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Abstract
The development of quantum communication protocols sparked the interest in quantum extensions of
process calculi and behavioural equivalences, but defining a bisimilarity that matches the observational
properties of a quantum-capable system is a surprisingly difficult task. The two proposals explicitly
addressing this issue, qCCS and lqCCS, do not define an algorithmic verification scheme: the
bisimilarity of two processes is proven by comparing their behaviour under all input states. We
introduce a new semantic model based on effects, i.e. probabilistic predicates on quantum states that
represent their observable properties. We define and investigate the properties of effect distributions
and effect labelled transition systems (eLTSs), generalizing probability distributions and probabilistic
labelled transition systems (pLTSs), respectively. As a proof of concept, we provide an eLTS-based
semantics for a minimal quantum process algebra, which we prove sound and complete with respect
to the observable probabilistic behaviour of quantum processes. To the best of our knowledge, ours
is the first algorithmically verifiable proposal that abides to the properties of quantum theory.
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1 Introduction

Recent years have seen a flourishing development of quantum technologies for computer
science, in the form of quantum computation and quantum communication. Both of them
exploit quantum phenomena like superposition and entanglement: the former is interested in
harvesting the (supposedly) higher computational power of quantum computers, while the
latter strives to achieve secure and reliable communication, featuring solutions for key distri-
bution [31], cryptographic coin tossing [2], direct communication [28], and private information
retrieval [14]. Protocols like BB84 QKD [2] are unconditionally secure [29], meaning that
they are protected against all physically possible attackers. Quantum communication also
promises to allow linking multiple computers via the Quantum Internet [5, 35], therefore
providing quantum algorithms with large enough memories for practical applications.

Despite the rich theory and the potential applications, there is no accepted standard to
model and verify quantum concurrent systems and protocols. Numerous works [25, 15, 12,
34, 7] rely on process calculi, an algebraic formalism that has been successfully applied to
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16:2 Effect Semantics for Quantum Process Calculi

classical protocols and concurrent systems. The semantics of a calculus is given by means
of a labelled transition system (LTS), i.e. a triple (S,Act,→) with S a set of states, Act a
set of actions, and → a transition relation that specifies how states evolve. The standard
equivalence for LTSs is bisimilarity, the largest relation on states that is “stable” for →,
meaning that bisimilar states evolve with the same action in bisimilar states.

There have been several attempts [24, 8, 10, 9, 7] to adapt known techniques to the
quantum setting, mainly in terms of probabilistic LTSs (pLTSs) (Conf ,Act,→), where
Conf = H ×S is a set of configurations ⟨ρ, P ⟩ composed by a quantum state ρ (an element of
a Hilbert space H) and a process P , and → ⊆ Conf ×Act×D(Conf ) with D(Conf ) probability
distributions of configurations. This approach led to a plethora of different bisimilarities, most
of them unsatisfactory since they distinguish processes that are deemed indistinguishable by
the prescriptions of quantum theory [8, 23, 13]. Moreover, only configuration bisimilarity
is directly considered in these works. Two processes P and Q are instead deemed bisimilar
if and only if for any quantum state ρ the configurations ⟨ρ, P ⟩ and ⟨ρ,Q⟩ are bisimilar.
Assessing bisimilarity of processes thus requires comparing infinitely many pLTSs (one
for each quantum state), and algorithmic verification is still missing. In [7], the root of
these problems is identified in the peculiarities of the semantic model described above, a
non-deterministic pLTS made of quantum states and processes.

We propose effect labelled transition systems (eLTSs) as a new semantic model for
quantum systems, generalizing pLTSs. In physics, effects represent the observable behaviour
of quantum states, as they model atomic experiments that you can perform on a quantum
system. Building on them allows us to express the correct observable properties of quantum
processes. Effect distributions generalize probability distributions by using effects as weights,
and the transition relation of an eLTS associates states with effect distributions. We study
effect distributions and eLTSs, either generalizing the known results on probabilistic systems
when possible, or proving they do not hold otherwise. We explore different notions of
bisimilarity, namely Aczel-Mendler and Larsen-Skou, and show that they disagree on which
quantum processes should be bisimilar, even if they coincide in the probabilistic case. Then,
we consider two correctness criteria for quantum bisimilarity, through which we show that a
Larsen-Skou-style bisimilarity is adequate for comparing quantum systems, as it is correct
and complete with respect to the observable probabilistic behaviour of quantum protocols.

To assess our proposal, we define a minimal quantum process algebra (mQPA) featuring
actions, restriction, synchronization, non-determinism, parallel composition, destructive
measurements, and unitary transformations, and we equip it with two different semantics: a
stateful Schrödinger-style semantics that given a quantum state returns a pLTS representing
the observable behaviour of the system; and a Heisenberg-style semantics in the form of
an eLTS that is independent of the quantum input, in the style of [20, 11]. We show that
the Heisenberg eLTS is indeed the “symbolic” version of the Schrödinger pLTSs of the
same system, thus proving bisimilarity just once for the Heisenberg-style semantics makes it
automatically verified for all “ground” systems obtained by instantiating the quantum input.
Notably, our notion of bisimilarity can be efficiently verified with standard techniques [22].

Synopsis. Section 2 provides some background on probability distributions and quantum
theory. Section 3 introduces effect distributions and eLTSs, investigating their properties and
comparing eLTS bisimilarities. Section 4 presents our minimal process algebra with both a
stateful and a stateless semantics, which are proved to coincide. Finally, Section 5 compares
related works and Section 6 draws our conclusions. The full proofs are in the Appendix.
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2 Background

We recall some background on probability distributions, quantum computing, and effects,
referring the reader to [18, 30] for further information.

2.1 Probability Distributions
A probability (sub)distribution over a set S is a function ∆:S → [0, 1] such that

∑
s∈S ∆(s) ≤ 1.

We write DS for the set of finitely supported distributions over S, i.e. with ∆(s) = 0 for all
but a finite set of elements. We let s be the point distribution s(s) = 1.

Probability distributions form a convex set [4]: for any two distributions ∆,Θ and real
p ∈ [0, 1] there is a distribution ∆ ⊕p Θ defined as p · ∆ + (1 − p) · Θ. A function f between
convex sets is convex if it preserves the ⊕p operator, i.e. if f(x1 ⊕p x2) = f(x1) ⊕p f(x2).
We denote as Conv(X,Y ) the set of convex functions between X and Y .

2.2 Quantum Computing
We assume a denumerable set of indexed qubits Q = {q0, q1, . . . }, the quantum mechanical
analogues of classical bits. The states of a qubit q are unit vectors |ψ⟩ in the Hilbert space
Hq, i.e. column vectors in C2 such that ⟨ψ|ψ⟩ = 1, with ⟨ψ| the conjugate transpose of
|ψ⟩, and ⟨ · | · ⟩ the usual inner product. The vectors |0⟩ = (1, 0)T and |1⟩ = (0, 1)T form
an orthonormal basis of C2, called the computational basis. Other important states are
|+⟩ = 1√

2 (|0⟩ + |1⟩) and |−⟩ = 1√
2 (|0⟩ − |1⟩), which form the Hadamard basis.

The Kronecker product ⊗ is defined as follows (we often write |ψϕ⟩ for |ψ⟩ ⊗ |ϕ⟩)x1,1 · · · x1,n

...
. . .

...
xm,1 · · · xm,n

 ⊗ L =

x1,1L · · · x1,nL
...

. . .
...

xm,1L · · · xm,nL


Note that ⊗ is not commutative. Given Hq with {|ψi⟩}i∈I one of its bases, and Hq′ with
{|ϕj⟩}j∈I one of its bases, we let Hq⊗Hq′ be the Hilbert space with bases {|ψi⟩⊗|ϕj⟩}(i,j)∈I×J .
A quantum register is a finite set of n qubits Q ⊆ Q, representing composite physical systems.
Its states are in HQ =

⊗∞
i=1,qi∈Q Hqi

= C2n . Note that the Kronecker product is applied in
an ordered manner, according to the indexing of Q. The state of a quantum register H{q,q′}
is separable when it can be expressed as the tensor of two vectors of Hq and Hq′ . Otherwise,
it is entangled, like the Bell state |Φ+⟩ = 1√

2 (|00⟩ + |11⟩).
For each linear operator A on HQ, its adjoint A† is the unique linear operator such that

⟨ψ|A|ϕ⟩ =
〈
A†ψ

∣∣ϕ〉
. A linear operator U is unitary when UU† = U†U = I. In quantum

physics, the evolution of a closed system is described by a unitary transformation: the state
|ψ⟩ at time t0 is related to |ψ′⟩ at time t1 by a unitary operator U , which only depends
on t0 and t1, i.e. |ψ′⟩ = U |ψ⟩. Accordingly, quantum computers allow the programmer to
manipulate registers via unitaries like H, X, Z and CNOT , satisfying: H |0⟩ = |+⟩ and
H |1⟩ = |−⟩; X |0⟩ = |1⟩ and X |1⟩ = |0⟩; Z |+⟩ = |−⟩ and Z |−⟩ = |+⟩; CNOT |10⟩ = |11⟩,
CNOT |11⟩ = |10⟩ and CNOT |0ψ⟩ = |0ψ⟩ (all the other cases are defined by linearity).

