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Abstract
Regular transition systems (RTS) are a popular formalism for modeling infinite-state systems in
general, and parameterised systems in particular. In a CONCUR 22 paper, Esparza et al. introduce a
novel approach to the verification of RTS, based on inductive invariants. The approach computes the
intersection of all inductive invariants of a given RTS that can be expressed as CNF formulas with a
bounded number of clauses, and uses it to construct an automaton recognising an overapproximation
of the reachable configurations. The paper shows that the problem of deciding if the language of this
automaton intersects a given regular set of unsafe configurations is in EXPSPACE and PSPACE-hard.

We introduce regular abstraction frameworks, a generalisation of the approach of Esparza et
al., very similar to the regular abstractions of Hong and Lin. A framework consists of a regular
language of constraints, and a transducer, called the interpretation, that assigns to each constraint
the set of configurations of the RTS satisfying it. Examples of regular abstraction frameworks
include the formulas of Esparza et al., octagons, bounded difference matrices, and views. We show
that the generalisation of the decision problem above to regular abstraction frameworks remains in
EXPSPACE, and prove a matching (non-trivial) EXPSPACE-hardness bound.

EXPSPACE-hardness implies that, in the worst case, the automaton recognising the overapprox-
imation of the reachable configurations has a double-exponential number of states. We introduce a
learning algorithm that computes this automaton in a lazy manner, stopping whenever the current
hypothesis is already strong enough to prove safety. We report on an implementation and show that
our experimental results improve on those of Esparza et al.
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1 Introduction

Regular transition systems (RTS) are a popular formalism for modelling infinite-state systems
satisfying the following conditions: configurations can be encoded as words, the set of initial
configurations is recognised by a finite automaton, and the transition relation is recognised
by a transducer. Model checking RTS has been intensely studied under the name of regular
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19:2 Computing Inductive Invariants of Regular Abstraction Frameworks

model checking (see [23, 13, 24, 10] and the surveys [5, 1, 6, 2]). Most regular model checking
algorithms address the safety problem: given a regular set of unsafe configurations, decide if its
intersection with the set of reachable configurations is empty or not. They combine algorithms
for the computation of increasingly larger regular subsets of the reachable configurations
with acceleration, abstraction, and widening techniques [13, 23, 17, 4, 10, 12, 14, 11, 26, 15].

Recently, Esparza et al. have introduced a novel approach that, starting with the set of
all configurations of the RTS, computes increasingly smaller inductive invariants, that is,
inductive supersets of the reachable configurations. More precisely, [19] considers invariants
given by Boolean formulas in conjunctive normal form with at most b clauses. The paper
proves that, for every bound b ≥ 0, the intersection of all inductive b-invariants of the system
is recognised by a DFA of double exponential size in the RTS. As a corollary, they obtain
that, for every b ≥ 0, deciding if this intersection contains some unsafe configuration is in
EXPSPACE. They also show that the problem is PSPACE-hard, and leave the question of
closing the gap open.

In [20] (a revised version of [19]), the EXPSPACE proof is conducted in a more general
setting than in [19]. Inspired by this, in our first contribution we show that the approach
of [19] can be vastly generalised to arbitrary regular abstraction frameworks, consisting
of a regular language of constraints, and an interpretation. Interpretations are functions,
represented by transducers, that assign to each constraint a set of configurations, viewed
as the set of configurations that satisfy the constraint. Examples of regular abstraction
frameworks include the formulas of [19] for every b ≥ 0, views [3], and families of Presburger
arithmetic formulas like octagons [27] or bounded difference matrices [25, 8]. A framework
induces an abstract interpretation, in which, loosely speaking, the word encoding a constraint
is the abstraction of the set of configurations satisfying the constraint. Just as regular model
checking started with the observation that different classes of systems could be uniformly
modeled as RTSs [5, 1, 6, 2], we add the observation, also made in [21], that different classes
of abstractions can be uniformly modeled as regular abstraction frameworks. We show that
the generalisation of the verification problem of [19, 20] to arbitrary regular abstraction
frameworks remains in EXPSPACE.

In our second contribution we show that our problem is also EXPSPACE-hard. The
reduction (from the acceptance problem for exponentially bounded Turing machines) is
surprisingly involved. Loosely speaking, it requires to characterise the set of prefixes of the
run of a Turing machine on a given word as an intersection of inductive invariants of a very
restrictive kind. We think that this construction can be of independent interest.

