
Weighted Basic Parallel Processes
and Combinatorial Enumeration
Lorenzo Clemente # Ñ

Department of Mathematics, Mechanics, and Computer Science, University of Warsaw, Poland

Abstract

We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted
finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm
of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language
equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and
language equivalence of unambiguous BPP, with the same complexity. These are long-standing open
problems for the related model of weighted context-free grammars.

Our second contribution is a connection between WBPP, power series solutions of systems
of polynomial differential equations, and combinatorial enumeration. To this end we consider
constructible differentially finite power series (CDF), a class of multivariate differentially algebraic
series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation
to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite
(holonomic) series, for which no complexity upper bound for equivalence was known. We show
that CDF series correspond to commutative WBPP series. As a consequence of our result on
WBPP and commutativity, we show that equivalence of CDF power series can be decided with
2-EXPTIME complexity.

In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally
arise from combinatorial enumeration, namely as the exponential generating series of constructible
species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley
trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection,
we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of
which was not known before.

The complexity analysis is based on effective bounds from algebraic geometry, namely on the
length of chains of polynomial ideals constructed by repeated application of finitely many, not
necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising
a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since
generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the
theory of WBPP series and CDF power series, exposing several of their appealing properties.

2012 ACM Subject Classification Theory of computation → Quantitative automata; Theory of
computation → Concurrency; Mathematics of computing → Combinatorics

Keywords and phrases weighted automata, combinatorial enumeration, shuffle, algebraic differential
equations, process algebra, basic parallel processes, species of structures

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.18

Related Version Full Version: https://arxiv.org/abs/2407.03638 [24]

Funding Supported by the ERC grant INFSYS, agreement no. 950398.

Acknowledgements We warmly thank Mikołaj Bojańczyk, Arka Ghosh, Filip Mazowiecki, and Paweł
Parys for their comments and support at the various stages of this work.

© Lorenzo Clemente;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clementelorenzo@gmail.com
https://sites.google.com/view/lorenzoclemente/
https://orcid.org/0000-0003-0578-9103
https://doi.org/10.4230/LIPIcs.CONCUR.2024.18
https://arxiv.org/abs/2407.03638
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Weighted Basic Parallel Processes and Combinatorial Enumeration

1 Introduction

We study the equivalence problem for a class of finitely presented seriesoriginating in weighted
automata, process algebra, and combinatorics. We begin with some background.

1.1 Motivation and context
Weighted automata. Classical models of computation arising in the seminal work of Turing
from the 1930’s [75] have a Boolean-valued semantics (“is an input accepted?”) and naturally
recognise languages of finite words L ⊆ Σ∗. In the 1950’s a finite-memory restriction was
imposed on Turing machines, leading to an elegant and robust theory of finite automata [64],
with fruitful connections with logic [18, 28, 74] and regular expressions [47]. Weighted finite
automata over a field F (WFA) [68] were introduced in the 1960’s by Schützenberger as a
generalisation of finite automata to a quantitative series semantics Σ∗ → F (“in how many
ways can an input be accepted?”). This has been followed by the development of a rich
theory of weighted automata and logics [27]. While the general theory can be developed over
arbitrary semirings, the methods that we develop in this work are specific to fields, and in
particular for effectiveness we assume the field of rational numbers F = Q.

The central algorithmic question that we study is the equivalence problem: Given two
(finitely presented) series f, g : Σ∗ → Q, is it the case that f = g? (In algorithmic group theory
this is known as the word problem.) A mathematical characterisation of equivalence yields a
deeper understanding of the interplay between syntax and semantics, and a decidability result
means that this understanding is even encoded as an algorithm. Equivalence of weighted
models generalises multiplicity equivalence of their unweighted counterparts (“do two models
accept each input in the same number of ways?”), in turn generalising language equivalence
of unambiguous models (each input is accepted with multiplicity 0 or 1). Since equivalence
f = g reduces to zeroness f − g = 0, from now on we will focus on the latter problem.

While nonemptiness of WFA is undecidable [58, Theorem 21] (later reported in Paz’
book [60, Theorem 6.17]), zeroness is decidable, even in polynomial time [68] – a fact often
rediscovered, e.g., [73, 76]. This has motivated the search for generalisations of WFA with
decidable zeroness. However, many of them are either known to be undecidable (e.g., weighted
Petri nets [42, Theorem 3]), or beyond the reach of current techniques (e.g., weighted one
counter automata, weighted context-free grammars, and weighted Parikh automata). One
notable exception is polynomial weighted automata, although zeroness has very high complexity
(Ackermann-complete) [3]. In the restricted case of a unary input alphabet, decidability and
complexity results can be obtained with algebraic [1] and D-finite techniques [15].

Process algebra. On a parallel line of research, the process algebra community has developed
a variety of formalisms modelling different aspects of concurrency and nondeterminism. We
focus on basic parallel processes (BPP) [21], a subset of the calculus of communicating
systems without sequential composition [55]. BPP are also known as communication-free
Petri nets (every transition consumes exactly one token) and commutative context-free
grammars (nonterminals in sentential forms are allowed to commute with each other). While
language equality for BPP is undecidable [40, 41], bisimulation equivalence is decidable [22]
(even PSPACE-complete [70, 43]). Multiplicity equivalence, finer than language equality and
incomparable with bisimulation, does not seem to have been studied for BPP.

Combinatorial enumeration and power series. We shall make a connection between BPP,
power series, and combinatorial enumeration. For this purpose, let us recall that the study
of multivariate power series in commuting variables has a long tradition at the border

L. Clemente 18:3

of combinatorics, algebra, and analysis of algorithms [72, 30]. We focus on constructible
differentially finite power series (CDF) [6, 7], a class of differentially algebraic power series
arising in combinatorial enumeration [49, 4]. Their study was initiated in the univariate
context in [6], later extended to multivariate [7]. They generalise rational and algebraic
power series, and are incomparable with D-finite power series [71, 51]. For instance, the
exponential generating series

∑
n∈N n

n−1 · xn/n! of Cayley trees is CDF, but it is neither
algebraic/D-finite [16, Theorem 1], nor polynomial recursive [20, Theorem 5.3].

The theory of combinatorial species [45, 5] is a formalism describing families of finite
structures. It arises as a categorification of power series, by noticing how primitives used
to build structures – sum, combinatorial product, composition, differentiation, resolution of
implicit equations – are in a one-to-one correspondence with corresponding primitives on
series. Using these primitives, a rich class of constructible species can be defined [61]. For
instance the species C[X] of Cayley trees (rooted unordered trees) is constructible since it
satisfies C[X] = X · SET[C[X]]. Two species are multiplicity equivalent (equipotent [61]) if for
every n ∈ N they have the same number of structures of size n. Multiplicity equivalence of
species has not been studied from an algorithmic point of view.

1.2 Contributions
We study weighted basic parallel processes over the field of rational numbers (WBPP), a
weighted extension of BPP generalising WFA. The following is our main contribution.

▶ Theorem 1. The zeroness problem for WBPP is in 2-EXPSPACE.

This elementary complexity should be contrasted with Ackermann-hardness of zeroness of
polynomial automata [3], another incomparable extension of WFA. Since WBPP can model
the multiplicity semantics of BPP, as an application we get the following corollary.

▶ Corollary 2. Multiplicity equivalence of BPP and language equivalence of unambiguous
BPP are decidable in 2-EXPSPACE.

On a technical level, Theorem 1 is obtained by extending an ideal construction and complexity
analysis from [59] from the case of a single polynomial derivation to the case of a finite
set of not necessarily commuting polynomial derivations. It is remarkable that such ideal
chains have elementary length, since generic bounds without further structural restrictions
are only general recursive [69]. This shows that the BPP semantics is adequately captured by
differential algebra. These results are presented in § 2. In § 3 we observe that commutative
WBPP series coincide with CDF power series, thus establishing a novel connection between
automata theory, polynomial differential equations, and combinatorics. This allows us to
obtain a zeroness algorithm for CDF, which is our second main contribution.

▶ Theorem 3. The zeroness problem for multivariate CDF power series is in 2-EXPTIME.

The complexity improvement from 2-EXPSPACE to 2-EXPTIME is due to commutativity.
In the special univariate case, decidability was observed in [6] with no complexity analysis,
while [7] did not discuss decidability in the multivariate case. In § 4 we apply Theorem 3 to
multiplicity equivalence of a class of constructible species. This follows from the observation
that their exponential generating series (EGS) are effectively CDF, proved by an inductive
argument based on the closure properties of CDF series. For instance, the EGS of Cayley
trees satisfies C = x · eC ; by introducing auxiliary series D := eC , E := (1 − C)−1 and by
differentiating we obtain CDF equations ∂xC = D · E, ∂xD = D2 · E, ∂xE = D · E3.

▶ Theorem 4. Multiplicity equivalence of strongly constructible species is decidable.

CONCUR 2024

18:4 Weighted Basic Parallel Processes and Combinatorial Enumeration

1.3 Related works
There have recently been many decidability results for models incomparable with WBPP,
such as multiplicity equivalence of boundedly-ambiguous Petri nets [26, Theorem 3]; zeroness
for weighted one-counter automata with deterministic counter updates [52]; zeroness of
P-finite automata, a model intermediate between WFA and polynomial automata (even in
PTIME [19]); and zeroness of orbit-finite weighted automata in sets with atoms [9].

Regarding power series, there is a rich literature on dynamical systems satisfying dif-
ferential equations in the CDF format, that is polynomial ordinary differential equations
(ODE; cf. [62] and references therein). While many algorithms have been proposed for their
analysis (e.g., invariant checking [63]), the complexity of the zeroness problem has not been
addressed before. A decision procedure for zeroness of multivariate CDF can be obtained
from first principles as a consequence of Hilbert’s finite basis theorem [25, Theorem 4, §5,
Ch. 2]. For instance, decidability follows from the algorithm of [12] computing pre- and
post-conditions for restricted systems of partial differential equations (covering CDF), and
also from the Rosenfeld–Gröbner algorithm [17], which can be used to test membership
in the radical differential ideal generated by the system of CDF equations. In both cases,
no complexity-theoretic analysis is provided and only decidability can be deduced. In the
univariate CDF case, decidability can also be deduced from [10, 11]. Univariate CDF also
arise in the coalgebraic treatment of stream equations with the shuffle product [14, 13], where
an equivalence algorithm based on Hilbert’s theorem is provided.

