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Abstract
A regular data language is a language over an infinite alphabet recognized by a deterministic register
automaton (DRA), as defined by Benedikt, Ley and Puppis. The later model, which is expressively
equivalent to the deterministic finite-memory automata introduced earlier by Francez and Kaminsky,
enjoys unique minimal automata (up to isomorphism), based on a Myhill-Nerode theorem.

In this paper, we introduce a polynomial time passive learning algorithm for regular data
languages from positive and negative samples. Following Gold’s model for learning languages, we
prove that our algorithm can identify in the limit any regular data language L, i.e. it returns a
minimal DRA recognizing L if a characteristic sample set for L is provided as input. We prove
that there exist characteristic sample sets of polynomial size with respect to the size of the minimal
DRA recognizing L. To the best of our knowledge, it is the first passive learning algorithm for data
languages, and the first learning algorithm which is fully polynomial, both with respect to time
complexity and size of the characteristic sample set.
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1 Introduction

Finite-memory automata (FMA) have been introduced by Francez and Kaminsky in the
90s [27], as an extension of finite automata to infinite alphabets of data values, which
can be stored and compared using a finite set of registers. Since the introduction of
FMA, a rich literature on automata for languages over infinite alphabets has emerged, e.g.
see [12, 6, 35, 13, 11, 31, 24]. Automata for data languages have many applications in
computer science, for instance in verification of concurrent systems [13, 14, 2, 1], of programs
with dynamic allocation [24] as well as in reactive system synthesis [28, 20, 19]. Unlike
in the finite alphabet setting, non-determinism and determinism often yield expressively
inequivalent models, such as for FMA. In this paper, we consider languages defined by
deterministic FMA (DFMA), which we call regular data languages. Regular data languages
form a robust class of languages. They are for instance captured by many variations on the
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data storage mechanism of DFMA: allowing registers to be emptied during computation, or
requiring that they must hold distinct values, or allowing their contents to be reassigned [33],
or finally requiring that they must follow a last appearance record (LAR) policy [6].

Register automata with last appearance record. The latter model of [6], which we simply
call deterministic register automata (DRA), is the chosen model in this paper for regular data
languages. As shown in [6], for any regular data language L, there exists a unique DRA for
L which is both minimal with respect to the number of states and number of registers. This
is particularly relevant for learning regular data languages. In this model, data values are
stored in a list whose length can vary during execution but is of bounded length k. Moreover,
data occurring in the list are distinct. When a new data d is read, it is compared to the list
α of stored values. The data d, if ever stored, has to be stored at the end of α, resulting
in a new list αd. Values in α can be erased, and must be if d already occurs in α (to keep
distinct values in memory), or if the list exceeds length k. E.g., consider the data language
L̸= of words of the form (d1d2)n for all n > 0 and all integers d1 ̸= d2. A DRA recognizing
L̸= would start with an empty memory, then store the 1st data d1, then the 2nd data d2
(after checking d1 ≠ d2). At this point its memory is the list d1d2. Then it would alternate
between (1) checking whether the next data is d1 and update the memory to d2d1, and (2)
checking whether the next data is d2 and update the memory to d1d2.

Passive learning of languages. Language inference has a long history, with applications
in (but not limited to) verification [29]. The (passive) inference of regular languages (over
a finite alphabet) from positive and negative samples has been studied since the 60s, see
e.g. [30] for a survey. Given a sample set S = (I+, I−) consisting of a finite set I+ (resp.
I−) of positive (resp. negative) samples, the goal is to infer a regular language as a DFA
consistent with S, i.e. it accepts all words in I+ and rejects those in I−. Gold proposed
identification in the limit of a regular language as a formal notion to characterize the learning
capability of inference algorithms [23, 16]. The algorithm RPNI (standing for Regular Positive
and Negative Inference) [34] is one of the reference algorithms in passive learning: given a
sample set S, it returns in polynomial-time a DFA consistent with S, and for any regular
language L, if S is characteristic enough for L, then RPNI returns AL. Moreover, there is
always a characteristic sample of polysize in the size of AL. In other words, RPNI identifies
regular languages in polynomial time and data. Since then, there have been many variants of
RPNI, for example for regular tree languages [22], regular queries in trees [15] or ω-regular
languages [8, 9]. Recently, RPNI was used in combination with reactive synthesis methods
to automatically generate reactive systems from LTL specifications and examples [5]. The
extension of [5] to the synthesis of data-processing reactive systems is our main motivation
for the present work, as the former heavily relies on passive learning.

Despite a rich literature on passive learning for regular languages over finite alphabets,
and on automata and logics for words over infinite alphabets, only few is yet known about
passive learning for regular languages over infinite alphabets, to the best of our knowledge.
Passive learning for symbolic automata has been investigated in [21]. This is an orthogonal
model to register automata: symbolic automata have complex tests over data, but no storage
mechanism, while register automata have simple data tests, but registers to store data.
Handling data that need to be memorized in a passive learning context is one of the main
difficulties of our paper. Let us also mention that they are many contributions in active
learning for regular data languages, in particular extensions of L∗ algorithm [7, 25, 26, 32].
All these extensions however run in exponential time.
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Contributions. We prove that any regular data language L can be identified in polynomial
time from polynomial data, in the size of the minimal DRA for L. To do so, we design
an RPNI-like algorithm, which takes as input a finite sample set S = (I+, I−) of positive
and negative data words over an infinite domain of data values, and prove that it returns,
in polynomial time, a DRA consistent with S, assuming data equality can be tested in
polynomial time. We then show that for any regular language L, there exists a characteristic
sample SL, such that for any sample S containing SL, our algorithm returns the minimal
DRA recognizing L (as defined in [31]). To the best of our knowledge, it is the first fully
polynomial passive learning algorithm for regular data languages.

Our RPNI algorithm is based on an alternative presentation of RPNI for DFA, compared
to the original formulation of [34]. This alternative presentation is similar to the one of [8]
for ω-regular languages. We believe this presentation is simpler than the original one, as it
does not involve operations such as deterministic state-merging, and is easier to analyse. The
idea is to start from a single-state automaton, and to incrementally extend it by adding new
transitions, allowing more sample prefixes to be readable by the automaton (taken in length
lexicographic order). To generalize the samples, when adding a new transition, existing states
are prioritized as a target of the new transition, over creating a fresh new state. A transition
can be added if the resulting automaton can still be completed into an automaton consistent
with S. We call this S-completability and show it can be checked in PTime. In Section 3,
we first present this alternative RPNI algorithm for DFA. It is of independent interest, but
also helpful to understand its extension to DRA, which is done in Section 4. Briefly, when
adding a transition, the algorithm now has to decide whether the incoming data must be
stored and which of the stored data can be erased from memory. To do so, and to generalize
the sample as much as possible, it tries both to reuse existing states for the target of the
new transition, and to erase as many registers as possible, while preserving S-completability.

In Section 5, we prove that this algorithm identifies any regular data language L from a
characteristic sample set of size polynomial in the size of the minimal DRA for L. To prove
that the characteristic sample is polynomial, classical automata-theoretic arguments (such as
intersection closure) do not apply because they involve exponential blow-up. Instead, we
adapt group-theoretic techniques for checking bisimulation of register automata as defined
in [33], which exploits symmetries underlying sets of configurations of register automata. As
a byproduct of our techniques, we obtain that equivalence of DRA can be checked in CoNP.

2 Preliminaries

Data Words and Languages. In this paper, a data domain is an infinite countable set D
equipped with equality, whose elements are called data. In this paper, we assume an arbitrary
well-ordering <D over D, so that every subset has a minimal element. It is also assumed
that any data has an effective representation, and that data comparison <D can be tested in
polynomial time.

A (data) word w (or sometimes just word) is a finite sequence of data from D. Given
a word w having length |w| = n, we denote by w[i] the ith data of w for 1 ≤ i ≤ |w|. We
define the length-lexicographic order over D∗: u <llex v if |u| < |v| or |u| = |v|, u = wdu′,
v = wd′v′ for some d <D d′ and w, u′, v′. For a set X ⊆ D∗, we let Prefs(X) be the set of
words u such that u is a prefix (not necessarily strict) of some word in X.