Our third and final contribution is motivated by the EXPSPACE-hardness result. A
consequence of this lower bound is that the automaton recognising the overapproximation of
the reachable configurations must necessarily have a double-exponential number of states
in the worst case. We present an approach, based on automata learning, that constructs
increasingly larger automata that recognise increasingly smaller overapproximations, and
checks whether they are precise enough to prove safety. A key to the approach is solving the
separability problem: given a pair (c, c′) of configurations, is there an inductive constraint
that separates c and c′, i.e. is satisfied by c but not by c′? We show that the problem
is PSPACE-complete and NP-complete for interpretations captured by length-preserving
transducers. We provide an implementation on top of a SAT solver for the latter case (this is
the only case considered in [19, 20]). An experimental comparison shows that this approach
beats the one of [19, 20].
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Related work. As mentioned above, our first contribution is a reformulation of results
of [20] into a more ambitious formalism; it is a conceptual but not a technical novelty. The
second and third contributions are new technical results.

Our regular abstraction frameworks are in the same spirit as the regular abstractions
of Hong and Lin [21], which use regular languages as abstract objects. In this paper we
concentrate on the inductive invariant approach of [19], and in particular on its complexity.
This is unlike the approach of [21], which on the one hand is more general, since it also
considers liveness properties, but on the other hand does not contain complexity results.

Automata learning has been explored for the verification of regular transition systems
multiple times [28, 31, 15, 32, 29]. Roughly speaking, all these approaches formulate a learning
process to obtain a regular inductive invariant of the system that proves a safety property.
Since it is impossible to algorithmically identify the cases where such regular inductive
invariant exists, timeouts [15] and resource limits [28] are used as heuristics. In contrast,
our approach is designed to always terminate. In particular, we either provide a regular set
of constraints that suffices to establish the safety property or a pair of configurations that
cannot be separated by inductive constraints of the considered framework. This information
can be used to design a more precise framework by adding a new type of constraints.

2 Preliminaries and regular transition systems

Automata. Let Σ be an alphabet. A nondeterministic finite automaton (NFA) over Σ
is a tuple A = (Q, Σ, δ, Q0, F ) where Q is a finite set of states, δ : Q × Σ → P(Q) is the
transition function, Q0 ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. A
run of A on a word w = w1 · · · wl ∈ Σl is a sequence q0q1 · · · ql of states where q0 ∈ Q0 and
∀i ∈ [l] : qi ∈ δ(qi−1, wi). A run on w is accepting if ql ∈ F , and A accepts w if there exists
an accepting run of A on w. The language recognised by A, denoted L(A) or LA, is the set
of words accepted by A. If |Q0| = 1 and |δ(q, a)| = 1 for every q ∈ Q, a ∈ Σ |Q0| = 1, then
A is a deterministic finite automaton (DFA). In this case, we write δ(q, a) = q′ instead of
δ(q, a) = {q′} and have a single initial state q0 instead of a set Q0.

Relations. Let R ⊆ X ×Y be a relation. The complement of R is the relation R := {(x, y) ∈
X × Y | (u, w) /∈ R}. The inverse of R is the relation R−1 := {(y, x) ∈ Y × X | (x, y) ∈ R}.
The projections of R onto its first and second components are the sets R|1 := {x ∈ X | ∃y ∈
Y : (x, y) ∈ R} and R|2 := {y ∈ Y | ∃x ∈ X : (x, y) ∈ R}. The join of two relations R ⊆ X×Y

and S ⊆ Y × Z is the relation R ◦ S := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R, (y, z) ∈ S}.
The post-image of a set X ′ ⊆ X under a relation R ⊆ X × Y , denoted X ′ ◦ R or R(X ′),
is the set {y ∈ Y | ∃x ∈ X ′ : (x, y) ∈ R}; the pre-image, denoted R ◦ Y or R−1(Y ), is
defined analogously. Throughout this paper, we only consider relations where X = Σ∗ and
Y = Γ∗ for some alphabets Σ, Γ. We just call them relations. A relation R ⊆ Σ∗ × Γ∗ is
length-preserving if (u, w) ∈ R implies |u| = |w|.