Let Q and Q′ be sets of qubits, we write Q ⊎ Q′ for Q ∪ Q′ when Q ∩ Q′ = ∅, and we
allow composing a pair of states in HQ and HQ′ to obtain a state in HQ⊎Q′ . To preserve the
ordering induced by the indices, we build on top of ⊗ to define a partial commutative tensor
product ⊠. We let ⊠ be the operation that applies ⊗ and then sorts the qubits according to
their indices: |ψ⟩ ⊠ |ϕ⟩ = Sort(|ψ⟩ ⊗ |ϕ⟩) ∈ HQ⊎Q′ , with Sort a unitary operator.

CONCUR 2024
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The density operator formalism puts together quantum systems and probability by con-
sidering mixed states, i.e. probability sub-distributions of quantum states. A point distribution
|ψ⟩ (called a pure state) is represented by the matrix |ψ⟩⟨ψ|. In general, a probability
distribution ∆ is represented as the matrix ρ =

∑
i ∆(ψi) |ψi⟩⟨ψi|, known as its (partial)

density operator. Recall that a complex matrix N is called positive semi-definite, shortly
positive, when ⟨ψ|N |ψ⟩ ≥ 0 for any |ψ⟩. The Löwner order is the partial order defined by
L ⊑ L′ whenever L′ − L is positive. Given HQ of dimension d, the density operators over
HQ coincide with the positive matrices in Cd×d of trace smaller of equal to one, and we
denote them as DMQ =

{
ρ ∈ Cd×d | ρ ⊒ 0Q, tr(ρ) ≤ 1

}
, where 0Q is the d × d all-zero

operator on HQ. Density operators form a convex set, meaning that for any real p ∈ [0, 1]
and any ρ, σ ∈ DMQ, there is a convex combination ρ ⊕p σ ∈ DMQ defined as pρ+ (1 − p)σ.
A function between convex sets is called convex if it preserves the ⊕p operator.

Given HQ and HQ′ of dimensions n and m respectively, a trace non-increasing su-
peroperator E : DMQ → DMQ′ is defined as E(ρ) =

∑
i KiρK

†
i for a set of operators

{Ki ∈ Cm×n}i=1,...,n×m (called Kraus operators), such that
∑

i K
†
iKi ⊑ IQ. Superoperators

model the evolution of mixed quantum states, and are closed with respect to composition.
Any unitary transformation U is represented as the superoperator with Kraus decomposition
{U}. The Kronecker product also defines composition of mixed states and superoperators on
different quantum registers. We lift our commutative tensor product ⊠ to density operators
and to superoperators by reordering the qubits when needed.

Density operators can be used to describe the state of a subsystem of a composite
quantum system. Given a ρ ∈ DMQ⊎Q′ , the reduced density operator of Q, ρQ = trQ′(ρ) ∈
DMQ, describes the state of Q, with trQ′ the partial trace over Q′, defined as the linear
transformation such that trQ′(|ψ⟩⟨ψ′| ⊠ |ϕ⟩⟨ϕ′|) = |ψ⟩⟨ψ′| tr(|ϕ⟩⟨ϕ′|) for each |ψ⟩⟨ψ′| ∈ DMQ

and |ϕ⟩⟨ϕ′| ∈ DMQ′ .

2.3 Quantum Effects
Quantum measurements allow describing systems that exchange information with the envir-
onment. Performing a measurement on a quantum register returns a probabilistic result and
it either destroys or changes the qubits. We focus on destructive measurements.

The simplest kind of measurements are quantum effects (simply called effects in quantum
textbooks [18]), i.e. yes-no tests over quantum systems. Each effect can be represented as a
positive matrix smaller than the identity in the Löwner order. We denote the set of effects
on the d-dimensional HQ as EfQ =

{
E ∈ Cd×d | 0Q ⊑ E ⊑ IQ

}
, where IQ is the d × d

identity operator over the Hilbert space HQ. The probability of getting a “yes” outcome
when measuring an effect E on a state ρ is tr(Eρ), as given by the Born rule.

Density operators and effects are dual, as effects are isomorphic (via the Born rule) to
the convex functions from the set of density operators to the probability interval.

▶ Theorem 1 ([18]). EfQ
∼= Conv(DMQ, [0, 1]) through the isomorphism E 7→ λρ. tr(Eρ).

Effects can thus be seen as probabilities parameterized on an unknown quantum state.
Following this duality, to each superoperator E : DMQ → DMQ′ with Kraus operators

{Ki} corresponds a dual superoperator E: EfQ′ → EfQ (note the inversion), whose Kraus op-
erators are {K†

i }. The defining property of such superoperators is tr(E · E(ρ)) = tr( E(E) · ρ).
In general, a measurement with n different outcomes is a set {E1, . . . , En} of effects

satisfying the completeness equation
∑n

i=1 Ei = I. The probability of the i outcome occurring
is again given by the Born rule pi = tr(Eiρ).
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As examples of measurements, consider M01 and M± that project a qubit state into
the elements of the computational and Hadamard basis, respectively, with M01 defined as
{|0⟩⟨0| , |1⟩⟨1|} and M± as {|+⟩⟨+| , |−⟩⟨−|}. Applying the measurement M01 on |0⟩ returns
the outcome associated with |0⟩⟨0| with probability 1. When measuring instead |+⟩ the same
result occurs with probability 1

2 . For measurements over registers, we allow composing effects
via the ⊠ tensor product. Note that a measurement may measure only some of the qubits of
a register, e.g. {|0⟩⟨0| ⊠ I, |1⟩⟨1| ⊠ I} measures (in the computational basis) the first qubit.

3 Effect-Based Models

We generalize probability distributions and pLTSs to effect distributions and eLTSs, and
we investigate which properties of probability distributions can be lifted to the quantum
case. We adapt the two most used definitions of bisimilarity for pLTS to eLTS, namely, the
Aczel-Mendler and Larsen-Skou bisimilarities. Even if the two coincide in the probabilistic
case, this is not the same for eLTSs, and we argue that the latter is adequate for comparing
the behaviour of quantum systems.

3.1 Effect Distribution
Given a set of qubits Q, we introduce effect distributions, i.e. functions associating each
element of a given set X with some effect in EfQ.

▶ Definition 2. Let Q ⊆ Q. The set of finite EfQ-(sub)distributions over a set X is

QQX =

D ∈ EfQ
X

∣∣∣∣∣∣ supp(D) is finite and
∑

x∈supp(D)

D(x) ⊑ IQ


where supp(D) is the support of D, i.e. the set {x ∈ X | D(x) ̸= 0Q }. We say that a
distribution D is full when

∑
x∈supp(D) D(x) = IQ.

Effect distributions are a conservative generalization of probability distributions. More in
detail, 1 × 1 positive matrices are isomorphic to real numbers, hence Q∅X coincides with the
usual set of probability distributions DX.

We represent effect distributions as sets of pairs D = {x1 ▷ E1, x2 ▷ E2, . . . , xn ▷ En}
with possibly repeated xi, meaning D(x) =

∑
xi=x Ei. For example, {x▷E1, x▷E2, y▷E3}

and {x▷ E1 + E2, y ▷ E3} denote the same distribution.

▶ Example 3. Let X = {x, y}. The distribution D = {x▷ 1
2 , y▷

1
2 } is indeed just a uniform

probability distribution, i.e. an effect distribution in the 1-dimensional Hilbert space H∅.
Two more interesting effect distributions, in the two-dimensional Hilbert space H{q1},

are G = {x ▷ 1
2 I, y ▷

1
2 I} and T = {x ▷ |0⟩⟨0| , y ▷ |1⟩⟨1|}. Both represent a measurement

performed on q1: G returns the outcomes x and y with the same probability, regardless of
the state of q1; while T returns x when it observes |0⟩⟨0| and y when it observes |1⟩⟨1|.

Since effects can be regarded as functions from states to probabilities, an effect distribution
D ∈ QQX denotes a function D↓_∈ (DX)DMQ associating a ρ ∈ DMQ with the probability
distribution D↓ρ such that D↓ρ (x) = tr(D(x) · ρ) for any x ∈ X. Hence, an effect distribution
corresponds to the parameterized probabilistic outcome of performing a finite destructive
measurement on some unknown input quantum state.

In particular, we have the following isomorphism (formally, a convex set isomorphism).

CONCUR 2024



16:6 Effect Semantics for Quantum Process Calculi

▶ Theorem 4. Effect distributions correspond to all and only the parameterized sub-probability
distributions that are convex and have an “overall” finite support.

QQ
∼=

D↓_∈ (DX)DMQ

∣∣∣∣∣∣ D↓ρ ⊕p σ = (D↓ρ) ⊕p (D↓σ) and
⋃

ρ∈DMQ

supp(D↓ρ) is finite


This isomorphism tells us that we can see effect distributions as measurements.

▶ Example 5. Consider T of Example 3 and the quantum input ρ = 1
2 |0⟩⟨0| + 1

2 |+⟩⟨+|. The
probability distribution T↓ρ maps x to 3

4 and y to 1
4 . Intuitively, T↓ρ corresponds to the

probabilistic outcome of performing the measurement T over a system in state ρ.

As for probabilities, we compose effect distributions via an effect-weighted sum, provided
that they are defined over different qubits. This is a partial operation, being E ⊠ F defined
only when E and F uses disjoint sets of qubits.

▶ Definition 6. Given a family of EfQ-distributions {Di}i∈I and effects {Ei}i∈I in EfQ′

where Q ∩ Q′ = ∅ and such that
∑

i∈I Ei ⊑ I, the weighted sum
∑

i∈I Ei ⊠ Di is the
EfQ⊎Q′-distribution defined as (

∑
i∈I Ei ⊠Di)(x) =

∑
i∈I Ei ⊠Di(x).