Any (total) function µ : D → D can be morphically extended to µ : D∗ → D∗, where
µ(w)[i] = µ(w[i]) for all w ∈ D∗ and 1 ≤ i ≤ n. The function µ is called a data permutation
if µ is bijective. Two data words w1, w2 ∈ D∗ are said to be data-equivalent1, written as

1 In the terminology of orbit-finite sets, w1 and w2 are said to be in the same orbit [10].
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w1 ≃ w2, if w1 = µ(w2) for some data permutation µ. Note that it implies that |w1| = |w2|.
We denote by [w]≃ the ≃-class of any data word w. The following result is immediate (under
the previous assumption that data equality is in PTime):

▶ Proposition 1. For any data domain D, ≃ is decidable in PTime.

A (data) language L over D is a set of data words over D. It is equivariant if for all
w ∈ L, [w]≃ ⊆ L. For w1, w2 ∈ D∗, we write w1 =L w2 when w1 ∈ L↔ w2 ∈ L holds.

Register Automata. Register automata have first been introduced by Kaminsky and Francez
under the name finite memory automata [27]. In this paper, we use an equi-expressive model
defined in [6], which enjoys a canonical, state-minimal and register-minimal form. In this
model, the number of available registers may vary over time, but depends on the state, i.e. any
configuration in state p has the same number λ(p) of stored data. Moreover, registers follow
a fixed policy in the way they are used, called last appearance record. Thanks to this policy,
it is not necessary to give names to registers, and the set of stored data in a configuration is
just a data word (of bounded length). Before giving the formal definition, let us informally
explain how this model works. Any transition is of the form t = (p, α, E, q) where p, q are
states, α is a data word of length λ(p) + 1, E is a subset of {1, . . . , λ(p) + 1}. The word
α is seen as a test of the new data read as input against the registers, via ≃-equivalence.
There can be two types of α: disequality tests, which require all the data of α to be pairwise
different, and equality tests, which require all data to be pairwise different but the last one,
which repeats exactly once in α. E.g. over D = N, α = 1323 is an equality test, α = 2341
is a disequality test and α = 222 is not a valid test. Any configuration in state p is of the
form (p, d1 . . . dλ(p)) where d1 . . . dλ(p) ∈ D∗ is the memory content. Reading a new incoming
data d, transition t above can be triggered only if d1 . . . dλ(p)d ≃ α, and in that case the
automaton moves to state q. Some of the data in memory can be dropped, and E specifies
which one, by their positions in {1, . . . , λ(p) + 1}. The automaton maintains the following
invariant: no data is stored multiple times in memory, and the size of the memory only
depends on the state. To maintain the first invariant, if α is an equality test α1 . . . αλ(p)+1
with αj = αλ(p)+1 for some j ≤ λ(p), then j ∈ E: this implies that only the last occurence
of dj is kept. For the second invariant, we must have λ(p) + 1− |E| = λ(q).

▶ Definition 2. A (deterministic) register automaton (DRA) over D is a tuple A =
⟨Q, k, λ, T, q0, F ⟩, where:

Q is the set of states, q0 is the initial state with λ(q0) = 0 and F ⊆ Q are the final states.
k ∈ N is the maximum number of stored values, and λ : Q → {0, . . . , k} is called an
availability function;
T is a finite set of transitions of the form (p, α, E, q), where p, q ∈ Q, α ∈ Dλ(p)+1 is
either an equality or a disequality test and E ⊆ {1, . . . , λ(p) + 1}. It is required that: (i)
λ(p) + 1− |E| = λ(q), (ii) if α[i] = α[λ(p) + 1] for some i ≤ λ(p), then i ∈ E, and (iii)
T is deterministic, i.e. for all states p and ≃-equivalence class c, there exists at most
one transition (p, α, E, q) such that α ∈ c.

For all 0 ≤ i ≤ k, we let Qi = λ−1(i) be the set of states with i available registers. Given
this notation, we may freely denote a DRA as a tuple ⟨Q0, . . . , Qk, T, I, F ⟩. A configuration
is a pair τ = (q, σ), where q ∈ Q and σ ∈ Dλ(q). Given two configurations (p, σ) and (q, σ′)
and a data a ∈ D, we write (p, σ) a−→A (q, σ′) whenever there exists a transition (p, α, E, q)
such that σ.d ≃ α, and σ′ = dropE(σ.d) where dropE(.) replaces, for all i ∈ E, the ith data
of σ.d by ϵ, and for all i ∈ {1, . . . , k} \ E, keeps the ith data.
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A run of A over a data word w is a sequence of configurations (p1, σ1) . . . (pn, σn) such that
n = |w|+ 1, and for all 1 ≤ i < n, (pi, σi)

w[i]−−→A (pi+1, σi+1). We write (p, σ1) w−→A (pn, σn)
to denote the existence of such a run. The language recognized by the register automaton A,
denoted L(A), is the set of words w such that (q0, ϵ) w−→A (p, σ) for some p ∈ F .

▶ Example 3. Consider the language of data words L = {d1d′
1d2d′

2 . . . dnd′
n ∈ N∗ | ∀1 ≤ i ≤

n, di = d′
i}. The data language L is recognizable by the DRA A = ⟨Q, k, λ, T, q0, F ⟩, where

k = 2, Q = {q0, q1}, λ(q0) = 0, λ(q1) = 1, F = {q0} and T = {(q0, 1, ∅, q1), (q1, 11, {1, 2}, q0)}.
The language L̸= = {(d1d2)n | n, d1, d2 ∈ N, n > 0, d1 ≠ d2} of Introduction is recogniz-

able by A′ = ⟨{p0, . . . , p3}, 2, λ′, T ′, p0, {p2}⟩ where λ′(p0) = 0, λ′(p1) = 1, λ′(p2) = λ′(p3) =
2, and T ′ = {(p0, 1,∅, p1), (p1, 12,∅, p2), (p2, 121, {1}, p3), (p3, 121, {1}, p2)}.

We say that a data language L is regular if it is recognized by a DRA A, i.e. L(A) = L.
Note that regular data languages are equivariant, i.e. stable under data renaming, because
the property of ρ to be a run on some data word w only depends on the data equalities in w.

3 Warm Up: Passive Learning of DFA

In this section, we recall how passive learning of DFA is achieved by the RPNI algorithm [34].
However we provide an alternative presentation, inspired by a similar presentation in the
context of ω-regular languages [8]. RPNI first constructs a tree-like DFA accepting exactly
the set of positive samples, and to generalize them, it merges the states of the initial DFA as
much as possible and in a specific order, while preserving the rejection of negative samples.
In contrast, our approach starts from a single-state DFA and adds transitions incrementally.
When adding a new transition, to generalize the positive samples, it tries to reuse an existing
state while rejecting negative samples, otherwise it creates a new state. This approach,
which we believe is slightly simpler than the original RPNI algorithm, and offers the same
guarantees, is easier to generalize to register automata, as it is not based on state-merging.
It is indeed not clear how to define such an operation on register automata.

Some useful notions on DFA. Before defining the algorithm, we introduce some notions for
DFA. We denote a DFA over an alphabet Σ as a tuple A = ⟨Q, q0, F, δ⟩, where Q is the set
of states with initial state q0, F ⊆ Q are the final states and δ : Q× Σ→ Q is the transition
function (which might be partial). The language accepted by A is denoted by L(A). We also
denote (if it exists) by δ∗(p, w) the state reached by A when reading a word w from a state
p. In particular, δ∗(p, ϵ) = p. Given a set S ⊆ Σ∗, a word w ∈ Σ∗, we define its residual
language w−1S = {w′ ∈ Σ∗ | w.w′ ∈ S}.

We now define a relation on DFA, which characterizes when a DFA is a subgraph of
another one. Given two DFAs Ai =

〈
Qi, qi

0, Fi, δi

〉
, i = 1, 2, we say that A2 completes A1,

written A1 ⪯ A2, if there exists an injective morphism Φ : Q1 → Q2, i.e. a mapping which
preserves the initial state, final states and the transitions: Φ(q1

0) = q2
0 , Φ(F1) ⊆ F2 and for

all transitions (p, σ, q) ∈ δ1, we have (Φ(p), σ, Φ(q)) ∈ δ2. Given a sample set S = (I+, I−)
where I+, I− ⊆ Σ∗, we say that a DFA A is S-consistent if I+ ⊆ L(A) and I− ∩ L(A) = ∅.
We say that A is S-completable if there exists A′ such that A ⪯ A′ and A′ is S-consistent.

▶ Proposition 4. A DFA A is S-completable iff I− ∩ L(A) = ∅ and there do not exist
u1, u2, z ∈ Σ∗ such that u1z ∈ I+, u2z ∈ I− and δ∗(q0, u1) = δ∗(q0, u2).