The work [34] studies Noetherian functions, which are analytic functions satisfying
CDF equations. In fact, Noetherian functions which are analytic around the origin coincide
with multivariate CDF power series. The work [77] discusses a subclass of Noetherian functions
obtained by iteratively applying certain extensions to the ring of multivariate polynomials
and presents a zeroness algorithm running in doubly exponential time. Theorem 3 is more
general since it applies to all Noetherian power series.

In the context of the realisability problem in control theory, Fliess has introduced the
class of differentially producible series [32] (cf. also the exposition of Reutenauer [66]), a
generalisation of WBPP series where the state and transitions are given by arbitrary power
series (instead of polynomials). Such series are characterised by a notion of finite Lie rank
and it is shown that differentially producible series of minimal Lie rank exist and are unique.
Such series are not finitely presented and thus algorithmic problems, such as equivalence,
cannot even be formulated.

Full proofs can be found in the technical report [24].

Preliminaries. Let Σ = {a1, . . . , ad} be a finite alphabet. We denote by Σ∗ the set of finite
words over Σ, a monoid under the operation of concatenation, with neutral element the
empty word ε. The Parikh image of a word w ∈ Σ∗ is #(w) := (#(w)a1 , . . . ,#(w)ad

) ∈ Nd,
where #(w)aj is the number of occurrences of aj in w. Let Q be the field of rational numbers.
Most results in the paper hold for any field, however for computability considerations we
restrict our presentation to Q. For a tuple of commuting indeterminates x = (x1, . . . , xk),
denote by Q[x] the ring of multivariate polynomials (Q[k] when the name of variables does
not matter) and by Q(x) its fraction field of rational functions (that is, ratios of polynomials
p(x)/q(x)). The one norm |z|1 of a vector z = (z1, . . . , zk) ∈ Qk is |z1| + · · · + |zk|, and the
infinity norm is |z|∞ = max1≤i≤k |zk|. Similarly, the infinity norm (also called height) of a
polynomial p ∈ Q[k], written |p|∞, is the maximal absolute value of any of its coefficients.

A derivation of a ring R is a linear function δ : R → R satisfying

δ(a · b) = δ(a) · b+ δ(b). (Leibniz rule)

L. Clemente 18:5

A derivation δ of a polynomial ring R[x] is uniquely defined once we fix δ(x) ∈ R[x]. For
instance, ∂x : R[x] → R[x] is the unique derivation δ of the polynomial ring s.t. δ(x) = 1.
Other technical notions will be recalled when necessary. For a general introduction to
algebraic geometry we refer to [25].

2 Weighted extension of basic parallel processes

2.1 Basic parallel processes
In this section we recall the notion of basic parallel process (BPP) together with its language
semantics. Let {X1, X2, . . . } be a countable set of nonterminals (process variables) and let
Σ be a finite alphabet of terminals (actions). A BPP expression is generated by the following
abstract grammar (cf. [29, Sec. 5]): E,F ::= ⊥ | Xi | a.E | E + F | E ∥F . Intuitively, ⊥
is a constant representing the terminated process, a.E (action prefix), is the process that
performs action a and becomes E, E + F (choice) is the process that behaves like E or F ,
and E ∥F (merge) is the parallel execution of E and F . We say that an expression E is
guarded if every occurrence of a nonterminal Xi is under the scope of an action prefix. A
BPP consists of a distinguished starting nonterminal X1 and rules

X1 → E1 · · · Xk → Ek, (1)

where the r.h.s. expressions E1, . . . , Ek are guarded and contain only nonterminals X1, . . . , Xk.

a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

F
a−→ F ′

E + F
a−→ F ′

Ei
a−→ E′

Xi
a−→ E′

E
a−→ E′

E ∥F a−→ E′ ∥F
F

a−→ F ′

E ∥F a−→ E ∥F ′

Figure 1 BPP transition rules.

A BPP induces an infinite labelled transition system where states are expressions and the
labelled transition relations a−→ are the least family of relations closed under the rules from
Fig. 1. The transition relation is extended naturally to words w−→, w ∈ Σ∗. An expression E
is final if there are no a,E′ s.t. E a−→ E′ (e.g., ⊥ ∥ ⊥); it accepts a word w ∈ Σ∗ if there is a
final expression F s.t. E w−→ F . The language L (E) recognised by an expression E is the set
of words it accepts, and the language of a BPP is L (X1).

An expression E is in (full) standard form if it is a sum of products a1.α1 + · · · + an.αn,
where each αi is a merge of nonterminals; a BPP (1) is in standard form if every E1, . . . , Ek

is in standard form. The standard form for BPP is analogous to the Greibach normal form
for context-free grammars [35]. Every BPP can be effectively transformed to one in standard
form preserving bisimilarity [21, Proposition 2.31], and thus the language it recognises.

▶ Example 5. Consider two input symbols Σ = {a, b} and two nonterminals N = {S,X}.
The following is a BPP in standard form: S → a.X,X → a.(X ∥X) + b.⊥. An example
execution is S a−→ X

a−→ X ∥X b−→ ⊥ ∥X b−→ ⊥ ∥ ⊥, and thus a2b2 ∈ L (S).

While language equivalence is undecidable for BPP [36, Sec. 5], the finer bisimulation equi-
valence is decidable [22], and in fact PSPACE-complete [70, 43]. These initial results have
motivated a rich line of research investigating decidability and complexity for variants of
bisimulation equivalence. We consider another classical variation on language equivalence,

CONCUR 2024

18:6 Weighted Basic Parallel Processes and Combinatorial Enumeration

namely multiplicity equivalence, and apply it to decide language equivalence of unambigu-
ous BPP. We show in Corollary 2 that both problems are decidable and in 2-EXPSPACE.
This is obtained by considering a more general model, introduced next.

2.2 Weighted basic parallel processes
Preliminaries. Let Σ∗ → Q be the set of (non-commutative) series with coefficients in Q,
also known as weighted languages. An alternative notation is Q⟨⟨Σ⟩⟩. We write a series as
f =

∑
w∈Σ∗ fw ·w, where the value of f at w is fw ∈ Q. Thus, 3aba− 5

2bc and 1+a+a2 + · · ·
are series. The set of series carries the structure of a vector space over Q, with element-wise
scalar product c · f (c ∈ Q) and sum f + g. The support of a series f is the subset of its
domain supp(f) ⊆ Σ∗ where it evaluates to a nonzero value. Polynomials Q⟨Σ⟩ are series
with finite support. The characteristic series of a language L ⊆ Σ∗ is the series that maps
words in L to 1 and all the other words to 0.

For two words u ∈ Σm and v ∈ Σn, let u� v be the multiset of all words w = a1 · · · am+n

s.t. the set of indices {1, . . . ,m+ n} can be partitioned into two subsequences i1 < · · · < im
and j1 < · · · < jn s.t. u = ai1 · · · aim

and v = aj1 · · · ajm
. The multiset semantics preserves

multiplicities, e.g., ab� a = {{aab, aab, aba}}. The shuffle of two series f, g is the series f � g

defined as (f � g)w :=
∑

w∈u� v fu · gv, for every w ∈ Σ∗, where the sum is taken with
multiplicities. Shuffle product (called Hurwitz product in [31]) leads to the commutative ring
of shuffle series (Q⟨⟨Σ⟩⟩; +,�, 0, 1), whose shuffle identity 1 is the series mapping ε to 1 and
all other words to 0. A series f has a shuffle inverse g, i.e., f � g = 1, iff fε ̸= 0. The n-th
shuffle power f�n of a series f is inductively defined by f�0 := 1 and f�(n+1) := f � f�n.

Consider the mapping δ : Σ∗ → Q⟨⟨Σ⟩⟩ → Q⟨⟨Σ⟩⟩ s.t. for every u ∈ Σ∗ and f ∈ Q⟨⟨Σ⟩⟩,
δuf ∈ Q⟨⟨Σ⟩⟩ is the series defined as (δuf)w = fuw, for every w ∈ Σ∗. We call δuf the
u-derivative of f (a.k.a. shift or left-quotient). For example, δa(ab+ c) = b. The derivative
operation δu is linear, for every u ∈ Σ∗. The one-letter derivatives δa’s are (noncommuting)
derivations of the shuffle ring since they satisfy (Leibniz rule),

δa(f � g) = δaf � g + f � δag, for all a ∈ Σ, f, g ∈ Q⟨⟨Σ⟩⟩, (2)

Syntax and semantics. A weighted basic parallel process (WBPP) is a tuple P =
(Σ, N, S, F,∆) where Σ is a finite input alphabet of terminal symbols/actions, N is a finite set
of nonterminal symbols/processes, S ∈ N is the initial nonterminal, F : N → Q assigns a final
weight FX ∈ Q to each nonterminal X ∈ N , and ∆ : Σ ×N → Q[N] is a transition function
mapping a nonterminal X ∈ N and an input symbol a ∈ Σ to a polynomial ∆aX ∈ Q[N].

▶ Example 6. A BPP in standard form is readily converted to a WBPP with 0, 1 weights: The
BPP from Example 5 yields the WBPP with output function FS = FX = 0 and transitions
∆aS = X,∆aX = X2,∆bS = 0,∆bX = 1. Configurations reachable from S,X are of the
form cXn (c ∈ N). Action “a” acts as an increment Xn a−→ nXn+1 and “b” as a decrement
Xn b−→ nXn−1. The constant coefficient c ∈ N in a reachable configuration cXn keeps track
of the “multiplicity” of reaching this configuration, i.e., the number of distinct runs leading
to it. For instance, JSKa2b2 = 2 since S a−→ X

a−→ X2 b−→ 2X b−→ 2. In the underlying BPP,

S X
a

X ∥Xa
⊥ ∥Xb ⊥ ∥ ⊥b

X ∥ ⊥b ⊥ ∥ ⊥b

where the branching upon reading the first symbol “b” depends on whether the first or second
occurrence of X reads this symbol.