This composition coincides with the usual weighted sum of probability distributions
if Q = Q′ = ∅. Intuitively, D measures some qubits to choose between the distributions
Di (which in turn behave accordingly to the remaining qubits). We will sometimes write
E1 ⊠D1 + · · · + En ⊠Dn for

∑
i Ei ⊠Di.

▶ Example 7. Take G,T of Example 3. The Ef{q1,q2}-distribution (|+⟩⟨+|⊠G)+(|−⟩⟨−|⊠T)
can be rewritten as {x▷I⊗ 1

2 |+⟩⟨+| , y▷I⊗ 1
2 |+⟩⟨+| , x▷ |0−⟩⟨0−| , y▷ |1−⟩⟨1−|}. Intuitively,

this represents the following cascade of two measurements: first measure the qubit q2 over the
Hadamard basis, if it is in |+⟩ then return either x or y with the same probability, otherwise
measure the qubit q1 in the computational basis and return x or y accordingly.

In the probabilistic case, it is usual to consider just the binary composition ∆ ⊕p Θ. This
is a safe simplification as any finite probability distribution can be obtained by repeatedly
applying ⊕p over point distributions. Unfortunately, this is not the case for effect distributions
in general, as we show in the following.

▶ Definition 8. Let D ⊞E T be the weighted sum E ⊠D + (I − E) ⊠ T.

Some effect distributions with support bigger than two can be defined by a nesting of
⊞E expressions over point distributions.

▶ Example 9. The distribution {x1 ▷ |0+⟩⟨0+| , x2 ▷ |0−⟩⟨0−| , x3 ▷ |1+⟩⟨1+| , x4 ▷ |1−⟩⟨1−|}
over S = {x1, x2, x3, x4} can be obtained as (x1 ⊞|+⟩⟨+| x2) ⊞|0⟩⟨0| (x3 ⊞|+⟩⟨+| x4).

We define now the set of distributions that can be obtained starting from point distribu-
tions and applying (an arbitrary number of times) the binary operator ⊞.

▶ Definition 10. Given a set X, let Q⊞X be the least family of sets Q⊞
QX ⊆ QQX such that

x ∈ Q⊞
∅ X for any x ∈ X, and if D,T ∈ Q⊞

QX then D ⊞E T ∈ Q⊞
Q⊎Q′X for any E ∈ EfQ′ .

Despite having finite support, some effect distributions cannot be defined using ⊞, roughly
because of entangled pairs. Hence, we will use the general n-ary composition.

▶ Theorem 11. If |X| ≥ 4 and |Q| ≥ 2, with | · | the cardinality, then Q⊞
QX ̸= QQX.
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s1

s4 s5

α

|0⟩⟨0| |1⟩⟨1|

s2

s4

α

I

s3

s4 s5

α

|+⟩⟨+| |−⟩⟨−|

(a) The eLTS of Example 16.

s1 s2

D T

s4s3

RG

s5 s6

. . . . . .

α α

ββ

γδ

|1⟩⟨1|

|0⟩⟨0| |0⟩⟨0|

|1⟩⟨1|

|+⟩⟨+|

|−⟩⟨−|

|+⟩⟨+|

|−⟩⟨−|

(b) An eLTS where s1 ̸∼lpp s2.

Figure 1 Examples of eLTSs.

As it is common for the probabilistic case, it is sometimes useful to see a relation between
elements of a given set X as a relation over effect distributions over X. In particular, we lift
a relation on states to one on effect distributions of states by taking the smallest relation that
pairs the point distributions of related states and that is closed for weighted composition.

▶ Definition 12. Given R ⊆ X × X, we let the effect liftings of R ⊆ X × X be the least
family of relations R̂Q ⊆ QQX × QQX such that s R̂∅ t if sR t, and for each Ei ∈ EfQ,
Di R̂Q′ Ti implies (

∑
i∈I Ei ⊠Di) R̂Q⊎Q′ (

∑
i∈I Ei ⊠ Ti).

Note that R̂∅ is the usual probabilistic lifting of [19], and we denote it as
◦

R. In the
following we often omit Q when clear from the context. We recover the following property,
known as decomposability, roughly stating that two distributions are paired by the lifting of
a relation when they can be decomposed in such a way that they associate related states
with the same effects.

▶ Lemma 13. For all R, D R̂Q T iff there exist a set of indices I and a set of effects
{Ei ∈ EfQ}i∈I such that D = {xi ▷ Ei}i∈I , T = {yi ▷ Ei}i∈I , and xi R yi for any i ∈ I.

3.2 Effect Transition Systems and their Bisimilarity
To model quantum systems and protocols we introduce effect labelled transition systems
(eLTSs). Then we investigate different notions of bisimilarity.

▶ Definition 14. An eLTS over EfQ is a triple (S,Act,→) where S is a set of states, Act is
a set of labels, and → ⊆ S × Act × QQS is a transition relation.

Hereafter, we assume a set of qubits Q and an eLTS (S,Act,→) over EfQ, and we write
s

µ−→ D for (s, µ,D) ∈ →.
We instantiate two distinct definitions of semantic equivalence on quantum systems:

Aczel-Mendler and Larsen-Skou bisimilarities [33]. They are known to coincide on classical
probabilistic processes [19]. Notably, they do not in the quantum case.

▶ Definition 15. A symmetric relation R ⊆ S × S is an AM-bisimulation if for any sR t

if s µ−→ D then t
µ−→ T for some T such that D R̂Q T

Let AM-bisimilarity ∼am be the largest AM-bisimulation.

CONCUR 2024
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▶ Example 16. Consider the eLTS in Figure 1a with states {s1, s2, s3, s4, s5} and transitions
s1

α−→ D = {s4 ▷ |0⟩⟨0| , s5 ▷ |1⟩⟨1|}, s2
α−→ G = {s4 ▷ I}, s3

α−→ T = {s4 ▷ |+⟩⟨+| , s5 ▷ |−⟩⟨−|}.
Note that s4 and s5 are deadlock states, hence s4 ∼am s5. Moreover, s1 ∼am s2 ∼am s3,
because |0⟩⟨0| + |1⟩⟨1| = I = |+⟩⟨+| + |−⟩⟨−|, and hence

D ∼̂am {s4 ▷ |0⟩⟨0| , s4 ▷ |1⟩⟨1|} = G = {s4 ▷ |+⟩⟨+| , s4 ▷ |−⟩⟨−|} ∼̂am T.

Still, s1 ̸∼am s3, as we cannot write D and T with the same effects as required by Lemma 13.

This example, inspired by [32], proves that ∼am is not transitive. We thus generalize
Larsen-Skou bisimilarity [26] (named kernel bisimilarity in [33]) to the quantum case.

▶ Definition 17. An equivalence relation R ⊆ S × S is an LS-bisimulation if for any sR t

if s µ−→ D then t
µ−→ T for some T such that ∀C ∈ S/R

∑
x∈C

D(x) =
∑
x∈C

T(x)

with S/R the equivalence classes of S. Let LS-bisimilarity ∼ls be the largest LS-bisimulation.

We show that ∼ls behaves differently from ∼am, and indeed it is strictly coarser.

▶ Example 18. Consider Example 16. We can see that s1 ∼ls s3 as both D and T associate
the equivalence class {s4, s5} with the effect I.

▶ Theorem 19. For any eLTS over EfQ with states S, ∼am ⊆ ∼ls. Moreover, ∼am = ∼ls

if Q = ∅, and ∼am ⊊ ∼ls if Q is of dimension at least 2 and S of cardinality at least 4.

LS-bisimilarity is also trivially an equivalence relation. In the following we discuss its
adequacy as quantum semantic equivalence.

Our ground truth is that bisimilar processes must exhibit the same probabilistic be-
haviour, as it is the only observable property of quantum systems. We therefore define a
parameterized version of probabilistic bisimilarity for eLTSs, stating that equivalent states
should express the same probabilistic behaviour when instantiated with any possible quantum
state. More precisely, for each ρ, we define a ρ-bisimilarity equating states that are probabil-
istically bisimilar when each effect distribution is instantiated with ρ to obtain a probability
distribution.

▶ Definition 20. Given ρ ∈ DMQ, a symmetric relation R ⊆ S × S is a ρ-bisimulation if
for any sR t

if s µ−→ D then t
µ−→ T for some T such that D↓ρ

◦

R T↓ρ

Let ρ-bisimilarity ∼ρ be the largest ρ-bisimulation. We define probabilistic behavioural
equivalence ≃pbe as the relation pairing states that are indistinguishable when every possible
quantum state is considered, i.e. ≃pbe =

⋂
ρ∈DMQ

∼ρ.

In other words, an adversary trying to disprove s ≃pbe t can test their probabilistic
behaviour on any arbitrary input state ρ, looking for one such that s ̸∼ρ t. One could
hypothesize an even stronger adversary, with the faculty of choosing a different input state at
each step of the computation, not just once at the beginning as for ≃pbe. We formalize this
notion as locally-parameterized probabilistic bisimilarity, and we investigate how ∼ls relates
with both these behavioural equivalences.
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▶ Definition 21. A symmetric relation R ⊆ S × S is a lpp-bisimulation if for any sR t

if s µ−→ D then t
µ−→ T for some T such that D↓ρ

◦

R T↓ρ for any ρ ∈ DMQ

Let lpp-bisimilarity ∼lpp be the largest lpp-bisimulation.

We exemplify the difference between ≃pbe and ∼lpp below.

