
Invariants for One-Counter Automata with
Disequality Tests
Dmitry Chistikov1 #

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Jérôme Leroux #

LaBRI, CNRS, Univ. Bordeaux, France

Henry Sinclair-Banks #Ñ

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Nicolas Waldburger #

IRISA, Université de Rennes, France

Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality
tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem
has been known to be NP-hard and in PSPACE, and characterising its computational complexity has
been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell [1].
We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy,
namely into the class coNPNP. In the presence of both equality and disequality tests, our upper
bound is at the third level, PNPNP

.
To prove this result, we show that non-reachability can be witnessed by a pair of invariants

(forward and backward). These invariants are almost inductive. They aim to over-approximate
only a “core” of the reachability set instead of the entire set. The invariants are also leaky: it is
possible to escape the set. We complement this with separate checks as the leaks can only occur in
a controlled way.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Inductive invariant, Vector addition system, One-counter automaton

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.17

Related Version Full Version: https://arxiv.org/abs/2408.11908

Funding Dmitry Chistikov: Supported in part by the Engineering and Physical Sciences Research
Council [EP/X03027X/1].
Henry Sinclair-Banks: Supported by EPSRC Standard Research Studentship (DTP), grant number
EP/T51794X/1. Also supported in part by the International Emerging Actions grant (IEA’22) and
by the ANR grant VeSyAM (ANR-22-CE48-0005).
Nicolas Waldburger : Supported in part by the International Emerging Actions grant (IEA’22) and
by the ANR grant VeSyAM (ANR-22-CE48-0005).

Acknowledgements We would like to thank Mahsa Shirmohammadi, without whom this work
would not have been possible, for many ideas and encouragement. We are also grateful to Thomas
Colcombet, Rayna Dimitrova, and James Worrell for useful discussions.

1 During the work on this paper, DC was a visitor to the Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern and Saarbrücken, Germany, a visiting fellow at St Catherine’s College and
a visitor to the Department of Computer Science at the University of Oxford, United Kingdom.

© Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.chistikov@warwick.ac.uk
https://orcid.org/0000-0001-9055-918X
mailto:jerome.leroux@labri.fr
mailto:h.sinclair-banks@warwick.ac.uk
http://henry.sinclair-banks.com
https://orcid.org/0000-0003-1653-4069
mailto:nicolas.waldburger@irisa.fr
https://orcid.org/0009-0002-7664-5828
https://doi.org/10.4230/LIPIcs.CONCUR.2024.17
https://arxiv.org/abs/2408.11908
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Invariants for OCA with Disequality Tests

1 Introduction

It is well known that the computational complexity of problems is often sensitive to seemingly
minor adjustments in the problem setting. Consider, for example, vector addition systems
with states (VASS). Perhaps more commonly presented as Petri nets, VASS are a very
simple yet powerful model of concurrency. Many important computational problems in logic,
language theory, and formal verification reduce to or are even equivalent to the reachability
problem in VASS (see, e.g., [29,45]). However, a classical result due to Minsky shows that
adding the capability to test counters for zero makes the problem undecidable [42].

At the same time, while reachability in VASS is known to be decidable [41], its computa-
tional complexity was recently shown to be extremely high, namely Ackermann-complete
(see [39] for the upper bound and [19,20,38] for the lower bound), so from the practical point
of view one might question the significance of the complexity jump arising from zero tests.

More recent, “down-to-earth”, and perhaps more striking is the following result on 1-
dimensional VASS, which can be thought of as finite-state automata equipped with one
counter (capable of storing a nonnegative integer). Reachability in these systems can be
decided in NP [28] and is in fact NP-complete. It is not difficult to show, using the standard
hill-cutting technique [48], that reachability can also always be witnessed by executions
in which all values assumed by the counter are bounded from above by an exponential
function in the size of the system and the bit length of counter values of the source and target
configurations. Because of this, one might expect that placing an exponential bound on
the counter values upfront does not change the problem much. But, in fact, the complexity
jumps: the problem – which is equivalent to reachability in two-clock timed automata [15] –
becomes PSPACE-complete [23]. One may say that, in this case, formal verification toolkit
available for the reachability problem is not robust to this change in the problem setting.

In this paper we study a different seemingly benign variation of the standard reachability
question. Consider one-counter automata in which transitions may test the value of the
counter for disequality against a given integer (which depends on the transition). In other
words, executions of the system can be blocked by disequality guards, which prevent the
transition from being fired if the counter value is equal to a specified number. The initial
motivation for studying this question comes from a model checking problem for flat Freeze
LTL; see Demri and Sangnier [21] and Lechner, Mayr, Ouaknine, Pouly, and Worrell [35].
Additionally, recall that automata can be used for the modeling of imperative code; see,
e.g., Hague and Lin [30,31], as well as discussion in Section 2. Classical Minsky machines
encode if –then conditionals with equality comparisons to constants, x = k. Simulating an
if –then–else conditional of this type on a Minsky machine seems to require additional O(k)
states. If k is large, this growth in size may be exponential, even though then branches as
well as increments x += k and decrements x -= k can be encoded directly. (If the machine
model is extended with x ≤ k comparisons, then the asymmetry between then and else
disappears, but reachability becomes PSPACE-complete [23].)

One might expect that, since only a small number of configurations are forbidden (by
the disequality guards) in the infinitely large configuration space, the complexity of the
problem should not change significantly and existing techniques should be applicable. This
conclusion, however, has remained elusive. For the problem of reachability in one-counter
automata with disequality tests, the exponential upper bound on counter values necessary
for witnessing reachability carries over. But, despite progress on related problems [9, 11]
(including the settling of the complexity of the above-mentioned flat Freeze LTL model
checking problem [11]), it has not been possible to pin down the complexity of this problem,

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:3

which has been known to be NP-hard (even without disequality tests) and to belong to
PSPACE (thanks to the exponential bound on the counter) [35]. The apparent simplicity of
the problem contrasts with the lack of robustness of the available toolbox. It was recently
shown by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell [1] that the coverability (or
state reachability) problem can be solved in polynomial time for this model, similarly to the
standard 1-dimensional VASS without tests. The algorithm and its analysis, however, become
sophisticated, and the complexity of reachability was left as a challenging open problem.

In the present paper, we make progress on this problem. Existing techniques need to
be extended and developed significantly to handle seemingly benign disequality tests. We
have been unable to find an easily verifiable witness for reachability, and instead show
that non-reachability is witnessed by a form of invariants (or, more precisely, separators).
The existence of counterexamples that violate such invariants can be checked in NP, thus
placing the reachability problem for OCA with disequality tests into the second level of the
polynomial hierarchy, namely in coNPNP. This complexity class captures the complement of
synthesis-type questions, which ask to find a single object (say, a circuit) that works correctly
for all (exponentially many) inputs. In our problem, one configuration can reach another if
and only if every potential invariant (of a form we describe) violates one of the invariance
conditions; moreover, this violation can be checked in NP. In the presence of both equality
and disequality tests, we need a slightly larger class PNPNP , at the third level of the hierarchy.

Our contributions. Traditionally, an invariant is an overapproximation of the set of reachable
configurations which is inductive, i.e., closed under the transition relation. Our invariants
are different in several ways:
1. We capture only some configurations within the reachability set, which form its core.

Accordingly, we require a tailored notion of closure, namely closure under a restricted
form of reachability relation.

2. Our invariants are leaky (almost inductive): an execution may escape the set. Allowing
leaks is complemented by a separate controlling mechanism (check) that all leaks – which
may occur at the interface between strongly connected components of the automaton –
are safe.

3. To compose our local inductive invariants, i.e., those restricted to a single strongly
connected component, the controlling mechanism for leaks relies on relaxed integer
semantics for the execution. More precisely, we extend (to automata with disequality
tests) a known technique [28] for lifting Z-executions to actual executions.