Convolutions and transducers. Let Σ, Γ be alphabets, let # /∈ Σ ∪ Γ be a padding symbol,
and let Σ# := Σ ∪ {#} and Γ# := Γ ∪ {#}. The convolution of two words u = a1 . . . ak ∈ Σ∗

and w = b1 . . . bl ∈ Γ∗, denoted
[

u
w

]
, is the word over the alphabet Σ# ×Γ# defined as follows.

Intuitively,
[

u
w

]
is the result of putting u on top of w, aligned left, and padding the shorter

of u and w with #. Formally, if k ≤ l, then
[

u
w

]
=

[
a1
b1

]
· · ·

[
ak

bk

][ #
bk+1

]
· · ·

[ #
bl

]
, and otherwise[

u
w

]
=

[
a1
b1

]
· · ·

[
al

bl

][
al+1

#
]

· · ·
[

ak

#
]
. The convolution of a tuple of words u1 ∈ Σ∗

1, . . . , uk ∈ Σ∗
k

is defined analogously, putting all k words on top of each other, aligned left, and padding
the shorter words with #.
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19:4 Computing Inductive Invariants of Regular Abstraction Frameworks

A transducer over Σ × Γ is an NFA over Σ# × Γ#. The binary relation recognised by
a transducer T over Σ × Γ, denoted R(T ), is the set of pairs (u, w) ∈ Σ∗ × Γ∗ such that T

accepts
[

u
w

]
. The definition is generalised to relations of higher arity in the obvious way.

In the paper transducers recognise binary relations unless mentioned otherwise. A relation
is regular if it is recognised by some transducer. A transducer is length-preserving if it
recognises a length-preserving relation.

Complexity of operations on automata and transducers. Given NFAs A1, A2 over Σ with
n1 and n2 states, DFAs B1, B2 over Σ with m1 and m2 states, and transducers T1 over
Σ × Γ and T2 over Γ × Σ with l1 and l2 states, the following facts are well known (see e.g.
chapters 3 and 5 of [18]):

there exist NFAs for L(A1) ∪ L(A2), L(A1) ∩ L(A2), and L(A1) with at most n1 + n2, n1n2,
and 2n1 states, respectively;
there exist DFAs for L(B1)∪L(B2), L(B1)∩L(B2), and L(B1) with at most m1m2, m1m2,
and m1 states, respectively;
there exist NFAs for R(T1)|1 and R(T1)|2 and a transducer for R(T1)−1 with at most l1
states;
there exists a transducer for R(T1) ◦ R(T2) with at most l1l2 states; and
there exist NFAs for L(A1) ◦ R(T1) and R(T1) ◦ L(A2) with at most n1l1 and l1n2 states,
respectively.

Regular transition systems

We recall standard notions about regular transition systems and fix some notations. A
transition system is a pair S = (C, ∆) where C is the set of all possible configurations of
the system, and ∆ ⊆ C × C is a transition relation. The reachability relation Reach is the
reflexive and transitive closure of ∆. Observe that, by our definition of post-set, ∆(C) and
Reach(C) are the sets of configurations reachable in one step and in arbitrarily many steps
from C, respectively.

Regular transition systems are transition systems where ∆ can be finitely represented by
a transducer. Formally:

▶ Definition 1. A transition system S = (C, ∆) is regular if C is a regular language over
some alphabet Σ, and ∆ is a regular relation. We abbreviate regular transition system to
RTS.

RTSs are often used to model parameterised systems [5, 1, 6, 2]. In this case, Σ is the set
of possible states of a process, the set of configurations is C = Σ∗ \ {ε}, and a configuration
a1 · · · an ∈ Σ∗ describes the global state of an array consisting of n identical copies of the
process, with the i-th process in state ai for every 1 ≤ i ≤ n. The transition relation ∆
describes the possible transitions of all arrays, of any length.