▶ Example 22. Consider the eLTS in Figure 1b, where s5 and s6 are immediately distinguish-
able as they perform different visible actions. To show that s1 ̸∼lpp s2 it suffices to choose
|0⟩⟨0| for their first reduction and |+⟩⟨+| for the second one. Formally, since D↓|0⟩⟨0|= s3
and T↓|0⟩⟨0|= s4, we must have that s3 ∼lpp s4. But G↓|+⟩⟨+|= s5 and R↓|+⟩⟨+|= s6. Thus,
s3 ∼lpp s4 requires s5 ∼lpp s6, which does not hold.

Finally, note that neither ∼|0⟩⟨0| nor ∼|+⟩⟨+| are capable of distinguishing s1 and s2, as
indeed G↓|0⟩⟨0|= R↓|0⟩⟨0| and D↓|+⟩⟨+|= T↓|+⟩⟨+|.

Using Theorem 4, we prove that ∼ls is adequate for characterizing ∼lpp.

▶ Theorem 23. For any s, t ∈ S, s ∼ls t if and only if s ∼lpp t.

Quite surprisingly, for finite eLTSs the two relations ∼lpp and ≃pbe coincide.

▶ Theorem 24. For any s, t ∈ S, s ∼ls t implies s ≃pbe t. Moreover, if S is finitely
dimensional, then s ≃pbe t implies s ∼ls t.

The interesting case is for ≃pbe⊆∼ls, where we consider the (finite) set of effects E that
may appear in the eLTS, and we build a density operator ρE that distinguishes all the effects
in E. Roughly, ∼ρ requires associating the same probability to all the equivalence classes of
states, but this can only be the case when the associated effects are the same for ρ = ρE.
Indeed, a single quantum state is sufficient for distinguishing s1 and s2 of Example 22.

▶ Example 25. Consider Example 22, and let ρ = 1
2 |0⟩⟨0| + 1

2 |+⟩⟨+|. Then s1 ̸∼ρ s2 (and
hence s1 ̸≃pbe s2). Note that D↓ρ= s3 ⊕3

4
s4 and T↓ρ= s3 ⊕1

4
s4. For s1 to be ρ-bisimilar to

s2, it must be that s3 ∼ρ s4, which is false since G↓ρ= s5 ⊕3
4

s6 and R↓ρ= s5 ⊕1
4

s6.

We thus have shown that two bisimilar processes behave the same under any possible
quantum input. Nonetheless, LS-bisimilarity is still decidable in an efficient way, thanks
to the finite representation of effects. The partition refinement algorithm proposed in [22],
for example, could promptly be adapted to our eLTSs. More in detail, that algorithm is
parametric with respect to the functor used to specify the visible labels and the weights of a
generic transition system, which in the case of eLTSs are Act and the effects in Cd×d.

We conclude the section by introducing a partial evaluation operator relating eLTSs over
different sets of qubits, namely instantiating some of the expected input qubits of the former
to some specific state.

▶ Definition 26. Given an eLTS S = (S,Act,→1) over EfQ and ρ ∈ DMQ′ , with Q′ ⊆ Q,
the partial evaluation of S with ρ is the eLTS over EfQ\Q′ defined as (S′,Act,→), where
S′ = {s|ρ | s ∈ S} and → is the smallest relation satisfying the following rule.

s
µ−→1 {si ▷ Ei}i∈I

s|ρ
µ−→ {si|ρ ▷ trQ′(Ei(ρ⊠ IQ\Q′))}i∈I

PEval

▶ Example 27. Figure 2 shows an eLTS over two qubits and its partial evaluation (of the
first qubit) with ρ = 1

3 |0⟩⟨0| + 2
3 |1⟩⟨1|.

CONCUR 2024
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s

α

βγ

|1⟩⟨1| ⊗ I|0⟩⟨0| ⊗ I

|1−⟩⟨1−||1+⟩⟨1+||0+⟩⟨0+| |0−⟩⟨0−|

s|ρ
α

βγ

2
3 I

1
3 I

2
3 |+⟩⟨+|2

3 |−⟩⟨−|1
3 |+⟩⟨+| 1

3 |−⟩⟨−|

Figure 2 Partial evaluation of the first qubit of the eLTS on the left with ρ = 1
3 |0⟩⟨0| + 2

3 |1⟩⟨1|.

LS-bisimilarity is preserved by partial evaluation.

▶ Theorem 28. If s ∼ls t then s|ρ ∼ls t|ρ.

For ρ large enough, the partial evaluation returns a pLTS obtained by applying the same
quantum input to each effect distribution of the eLTS. Hence, s|ρ ∼ls t|ρ corresponds to
verifying s ∼ρ t, and the following is a corollary of Theorem 24.

▶ Corollary 29. Given a finite eLTS (S,Act,→) over EfQ and s, t ∈ S, if for any ρ ∈ DMQ

we have s|ρ ∼ls t|ρ, then s ∼ls t.

Having found that ∼ls satisfies all our desiderata for a quantum behavioural equivalence,
we will denote it simply as ∼ for the rest of the paper.

4 Modelling a Minimal Process Algebra with eLTSs

We explore how eLTSs can model concurrent communicating quantum systems by considering
a minimal Quantum Process Algebra (mQPA) featuring non-deterministic and parallel
composition of processes, synchronization, restriction, measurements and application of
unitaries. For synchronization, we assume that the set of actions Act contains a distinguished
element τ , and that every other label α ∈ Act has in inverse α that is involutive, i.e. such that
α = α. We equip our algebra with two distinct semantics: a standard Schrödinger stateful
pLTS semantics that depends on the quantum input, and a Heisenberg eLTS semantics that
does not. Both are based on configurations, pairing the processes with superoperators in
the latter, and density operators in the former, as it is common in the literature [8, 9, 7].
We prove that the two coincide: we can use bisimilarity in the Heisenberg eLTS to prove
probabilistic bisimilarity in all the Schrödinger pLTSs.

▶ Definition 30. An mQPA process P is defined below, with µ ∈ Act an action and
∑

i Ei = I.

P ::= 0 | P + P | P ∥ P | P \ α | µ.([Ei]Pi)i∈I | U ;P

As usual, 0 stands for a deadlock process, and the meaning of parallel, non-deterministic
sum and restriction is as expected. A prefix µ.([Ei]Pi)i∈I represents an action µ followed by
a destructive measurement over the qubits of Ei, whose outcome controls the evolution of the
process. Finally, U ;P behaves as P would over a state that has been modified by U . Recall
that unitaries and effects symbols come with the set of qubits they act on. Moreover, we
assume such sets disjoint when needed (enforced e.g. by a type system [7]). More in detail,
the sets of qubits used in (unitaries and measurements of) the parallel processes P and R of
P ∥ R must be disjoint, and the qubits measured by Ei in µ.([Ei]Pi) cannot be used by Pi.
On the same line, we let QP be the smallest set containing the qubits used in the effects and
unitaries of P . Finally, we often write µ.P in place of µ.([1]P ), and µ for the process µ.0.
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ρi = MEi(ρ)
⟨ρ, µ.([Ei]si)i∈I⟩ µ−→ {⟨ρi, si⟩ ▷ tr(ρi)}i∈I

SPre
⟨U(ρ), s⟩ µ−→ D

⟨ρ, U ; s⟩ µ−→ D
SU

⟨ρ, s⟩ µ−→ {⟨ρi, si⟩ ▷ pi}i∈I µ ̸= α µ ̸= α

⟨ρ, s \ α⟩ µ−→ {⟨ρi, si \ α⟩ ▷ pi}i∈I

SRes

⟨ρ, s⟩ µ−→ D

⟨ρ, s+ t⟩ µ−→ D
SSumL

⟨ρ, s⟩ µ−→ {⟨ρi, si⟩ ▷ pi}i∈I

⟨ρ, s∥ t⟩ µ−→ {⟨ρi, si ∥ t⟩ ▷ pi}i∈I

SParL

⟨ρ, t⟩ µ−→ D

⟨ρ, s+ t⟩ µ−→ D
SSumR

⟨ρ, t⟩ µ−→ {⟨ρj , tj⟩ ▷ pj}j∈J

⟨ρ, s ∥ t⟩ µ−→ {⟨ρj , s ∥ tj⟩ ▷ pj}j∈J

SParR

⟨ρ, s⟩ µ−→ {⟨ρi, si⟩ ▷ pi}i∈I ⟨ρi, t⟩
µ−→ {⟨ρj , tj⟩ ▷ pj}j∈Ji

⟨ρ, s∥ t⟩ τ−→ {⟨ρj , si ∥ tj⟩ ▷ pj}(i,j)∈I×Ji

SSynL

⟨ρ, t⟩ µ−→ {⟨ρi, ti⟩ ▷ pi}i∈I ⟨ρi, s⟩
µ−→ {⟨ρij , sj⟩ ▷ pij}j∈J

⟨ρ, s ∥ t⟩ τ−→ {⟨ρij , si ∥ tj⟩ ▷ pij}(i,j)∈I×J

SSyncR

(a) Rules for Schrödinger stateful semantics.