Our notion of local invariants requires that we place a certain technical assumption at
the interface (entry and exit points) of strongly connected components. To discharge this
assumption, we use a combination of two invariants, one for the main (forward) VASS and
another for the reverse VASS. Together, these two sets form a separator – a witness for
non-reachability.

2 Related Work

Invariants. In formal verification, a forward exploration of countably infinite configuration
spaces from the initial configuration, or a symmetrical backward exploration from the target,
is a standard approach to reachability problems and targets bug finding. General heuristics
can be used to improve such an exploration (see, for instance, the recent directed reachability
algorithm [8]). However, in order to prove non-reachability, thus certifying the absence of
bugs, an invariant-based approach is more popular.

CONCUR 2024

17:4 Invariants for OCA with Disequality Tests

Many techniques have been developed in the past for computing inductive invariants,
depending on the structure of the underlying system based on counterexample-guided
abstraction refinement [17], automata [32], property-directed reachability [3,13,14], and more
generally in the abstract interpretation framework [18].

In vector addition systems, semilinear invariants [25] are sufficient for the general reach-
ability problem [36]. Even if those invariants are intractable in general, for some instances,
namely the control-state reachability problem, the implementation of efficient tools com-
puting invariants (downward-closed sets in that case) is an active research area [7,22] with
implementation of tools [6, 24,33].

In this paper we focus on 1-dimensional VASS in the presence of equality and disequality
tests; we call them one-counter automata (OCA) with tests. The notion of local inductive
invariants with leaks, which we propose, provides a way to reduce the search space of inductive
invariants, by specifying the shape of the “core” of the invariant (a union of arithmetic
progressions within “bounded chains”), as well as restricting the problem to each strongly
connected component one by one. We view this as a compositional approach for computing
inductive invariants. As a theoretical application, we prove that the reachability problem
for one-counter automata with tests is between NP and PNPNP , and in fact in coNPNP if only
disequality tests are present.

The previous work on OCA with disequality tests by Almagor et al. [1] enables us to
focus (subject to a technical assumption) on configurations in a small number of bounded
chains (see Section 4). The structure of the set of reachable configurations in these chains
admits a short description. At the core of our invariants are exactly such sets, and we need
an appropriate notion of “inductiveness”, a condition to control “leaks” that violate the
assumption above, and a verification mechanism for all these conditions.

One-counter automata. OCA can be seen as an abstraction of pushdown automata, a
widely used model of recursive systems. Conceptually very simple, OCA are at the heart of a
number of results in formal verification; see, e.g., [2, 4, 34]. Multi-counter automata are used
to model imperative code with numerical data types [30,31]; roughly speaking, a reachability
query is expressed in logic, as a formula in existential linear integer arithmetic. In these
two references an additional pushdown stack is available, capturing recursive function calls.
We refer the reader to [16] for a retrospective on underlying “pumping” results for OCA,
crucial for many of the recent results. There is also a rich history of research on behavioural
equivalences and model checking for a variety of one-counter processes and systems; see,
e.g., [10, 27,47,48].

The above-mentioned result that reachability in OCA is NP-complete, by Haase, Kreutzer,
Ouaknine, and Worrell [28], has recently been built upon to give a representation of the entire
reachability relation in existential linear integer arithmetic, with an implementation available
online, by Li, Chen, Wu, and Xia [40]. The idea of “lifting” candidate runs to actual runs,
which is shown in [28] and which we develop further by adding support for disequality tests,
has been used in other settings as well [5, 37, 41]. For example, a construction similar to our
Lemma 7.1 is an element of the proof of a tight upper bound on the length of shortest runs
in OCA without disequality tests [16]. In comparison to the latter paper, our construction
need not consider divisibility properties of run lengths, but at the same time applies in a
more general scenario: the updates of our OCA are specified in binary notation (that is,
succinctly); and, naturally, our OCA may have disequality tests.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:5

We already mentioned above that, despite appearing atypical at first glance, the disequality
tests do in fact contribute to the modeling power: namely, when modeling code, these tests
enable the simulation of the else branch in conditional statements comparing an integer
variable for equality with some constant. The framework of Hague and Lin [30,31] assumes
that each counter variable can undergo at most k reversals (i.e., changes between “increasing”
and “decreasing”), where k is fixed. This assumption is strong; without it, a reachability
instance would require a logical formula of exponential size. Results of Haase et al. [28] and
Li et al. [40] avoid this assumption, but, for the standard syntax of one-counter automata,
if –then–else conditionals remain out of reach – or rather require an exponential expansion of
the automaton. Our leaky invariants technique allows us to handle such conditionals with
equality tests on counters, without assuming any bound on the number of reversals.

3 OCA with Equality and Disequality Tests

We denote by Z and N the set of all integers and all nonnegative integers, respectively.
A constraint is either an equality test of the form x = k with k ∈ N, a disequality test

of the form x ̸= k with k ∈ N, or simply true; x denotes here our counter, which is a
nonnegative integer variable. Let C denote the set of all possible constraints. A one-counter
automaton (OCA) with equality and disequality tests is a triplet A = (Q, ∆, τ), where Q is a
finite set of states, ∆ ⊆ Q ×Z× Q is a finite set of transitions and τ : Q → C is the constraint
function. The automaton A is an OCA with disequality tests if the constraint function τ

does not have any equality tests. We sometimes refer to the constraints as guards.2
Syntactically, A can be seen as an integer-weighted graph with directed edges between

states. Viewed this way, A can be decomposed into a set of strongly connected components
(SCCs). The automaton A is strongly connected when it has one strongly connected component
only. A path π in A is a sequence π = (t1, t2, . . . , tn) of transitions, where ti = (qi−1, ai, qi)
for each i and n ≥ 0. We may refer to π as a q0–qn path. The length of such a path is
len(π) def= n. The effect of π is eff(π) def=

∑n
i=1 ai. A cycle is a path starting and ending at

the same state; for q ∈ Q, a q-cycle is a q–q path. A path or cycle is simple if it contains
no repetition of states, except that a simple cycle has the same starting and ending state.
Every simple cycle has length less than or equal to |Q|.

The size of an OCA A is the bit size of its encoding, where all numbers are written in
binary. We write ∥∆∥ and ∥τ∥ to refer to the maximum absolute value of a transition update
and test, respectively.

Configurations and runs. The semantics of A is defined based on the set of valid configura-
tions and the reachability relation, as follows.

A configuration is a pair (q, z) comprising a state q ∈ Q and a nonnegative integer z ∈ N;
we may refer to z as the counter value. We say that (q, z) is a valid configuration if
it respects the constraint τ(q). Write Conf def= Q × N for the set of all configurations.
Given two configurations (q, z), (q′, z′) and t ∈ ∆, we write (q, z) t−→ (q′, z′) when t =
(q, z′ − z, q′); we denote by (q, z) −→ (q′, z′) the existence of such a transition. A run of A is
a sequence (q0, z0), . . . , (qn, zn) of valid configurations, for n ≥ 0, such that there exists a
path (t1, . . . , tn) with (qi−1, zi−1) ti−→ (qi, zi). We say that (qn, zn) is reachable from (q0, z0)

2 We use automata with constraints on states. Automata with constraints on transitions are, for our
purposes, equivalent.

CONCUR 2024

17:6 Invariants for OCA with Disequality Tests

if there exists a run from (q0, z0) to (qn, zn). We write (q0, z0) ∗−→ (qn, zn) to denote the
existence of such a run. Given a path π, we write (q0, z0) π−→ (qn, zn) if π yields a run from
(q0, z0) to (qn, zn).

A path π has no hope to yield a run from (q, z) if z + eff(π′) < 0 for some prefix π′ of π.
We denote by drop(π) the maximum of −eff(π′) over all prefixes π′ of π, and call it the drop
of π. Intuitively, drop(π) is the smallest counter value z ∈ N such that π, when applied from
(q, z), remains nonnegative; note that hitting a guard is not a consideration here.

