤ 4J̇max + 2
∑m

j=1 L̇j,max. This
implies that the error for using the Riemann sums can be bounded by∥∥∥∥∥∥GK − K[V (0, t)] − tk

k!qk

K∑
k=1

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1)

∥∥∥∥∥∥
⋄

=

∥∥∥∥∥∥
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk − tk

k!qk

K∑
k=1

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1)

∥∥∥∥∥∥
⋄

≤
K∑

k=1

t2

q
·

4J̇max + 2
m∑

j=1
L̇j,max

 (47)

= Kt2

q
·

4J̇max + 2
m∑

j=1
L̇j,max

 . (48)

In addition, it is easy to see that the error caused by using Duhamel’s principle is∥∥∥∥eT
∫ t

0
dτ L(τ) − GK

∥∥∥∥
⋄

≤ (2t)K+1

(K + 1)! . (49)

It follows from Eqs. (48) and (49) that∥∥∥∥∥∥eT
∫ t

0
dτ L(τ) − K[V (0, t)] − tk

k!qk

q∑
j1,...,jk=0

T Fk(tjk
, . . . , tj1)

∥∥∥∥∥∥
⋄

≤ (2t)K+1

(K + 1)! + Kt2

q

4J̇max + 2
m∑

j=1
L̇j,max

 .

(50)

Finally, we have the following LCU form:

G̃K := K[Ṽ (0, t)] +
K∑

k=1

tk

qk

q∑
j1,...,jk=0

F̃k(tjk
, . . . , tj1), (51)
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where F̃K is an approximation of Eq. (32) by using Ṽ (s, t) instead of V (s, t), i.e.,

F̃k(sk, . . . , s1) := K[Ṽ (sk, t)]LJ(sk)K[Ṽ (sk−1, sk)] · · · K[Ṽ (s1, s2)]LJ(s1)K[Ṽ (0, s1)]. (52)

We use the same compression scheme as in [30] to deal with the time-ordering in Eqs. (38)
and (51). Note that implementing the LCU requires additional O(KK ′m(logM + log q+ n))
1- and 2-qubit gates.

Complexity analysis

We first analyze the normalizing constant for the LCU implementation. Recall that we are
working with scaled operators, so the normalizing factors are at most 1. For the implement
of V (0, t̂), we can use, for example, the LCU construction involving quantum sort as in [30]
for implement Eq. (38). If we further assume the implementation uses an infinite Dyson
series, the normalizing constants of the block-encoding K[V (0, t)] is upper bounded by

∞∑
k=0

tk

k! = et. (53)

As a result, the sum-of-squares of the normalizing constants of the Kraus operators of
Fk(t̂k, . . . , t̂1) can be bounded by

m∑
j1,...,jk=0

e2(t−sk)e2(sk−sk−1) . . . e2(s1−0) = e2t. (54)

Recall that the normalizing constant for Lj is 1 since the Lindbladian is rescaled. For
the second term in Eq. (31), the sum-of-squares of the normalizing constants of the Kraus
operators can be bounded by

e2t tk

k!qk
qk = e2t t

k

k! . (55)

By Eqs. (53) and (55), we have that the sum-of-squares of the normalizing constants of the
Kraus operators of the LCU in Eq. (31) can then be bounded by e2t +

∑K
k=1 e

2t tk

k! ≤ e2t + e3t.
Therefore, it suffices to set t = Ω(1) to achieve constant success probability when using

Lemma 2. Then, we use the oblivious amplitude amplification for channels [15] to boost
the success probability to 1 with constant applications of Lemma 2. For the error bound
in Eq. (50), assume for now that the second error term is dominated by the first (by some
choice of q to be determined). It suffices to set K = log(1/ϵ)

log log(1/ϵ) to make the total error at
most ϵ/2, because of the choice of t = Ω(1). The choice of q satisfies

q = Θ

2K
ϵ

4J̇max + 2
m∑

j=1
L̇j,max

 . (56)

Now, we deal with the error from truncated Dyson series and Riemann sum to implement
V (s, t). By Eq. (38), we can choose M large enough (determined later) so that the second
error term is dominated by the first. Then, using [36, Lemma 7], we have∥∥∥Fk(sk, . . . , s1) − F̃k(sk, . . . , s1)

∥∥∥
⋄

≤ 8et

(K ′ + 1)!2
k+1tK

′+1. (57)
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Further, using the analysis as in [36], we can bound the total approximation error (with
appropriate choice of M to be determined later) as∥∥∥∥T e

∫ t

0
L(τ)dτ − G̃K

∥∥∥∥
⋄

≤ 32e5ttK
′+2

(K ′ + 1)! . (58)

With the choice of t = Ω(1), we can choose K ′ = log(1/ϵ)
log log(1/ϵ) so that the total error is bounded

by ϵ. For the choice of M , we need to make sure the second error term in Eq. (38) is
dominated by the first term. Hence we can choose M = Θ

(
J̇max

ϵ

)
.

It remains to analyze the cost for the LCU implementation, which is the same as the
analyses in [36] and [30]. Note that the dependence on M is logarithmic if the compressed
scheme is used in [30] for implementing Ṽ (s, t). The total gate cost is now upper bounded by
O(KK ′m(logM + log q + n)). Further note that the error ϵ′ brought by the block-encoding
can be eventually transferred to L causing an (m+ 1)ϵ′ error on L in terms of the diamond
norm, and the accumulated error for evolution time t is then at most t(m+ 1)ϵ′. As a result,
choosing ϵ′ ≤ ϵ/(2t(m+ 1)) suffices to ensure the total error is at most ϵ.

Recall that the above analysis is based on the scaled version of L defined in Eq. (35),
and the evolution time is scaled as in Eq. (33). For arbitrary evolution time t̂, we apply the
above procedure O(t̂) times with precision ϵ′ = ϵ/t̂. This gives the desired complexity in
Theorem 11. Lastly, it is important to note that the LCU circuit yields a purification of ρ(t).
This completes the proof of Theorem 11.

Note that the above analysis easily extends to the simulation of the original Lindbladian
without any scaling, where the complexity depends linearly on the product of evolution time
and the maximum of the block-encoding norm of the Lindbladian. More specifically, we have
the following corollary.

▶ Corollary 12. Suppose we are given an (α0(t), a, ϵ′)-block-encoding UH(t) of H(t), and an
(αj(t), a, ϵ′)-block-encoding ULj(t) for each Lj(t) for all t ≥ 0. Define ∥L∥be,∞ as ∥L∥be,∞ :=
maxτ∈[0,T ] ∥L(τ)∥be. Suppose further that ϵ′ ≤ ϵ/(2T (m + 1)). There exists a quantum

algorithm that outputs a purification of ρ̃(T ) where ∥ρ̃(T ) − e
T
∫ T

0
dτ L(τ)(ρ0)∥ 1 ≤ ϵ using

O

T∥L∥be,∞

 log
(
T∥L∥be,∞/ϵ

)
log log

(
T∥L∥be,∞/ϵ

)
2 (59)

queries to UH(t), ULj(t), Ovar, OH,norm, and OLj ,norm, and Õ
(

(m+ n)T∥L∥be,∞

)
additional

1- and 2-qubit gates. Here, n is the number of qubits the Lindbladian is acting on.

4 Simulations in the Interaction Picture

Many control problems involve a system Hamiltonian that contains a time-independent
Hamiltonian that dominates the spectral norm H(t), and thus the overall computational
complexity. Motivated by the interaction picture approach for Hamiltonian simulations [41],
we devise an approach to simulate the Lindblad dynamics. To formulate the problem, we
assume that the Lindbladian admits the following decomposition:

L(·) = −i [H1 +H2(t), ·] +
∑

j

Lj(·)L†
j − 1

2

{
L†

jLj , ·
}
, (60)
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where H1 is a time-independent free Hamiltonian, H2(t) is the coupling Hamiltonian which
contains the control variables, and the dissipative terms still come from the interaction with
the environment.

One such example is the control of an ion trap system [25], in which the model Hamiltonian
consists of the following terms,

H1 = ℏ
N∑

i=1
(ω01|1⟩i ⟨1 |+ω0e| e⟩i ⟨e|) + ℏ

∑
k

ωka
†
kak (61)

H2(t) = ℏΩ1 cos (k1 · rj − ω1t− φ1) (|0⟩j⟨e| + |e⟩j⟨0|) (62)
+ ℏΩ2 cos (k2 · rj − ω2t− φ2) (|1⟩j⟨e| + |e⟩j⟨1|) , (63)

and Ljs includes λheata
†
j , λdampaj and λdephasenj . The observation in [25] is that ω0e ≫

|Ω1| , |Ω2| ≫ λheat, λdamp, λdephase.
Motivated by such applications, we assume that in Eq. (60),

∥H1∥ ≫ ∥H2(t)∥ ≫ ∥Lj∥. (64)

In the interaction approach, e.g., [41], one simulates the density operator in the interaction
picture, where the large magnitude of H1 is absorbed into the slow Hamiltonian H2(t) and
the jump operators. In this section, we provide detailed quantum algorithms for simulating
the Lindbladian Eq. (60) in the interaction picture.

4.1 Lindbladian simulation in interaction picture
In light of Eq. (60), we first write the Lindbladian into two parts

L(t) = L1 + L2(t) (65)

where L1 contains a time-independent Hamiltonian term and L2(t) can be a general Lindbla-
dian term

L1(·) = −i [H1, ·] (66)

L2(t)(·) = −i [H2(t), ·] +
∑

j

Lj(·)L†
j −

{
L†

jLj , ·
}
. (67)

Then the Lindblad master equation in Eq. (1) is equivalent to:

d
dtV1†(t0, t)ρV1(t0, t) = V †

1 (t0, t)L2(t)V1(t0, t)V †
1 (t0, t)ρV1(t0, t), (68)

where V1(t0, t) = e−iH1(t−t0), and t ≥ t0.
We can define ρI = V †

1 (t0, t)ρV1(t0, t) as the density operator in the interaction pic-
ture, and it satisfies the Lindblad equation, d

dtρI(t) = L2,I(t)ρI(t), where L2,I(t) :=
V †

1 (t0, t)L2(t)V1(t0, t). Effectively, this transforms H2 and Lj(t) in Eq. (67) into an interaction
picture as well.

By simulating the time evolution in the interaction picture and transforming it back to
the original picture at last, we have

ρ(t) =
(
eL1(t−t0)

)(
T e
∫ t

t0
L2,I(s)ds

ρ(t0)
)
, (69)



W. He, T. Li, X. Li, Z. Li, C. Wang, and K. Wang 3:17

where
(
eL1(b−a)) (·) = V1 (a, b) (·)V −1

1 (a, b). We can further decompose this evolution into
N Trotter steps (with τ = (t− t0)/N),

ρ(t) =
N−1∏
i=0

(
eL1τ T e

∫ t0+(i+1)τ

t0+iτ
L2,I(s)ds

)
ρ(t0). (70)

At a high level, Eq. (70) summarizes our simulation strategy in the interaction picture. The
total time complexity is determined by the number of time steps N , and the time complexity
in each step, which follows from our Lindbladian simulation algorithm in Section 3.

▶ Theorem 13 (Modified from Corollary 12). Suppose we are given an (α0, a, ϵ
′)-block-

encoding UH of H, and an (αj , a, ϵ
′)-block-encoding ULj

for each Lj. For all τ, ϵ′ ≥ 0 and

t∥L(τ)∥be,∞ = Θ(1), there exists a quantum algorithm for simulating eLτ using O
( log(1/ϵ′)

log log(1/ϵ′)
)

queries to UH and ULj
and O

(
m
( log(1/ϵ′)

log log(1/ϵ′)
)2) additional 1- and 2-qubit gates.

▶ Lemma 14 (Error accumulation). Given that Aj = Wj and Bj = T
[
e

∫ tj

tj−1
L1(s)ds

]
are

bounded ∥Wj∥ ≤ 1, ∥Bj∥ ≤ 1, and error in each segment is bounded by δ ∥Aj −Bj∥ ≤ δ.
Then the accumulated error is∥∥∥∥∥∥

L∏
j

Wj − T
[
e

∫ t

0
L(s)ds

]∥∥∥∥∥∥ ≤ Lδ. (71)

Proof. The lemma holds by applying the triangle inequality∥∥∥∥∥∥
L∏

j=1
Aj −

L∏
j=1

Bj

∥∥∥∥∥∥ ≤
L∑

k=1

k−1∏
j=1

∥Aj∥

 ∥Ak −Bk∥

 L∏
j=k+1

∥Bj∥

 . (72)

◀

These results imply the following result for Lindbladian simulation in the interaction
picture:

▶ Theorem 15 (Query complexity of Lindbladian simulation in the interaction picture). Let
L(t) = L1(t)+L2(t), with L1(t) and L2(t) defined by Eqs. (66) and (67) respectively. Assume
the existence of a unitary oracle that implements the Hamiltonian and Lindbladian within
the interaction picture, denoted UHI and ULI

j
which implicitly depends on the time-step size

τ ∈ O
(
||L2||−1

be
)

and number of quadrature points q, such that

(⟨0|a ⊗ 1s)UHI (|0⟩a ⊗ 1s) =
q∑

jk=1
|jk⟩⟨jk| ⊗ eiH1τx̂(jk)H2e

−iH1τx̂(jk)

αH
(73)

(⟨0|a ⊗ 1s)ULI
j

(|0⟩a ⊗ 1s) =
q∑

jk=1
|jk⟩⟨jk| ⊗ eiH1τx̂(jk)Lje

−iH1τx̂(jk)

αLj

, (74)

For t ≥ ||L2(t)||beτ , the time-evolution operator T e
∫ t

0
L1(s)+L2(s)ds may be approximated to

error ϵ with the following cost.
1. Simulations of e−iH1τ : O (t||L2(t)||be,∞),
2. Queries to UHI and ULI

j
: O

(
t||L2(t)||be,∞

log(t||L2(t)||be,∞/ϵ)
log log(t||L2(t)||be,∞/ϵ)

)
,

3. Primitive gates: O
(
mt||L2(t)||be,∞( log(t||L2(t)||be,∞/ϵ)

log log(t||L2(t)||be,∞/ϵ) )2
)

.
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Proof. Consider simulation strategy shown in Eq. (70), we uniformly divide the evolution
time [0, t] into M = ⌈t ∥L2(t)∥be,∞⌉, time step τ = t/M . Then τ ∥L2(t)∥be,∞ = Θ(1), which
satisfies the pre-condition of Theorem 13. Therefore, using Theorem 13, the time and gate

complexity of each time interval is O
(

log(1/ϵ′)
log log(1/ϵ′)

)
and O

(
m

(
log(1/ϵ′)

log log(1/ϵ′)

)2
)

, respectively.

Furthermore, by the error accmulation in Lemma 14, we choose ϵ′ = ϵ/t (∥L∥be) in order to
bound the overall error by ϵ.

In addition, since we need to invoke e−iH1τ once every step, the invoking number equals
to M and is hence bounded as claimed. ◀

4.2 Comparison of the simulation complexity with and without
interaction picture

In this subsection, we compare the complexity with simulations of Lindblad dynamics with
and without the interaction picture. For the Lindbladian decomposition shown in Eq. (65),
suppose we have access to the oracles UH1 ,UH2(t), and ULj

. According to Theorem 11, a
direct simulation involves a time complexity

Cdirect = O

(
t(C1 + C2)(αL1 + αL2)( log (t(αL1 + αL2)/ϵ)

log log (t(αL1 + αL2)/ϵ) )2
)

(75)

where α1 = ∥L1(t)∥be,1 , αL2 = ∥L2(t)∥be,1; C1 and C2 representing the gate complexity of
implement UH1 and the maximum gate complexity of implement UH2(t), ULj

respectively.
Meanwhile for the simulation algorithm in interaction picture, the time complexity is

given by the following theorem.

▶ Theorem 16 (Gate complexity of Lindbladian simulation in the interaction picture). Suppose
we are given UH1 ,UH2(t) and ULj

block encoding of H1, H2(t) and Lj respectively, such that
e−iHs is approximated to error ϵ using Ce−iH1s [ϵ] ∈ O (|s| logγ(s/ϵ)) gates for some γ > 0
and any |s| ≥ 0.

For all t > 0, the time-evolution Eq. (70) may be approximated to error ϵ with gate
complexity

Cinteract

= O
(
αL2t

(
C2 + C

e
−iA/αL2

[
ϵ

αL2t log (αL2)

]
log
(
t (αL1 + αL2)

ϵ

))
log (αL2t/ϵ)

log log (αL2t/ϵ)

)
= O

(
αL2t

(
C2 + C

e
−iA/αL2 [ϵ]

)
polylog (t (αL1 + αL2) /ϵ)

)
(76)

where α1 = ∥L1(t)∥be,∞ , αL2 = ∥L2(t)∥be,∞ = ∥L2,I(t)∥be,∞ .

The proof follows by using αL1 , αL2,I to substitute αA and αB in Theorem 7 in [41],
respectively.

We highlight that the assumption Ce−iH1s [ϵ] = O (|s| logγ(s/ϵ)) imposes strong require-
ment on simulating the H1 dynamics. With Hamiltonian simulation algorithm [5], gate
complexity should be Ce−iH1s [ϵ] = Õ(||H1||s). But here the assumption removes the ||H1||
dependence. This implies that the simulation of H1 is supposed to be easy, the dynamics can
be fast-forwarded. Nevertheless this assumption is valid in some common settings [41], for
instance when H1 is diagonal. Another assumption is Eq. (64), which implies that α2 ≪ α1.
By comparing Eq. (75) and Eq. (76) with this relation, we find the simulation strategy using
the interacting picture has a better gate complexity. As long as these two assumptions hold,
the simulation algorithm in the interaction picture can serve as an alternative to reduce the
simulation complexity.
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5 The Optimization Algorithm for Quantum Optimal Control

In this section, we present our main results for finding first- and second-order stationary points
of the optimization problem induced by the quantum optimal control problem (2), which
in general is nonconvex. We consider the accelerated gradient descent (AGD) method [27].
A key departure from a direct implement of AGD is that the gradient has to be estimated
using the quantum algorithm [21], in which case, the gradient input is subject to noise. We
believe that this result may be of general interest to the optimization community.

▶ Theorem 17. Assume that the function f(·) is ℓ-smooth and ϱ-Hessian Lipschitz. There
exists an absolute constant cmax such that for any δ > 0, ϵ ≤ ℓ2

ϱ ,∆f ≥ f (x0) − f⋆, if

χ = max
{

1, log dℓ∆f

ϱ∈δ

}
, c ≥ cmax and such that if we run modified PAGD ([26, Algorithm

2]) with the choice of parameters in [26, Appendix C.1] using an approximate gradient ∇̂f(x)
with error bounded at every step: ∥∇f(x) − ∇̂f(x)∥ ≤ ϵg with

ϵg = ϱ1/8
√

2ℓ1/4χ3/2c3/2
ϵ9/8, (77)

then with probability at least 1 − δ, one of the iterates xt will be an ϵ-first order stationary
point in the following number of iterations:

O

(
ℓ1/2ϱ1/4 (f (x0) − f∗)

ϵ7/4 log6
(
dℓ∆f

ϱϵδ

))
. (78)

Furthermore, if the error bound of the gradient is chosen as, ϵg = δχ−11c−16

64ℓ
ϵ3
√

d
1

∆f
, then with

probability at least 1 − δ, one of the iterates xt will be an ϵ-second order stationary point.

The proof of this theorem can be found in the full version of this paper [26, Appendix
C.7]. Note that the complexity Õ(1/ϵ7/4) in [27] is the currently best-known result for
finding first- and second-order stationary points using only gradient queries, and there
is not much space to improve as [11] proved a lower bound Ω(1/ϵ12/7) for deterministic
algorithms with gradient queries when the function is gradient- and Hessian-Lipschitz. Our
error bound Õ(1/ϵ9/8) in (77) is optimal (up to poly-logarithmic factors) for PAGD because
up to a concentration inequality, it can give an algorithm for stochastic gradient descent
with complexity Õ(1/ϵ7/4 · (1/ϵ9/8)2) = Õ(1/ϵ4), which is optimal as there is a matching
lower bound Ω(1/ϵ4) [3]. In other words, if the error ϵ9/8 can be further improved, it implies
an algorithm for finding stationary points with better convergence than [27], the current
state-of-the-art work on this.

The AGD algorithm relies on an estimate of the gradient. Toward this end, we first
show that the objective function (11) from the quantum control problem is essentially a
polynomial. The polynomial nature of the objective function allows us to use high-order
finite difference methods to compute the gradient. In particular, a centered difference scheme
with 2m+ 1 points will produce an exact gradient for a polynomial of degree 2m.

▶ Lemma 18. Assume that the control function is expressed as a linear combination of shape
function bj(t): u(t) =

∑N
j=0 ujbj(t) and let u = (u0, u1, . . . , uN ). Then the expectation in

Eq. (11) from the Lindblad simulation algorithms from the previous section is a polynomial
with degree d = O

(
T polylog 1

ϵ

)
.

Proof. We begin by examining the time-dependent unitary V (0, t) in Duhamel’s represen-
tation. Specifically, from Eq. (28), we see that the Dyson series approximation yields a
polynomial of degree at most K. In addition, in the Kraus form approximation in Eq. (31),
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the operators LJ(s) do not involve the control variable u. Overall, the approximation GK(t)
in Eq. (31) constitutes a polynomial of degree at most K2. Therefore, after applying GK(δ)
for T/δ times to approximate the density operator at time T , we obtain a polynomial of
degree at most Tpolylog 1

ϵ . Here we have used the fact that K = log(1/ϵ)
log log(1/ϵ) . Furthermore,

when the gradient estimation algorithm in Lemma 8 is applied, the query complexity Õ
(

m
ϵ

)
in Lemma 8 becomes Õ(T/ϵ). ◀

6 Proof of Main Theorem

Finally, we outline the proof of our main theorem (Theorem 1). We first summarize our
quantum algorithm as follows,

Algorithm 1 Quantum Algorithm for Open System Quantum Control.

1: Given kmax, ϵg as in Theorem 17; set u(t) = 0
2: for t = 0,1,...,kmax do
3: Use Theorem 11 and strategy in Section 2.2.3 to construct the phase oracle for J̃1(u);
4: Use Lemma 9 to estimate g(k) ≈ ∇J

(
u(k)) with ||g(k) − J

(
u(k)) || ≤ ϵg;

5: Update control variable with one step of modified PAGD ([26, Algorithm 2]);
6: end for

Now, we restated the main theorem and give its proof:

▶ Theorem 19 (main theorem, restated). Assume there are nc control functions uβ(t) ∈
C2([0, T ]). Further assume4 that ∥H0∥, ∥O∥, ∥µβ∥, ∥Lj∥ ≤ 1, and α ≥ 2/T . There exists a
quantum algorithm that, with probability at least 2/35, solves problem (2) by:

reaching a first-order stationary point ∥∇f∥ < ϵ with (1) using Õ
(

nc∥L∥be ,1T

ϵ23/8 ∆f

)
queries

to PH0 and Pµβ
, β = 1, 2, . . . , nc, and Õ

(
mn

nc∥L∥be ,1T

ϵ23/8 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1-

and 2-qubit gates; or
reaching a second-order stationary point using Õ

(
nc∥L∥be ,1T 7/4

ϵ5 ∆f

)
queries to PH0 and

Pµβ
, β = 1, 2, . . . , nc and Õ

(
mn

nc∥L∥be ,1T 7/4

ϵ5 ∆f + nT 3/2

ϵ9/4 ∆f

)
additional 1- and 2-qubit

gates.
Here nc and m are respectively the number of control variables and jump operators.

Proof. We denote gate complexity of control UO by Cc−UO
, gate complexity of UH , ULj

by CUH ,ULj
, and gate complexity of quantum simulation by Cϱ(t). The gate complexity of

preparing a state after Lindblad evolution is given by Theorem 11,

Cϱ(t) = O

(
∥L∥be,1

log (∥L∥be,1/ϵ)
log log (∥L∥be,1/ϵ)

)
CUH ,ULj

+ Õ (m∥L∥be,1n) . (79)

With copies of states ϱ(t) and access to control UO oracle, we can construct the gradient
following Section 2.2.3. According to that section, we can construct the probability oracle
with ϱ(t), construct the phase oracle with probability oracle, and calculate the gradient with
the phase oracle. The corresponding complexity is listed below:

4 More generally, if ∥H0∥, ∥µ∥ = Θ(Λ), it is equivalent to enlarge the time duration T by a factor O(Λ).
5 Using standard techniques, the success probability can be boosted to a constant arbitrarily close to 1

while only introducing a logarithmic factor in the complexity.
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CUJ1
= Cϱ(t) +O(1) + Cc−UO

, (80)
COJ1

= O(log 1/ϵ)CUJ1
, (81)

C∇J = Õ(ncT log(N/γ)/ϵ)COJ1
+ Õ(N), (82)

where 1 − γ is the successful probability of obtaining a gradient, nc is the number of
parameters, and N is the time steps N = O

(
t3/2/ϵ1/2) as in [35, Corollary 2.2]. Here we

define γ = ν/k, where ν is a small finite number and k is the iteration steps, which we will
give below. Combining them together, we have

C∇J = Õ

(
nc

∥L∥be,1T log N
γ

ϵ

)
CUH ,ULj

+ Õ(nc
T log N

γ

ϵ
)Cc−UO

+Õ(mnnc
∥L∥be,1T log N

γ

ϵ
+N). (83)

Here we reassign the gradient noise ϵ with ϵg to distinguish from the other errors.

C∇J = Õ

(
nc

∥L∥be,1T log N
γ

ϵg

)
CUH ,ULj

+ Õ(nc
T log N

γ

ϵg
)Cc−UO

+ Õ(mnnc
∥L∥be,1T log N

γ

ϵg
+N). (84)

With modified PAGD method ([26, Algorithm 2]), we can find a first or second order
ϵ-stationary point within

k = Õ

(
ℓ1/2ϱ1/4 (f (x0) − f∗)

ϵ7/4

)
(85)

iterations by Theorem 17. For first ϵ-order stationary point, the gradient noise tolerance is
ϵg = ϱ1/8

√
2ℓ1/4χ3/2c3/2 ϵ

9/8. For second order ϵ-order stationary point, it is ϵg = δχ−11c−16

64ℓ
ϵ3
√

d
1

∆f
.

In each iteration, we need to calculate ∇J once and calculate J once. Noticing that
CJ = O(C(ϱ(t))), we have

Ctotal = k × (C∇J + Cϱ(t)). (86)

Substitute Eqs. (79) and (84), (85) into Eq. (86) we finish the proof. Notice that in
optimization, dimension d = N , and here we regard ℓ and ϱ as constants. ◀
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Abstract
The existence of one-way functions is one of the most fundamental assumptions in classical cryp-
tography. In the quantum world, on the other hand, there are evidences that some cryptographic
primitives can exist even if one-way functions do not exist [Kretschmer, TQC 2021; Morimae
and Yamakawa, CRYPTO 2022; Ananth, Qian, and Yuen, CRYPTO 2022]. We therefore have
the following important open problem in quantum cryptography: What is the most fundamental
assumption in quantum cryptography? In this direction, [Brakerski, Canetti, and Qian, ITCS 2023]
recently defined a notion called EFI pairs, which are pairs of efficiently generatable states that are
statistically distinguishable but computationally indistinguishable, and showed its equivalence with
some cryptographic primitives including commitments, oblivious transfer, and general multi-party
computations. However, their work focuses on decision-type primitives and does not cover search-
type primitives like quantum money and digital signatures. In this paper, we study properties of
one-way state generators (OWSGs), which are a quantum analogue of one-way functions proposed
by Morimae and Yamakawa. We first revisit the definition of OWSGs and generalize it by allowing
mixed output states. Then we show the following results.
1. We define a weaker version of OWSGs, which we call weak OWSGs, and show that they are

equivalent to OWSGs. It is a quantum analogue of the amplification theorem for classical weak
one-way functions.

2. (Bounded-time-secure) quantum digital signatures with quantum public keys are equivalent to
OWSGs.

3. Private-key quantum money schemes (with pure money states) imply OWSGs.
4. Quantum pseudo one-time pad schemes imply both OWSGs and EFI pairs. For EFI pairs,

single-copy security suffices.
5. We introduce an incomparable variant of OWSGs, which we call secretly-verifiable and

statistically-invertible OWSGs, and show that they are equivalent to EFI pairs.
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1 Introduction

One-way functions (OWFs) are functions that are easy to compute but hard to invert. The
existence of OWFs is one of the most fundamental assumptions in classical cryptography.
OWFs are equivalent to many cryptographic primitives, such as commitments, digital
signatures, pseudorandom generators (PRGs), symmetric-key encryption (SKE), and zero-
knowledge, etc. Moreover, almost all other cryptographic primitives, such as collision-resistant
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hashes, public-key encryption (PKE), oblivious transfer (OT), multi-party computations
(MPCs), etc., imply OWFs. In the quantum world, on the other hand, it seems that
OWFs are not necessarily the most fundamental element. In fact, recently, several quantum
cryptographic primitives, such as commitments, (one-time secure) digital signatures, quantum
pseudo one-time pad (QPOTP)1, and MPCs are constructed from pseudorandom states
generators (PRSGs) [18, 3]. A PRSG [13], which is a quantum analogue of a PRG, is a QPT
algorithm that outputs a quantum state whose polynomially-many copies are computationally
indistinguishable from the same number of copies of Haar random states. Kretschmer [14]
showed that PRSGs exist even if BQP = QMA (relative to a quantum oracle), which
means that PRSGs (and all the above primitives that can be constructed from PRSGs)
could exist even if all quantum-secure (classical) cryptographic primitives including OWFs
are broken.2 Kretschmer, Qian, Sinha, and Tal [15] also showed that 1-PRSGs (which are
variants of PRSGs secure against adversaries that get only a single copy of the state) exist
even if NP = P. We therefore have the following important open problem in quantum
cryptography:

Question 1: What is the most fundamental assumption in quantum cryptography?

In classical cryptography, a pair of PPT algorithms whose output probability distri-
butions are statistically distinguishable but computationally indistinguishable is known
to be fundamental. Goldreich [8] showed the equivalence of such a pair to PRGs, which
also means the equivalence of such a pair to all cryptographic primitives in Minicrypt [11].
It is natural to consider its quantum analogue: a pair of QPT algorithms whose output
quantum states are statistically distinguishable but computationally indistinguishable. In
fact, such a pair was implicitly studied in quantum commitments [20]. In the canonical form
of quantum commitments [22], computationally hiding and statistically binding quantum
commitments are equivalent to such pairs. The importance of such a pair as an independent
quantum cryptograpic primitive was pointed out in [20, 4]. In particular, the authors of [4]
explicitly defined it as EFI pairs,3 and showed that EFI pairs are implied by several quantum
cryptographic primitives such as (semi-honest) quantum OT, (semi-honest) quantum MPCs,
and (honest-verifier) quantum computational zero-knowledge proofs. It is therefore natural
to ask the following question.

Question 2: Which other quantum cryptographic primitives imply EFI pairs?

PRSGs and EFI pairs are “decision type” primitives, which correspond to PRGs in
classical cryptography. An example of the other type of primitives, namely, “search type”
one in classical cryptography, is OWFs. Recently, a quantum analogue of OWFs, so called
one-way states generators (OWSGs), are introduced [18]. A OWSG is a QPT algorithm that,
on input a classical bit string (key) k, outputs a quantum state |ϕk⟩. As the security, we
require that it is hard to find k′ such that |⟨ϕk|ϕk′⟩|2 is non-negligible given polynomially
many copies of |ϕk⟩. The authors showed that OWSGs are implied by PRSGs, and that
OWSGs imply (one-time secure) quantum digital signatures with quantum public keys. In
classical cryptography, OWFs are connected to many cryptographic primitives. We are
therefore interested in the following question.

1 QPOTP schemes are a one-time-secure SKE with quantum ciphertexts where the key length is shorter
than the massage length. (For the definition, see Definition 29.)

2 If QMA = BQP, then NP ⊆ BQP. Because all quantum-secure classical cryptographic primitives are
in NP, it means that they are broken by QPT algorithms.

3 It stands for efficiently samplable, statistically far but computationally indistinguishable pairs of
distributions.
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Question 3: Which quantum cryptographic primitives are related to OWSGs?

In classical cryptography, PRGs (i.e., a decision-type primitive) and OWFs (i.e., a search-
type primitive) are equivalent. In quantum cryptography, on the other hand, we do not know
whether OWSGs and EFI pairs (or PRSGs) are equivalent or not. We therefore have the
following open problem.

Question 4: Are OWSGs and EFI pairs (or PRSGs) equivalent?

1.1 Our Results
The study of quantum cryptography with complexity assumptions has became active only
very recently, and therefore we do not yet have enough knowledge to answer Question 1.
However, as an important initial step towards the ultimate goal, we give some answers to
other questions above. Our results are summarized as follows. (See also Fig. 1.)

1. We first revisit the definition of OWSGs. In the original definition in [18], output states
of OWSGs are assumed to be pure states. Moreover, the verification is done as follows: a
bit string k′ from the adversary is accepted if and only if the state |ϕk⟩⟨ϕk| is measured
in the basis {|ϕk′⟩⟨ϕk′ |, I − |ϕk′⟩⟨ϕk′ |}, and the first result is obtained. (Note that in
classical OWFs, the verification is implicit because it is trivial: just computing f(x′) for
x′ given by the adversary, and check whether it is equal to f(x) or not. However, in the
quantum case, we have to explicitly define the verification.) In this paper, to capture
more general settings, we generalize the definition of OWSGs by allowing outputs to be
mixed states. A non-trivial issue that arises from this modification is that there is no
canonical way to verify input-output pairs of OWSGs. To deal with this issue, we include
such a verification algorithm as a part of syntax of OWSGs.

2. We show an “amplification theorem” for OWSGs. That is, we define weak OWSGs
(wOWSGs), which only requires the adversary’s advantage to be 1− 1/poly(λ) instead
of negl(λ), and show that a parallel repetition of wOWSGs gives OWSGs. This is an
analogue of the equivalence of weak one-way functions and (strong) one-way functions in
classical cryptography [23].

3. We show that one-time-secure quantum digital signatures (QDSs) with quantum public
keys are equivalent to OWSGs.4 Moreover, we can generically upgrade one-time-secure
QDSs into bounded-time-secure one.5

4. We show that private-key quantum money schemes (with pure money states or with
verification algorithms that satisfy some symmetry) imply OWSGs.

5. We show that QPOTP schemes imply OWSGs. This in particular means that IND-CPA
secure quantum SKE or quantum PKE implies OWSGs.

6. We show that single-copy-secure QPOTP schemes imply EFI pairs. Single-copy-security
means that the adversary receives only a single copy of the quantum ciphertext. This
in particular means that IND-CPA secure quantum SKE or quantum PKE implies EFI
pairs.

7. We introduce an incomparable variant of OWSGs, which we call secretly-verifiable
and statistically-invertible OWSGs (SV-SI-OWSGs), and show that SV-SI-OWSGs are
equivalent to EFI pairs.

4 A construction of QDSs from OWSGs was already shown in [18], but in this paper, we generalize the
definition of OWSGs, and we give the proof in the new definition.

5 We thank Or Sattath for asking if we can get (stateless) bounded-time QDSs.
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We remark that we consider the generalized definition of OWSGs with mixed state
outputs by default. However, all the relationships between OWSGs and other primitives
naturally extend to the pure state version if we consider the corresponding pure state variants
of the primitives.

PRSGs

QPOTP

AQY21

OWSGs

EFI

QDSs
Qcomm

Yan20
BCQ22

Qmoney

JLS18

SV-SI-OWSGs

1copy QPOTP

trivial

Figure 1 Summary of results. The dotted line means some restrictions: OWSGs are implied by
quantum money schemes with pure money states or with symmetric verification algorithms.

2 Preliminaries

2.1 Basic Notations

We use the standard notations of quantum computing and cryptography. We use λ as the
security parameter. [n] means the set {1, 2, ..., n}. For any set S, x ← S means that an
element x is sampled uniformly at random from the set S. negl is a negligible function, and
poly is a polynomial. PPT stands for (classical) probabilistic polynomial-time and QPT
stands for quantum polynomial-time. If we say that an adversary is QPT, it implicitly means
non-uniform QPT. A QPT unitary is a unitary operator that can be implemented in a QPT
quantum circuit.

For an algorithm A, y ← A(x) means that the algorithm A outputs y on input x. In
particular, if x and y are quantum states and A is a quantum algorithm, y ← A(x) means the
following: a unitary U is applied on x⊗ |0...0⟩⟨0...0|, and some qubits are traced out. Then,
the state of remaining qubits is y. This, importantly, means that the state y is uniquely
decided by the state x. If A is a QPT algorithm, the unitary U is QPT and the number of
ancilla qubits |0...0⟩ is poly(λ). If x is a classical bit string, y is a quantum state, and A is a
quantum algorithm, y ← A(x) sometimes means the following: a unitary Ux that depends
on x is applied on |0...0⟩, and some qubits are traced out. The state of the remaining qubits
is y. This picture is the same as the most general one where x is given as input, but we
sometime choose this picture if it is more convenient.
∥X∥1 := Tr

√
X†X is the trace norm. TrA(ρA,B) means that the subsystem (register)

A of the state ρA,B on two subsystems (registers) A and B is traced out. For simplicity,
we sometimes write TrA,B(|ψ⟩A,B) to mean TrA,B(|ψ⟩⟨ψ|A,B). I is the two-dimensional
identity operator. For simplicity, we sometimes write I⊗n as I if the dimension is clear from
the context. For the notational simplicity, we sometimes write |0...0⟩ just as |0⟩, when the
number of zeros is clear from the context. For two pure states |ψ⟩ and |ϕ⟩, we sometimes
write ∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 as ∥|ψ⟩ − |ϕ⟩∥1 to simplify the notation. F (ρ, σ) := ∥√ρ

√
σ∥2

1 is the
fidelity between ρ and σ. We often use the well-known relation between the trace distance
and the fidelity: 1−

√
F (ρ, σ) ≤ 1

2∥ρ− σ∥1 ≤
√

1− F (ρ, σ).
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2.2 EFI Pairs
The concept of EFI pairs was implicitly studied in [20], and explicitly defined in [4].

▶ Definition 1 (EFI pairs [4]). An EFI pair is an algorithm StateGen(b, 1λ) → ρb that, on
input b ∈ {0, 1} and the security parameter λ, outputs a quantum state ρb such that all of the
following three conditions are satisfied.

It is a uniform QPT algorithm.
ρ0 and ρ1 are computationally indistinguishable. In other words, for any QPT adversary
A, |Pr

[
1← A(1λ, ρ0)

]
− Pr

[
1← A(1λ, ρ1)

]
| ≤ negl(λ).

ρ0 and ρ1 are statistically distinguishable, i.e., 1
2∥ρ0 − ρ1∥1 ≥ 1

poly(λ) .

▶ Remark 2. Note that in the above definition, the statistical distinguishability is defined
with only ≥ 1/poly(λ) advantage. However, if EFI pairs with the above definition exist, EFI
pairs with ≥ 1 − negl(λ) statistical distinguishability exist as well. In fact, we have only
to define a new StateGen′ that runs StateGen n times with sufficiently large n = poly(λ),
and outputs ρ⊗n

b . The ≥ 1 − negl(λ) statistical distinguishability for StateGen′ is shown
from the inequality [4], 1

2∥ρ
⊗n − σ⊗n∥1 ≥ 1 − exp(−n∥ρ− σ∥1/4). The computational

indistinguishability for StateGen′ is shown by the standard hybrid argument.

2.3 Quantum Commitments
We define canonical quantum bit commitments [20] as follows.

▶ Definition 3 (Canonical quantum bit commitments [20]). A canonical quantum bit commit-
ment scheme is a family {Q0(λ), Q1(λ)}λ∈N of QPT unitaries on two registers C (called the
commitment register) and R (called the reveal register). For simplicity, we often omit λ and
simply write {Q0, Q1} to mean {Q0(λ), Q1(λ)}λ∈N.

▶ Remark 4. Canonical quantum bit commitments are used as follows. In the commit phase,
to commit to a bit b ∈ {0, 1}, the sender generates a state Qb|0⟩C,R and sends C to the
receiver while keeping R. In the reveal phase, the sender sends b and R to the receiver. The
receiver projects the state on (C,R) onto Qb|0⟩C,R, and accepts if it succeeds and otherwise
rejects. (In other words, the receiver applies the unitary Q†

b on the registers C and R, and
measure all qubits in the computational basis. If all result are zero, accept. Otherwise,
reject.)

▶ Definition 5 (Hiding). We say that a canonical quantum bit commitment scheme {Q0, Q1}
is computationally (rep. statistically) hiding if TrR(Q0 |0⟩C,R) is computationally (resp.
statistically) indistinguishable from TrR(Q1 |0⟩C,R). We say that it is perfectly hiding if they
are identical states.

▶ Definition 6 (Binding). We say that a canonical quantum bit commitment scheme {Q0, Q1}
is computationally (rep. statistically) binding if for any QPT (resp. unbounded-time) unitary
U over R and an additional register Z and any polynomial-size state |τ⟩Z, it holds that∥∥∥(⟨0|Q†

1)C,R(IC ⊗ UR,Z)((Q0 |0⟩)C,R |τ⟩Z)
∥∥∥ = negl(λ). (1)

We say that it is perfectly hiding if the LHS is 0 for all unbounded-time unitary U . 6

6 The above definition is asymmetric for 0 and 1, but it is easy to show that Equation (1) implies∥∥(⟨0|Q†
0)C,R(IC ⊗ UR,Z)((Q1 |0⟩)C,R |τ⟩Z)

∥∥ = negl(λ)

for any U and |τ⟩.
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4:6 One-Wayness in Quantum Cryptography

▶ Remark 7. One may think that honest-binding defined above is too weak because it only
considers honestly generated commitments. However, somewhat surprisingly, [20] proved
that it is equivalent to another binding notion called the sum-binding [5].7 The sum-binding
property requires that the sum of probabilities that any (quantum polynomial-time, in the
case of computational binding) malicious sender can open a commitment to 0 and 1 is at
most 1+negl(λ). In addition, it has been shown that the honest-binding property is sufficient
for cryptographic applications including zero-knowledge proofs/arguments (of knowledge),
oblivious transfers, and multi-party computation [22, 6, 18, 21]. In this paper, we refer to
honest-binding if we simply write binding.

In this paper, we use the following result.

▶ Theorem 8 (Converting flavors [20, 10]). Let {Q0, Q1} be a canonical quantum bit commit-
ment scheme. Then there exists a canonical quantum bit commitment scheme {Q′

0, Q
′
1}, and

the following hold for X, Y ∈ {computationally,statistically,perfectly}:
If {Q0, Q1} is X hiding, then {Q′

0, Q
′
1} is X binding.

If {Q0, Q1} is Y binding, then {Q′
0, Q

′
1} is Y hiding.

3 OWSGs

In this section, we first define OWSGs (Section 3.1). We then define weak OWSGs and show
that weak OWSGs are equivalent to OWSGs (Section 3.2).

3.1 Definition of OWSGs
In this subsection, we define OWSGs. Note that the definition below is a generalization of
the one given in [18] in the following three points. First, in [18], the generated states are
pure, but here they can be mixed. Second, in [18], the secret key k is uniformly sampled at
random, but now it is sampled by a QPT algorithm. Third, in [18], the verification algorithm
is the specific algorithm that accepts the alleged key k′ with probability |⟨ϕk|ϕk′⟩|2, while
here we consider a general verification algorithm. We think the definition below is more
general (and therefore more fundamental) than that in [18]. Hence hereafter we choose the
definition below as the definition of OWSGs.

▶ Definition 9 (One-way states generators (OWSGs)). A one-way states generator (OWSG)
is a set of algorithms (KeyGen, StateGen,Ver) such that

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical key k ∈ {0, 1}κ.
StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit quantum
state ϕk.
Ver(k′, ϕk)→ ⊤/⊥ : It is a QPT algorithm that, on input ϕk and a bit string k′, outputs
⊤ or ⊥.

We require the following correctness and security.
Correctness: Pr

[
⊤ ← Ver(k, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k)

]
≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t8,

Pr
[
⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(1λ, ϕ⊗t

k )
]
≤ negl(λ).

7 The term “sum-binding” is taken from [19].
8 StateGen is actually run t times to generate t copies of ϕk, but for simplicity, we just write ϕk ←

StateGen(k) only once. This simplification will often be used in this paper.
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▶ Remark 10. If ϕk is pure, StateGen runs as follows. Apply a QPT unitary U on |k⟩|0...0⟩
to generate |ϕk⟩ ⊗ |ηk⟩, and output |ϕk⟩. In this case, the existence of the “junk state”
|ηk⟩ is essential, because otherwise it is not secure against a QPT adversary who does the
application of U† and the computational-basis measurement.

▶ Remark 11. Note that statistically-secure OWSGs do not exist. In other words, there
exists an unbounded algorithm A that can break the security of OWSGs as follows:
1. Given ϕ⊗t

k with a certain polynomial t as input, run the shadow tomography algorithm [1]
to find k′ such that Pr[Ver(k′, ϕk)→ ⊤] ≥ 1− 1

poly(λ) . If there exists such k′, such k′ can
be found with only a certain polynomial t. If there is no such k′, choose k′ uniformly at
ramdom.

2. Output k′.

3.2 Hardness Amplification for OWSGs
In this subsection, we define a weaker variant called weak one-way states generators
(wOWSGs), and show that they are equivalent to OWSGs.

wOWSGs are defined as follows.

▶ Definition 12 (Weak one-way states generators (wOWSGs)). A weak one-way states generator
(wOWSG) is a tuple of algorithms (KeyGen, StateGen,Ver) defined similarly to OWSGs except
that the security is replaced with the following weak security.
Weak Security: There exists a polynomial p such that for any QPT adversary A and any

polynomial t,
Pr

[
⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(1λ, ϕ⊗t

k )
]
≤ 1− 1

p
.

We prove that the existence of wOWSGs imply the existence of OWSGs. This is an
analogue of Yao’s amplification theorem for OWFs in the classical setting [23, 9].

▶ Theorem 13. OWSGs exist if and only if wOWSGs exist.

For its proof, see the full version.

4 QDSs

In this section, we first define QDSs (Section 4.1), and show that one-time-secure QDSs can
be extended to q-time-secure ones (Section 4.2). We then show that one-time-secure QDSs
are equivalent to OWSGs (Section 4.3).

4.1 Definition of QDSs
Quantum digital signatures are defined as follows.

▶ Definition 14 (Quantum digital signatures (QDSs) [18]). A quantum digital signature (QDS)
scheme is a set of algorithms (SKGen,PKGen, Sign,Ver) such that

SKGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical secret key sk.
PKGen(sk)→ pk : It is a QPT algorithm that, on input sk, outputs a quantum public key
pk.
Sign(sk,m)→ σ : It is a QPT algorithm that, on input sk and a message m, outputs a
classical signature σ.
Ver(pk,m, σ)→ ⊤/⊥ : It is a QPT algorithm that, on input pk, m, and σ, outputs ⊤/⊥.
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4:8 One-Wayness in Quantum Cryptography

We require the correctness and the security as follows.
Correctness: For any m,

Pr

⊤ ← Ver(pk,m, σ) :
sk← SKGen(1λ),
pk← PKGen(sk),
σ ← Sign(sk,m)

 ≥ 1− negl(λ).

q-time security: Let us consider the following security game, Exp, between a challenger C
and a QPT adversary A:
1. C runs sk← SKGen(1λ).
2. C runs pk← PKGen(sk) t times, and sends pk⊗t to A.
3. For i = 1 to q, do:

a. A sends a message m(i) to C.
b. C runs σ(i) ← Sign(sk,m(i)), and sends σ(i) to A.

4. A sends σ′ and m′ to C.
5. C runs pk← PKGen(sk) and v ← Ver(pk,m′, σ′). If m′ /∈ {m(1), . . . ,m(q)} and v = ⊤,

the output of the game is 1. Otherwise, the output of the game is 0.
For any QPT adversary A and any polynomial t, Pr[Exp = 1] ≤ negl(λ).

▶ Remark 15. By using the shadow tomography, we can show that statistically-secure QDSs
do not exist.

4.2 Extension to q-time Security
▶ Theorem 16. If one-time-secure QDSs exist, then q-time-secure QDSs exist for any
polynomial q.

The idea is similar to the one-time to q-time conversion for attribute-based encryption
in [12]. We first consider a scheme where we generate q2 key pairs of one-time-secure scheme
and uniformly chooses one of q2 signing keys to generate a signature whenever we run the
signing algorithm. This scheme is not q-bounded-secure because the probability that the same
signing key is used more than once is non-negligible. However, by a simple combinatorial
argument, we can upper bound the probability of such a “bad” event by some constant
smaller than 1. Thus, by repeating this construction λ times, we can amplify the security to
get q-bounded-secure scheme.

For a formal proof, see the full version.

4.3 Equivalence of OWSGs and QDSs
▶ Theorem 17. OWSGs exist if and only if one-time-secure QDSs exist.

▶ Remark 18. By using the equivalence between OWSGs and wOWSGs (Theorem 13), the
result that one-time-secure QDSs imply OWSGs can be improved to a stronger result (with a
similar proof) that one-time-secure QDSs with weak security imply OWSGs. Here, the weak
security of QDSs means that there exists a polynomial p such that for any QPT adversary A
and any polynomial t, Pr[Exp = 1] ≤ 1− 1

p .
It is proven in [18] that OWSGs implies one-time-secure QDSs. However, since we

generalize the definition of OWSGs, we need to reprove it. Fortunately, almost the same
construction as that in [18] works with the generalized definition of OWSGs. Roughly, the
construction is as follows when the message space is one-bit: a secret key is sk = (k0, k1),
a public key is pk = (ϕk0 , ϕk1), and a signature for a bit b ∈ {0, 1} is kb. The verification
algorithm of QDSs simply runs that of the OWSG.

For the other direction, we construct OWSGs from QDSs by regarding sk and pk of QDSs
as k and ϕk of OWSGs.

For a formal proof, see the full version.
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5 Quantum Money

In this section, we first define private-key quantum money schemes (Section 5.1). We then
construct OWSGs from quantum money schemes with pure money states (Section 5.2).
We also show that OWSGs can be constructed from quantum money schemes where the
verification algorithms satisfy a certain symmetric property (Section 5.3).

5.1 Definition of Private-key Quantum Money
Private-key quantum money schemes are defined as follows.

▶ Definition 19 (Private-key quantum money [13, 2]). A private-key quantum money scheme
is a set of algorithms (KeyGen,Mint,Ver) such that

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical secret key k.
Mint(k)→ $k : It is a QPT algorithm that, on input k, outputs an m-qubit quantum state
$k.
Ver(k, ρ)→ ⊤/⊥ : It is a QPT algorithm that, on input k and a quantum state ρ, outputs
⊤/⊥.

We require the following correctness and security.
Correctness:

Pr
[
⊤ ← Ver(k, $k) : k ← KeyGen(1λ), $k ← Mint(k)

]
≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t,
Pr

[
Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗t

k )
]
≤ negl(λ),

where ξ is a quantum state on ℓ registers, R1, ..., Rℓ, each of which is of m qubits, and
Count is the following QPT algorithm: on input ξ, it runs ⊤/⊥ ← Ver(k, ξj) for each
j ∈ [1, 2, ..., ℓ], where ξj := TrR1,...,Rj−1,Rj+1,...,Rℓ

(ξ), and outputs the total number of ⊤.

▶ Remark 20. Private-key quantum money schemes are constructed from PRSGs [13].
▶ Remark 21. As is shown in [1], private-key quantum money schemes are broken by an
unbounded adversary, and therefore statistically-secure private-key quantum money schemes
do not exist. (The idea is as follows: the unbounded adversary first finds all {ki}i such
that Ver(ki, $k) is large with the shadow tomography, and then searches a state ρ by the
brute-force such that Ver(ki, ρ) is close to Ver(ki, $k) FOR ALL i. Finally, the adversary
outputs many copies of ρ.)

5.2 OWSGs from Quantum Money with Pure Money States
▶ Theorem 22. If private-key quantum money schemes with pure quantum money states
exist, then OWSGs exist.

▶ Remark 23. For example, the private-key quantum money scheme of [13] has pure quantum
money states.
▶ Remark 24. By using the equivalence between OWSGs and wOWSGs (Theorem 13), this
result can be improved to a stronger result (with a similar proof) that private-key quantum
money schemes with pure quantum money states and with weak security imply OWSGs.
Here, the weak security means that there exists a polynomial p such that for any QPT
adversary A and any polynomial t,

Pr
[
Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗t

k )
]
≤ 1− 1

p
.
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Proof of Theorem 22. Let (QM.KeyGen,QM.Mint,QM.Ver) be a private-key quantum
money scheme with pure money states. From it, we construct a OWSG as follows.

KeyGen(1λ)→ k : Run k ← QM.KeyGen(1λ). Output k.
StateGen(k)→ ϕk : Run |$k⟩ ← QM.Mint(k). Output ϕk := |$k⟩⟨$k|.
Ver(k′, ϕk) → ⊤/⊥ : Parse ϕk = |$k⟩⟨$k|. Measure |$k⟩ with the basis {|$k′⟩⟨$k′ |, I −
|$k′⟩⟨$k′ |}, and output ⊤ if the first result is obtained. Output ⊥ if the second result
is obtained. (This measurement is done in the following way: generate U(|k′⟩|0...0⟩) =
|$k′⟩|ηk′⟩, and discard the first register. Then apply U† on |$k⟩|ηk′⟩, and measure all
qubits in the computationl basis. If the result is k′0...0, accept. Otherwise, reject.)

The correctness is clear. Let us show the security. Assume that it is not secure. Then, there
exists a QPT adversary A, a polynomial t, and a polynomial p such that

∑
k,k′

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2 ≥ 1

p
.

Define the set S :=
{

(k, k′)
∣∣∣ |⟨$k|$k′⟩|2 ≥ 1

2p

}
. Then, we have

∑
(k,k′)∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
>

1
2p .

This is shown as follows.

1
p
≤

∑
k,k′

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2

=
∑

(k,k′)∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2

+
∑

(k,k′)/∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
|⟨$k|$k′⟩|2

<
∑

(k,k′)∈S

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
+ 1

2p .

Let us also define T :=
{
k

∣∣∣ Pr[⊤ ← QM.Ver(k, |$k⟩)] ≥ 1 − 1
8p

}
. Then,∑

k∈T Pr
[
k ← QM.KeyGen(1λ)

]
> 1− negl(λ). This is shown as follows.

1− negl(λ) ≤
∑

k

Pr
[
k ← QM.KeyGen(1λ)

]
Pr[⊤ ← QM.Ver(k, |$k⟩)]

=
∑
k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr[⊤ ← QM.Ver(k, |$k⟩)]

+
∑
k /∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr[⊤ ← QM.Ver(k, |$k⟩)]

<
∑
k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
+

(
1− 1

8p

)(
1−

∑
k∈T

Pr
[
k ← QM.KeyGen(1λ)

])
.

Here, the first inequality is from the correctness of the quantum money scheme.
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Let us fix (k, k′) such that (k, k′) ∈ S and k ∈ T . The probability of having such (k, k′)
is, from the union bound,∑

(k,k′)∈S∧k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
>

1
2p + 1− negl(λ)− 1

= 1
2p − negl(λ).

From the A, we construct a QPT adversary B that breaks the security of the private-key
quantum money scheme as follows: On input |$k⟩⊗t, it runs k′ ← A(|$k⟩⊗t). It then runs
|$k′⟩ ← QM.Mint(k′) ℓ times, where ℓ is a polynomial specified later, and outputs ξ := |$k′⟩⊗ℓ.
Let us show that thus defined B breaks the security of the private-key quantum money
scheme. Let vj be the bit that is 1 if the output of QM.Ver(k, ξj) is ⊤, and is 0 otherwise.
Then, for any (k, k′) such that (k, k′) ∈ S and k ∈ T ,

Pr[vj = 1] = Pr[⊤ ← QM.Ver(k, ξj)] = Pr[⊤ ← QM.Ver(k, |$k′⟩)]

≥ Pr[⊤ ← QM.Ver(k, |$k⟩)]−
√

1− 1
2p ≥ 1− 1

8p −
√

1− 1
2p ≥

1
8p

for each j ∈ [1, 2, ..., ℓ]. Here, in the first inequality, we have used the fact that
Pr[1← D(|$k⟩)] − Pr[1← D(|$k′⟩)] ≤

√
1− 1

2p for any algorithm D. This is because
|⟨$k|$k′⟩|2 ≥ 1

2p for any (k, k′) ∈ S.9 Moreover, in the second inequality, we have used
the fact that Pr[⊤ ← QM.Ver(k, |$k⟩)] ≥ 1− 1

8p for any k ∈ T . Finally, in the last inequality,
we have used the Bernoulli’s inequality.10

Let us take ℓ ≥ max(16p(t+ 1), 162p3). Then, for any (k, k′) such that (k, k′) ∈ S and
k ∈ T ,

Pr
[
Count(k, |$k′⟩⊗ℓ) ≥ t+ 1

]
= Pr

[ ℓ∑
j=1

vj ≥ t+ 1
]
≥ Pr

[ ℓ∑
j=1

vj ≥
ℓ

16p

]
= Pr

[ ℓ∑
j=1

vj ≥
ℓ

8p −
ℓ

16p

]
≥ Pr

[ ℓ∑
j=1

vj ≥ E(
ℓ∑

j=1

vj)− ℓ

16p

]
≥ 1− 2 exp

[
− 2ℓ

162p2

]
≥ 1− 2e−2p.

Here, in the third inequality, we have used Hoeffding’s inequality. The probability that B
breaks the security of the quantum money scheme is therefore∑

k,k′

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
Pr

[
Count(k, |$k′⟩⊗ℓ) ≥ t+ 1

]
≥

∑
(k,k′)∈S∧k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
Pr

[
Count(k, |$k′⟩⊗ℓ) ≥ t+ 1

]
≥ (1− 2e−2p)

∑
(k,k′)∈S∧k∈T

Pr
[
k ← QM.KeyGen(1λ)

]
Pr

[
k′ ← A(|$k⟩⊗t)

]
≥ (1− 2e−2p)

( 1
2p − negl(λ)

)
,

which is non-negligible. The B therefore breaks the security of the private-key quantum
money scheme. ◀

9 Due to the relation between the fidelity and the trace distance, we have 1
2∥|$k⟩⟨$k| − |$k′⟩⟨$k′ |∥1 ≤√

1− |⟨$k|$k′⟩|2, which means that ⟨$k|Π|$k⟩ − ⟨$k′ |Π|$k′⟩ ≤
√

1− |⟨$k|$k′⟩|2 for any POVM ele-
ment Π.

10 (1 + x)r ≤ 1 + rx for any real r and x such that 0 ≤ r ≤ 1 and x ≥ −1.

TQC 2024



4:12 One-Wayness in Quantum Cryptography

5.3 OWSGs from Quantum Money with Symmetric Verifiability
We consider the following restriction for quantum money.

▶ Definition 25 (Symmetric-verifiability). We say that a private-key quantum money scheme
satisfies the symmetric-verifiability if Pr[⊤ ← Ver(k, $k′)] = Pr[⊤ ← Ver(k′, $k)] for all k ̸=
k′.

▶ Remark 26. For example, if all money states are pure, and Ver(α, ρ) is the following
algorithm, the symmetric-verifiability is satisfied: Measure ρ with the basis {|$α⟩⟨$α|, I −
|$α⟩⟨$α|}. If the first result is obtained, output ⊤. Otherwise, output ⊥.

▶ Theorem 27. If private-key quantum money schemes with symmetric-verifiability exist,
then OWSGs exist.

▶ Remark 28. By using the equivalence between OWSGs and wOWSGs (Theorem 13), this
result can be improved to a stronger result (with a similar proof) that private-key quantum
money schemes with symmetric-verifiability and with weak security imply OWSGs. Here,
the weak security means that there exists a polynomial p such that for any QPT adversary
A and any polynomial t,

Pr
[
Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗t

k )
]
≤ 1− 1

p
.

The proof of Theorem 27 is similar to that of Theorem 22. For a proof, see the full
version.

6 QPOTP

In this section, we first define (IND-based) QPOTP schemes (Section 6.1). We then show
that QPOTP schemes imply OWSGs (Section 6.2), and that single-copy-secure QPOTP
schemes imply EFI pairs (Section 6.3).

6.1 Definition of QPOTP
Quantum pseudo one-time pad schemes are defined as follows.

▶ Definition 29 ((IND-based) quantum pseudo one-time pad (QPOTP)). An (IND-based)
quantum pseudo one-time pad (QPOTP) scheme with the key length κ and the plaintext
length ℓ (ℓ > κ) is a set of algorithms (KeyGen,Enc,Dec) such that

KeyGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs
a classical secret key sk ∈ {0, 1}κ.
Enc(sk, x)→ ct : It is a QPT algorithm that, on input sk and a classical plaintext message
x ∈ {0, 1}ℓ, outputs an ℓn-qubit quantum ciphertext ct.
Dec(sk, ct)→ x′ : It is a QPT algorithm that, on input sk and ct, outputs x′ ∈ {0, 1}ℓ.

We require the following correctness and security.
Correctness: For any x ∈ {0, 1}ℓ, Pr

[
x← Dec(sk, ct) : sk← KeyGen(1λ), ct← Enc(sk, x)

]
≥

1− negl(λ).
Security: For any x0, x1 ∈ {0, 1}ℓ, any QPT adversary A, and any polynomial t,

|Pr
[
1← A(ct⊗t

0 ) : sk← KeyGen(1λ), ct0 ← Enc(sk, x0)
]

−Pr
[
1← A(ct⊗t

1 ) : sk← KeyGen(1λ), ct1 ← Enc(sk, x1)
]
| ≤ negl(λ).
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▶ Definition 30. We say that a QPOTP scheme is single-copy-secure if the security holds
only for t = 1.