⟨E , µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi
◦ E , si⟩ ▷

E(Ei ⊠ I)}i∈I

HPre
⟨U ◦ E , s⟩ µ−→ D

⟨E , U ; s⟩ µ−→ D
HU

⟨E , s⟩ µ−→ {⟨Ei, si⟩ ▷ Ei}i∈I µ ̸= α µ ̸= α

⟨E , s \ α⟩ µ−→ {⟨Ei, si \ α⟩ ▷ Ei}i∈I

HRes

⟨E , s⟩ µ−→ D

⟨E , s+ t⟩ µ−→ D
HSumL

⟨E , s⟩ µ−→ {⟨Ei, si⟩ ▷ Ei}i∈I

⟨E , s ∥ t⟩ µ−→ {⟨Ei, si ∥ t⟩ ▷ Ei}i∈I

HParL

⟨E , t⟩ µ−→ D

⟨E , s+ t⟩ µ−→ D
HSumR

⟨E , t⟩ µ−→ {⟨Ej , sj⟩ ▷ Ej}j∈J

⟨E , s ∥ t⟩ µ−→ {⟨Ej , s ∥ tj⟩ ▷ Ej}j∈J

HParR

⟨E , s⟩ µ−→ {⟨Ei, si⟩ ▷ Ei)}i∈I ⟨Ei, t⟩
µ−→ {⟨Ej , tj⟩ ▷ Ej}j∈Ji

⟨E , s ∥ t⟩ τ−→ {⟨Ej , si ∥ tj⟩ ▷ Ej}(i,j)∈I×Ji

HSyncL

⟨E , t⟩ µ−→ {⟨Ej , tj⟩ ▷ EJ)}j∈J ⟨Ej , s⟩
µ−→ {⟨Ei, si⟩ ▷ Ei}i∈Ij

⟨E , s ∥ t⟩ τ−→ {⟨Ei, si ∥ tj⟩ ▷ Ei}(j,i)∈J×Ij

HSyncR

(b) Rules for Heisenberg stateless semantics.

Figure 3 Rules for stateful and stateless semantics of mQPA.
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⟨|Φ+⟩⟨Φ+|, P ⟩

1
2 ⟨|1⟩⟨1| , S⟩1

2 ⟨|0⟩⟨0| , R⟩

⟨ 1
2 , α⟩ ⟨0, β⟩ ⟨ 1

4 , γ⟩ ⟨ 1
4 , δ⟩

· · · · · · · · ·

τ 1
2

1
2

τ τ
1
2 0

1
4

1
4

α γ δ

(a) Schrödinger semantics of P .

⟨I, P ⟩

⟨M|1⟩⟨1|, S⟩⟨M|0⟩⟨0|, R⟩

⟨M|00⟩⟨00|, α⟩ ⟨M|01⟩⟨01|, β⟩ ⟨M|1+⟩⟨1+|, γ⟩ ⟨M|1−⟩⟨1−|, δ⟩

· · · · · · · · · · · ·

τ |1⟩⟨1| ⊗ I|0⟩⟨0| ⊗ I

τ τ

|00⟩⟨00| |01⟩⟨01| |1+⟩⟨1+| |1−⟩⟨1−|

α β γ δ

(b) Heisenberg semantics of P .

Figure 4 Our two semantics for the process P of Example 32.

We consider an operational, stateful semantics in the style of [7, 9, 12] for mQPA given in
terms of a pLTS, where each state is the pairing of a density operator and a process. Being
state-based, we name this Schrödinger semantics.

▶ Definition 31. The Schrödinger semantics of mQPA is given by a pLTS whose states are
pairs ⟨ρ, P ⟩ for P mQPA process and ρ ∈ DMQ′ density operator with Q′ ⊇ QP , and where
the transition is the smallest relation satisfying the rules in Figure 3a.

The SPre rule updates the quantum state through the destructive measurement op-
erator MEi

: DMQ → DMQ′ associated to the effect Ei ∈ EfQ\Q′ defined by MEi
(ρ) =

trQ\Q′((
√
Ei ⊠ IQ′)ρ(

√
Ei ⊠ IQ′)). Given the unitary U acting on qubits QU , the SU

rule updates the state with the superoperator U : DMQ → DMQ, defined as U(ρ) =
(U ⊠ IQ\QU

)ρ(U† ⊠ IQ\QU
).

Note that the resulting effect distribution is always a probability distribution, obtained
by tracing the resulting density operator. We remark that SSyncL and SSyncR only differ
in the order of the application of measurements between the two branches of the parallel
operator, as both the orderings are possible.

▶ Example 32. Consider a process P = τ.([|0⟩⟨0|]R, [|1⟩⟨1|]S) with R = τ.([|0⟩⟨0|]α, [|1⟩⟨1|]β)
and S = H; τ.([|0⟩⟨0|]γ, [|1⟩⟨1|]δ). First, P measures a qubit q1 in the computational basis
and then measures a qubit q2 either in the computational or in the Hadamard basis. The
stateful semantics of ⟨|Φ+⟩⟨Φ+| , P ⟩ is given in Figure 4a. Notice that measurements are
destructive and are always prefixed by an action (which is not necessarily a τ as in [9, 7]).

For any process P , the stateful semantics results in infinitely many pLTSs according to
the input quantum state ρ. We seek an alternative stateless characterization, hence adequate
for algorithmic verification. We therefore give a new semantics for mQPA processes in terms
of eLTSs. We name this Heisenberg semantics, because its focus is on the effects used as
weights, rather than on the quantum state. Moreover, it is a symbolic semantics, as it is
independent of the input state.

▶ Definition 33. The Heisenberg semantics of mQPA with respect to a chosen set Q of
qubits is given by an eLTS over EfQ whose states are pairs ⟨E , P ⟩ for P mQPA process
and E ∈ DMQ → DMQ′ superoperator with Q ⊇ Q′ ⊇ QP , and where the transition is the
smallest relation satisfying the rules in Figure 3b.

The Heisenberg semantics of a process P is the eLTS over EfQP
rooted in ⟨I, P ⟩. The

superoperator E in the Heisenberg configuration ⟨E , P ⟩ records the performed measurements
and unitaries. According to that, the weights of the subsequent effect distributions must be
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updated through the corresponding dual superoperator E. In the HPre rule, the superop-
erator E : DMQ → DMQ′ is updated by composition with the measurement superoperator
associated to the effect Ei ∈ EfQm

, MEi
: DMQ′ → DMQ′\Qm

, where Qm ⊆ Q′ are the
measured qubits. The weight resulting from the measurement is Ei ⊠ I with I ∈ EfQ′\Qm

meaning that the qubits that are not measured are left unchanged. Finally, the effect is
updated via the dual superoperator Erepresenting the previously applied transformations.
All the other rules mirror the Schrödinger semantics.

▶ Example 34. Consider the process P of Example 32. Figure 4b shows its Heisenberg
semantics. Inside the lowest configurations, we have M|00⟩⟨00|, obtained by composing
M|0⟩⟨0| over the first qubit with M|0⟩⟨0| over the second qubit, and similarly M|1+⟩⟨1+| =
M|0⟩⟨0| ◦ H ◦ M|1⟩⟨1|.

In order to fix an input state ρ ∈ DMQP
, and thus instantiate the semantics of the

process P , we can use the partial evaluation · |ρ in Definition 26. Since ρ defines a value for
all the qubits used by P , this is a full evaluation: the resulting eLTS is indeed a pLTS.

▶ Example 35. Consider the process P of Example 32 and ρ = |Φ+⟩⟨Φ+|. Notice that
⟨I, P ⟩|ρ, with ⟨I, P ⟩ as in Figure 4b, is a pLTS isomorphic to the Schrödinger semantics
⟨ρ, P ⟩ in Figure 4a. The labels coincide since they are syntax-driven. Furthermore, the
weights are identical, since the probabilities of the Schrödinger semantics are exactly the
result of applying ρ to the effects in the Heisenberg eLTS.

This example hints at a connection between the two semantics, which is to be expected
given the duality between effects and states in quantum theory. Indeed, the eLTSs produced
by instantiating the Heisenberg semantics have exactly the same transitions of the Schrödinger
semantics, thus the following holds.

▶ Theorem 36. For any process P and ρ ∈ DMQP
, ⟨I, P ⟩|ρ ∼ ⟨ρ, P ⟩.

It follows that we can verify whether two processes are bisimilar for any input just by
looking at their Heisenberg semantics.

▶ Corollary 37. Given two processes P and R, ⟨I, P ⟩ ∼ ⟨I, R⟩ if and only if ⟨ρ, P ⟩ ∼ ⟨ρ,R⟩
for any ρ ∈ DMQP

.

We conclude with a real-world example: the well-known teleportation protocol [3].

▶ Example 38. Alice (A) and Bob (B) each have a qubit of q2, q3, and A wants to send its
additional qubit q1 to B without a quantum channel. The agents just apply unitaries and
measurements on their qubits locally, and synchronize over labels that represent the result of
measurements. The protocol is encoded as the following mQPA process Tel.

Tel := (A ∥ B) \ α, β, γ, δ
A := CNOT q1q2 ; Hq1 ⊠ Iq2 ; τ.([|00⟩⟨00|]α, [|01⟩⟨01|]β, [|10⟩⟨10|]γ, [|11⟩⟨11|]δ)
B := α.B′ + β.X ; B′ + γ.Z ; B′ + δ.Z ; X ; B′

where B′ is the unspecified continuation of B with q3.
Then, if q2 and q3 are in state |Φ+⟩⟨Φ+|, as prescribed by the protocol, Tel is indistin-

guishable to B′ acting on q1 instead of q3: ⟨I,Tel⟩||Φ+⟩⟨Φ+| ∼ ⟨I, τ.τ.B′[q3/q1]⟩.
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5 Related Works

In our work we follow a foundational approach to quantum bisimilarity. We employ effect dis-
tributions (a finite non-normalized version of positive operator-valued measures, POVMs [30])
as a generalization of sub-probability distributions, finding them well-suited to model the
observable behaviour of quantum systems. Our notion generalizes the quantum monad
of [1], which is based on projectors, and it instantiates the abstract “effect algebra monad”
of [21]. More in depth, the author in [21] proposes effects monoids, i.e. effect algebras with
multiplication, and use them as weights of distributions. Our effects do have tensoring as
a multiplication operator, but it does not form a proper effect monoid since it changes the
effects dimensions. These works come from the fields of quantum complexity and quantum
logic. We apply similar concepts to quantum protocol semantics, introducing eLTSs and
studying their composition and their behavioural equivalences.