As a corollary, DFA completability can be checked in PTime, where we define the size
||A|| of a DFA A as its number of states plus number of transitions.
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▶ Corollary 5. Given a DFA A and a (finite) sample set S, it can be checked in time
O(||A||.||S||) whether A is S-completable.

Algorithm description. The algorithm is given as Algorithm 1. It takes as input a finite
sample set S = (I+, I−) of consistent positive and negative samples (I+ ∩ I− = ∅), and
returns an S-consistent DFA A. It starts with a single state DFA A and keeps on extending
it with new transitions (possibly creating new states), to be able to read more and more
prefixes of words from S. To do so, it adds all the prefixes of words from I+ ∪ I− (but ϵ) to
a waiting list ToRead, processed in length-lexicographic order <llex. The invariants of the
algorithm (preserved by the while-loop at line 3) are:

(i) any word w in ToRead cannot be read fully by A, i.e. δ∗(q0, w) is undefined.
(ii) A is S-completable.
(iii) A is (I+ \ ToRead, I−)-consistent.

It is easily seen that those invariants are initially true, because the sample set is consistent.
At any iteration the algorithm picks a <llex-minimal word w = ua in ToRead, with a ∈ Σ.
Since w is length-minimal, δ∗(q0, u) = p exists. The algorithm then adds a new transition
from p on reading a. To do so, it calls a function SET_TRANSITION which first tries to reuse
an existing state q such that adding transition p

a−→ q preserves S-completability (reusing
existing states is how the algorithm generalizes the samples). If no such state exists, it creates
the fresh state pa and adds the transition p

a−→ pa. After the transition is added, all words
in ToRead which can now be read are removed from ToRead (thus preserving invariant (i)),
and if additionally they are positive, the state they reached are set to be accepting. Invariant
(ii) is preserved because SET_TRANSITION makes sure the new transition can be added
w/o breaking S-completability. If invariant (iii) is not preserved, since line 11 makes sure all
words in I+ \ ToRead are accepted (for the new set ToRead), there are some w ∈ I+ and
w′ ∈ I− which both reach the same accepting state, contradicting S-completability and (ii).

The algorithm terminates in a polynomial number of steps with respect to the size of S,
and returns an S-consistent DFA, according to invariant (iii). Note that it is not specified
in which order states are enumerated at line 15. Different orders may yield different DFA,
but this has no influence if the sample is rich enough, as explained in the next paragraph.

Completeness. A way to formalize how well RPNI generalizes the samples is given by a
completeness result: for any regular language L, the minimal (not necessarily complete)
DFA AL recognizing L is output by RPNI, if a small (polynomial size in the size of AL) but
characteristic enough sample set is provided as input. We obtain the same result for our
modified RPNI algorithm. We do not formally prove it because it is a particular case of the
same result on DRA, fully proven in Section 5, and the purpose of this section is to convey
intuitions easing the comprehension of the DRA setting. We now define a characteristic
sample set SL of polynomial size in the size of AL, such that Algo. 1, on input SL, returns
a DFA isomorphic to AL. We give the intuitions on how SL influences the execution of
Algorithm 1. For the algorithm to create as many states and transitions as AL, ToRead
needs to contain at least one word per state and transition. Then, when it tries to add a new
transition, negative samples are needed to control the target state: by an adequate choice of
negative samples, exactly one target state (either existing or fresh) will be picked.

It is convenient to view AL as the quotient DFA obtained from the Myhill-Nerode
congruence ≡L, defined by u ≡L v if for all w ∈ Σ∗, uw ∈ L ↔ vw ∈ L holds. Let [u] be
the class of any word u. For any two different classes c, c′, there exists wc,c′ ∈ Σ∗ which
distinguishes c and c′, in the sense that ucw ∈ L ̸↔ uc′w ∈ L. Then, for u, v and a ∈ Σ
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Algorithm 1 Alternative formulation of RPNI algorithm for DFA.

Input: A (finite) sample set S = (I+, I−) of positive and negative samples over an
alphabet Σ: I+, I− ⊆ Σ∗ such that I+ ∩ I− = ∅.

Output: An S-consistent DFA A = ⟨Q, q0, F, δ⟩
1 q0 ← ϵ; Q← {ϵ}; δ ← ∅; if ϵ ∈ I+ then F ← {q0} else F ← ∅
2 ToRead ← Prefs(I+ ∪ I−) \ {ϵ}
3 while ToRead ̸= ∅ do
4 u · a← length-lexicographic minimal word in ToRead

5 p← δ∗(q0, u) // guaranteed to exist
6 (p, a, q)← SET_TRANSITION(A, p, a, S)
7 δ ← δ ∪ {(p, a, q)}; Q← Q ∪ {q}
8 foreach w ∈ ToRead do
9 if δ∗(q0, w) exists then

10 ToRead ← ToRead \ {w}
11 if w ∈ I+ then F ← F ∪ {δ∗(q0, w)};

12 return A = ⟨Q, q0, F, δ⟩
13

14 Function SET_TRANSITION(A, p, a, S):
Input: A DFA A = ⟨Q, q0, F, δ⟩, state p ∈ Q and character a ∈ Σ such that

δ(p, a) is undefined and A is S-completable
Output: A state q (either in Q if it exists, otherwise fresh) such that

⟨Q, q0, F, δ ∪ {p a−→ q}⟩ is S-completable
15 foreach q ∈ Q do
16 if COMPLETABLE(⟨Q, q0, F, δ ∪ {p a−→ q}⟩, S) then return (p, a, q)

// check S-completability, see Cor.5
17 return (p, a, pa)

such that [ua] ̸= [v], samples are needed to forbid the learning algorithm to create the
transition [u] a−→ [v]. We use the word w[ua],[v] to do so. Formally, a sample set S = (I+, I−)
is characteristic for L if it is L-consistent and there exist St, Tr, D ⊆ Σ∗ such that:

St contains for each class c ∈ Σ∗/≡L
, a <llex-minimal representative u, i.e. [u] = c,

for all u ∈ St and a ∈ Σ, ua ∈ Tr,
for all u, v ∈ St, a ∈ Σ, if [ua] ̸= [v] then uaw[ua],[v], vw[ua],[v] ∈ D,

and such that (St ∪ Tr ∪D) ∩ L ⊆ I+ and (St ∪ Tr ∪D) ∩ L ⊆ I−.
Given a characteristic sample set SL, the invariant maintained by Algorithm 1 on the

while-loop is that AL completes the DFA A constructed so far. This is ensured by the fact
that A is constructed incrementally by adding new transitions, and by the samples in D

which prevents some wrong transitions to be created. Since ToRead initially contains at
least one representative sample per states and transitions of AL, the final automaton A
returned by Algorithm 1 has the same number of states and transitions as AL, and by the
invariant, we get that it is isomorphic to AL. Moreover, there exists a characteristic sample
set of polynomial size in the size of AL: there is a representative uc of any class c of linear
length in the number of states of AL, while the distinguishing words wc,c′ are bounded, using
classical pumping arguments, quadratically in the number of states of AL. This can even be
improved to a linear upper bound [18].
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4 Learning Register Automata from Positive and Negative Samples

Let D be a data domain. A (finite) sample set is a pair S = (I+, I−) such that I+, I− ⊆ D∗

are finite sets of respectively positive and negative samples. S is consistent whenever for all
u ∈ I+, v ∈ I−, we have u ̸≃ v. In this section we introduce an RPNI-like passive learning
algorithm for DRA from consistent sample sets. We start by giving some intuition on the
key ingredients underlying the algorithmic process. It follows the same structure as the DFA
learning algorithm presented before.

The algorithm initially constructs a DRA A being able just to read the empty word ϵ

(and accept it if ϵ ∈ I+). Moreover, the non-empty samples prefixes are collected into a
set, called ToRead (just as for the DFA case of Section 3): namely, ToRead maintains the
sample prefixes not yet readable by the DRA A under construction. The algorithm keeps on
adding transitions to be able to read such samples prefixes, until ToRead is empty (iterating
over ToRead by increasing samples in <llex order). The following crucial invariants are
maintained during the overall execution:

(i) A is a DRA able to read each word in Prefs(I+ ∪ I−) \ ToRead

(ii) A accepts (resp. rejects) each sample in I+ \ ToRead (resp. I−)
(iii) It is possible to “complete” A (adding new states and transitions ) into a DRA accepting

any sample of I+ and rejecting all samples of I− (the latter DRA is said to be S-
consistent).