▶ Remark 31. Note that the above definition of QPOTP is different from that of [3] in the
following two points. First, we consider a general secret key generation QPT algorithm, while
they consider uniform sampling of the secret key. Second, we consider the IND-based version
of the security, while the security definition of [3] is as follows: For any x ∈ {0, 1}ℓ, any QPT
adversary A, and any polynomial t,

|Pr
[
1← A(ct⊗t) : sk← {0, 1}κ, ct← Enc(sk, x)

]
−Pr

[
1← A((|ψ1⟩ ⊗ ...⊗ |ψℓ⟩)⊗t) : |ψ1⟩, ..., |ψℓ⟩ ← µn

]
| ≤ negl(λ),

where |ψ⟩ ← µn means the Haar random sampling of n-qubit states. It is clear that the
security definition of [3] implies our IND-based security, and therefore if QPOTP schemes of
[3] exist, those of Definition 29 exist. Since our results are constructions of OWSGs and EFI
pairs from QPOTP, the above modification only makes our results stronger.
▶ Remark 32. QPOTP is constructed from PRSGs [3].

6.2 OWSGs from QPOTP
▶ Theorem 33. If QPOTP schemes with κ < ℓ exist, then OWSGs exist.

Proof of Theorem 33. Let (OTP.KeyGen,OTP.Enc,OTP.Dec) be a QPOTP scheme with
κ < ℓ. From it, we construct a wOWSG as follows.11 (From Theorem 13, it is enough for
the existence of OWSGs.)

KeyGen(1λ)→ k : Run sk← OTP.KeyGen(1λ). Choose x← {0, 1}ℓ. Output k := (sk, x).
StateGen(k) → ϕk : Parse k = (sk, x). Run ctsk,x ← OTP.Enc(sk, x). Output ϕk :=
ctsk,x ⊗ |x⟩⟨x|.
Ver(k′, ϕk) → ⊤/⊥ : Parse k′ = (sk′, x′). Parse ϕk = ctsk,x ⊗ |x⟩⟨x|. Run x′′ ←
OTP.Dec(sk′, ctsk,x). If x′′ = x′ = x, output ⊤. Otherwise, output ⊥.

The correctness is clear. Let us show the security. Assume that it is not secure. It means
that for any polynomial p there exist a QPT adversary A and a polynomial t such that

Pr

x′ = x′′ = x :

sk← OTP.KeyGen(1λ),
x← {0, 1}ℓ,

ctsk,x ← OTP.Enc(sk, x),
(sk′, x′)← A(ct⊗t

sk,x ⊗ |x⟩⟨x|⊗t)
x′′ ← OTP.Dec(sk′, ctsk,x)

 ≥ 1− 1
p
. (2)

From this A, we construct a QPT adversary B that breaks the security of the QPOTP
scheme as follows. Let b ∈ {0, 1} be the parameter of the following security game.
1. B chooses x0, x1 ← {0, 1}ℓ, and sends them to the challenger C.
2. C runs sk← OTP.KeyGen(1λ).
3. C runs ctsk,xb

← OTP.Enc(sk, xb) t+ 1 times.
4. C sends ct⊗t+1

sk,xb
to B.

5. B runs (sk′, x′)← A(ct⊗t
sk,xb
⊗ |x0⟩⟨x0|⊗t).

6. B runs x′′ ← OTP.Dec(sk′, ctk,xb
). If x′ = x′′ = x0, B outputs b′ = 0. Otherwise, it

outputs b′ = 1.

11 A similar proof idea was given in Lemma 4.6 of [7]. However, the direct application of the proof will not
work, because ciphertexts (and therefore output states of OWSGs) are quantum and the verification of
“preimages” is done by the additional verification algorithm.
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It is clear that Pr[b′ = 0|b = 0] is equivalent to the left-hand-side of Eq. (2). On the other
hand,

Pr
[
b′ = 0|b = 1

]
= 1

22ℓ

∑
x0,x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

]
Pr

[
sk′ ← A(ct⊗t

sk,x1 ⊗ |x0⟩⟨x0|⊗t)
]

×Pr
[
x0 ← OTP.Dec(sk′, ctsk,x1 )

]
≤ 1

22ℓ

∑
x0,x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

]
Pr

[
x0 ← OTP.Dec(sk′, ctsk,x1 )

]
= 1

22ℓ

∑
x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

] ∑
x0

Pr
[
x0 ← OTP.Dec(sk′, ctsk,x1 )

]
= 1

22ℓ

∑
x1,sk,sk′

Pr
[
sk← OTP.KeyGen(1λ)

]
= 2κ

2ℓ
≤ 1

2 .

Therefore |Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| is non-negligible, which means that the B
breaks the security of the QPOTP. ◀

6.3 EFI Pairs from Single-Copy-Secure QPOTP
▶ Theorem 34. If single-copy-secure QPOTP schemes with κ < ℓ exist then EFI pairs exist.

We prove this theorem based on a result shown by Lai and Chung [16], which gives a
quantum analogue of Shannon’s impossibility. Roughly speaking, they show that if a SKE
scheme for n-qubit messages and κ-bit secret keys is information theoretically one-time-secure,
then we must have κ ≥ 2n. By a reduction to their result via a hybrid encryption of QPOTP
and quantum one-time pads, we can show that any QPOTP scheme with κ < ℓ is not
one-time-secure against unbounded-time adversaries. On the other hand, we assume that it
is one-time-secure against QPT adversaries. This computationally-secure and information-
theoretically-insecure encryption scheme can be directly used to construct EFI pairs. For a
formal proof, see the full version.

7 SV-SI-OWSGs

In this section, we define SV-SI-OWSGs (Section 7.1), and show that SV-SI-OWSGs are
equivalent to EFI pairs (Section 7.2). In Section 7.1, before defining SV-SI-OWSGs, we first
define SV-OWSGs for a didactic purpose. We will point out that SV-OWSGs seem to need a
more constraint so that they become equivalent to EFI. We then define SV-SI-OWSGs.

7.1 Definition of SV-SI-OWSGs
We first define secretly-verifiable OWSGs (SV-OWSGs) as follows.

▶ Definition 35 (Secretly-verifiable OWSGs (SV-OWSGs)). A secretly-verifiable OWSG (SV-
OWSG) is a set of algorithms (KeyGen, StateGen,Ver) as follows.

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a key k ∈ {0, 1}κ.
StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit state ϕk.
Ver(k′, k)→ ⊤/⊥ : It is a QPT algorithm that, on input k and k′, outputs ⊤/⊥.

We require the following two properties.
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Correctness:

Pr
[
⊤ ← Ver(k, k) : k ← KeyGen(1λ)

]
≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t,
Pr

[
⊤ ← Ver(k′, k) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(ϕ⊗t

k )
]
≤ negl(λ).

The following lemma shows that, without loss of generality, Ver can be replaced with the
algorithm of just checking whether k = k′ or not.

▶ Lemma 36. Let (KeyGen, StateGen,Ver) be a SV-OWSG. Then, the following SV-OWSG
(KeyGen′, StateGen′,Ver′) exists.

KeyGen′ and StateGen′ are the same as KeyGen and StateGen, respectively.
Ver′(k′, k)→ ⊤/⊥ : On input k and k′, output ⊤ if k = k′. Otherwise, output ⊥.

For a proof, see the full version.
Note that statistically-secure SV-OWSGs are easy to realize. For example, consider the

following construction:
KeyGen(1λ) : Sample k ← {0, 1}λ.
StateGen(k) : Output I⊗m

2m .
Ver(k′, k) : Output ⊤ if k′ = k. Otherwise, output ⊥.

We therefore need a constraint to have a meaningful primitive. We define secretly-verifiable
and statistically-invertible OWSGs (SV-SI-OWSGs) as follows. Introducing the statistical
invertibility allows us to avoid trivial constructions with the statistical security.

▶ Definition 37 (Secretly-verifiable and statistically-invertible OWSGs (SV-SI-OWSGs)). A
secretly-verifiable and statistically-invertible OWSG (SV-SI-OWSG) is a set of algorithms
(KeyGen, StateGen) as follows.

KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs
a key k ∈ {0, 1}κ.
StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit state ϕk.

We require the following two properties.
Statistical invertibility: There exists a polynomial p such that, for any k and k′ (k ̸= k′),

1
2∥ϕk − ϕk′∥1 ≥ 1

p .

Computational non-invertibility: For any QPT adversary A and any polynomial t,
Pr

[
k ← A(ϕ⊗t

k ) : k ← KeyGen(1λ), ϕk ← StateGen(k)
]
≤ negl(λ).

The following lemma shows that the statistical invertibility with advantage 1
poly(λ) can

be amplified to 1− 2−q for any polynomial q.

▶ Lemma 38. If a SV-SI-OWSG exists then a SV-SI-OWSG with statistical invertibility
larger than 1− 2−q with any polynomial q exists.

Proof. Let (KeyGen, StateGen) be a SV-SI-OWSG with statistical invertibility larger than 1
p ,

where p is a polynomial. From it, we construct a new SV-SI-OWSG (KeyGen′, StateGen′) as
follows:

KeyGen′(1λ)→ k: Run k ← KeyGen(1λ), and output k.
StateGen′(k)→ ϕ′

k : Run ϕk ← StateGen(k) 2pq times, and output ϕ′
k := ϕ⊗2pq

k .
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First, for any k and k′ (k ̸= k′),

1
2∥ϕ

′
k − ϕ′

k′∥1 = 1
2∥ϕ

⊗2pq
k − ϕ⊗2pq

k′ ∥1 ≥ 1− exp(−2qp∥ϕk − ϕk′∥1/4)

≥ 1− exp(−q) ≥ 1− 2−q,

which shows the statistical invertibility of (KeyGen′, StateGen′) with the advantage larger
than 1− 2−q. Second, from the computational non-invertibility of (KeyGen, StateGen),

Pr
[
k ← A(ϕ′⊗t

k ) : k ← KeyGen′(1λ), ϕ′
k ← StateGen′(k)

]
= Pr

[
k ← A(ϕ⊗2pqt

k ) : k ← KeyGen(1λ), ϕk ← StateGen(k)
]
≤ negl(λ)

for any QPT adversary A and any polynomial t, which shows the computational non-
invertibility of (KeyGen′, StateGen′). ◀

The following lemma shows that the statistical invertibility is equivalent to the existence
of a (unbounded) adversary that can find the correct k given many copies of ϕk except for a
negligible error.

▶ Lemma 39. The statistical invertibility is satisfied if and only if the following is satisfied:
There exists a (not necessarily QPT) POVM measurement {Πk}k∈{0,1}κ and a polynomial t
such that Tr(Πkϕ

⊗t
k ) ≥ 1− negl(λ) and Tr(Πk′ϕ⊗t

k ) ≤ negl(λ) for all k and k′ (k ̸= k′).

Proof. First, we show the if part. Assume that there exists a POVM measurement
{Πk}k∈{0,1}κ and a polynomial t such that Tr(Πkϕ

⊗t
k ) ≥ 1−negl(λ) and Tr(Πk′ϕ⊗t

k ) ≤ negl(λ)
for all k and k′ (k ̸= k′). Then,

t

2∥ϕk − ϕk′∥1 ≥ 1
2∥ϕ

⊗t
k − ϕ

⊗t
k′ ∥1 ≥ Tr

(
Πkϕ

⊗t
k

)
− Tr

(
Πkϕ

⊗t
k′

)
≥ 1− negl(λ)− negl(λ)

= 1− negl(λ),

which means 1
2∥ϕk − ϕk′∥1 ≥ 1

t − negl(λ) ≥ 1
2t .

Next, we show the only if part. Assume that the statistical invertibility is satisfied. Then,
there exists a polynomial p such that 1

2∥ϕk − ϕk′∥1 ≥ 1
p for all k and k′ (k ̸= k′). Let

t := 12pκ. Then,

1
2∥ϕ

⊗t
k − ϕ

⊗t
k′ ∥1 ≥ 1− e−t

∥ϕk−ϕ
k′ ∥1

4 ≥ 1− e−6κ ≥ 1− 2−6κ,

which means F (ϕ⊗t
k , ϕ⊗t

k′ ) ≤ 2−6κ+1. From Theorem 40 below,

max
k

(1− Tr(µkϕ
⊗t
k )) ≤

∑
k ̸=k′

√
F (ϕ⊗t

k , ϕ⊗t
k′ ) ≤ 2−3κ+1(22κ − 2κ) ≤ 2−κ+1,

which means Tr(µkϕ
⊗t
k ) ≥ 1− 2−κ+1 and Tr(µk′ϕ⊗t

k ) ≤ 2−κ+1 for any k and k′ (k′ ≠ k). ◀

▶ Theorem 40 ([17]). Let {ρi}i be a set of states. Define the POVM measurement {µi}i

with µi := Σ−1/2ρiΣ−1/2, where Σ :=
∑

i ρi, and the inverse is taken on the support of Σ.
Then, maxi(1− Tr(µiρi)) ≤

∑
i̸=j

√
F (ρi, ρj).
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7.2 Equivalence of SV-SI-OWSGs and EFI Pairs
▶ Theorem 41. SV-SI-OWSGs exist if and only if EFI pairs exist.

This Theorem is shown by combining the following two theorems.

▶ Theorem 42. If EFI pairs exist then SV-SI-OWSGs exist.

▶ Theorem 43. If SV-SI-OWSGs exist then EFI pairs exist.

Proof of Theorem 42. We show that if EFI pairs exist then SV-SI-OWSGs exist. Let
EFI.StateGen(1λ, b) → ρb be an EFI pair. As is explained in Remark 2, we can assume
without loss of generality that 1

2∥ρ0 − ρ1∥1 ≥ 1− negl(λ), which means F (ρ0, ρ1) ≤ negl(λ).
From the EFI pair, we construct a SV-SI-OWSG as follows.

KeyGen(1λ)→ k : Choose k ← {0, 1}κ, and output k.
StateGen(k) → ϕk : Run EFI.StateGen(1λ, ki) → ρki for each i ∈ [κ]. Output ϕk :=⊗κ

i=1 ρki
.

The statistical invertibility is easily shown as follows. If k ̸= k′, there exists a j ∈ [κ] such
that kj ̸= k′

j . Then,

F (ϕk, ϕk′) =
κ∏

i=1
F (ρki

, ρk′
i
) ≤ F (ρkj

, ρk′
j
) ≤ negl(λ),

which means 1
2∥ϕk − ϕk′∥1 ≥ 1− negl(λ). This shows the statistical invertibility.

Let us next show the computational non-invertibility. From the standard hybrid argument,
and the computational indistinguishability of ρ0 and ρ1, we have∣∣∣ 1

2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

k )
]
− 1

2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

0κ )
]∣∣∣ ≤ negl(λ) (3)

for any QPT adversary A and any polynomial t. (It will be shown later.) Hence

Pr
[
k ← A(ϕ⊗t

k ) : k ← KeyGen(1λ), ϕk ← StateGen(k)
]

= 1
2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

k )
]
≤ 1

2κ

∑
k∈{0,1}κ

Pr
[
k ← A(ϕ⊗t

0κ )
]

+ negl(λ) = 1
2κ

+ negl(λ),

which shows the computational non-invertibility.
Let us show Eq. (3). For each z ∈ {0, 1}κt, define Φz :=

⊗κt
i=1 ρzi . Let z, z′ ∈ {0, 1}κt be

two bit strings such that, for a single j ∈ [κt], zj = 0, z′
j = 1, and zi = z′

i for all i ̸= j. (In
other words, z and z′ are the same except for the jth bit.) Then, we can show that∣∣∣ 1

2κ

∑
k∈{0,1}κ

Pr[k ← A(Φz)]− 1
2κ

∑
k∈{0,1}κ

Pr[k ← A(Φz′)]
∣∣∣ ≤ negl(λ) (4)

for any QPT adversary A. In fact, assume that∣∣∣ 1
2κ

∑
k

Pr[k ← A(Φz)]− 1
2κ

∑
k

Pr[k ← A(Φz′)]
∣∣∣ ≥ 1

poly(λ)

for a QPT adversary A. Then, from this A, we can construct a QPT adversary B that
breaks the security of the EFI pair as follows: On input ρb, choose k ← {0, 1}κ, and run
k′ ← A((

⊗j−1
i=1 ρzi

)⊗ ρb ⊗ (
⊗κt

i=j+1 ρzi
)). If k′ = k, output b′ = 1. If k′ ̸= k, output b′ = 0.

Because

Pr[b′ = 1|b = 0] = 1
2κ

∑
k

Pr[k ← A(Φz)], Pr[b′ = 1|b = 1] = 1
2κ

∑
k

Pr[k ← A(Φz′)],

we have |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| ≥ 1
poly(λ) , which means that the B breaks the

security of the EFI pair. From the standard hybrid argument and Eq. (4), we have Eq. (3). ◀
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Proof of Theorem 43. We show that if SV-SI-OWSGs exist then EFI pairs exist. Let
(OWSG.KeyGen,OWSG.StateGen) be a SV-SI-OWSG. Without loss of generality, we can
assume that OWSG.KeyGen is the following algorithm: first apply a QPT unitary U on |0...0⟩
to generate U |0...0⟩ =

∑
k

√
Pr[k ← OWSG.KeyGen(1λ)]|k⟩|µk⟩, and trace out the second

register, where {|µk⟩}k are some normalized states. Moreover, without loss of generality, we
can also assume that OWSG.StateGen is the following algorithm: first apply a QPT unitary
Vk that depends on k on |0...0⟩ to generate Vk|0...0⟩ = |ψk⟩A,B, and trace out the register A.

From the SV-SI-OWSG, we want to construct an EFI pair. For that goal, we construct a
statistically-hiding and computationally-binding canonical quantum bit commitment scheme
from SV-SI-OWSG. Due to Theorem 8 (the equivalence between different flavors of commit-
ments), we then have a statistically-binding and computationally-hiding canonical quantum
bit commitment scheme, which is equivalent to an EFI pair. From the SV-SI-OWSG, we con-
struct a statistically-hiding and computationally-binding canonical quantum bit commitment
scheme {Q0, Q1} as follows.

Q0|0⟩C,R :=
∑

k

√
Pr[k](|k⟩|µk⟩)C1 |ψk⟩⊗t

C2,R2
|0⟩R3 ,

Q1|0⟩C,R :=
∑

k

√
Pr[k](|k⟩|µk⟩)C1 |ψk⟩⊗t

C2,R2
|k⟩R3 ,

where Pr[k] := Pr
[
k ← OWSG.KeyGen(1λ)

]
, C2 is the combination of all “A registers” of

|ψk⟩, R2 is the combination of all “B registers” of |ψk⟩, C := (C1,C2) and R := (R2,R3).
Moreover, t is a polynomial specified later. It is clear that such {Q0, Q1} is implemented in
QPT in a natural way.

Let us first show the computational binding of {Q0, Q1}. Assume that it is not computa-
tionally binding. Then, there exists a QPT unitary U , an ancilla state |τ⟩, and a polynomial
p such that ∥(⟨0|Q†

1)C,RUR,Z(Q0|0⟩C,R ⊗ |τ⟩Z)∥ ≥ 1
p . Then,

1
p2 ≤ ∥(⟨0|Q†

1)C,RUR,Z(Q0|0⟩C,R ⊗ |τ⟩Z)∥2

=
∥∥∥( ∑

k′

√
Pr[k′]⟨k′, µk′ |C1⟨ψk′ |⊗t

C2,R2
⟨k′|R3

)
×

( ∑
k

√
Pr[k]|k, µk⟩C1UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

)∥∥∥2

=
∥∥∥ ∑

k

Pr[k]⟨ψk|⊗t
C2,R2

⟨k|R3UR,Z|ψk⟩⊗t
C2,R2

|0⟩R3 |τ⟩Z
∥∥∥2

≤
( ∑

k

Pr[k]
∥∥∥⟨ψk|⊗t

C2,R2
⟨k|R3UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

∥∥∥)2

≤
∑

k

Pr[k]
∥∥∥⟨ψk|⊗t

C2,R2
⟨k|R3UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

∥∥∥2

≤
∑

k

Pr[k]
∥∥∥⟨k|R3UR,Z|ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z

∥∥∥2
. (5)

In the third inequality, we have used Jensen’s inequality.12 From this U , we construct a
QPT adversary B that breaks the computational non-invertibility of the SV-SI-OWSG as
follows: On input the R2 register of |ψk⟩⊗t

C2,R2
, apply UR,Z on |ψk⟩⊗t

C2,R2
|0⟩R3 |τ⟩Z, and

12 For a real convex function f , f(
∑

i
pixi) ≤

∑
i
pif(xi).
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measure the R3 register in the computational basis. Output the result. Then, the probability
that B correctly outputs k is equal to Eq. (5). Therefore, B breaks the computational
non-invertibility of the SV-SI-OWSG.

Let us next show the statistical hiding of {Q0, Q1}. In the following, we construct a (not
necessarily QPT) unitary WR,Z such that

∥WR,ZQ0|0⟩C,R|0⟩Z −Q1|0⟩C,R|0⟩Z∥1 ≤ negl(λ). (6)

Then, we have
∥TrR(Q0|0⟩C,R)− TrR(Q1|0⟩C,R)∥1 = ∥TrR,Z(Q0|0⟩C,R|0⟩Z)− TrR,Z(Q1|0⟩C,R|0⟩Z)∥1

= ∥TrR,Z(WR,ZQ0|0⟩C,R|0⟩Z)− TrR,Z(Q1|0⟩C,R|0⟩Z)∥1

≤ ∥WR,ZQ0|0⟩C,R|0⟩Z −Q1|0⟩C,R|0⟩Z∥1 ≤ negl(λ),

which shows the statistical hiding of {Q0, Q1}.
Now we explain how to construct WR,Z. From Lemma 39, there exists a (not necessarily

QPT) POVM measurement {Πk}k and a polynomial t such that Tr(Πkϕ
⊗t
k ) ≥ 1− negl(λ)

and Tr(Πk′ϕ⊗t
k ) ≤ negl(λ) for all k and k′ (k ̸= k′). Let UR2,Z be a unitary operator that

implements the POVM measurement {Πk}k in the following way

UR2,Z|ψk⟩⊗t
C2,R2

|0...0⟩Z =
√

1− ϵk|k⟩|junkk⟩+
∑

k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩,

where Z is the ancilla register, {ϵi}i are real numbers such that 1 − ϵk ≥ 1 − negl(λ) and
ϵk′ ≤ negl(λ) for all k′ ̸= k, and {|junki⟩}i are “junk” states that are normalized. Measuring
the first register of the state realizes the POVM. Let VR,Z be the following unitary:13

1. Apply UR2,Z on |ψk⟩⊗t
C2,R2

|0...0⟩Z|0⟩R3 :

UR2,Z|ψk⟩⊗t
C2,R2

|0...0⟩Z|0⟩R3 =
[√

1− ϵk|k⟩|junkk⟩+
∑

k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩

]
|0⟩R3 .

2. Copy the content of the first register to the register R3:√
1− ϵk|k⟩|junkk⟩|k⟩R3 +

∑
k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩|k′⟩R3 .

Define WR,Z := U†
R2,ZVR,Z.

Let us show that thus constructed WR,Z satisfies Eq. (6).(
(⟨0|Q†

1)C,R⟨0|Z
)(
WR,ZQ0|0⟩C,R|0⟩Z

)
=

(
(⟨0|Q†

1)C,R⟨0|Z
)(
U†

R2,ZVR,ZQ0|0⟩C,R|0⟩Z
)

=
(

(⟨0|Q†
1)C,R⟨0|ZU†

R2,Z

)(
VR,ZQ0|0⟩C,R|0⟩Z

)
=

( ∑
k

√
Pr[k](⟨k|⟨µk|)C1

[√
1− ϵk⟨k|⟨junkk|⟨k|R3 +

∑
k′ ̸=k

√
ϵk′⟨k′|⟨junkk′ |⟨k|R3

])
×

( ∑
k

√
Pr[k](|k⟩|µk⟩)C1

[√
1− ϵk|k⟩|junkk⟩|k⟩R3 +

∑
k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩|k′⟩R3

])
=

∑
k

Pr[k](1− ϵk) ≥ 1− negl(λ). ◀

13 For simplicity, we define VR,Z by explaining how it acts on |ψk⟩⊗t
C2,R2

|0...0⟩Z|0⟩R3 , but it is clear from
the explanation how VR,Z is defined.
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Abstract
We study digital signatures with revocation capabilities and show two results. First, we define and
construct digital signatures with revocable signing keys from the LWE assumption. In this primitive,
the signing key is a quantum state which enables a user to sign many messages and yet, the quantum
key is also revocable, i.e., it can be collapsed into a classical certificate which can later be verified.
Once the key is successfully revoked, we require that the initial recipient of the key loses the ability to
sign. We construct digital signatures with revocable signing keys from a newly introduced primitive
which we call two-tier one-shot signatures, which may be of independent interest. This is a variant
of one-shot signatures, where the verification of a signature for the message “0” is done publicly,
whereas the verification for the message “1” is done in private. We give a construction of two-tier
one-shot signatures from the LWE assumption. As a complementary result, we also construct digital
signatures with quantum revocation from group actions, where the quantum signing key is simply
“returned” and then verified as part of revocation.

Second, we define and construct digital signatures with revocable signatures from OWFs. In this
primitive, the signer can produce quantum signatures which can later be revoked. Here, the security
property requires that, once revocation is successful, the initial recipient of the signature loses the
ability to find accepting inputs to the signature verification algorithm. We construct this primitive
using a newly introduced two-tier variant of tokenized signatures. For the construction, we show a
new lemma which we call the adaptive hardcore bit property for OWFs, which may enable further
applications.
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1 Introduction

1.1 Background
The exotic nature of quantum physics, such as quantum superposition, no-cloning, entan-
glement, and uncertainty relations, enables many new cryptographic applications which are
impossible in a classical world. These include quantum money [43], copy-protection [1, 2],
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secure software leasing [5], unclonable encryption [20, 15], certified deletion [14], and more.
Here, a common approach is to encode information into a quantum state which prevents it
from being copied by the no-cloning principle. [42, 14, 23, 24, 6, 11, 9, 30, 35, 8, 7]

Following this line of research, Ananth, Poremba, and Vaikuntanathan [6] and Agrawal,
Kitagawa, Nishimaki, Yamada, and Yamakawa [3] concurrently introduced the concept of
key-revocable public key encryption (PKE),1 which realizes the following functionality: a
decryption capability is delegated to a user in the form of a quantum decryption key in such
a way that, once the key is returned, the user loses the ability to decrypt. They constructed
key-revocable PKE schemes based on standard assumptions, namely quantum hardness of
the learning with errors problem (LWE assumption) [6] or even the mere existence of any
PKE scheme [3]. They also extended the idea of revocable cryptography to pseudorandom
functions [6] and encryption with advanced functionality such as attribute-based encryption
and functional encryption [3]. However, neither of these works extended the idea to digital
signatures despite their great importance in cryptography. This state of affairs raises the
following question:

Is it possible to construct digital signature schemes with revocation capabilities?

The delegation of privileges is of central importance in cryptography, and the task of
revoking privileges in the context of digital signatures and certificates, in particular, remains a
fundamental challenge for cryptography [41, 39]. One simple solution is to use a limited-time
delegatable signature scheme, where a certified signing key is generated together with an
expiration date. Note that this requires that the expiration date is known ahead of time and
that the clocks be synchronized. Moreover, issuing new keys (for example, each day) could
potentially also be costly. Quantum digital signature schemes with revocation capabilities
could potentially resolve these difficulties by leveraging the power of quantum information.

To illustrate the use of revocable digital signature schemes, consider the following scenarios.
Suppose that an employee at a company, say Alice, takes a temporary leave of absence and
wishes to authorize her colleague, say Bob, to sign a few important documents on her behalf.
One thing Alice can do is to simply use a (classical) digital signature scheme and to share
her signing keys with Bob. While this naïve approach would certainly allow Bob to produce
valid signatures while Alice is gone, it also means that Bob continues to have access to the
signing keys – long after Alice’s return. This is because the signing key of a digital signature
scheme is classical, and hence it can be copied at will. In particular, a malicious Bob could
secretly sell Alice’s signing key to a third party for a profit. A digital signature scheme with
revocable signing keys can remedy this situation as it enables Alice to certify that Bob has
lost access to the signing key once and for all.

As a second example, consider the following scenario. Suppose that a company or a
governmental organization wishes to grant a new employee certain access privileges throughout
their employment; for example to various buildings or office spaces. One solution is to
use an electronic ID card through a mobile device, where a digital signature is used for
identity management. Naturally, one would like to ensure that, once the employee’s contract
is terminated, their ID card is disabled in the system and no longer allows for further
unauthorized access. However, if the signature corresponding to the employee’s ID is a digital
object, it is conceivable that the owner of the card manages to retain their ID card even after
it is disabled. This threat especially concerns scenarios in which the verification of an ID

1 Agrawal et al. [3] call it PKE with secure key leasing.
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card is performed by a device which is not connected to the internet, or simply not updated
frequently enough. A digital signature scheme with revocable signatures can remedy this
situation as it enables revocable quantum ID cards; in particular, it allows one to certify that
the initial access privileges have been revoked once and for all.

1.2 Our Results

In this paper, we show the following two results on revocable digital signatures.

Revocable signing keys. First, we define digital signatures with revocable signing keys
(DSR-Key). In this primitive, a signing key is encoded in the form of a quantum state which
enables the recipient to sign many messages. However, once the key is successfully revoked
from a user, they no longer have the ability to generate valid signatures. Here, we consider
classical revocation, i.e., a classical certificate is issued once the user destroys the quantum
signing key with an appropriate measurement. In addition, the verification of the revocation
certificate takes place in private, which means that the verification requires a private key
which should be kept secret. We construct DSR-Key based solely on the quantum hardness
of the LWE problem [38]. We remark that our scheme is inherently stateful, i.e., whenever a
user generates a new signature, the user must update the singing key for the next invocation
of the signing algorithm. Indeed, we believe that digital signatures with revocable signing
keys must be inherently stateful since a user must keep the quantum signing key as a “state”
for generating multiple signatures. An undesirable feature of our scheme is that the signing
key and signature sizes grow with the number of signatures to be generated.

As complementary result, we also consider DSR-Key with quantum revocation. In this
primitive, not a classical deletion certificate but the quantum signing key itself is returned for
the revocation. In the full version of the paper, we construct the primitive from group actions
with the one-wayness property [26]. The existence of group actions with the one-wayness
property is incomparable with the LWE assumption.

Revocable signatures. Second, we define digital signatures with revocable signatures
(DSR-Sign). In this primitive, signatures are encoded as quantum states which can later be
revoked. The security property guarantees that, once revocation is successful, the initial
recipient of the signature loses the ability to pass the signature verification. We construct
digital signatures with revocable signatures based on the existence of (quantum-secure)
one-way functions (OWFs). In our scheme, the revocation is classical and private, i.e., a user
can issue a classical certificate of revocation, which is verified by using a private key.

1.3 Comparison with Existing Works

To our knowledge, there is no prior work that studies digital signatures with quantum
signatures. On the other hand, there are several existing works that study digital signatures
with quantum signing keys. We review them and compare them with our DSR-Key.

Tokenized signatures [12, 17]. In a tokenized signature scheme, the signing key
corresponds to a quantum state which can be used to generate a signature on at most one
message. At first sight, the security notion seems to imply the desired security guarantee
for DSR-Key, since a signature for a dummy message may serve as the classical deletion
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certificate for the signing key.2 However, the problem is that tokenized signatures do
not achieve the correctness for DSR-Key; namely, in tokenized signatures, a user who
receives a quantum signing key can generate only a single signature, whereas in DSR-Key,
we require that a user can generate arbitrarily many signatures before the signing key is
revoked. Thus, tokenized signatures are not sufficient for achieving our goal. A similar
problem exists for semi-quantum tokenized signatures [40] and one-shot signatures [4] as
well.
Copy-protection for digital signatures [31] (a.k.a. single-signer signatures [4].3)
In this primitive, a signing key corresponds to a quantum state which cannot be copied.
More precisely, suppose that a user is given one copy of the signing key and tries to split it
into two signing keys. The security property requires that at most one of these two signing
keys is capable at generating a valid signature on a random message. Amos, Georgiou,
Kiayias, and Zhandry [4] constructed such a signature scheme based on one-shot signatures.
However, the only known construction of one-shot signatures is relative to classical oracles,
and there is no known construction without oracles. Liu, Liu, Qian, and Zhandry [31]
constructed it based on indistinguishability obfuscation (iO) and OWFs. Intuitively, copy-
protection for digital signatures implies DSR-Key, because checking whether a returned
signing key succeeds at generating valid signatures on random messages can serve a means
of verification for revocation.4 Compared with this approach, our construction has the
advantage that it is based on the standard assumption (namely the LWE assumption),
whereas they require the very strong assumption of iO or ideal oracles. On the other
hand, a disadvantage of our construction is that revocation requires private information,
whereas theirs have the potential for public revocation. Another disadvantage is that the
size of the signing key (and signatures) grows with the number of signatures, whereas
this is kept constant in [31] (but not in [4]).

1.4 Technical Overview
Here we give intuitive explanations of our constructions.

Construction of DSR-Key. Our first scheme, DSR-Key, is constructed using two-tier one-
shot signatures (2-OSS), which is a new primitive which we introduce in this paper.5 2-OSS
are variants of one-shot signatures [4] for single-bit messages. The main difference with
regard to one-shot signatures is that there are two verification algorithms, and a signature
for the message “0” is verified by a public verification algorithm, whereas a signature for
the massage “1” is verified by a private verification algorithm. We believe that the notion of
2-OSS may be of independent interest. Our construction of 2-OSS is conceptually similar to
the construction of two-tier quantum lightning in [29], and can be based solely on the LWE
assumption.

2 Note, however, that tokenized signatures offer public verification of signatures, whereas certifying
revocation in our DSR-Key scheme takes place in private.

3 Technically speaking, [31] and [4] require slightly different security definitions, but high level ideas are
the same.

4 While this sounds plausible, there is a subtlety regarding the security definitions. Indeed, we believe
that the security of copy-protection for digital signatures [31] or single-signer signatures [4] does not
readily imply our security definition in Definition 4, though they do seem to imply some weaker but
reasonable variants of security. See also Remark 5.

5 The term “two-tier” is taken from [29] where they define two-tier quantum lightning, which is a similar
variant of quantum lightning [44].
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From 2-OSS, we then go on to construct DSR-Key. We first construct DSR-Key for
single-bit messages from 2-OSS as follows.6 The signing key sigk of DSR-Key consists of a
pair (sigk0, sigk1) of signing keys of a 2-OSS scheme. To sign a single-bit message m ∈ {0, 1},
the message “0” is signed with the signing algorithm of a 2-OSS scheme using the signing key
sigkm. Because the signature on m corresponds to a particular signature of “0” with respect
to the 2-OSS scheme, it can be verified with the public verification algorithm of 2-OSS. To
delete the signing key, the message “1” is signed with the signing algorithm of 2-OSS by using
the signing key. The signature for the message “1” corresponds to the revocation certificate,
and it can be verified using the private verification algorithm of 2-OSS.

Our aforementioned construction readily implies a one-time version of a DSR-Key scheme,
namely, the correctness and security hold when the signing is used only once. We then
upgrade it to the many-time version by using a similar chain-based construction of single-
signer signatures from one-shot signatures as in [4]. That is, it works as follows. The
signing key and verification key of the many-time scheme are those of the one-time scheme,
respectively. We denote them by (ot.sigk0, ot.vk0). When signing on the first message m1, the
signer first generates a new key pair (ot.sigk1, ot.vk1) of the one-time scheme, uses ot.sigk0
to sign on the concatenation m1∥ot.vk1 of the message and the newly generated verification
key to generate a signature ot.σ1 of the one-time scheme. Then it outputs (m1, ot.vk1, ot.σ1)
as a signature of the many-time scheme.7 Similarly, when signing on the k-th message mk

for k ≥ 2, the signer generates a new key pair (ot.sigkk, ot.vkk) and uses ot.sigkk−1 to sign
on mk∥ot.vkk to generate a signature ot.σk. Then the signature of the many-time scheme
consists of {mi, ot.vki, ot.σi}i∈[k]. The verification algorithm of the many-time scheme verifies
ot.σi for all i ∈ [k] under the corresponding message and verification key, and accepts if all
of these verification checks pass. To revoke a signing key, the signer generates revocation
certificates for all of the signing keys of the one-time scheme which have previously been
generated, and the verification of the revocation certificate simply verifies that all these
revocation certificates are valid.8 It is easy to reduce security of the above many-time scheme
to that of the one-time scheme.

Construction of DSR-Sign. Our second scheme, DSR-Sign, is constructed from what we
call two-tier tokenized signatures (2-TS), which is a new primitive introduced in this paper.
2-TS are variants of tokenized signatures [12] for single-bit messages where two signature
verification algorithms exist. One verification algorithm is used to verify signatures for the
message “0”, and it uses the public key. The other verification algorithm is used to verify
signatures for the message “1”, and it uses the secret key.

We construct 2-TS from OWFs by using a new lemma that we call the adaptive hardcore
bit property for OWFs, inspired by a similar notion which was shown for a family of noisy
trapdoor claw-free functions by Brakerski et al. [13]. We believe that our lemma may be of
independent interest, and enable further applications down the line. The adaptive hardcore
bit property for OWFs roughly states that given |x0⟩+(−1)c |x1⟩ and (f(x0), f(x1)), no QPT
adversary can output (x, d) such that f(x) ∈ {f(x0), f(x1)} and d · (x0 ⊕ x1) = c, where f is
a OWF, x0, x1 ← {0, 1}ℓ, and c← {0, 1}.9 The adaptive hardcore bit property for OWFs is
shown by using a theorem which is implicit in a recent work [10].

6 The scheme can be extended to the one for multi-bit messages by using the collision resistant hash
functions.

7 We include m1 in the signature for notational convenience even though this is redundant.
8 The ability to verify all previously generated signing keys (e.g., as part of a chain) may require secret

trapdoor information.
9 We actually need its amplified version, because in this case the adversary can win with probability 1/2

by measuring the state to get x0 or x1, and randomly choosing d.
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From the adaptive hardcore bit property for OWFs, we construct 2-TS as follows: The
quantum signing token is |x0⟩+ (−1)c |x1⟩ with random x0, x1 ← {0, 1}ℓ and c← {0, 1}.10

The public key is (f(x0), f(x1)), where f is a OWF, and the secret key is (x0, x1, c). To
sign the message “0”, the token is measured in the computational basis to obtain either x0
or x1. To sign the message “1”, the token is measured in the Hadamard basis to obtain a
string d such that d · (x0 ⊕ x1) = c. The measurement result in the computational basis is
then verified with the public key, whereas the measurement result in the Hadamard basis is
verified with the secret key. Due to the adaptive hardcore bit property for OWFs (formally
shown in Theorem 9), no QPT adversary can output both signatures at the same time.

Finally, we observe that DSR-Sign can be constructed from any 2-TS scheme by considering
the quantum signature of DSR-Sign as a quantum signing token of 2-TS. To verify the quantum
signature, we sign the message “0” by using the quantum token, and verify it. To delete the
quantum signature, we sign the message “1” by using the quantum token. The verification
of the revocation certificate requires one to check whether the deletion certificate is a valid
signature for message “1” or not.

1.5 Related Works
We have already explained relations between our results and existing works on digital
signatures with quantum signing keys. Here, we give a brief review on other related quantum
cryptographic primitives.

Certified deletion and revocation. Unruh [42] first initiated the study of quantum revocable
encryption. This allows the recipient of a quantum ciphertext to return the state, thereby
losing all information about the encrypted message. Quantum encryption with certified
deletion [23, 36, 8, 22, 7, 11], first introduced by Broadbent and Islam [14], enables the
deletion of quantum ciphertexts, whereby a classical certificate is produced which can be
verified. In particular, [8, 22, 24] study the certified everlasting security where the security is
guaranteed even against unbounded adversary once a valid deletion certificate is issued. [30]
and [10] recently showed a general conversion technique to convert the certified everlasting
lemma by Bartusek and Kurana [8] for the private verification to the public one assuming
only OWFs (or even weaker assumptions such as hard quantum planted problems for NP or
the one-way states generators [33]).

The notion of certified deletion has also been used to revoke cryptographic keys [28, 3,
7, 6, 16]. Here, a key is delegated to a user in the form of a quantum state which can later
be revoked. Once the key is destroyed and a valid certificate is issued, the functionality
associated with the key is no longer available to the user.

Finally, we remark that the notion of revocation has also been considered in the context
of more general programs. Ananth and La Placa [5] introduced the notion of secure software
leasing. Here, the security guarantees that the functionality of a piece of quantum software
is lost once it is returned and verified.

Copy-protection. Copy-protection, introduced by Aaronson [1], is a primitive which al-
lows one to encode a functionality into a quantum state in such a way that it cannot be
cloned. [2] showed that any unlearnable functionality can be copy-protected with a classical

10 Again, we actually consider its amplified version so that the winning probability of the adversary is
negligibly small.
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oracle. [18] constructed copy-protection schemes for (multi-bit) point functions as well as
compute-and-compare programs in the quantum random oracle model. [17] constructed
unclonable decryption schemes from iO and compute-and-compare obfuscation for the class
of unpredictable distributions, which were previously constructed with classical oracle in
[19]. [17] also constructed a copy-protection scheme for pseudorandom functions assuming
iO, OWFs, and compute-and-compare obfuscation for the class of unpredictable distribu-
tions. [31] constructed bounded collusion-resistant copy-protection for various functionalities
(copy-protection of decryption, digital signatures and PRFs) with iO and LWE.

2 Preliminaries

2.1 Basic Notation
We use the standard notations of quantum computing and cryptography. We use λ as the
security parameter. For any set S, x ← S means that an element x is sampled uniformly
at random from the set S. We write negl to mean a negligible function. PPT stands for
(classical) probabilistic polynomial-time and QPT stands for quantum polynomial-time. For
an algorithm A, y ← A(x) means that the algorithm A outputs y on input x. For two bit
strings x and y, x∥y means the concatenation of them. For simplicity, we sometimes omit
the normalization factor of a quantum state. (For example, we write 1√

2 (|x0⟩+ |x1⟩) just as
|x0⟩+ |x1⟩.) I := |0⟩⟨0|+ |1⟩⟨1| is the two-dimensional identity operator. For the notational
simplicity, we sometimes write I⊗n just as I when the dimension is clear from the context.
For two density matrices ρ and σ, the trace distance is defined as

∥ρ− σ∥tr := 1
2∥ρ− σ∥1 = 1

2Tr
[√

(ρ− σ)2
]
,

where ∥ · ∥1 is the trace norm. We also make use of the following result.

▶ Theorem 1 (Holevo-Helstrom, [25, 21]). Consider an experiment in which one of two
quantum states, either ρ or σ, is sent to a distinguisher with probability 1/2. Then, any
measurement which seeks to discriminate between ρ and σ has success probability psucc at
most psucc ≤ 1

2 + 1
2∥ρ− σ∥tr.

3 Two-Tier One-Shot Signatures

In this section, we define two-tier one-shot signatures (2-OSS), and construct it from the
LWE assumption [38]. Broadly speaking, this cryptographic primitive is a variant of one-shot
signatures [4], where the verification of a signature for the message “0” is done publicly,
whereas that for the message “1” is done only privately.

3.1 Definition
The formal definition of 2-OSS is as follows.

▶ Definition 2 (Two-Tier One-Shot Signatures (2-OSS)). A two-tier one-shot signature scheme
is a set (Setup,KeyGen, Sign,Ver0,Ver1) of algorithms such that

Setup(1λ)→ (pp, sk) : on input the security parameter λ, it outputs a classical parameter
pp and a classical secret key sk.
KeyGen(pp) → (sigk, vk) : on input pp, it outputs a quantum signing key sigk and a
classical verification key vk.

TQC 2024



5:8 Revocable Quantum Digital Signatures

Sign(sigk,m) → σ : on input sigk and a single-bit message m ∈ {0, 1}, it outputs a
classical signature σ.
Ver0(pp, vk, σ)→ ⊤/⊥ : on input pp, vk, and σ, it outputs ⊤/⊥.
Ver1(pp, sk, vk, σ)→ ⊤/⊥ : on input pp, sk, and σ, it outputs ⊤/⊥.

We require the following properties.
Correctness:

Pr

⊤ ← Ver0(pp, vk, σ) :
(sk, pp)← Setup(1λ)

(sigk, vk)← KeyGen(pp)
σ ← Sign(sigk, 0)

 ≥ 1− negl(λ) (1)

and

Pr

⊤ ← Ver1(pp, sk, vk, σ) :
(sk, pp)← Setup(1λ)

(sigk, vk)← KeyGen(pp)
σ ← Sign(sigk, 1)

 ≥ 1− negl(λ). (2)

Security: For any QPT adversary A,

Pr
[
⊤ ← Ver0(pp, vk, σ0) ∧ ⊤ ← Ver1(pp, sk, vk, σ1) : (sk, pp)← Setup(1λ)

(vk, σ0, σ1)← A(pp)

]
≤ negl(λ). (3)

3.2 Construction
We show that 2-OSS can be constructed from the LWE assumption [38]. Specifically, we
make use of noisy trapdoor claw-free function (NTCF) families which allow us to generate
quantum states that have a nice structure in both the computational basis, as well as the
Hadamard basis. For a detailed definition of NTCF families, we refer to [13].

Our 2-OSS scheme is based on the two-tier quantum lightning scheme in [29] and leverages
this structure to sign messages: to sign the message “0”, we output a measurement outcome
in the computational basis, whereas if we wish to sign “1”, we output a measurement outcome
in the Hadamard basis. Crucially, the so-called adaptive hardcore-bit property ensures that
it is computationally difficult to produce the two outcomes simultaneously. In this context,
we use the amplified adaptive hardcore bit property which was shown in [37, 29].

In the full version of the paper, we show the following result.

▶ Theorem 3. Assuming the quantum hardness of the LWE problem, there exists two-tier
one-shot signatures.

4 Digital Signatures with Revocable Signing Keys

In this section, we define digital signatures with revocable signing keys (DSR-Key) and give
its construction from 2-OSS.

4.1 Definition
Let us now present a formal definition of DSR-Key. Note that we consider the stateful setting
which requires that the signer keep a state of all previously signed messages and keys.

▶ Definition 4 ((Stateful) Digital Signatures with Revocable Signing Keys (DSR-Key)). A
(stateful) digital signature scheme with revocable signing keys is the following set of algorithms
(Setup,KeyGen, Sign,Ver,Del,Cert) consisting of:
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Setup(1λ) → (ck, pp) : on input the security parameter λ, it outputs a classical key ck
and a classical parameter pp.
KeyGen(pp) → (sigk0, vk) : on input pp, it outputs a quantum signing key sigk0 and a
classical verification key vk.
Sign(pp, sigki,m) → (sigki+1, σ) : on input pp, a message m and a signing key sigki, it
outputs a subsequent signing key sigki+1 and a classical signature σ.
Ver(pp, vk,m, σ)→ ⊤/⊥ : on input pp, vk, m, and σ, it outputs ⊤/⊥.
Del(sigki)→ cert : on input sigki, it outputs a classical certificate cert.
Cert(pp, vk, ck, cert, S) → ⊤/⊥ : on input pp, vk, ck, cert, and a set S consisting of
messages, it outputs ⊤/⊥.

We require the following properties.
Many-time correctness: For any polynomial p = p(λ), and any messages (m1,m2, ...,mp),

Pr


∧

i∈[p]

⊤ ← Ver(pp, vk,mi, σi) :

(pp, ck)← Setup(1λ)
(sigk0, vk)← KeyGen(pp)

(sigk1, σ1)← Sign(pp, sigk0,m1)
(sigk2, σ2)← Sign(pp, sigk1,m2)

...

(sigkp, σp)← Sign(pp, sigkp−1,mp)

 ≥ 1− negl(λ). (4)

We say that the scheme satisfies one-time correctness if the above is satisfied for p = 1.
EUF-CMA security: For any QPT adversary A,

Pr

⊤ ← Ver(pp, vk,m∗, σ∗) :
(pp, ck)← Setup(1λ)

(sigk0, vk)← KeyGen(pp)
(m∗, σ∗)← AOSign(vk)

 ≤ negl(λ), (5)

where OSign is a stateful signing oracle defined below and A is not allowed to query the
oracle on m∗:
OSign: Its initial state is set to be (pp, sigk0). When a message m is queried, it proceeds

as follows:
Parse its state as (pp, sigki).
Run (sigki+1, σ)← Sign(pp, sigki,m).
Return σ to A and update its state to (pp, sigki+1).

We say that the scheme satisfies one-time EUF-CMA security if Equation (5) holds for
any A that submits at most one query to the oracle.

Many-time deletion correctness: For any polynomial p = p(λ), and any messages
(m1,m2, ...,mp), the quantity

Pr


⊤ ← Cert(pp, vk, ck, cert, {m1,m2, ...,mp}) :

(pp, ck)← Setup(1λ)
(sigk0, vk)← KeyGen(pp)

(sigk1, σ1)← Sign(pp, sigk0,m1)
(sigk2, σ2)← Sign(pp, sigk1,m2)

...

(sigkp, σp)← Sign(pp, sigkp−1,mp)
cert← Del(sigkp)


(6)

is at least 1− negl(λ). We remark that we require the above to also hold for the case of
p = 0, in which case the fifth component of the input of Cert is the empty set ∅. We say
that the scheme satisfies one-time deletion correctness if the above property is satisfied
for p ≤ 1.
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Many-time deletion security: For any QPT adversary A,

Pr

 ⊤ ← Cert(pp, vk, ck, cert, S)
∧ m∗ /∈ S
∧ ⊤ ← Ver(pp, vk,m∗, σ∗)

: (pp, ck)← Setup(1λ)
(vk, cert, S,m∗, σ∗)← A(pp)

 ≤ negl(λ).

(7)

We say that the scheme satisfies one-time deletion security if the above property is satisfied
if we additionally require |S| ≤ 1.

▶ Remark 5. Following the definition of single signer security in [4] or copy-protection security
in [31], it is also reasonable to define deletion security as follows:

For any pair (A1,A2) of QPT adversaries and any distribution D with super-logarithmic
min-entropy over the message space, the following probability is negligible in λ:

Pr

⊤ ← Cert(pp, vk, ck, cert, S) ∧ ⊤ ← Ver(pp, vk,m, σ) :

(pp, ck)← Setup(1λ)
(vk, cert, S, st)← A1(pp)

m← D
σ ← A2(m, st)

 .
(8)

It is easy to see that our definition implies the above, but the converse is unlikely. This is
why we define deletion security as in Definition 4.

4.2 One-Time Construction for Single-Bit Messages

In the full version of the paper, we construct one-time DSR-Key for single-bit messages from
2-OSS in a black-box way.

▶ Theorem 6. If two-tier one-shot signatures exist, then digital signatures with revocable
signing keys with the message space {0, 1} that satisfy one-time variants of correctness,
EUF-CMA security, deletion correctness, and deletion security in Definition 4 exist.

4.3 From Single-Bit to Multi-Bit Messages

In the full version of the paper, we also show the following theorem which says that we can
expand the message space to {0, 1}∗ using collision-resistant hashes.

▶ Theorem 7. If collision-resistant hash functions and digital signatures with revocable
signing keys with the message space {0, 1} that satisfy one-time variants of correctness,
EUF-CMA security, deletion correctness, and deletion security in Definition 4 exist, then a
similar scheme with the message space {0, 1}∗ exists.

The proof of correctness is immediate and the proof of one-time EUF-CMA security
follows from standard techniques which allow conventional signature schemes to handle
messages of arbitrarily length, see [27] for example. Therefore, it suffices to show that the
scheme Σ′ satisfies the one-time variants of deletion correctness and deletion security. We
show this in the full version.
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4.4 From One-Time Schemes to Many-Time Schemes
In this section, we show how to extend any one-time scheme into a proper many-time
scheme as in Definition 4. The transformation is inspired by the chain-based approach for
constructing many-time digital signatures, see [27] for example.11

Let OT = (OT.Setup,OT.KeyGen,OT.Sign,OT.Ver,OT.Del,OT.Cert) be a scheme which
satisfies the one-time variants of correctness, EUF-CMA security, deletion correctness, and
deletion security according to in Definition 4, and has the message space {0, 1}∗. Then,
we construct MT = (MT.Setup,MT.KeyGen,MT.Sign,MT.Ver,MT.Del,MT.Cert) with the
message space {0, 1}n as follows:

MT.Setup(1λ)→ (ck, pp): This is the same as OT.Setup.
MT.KeyGen(pp)→ (sigk, vk): run (ot.sigk0, ot.vk0)← OT.KeyGen(pp) and output sigk :=
ot.sigk0 as the quantum signing key and vk := ot.vk0 as the classical verification key.
MT.Sign(pp, sigki,m) → (sigki+1, σ) : on input the public parameter pp, a quantum
signing key sigki, and a message m ∈ {0, 1}n proceed as follows:

1. Parse sigki as (ot.sigki, {ot.sigk′
j}j∈{0,1,...,i−1}, {mj , ot.vkj , ot.σj}j∈[i])

2. Generate (ot.sigki+1, ot.vki+1)← OT.KeyGen(pp).
3. Run

(ot.sigk′
i, ot.σi+1)← OT.Sign(pp, ot.sigki,m∥ot.vki+1).

4. Set mi+1 := m and output a subsequent signing key

sigki+1 := (ot.sigki+1, {ot.sigk′
j}j∈{0,1,...,i}, {mj , ot.vkj , ot.σj}j∈[i+1])

and a signature

σ := {mj , ot.vkj , ot.σj}j∈[i+1].

MT.Ver(pp, vk,m, σ) → ⊤/⊥ : on input pp, a key vk, a message m, and signature σ,
proceed as follows.

1. Parse σ as {mj , ot.vkj , ot.σj}j∈[i] and let ot.vk0 = vk.
2. Output ⊤ if m = mi and OT.Ver(pp, ot.vkj−1,mj∥ot.vkj , ot.σj) = ⊤ for every j ∈ [i].
MT.Del(sigki)→ cert : on input sigk, proceed as follows:

1. Parse sigki as (ot.sigki, {ot.sigk′
j}j∈{0,1,...,i−1}, {mj , ot.vkj , ot.σj}j∈[i]).

2. For j ∈ {0, 1, ..., i− 1}, run ot.certj ← OT.Del(ot.sigk′
j).

3. Run ot.certi ← OT.Del(ot.sigki).
4. Output cert := {ot.certj ,mj , ot.vkj , ot.σj}j∈[i].
MT.Cert(pp, vk, ck, cert, S)→ ⊤/⊥ : on input pp, vk, ck, cert, and S, parse the certificate
cert as a tuple {ot.certj ,mj , ot.vkj , ot.σj}j∈[i], let ot.vk0 = vk, and output ⊤ if the
following holds:
S = {m1,m2, ...,mi},
OT.Cert(ot.vkj−1, ck, ot.certj−1, {mj∥ot.vkj}) = ⊤ for every j ∈ [i], and
OT.Cert(ot.vki, ck, ot.certi, ∅) = ⊤.

In the full version of the paper, we prove the following theorem.

11 We could also use the tree-based construction [32], which has a shorter (logarithmic) signature length.
We describe the chain-based construction here for ease of presentation.
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▶ Theorem 8. Suppose that (OT.Setup,OT.KeyGen,OT.Sign,OT.Ver,OT.Del,OT.Cert) sat-
isfies the one-time variants of correctness, EUF-CMA security, deletion correctness, and
deletion security in Definition 4. Then, the “many-time scheme” which consists of the tuple
(MT.Setup,MT.KeyGen,MT.Sign,MT.Ver,MT.Del,MT.Cert) satisfies many-time variants of
each of the properties.

5 Adaptive Hardcore Bit Property for OWFs

In this section, we introduce a new concept, which we call adaptive hardcore bit property for
OWFs, and show it from the existence of OWFs. This property is inspired by the adaptive
hardcore bit property which was shown for a family of noisy trapdoor claw-free functions
by Brakerski et al. [13]. Our notion of the adaptive hardcore bit property for OWFs will be
used to construct two-tier tokenized signatures.

5.1 Statements
The formal statement of the adaptive hardcore bit property for OWFs is given as follows.
(Its proof is given later.)

▶ Theorem 9 (Adaptive Hardcore Bit Property for OWFs). Let λ ∈ N be the security parameter
and let ℓ(λ), κ(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a (quantumly-secure)
OWF. Then, for any QPT adversary {Aλ}λ∈N, it holds that

Pr

 f(x) ∈ {f(x0), f(x1)}∧
d · (x0 ⊕ x1) = c

:

x0 ← {0, 1}ℓ(λ), x1 ← {0, 1}ℓ(λ)

c← {0, 1}

(x, d)← Aλ

(
|x0⟩+(−1)c|x1⟩√

2 , f(x0), f(x1)
)

 ≤ 1
2 + negl(λ).

(9)

We actually use its amplified version, which is given as follows. (Its proof is given later.)

▶ Theorem 10 (Amplified Adaptive Hardcore Bit Property for OWFs). Let λ ∈ N be the security
parameter and let ℓ(λ), κ(λ), n(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a
(quantumly-secure) OWF. Then, for any QPT adversary {Aλ}λ∈N, it holds that

Pr

 ∧i∈[n]f(xi) ∈ {f(x0
i ), f(x1

i )}∧
∧i∈[n]di · (x0

i ⊕ x1
i ) = ci

:

∀i ∈ [n] : x0
i ← {0, 1}ℓ(λ), x1

i ← {0, 1}ℓ(λ)

∀i ∈ [n] : ci ← {0, 1}

{xi, di}i∈[n] ← Aλ

(⊗n

i=1
|x0

i ⟩+(−1)ci |x1
i ⟩

√
2 , {f(xb

i )}i,b

)


(10)

is at most negligible in λ.

5.2 Theorem of [10]
In order to show adaptive hardcore bit property for OWFs, we use the following theorem
which is implicit in [10, Theorem 3.1]. The only difference is that we additionally reveal both
pre-images as part of the distribution

{
Z̃Aλ

λ (b)
}

λ∈N,b∈{0,1}
. We remark that the proof is the

same.

▶ Theorem 11 (Implicit in [10], Theorem 3.1). Let λ ∈ N be the security parameter, and let
ℓ(λ), κ(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a OWF secure against QPT
adversaries. Let {Zλ(·, ·, ·, ·)}λ∈N be a quantum operation with four arguments: an ℓ(λ)-bit
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string z, two κ(λ)-bit strings y0, y1, and an ℓ(λ)-qubit quantum state |ψ⟩. Suppose that for
any QPT adversary {Aλ}λ∈N, z ∈ {0, 1}ℓ(λ), y0, y1 ∈ {0, 1}κ(λ), and ℓ(λ)-qubit state |ψ⟩,∣∣∣∣ Pr [Aλ(Zλ(z, y0, y1, |ψ⟩)) = 1]− Pr

[
Aλ(Zλ(0ℓ(λ), y0, y1, |ψ⟩)) = 1

] ∣∣∣∣ = negl(λ).

That is, Zλ is semantically-secure with respect to its first input. Now, for any QPT
adversary {Aλ}λ∈N, consider the distribution

{
Z̃Aλ

λ (b)
}

λ∈N,b∈{0,1}
over quantum states,

obtained by running Aλ as follows.

Sample x0, x1 ← {0, 1}ℓ(λ), define y0 = f(x0), y1 = f(x1) and initialize Aλ with

Zλ

(
x0 ⊕ x1, y0, y1,

|x0⟩+ (−1)b |x1⟩√
2

)
.

Aλ’s output is parsed as a string x′ ∈ {0, 1}ℓ(λ) and a residual state on register A′.
If f(x′) ∈ {y0, y1}, then output (x0, x1,A′), and otherwise output ⊥.

Then, it holds that∥∥∥Z̃Aλ

λ (0)− Z̃Aλ

λ (1)
∥∥∥

tr
≤ negl(λ). (11)

We can show the following parallel version. (It can be shown by the standard hybrid
argument. A detailed proof is given in the full version of the paper.)

▶ Theorem 12 (Parallel version of Theorem 11). Let λ ∈ N be the security parameter. Let
ℓ(λ), κ(λ), n(λ) ∈ N be polynomials. Let f : {0, 1}ℓ(λ) → {0, 1}κ(λ) be a OWF secure against
QPT adversaries. Let {Zλ(·, ·, ·, ·)}λ∈N be a quantum operation with four arguments: an
ℓ(λ)-bit string z, two κ(λ)-bit strings y0, y1, and an ℓ(λ)-qubit quantum state |ψ⟩. Suppose
that for any QPT adversary {Aλ}λ∈N, z ∈ {0, 1}ℓ(λ), y0, y1 ∈ {0, 1}κ(λ), and ℓ(λ)-qubit state
|ψ⟩,∣∣∣∣ Pr [Aλ(Zλ(z, y0, y1, |ψ⟩)) = 1]− Pr

[
Aλ(Zλ(0ℓ(λ), y0, y1, |ψ⟩)) = 1

] ∣∣∣∣ = negl(λ).

That is, Zλ is semantically-secure with respect to its first input. Now, for any QPT
adversary {Aλ}λ∈N, consider the distribution

{
Z̃Aλ

λ (b1, ..., bn(λ)

}
λ∈N,bi∈{0,1}

over quantum
states, obtained by running Aλ as follows.

Sample x0
i , x

1
i ← {0, 1}ℓ(λ) for each i ∈ [n(λ)], define y0

i = f(x0
i ), y1

i = f(x1
i ) and initialize

Aλ with⊗
i∈[n(λ)]

Zλ

(
x0

i ⊕ x1
i , y

0
i , y

1
i ,
|x0

i ⟩+ (−1)bi |x1
i ⟩√

2

)
. (12)

Aλ’s output is parsed as strings x′
i ∈ {0, 1}ℓ(λ) for i ∈ [n(λ)] and a residual state on

register A′.
If f(x′

i) ∈ {y0
i , y

1
i } for all i ∈ [n(λ)], output ({x0

i }i∈[n(λ)], {x1
i }i∈[n(λ)],A′), and otherwise

output ⊥.

Then, there exists a negligible function negl(λ) such that for any b1, ..., bn(λ) ∈ {0, 1},∥∥∥Z̃Aλ

λ (b1, ..., bn(λ))− Z̃Aλ

λ (0, ..., 0)
∥∥∥

tr
≤ negl(λ). (13)
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5.3 Proof of Theorem 9
By using Theorem 11, we can show Theorem 9 as follows. Here, we leverage the fact that
any algorithm that simultaneously produces both a valid pre-image of the OWF, as well as a
string which leaks information about the relative phase between the respective pre-images,
must necessarily violate Theorem 11.