▶ Example 2 (Token passing [5]). We use a version of the well-known token passing algorithm
as running example. We have an array of processes of arbitrary length. At each moment
in time, a process either has a token (t) or not (n). Initially, only the first process has a
token. A process that has a token can pass it to the process to the right if that process does
not have one. We set Σ = {t, n}, and so C = {t, n}∗ \ {ε}. We have c2 ∈ ∆(c1) iff the word[

c1
c2

]
belongs to the regular expression

([
n
n

]
+

[
t
t

])∗ ([
t
n

][
n
t

]) ([
n
n

]
+

[
t
t

])∗. For the set of
initial configurations CI := tn∗ where only the first process has a token, the set of reachable
configurations is Reach(CI) = n∗ t n∗.
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3 Regular abstraction frameworks

In the same way that RTSs can model multiple classes of systems (e.g. parameterised sys-
tems with synchronous/asynchronous, binary/multiway/broadcast communication), regular
abstraction frameworks are a formalism to model a wide range of abstractions.

▶ Definition 3. An abstraction framework is a triple F = (C, A, V), where C is a set of
configurations, A is a set of constraints, and V ⊆ A × C is an interpretation. F is regular
if C and A are regular languages over alphabets Σ and Γ, respectively, and the interpretation
V is a regular relation over A × C.

Intuitively, the constraints of an abstraction framework are the abstract objects of the
abstraction, and V(A) is the set of configurations abstracted by A. The following remark
formalises this.
▶ Remark 4. An abstraction framework F = (C, A, V) induces an abstract interpretation as
follows. The concrete and abstract domains are (2C , ≤C) and (2A, ≤A), respectively, where
≤C:=⊆ and ≤A:=⊇. Both are complete lattices. The concretisation function γ : 2A → 2C

and the abstraction function α : 2C → 2A are given by:
γ(A′) :=

⋂
A∈A′ V(A). Intuitively, γ(A′) is the set of configurations that satisfy all

constraints of A′. In particular, γ(∅) = C.
α(C′) := {A ∈ A | C′ ⊆ V(A)}. Intuitively, α(C′) is the set of constraints satisfied by all
configurations in C′. In particular, α(∅) = A.

It is easy to see that the functions α and γ form a Galois connection, that is, for all C ⊆ C
and A ⊆ A, we have B ⊆ α(C) ⇔ C ⊆ γ(B).

Regular abstractions can be combined to yield more precise ones. Given abstraction
frameworks F1 = (C, A1, V1) and F2 = (C, A2, V2), we can define new frameworks (C, A, V)
by means of the following operations:

Union: A := A1 ∪ A2, V(A) := V1(A) if A ∈ A1, else V2(A).
A constraint of the union framework is either a constraint of the first framework, or a
constraint of the second.
Convolution: A = A1 × A2, V(A1, A2) := V1(A1) ∩ V2(A2).
A constraint of the convolution framework is the conjunction of two constraints, one of
each framework. This operation is implicitly used in [19]: the constraint for a Boolean
formula with b clauses is the convolution, applied b times, of the constraints for formulas
with one clause.

The proof of the following lemma is in the full version of the paper [16].

▶ Lemma 5. Regular abstraction frameworks are closed under union and convolution. If the
interpretations of the frameworks are recognised by transducers with n1 and n2 states, then
the interpretations of the union and convolution frameworks are recognised by transducers
with O(n1 + n2) and O(n1n2) states, respectively.

Many abstractions used in the literature can be modeled as regular abstraction frameworks.
We give some examples.

▶ Example 6. Consider a transition system where C = Nd for some d, and ∆ is given by
a formula of Presburger arithmetic δ(x, x′), that is, (n, n′) ∈ ∆ iff δ(n, n′) holds. It is
well-known that for any Presburger formula there is a transducer recognising the set of
its solutions when numbers are encoded in binary, and so with this encoding (C, ∆) is an
RTS. Any Presburger formula φ(x, y), where x has dimension d and y has some arbitrary

CONCUR 2024



19:6 Computing Inductive Invariants of Regular Abstraction Frameworks

dimension e, induces a regular abstraction framework as follows. The set of constraints is the
set of all tuples m ∈ Ne; the interpretation assigns to m all tuples n such that φ(n, m) holds.
Intuitively, the constraints are the formulas φm(x) := φ(x, m), but using m as encoding
of φm.

Special cases of this setting are used in many different areas. For example, bounded
difference matrices (see e.g. [25, 8]) and octagons [27] correspond to abstraction frameworks
with constraints φ(x1, x2, y) of the form x1 ± x2 ≤ y.