We use the following standard operators: Post(c) def= {c′ ∈ Conf | c −→ c′} and Pre(c) def=
{c′ ∈ Conf | c′ −→ c}. For X ⊆ Conf , we write Post(X) def=

⋃
c∈X Post(c) and Pre(X) def=⋃

c∈X Pre(c). Also, Post∗(X) def= {d | ∃c ∈ X : c
∗−→ d} and Pre∗(X) def= {c | ∃d ∈ X : c

∗−→ d}.
For an OCA A = (Q, ∆, τ), we define the reverse of A as AR def= (Q, ∆R, τ) where

(q, a, q′) ∈ ∆R if and only if (q′, −a, q) ∈ ∆. Given configurations c and d and a path π in A,
we have c

∗−→ d in A if and only if d
∗−→ c in AR.

The reachability problem. We consider the following decision problem.
Reachability
Input: An OCA A with equality and disequality tests, a valid initial configuration src, and a

valid target configuration trg.
Output: Does src ∗−→ trg hold?

The model of OCA with disequality tests has been studied in [35] and [1]. The latter
paper provides polynomial-time algorithms for the coverability problem: “given src and a
state q, does there exist z such that src ∗−→ (q, z) ?” and the related unboundedness problem:
“is the set of configurations reachable from src infinite?”. The reachability problem, however,
is NP-hard even without tests, see Figure 1 (Left).

Equality tests. In the reachability problem in OCA with equality and disequality tests, the
main technical challenge stems from disequality tests. Indeed, a state with an equality test
only has one valid configuration hence need not be visited more than once.

We now work with OCA with disequality tests only. We will discuss in Section 7.5 how
our techniques are affected by the addition of equality tests.

4 Getting Familiar with Disequality Tests

In this section, we fix an OCA A = (Q, ∆, τ) with disequality tests and two valid configura-
tions src and trg.

A configuration c is bounded when Post∗(c) is finite, and unbounded otherwise. It is
known, although far from trivial, that one can decide boundedness in polynomial time.

▶ Lemma 4.1 (see [1, Theorem 19]). Given an OCA with disequality tests and a configuration c,
it is decidable in polynomial time whether c is bounded or unbounded.

A candidate run is a run except that neither the nonnegativity condition nor the dis-
equality tests are necessarily respected. Formally, a candidate run is simply a sequence
(q0, z0), . . . , (qn, zn) where all (qi, zi) ∈ Q × Z, n ≥ 0, and such that there exist transitions
(qi−1, ai, qi) ∈ ∆ with zi+1 = zi + ai for all i ∈ {1, . . . , n}. We write (q0, z0) ∗−→

Z
(qn, zn).

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:7

s
+a1

· · ·

· · ·
r

+an

· · ·

· · ·
t

−v q ̸= 5

̸= 30

̸= 15

+2

+1

+2

Figure 1 Left. This OCA without tests is constructed from an instance of the subset sum
problem (a1, . . . , an, v); this is in fact how the reachability problem in OCA without tests is proved
to be NP-hard in [28]. Configuration (t, 0) can be reached from configuration (s, 0) whenever there
exists a subset of {a1, . . . , an} whose elements sum up to v. Note that all unlabelled transitions
have update zero. The set of configurations reachable from (s, 0) can have size exponential in n, and
its structure is unwieldy.
Right. (For Section 4.) The named state q belongs to Q+ since there is a simple q-cycle
with positive effect. There are six bounded chains of configurations at q. The disequality test
̸= 5 bounds the counter values with residue 0 modulo 5, so {(q, 0)} and {(q, 5)} are bounded
chains. The disequality test ̸= 30 bounds the counter values with residue 3 modulo 5, so
{(q, 3), (q, 8), (q, 13), (q, 18), (q, 23), (q, 28)} is a bounded chain. The disequality test ̸= 15 bounds
the counter values with residue 2 modulo 5, so {(q, 2), (q, 7), (q, 12)} is a bounded chain.

An ingredient of the NP upper bound for reachability in OCA without disequality tests [28]
is establishing conditions under which a candidate run can be lifted to a run. We adapt the
argument to OCA with disequality tests.

▶ Lemma 4.2. Let A be a strongly connected OCA with disequality tests. If src is unbounded
in A and trg is unbounded in AR, then there is a run from src to trg in A (src ∗−→ trg) if and
only if there is a candidate run from src to trg in A (src ∗−→

Z
trg).

The hypothesis that A is strongly connected is crucial. Indeed, if A is strongly connected
and src = (s, v) is unbounded in A, then there is a cycle of positive effect that, from src,
can be applied infinitely often to reach (s, z) with z arbitrarily large. If A is not strongly
connected, it could be that the positive cycles that make src unbounded are in another SCC
and that the set {z | (s, v) ∗−→ (s, z)} is finite.

Let Q+ ⊆ Q be the set of states q ∈ Q such that there exists a q-cycle γ with len(γ) ≤ |Q|
and with eff(γ) > 0. For each q ∈ Q+, let γq be such a q-cycle with minimal drop. We fix
this choice for the remainder of the paper. We define

Conf+
def= {(q, z) : q ∈ Q+ and z ≥ drop(γq)}.

▶ Lemma 4.3. There is a polynomial-time algorithm to identify Q+ and to choose cycles γq

for all q ∈ Q+. Moreover, membership in Conf+ can be decided in polynomial time.

The proof of Lemma 4.3 can be found in Appendix A.

▶ Remark 4.4. Our choice of Q+ differs slightly from the definition found in [1]: we use short
cycles (len(γ) ≤ |Q|) rather than simple cycles. For simple cycles, the ability to compute,
in polynomial time, the minimal drop of a positive-effect simple q-cycle (for each q ∈ Q)
is not justified in [1]. In fact, in Appendix B, we prove that deciding, for a given OCA
without tests A and a given state q, whether there exists a positive-effect simple q-cycle in
A is an NP-complete problem. However, all constructions and arguments of [1] appear to
be insensitive to the replacement of “simple cycles” by “short cycles”. As a result, we can
still use polynomial-time algorithms for coverability and for unboundedness in OCA with
disequality tests (1-VASS with disequality tests).

CONCUR 2024

17:8 Invariants for OCA with Disequality Tests

The set of all (q, z) ∈ Conf+ can be partitioned into q-chains. For each q ∈ Q+, let
Conf+(q) = ({q} × N) ∩ Conf+. A q-chain C is a maximal non-empty subset C ⊆ Conf+(q)
such that, for every two distinct c, c′ ∈ C, either c is reachable from c′ by iterating γq, or
vice versa. In other words, C is a non-empty minimal subset of Conf+(q) (with respect to
set inclusion) such that, for all c ∈ C and all c′ ∈ Conf , if c

γq−→ c′ or c′ γq−→ c then c′ ∈ C.
A q-chain is bounded if it is a finite set, otherwise it is unbounded. Note that configurations

in unbounded chains are all themselves unbounded, but configurations in bounded chains
need not be bounded (they may be unbounded). Because the number of disequality guards
that a cycle γq may encounter is small, so is the total number of bounded chains.

▶ Lemma 4.5 (see [1, Remark 6]). There are at most 2|Q|2 bounded chains.

Given a chain C, the counter values z of every (q, z) ∈ C have the same remainder
modulo eff(γq). Henceforth, a bounded q-chain can be described as [ℓ, u] ∩ (r + eff(γq) · N)
where [ℓ, u] is an interval of nonnegative integers and r+eff(γq)·N is an arithmetic progression
with initial term r and difference eff(γq). Since the OCA A is encoded in binary, the values
of l, u, r, and |γq| may be exponential in the size of A. See Figure 1 (Left) for an example.

5 Pessimistic Reachability

In this section, we exhibit a family run of runs, namely pessimistic runs, that are guaranteed
to admit an NP certificate. This will already enable us to prove, in Section 6, that the
reachability problem is in coNPNP in the special case where the OCA is strongly connected.