Proof of Theorem 9. Let ℓ(λ), κ(λ) ∈ N be polynomials, and let f : {0, 1}ℓ(λ) → {0, 1}κ(λ)

be a (quantumly-secure) OWF. Suppose there exist a QPT algorithm {Aλ}λ∈N and a
polynomial p(λ) such that, for random x0, x1 ← {0, 1}ℓ and c← {0, 1}, it holds that

Pr
[

f(x)∈{f(x0),f(x1)}∧
d·(x0⊕x1)=c

: (x, d)← Aλ

(
|x0⟩+ (−1)c |x1⟩√

2
, f(x0), f(x1)

)]
≥ 1

2 + 1
p(λ) (14)

for infinitely many λ. We now show how to construct an algorithm that violates Theorem 11.
For simplicity, we define the quantum operation {Zλ(·, ·, ·, ·)}λ∈N in Theorem 11 as

Zλ

(
x0 ⊕ x1, f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
:=

(
f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
.

Evidently, our choice of Zλ is trivially semantically secure with respect to the first argument.
Consider the following QPT algorithm Bλ:
1. On input

(
f(x0), f(x1), |x0⟩+(−1)c|x1⟩√

2

)
, run

(x, dc)← Aλ

(
|x0⟩+ (−1)c |x1⟩√

2
, f(x0), f(x1)

)
.

2. Output x and assign |dc⟩⟨dc| as the residual state.12

Adopting the notation from Theorem 11, we define Z̃Bλ

λ (c).13 Consider the following
distinguisher that distinguishes Z̃Bλ

λ (c) for c ∈ {0, 1}:
1. Get Z̃Bλ

λ (c) as input.
2. If it is ⊥, output ⊥ and abort.
3. Output dc · (x0 ⊕ x1) (mod 2).
From Equation (14), there exists a polynomial p(λ) such that both f(x) ∈ {f(x0), f(x1)} and
dc · (x0 ⊕ x1) = c (mod 2) occur with probability at least 1

2 + 1
p(λ) . Thus, the distinguisher

can distinguish Z̃Bλ

λ (0) and Z̃Bλ

λ (1) with probability at least 1
2 + 1

p(λ) , but this means

∥∥∥Z̃Bλ

λ (0)− Z̃Bλ

λ (1)
∥∥∥

tr
≥ 2
p(λ) .

from Theorem 1. This violates Theorem 11. ◀

5.4 Proof of Theorem 10
In this subsection, we show Theorem 10 by using Theorem 12.

12 Note that we can think of dc as a classical mixture (i.e., density matrix) over the randomness of
x0, x1 ← {0, 1}ℓ, c← {0, 1} and the internal randomness of the algorithm Aλ.

13 It is, roughly speaking, |x0⟩⟨x0| ⊗ |x1⟩⟨x1| ⊗ |dc⟩⟨dc| for c ∈ {0, 1} when f(x) ∈ {f(x0), f(x1)}, and is
⊥ when f(x) /∈ {f(x0), f(x1)}.
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Proof of Theorem 10. For the sake of contradiction, assume that there is a QPT adversary
{Aλ}λ∈N such that the following quantity

Pr

[
∧i∈[n]f(xi) ∈ {f(x0

i ), f(x1
i )}∧

∧i∈[n]di · (x0
i ⊕ x1

i ) = ci

:
∀i ∈ [n] : x0

i ← {0, 1}ℓ, x1
i ← {0, 1}ℓ, ci ← {0, 1}

{xi, di}i∈[n] ← Aλ

(⊗n

i=1
|x0

i ⟩+(−1)ci |x1
i ⟩√

2 , {f(xb
i )}i,b

) ]
(15)

is at least 1/poly(λ) for infinitely many λ. We consider the quantum operation {Zλ(·, ·, ·, ·)}λ∈N
in Theorem 12 as

Zλ

(
x0 ⊕ x1, f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
:=

(
f(x0), f(x1), |x0⟩+ (−1)c |x1⟩√

2

)
,

(16)

which is trivially semantically secure with respect to the first argument. From such {Aλ}λ∈N
and {Zλ}λ∈N, we construct the following QPT adversary {Bλ}λ∈N for fixed each (c1, ..., cn) ∈
{0, 1}n:

1. Get {f(xb
i )}i∈[n],b∈{0,1} and

⊗
i∈[n]

|x0
i ⟩+(−1)ci |x1

i ⟩√
2 as input.

2. Run ({xi}i∈[n], {di}i∈[n])← Aλ

(⊗n
i=1

|x0
i ⟩+(−1)ci |x1

i ⟩√
2 , {f(xb

i )}i∈[n],b∈{0,1}

)
.

3. Output {xi}i∈[n]. Set its residual state as
⊗

i∈[n] |di⟩⟨di|.
Then, by using the notation of Theorem 12, we define Z̃Bλ

λ (c1, ..., cn).14 Let us consider the
following QPT distinguisher {Dλ}λ∈N:
1. Get Z̃Bλ

λ (c1, ..., cn) as input.

2. If it is ⊥, output ⊥. Otherwise, parse it as
(⊗

i∈[n],b∈{0,1} |xb
i ⟩⟨xb

i |
)
⊗

(⊗
i∈[n] |di⟩⟨di|

)
.

3. Compute c′
i := di · (x0

i ⊕ x1
i ) for each i ∈ [n]. Output {c′

i}i∈[n].
Then, from Equation (15),

1
2n

∑
(c1,...,cn)∈{0,1}n

Pr[(c1, ..., cn)← D(Z̃Bλ

λ (c1, ..., cn))] ≥ 1
poly(λ) (17)

for infinitely many λ. Now we show that it contradicts Theorem 12.
If Theorem 12 is correct, there exists a negligible function negl such that∥∥∥Z̃Bλ

λ (c1, ..., cn)− Z̃Bλ

λ (0, ..., 0)
∥∥∥

tr
≤ negl(λ) (18)

for all (c1, ..., cn) ∈ {0, 1}n. However, in that case, there exists a negligible function negl such
that∣∣∣Pr

[
(c1, ..., cn)← D(Z̃Bλ

λ (c1, ..., cn))
]
− Pr

[
(c1, ..., cn)← D(Z̃Bλ

λ (0, ..., 0))
]∣∣∣ ≤ negl(λ)

(19)

for all (c1, ..., cn) ∈ {0, 1}n. Then we have

14 Roughly speaking, it is
(⊗

i∈[n],b∈{0,1} |x
b
i ⟩⟨xb

i |
)
⊗

(⊗
i∈[n] |di⟩⟨di|

)
if f(xi) ∈ {f(x0

i ), f(x1
i )} for all

i ∈ [n], and it is ⊥ otherwise.
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1
poly(λ) ≤

1
2n

∑
(c1,...,cn)∈{0,1}n

Pr[(c1, ..., cn)← D(Z̃Bλ

λ (c1, ..., cn))] (20)

≤ 1
2n

∑
(c1,...,cn)∈{0,1}n

(
Pr[(c1, ..., cn)← D(Z̃Bλ

λ (0, ..., 0))] + negl(λ)
)

(21)

≤ 1
2n

∑
(c1,...,cn)∈{0,1}n

Pr[(c1, ..., cn)← D(Z̃Bλ

λ (0, ..., 0))] + negl(λ) (22)

≤ 1
2n

+ negl(λ) (23)

for infinitely many λ, which yields a contradiction. Here, the first inequality is from
Equation (17), the second inequality is from Equation (19), and the last inequality is from
the fact that

∑
(c1,...,cn)∈{0,1}n Pr[(c1, ..., cn)← A] = 1 for any algorithm A. ◀

6 Two-Tier Tokenized Signatures

In this section, we will first give the formal definition of two-tier tokenized signatures (2-TS),
and then show that they can be constructed from OWFs. For the construction, we use the
(amplified) adaptive hardcore bit property for OWFs (Theorem 10).

6.1 Definition
The formal definition is as follows.

▶ Definition 13 (Two-Tier Tokenized Signatures (2-TS)). A two-tier tokenized signature
scheme is a tuple (KeyGen, StateGen, Sign,Ver0,Ver1) of algorithms such that

KeyGen(1λ)→ (sk, pk) : It is a QPT algorithm that, on input the security parameter λ,
outputs a classical secret key sk and a classical public key pk.
StateGen(sk)→ ψ : It is a QPT algorithm that, on input sk, outputs a quantum state ψ.
Sign(ψ,m) → σ : It is a QPT algorithm that, on input ψ and a message m ∈ {0, 1},
outputs a classical signature σ.
Ver0(pk, σ)→ ⊤/⊥ : It is a QPT algorithm that, on input pk and σ, outputs ⊤/⊥.
Ver1(sk, σ)→ ⊤/⊥ : It is a QPT algorithm that, on input sk and σ, outputs ⊤/⊥.

We require the following properties.
Correctness:

Pr

⊤ ← Ver0(pk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← StateGen(sk)
σ ← Sign(ψ, 0)

 ≥ 1− negl(λ) (24)

and

Pr

⊤ ← Ver1(sk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← StateGen(sk)
σ ← Sign(ψ, 1)

 ≥ 1− negl(λ). (25)

Security: For any QPT adversary A,

Pr

⊤ ← Ver0(pk, σ0) ∧ ⊤ ← Ver1(sk, σ1) :
(sk, pk)← KeyGen(1λ)

ψ ← StateGen(sk)
(σ0, σ1)← A(ψ, pk)

 ≤ negl(λ). (26)
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We can show that the following type of security, which we call one-wayness, is also
satisfied by two-tier tokenized signatures.

▶ Lemma 14 (One-wayness of two-tier tokenized signatures). For any QPT adversary A,

Pr

⊤ ← Ver0(pk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← A(pk)
σ ← Sign(ψ, 0)

 ≤ negl(λ). (27)

Proof. Assume that there exists a QPT adversary A such that

Pr

⊤ ← Ver0(pk, σ) :
(sk, pk)← KeyGen(1λ)

ψ ← A(pk)
σ ← Sign(ψ, 0)

 ≥ 1
poly(λ) (28)

for infinitely many λ. Then, from such A, we can construct a QPT adversary B that breaks
the security of the two-tier tokenized signature scheme as follows:
1. Get ψ and pk as input.
2. Run ψ′ ← A(pk).
3. Run σ0 ← Sign(ψ′, 0) and σ1 ← Sign(ψ, 1).
4. Output (σ0, σ1).
It is clear that B breaks the security of the two-tier tokenized signature scheme. ◀

6.2 Construction

We show that 2-TS can be constructed from OWFs.

▶ Theorem 15. If OWFs exist, then two-tier tokenized signatures exist.

Proof. Let f be a OWF. From it, we construct a two-tier tokenized signature scheme as
follows:

KeyGen(1λ)→ (sk, pk) : Choose x0
i , x

1
i ← {0, 1}ℓ for each i ∈ [n]. Choose ci ← {0, 1} for

each i ∈ [n]. Output sk := {ci, x
0
i , x

1
i }i∈[n] and pk := {f(x0

i ), f(x1
i )}i∈[n].

StateGen(sk)→ ψ : Parse sk = {ci, x
0
i , x

1
i }i∈[n]. Output ψ :=

⊗
i∈[n]

|x0
i ⟩+(−1)ci |x1

i ⟩√
2 .

Sign(ψ,m) → σ : If m = 0, measure ψ in the computational basis to get the result
{zi}i∈[n] (where zi ∈ {0, 1}ℓ for each i ∈ [n]), and output it as σ. If m = 1, measure ψ in
the Hadamard basis to get the result {di}i∈[n] (where di ∈ {0, 1}ℓ for each i ∈ [n]), and
output it as σ.
Ver0(pk, σ) → ⊤/⊥ : Parse pk = {f(x0

i ), f(x1
i )}i∈[n] and σ = {zi}i∈[n]. If f(zi) ∈

{f(x0
i ), f(x1

i )} for all i ∈ [n], output ⊤. Otherwise, output ⊥.
Ver1(sk, σ)→ ⊤/⊥ : Parse sk = {ci, x

0
i , x

1
i }i∈[n] and σ = {di}i∈[n]. If di · (x0

i ⊕ x1
i ) = ci

for all i ∈ [n], output ⊤. Otherwise, output ⊥.
The correctness is clear. The security is also clear from Theorem 10. ◀

7 Digital Signatures with Revocable Signatures

In this section, we define digital signatures with revocable signatures (DSR-Sign). We also
show that it can be constructed from 2-TS, and therefore from OWFs.
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7.1 Definition
We first give its formal definition as follows.

▶ Definition 16 (Digital Signatures with Revocable Signatures (DSR-Sign)). A digital signature
scheme with revocable signatures is a set (KeyGen, Sign,Ver,Del,Cert) of algorithms that
satisfy the following.

KeyGen(1λ)→ (sigk, vk) : It is a QPT algorithm that, on input the security parameter λ,
outputs a classical signing key sigk and a classical public verification key vk.
Sign(sigk,m) → (ψ, ck) : It is a QPT algorithm that, on input a message m and sigk,
outputs a quantum signature ψ and a classical check key ck.
Ver(vk, ψ,m)→ ⊤/⊥ : It is a QPT algorithm that, on input vk, m, and ψ, outputs ⊤/⊥.
Del(ψ) → cert : It is a QPT algorithm that, on input ψ, outputs a classical certificate
cert.
Cert(ck, cert)→ ⊤/⊥ : It is a QPT algorithm that, on input ck and cert, outputs ⊤/⊥.

We require the following properties.
Correctness: For any message m,

Pr
[
⊤ ← Ver(vk, ψ,m) : (sigk, vk)← KeyGen(1λ)

(ψ, ck)← Sign(sigk,m)

]
≥ 1− negl(λ). (29)

Deletion correctness: For any message m,

Pr

⊤ ← Cert(ck, cert) :
(sigk, vk)← KeyGen(1λ)
(ψ, ck)← Sign(sigk,m)

cert← Del(ψ)

 ≥ 1− negl(λ). (30)

Many-time deletion security: For any adversary A consisting of a pair of QPT algorithms
(A1,A2):

Pr

⊤ ← Cert(ck∗, cert) ∧ ⊤ ← Ver(vk, ψ,m∗) :

(sigk, vk)← KeyGen(1λ)
(m∗, st)← ASign(sigk,·)

1 (vk)
(ψ∗, ck∗)← Sign(sigk,m∗)

(cert, ψ)← ASign(sigk,·)
2 (st, ψ∗)

 ≤ negl(λ),

(31)

where A is not allowed to query m∗ to the signing oracle.

▶ Remark 17. The above definition does not capture the situation where the adversary gets
more than one signatures on m∗ but deleted all of them. Actually, our construction seems to
also satisfy security in such a setting. However, we choose to not formalize it for simplicity.
▶ Remark 18. We can define the standard EUF-CMA security as follows, but it is trivially
implied by many-time deletion security, and therefore we do not include EUF-CMA security
in the definition of digital signatures with revocable signatures.

▶ Definition 19 (EUF-CMA Security). For any QPT adversary A,

Pr
[
⊤ ← Ver(vk, ψ∗,m∗) : (sigk, vk)← KeyGen(1λ)

(m∗, ψ∗)← ASign(sigk,·)(vk)

]
≤ negl(λ), (32)

where A is not allowed to query m∗ to the signing oracle.

We define a weaker version of many-time deletion security, which we call no-query deletion
security as follows.
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▶ Definition 20 (No-Query Deletion Security). It is the same as many-time deletion security,
Equation (31), except that A cannot query the signing oracle.

The no-query security notion actually implies the many-time case:

▶ Lemma 21 (Many-Time Deletion Security from No-Query Deletion Security). Assume that
EUF-CMA secure digital signature schemes exist. Then following holds: if there exists a
digital signature scheme with revocable signatures which satisfies no-query deletion security,
then there is a scheme that satisfies many-time deletion security.

Proof. Let (NQ.KeyGen,NQ.Sign,NQ.Ver,NQ.Del,NQ.Cert) be a digital signature
scheme with revocable signatures that satisfies no-query deletion security. Let
(MT.KeyGen,MT.Sign,MT.Ver) be a plain EUF-CMA secure digital signature scheme. From
them, we can construct a digital signature scheme Σ := (KeyGen, Sign,Ver,Del,Cert) with
revocable signatures that satisfies many-time deletion security as follows.

KeyGen(1λ) → (sigk, vk) : Run (mt.sigk,mt.vk) ← MT.KeyGen(1λ). Output sigk :=
mt.sigk and vk := mt.vk.
Sign(sigk,m) → (ψ, ck) : Parse sigk = mt.sigk. Run (nq.sigk, nq.vk) ← NQ.KeyGen(1λ).
Run (ϕ, nq.ck) ← NQ.Sign(nq.sigk,m). Run σ ← MT.Sign(mt.sigk, nq.vk∥m). Output
ψ := (ϕ, σ, nq.vk) and ck := nq.ck.
Ver(vk, ψ,m) → ⊤/⊥ : Parse vk = mt.vk and ψ = (ϕ, σ, nq.vk). Run
MT.Ver(mt.vk, σ, nq.vk∥m). If the output is ⊥, output ⊥ and abort. Run
NQ.Ver(nq.vk, ϕ,m). If the output is ⊤, output ⊤. Otherwise, output ⊥.
Del(ψ)→ cert : Parse ψ = (ϕ, σ, nq.vk). Run cert′ ← NQ.Del(ϕ). Output cert := cert′.
Cert(ck, cert)→ ⊤/⊥ : Parse ck = nq.ck. Run NQ.Cert(nq.ck, cert), and output its output.

We show that Σ satisfies many-time deletion security. In other words, we show that if
the many-time deletion security of Σ is broken, then either the no-query deletion security of
the digital signature scheme NQ is broken or the EUF-CMA security of the digital signature
scheme MT is broken. Assume that there exists a pair of QPT algorithms A := (A1,A2)
such that

Pr

⊤ ← Cert(ck∗, cert) ∧ ⊤ ← Ver(vk, ψ,m∗) :

(sigk, vk)← KeyGen(1λ)
(m∗, st)← ASign(sigk,·)

1 (vk)
(ψ∗, ck∗)← Sign(sigk,m∗)

(cert, ψ)← ASign(sigk,·)
2 (st, ψ∗)

 ≥ 1
poly(λ)

(33)

for infinitely many λ, where A is not allowed to query m∗ to the signing oracle. From such
A, we construct a QPT adversary B that breaks the no-query deletion security of the scheme
NQ as follows: Let C be the challenger of the security game of the no-query deletion security.
1. C runs (nq.sigk∗, nq.vk∗)← NQ.KeyGen(1λ).
2. C sends nq.vk∗ to B.
3. B runs (mt.sigk,mt.vk)← MT.KeyGen(1λ).
4. B runs (m∗, st) ← ASign(sigk,·)

1 (mt.vk). When A1 queries m to the signing oracle, B
simulates it as follows:
a. Run (nq.sigk, nq.vk)← NQ.KeyGen(1λ).
b. Run (ϕ, nq.ck)← NQ.Sign(nq.sigk,m).
c. Run σ ← MT.Sign(mt.sigk, nq.vk∥m).
d. Output ψ := (ϕ, σ, nq.vk) and ck := nq.ck.

5. B sends m∗ to C.
6. C runs (ϕ∗, nq.ck∗)← NQ.Sign(nq.sigk∗,m∗), and sends ϕ∗ to B.

TQC 2024



5:20 Revocable Quantum Digital Signatures

7. B runs σ∗ ← MT.Sign(mt.sigk, nq.vk∗∥m∗).
8. B runs (cert, ψ)← ASign(sigk,·)

2 ((ϕ∗, σ∗, nq.vk∗)). When A2 queries m to the signing oracle,
B simulates it as follows:
a. Run (nq.sigk, nq.vk)← NQ.KeyGen(1λ).
b. Run (ϕ, nq.ck)← NQ.Sign(nq.sigk,m).
c. Run σ ← MT.Sign(mt.sigk, nq.vk∥m).
d. Output ψ := (ϕ, σ, nq.vk) and ck := nq.ck.

9. Parse ψ = (ϕ, σ, η). B outputs cert and ϕ.

Due to the EUF-CMA security of the scheme MT, ⊤ ← MT.Ver(mt.vk, σ, η∥m∗) occurs only
when η = nq.vk∗ except for a negligible probability. Therefore, Equation (33) means that
both Pr[⊤ ← NQ.Ver(nq.vk∗, ϕ,m∗)] and Pr[⊤ ← NQ.Cert(nq.ck∗, cert)] are non-negligible
for the above B, which breaks the no-query deletion security of the scheme NQ. ◀

7.2 Construction
Here we show the following result.

▶ Theorem 22. If two-tier tokenized signatures exist, then digital signatures with revocable
signatures that satisfy no-query deletion security exist.

From Lemma 21, it also means the following:

▶ Corollary 23. Digital signatures with revocable signatures (that satisfy many-time deletion
security) exist if two-tier tokenized signatures and EUF-CMA secure digital signatures exist.

Proof of Theorem 22. Here, we construct the scheme for the single-bit message space. It
is clear that this can be extended to any fixed multi-bit message space case by the parallel
execution of the protocol. Moreover, by using universal one-way hash functions, it can be
extended to unbounded poly-length message space case [34].

Let (TS.KeyGen,TS.StateGen,TS.Sign,TS.Ver0,TS.Ver1) be a two-tier tokenized signature
scheme. From it, we construct a digital signature scheme with revocable signatures Σ :=
(KeyGen, Sign,Ver,Del,Cert) that satisfies no-query deletion security for the single bit message
space as follows.

KeyGen(1λ) → (sigk, vk) : Run (sk0, pk0) ← TS.KeyGen(1λ). Run (sk1, pk1) ←
TS.KeyGen(1λ). Output sigk := (sk0, sk1) and vk := (pk0, pk1).
Sign(sigk,m) → (ψ, ck) : Parse sigk = (sk0, sk1). Run ψ′ ← TS.StateGen(skm). Output
ψ := ψ′ and ck := skm.
Ver(vk, ψ,m) → ⊤/⊥ : Parse vk := (pk0, pk1). Run σ ← TS.Sign(ψ, 0). Run
TS.Ver0(pkm, σ), and output its output.15

Del(ψ)→ cert : Run σ ← TS.Sign(ψ, 1), and output cert := σ.
Cert(ck, cert)→ ⊤/⊥ : Parse ck = skm. Run TS.Ver1(skm, cert), and output its output.

Correctness and the deletion correctness are clear. Let us show the no-query deletion security.
Assume that there is a pair of QPT algorithms (A1,A2) such that

Pr

⊤ ← Cert(ck∗, cert) ∧ ⊤ ← Ver(vk, ψ,m∗) :

(sigk, vk)← KeyGen(1λ)
(m∗, st)← A1(vk)

(ψ∗, ck∗)← Sign(sigk,m∗)
(cert, ψ)← A2(st, ψ∗)

 ≥ 1
poly(λ) (34)

15 The verification algorithm destroys the signature, but it can be done in a non-destructive way by
coherently applying this procedure and then doing the uncomputation.
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for infinitely many λ. From A, we can construct a QPT adversary B that breaks the original
two-tier tokenized signature scheme as follows:
1. Get ψ∗ and pk as input.
2. Run (sk′, pk′) ← TS.KeyGen(1λ). Choose r ← {0, 1}. If r = 0, set vk := (pk, pk′). If

r = 1, set vk := (pk′, pk).
3. Run (m∗, st)← A1(vk). If r ̸= m∗, output ⊥ and abort.
4. Run (cert, ψ)← A2(st, ψ∗).
5. Run σ0 ← TS.Sign(ψ, 0). Define σ1 := cert.
6. Output (σ0, σ1).
It is clear that Pr[B breaks the two-tier tokenized signature scheme] ≥ 1

2 Pr[A breaks Σ].
Therefore, from Equation (34), B breaks the two-tier tokenized signature scheme. ◀
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Abstract
One of the founding results of lattice based cryptography is a quantum reduction from the Short
Integer Solution (SIS) problem to the Learning with Errors (LWE) problem introduced by Regev. It
has recently been pointed out by Chen, Liu and Zhandry [12] that this reduction can be made more
powerful by replacing the LWE problem with a quantum equivalent, where the errors are given in
quantum superposition. In parallel, Regev’s reduction has recently been adapted in the context
of code-based cryptography by Debris, Remaud and Tillich [14], who showed a reduction between
the Short Codeword Problem and the Decoding Problem (the DRT reduction). This motivates the
study of the Quantum Decoding Problem (QDP), which is the Decoding Problem but with errors in
quantum superposition and see how it behaves in the DRT reduction.

The purpose of this paper is to introduce and to lay a firm foundation for QDP. We first show
QDP is likely to be easier than classical decoding, by proving that it can be solved in quantum
polynomial time in a large regime of noise whereas no non-exponential quantum algorithm is known for
the classical decoding problem. Then, we show that QDP can even be solved (albeit not necessarily
efficiently) beyond the information theoretic Shannon limit for classical decoding. We give precisely
the largest noise level where we can solve QDP giving in a sense the information theoretic limit for
this new problem. Finally, we study how QDP can be used in the DRT reduction. First, we show
that our algorithms can be properly used in the DRT reduction showing that our quantum algorithms
for QDP beyond Shannon capacity can be used to find minimal weight codewords in a random code.
On the negative side, we show that the DRT reduction cannot be, in all generality, a reduction
between finding small codewords and QDP by exhibiting quantum algorithms for QDP where this
reduction entirely fails. Our proof techniques include the use of specific quantum measurements,
such as q-ary unambiguous state discrimination and pretty good measurements as well as strong
concentration bounds on weight distribution of random shifted dual codes, which we relate using
quantum Fourier analysis.
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1 General cryptographic context

Error correcting codes appeared first as the fundamental tool to transmit information reliably
through a noisy channel [25] and has found numerous applications in information theory
and complexity. The hardness - even for quantum computers - of decoding random linear
codes is also the core of code-based cryptography. In the cryptographic context, the decoding
problem corresponds to decoding the k-dimensional vector space C (i.e., the code) generated
by the rows of a randomly generated G ∈ Fk×n

q (which is called a generating matrix of the
code):

C
△=

{
uG : u ∈ Fk

q

}
. (1)
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Here Fq denotes the finite field with q elements. In the decoding problem, we are given the
noisy codeword c + e where c belongs to C and we are asked to find the original codeword c.

▶ Problem 1 (DP(q, n, k, f)). The decoding problem with positive integer parameters q, n, k
and a probability distribution f on Fn

q is defined as:
Input: (G, c + e) where G ∈ Fk×n

q and u ∈ Fk
q are sampled uniformly at random over

their domain - which generates a random codeword c = uG - and e is sampled from the
distribution f .
Goal: from (G, c + e), find c.

This problem for random codes has been studied for a long time and despite many efforts
on this issue, the best (even quantum) algorithms are exponential in the codelength n for
natural noise distributions f in the regime where k is linear in n and the rate R△= k

n bounded
away from 0 and 1 [23, 27, 15, 19, 5, 20, 18, 9, 8]. This remains true even if we consider
quantum algorithms

The most common noise distribution studied in this context is the uniform distribution
over the errors of fixed Hamming weight t, but there are also other distributions, like in the
binary case (q = 2) the i.i.d Bernoulli distribution model which is frequently found in the
Learning Parity with Noise problem (LPN) [16]. In code-based cryptography, the regime
which is almost always relevant is a fixed number of samples n (or codelength) in the linear
regime i.e. k = Θ(n). We will focus on this case here. While the security of many code-based
cryptosystems relies on the hardness of the decoding problem, it can also be based on finding
a “short” codeword (as in [21] or in [2, 7, 29] to build collision resistant hash functions), a
problem which is stated as follows.

▶ Problem 2 (SCP(q, n, k, w)). The short codeword problem with parameters q, n, k, w ∈ N
is defined as:

Given: H ∈ F(n−k)×n
q which is sampled uniformly at random,

Find: c ∈ Fn
q \ {0} such that Hc⊺ = 0 and the weight |c| of c satisfies |c| ≤ w.

Here we are looking for a non-zero codeword c of weight ≤ w in the k-dimensional code
C defined by the so-called parity-check matrix H, namely1 :

C
△=

{
c ∈ Fn

q : Hc⊺ = 0⃗
}
.

The weight function which is generally used here is the Hamming weight, i.e. for a vector
x = (x1, · · · , xn) ∈ Fn

q , its Hamming weight is defined as

|x| △= #{i ∈ J1, nK : xi ̸= 0}.

We will only deal with this weight here. Decoding and looking for short codewords are
problems that have been conjectured to be extremely close. They have been studied for a
long time, and the best algorithms for solving these two problems are the same, namely
Information Set Decoding algorithms [23, 27, 15, 5, 20, 6].

Recently, Debris-Alazard, Remaud and Tillich showed a quantum reduction from SCP
to DP adapting Regev’s reduction from the Short Integer Solution (SIS) problem to the
Learning With Errors problem (LWE). It has recently been pointed out by Chen, Liu and

1 The short codeword problem is usually defined by picking a random parity-check matrix H ∈ F(n−k)×n
q

and not a random generating matrix G ∈ Fk×n
q but the differences are minor (see for example [13])

and one could also define this problem via the generating matrix of a code as we did for the decoding
problem.
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Zhandry [12] that Regev’s reduction can be made more powerful by replacing the LWE
problem with a quantum equivalent, where the errors are given in quantum superposition. It
is therefore natural to ask whether having errors in quantum superposition in the decoding
problem can be applied to the DRT reduction in order to improve it.

The purpose of this article is to introduce and to lay a firm foundation for the Quantum
Decoding Problem, which is the decoding problem but with errors in quantum superposition.
We first present the DRT reduction for codes, properly define QDP, and then present in
detail our contributions.

2 Regev’s quantum reduction and follow-up work

Regev’s quantum reduction[24] is at the core of complexity reductions for these problems,
which with [1] essentially started lattice-based cryptography. His approach when rephrased
in the coding context is based on the following observation. Suppose that we were able to
construct a quantum superposition

√
1
Z

∑
c∈C

∑
e∈Fn

q

√
f(e)|c+e⟩ of noisy codewords of some

code C over Fq, for a normalization factor Z. By applying the quantum Fourier transform
on such a state, because of the periodicity property of such a state, we get a superposition
concentrating solely on the codewords of the dual C⊥ of C, that is 1√

Z

∑
c⊥∈C⊥

√
f̂(c⊥)|c⊥⟩.

Here f̂ is the (classical) Fourier transform of f . Recall that the dual code is defined as

▶ Definition 1 (dual code). Let C be a k-dimensional linear code over Fq of length n. Let
x · y be the inner product of vectors x, y in Fn

q defined as x · y =
∑

i xiyi. The dual code
C⊥ is an (n− k) dimensional subspace of Fn

q defined by C⊥ △={d ∈ Fn
q : d · c = 0, ∀c ∈ C}

We can expect that if f concentrates on fairly small weights, then f̂ also concentrates on
small weights. This gives a way of sampling low weight (dual) codewords and solve SCP for
the dual code. The point is now that

√
1
Z

∑
c∈C

∑
e∈Fn

q

√
f(e)|c + e⟩ can be obtained by

solving DP on states that are easy to construct. This is the main idea of the DRT reduction.
More precisely, the whole algorithm works as

Step 1. Creation of a superposition of noise tensored with a uniform superposition of
codewords

|ϕ1⟩ =
√

1
qk

∑
e∈Fn

q

√
f(e)|e⟩

∑
c∈C

|c⟩.

Step 2. Entangling the codeword with the noise by adding the second register to the first
one

|ϕ2⟩ =
√

1
qk

∑
c∈C

∑
e∈Fn

q

√
f(e)|c + e⟩|c⟩.

Step 3. Disentangling the two registers by decoding c + e and therefore finding c which
allows to erase the second register (a different normalization Z arises when decoding is
imperfect and we condition on measuring 0 in the last register).

|ϕ3⟩ =
√

1
Z

∑
c∈C

∑
e∈Fn

q

√
f(e)|c + e⟩|0⟩.
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6:4 The Quantum Decoding Problem

Step 4. Applying the quantum Fourier transform on the first register and get

1√
Z

∑
d∈C⊥

√
f̂(d)|d⟩|0⟩

Step 5. Measure the first register and get some d in C⊥.

This approach is at the heart of the quantum reductions obtained in [24, 26, 14]. It
is also a crucial ingredient in the paper [28] proving verifiable quantum advantage by
constructing - among other things - one-way functions that are even collision resistant
against classical adversaries but are easily invertible quantumly. In [24, 26, 14], the crucial
erasing/disentangling step is performed with the help of a classical decoding algorithm.
Indeed any (classical or quantum) algorithm that can recover c from c + e can be applied
coherently to erase the last register in step 32 .

A key insight observed in [12] is that it is actually enough to recover |c⟩ from the state∑
e∈Fn

q

√
f(e)|c + e⟩ so we are given a superposition of all the noisy codewords c + e and

not a fixed one. This means we have to solve the following problem

▶ Problem 3 (QDP(q, n, k, f)). The quantum decoding problem with positive integer para-
meters q, n, k and a probability distribution f on Fn

q is defined as:
Input: Take G ∈ Fk×n

q and u ∈ Fk
q sampled uniformly at random over their domain.

Let c = uG and |ψc⟩ △=
∑

e∈Fn
q

√
f(e)|c + e⟩. The (quantum) input to this problem is

(G, |ψc⟩).
Goal: given (G, |ψc⟩), find c.

It’s not clear a priori whether this is helpful or not. If one measures the state |ψc⟩ then
one recovers a noisy codeword and we are back to the classical decoding problem. However,
in the context of lattices, [12] showed that this approach can lead to improvements. A final
small remark on the motivation of the quantum decoding problem. We are not in the context
of noise coming from a realistic quantum channel so we do not need our noise model to
emulate real quantum noise (which would certainly not be a q-ary symmetric channel with
the same phases). The motivation of this definition really comes from an algorithmic and
complexity perspective, as well as a quantum information-theoretic perspective but not from
a quantum error correcting perspective.

3 Contributions

Here we focus on the noise model which is relevant for the Hamming metric in SCP, namely
the Bernoulli noise of parameter p. This means we consider the error function

f(e) = (1 − p)n−|e|
(

p

q − 1

)|e|

.

which in turn means that for any c = (c1, . . . , cn) ∈ Fn
q , we can rewrite

|ψc⟩ △=
∑

e∈Fn
q

√
f(e)|c + e⟩ =

n⊗
i=1

√
1 − p|ci⟩ +

∑
α∈F∗

q

√
p

q − 1 |ci + α⟩

 .

2 Indeed, having such an algorithm means we can construct the unitary U : |c + e⟩|0⟩ → |c + e⟩|c⟩.
Applying the inverse of this unitary will give the erasure operation.
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For this Bernoulli noise with parameter p, the associated quantum decoding problem is
written QDP(q, n, k, p). We will lay out a firm foundation for this quantum decoding problem
by focusing on the case which is generally relevant in code-based cryptography, namely in
the fixed code rate R△= k/n regime and will show that QDP departs significantly from the
classical decoding problem because we show that

(i) QDP is likely to be easier than classical decoding, by proving that it can be solved in
polynomial time in a large regime of noise whereas no non-exponential algorithm is
known for the classical decoding problem.

(ii) the problem can even be solved (albeit not necessarily efficiently) beyond the information
theoretic Shannon limit for classical decoding. We will give precisely the largest noise
level where we can solve QDP giving in a sense the information theoretic limit for the
new problem.

(iii) We study how these QDP algorithms fit in the DRT reduction. We show using our
quantum polynomial algorithm in this reduction in order to obtain quantum polynomial
algorithms recovering Prange’s bound. Even more interestingly, we show that our
quantum algorithm for QDP of (ii) can be used in order to find small codewords of
weight as small as the minimal distance of the code, which is the best we can hope for.
On the negative side, we show that the DRT reduction cannot be, in all generality, a
reduction between QDP and finding small codewords by exhibiting quantum algorithms
for QDP that make this reduction entirely fail.

We now perform a detailed description of our contributions.

3.1 Polynomial time quantum algorithm for QDP in a large parameter
regime

Our first result is the following

▶ Theorem 2. Let R ∈ [0, 1]. For any p <
(

(q−1)R
q

)⊥
, there exists a quantum algorithm that

solves QDP(q, n, ⌊Rn⌋, p) wp. 1 − 2−Ω(n) in time poly(n, log(q)), where for a real number

x ∈ [0, 1], x⊥ =
(√

(1−x)(q−1)−
√

x
)2

q .

Let us dive in how we obtain this result. We start from an input of QDP(q, n, ⌊Rn⌋, p),
which, for an (unknown) codeword c = c1, . . . , cn is the state

|Ψc⟩ =
n⊗

i=1
|ψci

⟩ with |ψci
⟩ △=

√
1 − p|ci⟩ +

∑
α∈F∗

q

√
p

q − 1 |ci + α⟩

and the goal is to recover c. Our algorithm performs Unambiguous State Discrimination
(USD) on each of the n registers. USD is a quantum measurement that, on input |ψci

⟩, will
output or the correct value ci, or an abort symbol ⊥ but will never output a value α ∈ Fq

different from ci. Then, if we have enough correct values of ci (essentially more than ⌈Rn⌉),
then one can recover the whole c using the description of the code and basic linear algebra.

Optimal unambiguous state discrimination is very well understood in the binary case
(q = 2) but is not known in general for more than 2 states. In certain situations where we
have a symmetric set of states [10] we know how to perform optimal USD. This would apply
in our case case where q is prime. We have generalized the approach of [10] to be able to
apply it to any finite field size q, and prove the following.
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6:6 The Quantum Decoding Problem

▶ Proposition 3. Let q be a prime power, and f : Fq → C st. ||f ||2 = 1. For each y ∈ Fq,
we define |ψy⟩ =

∑
α∈Fq

f(α)|y + α⟩. There exists a quantum measurement that, when given
|ψy⟩, outputs y wp. pUSD and ⊥ wp. 1 − pUSD where pUSD = q · minα∈Fq

|f̂(α)|2, and this
is optimal. Moreover, if f corresponds to a Bernoulli noise of parameter p, this measurement

can be done in time polylog(q) and we have pUSD = qp⊥

q−1 , where p⊥ =
(√

(1−p)(q−1)−√
p
)2

q .

Notice that [12] proposed a USD measurement with pUSD = 1
q minα∈Fq

|f̂(α)|2. Their
measurement does not scale well with q contrarily to our measurement which has basically
the right scaling with q. For instance, [12] requires that q = poly(n). We have no such
restriction in our case and our algorithms work in polynomial time even for q = 2Ω(n).

3.1.1 Interpretation as changing the noise channel
A nice interpretation of the above algorithm is that when the error is in quantum superposition,
one can use quantum measurements to change the noise model. For instance, when we are
given |ψci

⟩ =
√

1 − p|ci⟩ +
∑

α∈F∗
q

√
p

q−1 |ci + α⟩ then
One can measure in the computational basis to obtain ci that has been flipped wp. p to
one of the other q − 1 values at random.
One can use unambiguous state discrimination in which case ci has been erased wp.
1 − qp⊥

q−1 .

What we show in Theorem 2 is that the second strategy is actually much more powerful
for recovering the codeword c. A natural question to ask is whether this can further be
generalized to other measurements. In the binary setting we actually generalize USD as
follows: given |ψci⟩, the measurement sometimes outputs ⊥ but it can also fail with some
small probability. We prove the following

▶ Proposition 4 (Partial USD). Let p, s ∈ [0, 1
2 ) with s ≤ p and let u = p⊥

s⊥ . There exists a
quantum measurement that when applied to |ψci⟩ =

√
1 − p|ci⟩ + √

p|1 − ci⟩ outputs ci wp.
u(1 − s), (1 − ci) wp. us and ⊥ wp. 1 − u.

Notice that this generalizes both the computational basis measurement (by taking s = p)
and unambiguous state discrimination (by taking s = 0 giving u = 2p⊥). This seems a very
natural way of generalizing USD but is not something we have found in the literature and
could be of independent interest. We can use this measurement not to provide new polynomial
time algorithms but rather to give a reduction between different Quantum Decoding problems,
which we detail in the full text.

3.2 Determining exactly the tractability of the quantum decoding
problem

We are now interested in the tractability of QDP(q, n, k, p) meaning when is it possible
from an information theoretic perspective to solve this problem. A fundamental quantity is
relavant here, namely the Gilbert-Varshamov distance δmin(R) defined below

▶ Notation 1. Let R ∈ [0, 1]. We define δmin(R) △=h−1
q (1−R), where hq(x) △= −(1−x) logq(1−

x) − x logq

(
x

q−1

)
. hq is a bijection from x ∈

[
0, q−1

q

]
to [0, 1] and h−1

q : [0, 1] →
[
0, q−1

q

]
is

the inverse of hq.
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For the classical setting, it is well understood that DP(q, n, k, p) is not tractable when
p > δmin( k

n ), meaning that even an unbounded algorithm will solve the problem wp. o(1).
We would like now to understand what happens in the quantum setting. Techniques based
on (partial) USD will not work in the regime p > δmin(R). Since we are only interested in the
tractability of the problem, we can consider optimal quantum algorithms for discriminating
between the states |Ψc⟩ =

∑
e∈Fn

q

√
f(e)|c + e⟩ where f accounts for the Bernoulli noise of

parameter p. This problem can be addressed by using the Pretty Good Measurement (PGM)
which has turned out to be a very useful tool in quantum information. If we define PPGM
as the probability that the pretty good measurement succeeds in solving our problem and
define POPT as the maximal probability that any measurement succeeds, we have [4, 22]

P2
OPT ≤ PPGM ≤ POPT.

This means that in order to study the tractability of the quantum decoding problem, it is
enough to look at the PGM associated with the problem of distinguishing the states {|Ψc⟩}.
We show that

▶ Theorem 5. Let R ∈ (0, 1).
For p < (δmin(1 −R))⊥, QDP(q, n, ⌊Rn⌋, p) can be solved using the PGM wp. PPGM =
1 − o(1) hence the problem is tractable.
For p > (δmin(1 −R))⊥, the probability that the PGM solves this problem is PP GM = o(1)
hence POP T = o(1) and the problem is intractable.

In order to prove this theorem, we study the Pretty Good Measurement associated to the
states |Ψc⟩ which are the possible inputs of QDP. In order to study our PGM, we define the
shifted dual codes of C

C⊥
s

△={x ∈ Fn
q : Gx⊺ = s}

We show the following

▶ Proposition 6. We consider the Pretty Good Measurement associated to the states {|Ψc⟩}c∈C
with |Ψc⟩ =

∑
e f(e)|c + e⟩. This measurement outputs c given |Ψc⟩ wp.

pP GM = 1
qk

 ∑
s∈Fk

q

ns

2

where ns =
√ ∑

y∈C⊥
s

|f̂(y)|2.

This shows an interesting and unexpected link between the Pretty Good Measurement
associated to the states {|Ψc⟩} and the shifted dual codes C⊥

s . In the particular case of a
Bernoulli noise of parameter p, the value of ns will be dominated by a quantity related to
the number of words of weight close to p⊥ in the shifted dual code C⊥

s . In order to conclude,
we use strong concentration bounds on the weight distribution of shifted dual codes.

3.2.1 Comparing the complexity of DP and QDP
With this full characterization, we compare the hardness, and tractability of the classical and
quantum decoding problems. For p = 0, we have of course a polynomial time algorithm to
solve DP(q, n, ⌊Rn⌋, 0). For 0 < p ≤ δmin(R), the problem is tractable and the best known
classical or quantum algorithms run in time 2Ω(n). For p > δmin(R), we know the problem
is intractable. For the Quantum Decoding Problem, we obtain a very different picture.
A comparison of these results is presented in Figures 1 and 2 where we use the following
terminology
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6:8 The Quantum Decoding Problem

Easy: there exists an algorithm that runs in time poly(n).
Hard: the best known (classical or quantum) algorithm runs in time 2Ω(n), but there
could potentially be more efficient algorithms.
Intractable: we know that any (even unbounded) algorithm can solve the problem wp. at
most o(1).

Figure 1 Hardness and tractability of the decoding problem DP(q, n, ⌊Rn⌋, p), for any fixed
R ∈ [0, 1], as a function of p.

Hard Intractable
p

0 δmin(R) q−1
q

Figure 2 Hardness and tractability of the quantum decoding problem QDP(q, n, ⌊Rn⌋, p), for
any fixed R ∈ [0, 1], as a function of p.

Easy Hard Intractable
p

0
(

(q−1)R
q

)⊥
(δmin(1 −R))⊥ (q−1)

q

This gives a proper characterization of the difficulty of QDP. In our next contribution,
we will apply them in the DRT quantum reduction in order to derive some results for the
short codeword problem. As we will show, the results from Figure 2 will match exactly our
knowledge for the short codeword problem.

3.3 Using our algorithms in Regev’s reduction
We are now interested in solving the short codeword problem using Regev’s reduction and
the algorithms we described in the previous section. The known (classical and quantum)
hardness of the short codeword problem is summarized in Fig. 3. In our coding context, the

Figure 3 Hardness and tractability of the short codeword problem SCP(q, n, ⌊Rn⌋, p) for a fixed
R ∈ (0, 1), as a function of p.

Intractable Hard Easy
p

0 δmin(R) (q−1)(1−R)
q

(q−1)
q

only known reduction is the following

▶ Proposition 7 ([14], informal). Fix integers n, q ≥ 2 as well as parameters R, p ∈ (0, 1)
st. p ≤ δmin(R). From any quantum algorithm that solves DP(q, n, ⌈(1 − R)n⌉, p) with
high probability, there exists a quantum algorithm that solves SCP(q, n, ⌊Rn⌋, p⊥) with high

probability where recall that p⊥ =
(√

(1−p)(q−1)−√
p
)2

q .

In some sense, this reduction is far from tight. Indeed, if we take the best known
algorithms for DP (see Figure 1) and we apply the above proposition, we get quantum
algorithms much worst than the best known ones from Figure 3. On the other hand, if we
could plug in our algorithms for QDP in this reduction, we would obtain quantum algorithms
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for SCP that have the same complexities as the one in Figure 3. From our discussion in
Section 2, it seems that one could perform the same reduction as above but replacing DP
with QDP. The reality is quite more tricky. Indeed, if the quantum algorithm for QDP
succeeds wp. 1 then the reduction works. However, even a small error in the quantum
algorithm for QDP can lead to large error in the corresponding algorithms for SCP.

We first show that this is not an issue when we use the quantum algorithms for QDP we
described in the previous section in the DRT reduction.

▶ Theorem 8. For any p <
(

(q−1)R
q

)⊥
, if we plug the quantum polynomial time algorithm

of Theorem 2 for QDP(q, n, ⌊(1 − R)n⌋, p⊥) in Regev’s reduction, we obtain a quantum
polynomial time algorithm for SCP(q, n, ⌊R⌋, p).

▶ Theorem 9. For any p < δmin(1 − R), if we plug (a slight variant of) the quantum
algorithm of Theorem 5 for QDP(q, n, ⌊(1 − R)n⌋, p⊥) in Regev’s reduction, we obtain a
quantum polynomial time algorithm for SCP(q, n, ⌊R⌋, p).

3.3.1 Efficiency of the reduction
We graphically compare here the DRT reduction using DP and using our algoirthms for
QDP.

Hard Intractable
p DP(q, n, ⌈(1 −R)n⌉, p)

0 δmin(1 −R) q−1
q

Intractable Hard
p SCP(q, n, ⌈Rn⌉, p)

0 (δmin(1 −R))⊥ q−1
q

Figure 4 On the top, best known (classical or quantum) algorithms for DP(q, n, ⌈(1−R)n⌉, p). On
the bottom, complexity of a quantum algorithm for SCP(q, n, ⌈Rn⌉, p) that uses the best algorithm
for DP(q, n, ⌈(1 − R)n⌉, p) and then uses Proposition 7.

Easy Hard Intractable
p QDP(q, n, ⌈(1−R)n⌉, p)

0
(

(q−1)(1−R)
q

)⊥
(δmin(R))⊥ (q−1)

qy Theorems 8, 9
Intractable Hard Easy

p SCP(q, n, ⌈Rn⌉, p)
0 δmin(R) (q−1)(1−R)

q
(q−1)

q

Figure 5 On the top, our quantum algorithms for QDP(q, n, ⌈(1 − R)n⌉, p). On the bot-
tom, complexity of a quantum algorithm for SCP(q, n, ⌈Rn⌉, p) that would use our algorithms
QDP(q, n, ⌈(1 − R)n⌉, p) and then Theorems 8 and 9.

What we find quite remarkable is that our algorithm for QDP used at the limit of the
tractability bound can be used to recover minimal weight codewords of weight δmin(R) in
the dual. A natural question is whether we can have generic reductions between SCP and
QDP. We show that the DRT reduction fails for this task and the increase in error in the
reduction can be drastic.
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6:10 The Quantum Decoding Problem

▶ Theorem 10. For any p < δmin(1 − R), there exists a quantum algorithm that solves
QDP(q, n, ⌊(1 −R)n⌋, p⊥) wp. 1 − o(1) st. if we plug it in the DRT reduction, the resulting
algorithm for SCP(q, n, ⌊Rn⌋, p) never succeeds.

These results show that, while it is impossible to have a generic reduction from SCP
to QDP with this method, it is (at least in our examples) possible to find algorithms for
QDP that give results according to Fig. 5, and recover the areas where the problem is easy
or tractable. This can be seen as quite a surprise since our bounds on QDP come from
information theory and best known bounds on SCP comes from classical coding theory and
seem unrelated at first.

4 Related work

Our main starting point is [12] so it natural to compare our contributions with this work.
In [12], they introduce the S-|LWE⟩ problem, the lattice equivalent of QDP. They construct
from it a quantum algorithm for SIS∞ via Regev’s reduction while our work focuses on QDP
mainly for its own sake. Regarding their quantum polynomial time algorithm for S-|LWE⟩, it
is obtained by performing a variant of Unambiguous State discrimination where we only rule
out certain values for the code-symbols, and then they use the Arora-Ge algorithm [3] for
recovering completely the codeword by solving an algebraic system which for the parameters
that are considered there, is of polynomial complexity. Our quantum polynomial time
algorithm is inspired by this approach but since we work with the q-ary Bernoulli noise, we
can directly use unambiguous state discrimination. Also, we perform a more efficient q-ary
USD which allows us to work even when q = 2Ω(n) while the work of [12] works only when
q = poly(n). Our other results on the (in)tractability results, as well as the discussion on
the DRT reduction are entirely novel and do not have an equivalent version in [12].

Another quantum variant has been presented [17] but where they consider a quantum
superposition of samples i.e. superpositions of generating matrices. They show that in this
case the problem can be solved in quantum polynomial time. Their setting is very different
from ours as we fix a code and do not have codes in superposition. Moreover, their techniques
are not applicable to our setting.

A recent result [11] also studies the S-|LWE⟩ problem. They perform a quantum reduction
between LWE and S-|LWE⟩ with extra unknown phases. The parameters of this S-|LWE⟩ are
such that if they did not have these unknown phases, they could solve it with a subexponential
quantum algorithm using a subexponential number of samples. This is very far from our
parameter range and hence not comparable but gives an interesting use of Kuperberg’s sieve
for this kind of problem.

5 Discussion

5.1 A problem which is interesting in its own
Our work lays firm theoretical foundations for the Quantum Decoding Problem, where we
find an interesting parameter range where the problem can be solved in quantum polynomial
time. Moreover, we precisely characterize up to what level of noise the problem is tractable
from an information theoretic point of view. Finally we show how our algorithms can be
used in Regev’s reduction for finding short codewords.

Beyond this, it seems to us that the quantum decoding problem is a natural and important
problem in its own. We did not study the quantum decoding problem to relate it to the
classical decoding problem so the aim of our results is not to say something about the
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complexity of the classical decoding problem (even though it is linked to the related Short
Codeword Problem via Regev’s reduction). We are actually more interested in the differences
between these two problems. Having errors in quantum superposition can be used to change
the noise model from a q-ary symmetric channel to an erasure channel. We even have a
complete characterization in the binary setting via our notion of partial unambiguous state
discrimination. Also quite surprisingly, we can decode beyond classical information theoretic
limits. Moreover, the optimal bound (δmin(1 −R))⊥ that we exhibit in the binary setting is
exactly the first linear programming which bounds the minimal distance of a code depending
on its size so this bound, which comes from the study of the Pretty Good Measurement has
links, again, with fundamental quantities from classical coding theory.

But as we said, we have another strong motivation for studying the quantum decoding
problem. Indeed, it is the problem which directly appears when performing Regev’s reduction.
This means studying the quantum decoding problem also gives us a better understanding of
this reduction both from a complexity point of view and from a quantum algorithmic point
of view. From a complexity point of view, our results explain why this reduction between
the Decoding Problem and the Short Codeword problem (or equivalently between LWE
and SIS) gives far from tight results. It is because this reduction is genuinely a reduction
between the Quantum Decoding Problem and the Short Codeword and our analysis shows
the former is much simpler than its classical counterpart. Also, Figure 5 shows that with this
reduction, we recover the polynomial zone and the tractability zone of the short codeword
problem which shows in some sense the tightness of this reduction. The fact that bounds on
optimal Unambiguous State Discrimination and on the Pretty Good Measurement leads via
Regev’s reduction to Prange’s bound (for the polynomial case) and to the Gilbert-Varshamov
bound (for the tractability bound) shows interesting and, in our opinion, quite aesthetic links
between quantum and classical information theory.

From an algorithmic point of view, these results can be seen as a new class of quantum
algorithms for the short codeword problem. One might say that we do not improve on
existing algorithms. For example, our quantum polynomial algorithm finds short codeword
for some weights t that can also be found by the classical Prange’s algorithm. Let us just
observe here that if we could find a polynomial quantum algorithm that would beat Prange’s
bound then that would significantly change our understanding of the quantum hardness
of these problems and the post-quantum security claims of code-based cryptography (and
may be even lattice-based cryptography) would be affected. In the exponential regime, we
propose a new family of quantum algorithms for the short codeword problem and there are
many directions (changing the noise function f , determining the complexity of measurements
required in the QDP, strict analysis in Regev’s reduction ...) that look very promising for
future work.

5.2 Technical takeaways
In the first part of the paper, we use binary Unambiguous State Discrimination for constructing
our quantum polynomial algorithm. Once the idea is found, the techniques used are known
and simple. We then extend this to partial unambiguous state discrimination - where we
still allow some probability of failure much less than in Helstrom’s measurement. This is a
technique that we have not seen previously in the literature and could be of independent
interest. In the q-ary setting, we extend optimal bounds for unambiguous state discrimination
of symmetric states to the case q is a prime power and also show how to construct this
measurement in time log(q) for Bernoulli noise. The second part of the paper, which
deals with (in)tractability bounds is arguably the most technical part of the paper. A first

TQC 2024



6:12 The Quantum Decoding Problem

interesting technical result was to precisely characterize the Pretty Good Measurement used
in the quantum decoding problem of a code C as a projective measurement that involves
the shifted dual codes of C. Then, the most technical part was to actually compute the
success probability of the Pretty Good Measurement as a function of the noise rate which
requires precise and well used concentration and anti-concentration bounds on the weight
distribution of shifted dual codes of a random code. In the third part of the paper, where we
apply our algorithms to Regev’s reduction, we mainly use our analysis of the Pretty Good
Measurement developed in the previous section. Regarding the reduction using Unambiguous
State Discrimination, the analysis is fairly simple. One interesting fact though is that we do
not construct the state

∑
c,e f(e)|c + e⟩ but another state related to a punctured code CJ

which allows us to find small dual codewords. This circumvents many issues arising when
one wants to go from solving QDP (aka S-|LWE⟩) to construct the state

∑
c,e f(e)|c + e⟩

(aka C-|LWE⟩).

6 Proofs

The proofs of this article are presented in the full version of this paper (https://arxiv.
org/pdf/2310.20651), which we omit here due to space restrictions.
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Abstract
We present a framework for quantum computation, similar to Adiabatic Quantum Computation
(AQC), that is based on the quantum Zeno effect. By performing randomised dephasing operations
at intervals determined by a Poisson process, we are able to track the eigenspace associated to a
particular eigenvalue.

We derive a simple differential equation for the fidelity, leading to general theorems bounding
the time complexity of a whole class of algorithms. We also use eigenstate filtering to optimise the
scaling of the complexity in the error tolerance ϵ.

In many cases the bounds given by our general theorems are optimal, giving a time complexity
of O(1/∆m) with ∆m the minimum of the gap. This allows us to prove optimal results using very
general features of problems, minimising the problem-specific insight necessary.

As two applications of our framework, we obtain optimal scaling for the Grover problem (i.e.
O(

√
N) where N is the database size) and the Quantum Linear System Problem (i.e. O(κ log(1/ϵ))

where κ is the condition number and ϵ the error tolerance) by direct applications of our theorems.
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1 Introduction

It has long been appreciated that the ability to prepare a ground state of a given Hamiltonian
is useful for a large number computational tasks. Many NP-hard problems, including various
types of partitioning, covering, and satisfiability problems, can be solved by finding the
ground state of an Ising system [14]. There are also many applications in the fields of quantum
chemistry, where finding the ground state of molecules is a common task, and physics, where
knowledge of the ground state helps to understand low-temperature phenomena such as
superconductivity and superfluidity.

For computational problems we have the following strategy: (1) find a physical system
such that the ground state encodes useful information for solving the problem, (2) prepare
the ground state using some physical process and (3) use the information contained in the
ground state to solve the problem. This paper is about performing the second step of this
strategy.

The most famous way to perform the second step is known as Adiabatic Quantum
Computation (AQC) [8]. Suppose HP is the Hamiltonian whose ground state is of interest.
This procedure requires a second Hamiltonian, H0, with an easily preparable ground state.
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7:2 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

Now consider the following interpolated Hamiltonian: H(s) = (1 − s)H0 + sHP and pick a
large time T . We start with the system in the ground state of H0 and evolve according to the
time-dependent Hamiltonian H(t/T ), for time t ∈ [0, T ]. The adiabatic theorem says that if
T is large enough, then the resulting state will be close to the ground state of H(1) = HP .
See [11] for results detailing how large T has to be. Clearly we want to take T as small as
possible, since a larger T means our computation takes longer.

While AQC is polynomially equivalent to the quantum circuit model [1], it suffers from
a few drawbacks. The most significant one being that it requires the system to evolve
under a very specific time-dependent Hamiltonian. It is typically very hard to physically
implement a system that evolves under exactly this Hamiltonian. Often the complicated
time-dependent dynamics are approximated by a sequence of simpler evolutions, which
introduces discretisation error. In particular this is necessary when implementing AQC on a
conventional quantum computer. Bounding the discretisation error analytically is typically
hard to do. In contrast, our method only requires the evolution under a finite number of
time-independent Hamiltonians for finite time and thus has no discretisation cost.

There exist alternatives to AQC that are also based on an interpolation H(s) between a
Hamiltonian whose ground state is easy to prepare and one whose ground state is difficult to
prepare. These approaches use alternate ways to transform the ground state of H(0) into
that of H(1), or, more generally some eigenstate of H(0) into the corresponding eigenstate
of H(1). They often make use of a variant of the quantum Zeno effect. For instance [5] uses
measurement and [4] simulates the quantum Zeno effect by applying Hamiltonian evolutions
for random amounts of time in a procedure known as the Randomisation Method (RM).

Our framework builds on the RM of [4] in the following way: instead of performing a
fixed sequence of phase randomising steps, we stochastically choose when to perform phase
randomisation, based on a Poisson process with rate λ(s), see algorithm 1. This has a
number of advantages. Firstly it yields a simple differential equation for the state evolution,
which fits in the general framework of non-unitary adiabatic theorems of [3], and greatly
simplifies the analysis. It allows us to obtain general theorems, see in particular theorems 4
and 5, that in many cases yield optimal results with minimal extra work or problem-specific
insight. Also, we only need very minimal technical assumptions on H(s): it only needs to be
twice continuously differentiable and we need to know some estimate of the gap between the
eigenvalue of interest and the rest of the spectrum. We do not assume precise knowledge of
the spectrum or gap. We allow the eigenspace of interest to be degenerate.

Our theorem 4 deals with the case where the rate of the Poisson process λ is taken to
be constant. The result we obtain is better than the corresponding result for AQC with
a constant-speed linear interpolation. In theorem 5 we describe a variable λ(s) that can
significantly improve the time complexity, up to O(1/∆m) in the minimum gap ∆m. Finally
theorem 7 improves the dependence of the time complexity on the error tolerance. Typically
algorithms based on AQC and the RM have a complexity that scales as O(1/ϵ) in the error
tolerance ϵ. Eigenstate filtering, introduced in [13], can be used to reduce this to O(log(1/ϵ)).
This has been used before to RM-inspired algorithms that use the circuit model, see [13] and
[12], but we provide a version native to our cost model.

From theorem 5, we see that the following property is very useful to obtain fast algorithms:∫ 1
0

1
∆(s)p ds = O(∆1−p

m ), where ∆ is the gap, ∆m = infs∈[0,1] ∆ and p > 1. This property
seems to be quite generic, in particular it holds for both the Grover search problem and the
Quantum Linear System Problem (QLSP).

In the Grover search problem, [9], the goal is to prepare a specific state in an N -dimensional
space with the help of an oracle. It is well-known that this can be done in O(

√
N) queries

to the oracle. When AQC was first used to tackle this problem, a complexity of O(N)
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was obtained [8]. The trick to achieving a complexity of O(
√

N) was to use an adapted
schedule [17, 20]. In our framework, the algorithm using constant λ already achieves a scaling
of O

(√
N log(N)

)
by theorem 4, which is significantly better than the corresponding case for

AQC. Using a variable λ(s), we recover the scaling O(
√

N) by theorem 5. It is interesting to
note that, by the generality of our theorems, we actually obtain a whole family of schedules,
parametrised by some value 0 < q < 1, that solve the problem optimally. This is analogous
to the range of adiabatic schedules considered in [2] and [7]. The original schedule of [17]
actually corresponds to a choice of q = 1. It seems like the RM can be considered as the
q = 1 case of a family of methods, at least in the case of linear interpolation. This falls
outside the range of our theorem, but it turns out that q = 1 is in fact good enough to give
optimality for the Grover problem, which explains why the RM was already known to be
able to perform Grover search with optimal complexity O(

√
N), [4].

In general, for other problems, q = 1 does not give optimal scaling. The Quantum Linear
System Problems (QSLP) is an example of a problem where q = 1 does not work, neither
in our framework, nor in AQC [2]. In QLSP, [10], the goal is to prepare a quantum state
|x⟩ that is proportional to the solution of a system of linear equations Ax = b. In [19] the
randomisation method was used to construct an algorithm with complexity O

(
κ log(κ)/ϵ

)
,

where κ is the condition number and ϵ the error tolerance. This is improved to O
(
κ log(κ/ϵ)

)
in [12]. In [7] an algorithm based on a discrete adiabatic theorem was proposed which scales
as O

(
κ log(1/ϵ)

)
. We are able to match this in our framework.