L. Clemente 18:7

A configuration of a WBPP is a polynomial α ∈ Q[N]. The transition function extends
uniquely to a derivation of the polynomial ring Q[N] via linearity and (Leibniz rule):

∆ : Σ × Q[N] → Q[N]
∆a(c · α) = c · ∆a(α), ∀a ∈ Σ, c ∈ Q,
∆a(α+ β) = ∆a(α) + ∆a(β), ∀a ∈ Σ, α, β ∈ Q[N],
∆a(α · β) = ∆a(α) · β + α · ∆a(β), ∀a ∈ Σ, α, β ∈ Q[N]. (3)

For example, from configuration X · Y we can read a and go to ∆a(X · Y) = ∆a(X) · Y +
X · ∆a(Y); this is models the fact that either X reads a and Y is unchanged, or vice versa.
The transition function is then extended homomorphically to words:

∆ : Σ∗ × Q[N] → Q[N]
∆εα := α, ∆a·wα := ∆w(∆aα), ∀(a · w) ∈ Σ∗, α ∈ Q[N]. (4)

Sometimes we write α w−→ β when β = ∆w(α). For instance, from configuration α we can
read ab ∈ Σ∗ visiting configurations α a−→ ∆a(α) b−→ ∆b(∆a(α)). The order of reading symbols
matters: For the transition function ∆a(X) = 0, ∆b(X) = Y , and ∆a(Y) = ∆b(Y) = 1, we
have X a−→ 0 b−→ 0 but X b−→ Y

a−→ 1. The semantics of a WBPP is the mapping

J_K : Q[N] → Q⟨⟨Σ⟩⟩
JαKw := F (∆wα), ∀α ∈ Q[N], w ∈ Σ∗. (5)

Here F is extended homomorphically from nonterminals to configurations: F (α + β) =
F (α) + F (β) and F (α · β) = F (α) · F (β). We say that configuration α recognises the series
JαK. The series recognised by a WBPP is the series recognised by its initial nonterminal. A
WBPP series is a series which is recognised by some WBPP.

▶ Example 7. We show a WBPP series which is not a WFA series. In particular, its support
is nonregular support since WFA supports include the regular languages. Consider the
WBPP from Example 6. The language L := supp(JSK) ∩ a∗b∗ is the set of words of the
form anbn, which is not regular, and thus supp(JSK) is not regular either. Moreover, JSK is
not a WFA series: 1) the set M of words of the form ambn with m ̸= n is a WFA support,
2) if a language and its complement are WFA supports, then they are regular by a result
of Restivo and Reutenauer [65, Theorem 3.1], and 3) since M is not regular, it follows that
its complement is not a WFA support, and thus L = (Σ∗ \M) ∩ a∗b∗ is not a WFA support
either.

2.3 Basic properties
We present some basic properties of the semantics of WBPP. First of all, applying the
derivative δw to the semantics corresponds to applying ∆w to the configuration.

▶ Lemma 8 (Exchange). For every α ∈ Q[N] and w ∈ Σ∗, δw JαK = J∆wαK.

As a consequence, the semantics is a homomorphism from configurations to series.

▶ Lemma 9 (Homomorphism). The semantics function J_K is a homomorphism from the
polynomial to the shuffle series ring:

J_K : (Q[N]; +, ·) → (Q⟨⟨N⟩⟩; +,�)
Jc · αK = c · JαK , Jα+ βK = JαK + JβK , Jα · βK = JαK� JβK .

CONCUR 2024

18:8 Weighted Basic Parallel Processes and Combinatorial Enumeration

Lemmas 8 and 9 illustrate the interplay between the syntax and semantics of WBPP, and
they can be applied to obtain some basic closure properties for the class of WBPP series.

▶ Lemma 10 (Closure properties). Let f, g ∈ Q⟨⟨Σ⟩⟩ be WBPP series. The following series
are also WBPP: c · f , f + g, f � g, δaf , the shuffle inverse of f (when defined).

WBPP series generalise the rational series (i.e., recognised by finite weighted automata [8]),
which in fact correspond to WBPP with a linear transition relation.

▶ Example 11. The shuffle of two WBPP series with context-free support can yield a
WBPP series with non-context-free support. Consider the WBPP from Example 6 over
Σ = {a, b}. Make a copy of this WBPP over a disjoint alphabet Γ = {c, d} with nonterminals
{T, Y }. Now consider the shuffle f := JSK� JT K ∈ Q⟨⟨Σ ∪ Γ⟩⟩. It is WBPP recognisable by
Lemma 10. (For instance we can add a new initial nonterminal U with rules ∆aU = X · T ,
∆cU = S · Y , and ∆bU = ∆dU = 0.) supp(f) is not context free, since intersecting it with
the regular language a∗c∗b∗d∗ yields {amcnbmdn | m,n ∈ N}, which is not context-free by
the pumping lemma for context-free languages [37, Theorem 7.18] (cf. [57, Problem 101]).

2.4 Differential algebra of shuffle-finite series

Differential algebra allows us to provide an elegant characterisation of WBPP series. An
algebra (over Q) is a vector space equipped with a bilinear product. Shuffle series are
a commutative algebra, called shuffle series algebra. A subset of Q⟨⟨Σ⟩⟩ is a subalgebra
if it contains Q and is closed under scalar product, addition, and shuffle product. It is
differential if it is closed under derivations δa (a ∈ Σ). By Lemma 10, WBPP series are a
differential subalgebra. Let Q[f (1), . . . , f (k)] ⊆ Q⟨⟨Σ⟩⟩ be the smallest subalgebra containing
f (1), . . . , f (k) ∈ Q⟨⟨Σ⟩⟩. Algebras of this form are called finitely generated. A series is shuffle
finite if it belongs to a finitely generated differential subalgebra of shuffle series.

▶ Theorem 12. A series is shuffle finite iff it is WBPP.

The characterisation above provides an insight into the algebraic structure of WBPP series.
Other classes of series can be characterised in a similar style. For instance, a series is accepted
by a WFA iff it belongs to a finitely generated differential vector space over Q [8, Proposition
5.1]; by a weighted context-free grammar iff it belongs to a δa-closed, finitely generated
subalgebra of the algebra of series with (noncommutative) Cauchy product ((f ∗ g)w :=∑

w=u·v fu · fv); and by a polynomial automaton [3] iff its reversal (fR
a1...an

:= fan···a1)
belongs to a δa-closed, finitely generated subalgebra of the algebra of series with Hadamard
product ((f ⊙ g)w := fw · gw). Considering other products yields novel classes of series, too.
For instance, the infiltration product [2] yields the class of series that belong to a δa-closed,
finitely generated subalgebra of the algebra of series with infiltration product.

2.5 Equivalence and zeroness problems

The WBPP equivalence problem takes in input two WBPP P,Q and amounts to determine
whether JP K = JQK. In the special case where JQK = 0, we have an instance of the zeroness
problem. Since WBPP series form an effective vector space, equivalence reduces to zeroness,
and thus we concentrate on the latter.

L. Clemente 18:9

Evaluation and word-zeroness problems. We first discuss a simpler problem, which will
be a building block in our zeroness algorithm. The evaluation problem takes in input a
WBPP with initial configuration α and a word w ∈ Σ∗, and it amounts to compute JαKw. The
word-zeroness problem takes the same input, and it amounts to decide whether JαKw = 0.

▶ Theorem 13. The evaluation and word-zeroness problems for WBPP are in PSPACE.

The proof follows from the following three ingredients: The construction of an algebraic
circuit of exponential size computing the polynomial ∆wα (Lemma 14), the fact that
this polynomial has polynomial degree (Lemma 15), and the fact that circuits computing
multivariate polynomials of polynomial degree can be evaluated in NC [44, Theorem 2.4.5].

▶ Lemma 14. Fix a word w ∈ Σ and an initial configuration α ∈ Q[N] of a WBPP, where
α,∆aXi ∈ Q[N] are the outputs of an algebraic circuit of size n. We can construct an
algebraic circuit computing ∆wα of size ≤ 4|w| · n. The construction can be done in space
polynomial in |w| and logarithmic in n.

▶ Lemma 15. Let D ∈ N be the maximum of the degree of the transition relation ∆ and the
initial configuration α. The configuration ∆wα ∈ Q[N] reached by reading a word w ∈ Σn of
length n has total degree O (n ·D).

Decidability of the zeroness problem. Fix a WBPP and a configuration α ∈ Q[N]. Suppose
we want to decide whether JαK is zero. An algorithm for this problem follows from first
principles. Recall that an ideal I ⊆ Q[N] is a subset closed under addition, and multiplication
by arbitrary polynomials [25, §4, Ch. 1]. Let ⟨S⟩ be the smallest ideal including S ⊆ Q[N].
Intuitively, this is the set of “logical consequences” of the vanishing of polynomials in S.
Build a chain of polynomial ideals

I0 ⊆ I1 ⊆ · · · ⊆ Q[N], with In := ⟨∆wα | w ∈ Σ≤n⟩, n ∈ N. (6)

Intuitively, In is the set of polynomials that vanish as a consequence of the vanishing of ∆wα

for all words w of length ≤ n. The chain above has some important structural properties,
essentially relying on the fact that the ∆a’s are derivations of the polynomial ring.

▶ Lemma 16. 1. ∆aIn ⊆ In+1. 2. In+1 = In + ⟨
⋃

a∈Σ ∆aIn⟩. 3. In = In+1 implies
In = In+1 = In+2 = · · · .