Our eLTSs can be seen as a labelled, non-deterministic version of the effect-valued
Quantum Markov chains of [16], where tensor product is used instead of sequential effect
composition. The most general model of “quantum transition system” is the one of [32, 27],
where the weights are superoperators instead of effects, to capture also non-destructive
measurements and qubit initialization. The author of [32] introduces two different notions of
bisimilarity, which we recover in our minimal, effect-based setting as AM and LS bisimilarity.
However, none of these works feature non-determinism, nor do they apply the proposed
coalgebraic model to process calculi suitable for expressing quantum protocols.

In the literature the semantics of quantum processes is usually described via pLTSs and
probabilistic bisimilarity [24, 10, 8, 9, 7]. Despite their differences, these works all define a
pLTS made of configurations, i.e. pairs of quantum values and syntactic processes, and they
require bisimilar systems to exhibit the same probabilistic behaviour and observable quantum
values. Many of the existing works have to tweak the natural definition of probabilistic bisim-
ilarity in an ad hoc manner, in order to capture the peculiar observable properties of quantum
values. We instead introduce purely quantum LTSs, and we manipulate quantum values
only through effects, which represent their observable probabilistic behaviour. Moreover,
in the previous proposals, verifying the equivalence of two processes requires instantiating
them with each possible quantum input, impeding algorithmic verification. Using effects, we
describe the “symbolic” semantics of protocols, abstracting away from the input.

Most similar to our work is [11], which introduces superoperator-valued quantum distri-
butions, analogous to the ones in [17, 32, 27]. This allows modelling the more expressive
non-destructive measurements and quantum communication, but their bisimilarity does
not respect the observational properties prescribed by quantum theory [23, 7, 13]. For the
operational semantics of their language, they employ configurations of superoperators and
processes (as in our Heisenberg semantics), and they build a superoperator-weighted LTS.
The bisimilarity that they propose is equivalent to the one in [10], and requires bisimilar
configurations with the same weights, leading to a form of AM-bisimilarity finer than of our
LS-bisimilarity. For example, it discriminates the following precesses (in mQPA syntax).

▶ Example 39. Let P = τ.([|0⟩⟨0|]R, [|1⟩⟨1|]R′) and Q = τ.([|+⟩⟨+|]R, [|−⟩⟨−|]R′) with R and
R′ two deadlock processes that maintain the ownership of the measured qubit (recall that [11]
considers non-destructive measurements), thus making it unobservable. In other words, P and
Q perform some local measurement on their qubit, without leaking any classical information
to an external observer. Nonetheless, P and Q are not bisimilar for the symbolic/open
bisimilarity of [11, 10], as can be seen studying the ground behaviour of ⟨Φ+, P ⟩ and ⟨Φ+, Q⟩.
These processes are bisimilar in our proposal, as well as in other recent works [23, 9, 7].
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The bisimilarity of [10] has been relaxed in [13, 9] to match the prescriptions of quantum
theory, but no symbolic version of this coarser bisimilarity has been proposed.

6 Conclusions and future works

We proposed effect labelled transition systems (eLTSs), a new operational model that
generalizes the probabilistic ones and is suitable for modeling quantum concurrent systems.
We investigated bisimilarity, adapting two equivalent definitions of probabilistic bisimilarity
to the quantum case, namely Aczel-Mendler and Larsen-Skou bisimilarity. Despite coinciding
for classical systems, they disagree on quantum processes, and only the latter is guaranteed
to be an equivalence relation. Then, we proved the adequacy of the Larsen-Skou bisimilarity,
showing it correct and complete with respect to the observable probabilistic behaviour
prescribed by quantum theory.

This model allows for a purely quantum-based semantics of quantum protocols, with
the advantage of providing an algorithmically verifiable equivalence over processes. Indeed,
eLTSs can be easily defined in a coalgebraic fashion, allowing e.g. to resort to the general
algorithm for partition refinement of [22] for proving Larsen-Skou bisimilarity.

We assessed our approach in a process calculus with minimal features, like destructive
measurements, unitaries, synchronization and non-determinism. In the standard probabilistic
approach to quantum process calculi [24, 7, 8, 10, 9, 6], processes must be compared with
respect to every possible input quantum state, thus considering a continuously infinite set of
cases. We instead equipped our calculus with a stateless eLTS semantics, and proved that it
is consistent with the natural stateful semantics: two processes are bisimilar in the eLTS if
they are indistinguishable on every input quantum state.

As a future work, we plan to investigate quantum extensions of Hennessy-Milner logic for
characterizing Larsen-Skou bisimilarity. Moreover, we aim to enrich our process calculus with
quantum value passing, and to study its stateless semantics using superoperator-weighted
models, like the one of [11].
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A Proofs of Section 3

▶ Proposition 40. Let E1 and E2 be two effects. If E1 +E2 = |ψ⟩⟨ψ| then Ei = pi |ψ⟩⟨ψ| for
some pi, i = 1, 2. If E1 ⊕p E2 = |ψ⟩⟨ψ| then Ei = |ψ⟩⟨ψ| for i = 1, 2.

▶ Theorem 4. Effect distributions correspond to all and only the parameterized sub-probability
distributions that are convex and have an “overall” finite support.

QQ
∼=

D↓_∈ (DX)DMQ

∣∣∣∣∣∣ D↓ρ ⊕p σ = (D↓ρ) ⊕p (D↓σ) and
⋃

ρ∈DMQ

supp(D↓ρ) is finite


Proof. Let d be the dimension of HQ. Recall that (Efd, 0d,+) is a Partial Commutative
Monoid (PCM) [21]. Each PCM has a partial order, defined as a ⪯ b if and only if ∃c.a+c = b.
In the case of Efd, ⪯ is the Löwner order ⊑. We employ a known result in quantum theory [18]:
Efd is isomorphic to Conv(DMd, [0, 1]). Moreover, Conv(DMd, [0, 1]) forms a PCM, where
the monoid identity is λρ.0 and the summation of functions is defined pointwise. Since the
isomorphism between Efd and Conv(DMd, [0, 1]) is a PCM isomorphism, it follows that

Qd
∼=

{
D : X → DMd → [0, 1]

∣∣∣∣∣ ∀x D(x) is convex, supp(D) is finite∑
x∈supp(D) D(x) ⪯ λρ.1

}
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where supp(D) is defined as {x ∈ X | D(x) ̸= λρ.0} and ⪯ is the pointwise ordering between
functions. The theorem follows by proving that the set above is isomorphic to{

D↓_: DMd → X → [0, 1]

∣∣∣∣∣ D↓_ is convex,
⋃

ρ supp(D↓ρ) is finite
∀ρ

∑
x∈supp(D↓ρ) D↓ρ (x) ≤ 1

}
To prove this isomorphism, we provide an invertible function f(D) = λρ.λx.D(x)(ρ) that
preserves and reflects the three properties we are interested in. For convexity, we have that

∀x D(x) is convex ⇔ ∀x D(x)(ρ ⊕p σ) = (D(x)(ρ)) ⊕p (D(x)(σ))
⇔ ∀x f(D)(ρ ⊕p σ)(x) = (f(D)(ρ)(x)) ⊕p (f(D)(σ)(x))
⇔ f(D)(ρ ⊕p σ) = f(D)(ρ) ⊕p f(D)(σ) ⇔ f(D) is convex

For the finite support, we have that

supp(D) = {x ∈ X | D(x) ̸= λρ.0} = {x ∈ X | ∃ρ.D(x)(ρ) ̸= 0}

=
⋃

ρ
{x ∈ X | D(x)(ρ) ̸= 0} =

⋃
ρ

supp(f(D))

For the sum over the support, we have that∑
x∈supp(D)

D(x) ⪯ λρ.1 ⇔ ∀ρ.
∑

x∈supp(D)

D(x)(ρ) ≤ 1 ⇔ ∀ρ.
∑

x∈supp(D)
D(x)(ρ)̸=0

D(x)(ρ) ≤ 1

⇔ ∀ρ.
∑

supp(f(D)ρ)

D(x)(ρ) ≤ 1 ⇔ ∀ρ.
∑

supp(f(D)ρ)

f(D)(ρ)(x) ≤ 1 ◀

▶ Lemma 41. Let {sα, sβ , sγ , sδ} ⊆ X, and let D ∈ QQX be defined as D = {sα ▷
|Φ+⟩⟨Φ+| , sβ ▷ |Φ−⟩⟨Φ−| , sγ ▷ |Ψ+⟩⟨Ψ+| , sδ ▷ |Ψ−⟩⟨Ψ−|}, where |Φ+⟩ = 1√

2 (|00⟩ + |11⟩) and
|Φ−⟩ = 1√

2 (|00⟩ − |11⟩). There is no T ∈ Q⊞
QX and subsets Xα, Xβ , Xγ , Xδ of X such that∑

x∈Xy
T(x) = D(sy) for y ∈ {α, β, γ, δ}.

Proof. We proceed by induction on the number of application of ⊞. No point distribution
can verify this, hence the base case is trivial. Assume T1 and T2 can be defined by using ⊞
n times starting from point distributions, and let T = T1 ⊞E T2. We proceed by cases on
the dimension d of the Hilbert space of the effect E. If d = 1, then E = p for some p and∑

x∈Xy

p · T1(x) + (1 − p) · T2(x) = p ·
∑

x∈Xy

T1(x) + (1 − p) ·
∑

x∈Xy

T2(x) = D(sy).