There has actually been some discussion recently on the merits of these two approaches
to QLSP, i.e. the approach based on the RM of [19] and the approach based on the discrete
adiabatic theorem [7]. The approach based on the discrete adiabatic theorem has the better
asymptotic scaling, but it turns out that the proven complexity for reasonable values of κ is
very large. The paper [12] presents an algorithm that is based on the RM and has a better
proven complexity for reasonable values of κ, but is asymptotically suboptimal. Finally [6]
uses numerical methods to determine the actual performance of the algorithm based on the
discrete adiabatic theorem. They claim that it works much better than the proven bound
and in fact better than the algorithm based on the RM. We can contribute to this discussion
by noting that our framework gives an algorithm that is based on the RM and has optimal
asymptotic scaling. In addition, since the RM seems to correspond to q = 1, which we know
to be suboptimal, it is likely that the algorithm of [12] can be made asymptotically optimal
by changing the scheduling.

1.1 General setup
We assume we have a physical system and a set of (time-independent) Hamiltonians, i.e.
self-adjoint operators, such that we can evolve the system under e−itH at a cost of t for
any Hamiltonian H in this set.1 We call the Hamiltonians in this set admissible. Which
Hamiltonians are admissible will depend on the device or setup, but typically they will be
bounded in norm.

This is not the cost model used by references [7] and [12], which use a query complexity
rather than a time complexity. We discuss a translation of our results to this model using
optimal Hamiltonian simulation in appendix B. The asymptotic complexities are mostly
unaffected, but there are different constants involved.

For a given instance of a problem, we assume that we have a continuous, twice differentiable

1 We set ℏ = 1.
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path of admissible Hamiltonians H(s), where s ∈ [0, 1]. We also assume that we can prepare
the ground state of H(0).

We are interested in the asymptotic scaling of the time complexity, as measured by the
total length of time we apply unitaries of the form e−itH . We produce theorems that give
bounds on the complexity in terms of the spectral gap and the derivatives ∥H ′∥ and ∥H ′′∥.

Our main tool will be the randomised application of unitaries of the form e−itH . Since
we are using classical randomness, it will be useful to use the density matrix formalism.
Using this formalism, we can derive differential equations for these new procedures that share
essential features with the Liouville–von Neumann equation in the adiabatic limit. This
allows us to use many of the same mathematical tricks to study these procedures and we can
derive “generalised” adiabatic theorems in the sense of [3].

1.1.1 Cost and error model
It is clear what the cost of one run of the algorithm is: it is just the total time spent evolving
the system under some Hamiltonian. In order to state the time complexity we have the
additional problem that the running time of the algorithm is not deterministic. That is, even
for a fixed input, multiple runs of the algorithm will take different amounts of time. Our
time complexity uses the expected run time of each input. Thus we say our algorithm has
time complexity T if, for all relevant inputs I, the expected time taken by the algorithm
with input I is less than T . In other words, we may consider this a worst-case expected-time
complexity.

In order to guarantee that the algorithm does not take too long, we could abort if the
chosen amount of time was too long. This would yield an additional error, which can be
bounded by Markov’s inequality.

Our algorithms are also not guaranteed to give the correct answer, rather we aim to
produce the target state with at least a certain target fidelity.

1.1.2 Technical assumptions on the spectrum
We assume the existence of the following objects: a number ∆m > 0 and functions ω0 :
[0, 1] → R and ∆ : [0, 1] → [0, 1] such that

ω0 continuous;
ω0(s) is an eigenvalue of H(s) for all s ∈ [0, 1];
∆(s) ≥ ∆m for all s ∈ [0, 1];
the intersection of [ω0(s) − ∆(s), ω0(s) + ∆(s)] with the spectrum of H(s) is exactly
{ω0(s)}.

Let P (s) be the projector on the eigenspace associated to the eigenvalue ω(s). We also set
Q(s) = id −P (s).

In order to perform our algorithm, we assume knowledge of ∆, which bounds the gap. We
do not assume more detailed knowledge of the gap, ω0, or any other part of the spectrum.

2 Poisson-distributed phase randomisation

Our algorithms are built using a finite number of steps, where at each step a Zeno-like
dephasing operation is performed. This dephasing operation is given by the following
proposition:
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▶ Proposition 1 (Phase randomisation [4]). Let H be a Hamiltonian and ω0, ∆, P and Q

as above. Assume we can simulate e−itH for any positive or negative time t at a cost of |t|.
Then we can construct a stochastic variable τ such that for all states ρ,

⟨e−iτHρeiτH⟩ = PρP + Q⟨e−iτHρeiτH⟩Q, (1)

with cost ⟨|τ |⟩ = t0/∆, where t0 = 2.32132.

The angled brackets mean taking the average over τ . The result is originally from [4]. The
value for t0 was obtained in theorem 2 of [12].

The algorithm is now simple to state:

Algorithm 1 Poisson-distributed phase randomisation.

1 Pick a Poisson process N : [0, 1] × (Ω, A, P ) → N with rate λ(s);
2 At each jump point s of the Poisson process, pick an instance t of the random

variable T as defined in proposition 1 and evolve the system under the Hamiltonian
evolution e−itH(s);

The density matrix describing the system is a random variable that satisfies the stochastic
differential equation dρ =

(
e−iτ(s)H(s)ρeiτ(s)H(s) − ρ

)
dN. Averaging over realisations, we get

d⟨ρ⟩ =
(
P ⟨ρ⟩P + Q⟨e−iτHρeiτH⟩Q − ⟨ρ⟩

)
λ ds. (2)

Note that this should properly be thought of as a “marginalised” density matrix, rather
than an “average” density matrix. This is entirely analoguous to the situation for classical
probability distributions, where integrating out a variable gives the marginal distribution. In
this case we are marginalising over the choice of Poisson process N . In the rest of the paper,
we will use ρ to refer to the marginalised distribution ⟨ρ⟩. This corresponds to the density
matrix you would observe if you were not told which Poisson process N was chosen.

The total time taken by one run of the algorithm is a random variable T satisfying

dT = τ dN. (3)

In order to find the time complexity, we take the average. This gives dT = t0∆−1λ ds, so
T =

∫ 1
0

t0λ
∆ ds.

2.1 Analysis
▶ Lemma 2. Under the assumptions in 1.1.2, the algorithm 1 with rate λ(s) produces a state
with an infidelity that is bounded by

ϵ ≤
∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥P ′∥
)

ds. (4)

Proof. The infidelity is given by ϵ = 1 − Tr
(
P (1)ρ(1)

)
= Tr

(
P (0)ρ(0)

)
− Tr

(
P (1)ρ(1)

)
=∣∣∣Tr(Pρ)

∣∣1
0

∣∣∣, so it makes sense to track how the fidelity Tr
(
P (s)ρ(s)

)
changes in time.

We construct a differential equation for Tr(Pρ) by taking the derivative with respect to
s, Tr(Pρ)′ = Tr(P ′ρ) + Tr(Pρ′). This can be simplified using the fact that PP ′P = 0 and
QP ′Q = 0.2 Indeed, we have

Tr(Pρ′) = λ Tr
(
P (PρP + Q⟨e−iτHρeiτH⟩Q − ρ)

)
= Tr(PρP ) − Tr(Pρ) = 0 (5)

2 We have P ′ = (P P )′ = P ′P + P P ′, so P P ′P = 2P P ′P and QP ′Q = 0.
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7:6 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

and

Tr(P ′ρ) = Tr
(

P ′(PρP + Q⟨e−iτHρeiτH⟩Q − λ−1ρ′)
)

(6)

= Tr(PP ′Pρ) + Tr
(
(QP ′Q)⟨e−iτHρeiτH⟩

)
− Tr(λ−1P ′ρ′) (7)

= − Tr(λ−1P ′ρ′), (8)

so Tr(Pρ)′ = − Tr(λ−1P ′ρ′). Integrating gives

Tr(Pρ)
∣∣1
0 = −

∫ 1

0
Tr(λ−1P ′ρ′) ds (9)

= −λ−1 Tr(P ′ρ)
∣∣1
0 +

∫ 1

0

(
Tr
(P ′′

λ
ρ
)

+ Tr
(( 1

λ

)′
P ′ρ
))

ds, (10)

which we can bound by

ϵ =
∣∣∣Tr(Pρ)

∣∣1
0

∣∣∣ ≤
∣∣∣Tr(λ−1P ′ρ)

∣∣1
0

∣∣∣+
∫ 1

0

(
Tr
(∣∣P ′′

λ
ρ
∣∣)+

∣∣∣( 1
λ

)′∣∣∣Tr
(∣∣P ′ρ

∣∣)) ds (11)

≤
(∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥)Tr(ρ)

+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥P ′∥
)

Tr(ρ) ds (12)

≤
∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥
+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥P ′∥
)

ds. (13)

◀

The next step is to bound ∥P ′∥ and ∥P ′′∥ by more useful quantities. We make use of the
following lemma:

▶ Lemma 3. Under the assumptions stated in 1.1.2, we have
1. ∥P ′∥ ≤ 2 ∥H′∥

∆ ;

2. ∥P ′′∥ ≤ 8 ∥H′∥2

∆2 + 2 ∥H′′∥
∆ .

This is fairly standard. See for example [16]. A proof is provided in appendix A. We are now
ready to use lemma 2 in two distinct contexts, leading to theorems 4 and 5.

2.1.1 Constant λ

We first derive a theorem under the assumption that λ is constant. In this case we obtain
the following result:

▶ Theorem 4. Under the assumptions in 1.1.2, the algorithm 1 produces the target state
with fidelity of at least 1 − ϵ if λ is constant and

ϵ−12
(∥H ′(0)∥

∆(0) + ∥H ′(1)∥
∆(1) +

∫ 1

0
4∥H ′∥2

∆2 + ∥H ′′∥
∆ ds

)
≤ λ. (14)

In this case the time complexity of the procedure is given by T = λt0
∫ 1

0
1
∆ ds.
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Proof. Let ϵ0 be the actual error of the algorithm. We need ϵ0 ≤ ϵ. We can use lemma 3 to
rewrite the inequality in lemma 2 as

ϵ0 ≤ λ−1( ∥P ′(0)∥ + ∥P ′(1)∥
)

+ λ−1
∫ 1

0
∥P ′′∥ ds (15)

≤ λ−1
(

2∥H ′(0)∥
∆(0) + 2∥H ′(1)∥

∆(1) +
∫ 1

0
8∥H ′∥2

∆2 + 2∥H ′′∥
∆ ds

)
. (16)

Set B := 2
(

∥H′(0)∥
∆(0) + ∥H′(1)∥

∆(1) +
∫ 1

0 4 ∥H′∥2

∆2 + ∥H′′∥
∆ ds

)
. Then we have

ϵ0 ≤ λ−1B ≤ ϵB−1B = ϵ, (17)

so the algorithm works. The time complexity is simply given by T =
∫ 1

0
t0λ
∆ ds = λt0

∫ 1
0

1
∆ ds.

◀

This result can be compared to theorem 15 in the circuit model.

2.1.2 Scaling λ with the gap
We know from [17] and [20] that the performance of AQC can be improved with an adapted
schedule, taking more time when the gap is small. Similarly we expect it to be possible to
improve the performance of our procedure by varying λ. Indeed this is the case.

▶ Theorem 5. Under the assumptions in 1.1.2, we additionally assume that there exists
0 ≤ q ≤ 1 and B1, B2 such that

∫ 1
0

1
∆1+q ds ≤ B1∆−q

m and
∫ 1

0
1

∆2−q ds ≤ B2∆q−1
m for all

instances of the problem. Then algorithm 1 produces the target state with a fidelity of at least
1 − ϵ if

λ = ϵ−1 C

∆q∆1−q
m

, (18)

where C := 2 sups∈[0,1]

(
2 ∥H ′(s)∥ + 4 ∥H ′(s)∥2

B2 + ∥H ′′(s)∥ + q|∆′(s)| ∥H ′(s)∥ B2

)
.

In this case the time complexity of the procedure is given by

T ≤ ϵ−1 t0B1C

∆m
.

▶ Corollary 6. If
∫ 1

0
1

∆p ds = O(∆1−p
m ) holds for all p > 1, |∆′| = O(1), ∥H ′∥ = O(1) and

∥H ′′∥ = O(1), then algorithm 1 with the rate defined in theorem 5 produces the target state
with fidelity 1 − ϵ and a time complexity of O(∆−1

m ) for all 0 < q < 1.

Proof of Theorem 5. Let ϵ0 be the actual error of the algorithm, we need ϵ0 ≤ ϵ. In this
case the inequality in lemma 2 becomes

ϵ0 ≤ ϵC−1∆1−q
m

(
∆(0)q

∥∥P ′(0)
∥∥+∆(1)q

∥∥P ′(1)
∥∥ )+ϵC−1

∫ 1

0
∆q∆1−q

m

∥∥P ′′∥∥+
∣∣∣(∆q∆1−q

m

)′∣∣∣ ∥∥P ′∥∥ ds.

(19)

We bound the terms separately, using lemma 3. For the first, we have

∆1−q
m ∆q ∥P ′∥ ≤ 2∆1−q

m ∆q ∥H ′∥
∆ = 2∆1−q

m

∥H ′∥
∆1−q

≤ 2∆1−q
m

∥H ′∥
∆1−q

m

= 2 ∥H ′∥ ≤ 2 sup
s∈[0,1]

∥H ′∥

(20)
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7:8 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

at both s = 0 and s = 1, so we bound the sum by 4 sups∈[0,1] ∥H ′∥.

The second term splits into two, since we bound ∥P ′′∥ by 8∥H′∥2

∆2 + 2∥H′′∥
∆ . For the first

part we have

8
∫ 1

0
∆q∆1−q

m

∥H ′∥2

∆2 ds ≤ 8 sup
s∈[0,1]

∥H ′(s)∥2 ∆1−q
m

∫ 1

0

1
∆2−q

ds (21)

≤ 8 sup
s∈[0,1]

∥H ′(s)∥2
B2∆1−q

m ∆q−1
m = 8 sup

s∈[0,1]
∥H ′(s)∥2

B2. (22)

The second part gives

2
∫ 1

0
∆q∆1−q

m

∥H ′′∥
∆ ds ≤ 2 sup

s∈[0,1]
∥H ′′(s)∥ ∆1−q

m

∫ 1

0

1
∆1−q

ds (23)

≤ 2 sup
s∈[0,1]

∥H ′′(s)∥ ∆1−q
m ∆q−1

m = 2 sup
s∈[0,1]

∥H ′′(s)∥ . (24)

Finally, for the third term,∫ 1

0

∣∣∣(∆q∆1−q
m

)′∣∣∣ ∥P ′∥ ds =
∫ 1

0
q∆q−1∆1−q

m

∣∣∆′∣∣ ∥P ′∥ ds (25)

≤ 2q∆1−q
m

(
sup

s∈[0,1]
|∆′(s)| ∥H ′(s)∥

)∫ 1

0

∆q−1

∆ ds (26)

= 2q∆1−q
m

(
sup

s∈[0,1]
|∆′(s)| ∥H ′(s)∥

)∫ 1

0

1
∆2−q

ds (27)

≤ 2q
(

sup
s∈[0,1]

|∆′(s)| ∥H ′(s)∥
)

∆1−q
m B2∆q−1

m (28)

= 2qB2

(
sup

s∈[0,1]
|∆′(s)| ∥H ′(s)∥

)
. (29)

Plugging everything back into equation (19), gives

ϵ0 ≤ ϵC−1 sup
s∈[0,1]

(
4 ∥H ′(s)∥ + 8 ∥H ′(s)∥2

B2 + 2 ∥H ′′(s)∥ + 2q|∆′(s)| ∥H ′(s)∥ B2

)
(30)

= ϵC−1C = ϵ, (31)

so the procedure works. We can then calculate the time complexity

T =
∫ 1

0

t0λ

∆ ds = ϵ−1t0

∫ 1

0

C

∆q∆1−q
m ∆

ds = ϵ−1t0C∆q−1
m

∫ 1

0

1
∆q+1 ds

≤ ϵ−1t0C∆q−1
m B1∆−q

m = ϵ−1t0CB1∆−1
m . (32)

◀

These results can be compared to theorem 16 and corollary 17 in the circuit model.

3 Improving the scaling in the error with eigenstate filtering

The use of eigenstate filtering was introduced in [13] to improve scaling in the error tolerance
for algorithms based on adiabatic principles and the quantum Zeno effect, in particular with
application to QLSP.

A similar technique was used in [7] to achieve optimal scaling, but using Linear Com-
binations of Unitaries (LCU) instead of Quantum Signal Processing (QSP). We adapt the
technique of [7] to the present situation.
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▶ Theorem 7. Let H be a Hamiltonian with ∥H∥ ≤ 1 and 0 in the spectrum of H, σ(H).
Suppose

∆ ≥ 0 is such that [−∆, ∆] ∩ σ(H) = {0};
P is the orthogonal projector on the eigenspace associated to the eigenvalue 0, we set
Q := 1 − P ;
ρ is a density matrix of the form Pρ0P + Qρ1Q with Tr(Pρ0) > 1/2, that we can prepare
at cost T0;
ϵ > 0.

Further, suppose
we can adjoin two ancilla qubits to ρ;
we can can measure and reprepare the ancilla qubits;
we can evolve the system under H ⊗ R and 1 ⊗ R for time t for all Hermitian operators
R on C2×2 with ∥R∥ ≤ 1 at a cost of t.

Then we can prepare a state ρ2 such that Tr(Pρ2) ≥ 1−ϵ at a cost of T = O(T0+∆−1 log(1/ϵ)).

The idea of the procedure is relatively simple. With these assumptions, we can apply controlled
versions of the unitary e−itH , i.e. eitH⊗Π for some projector Π on C2×2. This means that
we can apply linear combinations of eitH⊗Π using the technique of linear combinations of
unitaries, see lemmas 8 and 9. In particular we can apply a polynomial that has a large peak
at 0 and is very small everywhere else. We use this to filter out the part of the state that we
do not want.

▶ Lemma 8 (LCU with arbitrarily large ancilla register). Let f(x) =
∑n

k=−n akxk be a rational
polynomial with complex coefficients such that

∑n
k=−n |ak|2 = 1. Let H be a Hamiltonian

and ρ the state of the system. Assume we have access to an ancilla register with orthonormal
basis {|k⟩ | k ∈ Z}. Then, at a cost of O(nt), we can do an operation which either

succeeds and applies
∑n

k=−n |ak|2e−itkH to the system,

or fails, with a probability of 1 − Tr
((∑n

k=−n |ak|2e−itkH
)

ρ
(∑n

k=−n |ak|2eitkH
))

. We

can see when this has happened thanks to the measured contents of the ancilla register.

Proof. The procedure is as follows: we first prepare the ancilla in the state |f⟩ :=∑n
k=−n ak|k⟩, then apply

∑n
k=−n kH ⊗ |k⟩⟨k| for time t and finally measure the state

|f⟩. If we measure any other state than |f⟩, the procedure fails.
The result then follows from the following identity:

n∑
k,l=−n

(
1 ⊗ ak⟨k|

)
e

−it
∑n

m=−n
mH⊗|m⟩⟨m|

(
1 ⊗ al|l⟩

)
=
∑
m

|am|2e−itmH . (33)

Defining

Π0
m = 1 −

m∑
k=0

|k⟩⟨k| and Π1
m = 1 −

0∑
k=−m

|k⟩⟨k|, (34)

we can write e
−it
∑n

m=−n
mH⊗|m⟩⟨m| =

∏n−1
m=0 e−itH⊗Π0

meitH⊗Π1
m , which we can clearly apply

at a cost of 2nt.
The cost of ancilla preparation depends on the admissible operations on the ancilla

register, but in a worst-case scenario, each ak needs to be set separately3 which means that
the cost is O(n). The total cost is then still O(nt). ◀

3 This is the case for the procedure used in lemma 9.
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7:10 Eigenpath Traversal by Poisson-Distributed Phase Randomisation

▶ Lemma 9 (LCU with two ancilla qubits). We can achieve the results of 8 only using two
ancilla qubits at a time.

The construction is identical to the one in [7].

Proof of theorem 7. Let Q := 1 − P and write Q =
∑

j Qj , where each Qj is an eigenpro-
jector of H associated to the eigenvalue ωj . Now we observe( n∑

k=−n

|ak|2e−ikH
)

Qj =
( n∑

k=−n

|ak|2e−ikωj

)
Qj = A(ωj)Qj , (35)

where A(ω) is the Fourier transform of the sequence |ak|2. Thus( n∑
k=−n

|ak|2e−ikH
)

QρQ
( n∑

k=−n

|ak|2eikH
)

=
∑

j,l

( n∑
k=−n

|ak|2e−ikH
)

QjρQl

( n∑
k=−n

|ak|2eikH
)
(36)

=
∑

j,l

A(ωj)A(−ωl)QjρQl. (37)

Taking the trace gives Tr
(∑

j,l A(ωj)A(−ωl)QjρQl

)
≤ maxω /∈[−∆,∆] A(ω)2 Tr(QρQ) ≤

maxω /∈[−∆,∆] A(ω)2. The goal then becomes to find a sequence and its Fourier transform
such that A(ω0) = 1, maxω /∈[−∆,∆] A(ω)2 ≤ ϵ and whose window n is as small as possible.
The answer to this optimisation problem is well-known and is given by the Dolph-Chebyshev
window [15]. In this case we need a window of4

n = cosh−1(1/
√

ϵ)
cosh−1 ( sec(∆)

) ≤ 1
2∆ log

(4
ϵ

)
. (38)

By lemma 8, we can implement this at a cost of O(n). Note that this procedure terminates
succesfully with a probability of at least Tr(Pρ0) (which is bounded below) and we can check
to see whether the procedure failed. If it failed, we repeat. On average we need to repeat
fewer than Tr(Pρ0)−1 times, which is O(1). ◀

4 Applications

4.1 Grover search
For the Grover problem, we have an N -dimensional vector space we want to find an element
of an M -dimensional subspace M. In order to help us, we assume we have access to an
oracle Hamiltonian H1 = 1 − PM, where PM is the orthogonal projector on M. In other
words, we assume H1 is admissible. We also assume H0 = 1 − |u⟩⟨u| is admissible, where
|u⟩ = 1√

N

∑N
i=1 |i⟩ is the uniform superposition. The aim is now to use the interpolation

H(s) = (1 − s)H0 + sH1 to prepare as state in M. For more details see [8] and [18].
We see that H(s) has four eigenvalues:

λ1,2 = 1
2

(
1 ±

√
1 − 4(1 − M

N
)s(1 − s)

)
with multiplicity 1 (39)

λ3 = 1 − s with multiplicity M − 1 (40)
λ4 = 1 with multiplicity N − M − 1. (41)

4 We note that we improve the scaling by a factor of two compared to [7]. This is because we are able to
start from a state where P ρQ = 0 = QρP .
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The eigenvectors corresponding to λ3 are the eigenvectors in M with zero overlap with |u⟩.
The eigenvectors corresponding to λ4 are the eigenvectors in M⊥ with zero overlap with |u⟩.
Since the initial state has zero overlap with any of these vectors and they are eigenvectors
of each H(s), none of them are prepared by the procedure and everything happens in the
two-dimensional space spanned by the eigenvectors associated to λ1 and λ2.

We have explicitly computed the gap, so we can use this as the bound ∆:

∆(s) =
√

1 − 4(1 − M

N
)s(1 − s). (42)

We can set ∆m = mins∈[0,1] ∆(s) =
√

M/N . In order to give bounds on the time-complexity,
we use the following result:

▶ Lemma 10. For all p > 1 and ∆ given by (42), we have∫ 1

0

1
∆(s)p

ds = O
(√

N/M
p−1)

= O
(
∆1−p

m

)
, (43)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(N/M)

)
. (44)

We provide a proof in appendix C.1. For constant λ, we apply theorem 4 and use the lemma
10 to get a time complexity O

(√
N/M log(N/M)

)
.

We are able to take the q in corollary 6 to be anywhere in the range 0 < q < 1, since for
any such q both 1 + q and 2 − q are strictly greater than 1. This is related to the range of
schedules described in [2]. The time complexity of the algorithm for any such q is O(

√
N/M),

since it is easy to check that to other conditions hold: ∥H ′∥ = ∥H1 − H0∥, ∥H ′′∥ = 0 and

|∆′| =
∣∣∣4(1 − M

N )( 1
2 − s)

∆

∣∣∣ (45)

≤
2
√

4(1 − M
N )( 1

2 − s)2

∆ (46)

≤
2
√

M
N + 4(1 − M

N )( 1
2 − s)2

∆ = 2∆
∆ = 2. (47)

4.2 Solving linear systems of equations
The Quantum Linear Systems Problem (QLSP) was introduced in [10]. Suppose A is an
invertible N × N matrix b ∈ CN a vector. The goal is to prepare the quantum state

A−1|b⟩
∥A−1|b⟩∥ . We express the time complexity of our algorithm in terms of the condition number
κ = ∥A∥

∥∥A−1
∥∥.

We may restrict ourselves to Hermitian matrices because we can use the following trick

from [10]: If A is not Hermitian, we consider the matrix
(

0 A

A∗ 0

)
, which has the same

condition number, and solve the equation
(

0 A

A∗ 0

)
|y⟩ =

(
|b⟩
0

)
.

First we rescale the matrix A to A
∥A∥ . We do this because typically admissible matrices

need to be uniformly bounded. This has the effect of shifting the lowest singular value from
1

∥A−1∥ to 1
∥A∥∥A−1∥ = κ−1. Now we consider a path of Hamiltonians that was introduced in
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[19]. Define A(s) := (1−s)σz⊗1+sσx⊗A, Qb,+ := 1−
(
|+⟩|b⟩

)(
⟨+|⟨b|

)
and σ± := 1

2
(
σx±iσy

)
.

Set H(s) = σ+ ⊗
(
A(s)Qb,+

)
+σ− ⊗

(
Qb,+A(s)

)
. This can be written as a linear interpolation

H(s) = (1 − s)H0 + sH1, where

H0 := σ+ ⊗
(
(σz ⊗ 1)Qb,+

)
+ σ− ⊗

(
Qb,+(σz ⊗ 1)

)
(48)

H1 := σ+ ⊗
(
(σx ⊗ A)Qb,+

)
+ σ− ⊗

(
Qb,+(σx ⊗ A)

)
. (49)

Following the analysis of [19], we see that H(s) has 0 as an eigenvalue for all s ∈ [0, 1]. The
corresponding eigenspace is spanned by {|0⟩⊗ |x(s)⟩, |1⟩⊗ |+⟩|b⟩}, where |x(s)⟩ := A(s)−1|b⟩

∥A(s)−1|b⟩∥ .
Since H(s) does not allow transition between these states, we are sure to not prepare
|1⟩ ⊗ |+⟩|b⟩, so long as we start with |0⟩ ⊗ |x(0)⟩.

In [19] it was also shown that the eigenvalue zero is separated from the rest of the
spectrum by a gap that is at least

∆(s) =
√

(1 − s)2 +
( s

κ

)2
. (50)

If κ is large enough, then we can take ∆m := 1
2κ ≤

√
1

κ2+1 = mins∈[0,1] ∆(s).
In order to give bounds on the time-complexity, we use the following result:

▶ Lemma 11. For all p > 1, we have∫ 1

0

1
∆(s)p

ds = O
(
κp−1) = O

(
∆1−p

m

)
, (51)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(κ)

)
. (52)

We provide a proof in appendix C.2.
For constant λ, we apply theorem 4 and use the lemma 11 to get a time complexity

O
(
κ log(κ)

)
. This is also the complexity that was obtained in [19].

As before, we have a full order reduction for p > 1 and thus we are able to take the q in
corollary 6 to be anywhere in the range 0 < q < 1, since for any such q both 1 + q and 2 − q

are strictly greater than 1. If q = 0 or q = 1, the complexity gains a factor of log(κ). This
exactly mirrors the situation in [2] and is the reason why the algorithms for QLSP based on
the RM have an extra factor of log(κ) in the asymptotic complexity, see [19] and [12].

We can apply 6 since ∥H ′∥ = ∥H1 − H0∥, ∥H ′′∥ = 0 and

|∆′| =
∣∣∣s − 1 + s/κ2

∆

∣∣∣ (53)

=
√

(s − 1 + s/κ2)2

∆ (54)

=
√

(1 + 1/κ2)2s2 − (1 + 1/κ2)2s + 1
∆ (55)

≤
√

(1 + 1/κ2)2s2 − (1 + 1/κ2)2s + (1 + 1/κ2)
∆ (56)

=
√

1 + 1/κ2 ∆
∆ =

√
1 + 1/κ2 = O(1). (57)
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This yields a time complexity of O(κ) for fixed error tolerance. The scaling on both condition
number and error tolerance is O(ϵ−1κ). By a straightforward application of theorem 7 at
s = 1, we get a scaling of O

(
log(ϵ−1)κ

)
. This is possible, since we know the eigenvalue of

interest is 0.
This result is optimal and matches the complexity reported in [7], where it was achieved

using a very different method.
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A Bounds on derivatives of projectors

We provide a proof of lemma 3

▶ Lemma. Under the assumptions stated in 1.1.2, we have
1. ∥P ′∥ ≤ 2 ∥H′∥

∆ ;
2. ∥P ′′∥ ≤ 8 ∥H′∥2

∆2 + 2 ∥H′′∥
∆ .

Proof. Let Γ be a circle in the complex plane, centred at the ground energy with radius
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equal to (∆/2)−1 everywhere. We can then approximate

∥P ′∥ =
∥∥∥ 1

2πi

∮
Γ

RH(z)′ dz
∥∥∥

≤ 1
2π

∮
Γ
∥RH(z)′∥dz

≤ 1
2π

∮
Γ
∥RH(z)∥ · ∥H ′∥ · ∥RH(z)∥ dz

= 1
2π

( 2
∆

)2
∥H ′∥

∮
Γ

dz

= 1
2π

( 2
∆

)2
2π

∆
2 ∥H ′∥

= 2∥H ′∥
∆ .

Similarly, we can write

P ′′ = 1
2πi

∮
Γ

2RH(z)H ′RH(z)H ′RH(z) + RH(z)H ′′RH(z) dz.

Estimating this in the same way as before yields

∥P ′′∥ ≤ 8∥H ′∥2

∆2 + 2∥H ′′∥
∆ . ◀

https://doi.org/10.1145/1007352.1007428
https://doi.org/10.1145/1007352.1007428
https://doi.org/10.1103/physreva.65.042308
https://doi.org/10.1103/physreva.68.062311
https://doi.org/10.1103/physrevlett.122.060504
https://doi.org/10.1109/sfcs.2001.959902


J. Cunningham and J. Roland 7:15

B Comparison with the circuit model

So far we have assumed access to a device that can evolve a system under a given Hamiltonian
in real time, i.e. it takes time t to apply e−itH . This is the typical setting of AQC and is
also the setting of [4] and [19].

Many papers use a slightly different setup. In [7] and [12] the setting is a standard
quantum computer which is given access to block encodings of H(s) for all s ∈ [0, 1]. In this
case the complexity is given by the number of times such a block-encoded Hamiltonian is
used. In other words, the complexity is a query complexity rather than a time complexity.

Given access to only a block encoding of a Hamiltonian H, it is generally not possible to
simulate e−itH exactly. Instead, we can use proposition 12, which is taken from [12].

▶ Proposition 12 (Theorem 4 from [12]). Given access to an (α, m, 0)–block-encoding UH of
a Hermitian operator H with ∥H∥ ≤ 1, we can realise a (1, m + 2, δ)–block-encoding of e−itH

for t ∈ R with

3
⌈e

2α|t| + log
(2c

δ

)⌉
calls to UH , U∗

H with c = 4(
√

2πe
1

13 )−1 ≈ 1.47762.

In this proposition δ gives the error of the block encoding, i.e. if U is the block encoding,
then

∥∥U − e−itH
∥∥ ≤ δ.

This motivates replacing the algorithm 1 by the algorithm 2, which now depends on both
a rate λ(s) and an allowable simulation error δ(s).

Algorithm 2 Poisson-distributed phase randomisation with imperfect time evolution.

1 Pick a Poisson process N : [0, 1] × (Ω, A, P ) → N with rate λ(s);
2 At each jump point s of the Poisson process, pick an instance t of the random variable

T as defined in proposition 1 and use proposition 12 to simulate the evolution under
the time-independent Hamiltonian H(s) for a time t with error at most δ(s);

In this case the number of queries is bounded by a quantity Q is a random variable with
stochastic differential equation dQ = 3

(
e
2 α|τ | + log

( 2c
δ

)
+ 1
)

dN . Taking the average yields

Q = 3
∫ 1

0

(
eαt0
2∆ + log

( 2c
δ

)
+ 1
)

λ ds.
To analyse algorithm 2, we prove lemma 13, which is analogous to lemma 2.

▶ Lemma 13. Given the assumptions in 1.1.2 and that for all s ∈ [0, 1] and t ∈ [0, ∞[, we
can apply an operation A(s, t) such that

∥∥e−itH(s) − A(s, t)
∥∥ ≤ δ(s), the algorithm 1 with

rate λ(s) has an error that is bounded by

ϵ ≤
∫ 1

0
(2δ+δ2)

(
2∥H ′∥

∆ +λ(s)
)

ds+
∥∥λ(0)−1P ′(0)

∥∥+
∥∥λ(1)−1P ′(1)

∥∥+
∫ 1

0

(∥∥∥∥P ′′

λ

∥∥∥∥+
∣∣∣( 1

λ

)′∣∣∣ ∥∥P ′∥∥) ds.

(58)

Proof. The differential equation (2) is then

ρ′ = λ
(

PρP + Q⟨e−iτHρeiτH⟩Q − ρ
)

+ λ
(

A(s, t)ρA(s, t)∗ − e−iτHρeiτH
)

. (59)

We set E := A(s, t)ρA(s, t)∗ − e−iτHρeiτH . Then equations (5) and (8) become Tr(Pρ′) =
λ Tr(E) and Tr(P ′ρ) = Tr(P ′E) − Tr(λ−1P ′ρ′), so

Tr(Pρ)′ = Tr(Pρ′) + Tr(P ′ρ) = λ Tr(E) + Tr(P ′E) − Tr(λ−1P ′ρ′). (60)
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The integral of − Tr(λ−1P ′ρ′) was bounded in the proof of lemma 2.
Using lemma 14, we bound Tr(|E|) ≤ 2δ + δ2. Together with the bound ∥P ′∥ ≤ 2∥H′∥

∆ ,
this yields the result. ◀

In this proof we have made use of the following lemma:

▶ Lemma 14 (Lemma 9 from [12]). Suppose A, B are operators such that ∥A − B∥ ≤ δ.
Then, for each density operators ρ, we have

Tr(|AρA∗ − BρB∗|) ≤ 2δ ∥A∥ + δ2. (61)

▶ Theorem 15. Under the assumptions in 1.1.2, the algorithm 2 produces the target state
with fidelity of at least 1 − ϵ if λ is constant, δ = 4ϵ

27λ and

ϵ−14
(∥H ′(0)∥

∆(0) + ∥H ′(1)∥
∆(1) +

∫ 1

0
4∥H ′∥2

∆2 + ∥H ′′∥
∆ ds

)
≤ λ. (62)

Using the Hamiltonian simulation of proposition 12, this gives a query complexity of

Q = λ
(

eαt0
3
2

∫ 1

0

1
∆ ds + 3 log

(27c

2ϵ

)
+ log(λ) + 1

)
.

Proof. Let ϵ0 be the actual error of the algorithm. We need ϵ0 ≤ ϵ. As in the proof of 4,
rewrite the inequality in lemma 13 as

ϵ0 ≤ (2δ+δ2)
(∫ 1

0
2∥H ′∥

∆ ds+λ
)

+λ−1
(

2∥H ′(0)∥
∆(0) +2∥H ′(1)∥

∆(1) +
∫ 1

0
8∥H ′∥2

∆2 +2∥H ′′∥
∆ ds

)
.

(63)

As in the proof of 4, the second term is bounded by ϵ/2. Since all the terms of equation (62)
are positive, we have

∫ 1
0 2∥H′∥

∆ ds ≤ ϵλ
8 . Then we bound

(2δ + δ2)
(∫ 1

0
2∥H ′∥

∆ ds + λ
)

≤ 3δ
(ϵλ

8 + λ
)

(64)

≤ 27
8 δλ(ϵ + 1) ≤ 27

8 δλ ≤ ϵ

2 . (65)

Finally we consider the query complexity and calculate

Q = 3
∫ 1

0

(eαt0

2∆ + log
(2c

δ

)
+ 1
)

λ ds (66)

≤ λ
(

eαt0
3
2

∫ 1

0

1
∆ ds + 3 log

(27c

2ϵ

)
+ log(λ) + 1

)
. (67)

◀

▶ Theorem 16. Under the assumptions in 1.1.2, we additionally assume that there exists
0 ≤ q ≤ 1 and B1, B2 such that

∫ 1
0

1
∆1+q ds ≤ B1∆−q

m and
∫ 1

0
1

∆2−q ds ≤ B2∆q−1
m for all

instances of the problem. Then algorithm 2 produces the target state with a fidelity of at least
1 − ϵ if

λ = ϵ−1 2C

∆q∆1−q
m

(68)

δ = 2ϵ

15λ
(69)

where C := 2 sups∈[0,1]

(
2 ∥H ′(s)∥ + 4 ∥H ′(s)∥2

B2 + ∥H ′′(s)∥ + q|∆′(s)| ∥H ′(s)∥ B2

)
.
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If, in addition, there exists a constant B3 such that
∫ 1

0
1

∆2q ds ≤ B3∆1−2q
m and the

Hamiltonian simulation of 12 is used, this gives a query complexity of

Q ≤ 1
ϵ∆m

(
12C log(ϵ−1) + 3eαt0CB1 + 6 log(15c)C + 12C2B3

)
.

Proof. As before, we need to bound the inequality in lemma 13. Everything except the first
term has already been bounded in the proof of theorem 5 to be less than ϵ/2. (Notice that
we are taking λ to be twice the rate specified in theorem 5.)

We now need to show that the first term in the inequality in lemma 13 can be bounded
by ϵ/2. Indeed, we calculate∫ 1

0
(2δ + δ2)

(
2∥H ′∥

∆ + λ(s)
)

ds ≤
∫ 1

0
3δ
( C

2∆ + λ
)

ds (70)

=
∫ 1

0

2ϵ

5λ

( C

2∆ + λ
)

ds (71)

= 2ϵ

5

(
1 +

∫ 1

0
ϵ

∆q−1
m

4∆q−1 ds
)

(72)

≤ 2ϵ

5

(
1 + ϵ

4

)
≤ ϵ

2 . (73)

Finally we consider the query complexity and calculate, using the fact that log(x) + 1 ≤ x

for all positive x,

Q = 3
∫ 1

0

(eαt0

2∆ + log
(2c

δ

)
+ 1
)

λ ds (74)

= 3
∫ 1

0

(eαt0

2∆ + log
(15c

ϵ

)
+ log(ϵλ) + 1

)
λ ds (75)

≤ 3
∫ 1

0

(eαt0

2∆ λ + log
(15c

ϵ2

)
λ + ϵλ2

)
ds. (76)

We bound each term separately. First

3
∫ 1

0

eαt0

2∆ λ ds = 3eαt0C

ϵ∆1−q
m

∫ 1

0

1
∆q+1 λ ds (77)

≤ 3eαt0C

ϵ∆1−q
m

B1∆−q
m = 3eαt0CB1

ϵ∆m
. (78)

Next

3
∫ 1

0
log
(15c

ϵ2

)
λ ds = 3 log

(15c

ϵ2

)
ϵ−1

∫ 1

0

2C

∆q∆1−q
m

ds (79)

≤ log
(15c

ϵ2

)
ϵ−1 6C

∆m
. (80)

Finally

3
∫ 1

0
ϵλ2 ds = 12C2

ϵ∆2−2q
m

∫ 1

0

1
∆2q

ds (81)

≤ 12C2B3

ϵ∆2−2q
m

∆1−2q
m = 12C2B3

ϵ∆m
. (82)

Putting everything together yields the query complexity. ◀
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▶ Corollary 17. If
∫ 1

0
1

∆p ds = O(∆1−p
m ) holds for all p > 1, |∆′| = O(1), ∥H ′∥ = O(1) and

∥H ′′∥ = O(1), then algorithm 2 with the Hamiltonian simulation of 12 and the parameters
of 16 for some 1/2 < q < 1, produces a state with fidelity larger than 1 − ϵ using a number of
queries that scales as O

(
∆−1

m ϵ−1 log(ϵ−1)
)
.

The asymptotic scaling in the error ϵ is slightly worse here, since there is an extra logarithmic
factor, but this is not an issue if we want to apply eigenstate filtering. With eigenstate
filtering the scaling in the error is still O(log(1/ϵ)).

C Gap properties

C.1 The gap in the Grover problem
For the Grover problem we have the following gap:

∆(s) =
√

1 − 4(1 − M

N
)s(1 − s). (83)

We can set ∆m = mins∈[0,1] ∆(s) =
√

M/N . We provide a proof of lemma 10.

▶ Lemma. For all p > 1 and ∆ given by (83), we have∫ 1

0

1
∆(s)p

ds = O
(√

N/M
p−1)

= O
(
∆1−p

m

)
, (84)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(N/M)

)
. (85)

Proof. We note that ∆(s) is symmetric about s = 1/2. It is also strictly decreasing on
[0, 1/2], going from 1 to a minimum of

√
M/N . So we can write∫ 1

0

1
∆(s)p

ds = 2
∫ 1/2

0

1
∆(s)p

ds (86)

= 2
(∫ 1/2−

√
M/N

0

1
∆(s)p

ds +
∫ 1/2

1/2−
√

M/N

1
∆(s)p

ds
)

. (87)

Since ∆ has a minimum of
√

M/N , we can bound the second integral by∫ 1/2

1/2−
√

M/N

1
∆(s)p

ds ≤
√

M

N

( 1
mins∈[0,1] ∆(s)

)p

=
√

M/N√
M/N

p =
√

N/M
p−1

.

For the first integral, we write∫ 1/2−
√

M/N

0

1
∆(s)p

ds =
∫ ∆

(
1/2−

√
M/N

)
1

1
∆p

ds

d∆ d∆ (88)

=
∫ 1

∆
(

1/2−
√

M/N
) 1

∆p

(
− ds

d∆

)
d∆. (89)

We can invert (42) to obtain s = 1
2 − 1

2

√
1 − 1−∆2

1−N/M . Then we have

− ds
d∆ = ∆

2
√

(1 − M/N)(∆2 − M/N)
. (90)
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We now calculate

∆
(1

2 −
√

M

N

)
=
√

M

N

√
5 − 4M

N
≥ 2
√

M

N
,

assuming M/N ≤ 1/4. So∫ 1/2−
√

M/N

0

1
∆p

ds ≤
∫ 1

2
√

M
N

1
∆p

(
− ds

d∆

)
d∆ (91)

=
∫ 1

2
√

M
N

1
∆p

∆
2
√

(1 − M/N)(∆2 − M/N)
d∆ (92)

≤
∫ 1

2
√

M
N

1
∆p

∆
2
√

(1 − M/N)(∆2 − ∆2/4)
d∆ (93)

= 1√
3(1 − M/N)

∫ 1

2
√

M
N

1
∆p

d∆. (94)

Now 1√
3(1−M/N)

is O(1) and
∫ 1

2
√

M
N

1
∆p d∆ =

[
1

(p−1)∆p−1

]1

2
√

M/N
is O

(√
N/M

p−1), if p > 1.

If p = 1, then it is O
(

log
√

N/M
)
. ◀

C.2 The gap in QLSP
For the quantum linear system problem we have the following bound on the gap:

∆(s) =
√

(1 − s)2 +
( s

κ

)2
. (95)

If κ is large enough, then we can take ∆m := 1
2κ ≤

√
1

κ2+1 = mins∈[0,1] ∆(s). We provide a
proof of lemma 11.

▶ Lemma. For all p > 1, we have∫ 1

0

1
∆(s)p

ds = O
(
κp−1) = O

(
∆1−p

m

)
, (96)

and, for p = 1,∫ 1

0

1
∆(s) ds = O

(
log(κ)

)
. (97)

Proof. We note that ∆(s) is strictly decreasing on
[
0, 1 − 1

κ2+1

]
, going from 1 to a minimum

of
√

1
κ2+1 . So we can write

∫ 1

0

1
∆(s)p

ds =
∫ 1− 1

κ2+1

0

1
∆(s)p

ds +
∫ 1

1− 1
κ2+1

1
∆(s)p

ds.

Since ∆ has a minimum of
√

1
κ2+1 , we can bound the second integral by

∫ 1

1− 1
κ2+1

1
∆(s)p

ds ≤ 1
κ2 + 1

( 1
mins∈[0,1] ∆(s)

)p

= 1
κ2 + 1

(
κ2 + 1

)p/2 =
(
κ2 + 1

)p/2−1
.
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For the first integral, we write

∫ 1− 1
κ2+1

0

1
∆p

ds =
∫ ∆

(
1− 1

κ2+1

)
1

1
∆p

ds

d∆ d∆ (98)

=
∫ 1

∆
(

1− 1
κ2+1

) 1
∆p

(
− ds

d∆

)
d∆ (99)

=
∫ 1√

1
κ2+1

1
∆p

(
− ds

d∆

)
d∆. (100)

We can invert (95) on
[
0, 1 − 1

κ2+1

]
to obtain s = κ2

κ2+1 (1 − ∆). Then we have

− ds
d∆ = κ2

κ2 + 1 , (101)

so ∫ 1− 1
κ2+1

0

1
∆p

ds =
∫ 1√

1
κ2+1

1
∆p

κ2

κ2 + 1 d∆ (102)

= κ2

κ2 + 1

( 1
(p − 1)∆p−1

)∣∣∣∆=
√

1
κ2+1

∆=1
(103)

= O(κp−1). (104)

If p = 1, then the integral is O
(

log(κ)
)
. ◀
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Abstract
This study examines clusterability testing for a signed graph in the bounded-degree model. Our
contributions are two-fold. First, we provide a quantum algorithm with query complexity Õ(N1/3)
for testing clusterability, which yields a polynomial speedup over the best classical clusterability
tester known [1]. Second, we prove an Ω̃(

√
N) classical query lower bound for testing clusterability,

which nearly matches the upper bound from [1]. This settles the classical query complexity of
clusterability testing, and it shows that our quantum algorithm has an advantage over any classical
algorithm.
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1 Introduction

Property testing [24, 39] deals with the setting where we wish to distinguish between objects,
e.g., functions [2, 8, 32] or graphs [5, 7, 6, 9, 12, 3], that satisfy a predetermined property
and those that are far from satisfying this property. For certain properties, this relaxed
setting allows algorithms to query only a small part of (sometimes huge) data sets. Indeed,
the goal in property testing is to design so-called property testers to solve a property testing
problem within sublinear time complexity. Property testing has been studied in many settings,
such as computational learning theory [25, 13, 38, 27, 20, 22], quantum information theory
[35, 16, 17, 15, 36, 10], coding theory [23, 41, 29, 31, 34, 37, 21], and so on. This witnesses
the significant attention that property testing has drawn from the academic community.

An interesting setting is that of graph property testing. In the dense graph model, it was
shown that a constant number of queries are needed to test a wide range of graph partition
properties [25], including k-colorability, ρ-clique, and ρ-cut for any fixed k ≥ 2 and ρ > 0. For
comparison, in the bounded-degree model [26] similar graph properties such as bipartiteness
and expansion testing require sublinear Θ̃(

√
N) classical queries. Moreover, some graph

properties even have a (trivial) Ω(N) query complexity, as Ref. [14] showed for 3-colorability
in the bounded-degree model. While there have been numerous studies on testing graph
properties, there has been little work on testing the properties of signed graphs.

A signed graph is a graph where each edge is assigned a positive or a negative label.
They can be applied to model a variety of problems including correlation clustering problems
[13, 19], modeling the ground state energy of Ising models [30], and social network problems
[28, 33, 40]. Signed graphs have different properties than unsigned graphs. One of these is
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the important property of clusterability, which was introduced by Davis [18] to describe the
correlation clustering problem. We call a signed graph clusterable if it can be decomposed
into several components such that (1) the edges in each component are all positive, and (2)
the edges connecting the vertices belonging to different components are all negative. This
property is equivalent to not having a “bad cycle”, which is a cycle with exactly one negative
edge [18]. An algorithm for testing clusterability in the bounded-degree model with only
Õ(
√

N) queries was proposed in [1]. The optimality of this clusterability tester was left as an
open question. Here, we prove that any classical algorithm requires at least Ω̃(

√
N) queries

to test clusterability, showing that the tester from [1] is nearly-optimal.
As a natural extension of past studies, we are interested in whether quantum computing

can provide any advantages in testing clusterability for signed graphs. To the best of our
knowledge, we are not aware of any previous work on the quantum advantage for testing the
properties of signed graphs. However, in work by Ambainis, Childs and Liu [11], a quantum
speedup for testing bipartiteness and expansion of bounded-degree graphs was shown. We
adopt these techniques to obtain a quantum algorithm for testing clusterability in signed
graphs. More specifically, we combine their quantum approach with the classical property
testing techniques provided by Adriaens and Apers [1] to obtain a quantum algorithm for
testing the clusterability of bounded-degree graphs in time Õ(N1/3). This outperforms
the Õ(

√
N) query complexity of the classical tester in [1] (which is optimal by our lower

bound). We leave optimality of the quantum algorithm for testing clusterability as an
open question. Indeed, settling the quantum query complexity of property testing in the
bounded-degree graph model has been a long open question, and even for the well-studied
problem of bipartiteness testing no matching lower bound is known [11].

1.1 Overview of Main Results
Here we formally state our main results (precise definitions are deferred to Section 2). First,
we prove a lower bound on the classical query complexity of clusterability testing for a signed
graph.

▶ Theorem 2 (Restated). Any classical clusterability tester with error parameter ϵ = 0.01
must make at least

√
N/10 queries.

Up to polylogarithmic factors this matches the upper bound from [1], thus proving that
their clusterability tester is optimal in the classical computing regime. However, taking
inspiration from this classical clusterability tester, we reduce the clusterability testing problem
to a collision finding problem which can be solved faster by quantum computing. As a result,
we propose a quantum clusterability tester with a query complexity Õ(N1/3).

▶ Theorem 6 (Restated). We propose a quantum clusterability tester with query complex-
ity Õ(N1/3).

This improves over the classical lower bound, implying a quantum advantage over classical
algorithms for testing clusterability.

1.2 Technical contributions
A sketch of the proof of our two results is given in this section. The first result is the classical
query lower bound for testing clusterability. While the bound follows the blueprint of the
lower bound for bipartiteness testing by Goldreich and Ron [26], we have to deal with a
number of additional complications in the signed graph setting.
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The main idea of the lower bound is to show that, with less than
√

N/10 queries, we
cannot distinguish two families of graphs with degree d: one family GN

1 that is ϵ-far from
clusterable, and another family GN

2 that is clusterable. The design of these two families of
graphs must take into account two constraints. The first constraint is that the graphs in
GN

2 cannot contain a bad cycle, while those in GN
1 must have at least one bad cycle, even

if we remove ϵNd edges of the graph. This ensures that GN
2 is clusterable, while GN

1 is far
from clusterable. The second constraint relates to the fact that both graph should be locally
indistinguishable. This requires for instance that vertices in each graph in both families are
incident to the same number of positive and negative edges. If in addition we can ensure
that each cycle in these graphs contains many edges with a constant probability, then we
can use this to show that no algorithm can distinguish the graphs in these two families with
o(
√

N) queries. Indeed, we show that these two families of graphs are indistinguishable with
less than

√
N/10 queries as follows. First, we propose two random processes P1 and P2, one

generates a uniformly random graph in GN
1 , and the other generates a uniformly random

graph in GN
2 . Specifically, Pα for α ∈ {1, 2} takes a query given from an algorithm as input

and returns a vertex while “on-the-fly” or “lazily” constructing a graph from GN
α . In other

words, Pα simulates how an algorithm interacts with a graph sampled uniformly in GN
α . We

observe that these random processes are statistically identical if the answer to each query is
not found in the past answers or queries, which is equivalent to not finding a cycle when
exploring a graph. Second, we demonstrate that the probability of these random processes
being statistically identical is greater than 1/4 within

√
N/10 queries. In other words, no

classical algorithm can distinguish between these two families with a probability exceeding
3/4 within

√
N/10 queries to the input graph.

Our second result is a quantum algorithm for clusterability testing with a better query
complexity. To this end, we reduce the main procedure in the algorithm proposed by Adriaens
and Apers [1] to a collision finding algorithm. This collision finding problem can then be
solved using the quantum collision finding algorithm, similar to [11]. The main idea is that
if we implement several random walks on the positive edges of a graph that is far from
clusterable, then there exists a negative edge between the vertices belonging to distinct
random walks with a constant probability. We define finding such a negative edge between
random walks as finding a collision, a process that can be solved by using a quantum collision
finding algorithm. This yields a quantum speedup for clusterability testing.

2 Preliminaries

This section contains two parts. Section 2.1 defines some of the basic terminology associated
with the graphs used in this paper. In Section 2.2, we introduce the graph clusterability
testing problem.

2.1 Terminology
A graph G = (V, E) is a pair of sets. The elements in V = [N ] are vertices, and the elements
in E, denoted by edges, are paired vertices. The vertices v ∈ V and u ∈ V of an edge
(v, u) ∈ E are the endpoints of (v, u), and (v, u) is incident to u and v. The vertices u and v

are adjacent if there exist an edge (v, u) ∈ E. The number of edges incident with v, denoted
by d(v), is the degree of a vertex, and the maximum degree among the vertices in G is the
degree of the graph G(V, E).

Given a graph G = (V, E), a walk is a sequence of edges ((v1, v2), (v2, v3), · · · , (vJ−1, vJ ))
where (vj , vj+1) ∈ E for all 1 ≤ j ≤ J − 1 and vj ∈ V for all 1 ≤ j ≤ J . This walk can also
be denoted as a sequence of vertices (v1, v2, . . . , vJ ). A trail is a walk in which all edges are

TQC 2024



8:4 (Quantum) Complexity of Testing Signed Graph Clusterability

distinct. A cycle is a non-empty trail in which only the first and last vertices are equal. A
Hamiltonian cycle is a cycle of a graph in which every vertex of the graph is visited exactly
once.

A signed graph G = (V, E, Σ) consists of the vertex set V , the edge set E ⊆ V × V , and
a mapping Σ : E → {+,−} that indicates the sign of each edge. We say that a signed graph
G = (V, E, Σ) is clusterable if we can partition vertices into components such that (i) every
edge that connects two vertices in the same components is positive, and (ii) every edge that
connects two vertices in different components is negative.

2.2 Clusterability testing for signed graphs
We can easily modify the usual graph query model to signed graphs. Given a signed graph
G with maximum degree d, the bounded-degree graph model is defined as follows. A query
is a tuple (v, i) where v ∈ [N ] is a vertex in the graph and i ∈ [d]. The oracle answers this
query with (i) the ith neighbor of the vertex v if the degree of v is at least i (otherwise it
returns an error symbol), and (ii) the sign of the corresponding edge.

Property testing in the bounded-degree model is described as follows. Given oracle access
to a graph G with degree bound d and |V | = N , we wish to distinguish whether the graph G

satisfies a certain property, or whether it is ϵ-far from any graph having that property, where
ϵ ∈ (0, 1] is an error parameter. Here we say that two graphs G and G′ are ϵ-far from each
other if we have to add or remove at least ϵNd edges to turn G into G′. The specific case of
clusterability testing is defined formally as follows.

▶ Definition 1. A clusterability testing algorithm is a randomized algorithm that has query
access to a signed graph G(V, E, Σ) with |V | = N and maximum degrees d. Given an error
parameter ϵ, the algorithm behaves as follows:

If G is clusterable, then the algorithm should accept with probability at least 2/3.
If G is ϵ-far from clusterable, then the algorithm rejects with probability at least 2/3.

3 Main Results and Proofs

In this section, we give the formal statements and proofs of our two main results – a classical
query lower bound for clusterability testing and a quantum clusterability tester. In Section 3.1,
we first give the classical query lower bound of Ω(

√
N) for clusterability testing. This result

claims the optimality of the classical clusterability tester in [1]. In Section 3.2, we provide a
quantum clusterability tester with query complexity Õ(N1/3) which outperforms the classical
clusterability tester in [1].

3.1 Classical query lower bound for testing clusterability
In this section, we derive a classical query lower bound for the clusterability testing problem.
Specifically, we show that testing the clusterability of a signed graph with N vertices requires
at least

√
N/10 queries.

▶ Theorem 2. Given a signed graph G with N vertices, testing clusterability of G with error
parameter ϵ = 0.01 requires at least

√
N/10 queries.

Proof. The proof consists of three main steps. First, we construct two families of graphs
denoted as GN

1 and GN
2 , each possessing specific desirable properties. In particular, we require

that most graphs within GN
1 are at least 0.01-far from being clusterable, while graphs within

GN
2 are inherently clusterable. The construction and analysis of these families is deferred to

Section 4.1.
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To prove Theorem 2, we illustrate the interaction between an arbitrary T -query cluster-
ability testing algorithm A and a graph g uniformly sampled from GN

α as follows:
For all t ≤ T , each query qt is represented as a tuple (vt, it), and the answer to qt

is denoted as at, where vt, at ∈ [N ] and it ∈ [6]. It is crucial to note that each query
qt corresponds to an edge in g, specifically the edge (vt, at). We additionally denote a
list of pairs h = [(q1, a1), (q2, a2), . . . , (qt, at)] as the query-answer history. This history is
generated by the interaction between A and g in the following manner: For each t ≤ T ,
A maps h to qt+1 and ultimately to either accept or reject for t = T . For a given history
h = [(q1 = (v1, i1), a1), . . . , (qt = (vt, it), at)], we say that a vertex u is in h if u = vt′ or
u = at′ for some t′ ∈ [t].

Secondly, we introduce two processes, denoted as Pα for α ∈ {1, 2}, which simulate how
an algorithm A interacts with a graph sampled uniformly from GN

α . To be more specific, we
consider that A interacts with a graph g sampled from GN

α and generates the query-answer
history h. We must have that the graph g is uniformly distributed in GN

α,h ⊆ GN
α , where

GN
α,h includes all graphs that produce the query-answer history h during interactions with A.

Therefore, if A makes a query qt+1 /∈ {qi}t
i=1 to a graph uniformly sampled from GN

α,h, we can
determine that the answer corresponds to a certain vertex u ∈ [N ] with a specific probability
denoted as pu. The random processes Pα are precisely defined to return the answer u with
the corresponding probability pu when responding to the query qt+1 (initiated by A) and
considering the history h. As a result, these two random processes, Pα, interact with A,
providing responses to A’s queries while simultaneously constructing a graph uniformly
distributed in GN

α . The description and analysis of these random processes are deferred to
Section 4.2.

In the third part, we demonstrate that no algorithm can with high probability differentiate
between query-answer histories generated during the interactions of A with P1 and P2 while
making less than

√
N/10 queries. To prove such indistinguishability, we examine the

distribution of query-answer histories of length T denoted as DA
α , where each element in DA

α

is generated through the interactions of A and Pα. The statistical difference between DA
1

and DA
2 is defined as follows:

1
2 ·

∑
x

∣∣Prob
[
DA

1 = x
]
− Prob

[
DA

2 = x
]∣∣ ,

where x is some query-answer history of length T . We then provide an upper bound on this
statistical difference in the following lemma. The proof of this lemma is a modification of
the proof of Lemma 7.4 in [26], and we defer its proof to Section 4.3.

▶ Lemma 3 (based on [26], Lemma 7.4)). Let δ < 1
2 , T ≤ δ

√
N and N ≥ 40T . For every

algorithm A that uses T queries, the statistical distance between DA
1 and DA

2 is at most 10δ2.

Finally, we establish Theorem 2 through a proof by contradiction. Let us assume the
existence of a clusterability tester A that requires only

√
N/10 queries. Consequently, we

can infer that the probability of A accepting a graph from GN
2 is at least 2/3. By referring

to Lemma 3, we determine that the statistical difference between DA
1 and DA

2 is at most
10δ2 = 1/10 where δ is set 1/10 for a

√
N/10-query algorithm. Hence, A accepts a graph

distributed uniformly in GN
1 with a probability of at least 2/3− 1/10 > 0.4.

Furthermore, as indicated by Proposition 7, more than 99% of the graphs in GN
1 are at

least 0.01-far from being clusterable. Consequently, by the definition of a clusterability tester,
we can conclude that A accepts a graph distributed uniformly in GN

1 with a probability of at
most 0.99 · 1/3 + 0.01 < 0.35. This contradicts the earlier finding that A accepts a graph
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distributed uniformly in GN
1 with a probability of at least 0.4. Hence, we can deduce that

there does not exist a clusterability tester capable of distinguishing between a graph sampled
from GN

1 and GN
2 using only

√
N/10 queries, and the theorem follows. ◀

3.2 Quantum clusterability tester

Algorithm 1 Quantum clusterability tester.

Input: Oracle access to a signed graph G(V, E, Σ) with N vertices and degree bound d; an
accuracy parameter ϵ ∈ (0, 1].

1: for O(1/ϵ) times do
2: Pick a vertex s ∈ V randomly.
3: Let K = O

(√
N poly(log N/ϵ)

)
, L = poly (log N/ϵ), n = KL, and k = Θ(L).

4: Adopt Proposition 4 to construct k-wise independent random variables bij taking
values in [2d] for i ∈ [K] and j ∈ [L].

5: Run the quantum collision finding algorithm in Lemma 5 with the following setting:
X := [K] × [L]; Y is the set of pairs (v, vneb) where v ∈ V and vneb is the set of
vertices adjacent to v.
A function f that takes (i, j) ∈ X as input, and returns the endpoint of a random
walk that starts at s with random coin flips (bi1, . . . , bij).
Symmetric binary relation R ⊆ Y × Y defined as follows:

((v, vneb), (v′, v′
neb)) ∈ R iff (v ∈ v′

neb and the edge between v and v′ is negative).