By Hilbert’s finite basis theorem [25, Theorem 4, §5, Ch. 2], there is M ∈ N s.t. IM = IM+1 =
· · · . By Lemma 16 (3) and decidability of ideal inclusion [53], M can be computed. This
suffices to decide WBPP zeroness. Indeed, let ∆w1α, . . . ,∆wmα be the generators of IM . For
every input word w ∈ Σ∗ there are β1, . . . , βm ∈ Q[N] s.t. ∆wα = β1 · ∆w1α+ · · ·βm · ∆wm

α.
By applying the output function F on both sides, we have JαKw = F (∆wα) = Fβ1 · JαKw1

+
· · · + Fβm · JαKwm

. It follows that if JαKw = 0 for all words of length ≤ M , then JαK = 0.
One can thus enumerate all words w of length ≤ M and check JαKw = 0 with Theorem 13.
So far we only know that M is computable. In the next section we show that in fact M is
an elementary function of the input WBPP.

Elementary upper bound for the zeroness problem. We present an elementary upper bound
on the length of the chain of polynomial ideals (6). This is obtained by generalising the case
of a single derivation from Novikov and Yakovenko [59, Theorem 4] to the situation of several,
not necessarily commuting derivations ∆a, a ∈ Σ. The two main ingredients in the proof of [59,

CONCUR 2024

18:10 Weighted Basic Parallel Processes and Combinatorial Enumeration

Theorem 4] are 1) a structural property of the chain (6) called convexity, and 2) a degree bound
on the generators of the n-th ideal In (which we have already established in Lemma 15). For
two sets I, J ⊆ Q[N] consider the colon set I : J := {f ∈ Q[N] | ∀g ∈ J, f · g ∈ I} [25, Def. 5,
§4, Ch. 4]. If I, J are ideals of Q[N] then I : J is also an ideal. An ideal chain I0 ⊆ I1 ⊆ · · ·
is convex if the colon ideals In : In+1 form themselves a chain I0 : I1 ⊆ I1 : I2 ⊆ · · · . Chain
of ideals obtained by iterated application of a single derivation are convex by [59, Lemma 7].
We extend this observation to a finite set of derivations.

▶ Lemma 17 (generalisation of [59, Lemma 7]). The ideal chain (6) is convex.

Proof. We extend the argument from [59] to the case of many derivations. Assume f ∈
In−1 : In and let h ∈ In+1 be arbitrary. We have to show f · h ∈ In.

▷ Claim. f · ∆ag ∈ In, for all a ∈ Σ and g ∈ In.

Proof of the claim. Since ∆a is a derivation (4), ∆a(f · g) = ∆af · g+ f · ∆ag, and by solving

for f · ∆ag we can write f · ∆ag = ∆a(
(a) In−1︷︸︸︷
f · g)︸ ︷︷ ︸

(b) In

− ∆af · g︸ ︷︷ ︸
(c) In

. Condition (a) follows from the

definition of colon ideal, (b) from point (1) of Lemma 16, and (c) from In being an ideal.
◁

Since h ∈ In+1, by point (2) of Lemma 16, we can write h = h0 + h1 with h0 ∈ In

and h1 ∈ ⟨
⋃

a∈Σ ∆aIn⟩. In particular, h1 =
∑

i pi · ∆ai
gi with gi ∈ In, By the claim,

f · h1 =
∑

i pi · f · ∆ai
gi ∈ In. Consequently, f · h = f · h0 + f · h1 ∈ In as well. ◀

Thanks to Lemma 17 we can generalise the whole proof of [59, Theorem 4], eventually arriving
at the following elementary bound. The order of a WBPP is the number of nonterminals and
its degree is the maximal degree of the polynomials ∆aX (a ∈ Σ, X ∈ N).

▶ Theorem 18. Consider a WBPP of order ≤ k and degree ≤ D. The length of the ideal

chain (6) is at most Dk
O(k2) .

The elementary bound above may be of independent interest. Already in the case of a single
derivation, it is not known whether the bound from [59] is tight, albeit it is expected not to
be so. We provide a proof sketch of Theorem 18 in order to illustrate the main notions from
algebraic geometry which are required.

Proof sketch. We recall some basic facts from algebraic geometry. The radical
√
I of an

ideal I is the set of elements r s.t. rm ∈ I for some m ∈ N; note that
√
I is itself an ideal.

An ideal I is primary if p · q ∈ I and p ̸∈ I implies q ∈
√
I. A primary decomposition

of an ideal I is a collection of primary ideals {Q1, . . . , Qs}, called primary components,
s.t. I = Q1 ∩ · · · ∩Qs. The dimension dim I of a polynomial ideal I ⊆ Q[k] is the dimension
of its associated variety V (I) =

{
x ∈ Ck

∣∣ ∀p ∈ I.p(x) = 0
}

. Since the operation of taking
the variety of an ideal is inclusion-reversing, ideal inclusion is dimension-reversing: I ⊆ J

implies dim I ≥ dim J . Consider a convex chain of polynomial ideals as in (6). By convexity,
the colon ideals also form a chain I0 : I1 ⊆ I1 : I2 ⊆ · · · ⊆ Q[k]. The colon dimensions are at
most k and non-increasing, k ≥ dim (I0 : I1) ≥ dim (I1 : I2) ≥ · · · . Divide the original ideal
chain (6) into segments, where in the i-th segment the colon dimension is a constant mi:

I0 ⊆ · · · ⊆ In0−1︸ ︷︷ ︸
dim (In : In+1)=m0

⊆ In0 ⊆ · · · ⊆ In1−1︸ ︷︷ ︸
dim (In : In+1)=m1

⊆ · · · ⊆ Ini
⊆ · · · ⊆ Ini+1−1︸ ︷︷ ︸

dim (In : In+1)=mi

⊆ · · · . (7)

L. Clemente 18:11

Since the colon dimension can strictly decrease at most k times, there are at most k segments.
In the following claim we show that the length of a convex ideal chain with equidimensional
colon ideal chain can be bounded by the number of primary components of the initial ideal.

▷ Claim 19 ([59, Lemmas 8+9]). Consider a strictly ascending convex chain of ideals
I0 ⊊ I1 ⊊ · · · ⊊ Iℓ of length ℓ where the colon ratios have the same dimension m :=
dim (I0 : I1) = · · · = dim (Iℓ−1 : Iℓ). Then ℓ is at most the number of primary components
of any primary ideal decomposition of the initial ideal I0 (counted with multiplicities1).

We apply Claim 19 to the i-th segment (7) and obtain that its length ℓi := ni+1 − ni is at
most the number of primary components in any primary ideal decomposition of its starting
ideal Ini

. We now use a result from effective commutative algebra showing that we can
compute primary ideal decompositions of size bounded by the degree of the generators.

▷ Claim 20 (variant of [59, Corollary 2]). An ideal I ⊆ C[k] generated by polynomials of
degree ≤ D admits a primary ideal decomposition of size DkO(k) (counted with multiplicities).

By Claim 20, Ini
admits some primary decomposition of size dkO(k)

i , where di is the maximal
degree of the generators of Ini . By Lemma 15, di is at most O (D · ni). All in all, the i-th
segment has length ℓi = ni+1 − ni ≤ (D · ni)kO(k) . We have ni ≤ O (fi) where fi satisfies
fi+1 ≤ a · f b

i with a = Db and b = kO(k). Thus fk ≤ a · ab · · · abk−1 ≤ abO(k) , yielding the

required upper bound on the length of the ideal chain nk ≤ Dk
O(k2) . ◀

Thanks to the bound from Theorem 18, we obtain the main contribution of the paper, which
was announced in the introduction.

▶ Theorem 1. The zeroness problem for WBPP is in 2-EXPSPACE.

Proof. The bound on the length of the ideal chain (6) from Theorem 18 implies that if
the WBPP is not zero, then there exists a witnessing input word of length at most doubly
exponential. We can guess this word and verify its correctness in 2-EXPSPACE by Theorem 13.
This is a nondeterministic algorithm, but by courtesy of Savitch’s theorem [67] we obtain a
bona fide deterministic 2-EXPSPACE algorithm. ◀

Application to BPP. The multiplicity semantics of a BPP is its series semantics as an
N-WBPP. Intuitively, one counts all possible ways in which an input is accepted by the model.
The BPP multiplicity equivalence problem takes as input two BPP P,Q and returns “yes”
iff P,Q have the same multiplicity semantics. Decidability of BPP multiplicity equivalence
readily follows from Theorem 1. We say that a BPP is unambiguous if its multiplicity
semantics is {0, 1}-valued. While BPP language equivalence is undecidable [36, Sec. 5],
we obtain decidability for unambiguous BPP. We have thus proved Corollary 2. This
generalises decidability for deterministic BPP, which follows from decidability of bisimulation
equivalence [22]. Language equivalence of unambiguous context-free grammars, the sequential
counterpart of BPP (sometimes called BPA in process algebra), is a long-standing open
problem, as well as the more general multiplicity equivalence problem (cf. [33, 23, 1]).

1 We refer to [59, Sec. 4.1] for the notion of multiplicity of a primary component.

CONCUR 2024

18:12 Weighted Basic Parallel Processes and Combinatorial Enumeration

3 Constructible differentially finite power series

In this section we study a class of multivariate power series in commuting variables called
constructible differentially finite (CDF) [6, 7]. We show that CDF power series arise naturally
as the commutative variant of WBPP series from § 2. Stated differently, the novel WBPP can
be seen as the noncommutative variant of CDF, showing a connection between the theory
of weighted automata and differential equations. As a consequence, by specialising to the
commutative context the 2-EXPSPACE WBPP zeroness procedure, we obtain an algorithm to
decide zeroness for CDF power series in 2-EXPTIME. This is the main result of the section,
which was announced in the introduction (Theorem 3).

On the way, we recall and further develop the theory of CDF power series. In particular,
we provide a novel closure under regular support restrictions (Lemma 24). In § 4 we illustrate
a connection between CDF power series and combinatorics, by showing that the generating
series of a class of constructible species of structures are CDF, which will broaden the
applicability of the CDF zeroness algorithm to multiplicity equivalence of species.