▶ Example 7. The approach to regular model checking of [19] is another instance of a
regular abstraction framework. The paper encodes sets of configurations as positive Boolean
formulas in conjunctive normal form with a bounded number b of clauses. We explain this by
means of an example. Consider an RTS with Σ = {a, b, c} and C = Σ∗. Consider the formula
φ = (a1:5 ∨ b1:5 ∨ a3:5) ∧ b4:5. We interpret φ on configurations. The intended meaning of
a literal, say a1:5, is “if the configuration has length 5, then its first letter is an a.” So the
set of configurations satisfying the formula is Σ≤4 + Σ6Σ∗ + (a + b)Σ2bΣ + Σ2abΣ. In the
formulas of [19] all literals have the same length, where the length of a literal xi:j is j.

Formulas with at most b clauses can be encoded as words over the alphabet Γ = (2Σ)b.
Each clause is encoded as a word over 2Σ. For example, the encodings of the clauses
(a1:5 ∨ b1:5 ∨ a3:5) and b4:5 are {a, b}∅{a}∅∅ and ∅∅∅{b}∅, and the encoding of φ is the
convolution of the encodings of the clauses. It is easy to see that the interpretation of [19]
that assigns to a formula the set of configurations satisfying it is a regular relation recognised
by a transducer with 2b states [19]. In particular, for the case b = 1 we get the two-state
transducer on the left of Figure 1.

▶ Example 8. In [3] Abdulla et al. introduce view abstraction for the verification of para-
meterised systems. Given a number k ≥ 1, a view of a word w ∈ Σ∗ is a scattered subword
of w. Loosely speaking, Abdulla et al. abstract a word by its set of views of length up to k.
In our setting, a constraint is a set F ⊆ Σ≤k of “forbidden views”, and V(V ) is the set of all
words that do not contain any view of F . Since k is fixed, this interpretation is regular.

3.1 The abstract safety problem
We apply regular abstraction frameworks to the problem of deciding whether an RTS avoids
some regular set of unsafe configurations. For simplicity, we assume w.l.o.g. that the set of
configurations of the RTS is Σ∗1. Let us first formalise the Safety problem:

Given: a nondeterministic transducer recognising a regular relation ∆ ⊆ Σ∗ × Σ∗, and
two NFAs recognising regular sets CI , CU ⊆ Σ∗ of initial and unsafe configurations,
respectively.

Decide: does Reach(CI) ∩ CU = ∅ hold?

It is a folklore result that Safety is undecidable. Let us sketch the argument. The
configurations of a given Turing machine can be encoded as words of the form wl q wr, where
wl, wr encode the contents of the tape to the left and to the right of the head, and q encodes
the current state. With this encoding, the successor relation between configurations of the
Turing machine is regular, and so is the set of accepting configurations. Taking the latter as
set of unsafe configurations, the Turing machine accepts a given initial configuration iff the
RTS started at the initial configuration is unsafe.

1 By interpreting ∆ as a relation over Σ × Σ, any RTS can be transformed into an equivalent one with
the same transitions where the set of configurations is Σ∗.
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{[
γ
σ

]
| σ ∈ γ

}
[

⋆
#

]
,
[ #

⋆

]

{[
γ
σ

]
| σ /∈ γ

}
Γ# × Σ# {[

γ
σ

]
| σ ∈ γ

}
{[

γ
σ

]
| σ /∈ γ

} {[
γ
σ

]
| σ /∈ γ

}

[
⋆
#

]
,
[ #

⋆

] [
⋆
#

]
,
[ #

⋆

]
Γ# × Σ#

Figure 1 Transducers for the interpretations of Example 7 and 10. We have Γ = 2Σ, and so the
alphabet of the transducer is (2Σ)# × Σ#. The symbols

[
⋆
#

]
and

[ #
⋆

]
stand for the sets of all letters

of the form
[

γ
#

]
and

[ #
σ

]
, respectively.

AbstractSafety. We show that regular abstraction framework induces an “abstract” version
of the safety problem, in which we replace the reachability relation by an overapproximation
derived from the abstraction framework. Fix an RTS S = (C, ∆) and a regular abstraction
framework F = (C, A, V). We introduce some definitions:

▶ Definition 9. A set C ⊆ C of configurations is inductive if ∆(C) ⊆ C. A constraint A is
inductive if V(A) is inductive. We let Ind ⊆ A denote the set of all inductive constraints of
A. Given two configurations c, c′ and A ∈ Ind, we say that A separates c from c′ if c ∈ V(A)
and c′ /∈ V(A).