Those invariants are clearly met by the initial single-state DRA. We now formalize
the notion of being S-completable for DRA. As for the DFA case, one needs a notion of
embedding of DRA into another. For i = 1, 2, let Ai = ⟨Qi, ki, λi, Ti, qi

0, Fi⟩ be a DRA. We
say that A2 completes A1, written A1 ⪯ A2, whenever there exists an injective mapping
Φ : Q1 → Q2 which preserves the initial state, the availability function, the final states, and
the transitions, as follows: λ1 = λ2 ◦ Φ, Φ(F1) ⊆ F2, Φ(q1

0) = q2
0 , and for all transitions

(p, α, E, q) ∈ T1, there exists β ≃ α such that (Φ(p), β, E, Φ(q)) ∈ T2. In particular, observe
that L(A1) ⊆ L(A2). We say that A1 is S-completable whenever there exists an S-consistent
DRA A2 completing A1. This notion is decidable in PTime. To prove it, we first give a
characterization of S-completability, which can be proved in the same line as the DFA case:

▶ Proposition 6. A DRA A is S-completable for a sample set S = (I+, I−), iff L(A)∩I− = ∅
and there do not exist words w ∈ I+, z ∈ I−, state q and words σ, σ′ such that: w = w1w2∧z =
z1z2 ∧ (q0, ϵ) w1−−→A (q, σ) ∧ (q0, ϵ) z1−→A (q, σ′) ∧ σw2 ≃ σ′z2.

By inspecting I+, I− and computing the states reached by their prefixes in A, it is not
difficult to decide the latter characterization in PTime:

▶ Corollary 7. It is decidable in PTime whether for a given DRA A is S-completable.

The prefixes in ToRead are considered in <llex-increasing order and used to add a
transition to A allowing their processing without violating the three invariants above. This
can be done since A is S-completable. Therefore, by the end of the algorithm A is an
S-consistent DRA (due to the first two invariants and the fact that toRead is empty).

With this intuition in mind, we go in more details introducing the pseudocode of our DRA
passive learning algorithm. A careful reader may notice a clear symmetry between the DFA
and DRA learning processes presented, and may wonder how we take care of the registers
when creating new transitions. This will be made clear in the pseudocode presentation below.
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Pseudocode of the DRA Passive Learning Algorithm. The pseudocode in Algorithm 2
illustrates the procedure DRA_PASSIVE_LEARN(S), which takes as input a consistent finite
sample set S = (I+, I−) and returns an S-consistent DRA A. A full execution of the
algorithm is provided as Example 8.

A while-loop follows the initialization phase in lines (1)-(2), controlled by a guard checking
whether the set of samples prefixes ToRead is not empty. In that case, the DRA under
construction is not yet capable to process all the words in S. Hence, a <llex-minimal word ua

is extracted from ToRead at line (4). Invariant (i) and the minimal length of ua ensures that
A can read u but not ua. As A is deterministic, it admits a unique run ρ : ⟨q0, ϵ⟩ u−→A ⟨q, σ⟩
processing u. The S-completability of A ensures that it is possible to add a transition from
state q such that ua is now readable, while preserving the invariants. To generalize the
samples, the choice of that transition is done in such a way that it tries to keep the least
amount of data in memory and tries to reuse existing states. Such a choice is delegated to the
procedure SET_TRANSITION at line (6), which returns a new transition t = (q, σa, E, p).
Before describing this procedure, we finish the overview of Algorithm 2. Line (7) augments A
by adding to T the new transition t. If the target state q′ is new, line (8) updates consistently
the set of states of the DRA under construction and the availability function. Finally, the
for-loop at line (9) updates ToRead by removing the prefixes that can now be read, and
updates the final states consistently based on positive samples which can now be read by A.

We now describe the procedure SET_TRANSITION whose pseudocode is given in Al-
gorithm 3. It takes as input a consistent sample set S = (I+, I−), an S-completable DRA A,
a state q, and a word σ · a ∈ Dλ(q)+1 such that A has no transition be able to read a from
configuration (q, σ). It computes a set of registers E to be erased, and a new target state p,
and returns transition (q, σa, E, p), with the guarantee that adding this new transition to A
preserves S-completability, while trying to generalize the samples. To compute E, it first
tries to determine if some stored values can be dropped, while preserving S-completability.
Then it attempts to reuse an existing state p as the target of a transition (q, σa, E, p),
otherwise creates a fresh new state. When computing E, it tries to erase as many stored
values as possible, which informally allows for more generalization of the samples. Another
fundamental reason for doing so is because it is needed to be able to prove that our algorithm
identifies regular data languages in the limit. Since the characteristic sample somehow
encodes the behaviours of the minimal automaton, which stores the least amount of data in
its configurations, the algorithm as well has to follow the same policy, to be able to output
the minimal canonical automaton for the language. We now give more details.

If a is registered in the word σ at position j (i.e. σ(j) = a) then the set of erasable
registers E is initialized to {j} otherwise to the empty set. Line (3) initializes the set R (of
registers to check for erasability ) to {1, . . . , λ(q) + 1} \ E. The loop at line (4) (taken |R|
times) extracts one-by-one the registers in R and checks whether their values can be safely
erased. It relies on a function Choose(R) which picks a register from R. In each iteration
the current register h chosen from R is recognized as erasable only if the DRA obtained by
adding the transition t = (q, σa, E ∪ {h}, f) towards a fresh new state f does not compromise
S-completability. In that case h is added to E (and never removed). The task of checking if
adjoining the transition t to A leads to an S-completable DRA A′ is performed through a
call to a function COMPLETABLE(A′, I+, I−), which exists by Corollary 7.

Once the set of erasable registers E for the new transition is defined, the function
SET_TRANSITION proceeds with a a loop trough the states p ∈ Q such that λ(p) =
λ(q) + 1) − |E| at line (8), aiming at identifying the target of the new transition among
existing states. To check that p can be reused, the algorithm calls COMPLETABLE(A′, I+, I−)
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to determine whether the DRA A′ obtained by adding the transition (q, σa, E, q′) to A is
S-completable. In that case the function returns the transition (q, σa, E, p). If no vertex is
identified as a safe target for the new transition within the loop at line (8), a fresh state
f /∈ Q is created and the function returns the transition (q, σa, E, f) at line (11).

▶ Example 8 (RPNI Execution for DRA). Consider the language L = {ϵ}∪{d1d′
1d2d′

2 . . . dnd′
n ∈

N∗ | ∀1 ≤ i ≤ n, di = d′
i} recognizable by the the DRA A = ⟨Q, k, λ, T, q0, F ⟩, where k = 2,

Q = {q0, p}, λ(q0) = 0, λ(p) = 1, F = {q0} and T = {(q0, 0, ∅, p), (p, 00, {1, 2}, q0)}, as
depicted below:

q0 p

0,∅

00, {1, 2}

We provide a complete example of execution of the proposed DRA learner, given the
sample-set S = (I+ = {ϵ, 00, 11}, I− = {0, 011, 01}), which eventually returns the latter DRA.
The RPNI algorithm builds an initial DRA A composed by the only initial state q0, which
is inserted in the final states since ϵ ∈ I+. Then, the set ToRead = {0, 1, 00, 01, 11, 011} of
non-empty sample-prefixes is constructed. The initial DRA is:

q0

The first execution of the main loop extracts the <llex-minimum sample ua = 0
from ToRead and calls SET_TRANSITION(A, q0, σa = 0, I+, I−) to build a transition
t out from q0 (reached by A upon reading u = ϵ) processing the value a = 0.
SET_TRANSITION(A, q0, σa = 0, I+, I−) detects that a needs to be remembered, given
that the DRA A′ obtained by adding to A the transition (q0, a, ∅, p) (toward the fresh
state p) is not completable since 00 ∈ I+, 01 ∈ I−. Therefore, the set of erasable registers
for the transition (q0, a, E, _) is set to the empty set (i.e. E = ∅). There is no state in
A with (λ(q0) + 1) − |E|) = (0 + 1) − 0 = 1 registers. Hence, the second loop at line 8
does not perform any iteration and SET_TRANSITION(A, , q0, σa = 0, I+, I−) returns the
transition t = (q0, a, ∅, p) toward the fresh state p. The DRA under construction is then
updated to A = ⟨{q0, p}, 1, λ, {t}, {q0}⟩, where λ(q0) = 0, λ(p) = 1. The final for-loop at
line 9 extracts from ToRead the sample 0 and the sample 1 that are now readable by A
and does not label p as final because there is no positive sample readable by A leading to p.
Therefore, at the beginning of the second iteration of the main loop at line 3, we have that
A = ⟨{q0, p}, 1, λ, {t}, {q0}⟩ and ToRead = {00, 01, 11, 011}.