Let A be an OCA with disequality tests. We call a run of A pessimistic if none of its
configurations are in Conf+, except possibly the first one. Of course, some pessimistic runs
may be exponentially long relative to the size of A; however, we provide a way to handle
them. For S ⊆ Conf+, we write Post∗

−(S) for the set of configurations reachable from S using
only pessimistic runs. In particular, S ⊆ Post∗

−(S).
Consider the following decision problem:

Pessimistic Reachability
Input: An OCA A with disequality tests, and two configurations src and trg.
Output: Is there a pessimistic run from src to trg in A?

Pessimistic runs turn out to be very handy, not least because we can adapt an existing
“flow” technique [28] to decide pessimistic reachability.

▶ Lemma 5.1. The pessimistic reachability problem is in NP.

In a nutshell, the idea [28] is to guess how many times the run traverses each transition.
The guessed numbers are subject to polynomial-time checkable balance and connectivity
conditions, akin to, e.g., [46]. However, we cannot check whether the (possibly very long)
run constructed from the flow violates disequality constraints, so the technique cannot be
applied directly.

Our solution uses the pessimism of the run. Let x ̸= g be a guard on state q. We split
the run in two: in the first part, all visits to q are above g; then the run jumps the guard so
that, in the second part, all visits are below g. This way, with at most |Q| splits, we can
reduce the problem to the case in which the run does not jump any disequality guard (always
staying above or below each of them).

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:9

6 Reachability in Strongly Connected OCA

In this section, for pedagogical purposes, we study the particular case where the OCA is
strongly connected. The case with multiple SCCs presented in Section 7 is more technical
but relies on the same key idea.

▶ Theorem 6.1. The reachability problem for strongly connected OCA with disequality tests
belongs to the complexity class coNPNP.

We sketch the proof of Theorem 6.1 below. Throughout the section, we fix a strongly
connected OCA with disequality tests A and two configurations src and trg, and we are
interested in whether src ∗−→ trg.

6.1 Ruling Out the Unbounded Case
By Lemma 4.1, given an instance of reachability, we can check in polynomial time whether
src is unbounded in A and trg is unbounded in AR. If both are true, then, by Lemma 4.2,
it suffices to determine whether there exists a candidate run from src to trg. The existence
of a candidate run can be decided in NP (e.g., using integer linear programming, see [12]).
This case will not affect our complexity result because NP ⊆ coNPNP. Thus, without loss of
generality, we may assume that src is bounded in A or trg is bounded in AR. Moreover, if
trg is bounded in AR, we symmetrically work with AR instead of A.

In the remainder of this section, we assume that src is bounded in A.

6.2 Inductive Invariants in the Bounded Case
We will show that src /

∗−→ trg if and only if there exists a certificate of a particular shape
witnessing this non-reachability. This certificate takes the form of an inductive invariant
separating src and trg. The exact set of configurations comprising this inductive invariant
is unwieldy, so we concentrate on its core instead. This set of core configurations admits a
short representation, as follows.

We call an arithmetic progression on state q ∈ Q a set of configurations {(q, v) | ℓ ≤ v ≤
L ∧ ∃k ∈ N, v = kp + s} with p, s, ℓ, L ∈ N. An arithmetic progression can be specified by
writing q and the numbers p, s, ℓ, L. A set of configurations has a concise description if it is
a union of at most 2|Q|2 + 1 arithmetic progressions whose configurations have counter value
bounded by 2|Q| · ∥∆∥ · ∥τ∥. Such a set can be described in polynomial space.

The set of all configurations in bounded chains has a concise description. This also holds
for the set R of all reachable configurations in bounded chains: indeed, if a configuration
of a chain can be reached, the same is true for all configurations above in the same chain.
Because src is bounded, unbounded chains cannot be reached, and this R is in fact the set of
reachable configurations in all chains. (Observe that runs that reach configurations from R

may well visit the complement of Conf+.)

▶ Lemma 6.2. The set R of reachable configurations in Conf+ has a concise description.

Intuitively, R is our desired “core invariant”, and the desired invariant is the set Post∗
−(R).

However, when given a set I, it is not easy to check whether I is actually equal to R. Instead,
the following theorem defines possible invariant cores by 3 conditions.

CONCUR 2024

17:10 Invariants for OCA with Disequality Tests

Conditions involving src and trg are self-explanatory. Set inclusion Post(Post∗
−(I)) ⊆

Post∗
−(I) would express inductiveness (closure of the set under Post(·)). However, verifying

this condition is computationally expensive, and we replace it with a version that “focuses”
on the core only, and thus has I rather than Post∗

−(I) on the right-hand side.

▶ Theorem 6.3. Suppose src is bounded in A. Then src /
∗−→ trg if and only if there exists a

set I ⊆ Conf+ ∪ {src} with concise description such that:
(Cond1) src ∈ I,
(Cond2) trg /∈ Post∗

−(I), and
(Cond3) Post(Post∗

−(I)) ∩ Conf+ ⊆ I.

Proof. First, assume that there is such a set I. Because trg /∈ Post∗
−(I) by (Cond2), it

suffices to prove that Post∗(src) ⊆ Post∗
−(I). We proceed by induction on the length of

the run from src to c ∈ Post∗(src). The base of induction is (Cond1). Assume that we
have d ∈ Post∗

−(I) and d −→ c. If c /∈ Conf+ then we have a pessimistic run from I to c,
so c ∈ Post∗

−(I). If c ∈ Conf+ then c ∈ Post(Post∗
−(I)) ∩ Conf+, hence c ∈ I by (Cond3).

For the other direction, assume that trg is not reachable from src. Let I
def= R ∪ {src};

by Lemma 6.2, I has a concise description. (Cond1) and (Cond2) are trivially satisfied.
Moreover, Post(Post∗

−(I)) ∩ Conf+ ⊆ Post∗(src) ∩ Conf+ ⊆ I, hence (Cond3) is satisfied. ◀

6.3 The Complexity of Reachability in Strongly Connected OCA
We now prove that reachability is in coNPNP by, equivalently, proving that non-reachability
is in NPNP. Roughly speaking, a problem is in NPNP whenever this problem is solvable in
non-deterministic polynomial time by a Turing machine which has access to an oracle for
some NP-complete problem. The oracle is a black box that may provide the answer to any
problem in NP (and therefore to any problem in coNP).

As argued in Section 6.1, we assume with no loss of generality that src is bounded. By
Theorem 6.3, we have src /

∗−→ trg if and only if there exists I satisfying the three conditions
(Cond1), (Cond2), and (Cond3). Moreover, by the same theorem, I can be assumed to have
a concise description. Thus, we can guess such a set I in non-deterministic polynomial time.
It remains to prove that the verification that a set I satisfies the three conditions can be
performed using an NP oracle. To this end, we prove that this verification is a coNP problem.
Indeed, I does not satisfy the three conditions when:

either src ̸∈ I (which can be checked efficiently),
or trg ∈ Post∗

−(I) (this is when there is a small configuration c such that c ∈ I and
trg ∈ Post∗

−(c)),
or there are some small configurations c and d such that c ∈ I, d ∈ Post∗

−(c), and some
successor of d belongs to Conf+ but not to I.

The adjective small should here be understood as “bounded by an exponential in the size of
A, src, and trg”. In fact, it is fairly easy to obtain an exponential bound on configurations
to consider. Thanks to Lemma 5.1, verification of both whether there is a c ∈ I such that
trg ∈ Post∗

−(c) and whether there exist c ∈ I, d ∈ Post∗
−(c), and e ∈ Post(d) such that e /∈ I

are in NP. Since membership in Conf+ can be checked in polynomial time by Lemma 4.3,
the entire third condition is also an NP condition. This completes the proof of Theorem 6.1.