Preliminaries. In the rest of the section, we consider commuting variables x = (x1, . . . , xd),
y = (y1, . . . , yk). We denote by Q[[x]] the set of multivariate power series in x, endowed with
the structure of a commutative ring (Q[[x]]; +, ·, 0, 1) with pointwise addition and (Cauchy)
product. The partial derivatives ∂xj

’s satisfy (Leibniz rule), and thus form a family of
commuting derivations of this ring. To keep notations compact, we use vector notation: For
a tuple of naturals n = (n1, . . . , nd) ∈ Nd, define n! := n1! · · ·nd!, xn := xn1

1 · · ·xnd

d , and
∂n

x := ∂n1
x1

· · · ∂nd
xd

. We write a power series as f =
∑

n∈Nd fn · xn

n! ∈ Q[[x]], and define the
(exponential) coefficient extraction operation [xn]f := fn, for every n ∈ Nd. This is designed
in order to have the following simple commuting rule with partial derivative:

[xm](∂n
xf) = [xm+n]f, for all m,n ∈ Nd. (8)

Coefficient extraction is linear, and constant term extraction [x0] is even a homomorphism
since [x0](f · g) = [x0]f · [x0]g. The Jacobian matrix of a tuple of power series f =
(f (1), . . . , f (k)) ∈ Q[[x]]k is the matrix ∂xf ∈ Q[[x]]k×d where entry (i, j) is ∂xjf

(i). Consider
commuting variables y = (y1, . . . , yk). For a set of indices I ⊆ {1, . . . , k}, by yI we denote
the tuple of variables yi s.t. i ∈ I and by y\I we denote the tuple of variables yi s.t. i ̸∈ I. A
power series f ∈ Q[[y]] is locally polynomial w.r.t. yI if f ∈ Q[yI][[y\I]] (f is a power series in
y\I with coefficients polynomial in yI), and that it is polynomial w.r.t. yI if f ∈ Q[[y\I]][yI]
(f is a polynomial in yI with coefficients which are power series in y\I). For instance

1
1−y1·y2

= 1 + y1y2 + (y1y2)2 + · · · is not polynomial, but it is locally polynomial in y{1} (and
y{2}). A power series f ∈ Q[[x, y]] and a tuple g = (g(1), . . . , g(k)) ∈ Q[[x]]k are y-composable
if f is locally polynomial w.r.t. yI , where I is the set of indices i s.t. g(i)(0) ̸= 0; strongly
y-composable is obtained by replacing “locally polynomial” with “polynomial”. As a corner
case often arising in practice, f, g are always strongly y-composable when g(0) = 0. When
f, g are y-composable, their composition f ◦y g ∈ Q[[x]] obtained by replacing yi in f with g(i),
for every 1 ≤ i ≤ k, exists. Composition extends component-wise to vectors and matrices.

3.1 Multivariate CDF power series
A power series f (1) ∈ Q[[x]] is CDF [6, 7] if it is the first component of a solution f =
(f (1), . . . , f (k)) ∈ Q[[x]]k of a system of polynomial partial differential equations

∂xf = P ◦y f, where P ∈ Q[x, y]k×d. (9)

L. Clemente 18:13

We call k the order of the system and d its dimension; in the univariate case d = 1, (9) is a
system of ordinary differential equations. The matrix P is called the kernel of the system.
The degree the system is the maximum degree of polynomials in the kernel, and so it is
its height. When the kernel does not contain x the system is called autonomous, otherwise
non-autonomous. There is no loss of expressive power in considering only autonomous systems.
Many analytic functions give rise to univariate CDF power series, such as polynomials, the
exponential series f := ex = 1 + x+ x2/2! + · · · (since ∂xf = f), the trigonometric series
sin x, cosx, secx := 1/ cosx, arcsin, arccos, arctan their hyperbolic variants sinh, cosh, tanh,
sech = 1/ cosh, arsinh, artanh, the non-elementary error function erf(x) :=

∫ x

0 e−t2
dt (since

∂xerf = e−x2 and ∂x(e−x2) = −2x ·e−x2). Multivariate CDF power series include polynomials,
rational power series, constructible algebraic series (in the sense of [31, Sec. 2]; [6, Theorem
4],[7, Corollary 13]), and a large class of D-finite series ([7, Lemma 6]; but not all of them).
Moreover, we demonstrate in Theorem 31 that the generating series of strongly constructible
species are CDF. We recall some basic closure properties for the class of CDF power series.

▶ Lemma 21 (Closure properties; [6, Theorem 2], [7, Theorem 11]). (1) If f, g ∈ Q[[x]] are
CDF, then are also CDF: c · f for c ∈ Q, f + g, f · g, ∂xj

f for 1 ≤ j ≤ d, 1/f (when
defined). (2) If ∂x1f, . . . , ∂xd

f are CDF, then so is f . (3) Closure under strong composition:
If f ∈ Q[[x, y]], g ∈ Q[[x]]k are strongly y-composable and CDF, then f ◦y g is CDF.

▶ Remark 22. In the univariate case d = 1, [6, Theorem 2] proves closure under composition
under the stronger assumption g(0) = 0. In the multivariate case, [7, Theorem 11] claims
without proof closure under composition (when defined). We leave it open whether CDF power
series are closed under composition.

Of the many pleasant closure properties above, especially composition is remarkable, since this
does not hold for other important classes of power series, such as the algebraic and the D-finite
power series. For instance, ex and ex−1 are D-finite, but eex−1 is not [46, Problem 7.8]. On the
other hand, CDF power series are not closed under Hadamard product, already in the univariate
case [6, Sec. 4]. (The Hadamard product of f =

∑
n∈Nd fn · xn, g =

∑
n∈Nd gn · xn ∈ Q[[x]]

is f ⊙ g =
∑

n∈Nd(fn · gn) · xn.) Another paramount closure property regards resolution of
systems of power series equations. A system of equations of the constructible form y = f

with f ∈ Q[[x, y]]k is well posed if f(0, 0) = 0 and the Jacobian matrix evaluated at the
origin ∂yf(0, 0) is nilpotent. A canonical solution is a series g ∈ Q[[x]]k solving the system
for y := g(x) s.t. g(0) = 0. The following is a slight generalisation of [7, Corollary 13].

▶ Lemma 23 (Constructible power series theorem). A well-posed system of equations y = f(x, y)
has a unique canonical solution y := g(x). Moreover, if f is CDF, then g is CDF.

For example, the unique canonical solution of the well-posed equation y = f := x · ey is CDF.

3.2 Support restrictions
We discuss a novel closure property for CDF power series, which will be useful later in
the context of combinatorial enumeration (§ 4). The restriction of f ∈ Q[[x]] by a support
constraint S ⊆ Nd is the series f |S ∈ Q[[x]] which agrees with f on the coefficient of xn for
every n ∈ S, and is zero otherwise. We introduce a small constraint language in order to
express a class of support constraints. The set of constraint expressions of dimension d ∈ N
is generated by the following abstract grammar,

φ,ψ ::= zj = n | zj ≡ n (mod m) | φ ∨ ψ | φ ∧ ψ | ¬φ, (10)

CONCUR 2024

18:14 Weighted Basic Parallel Processes and Combinatorial Enumeration

where 1 ≤ j ≤ d and m,n ∈ N with m ≥ 1. Expressions zj ≤ n and zj ≥ n can be
derived. The semantics of a constraint expressions φ of dimension d, written JφK ⊆ Nd,
is defined by structural induction in the expected way. For instance, the semantics of
z1 ≥ 2 ∧ z2 ≡ 1 (mod 2) is the set of pairs (a, b) ∈ N2 where a ≥ 2 and b is odd. Call a set
S ⊆ Nd regular if it is denoted by a constraint expression.

▶ Lemma 24. CDF power series are closed under regular support restrictions.

For instance, since ex is CDF also sinh x = ex|Jz1≡1 (mod 2)K is CDF. CDF are not closed
under more general semilinear support restrictions. E.g., restricting to the semilinear set{

(m, . . . ,m) ∈ Nd
∣∣ m ∈ N

}
amounts to taking the diagonal, which in turn can be used to

express the Hadamard product of power series [50, remark (2) on pg. 377], and CDF are
closed under none of these operations.

3.3 CDF = Commutative WBPP series
We demonstrate that CDF power series correspond to WBPP series satisfying a commutativity
condition. In particular, they coincide in the univariate case x = (x1) and Σ = {a1}. A
series f ∈ Q⟨⟨Σ⟩⟩ over a finite alphabet Σ = {a1, . . . , ad} is commutative if fu = fv whenever
#(u) = #(v); in this case we associate to it a power series s2p (f) ∈ Q[[x]] in commuting
variables x = (x1, . . . , xd) by s2p (f) :=

∑
n∈Nd fn · xn

n! where fn := fw for any w ∈ Σ∗

s.t. #(w) = n. Conversely, to any power series f ∈ Q[[x]] we associate a commutative series
p2s (f) ∈ Q⟨⟨Σ⟩⟩ by p2s (f) :=

∑
w∈Σ∗ [x#(w)]f · w. These two mappings are mutual inverses

and by the following lemma we can identify CDF power series with commutative WBPP series,
thus providing a bridge between the theory of weighted automata and differential equations.

▶ Lemma 25. If f ∈ Q⟨⟨Σ⟩⟩ is a commutative WBPP series, then s2p (f) ∈ Q[[x]] is a
CDF power series. Conversely, if f ∈ Q[[x]] is a CDF power series, then p2s (f) ∈ Q⟨⟨Σ⟩⟩ is a
commutative WBPP series.

3.4 Zeroness of CDF power series
Coefficient computation. We provide an algorithm to compute CDF power series coefficients.
While a PSPACE algorithm follows from Theorem 13, we are interested here in the precise
complexity w.r.t. degree, height, and order. This will allow us obtain the improved 2-
EXPTIME complexity for zeroness (Theorem 3).