6: if quantum collision finding algorithm finds a collision then
7: return false
8: end if
9: end for

10: return true

In this section, we present our second result: a quantum clusterability tester (Algorithm 1)
with a query complexity of O

(
N1/3 poly (log N/ϵ)

)
. We begin by introducing the quantum

clusterability tester, followed by the proof of its correctness in Theorem 6.
Algorithm 1 takes a signed graph G(V, E, Σ) with N vertices and a bound on the maximum

degree d, along with an accuracy parameter ϵ ∈ (0, 1], as input. The goal is to determine
whether G(V, E, Σ) is clusterable or ϵ-far from clusterable. The algorithm consists of four
major steps.

First, Algorithm 1 randomly selects a vertex s ∈ V . Second, it constructs random
variables that determine the direction of movement in each step of these random walks.
To achieve this, we need to prepare O(K · L) random variables (K and L are defined in
Algorithm 1); however, we can derandomize and reduce the number of random bits from
O(K · L) to O(L) because Algorithm 1 only depends on each pair of walks that are selected
from K random walks. Therefore, it is sufficient to construct k-wise independent random
variables 1 bij mapping to [2d] for i ∈ [K] and j ∈ [L], where k = Θ(L). This construction
can be realized by the following proposition.

1 A set of random variables is k-wise independent if any subset of k variables is independent.
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▶ Proposition 4 ([4], Proposition 6.5). Let n + 1 be a power of 2 and k be an odd integer such
that k ≤ n. In this scenario, there exists a uniform probability space denoted as Ω = {0, 1}m,
where m = 1 + 1

2 (k− 1) log2(n + 1). Within this space, there exist k-wise independent random
variables, represented as ξ1, . . . , ξn over Ω, such that Pr [ξj = 1] = Pr [ξj = 0] = 1

2 .
Moreover, an algorithm exists that, when provided with i ∈ Ω and 1 ≤ j ≤ n, can compute

ξj(i) in a computational time of O(k log n).

Third, we define a function f that implements random walks according to these random
variables. f returns the endpoint of a random walk and the neighborhood of this endpoint.
Specifically, we let X = {1, . . . , K} × {1, . . . , L}, and Y be the set of pairs (v, vneb) where
v ∈ {1, . . . , N} and vneb is the set of vertices adjacent to v. Then, we define the function f

as follows. f takes (i, j) ∈ X as input, then it runs a random walk according to the random
variables (bi1, . . . , bij) such that (i) this walk starts at s and (ii) each edge in this walk is
positive. The function f finally returns (v, vneb). Fourth, we define the symmetric binary
relation R ⊆ Y × Y such that ((v, vneb), (v′, v′

neb)) ∈ R iff (i) v ∈ v′
neb, and (ii) the edge

between v and v′ is negative. In other words, detecting a collision is equivalent to detecting a
bad cycle. The last step is to detect two distinct elements x1, x2 ∈ X such that (f(x1), f(x2))
satisfies the symmetric binary relation R. The collision finding problem can be improved by
a quantum collision finding algorithm proposed by Ambainis et al. [11] as follow.

▶ Lemma 5 ([11], Theorem 9). Given a function f : X → Y , and a symmetric binary relation
R ⊆ Y × Y which can be computed in poly(log |Y |) time steps where X and Y are some
finite sets, we denote a collision by a distinct pair x, x′ ∈ X such that (f(x), f (x′)) ∈ R.
There exists a quantum algorithm that can find a collision with a constant probability when a
collision exists, and always returns false when there does not exist a collision. The running
time of the quantum algorithm is O

(
|X|2/3 · poly(log |Y |)

)
.

By this lemma we can identify a bad cycle within K random walks, with a query complexity
of O(|X|2/3) = O((K · L)2/3) = O

(
(
√

N poly(log N/ϵ))2/3
)

= O(N1/3 poly(log N/ϵ)). Next,
we establish the correctness of this algorithm and present its time complexity in the following
theorem.

▶ Theorem 6. Algorithm 1 is a quantum algorithm that tests the clusterability of a signed
graph with query complexity and running time O(N1/3 poly(log N/ϵ)).

Following our first result, we conclude that our quantum clusterability tester outperforms
any classical clusterability tester.

Proof. First, we prove that Algorithm 1 is indeed a clusterability tester. When G is
clusterable, signifying the absence of one bad cycle, Algorithm 1 fails to discover a collision.
Consequently, it returns true. On the contrary, when G is ϵ-far from clusterable, the assertion
in Claim 14 from [1] suggests that the algorithm can pinpoint a bad cycle within the sampled
random walks with a constant probability. This leads Algorithm 1 to return false with a
constant probability.

To bound the time complexity (and hence query complexity), we need to bound the
following quantities:

The time required to evaluate the k-wise independent random variables.
The time required to evaluate f .
The number of queries required to find a collision.
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For the first requirement, it takes O (poly(log N/ϵ)) time to evaluate a k-wise independent
random variable, as indicated by Proposition 4. Moving to the second requirement, it
is evident that each evaluation of f consumes time poly(log N/ϵ) since f is a procedure
implementing a random walk, and the length of the walk is L ∈ poly(log N/ϵ). Concerning
the last requirement, we are aware that detecting a collision requires O

(
N1/3 poly (log N/ϵ)

)
time, as derived from Lemma 5. In conclusion, the query and time complexity of Algorithm 1
is O

(
N1/3 poly (log N/ϵ)

)
. ◀

4 Proof details

In this section, we detail the construction and lemmas in Theorem 2. In Section 4.1, we
generate two distinct families of graphs, each exhibiting different property of clusterability.
In Section 4.2, we introduce two random processes that interact with an arbitrary algorithm
A during the generation of graphs selected uniformly from the aforementioned families. In
Section 4.3, we demonstrate that the statistical difference of query answer histories produced
by A and these two random processes is bounded by the number of queries.

4.1 Graph construction

Here we detail the construction and analysis of the graph families GN
1 and GN

2 .

4.1.1 Construction of two families of signed graphs

We detail the construction of two families of signed graphs denoted as GN
1 and GN

2 . In both
families, each signed graph consists of N vertices, where N is a multiple of 10. Each vertex
v is assigned a label pv chosen from the set {0, 1, . . . , 9} in such a way that there are exactly
N/10 vertices for each possible label.

For the edge set, we embed them in a manner such that each vertex is incident to precisely 6
edges. We construct edge sets based on cycles associated to a permutation σ = (r1 r2 . . . rL),
where 0 ≤ L ≤ 9 and rl ∈ {0, 1, . . . , 9} are distinct for 1 ≤ l ≤ L. With some abuse of
notation, we also denote by σ the bijective function σ : {r1, r2, . . . , rL} → {r1, r2, . . . , rL}
defined as

σ(rl) =
{

rl+1 if l < L.

r1 if l = L.

With this notation, we define a family Dσ such that each member of this family is a union of
cycles satisfying two properties: (i) the union of cycles contains all vertices in [N ] labeled
with values from r0 to rL, and (ii) for each cycle (v1, v2, . . . , vJ) in the union of cycles, the
label for each vertex must satisfy pvj+1 = σ(pvj ) for 1 ≤ j ≤ J (where we set vJ+1 = v1).
We then employ these cycles to define the edge sets for the graphs in the family GN

α . See
Figure 1 for an illustration for G40

1 .

For GN
1 : Each graph in GN

1 consists of one Hamiltonian cycle and two unions of cycles (we
later comment on the particular choice of σ’s):

The Hamiltonian cycle ∈ Dσ1st with σ1st = (0 1 2 3 4 5 6 7 8 9). We call this the arc
cycle. All of its edges are positive, and we refer to these edges as arc edges.
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One union of cycles ∈ Dσ2nd with σ2nd = (2 4 6 0 8 1 3 7 9 5),2 with each of its edges
being positively signed. We call these edges connecting edges.
A second union of cycles ∈ Dσ3rd with σ3rd = (1 6 3 8 5 0 7 2 9 4), and all edges are
negatively signed.

For GN
2 : In the family of graphs GN

2 , each graph contains one Hamiltonian cycle and 12
unions of cycles:

The Hamiltonian cycle ∈ Dσ1st with each of its edges negatively signed.
There are ten additional unions of cycles ∈ Dσs with σs = (s) for s taking values in
the set {0, 1, . . . , 9}. These edges are positive.
The last two unions of cycles are disjoint. One belongs to Dσ10 with σ10 = (0 2 4 6 8).
The other belongs to Dσ11 with σ11 = (1 3 5 7 9). These edges are positive.

Figure 1 An instance of G40
1 . The green lines indicate the edges in one Hamiltonian cycle

belonging to Dσ1st
, the orange lines indicate the edges in one union of cycles belonging to Dσ2nd

,
and the red lines indicate the edges in one union of cycles belonging to Dσ3rd

.

In every graph within GN
α , each vertex is incident to precisely six edges, and these edges are

labeled according to the following convention: For a pair of adjacent vertices, represented as
vj and vj+1 for 1 ≤ j ≤ J − 1, within any cycle (v1, v2, . . . , vJ ), we label the edge connecting
them as k for vm and as k + 1 for vm+1, for some k ∈ N. This labeling effectively associates
an orientation to the cycle. More specifically, in a graph from GN

1 :
The edges in the Hamiltonian cycle from Dσ1st are labeled with 1 and 2.
For the edges in the union of cycles ∈ Dσ2nd , we use labels 3 and 4.
For the edges in the union of cycles ∈ Dσ3rd , we use labels 5 and 6.

In the case of a graph from GN
2 :

The edges in the Hamiltonian cycle corresponding to Dσ1st are labeled as 5 and 6.

2 The choice of σ2nd and σ3rd is not unique; we only require that these edge sets are disjoint when we
fix the label of each vertex. This forbids picking for example σ2nd = (0 2 4 6 8 1 3 5 7 9), since the
edges connecting vertices labeled 9 and 0 can be found in both Dσ1st

and Dσ2nd
, meaning they are not

disjoint. However, we could replace σ2nd with (2 6 4 0 8 1 3 7 9 5), where exchanging 6 and 4 would
not violate the disjoint property.

TQC 2024



8:10 (Quantum) Complexity of Testing Signed Graph Clusterability

For the edges in the union of cycles within Dσs for s ranging from 0 to 9, we assign labels
1 and 2.
For the edges in the union of cycles ∈ Dσ10 and Dσ11 , we label them with 3 and 4.

4.1.2 Clusterability of two families of signed graphs
We initially observe that all graphs within GN

2 are clusterable with the following rationale.
All vertices with even (odd, respectively) labeling are interconnected via positive edges.
Consequently, two connected components emerge: one component comprises all vertices with
even labeling, and the other includes all vertices with odd labeling, each with positive edges.
We further note that these two components can only be connected through negative edges.
Hence, any graph within GN

2 satisfies the clusterability definition. As a result, all graphs in
the second family are clusterable.

Regarding the graphs in GN
1 , we will demonstrate that they are at least 0.01-far from

being clusterable with probability at least 1− exp(−Ω(N)) in the following Proposition 7.

▶ Proposition 7. The graphs in GN
1 are 0.01-far from clusterable with probability at least

1− exp(−Ω(N)).

Proof. We commence our proof by providing a description of the random process used to
uniformly generate a graph denoted as g from GN

1 . We begin by constructing the set of
vertices [N ] and refer to the resulting (empty) graph as sg. The graph sg is equipped with
its edges set through a three-step process:
1. (One Hamiltonian cycle): In the first step, we uniformly select a Hamiltonian cycle

from all possible Hamiltonian cycles on the vertices set [N ] and assign each vertex a label
from the set {0, 1, . . . , 9}, based on the rule of cycles ∈ Dσ1st . All edges constructed in
this step are positive.

2. (Second edge set from Dσ2nd): In the second step, we repeat the following processes
N times:
a. Select an arbitrary vertex ui that lacks an edge labeled as 3 where the index i ∈ [N ]

represents the label of iteration.
b. Uniformly select a vertex vi from a set that includes all vertices labeled as σ2nd(pui)

and that lack an edge labeled as 4.
c. Add the edge (ui, vi).
This adds an edge set from Dσ2nd . We make these edges positive.

3. (Third edge set from Dσ3rd): Similar to the previous procedure, we add an edge set
from Dσ3rd . We make these edges negative.

We call the resulting graph g, and note that g is a uniformly random element from GN
1 .

We proceed to observe that each graph g in GN
1 is inherently non-clusterable. Indeed, unless

we remove arc edges from the Hamiltonian cycle, every negative edge of a cycle in Dσ3rd

contributes to a bad cycle. We show that, with high probability over the random graph in
GN

1 , removing less than 0.01dN = 0.06N edges cannot make the graph clusterable.
More precisely, we will establish that after removing less than 0.06N arc edges, with high

probability, all vertices remain connected through (positive) connecting edges in Dσ2nd , and
so the graph cannot be clustered. To prove this, let us delve into a more detailed description
of the random process used to generate a graph g.

In the first step, we construct a Hamiltonian cycle and eliminate x < 0.06N arc edges,
resulting in a graph with x components. There are CN

x =
(

N
x

)
possible possibilities for these

x components.
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During the first iteration of the second step, we select the arbitrary vertex u1 from the
component with the fewest vertices and designate this component as C. It becomes evident
that, in the first iteration of step 2(c), the edge (u1, v1) connects the component C to another
component, with a probability exceeding 1/2. Consequently, the number of components in
the graph sg decreases by 1, and the number of vertices in C increases with a probability
greater than 1/2.

In the subsequent iterations, we select the vertex ui for 2 ≤ i ≤ N based on the following
rule: If the number of vertices labeled as σ2nd(pvi−1) and lacking edges labeled as 4 within
the component C is fewer than the number of vertices labeled as σ2nd(pvi−1) not in C, then
we set the vertex ui equal to vi−1. Subsequently, in 2(b) and 2(c), the process embeds an
edge connecting ui to some vertex vi that is not a resident in C with a probability greater
than 1/2. Otherwise, we choose ui from any arbitrary vertex labeled as σ2nd(pvi−1) and not
in C. Subsequently, in 2(b), the process selects vi in C with a probability greater than 1/2,
as C has more vertices capable of connecting with ui than the set of vertices not in C.

Consequently, the probability of the graph having more than one component can be
bounded by the probability of obtaining fewer than x heads when flipping N unbiased coins.
This probability can be bounded as follows:

x∑
i=2

CN
i

(
1
2

)N−i

< 2N ·H(0.06)2−N 2x < 2N(−1+0.06+H(0.06)),

where H(p) = −p log(p)− (1− p) log(1− p) is the (binary) entropy function.
At this point, we removed only x < 0.06N edges, and we are permitted to remove

additional 0.06N − x connecting edges from sg. This corresponds to 0.06N − x tests where
the coin flips tails (thus reducing the number of components by 1) can be taken into account
for flips resulting in heads. In other words, the condition of having fewer than x heads can
be extended to having fewer than x + 0.06N − x heads when flipping N unbiased coins.
Consequently, the probability that the resulting graph has more than one component, when
0.06N − x connecting edges are removed, can be bounded as:

x+(0.06N−x)∑
i=2

CN
i

(
1
2

)N−i

< 2N(−1+0.06+H(0.06)).

Given that there are CN
x < 2NH(0.06) possible ways to construct x components in the first

step, we can confidently assert that, after implementing step (2), all vertices in sg are
interconnected by positive edges with a probability of at least 1− exp−Ω(N), even in cases
where 0.06N positive edges (comprising x arc edges and 0.06N − x connecting edges) were
removed. The negative edges are present in the edge set in Dσ3rd , and each of them generates
a bad cycle under the condition that only one component (only positive edges inside) is left
after completing the second step in the process. In other words, under this condition, we
must remove all negative edges to make this graph clusterable. Consequently, the lemma
follows. ◀

4.2 Random processes
Here, we construct and analyze the random processes that play a key role in our lower
bound. The first part describes the interaction of a random process Pα with an algorithm A.
The second part proves that Pα indeed generates a graph uniformly within GN

α , as further
elucidated in Proposition 8.
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We will begin by defining the random process P1, which involves two stages. The first
stage will explain how P1 interacts with an arbitrary T -query algorithm A. The second stage
will elaborate on how P1 constructs a graph uniformly sampled from GN

1 .

First stage of P1: Given a query-answer history h = [(q1, a1), (q2, a2), . . . , (qt−1, at−1)] for
t ≤ T , we define a set of vertices Xp,i, which contains all vertices labeled with p in the
history and lacking edge labeled i. We also use the notation np to represent the count of
vertices in this history that are labeled p. For each query qt = (vt, it) made by A, the
actions of P1 are defined as follows:
1. If vt is not in h, then P1 labels vt with a number p ∈ {0, 1, · · · , 9} with a probability

of (N/10)−np

N−
(∑9

p=0
np

) . Subsequently, P1 answers this query as described in (2) below.

2. If vt belongs to h, there are two possible scenarios:
a. If we can find the edge corresponding to qt in h, then P1 responds with the vertex

connected to this edge. In other words, there exists an edge (vt, u) in h such that
(vt, u) is labeled as it for vertex vt, and P1 responds with u. The query-answer
history remains unchanged in this case.

b. If the edge corresponding to qt = (vt, it) does not exist in h, we follow these steps:
Suppose, without loss of generality, that it = 1. We set the label σ1st(pvt

) as p and
i = it + 1 = 2. P1 decides whether to uniformly select a vertex from Xp,i by flipping

a coin with bias
|X

p,i
|

N/10 − np + |X
p,i

| or to uniformly select a vertex not present in h,
and assigns the label p to it. In either case, P1 responds with the selected vertex u,
and the edge (vt, u) is signed positively. Subsequently, this edge (vt, u) is added to
the query-answer history h.
For the other case (it = 2, 3, 4, 5, 6), P1 acts similarly as described above, except
for the assignment for p, the assignment for i, and the sign of the added edge. The
added edge is positively signed for it = 2, 3, 4, and negatively signed for it = 5, 6.
For i, it is set to it + 1 for it = 3, 5 and to it − 1 for it = 2, 4, 6. The assignment for
p is as follows:

p← (σ1st)−1(pvt
) for it = 2

p← σ2nd(pvt
) for it = 3

p← (σ2nd)−1(pvt) for it = 4
p← σ3rd(pvt

) for it = 5
p← (σ3rd)−1(pvt

) for it = 6

First stage of P2: P2 follows a similar process to P1, with the only differences being the
assignment for p as follows:

p← pvt
for it = 1

p← pvt for it = 2
p← pvt

+ 2 (mod 10) for it = 3
p← pvt

− 2 (mod 10) for it = 4
p← σ1st(pvt) for it = 5
p← (σ1st)−1(pvt

) for it = 6

Second stage of P1: After answering all of these queries and generating a query-answer
history [(q1, a1) , . . . , (qT , aT )], P1 proceeds with the following processes:
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1. Uniformly selecting a feasible way to embed the edges in h on a cycle. The embedding
of these edges adhere to the following conditions: Each vertex is assigned a cycle
position, i.e., an integer in {0, . . . , N −1}, in a manner that ensures each vertex labeled
with p ∈ {0, . . . , 9} is positioned at a position x such that p ≡ x (mod 10). This
assignment implies that all acr edges (labeled 1, 2) are placed on the cycle, and edges
labeled 3, 4, 5, 6 are excluded from the cycle.

2. Randomly positioning all other vertices on the cycle, ensuring that each vertex v with
label pv is positioned at a position x such that pv ≡ x (mod 10). Subsequently, all
cycle edges are assigned a positive sign.

3. In the end, uniformly selecting a feasible way to embed the edges sets in Dσ2nd and
Dσ3rd . All edges in the edges sets ∈ Dσ2nd assigned a positive sign, while all edges in
the edges sets ∈ Dσ3rd are assigned a negative sign.

Second stage of P2: P2 follows a process similar to that of P1, with few distinctions: In
(2), we assign each cycle edge a negative sign. In (3), P2 uniformly selects a feasible way
to embed the edges sets ∈ Dσs for s ∈ {0, 1, · · · , 11}, and assigns positive signs to these
edges.

We will show that the above two processes uniformly generate a graph in the corresponding
family in the next lemma.

▶ Proposition 8. For every algorithm A that uses T queries and for each α ∈ {1, 2}, the
process Pα uniformly generates graphs in GN

α when interacting with A.

Proof. We will use induction to prove this lemma. Consider that every probabilistic algorithm
can be viewed as a distribution of deterministic algorithms. Therefore, it is sufficient to
prove this lemma for any deterministic algorithm A. The base case (i.e., T = 0) is correct
because the query-answer history is empty, and the second stage in the process Pα uniformly
generates a graph in GN

α . We assume that the claim is true for T − 1, and we will prove that
the claim is also true for T . Let A′ be the algorithm defined by stopping A before it asks
the T th query. By the inductive assumption, we know that Pα uniformly generates graphs in
GN

α when Pα interacts with A′. We will show that after Pα interacts with A and answers
the T th query, the second stage of Pα also uniformly generates graphs in GN

α .
Assuming, without loss of generality, that the answer to the T th query cannot be obtained

from the query-answer history because this query does not provide additional information.
Denote the T th query of A as qT = (vT , iT ) and consider all actions of the process P1:

(Case 1) iT ∈ {3, 4, 5, 6}, and vT in h:
Assume, without loss of generality, that iT = 3 and denote p = σ2nd(pvT

). The probability
of P1 connecting vT to any vertex is independent of the specific order of vertices on the
cycle but depends on the labeling of the vertices. After considering all possible connecting
edges carried out in the second stage following the interaction with A′, it becomes evident
that the only vertices in h to which vT can connect are those in Xp,4. In any potential
arrangement of the vertices on the cycle, there will be exactly (N/10) − np vertices
labeled p and available for connection to vT . This implies that the probability of vT being
connected to a vertex in Xp,4 is |Xp,4|

|Xp,4|+(N/10)−np

. Furthermore, when vT is connected
to a vertex in Xp,4, this vertex is uniformly distributed within Xp,4. Similarly, when
connected to a vertex not in h, this vertex is uniformly distributed among the vertices
not in h. These probabilities align with the definitions in P1. Therefore, in Case 1, the
induction step holds for P1.
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(Case 2) iT ∈ {1, 2}, and vT in h:
Assume, without loss of generality, that iT = 1 and denote p as σ1st(pvT

). In any
valid embedding of the edges in h onto the cycle, it is evident that vT can be adjacent
with another vertex u in h only if u belongs to Xp,2. Moreover, when vT is adjacent
to a vertex in h, this vertex is uniformly distributed within Xp,2. If vT is adjacency
with another vertex u not in h, it is evident that the number of vertices labeled p but
not in h is (N/10) − np. Consequently, the probability of vT being adjacent to some
u ∈ Xp,2 is |Xp,2|

|Xp,2|+(N/10)−np

, and the probability of it being adjacent to a vertex not in

h is (N/10)−np

|Xp,2|+(N/10)−np

. These probabilities align with the definitions in P1. Therefore, in
this case, the induction step holds for P1.
(Case 3) vT is not in h:
We can reduce this case to case 1 and 2, provided that the label of vT is selected with
the appropriate probability. In the second stage, each vertex is randomly assigned label
based on the proportion of missing vertices with that label. This essentially follows the
assignment rule outlined in case (1) in the first stage of P1.

For P2, we omit the proof since it is similar to the argument in P1, and this lemma
follows. ◀

4.3 Proof of Lemma 3
We may assume that A does not make a query whose answer can be obtained from its query
answer history h since such a query does not update the h. Then, we begin the proof by
proving the following proposition.

▶ Proposition 9. ([26], Claim in lemma 7.4) Both in DA
1 and in DA

2 , the total probability
mass assigned to query-answer histories in which for some t ≤ T a vertex in h is returned as
an answer to the tth query is at most 10δ2.

Proof. We begin the proof by claiming that the probability of the event that the answer in
the tth query is a vertex in h is at most 20(t− 1)/N for every t ≤ T . The statement can be
derived by observing that there are at most 2(t− 1) vertices in h, and uses the definition of
both processes. Then, the probability that the event occurs in an arbitrary query-answer
history of length T is at most

∑δ
√

N
t=1

20(t−1)
N < 10δ2. The proposition follows. ◀

From the proposition, we know that the edges in h will not form a cycle with probability at
least 1− 10δ2. This event implies that for each query, these two processes pick a random
vertex uniformly among the vertices, not in h. In addition, A’s queries can only depend
on the previous query-answer histories. Therefore, the distributions of the query-answer
histories for these two processes are identical, except if we found a cycle, which happens with
probability at most 10δ2. Lemma 3 follows.
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Abstract
We systematically investigate quantum algorithms and lower bounds for mean estimation given query
access to non-identically distributed samples. On the one hand, we give quantum mean estimators
with quadratic quantum speed-up given samples from different bounded or sub-Gaussian random
variables. On the other hand, we prove that, in general, it is impossible for any quantum algorithm
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1 Introduction

The problem of estimating the mean µ of a random variable X given its i.i.d. samples is a
fundamental problem in statistics. For any random variable X with finite variance σ2, the
median-of-means estimator can estimate µ to within additive error ϵ with failure probability
≤ δ using O( σ2

ϵ2 log
( 1

δ

)
) samples. This sample complexity is known to be tight up to a

constant multiplicative factor [7].
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9:2 Quantum Non-Identical Mean Estimation

On the other hand, suppose that a quantum computer has access to a unitary U and its
inverse such that U |0⟩ encodes the random variable X coherently, and each application of U
and U† as a black-box oracle can be regarded as a quantum analogue of getting a sample
of the random variable X. Therefore, the application of U is sometimes called a quantum
experiment [11]. Under this assumption, a quantum computer can estimate the mean of X
with O( σ

ϵ log
( 1

δ

)
) quantum experiments [17], which achieves quadratic speed-up compared

to the classical counterpart. Such quantum mean estimators embrace various applications,
including approximate counting [17, 6], data stream estimation [12], derivative pricing in
finance [5], etc.

In some cases, we are interested in estimating the mean of “close” random samples,
such as random samples with the same mean but different distributions. For example, it
is ubiquitous that the measurements of random samples have small systematic errors. In
such cases there may be small difference between the means of the actual distributions of
the measured random samples, and our algorithms and lower bounds also take this into
account. One specific example is to learn a linear system discussed below. In classical mean
estimation, the same method for identical random variables also works for non-identical
random variables. As long as the variance of all random variables is bounded by σ2, the
median-of-means estimator can be directly adapted to these situations , yielding an algorithm
with the same complexity. However, it is unclear whether similar results hold in the regime
of quantum mean estimation. Therefore, it is a natural question whether we can achieve
quantum speed-up for the mean estimation problem with non-identically distributed samples.

Below we provide a potential application for the quantum mean estimation with non-
identically distributed samples.

Quantum Linear System

A classical linear dynamical system (LDS) is defined as

xt+1 = Axt + wt, xt ∈ Rn, wt ∼ N (0, σ2
w), ∥A∥2 < 1, x1 = 0 (1)

where xt is the state at time step t, and wt is a random noise at step t. A well-known
problem in LDS is to do the system identification: estimating the transition matrix A given
a series of states starting from step 1. The standard approach to estimate transition matrix
A in the classical linear system is ordinary least squares (OLS) [8, 20].

Consider the quantum counterpart of LDS (for example, when simulating a LDS on a
quantum computer):

Uf |ψx⟩|0⟩ =
∫
Rn

√
fw(w)|ψx⟩|ψAx+w⟩dw, (2)

Uo|ψx⟩|0⟩ = |ψx⟩|x⟩, (3)

here fw(w) is the probability density function (pdf) of N (0, σ2
w), and |ψx⟩ is an arbitrary

embedding of the raw state x. It is natural to ask whether it is possible to estimate A by a
quantum algorithm with desired speed-up in quantum linear systems. Actually, it is indeed
possible with a procedure presented in Section 4.1.3. This estimation procedure uses multiple
calls to Uf to construct a new oracle Ut0 for some step t0, which encodes a probability
distribution over the matrix space with A as the mean value. However, the distribution
encoded by Ut0 is different for different t0, though their means are all equal to A. Therefore,
this problem presents another motivation of the quantum non-identical mean estimation
problem.
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In general, the quantum linear system problem described above is a special class of
quantum estimation problem in which quantum probability oracles have a time-varying
zero-mean noise. The distribution of noise at each step is different but all zero-mean. The
number of samples at each step is limited.

1.1 Contributions
In this paper, we systematically analyze the sample complexity of the quantum non-identical
mean estimation problem (see its formal definition in Task 8). Roughly speaking, the quantum
algorithm is given T different random variables in turn and can get m ∈ N samples from each
random variable. Suppose that the mean of every random variable is in (µ− cϵ, µ+ cϵ) for
some constant 0 < c < 1, the quantum non-identical mean estimation problem is to estimate
µ up to additive error ϵ. If all random variables are bounded or sub-Gaussian (see definition
in Definition 14), for accuracy ϵ and m = Ω(log

( 1
ϵ

)
), we give quantum algorithms solving

the quantum non-identical mean estimation problem with quadratic speed-up.

▶ Theorem 1 (Informal versions of Theorem 12 and Theorem 16). For the quantum non-
identical mean estimation problem with sufficiently small accuracy ϵ,

if all random variables are bounded in [L,H ] and m = Ω(log
(

H−L
ϵ

)
), there is a quantum

algorithm that estimates µ to within additive error ϵ if T = Ω( H−L
ϵ ). The algorithm uses

O( H−L
ϵ log

(
H−L

ϵ

)
) samples in total;

if all random variables are sub-Gaussian with parameter K and m = Ω̃(log
(

K
ϵ

)
), there

is a quantum algorithm that estimates µ to within additive error ϵ if T = Ω̃( K
ϵ ). The

algorithm uses Õ( K
ϵ ) samples in total.

In the worst case, the variance of random variables bounded in [L,H ] can be (H − L)2/4, so
the optimal classical estimator needs Θ((H − L)2/ϵ2) samples to estimate µ up to additive
error ϵ. For normal random variables, their sub-Gaussian parameter K equals their standard
deviation σ, so the optimal classical estimator needs Θ(K2/ϵ2) samples to estimate µ up to
additive error ϵ. Therefore, the quantum estimators in Theorem 1 achieve nearly quadratic
speed-up compared to classical estimators.

On the other hand, for m = 1, we show that any algorithm with relatively small working
register have no speed-up compared to classical estimators.

▶ Theorem 2 (Informal version of Theorem 23). Suppose all random variables in the quantum
non-identical mean estimation problem with m = 1 have mean bounded by R and variance
bounded by σ2. Let A be a quantum query algorithm acting on query register Q, working
register W such that the number of qubits in Q is larger than that in W by Ω(log

(
R
ϵ

)
). It

requires T = Ω( σ2

ϵ2 ) if there exists an algorithm A solving this problem. The sample complexity
of A is T = Ω( σ2

ϵ2 ).

For general m ≥ 1, we give another sample complexity lower bound of estimating mean
of Bernoulli random variables.

▶ Theorem 3 (Informal version of Theorem 25). Suppose all random variables in the quantum
non-identical mean estimation problem with m ≥ 1 are Bernoulli random variables with mean
µ ∈ (0, 1), and the accuracy ϵ satisfies ϵ ≤ µ(1 − µ) and ϵ = O( 1

m2 ). It requires T = Ω( 1
ϵm2 )

if there exists a quantum query algorithm solving this problem. The sample complexity is
mT = Ω( 1

ϵm ) in total.

In Theorem 3, we take the Bernoulli random variables as a hard instance for the quantum
non-identical mean estimation problem. Note that if ϵ = Θ(µ(1 − µ)), the classical optimal
estimator needs Θ( µ(1−µ)

ϵ2 ) = Θ( 1
ϵ ) samples to estimate the mean of the Bernoulli random
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9:4 Quantum Non-Identical Mean Estimation

variable. Therefore, Theorem 3 shows that there is no quantum speed-up in this case if
m = O(1). However, it does not rule out the possibility of quantum speed-up for estimating
the mean of Bernoulli random variables with ϵ = o(µ(1 − µ)) or m = Ω(1). For example,
if µ = Θ(1), ϵ = o(1), and m = Ω(log

( 1
ϵ

)
), the quantum estimator for bounded random

variables in Theorem 1 can estimate µ up to error ϵ using O( 1
ϵ log

( 1
ϵ

)
) samples while classical

estimators need Ω( 1
ϵ2 ) samples.

In addition, Theorem 2 and Theorem 3 give two different lower bounds when m = 1.
Compared with Theorem 3, the lower bound in Theorem 2 matches the classical upper bound
for general distributions with variance σ2, but an additional requirement is that the register
W has relatively small dimension.

Finally, we use Bernoulli random variable as an example to summary our systematical
investigation on the quantum non-identical mean estimation problem.

▶ Corollary 4. For Bernoulli random variable with mean µ such that ϵ = Θ(µ(1 − µ)),
if m = Ω(log(1/ϵ)) and T = Ω(1/ϵ), there exists an algorithm solving this problem using
O( 1

ϵ log(1/ϵ)) quantum samples, achieving a near-quadratic speed-up;
if m = Ω(log(1/ϵ)) and T = o(1/ϵm2), there is no quantum algorithm solving this problem.
There is an additional requirement that ϵ = O(1/m2);
if m = O(1), there is no quantum speed-up for this problem.

Proof. This corollary comes directly from Theorem 1, Theorem 2, and Theorem 3. ◀

1.2 Techniques
1.2.1 Upper Bound
From a high-level perspective, our quantum algorithms for non-identical mean estimation
encode the mean to an amplitude, use an uncomputation trick to be introduced below to
align different oracles, and then use amplitude estimation to estimate the mean.

We start with the bounded case. Recall that this paper studies non-identically distributed
samples and assumes that we have access to unitaries OX1 , . . . , OXT

, where

OXi |0⟩ =
∑

x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩. (4)

The mean µ = µi =
∑

x∈Ei
pi(x)x is equal for different i ∈ [T ] (In fact, these µi can be

slightly different – see Remark 13 for more details), but each OXi
has potentially different

garbage states |ψ(i)
x ⟩ and each can only be used for very limited times. Suppose that for any

i ∈ [T ], the bounded random variable Xi satisfies Xi ∈ [L,H ]. If we have sufficient access to
any specific OXi

, we can construct a unitary

Ui|0⟩|0⟩ = √
q|ψ(i)

1 ⟩|1⟩ +
√

1 − q|ψ(i)
0 ⟩|0⟩ (5)

by one call to OXi
and a series of controlled rotations [17], where q = (µ − L)/(H − L).

Consequently, the mean is encoded to an amplitude and direct amplitude estimation provides
mean estimation with quadratic quantum speedup. However, in the non-identical case,
we do not have sufficient number of calls to any specific Ui to provide quadratic speedup.
Furthermore, it is very difficult to use a mixture of different Ui in amplitude estimation [3].
This is due to the reason that amplitude estimation is based on Grover’s algorithm [9], which
is essentially rotation in a two-dimensional plane spanned by two specific quantum states
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related to Ui. In our case, different Ui may have different |ϕ(i)
1 ⟩ and |ϕ(i)

0 ⟩, which forms
different rotation planes and thus their mixed use is invalid. However, we can use a small
number of calls to Ui to construct a unitary such that

Si|0⟩ =
√

1 − ϵi|0⟩
(√

r|1⟩ +
√

1 − r|0⟩
)

+
√
ϵi|1⟩|garbagei⟩ (6)

with r being a bijective function of q (the concrete value to be shown later) and ϵi being
sufficiently small. Since the garbage state is small enough to be handled as an approximation
error, Si can be seen as an approximation of an unitary S : |0⟩ →

√
r|1⟩+

√
1 − r|0⟩. Therefore,

We can then use these Si instead of S to perform amplitude estimation, which provides
estimation for r and thus q and µ.

The construction of Si can be accomplished by an uncomputation trick [6] and fixed-point
search [22]. Specifically, the uncomputation trick is to perform a unitary

Vi = (U †
i ⊗ I)(I ⊗ CNOT)(Ui ⊗ I) (7)

instead of Ui, which enjoys a property that it extracts the value of q separated from a garbage
state related to |ϕ(i)

1 ⟩ and |ϕ(i)
0 ⟩. The computing result of ⟨b|⟨0|⟨0|Vi|0⟩|0⟩|0⟩ for b ∈ {0, 1}

tells that Vi|0⟩|0⟩|0⟩ only has components |0⟩|0⟩|0⟩, |0⟩|0⟩|1⟩, and a garbage state orthogonal
to them. Besides, the amplitudes of the first two components are determined by q. In
particular, it satisfies

Vi|0⟩|0⟩|0⟩ =
√

2q2 − 2q + 1|0⟩|0⟩
(

q√
2q2 − 2q + 1

|1⟩ + 1 − q√
2q2 − 2q + 1

|0⟩
)

+
√

2q − 2q2|garbagei⟩, (8)

where |garbagei⟩ is a unit garbage state and (I⊗⟨0|⟨0|)|garbagei⟩ = 0. Therefore, we can use
fixed-point quantum search [22] to stably amplify the amplitude of the state q√

2q2−2q+1
|1⟩ +

1−q√
2q2−2q+1

|0⟩ and thus Si is constructed with r = q2

2q2−2q+1 . See Theorem 12 for more details.
For a sub-Gaussian random variable with the absolute value of mean bounded by the

sub-Gaussian parameter K, the probability of the random variable being more than a
threshold related to K is sufficiently small and the mean of a truncated random variable
can be a good enough approximation. Therefore, this case can be reduced to the case
of bounded random variables. For general sub-Gaussian random variables X1, . . . , XT , a
constant number of classical experiments provide an estimation µ̂ within K-additive error,
thus X1 − µ̂, . . . , XT − µ̂ are sub-Gaussian random variables with the absolute value of mean
bounded by K, which has been solved (see Theorem 16 for more details).

1.2.2 Lower Bound
We prove our two quantum query lower bounds using different techniques: the case m = 1
(Theorem 2) is established by simulating non-identical oracles by parallel oracles, and the
case m ≥ 1 (Theorem 3) is established by an adversarial method with non-identical oracles.

Simulating T Non-Identical Oracles by Constant T -Parallel Oracles

For the quantum non-identical mean estimation problem with m = 1, we give a sample
complexity lower bound in Theorem 23 by constructing a quantum circuit with constant
query depth simulating the original quantum circuit querying non-identical oracles. For
any quantum query algorithm A using the state preparation oracle Ux such that the state
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9:6 Quantum Non-Identical Mean Estimation

Ux|0⟩ encodes the input, suppose that there is a sequence of unitary oracles that maps |0⟩
to the same state but have different effects acting on other states orthogonal to |0⟩. Suppose
that the working register of A is relatively small and A queries T non-identical oracles. In
Theorem 21, we prove that for any projection Π with small image space, there is a quantum
algorithm A′ using two T -parallel queries such that

∥ΠA|0⟩∥2 = ∥(Π ⊗ ⟨0|)A′|0⟩|0⟩∥2, (9)

where a T -parallel query is to query T oracles simultaneously. This theorem builds a bridge
between quantum algorithms with non-identical state preparation oracles and quantum
algorithms with low query depth. If for any input x correct outputs of A lie in a small space
Vx, and let Im(Π) = Vx, then Theorem 21 shows that A and A′ have the same probability
to output a correct answer.

In Theorem 23, we prove that any quantum query algorithm A starting from an efficiently
preparable state |0⟩ can be modified to recover the query register to |0⟩ with a small overhead.
This reduces the dimension of the subspace that the correct outputs of A lie in, and then we
use Theorem 21 to give a sample complexity lower bound of the quantum non-identical mean
estimation problem with m = 1 based on the facts that parallelization only brings classical
advantage to solving the quantum approximate counting problem [4], and the quantum
approximate counting problem can be reduced to estimating the mean of Bernoulli random
variables.

Adversarial Method with Non-Identical Oracles

Given a boolean function f : {0, 1}n → {0, 1} and access to a unitary oracle Ox which encodes
the information of some x ∈ {0, 1}n, the generalized adversarial method [13] gives a tight
query complexity lower bound of computing f(x). For any quantum query algorithm A
and x ∈ {0, 1}n, let |ψ(t)

x ⟩ be the quantum state after A queries Ox for t times. Suppose
A can compute f(x) with high probability for all x ∈ {0, 1}n using T queries, then we
have ⟨ψ(T )

x |ψ(T )
y ⟩ = 1 − Ω(1) for all x ∈ f−1(0) and y ∈ f−1(1). Since ⟨ψ(0)

x |ψ(0)
y ⟩ = 1,

to give a lower bound of T , it suffices to give an upper bound on the progress at time t,
⟨ψ(t−1)

x |ψ(t−1)
y ⟩ − ⟨ψ(t)

x |ψ(t)
y ⟩, for all x ∈ f−1(0), y ∈ f−1(1), and t ∈ [T ]. The generalized

adversarial method assigns a weight Γxy to every pair of x ∈ f−1(0), y ∈ f−1(1), which
proves an upper bound for the weighted progress at time t:

St−1 − St =
∑

x∈f−1(0), y∈f−1(1)

Γxy(⟨ψ(t−1)
x |ψ(t−1)

y ⟩ − ⟨ψ(t)
x |ψ(t)

y ⟩), (10)

and hence gives a lower bound on T . However, they regard |ψ(t−1)
x ⟩, |ψ(t−1)

y ⟩ as free variables
independent of previous states |ψ(t′)

x ⟩, |ψ(t′)
y ⟩ for t′ < t − 1 while bounding the weighted

progress at t, so their upper bound of St−1 − St is independent of t. Therefore, if the
algorithm queries different oracles at different times, the adversarial method cannot give
better lower bound than the case that all oracles are the same. In Lemma 24, we apply the
adversarial method on the quantum approximate counting problem, but analyze the progress
in another way which utilizes the connection between |ψ(t)

x ⟩ and |ψ(t′)
x ⟩ for different t and t′.

Specifically, we show that any quantum query algorithm solving the quantum approximate
counting problem has progress upper bounded by O( t

n ) at time t, where n is the number
of items. The original adversarial method gives an O( 1√

n
) upper bound of the progress at

any time t. Boyer et al. [2] gave a similar analysis of quantum search which utilizes the
connection between states at different time t, and got a tight lower bound of quantum search
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with a better constant factor compared to the hybrid argument. Since Reichardt [19] proved
that the generalized adversarial method is asymptotically tight, we cannot expect more by
exploring connections between states at different time with identical query oracles. However,
if each oracle can only be queried a limited number of times, our bound in Lemma 24 is
better than that obtained by the generalized adversarial method, since the progress bound
O( t

n ) is smaller in the early stages of the algorithm. We use this result to prove a query
complexity lower bound of the quantum approximate counting problem with non-identical
oracles. Since the quantum approximate counting problem can be reduced to estimating
the mean of a Bernoulli random variable, we get a sample complexity lower bound of the
quantum non-identical mean estimation problem in Theorem 3 for general m.

1.3 Organization
The rest of the paper is organized as follows. In Section 2 we formally define the input model
and the quantum non-identical mean estimation problem, introduce the concept of parallel
quantum query algorithms, and introduce quantum subroutines used in our algorithms. In
Section 3 we give quantum algorithms for estimating the mean of non-identically distributed
bounded or sub-Gaussian random variables with quadratic speed-up. In Section 4 we give
two quantum query lower bounds of the quantum non-identical mean estimation problem
based on reductions to low-depth quantum algorithms and the adversarial method with
non-identical oracles, respectively.

2 Preliminaries

2.1 Notations
We denote {1,2,. . . ,n} by [n]. We use |ψ⟩A,B to indicate that the state |ψ⟩ is in quantum
registers A and B. For a quantum register A, we denote its number of qubits by nA. For a
boolean string x ∈ {0, 1}n, we denote its Hamming weight |{i ∈ [n] | xi = 1}| by |x|. We
abbreviate |0k⟩ as |0⟩ if k can be inferred from the context.

2.2 Input Model
We first recall the definition of random variables and the input model of the classical mean
estimation problem.

▶ Definition 5 (Random variable). A finite random variable X is a function X : Ω → E for
some probability space (Ω, p), where Ω is the finite sample space, p is a probability measure
on Ω, and E ⊂ R.

Next, we assume that the random variable is the output of a quantum process OX , and
we can query OX as an oracle to access X.

▶ Definition 6 (Quantum random variable). For any finite random variable X, a quantum
random variable encoding X is a pair (H, OX), where H is a Hilbert space and OX is a
unitary operator on H that performs the mapping

OX |0⟩ =
∑
x∈E

√
p(x)|ψx⟩|x⟩ (11)

for some unknown garbage unit state |ψx⟩.
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9:8 Quantum Non-Identical Mean Estimation

Following the notation in [11], we call each application to U and U † a quantum experiment.
We use the number of quantum experiments to measure the sample complexity of a quantum
query algorithm.

▶ Definition 7 (Quantum experiment). Let (H, OX) be a quantum random variable. A
quantum experiment is the process of applying OX or its inverse O†

X or their controlled
versions to a state in H.

Performing a quantum experiment of a quantum random variable (H, OX) can be regarded
as a query to the unitary oracle OX in the quantum query model, so the sample complexity is
equivalent to the query complexity in this context, and we use the two terms interchangeably.

This input model is widely used in previous quantum mean estimation algorithms. The
same oracle as defined in Definition 6 is used in [17]. Kothari and O’Donnell [16] used a
similar input model except that they encode the probability distribution and the random
variable mapping Ω → R in two oracles separately, and their algorithm also works well with
the oracle in Definition 6. Hamoudi and Magniez [12, 11] used a more general input model
called “q-random-variable”, where the value of the random variable is implicitly encoded in a
register and can be compared with a constant or performed conditional Pauli rotations, and
our oracle can be regarded as an instance of the “q-random-variable”. Since the oracle in
Definition 6 already covers many common cases, we use it instead of the “q-random-variable”
for simplicity and clarity. In fact, our quantum algorithm in Theorem 12 can also apply to
the general “q-random-variable”.

The unitary OX is a quantum generalization of the process generating a sample of X.
Bennett [1] proved that any classical algorithm using time T and space S can be modified
to be a reversible algorithm using time O(T ) and space O(ST ϵ) for any ϵ > 0, and hence
can be simulated by a quantum circuit. Therefore, for any randomized algorithm A, we can
implement the oracle OX in Definition 6 encoding the output distribution of A with a small
overhead.

Another natural way for a quantum algorithm to access a random variable is to assume
that several copies of |ψX⟩ =

∑
x∈E

√
p(x)|x⟩ encoding the information of X are given as

the initial quantum state. This model is weaker than the one in Definition 6 since it does
not provide access to a unitary preparing |ψX⟩. Hamoudi [11] demonstrated that there is
no quantum speed-up for the original mean estimation problem in this model. Therefore,
it can be inferred that there is no quantum speed-up for the mean estimation problem of
non-identically distributed random variables in this model, as it is a harder problem.

Based on the definition of quantum random variable, we define the mean estimation
problem of non-identically distributed random variables formally as the following task.

▶ Task 8 (Quantum non-identical mean estimation). Let (H, OX1), . . . , (H, OXT
) be a sequence

of quantum random variables on the same Hilbert space H. Assume there exists µ and δ ∈ (0, 1)
such that each µi := E[Xi] satisfies |µi −µ| ≤ δ for all i ∈ [T ]. Given the repetition parameter
m ∈ N and accuracy ϵ such that δ < cϵ for some constant c < 1, the quantum non-identical
mean estimation problem is to estimate µ to within additive error ϵ with probability at least
2/3 using each OXi

or O†
Xi

or their controlled versions at most m times.

The non-identity of quantum random variables means more than the non-identity of
classical random variables. Specifically, the difference between two quantum random variables
(H, OX), (H, OY ) lies in the following three aspects: the results of applying OX and OY

to states orthogonal to |0⟩, the garbage state |ψx⟩, and the random variables they encode.
In contrast, the difference between two classical random variables is solely determined by
the third aspect. Consequently, the quantum mean estimation problem of non-identically
distributed random variables is more challenging than its classical counterpart.
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2.3 Parallel Quantum Query Algorithms
The classical parallel algorithm implies that the algorithm can perform multiple operations
simultaneously, which has become increasingly important in recent years with the development
of multi-core processors. In the quantum setting, there is an additional reason to consider
parallel algorithms: quantum states are fragile and susceptible to disruption by environmental
factors, specifically decoherence. By reducing the computation time, parallel quantum
algorithms can reduce the probability of decoherence. One example is parallel quantum
query algorithms which can make multiple queries simultaneously, where a p-parallel query is
defined as making p parallel queries simultaneously. Zalka [23] gave an algorithm that makes√

n
p p-parallel queries to solve the unstructured search problem with 1 marked item among

n items and showed that its query complexity is optimal. Subsequent works also analyzed
the parallel quantum query complexity of quantum search [10], quantum walk [15], quantum
counting [4], and Hamiltonian simulation [24].

2.4 Quantum Subroutines
▶ Lemma 9 (Approximating unitary operators, Eq. (4.63) of [18]). Let || · || be the operator
2-norm. For unitary operators {Ui}m

i=1, {Vi}m
i=1, it holds that

∥UmUm−1 . . . U1 − VmVm−1 . . . V1∥ ≤
m∑

j=1
∥Uj − Vj∥.

▶ Lemma 10 (Amplitude estimation, Theorem 12 of [3]). Given a unitary U satisfying

U |0⟩ = √
p|ϕ1⟩|1⟩ +

√
1 − p|ϕ0⟩|0⟩ (12)

for some p ∈ [0, 1], there exists a quantum circuit C on a larger space such that the
measurement outcome of C|0⟩|0⟩, p̃, satisfies

|p̃− p| ≤
2π
√
p(1 − p)
M

+ π2

M2 (13)

with probability 8
π2 , where C has M calls to the controlled versions of I−2U |0⟩⟨0|U†. Denote

the algorithm by AmpEst(U,M).

▶ Lemma 11 (Fixed-point quantum search, [22]). Let A be a unitary and Π be an orthogonal
projector such that ΠA|0⟩ = λ|ϕ⟩, where λ ∈ R and |ϕ⟩ is a normalized quantum state. There
exists a quantum circuit SL = FixSearch(A,Π, ϵ) such that |||ϕ⟩ − SL|0⟩|| ≤ ϵ, consisting
of O(log(1/ϵ)/λ) queries to A, A†, and CΠNOT. Here CΠNOT is the Π-controlled NOT
operator

CΠNOT = X ⊗ Π + I ⊗ (I − Π),

where X is the Pauli-X matrix.

3 Upper Bound

In this section, we first introduce an algorithm that solves Task 8 for bounded random
variables, and then generalize it to sub-Gaussian variables.
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9:10 Quantum Non-Identical Mean Estimation

Algorithm 1 Mean Estimation of Bounded Random Variables.

1: Input: sequence of random variable oracle {OXi}T
i=1, accuracy ϵ, mean difference δ,

repetition parameter m, lower bound L, upper bound H

2: Output: mean estimation µ̃

// Construct quantum circuit Si

3: Construct unitary Ui

Ui : |0⟩|0⟩
OXi

⊗I
−−−−→

∑
x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩|0⟩

controlled rotation−−−−−−−−−−−→
∑

x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩

(√
x− L

H − L
|1⟩ +

√
H − x

H − L
|0⟩

)

4: Let Vi = (U†
i ⊗ I)(I ⊗ CNOT)(Ui ⊗ I)

5: Let Si = FixSearch(Vi, |0⟩|0⟩⟨0|⟨0| ⊗ I, ϵ′ = O(ϵ2/(H − L)2))
// Mean estimation using Si

6: Let p̃ be the output of AmpEst(S,M = O( H−L
ϵ )), where S is arbitrarily replaced by

S1, . . . , ST .
7: Output µ̃ = p̃−

√
p̃(1−p̃)

2p̃−1 (H − L) + L

3.1 Mean Estimation of Bounded Random Variables

In this subsection, we introduce an algorithm that solves Task 8 with quadratic speed-up
given the condition that random variables X1, . . . , XT are bounded in [L,H]. According to
the task, for each i ∈ [T ], oracle OXi can be used at most m times.

For clarity, we describe the algorithm with two phases. Let

|ϕi⟩ = qi√
2q2

i − 2qi + 1
|1⟩ + 1 − qi√

2q2
i − 2qi + 1

|0⟩.

Here qi = µi−L
H−L ∈ [0, 1]. For each i ∈ [T ], We will construct a quantum circuit Si that

satisfies Si|0⟩ ≈ |ϕi⟩ with m calls to OXi
. Then we will prove that performing amplitude

estimation with these Si gives an ϵ-additive estimation of µ.

▶ Theorem 12. Assume that all random variables X1, . . . , XT in Task 8 are bounded in
[L,H]. Let m, ϵ, δ in Algorithm 1 satisfy m = Ω(log

(
H−L

ϵ

)
), ϵ = O

( (µ−L)(H−µ)
H−L

)
, and

δ < ϵ/2. Algorithm 1 solves this task if T = Ω( H−L
ϵ ), using O( H−L

ϵ log
(

H−L
ϵ

)
) quantum

experiments in total.

Proof. We first prove that Si in Line 5 satisfies Si|0⟩|0⟩|0⟩ =
√

1 − ϵi|0⟩|0⟩|ϕi⟩+
√
ϵi|garbagei⟩.

According to the construction of Ui in Line 3 of Algorithm 1, we have

Ui|0⟩|0⟩ = √
qi|ψ(i)

1 ⟩|1⟩ +
√

1 − qi|ψ(i)
0 ⟩|0⟩ (14)

for some unit states |ψ(i)
1 ⟩ and |ψ(i)

0 ⟩. Consider the Vi in Line 4 where we append a qubit to
the register. For any b ∈ {0, 1} we have
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⟨b|⟨0|⟨0|Vi|0⟩|0⟩|0⟩ = ((Ui ⊗ I)|0⟩|0⟩|b⟩)†(I ⊗ CNOT)(Ui ⊗ I)|0⟩|0⟩|0⟩

=
(√

qi⟨b|⟨1|⟨ψ(i)
1 | +

√
1 − qi⟨b|⟨0|⟨ψ(i)

0 |
)(√

qi|ψ(i)
1 ⟩|1⟩|1⟩ +

√
1 − qi|ψ(i)

0 ⟩|0⟩|0⟩
)

=
{
qi b = 1
1 − qi b = 0, (15)

which implies that

Vi|0⟩|0⟩|0⟩ =
√

2q2
i − 2qi + 1|0⟩|0⟩

(
qi√

2q2
i − 2qi + 1

|1⟩ + 1 − qi√
2q2

i − 2qi + 1
|0⟩
)

+
√

2qi − 2q2
i |garbagei⟩, (16)

where |garbagei⟩ is a unit garbage state and (I ⊗ ⟨0|⟨0|)|garbagei⟩ = 0. Moreover, we define

|ϕi⟩ = qi√
2q2

i − 2qi + 1
|1⟩ + 1 − qi√

2q2
i − 2qi + 1

|0⟩, |si⟩ = Vi|0⟩|0⟩|0⟩. (17)

Under these notations, we have

(|0⟩|0⟩⟨0|⟨0| ⊗ I)Vi|0⟩|0⟩|0⟩ =
√

2q2
i − 2qi + 1|0⟩|0⟩|ϕi⟩. (18)

Together with Lemma 11 and the fact that
√

2q2
i − 2qi + 1 ≥ 1√

2 , we know that Si in Line 5
satisfies

Si|0⟩|0⟩|0⟩ =
√

1 − ϵi|0⟩|0⟩|ϕi⟩ +
√
ϵi|garbagei⟩, (19)

where ϵi ≤ ϵ′ and Si contains O
(

log 1
ϵ′

)
= O

(
log
(

H−L
ϵ

))
calls to Vi.

Let

q = µ− L

H − L
∈ [0, 1], |ϕ⟩ = q√

2q2 − 2q + 1
|1⟩ + 1 − q√

2q2 − 2q + 1
|0⟩,

and S be a unitary such that

S|0⟩|0⟩|0⟩ = |0⟩|0⟩|ϕ⟩. (20)

Performing an amplitude estimation using {Si}T
i=1 provides a result similar to an amplitude

estimation using S, and thus provides a mean estimation with additive error O(ϵ). See the
details in [14] appendix A.1.

Each Vi uses two quantum experiments, each Si uses O(log
(

H−L
ϵ

)
) calls to Vi, and C ′ uses

M = O( H−L
ϵ ) calls to controlled Si. Therefore, the total number of quantum experiments is

O
(

H−L
ϵ log

(
H−L

ϵ

))
. ◀

▶ Remark 13. For every i ∈ [T ], Si can be seen as an approximation of unitary S. The slight
difference δ among different µi only causes a part of approximation error which is bounded
by ϵ. Therefore, this difference is tolerable in our algorithm. See [14] equation (73) and (78)
for more details.

3.2 Mean Estimation of Sub-Gaussian Random Variables
In this subsection, we consider the quantum non-identical mean estimation problem of
sub-Gaussian random variables.
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Algorithm 2 Mean Estimation of Mean-Bounded sub-Gaussian Random Variable.

1: Input: sequence of random variable oracle {OXi}T
i=1, accuracy ϵ, mean difference δ,

repetition parameter m, upper bound for mean R, sub-Gaussian parameter K
2: Output: mean estimation µ̃

3: Let ∆ = K max
{√

4 log
( 128K

ϵ

)
,
√

2 log
( 32R

ϵ

)}
, L = −R− ∆, H = R+ ∆

4: Construct unitary OX̃i

OX̃i
: |0⟩|0⟩

OXi
⊗I

−−−−→
∑

x∈Ei

√
pi(x)|ψ(i)

x ⟩|x⟩|0⟩

CNOT−−−−→
∑

x∈[L,H]

√
pi(x)|ψ(i)

x |x⟩|x⟩ +
∑

x∈Ei\[L,H]

√
pi(x)|ψ(i)

x |x⟩|0⟩

5: Output µ̃ =Algorithm 1({OX̃i
}T

i=1, accuracy ϵ, mean difference δ = ϵ/2, m, L, H)

▶ Definition 14. A random variable X is sub-Gaussian with parameter K if for all t ≥ 0

P[|X − E[X]| ≥ t] ≤ 2 exp
(

− t2

2K2

)
. (21)

We first give a quantum algorithm estimating the mean of non-identically distributed sub-
Gaussian random variables with quadratic speed-up if the mean of the random variables are
bounded by their sub-Gaussian parameter. This case can be reduced to the case of bounded
random variables by truncation. Then, we show that this algorithm can be generalized to
any sub-Gaussian random variable.

▶ Lemma 15. Suppose all random variables X1, . . . , XT in Task 8 are sub-Gaussian with
parameter K and their mean satisfies |µi| ≤ R, R ≤ K. Let m,R,K, ϵ, δ in Algorithm 2

satisfies that m = Ω
(

log
(

K
√

log( K
ϵ )

ϵ

))
, ϵ = O(K), and δ < ϵ/4. Algorithm 2 solves Task 8

if T = Ω(
K
√

log( K
ϵ )

ϵ ), using O
(

K
√

log( K
ϵ )

ϵ log
(

K
√

log( K
ϵ )

ϵ

))
quantum experiments in total.

Quantum random variable X̃i generated by oracle OX̃i
in Algorithm 2 is a truncated

version of Xi. Calculation shows that the mean difference is within ϵ
2 , thus Algorithm 2

provides an estimation with O(ϵ) additive error.

Proof. See [14] appendix A.2. ◀

For general sub-Gaussian distributions, we first use O(1) classical samples to estimate the
mean of these sub-Gaussian random variables up to additive error K/2, and then shift the
random variables by subtracting the approximate mean so that the shifted random variables
have mean bounded by their sub-Gaussian parameter. After that, we can use Lemma 15 to
estimate the mean of the shifted random variables.

▶ Theorem 16. Assume all random variables X1, . . . , XT in Task 8 are sub-Gaussian

with parameter K. Let m,K, δ, ϵ in Algorithm 3 satisfy that m = Ω
(

log
(

K
√

log( K
ϵ )

ϵ

))
,

ϵ = O(K), and δ < ϵ/4. Algorithm 3 solves Task 8 if T = Ω(
K
√

log( K
ϵ )

ϵ ), using

O
(

K
√

log( K
ϵ )

ϵ log
(

K
√

log( K
ϵ )

ϵ

))
quantum experiments in total.
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Algorithm 3 Mean Estimation of sub-Gaussian Random Variable.

1: Input: sequence of random variable oracle {OXi}T
i=1, accuracy ϵ, repetition parameter

m, sub-Gaussian parameter K
2: Output: mean estimation µ̃

3: Perform N = ⌈8 log(20)⌉ times classical experiments on arbitrary Xi and let the average
of the samples be µ̂

4: Construct unitary OX′
i

OX′
i

: |0⟩|0⟩
OXi

⊗I
−−−−→

∑
x∈Ei

√
pi(x)|ψ(i)

x |x⟩|0⟩

−→
∑

x∈Ei

√
pi(x)|ψ(i)

x |x⟩|x− µ̂⟩

5: Output µ̃ =Algorithm 2({OX′
i
}T

i=1, accuracy ϵ, mean difference δ = ϵ/4, m, upper bound
for mean R = K, sub-Gaussian parameter K)

Proof. Classical experiment in Line 3 can be naturally implemented by quantum access to
random variable. For any i ∈ [T ], by applying OXi

to |0⟩ and measuring the second register
in computational basis, we can get a classical sample of Xi. Since µ̂ is the average value of
N = ⌈8 log(20)⌉ samples, by the Hoeffding inequality for sub-Gaussian distributions [21], we
have

P[|µ̂− E[µ̂]| ≥ K

2 ] ≤ 2 exp
(

− N

2K2
K2

4

)
≤ 1

10 . (22)

In addition, since |µi − µ| ≤ δ for all i ∈ [T ], we have

|E[µ̂] − µ| ≤ δ. (23)

O′
Xi

can be seen as quantum query to random variable X ′
i = Xi − µ̂. With probability at

least 9
10 , we have

|E[X ′
i]| = |E[Xi] − µ̂| ≤ |E[Xi] − E[µ̂]| + |µ̂− E[µ̂]| ≤ δ + K

2 ≤ K. (24)

Therefore, by Lemma 15 with R = K, m = Ω
(

log
(

K
√

log( K
ϵ )

ϵ

))
and X ′

i = Xi − µ̂,
we can estimate µ − µ̂ with additive error O(ϵ) with probability at least 4

5 using

O
(

K
√

log( K
ϵ )

ϵ log
(

K
√

log( K
ϵ )

ϵ

))
quantum experiments. Subtracting µ̂ from the estimate

gives the final output of the algorithm which is an ϵ-additive estimate of µ with probability
at least 4

5 · 9
10 ≥ 2

3 . ◀

4 Lower Bound

In this section, we prove sample complexity lower bounds for the quantum non-identical
mean estimation problem in Task 8.