It is a folklore result that Reach(C) is the smallest inductive set containing C, and that if
some A ∈ Ind separates c and c′, then (c, c′) /∈ Reach. Hence, an abstraction framework
(C, A, V) induces a potential reachability relation PReach ⊆ C × C, defined as the set of all
pairs of configurations that are not separated by any inductive constraint. Formally:

PReach := {(c, c′) ∈ C × C | ∀A ∈ Ind : c ∈ V(A) → c′ ∈ V(A)}

We have Reach(C) ⊆ PReach(C) for every set of configurations C. In particular, given sets
CI , CU ⊆ C of initial and unsafe configurations, if PReach(CI) ∩ CU = ∅, then the RTS is
safe.

▶ Example 10. Consider the RTS of the token passing system of Example 2, where Σ = {t, n}.
We give two examples of abstraction frameworks. The first one is the abstraction framework
of [19], already presented in Example 7, with b = 1. We have Γ = 2Σ = {∅, {t}, {n}, Σ}. A
constraint like φ =

∨5
i=3 ti:5 is encoded by the word ∅∅{t}{t}{t} ∈ Γ∗, and interpreted as the

set of all configurations of length 5 that have a token at positions 3, 4, or 5, plus the set of
all configurations of length different from 5. The two-state transducer for this interpretation
is on the left of Figure 1. For example, the left state has transitions leading to itself for
the letters

[ ∅
n

]
,
[ ∅

t

]
,
[ {t}

n

]
,
[ {n}

t

]
. The constraint φ is inductive. In fact, the language of all

non-trivial inductive constraints (a constraint is trivial if it is satisfied by all configurations
or by none) is {n}+∅∗{t}∗ + {n}∗∅∗{t}+. The set of configurations potentially reachable
from CI = tn∗ is PReach(CI) = (tn + nn∗t)(t + n)∗. In particular, PReach(CI) ∩ n∗ = ∅,
but tnt ∈ PReach(CI). So this abstraction framework is strong enough to prove that every
reachable configuration has at least one token, but not to prove that it has exactly one.

Consider now the framework in which, instead of a disjunction of literals, a constraint
is an exclusive disjunction of literals, that is, a configuration satisfies the constraint if it
satisfies exactly one of its literals. So, in particular, the interpretation of ∅∅{t}{t}{t} is
now that exactly one of the positions 3, 4, and 5 has a token. The interpretation is also
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19:8 Computing Inductive Invariants of Regular Abstraction Frameworks

{t}∅

{n}
{t, n}

{t}

{t, n}

∅

{n}
{t, n}

{t}

{n}

∅

{n}

{t, n}

{n}

∅

{t}

∅

∅

{n}

∅

{t}

{t}

Figure 2 On the left, DFA recognising all non-trivial inductive constraints of Example 17. On
the right, fragment with the same interpretation as the DFA on the left.

regular; it is given by the three-state transducer on the right of Figure 1. Examples of
inductive constraints are {t}∅{t, n}{n} and all words of {t}∗. The language of non-trivial
inductive constraints is given by the DFA on the left of Figure 2. Observe that the set
of words satisfying all constraints of {t}∗ is the language n∗tn∗. In particular, we have
PReach(CI) ⊆ n∗tn∗ = Reach(CI), and so PReach(CI) = Reach(CI).

The AbstractSafety problem is defined exactly as Safety, just replacing the reach-
ability set Reach(CI) by the potential reachability set PReach(CI) implicitly defined by the
regular abstraction framework:

Given: a nondeterministic transducer recognising a regular relation ∆ ⊆ Σ∗ × Σ∗; two NFAs
recognising regular sets CI , CU ⊆ Σ∗ of initial and unsafe configurations, respectively;
and a deterministic transducer recognising a regular interpretation V over Γ × Σ.

Decide: does PReach(CI) ∩ CU = ∅ hold?

Recall that Safety is undecidable. In the rest of this section and in the next one we show
that AbstractSafety is EXPSPACE-complete. Membership in EXPSPACE was essentially
proved in [20], while EXPSPACE-hardness was left open. We briefly summarise the proof of
membership in EXPSPACE presented in [20], for future reference in our paper.