▶ Lemma 26. Given a tuple of d-variate CDF power series f ∈ Z[[x]]k satisfying an integer
system of CDF equations (9) of degree D, order k, height H, and a bound N , we can
compute all coefficients [xn]f ∈ Zk with total degree |n|1 ≤ N in deterministic time ≤
(N + d ·D + k)O(d·D+k) · (logH)O(1).

The lemma is proved by a dynamic programming algorithm storing all required coefficients
in a table, which is feasible since numerators and denominators are not too big. This rough
estimation shows that the complexity is exponential in d,D, k and polynomial in N .

Zeroness. The zeroness problem for CDF power series takes as input a polynomial p ∈ Q[y]
and a system of equations (9) with an initial condition c ∈ Qk extending to a (unique) power
series series solution f s.t. f(0) = c, and asks whether p ◦y f = 0.

L. Clemente 18:15

▶ Remark 27. This is a promise problem: We do not decide solvability in power series. In
our application in § 4 this is not an issue since power series solutions exist by construction.
In the univariate case d = 1 the promise is always satisfied. We leave it as future work to
investigate the problem of solvability in power series of CDF equations.

The following lemma gives short nonzeroness witnesses. It follows immediately from the
WBPP ideal construction (6). Together with Lemma 26 it yields the announced Theorem 3.

▶ Lemma 28. Consider a CDF f ∈ Q[[x]]k and p ∈ Q[y], both of degree ≤ D. The power

series g := p ◦y f is zero iff [xn]g = 0 for all monomials xn of total degree |n|1 ≤ Dk
O(k2) .

4 Constructible species of structures

The purpose of this section is to show how a rich combinatorial framework for building
classes of finite structures (called species) gives rise in a principled way to a large class
of CDF power series. The main result of this section is that multiplicity equivalence is
decidable for a large class of species (Theorem 4). Combinatorial species of structures [45]
are a formalisation of combinatorics based on category theory, designed in such a way
as to expose a bridge between combinatorial operations on species and corresponding
algebraic operations on power series. Formally, a d-sorted species is a d-ary endofunctor
F in the category of finite sets and bijections. In particular, F defines a mapping from
d-tuples of finite sets U = (U1, . . . , Ud) to a finite set F [U], satisfying certain naturality
conditions which ensure that F is independent of the names of the elements of U . In
particular, the cardinality of the output |F [U1, . . . , Ud]| depends only on the cardinality of
the inputs |U1| , . . . , |Ud|, which allows one to associate to F the exponential generating series
(EGS) EGS[F] :=

∑
n∈Nd Fn · xn

n! , where Fn1,...,nd
:= |F [U1, . . . , Ud]| for some (equivalently,

all) finite sets of cardinalities |U1| = n1, . . . , |Ud| = nd. We refer to [61, Sec. 1] for an
introduction to species tailored towards combinatorial enumeration (cf. also the book [5]).
Below we present the main ingredients relevant for our purposes by means of examples.

Species can be built from basic species by applying species operations and solving species
equations. Examples of basic species are the zero species 0 with EGS 0, the one species
1 with EGS 1, the singleton species Xj of sort j with EGS xj , the sets species SET with
EGS ex = 1 + x+ x2/2! + · · · (since there is only one set of size n for each n), and the cycles
species CYC with EGS − log(1 − x). New species can be obtained by the operations of sum
(disjoint union) F + G, combinatorial product F · G (generalising the Cauchy product for
words), derivative ∂Xj

F (cf. [61, Sec. 1.2 and 1.4] for formal definitions), and cardinality
restriction F|S (for a cardinality constraint S ⊆ Nd). Regarding the latter, F|S equals F on
inputs (U1, . . . , Ud) satisfying (|U1| , . . . , |Ud|) ∈ S, and is ∅ otherwise; we use the notation
F∼n for the constraint |U1| + · · · + |Ud| ∼ n, for ∼ a comparison operator such as = or ≥.

Another important operation is that of composition of species [61, Sec. 1.5]. Consider
sorts X = (X1, . . . ,Xd) and Y = (Y1, . . . ,Yk). Let F be a (X ,Y)-sorted species and let
G = (G1, . . . ,Gk) be a k-tuple of X -sorted species. For a set of indices I ⊆ {1, . . . , k}, we
write YI for the tuple of those Yi’s s.t. i ∈ I. We say that F is polynomial w.r.t. YI if
EGS[F] is polynomial w.r.t. yI , and similarly for locally polynomial. We say that F ,G are
Y-composable if F is locally polynomial w.r.t. YI , where I is the set of indices i s.t. Gi[∅] ̸= ∅.
The notion of strongly Y-composable is obtained by replacing “locally polynomial” with
“polynomial”. For two Y-composable species F ,G their composition F ◦Y G is a well-defined
X -sorted species. Informally, it is obtained by replacing each Yi in F by Gi.

CONCUR 2024

18:16 Weighted Basic Parallel Processes and Combinatorial Enumeration

We will not need the formal definitions of these operations, but we will use the fact
that each of these has a corresponding operation on power series [5, Ch. 1]: EGS[F + G] =
EGS[F] + EGS[G], EGS[F · G] = EGS[F] · EGS[G], EGS[∂Xj

F] = ∂xj
EGS[F], EGS[F ◦Y G] =

EGS[F] ◦y EGS[G], and EGS[F|S] = EGS[F]|S . For instance, SET[X]≥1 is the species of
nonempty sets, with EGS ex − 1; SET[X] · SET[X] is the species of subsets with EGS ex · ex =∑

n∈N 2n · xn/n! since subsets correspond to partitions of a set into two parts and there are
2n ways to do this for a set of size n; X · X is the species of pairs with EGS 2! · x2/2! since
there are two ways to organise a set of size 2 into a pair; SEQ[X] = 1 + X + X · X + · · · is
the species of lists with EGS (1 − x)−1 = 1 + x+ x2 + · · · since there are n! ways to organise
a set of size n into a tuple of n elements; SET[Y] ◦Y SET[X]≥1 is the species of set partitions
with EGS eex−1 since a set partition is a collection of nonempty sets which are pairwise
disjoint and whose union is the whole set.

Finally, species can be defined as unique solutions of systems of species equations. E.g.,
the species of sequences SEQ[X] is the unique species satisfying Y = 1 + X · Y since a
nonempty sequence decomposes uniquely into a first element together with the sequence
of the remaining elements; binary trees is the unique species solution of Y = 1 + X · Y2;
ordered trees is the unique species solution of Y = 1 + X · SEQ[Y]; Cayley trees (rooted
unordered trees) is the unique species satisfying Y = X · SET[Y] since a Cayley tree uniquely
decomposes into a root together with a set of Cayley subtrees. For a more elaborate
example, the species of series-parallel graphs is the unique solution for Y1 of the following
system [61, Sec. 0]:

Y1 = X + Y2 + Y3, (sp graphs)
Y2 = SEQ[X + Y3]≥2, (series graphs)
Y3 = SET[X + Y2]≥2. (parallel graphs)

(11)

Joyal’s implicit species theorem [45] (cf. [61, Theorem 2.1], [5, Theorem 2 of Sec. 3.2]), which
we now recall, provides conditions guaranteeing existence and uniqueness of solutions to
species equations. Let a system of species equations Y = F(X ,Y) (with F a k-tuple of
species) be well posed if F(0,0) = 0 and the Jacobian matrix ∂YF (defined as for power
series [61, Sec. 1.6]) is nilpotent at (0,0). A canonical solution is a solution Y := G(X)
s.t. G(0) = 0.

▶ Theorem 29 (Implicit species theorem [45]). A well-posed system of species equations
Y = F(X ,Y) admits a unique canonical solution Y := G(X).

The implicit species theorem is a direct analogue of the implicit function theorem for power
series. Furthermore, if Y = F(X ,Y) is a well-posed system of species equations then
y = EGS[F](x, y) is a well-posed system of power series equations; moreover the EGS of the
canonical species solution of the former is the canonical power series solution of the latter.
We now have enough ingredients to define a large class of combinatorial species. Strongly
constructible species are the smallest class of species (1) containing the basic species
0,1,Xj (j ∈ N),SET,CYC; (2) closed under sum, product, strong composition, regular
cardinality restrictions; and (3) closed under canonical resolution of well-posed systems
Y = F(X ,Y) with F a tuple of strongly constructible species. Note that the equation
Y = 1 + X · Y for sequences is not well posed, nonetheless sequences are strongly construct-
ible: Nonempty sequences SEQ[X]≥1 are the unique canonical solution of the well-posed
species equation Z = X + X · Z and SEQ[X] = 1 + SEQ[X]≥1. Similar manipulations show
that all the examples mentioned are strongly constructible.

L. Clemente 18:17

▶ Remark 30. The class of strongly constructible species is incomparable with the class
from [61, Definition 7.1]. On the one hand, [61] considers as cardinality restrictions only
finite unions of intervals, while we allow general regular restrictions, e.g. periodic constraints
such as “even size”; moreover, constraints in [61] are applied only to basic species, while we
allow arbitrary strongly constructible species. On the other hand, we consider well-posed
systems, while [61] considers more general well-founded systems. Finally, we consider strong
composition, while [61] considers composition.

Since CDF power series include the the basic species EGS 0, 1, xj (j ∈ N), (1 − x)−1, ex,
and − log(1 − x), from the CDF closure properties Lemmas 21, 23, and 24 and the discussion
above, we have:

▶ Theorem 31. The EGS of a strongly constructible species is effectively CDF.

▶ Remark 32. Constructible species are obtained by considering composition instead of strong
composition. We conjecture that even the EGS of constructible species are CDF, which would
follow by generalising Lemma 21(3) from “strongly composable” to “composable”.