q0 p

0,∅

The second execution of the main loop extracts the <llex-minimum sample ua = 00
from ToRead and calls SET_TRANSITION(A, p, σa = 00, I+, I−) to build a transition t

out from p (reached by A upon reading u = 0) processing the value a = 0. Line 5 of
SET_TRANSITION inserts the index 1 in E since σ(1) = a = 0 (avoiding the storage of
duplicates). The automaton A′ obtained adding to A the transition (p, 00, E = {1, 2}, s),
where s is a fresh state is completable. Therefore E is set to {1, 2} at the end of the
first (and only) iteration of the loop at line 4. Since A contains only one state with
(λ(p)+1)−|E| = (1+1)−2 = 0 registers, also the loop at line 8 iterates only once, attempting
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at redirecting (p, 00, E = {1, 2}, s) toward q0. Such a redirection succeeds since the DRA
A′ obtained by adding to A the transition (p, 00, E = {1, 2}, q0) is completable. Hence
SET_TRANSITION(A, p, σa = 00, I+, I−) returns t′ = (p, 00, {1, 2}, q0). The DRA under
construction is then updated to A = ⟨{q0, p}, 1, λ, {t, t′}, {q0}⟩, where λ(q0) = 0, λ(p) = 1.
Since A is able to read all the samples provided as input, accepting them if they belong to
I+, the final for-loop at line 9 extracts all the samples from ToRead and does not modify
the set of final states. The algorithm then terminates and returns a DRA recognizing L.

▶ Remark 9. In the algorithm SET_TRANSITIONS, there are several places where choices
can be made: at line 5 when a register is chosen, and later at line 8 when target states
p are enumerated. Different implementations of those choice and enumeration functions
might result in differing DRA in general. However, our learning algorithm’s guarantees are
independent of those implementations, namely: 1) the algorithm returns an S-consistent
DRA, and 2) for a regular language L, given a characteristic sample it returns a minimal
DRA for L.

Algorithm 2 Algorithm DRA_PASSIVE_LEARN(S) for learning a deterministic register
automaton from a set of positive and negative samples S = (I+, I−).

Input: A finite consistent sample set S = (I+, I−).
Output: An S-consistent DRA A = ⟨Q, k, λ, T, q0, F ⟩, i.e. I+ ⊆ L(A) and

I− ∩ L(A) = ∅.
/* define an initial S-completable DRA A */

1 Q← {ϵ}; λ(ϵ) = 0; T ← ∅; q0 ← ϵ; F ← ∅ ;if ϵ ∈ I+ then F ← {q0}
2 ToRead ← (prefs(I+ ∪ I−)) \ {ϵ}
3 while ToRead is not empty do
4 w = ua← <llex-minimal word in ToRead
5 ⟨q, σ⟩ ← configuration such that ⟨q0, ϵ⟩ u−→A ⟨q, σ⟩
6 (q, σa, E, p)← SET_TRANSITION(A, q, σa, I+, I−)
7 T ← T ∪ {(q, σa, E, p)}
8 if p /∈ Q then Q← Q ∪ {p}; λ(p)← λ(q) + 1− |E|
9 for w ∈ ToRead do

10 if ⟨q0, ϵ⟩ w−→A ⟨s, σ⟩ then
11 ToRead ← ToRead \ {w}
12 if ∃w′ ∈ I+, w′ ≃ w then F ← F ∪ {s}

13 return A = ⟨Q, k = maxq∈Qλ(q), λ, T, q0, F ⟩

We now prove the correctness of our passive DRA learning algorithm. Lemma 10 below
proves the validity of the crucial invariants briefly introduced in the previous section.

▶ Lemma 10. The following invariants hold at line (3) (entrance of the main loop) of the
algorithm DRA_PASSIVE_LEARN(S), where S = (I+, I−):

Inv1: A is a DRA accepting (resp. rejecting) all words in I+ \ ToRead (resp. in I−)
Inv2: A can read all words in Prefs(I+ ∪ I−) \ ToRead
Inv3: A is S-completable

Sketch. The invariants are clearly true before the while-loop has been entered for the first
time (for the 3rd invariant, it is because S is consistent, so we can always built an DRA
which accepts exactly I+ and its ≃-equivalent words, and rejects all words from I− and their
≃-equivalent words).
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Algorithm 3 Function SET_TRANSITION(A, q, σa, I+, I−) used by DRA learner to
complete the new transition (q, σ · a, _, _) defining the erasable registers and the target node.

1 Function SET_TRANSITION(A, q, σ · a, I+, I−):
Input: S-completable DRA A = ⟨Q, k, λ, T, q0, F ⟩, state q ∈ Q, and word

σ · a ∈ Dλ(q)+1 such that T does not contain any transition (q, σ · a, _, _)
Output: New t = (q, σa, E, p) s.t. ⟨Q, k, λ, T ∪ {t}, q0, F ⟩ is S-completable

/* Compute some set E ⊆ {1, . . . , λ(q) + 1} of erasable registers */
2 E ← ∅; i← λ(q);
3 if ∃j ≤ i : σ(j) = a then E ← {j}; R← {1 . . . i + 1} \ {j} else R← {1 . . . i + 1};
4 while R ̸= ∅ do
5 h← Choose(R); R← R \ {h}; E ← E ∪ {h} ;
6 A′ ← ⟨Q ∪ {f}, k, λ ∪ {f 7→ i + 1− |E|}, T ∪ {(q, σa, E, f)}, q0, F ⟩ for f fresh ;
7 if ¬(COMPLETABLE(A′, I+, I−)) then E ← E \ {h} ;

/* Pick some p ∈ Q, if it exists, as target of the new transition */
8 foreach p ∈ Q such that λ(p) = λ(q) + 1− |E| do
9 A′ ← ⟨Q, k, λ, T ∪ {(q, σa, E, p)}, q0, F ⟩;

10 if COMPLETABLE(A′, I+, I−) then return (q, σa, E, p);
/* Otherwise create a fresh new state as target */

11 return (q, σa, E, f) for f a fresh state ;

The inductive step is rather simple. For Inv2, this is precisely the essence of our algorithm:
it picks any word ua ∈ ToRead which cannot be read fully (while u can) and completes A
with one transition allowing to read ua. Inv3 is clear because calls to COMPLETABLE in
SET_TRANSITION make sure that S-completability is preserved. For Inv1, the loop at line (9)
updates the accepting states and so it makes sure that all words of I+ which can be read are
accepted. The only possible issue is that it could now accept words from I−. It is not possible
since SET_TRANSITION ensures that adding the new transition preserves S-completability
(given an S-completable DRA, which is ensured by the induction hypothesis). If a word of
I− is now accepted, it means that some accepting state is now reachable by a positive word
and a negative word, contradicting S-completability, ensured by Inv3. ◀

On the ground of Lemma 10, we are ready to prove the correctness and complexity of
our DRA passive learning algorithm.

▶ Theorem 11. The algorithm DRA_PASSIVE_LEARN(S) returns a DRA A consistent
with S = (I+, I−) (i.e. L(A) ⊇ I+ ∧ L(A) ∩ I− = ∅) in time polynomial w.r.t. the size of S.

Proof. Correctness is trivial by Inv1 and the fact that ToRead is eventually empty when the
algorithm terminates. For complexity, note that the algorithm takes as input a consistent
sample set. Consistency can be checked in PTime by Lemma 1. Note that all the loops in
DRA_PASSIVE_LEARN and SET_TRANSITION are iterated only a polynomial number of
times in the size of their inputs. Moreover, COMPLETABLE runs in PTime by Cor. 7. ◀

▶ Remark 12. Note that correctness of SET_TRANSITION is trivial since it calls COM-
PLETABLE to make sure that the returned transition can be added while preserving S-
completability. The fact that SET_TRANSITION tries to erase some registers and to reuse
existing states is important for generalizing the samples, not for correctness, and important for
proving that our learning algorithm identifies regular data languages in the limit. Moreover,
<llex-minimality at line 4 could be replaced by just length minimality while preserving
correctness, but it is important to prove completeness.
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5 Identification in the Limit of the Class of Regular Data Languages

In this section we prove that the proposed RPNI algorithm for DRA identifies in the limit
the class of regular data languages, according to the definition of [23, 16, 8]. Namely, given
a regular data language L, we show that there exists a characteristic sample SL such that
DRA_PASSIVE_LEARN(S) learns a DRA recognizing L whenever SL ⊆ S. We then show
that it can be chosen of polynomial size in the size of the minimal DRA recognizing L. As
for the DFA case, we rely on the existence of a unique minimal DRA for L, as shown in [6].
We recall this notion here.