7 Combining Strongly Connected Components

In this section, we extend the techniques from Section 6 to the general case in which the
OCA is not assumed to be strongly connected. We fix an OCA A with disequality tests and
two configurations src and trg.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:11

We first highlight why the techniques developed above do not apply to this general case.
In Section 6, the hypothesis that A is strongly connected was necessary for the application of
Lemma 4.2. When A is not strongly connected, knowing that src is unbounded is no longer
satisfactory. Indeed, it no longer implies the existence of a positive cycle involving its state,
as the positive cycle allowing us to pump up could be in another SCC. We need to be able
to specify whether a configuration is unbounded within its own SCC or not.

7.1 Locally Bounded Configurations and Runs
Locally bounded configurations. Given a SCC S of A, we denote by AS the automaton
obtained when restricting A to states and transitions within S. A configuration c is locally
bounded if c is bounded in AS where S is the SCC of c. We denote by L the set of all locally
bounded configurations (and by LR in AR). Configurations that are not locally bounded are
referred to as locally unbounded. We generalise the lifting technique from Lemma 4.2.

▶ Lemma 7.1 (Lifting). For all c /∈ L and d /∈ LR, we have c
∗−→ d if and only if c

∗−→
Z

d.

Locally bounded runs. A run c
π−→ d is said to be locally bounded if all configurations visited

by the run are locally bounded. We denote such a run by c
π−→
L

d, and denote its existence by

c
∗−→
L

d. Notice that a locally bounded run may go through several SCCs. Moreover, a run
starting from a locally bounded configuration is not always locally bounded: once it goes to
a new SCC, it may visit configurations that are not locally bounded. We define the locally
bounded counterpart LPost∗

− of the pessimistic post-star operator: d ∈ LPost∗
−(c) if there

is a pessimistic and locally bounded run from c to d. We extend this definition to sets of
configurations X in the usual way. Dually, we also define, for every set of configurations X,
the set LPre∗

+(X) as the same notion but in the reverse OCA AR. We extend Lemma 5.1 to
these new operators.

▶ Lemma 7.2. Given c, d ∈ Conf , deciding whether d ∈ LPost∗
−(c) is in NP.

Proof sketch. We split the run on its transitions between SCCs. We apply Lemma 5.1 on
the portions remaining in one SCC. Since the run is pessimistic, we can bound all the counter
values in it. The run is locally bounded when the first configuration visited in each SCC is
locally bounded, which is checked using Lemma 4.1. ◀

7.2 Leaky Invariants
Unlike in the strongly-connected case, a single invariant construction is not sufficient for our
needs. Indeed, if src is locally bounded but unbounded, then one could imagine the invariant
technique from Theorem 6.3 applied to the SCC S of src, but then this invariant would not
apply to other SCCs. For example, there could be runs that are locally bounded in the
SCC Ssrc of src but not in the SCC Strg of trg, making the invariant inapplicable. Instead,
assuming that trg is locally bounded in AR, one may consider in the SCC of trg an invariant
constructed in the reverse automaton AR. We therefore employ a pair of invariants, one
for A (the forward invariant) and another one for its reverse AR (the backward invariant).
The two invariants will induce two sets of configurations that, in a negative instance of the
reachability problem, separate the source and target.

The following lemma will allow us to avoid treating src and trg separately. The set Conf R
+

is defined as the counterpart of Conf+ in AR.

CONCUR 2024

17:12 Invariants for OCA with Disequality Tests

▶ Lemma 7.3. We may assume that src ∈ Conf+ ∩ L and trg ∈ Conf R
+ ∩ LR.

We now define our notion of a leaky invariant. As in Section 6, we represent the invariants
using core sets of configurations that can be succinctly described, denoted by I and J . Our
invariants must be inductive in the following weak sense:

▶ Condition 7.4. Let I ⊆ Conf+ ∩ L and J ⊆ Conf R
+ ∩ LR be sets of configurations.

The pair (I, J) is inductive if

(Ind) Post(LPost∗
−(I)) ∩ Conf+ ∩ L ⊆ I and

Pre(LPre∗
+(J)) ∩ Conf R

+ ∩ LR ⊆ J .

Notice that I and J play symmetric roles in A and AR. We now provide some intuition
for the (forward) inductive condition for I. The set I only contains configurations from
Conf+ ∩ L, because the set Conf+ ∩ L has a regular structure thanks to bounded chains.
The set I is, again, only the core of the invariant. The full invariant3 is Post∗

−(I) ∪
Post(Post∗

−(I)), but this set is not easily described (see Remark 7.8). This explains why we
use the composition Post(LPost∗

−(·)) instead of the single-step Post(·) operator traditionally
used to define inductiveness.
▶ Remark 7.5. We refer to our invariants as leaky, because they are not inductive in the
traditional sense. Indeed, our invariants are “focused” on locally bounded configurations, and
can be escaped by transitions to locally unbounded configurations. This leak may, however,
only happen with transitions going from one SCC to another.

▶ Condition 7.6. Let I, J ⊆ Conf be sets of configurations.
The pair (I, J) is a separator if, for all c ∈ I and d ∈ J ,
(Sep1) c ̸→ d; and
(Sep2) if c /∈ L and d /∈ LR, then c /

∗−→
Z

d.

Firstly, (Sep1) will forbid I and J from being connected by a single step. Secondly,
(Sep2) will forbid connection between I and J using the lifting technique of Lemma 7.1.
This does not, in general, prevent the existence of runs from I to J ; it will do so, however,
for our leaky invariants that combine Conditions 7.4 and 7.6.

▶ Definition 7.7. Let I ⊆ Conf+ ∩ L and J ⊆ Conf R
+ ∩ LR. Consider the sets

I := Post∗
−(I) ∪ Post(Post∗

−(I)) and
J := Pre∗

+(J) ∪ Pre(Pre∗
+(J)).

We call the pair (I, J) a non-reachability witness for src and trg if (I, J) is inductive, (I, J)
is a separator, src ∈ I, and trg ∈ J .

The pair of sets (I, J) forms the core of the invariant, namely I represents the forward
leaky invariant and J represents the backward leaky invariant. In this case we also say
that (I, J) induces the separator (I, J). A visualisation of a pair (I, J) and its induced
separator (I, J) can be seen in Figure 2. A helpful intuition is that I is approximately
Post∗

−(I) (and similarly J is approximately Pre∗
+(J)). One additional step of Post(·) (and

Pre(·), respectively) ensures that the “outer boundary” of this closure should also be included
in the set.

3 Our invariant is Post∗
−(I) ∪ Post(Post∗

−(I)) but the operator that appears in Condition 7.4 is LPost∗
−(·).

In Appendix C, we discuss the issues encountered if Post∗
−(·) ∪ Post(Post∗

−(·)) was used in Condition 7.4.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:13

I

J
S1 S2 S3 S4

J4
J3

J2
J1

I1
I2

I3
I4

src

trg

c

d

c′

d′

Figure 2 Core inductive sets and the separator they induce. The core of the forward leaky
invariant is I = I1 ∪ I2 ∪ I3 ∪ I4 (the blue circular sets) and the core of the backward leaky invariant
is J = J1 ∪ J2 ∪ J3 ∪ J4 (the red circular sets). The induced separator (I, J) is shown as blue and
red rounded quadrilaterals containing the core sets. Notice that src ∈ I and trg ∈ J . The upwards
coiled arrow from c′ represents that c′ is locally unbounded in the SCC S2 and the downwards
coiled arrow from d′ represents that d′ is locally unbounded in the SCC SR

3 . Note also the separator
conditions: Condition 7.6 (Sep1) means that configurations c ∈ I and d ∈ J cannot reach one
another by one transition, so c ̸→ d; Condition 7.6 (Sep2) means that unbounded configurations
c′ ∈ I and d′ ∈ J cannot reach one another via a candidate run, so c /

∗−→
Z

d.