Let m be the repetition parameter defined Task 8. In Section 4.1, we give a sample
complexity lower bound for m = 1, and show there is no quantum speed-up compared to
classical algorithms. In Section 4.2, we give a sample complexity lower bound for m ≥ 1.
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4.1 Lower Bound for m = 1
Let X be a finite random variable with support E. Let (H, OX) be a quantum random
variable in Definition 6, i.e.,

OX |0⟩ =
∑
x∈E

√
p(x)|ψx⟩|x⟩, (25)

and we denote the output state by |ψX⟩. A p-parallel query to OX is to apply the unitary
O⊗q

X or O†⊗q
X for q ≤ p.

Note that Eq. (25) only restricts the outcome of applying OX on |0⟩, so the quantum
random variable encoding the same X can be different. Throughout Section 4.1, we assume
all quantum random variables encode the same finite random variable X. Given that m = 1,
the algorithm can perform only one quantum experiment for each quantum random variable.

We use the quantum query model to analyze the sample complexity of the quantum
non-identical mean estimation since every quantum experiment can be regarded as a query
to the oracle OX . A T -query quantum algorithm starts from an all-0 state |0⟩Q|0⟩W , and
then interleaves fixed unitary operations U0, U1, . . . , UT with queries. Suppose different
oracles are queried at different time, and we denote the t-th oracle queried by the algorithm
as O(t)

X . Without loss of generality, we assume that all queries are applied to register
|0⟩Q and U0, U1, . . . , UT are applied to |0⟩Q|0⟩W . Whether to apply O

(t)
X or (O(t)

X )† needs
to be determined in advance, and the choices can be represented by T boolean variables
a1, . . . , aT ∈ {−1, 1} such that

(O(t)
X )at =

{
O

(t)
X if at = 1,

(O(t)
X )† if at = −1.

(26)

For any 1 ≤ t ≤ T , let

|ψ(t)⟩ := Ut(O(t)
X )at · · · (O(1)

X )a1U0|0⟩Q|0⟩W . (27)

Hence the final state of the algorithm is |ψ(T )⟩.
At the end of the algorithm, we will measure |ψ(T )⟩ and let the projection onto the correct

outputs be Πc, and the success probability of the algorithm is hence

∥Πc|ψ(T )⟩∥2. (28)

4.1.1 Reduction to Low-depth Quantum Algorithms
For a quantum circuit with oracles, the query depth is the maximum number of queries on
any path from an input qubit to an output qubit. In this section, we prove that the behavior
of a quantum algorithm querying T non-identical oracles can be simulated by a low query
depth quantum algorithm with the same number of queries. Actually, we will show that
the behavior of the algorithm can be simulated by a quantum circuit using two T -parallel
queries.

For any 1 ≤ t ≤ T , let

|ϕ(t)
beg⟩ :=

{
|0⟩ if at = 1,
|ψX⟩ if at = −1,

(29)

|ϕ(t)
end⟩ :=

{
|ψX⟩ if at = 1,
|0⟩ if at = −1,

(30)
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so that

(O(t)
X )at |ϕ(t)

beg⟩ = |ϕ(t)
end⟩. (31)

This is the only subspace that (O(t)
X )at ’s behavior is fixed and defined by Eq. (25).

For any 1 ≤ t ≤ T , let

Π(t)
beg := |ϕ(t)

beg⟩⟨ϕ(t)
beg| ⊗ I, (32)

and

|ψ(t)
eff ⟩Q,W := (O(t)

X )atΠ(t)
begUt−1(O(t−1)

X )at−1Π(t−1)
beg · · ·U1(O(1)

X )a1Π(1)
begU0|0⟩Q|0⟩W (33)

= (|ϕ(t)
end⟩⟨ϕ(t)

beg| ⊗ I)Ut−1 · · ·U1(|ϕ(1)
end⟩⟨ϕ(1)

beg| ⊗ I)U0|0⟩Q|0⟩W . (34)

These states are fixed no matter what the queries O(t)
X are, since all queries in Eq. (33) are

applied to the subspace that its behavior is defined by Eq. (25).
We show in the following lemma that |ψ(t)

eff ⟩ can be prepared by a quantum algorithm
using two t-parallel queries after post-selection.

▶ Lemma 17. Given a T -query quantum algorithm acting on registers Q and W , for any
0 ≤ t ≤ T , |ψ(t)

eff ⟩ defined in Eq. (33) can be prepared by another quantum circuit V low
t

using two t-parallel queries to any unitary oracle OX satisfying Eq. (25) after post-selection,
namely,(

IW,Qt ⊗ ⟨0|Q0,...,Qt−1

)
V low

t |0⟩W,Q0,...,Qt
, (35)

where Q0, . . . , Qt are t+ 1 registers with nQ qubits.

Proof. For all 1 ≤ t < T , from the definition of |ψ(t)
eff ⟩, it can be written as

|ψ(t)
eff ⟩ = |ϕ(t)

end⟩|ϕ(t)
W ⟩ (36)

for some unnormalized state |ϕ(t)
W ⟩, then we have

|ϕ(t+1)
end ⟩|ϕ(t+1)

W ⟩ = |ψ(t+1)
eff ⟩ = (|ϕ(t+1)

end ⟩⟨ϕ(t+1)
beg | ⊗ I)Ut|ϕ(t)

end⟩|ϕ(t)
W ⟩. (37)

Apply ⟨ϕ(t+1)
end | ⊗ I to both sides we have

|ϕ(t+1)
W ⟩ = (⟨ϕ(t+1)

beg | ⊗ I)Ut|ϕ(t)
end⟩|ϕ(t)

W ⟩. (38)

Define

|ψ(0)
eff ⟩ = |0⟩|0⟩, |ϕ(0)

end⟩ = |0⟩, |ϕ(0)
W ⟩ = |0⟩, (39)

so that Eq. (36) and Eq. (38) also hold for t = 0.
To construct the required circuit, We prove the following stronger statement.

▶ Statement 18. Let OX be any unitary satisfying Eq. (25), and U low
0 , . . . , U low

T be a sequence
of quantum circuits satisfying U low

0 = I and

U low
t+1 =

{
((Ut)Qt,W ⊗ I) · (U low

t ⊗ (OX)Qt+1) if at+1 = 1,
((Ut)Qt,W ⊗ I) · (U low

t ⊗ IQt+1) if at+1 = −1,
(40)
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for all 0 ≤ t < T . The quantum circuit U low
t can prepare |ψ(t)

eff ⟩ after post-selection, namely,

|psi(t)
eff ⟩ =

(
IW,Qt

t⊗
i=1

⟨ϕ(i)
beg|Qi−1

)
U low

t |0⟩W,Q0,...,Qt
, (41)

for any 0 ≤ t ≤ T .

Proof. See [14] appendix B.1. ◀

The number of queries in U low
t is |{ai = 1 | i ∈ [t]}|. Let

V low
t =

⊗
1≤i≤t,ai=−1

(O†
X)Qi

U low
t , (42)

then from Eq. (41) we have(
IW,Qt ⊗ ⟨0|Q0,...,Qt−1

)
V low

t |0⟩W,Q0,...,Qt
, (43)

for all 0 ≤ t ≤ T .
The number of queries in V low

t is

|{ai = 1 | i ∈ [t]}| + |{ai = −1 | i ∈ [t]}| = t. (44)

Conditioning on the state in registers Q0, . . . , Qt−1 to be |0⟩, V low
t prepares |ψ(t)

eff ⟩Qt,W and
uses two t-parallel queries. ◀

Next, we demonstrate that UT |ψ(T )
eff ⟩ is the only useful component in the final state |ψ(T )⟩,

since other parts can be controlled by O(t)
X to make the result worse. Before that, we prove

the following useful lemma.

▶ Lemma 19. For any T -query quantum algorithm acting on registers Q, W , and any finite
random variable X on (Ω, p), if dim HQ > 2 dim HW , there exists a sequence of quantum
random variables (HQ, O

(1)
X ), . . . , (HQ, O

(T −1)
X ) such that for any 0 ≤ t < T

|ψ(t)⟩ = |ϕ(t+1)
beg ⟩|ϕ(t+1)

W ⟩ + |ψ(t)
⊥ ⟩, (45)

for some unnormalized state |ψ(t)
⊥ ⟩ orthogonal to |ϕ(t+1)

beg ⟩ ⊗ HW .

Proof. By induction. See the details in [14] appendix B.2. ◀

Now we prove that UT |ψ(T )
eff ⟩ is the only useful component in the final state |ψ(T )⟩.

▶ Lemma 20. Suppose that X is a finite random variable. For any T -query quantum
algorithm acting on registers Q, W , and any projection Πc, if dim HQ > 2 dim HW

and dim HQ ≥ 2 dim Im(Πc), then there exists a sequence of quantum random variables
(HQ, O

(1)
X ), . . . , (HQ, O

(T )
X ) such that

∥Πc|ψ(T )⟩∥2 = ∥ΠcUT |ψ(T )
eff ⟩∥2. (46)

Proof. Note that

|ψ(T )⟩ = UT (O(T )
X )aT |ψT −1⟩ (47)

= UT (O(T )
X )aT (|ϕ(T )

beg⟩|ϕ(T )
W ⟩ + |ψ(T −1)

⊥ ⟩) (48)

= UT |ϕ(T )
end⟩|ϕ(T )

W ⟩ + UT (O(T )
X )aT |ψ(T −1)

⊥ ⟩ (49)

= UT |ψ(T )
eff ⟩ + UT (O(T )

X )aT |ψ(T −1)
⊥ ⟩. (50)
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To satisfy Eq. (46), we need to find a unitary operator O(T )
X such that

ΠcUT (O(T )
X )aT |ψ(T −1)

⊥ ⟩ = 0, (51)

which means

(O(T )
X )aT |ψ(T −1)

⊥ ⟩ ∈ (U†
T Im(Πc))⊥. (52)

By the same method in the proof of Lemma 19, we can construct oracle O(T )
X . By similar

argument to Lemma 19, we can prove that if

dim HQ > dim HW + dim Im(Πc), (53)

there exists O(T )
X such that Eq. (46) holds. By assumptions that dim HQ > 2 dim HW and

dim HQ ≥ 2 dim Im(Πc), we can conclude that Eq. (46) holds. ◀

In conclusion, there exists a sequence of quantum random variables such that the output of
a T -query quantum algorithm can be simulated by a quantum algorithm using two T -parallel
queries.

▶ Theorem 21. For any T -query quantum algorithm A acting on registers Q, W , and any
projection Πc, suppose that dim HQ > 2 dim HW and dim HQ ≥ 2 dim Im(Πc). Let |ψ(T )⟩
be the final state of the algorithm. There exists another quantum circuit U low using two
T -parallel queries such that for any finite random variable X, there is a sequence of quantum
random variables (HQ, O

(1)
X ), . . . , (HQ, O

(T )
X ) satisfying

∥Πc|ψ(T )⟩∥2 = ∥
(
Πc ⊗ ⟨0|Q0,...,QT −1

)
U low|0⟩W,Q0,...,QT

∥2, (54)

where Q0, . . . , QT are T + 1 registers with nQ qubits.

Proof. Let V low
T be the low-depth quantum circuit defined in Lemma 17, and UT be the

unitary in algorithm A at time step T . By Lemma 17, the unitary U low = ((UT )QT ,W ⊗I)V low
T

satisfies(
I ⊗ ⟨0|Q0,...,QT −1

)
U low|0⟩W,Q0,...,QT

= UT |ψ(T )
eff ⟩QT ,W . (55)

By Lemma 20, there exists a sequence of quantum random variables
(HQ, O

(1)
X ), . . . , (HQ, O

(T )
X ) such that

∥Πc|ψ(T )⟩∥2 = ∥ΠcUT |ψ(T )
eff ⟩∥2 = ∥

(
Πc ⊗ ⟨0|Q0,...,QT −1

)
U low|0⟩W,Q0,...,QT

∥2. (56)

◀

4.1.2 Lower Bounds for Low-depth Quantum Mean Estimation
Algorithms

Given an input x = x0 . . . xn−1 ∈ {0, 1}n, the quantum query to it is a unitary Ox such that

Ox|i⟩|b⟩ = |i⟩|b⊕ xi⟩ (57)

for all i ∈ [n] and b ∈ {0, 1}.
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The approximate counting problem is that given Ox, output an estimate of |x| up to error
ϵ with high probability. From another perspective, we can think of [n] as a sample space Ω
with uniform distribution P , and X : Ω → {0, 1} is a Bernoulli random variable such that
X(i) = xi, and the mean of X is

p = |x|
n
. (58)

Note that

|0⟩|0⟩ Hardmard gates−−−−−−−−−−→
n∑

i=1

1√
n

|i⟩|0⟩ I⊗Ox−−−−→
n∑

i=1

1√
n

|i⟩|X(i)⟩, (59)

which means we can implement the oracle to X with one query to Ox. Hence, the approximate
counting problem can be reduced to the mean estimation problem.

A k-parallel query call to x is

O⊗k
x |i1, . . . , ik, b1, . . . , bk⟩ = |i1, . . . , ik, b1 ⊕ xi1 , . . . , bk ⊕ xik

⟩ (60)

[4] proved a k-parallel query lower bound of the approximate counting problem.

▶ Theorem 22 ([4]). For any quantum query algorithm and boolean string x ∈ {0, 1}n,

Ω
( (

n−|x|
ϵn

)(|x|+ϵn
|x|

)
k
(

n−|x|−1
ϵn−1

)(|x|+ϵn−1
|x|

)) = Ω
(p(1 − p)

ϵ2k

)
(61)

k-parallel queries to Ox is necessary to estimate p = |x|
n to within additive error ϵ.

By Theorem 22, if we want to use constant k-parallel queries to estimate p up to additive
error ϵ, k needs to satisfy

p(1 − p)
ϵ2k

= O(1), (62)

which means

k = Ω
(p(1 − p)

ϵ2

)
. (63)

Now we give a sample complexity lower bound of algorithms solving Task 8 with m = 1 using
Theorem 21. The difficulty of directly applying Theorem 21 is that it requires dim Im(Πc)
to be small. To resolve it, we prove that any quantum mean estimator can be modified to
recover the state in query register Q to |0⟩ with a small overhead so that correct answers lie
in a much smaller subspace.

▶ Theorem 23. Suppose all random variables in Task 8 have variance bounded by σ2, and
|µ| ≤ R. Let A be a quantum query algorithm acting on registers Q, W solving the quantum
non-identical mean estimation problem defined in Task 8 with repetition parameter m = 1
and accuracy ϵ/2. Suppose that 1

2nQ > nW + 2 log
( 2R

ϵ

)
+ 1, then it requires T = Ω( σ2

ϵ2 ) for
the existence of such an algorithm A, and A needs T = Ω

(
σ2

ϵ2

)
quantum experiments.

Proof. Use the uncomputation trick to combine Theorem 21 and Theorem 22. See [14]
appendix B.3. ◀
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4.1.3 Implication for Quantum Linear Systems
As mentioned in the introduction, we can possibly estimate A by the following procedure.

For fixed integers t0, γ = Θ(log(
√
n/δ)) and any 0 ≤ t < n, suppose we have a re-

gister storing |ψt0+2γt⟩. We measure |ψt0+2γt⟩ to obtain a classical state xt0+2γt, and get
|ψt0+2γt+1⟩ as the second register of Uf |ψt0+2γt⟩|0⟩ (note that |ψt0+2γt⟩ has collapsed after
the measurement), which encodes the randomness of xt0+2γt+1 given xt0+2γt. Similarly, we
can also obtain |ψ−1

t0+2γt+1⟩ by querying U−1
f . After that, we compute Uf |ψt0+2γt+1⟩|0⟩ and

collect the second register as |ψt0+2γt+2⟩, and do this computation for all t0 + 2γt + 1 to
t0 + 2(γ + 1)t− 1. Then we let t = t+ 1 and repeat this process.

After such process, we have n classical samples at even steps Xt0 :=
[xt0 , xt0+2γ , . . . , xt0+2nγ−2] ∈ Rn×n, and n quantum samples at odd steps. It holds that Xt0

is full rank with probability 1 given that

AXt0 = [xt0+1, . . . , xt0+2nγ−1] +Wt0 + Zt0 (64)

where Wt0 is a zero-mean noise matrix and ∥Zt0∥F ≤ O(δ). The matrix Zt0 denotes the
difference between E[xt0+2γt+1 | xt0+2γt] and E[xt0+2γt+1 | xt0+2γt, xt0+2γ(t+1)], which are
close since ∥An∥2 = O(− exp(n)). We define the quantum unitary Ut0 as

Ut0 |0⟩ :=
∫

W

√
ft0(W )|ψt0+1, . . . , ψt0+2nγ−1⟩X−1

t0
dW (65)

where ft0(W ) is the pdf of random matrix Wt0X
−1
t0

. Then we can use the quantum samples
collected at steps t0 + 1, . . . , t0 + 2nγ − 1 as the return of query to Ut0 (or U−1

t0
). Note

that the mean of the random variable encoded by Ut0 is O(δ)-close to A in Frobenius norm
according to (64). However, the distribution encoded in Ut0 are different for different t0
since Xt0 are different. The lower bound presented in the previous section shows that this
methods cannot achieve a desired quantum speed-up since the oracle Ut0 can only be queried
once for each t0.

4.2 Lower Bounds for m ≥ 1
Given a boolean string |x| ∈ {0, 1}n and k ∈ [n], the task of distinguishing |x| = k and
|x| = k + 1 or |x| = k − 1 can be reduced to estimating |x|

n to within 1
n additive error, which

can be regarded as a mean estimation problem. Therefore, the query complexity lower bound
for the first problem is also a lower bound for the second problem. As a result, we first prove
the query complexity lower bound of the first problem given non-identical oracles.

We use the same quantum query algorithm model in Section 4.1, where the algorithm
pre-determines U0, . . . , UT and needs to distinguish the cases between |x| = k and |x| = k+ 1
or k − 1 for any 1 ≤ k < n.

▶ Lemma 24. Given a sequence of oracles Ox1 , . . . , OxT
encoding boolean strings x1, . . . , xT

in {0, 1}n, suppose all strings have the same Hamming weight w and the algorithm can query
each oracle at most m times in turn. For any 1 ≤ k < n and m = O(

√
n), any quantum

algorithm needs Ω( n
m ) queries in total to distinguish between w = k and w = k − 1 or k + 1

with high probability.

Proof. See [14] appendix B.4. ◀

Now we give a sample complexity lower bound of the quantum non-identical mean
estimation problem with repetition parameter m.

TQC 2024
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▶ Theorem 25. Suppose all random variables in Task 8 are Bernoulli random variables with
mean µ ∈ (0, 1) such that ϵ ≤ µ(1 −µ) and ϵ = O( 1

m2 ). It requires T = Ω( 1
ϵm2 ) if there exists

a quantum algorithm which queries each random variable at most m times in turn solves this
problem. Any such quantum query algorithm needs mT = Ω( 1

ϵm ) quantum experiments in
total.

Proof. Let n = 1
ϵ and k = µn. Since ϵ ≤ µ(1 − µ), we have 1 ≤ k ≤ n− 1. Given a boolean

string |x| ∈ {0, 1}n, the task of distinguishing |x| = k and |x| = k + 1 or |x| = k − 1 can be
reduced to estimating |x|

n to within 1
n additive error. The latter problem can be regarded

as estimating the mean of a Bernoulli random variable X to within additive error ϵ = 1
n .

Since one query to OX can be implemented by one query to Ox, the query complexity lower
bound for the first problem is also a lower bound for the second problem. From ϵ = O( 1

m2 ),
we have m = O( 1√

ϵ
) = O(

√
n). Therefore, by Lemma 24, any quantum algorithm solving the

quantum non-identical mean estimation problem with repetition parameter m needs Ω( 1
ϵm )

quantum experiments in total. ◀
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10:2 Guidable Local Hamiltonian Problems with Implications to HASP and QPCP

1 Introduction

Quantum chemistry and quantum many-body physics are generally regarded as two of the
most promising application areas of quantum computing [1, 12]. Whilst perhaps the original
vision of the early pioneers of quantum computing was to simulate the time-dynamics of
quantum systems [13,26], for many applications one is interested in stationary properties.
One particularly noteworthy quantity is the ground state energy (which corresponds to
the smallest eigenvalue) of a local Hamiltonian describing a quantum mechanical system of
interest, say a small molecule or segment of material. The precision to which one can estimate
the ground state energy plays a crucial role in practice: for instance, in chemistry the relative
energies of molecular configurations enter into the exponent of the term computing reaction
rates, making the latter exceptionally sensitive to small (non-systematic) errors in energy
calculations. The problem of estimating the smallest eigenvalue of a local Hamiltonian up to
some additive error relative to the operator norm (the decision variant of which is known as
the local Hamiltonian problem) is well-known to be QMA-hard when the required accuracy
scales inversely with a polynomial. Therefore, it is generally believed that, without any
additional help or structure, quantum computers are not able to accurately estimate the
smallest eigenvalues of general local Hamiltonians, and there is some evidence that this
hardness carries over to those Hamiltonians relevant to chemistry and materials science [40].
A natural question to ask is then the following: how much “extra help” needs to be provided
in order to accurately estimate ground state energies using a quantum computer?

In the quantum chemistry community, it is often suggested that this extra help could come
from a classical heuristic that first finds some form of guiding state: a classical description
of a quantum state that can be used as an input to a quantum algorithm to compute the
ground state energy accurately [38]. Concretely, this comes down to the following two-step
procedure [17]:

Step 1 (Guiding state preparation): A classical heuristic algorithm is applied to obtain a
guiding state |ψ⟩, which is hoped to have “good”1 fidelity with the ground space.
Step 2: (Ground state energy approximation): The guiding state |ψ⟩ is used as input to
Quantum Phase Estimation (QPE) to efficiently and accurately compute the corresponding
ground state energy.

Step 2 of the above procedure can be formalised by the Guided k-local Hamiltonian problem (k-
GLH), which was introduced in [28] and shown to be BQP-complete under certain parameter
regimes that were subsequently improved and tightened in [17]. The problem k-GLH is stated
informally as follows: given a k-local Hamiltonian H , an appropriate classical “representation”
of a guiding state |u⟩ promised to have ζ-fidelity with the ground space of H, and real
thresholds b > a, decide if the ground state energy of H lies above or below the interval [a, b].

In a series of works [17, 18, 28], it was shown that 2-GLH is BQP-complete for inverse
polynomial precision and fidelity, i.e. b− a ≥ 1/poly(n) and ζ = 1 − 1/poly(n) respectively.
In contrast, when b− a ∈ Θ(1) and ζ = Ω(1), k-GLH can be efficiently solved classically by
using a dequantized version of the quantum singular value transformation [28].

The GLH problem forms the starting point of this work. We study “Merlinized” versions
of GLH – in which guiding states are no longer given as part of the input but instead are only
promised to exist – and use these as a way to gain some insight into important theoretical
questions in quantum chemistry and complexity theory. In the subsequent paragraphs, we
introduce some of the motivating questions guiding the study of the complexity of these
so-called “guidable” local Hamiltonian problems.

1 “Good” here means at least inverse polynomial in the number of qubits the Hamiltonian acts on.
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Ansätze for state preparation. Step 1 of the aforementioned two-step procedure generally
requires one to have access to classical heuristics capable of finding guiding states whose
energies can be estimated classically (as a metric to test whether candidate states are expected
to be close to the actual ground state or not). Furthermore, these “trial states” should
also be preparable as quantum states on a quantum computer, so that they can be used as
input to phase estimation in Step 2. In [28], inspired by a line of works that focused on the
dequantization of quantum machine learning algorithms [20,33,44], a particular notion of
“sampling-access” to the guiding state |u⟩ is assumed. Specifically, it is assumed that one can
both query the amplitude of arbitrary basis states, and additionally that one can sample
basis states according to their l2 norm with respect to the overall state |u⟩. This can be a
somewhat powerful model [22], and it is closely related to the assumption of QRAM access
to classical data, and thus in the context of quantum machine learning (where such access is
commonly assumed), it makes sense to compare quantum machine learning algorithms to
classical algorithms with sampling access to rule out quantum speed-ups that come merely
from having access to quantum states that are constructed from exponential-size classical
data. However, for quantum chemistry and quantum many-body applications, this type of
access to quantum states seems to be somewhat artificial. From a theoretical perspective, one
might wonder to what extent this sampling access model “hides” some complexity, allowing
classical algorithms to perform well on the problem when they otherwise would not.

Moreover, one may ask whether the fact that the ground state preparation in Step 1
considers only classical heuristics might be too restrictive. Quantum heuristics for state
preparation, such as variational quantum eigensolvers [46] and adiabatic state preparation
techniques [8], have received considerable attention as possible quantum approaches within
the NISQ era, and one can argue that even in the fault-tolerant setting, such heuristics will
likely still be viable approaches to state preparation, in particular when used in conjunction
with Quantum Phase Estimation.

The quantum PCP conjecture. Arguably the most fundamental result in classical com-
plexity theory is the Cook-Levin Theorem [21,36], which states that constraint satisfaction
problems (CSPs) are NP-complete. The PCP theorem [10, 11], which originated from a
long line of research on the complexity of interactive proof systems, can be viewed as a
“strengthening” of the Cook-Levin theorem. In its proof-checking form, it states that all
decision problems in NP can be decided, with a constant probability of error, by only checking
a constant number of bits of a polynomially long proof string y (selected randomly from the
entries of y). There are also alternative equivalent formulations of the PCP theorem. One is
in terms of hardness of approximation: it states that it remains NP-hard to decide whether an
instance of CSP is either completely satisfiable, or whether no more than a constant fraction
of its constraints can be satisfied.2 Naturally, quantum complexity theorists have proposed
proof-checking and hardness of approximation versions of PCP in the quantum setting. Given
the close relationship between QMA and the local Hamiltonian problem, the most natural
formulation is in terms of hardness of approximation: in this context, the quantum PCP
conjecture roughly states that energy estimation of a (normalized) local Hamiltonian up to
constant precision, relative to the operator norm of the Hamiltonian, remains QMA-hard.
This conjecture is arguably one of the most important open problems in quantum complexity
theory and has remained unsolved for nearly two decades.

2 The transformation of a CSP to another one which is hard to approximate is generally referred to as
gap amplification, and is realised in Dinur’s proof of the PCP theorem [24].
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One way to shed light on the validity of the quantum PCP conjecture can be to study PCP-
type conjectures for other “Merlinized” complexity classes. Up until this point, PCP-type
conjectures have not been considered for other classes besides NP and QMA.3 However, there
is the beautiful result of [7], which studies the possibility of a gap amplification procedure
for the class MA by considering a particular type of Hamiltonian: uniform stoquastic local
Hamiltonians. The authors show that deciding whether the energy of such a Hamiltonian is
exactly zero or inverse polynomially bounded away from zero is MA-hard, but that the problem
is in NP when this interval is increased to be some constant. Consequently, this implies that
there can exist a gap-amplification procedure for uniform stoquastic Local Hamiltonians
(in analogy to the gap amplification procedure for constraint satisfaction problems in the
original PCP theorem) if and only if MA = NP – i.e. if MA can be derandomized. Since
MA ⊆ QMA, this result also shows that if a gap amplification procedure for the general local
Hamiltonian problem would exist that “preserves stoquasticity”, then it could also be used
to derandomize MA.

1.1 Summary of main results

1.1.1 Completeness results for guidable local Hamiltonian problems
Inspired by classical heuristics that work with Ansätze to approximate the ground states of
local Hamiltonians, we define a general class of states that we call classically evaluatable and
quantumly preparable.

▶ Definition 1 (Classically evaluatable and quantumly preparable states). We say that an
n-qubit state |u⟩ is ϵ-classically evaluatable if

(i) it has an efficient classical description which requires at most a polynomial number of
bits to write down and

(ii) one can, given such a description classically efficiently compute expectation values of
O(log n)-local observables of |u⟩ up to precision ϵ and with probability ≥ 1 − 1/poly(n).

In addition, we say that the state is also quantumly preparable if (iii) there exists a quantum
circuit that prepares |u⟩ using only a polynomial number of two-qubit gates. Furthermore, if
ϵ = 0 the algorithm in (ii) is deterministic instead of probabilistic and we simply say that |u⟩
is classically evaluatable.

This definition of states is very closely related to the definition of query and sampling
access to quantum states given by Gharibian and Le Gall [28], which slightly generalizes
the original definition as first proposed by Tang used to dequantize quantum algorithms for
recommendation systems [44]. There are three main motivations for introducing this new
class of states:
1. It seems rather difficult to find Ansätze that are used in practice for ground state energy

estimation that satisfy all conditions of query and sampling access. As one of the main
motivations of this work is to investigate the power of quantum versus classical state
preparation when one has access to Quantum Phase Estimation, we want to define a
class of states that can both be prepared efficiently on a quantum computer and which
contains a large class of Ansätze commonly used in practice.

3 Barring a result by Drucker which proves a PCP theorem for the class AM [25]; though there is no
direct relationship between QMA and AM and hence it is not clear whether this gives any intuition
about the likely validity of the quantum PCP conjecture.
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Figure 1 Visualization of the (conjectured) relations between classes of quantum states considered
in this work, given a Hilbert space of a fixed dimension. For MPS, we only consider states with
polynomially-bounded bond and local dimension. We take ξ ≤ ϵ/8 ≤ 1/3, such that by Theorem 2
we have that (i) all ξ-samplable states are also ϵ-classically evaluatable and (ii) constant-depth and
IQP circuits are not ξ-samplable.

2. Analogous to Dinur’s construction, one would expect that determining if a local Hamilto-
nian has ground state energy (exponentially close to) zero or some constant away from
zero is QMA-hard if the quantum PCP conjecture is true. However, there are arguments
from physics4 as to why one might expect this problem to be in NP [41]. To study the
question of containment in NP it is necessary to be able to work with states within a
deterministic setting, and therefore it does not make sense to rely on a form of sampling
access which inherently relies on a probabilistic model of computation.

3. To add to the previous point, being able to study containment in NP comes with the
additional advantage of being able to make statements about whether the problem admits
a PCP by the classical PCP theorem. No such theorem is currently known for MA.

To strengthen the first point we find four concrete examples of Ansätze that satisfy all
three conditions: matrix product states (MPS), stabilizer states, constant-depth quantum
circuits and IQP circuits [15]. Explicit definitions of these classes of states as well as proofs of
containment can be found in [48]. The first two examples are in fact also perfectly samplable.
However, constant-depth quantum circuits are not even approximately samplable (under
the conjecture that BQP ̸⊂ AM [45]). We can formalize this in the following theorem which
relates ξ-samplable states to ξ-classically evaluatable states

4 In this setting the LH problem becomes equivalent to determining whether the free energy of the system
becomes negative at a finite temperature. One expects then that at such temperatures, the system
loses its quantum characteristics on the large scale, making the effects of long-range entanglement
become negligible. Hence, this means that the ground state of such a system should have some classical
description, which places the problem in NP [9].
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▶ Theorem 2. For any ξ > 0, any ξ-samplable state is also O(ξ)-classically evaluatable. On
the other hand, there exist states that are perfectly classically evaluatable but not ξ′-samplable
for all 0 < ξ′ < 1/3, unless BQP ⊆ AM.

The proof of this theorem can be found in the full version of this paper [48]. This theorem
gives rise to a (conjectured) hierarchical structure of states as depicted in Figure 1. For the
remainder of our work, we will focus on (0-)classically evaluatable states, which by Definition 1
means that there exists a deterministic classical algorithm for computing expectation values.
A notable advantage of this approach is, as opposed to 0-samplable states, that this allows
us to give NP containment results.

Our main focus is on a new family of Hamiltonian problems, in which we are promised
that the ground state is close (with respect to fidelity) to some state from a particular class
of states, called guiding states. We make a distinction between different types of promises
one can make with respect to the existence of guiding states: we either assume that the
guiding states are of the form of Definition 1 (with or without the promise that the states are
also quantumly preparable), or that there exists an efficient quantum circuit that prepares
the guiding state.

▶ Definition 3 (Guidable Local Hamiltonian problems). Guidable Local Hamiltonian Problems
are problems defined by having the following input, promise, output and some extra promise
to be precisely defined below for each of the problems separately:
Input: A k-local Hamiltonian H with ∥H∥ ≤ 1 acting on n qubits, threshold parameters

a, b ∈ R such that b− a ≥ δ > 0 and a fidelity parameter ζ ∈ (0, 1].
Promise: We have that either λ0(H) ≤ a or λ0(H) ≥ b holds, where λ0(H) denotes the

ground state energy of H.
Extra promises: Let Πgs be the projection on the subspace spanned by the ground states of

H. Then for each problem, we have that either one of the following promises holds:
1. There exists a classically evaluatable state u ∈ C2n for which ∥Πgsu∥2 ≥ ζ. Then

the problem is called the Classically Guidable Local Hamiltonian Problem,
shortened as CGaLH(k, δ, ζ). If |u⟩ is also quantumly preparable, we call the problem
the Classically Guidable and Quantumly Preparable Local Hamiltonian
Problem, shortened as CGaLH∗(k, δ, ζ).

2. Quantumly Guidable k-LH (QGaLH(k, δ, ζ)): There exists a quantum circuit of
polynomially many two-qubit gates that produces the state |ϕ⟩ for which ∥Πgs |ϕ⟩∥2 ≥ ζ.

Output: If λ0(H) ≤ a, output yes.
If λ0(H) ≥ b, output no.

We note that a guidable local Hamiltonian problem variant for a different class of guiding
states was already introduced in Section 5 of [28] without giving any hardness results. Using
techniques from Hamiltonian complexity we obtain the following completeness results.5

▶ Theorem 4 (Complexity of guidable local Hamiltonian problems). For k = 2 and δ =
1/poly(n), we have that both CGaLH∗(k, δ, ζ) and QGaLH(k, δ, ζ) are QCMA-complete when
ζ ∈ (1/poly(n), 1 − 1/poly(n)).

A basic version of the hardness proof can be found in Section 3.1, with the remainder
written down in the full version [48]. A direct corollary of the above theorem is the following.

5 In fact QGaLH(k, δ, ζ) remains QCMA-hard all the way up to ζ = 1.
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▶ Corollary 5 (Classical versus quantum state preparation). When one has access to a quantum
computer (and in particular quantum phase estimation), then having the ability to prepare
any quantum state preparable by a polynomially-sized quantum circuit is no more powerful
than the ability to prepare states from the family of classically evaluatable and quantumly
preparable states, when the task is to decide the local Hamiltonian problem with precision
1/poly(n).

It should be noted that our result does not imply that all Hamiltonians which have efficiently
quantumly preparable guiding states also necessarily have guiding states that are classically
evaluatable. All this result says is that for any instance of the guidable local Hamiltonian
problem with the promise that there exist guiding states that can be efficiently prepared
by a quantum computer, there exists an (efficient) mapping to another instance of the
guidable local Hamiltonian problem with the promise that there exist guiding states that are
classically evaluatable and quantumly preparable. Whilst this reduction is efficient in the
complexity-theoretic sense, it might not be for practical purposes, as it would likely remove
all the physical structure present in the original Hamiltonian. Hence, the main implication of
our result is not that these kinds of reductions are of practical merit, but that at least from a
complexity-theoretic point of view the aforementioned classical-quantum hybrid approach of
guiding state selection through classical heuristics combined with quantum energy estimation
is at least as powerful as using quantum heuristics for state preparation instead.

We complement our quantum hardness results with classical containment results (of the
classically guidable local Hamiltonian problem), obtained through a deterministic dequantized
version of Lin and Tong’s ground state energy estimation algorithm [37]. Here CGaLH is just
as CGaLH∗ but without the promise of the guiding state being quantumly preparable.

▶ Theorem 6 (Classical containment of the classically guidable local Hamiltonian problem). Let
k = O(log n). When δ is constant, we have that CGaLH(k, δ, ζ) is in NP when ζ is constant
and is in NqP when ζ = 1/poly(n). Here NqP is just as NP but with the Turing machine
being allowed to run in quasi-polynomial time.

Theorem 6 follows directly by applying the spectral amplification technique, as described in
Section 3.2.

1.1.2 Quantum-classical probabilistically checkable proofs
We introduce the notion of a quantum-classical probabilistically checkable proof system in the
following way.

▶ Definition 7 (Quantum-Classical Probabilistically Checkable Proofs (QCPCP)). Let n ∈ N
be the input size and p, q : N → N, c, s : R≥0 → R≥0 with c − s > 0. A promise problem
A = (Ayes, Ano) has a (p(n), q(n), c, s)-QCPCP-verifier if there exists a quantum algorithm
V which acts on an input |x⟩ and a polynomial number of ancilla qubits, plus an additional
bit string y ∈ {0, 1}p(n) from which it is allowed to read at most q(n) bits (non-adaptively),
followed by a measurement of the first qubit, after which it accepts only if the outcome is |1⟩,
and satisfies:
Completeness. If x ∈ Ayes, then there is a y ∈ {0, 1}p(n) such that the verifier accepts with

probability at least c,
Soundness. If x ∈ Ano, then for all y ∈ {0, 1}p(n) the verifier accepts with probability at

most s.
A promise problem A = (Ayes, Ano) belongs to QCPCP[p, q, c, s] if it has a (p(n), q(n), c, s)-
QCPCP verifier. If p(n) = O(poly(n)), c = 2/3, and s = 1/3, we simply write QCPCP[q].
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Figure 2 Complexity characterization of CGaLH∗(k, δ, ζ) over parameter regime δ and ζ, for
k = O(1). Any classification indicates completeness for the respective complexity class, except for
NqP, for which we only know containment (indicated by the “ † ”). Here completeness for certain
parameter combinations means that for all functions of the indicated form, the problem is contained
in the complexity class, and for a subset of these functions the problem is also hard. The results for
QPCP[O(1)] and QMA follow directly from [4] and [35].

We remark that there are likely several ways to characterise a “quantum-classical PCP”,
with some being more or less natural than others. With that said, we believe that the above
characterisation is well-motivated for the following reasons:
1. It is a natural definition following the structure of a QPCP verifier, now with proofs

given as in the standard definition of QCMA. Moreover, one can show that the non-
adaptiveness is not restrictive when the number of queries is constant (this is proved in
the full version [48]).

2. QCPCP[O(1)] captures the power of BQP as well as NP (via the PCP theorem), which are
both believed to be strictly different complexity classes. Since techniques used to prove the
PCP theorem are difficult (or impossible) to translate to the quantum setting [5], studying
QCPCP[O(1)] might provide a fruitful direction with which to obtain the first non-trivial
lower bound on the complexity of QPCP[O(1)]. Indeed, the currently best-known lower
bound on the complexity of QPCP[O(1)] is only NP via the PCP theorem.

Given this definition for QCPCPs, our “quantum-classical” PCP conjecture is naturally
formulated as follows.

▶ Conjecture 8 (quantum-classical PCP conjecture). There exists a constant q ∈ N such that
QCMA = QCPCP[q].

If true, this conjecture would give a “QCMA lower bound” on the power of quantum PCP
systems, showing that a PCP theorem holds for (quantum) classes above NP, taking a step
towards proving the quantum PCP conjecture. If it is false, but the quantum PCP conjecture
is true, then this suggests that QPCP systems must take advantage of the “quantumness”
of their proofs to obtain a probabilistically checkable proof system. In particular, since
QCMA ⊆ QMA, this would imply the existence of a quantum PCP system for every problem
in QCMA, but not a quantum-classical one, even though the problem admits a classical proof
that can be efficiently verified when we are allowed to look at all of its bits.

Our main result regarding QCPCP[O(1)] is that we can provide a non-trivial upper bound
on the complexity of the class.
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▶ Theorem 9 (Upper bound on QCPCP, from Theorem 25). QCPCP[O(1)] ⊆ BQPNP[1].

Here BQPNP[1] is the class of all problems that can be solved by a BQP-verifier that makes a
single query to an NP-oracle. The key idea behind the proof is that a quantum reduction can
be used to transform a QCPCP verification circuit to a local Hamiltonian that is diagonal in
the computational basis, and thus can be solved with a single query to an NP oracle.

An implication of Theorem 9 is that it can be used to show that under the assumption
NP ⊆ BQP and the quantum-classical PCP conjecture being true, we have that PH ⊆ BQP.
This follows from the fact that NPBQP ⊆ QCMA and

NPNP ⊆ NPBQP ⊆ BQPNP ⊆ BQPBQP = BQP,

where the first and the third “⊆” are by assumption, the second is by the assumption of
Conjecture 8 to be true and the last equality follows from the fact that BQP is self-low. We
then have that PH ⊆ BQP follows by induction, just as is the case for BPP [50].6 Moreover,
this would also imply that under these assumptions QCMA ⊆ BQP, since

QCMA ⊆ QCPCP[O(1)] ⊆ BQPNP ⊆ BQPBQP ⊆ BQP.

Both of these implications would provide further evidence that it is unlikely that NP ⊆ BQP.
However, it is known that there exists an oracle relative to which NPBQPA

̸⊂ BQPNPA

[3].
Nevertheless, this does not necessarily mean the premise (i.e. the quantum-classical PCP
conjecture) is false: one can also easily construct an oracle separation between PCP and NP,
and both classes are now known to be equal [27]. However, this suggests that, if Conjecture 8
is true, showing so requires non-relativizing techniques, just as was the case for the PCP
theorem.

1.1.3 Three implications for the quantum PCP conjecture
We use our obtained results on QCPCP and CGaLH to obtain two new results and a new
conjecture with respect to the quantum PCP conjecture. First, we give evidence that it
is unlikely that there exists a classical reduction from a QPCP-system (see [4] or [16] for
a formal definition) to a local Hamiltonian problem with a constant promise gap having
the same properties as the known quantum reduction (see for example [16, 31]), unless
BQP ⊆ QCPCP[O(1)] ⊆ NP, something that is not expected to hold [2, 42].

▶ Theorem 10 (No-go for classical polynomial-time reductions). For any ϵ < 1/6 there cannot
exist a classical polynomial-time reduction from a QPCP[O(1)] verification circuit V to a
local Hamiltonian H such that, given a proof |ψ⟩,

|P[V accepts |ψ⟩] − (1 − ⟨ψ|H |ψ⟩)| ≤ ϵ,

unless QCPCP[O(1)] ⊆ NP (which would imply BQP ⊆ NP).

The proof is given in the full version [48]. This provides strong evidence that allowing
for reductions to be quantum is indeed necessary to show equivalence between the gap
amplification and proof verification formulations of the quantum PCP conjecture [5].

Second, our classical containment results of CGaLH with constant promise gap can
be viewed as no-go theorems for a gap amplification procedure for QPCP having certain
properties, as illustrated by the following result.

6 See also https://blog.computationalcomplexity.org/2005/12/pulling-out-quantumness.html.
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▶ Theorem 11 (No-go results for Hamiltonian gap amplification). There cannot exist a
polynomial time classical gap amplification procedure for the local Hamiltonian problem
that preserves the fidelity between the ground space of the Hamiltonian and any classically
evaluatable state up to a

multiplicative constant, unless QCMA = NP, or
multiplicative inverse polynomial, unless QCMA ⊆ NqP.

The theorem follows directly from Theorem 6. This result is analogous to the result
of [7], which rules out a gap amplification procedure that preserves stoquasticity under the
assumption that MA ̸= NP (or taking a different view, proving the existence of such gap
amplifications would allow one to simultaneously prove that MA can be derandomized).
Moreover, we point out that many Hamiltonian gadget constructions do satisfy such fidelity-
preserving conditions, and indeed are precisely those that were used in [17] to improve the
hardness results for the guided local Hamiltonian problem. We obtain similar results for the
class MA by considering a variant of CGaLH that restricts the Hamiltonian to be stoquastic
(See Appendix C in the full version [48]).

Third, we can use our results to formulate a stronger version of the NLTS theorem (and
an alternative to the NLSS conjecture [28]), which we will call the No Low-energy Classically
evaluatable States conjecture. This conjecture can hopefully provide a new stepping stone
towards proving the quantum PCP conjecture.

▶ Conjecture 12 (NLCES conjecture). There exists a family of local Hamiltonians {Hn}n∈N
on n qubits, and a constant β > 0, such that for sufficiently large n for every classically
evaluatable state u ∈ C2n as per Definition 1, we have that ⟨u|Hn |u⟩ ≥ λ0(Hn) + β .

Just as is the case for the NLSS conjecture and the NLTS theorem, the NLCES conjecture
would, if proven to be true, not necessarily imply the quantum PCP conjecture. For example,
it might be that there exist states that can be efficiently described classically but for which
computing expectation values is hard (just as, for example, tensor network contraction is
#P-hard in the worst case [14,43]). Furthermore, as we have shown in this work, states with
high energy but also a large fidelity with the ground state suffice as witnesses to decision
problems on Hamiltonian energies, and these would not be excluded by a proof of the NLCES
conjecture above. To make this more concrete, in the full version [48] we also formulate an
even stronger version of the NLCES conjecture, which states that there must be a family of
Hamiltonians for which no classically evaluatable state has good fidelity with the low energy
spectrum.

2 Preliminaries

2.1 Notation
We write λi(A) to denote the ith eigenvalue of a Hermitian matrix A, ordered in non-
decreasing order, with λ0(A) denoting the smallest eigenvalue (ground state energy). When
we write ∥·∥ we refer to the operator norm when its input is a matrix and Euclidean norm
for a vector.

2.2 Complexity theory
All complexity classes will be defined with respect to promise problems. To this end, we take a
(promise) problem A = (Ayes, Ano) to consist of two non-intersecting sets Ayes, Ano ⊆ {0, 1}∗

(the yes and no instances, respectively). We have that Ainv = {0, 1}∗ \ Ayes ∪ Ano is the
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set of all invalid instances, and we do not care how a verifier behaves on problem instances
x ∈ Ainv (i.e. it can accept or reject arbitrarily). We assume that the reader is familiar with
the complexity classes used in this work, and else suggest reading the formal definitions in [48]
or the complexity theory zoo (https://complexityzoo.net/Complexity_Zoo). However,
since it is crucial to our construction, we will explicitly state the class UQCMA, which is just
as QCMA but with a unique accepting witness in the Yes-case.

▶ Definition 13 (UQCMA). A promise problem A = (Ayes, Ano) is in UQCMA[c,s] if and only
if there exists a polynomial-time uniform family of quantum circuits {Vn} and a polynomial p,
where Vn takes as input a string x ∈ {0, 1}∗ with |x| = n, and a p(n)-qubit witness quantum
state |ψ⟩ and decides on acceptance or rejection of x such that

if x ∈ Ayes then there exists a unique y∗ ∈ {0, 1}p(n) such that Vn accepts (x, |y∗⟩) with
probability ≥ c, and for all y ̸= y∗ we have that Vn accepts (x, |y⟩) with probability ≤ s;
if x ∈ Ano then for every witness state y ∈ {0, 1}p(n), Vn accepts (x, |y⟩) with probability
≤ s,

where c− s = 1/poly(n). If c = 2/3 and s = 1/3, we abbreviate to UQCMA.

In [6] it was shown that there exists a randomized reduction from QCMA to UQCMA,
analogous to the Valiant-Vazirani theorem for NP [47].

Oracle access. For a (promise) class C with complete (promise) problem A, the class
PC = PA is the class of all (promise) problems that can be decided by a polynomial-time
verifier circuit V with the ability to query an oracle for A. If V makes invalid queries
(i.e. x ∈ Ainv), the oracle may respond arbitrarily. However, since V is deterministic, it is
required to output the same final answer regardless of how such invalid queries are answered
[29,30]. Hence, the answer to any query outside of the promise set should not influence the
final output bit. For a function f , we define PC[f ] to be just as PC but with the additional
restriction that V may ask at most f(n) queries on an input of length n. One defines NPC

or NPC[f ] in the same way but replacing the polynomial-time deterministic verifier V by a
nondeterministic polynomial-time verifier V ′, taking an additional input y ∈ {0, 1}p(n) for
some polynomial p(n).

3 (Partial) proofs of a selection of results

In this section we will give some of the key lemmas and theorems which are behind the
results presented in Section 1. The full proofs as well as in-depth discussions can be found in
the full version [48].

3.1 QCMA-completeness of guidable local Hamiltonian problems
We prove a basic version of the reduction that shows that Guidable Local Hamiltonian
problems are QCMA-hard in the inverse polynomial precision regime. Our construction is
based on a combination of the ideas needed to show BQP-hardness for the Guided Local
Hamiltonian problem [17,18,28] and the small penalty clock construction of [23].

The first obstruction one encounters in adopting the ideas from the BQP-hardness proofs
of the Guided Local Hamiltonian problem to the guidable setting is the fact that QCMA
verifiers, unlike BQP, have a proof register. In QCMA the promises of completeness and
soundness are always with respect to computational basis state witnesses. Hence, these
might no longer hold when any quantum state can be considered as witness: for example,
in the no-case there might be highly entangled states which are accepted with probability
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≥ 2/3. When considering a circuit problem, the verifier can easily work around this by simply
measuring the witness and then proceeding to verify with the resulting computational basis
state. However, there is also another trick, which retains the unitarity of the verification
circuit – and which we will denote as the “CNOT-trick” from now on – to force the witness
to be classical, first used in proving QCMA-completeness of the Low complexity low energy
states problem in [49].

▶ Lemma 14 (The “CNOT-trick”). Let p(n) : N → R>0, q(n) : N → R>0 be polynomials. Let
Un be a quantum polynomial-time verifier circuit that acts on an n-qubit input register A, a
p(n)-qubit witness register B and a q(n)-qubit workspace register C, initialized to |0⟩⊗q(n).
Denote Π0 for the projection on the first qubit being zero. Let Q be the Marriott-Watrous
operator of the circuit, defined as

Q =
(

⟨x| ⊗ Iw ⊗ ⟨0|⊗q(n)
)
U†

nΠ0Un

(
|x⟩ ⊗ Iw ⊗ |0⟩⊗q(n)

)
. (1)

Consider yet another additional p(n)-qubit workspace D initialized to |0⟩⊗p(n), on which
Un does not act. Then by prepending Un with p(n) CNOT-operations, each of which is
controlled by a single qubit in register B and targeting the corresponding qubit in register D,
the corresponding Marriott-Watrous operator becomes diagonal in the computational basis.

The corresponding lemma and proof can be found in the full version [48]. The next obstruction
one faces is that in the QCMA setting there might be multiple proofs which all have
exponentially close, or even identical, acceptance probabilities. The analysis of the BQP-
hardness proof fails to translate directly to this setting, and another technique is needed.
For this, we resort to (i) using the fact that QCMA is equal to UQCMA under randomized
reductions and (ii) use a small-penalty clock construction of [23]. The key idea is to use a
Feynman-Kiteav circuit-to-Hamiltonian mapping modified with a tunable parameter ϵ, which
maps a quantum verification circuit Un, consisting of T gates from a universal gate set of
at most 2-local gates, taking input x and a quantum proof |ψ⟩ ∈

(
C2)⊗poly(n) to a k-local

Hamiltonian of the form

Hx
F K = Hin +Hclock +Hprop + ϵHout. (2)

The value of k depends on the used construction. Intuitively, the first three terms check
that the Hamiltonian is faithful to the computation and the last term shifts the energy level
depending on the acceptance probability of the circuit. Just as in [23], we will use Kempe and
Regev’s 3-local construction. A precise description of the individual terms in (2) can be found
in [34], and will not be relevant for our work, except for the fact that Hx

FK has a polynomially
bounded operator norm. The ground state of the first three terms H0 = Hin +Hclock +Hprop
is given by the so-called history state, which is given in [34] by

|η(ψ)⟩ = 1√
T + 1

T∑
t=0

Ut . . . U1 |ψ⟩ |0⟩
∣∣t̂〉 , (3)

where |ψ⟩ is the quantum proof and t̂ the unary representation of the time step of the
computation given by

t̂ = | 1 . . . 1︸ ︷︷ ︸
t

0 . . . 0︸ ︷︷ ︸
T −t

⟩.
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From the construction in [34], it is easily verified that if Un accepts (x, |ψ⟩) with probability
p then we have that the corresponding history state has energy

⟨η(ψ)|Hx
F K |η(ψ)⟩ = ϵ

1 − p

T + 1 . (4)

Though the core idea behind the small-penalty clock construction is identical to the one used
in the BQP-hardness proof – rescaling the weight of the Hout term as compared to the other
terms in a Feynman-Kiteav circuit-to-Hamiltonian mapping – the analysis differs: using tools
from the Schrieffer-Wolff transformation one can find precise bounds on intervals in which
the energies in the low-energy sector must lie, gaining fine control over the relation between
the acceptance probabilities of the circuit and the low-energy sector of the Hamiltonian. The
main lemma we use from [23] is adopted from the proof of Lemma 26 in their work.

▶ Lemma 15 (Small-penalty clock construction, adopted from Lemma 26 in [23]). Let Un be a
quantum verification circuit for inputs x, |x| = n, where Un consists of T = poly(n) gates
from some universal gate-set using at most 2-local gates. Denote P (ψ) for the probability
that Un accepts (x, |ψ⟩), and let Hx

FK be the corresponding 3-local Hamiltonian from the
circuit-to-Hamiltonian mapping in [34] with a ϵ-factor in front of Hout, as in Eq. (2). Then
for all ϵ ≤ c/T 3 for some constant c > 0, we have that low-energy subspace Sϵ of H, i.e.

Sϵ = span{|Φ⟩ : ⟨Φ|H |Φ⟩ ≤ ϵ}

has that its eigenvalues λi satisfy

λi ∈
[
ϵ
1 − P (ψi)
T + 1 − O(T 3ϵ2), ϵ1 − P (ψi)

T + 1 + O(T 3ϵ2)
]
, (5)

where {|ψi⟩} are the eigenstates of the Mariott-Watrous operator of the circuit Un given by
Eq. (1).

Having a QCMA-verifier with the CNOT-trick of Lemma 14 ensures that in Lemma 15 all
|ψi⟩ are computational basis states, as the CNOT-trick diagonalizes the Mariott-Watrous
operator. The small-penalty clock construction, in combination with the CNOT-trick and
some properties of the class QCMA, allows us to show QCMA-hardness of guidable local
Hamiltonian problems in a wide range of parameter settings.

▶ Theorem 16. CGaLH(k, δ, ζ) is QCMA-hard under randomized reductions for k ≥ 2,
ζ ∈ (1/poly(n), 1 − 1/poly(n)) and δ = 1/poly(n).

Proof. We will only state a “basic version” reduction, which uses basis states as guiding
states which trivially satisfy the conditions of Definition 1, for which we prove completeness
and soundness. One can improve its parameters in terms of the achievable fidelity and
locality domains, which is done in the full manuscript [48].

The basic reduction. Let ⟨Un, p1, p2⟩ be a QCMA promise problem. By the result of [6],
there exists randomized reduction to a UQCMA (which is QCMA but with a unique accepting
witness in the Yes-case) promise problem ⟨Ûn, p̂1, p̂2⟩, p̂1 − p̂2 ≥ 1/q(n) for some polynomial
q, which uses witnesses y ∈ {0, 1}p(n) for some polynomial p(n) and uses at most T = poly(n)
gates. We will now apply the following modifications to the UQCMA instance:
1. First, we force the witness to be classical by adding another register to which we “copy”

all bits of y (through CNOT operations), before running the actual verification protocol –
i.e. we use the CNOT trick of Lemma 14, which diagonalizes the corresponding Marriot-
Watrous operator in the computational basis.
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2. We apply error reduction to the circuit. This is done by applying the so-called “Marriot
and Watrous trick” for error reduction, described in [39], which allows one to repeat the
verification circuit several times whilst re-using the same witness. It is shown in [39],
Theorem 3.3, that for any quantum circuit Vn using T = poly(n) 2-qubit gates which
decides on acceptance or rejectance of an input x, |x| = n, using a p(n)-qubit witness
|ψ⟩ for some polynomial p, satisfying completeness and soundness probabilities c, s such
that c− s ≥ 1/q(n) there is another circuit Ṽn that again uses a p(n)-qubit witness |ψ⟩
but has completeness and soundness 1 − 2−r and 2−r, respectively, at the cost of using
T̃ = O(q2rT ) gates.

Let the resulting protocol be denoted by ⟨Ũn, c̃, s̃⟩, where Ûn has an input register A, a
witness register W and ancilla register B, uses T̃ = O(q2rT ) gates and has completeness
and soundness C = 1 − 2−r and ŝ = 2−r. We denote y∗ for the (unique) witness with
acceptance probability ≥ C in the yes-case. We keep r as a parameter to be tuned later in
our construction. We will also write P (y) := Pr[Û accepts (y)]. Now consider the 4-local
Hamiltonian

Hx = Hyes ⊗ |0⟩ ⟨0|D +Hyes ⊗ |1⟩ ⟨1|D , (6)

where Hyes = Hx
FK is the Hamiltonian given by Eq. (2) using the circuit Ûn and parameter ϵ

and Hno is given by

Hno =
R−1∑
i=0

|1⟩⟨1|i + bI, (7)

where R is the total size of the registers A, W , B and the clock register C, and b > 0 is yet
another tunable parameter. Note that Hno has a unique ground state with energy b given by
the all zeros state, and the spectrum after that increases in steps of 1 (and so it in particular
has a spectral gap of 1). We also have that ∥Hno∥ = R+ b = poly(n). As a guiding state in
the yes-case we will use the following basis state

|uyes⟩ = |x⟩A |y∗⟩W |0 . . . 0⟩B |0⟩C |0⟩D , (8)

which satisfies (⟨η(y∗)| ⟨0|D) |uyes⟩ = 1/
√

(T + 1) = O(1/poly(N)), with |η(y∗)⟩ being the
history state of witness y∗ for Hamiltonian Hyes. In the no-case, we will show that the state

|uno⟩ = |0 . . . 0⟩AW BC |1⟩D , (9)

will be in fact the ground state. We will now show that setting b := O(1/T̃ 7) and ϵ := O(1/T̃ 5),
our reduction achieves the desired result.

Completeness. Let us first analyse the yes-case. By Lemma 15, we have that the eigenvalue
λ(y) corresponding to the witness y∗ is upper bounded by

λ(y∗) ≤ ϵ
2−r

T̃ + 1
+ O(T̃ 3ϵ2).

On the other hand, we have that for any y ̸= y∗

λ(y) ≥ ϵ
1 − 2−r

T̃ + 1
− O(T̃ 3ϵ2) = Ω

(
1
T̃ 6

)
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for our choice of ϵ and r ≥ 1. Hence, for our choice of ϵ we must have that the ground state
|ψ⟩ of Hyes is unique and has a spectral gap that can be bounded as

γ(Hyes) ≥ ϵ
1 − 2−r+1

T̃ + 1
− O

(
T̃ 3ϵ2

)
= Ω

(
1
T̃ 6

)
, (10)

for some r ≥ Ω(1) (we will pick r to be much larger later). Let us consider the fidelity of the
history state |η(y∗)⟩ with the actual ground state. First, we have that the energy of |η(y∗)⟩
is upper bounded by

⟨η(y∗)|Hyes |η(y∗)⟩ ≤ ϵ
2−r

T̃ + 1
= O

(
2−r

T̃ 6

)
,

which follows directly from Eq. 4 and the fact that P (y∗) ≥ 1 − 2−r. We can write |η(y∗)⟩
in the eigenbasis of Hyes as |η(y∗)⟩ = α |ψ⟩ +

√
1 − α2|ψ⊥⟩, for some real number α ∈ [0, 1],

where |ψ⟩ is the actual ground state of Hyes and |ψ⊥⟩ another state orthogonal to |ψ⟩. We
have that the energy of |η(y∗)⟩ is upper bounded by

⟨η(y∗)|Hyes |η(y∗)⟩ ≤ ϵ
2−r

T̃ + 1
= O

(
2−r

T̃ 6

)
.

On the other hand, the energy of |η(y∗)⟩ is lower bounded by

⟨η(y∗)|Hyes |η(y∗)⟩ = α2 ⟨ψ|Hyes |ψ⟩ + (1 − α2)⟨ψ⊥|Hyes|ψ⊥⟩ ≥ Ω
(

1 − α2

T̃ 6

)
,

using the fact that Hyes is PSD. Combining the upper and lower bounds, we find

α2 = | ⟨η(y∗)|ψ⟩ |2 ≥ 1 − O
(
2−r
)
, (11)

which can be made ≥ 1 − 2−cT̃ for some r = cT̃ + O(1). Hence, we have that the fidelity of
|uyes⟩ with the unique ground state of H can be lower bounded as

|⟨uyes|ψ⟩|2 ≥ 1 −
(√

1 − | ⟨uyes| (|η(y∗)⟩ |0⟩)|2 +
√

1 − |(⟨η(y∗)| ⟨0|) |ψ⟩ |2
)2

≥ 1 −
(√

1 − 1
T̃ + 1

+ 2−cT̃ /2
)2

≥ Ω
(

1
T̃

)
,

as desired.

Soundness. We have that all witnesses y get accepted by Û with at most an exponentially
small probability, and hence have that Hyes ⪰ Ω(1/T̃ 6). By our choice b we have therefore
ensured that the ground state in the no-case must be the state given by Eq. (9), which has
energy b = Ω(1/T̃ 7). Hence, the promise gap between yes and no cases is δ = Ω(1/T̃ 7) =
Ω(1/q2T 8) = 1/poly(n).

In the full version [48] the rest of the proof can be found, which uses similar tricks as
in [17,18] to improve the basic construction in terms of the fidelity range and locality. ◀

Now that we have established QCMA-completeness for CGaLH∗, we get QCMA-completeness
for QGaLH for free for the same range of parameter settings, as the latter is a generalization
of the former (containing CGaLH∗ as a special case), and containment holds by the same
argument as used in the proof of Theorem 2 in [18]. However, with just a little bit more
work we can see that QCMA-hardness for QGaLH actually persists even when the overlap is
exponentially close to one. A proof of this is given in the full version [48].
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3.2 Spectral amplification
In this subsection we will discuss spectral amplification, which is the key technique behind
showing the containment results of Theorem 6. Let H =

∑m−1
i=0 Hi be a Hamiltonian on n

qubits which is a sum of k-local terms Hi, which satisfies ∥H∥ ≤ 1. Since H is Hermitian,
we can write H as

H =
2n−1∑
i=0

λi |ψi⟩ ⟨ψi| ,

where λi ∈ [−1, 1] (by assumption on the operator norm) denotes the i’th eigenvalue of H
with corresponding eigenvector |ψi⟩. Consider a polynomial P ∈ R[x] of degree d, and write

P (x) = a0 + a1x+ · · · + adx
d.