Memorable data and canonical register automata. Any regular data language L admits
a unique minimal DRA, up to DRA isomorphism2, as shown in [6]. Minimality is both
for the number of states, as well as the number of stored data, in the sense that when the
canonical automaton reads a prefix, it stores the least amount of data. The key notion
towards canonicity and minimality is based on the notion of memorable data with respect to
L. Given a word w ∈ D∗ and two data a, b ∈ D, we let w[a/b] = µa/b(w) where µa/b(a) = b

and µa/b(d) = d for all d ≠ a. Intuitively, a data a in a word w is memorable if for some
continuation u, renaming data a in u by some data b which does not occur in wu has an
influence on the membership into L.

▶ Definition 13 (Memorable Values [6]). A data a ∈ D in a word w is L-memorable for a
language L if there exist u ∈ D∗ and b ∈ D such that: wu ≃ (wu)[a/b] and wu ̸=L w(u[a/b]).

Given a word w and a language L on D, we let memL(w) denote the finite sequence of all
L-memorable data of w ordered according to the positions of their last occurrences in w:
a occurs before b in memL(w) if they are both memorable in w, and the last occurrence
of a in w is before the last occurrence of b in w. Intuitively, memL(w) represents the
data that necessarily need to be stored by any DRA recognizing L. We now define an
equivalence ≡L⊆ D∗×D∗ which is of finite index iff L is DRA-recognizable. We let w ≡L w′

if |memL(w)| = |memL(w′)| and for all words u, u′, if memL(w)u ≃ memL(w′)u′ then
wu =L w′u′. When ≡L is of finite index, it is used to define a DRA recognizing L (the
canonical DRA AL) that is minimal amongst all DRA recognizing L [6].

▶ Theorem 14 ([6]). For any DRA-recognizable language L, there exists a unique DRA AL

(up to isomorphism) recognizing L, which is both state-minimal and register-minimal (in the
sense that the number of stored values in any configuration is minimal).

We recall the construction of AL = ⟨Q, k, λ, T, q0, F ⟩. The set of states is Q = D/≡L
with

for all u ∈ D∗, λ([u]) = |memL(u)| and k = maxq∈Qλ(q). The initial state is q0 = [ϵ] and
F = {[u] | u ∈ L}. Finally, for all classes c ∈ D/≡L

, pick a representative u such that [u] = c.
For all d ∈ D, pick a word3 α such that memL(u)d ≃ α, then set ([u], α, E, [ud]) ∈ T where E

is defined such that memL(ud) = dropE(memL(u)d). The later automaton is well-defined [6].
Even though there are infinitely many minimal automata up to isomorphism, in the sequel
we refer to AL as a representative of one of them.

Characteristic samples. As for the DFA case, one needs samples to account for the states
and transitions of the minimal automaton, and to distinguish equivalence classes. In addition,
samples are also needed to witness memorable data. A sample set S = (I+, I−) is said to be
L-consistent if I+ ⊆ L and I− ∩ L = ∅.

2 Two DRA A1, A2 are isomorphic if A1 ⪯ A2 and A2 ⪯ A1, see Section 4
3 Different choices for the representative u and α yield isomorphic DRA.
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▶ Definition 15 (Characteristic sample). Let L be a regular data language. A sample set
S = (I+, I−) is characteristic for L if it is L-consistent and there exist St, Tr, Mem, D ⊆ D∗

such that:
St contains, for each class c ∈ D/≡L

, a <llex-minimal representative u, i.e. [u] = c,
for all w ∈ St, a ∈ memL(w), d ̸∈ memL(w) s.t. d is <D-minimal: wa, wd ∈ Tr,
for all w ∈ Tr, all a ∈ memL(w), there exists b ∈ D and u ∈ D∗ such that wu ≃ (wu)[a/b],
wu ̸=L w(u[a/b]) and wu, w(u[a/b]) ∈Mem,
for all w ∈ St, z ∈ Tr such that |memL(w)| = |memL(z)| and w ̸≡L z, there exist w′, z′

such that memL(w)w′ ≃ memL(z)z′, ww′ ̸=L zz′ and ww′, zz′ ∈ D,
and (St ∪ Tr ∪Mem ∪D) ∩ L ⊆ I+ and (St ∪ Tr ∪Mem ∪D) ∩ L ⊆ I−.

We now establish the following theorem:

▶ Theorem 16. Let L be a regular data language and let SL be a characteristic sample for
L. Then DRA_PASSIVE_LEARN(SL) returns a DRA isomorphic to the minimal DRA AL.

Sketch. The main arguments are however rather intuitive and similar to the DFA case,
except that additional samples are needed to account for memorable data. In the definition of
characteristic sample, St and Tr allow the learner to identify the states and the transitions of
AL. Instead, the learner uses the samples in Mem within the first loop of SET_TRANSITION
to avoid dropping necessary registers. Finally, the learner uses the samples in D within the
second loop of SET_TRANSITION to set correctly the target of new transitions avoiding
wrong redirections toward old states.

The proof in Theorem 16 uses an inductive argument on the number of iterations of the
main loop in RA_Passive_Learning to establish that, whenever the guard-condition at line (3)
is checked, the DRA A under construction (given a characteristic sample for L) is isomorphic
to a portion of the minimal DRA AL. In other words AL completes A, i.e. A ⪯ AL. When
processing a new prefix w = ua in ToRead, where w leads to a configuration (q, σ) of the so
far constructed DRA, we know by IH that σ = memL(u). The call to SET_TRANSITION
adds a new transition (q, σa, E, p), and we have to prove that (q, σa, E, p) can be embedded
into a transition (q⊛, α⊛, E⊛, p⊛) of AL. By IH and the definition of AL, we know that u

leads to configuration (q⊛, σ = memL(u)) by AL. Therefore, α⊛ ≃ memL(u)a. Again by
definition of AL, E⊛ drops only unmemorable data of ua. By definition of characteristic
samples, there are samples in Mem that prevent dropping memorable data of ua, so the first
phase of SET_TRANSITIONS will keep only the necessary data, i.e. E = E⊛. Finally, the
samples in D ensures that (q, σa, E) can be directed towards a unique state p. For any other
state, calls to COMPLETABLE are failing. This state p is then embedded into state p⊛ of
AL to show that A extended with the new transition (q, σa, E, p) is completable by AL.

When DRA_PASSIVE_LEARN(SL) returns, it yields a DRA A where A ⪯ AL. Moreover,
since in S, there is at least one representative sample per state and transition of AL, A has as
many states and transitions as AL, and therefore AL ⪯ A, i.e., A and AL are isomorphic. ◀

Characteristic samples of polynomial size. We conclude this section by showing that given
a regular data language L, there exists a characteristic sample SL (see Definition 15) of
polynomial size in the size of the minimal DRA AL for L. Let us give a brief overview of
the proof. For the samples representing the states and transitions of A(L) (sets St and Tr),
it is rather easy, via pumping arguments, to show that samples of lengths polynomial in
the number of states of AL are sufficient. It relies on the next lemma, proved by similar
arguments as in the case of finite memory automata [27].



M. Balachander, E. Filiot, and R. Gentilini 10:15

▶ Lemma 17. Let A be a DRA with n states such that L(A) ̸= ∅. Then there exists w such
that w ∈ L(A) and |w| is bounded by n.