▶ Remark 7.8. As in Section 6, our representation of invariants refers to their core only, i.e., the
pair (I, J). The example in Fig. 1 (left) demonstrates that the set Post∗

−(I) ∪ Post(Post∗
−(I))

does not always have a tractable description. The set of all possible sums of subsets has no
convenient description, therefore we want it to be captured by Post∗

−(I) ∪ Post(Post∗
−(I))

only and not by I itself.

▶ Theorem 7.9. In an OCA A with disequality tests, trg is not reachable from src if and
only if there exists a non-reachability witness. Moreover, in this case, there is always a
non-reachability witness with a concise description.

In Section 7.3, we define “perfect cores”, which we use in Section 7.4 to sketch a proof
of Theorem 7.9 (details can be found in the full version).

7.3 Perfect Cores
Condition (Ind) on the core of leaky invariants captures a weak inductiveness property, which
is central to our approach. We will now discuss two features of this condition that are used
in the proof of Theorem 7.9.

Our conditions capture a specific invariant, which we now define. Consider the set

B
def= {c ∈ Conf : src ∗−→

L
c}

In words, B contains all configurations reachable from src using locally bounded runs. In
line with ideas from Section 6, we do not want to store B entirely, so we will restrict the core
to configurations in bounded chains. We call perfect core the set B ∩ Conf+; the term perfect
is motivated by the fact that Definition 7.7 aims to capture this set exactly. Similarly, let
BR := {c ∈ Conf : c

∗−−→
LR

trg}. The perfect core in the reverse automaton is BR ∩ Conf R
+.

CONCUR 2024

17:14 Invariants for OCA with Disequality Tests

The two features of (Ind) are summarised in the following two lemmas. We use the
words “sound” and “complete” to characterise the relationship between Condition 7.4 (as
part of Definition 7.7) and the perfect cores defined above. Completeness expresses that in
every instance of non-reachability, the perfect cores defined above induce a non-reachability
invariant. Conversely, soundness states that every invariant must contain all configurations
from the perfect cores. (Thus, the perfect core are the smallest possible invariants.)

▶ Lemma 7.10 (Soundness). For all I ⊆ Conf+ ∩ L and J ⊆ Conf R
+ ∩ LR such that src ∈ I

and trg ∈ J , if (I, J) is inductive (Condition 7.4), then B ∩ Conf+ ⊆ I and BR ∩ Conf R
+ ⊆ J .

Proof sketch. Condition 7.4 for I gives Post(LPost∗
−(I)) ∩ Conf+ ∩ L ⊆ I. Let c ∈ B ∩ Conf+

be a configuration of the perfect core. Thus, src reaches c by a locally bounded run. It is not
always true that c ∈ Post(LPost∗

−(src)) because this run does not have to be pessimistic: it
may observe configurations in Conf+. We prove by induction that all configurations in Conf+
along the run are in I, using the property that Post(LPost∗

−(I)) ∩ Conf+ ∩ L ⊆ I once for
each such configuration; this eventually proves that c ∈ I. The proof is analogous for J . ◀

▶ Lemma 7.11 (Completeness). If I = B ∩ Conf+ and J = BR ∩ Conf R
+, then (I, J) is

inductive (Condition 7.4).

Proof sketch. We prove that Post(LPost∗
−(B ∩ Conf+)) ∩ Conf+ ∩ L ⊆ B ∩ Conf+. Let

c ∈ Conf+ be locally bounded and belong to Post(LPost∗
−(B ∩ Conf+)). All configurations in

LPost∗
−(B ∩ Conf+) are in B by the definition of B, so c can be reached in one step from a

configuration d ∈ B. By definition, d is reachable from src with a locally bounded run; since
c is itself locally bounded, this is also true for c, and so c ∈ B. The case of J is similar. ◀

7.4 Non-reachability Witnesses and Their Complexity
▶ Theorem 7.9. In an OCA A with disequality tests, trg is not reachable from src if and
only if there exists a non-reachability witness. Moreover, in this case, there is always a
non-reachability witness with a concise description.

Proof sketch. First, if src /
∗−→ trg then the perfect cores I = B ∩ Conf+ and J = BR ∩ Conf R

+
form a non-reachability witness. Indeed, by Lemma 7.11, (I, J) is inductive. Moreover, the
induced I = Post∗

−(I) ∪ Post(Post∗
−(I)) and J = Pre∗

+(J) ∪ Pre(Pre∗
+(J)) form a separator.

We have I ⊆ Post∗(src) and J ⊆ Pre∗(trg), proving Condition 7.6 (Sep1). If Condition 7.6
(Sep2) fails, Lemma 7.1 yields a contradiction. Moreover, I and J have a concise description
thanks to bounded chains.

Conversely, suppose there is a non-reachability witness (I, J). Assume for the sake of
contradiction that src ∗−→ trg. By Lemma 7.10, since (I, J) is inductive, B ∩ Conf+ ⊆ I and
BR ∩Conf R

+ ⊆ J . Consider a run from src to trg. It must leave I = Post∗
−(I)∪Post(Post∗

−(I))
therefore it visits locally unbounded configurations. Let c be the first such configuration
visited. Similarly, let d be the last visited configuration that is locally unbounded in AR.
First, if c occurs before d, then Condition 7.6 (Sep2) is violated. Second, if c occurs after d,
then there is an overlap in the runs from src to c and from d to trg. The overlap must be in
I ∩ J , leading to a violation of Condition 7.6 (Sep1). ◀

▶ Theorem 7.12. The reachability problem for OCA with disequality tests belongs to the
complexity class coNPNP.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:15

Proof sketch. We use Theorem 7.9, deciding the existence of a non-reachability witness in
NPNP. Recall that NPNP is introduced in Section 6.3. Let a pair (I, J) be given; we show
that a violation of the conditions for being a non-reachability witness can be checked in NP.

One can check in polynomial time whether src ∈ I and trg ∈ J .
Violation of Condition 7.4 (Ind) is an NP property. Indeed, this follows because mem-
bership in LPost∗

−(·) is in NP (by Lemma 7.2) and membership in Conf+ and L is
polynomial-time checkable (by Lemma 4.3 and Lemma 4.1, respectively).
Violation of Condition 7.6 (Sep1) is in NP, because I := Post∗

−(I) ∪ Post(Post∗
−(I)),

J := Pre∗
+(J) ∪ Pre(Pre∗

+(J)), and membership of given configurations in the pessimistic
post-star (optimistic pre-star, respectively) is in NP by Lemma 5.1. This assumes that
we have an exponential bound on relevant configurations.
To check violation of Condition 7.6 (Sep2) in NP, we again use Lemma 4.1 for L, as well
as the fact that the existence of a candidate run is in NP (by integer programming). ◀

7.5 Adding Equality Tests
The previous techniques have been developed for OCA with disequality tests only. In
particular, the lifting argument of Lemma 7.1 does not hold in the presence of equality tests:
candidate runs that visit a state with an equality test cannot be lifted to greater counter
values. However, at the cost of increasing the complexity, one can handle equality tests.

Complexity class PNPNP consists of decision problems solvable in polynomial time with
access to an NPNP oracle (which can solve NPNP problems in one step).

▶ Corollary 7.13. The reachability problem for OCA with equality and disequality tests
belongs to the complexity class PNPNP .

Proof. Let A be such an OCA with tests, and src and trg two configurations. Denote by
Conf = the set of valid configurations at states with equality tests; |Conf =| does not exceed
the number of states in A. Consider the OCA with disequality tests A′ that is obtained by
deleting all states with equality tests (and incident transitions) from A. By Theorem 7.12,
with an NPNP oracle we can build a graph with vertex set Conf = ∪ {src, trg} and edge set
{(c, d) | c

∗−→ d in A′}. Depth-first search in this graph for a path from src to trg takes
polynomial time. ◀

8 Conclusions

We have looked at the reachability problem for one-counter automata with equality and
disequality tests. We have proposed the idea of local inductive invariants and combined them
with the notion of unboundedness within an SCC. Our construction circumvents the lack
of computationally tractable descriptions: indeed, in the subset sum example (Fig. 1 (left)
and Remark 7.8) the reachability set has exponential size, depending on a1, . . . , an. There is
no obvious means of compression available, and guessing/storing a traditional invariant is
prohibitively expensive even for moderate n.