For instance, the well-posed species equation Y = X · SET[Y] for Cayley trees translates to
the well-posed power series equation y = x · ey for its EGS. The well-posed species equations
for series-parallel graphs (11) translate to the following well-posed power series equations for
their EGS:

y1 = x+ y2 + y3,

y2 = 1
1−(x+y3) − 1 − (x+ y3),

y3 = ex+y2 − 1 − (x+ y2).
(12)

We conclude this section by deciding multiplicity equivalence of species. Two d-sorted
species F ,G are multiplicity equivalent (equipotent [61]) if Fn = Gn for every n ∈ Nd.
Decidability of multiplicity equivalence of strongly constructible species, announced in
Theorem 4, follows from Theorems 3 and 31.

5 Conclusions

We have presented two related computation models, WBPP series and CDF power series.
We have provided decision procedures of elementary complexity for their zeroness problems
(Theorems 1 and 3), which are based on a novel analysis on the length of chains of polynomial
ideals obtained by iterating a finite set of possibly noncommuting derivations (Theorem 18).
On the way, we have developed the theory of WBPP and CDF, showing in particular that the
latter arises as the commutative variant of the former. Finally, we have applied WBPP to
the multiplicity equivalence of BPP (Corollary 2), and CDF to the multiplicity equivalence
of constructible species (Theorem 4). Many directions are left for further work. Some were
already mentioned in the previous sections. We highlight here some more.

Invariant ideal. Fix a WBPP (or CDF). Consider the invariant ideal of all configurations
evaluating to zero Z := {α ∈ Q[N] | JαK = 0}. Zeroness is just membership in Z. Since Z is
a polynomial ideal, it has a finite basis. The most pressing open problem is whether we can
compute one such finite basis, perhaps leveraging on differential algebra [48]. Z is computable
in the special case of WFA [38, 39], however for polynomial automata it is not [56].

CONCUR 2024

18:18 Weighted Basic Parallel Processes and Combinatorial Enumeration

Regular support restrictions. BPP languages are not closed under intersection with regular
languages [21, proof of Proposition 3.11], and thus it is not clear for instance whether we
can decide BPP multiplicity equivalence within a given regular language. We do not know
whether WBPP series are closed under regular support restriction, and thus also zeroness of
WBPP series within a regular language is an open problem.

WBPP with edge multiplicities. One can consider a slightly more expressive BPP model
where one transition can remove more than one token from the same place [54]. It is
conceivable that zeroness stays decidable, however a new complexity analysis is required
since the corresponding ideal chains may fail to be convex.

References
1 Nikhil Balaji, Lorenzo Clemente, Klara Nosan, Mahsa Shirmohammadi, and James Worrell.

Multiplicity problems on algebraic series and context-free grammars. In Proc. of LICS’23,
pages 1–12, 2023. doi:10.1109/LICS56636.2023.10175707.

2 Henning Basold, Helle Hvid Hansen, Jean-Éric Pin, and Jan Rutten. Newton series, coinduct-
ively: a comparative study of composition. Mathematical Structures in Computer Science,
29(1):38–66, June 2017. doi:10.1017/s0960129517000159.

3 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In Proc. of LICS’17, pages 1–12, June 2017. doi:10.1109/LICS.
2017.8005101.

4 François Bergeron, Philippe Flajolet, and Bruno Salvy. Varieties of increasing trees. In J. C.
Raoult, editor, CAAP’92, pages 24–48, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

5 François Bergeron, Gilbert Labelle, Pierre Leroux, and Margaret Readdy. Combinatorial
Species and Tree-like Structures. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1998.

6 François Bergeron and Christophe Reutenauer. Combinatorial resolution of systems of dif-
ferential equations iii: A special class of differentially algebraic series. European Journal of
Combinatorics, 11(6):501–512, 1990.

7 François Bergeron and Ulrike Sattler. Constructible differentially finite algebraic series in
several variables. Theoretical Computer Science, 144(1):59–65, 1995.

8 J. Berstel and C. Reutenauer. Noncommutative rational series with applications. CUP, 2010.
9 Mikołaj Bojańczyk, Bartek Klin, and Joshua Moerman. Orbit-finite-dimensional vector spaces

and weighted register automata. In Proceedings of the 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’21. IEEE Press, 2021. doi:10.1109/LICS52264.2021.
9470634.

10 Michele Boreale. Algebra, coalgebra, and minimization in polynomial differential equations.
Logical Methods in Computer Science, Volume 15, Issue 1, February 2019.

11 Michele Boreale. Complete algorithms for algebraic strongest postconditions and weakest
preconditions in polynomial odes. Science of Computer Programming, 193:102441, 2020.

12 Michele Boreale. Automatic pre- and postconditions for partial differential equations. Inform-
ation and Computation, 285:104860, 2022.

13 Michele Boreale, Luisa Collodi, and Daniele Gorla. Products, polynomials and differential
equations in the stream calculus. ACM Trans. Comput. Logic, 25(1), January 2024. doi:
10.1145/3632747.

14 Michele Boreale and Daniele Gorla. Algebra and Coalgebra of Stream Products. In Serge
Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency Theory
(CONCUR 2021), volume 203 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 19:1–19:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CONCUR.2021.19.

https://doi.org/10.1109/LICS56636.2023.10175707
https://doi.org/10.1017/s0960129517000159
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS52264.2021.9470634
https://doi.org/10.1109/LICS52264.2021.9470634
https://doi.org/10.1145/3632747
https://doi.org/10.1145/3632747
https://doi.org/10.4230/LIPIcs.CONCUR.2021.19

L. Clemente 18:19

15 Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. Weakly-Unambiguous
Parikh Automata and Their Link to Holonomic Series. In Artur Czumaj, Anuj Dawar,
and Emanuela Merelli, editors, Proc. of ICALP’20, volume 168 of LIPIcs, pages 114:1–
114:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ICALP.2020.114.

16 Alin Bostan and Antonio Jiménez-Pastor. On the exponential generating function of labelled
trees. Comptes Rendus. Mathématique, 358(9-10):1005–1009, 2020. doi:10.5802/crmath.108.

17 François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot. Computing representa-
tions for radicals of finitely generated differential ideals. Applicable Algebra in Engineering,
Communication and Computing, 20(1):73, 2009. doi:10.1007/s00200-009-0091-7.

18 Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und grundl.
Math., 6:66–92, 1960. doi:10.1002/malq.19600060105.

19 Alex Buna-Marginean, Vincent Cheval, Mahsa Shirmohammadi, and James Worrell. On
learning polynomial recursive programs. Proceedings of the ACM on Programming Languages,
8(POPL):1001–1027, January 2024. doi:10.1145/3632876.

20 Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, and Géraud
Sénizergues. On polynomial recursive sequences. Theory of Computing Systems, 2021.
doi:10.1007/s00224-021-10046-9.

21 Søren Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, Depart-
ment of Computer Science, University of Edinburgh, 1993.

22 Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation equivalence is decidable
for basic parallel processes. In CONCUR'93, pages 143–157. Springer Berlin Heidelberg, 1993.
doi:10.1007/3-540-57208-2_11.

23 Lorenzo Clemente. On the complexity of the universality and inclusion problems for unambigu-
ous context-free grammars. In Laurent Fribourg and Matthias Heizmann, editors, Proceedings
8th International Workshop on Verification and Program Transformation and 7th Workshop
on Horn Clauses for Verification and Synthesis, Dublin, Ireland, 25-26th April 2020, volume
320 of EPTCS, pages 29–43. Open Publishing Association, 2020. doi:10.4204/EPTCS.320.2.

24 Lorenzo Clemente. Weighted basic parallel processes and combinatorial enumeration. arXiv
e-prints, page arXiv:2407.03638, July 2024. doi:10.48550/arXiv.2407.03638.

25 David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer International Publishing, 4 edition, 2015.

26 Wojciech Czerwiński and Piotr Hofman. Language Inclusion for Boundedly-Ambiguous Vector
Addition Systems Is Decidable. In Bartek Klin, Sławomir Lasota, and Anca Muscholl, editors,
33rd International Conference on Concurrency Theory (CONCUR 2022), volume 243 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 16:1–16:22, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CONCUR.2022.16.

27 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Monographs in Theoretical Computer Science. Springer, 2009.

28 Calvin C. Elgot. Decision problems of finite automata design and related arithmet-
ics. Transactions of the American Mathematical Society, 98(1):21–51, 1961. doi:doi:
10.1090/S0002-9947-1961-0139530-9.

29 Javier Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.
Fundamenta Informaticae, 31(1):13–25, 1997. doi:10.3233/fi-1997-3112.

30 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

31 Michel Fliess. Sur divers produits de séries formelles. Bulletin de la Société Mathématique de
France, 102:181–191, 1974. doi:10.24033/bsmf.1777.

32 Michel Fliess. Réalisation locale des systèmes non linéaires, algèbres de lie filtrées transitives
et séries génératrices non commutatives. Inventiones Mathematicae, 71(3):521–537, March
1983. doi:10.1007/bf02095991.

CONCUR 2024

https://doi.org/10.4230/LIPIcs.ICALP.2020.114
https://doi.org/10.4230/LIPIcs.ICALP.2020.114
https://doi.org/10.5802/crmath.108
https://doi.org/10.1007/s00200-009-0091-7
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1145/3632876
https://doi.org/10.1007/s00224-021-10046-9
https://doi.org/10.1007/3-540-57208-2_11
https://doi.org/10.4204/EPTCS.320.2
https://doi.org/10.48550/arXiv.2407.03638
https://doi.org/10.4230/LIPIcs.CONCUR.2022.16
https://doi.org/doi:10.1090/S0002-9947-1961-0139530-9
https://doi.org/doi:10.1090/S0002-9947-1961-0139530-9
https://doi.org/10.3233/fi-1997-3112
https://doi.org/10.24033/bsmf.1777
https://doi.org/10.1007/bf02095991

18:20 Weighted Basic Parallel Processes and Combinatorial Enumeration

33 Vojtěch Forejt, Petr Jančar, Stefan Kiefer, and James Worrell. Language equivalence of
probabilistic pushdown automata. Information and Computation, 237:1–11, 2014. doi:
10.1016/j.ic.2014.04.003.