Given a data word u, we let u−1L = {v | uv ∈ L} be the residual language of L by u.
Bounding Mem is similar to bounding D. We recall that for Mem, we need two samples of
the form wu and w(u[a/b]) for any w ∈ St and a ∈ memL(w), such that wu ̸=L w(u[a/b]).
We show that wu ̸=L (w[a/b])u since b is fresh in wu. Since samples w ∈ St have been
bounded already, it remains to bound u, i.e. show that the inequality w−1L ̸= (w[a/b])−1L

is witnessed by a polysize word u. Similarly, for D, given w ∈ St and z ∈ Tr, we have
to bound w′, z′ such that memL(w)w′ ≃ memL(z)z′ and ww′ ̸=L zz′. We prove that the
latter is equivalent to the existence of a data permutation τ such that z′ = τ(w′) and
τ(w)z′ ̸=L zz′. So, we only need to bound z′ satisfying τ(w)z′ ̸=L zz′, i.e. show that the
inequality (τ(w))−1L ≠ z−1L is witnessed by a polysize word z′. In general, for a DRA A
recognizing a language K and a configuration κ, we let κ−1K be the set of words on which
A has an accepting run starting in κ. The polysize of Mem and D is then a consequence of:

▶ Theorem 18. Given a DRA A recognizing a language K and two configurations κ1, κ2, if
κ−1

1 K ̸= κ−1
2 K, then there is w ∈ D∗ of polynomial length such that w ∈ κ−1

1 K ̸↔ w ∈ κ−1
2 K.

A low-hanging consequence of the latter theorem is that DRA equivalence is solvable in coNP,
which is new for this model of DRA. Note that for DFA, proving a result like Theorem 18 is
easy by using Boolean operations on DFA and short witness for DFA non-emptiness. However
in the data setting, intersection of DRA involves an exponential blow-up, for instance to
maintain that registers should hold distinct values4. Instead, to prove Theorem 18, we show
that given two configurations of a DRA, if they are not bisimilar, then this is witnessed
by a polynomial word. We rely on group-theoretic methods as developed for fresh register
automata in [33], which we adapt to the DRA model defined in this paper. Unfortunately, it
does not seem that DRA can be transformed in PTime into any of the models of [33], thus
preventing us from directly applying those results. We reprove them with a slight adaptation
to our setting. We now give an overview of the procedure.

The space of configurations of a DRA form a labelled transition system (where the data
are labels of the transitions). Bisimulation is defined classically, see e.g. [4], and is seen as
an Attacker/Defender game: Attacker picks a data and transition, Defender replies by a
transition on the same data, etc. In the deterministic case, a strategy for Attacker is just a
data word. We prove that if Attacker has a strategy, i.e. a word, it has a small strategy (of
poly-length in the size of the DRA). To show the latter, the concrete bisimulation relation,
which is infinite, is finitely but completely abstracted, based on the observation that the
data themselves are not important, only equalities between data matter. Based on this, any
pair of configurations (q1, α1), (q2, α2) ∈ Q × Dℓ is abstracted as a triple (q1, π, q2) where
π : [1, ℓ] ↪→ [1, ℓ] is a partial permutation s.t. π(i) = j iff α1[i] = α2[j]. A relation is then
defined over such triples, called symbolic bisimulation, which reflects in an abstract way the
moves of Attacker and Defender in the concrete bisimulation game. It is then shown that two
configurations are bisimilar iff their abstraction as a triple is in the symbolic bisimulation (in
other words, the abstraction is sound and complete).

The symbolic bisimulation relation can be computed as the greatest fixpoint of a monotonic
function F , generating a decreasing chain of intermediate relations U0 ⊋ · · · ⊋ Un = Un+1
converging to the symbolic bisimulation relation in n steps. From this chain, it is possible to

4 We conjecture the exponential intersection blow-up is unavoidable.
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extract for any non-bisimilar configurations, a word strategy for Attacker of length at most
n. The group-theoretic arguments come into play to bound polynomially n, as introduced
in [33]. All the sets Ui bear a lot of symmetries: for example if (q1, π, q2) ∈ Ui for some
i, then (q2, π−1, q1) ∈ Ui (closure by inverse). In fact, this is precisely where the fact that
registers hold distinct data is crucial: it implies that π is a permutation and not an arbitrary
relation, and so it can be inverted. The sets Ui enjoy other closures (such as composition)
allowing one to show that some characteristic subset of permutations of Ui form a subgroup
of the symmetric group, ordered by the subgroup relation for increasing i. The final argument
follows from [3]: chains of subgroups of the symmetric group are linearly bounded.

6 Future work

While we have shown that our learning algorithm runs in PTime, there are interesting
questions related to implementation and in particular efficient data structures, for instance to
deal with sample prefixes, and to quickly check for completability. As mentioned in Remark 9,
it is worth investigating heuristics for choosing target states of new created transitions when
there are multiple candidates, for example adaptations of evidence-based heuristics [17] to
the context of data languages. The same question arises when erasing registers: there might
be several possible sets E.

An interesting future direction, related to the implementation of our algorithm, is to
make it incremental, in the sense that it does not have to restart the whole procedure from
scratch whenever a new example is added to the set of samples, in the spirit of [18].

Finally, a natural continuation is to investigate active learning for the register automata
model of this paper. As mentioned in the introduction, all known results about active
learning for regular data languages have exponential time complexity, but this model has not
been investigated yet, to the best of our knowledge.
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A Completability of DFA

Before proving Proposition 4, we define the notion of prefix-tree acceptor of a finite set S,
as a tree-shaped DFA accepting exactly S. For any finite set S ⊆ Σ∗, PTA(S) = (Q =
Prefs(S), q0 = ε, δ, F = S), where ∀wa ∈ Prefs(S) : δ(w, a) = wa. Clearly, L(PTA(S)) = S.

▶ Proposition 4. A DFA A is S-completable iff I− ∩ L(A) = ∅ and there do not exist
u1, u2, z ∈ Σ∗ such that u1z ∈ I+, u2z ∈ I− and δ∗(q0, u1) = δ∗(q0, u2).

Proof. ( =⇒ ) Clearly, if I− ∩ L(A) ̸= ∅, then A is not completable, since by definition of
completability, final states have to be preserved.

Now, let w1 = u1z ∈ I+ and w2 = u2z ∈ I− such that δ∗
A(q0, u1) = δ∗

A(q0, u2), then any
S-consistent extension Aext of A have the following property: δ∗

A∗(q0, w1) = δ∗
A∗(q0, w2) and

therefore, w1 ∈ L(Aext) iff w2 ∈ Aext, hence Aext is not S-consistent. Contradiction.
(⇐= ) We construct an S-consistent extension Aext of A. For every state q of A, let Lq

be the set of words w such that q0
w−→A q. For all letter a ∈ Σ such that δ(q, a) is undefined,

let I+
q,a = (Lqa)−1I+ be the set of words v such that uav ∈ I+ for some u ∈ Lq. We construct

Tq,a = PTA(I+
q,a) with root node tε and add a transition from q to the initial state of Tq,a on

reading a. The set of accepting states is set to be the accepting states of A plus the states
reached by words from I+. We make such construction for any pair (q, a) such that δ(q, a) is
undefined. This results in an extension Aext of A, which is now able to read any word of I+.

We now show Aext is S-consistent. The inclusion I+ ⊆ Aext is immediate by construction.
Let us show I− ∩ L(Aext) = ∅. Suppose, for the sake of contradiction, that there is some
w′ ∈ I− ∩ L(Aext). Let p = δ∗

ext(q0, w′). We consider two cases:
1. p ̸∈ QA, i.e. p is a state of some added PTA Tq,a. Hence there is some w ∈ I+ such that

δ∗
Aext(q0, w) = p. By construction of Aext (an in particular because Tq,a is tree-shaped), it

implies that w and w′ can be factorized as w = u1z and w′ = u2z for some u1, u2 ∈ Σ∗,
such that δ∗

A(q0, u1) = δ∗
A(q0, u2) = q exists and in Aext, there exists a transition from q

to the initial state of Tq,a where a is the first letter of z. This contradicts our assumption,
since w = u1z ∈ I+ while w′ = u2z ∈ I−.

2. p ∈ QA: since I− ∩L(A) = ∅, then p was not accepting in A. Hence there must be some
positive example w ∈ I+ such that q0

w−→A p. We then immediately get a contradiction,
by taking u1 = w, u2 = w′ and z = ϵ. ◀

▶ Corollary 5. Given a DFA A and a (finite) sample set S, it can be checked in time
O(||A||.||S||) whether A is S-completable.

Proof. We check the characterization given by Proposition 4. Checking I− ∩ L(A) = ∅ is
done in O(||I−||.||A||). For the second condition, we check the non-existence of u1, u2, z as
in Proposition 4. Let Suff(S) be the set of suffixes of words of S. For any word z ∈ Suff(S),
the objective is to compute two sets P +

z , P −
z , where for s ∈ {+,−}, P s

z = {δ∗(q0, u) | u ∈
Σ∗ ∧ uz ∈ Is} (this set can be empty). Then, it suffices to check that no node z ∈ Suff(S)
satisfies P +

z ∩ P −
z ̸= ∅.