An outstanding theoretical question is characterisation of complexity of reachability in
OCA with disequality tests. We have placed the problem in coNPNP and, in the presence of
equality tests, in PNPNP . Both problems have already been known to be NP-hard. Are they
NP-complete or coNP-hard too? We also leave it open whether our technique can be extended
to other systems and settings, e.g., to parameter synthesis questions (see, e.g., [26, 35,43]).

CONCUR 2024

17:16 Invariants for OCA with Disequality Tests

In a more practical direction, while the general invariant-based effective procedure for
(non-)reachability in vector addition systems [36] has not, to the best of our knowledge, been
implemented, our work identifies these potentially practical ways to reduce the search space
for invariants in VASS. The idea of restricting invariant sets to just a small “core” (in our
case: a union of arithmetic progressions), combined with the compositionality of invariants,
can help to direct an exploration of the search space, or assist a learning algorithm.

References
1 Shaull Almagor, Nathann Cohen, Guillermo A. Pérez, Mahsa Shirmohammadi, and James

Worrell. Coverability in 1-VASS with disequality tests. In Igor Konnov and Laura Kovács,
editors, 31st International Conference on Concurrency Theory, CONCUR 2020, September
1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 38:1–38:20.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

2 Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of single-pass
list-processing programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 599–610, 2011.

3 Nicolas Amat, Silvano Dal-Zilio, and Thomas Hujsa. Property directed reachability for
generalized Petri nets. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes in
Computer Science, pages 505–523. Springer, 2022.

4 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Context-bounded verification of context-free specifications. Proc. ACM Program.
Lang., 7(POPL):2141–2170, 2023.

5 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazic,
Pierre McKenzie, and Patrick Totzke. The reachability problem for two-dimensional vector
addition systems with states. J. ACM, 68(5):34:1–34:43, 2021.

6 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the
coverability problem continuously. In Marsha Chechik and Jean-François Raskin, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume
9636 of Lecture Notes in Computer Science, pages 480–496. Springer, 2016.

7 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. The logical view on
continuous Petri nets. ACM Trans. Comput. Log., 18(3):24:1–24:28, 2017.

8 Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed reachability for infinite-
state systems. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, volume
12652 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021.

9 Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, and Guillermo A. Pérez.
Continuous one-counter automata. ACM Trans. Comput. Log., 24(1):3:1–3:31, 2023.

10 Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-counter
automata is NL-complete. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 131–140. ACM, 2013.

11 Benedikt Bollig, Karin Quaas, and Arnaud Sangnier. The complexity of flat freeze LTL. Log.
Methods Comput. Sci., 15(3), 2019.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:17

12 Itshak Borosh and Leon Bruce Treybig. Bounds on positive integral solutions of linear
Diophantine equations. Proceedings of the American Mathematical Society, 55(2):299–304,
1976.

13 Aaron R. Bradley. SAT-based model checking without unrolling. In Ranjit Jhala and David A.
Schmidt, editors, Verification, Model Checking, and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings, volume 6538
of Lecture Notes in Computer Science, pages 70–87. Springer, 2011.

14 Aaron R. Bradley. Understanding IC3. In Alessandro Cimatti and Roberto Sebastiani, editors,
Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International Conference,
Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2012.

15 Daniel Bundala and Joël Ouaknine. On parametric timed automata and one-counter machines.
Inf. Comput., 253:272–303, 2017.

16 Dmitry Chistikov, Wojciech Czerwinski, Piotr Hofman, Michal Pilipczuk, and Michael Wehar.
Shortest paths in one-counter systems. Log. Methods Comput. Sci., 15(1), 2019.

17 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and A. Prasad Sis-
tla, editors, Computer Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Science,
pages 154–169. Springer, 2000.

18 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977.

19 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. J. ACM, 68(1):7:1–7:28, 2021.

20 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021.

21 Stéphane Demri and Arnaud Sangnier. When model-checking freeze LTL over counter
machines becomes decidable. In C.-H. Luke Ong, editor, Foundations of Software Science and
Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings, volume 6014 of Lecture Notes in Computer Science,
pages 176–190. Springer, 2010.

22 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip Niksic.
An SMT-based approach to coverability analysis. In Armin Biere and Roderick Bloem, editors,
Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume
8559 of Lecture Notes in Computer Science, pages 603–619. Springer, 2014.

23 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-
complete. Inf. Comput., 243:26–36, 2015.

24 Alain Finkel, Serge Haddad, and Igor Khmelnitsky. Minimal coverability tree construction made
complete and efficient. In Jean Goubault-Larrecq and Barbara König, editors, Foundations
of Software Science and Computation Structures - 23rd International Conference, FOSSACS
2020, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, volume 12077 of Lecture Notes
in Computer Science, pages 237–256. Springer, 2020.

25 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966. doi:10.2140/pjm.1966.16.285.

CONCUR 2024

https://doi.org/10.2140/pjm.1966.16.285

17:18 Invariants for OCA with Disequality Tests

26 Stefan Göller, Christoph Haase, Joël Ouaknine, and James Worrell. Model checking succinct
and parametric one-counter automata. In Samson Abramsky, Cyril Gavoille, Claude Kirchner,
Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and
Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10,
2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 575–586.
Springer, 2010.

27 Stefan Göller and Markus Lohrey. Branching-time model checking of one-counter processes
and timed automata. SIAM J. Comput., 42(3):884–923, 2013.

28 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in
Computer Science, pages 369–383. Springer, 2009.

29 Michel Hack. Decidability questions for Petri nets. PhD thesis, MIT, 1975. URL: http:
//publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf.

30 Matthew Hague and Anthony Widjaja Lin. Model checking recursive programs with numeric
data types. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
volume 6806 of Lecture Notes in Computer Science, pages 743–759. Springer, 2011.

31 Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded analysis
of multithreaded programs with counters. In P. Madhusudan and Sanjit A. Seshia, editors,
Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA,
July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer Science, pages 260–276.
Springer, 2012.

32 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model checking for
people who love automata. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 36–52. Springer,
2013. doi:10.1007/978-3-642-39799-8_2.

33 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Efficient coverability analysis by proof
minimization. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 - Concurrency
Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September
4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science, pages 500–515.
Springer, 2012.

34 Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for AC -like equational
theories with homomorphisms. In Jürgen Giesl, editor, Term Rewriting and Applications, 16th
International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings, volume
3467 of Lecture Notes in Computer Science, pages 308–322. Springer, 2005.

35 Antonia Lechner, Richard Mayr, Joël Ouaknine, Amaury Pouly, and James Worrell. Model
checking flat freeze LTL on one-counter automata. Log. Methods Comput. Sci., 14(4), 2018.

36 Jérôme Leroux. The general vector addition system reachability problem by Presburger
inductive invariants. Log. Methods Comput. Sci., 6(3), 2010.

37 Jérôme Leroux. Distance between mutually reachable Petri net configurations. In Arkadev
Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2019, December 11-13, 2019,
Bombay, India, volume 150 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019.

38 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 1241–1252. IEEE, 2021.

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf
https://doi.org/10.1007/978-3-642-39799-8_2

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:19

39 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.

40 Xie Li, Taolue Chen, Zhilin Wu, and Mingji Xia. Computing linear arithmetic representation
of reachability relation of one-counter automata. In Jun Pang and Lijun Zhang, editors,
Dependable Software Engineering. Theories, Tools, and Applications - 6th International Sym-
posium, SETTA 2020, Guangzhou, China, November 24-27, 2020, Proceedings, volume 12153
of Lecture Notes in Computer Science, pages 89–107. Springer, 2020.

41 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput.,
13(3):441–460, 1984.

42 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA,
1967.