34 Andrei Gabrielov and Nicolai Vorobjov. Complexity of computations with pfaffian and
noetherian functions. In Y Ilyashenko and C Rousseau, editors, Normal Forms, Bifurcations
and Finiteness Problems in Differential Equations, NATO Science Series II, page 211. Springer,
January 2004.

35 Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars.
Journal of the ACM, 12(1):42–52, January 1965. doi:10.1145/321250.321254.

36 Yoram Hirshfeld. Petri nets and the equivalence problem. In Egon Börger, Yuri Gurevich,
and Karl Meinke, editors, Computer Science Logic, pages 165–174, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

37 John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2000.

38 Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial invariants
for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’18, pages 530–539, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3209108.3209142.

39 Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. On strongest algebraic
program invariants. J. ACM, August 2023. Just Accepted. doi:10.1145/3614319.

40 Hans Hüttel. Undecidable equivalences for basic parallel processes. In Theoretical Aspects
of Computer Software. TACS 1994, pages 454–464. Springer Berlin Heidelberg, 1994. doi:
10.1007/3-540-57887-0_110.

41 Hans Hüttel, Naoki Kobayashi, and Takashi Suto. Undecidable equivalences for basic parallel
processes. Information and Computation, 207(7):812–829, July 2009. doi:10.1016/j.ic.
2008.12.011.

42 Petr Jančar. Nonprimitive recursive complexity and undecidability for petri net equival-
ences. Theoretical Computer Science, 256(1):23–30, 2001. ISS. doi:10.1016/S0304-3975(00)
00100-6.

43 Petr Jančar. Strong bisimilarity on basic parallel processes in PSPACE-complete. In Proc. of
LICS’03, pages 218–227, 2003. doi:10.1109/LICS.2003.1210061.

44 Johannes Mittmann. Independence in Algebraic Complexity Theory. PhD thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn, December 2013. URL: https://hdl.handle.net/20.
500.11811/5810.

45 André Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics,
42(1):1–82, 1981.

46 Manuel Kauers and Peter Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence
Equations, Generating Functions, Asymptotic Estimates. Texts and Monographs in Symbolic
Computation. Springer-Verlag Wien, 1 edition, 2011.

47 S. C. Kleene. Representation of events in nerve nets and finite automata. In Shannon
and Mccarthy, editors, Automata Studies, pages 3–41. Princeton Univ. Press, 1956. URL:
http://www.rand.org/pubs/research_memoranda/RM704.html.

48 E. R. Kolchin. Differential Algebra and Algebraic Groups. Pure and Applied Mathematics 54.
Academic Press, Elsevier, 1973.

49 Pierre Leroux and Gérard X. Viennot. Combinatorial resolution of systems of differential
equations, i. ordinary differential equations. In Gilbert Labelle and Pierre Leroux, editors,
Combinatoire énumérative, pages 210–245, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.
doi:10.1007/BFb0072518.

50 L Lipshitz. The diagonal of a d-finite power series is d-finite. Journal of Algebra, 113(2):373–378,
1988. doi:10.1016/0021-8693(88)90166-4.

51 Leonard Lipshitz. D-finite power series. Journal of Algebra, 122(2):353–373, 1989. doi:
10.1016/0021-8693(89)90222-6.

https://doi.org/10.1016/j.ic.2014.04.003
https://doi.org/10.1016/j.ic.2014.04.003
https://doi.org/10.1145/321250.321254
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3614319
https://doi.org/10.1007/3-540-57887-0_110
https://doi.org/10.1007/3-540-57887-0_110
https://doi.org/10.1016/j.ic.2008.12.011
https://doi.org/10.1016/j.ic.2008.12.011
https://doi.org/10.1016/S0304-3975(00)00100-6
https://doi.org/10.1016/S0304-3975(00)00100-6
https://doi.org/10.1109/LICS.2003.1210061
https://hdl.handle.net/20.500.11811/5810
https://hdl.handle.net/20.500.11811/5810
http://www.rand.org/pubs/research_memoranda/RM704.html
https://doi.org/10.1007/BFb0072518
https://doi.org/10.1016/0021-8693(88)90166-4
https://doi.org/10.1016/0021-8693(89)90222-6
https://doi.org/10.1016/0021-8693(89)90222-6

L. Clemente 18:21

52 Prince Mathew, Vincent Penelle, Prakash Saivasan, and A.V. Sreejith. Weighted One-
Deterministic-Counter Automata. In Patricia Bouyer and Srikanth Srinivasan, editors, Proc. of
FSTTCS’23, volume 284 of Leibniz International Proceedings in Informatics (LIPIcs), pages
39:1–39:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSTTCS.2023.39.

53 Ernst Mayr. Membership in polynomial ideals over q is exponential space complete. In
B. Monien and R. Cori, editors, In Proc. of STACS’89, pages 400–406, Berlin, Heidelberg,
1989. Springer Berlin Heidelberg. doi:10.1007/BFb0029002.

54 Ernst W. Mayr and Jeremias Weihmann. Completeness Results for Generalized Communication-
Free Petri Nets with Arbitrary Edge Multiplicities, pages 209–221. Springer Berlin Heidelberg,
2013. doi:10.1007/978-3-642-41036-9_19.

55 Robin Milner. A calculus of communicating systems. Lecture Notes in Computer Science 92.
Springer-Verlag Berlin Heidelberg, 1 edition, 1980.

56 Julian Müllner, Marcel Moosbrugger, and Laura Kovács. Strong Invariants Are Hard: On
the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs. arXiv e-prints,
page arXiv:2307.10902, July 2023. doi:10.48550/arXiv.2307.10902.

57 Filip Murlak, Damian Niwiński, and Wojciech Rytter, editors. 200 Problems on Lan-
guages, Automata, and Computation. Cambridge University Press, March 2023. doi:
10.1017/9781009072632.

58 Masakazu Nasu and Namio Honda. Mappings induced by pgsm-mappings and some recursively
unsolvable problems of finite probabilistic automata. Information and Control, 15(3):250–273,
September 1969. doi:10.1016/s0019-9958(69)90449-5.

59 Dmitri Novikov and Sergei Yakovenko. Trajectories of polynomial vector fields and ascending
chains of polynomial ideals. Annales de l’Institut Fourier, 49(2):563–609, 1999.

60 Azaria Paz. Introduction to Probabilistic Automata. Computer Science and Applied Mathem-
atics. Elsevier Inc, Academic Press Inc, 1971.

61 Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinatorial structures:
Well-founded systems and Newton iterations. Journal of Combinatorial Theory, Series A,
119(8):1711–1773, 2012.

62 André Platzer. Logical Foundations of Cyber-Physical Systems. Springer International Pub-
lishing, 1st ed. edition, 2018.

63 André Platzer and Yong Kiam Tan. Differential equation invariance axiomatization. J. ACM,
67(1), April 2020.

64 Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM J. Res.
Dev., 3(2):114–125, April 1959. doi:10.1147/rd.32.0114.

65 Antonio Restivo and Christophe Reutenauer. On cancellation properties of languages which
are supports of rational power series. J. Comput. Syst. Sci., 29(2):153–159, October 1984.
doi:10.1016/0022-0000(84)90026-6.

66 Christophe Reutenauer. The Local Realization of Generating Series of Finite Lie Rank, pages
33–43. Springer Netherlands, 1986. doi:10.1007/978-94-009-4706-1_2.

67 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

68 Marcel Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4(2–3):245–270, September 1961. doi:10.1016/s0019-9958(61)80020-x.

69 A. Seidenberg. Constructions in algebra. Transactions of the American Mathematical Society,
197:273–313, 1974. doi:10.2307/1996938.

70 Jiří Srba. Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In
STACS 2002, pages 535–546. Springer Berlin Heidelberg, 2002. doi:10.1007/3-540-45841-7_
44.

71 R. P. Stanley. Differentiably finite power series. European Journal of Combinatorics, 1(2):175–
188, 1980. doi:10.1016/S0195-6698(80)80051-5.

CONCUR 2024

https://doi.org/10.4230/LIPIcs.FSTTCS.2023.39
https://doi.org/10.1007/BFb0029002
https://doi.org/10.1007/978-3-642-41036-9_19
https://doi.org/10.48550/arXiv.2307.10902
https://doi.org/10.1017/9781009072632
https://doi.org/10.1017/9781009072632
https://doi.org/10.1016/s0019-9958(69)90449-5
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1016/0022-0000(84)90026-6
https://doi.org/10.1007/978-94-009-4706-1_2
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/s0019-9958(61)80020-x
https://doi.org/10.2307/1996938
https://doi.org/10.1007/3-540-45841-7_44
https://doi.org/10.1007/3-540-45841-7_44
https://doi.org/10.1016/S0195-6698(80)80051-5

18:22 Weighted Basic Parallel Processes and Combinatorial Enumeration

72 Richard Stanley. Enumerative combinatorics, volume 1 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2ed edition, 2011.

73 R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems for unambigu-
ous regular expressions, regular grammars and finite automata. SIAM Journal on Computing,
14(3):598–611, August 1985. doi:10.1137/0214044.

74 B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberian Math. J.,
1962.

75 A. M. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230–265, 1937. doi:10.1112/plms/
s2-42.1.230.

76 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM J. Comput., 21(2):216–227, April 1992. doi:10.1137/0221017.

77 Joris van der Hoeven and John Shackell. Complexity bounds for zero-test algorithms. Journal
of Symbolic Computation, 41(9):1004–1020, 2006.

https://doi.org/10.1137/0214044
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1137/0221017

	1 Introduction
	1.1 Motivation and context
	1.2 Contributions
	1.3 Related works

	2 Weighted extension of basic parallel processes
	2.1 Basic parallel processes
	2.2 Weighted basic parallel processes
	2.3 Basic properties
	2.4 Differential algebra of shuffle-finite series
	2.5 Equivalence and zeroness problems

	3 Constructible differentially finite power series
	3.1 Multivariate CDF power series
	3.2 Support restrictions
	3.3 CDF = Commutative WBPP series
	3.4 Zeroness of CDF power series

	4 Constructible species of structures
	5 Conclusions