The polynomial spectral amplification of H for P is then defined as

P (H) = a0I + a1H + · · · + adH
d

= a0I + a1

2n−1∑
i=0

λi |ψi⟩ ⟨ψi| + · · · + ad

2n−1∑
i=0

λd
i |ψi⟩ ⟨ψi|

=
2n−1∑
i=0

P (λi) |ψi⟩ ⟨ψi| .

Now for α ∈ [−1, 1], denote

Πα =
∑

{i:λi≤α}

|ψi⟩ ⟨ψi| (12)

for the projection on all eigenstates of H which have eigenvalues at most α, which we
will call a low-energy projector of H. Note that for any α ≥ λ0, we must have that
ΠgsΠα = ΠαΠgs = Πgs. We can utilize such a projector to solve CGaLH(k, δ, ζ), simply by
computing ∥Πα |u⟩∥ for α = a given a classically evaluatable state |u⟩. To see why this works,
note that in the yes-case, for the witness desc(u) we have that ∥Πa |u⟩∥ ≥ ∥Πgs |u⟩∥ ≥

√
ζ

and in the no-case we have that ∥Πa |v⟩∥ = 0 for all states, which means that the two cases
are separated by

√
ζ. However, it is unlikely that an efficient description exists of Πa, and

even if it did, it would not be k-local and therefore ∥Πa |u⟩∥ would not even be necessarily
efficiently computable.

The idea is now to approximate this low-energy projector Πα by a polynomial in H. To
see this, note that Πα can be written exactly as

Πα = 1
2 (1 − sgn(H − αI)) ,

where sgn(x) is the sign function, which for our purposes is defined on R :→ R as

sgn(x) =
{

1 if x > 0,
−1 if x ≤ 0.

From [32] we can then use the polynomial approximation of the sign function, which can
subsequently be shifted to obtain the desired approximate low-energy projector Π̃a.
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▶ Lemma 17 (Polynomial approximation to the sign function, from [32]). For all δ′ >

0, ϵ′ ∈ (0, 1/2) there exists an efficiently computable odd polynomial P ∈ R[x] of degree

d = O
(

log(1/ϵ′)
δ′

)
, such that

for all x ∈ [−2, 2] : |P (x)| ≤ 1, and
for all x ∈ [−2, 2] \ (−δ′, δ′) : |P (x) − sgn(x)| ≤ ϵ′.

Since Lemma 17 holds on the entire interval [−2, 2], choosing any α ∈ [−1, 1] and scaling
the sgn(x) function with the factor 1/2 will ensure that the error, as in the lemma, will
be ≤ ϵ/2. Let qα(x) : R → [0, 1] defined as qα(x) = 1

2 (1 − sgn(x − α)) be this function,
with polynomial approximation Qα ∈ R[x] of degree d. Note that Qα can be written as a
function of P as Qα(x) = 1

2 (1 −P (x−α)). We will write Π̃α = Qα(H) for the corresponding
polynomial approximation of the approximate low-energy ground state “projector”. Note
that Π̃α is Hermitian (since H is Hermitian), but that Π̃α is no longer necessarily a projector
and therefore Π̃2

α ̸= Π̃α. If we now replace Πα in ∥Πα |u⟩∥ by Π̃α, we get
∥∥Π̃α |u⟩

∥∥ =√
⟨u| Π̃†

αΠ̃α |u⟩ =
√

⟨u| Π̃2
α |u⟩ =

√
⟨u| (Qα(H))2 |u⟩, which means that we have to evaluate

up to degree 2d powers of H. The next lemma (proof in full version [48]) will give an upper
bound on the number of expectation values that have to be computed when evaluating a
polynomial of H of degree d.

▶ Lemma 18. Given access to a classically evaluatable state |u⟩, a Hamiltonian H =∑m−1
i=0 Hi, where each Hi acts on at most k qubits non-trivially, and a polynomial P [x] of

degree d, there exists a classical algorithm that computes ⟨u|P (H) |u⟩ in O(md) computations
of ⟨u|Oi |u⟩, where the observables {Oi} are at most kd-local.

All that remains to show is that for constant promise gap δ, using a good enough
approximation Π̃α with a suitable choice of α, will ensure that we can still distinguish the
two cases in the CGaLH(k, δ, ζ) problem in a polynomial (resp. quasi-polynomial number of
computations in m when ζ = Ω(1) (resp. ζ = 1/poly(n)).

▶ Theorem 19. Let H =
∑m−1

i=0 Hi be some Hamiltonian, and desc(u) be a description of a
classically evaluatable state u ∈ C2n . Let a, b ∈ [−1, 1] such that b− a ≥ δ, where δ > 0 and
let ζ ∈ (0, 1]. Consider the following two cases of H, with the promise that either one holds:

(i) H has an eigenvalue ≤ a, and ∥Πgs |u⟩∥2 ≥ ζ holds, or
(ii) all eigenvalues of H are ≥ b.

Then there exists a classical algorithm that distinguishes between cases (i) and (ii) using

O
(
m

c
(

log
(

1/
√

ζ
)

)/δ
))

computations of local expectation values, for some constant c > 0.

Proof. Let Π̃α := Qα(H), where Q is a polynomial of degree d, be the approximate low-
energy projector that approximates Πα = 1

2 (1 − sgn(H − (αI))). We set α := a+b
2 , δ′ := δ/2

and ϵ′ = 1/10. We propose the following algorithm:
1. Compute

∥∥Π̃a |u⟩
∥∥ using a polynomial of degree 2d where d = O(log(1/ϵ′))/δ′, for

ϵ′ := 1
10

√
ζ and δ′ = δ/2.

2. If
∥∥Π̃α |u⟩

∥∥ ≥ 9
10

√
ζ output (i), and otherwise output (ii).

Clearly, by Lemma 18, we have that this can be done in at most O
(
m

c
(

log
(

1/
√

ζ
)

)/δ
))

computations of expectation values of local observables, for some constant c. Let us now
prove the correctness of the algorithm. Note that we can write Π̃α as
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Π̃α =
2n−1∑
i=0

Q(λi) |ψi⟩ ⟨ψi| ,

where we have that
1 −

√
ζ/2 ≤ Q(λi) ≤ 1 if λi ≤ a,

0 ≤ Q(λi) ≤ ζ/2 if λi ≥ b,

0 ≤ Q(λi) ≤ 1 else,

by Lemma 17. Let us analyse both cases (i) and (ii) separately.
(i) H has an eigenvalue ≤ a, and ∥Πgs |u⟩∥2 ≥ ζ holds.∥∥Π̃α |u⟩

∥∥ ≥
∥∥Π̃αΠgs |u⟩

∥∥
=
∥∥ΠαΠgs |u⟩ − (Πα − Π̃α)Πgs |u⟩

∥∥
=

∥∥∥∥∥Πgs |u⟩ −

( ∑
i:λi≤α

(1 −Q(λi)) |ψi⟩ ⟨ψi| −
∑

i:λi>α

Q(λi) |ψi⟩ ⟨ψi|

)
Πgs |u⟩

∥∥∥∥∥
≥

∥∥∥∥∥Πgs |u⟩ −

( ∑
i:λi≤α

1
10 |ψi⟩ ⟨ψi|

)
Πgs |u⟩

∥∥∥∥∥
=
∥∥∥Πgs |u⟩ − 1

10ΠαΠgs |u⟩
∥∥∥

= (1 − 1
10)∥Πgs |u⟩∥

≥ 9
10
√
ζ.

(ii) All eigenvalues of H are ≥ b. We must have that
∥∥Π̃α |u⟩

∥∥ ≤ 1
2
√
ζ, since λi ≥ b for all

i ∈ {0, . . . , 2n − 1}.
Hence, we have that the promise gap between both cases is lower bounded by 9

10
√
ζ − 1

2
√
ζ =

2
5
√
ζ, which is 1/poly(n) when ζ ≥ 1/poly(n). ◀

▶ Remark 20. It should be straightforward to adopt the same derivation as above to a more
general setting by considering sparse matrices, a promise with respect to the fidelity with
the low-energy subspace (i.e. all states with energy ≤ λ0 + γ for some small γ), as well as
ϵ > 0 for ϵ-classically evaluatable states.

3.3 Upper bound on QCPCP with constant proof queries
Here we show that QCPCP with a constant number of proof queries is contained in BQPNP[1],
i.e. in BQP with only a single query to an NP-oracle. The full proof is rather long, but the
idea is simple: just as is the case for QPCP, a quantum reduction can be used to transform a
QCPCP system into a local Hamiltonian problem. However, since the proof is now classical,
one can directly learn a diagonal (i.e. classical) Hamiltonian that captures the input/output
behaviour of the QCPCP-circuit on basis state inputs. The main technical work required is
to derive sufficient parameters in the reduction, thereby ensuring that the reduction succeeds
with the desired success probability.

We will use the following two lemmas, whose proofs can be bound in the full version [48].
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▶ Lemma 21. Let H =
∑

i∈[m] wiHi be a k-local Hamiltonian consisting of weights wi ∈ [0, 1]
such that

∑
i∈[m] wi = W , and k-local terms Hi for which ∥Hi∥ ≤ 1 for all i ∈ [m].

Let Ω≥γ = {i|wi ≥ γ} and Ω<γ = [m] \ Ω≥γ, for some parameter γ ∈ [0, 1]. Suppose
H̃ =

∑
i∈Ω≥γ

w̃iH̃i is another Hamiltonian such that, for all i ∈ Ω≥γ , we have |w̃i − wi| ≤ ϵ0

and
∥∥Hi − H̃i

∥∥ ≤ ϵ1. Then∥∥H − H̃
∥∥ ≤ m(γ + ϵ0) + (W +mϵ0)ϵ1

▶ Lemma 22 (Upper bound on the non-uniform double dixie cup problem). Given samples
from the set N = [n], according to a distribution P, consider the subset Mγ ⊆ N such that
Mγ = {i ∈ N : P(i) ≥ γ}, for some γ ∈ [0, 1]. Let TP

m(M) be the random variable indicating
the first time that all elements in Mγ have been sampled at least m times when sampling from
N over the distribution P. Write Tm(S) when the distribution over some set S is uniform.
Then we have that

E[TP
m(Mγ)] ≤ E[Tm(⌈1/γ⌉)],

where E[Tm(⌈1/γ⌉)] = ⌈1/γ⌉ ln⌈1/γ⌉ + (m− 1)⌈1/γ⌉ ln ln⌈1/γ⌉ + O (⌈1/γ⌉) .

Let us now consider the quantum algorithm used to learn the diagonal Hamiltonian whose
spectrum encodes the acceptance probabilities of the QCPCP-verifier. Let Vx be the QCPCP-
verifier circuit with the input x hardcoded into it. The idea of the algorithm is that it runs Vx

many times, simultaneously gathering statistics on which indices are most likely to be queried
by Vx (which is independent of the proof when the verifier is non-adaptive) as well as the
probability of acceptance given that the proof locally looks like a string z ∈ {0, 1}q. For every
run, indexed by t ∈ [T ] for some T ∈ N, this generates a tuple Ot,z = ((it,z

1 , . . . , it,z
k ), ot,z), in

which the proof y was supposed to be queried at indices i1, . . . , iq, and in which those bits
were assigned the values yi1 = z1, . . . , yiq = zq, and where o is the accept/reject measurement
outcome. It repeats this process T times for every z. The resulting algorithm can be specified
as follows:
1. For z ∈ {0, 1}q:

a. Run Vx for a total of T times to obtain samples {Ot,z}t∈[T ].
b. For all observed (it,z

1 , . . . , it,z
q ), set

λ̃x,(i1,...,iq)(z) := # times ot,z = 1 and i1, . . . , iq observed
# times i1, . . . , iq observed .

2. Set

P̃x(i1, . . . , iq) =
∑

z∈{0,1}q

# times (it,z
1 , . . . , it,z

q ) observed
2qT

,

3. For any estimated P̃x(i1, . . . , iq) ≤ γ remove both P̃x(i1, . . . , iq) and associated
λ̃x,(i1,...,iq)(z) for all z, and output all of the remaining ones.

The resulting diagonal Hamiltonian will then be constructed as

H̃x =
∑

(i1,...,iq)∈Ω≥γ

P̃x(i1, . . . , iq)H̃x,(i1,...,iq),

where

H̃x,(i1,...,iq) =
∑

z∈{0,1}q

(1 − λ̃x,(i1,...,iq))(z)|z⟩⟨z|i1,...,iq
.
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By Lemma 21 we can upper bound the difference between the Hamiltonian and the learned
Hamiltonian. The next lemma shows that all relevant parameters can be learned up to
inverse polynomial precision in polynomial time.

▶ Lemma 23. Let q ∈ N be some constant and x an input with |x| = n. Consider a QCPCP[q]
protocol with verification circuit Vx (which is V but with the input x hardcoded into the
circuit), and proof y ∈ {0, 1}p(n), and let

Px(i1, . . . , iq) = P [Vx queries the proof at indices (i1, . . . , iq)]

and

λx,(i1,...,iq)(z) = P
[
Vx accepts given proof bits i1, . . . , iq are queried

and are given by yi1 = z1, . . . , yiq
= zq

]
.

Let Ω = {(i1, . . . , iq) : ij ∈ [p(n)], ∀j ∈ [q]}, Ω≥γ = {(i1, . . . , iq) ∈ Ω|Px(i1, . . . , iq) ≥ γ}
and Ω<γ = Ω \ Ω≥γ , for some parameter γ ∈ [0, 1]. Then there exists a quantum algorithm
that, for all (i1, . . . , iq) ∈ Ω≥γ and all z ∈ {0, 1}q, provides estimates P̃x(i1, . . . , iq) and
λ̃x,(i1,...,iq)(z) such that∣∣P̃x(i1, . . . , iq) − Px(i1, . . . , iq)

∣∣ ≤ ϵ0,

and∣∣λ̃x,(i1,...,iq)(z) − λx,(i1,...,iq)(z)
∣∣ ≤ ϵ1,

with probability 1 − δ, and runs in time poly(n, 1/γ, 1/ϵ0, 1/ϵ1, 1/δ).

Proof. Let us now show that there exists a T not too large such that the criteria of the
theorem are satisfied. Since the Px(i1, . . . , iq) form a discrete distribution over the set Ω,
where |Ω| =

(
n
q

)
≤
(

en
q

)q

which for constant q is polynomial in n, we know by a standard
result in learning theory (see for example [19]) that a total of

Θ
(

|Ω| + log(1/δ0)
ϵ20

)
samples of Ot,z (the “z”-value is in fact irrelevant here) suffices to get, with probability at
least 1 − δ0, estimates P̃x(i1, . . . , iq) which satisfy∣∣P̃x(i1, . . . , iq) − Px(i1, . . . , iq)

∣∣ ≤ ϵ0.

To learn estimates λ̃x,(i1,...,iq)(z) for a single index configuration (i1, . . . , iq) and proof config-
uration z, Hoeffding’s inequality tells us that we only need

O
(

log (1/δ1)
ϵ21

)
samples of Ot,z to have that

∣∣λ̃x,(i1,...,iq)(z) − λx,(i1,...,iq)(z)
∣∣ ≤ ϵ1, with probability 1 − δ1.

This means that any index configuration (i1, . . . , iq) such that Px(i1, . . . , iq) ≥ γ needs to
appear O

(
log(1/δ1)

ϵ2
1

)
many times, to get a good estimate of λ̃x,(i1,...,iq)(z). Lemma 22 shows

that the expected number of samples needed such that this condition is met is upper bounded
by ⌈

1
γ

⌉
ln
⌈

1
γ

⌉
+
(

O
(

log (1/δ1)
ϵ21

)
− 1
)⌈

1
γ

⌉
ln ln

⌈
1
γ

⌉
+ O

(⌈
1
γ

⌉)
,
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which by Markov’s inequality means that

1
δλ

(⌈
1
γ

⌉
ln
⌈

1
γ

⌉
+
(

O
(

log (1/δ1)
ϵ21

)
− 1
)⌈

1
γ

⌉
ln ln

⌈
1
γ

⌉
+ O

(⌈
1
γ

⌉))
samples of Ot,z suffice to turn this into an algorithm that achieves success probability ≥ 1−δλ.
To ensure that our entire algorithm succeeds with probability 1 − δ, we require that

(1 − δλ)2q

(1 − δ0)(1 − δ1)2q⌈ 1
γ ⌉ ≥ 1 − δ,

which can be achieved by setting δλ = δ/(2q+2), δ0 = δ/4 and δ1 = δ/(⌈1/γ⌉2q+2). Both
the statistics for probabilities over the set of indices, as well as the output probabilities, are
gathered at the same time. This means that the requirements on the number of samples
needed for both estimations can be met at the same time, therefore the total number of
samples T that we must take satisfies

T ≥ max{Θ

(⌈
1
γ

⌉
+ log

(
1
δ

)
ϵ2

0

)
,

22(q+1)

δ

(⌈ 1
γ

⌉
ln
⌈ 1
γ

⌉
+ O

(
q log

(⌈
1
γ

⌉
/δ
)

ϵ2
1

)⌈ 1
γ

⌉
ln ln

⌈ 1
γ

⌉)
},

which yields a total runtime of O(poly(n, ⌈1/γ⌉, 1/δ, 1/ϵ1, 1/ϵ0)) when q = O(1). ◀

Lemma 23 can then be combined with Lemma 21 to show that a diagonal Hamiltonian whose
spectrum encodes the acceptance probabilities of Vx can be learned in polynomial time with
high probability.

▶ Lemma 24. Let q ∈ N be some constant, then there exists a quantum algorithm that
can reduce any problem solvable by a QCPCP[q] protocol, without access to the proof y, to a
diagonal Hamiltonian H̃x with the following properties:

x ∈ Pyes ⇒ ∃y ∈ {0, 1}p(n) : ⟨y| H̃x |y⟩ ≤ 1
3 + ϵ

x ∈ Pno ⇒ ∀y ∈ {0, 1}p(n) : ⟨y| H̃x |y⟩ ≥ 2
3 − ϵ .

This reduction succeeds with probability 1 − δ and runs in time poly(n, 1/ϵ, 1/δ).

Finally, from Lemma 24 the main theorem follows, as a BQP verifier can perform the quantum
reduction and, conditioned on succeeding, solve the resulting diagonal local Hamiltonian
problem making only a single query to the NP-oracle.

▶ Theorem 25. For all constant q ∈ N, we have that QCPCP[q] ⊆ BQPNP[1].

The full proofs of Theorem 25 and Lemma 24 are given in the full version [48].
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Abstract
The polynomial and the adversary methods are the two main tools for proving lower bounds on
query complexity of quantum algorithms. Both methods have found a large number of applications,
some problems more suitable for one method, some for the other.

It is known though that the adversary method, in its general negative-weighted version, is tight
for bounded-error quantum algorithms, whereas the polynomial method is not. By the tightness of
the former, for any polynomial lower bound, there ought to exist a corresponding adversary lower
bound. However, direct reduction was not known.

In this paper, we give a simple and direct reduction from the polynomial method (in the form of
a dual polynomial) to the adversary method. This shows that any lower bound in the form of a dual
polynomial is actually an adversary lower bound of a specific form.
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1 Introduction

Proving lower bounds on quantum query complexity is a task that has attained significant
attention. The reason is that it is essentially the only known way to prove limitations
on the power of quantum algorithms. For instance, Bennett, Bernstein, Brassard, and
Vazirani [14] proved a quantum query lower bound for the OR function using what later
became known as the hybrid method. This demonstrates that there is no way to attain a
better than Grover’s [21] quadratic speed-up for an NP-search problem if we treat the latter
as a black-box (an oracle). Powerful tools for proving quantum query lower bounds have
been developed consequently: the polynomial method, and the adversary method, both in
its original (positive-weighted) and improved (negative-weighted) formulations.

The polynomial method is due to Beals, Buhrman, Cleve, Mosca, and de Wolf [9], and it
was inspired by a similar method used by Nisan and Szegedy [27, 28] to prove lower bounds
on randomized query complexity. The method builds on the following observation: if A is a
T -query quantum algorithm, then its acceptance probability on input x can be expressed as a
degree-2T multivariate polynomial in the input variables xi. Beals et al. [9] used this method
to re-prove the lower bound for the OR function from [14], and establish other results like a
tight lower bound for all total symmetric Boolean functions. A landmark result obtained by
this method is the lower bound for the collision problem by Aaronson and Shi [3]. Similarly
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as Bennett et al.’s result [14], it shows that a black-box approach to finding a collision in a
hash function by a quantum computer is doomed as well. This method has been popular
ever after.

The original adversary method is due to Ambainis [4], and it is an improvement on
the aforementioned hybrid method. The bound was strengthened by Ambainis himself [5]
and Zhang [35] shortly afterwards. One of the appealing features of this method is its
convenient combinatorial formulation, which resulted in a number of applications [7, 20, 15, 19].
However, the original formulation of the adversary bound was subject to several important
limitations [35].

Partly in order to overcome these limitations, Høyer, Lee, and Špalek generalised the
adversary bound in [22]. Departing from the semidefinite formulation of the original adversary
bound by Barnum, Saks, and Szegedy [8], Høyer et al. showed that the same expression
still yields a lower bound if one replaces non-negative entries by arbitrary real numbers.
This negative-weighted formulation of the bound is strictly more powerful than the positive-
weighted one, but it lacks the combinatorial convenience of the latter. The bound turned
out to be useful for composed functions [22] and sum-problems [13, 12]. In a series of
papers [31, 29, 30], Reichardt et al. surprisingly proved that the negative-weighted version
of the bound is tight for bounded-error algorithms!

The polynomial method, on the other hand, is known to be non-tight. Ambainis [5]
constructed a first super-linear separation between the two for total Boolean functions.
This was later improved to an almost quartic separation by Aaronson, Ben-David, and
Kothari [1], which is essentially tight [2]. For partial functions, the separations can be even
more impressive [6].

The history of relationship between the adversary and the polynomial methods is rather
interesting. For instance, the AND of ORs function allows for a very simple adversary lower
bound [4], but its polynomial lower bound is more complicated and was only obtained more
than a decade later. It was achieved independently by Sherstov [33], and Bun and Thaler [17]
using the technique of dual polynomials [32]. The latter is the dual of an approximating
polynomial in the sense of linear programming. Therefore, by strong duality, their optimal
values are exactly equal, and every lower bound on polynomial degree can, in principle, be
stated as a dual polynomial. The technique of dual polynomials has been used by Bun,
Kothari, and Thaler [16] to prove strong lower bounds for a number of problems like k-
distinctness, image size testing, and surjectivity. The first of them was later improved in [26].
Similarly strong adversary lower bounds for these problems are not known.

Since the adversary method is tight, for every polynomial lower bound, there ought to exist
a similarly good adversary lower bound. However, a direct reduction was not known. In this
paper, we prove a simple direct reduction, giving a mechanical way of converting every dual
polynomial into an adversary lower bound of a specific form. We hope that this connection
will give a better understanding of both techniques, and should enable their combined use,
which could result in better lower bounds. Contrary to a large number of papers dealing
with the general adversary method, all proofs in this paper are fairly elementary.

A related result is a direct reduction from the polynomial method to multiplicative
adversary by Magnin and Roland [25], while we give a reduction to a more widely-used
additive adversary. We also note that our construction has similarities to a recent powerful
lower bound technique by Zhandry [34, 24]. It would be interesting to understand the
connection between the two better.

The following result is the cornerstone of our reduction. Here, we consider the task of
distinguishing whether an input x ∈ [q]n belongs to a set X ⊆ [q]n or Y ⊆ [q]n. Informally,
the result states that X and Y cannot be distinguished by a quantum query algorithm if
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they are perfectly indistinguishable by assignments of a corresponding weight. Recall that an
assignment is a function α : S → [q] defined on a subset S of the set of indices [n]. We write
x ∼ α if x ∈ [q]n agrees with the assignment α, that is, xj = α(j) for all j ∈ S. The weight
|α| of the assignment is the size of its domain S. It is possible to have an empty assignment
∅ of zero weight, in which case, every input string agrees to it.

▶ Theorem 1. Let X, Y ⊆ [q]n be sets of inputs, and µ and ν be probability distributions
on X and Y , respectively. Assume that, for any assignment α of weight ≤ 2m, we have the
following perfect indistinguishability

Pr
x←µ

[x ∼ α] = Pr
y←ν

[y ∼ α]. (1)

That is, the probability that x agrees to α does not depend on whether x is sampled from µ or
from ν. Then, the quantum query complexity of distinguishing X and Y is Ω(m).

The result itself is actually known. We will give two proofs in this paper. The first one
in Section 2 uses the method of dual polynomials and it is purely for illustrative purposes.
The second proof is new and is done using the adversary method. This is the main technical
contribution of this paper. Let us give a very short outline here. The proof uses the following
collection of vectors:

vX
α =

∑
x∈X:x∼α

√
µx|x⟩ and vY

α =
∑

y∈Y :y∼α

√
νy|y⟩,

where α is an assignment. By the indistinguishability, for every k ≤ m, there exists a
linear isometry W≤k that maps vX

α into vY
α for all α with |α| ≤ k. The adversary matrix is

Γ =
∑m−1

k=0 W≤k. It is not hard to show it has norm m, and we prove that ∥Γ ◦∆j∥ ≤ 1 for
all j. This proof is contained in Sections 3 and 4. In Section 3, we only consider the space
RX , and in Section 4, we substitute RX with RY using indistinguishability.

In Section 5, we show how to use this result to transform a dual polynomial into an
adversary bound. The idea is that a dual polynomial gives probability distributions µ and ν

on two sets X̃ and Ỹ that are “close” to X and Y and that satisfy the promise of Theorem 1.
We first prove the lower bound in the form of the adversary for distinguishing two probability
distributions from [11], as we think it is conceptually closer to the dual polynomial. Obtaining
a standard worst-case adversary bound is also easy.

2 Preliminaries

For a positive integer m, let [m] denote the set {1, 2, ..., m}. For a predicate P , we write 1P

to denote the indicator variable that is 1 if P is true, and 0 otherwise.
We consider partial functions f : D → {0, 1} with D ⊆ [q]n. We denote X = f−1(1) and

Y = f−1(0). Thus, the function f distinguishes X and Y . An element x = (x1, x2, . . . , xn) ∈
[q]n, is called an input, the set [q] is called the input alphabet, and xj ∈ [q] are individual
input symbols.

A measure on a finite set X is a function µ from X to the set of non-negative real
numbers. We denote the value of µ on x ∈ X by µx. The measure is a probability
distribution if

∑
x∈X µx = 1. We use x← µ to denote that x is sampled from the probability

distribution µ.1

1 A more standard notation is x ∼ µ. But since we use x ∼ α for agreement with an assignment α, we
opted to use a different piece of notation.
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2.1 Linear Algebra

An X × Y matrix is a matrix with rows labelled by the elements of X and columns by the
elements of Y . The element of an X × Y matrix A at the intersection of the x-th row and
the y-th column is denoted by A[[x, y]]. For X ′ ⊆ X and Y ′ ⊆ Y , the matrix A[[X ′, Y ′]] is
the restriction of A to the rows in X ′ and the columns in Y ′. We use ∥A∥ to denote spectral
norm of matrices. We identify a subspace and the corresponding orthogonal projector, which
we usually denote by Π with additional decorations. An isometry is a linear operator that
preserves inner product. We need the following well-known result:

▶ Lemma 2. Assume H and K are two inner-product spaces. Let (vi)i∈A ⊆ H and (wi)i∈A ⊆
K be two collections of vectors indexed by the same index set A. Assume ⟨vi, vj⟩ = ⟨wi, wj⟩
for all i, j ∈ A. Then, there exists an isometry T : spani vi → spani wi such that Tvi = wi

for all i.

2.2 Adversary Bound

We use two different flavours of the negative-weighted adversary bound. Here we give the
canonical version from [22] and later we state the distributional version from [11].

Assume we want to distinguish two sets of inputs X, Y ⊆ [q]n as above. Let Γ be a real
X × Y matrix. For j ∈ [n], denote by Γ ◦∆j the matrix of the same dimensions as Γ whose
(x, y)-th entry is given by Γ[[x, y]] · 1xj ̸=yj . In other words, the entries with xj = yj are being
erased (replaced by zeroes).

▶ Theorem 3 ([22]). Assume that Γ is an X × Y real matrix such that ∥Γ ◦∆j∥ ≤ 1 for all
j ∈ [n]. Then, the (bounded-error) quantum query complexity of evaluating f is Ω(∥Γ∥).

The matrix Γ from Theorem 3 is called the adversary matrix, and it is known that the
bound of this theorem is tight [30].

As it can be guessed from the notation, the mapping Γ 7→ Γ ◦∆j is usually expressed as
an Hadamard product with a 01-matrix ∆j of dimensions X × Y . However, we find it more
convenient to think of it as a mapping. In particular, we don’t have to formally re-define the
matrix ∆j for matrices Γ of different dimensions, and the matrix ∆j almost never appears
by itself.

The norm of the matrix Γ◦∆j is not always easy to estimate. The following trick from [12]
based on [23, Fact 2.4] is of help here. With some stretch of notation, we write Γ ∆j7−→ B if
(Γ− B) ◦∆j = 0. In other words, we are allowed to arbitrary change the (x, y)-entries of
Γ with xj = yj in order to obtain B. Note that this is a relation, since B is not uniquely
defined by Γ. The idea is as follows:

▶ Proposition 4. For any B with Γ ∆j7−→ B, we have ∥Γ ◦∆j∥ ≤ 2∥B∥. Moreover, if f is a
Boolean function, i.e., D ⊆ {0, 1}n, then ∥Γ ◦∆j∥ ≤ ∥B∥.

Hence, we can bound ∥Γ ◦∆j∥ from above by estimating ∥B∥, which is often easier. We
repeatedly use the following easy properties of thus defined relation ∆j :

▶ Proposition 5. For any X × Y matrices A, B, C, D and real numbers a and c, we have
(a) A

∆j7−→ A and A
∆j7−→ A ◦∆j;

(b) if A
∆j7−→ B and C

∆j7−→ D, then aA + cC
∆j7−→ aB + cD.
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2.3 Distributional Adversary
We also use the version of the adversary bound for distinguishing two probability distributions.
This version is rather versatile as it allows the probability distributions to overlap and to
have arbitrary acceptance probabilities.

▶ Theorem 6 ([11]). Assume A is a quantum algorithm that makes T queries to the input
string x = (x1, . . . , xn) ∈ [q]n, and performs a measurement at the end with two outcomes:
“accept” or “reject”. Let µ and ν be two probability distributions on [q]n, and denote by sµ

and sν the acceptance probability of A when x is sampled from µ and ν, respectively. Then,

T = Ω
(

min
j∈[n]

δ∗µΓδν − τ(sµ, sν)∥Γ∥
∥Γ ◦∆j∥

)
, (2)

for any [q]n × [q]n matrix Γ with real entries. Here,

δµ[[x]] = √µx and δν [[y]] = √νy (3)

are unit vectors in R[q]n , and

τ(sµ, sν) =
√

sµsν +
√

(1− sµ)(1− sν) ≤ 1− |sµ − sν |2

8 . (4)

2.4 Polynomials
In the polynomial method, we have to assume that the function f : D → {0, 1} is Boolean:
D ⊆ {0, 1}n. If this does not hold, one has to make the function Boolean. A popular option
is to introduce new variables x̃i,a with i ∈ [n] and a ∈ [q], defined by x̃i,a = 1xi=a.

For S ⊆ [n], the corresponding character is the function χS : {0, 1}n → {±1} defined by
χS(x) =

∏
i∈S(−1)xi . The characters form a basis of the space of functions R{0,1}n . Hence,

every function f : {0, 1}n → R has a unique representation as a (multilinear) polynomial:
f =

∑
S⊆[n] αSχS . The size of the largest S with non-zero αS is called the degree of f .

A degree-d polynomial is any function p : {0, 1}n → R of degree at most d. A degree-d
dual polynomial is a function ϕ : {0, 1}n → R satisfying∑

x∈{0,1}n

|ϕ(x)| = 1 and
∑

x∈{0,1}n

ϕ(x)χS(x) = 0 for all |S| ≤ d. (5)

It is easy to check that the second condition above is equivalent to the following one:∑
x∼α

ϕ(x) = 0 for all assignments α with |α| ≤ d. (6)

Dual polynomials [32] can be used to show inapproximability for real-valued total functions.
We may assume d < n, since every function can be represented by a degree-d polynomial.

The proof of the following theorem, as well as that of Theorem 10 are based on linear
programming duality, and are given in Appendix A for completeness.

▶ Theorem 7. Let d < n. For any function f : {0, 1}n → R, we have

min
p

max
x∈{0,1}n

|f(x)− p(x)| = max
ϕ

∑
x∈{0,1}n

ϕ(x)f(x), (7)

where p ranges over all degree-d polynomials and ϕ ranges over all degree-d dual polynomials.
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Let us now turn to the case of partial functions f : D → {0, 1} with D ⊆ {0, 1}n. Again,
we let X = f−1(1) and Y = f−1(0).

▶ Definition 8. We say that a polynomial p : {0, 1}n → R ε-approximates a partial function
f : D → {0, 1} with D ⊆ {0, 1}n if

for every x ∈ D, we have |p(x)− f(x)| ≤ ε;
for every x ∈ {0, 1}n, we have 0 ≤ p(x) ≤ 1.

The importance of this definition stems from the following result:

▶ Theorem 9 ([9]). If a partial function f : D → {0, 1} with D ⊆ {0, 1}n can be evaluated
by a T -query quantum algorithm with error at most ε, then f can be ε-approximated by a
polynomial of degree at most 2T .

The corresponding analogue of Theorem 7 is slightly more involved. A similar result
previously appeared in [18].

▶ Theorem 10. The best approximation distance ε as in Definition 8 of the function f by a
degree-d polynomial is given by

max
{

max
ϕ

(∑
x∈X

ϕ+(x)−
∑
x/∈Y

ϕ−(x)
)

, 0
}

, (8)

where the maximisation is over functions ϕ : {0, 1}n → R satisfying∑
x∈X

ϕ+(x) +
∑
x∈Y

ϕ−(x) = 1 and
∑

x∈{0,1}n

ϕ(x)χS(x) = 0 for all |S| ≤ d. (9)

Here ϕ+(x) = max{0, ϕ(x)} and ϕ−(x) = max{0,−ϕ(x)} are the positive and the negative
parts of ϕ, respectively. We will still call ϕ a degree-d dual polynomial in this case, although
it need not satisfy the first (normalisation) condition of (5).

Proof of Theorem 1 using Dual Polynomials. We may assume the function f is Boolean.
It suffices to show that it cannot be approximated by a polynomial of degree less than 2m.
Let

ϕ(x) =


µx/2, if x ∈ X;
−νx/2, if x ∈ Y ;
0, otherwise.

This function satisfies (9) with d = 2m. Indeed, the first condition follows from µ and ν

being probability distributions, and the second one follows from (6) since∑
x∼α

ϕ(x) = 1
2 Pr

x←µ
[x ∼ α]− 1

2 Pr
y←ν

[y ∼ α] = 0

by (1). The value of (8) is 1/2, hence, by Theorem 10, it is impossible to get a better than
trivial approximation. ◀

3 ∆-decomposition of RX

Let X ⊆ [q]n be a set of inputs, and let µ be some measure on X. We assume in this section
that X is the support of µ, i.e., µx > 0 for all x ∈ X. The goal of this section is to develop a
decomposition of the space RX convenient for the ∆j operation and that takes into account
the measure µ. Let us remind that we use the same notation, like Π≤k, to denote both the
subspace and the corresponding orthogonal projector.
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3.1 Definition of subspaces
For each assignment α, define the following vector in RX :

vα =
∑
x∼α

√
µx|x⟩. (10)

Based on these vectors, we define a number of subspaces. First, for k ∈ {0, 1, . . . , n}:

Π≤k = span
α : |α|=k

vα. (11)

▷ Claim 11. We have Π≤k−1 ⊆ Π≤k and Π≤n = RX .

Proof. Let α be an assignment of weight k− 1, and i be an element of [n] outside the domain
of α. Then,

vα =
∑
a∈[q]

vα∪{i7→a},

proving the first claim.
For the second claim, note that an assignment α of weight n defines an individual input.

◁

This gives an orthogonal decomposition of RX into subspaces

Πk = Π≤k ∩Π⊥≤k−1 = Π≤k −Π≤k−1.

3.2 Example
A simple example is X = [q]n with the uniform distribution µx. Define two orthogonal
projectors on Rq: E0 = Jq/q and E1 = Iq − E0, where Jq is the all-1 matrix. Then,

Πk =
∑

s∈{0,1}n:|s|=k

Es1 ⊗ Es2 ⊗ · · · ⊗ Esn
,

where |s| is the Hamming weight. These operators are similar to the ones used in the
construction of the adversary lower bound for element distinctness [10] and sum-problems [12].

Note that while the vectors vα in (10) only have non-negative entries, the projectors Π≤k

can have negative entries. For instance, such are matrices Π≤1 in the above example.

3.3 Action of ∆j

Let us consider the action of ∆j with j ∈ [n]. For that, we define the following variant of the
above subspaces Π≤k:

Ξ≤k,◦j = span
α : |α|=k, α defined on j

vα.

In particular, we again have Ξ≤n,◦j = RX . This time, however, Ξ≤0,◦j is the empty subspace.

▷ Claim 12. We have the following:
(a) Ξ≤k−1,◦j ⊆ Ξ≤k,◦j ;
(b) Π≤k−1 ⊆ Ξ≤k,◦j ⊆ Π≤k;
(c) ∆j ◦ Ξ≤k,◦j = 0.
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Proof. The proof of (a) is analogous to the proof of Claim 11.
The second inclusion of (b) holds because Ξ≤k,◦j is a span of a subset of vectors of Π≤k.

To prove the first inclusion of (b), it suffices to show that an arbitrary vα with |α| = k − 1 is
contained in Ξ≤k,◦j . The proof of that is analogous to the proof of Claim 11. However, this
time we take i = j if α is not defined on j (and an arbitrary i as before, otherwise).

Now let us prove (c). Note that Ξ≤k,◦j can be written as a direct sum

Ξ≤k,◦j =
⊕
b∈[q]

Ξ≤k,j 7→b (12)

of orthogonal projectors

Ξ≤k,j 7→b = span
α : |α|=k, α(j)=b

vα.

Each Ξ≤k,j 7→b acts on the subspace spanned by x ∈ X with xj = b. Hence, ∆j ◦Ξ≤k,j 7→b = 0.
By linearity, ∆j ◦ Ξ≤k,◦j = 0. ◁

3.4 Standard Form of Adversary
As a warm-up for the next sections, we describe the following “standard” form of the
“adversary” matrix on RX :

m−1∑
k=0

Π≤k =
m∑

k=0
(m− k)Πk. (13)

Clearly, the norm of this matrix is m. The action of ∆j is defined as

m−1∑
k=0

Π≤k
∆j7−→

m−1∑
k=0

(
Π≤k − Ξ≤k,◦j

)
, (14)

where we use Proposition 5 and point (c) of Claim 12.

▷ Claim 13. The norm of the operator on the right-hand side of (14) is 1.

Proof. The operator in question is the sum of projectors Π≤k − Ξ≤k,◦j . By point (b) of
Claim 12, we know that Π≤k is contained in Ξ≤k+1,◦j . Hence, these projectors are pairwise
orthogonal, and the norm of the operator is 1. ◁

In the following section, we will transfer this construction for X × Y -matrices.

4 Second Proof of Theorem 1

Here, we give a proof of Theorem 1, which is based on the adversary method. In this section,
we use upper indices X and Y in the following way. If the upper index X is used, the
corresponding object is equal to the one without the upper index as defined in Section 3. If
the upper index Y is used, we use the same object but with the probability distribution ν on
Y instead of µ on X. For example:

vX
α =

∑
x∈X:x∼α

√
µx|x⟩ ∈ RX and vY

α =
∑

y∈Y :y∼α

√
νy|y⟩ ∈ RY .

Similarly, ΠX
≤k and ΞX

≤k,◦j are projectors in RX , and ΠY
≤k and ΞY

≤k,◦j are projectors in RY .
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▶ Lemma 14. In the assumptions of Theorem 1, there exists a linear isometry W : ΠY
≤m →

ΠX
≤m that maps vY

α into vX
α for each |α| ≤ m.

Proof. Let α and β be assignments of weight at most m. Note that〈
vX

α , vX
β

〉
= Pr

x∼µ
[x ∼ α ∧ x ∼ β] = Pr

y∼ν
[y ∼ α ∧ y ∼ β] =

〈
vY

α , vY
β

〉
.

Indeed, either α and β contradict each other, in which case the both sides of the above
equality are zero, or they can be merged into one assignment of weight at most 2m, in which
case (1) applies. Hence, by Lemma 2, there exists a linear isometry W that maps vY

α into
vX

α for each |α| ≤ m. ◀

The following theorem defines the adversary matrix Γ which, when plugged into Theorem 3,
gives Theorem 1. This matrix will be important in the next section for the reduction from
the polynomial method.

▶ Theorem 15. In the assumptions of Theorem 1, the following X × Y matrix

Γ = W

(
m−1∑
k=0

ΠY
≤k

)
. (15)

has the following properties:
(a) its norm is m, as witnessed by ∥Γ∥ = δ∗µΓδν = m with δµ and δν as defined in (3); and
(b) the action of ∆j is given by

Γ ∆j7−→W

(m−1∑
k=0

(
ΠY
≤k − ΞY

≤k,◦j
))

, (16)

where the norm of the matrix on the right-hand side is 1.

Proof. Eq. (13) gives the decomposition of
∑m−1

k=0 ΠY
≤k into eigenspaces since the subspaces

ΠY
k are pairwise orthogonal. The maximal eigenvalue m is achieved on ΠY

0 , which is spanned
by vY

∅ = δν , where ∅ denotes the empty assignment. Also, W is an isometry that maps vY
∅

into vX
∅ = δµ, which proves point (a) of the theorem.

The validity of the action of ∆j in (16) follows from the claim that ∆j ◦ (WΞY
≤k,◦j) = 0.

The proof of this claim is similar to the point (c) of Claim 12. We use decomposition (12) for
ΞY
≤k,◦j , and observe that the range of WΞY

≤k,j 7→b is ΞX
≤k,j 7→b. Hence, ∆j ◦ (WΞY

≤k,j 7→b) = 0,
and the first half of point (b) follows by linearity.

The second half of point (b) follows from Claim 13 and the fact that W is an isometry. ◀

5 Reduction from Dual Polynomial to Adversary

In this section, we demonstrate a direct conversion of a polynomial lower bound into an
adversary lower bound. We do so by taking a dual polynomial that witnesses degree at least
d and convert it into an adversary bound of value Ω(d).

For warm-up, we consider the case of total functions in Section 5.1, and then the general
case of partial functions in Section 5.2. In both cases, we use the distributional version of
the adversary bound, Theorem 6, which we find conceptually more appropriate in this case.
However, it is not hard to reduce to the usual version of the bound, Theorem 3, as well,
which we do in Section 5.3.
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5.1 Total Functions
We start with the case when f : {0, 1}n → {0, 1} is a total Boolean function. Assume it
cannot be 1/3-approximated by a polynomial of degree d. In this case, we can use Theorem 7.
Let ϕ be a degree-d dual polynomial attaining the maximum in (7). Thus,∑

x∈{0,1}n

ϕ(x)f(x) ≥ 1/3. (17)

Our goal is to prove an adversary lower bound of Ω(d).
Let us define

X̃ = {x ∈ {0, 1}n | ϕ(x) ≥ 0} and Ỹ = {y ∈ {0, 1}n | ϕ(y) < 0}, (18)

and two measures

µ : X̃ → R, x 7→ 2ϕ(x) and ν : Ỹ → R, y 7→ −2ϕ(y).

From (6) applied to empty α, we get that
∑

x ϕ(x) = 0. Also,
∑

x |ϕ(x)| = 1. Hence,∑
x∈X̃

µx =
∑
y∈Ỹ

νy = 1, (19)

that is, both µ and ν are probability distributions.
Using (6) again, we get that for each assignment α of weight at most d, we have

Pr
x←µ

[x ∼ α] = Pr
y←ν

[y ∼ α]. (20)

Thus, by Theorem 1, the quantum query complexity of distinguishing X̃ and Ỹ is Ω(d).
This is a nice development, but we would really like to prove the same result for the sets
X = f−1(1) and Y = f−1(0). Luckily, by condition (17), these sets are sufficiently well
correlated.

Define the X̃ × Ỹ matrix Γ̃ as in (15) with the sets X̃ and Ỹ , the distributions µ and ν,
and m = d/2. By Theorem 15, we have

∥Γ̃∥ = δ∗µΓ̃δν = d/2, and ∥Γ̃ ◦∆j∥ ≤ 1 for all j ∈ [n]. (21)

Since Theorem 6 requires an {0, 1}n × {0, 1}n adversary matrix, we extend Γ̃ with zeroes to
fit this requirement.

▶ Proposition 16. In the above notations, Theorem 6 with the adversary matrix Γ̃ and the
distributions µ and ν gives an Ω(d) lower bound on the number of queries made by any
quantum query algorithm A that distinguishes X and Y with error probability at most 1/6.

Proof. Note that (17) is equivalent to∑
x∈f−1(1)

µx −
∑

y∈f−1(1)

νy ≥ 2/3.

This is the difference between the “ideal” acceptance probabilities of A on µ and ν, i.e, in
the hypothetical case when the algorithm never errs. Since the actual error of the algorithm
A is at most 1/6, we get

sµ − sν ≥ 1/3

in notations of Theorem 6. From (4), we get that τ(sµ, sν) ≤ 1−Ω(1). Pluging this and (21)
into (2), we get that the query complexity of A is Ω(d). ◀
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5.2 Partial Functions
Now let us consider the case of partial functions f : D → {0, 1} with D ⊆ {0, 1}n. Again, we
assume that the best optimisation distance by a degree-d polynomial is more than 1/3. Let
ϕ be the optimal degree-d dual polynomial from Theorem 10. Then we have from (8):∑

x∈X

ϕ+(x)−
∑
x/∈Y

ϕ−(x) ≥ 1/3. (22)

The sets X̃ and Ỹ are still defined as in (18). By (9), we still have that∑
x∈{0,1}n

ϕ+(x) =
∑

x∈{0,1}n

ϕ−(x).

But, in order to define µ and ν, we have to choose a different scaling factor. We have∑
x∈{0,1}n

ϕ−(x) =
∑
x∈Y

ϕ−(x) +
∑
x/∈Y

ϕ−(x) ≤
∑
x∈Y

ϕ−(x) +
∑
x∈X

ϕ+(x)− 1/3 = 2/3,

where we used (22) and the first condition from (9). Let us denote the left-hand side of the
above inequality by M . Then, we can define probability distributions

µ : X̃ → R, x 7→ ϕ(x)/M and ν : Ỹ → R, y 7→ −ϕ(y)/M. (23)

So that (22) becomes∑
x∈X

µx −
∑
y /∈Y

νy ≥ 1/2. (24)

The equation (20) still holds, and we use the same construction of Γ̃, which still satis-
fies (21).

Let A be an algorithm that evaluates f with error ε. Denote by px the acceptance
probability of the algorithm on an input x ∈ {0, 1}n. So, we have px ≥ 1 − ε for x ∈ X,
px ≤ ε for x ∈ Y , and 0 ≤ px ≤ 1 for all x. Thus,

sµ − sν =
∑
x∈X

µxpx +
∑
x/∈X

µxpx −
∑
y∈Y

νypy −
∑
y /∈Y

νypy

≥ (1− ε)
∑
x∈X

µx − ε
∑
y∈Y

νy −
∑
y /∈Y

νy ≥
∑
x∈X

µx −
∑
y /∈Y

νy − 2ε ≥ 1/2− 2ε ≥ 1/4,

assuming ε ≤ 1/8.
In the same way as in Section 5.1, Theorem 6 implies that the query complexity of A is

Ω(d).

5.3 Usual Version of the Adversary
In this section, we obtain a usual version of the adversary bound from a dual polynomial.
Let us recap the construction.

We assume f : D → {0, 1} with D ⊆ {0, 1}n is a partial Boolean function, where we define
X = f−1(1) and Y = f−1(0). Assume ϕ is a degree-d dual polynomial that satisfies (9) of
Theorem 10 and attains value at least 1/3 in (8).

Let X̃, Ỹ ⊆ {0, 1}n be as in (18), and µ and ν be probability distributions in (23). They
satisfy (20), therefore, we can apply Theorem 15 with m = d/2, and obtain an X̃ × Ỹ -matrix
Γ̃ as in (15) for the sets X̃ and Ỹ with the probability distributions µ and ν on them. This
matrix satisfies (21). We extend it with zeroes to form an {0, 1}n ×{0, 1}n-matrix, which we
still denote Γ̃.
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▶ Theorem 17. In the above assumptions, the X × Y -matrix

Γ = Γ̃[[X, Y ]]

satisfies ∥Γ∥ = Ω(d) and ∥Γ ◦∆j∥ ≤ 1 for all j ∈ [n].

Proof. As Γ is a sub-matrix of Γ̃, we get ∥Γ ◦∆j∥ ≤ 1 for all j from (21). By the same
equation (21), it suffices to show that ∥Γ∥ = Ω

(
∥Γ̃∥

)
.

We know that Γ̃δν = ∥Γ̃∥δµ by point (a) of Theorem 15. This gives us∥∥∥Γ̃[[X, {0, 1}n]] δν

∥∥∥ =
∥∥Γ̃
∥∥ · ∥∥δµ[[X]]

∥∥.

On the other hand,∥∥∥Γ̃[[X, {0, 1}n]] δν

∥∥∥ ≤ ∥∥∥Γ̃[[X, Y ]] δν [[Y ]]
∥∥∥+

∥∥∥Γ̃[[X, Y ]] δν [[Y ]]
∥∥∥ ≤ ∥∥Γ̃[[X, Y ]]

∥∥+
∥∥Γ̃
∥∥ · ∥∥δν [[Y ]]

∥∥,

where Y = {0, 1}n \ Y . Thus,

∥∥Γ̃[[X, Y ]]
∥∥ ≥ ∥∥Γ̃

∥∥(∥∥δµ[[X]]
∥∥− ∥∥δν [[Y ]]

∥∥) =
∥∥Γ̃
∥∥∥∥δµ[[X]]

∥∥2 −
∥∥δν [[Y ]]

∥∥2∥∥δµ[[X]]
∥∥+

∥∥δν [[Y ]]
∥∥ .

From (24), we get that∥∥δµ[[X]]
∥∥2 −

∥∥δν [[Y ]]
∥∥2 =

∑
x∈X

µx −
∑
y /∈Y

νy ≥ 1/2.

Also,
∥∥δµ[[X]]

∥∥+
∥∥δν [[Y ]]

∥∥ ≤ 2, hence, we obtain∥∥Γ̃[[X, Y ]]
∥∥ ≥ 1

4
∥∥Γ̃
∥∥,

as required. ◀

References
1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity

using cheat sheets. In Proc. of 48th ACM STOC, pages 863–876, 2016. doi:10.1145/2897518.
2897644.

2 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of Huang’s sensitivity theorem. In Proc. of
53rd ACM STOC, pages 1330–1342, 2021. doi:10.1145/3406325.3451047.

3 Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM, 51(4):595–605, 2004. doi:10.1145/1008731.
1008735.

4 Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences, 64(4):750–767, 2002. doi:10.1006/jcss.2002.1826.

5 Andris Ambainis. Polynomial degree vs. quantum query complexity. In Proc. of 44th IEEE
FOCS, pages 230–239, 2003. doi:10.1109/SFCS.2003.1238197.

6 Andris Ambainis and Aleksandrs Belovs. An exponential separation between quantum query
complexity and the polynomial degree. In Proc. of 38th IEEE CCC, volume 264 of LIPIcs,
pages 24:1–24:13. Dagstuhl, 2023. doi:10.4230/LIPIcs.CCC.2023.24.

7 Howard Barnum and Michael Saks. A lower bound on the quantum query complexity
of read-once functions. Journal of Computer and System Sciences, 69(2):244–258, 2004.
doi:10.1016/j.jcss.2004.02.002.

https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/3406325.3451047
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1109/SFCS.2003.1238197
https://doi.org/10.4230/LIPIcs.CCC.2023.24
https://doi.org/10.1016/j.jcss.2004.02.002


A. Belovs 11:13

8 Howard Barnum, Michael Saks, and Mario Szegedy. Quantum decision trees and semi-definite
programming. In Proc. of 18th IEEE CCC, pages 179–193, 2003. doi:10.1109/CCC.2003.
1214419.

9 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.
502097.

10 Aleksandrs Belovs. Adversary lower bound for element distinctness, 2012. arXiv:1204.5074.
11 Aleksandrs Belovs, Gilles Brassard, Peter Høyer, Marc Kaplan, Sophie Laplante, and Louis

Salvail. Provably secure key establishment against quantum adversaries. In Proc. of 12th TQC,
volume 73 of LIPIcs, pages 3:1–3:17. Dagstuhl, 2018. doi:10.4230/LIPIcs.TQC.2017.3.

12 Aleksandrs Belovs and Ansis Rosmanis. On the power of non-adaptive learning graphs.
Computational Complexity, 23(2):323–354, 2014. doi:10.1007/s00037-014-0084-1.

13 Aleksandrs Belovs and Robert Špalek. Adversary lower bound for the k-sum problem. In Proc.
of 4th ACM ITCS, pages 323–328, 2013. doi:10.1145/2422436.2422474.

14 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.
doi:10.1137/S0097539796300933.

15 Harry Buhrman and Robert Špalek. Quantum verification of matrix products. In Proc. of
17th ACM-SIAM SODA, pages 880–889, 2006. arXiv:quant-ph/0409035.

16 Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes back: Tight
quantum query bounds via dual polynomials. In Proc. of 50th ACM STOC, pages 297–310,
2018. doi:10.1145/3188745.3188784.

17 Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and Markov-Bernstein
inequalities. Information and Computation, 243:2–25, 2015. doi:10.1016/j.ic.2014.12.003.

18 Mark Bun and Justin Thaler. Dual polynomials for collision and element distinctness. Theory
of Computing, 12(16):1–34, 2016. doi:10.4086/toc.2016.v012a016.

19 Sebastian Dörn and Thomas Thierauf. The quantum query complexity of algebraic properties.
In Proc. of 16th FCT, volume 4639 of LNCS, pages 250–260. Springer, 2007. doi:10.1007/
978-3-540-74240-1_22.

20 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query complexity
of some graph problems. In Proc. of 31st ICALP, volume 3142 of LNCS, pages 481–493.
Springer, 2004. doi:10.1007/978-3-540-27836-8_42.

21 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proc. of 28th
ACM STOC, pages 212–219, 1996. doi:10.1145/237814.237866.

22 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In
Proc. of 39th ACM STOC, pages 526–535, 2007. doi:10.1145/1250790.1250867.

23 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proc. of 52nd IEEE FOCS, pages 344–353, 2011.
doi:10.1109/FOCS.2011.75.

24 Qipeng Liu and Mark Zhandry. On finding quantum multi-collisions. In Proc. of 38th EURO-
CRYPT, volume 11478 of LNCS, pages 189–218, 2019. doi:10.1007/978-3-030-17659-4_7.

25 Loïck Magnin and Jérémie Roland. Explicit relation between all lower bound techniques for
quantum query complexity. In Proc. of 30th STACS, volume 20 of LIPIcs, pages 434–445.
Dagstuhl, 2013. doi:10.4230/LIPIcs.STACS.2013.434.

26 Nikhil S. Mande, Justin Thaler, and Shuchen Zhu. Improved approximate degree bounds
for k-distinctness. In Proc. of 15th TQC, volume 158 of LIPIcs, pages 2:1–2:22, 2020. doi:
10.4230/LIPIcs.TQC.2020.2.

27 Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–1007,
1991. doi:10.1137/0220062.

28 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, 1994. doi:10.1007/BF01263419.

TQC 2024

https://doi.org/10.1109/CCC.2003.1214419
https://doi.org/10.1109/CCC.2003.1214419
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://arxiv.org/abs/1204.5074
https://doi.org/10.4230/LIPIcs.TQC.2017.3
https://doi.org/10.1007/s00037-014-0084-1
https://doi.org/10.1145/2422436.2422474
https://doi.org/10.1137/S0097539796300933
https://arxiv.org/abs/quant-ph/0409035
https://doi.org/10.1145/3188745.3188784
https://doi.org/10.1016/j.ic.2014.12.003
https://doi.org/10.4086/toc.2016.v012a016
https://doi.org/10.1007/978-3-540-74240-1_22
https://doi.org/10.1007/978-3-540-74240-1_22
https://doi.org/10.1007/978-3-540-27836-8_42
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.4230/LIPIcs.STACS.2013.434
https://doi.org/10.4230/LIPIcs.TQC.2020.2
https://doi.org/10.4230/LIPIcs.TQC.2020.2
https://doi.org/10.1137/0220062
https://doi.org/10.1007/BF01263419


11:14 A Direct Reduction from the Polynomial to the Adversary Method

29 Ben W. Reichardt. Span programs and quantum query complexity: The general adversary
bound is nearly tight for every Boolean function. In Proc. of 50th IEEE FOCS, pages 544–551,
2009. doi:10.1109/FOCS.2009.55.

30 Ben W. Reichardt. Reflections for quantum query algorithms. In Proc. of 22nd ACM-SIAM
SODA, pages 560–569, 2011. doi:10.1137/1.9781611973082.44.

31 Ben W. Reichardt and Robert Špalek. Span-program-based quantum algorithm for evaluating
formulas. Theory of Computing, 8:291–319, 2012. doi:10.4086/toc.2012.v008a013.

32 Alexander A Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969,
2011. doi:10.1137/080733644.

33 Alexander A. Sherstov. Approximating the and-or tree. Theory of Computing, 9(20):653–663,
2013. doi:10.4086/toc.2013.v009a020.

34 Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.
In Proc. of 39th CRYPTO, volume 11693 of LNCS, pages 239–268, 2019. doi:10.1007/
978-3-030-26951-7_9.

35 Shengyu Zhang. On the power of Ambainis lower bounds. Theoretical Computer Science,
339(2):241–256, 2005. doi:10.1016/j.tcs.2005.01.019.

A Linear Programming for Dual Polynomials

A.1 Proof of Theorem 7
The left-hand side of (7) is equal to the optimal value of the following linear optimisation
problem:

minimise ε

subject to f(x)−
∑

S

αSχS(x) ≤ ε for all x ∈ {0, 1}n; (25a)

f(x)−
∑

S

αSχS(x) ≥ −ε for all x ∈ {0, 1}n; (25b)

αS ∈ R for all S ⊆ [n], |S| ≤ d;
ε ∈ R.

Let us write the Lagrangian with the dual variables ax ≥ 0 for (25a) and bx ≥ 0 for (25b):

ε−
∑

x

ax

(
ε− f(x) +

∑
S

αSχS(x)
)
−
∑

x

bx

(
ε + f(x)−

∑
S

αSχS(x)
)

(26)

Let us denote ϕ(x) = ax − bx, so that we can rewrite the last expression as

∑
x

ϕ(x)f(x) + ε

(
1−

∑
x

ax −
∑

x

bx

)
−
∑

S

αS

(∑
x

ϕ(x)χS(x)
)

. (27)

In the dual optimisation problem, all of the brackets in (27) must be zero.
We can turn any dual polynomial into a feasible solution to the dual (27) by taking

ax = ϕ+(x) and bx = ϕ−(x).
For the opposite direction, consider optimal primal and dual solutions, whose values are

equal due to strong duality. If ε > 0, then, by complementary slackness, at most one of ax

and bx is non-zero for each x, therefore, |ϕ(x)| = ax + bx. Hence, ϕ is a dual polynomial
satisfying

∑
x ϕ(x)f(x) = ε. If ε = 0, we can take ϕ equal to the normalised parity function.
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A.2 Proof of Theorem 10
In this case, we have the following linear programming problem:

minimise ε

subject to
∑

S

αSχS(x) ≥ 1− ε for all x ∈ X; (28a)∑
S

αSχS(x) ≤ ε for all x ∈ Y ; (28b)∑
S

αSχS(x) ≥ 0 for all x /∈ X; (28c)∑
S

αSχS(x) ≤ 1 for all x /∈ Y ; (28d)

αS ∈ R for all S ⊆ [n], |S| ≤ d;
ε ∈ R.

Let us write the Lagrangian with the dual variables ax, bx, cx, dx ≥ 0 for (28a) – (28d),
respectively:

ε −
∑
x∈X

ax

(∑
S

αSχS(x)− 1 + ε

)
−

∑
x∈Y

bx

(
ε−

∑
S

αSχS(x)
)

−
∑
x/∈X

cx

(∑
S

αSχS(x)
)
−

∑
x/∈Y

dx

(
1−

∑
S

αSχS(x)
) (29)

Let us define

ϕ(x) =


ax − dx if x ∈ X;
cx − bx if x ∈ Y ;
cx − dx if x /∈ X ∪ Y .

Then, we can rewrite (29) as∑
x∈X

ax −
∑
x/∈Y

dx + ε

(
1−

∑
x∈X

ax −
∑
x∈Y

bx

)
−
∑

S

αS

( ∑
x∈{0,1}n

ϕ(x)χS(x)
)

. (30)

Again, in the dual optimisation problem, all the brackets in (30) must be zero.
If ϕ satisfies (9), then we can take ax = ϕ+(x) for x ∈ X, bx = ϕ−(x) for x ∈ Y ,

cx = ϕ+(x) for x /∈ X, and dx = ϕ−(x) for x /∈ Y , and get a feasible solution to the dual.
For the opposite direction, consider optimal primal and dual solutions, whose values are

equal by strong duality. We may assume ε > 0. By complementary slackness, for each x,
at most one of the dual variables is non-zero, except for the case when ε = 1/2, in which
case both ax and bx can be non-zero. Either way, we get ax = ϕ+(x) for x ∈ X, bx = ϕ−(x)
for x ∈ Y , and dx = ϕ−(x) for x /∈ Y . Thus we obtain the required dual formulation of
Theorem 10.