To compute the sets P +
z and P −

z for all z ∈ Suff(S) in O(||A||.||S||), the algorithm first
builds a suffix tree based on S, whose set of nodes is Suff(S). The root is ϵ, and if u ∈ Σ∗

and σu ∈ Σ∗ are two nodes of the tree, there is an edge from u to σu. Therefore, if a node
z is a common ancestor of two nodes u1 and u2, then z is a common suffix of u1 and u2.
Constructing the tree is done in time O(||S||).

The tree is then processed bottom-up, exploiting the following claim:
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▷ Claim. For all z ∈ Suff(S), all s ∈ {+,−}, P s
z = {δ(q, σ) | σz ∈ Suff(S) ∧ q ∈ P s

σz} ∪X

where X = {q0} if z ∈ Is, otherwise X = ∅.

Proof of the claim. Let denote by Qs
z the rhs of the above equality. We show that P s

z = Qs
z.

Let p ∈ P s
z . Then p = δ∗(q0, u) for some uz ∈ Is. If u = ϵ, then p = q0 and z ∈ Is, so p ∈ X

and p ∈ Qs
z. If u = u′σ for some u′, then u′σz ∈ Is and σz ∈ Suff(S). Let q = δ∗(q0, u′).

Then p = δ(q, σ) and we can conclude since q ∈ P s
σz by definition of P s

σz.
Conversely, let p ∈ Qs

z. There are two cases: either p = q0 and z ∈ Is, we get immediately
that p ∈ P s

z , or p ∈ {δ(q, σ) | σz ∈ Suff(S) ∧ q ∈ P s
σz}. Since q ∈ P s

σz, q = δ∗(q0, u) for some
u such that uσz ∈ Is. As p = δ(q, σ), we get that p = δ∗(q0, uσ) and since uσz ∈ Is, we can
conclude that p ∈ P s

z . ◁

The algorithm is then immediate by processing the tree bottom-up, applying δ on the
sets computed for the children of any node currently processed. The overall computation is
in time O(||A||.||S||). ◀

B Completability for DRA

▶ Proposition 6. A DRA A is S-completable for a sample set S = (I+, I−), iff L(A)∩I− = ∅
and there do not exist words w ∈ I+, z ∈ I−, state q and words σ, σ′ such that: w = w1w2∧z =
z1z2 ∧ (q0, ϵ) w1−−→A (q, σ) ∧ (q0, ϵ) z1−→A (q, σ′) ∧ σw2 ≃ σ′z2.

Proof. (⇐) Let W = {s1, . . . , sn} = I+ ∪ I− and for all 0 ≤ i ≤ n, let Wi = {s1, . . . , si},
I+

i = I+ ∩Wi, I−
i = I− ∩Wi and Si = (I+

i , I−
i ). Note that S0 = (∅, I−) and Sn = S. We

show by induction on i how to build a sequence of DRA A0 = A ⪯ A1 ⪯ · · · ⪯ An such for
each 0 ≤ i ≤ n, Ai is Si-consistent and there does not exists w ∈ I+, z ∈ I− and state q and
words σ, σ′ such that:

w = w1w2 ∧ z = z1z2 ∧ (q0, ϵ) w1−−→Ai (q, σ) ∧ (q0, ϵ) z1−→Ai (q, σ′) ∧ σw2 ≃ σ′z2 (1)

The base case i = 0 is clear by hypothesis, since A0 = A. Let i > 1 and assume by
IH that Ai−1 is Si−1-consistent. The DRA Ai = ⟨Qi, ki, λi, Ti, qi

0, Fi⟩ is obtained from
Ai−1 = ⟨Qi−1, ki−1, λi−1, Ti−1, qi−1

0 , Fi−1⟩ as follows. We consider two cases:
(1) If Ai−1 reads si reaching a configuration (q, σ) then let q be a final state iff si ∈ I+. By

contradiction suppose that Ai is not Si-consistent. Then, there exists sj<i such that
both reading si and reading sj , Ai−1 gets to a configuration where the first component is
q, say (q, σ), (q, δ), however only one between si, sj is a positive sample. This contradicts
the fact that Ai−1 respects condition (1), since σ ≃ δ (by definition of DRA).

(2) Otherwise, let decompose si into si = s1
i s2

i where s1
i is the longest prefix of si which

can be read by Ai−1, and let (q, σ) be the configuration reached by Ai−1 upon reading
s1

i . To obtain Ai, we complete Ai−1 with new transitions from state q, so that Ai can
only read s2

i from q (and all ≃-equivalent words). Let a1 . . . am = s2
i , σ0 = σ, and for

all 1 ≤ k ≤ m, σk = dropEk
(σk−1ak) where Ek = {x} such that ak = σk−1[x] if it exists,

otherwise Ek = ∅. We now construct Ai. Let p1, . . . , pm ̸∈ Qi be fresh new states. Let
Qi = Qi−1∪{p1 . . . pm} and p0 = q, Ti = Ti−1∪{(pk, σk ·ak+1, Ek+1, pk+1) | 0 ≤ j < m},
qi

0 = qi−1
0 , Fi = Fi−1 ∪ {pm} if si ∈ I+, otherwise Fi = Fi−1.

We first show that Ai meets Condition (1). If it is not the case, then, there exists a
positive sample u1 = w1z1 and a negative sample u2 = w2z2 and runs (qi

0, ϵ) w1−−→Ai
(t, λ1) and

(qi
0, ϵ) w2−−→Ai (t, λ2) such that λ1z1 ≃ λ2z2. SInce Ai−1 satisfies Condition (1), necessarily,

state t is a newly added state, so one of {p1, . . . , pm}, say t = pj for some j. So, w1 and w2
can be further decomposed into w′

1w′′
1 and w′

2w′′
2 with |w′′

1 | = |w′′
2 |, and the runs into:
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(qi
0, ϵ) w′

1−−→Ai−1 (q, λ′
1) w′′

1−−→Ai (pj , λ1)

(qi
0, ϵ) w′

2−−→Ai−1 (q, λ′
2) w′′

2−−→Ai (pj , λ2)

By definition of Ai, σa1 . . . aj ≃ λ′
1w′′

1 and σa1 . . . aj ≃ λ′
2w′′

2 (where σ, a1, . . . , am have
been used before to define Ai), hence λ′

1w′′
1 ≃ λ′

2w′′
2 . Now, again by definition of Ai, λ1

(resp. λ2) is made of exactly one occurrence of each data appearing in λ′
1w′′

1 (resp. λ′
2w′′

2 ).
From this fact, the fact that λ1z1 ≃ λ2z2 and λ′

1w′′
1 ≃ λ′

2w′′
2 , we get that λ′

1w′′
1 z1 ≃ λ′

2w′′
2 z2,

contradicting the fact that Ai−1 respects Condition (1).
It remains to show that Ai is Si-consistent. By construction, Ai accepts all words in I+

i ,
because Ai accepts all words in I+

i−1, by IH, and we have not removed accepting states, only
added potentially one accepting state to accept si. We show that Ai rejects all words in
I−

i . If it were not the case, then let s ∈ I−
i accepted by Ai. As Ai−1 is Si−1-consistent, it is

necessarily the case that s has an accepting run towards a new accepting state, and this new
accepting state can only be pm, and si ∈ I+. From this we immediately get that Condition
(1) is not satisfied, which is a contradiction.
(⇒) Let A′ = (Q′, k′, λ′, T ′, q′

0, F ′) be the S-consistent DRA that completes A and let
Φ : Q → Q′ the injective function witnessing it. If L(A) ∩ I− ̸= ∅, since Φ must preserve
accepting states, then L(A′) ∩ I− ≠ ∅, which contradicts that A′ is S-consistent. On
the other hand, suppose that there exist w = w1w2 ∈ I+, z = z1z2 ∈ I− such that
(q0, ϵ) w1−−→A (q, σ) ∧ (q0, ϵ) z1−→A (q, σ′) ∧ σw2 ≃ σ′z2. Then, A′ admits runs (Φ(q0), ϵ) w1−−→A′

(Φ(q), σ) w2−−→A′ (p, δ) ∧ (Φ(q0), ϵ) z1−→A′ (Φ(q), σ′) z2−→A′ (p, δ′). If p ∈ F ′, then A′ accepts
both w and z, otherwise it rejects them, contradicting its S-consistency. ◀
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