43 Guillermo A. Pérez and Ritam Raha. Revisiting parameter synthesis for one-counter automata.
In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer
Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference),
volume 216 of LIPIcs, pages 33:1–33:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

44 Louis E. Rosier and Hsu-Chun Yen. A multiparameter analysis of the boundedness problem
for vector addition systems. J. Comput. Syst. Sci., 32(1):105–135, 1986. doi:10.1016/
0022-0000(86)90006-1.

45 Sylvain Schmitz. The complexity of reachability in vector addition systems. SIGLOG News,
3(1):4–21, 2016.

46 Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting in trees for
free. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,
Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,
July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science, pages
1136–1149. Springer, 2004.

47 Alistair Stewart, Kousha Etessami, and Mihalis Yannakakis. Upper bounds for Newton’s
method on monotone polynomial systems, and P-time model checking of probabilistic one-
counter automata. J. ACM, 62(4):30:1–30:33, 2015.

48 Leslie G. Valiant and Mike Paterson. Deterministic one-counter automata. J. Comput. Syst.
Sci., 10(3):340–350, 1975.

A Proof of Lemma 4.3

The proof will use 1-dimensional vector addition systems with states (1-VASS). These are
one-counter automata (as defined in this paper) without any tests:

Syntactically, a 1-VASS is a pair (Q, T), where Q is the set of states and T ⊆ Q × Z × Q

is the set of transitions.
The semantics is the same as that of an OCA with tests (Q, T, true), where the map
true assigns true to all states in Q.

We will consider an auxiliary problem which takes as input a 1-VASS (Q, T), a state q ∈ Q,
and a natural number d (encoded in binary); the problem asks whether there is a positive-
effect q-cycle γ of length at most |Q| such that drop(γ) ≤ d. We show that this problem can
be solved in polynomial time, given that coverability in 1-VASS can be decided in polynomial
time. Coverability is placed in P by a standard reduction from coverability to unboundedness
(see, e.g., [1, Lemma 1]) and a polynomial-time algorithm for unboundedness by Rosier and
Yen [44, Theorem 3.4]. A stronger result from [1] is that coverability in 1-VASS is in fact in
NC2 ⊆ P.

CONCUR 2024

https://doi.org/10.1016/0022-0000(86)90006-1
https://doi.org/10.1016/0022-0000(86)90006-1

17:20 Invariants for OCA with Disequality Tests

Reduction of the auxiliary problem to coverability. Let n = |Q|. We can construct an
instance of coverability as follows. Consider the unfolding (Q′, T ′) where Q′ = {q(i) : q ∈
Q and i ∈ [0, n]} and T ′ = {(p(i−1), a, q(i)) : (p, a, q) ∈ T and i ∈ [1, n]}. Observe that there
exists a positive-effect q-cycle whose length is at most |Q| and with a drop bounded by d in
(Q, T) if and only if (q(i), d + 1) can be covered from (q(i), d) in (Q′, T ′) for some i ∈ [1, n].
Moreover, in that case, such a cycle is obtained directly from a path in the unfolded 1-VASS
that witnesses coverability.

Polynomial-time algorithms for minimum drop and membership in Conf+. We complete
the proof of Lemma 4.3:

First, observe that the minimum drop can be computed by a binary search for d. Let
m = max{|a| : (p, a, q) ∈ T}. By starting from an upper bound of n(m + 1), d can be
computed using a polynomial number (at most ⌈log(n(m + 1))⌉) of coverability queries.
Second, to decide membership of a configuration (q, v) in Conf+, it suffices to check that
q ∈ Q+, to compute drop(γq), and to check that v ≥ drop(γq). ◀

B Finding Positive-Effect Simple Cycles is NP-hard

▶ Proposition B.1. Deciding, for a given OCA without tests A and a given state q, whether
there exists a positive-effect simple q-cycle in A is an NP-complete problem.

Proof. Membership in NP is obtained by using the q-cycle itself as a certificate. To prove
NP-hardness, we provide a reduction from the Hamiltonian path problem. Let G = (V, E) be
a directed graph and let s, t ∈ V be two distinct vertices. A path from s to t is Hamiltonian
if it is simple and visits every vertex in the graph. The Hamiltonian path problem takes
as input a directed graph G = (V, E) and two vertices s, t ∈ V and asks whether there is a
Hamiltonian path from s to t in G.

For the remainder of this proof, we fix an instance of this problem formed by G = (V, E)
and s, t ∈ V . Let n = |V |. We will now construct an OCA without tests (a 1-VASS)
A = (Q, ∆). Define Q := V ∪ {q}, where q ̸∈ V is a new state, and

∆ := {(u, 1, v) : (u, v) ∈ E} ∪ {(q, 0, s), (t, −(n − 2), q)}.

The construction of A takes polynomial time. We claim that there exists a Hamiltonian path
from s to t in G if and only if there exists a positive-effect simple q-cycle in A.

Suppose there exists a Hamiltonian path π from s to t in G. Since π visits every vertex
in G, we have len(π) = n − 1. Consider the path σ in A that is obtained from π by replacing
each edge (u, v) ∈ E with the corresponding transition (u, 1, v) ∈ ∆ as well as prepending
the transition (q, 0, s) and appending the transition (t, −(n − 2), q). Given that π is a simple
path in G, we know that σ is a simple q-cycle in A. Furthermore, given that len(π) = n − 1,
we know that eff(σ) = 0 + n − 1 − (n − 2) = 1, so σ has positive effect.

Conversely, suppose there exists a positive-effect simple q-cycle σ in A. This σ must
begin with (q, 0, s), the only outgoing transition from q, and end with (t, −(n − 2), q), the
only transition leading back to q. Let σ = (q, 0, s) σ′ (t, −(n − 2), q) for some σ′. Given that
eff(σ) ≥ 1 and all other transitions in A have effect 1, we know that len(σ′) ≥ n − 1. Since
the cycle σ is simple and |Q \ {q, s, t}| = n − 2, we conclude that σ′ visits each of these n − 2
states exactly once. So the path π obtained from σ′ by replacing each transition (u, 1, v) ∈ ∆
with the corresponding edge (u, v) ∈ E is a Hamiltonian path from s to t in G. ◀

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:21

C Discussion of the Choice of Operators

In Condition 7.4, we made the choice of using operator LPost∗
−(·), and not Post∗

−(·) ∪
Post(Post∗

−(·)) as in Section 6. Indeed, if we had used Post∗
−(·) ∪ Post(Post∗

−(·)) instead, then
in order to obtain completeness (Lemma 7.11), one would have to change the perfect core. We
want the perfect core to be contained in L ∩ Conf+ so that it has a short representation; the
natural candidate would be to take Post∗(src) ∩ L ∩ Conf+ (and symmetrically in AR). This
perfect core would satisfy the inductive property; however, this choice would break soundness
(Lemma 7.10). Indeed, this invariant could contain a locally bounded configuration c that is
reached from src using a run that visits many locally unbounded configurations in Conf \Conf+
before coming back to L. In this case, it could be that c is not captured by the inductive
property, so one could find an inductive invariant I that does not contain c.

CONCUR 2024

	1 Introduction
	2 Related Work
	3 OCA with Equality and Disequality Tests
	4 Getting Familiar with Disequality Tests
	5 Pessimistic Reachability
	6 Reachability in Strongly Connected OCA
	6.1 Ruling Out the Unbounded Case
	6.2 Inductive Invariants in the Bounded Case
	6.3 The Complexity of Reachability in Strongly Connected OCA

	7 Combining Strongly Connected Components
	7.1 Locally Bounded Configurations and Runs
	7.2 Leaky Invariants
	7.3 Perfect Cores
	7.4 Non-reachability Witnesses and Their Complexity
	7.5 Adding Equality Tests

	8 Conclusions
	A Proof of Lemma 4.3
	B Finding Positive-Effect Simple Cycles is NP-hard
	C Discussion of the Choice of Operators