If p is 0 or 1, then T = T1 or T2, and the result directly follows from induction hypothesis.
Otherwise, since D(sy) is of the form |ψ⟩⟨ψ| for each y, by Proposition 40 both

∑
x∈Xy

T1(x)
and

∑
x∈Xy

T2(x) are equal to D(sy).
Consider now the case d = 2, then T1, T2 must be of dimension 2, and it must be that∑
x∈Xα

E ⊠ T1(x) + (I − E) ⊠ T2(x) = E ⊠
∑

x∈Xy

T1(x) + (I − E) ⊠
∑

x∈Xy

T2(x) =
∣∣Φ+〉〈

Φ+∣∣ .

By Proposition 40, E ⊠
∑

x∈Xy
T1(x) must be equal to p · |Φ+⟩⟨Φ+| for some p. But then,

1
pE ⊠

∑
x∈Xy

T1(x) = |Φ+⟩⟨Φ+| contradicting the inseparability of |Φ+⟩⟨Φ+|.
The dimension d cannot be 3 since D is of dimension 4.
If d = 4, then T1 and T2 can only be of dimension 1, and the effects in D must be all

expressible as pE or p(I − E) for some probability p, but this is not the case.
Finally, note that d cannot be greater than 4, because HQ is of dimension 4. ◀
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▶ Theorem 11. If |X| ≥ 4 and |Q| ≥ 2, with | · | the cardinality, then Q⊞
QX ̸= QQX.

Proof. For |Q| = 2, i.e. HQ of dimension 4, it is sufficient to note that this equivalence would
contradict Lemma 41. This trivially generalizes to higher dimensional Hilbert spaces. ◀

▶ Lemma 13. For all R, D R̂Q T iff there exist a set of indices I and a set of effects
{Ei ∈ EfQ}i∈I such that D = {xi ▷ Ei}i∈I , T = {yi ▷ Ei}i∈I , and xi R yi for any i ∈ I.

Proof. (⇐) Suppose there is a finite index set I such that (1) D = {si ▷ Ei}i∈I , (2)
T = {ti ▷ Ei}i∈I and (3) si R ti for each i ∈ I. By (3) and by definition, it follows that
si R̂∅ ti for each i ∈ I. Then, by Definition 12, D = (

∑
i∈I Ei ⊠ si)R̂Q(

∑
i∈I Ei ⊠ ti) = T.

(⇒) By induction on the rules for R̂Q. For the first rule, assume s R t and s R̂∅ t, then
s = {s ▷ 1} and t = {t ▷ 1}. For the second rule, assume Di R̂Q Ti. Then by induction
hypothesis, for any i ∈ I, it holds that Di = {si,j ▷Ei,j}j∈ii

and Ti = {ti,j ▷Ei,j}j∈ii
, with

si,j R ti,j . Hence it is true that
∑

i∈I Ei ⊠Di = {si,j ▷Ei ⊠Ei,j}i∈I,j∈ii and
∑

i∈I Ei ⊠Ti =
{ti,j ▷ Ei ⊠ Ei,j}i∈I,j∈ii

, thus the result follows by definition. ◀

▶ Theorem 19. For any eLTS over EfQ with states S, ∼am ⊆ ∼ls. Moreover, ∼am = ∼ls

if Q = ∅, and ∼am ⊊ ∼ls if Q is of dimension at least 2 and S of cardinality at least 4.

Proof. For ⊆ it is sufficient to show that D R̂ T requires D and T to assign the same effect
to each class in S/R, by Lemma 13. The equality ∼am = ∼ls in eLTSs of dimension one is a
classical for pLTSs [19]. Then it suffices to consider Example 18. ◀

▶ Theorem 23. For any s, t ∈ S, s ∼ls t if and only if s ∼lpp t.

Proof. It is easy to show that ∼ls is a lpp-bisimulation and that ∼lpp is a ls-bisimulation.
For the first direction, take s ∼ls t and suppose that s µ−→ D, then there exists t µ−→ T such
that ∀C ∈ S/∼ls

D(C) = T(C), where D(C) =
∑

x∈C D(x), and similarly for T. In other
words, we know that D and T are identical when considered as effect distributions on the set
of equivalence classes. Thus, applying Theorem 4, we know that D↓_= T↓_, i.e. that for
any ρ they give the same probability distribution on equivalence classes, as required by the
definition of lpp-bisimulation.

The other direction is identical, employing the isomorphism of Theorem 4 ◀

▶ Lemma 42. Given a set of effects E of a fixed dimension, there exists a state ρ such that
∀i, j ∈ E. tr(EiρE) = tr(EjρE) iff i = j.

Proof. Note that for any pair of distinct effects Ei, Ej there is a state ρi,j such that
tr(Eiρi,j) ̸= tr(Ejρi,j). Let pk

i,j = tr(Ekρi,j). Note also that {pk
i,j}i,j,k is in the algebraic

closure of Q ∪ T with T a finite set of transcendental numbers.
Let qi,j be transcendental numbers not in T such that for each i, j, qi,j is not in the

algebraic closure of Q∪ T ∪ {qa,b | a ≠ i or b ̸= j} (there are enough transcendental numbers,
otherwise we could prove R to be denumerable). We let q′ be defined as (1 −

∑
i,j qi,j), and

we use it to scale the qi,j to the weights of a full probability distribution, letting xi,j = qi,jq
′.

We let ρE =
∑

i,j xi,jρi,j and prove by refutation that it distinguishes all the effects in E.
Assume that tr(EaρE) = tr(EbρE) for some indices a ̸= b. We observe that for k ∈ {a, b}

tr(EkρE) =
∑

i,j
xi,jtr(Ekρi,j) =

∑
i,j
xi,jp

k
i,j = q′

∑
i,j
qi,jp

k
i,j .

Hence, we can rewrite our assumption as
∑

i,j qi,jp
a
i,j =

∑
i,j qi,jp

b
i,j . Note that for each pair

of indices c and d we can rewrite the formula above as

qc,d(pa
c,d − pb

c,d) =
∑

i,j ̸=c,d
qi,jp

b
i,j −

∑
i,j ̸=c,d

qi,jp
a
i,j

CONCUR 2024
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If for some c or d, pa
c,d − pb

c,d is not zero, then we can divide both sides for pa
c,d − pb

c,d, proving
that qc,d is indeed in the algebraic closure of Q ∪ T ∪ {qe,f | e ̸= c or f ̸= d}. Since this
would contradict our hypothesis, we must assume that pa

c,d − pb
c,d = 0 for any choice of c and

d, but this is a contradiction with the definition of pk
i,j , since pa

a,b ̸= pb
a,b by construction. ◀

▶ Theorem 24. For any s, t ∈ S, s ∼ls t implies s ≃pbe t. Moreover, if S is finitely
dimensional, then s ≃pbe t implies s ∼ls t.

Proof. By Theorem 23, for proving ∼ls⊆≃pbe it suffices to show that ∼lpp⊆≃pbe, which
holds by definition.

For ≃pbe⊆∼ls, let n be the cardinality of S, and consider the set of effects that appears
in the eLTS E0 = {E | ∃s, s′ ∈ S, µ ∈ Act.s

µ−→ D and D(s′) = E}. We let E be the set
of the effects obtained by summing up to n effects in E0, i.e. effects that are possibly
associated with some equivalence class. By Lemma 42, there is a quantum state ρE such that
∀Ei, Ej ∈ E.tr(EiρE) = tr(EjρE) iff Ei = Ej . Note that ≃pbe⊆∼ρE by definition of ≃pbe.
Note also that by proving ∼ρE⊆∼ls we would get the thesis by transitivity.

We will prove that ∼ρE is a LS-bisimulation. Assume s ∼ρE t, and that s µ−→ D, then t µ−→ T

with D↓ρE ∼̂ρE1 T↓ρE . Note that, since LS and AM-bisimilarity coincides in the probabilistic
case, the relation above implies that ∀C ∈ S/∼ρE

.
∑

x∈C D↓ρE (x) =
∑

x∈C T↓ρE (x).
We now have to prove that ∀C ∈ S/∼ρE

.
∑

x∈C D(x) =
∑

x∈C T(x). Assume by refutation
that there is a C such that the condition does not hold. Then it suffices to note that∑

x∈C
D↓ρE (x) =

∑
x∈C

tr(D(x)ρE) = tr
(( ∑

x∈C
D(x)

)
ρE

)
∑

x∈C
T↓ρE (x) =

∑
x∈C

tr(T(x)ρE) = tr
(( ∑

x∈C
T(x)

)
ρE

)
Since

∑
x∈C D(x) and

∑
x∈C T(x) are both effects in E, we have that tr((

∑
x∈C D(x))ρE) =

tr((
∑

x∈C T(x))ρE) implies
∑

x∈C D(x) =
∑

x∈C T(x) contradicting our assumption. ◀

In the following we write D|ρ for {si|ρ ▷ trQ′(Ei(ρ⊠ IQ\Q′))}i∈I with D = {si ▷ Ei}i∈I .

▶ Theorem 28. If s ∼ls t then s|ρ ∼ls t|ρ.