Let us note that maximisation with 0 is required in (8). For example, consider the case
d = n− 1, and X and Y are of size 1. The function can be approximated by a polynomial of
degree at most 1, thus ε = 0. On the other hand, by the second condition of (9), ϕ must be
equal to a multiple of the parity function. It is easy to see that

∑
x∈X ϕ+(x)−

∑
x/∈Y ϕ−(x)

is actually negative in this case.
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12:2 Quantum Delegation with an Off-The-Shelf Device

1 Introduction

In an interactive proof system, a computationally-bounded verifier interacts with a powerful
prover in order to verify the truthfulness of an agreed-upon problem instance. Starting with
QMA, and followed by QIP and QMIP (among others), quantum interactive proof system, (in
which the verifier is quantum polynomial-time) were defined and studied [48, 49, 30].

Yet, these quantizations depend crucially on the tacit assumption that the verifier has
access to trusted quantum polynomial-time verification. Given the current state-of-the-art in
quantum computation development, the inherent difficulty at characterizing quantum systems,
and the fact that there is no way to reliably verify the trace of a quantum computation, there
is ample evidence that this assumption may be questionable. Indeed, despite impressive
technological improvements, we may ultimately have to contend with a reality where quantum
computers are never as trustworthy or reliable as classical devices. This prospect has
motivated consideration of models where the verifier has access to very limited but trusted
quantum functionality [1, 4, 18], or where the verifier is entirely classical and the prover is
computationally bounded [31], while another class called MIP∗ models an efficient classical
verifier interacting with several isolated, unbounded quantum provers [14]. Each approach
provides advantages and encounters challenges: early quantum servers will be expensive
and thus all else equal, requiring a single prover is preferable; on the other hand, existing
single-prover protocols either require a trusted device or make computational assumptions.
Multi-prover protocols utilize powerful device-independence techniques which avoid these
assumptions but at the high cost of requiring several powerful provers and requiring isolation.

The current zeitgeist in this field allows for imaginative considerations of how we describe
and model tasks in a quantum world. These approaches have in common that instead of
considering the straightforward quantum analog of classical protocols, we strive to make
considerations that are naturally motivated in the quantum setting1. Here, we continue
on this momentum and introduce a novel approach to proof verification, where the set-up
itself can only be motivated in the quantum setting. To this end, we consider the following
question:

▶ Question 1. What is the expressive power of the class of relativistic, interactive proof
systems with a single quantum prover, and a classical verifier having access to an off-the-shelf
untrusted quantum device?

Off-the-shelf Device. We call the above model the off-the-shelf (OTS) model since it models
the fact that the verifier, in addition to interacting with a standard prover, has access to a
device that is (1) generic (it does not depend on the instance of the problem to be solved,
only on the instance size), (2) efficient (for completeness, polynomial resources suffice), (3)
completely untrusted (for soundness, there are no assumptions on its computational power
or inner-workings). Importantly, relativistic refers to a 1-round protocol; this is desirable for
its relative ease in enforcing isolation2.

Operationally, we imagine the OTS model as the prover providing the verifier with such
a generic, off-the-shelf device ahead of the proof verification. In particular, the preparation
of such a device in terms of its capabilities is independent of the particular problem instance,
although we do allow dependence on its size. Once in possession of this device, the verifier

1 See, for instance, the recent work on the complexity of preparing quantum states and unitaries [42].
2 A relativistic protocol is highly desirable in the multi-prover scenario since isolation can be enforced

using relative position and response times [10, 22].
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may query the prover and simultaneously use a single measurement from the off-the-shelf
device, which leads the verifier to accept or reject. The figures of merit for the interactive
proof system are the usual completeness and soundness.

Figure 1 During the set-up the verifier selects an off-the-shelf device based on the required size of
the problem instance. Afterward, the verifier is free to select any language and instance and interacts
in a single round with both the prover and the off-the-shelf device, leading to the accept/reject
output of the verifier.

Since the OTS scenario models aspects of near-term proof verification using untrusted
quantum devices, we naturally wish to understand how it relates to some of the most relevant
and studied properties of interactive proof systems:

▶ Question 2. Can the OTS model provide novel approaches to zero-knowledge proof
systems and to delegated quantum computation?

Classical and Quantum Interactive Proof Systems. In the model of interactive proof
systems (IP), an efficient classical verifier interacts with an all-powerful and untrusted prover
in order to verify the correctness of a statement [20]. We note that class NP corresponds to
a single-message interaction (with MA being in probabilistic version), while AM incorporates
a single round (i.e., two messages).

In a multiprover interactive proof system (MIP), a verifier interacts with multiple isolated
provers [3]. Each of the models above has been quantized, i.e., extended to the setting
where some (or all) of the parties are quantum. This is captured, e.g. by the classes
QMA (the quantum version of MA), QIP (the quantum version of IP) and MIP∗ (a version
of a multi-prover interactive proof system (MIP) where the unbounded provers share en-
tanglement). Groundbreaking results have characterized some these quantum classes, e.g.
QIP = PSPACE [24] and MIP∗ = RE [27].

Zero-Knowledge Proof Systems. A strong motivation for the study of interactive proof
systems is the connections to the counter-intuitive concept of a zero-knowledge proof sys-
tem [19, 2]. Informally, a proof system is zero-knowledge when the verifier is unable to
learn anything beyond the fact that the agreed-upon instance is true. This is more formally
treated by establishing the existence of a simulator which can reproduce the transcript of
the interaction.

Zero-knowledge proof systems were first extended to the quantum setting by Watrous [50],
who considered the setting where the verifier has access to a trusted polynomial-time quantum
device. Subsequently, it was shown that under certain cryptographic assumptions, all problems
in QMA admit a zero-knowledge proof system [7, 8, 5] (again, assuming the verifier has
trusted polynomial-time quantum computation). There have been several approaches in
the case of a fully classical verifier. Vidick and Zhang showed that argument protocols
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can be made to satisfy the zero-knowledge property [47]. Recent work by Crépeau and
Stuart [17] provides a two-prover one-round zero-knowledge proof system for NP. The work
of Chiesa, Forbes, Gur and Spooner provides a two-prover zero-knowledge proof system for
NEXP [12], however, their work requires polynomially many rounds of interaction. Work
due to Grilo, Yuen, and Slofstra [23] shows that any proof system for MIP∗ can be made
zero-knowledge at the cost of adding four additional provers. Although these works provide
inspiration for studying zero-knowledge proof systems in the OTS model, as far as we are
aware, they do not directly contribute to our main question on ZK. In fact, according to
the current state-of-the-art, an implicit open question [22] is the following: “Does there
exists a relativistic zero-knowledge proof system for QMA with two provers and a classical
verifier?”. We emphasize that our OTS model takes this question further, by requiring one
of the provers to operate generically and independently of the problem instance.

Delegated Quantum Computation. Delegated quantum computation allows a computa-
tionally-weak classical client to delegate a computational task to an untrusted, polynomial-
time quantum server. Under certain conditions, an interactive proof system leads in a
straightforward way to a protocol for delegated quantum computation. Typically, this is
achieved if the interactive proof system captures e.g. QMA, and furthermore, given the
witness, the prover is efficient; it is also relevant that the QMA witness is used in such a way
that we can scale down the proof system in order to achieve a delegation protocol for BQP
(e.g. [22])3. The sketch above is also applicable to the scenario of multiple servers. Note that
because of the resemblance between the models of the interactive proof system and delegated
quantum computation, we occasionally confound the two – using the complexity class acronym
to refer to the interaction pattern between prover(s) and verifier – but we emphasize that in
delegated quantum computation protocols, the server is always computationally bounded (as
opposed to a prover in interactive proof systems).

Following Reichardt, Unger, and Vazirani [41], who showed a delegated quantum compu-
tation for the setting of MIP∗, much progress was made, aiming at improving parameters
and techniques; despite these efforts, as far as we are aware, none of the existing works are
applicable to our model. Notable here is the work of [16] which uses quasilinear resources for
both servers, and achieves at best a constant round complexity, as well as [22] which is the
first 2-server, 1-round (relativistic) protocol for delegated quantum computations, but uses
the full polynomial-power of both servers.

1.1 Summary of results
In this work, we make important steps towards answering the above questions:

We show that any language in QMA has a statistical ZK proof system in the OTS model.
We show that the above OTS proof system can be adapted for delegated quantum
computation for any problem in BQP, while remaining ZK and in the OTS model.

We now give more details and motivation for our model and an overview of our main
contributions at the conceptual level.

Model. As introduced earlier, we are interested in modeling near-term proof verification
and delegation of quantum computations. To this end, we propose a new paradigm that is
particularly relevant to the quantum scenario: a verifier having access to an OTS device. To

3 BQP is closed under complementation, hence this is sufficient for delegation
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motivate the model, consider that the complexity class QMA models a verifier having access
to fully-trusted polynomial-time quantum computation. While such a verifier is skeptical
of the prover (and thus needs to verify the claimed proof independently), in the quantum
case, a new level of skepticism is possible, namely that the verifier’s quantum processing
is untrusted. A common solution in this case is to postulate two (or more) untrusted and
all-powerful devices together with a classical verifier; this is the realm of MIP∗. In this
work, we propose a new paradigm that treats the provers asymmetrically. Starting with a
conventional two-prover interactive proof system, we ask that only one of the provers do
the heavy lifting (via its unbounded computational capabilities), with the second prover
becoming efficient and completely generic (for completeness, this prover need not even be
given a description of the task at hand; soundness, however, is shown against two unbounded
provers).

The inspiration for our model finds its roots in the elegant 2-prover, 1-round protocol
introduced by Grilo [22]. The approach Grilo uses is a game that involves an energy test
and the Pauli braiding test to verify the shared EPR pairs’ integrity and the accuracy of
Pauli-X/Z measurements on local terms Hi. Although in [22] the analysis assumes that
players Alice and Bob are randomly assigned roles, it is natural to consider an asymmetric
version of this game where one prover’s functionality can be made independent of the problem
instance. Grilo’s work motivates the formal introduction and study of a new class which one
may expect to be lower-bounded by QMA. As we outline in Section 1.2 there are substantial
technical obstructions to extending this game to obtain a zero-knowledge protocol.

We denote OTS the set of all languages L that can be decided under a constant
completeness-soundness gap, in the model that follows. Before the instance x ∈ L is
selected, the classical verifier is provided with an untrusted off-the-shelf device which only
depends on a parameter n, indicating the size of the problem instance (without loss of
generality, we can assume that the prover provides such OTS device). For completeness,
such a device shares an entangled state |ψ⟩n with a quantum prover and will be purported to
perform efficient measurements from a predetermined list of available options4. The verifier
may select any choice x ∈ L provided |x| ≤ n and simultaneously uses a single question to
the prover and to the device; the verifier then determines whether or not to accept based
on the responses. We stress that OTS proof systems are sound against both an unbounded
prover and unbounded OTS.

We observe that OTS is a refinement of and thus contained in MIP∗, and is also a
generalization of AM, where the otherwise classical verifier has additional 1-round query
access to a small, off-the-shelf quantum device. In summary, we have AM ⊆ OTS ⊆ MIP∗

(see also Figure 2).
In a classical proof system, an OTS can be understood as an instance-independent

hardware token. This device can be used to provide a commitment for a zero-knowledge
proof system for NP [19]; what is more, the one-time property of the OTS can be used
as an oblivious transfer device, which then yields a non-interactive zero-knowledge proof
system for NP [28]. We note that in the quantum case, our model requires a fully classical
verifier and hence the case of zero-knowledge for QMA [7, 5] in the OTS model is much
more complex, and a classical-verifier analogue to the NP proof systems above is not directly
applicable. Other approaches based on using the OTS as a one-time memory [6] also run
into a roadblock due to the fact that we require a fully classical verifier.

4 The entangled state |ψn⟩ is consumed during the interactive proof, hence a new OTS must be obtained
for subsequent evaluations (equivalently, the entanglement must eventually be replenished). This
situation is entirely analogous to the case of shared randomness which is also consumed in an interactive
proof system and must also eventually be replenished.
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12:6 Quantum Delegation with an Off-The-Shelf Device

Figure 2 Off-the-shelf (OTS) proof system. P is the quantum prover, V is the classical verifier,
and D a rudimentary off-the-shelf device which is entangled with the prover; each arrow represents
a single classical message.

OTS Proof Systems for QMA. Our first result is that any language in QMA is also in
OTS.

▶ Theorem 3 (Restated as part of Theorem 31). QMA ⊆ OTS .

An interpretation of this result is that starting with a conventional proof system for QMA,
we can exchange the unwavering trust of the verifier in its quantum verification process for
a classical verifier with two new features: (1) the verifier has access to an untrusted, and
instance-independent, off-the-shelf quantum device; and (2) the verifier interacts with the
prover (and the device) in a single simultaneous round.

Zero-knowledge OTS Proof System for QMA. What is more, we show that the OTS
proof system for QMA is also statistical zero-knowledge, meaning that we can simulate in
classical polynomial time the verifier’s transcript when interacting with the provers on a
yes-instance.

▶ Theorem 4 (Restated in Theorem 31). For every language L in QMA, there exists a
statistical zero-knowledge OTS proof system for L.

Delegated Quantum Computation in the OTS Model. As our final conceptual contribution,
we show how our OTS proof system for QMA (Theorem 3) can be adapted to the setting of
delegated quantum computation; note that the ZK property as described above also extends
to the delegated quantum computation paradigm.

▶ Theorem 5 (Restated as Theorem 32). BQP has a relativistic delegated quantum computation
protocol in the OTS model with the statistical zero-knowledge property.

We believe that this result is of particular impact since it addresses a new model for
delegated quantum computation that has distinct conceptual benefits over existing protocols:
1. Comparing to single-server protocols, we note that we make an extra assumption of an

off-the-shelf, isolated device. However, the benefits are:
a. We achieve soundness against an unbounded server; existing single-server, classical-

client delegation protocols require computational assumptions [31].
b. The client does not trust any quantum device at all; existing single-server, statistically

secure protocols require trust in a small quantum preparation device [4, 18].
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2. Comparing to existing multiple-server (MIP∗) protocols, we note that:
a. Our approach only requires a single high-performance quantum server that handles

the bulk of the computations; with a secondary efficient and generic device which need
not even be given a description of the problem instance. This has practical advantages,
especially when we consider that the off-the-shelf device can be acquired ahead of the
verification stage (Figure 1).

b. Our approach is a single round, which means that relativistic means to enforce
isolation are possible. The only other known relativistic protocol requires full quantum
computational power for both servers and is not ZK [22].

1.2 Proof approach and technical contributions
We first introduce two important techniques.

Self-testing. Self-testing (also called device-independence) is a ubiquitous and powerful
technique in the study of MIP∗ and related delegation protocols. The concept was introduced
by Mayers and Yao [33]. Informally, a protocol self-tests a particular state or measurement
when this state/measurements (or an equivalent version thereof) are required for obtaining
the maximal acceptance probability. The most well-known examples are the non-local games
known as the CHSH game and the Magic Square game [13, 36, 40, 45]. Subsequently,
numerous works have enriched our understanding of self-testing and its applications to
delegated quantum computation, e.g., [34, 35, 15, 11, 16, 37, 38]. Current approaches to
formalizing self-testing use the theory of approximate representation theory of groups and C∗-
algebras [43, 44, 32]. These formalisms, and especially their operationally-useful approximate
versions utilize a key stability result due to Gowers and Hatami which allows one to relate
approximate representations to exact representations [21].

Simulatable Codes. Recent works by Grilo, Yuen, and Slofstra [23], as well as Broadbent
and Grilo [5] introduce the notion of simulatable codes as a tool for establishing zero-
knowledge proof systems and protocols in the quantum setting. The idea is to use techniques
from quantum error-correcting codes to create a “simulatable” witness or proof for use
in the verification process. Here the witness is simulatable in the sense that there is an
efficient classical algorithm which can reproduce the description of the local density matrix
of the witness on any small enough subspace. This is a pivotal tool in establishing zero-
knowledge, and the application of the technique consists in developing a verification protocol,
(or verification circuit in the case of [5]) which verifies such simulatable witnesses; this can
then be applied to the situation of encoding e.g., a witness for QMA into a simulatable
code [5].

1.2.1 Obstructions to the straightforward approach
In delegating quantum computations in two- or multi-server models, the classical verifier is
able to command quantum provers [41] using two intertwined tests: (1) a computational test,
with acceptance probability based on the required quantum computation (e.g., computation-
by-teleportation [41] or energy checking of a local Hamiltonian [26, 22]); (2) a rigidity test,
ensuring provers’ actions stay within a known range (e.g., self-test via CHSH game or
Pauli braiding test). In order to establish the ZK property, we must show that responses
from the provers can be simulated using a classical probabilistic polynomial-time (PPT)
device. Generally, approaches used for the rigidity test can be simulated in a straightforward
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12:8 Quantum Delegation with an Off-The-Shelf Device

way, hence the difficulty in obtaining ZK in this setting is in simulating the energy test.
Furthermore, even if both tests are simulatable in isolation, this does not guarantee the ZK
property since a malicious verifier may form question pairs emanating from different tests,
during a single round.

Grilo [22] presents a game G(H) determined by an “XZ-type”5 Hamiltonian H. Honest
provers for this game share suitably many EPR pairs, and one prover privately holds a ground
state for H. The game G(H) combines an energy test with the Pauli braiding test [37, 46].
During the energy test, one prover reports measurement results of a randomly chosen term
Hi on their side of EPR pairs, and the other provides teleportation keys from a Bell basis
measurement on the other EPR pairs and the ground state. Combining the energy test with
the Pauli braiding test allows the verifier to ensure that provers share n EPR pairs and
that the required Pauli-X/Pauli-Z measurements are performed when measuring the local
term Hi.

The straightforward approach to obtaining a two-prover ZK proof system would be to
combine recent results on simulatable codes in order to make the measurement results in
Grilo’s energy test simulatable. More specifically, one could apply the well-known circuit-to-
Hamiltonian construction using the family of simulatable verification circuits given in [5].
Given such a circuit V , it is shown that local measurements on the ground state of the
corresponding Hamiltonian HV are simulatable and thus this approach would make the
results of the energy test simulatable. Unfortunately, this approach fails for two technical
reasons.

The Choice of Encoding. Firstly, one cannot employ previously-known self-testing tech-
niques to show the players perform the required measurements on the simulatable ground
states given in [5]. On the one hand, previously-studied single-round self-testing techniques
can only be used to show the players perform Pauli-X, and Pauli-Z measurements. On the
other hand, the choice of physical gates used by Broadbent and Grilo during the encoding of
logic gates may result in a local Hamiltonian that is not of XZ-type and thus local terms Hi

may require measurements that have no known self-test.

The Size of the Measurement. The second obstruction arises from the fact that existing
rigidity tests in this setting require both players to make large-sized measurements on their
shared state. These large measurements can provide an avenue for attack by a malicious
verifier which compromises the zero-knowledge property. In particular, since the Pauli
braiding test allows for requests for measurements on all qubits, a malicious verifier may
indicate to one player that an energy test is being played and simultaneously request Pauli-X
and Pauli-Z measurements on a large number of qubits. Such a measurement result cannot be
simulated using simulatable codes, which only protect against constant-sized measurements,
and thus this compromises zero-knowledge.

1.2.2 Overview of proof and technical results
In order to correct for an appropriate choice of encoding, we prove that one can re-instantiate
the verification circuit given by Broadbent and Grilo using an approach to simulatable codes
given in [23]. This change allows us to encode logical gates of the verification circuit given

5 These are Hamiltonians where each local term Hi is a real linear combination of tensor products of the
Pauli-X and Pauli-Z operators.
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by Broadbent and Grilo using a different set of physical gates and consequently, we show
that the local Hamiltonian corresponding to the circuit is of XZ-type, while preserving
simulatability.

▶ Theorem 6 (Informal version of Theorem 27). For any language L = (Lyes, Lno) in
QMA, there is a family of verification circuits Vx satisfying (1) the circuit-to-Hamiltonian
construction applied to Vx produces a Hamiltonian Hx which is of XZ-type, and (2) if
x ∈ Lyes there exists a polynomial-time algorithm that can approximate the reduced density
matrix obtained by tracing out all but 6 qubits of the ground state of Hx.

In order to overcome the large measurement problem, we introduce a new self-test
called the low-weight Pauli braiding test (LWPBT) which can self-test the low-weight tensor
products of Pauli measurements and n EPR pairs but only requires the players to make
measurements on a constant number of qubits.

▶ Theorem 7 (Informal version of Theorem 18). The low-weight Pauli braiding test can
self-test for n EPR pairs and 6-qubit Pauli measurements. This self-test is robust in the
sense that any ε-perfect strategy must be poly(n)

√
ε close to the canonical strategy.

We use a group-theoretical approach to prove the rigidity of the LWPBT. It can be
shown that the canonical perfect strategy S̃ for LWPBT defines an irreducible representation
of the Weyl-Heisenberg group H and every near-perfect strategy S for LWPBT forms an
approximate homomorphism f of H. The well-known Gowers-Hatami theorem [21] and its
variant [46] imply that the approximate homomorphism f of a finite group is close to a
representation ϕ, so S must be close to S̃. However, some subtle mathematical problems
have come up in earlier approaches. In particular, one may need to discard some irreducible
constituents of ϕ that do not correspond to S̃. To tackle this problem, we make further
improvements to the state-of-art understanding of the stability of groups. In particular, in
Theorem 18 we state and prove an enhanced version of the Gowers-Hatami theorem that can
be used for the stability analysis of the Weyl-Heisenberg group. Aside from our use case,
this new version can simplify previous approaches to self-testing.

We use the above technical results to derive a modified version of [22] by interleaving the
following tests: (1) a computational test consisting of an energy test in which a simulatable
witness uses low-weight Pauli-X and Pauli-Z measurements and, (2) a rigidity test consisting
of the LWPBT. The result of this modified Grilo protocol gives a ZK OTS protocol with
an inverse polynomial completeness-soundness gap. Finally, we apply a threshold parallel
repetition theorem to the above protocol to amplify the completeness-soundness gap to be
constant, thus demonstrating both Theorem 3 and Theorem 4. We then show that the proof
system is of a form that can be scaled down to yield a delegation protocol, yielding Theorem 5.

2 Preliminaries

We take [n] to denote the set {1, . . . n}. Given two real valued functions f, g : R → R, we
write f = O(g) (resp. f = Ω(g)) if there exists a positive real number M and an x0 ∈ R such
that |f(x)| ≤ Mg(x) (resp. |f(x)| ≥ Mg(x)) for all x ≥ x0. We call a function f negligible,
and write f = negl(n), if for all constants c > 0 we have f = O(n−c). For two distributions P
and Q on a finite set X the statistical differences of P and Q is given by

∑
x∈X |P (x) −Q(x)|.

In this paper, all Hilbert spaces are finite-dimensional. Given a Hilbert space H, we use
B(H) to denote the set of bounded linear operators acting on H, use U(H) to denote the
group of unitary operators on H, and use 1H to denote the identity operator on H. Given
an operator A ∈ B(H) we take A∗ to denote the adjoint operator (equivalently the conjugate
transpose) and define the trace norm ∥A∥tr := Tr

√
A∗A.
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2.1 Quantum information
A quantum state ρ on H is a positive operator in B(H) with Tr(ρ) = 1. It induces a semi-norm
∥A∥ρ :=

√
Tr(A∗Aρ) on B(H) which we call the ρ-norm. This norm is left unitarily invariant,

meaning that ∥UA∥ρ = ∥A∥ρ for all U ∈ U(H) and A ∈ B(H). Given two quantum states ρ
and σ we define their trace distance D(ρ, σ) = 1

2 ∥ρ− σ∥tr = maxP Tr(P (ρ− σ)) where the
max is taken over all projections P ∈ B(H).

We use |ΦEPR⟩ to denote the EPR pair in C2 ⊗ C2 and use |Φ⊗n
EPR⟩ to denote the n-qubit

EPR pair. We also take σI , σX , and σZ to denote the following Pauli operators:

σI =
[
1 0
0 1

]
, σX =

[
0 1
1 0

]
, and σZ =

[
1 0
0 −1

]
. (1)

For every a ∈ {0, 1}n and W ∈ {I,X,Z}n, we use σW (a) to denote the operator ⊗i∈[n]σ
ai

Wi

on (C2)⊗n where σ0
I = σ0

X = σ0
Z = σI . Definitions of these gates and other fundamental

concepts from quantum computing can be found in [39].

Families of Quantum Circuits. A unitary quantum circuit is simply a unitary which can
be written as a product of gates from some universal gate set U . Unless otherwise specified
we will assume the universal gate set is the following universal gate set {H,Λ(X),Λ2(X)},
where H is the Hadamard gate, Λ(X) is the controlled σX gate, and Λ2(X) is the Toffoli
gate. A general quantum circuit or simply a quantum circuit is a unitary quantum circuit
that can additionally apply non-unitary gates which, introduce qubits initialized in the 0
state, trace out qubits, or measure qubits in the standard basis.

▶ Definition 8 (Polynomial-time uniform circuit family). We say a family of quantum circuits
{Qn}n∈N is a polynomial-size family of quantum circuits if there exists polynomial r such
that Qn has size at most r(n). A family of quantum circuits {Qn} is called polynomial-time
uniform family if there exists a polynomial time Turing machine that on input 1n outputs a
description of Qn. In this case, the family will also be a polynomial-size family of quantum
circuits.

Given a quantum circuit Q, we denote its size (number of gates and number of wires)
by |Q|. The task of delegating the computation of Q is captured by the following promise
problem:

▶ Definition 9 (Q-CIRCUIT). The input is a quantum circuit Q on n qubits. The problem is
to decide between the following two cases:

Yes. ∥((|1⟩⟨1| ⊗ In−1)Q|0n⟩∥2 ≥ 1 − γ

No. ∥((|1⟩⟨1| ⊗ In−1)Q|0n⟩∥2 ≤ γ

when we are promised that one of the two cases holds.

Problem in Definition 9 is known to be BQP-complete for 1 − 2γ > 1
poly(n) .

2.2 Non-local games and rigidity
A two-player6 one-round nonlocal game G is a tuple

(
λ, µ, IA, IB ,OA,OB

)
, where IA, IB

are finite input sets, and OA,OB are finite output sets, µ is a probability distribution on
IA × IB, and λ : OA × OB × IA × IB → {0, 1} determines the win/lose conditions. A

6 These two players are commonly called Alice and Bob.
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quantum strategy S for G is given by finite-dimensional Hilbert spaces HA and HB , a unit
vector |ψ⟩ ∈ HA ⊗ HB, Alice’s POVMs {Ex

a : a ∈ OA}, x ∈ IA on HA, and Bob’s POVMs
{F y

b : b ∈ OB}, y ∈ IB on HB . The winning probability of S for game G is given by

ω(G,S) :=
∑

a,b,x,y

µ(x, y)λ(a, b|x, y) ⟨ψ|Ex
a ⊗ F y

b |ψ⟩ .

A quantum strategy S for a non-local game G is said to be perfect if ω(G,S) = 1. When the
game is clear from the context we simply write ω(S) to refer to the winning probability. The
quantum value of a non-local game G is defined as

ω∗(G) := sup{ω(S) : S a quantum strategy for G}.

In this paper, we assume all measurements employed in a quantum strategy are PVMs.
An m-outcome PVM {P1, · · · , Pm} corresponds to an observable

∑
j∈[m] exp( 2πi

m j)Pj , so a
quantum strategy for a game G =

(
λ, µ, IA, IB ,OA,OB

)
can also be specified by a triple

S = (τA, τB , |ψ⟩ ∈ HA ⊗ HB)

where τA(x), x ∈ IA are OA-outcome observables on HA, and τB(y), y ∈ IB are OB-outcome
observables on HB .

Here we introduce the well-known Mermin-Peres Magic Square game, in which Alice and
Bob are trying to convince the verifier that they have a solution to a system of equations
over Z2. There are 9 variables v1, . . . , v9 in a 3 × 3-array whose rows are labeled r1, r2, r3
and columns are labeled c1, c2, c3.

Each row or column corresponds to an equation: variables along the rows or columns
in {r1, r2, r3, c1, c2} sum to 0; variables along the column c3 sum to 1. In each round, Bob
receives one of the 6 possible equations and he must respond with a satisfying assignment
to the given equation. Alice is then asked to provide a consistent assignment to one of the
variables contained in the equation Bob received. The following table describes an operator
solution for this system of equations:

Table 1 Operator solution for Magic Square game.

A1 = σI ⊗ σZ A2 = σZ ⊗ σI A3 = σZ ⊗ σZ

A4 = σX ⊗ σI A5 = σI ⊗ σX A6 = σX ⊗ σX

A7 = σX ⊗ σZ A8 = σZ ⊗ σX A9 = σXσZ ⊗ σZσX

2.3 Complexity classes and zero knowledge
▶ Definition 10 (QMA). A promise problem L = (Lyes, Lno) is in QMA if there exist
polynomials p and q, and a polynomial-time uniform family of quantum circuits {Qn} where
Qn takes as input a string x ∈ Σ∗ with |x| = n, a p(n)-qubit quantum state |ψ⟩, and q(n)
auxiliary qubits in state |0⟩⊗q(n), such that:

(Completeness) if x ∈ Lyes, then there exists some |ψ⟩ such that Qn accepts (x, |ψ⟩) with
probability at least 1 − negl(n), and
(Soundness) if x ∈ Lno, then for any state |ψ⟩, Qn accepts (x, |ψ⟩) with probability at
most negl(n).

We sometimes refer to the family of circuits {Qn} in Definition 10 simply as a family of
verification circuits.

The following local Hamiltonian problem is QMA-complete for parameters k = 5 and
β − α = 1

poly(n) [29].
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▶ Definition 11. Let k ∈ N, α, β ∈ R with α < β, the k-Local Hamiltonian problem with
parameters α and β is the following promise problem. Let n be the number of qubits of
a quantum system. The input is a set of m(n) Hamiltonians H1, . . . ,Hm(n) where m is a
polynomial in n and each Hi acts on k qubits out of the n qubit system with ∥Hi∥ ≤ 1. For
H =

∑m(n)
j=1 Hj the promise problem is to decide between the following.

Yes. There exists an n-qubit state |φ⟩ such that ⟨φ|H |φ⟩ ≤ a ·m(n).
No. For every n-qubit state |φ⟩ it holds that ⟨φ|H |φ⟩ ≥ b ·m(n).

In this work, we also deal with MIP∗ proof systems that involve two provers and one
round.

▶ Definition 12. A promise language L = (Lyes, Lno) is in MIP∗[2, 1]c,s if there exists a
polynomial-time computable function that takes an instance x ∈ L to a description of a
non-local game Gx satisfying the following conditions.

(Completeness) For every x ∈ Lyes we have ω∗(Gx) ≥ c.
(Soundness) For every x ∈ Lno we have ω∗(Gx) < s.

We refer to the mapping, x 7→ Gx, as a MIP∗[2, 1]c,s proof system, or in some places a
MIP∗[2, 1]c,s protocol. When the parameters are clear from the context we simply call it an
MIP∗ proof system.

Next, we discuss zero knowledge. In an interactive proof system, a malicious verifier V̂ is
a probabilistic polynomial-time Turing machine which on input x and randomness θ samples
question q1 for either Alice or Bob. Given reply r1, the malicious verifier samples question
q2 in a way that may depend on q1 and r1. For a given quantum strategy S and malicious
verifier V̂ , we take V iew(V̂ (x),S) to be the random variable corresponding to the transcript
of questions and answers (x, θ, q1, r1, q2, r1). A protocol is zero-knowledge when for all “yes”
instances a simulator can sample from the distribution above.

▶ Definition 13. An MIP∗[2, 1]c,s proof system is statistical zero-knowledge if for every
x ∈ Lyes there exists an honest prover strategy S satisfying the following:
1. ω∗(S) ≥ c.
2. For any PPT malicious verifier V̂ there exists a PPT simulator Sim

V̂
with output

distribution that is ε-close to V iew(V̂ (x), S) in statistical distance for some negligible
function ε(|x|).

2.4 Simulatable codes and encodings of gates
Recall that a quantum error-correcting code (QECC) C = [[n, k]] is a map Enc : (C2)⊗k →
(C2)⊗n, which encodes a k-qubit state |ψ⟩ into an n-qubit state Enc(|ψ⟩) where n ≥ k.
The code is said to have distance d if the original state can be recovered from the encoded
state that has transformed under any quantum operation which acts on at most (d− 1)/2
qubits. Given an [[m, 1]] QECC with map Enc, we abuse notation and also write Enc for the
corresponding [[mn, n]] encoding that is obtained by applying Enc to each of the qubits in
an n-qubit system.

We use Ak
n to denote the set of k distinct numbers between 1 and n through this section.

Then Ak :=
⋃

n≥k A
k
n is the set of k distinct numbers. Given a k-qubit logical gate U and an

element a = (a1, . . . , ak) ∈ Ak, let U(a) denote the gate U applied to qubits a1, · · · ak.
Below we recall the definition of simulatable codes introduced in [23].

▶ Definition 14. Given a k-qubit logical gate U and a quantum error-correcting code C =
[[m, 1]], let (σU , σ

′
U ) be a pair of states, and let ℓ be a positive integer. For each 1 ≤ i ≤ ℓ,

let Oi be a mapping from elements a = (a1, · · · , ak) in Ak to unitaries Oi(a) acting only on
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(i) the physical qubits of codewords in C that corresponds to logical qubits a1, · · · , ak, and
(ii) the register that holds σU .

We say the tuple (σU , σ
′
U , ℓ,O1, · · · ,Oℓ) is an encoding of U in code C if

(Oℓ(a) . . .O1(a))(Enc(ρ) ⊗ σU )(Oℓ(a) . . .O1(a))∗ = Enc
(
U(a)ρU(a)∗)

⊗ σ′
U (2)

for all n ≥ k, elements a ∈ Ak
n, and n-qubit states ρ. If in addition, the unitaries

O1(a), · · · ,Oℓ(a) are gates in some set U for all A ∈ Ak, then we say the encoding
(σU , σ

′
U , l,O1, · · · ,Oℓ) uses physical gates in U .

Given a circuit of logical gates V = U1 . . . Uk we refer to an encoding of V as the
corresponding circuit of physical gates obtained by applying an encoding of each gate Ui.

▶ Definition 15. An encoding (σU , σ
′
U ,O1, . . . ,Oℓ) of a k-qubit logical gate U in a QECC

C is called s-simulatable if for all 0 ≤ t ≤ ℓ, n-qubit states ρ, and subsets S of the physical
qubits of Enc(ρ) ⊗ σU with |S| ≤ s, the partial trace

TrS

(
Ot(a) . . .O1(a))(Enc(ρ) ⊗ σU )(Ot(a) . . .O1(a))∗

)
is a 2|S | × 2|S | matrix whose entries are rational and can be computed in polynomial time
from t, a and S. In particular, this matrix is independent of ρ if C can correct arbitrary
errors on s qubits.

▶ Theorem 16 (Theorem 6 in [23]). Let U = {H,Λ(X),Λ2(X)}. For every s ∈ N, there exists
a constant n ∈ N and a [[n, 1]] QECC C such that any logical gate in U has an s-simulatable
encoding in C using physical gates in U .

3 Low-weight Pauli braiding test and its rigidity

For any a ∈ {0, 1}n and W ∈ {X,Z}n, we use W (a) to denote the sequence W a1
1 W a2

2 · · ·W an
n

where X0 = Z0 = I. Let IA := {W (a) : W ∈ {X,Z}n, a ∈ {0, 1}n such that |a| ≤ 6} and let
IB := {(W (a),W (a′)) : W ∈ {X,Z}n, a, a′ ∈ {0, 1}n such that |a|, |a′ | ≤ 6} be the question
sets for Alice and Bob respectively. We first describe the low-weight linearity test in Figure 3.

1. The verifier selects uniformly at random W ∈ {X,Z}n and strings a, a′ ∈ {0, 1}n

satisfying |a|, |a′| ≤ 6 (i.e. a, a′ both have at most 6 non-zero entries).
2. The verifier sends (W (a),W (a′)) to Bob. If a + a′ has weight at most 6 then the

verifier selects W ′ ∈ {W (a),W (a′),W (a+a′)} uniformly at random to send to Alice.
Otherwise, the verifier uniformly at random sends W ′ ∈ {W (a),W (a′)} to Alice.

3. The verifier receives two bits (b1, b2) from Bob and one bit c from Alice.
4. If Alice receives W (a) then the verifier requires b1 = c. If Alice receives W (a′) then

the verifier requires b2 = c. If Alice receives W (a + a′) then the verifier requires
b1 + b2 = c.

Figure 3 Low-weight linearity test.

Next, we introduce a natural version of the anti-commutation test in Figure 4. This test
is built from the well-known Magic Square game which we described in Section 2.2.

Combining the low-weight linearity test and low-weight anti-commutation test, we now
construct the low-weight Pauli braiding test and state its rigidity result.
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1. The verifier samples uniformly at random a string a ∈ {0, 1}n with exactly two non-
zero entries i < j. The verifier also samples a row or column q ∈ {r1, r2, r3, c1, c2, c3},
and a variable vk contained in q as in the Magic Square game.

2. Bob receives the question (q, a).
3. If k ̸= 9 then Alice receives W (a) = Ii−1WiI

j−iWjI
n−j ∈ IA with σWi ⊗ σWj = Ak.

If k = 9 then Alice receives question (v9, a).
4. The players win if and only if Bob responds with a satisfying assignment to q and

Alice provides an assignment to variable vk that is consistent with Bob’s.

Figure 4 Low-weight anti-commutation test.

▶ Definition 17. The low-weight Pauli braiding test (LWPBT) is played by executing with
probability 1/2 either the low-weight anti-commutation test or the low-weight linearity test.

The n-qubit LWPBT has a canonical perfect strategy S̃ in which Alice and Bob share
the n-qubit EPR pair |Φ⊗

EP R⟩ and Alice perform σW (a) := ⊗n
i=1σ

ai

Wi
on question W (a) ∈ IA.

We have the following rigidity result for near-perfect strategies of LWPBT.

▶ Theorem 18. There exists a constant Clw > 0 such that the following holds. For any ε > 0,
n ∈ N, and strategy S = (τA, τB , |ψ⟩ ∈ HA ⊗ HB) for the n-qubit LWPBT with winning
probability 1 − ε, there are isometries VA : HA → (C2)⊗n ⊗ Haux

A , VB : HB → (C2)⊗n ⊗ Haux
B

and a unit vector |aux⟩ ∈ Haux
A ⊗ Haux

B such that

∥(VA ⊗ VB)
(
τA(W (a)) ⊗ IdHB

|ψ⟩
)

−
(
σW (a) ⊗ IdC2n |Φ⊗n

EPR⟩
)

⊗ |aux⟩∥ ≤ Clwn
6ε1/4

for all W (a) ∈ IA.

The proof Theorem 18 uses a group-theoretical approach and can be found in the full
version of our paper [9]. The idea is that we can round an approximate homomorphism
(defined by a near-perfect stategy) of the Weyl-Heisenberg group to an exact representation
using an enhanced Gowers-Hatami theorem.

3.1 An enhanced Gowers-Hatami theorem
For a finite group G, we use Irr(G) to denote the unique (up to unitary equivalence of
elements) complete set of inequivalent irreducible representations. Given a finite group G,
a function f : G → U(H) from G to unitaries on a Hilbert space H, and an irreducible
representation ϕ : G → U(Cd), the Fourier transform of f at ϕ is the operator

f̂(ϕ) := 1
|G|

∑
g∈G

f(g) ⊗ ϕ(g), (3)

where ϕ(g) is the conjugate of the matrix ϕ(g) ∈ Md(C) in the standard basis.
Let f : G → U(H) be a function of a finite group G. Given a quantum state ρ on H and

a positive real number ε, we say f is an (ε, ρ)-homomorphism provided that f(g−1) = f(g)∗

and 1
|G|

∑
h∈G∥f(g)f(h) − f(gh)∥2

ρ ≤ ε for all g ∈ G. In this case, by the well-known
Gowers-Hatami theorem [21, 46], there is a Hilbert space K, an isometry V : H → K,
and a representation ϕ : G → U(K) such that ∥f(g) − V ∗ϕ(g)V ∥ρ ≤ ε for all g ∈ G.
The following enhanced version of this theorem allows us to disregard all one-dimensional
irreducible representations of the Weyl-Heisenberg group. Earlier works dealt with these
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one-dimensional representations by invoking a truncation of the isometry given by the
Gowers-Hatami theorem. Unfortunately, in general, truncation of an isometry can fail to be
an isometry.

▶ Theorem 19. For any (ε, ρ)-homomorphism f : G → U(H) of a finite group G on a
finite-dimensional space H, there exists a finite-dimensional Hilbert space K, an isometry
I : H → K, and a representation π : G → U(K) such that

(i) ∥f(g) − I∗π(g)I∥2
ρ ≤ ε for all g ∈ G, and

(ii) ξ ∈ Irr(G) is an irreducible constituent of π only if f̂(ξ) ̸= 0.

We refer the readers to the full paper [9] for the proof details.

4 Modified Hamiltonian game

In this section, we show that for some local Hamiltonian H, one can construct a nonlocal
game G(H) whose winning probability is closely related to the ground state energy λ0(H)
of H. Our game is based on the Hamiltonian game introduced by Grilo [22]. We employ
LWPBT against dishonest quantum provers and then perform parallel repetition to achieve a
constant completeness-soundness gap. To incorporate LWPBT in our modified Hamiltonian
test, we consider Hamiltonians with specific structures:

▶ Definition 20. We say a Hamiltonian H is of XZ-type if it can be decomposed as
H = 1

m

∑m
ℓ=1 γℓHℓ where each γℓ ∈ [−1, 1] and each term Hℓ is a tensor product of operators

σX , σZ or σI .

Next, we define the relevant energy test which is analogous to the energy test used in [22].

▶ Definition 21 (Energy test). Given an n-qubit 6-local Hamiltonian H = 1
m

∑m
ℓ=1 γℓHℓ of

XZ-type we define the following energy test:
1. The verifier picks a term Hℓ for ℓ ∈ [m] taken uniformly at random, and selects uniformly

at random from the pairs {(W, r) ∈ {X,Z}n × {0, 1}n : σW (r) = Hℓ}.
2. The verifier sends W (r) to Alice, and tells Bob that the players are playing the energy

test.
3. Alice responds with a single value c ∈ {−1, 1} and Bob responds with 2n bits

a1, . . . an, b1, . . . bn.
4. The verifier next computes bit string d as follows. Take di = (−1)ai if ri = 1 and Wi = X,

take di = (−1)bi if ri = 1 and Wi = Z, and take di = 0 in all other cases.
5. The verifier accepts if c ·

∏
i di ̸= sign(γl), and rejects with probability |γl | otherwise.

Combining the LWPBT and Energy test we define our modified Hamiltonian test:

▶ Definition 22 (Hamiltonian test). Let H = 1
m

∑m
ℓ=1 γℓHℓ be a k-local Hamiltonian of

XZ-type and let p ∈ (0, 1). We define the following game G(H, p): with probability (1 − p)
the players play LWPBT introduced in Section Section 3, and with probability p the players
play energy test described in Definition 21.

We refer to a strategy S for G(H, p) as a semi-honest strategy if the players employ the
canonical perfect strategy when playing LWPBT. Hence in a semi-honest strategy Alice and
Bob hold n EPR pairs and Alice must perform σW (r) on question W (r) since she cannot
distinguish questions from LWPBT or energy test. We also define the honest strategy Sh for
G(H, p) in which the players employ the canonical perfect strategy when playing LWPBT,
and in the energy test, Bob honestly teleports the ground state of H to Alice and provides
the verifier with the teleportation keys.
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Below we analyze the players’ ability to win the overall game G(H, p) assuming the players
are using a semi-honest strategy.

▶ Lemma 23 (Lower bound on semi-honest strategies). Suppose H = 1
m

∑m
l=1 γlHl is an

n-qubit 6-local XZ Hamiltonian, and Alice and Bob are performing a semi-honest strategy S
for G(H, p). Then

ω(S) ≤ ω(Sh) = 1 − p( 1
2m

∑
l

|γl| + 1
2λ0(H)).

Proof. Suppose the players are employing a semi-honest strategy S = (τA, τB , |ψ⟩ ∈ HA ⊗
HB) for G(H, p). Let τ := TrHB

(|ψ⟩ ⟨ψ|). Since the players win the LWPBT perfectly,
they can only lose the overall game if they are playing an instance of the energy test. Let
a, b ∈ {0, 1}n be the answers Bob provides in the energy test, and let ρ := σb

Xσ
a
Zτσ

a
Zσ

b
X .

Suppose in a round of the energy test, the verifier picks an ℓ ∈ [m] and selects a W (r)
for Alice. As discussed above, since Alice cannot distinguish questions from LWPBT and
the energy test, she must perform σW (r) = Hℓ on her registers. Hence E(c ·

∏
i di) =

Tr(Hℓσ
b
Xσ

a
Zτσ

a
Zσ

b
X) = Tr(Hℓρ). Let pℓ be the probability of c

∏
i di = sign(γℓ). Then

E(c
∏

i di) = pℓsign(γℓ) − (1 − pℓ)sign(γℓ), or in other words, γℓE(c
∏

i di) = (2pℓ − 1)|γℓ |.
This implies the verifier rejects with probability

pℓ|γℓ | =
|γℓ | + γℓE(c

∏
i di)

2 = |γℓ | + γℓTr(Hℓρ)
2 .

Thus by averaging over ℓ ∈ [m] we see that the players lose the energy test with probability

1
m

∑
ℓ∈[m]

|γℓ | + γℓTr(Hℓρ)
2 = 1

2m
∑

ℓ∈[m]

|γℓ | + 1
2Tr(Hρ).

This probability is minimized if and only if ρ is indeed the density matrix of the ground state
of H and in such case, the probability of winning the overall game is at most

1 − p
( 1

2m
∑

ℓ∈[m]

|γℓ | + 1
2λ0(H)

)
.

This probability can be achieved if Bob teleports over the ground state and supplies the
verifier with the verification keys in the energy test. ◀

▶ Lemma 24 (Upper bound on dishonest strategies). Let H = 1
m

∑m
ℓ=1 γℓHℓ be a 6-local,

n-qubit Hamiltonian of XZ-type. For any η ∈ (0, 1), let p = 4n−6η3/4

(Clw+1)33/4 where Clw is
the constant given in Theorem 18. Then ω∗(

G(H, p)
)

≤ ω(Sh) + η, where ω(Sh) = 1 −
p
( 1

2m

∑
ℓ∈[m]|γℓ | + 1

2λ0(H)
)

as in Lemma 24.

Proof. Suppose the provers are employing a strategy S = (τA, τB , |ψ⟩) for G(H, p) that wins
LWPBT with probability 1−ε and wins the energy test with probability δ+1−

∑
ℓ
|γℓ |

2m − λ0(H)
2 .

Theorem 18 implies δ ≤ Clwn
6ε1/4. Then for p := 4n−6η3/4

(Clw+1)33/4 with η ∈ (0, 1), we have

η + ε = η/3 + η/3 + η/3 + ε ≥ 4( η3ε
33 )1/4 = p(Clw + 1)n6ε1/4. It follows that

pδ − (1 − p)ε ≤ pCn6ε1/4 + pε− ε ≤ pClwn
6ε1/4 + pn6ε1/4 − ε = p(Clw + 1)n6ε1/4 − ε ≤ η.

Hence the overall winning probability is given by

ω(S) = (1 − p)(1 − ε) + p(δ + 1 −
∑

ℓ
|γℓ |

2m − λ0(H)
2 ) = ω(Sh) + pδ − (1 − p)ε ≤ ω(Sh) + η.

This completes the proof. ◀
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In the rest of this paper, given an n-qubit, 6-local Hamiltonian H of XZ-type and
parameters α and β with β − α ≥ 1/poly(n), we use G(H) to denote the game G(H, p) with
p = 32n−6(β−α)24

27(Clw+1)4 .

▶ Theorem 25. Given an n-qubit, 6-local Hamiltonian H = 1
m

∑m
ℓ=1 γℓHℓ and parameters

α, β with β − α ≥ 1/poly(n), let ωα (resp. ωβ) denote the maximum winning probability for
G(H) when λ0(H) ≤ α (resp. λ0(H) ≥ β). Then ωα − ωβ ≥ 1/poly(n).

Proof. Let η := 16(β−α)32

27(Clw+1)4 , and let p := 4n−6η3/4

(Clw+1)33/4 . Then p = 32n−6(β−α)24

27(Clw+1)4 , and hence
G(H) = G(H, p). By Lemma 23 and Lemma 24 we have ω(Sh) ≤ ω∗(

G(H, p)
)

≤ ω(Sh) + η.
This implies ωα ≥ 1 − p( 1

2m

∑
ℓ|γℓ | + 1

2α) and ωβ ≤ 1 − p( 1
2m

∑
ℓ|γℓ | + 1

2β) + η. Since
n6(β − α)7 ≤ O(n−1), it follows that

ωα − ωβ ≥ 1
2p(β − α) − η = 16n−6(β − α)25

27(Clw + 1)4 (1 − n6(β − α)7) ≥ 16n−6(β − α)25

27(Clw + 1)4 .

Hence ωα − ωβ ≥ 1/poly(n). ◀

We apply a threshold parallel repetition theorem due to Yuen for the gap amplification.
For every n ∈ N, let G(H), wα and wβ be as in Theorem 25. By [51, Theorem 41], there
exists a poly(n)-computable transformation, called anchoring, that transforms G(H) to
a two-player game G(H)⊥ with winning probability 1 − 1−w∗(G(H))

2 . So w∗(G(H)⊥) ={
1 − εα/2 if λ0(H) ≤ α

1 − εβ/2 if λ0(H) ≥ β
, where εα := 1−wα and εβ := 1−wβ . Then by [51, Theorem 42],

there is a universal constant C > 0 such that for all integer m ≥ 1, and γ ≥ 0, the probability
that in the game G(H)m

⊥ the players can win more than
(
w∗(G(H)⊥) + γ

)
m games is at

most (1 − γ9/2)Cm. Take γ := εα−εβ

4 and m = max{4γ−2, 2Cγ−9}. Let Ĝ(H) := G(H)m
⊥ be

the m parallel repeated anchoring version of G(H). We show that this nonlocal game has a
constant completeness-soundness gap.

▶ Theorem 26. Let ω̂α (resp. ω̂β) be the maximum winning probability for Ĝ(H) when
λ0(H) ≤ α (resp. λ0(H) ≥ β). Then ω̂α − ω̂β ≥ 1/4.

Proof. If λ0(H) ≥ β, then ω̂β ≤ (1 − γ9

2 )Cm ≤ (1 − γ9

2 )2/γ9
< e−1 < 1/2. Now suppose

λ0(H) ≤ α. An optimal strategy S for G(H)⊥ has winning probability 1 − εα

2 . Let X be the
random variable for the number of games the strategy Sm wins. Then X ∼ Binomial(m, 1 −
εα

2 ), so EX = m(1− εα

2 ) and VarX = m εα

2 (1− εα

2 ). Since (1− εα

2 )−(1− εβ

2 +γ) = εβ−εα

2 −γ = γ,
we obtain that

Pr(X ≤ (1 − εβ

2 + γ)m) ≤ Pr(|X − EX | ≥ γm) ≤
m(1 − εα

2 ) εα

2
(γm)2 = 1

mγ2 ≤ 1/4.

This implies ω̂α ≥ w(Sm) = 1 − Pr(X ≤ (1 − εβ

2 + γ)m) ≥ 3/4, so the theorem follows. ◀

5 Zero-knowledge proof system

In this section, we show that the family of games described in Definition 22 provides a
statistical zero-knowledge MIP∗[2, 1] protocol for QMA with inverse polynomial complete-
ness/soundness gap.
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5.1 Simulation of history states for XZ-Hamiltonians
Before we introduce our MIP∗ protocol and proceed to our result on zero-knowledge, we
reformulate a result, originally introduced by Broadbent and Grilo [5] (Lemma 3.5), so that
it is more amenable to device-independent techniques.

▶ Theorem 27 (Simulation of history states). For any language L = (Lyes, Lno) in QMA and
s ∈ N, there is a family of verification circuits V (s)

x = UT . . . U1 for L that acts on a witness of
size p(|x|) and on q(|x|) ancillary qubits such that there exists a polynomial-time deterministic
algorithm SimV (s) that takes as input an instance x ∈ L and a subset S ⊆ [T + p+ q] with
|S| ≤ 3s+ 2, then outputs a classical description of an |S|-qubit density matrix ρ(x, S) with
the following properties:
1. If x ∈ Lyes, then there exists a p(|x|)-qubit witness ψs such that V (s)

x accept with probability
at least 1 − negl(n) on ψs and ∥ρ(x, S) − TrS(ρ)∥tr ≤ negl(|x|), where

ρ = 1
T + 1

∑
t,t′∈[T +1]

|unary(t)⟩ ⟨unary(t)| ⊗ Ut . . . U1(ψs ⊗ |0⟩ ⟨0|⊗q)U∗
1 . . . U

∗
t′

is the history state of V (s)
x on witness ψs.

2. Let Hi be one of the terms from the circuit-to-local Hamiltonian construction from V
(s)

x ,
and let Si be the set of qubits on which Hi acts non-trivially. Then Tr(Hiρ(x, Si)) = 0
for all x ∈ L.

3. The Hamiltonian H from the circuit-to-local Hamiltonian construction is a 6-local Hamilto-
nian of XZ type.

The first two points were proven by Broadbent and Grilo using simulatable codes constructed
from a different set of physical gates [5]. The last point follows from a similar approach in
[25, Lemma 22]. A detailed proof can be found in the full version of our paper [9].

Below we only need to invoke Theorem 27 for the case of s = 2 in order to our zero-
knowledge protocol. We use Vx to denote V (2)

x throughout the rest of this section.

5.2 A two prover zero-knowledge proof system for QMA
Let L = (Lyes, Lno) be a language in QMA. Figure 5 describes a two-prover one-round
interactive proof system for L with a constant polynomial completeness-soundness gap.

x
Theorem 27−−−−−−−→ Vx

circuit-to-Hamiltonian−−−−−−−−−−−−−−→ Hx
Definition 22−−−−−−−−→ G(Hx) Theorem 26−−−−−−−→ Ĝx := Ĝ(Hx)

Figure 5 x is an instance in L ∈ QMA. Vx is a poly(|x|)-size quantum circuit. Hx is a poly(|x|)-
qubit 6-local Hamiltonian of XZ-type. Ĝx is a nonlocal game with poly(|x|)-bit questions and
poly(|x|)-bit answers.

To prove the above interactive proof system for L has the statistical zero-knowledge
property, we first establish that any malicious verifier V̂ and x ∈ Lyes, there exists a PPT
simulator that can sample from V iew(V̂ (x),Sh), where Sh is the honest strategy for Gx

defined in Section 4.

▶ Lemma 28. Suppose x ∈ Lyes for some language L = (Lyes, Lno) in QMA. Let Gx be the
corresponding nonlocal game described in Figure 5, and let Sh be the honest strategy for Gx

defined in Section 4. For any malicious verifier V̂ there exists a PPT algorithm Sim
V̂

with
output distribution negligibly close to V iew(V̂ (x),Sh),
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The proof of this lemma can be found in the full version of our paper [9]. All that remains
is to argue that the interactive protocol described in Figure 5 based on the scaled-up game
Ĝx is statistically zero-knowledge.

▶ Theorem 29. The protocol described in Figure 5 is statistical zero-knowledge and has a
constant completeness-soundness gap.

Proof. The constant completeness-soundness gap follows directly from Theorem 26. To show
the statistical zero-knowledge, we first consider the anchoring procedure for the game Gx.
We can specify an honest strategy Sh,⊥ for the anchored version of Gx by fixing a choice
of output for either player who receives question ⊥ in the honest strategy. Then, given
any malicious verifier V̂ (x), the simulator given in Theorem 29 can be trivially modified to
sample from a distribution which is negligibly close to V iew(V̂ (x),Sh,⊥).

In the case of the threshold parallel repeated game Ĝx, the honest strategy Sm
h,⊥ is taken

to be the m-fold product of the honest strategy Sh,⊥. Then, as commented in [23], since
the protocol only queries each player once, a new simulator can be obtained by sampling
according to the m-fold product of the simulator used in the above lemma. ◀

6 Off-the-shelf model

6.1 Formal description of the model
Here we provide a formal description of the OTS model. This model is defined as a refinement
of MIP∗, where the completeness condition is weakened, allowing only one of the provers to
be “all-powerful”, while the other has limited functionality determined independently of the
problem instance.

Off-the-shelf device. We first formalize the definition of a family of off-the-shelf devices.
A verification device D = (|ψ⟩ , {P 1

a }a, . . . , {P q
a }a) consists of a state |ψ⟩ on Hilbert spaces

KA ⊗ KB and a collection of POVMs {P 1
a }a, . . . , {P q

a }a on KA. We say that a quantum
strategy S = ({Ex

a }, {F y
b }, |ϕ⟩ ∈ HA ⊗ HB) can be implemented using D, if three conditions

hold: (i) HA = KA and HB = KB ⊗ KB′ for some Hilbert space KB′ . (ii) The set of
measurements in S which act on HA are a contained in D. (iii) The shared state |ϕ⟩ in S
can be decomposed as |ϕ⟩ = |ψ⟩ ⊗ |ϕ′⟩ where |ψ⟩ is the state in D and |ϕ′⟩ is some auxiliary
state held on a Hilbert space KB′ .

Given a collection of verification devices {Dn}n∈N, where each Dn consists of a state |ψn⟩
and a sequence of POVMs, we say {Dn}n∈N is an efficient family of off-the-shelf devices if
there exists a polynomial-time uniform family of quantum circuits {Qn}n∈N satisfying the
following: Qn generates the state |ψn⟩ from an all 0 state, and on input i measures |ψn⟩
using the i-th POVM from Dn.

▶ Definition 30. A promise language L = (Lyes, Lno) has an off-the-shelf (OTS) proof system
if there exists an efficient family of off-the-shelf devices {Dn}n∈N, and a polynomial-time
computable function that takes an instance x to the description of a non-local game Gx

satisfying the following:
1. Completeness using OTS devices. For any x ∈ Lyes with |x| ≤ n, there exists a

quantum strategy Sx, which can be implemented using Dn, obtaining ω(Gx,Sx) ≥ c.
2. Soundness. For any x ∈ Lno we have ω∗(Gx) < s.

We use OTS to denote the class of all languages L which admits an OTS proof system with a
constant completeness-soundness gap.
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1. Set-up: The client sends a set-up parameter k ∈ N to the server who provides a
verification device Dk from an efficient family of off-the-shelf devices {Dn}n.

2. Choice of computation: The client sends a classical description of circuit Q,
satisfying |Q| ≤ k to the server.

3. Verifiable delegation: The client plays a 1-round game ĜQ, using the server and
device Dk as players. The client accepts if and only if the game is won.

Figure 6 A delegation protocol between a polynomial-time classical client and polynomial-time
quantum server, who provides an untrusted verification device during set-up.

Any OTS proof system is described as a special instance of a 2-player, 1-round MIP∗

proof system with additional constraints regarding the completeness condition and we say
that an OTS proof system is statistically zero-knowledge if it is statistically zero-knowledge
as an MIP∗ proof system (see Definition 13 for details).

6.2 Applications to ZK and delegated computation
In this section, we show that any language in QMA admits a statistical zero-knowledge OTS
proof system. We also consider how the OTS model can be scaled down to provide a protocol
for verifiable delegated quantum computation.

▶ Theorem 31. For every language L in QMA, there exists a statistical zero-knowledge OTS
proof system for L with constant completeness and soundness gap.

Proof. We will be working with the proof system sending an instance x to game Ĝx, as
described in Figure 5. Using the rigidity results in Section 3, we have already shown
completeness and soundness of properties of the individual game Ĝx in Section 4. The ZK
property of this game has also been shown in Section 5. All that remains to show is that this
protocol further satisfies the extra restrictions of completeness using OTS devices outlined in
Definition 30. That is, we need to show that there exists an efficient family of OTS devices
{Dn} which can implement the honest strategy Sx for all yes instances x.

For each L ∈ QMA, there exists a polynomial f such that, for all x ∈ L of size |x| = n the
corresponding Hamiltonian Hx is supported on at most f(n) qubits. Next suppose x ∈ Lyes

with |x| ≤ n. In the honest strategy for the game Gx, Alice and Bob share at most f(n)-EPR
pairs, additionally, Bob privately holds a ground state ρ for Hx. The measurements required
by Alice always correspond to σX or σZ on up to 6 qubits of the shared EPR pairs, or
σXσZ ⊗ σZσX on two qubits. In the honest strategy Sx for the m-fold parallel repeated
anchoring game Ĝx, the players share mf(n)-EPR pairs and Alice’s measures in σX or σZ

on up to 6m qubits or measures with σXσZ ⊗ σZσX on 2m qubits. Since m = poly(n), we
then satisfy the completeness condition required by specifying an efficient family of OTS
devices {Dn}, where for each n the verification device Dn contains mf(n)-EPR pairs and all
of the above required Pauli measurements on up to 6m qubits. ◀

In our application towards delegated quantum computation, we consider a novel type of
interactive protocol, where in addition to exchanging classical messages, the server can send
an untrusted verification device, as defined in Section 6.1, to the client (see Section 1). In
Figure 6, we consider the case where in the first “message”, called a set-up stage, the prover
sends an untrusted verification device, which is followed by classical communication.
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▶ Theorem 32. For every language L in BQP, there is a statistical-zero-knowledge delegation
protocol as outlined in Figure 6 for L with constant completeness and soundness gap.

Proof (Sketch). We can view the BQP-complete problem from Definition 9 as a language
in QMA. This allows us to apply the efficient mapping outlined in Figure 5 to obtain a
corresponding game ĜQ. In this case, the ground state of the underlying Hamiltonian can be
prepared by a polynomial-time quantum prover. Thus, as in the proof of Theorem 31, we
can define the required polynomial-time uniform family of OTS devices {Dn}n∈N by taking
Dn to contain suitably many EPR pairs, as well as the required Pauli measurements. Since
furthermore the required ground state can always be prepared by a polynomial-time quantum
prover, an honest server can obtain the required completeness in Step 3 by generating this
state and teleporting it to the verification device when required. We also have that the above
delegation protocol inherits the ZK property via the results of Theorem 31. ◀
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