Proof. We prove R = {(s|ρ, t|ρ) | s ∼ls t} to be a ls-bisimulation. Take (s|ρ, t|ρ) ∈ R, and
assume s|ρ performs a reduction, then, by PEval it must be that s µ−→ D. Since s ∼ls t, there
exists T such that t µ−→ T and ∀C ∈ S/∼ls

∑
x∈C D(x) =

∑
x∈C T(x). Moreover, t|ρ

µ−→ T|ρ
by PEval. We are left with proving that ∀C ∈ S/R

∑
x∈C D(x)|ρ =

∑
x∈C T(x)|ρ. Note that,

by definition of R C ∈ S/∼ls
if and only if

{
x|ρ | x ∈ C

}
∈ S/R. Therefore, we can rewrite

our condition as ∀C ∈ S/∼ls

∑
x∈C D(x|ρ)

∣∣
ρ

=
∑

x∈C T(x|ρ)
∣∣
ρ
, which clearly derives from

∀C ∈ S/∼ls

∑
x∈C D(x) =

∑
x∈C T(x), by definition of D|ρ. ◀

▶ Lemma 43. For any eLTS (S,Act,→) over EfQ and state ρ ∈ DMQ, given a relation
R ⊆ S × S we have that R is a ρ-bisimulation if and only if R|ρ is a bisimulation, where
R|ρ is defined as s|ρ R|ρ t|ρ if and only if sR t.

Proof. Note that for any two distribution D,T, it holds D↓ρ

◦

R T↓ρ iff D|ρ
◦

R|ρ T|ρ since
D↓ρ and D|ρ assign the same probability to same elements, modulo the |ρ renaming.

We must now prove that R|ρ is a bisimulation. Suppose s|ρ R|ρ t|ρ, then if s|ρ
µ−→ D|ρ it

must be s µ−→ D. As t is ρ-bisimilar, we know that t µ−→ T and D↓ρ

◦

R T↓ρ, because, since they
are probability distributions, the equivalence class condition of ρ bisimilarity is equivalent to
the relational lifting. Thus we get D|ρ R̂|ρ T|ρ, showing that R|ρ is a bisimulation. ◀
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▶ Corollary 29. Given a finite eLTS (S,Act,→) over EfQ and s, t ∈ S, if for any ρ ∈ DMQ

we have s|ρ ∼ls t|ρ, then s ∼ls t.

Proof. Take R = {(x, y) | x|ρ ∼ls y|ρ}. The relation R|ρ is a bisimulation since if x|ρ
µ−→ D|ρ

we have y|ρ
µ−→ T|ρ, and D|ρ,T|ρ are not only in ◦∼ls , but also in

◦

R|ρ . By Lemma 43 R is a
ρ-bisimulation, and s, t are ρ-bisimilar for any ρ. Thus by Theorem 24 they are bisimilar. ◀

B Proofs of Section 4

Recall that we write ∼ for the LS-bisimilarity ∼ls.

▶ Lemma 44. Consider a EfQ eLTS and E : DMQ → DMQ′ with Q′ ⊆ Q. For any
s, if ⟨E , s⟩ µ−−→ D, then there are states si and superoperators Ei : DMQ → DMQ′′ with
Q′′ ⊆ Q′ such that D = {⟨Ei, si⟩ ▷

E

i(IQ′′)}. Moreover, for all ρ ∈ DMQ, ⟨E(ρ), s⟩ µ−−→
{⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}.

Proof. By induction on the rules of the Heisenberg semantics.
(case HPre) Consider the transition ⟨E , µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi ◦ E , si⟩ ▷

E(Ei ⊠ IQ\Q′)}i∈I .
Let Ei = MEi

◦ E . The first point follows from duality, Ei is E

i(F ) = E

◦ (Ei ⊠ F ).
For the second point, take any ρ, and apply the SPre rule: ⟨E(ρ), µ.([Ei]si)i∈I⟩ µ−→
{⟨MEi(E(ρ)), si⟩▷ tr(MEi

(E(ρ)))}i∈I . The result holds by definition since Ei = MEi
◦ E .

(case HU) Consider the transition ⟨E , U ; s⟩ µ−→ D. By induction hypothesis, ⟨U ◦ E , s⟩ µ−→ D

and D = {⟨Ei, si⟩▷

E

i(IQ′′)}, trivially proving the first point. By induction hypothesis, it
also holds that for any ρ, ⟨(U ◦ E)(ρ), s⟩ µ−→ T = {⟨Ei(ρ), si⟩▷ tr(Ei(ρ))}. Then, the result
holds by considering the rule SU: ⟨E(ρ), U ; s⟩ µ−→ T.

(case HSyncL) Consider the transition ⟨E , r ∥ t⟩ τ−→ {⟨Ej , rk ∥ tj⟩ ▷ Ej}(k,j)∈K×Jk
. By

induction hypothesis, we know that

⟨E , r⟩ µ−→ {⟨Ek, rk⟩ ▷

E

k(I)}k∈K ⇒ ∀ρ.⟨E(ρ), r⟩ µ−→ {⟨Ek(ρ), rk⟩ ▷ pk}k∈K

⟨Ek, t⟩
µ−→ {⟨Ej , tj⟩ ▷

E

j(I)}j∈Jk
⇒ ∀ρ.⟨Ek(ρ), t⟩ µ−→ {⟨Ej(ρ), tj⟩ ▷ tr(Ej(ρ))}j∈Jk

since Ej = E

j(I), I = K × Jk, si = rk ∥ tj , Ei = Ej , the first point holds by definition.
Take any ρ, and apply SSyncL. Then ⟨E(ρ), r∥ t⟩ τ−→ {⟨Ej(ρ), rk ∥ tj⟩▷ tr(Ej(ρ))}(k,j)∈K×Jk

,
thus proving the second point. All the other cases follow by induction. ◀

▶ Lemma 45. Let E : DMQ → DMQ′ with Q′ ⊆ Q. For any s and any ρ ∈ DMQ,
if ⟨E(ρ), s⟩ µ−−→ D, then there exists states si and superoperators Ei : DMQ → DMQ′′

with Q′′ ⊆ Q′ such that D = {⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}. Moreover, there exists a transition
⟨E , s⟩ µ−−→ {⟨Ei, si⟩ ▷

E

i(IQ′′)}.

Proof. We proceed by induction on the rules of the Schrödinger semantics.
(case SPre) Consider ⟨E(ρ), µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi

(E(ρ)), si⟩ ▷ tr(MEi
(E(ρ)))}i∈I . Then

Ei = MEi ◦ E . Furthermore, by rule HPre ⟨E , µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi ◦ E , si⟩ ▷

E(Ei ⊠
IQ\Q′)}i∈I , with E

i(F ) = E

◦ (Ei ⊠ F ) being the dual of Ei.
(case SU) Consider the transition ⟨E(ρ), U ; s⟩ µ−→ T. Then, by induction hypothesis,

⟨U(E(ρ)), s⟩ µ−→ T = {⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}, and ⟨U ◦ E , s⟩ µ−→ D = {⟨Ei, si⟩ ▷

E

i(IQ′′)}.
Then, the result holds by considering the rule HU, granting that ⟨E , U ; s⟩ µ−→ D.

CONCUR 2024
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(case SSyncL) Consider the transition ⟨E(ρ), r ∥ t⟩ τ−→ {⟨ρj , rk ∥ tj⟩ ▷ pj}(k,j)∈K×Jk
. By

induction hypothesis, the required premises hold, and they have the following form and
that

⟨E(ρ), r⟩ µ−→ {⟨Ek(ρ), rk⟩ ▷ pk}k∈K ⇒ ⟨E , r⟩ µ−→ {⟨Ek, rk⟩ ▷

E

k(I)}k∈K

⟨Ek(ρ), t⟩ µ−→ {⟨Ej(ρ), tj⟩ ▷ tr(Ej(ρ))}j∈Jk
⇒ ⟨Ek, t⟩

µ−→ {⟨Ej , tj⟩ ▷

E

j(I)}j∈Jk

where ρj = Ej(ρ) and pj = tr(Ej(ρ)). The first point holds by definition. Take HSyncL.
Then ⟨E , r ∥ t⟩ τ−→ {⟨Ej , rk ∥ tj⟩ ▷

E

j(I)}(k,j)∈K×Jk
, thus proving the second point. All

the other cases follows by induction. ◀

▶ Theorem 36. For any process P and ρ ∈ DMQP
, ⟨I, P ⟩|ρ ∼ ⟨ρ, P ⟩.

Proof. Take R = {(⟨E , R⟩|ρ, ⟨E(ρ), R⟩) | Q is a process, and E : EfQP
→ EfQ, Q ⊇ QR}

Take a pair (⟨E , R⟩|ρ, ⟨E(ρ), R⟩) and assume that ⟨E , R⟩|ρ
µ−→ D. Then, by definition of · |ρ

and Lemma 44, we have ⟨E , R⟩ µ−→ {⟨Ei, si⟩▷

E

i(I)}i∈I and D = {⟨Ei, si⟩|ρ ▷ tr(( E

i(I))ρ)}i∈I .
Moreover, by Lemma 44, ⟨E(ρ), R⟩ µ−→ T = {⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}i∈I . Note that D

◦

R T

since ⟨Ei, si⟩|ρR⟨Ei(ρ), si⟩ and tr(( E

i(I))ρ) = tr(I(Ei(ρ))) = tr(Ei(ρ)). The other direction is
symmetric thanks to Lemma 45. ◀

▶ Corollary 37. Given two processes P and R, ⟨I, P ⟩ ∼ ⟨I, R⟩ if and only if ⟨ρ, P ⟩ ∼ ⟨ρ,R⟩
for any ρ ∈ DMQP

.

Proof. By Corollary 29 and Theorem 36. ◀
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