▶ Remark 11. The result we prove in Section 3.2 is slightly more general. In [20], membership
in EXPSPACE is only proved for RTSs whose transducers are length-preserving, while we
prove it in general. General transducers allow one to model parameterised systems with
process creation. For example, we can model a token passing algorithm in which the size of the
array can dynamically grow and shrink by adding the transitions

([
n
n

]
+

[
t
t

])+ ([
n
#

]
+

[ #
n

])
to the transition relation of Example 2.

3.2 AbstractSafety is in EXPSPACE

We first show that the set of all inductive constraints of a regular abstraction framework is a
regular language. Fix a regular abstraction framework F = (C, A, V) over an RTS (C, ∆).
Let n∆, nV , nI , nU be the number of states of the transducers and NFAs of a given instance
of AbstractSafety.

▶ Lemma 12 ([20]). The set Ind is regular. Further, one can compute an NFA with at most
n∆ · n2

V states recognising Ind, and a DFA with at most 2n∆·n2
V states recognising Ind.
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Proof. By definition, we have

Ind = {A ∈ Γ∗ | ∃c, c′ ∈ C : c ∈ V(A), c′ ∈ ∆(c), and c′ /∈ V(A)}

= {A ∈ Γ∗ | ∃c, c′ ∈ C : (A, c) ∈ V, (c, c′) ∈ ∆ and (c′, A) ∈ V−1}

Let IdΓ = {(A, A) | A ∈ Γ∗}. We obtain Ind =
( (

V ◦ ∆ ◦ V−1
)

∩ IdΓ
)

|1. By the results at
the end of Section 2, Ind is recognised by a NFA with nV · n∆ · nV = n∆n2

V states, and so
Ind is recognised by a DFA with 2n∆·n2

V states. ◀

▶ Lemma 13 ([20]). The potential reachability relation PReach is regular. Further, one
can compute a nondeterministic transducer with at most K := n2

V · 2n∆·n2
V states recognising

PReach, and a deterministic transducer with at most 2K states recognising PReach.

Proof. By definition, we have

PReach = {(c, c′) ∈ C × C | ∃A ∈ Ind : c ∈ V(A) and c′ /∈ V(A)}
=

{
(c, c′) ∈ C × C | ∃A ∈ Ind : (c, A) ∈ V−1 and (A, c′) ∈ V

}
Let IdΓ = {(A, A) | A ∈ Γ∗}. We obtain PReach =

(
V−1 ◦ (IdΓ ∩ Ind2) ◦ V

)
. Apply now the

results at the end of Section 2 and Lemma 12. ◀

▶ Theorem 14 ([20]). AbstractSafety is in EXPSPACE.

Proof. Immediate consequence of Lemma 13, see the full version of the paper [16]. ◀

4 AbstractSafety is EXPSPACE-hard

In [19] it was shown that AbstractSafety was PSPACE-hard, and the paper left the
question of closing the gap between the upper and lower bounds open. We first recall and
slightly alter the PSPACE-hardness proof of [19], and then present our techniques to extend
it to EXPSPACE-hardness.

The proof is by reduction from the problem of deciding whether a Turing machine M of
size n does not accept when started on the empty tape of size n. (For technical reasons, we
actually assume that the tape has n − 2 cells.) Given M, we construct in polynomial time
an RTS S and a set of initial configurations CI that, loosely speaking, satisfy the following
two properties: the execution of S on an initial configuration simulates the run of M on the
empty tape, and PReach(CI) = Reach(CI). We choose CU as the set of configurations of S
in which M ends up in the accepting state. Then S is safe iff M does not accept.

Turing machine preliminaries. We assume that M is a deterministic Turing machine with
states Q, tape alphabet Γ′, initial state q0 and accepting state qf .

We represent a configuration of M as a word # β q η of length n, where M is in state
q, the content of the tape is β η ∈ Γ′∗, and the head of M is positioned at the first letter
of η. The symbol # serves as a separator between different configurations. The initial
configuration is α0 := #q0Bn−2, where B denotes the blank symbol of M; so the tape is
initially empty.

We assume w.l.o.g. that the successor of a configuration in state qf is the configuration
itself, so the run of M can be encoded as an infinite word α := α0α1 · · · where αi represents
the i-th configuration of M. For convenience, we write Λ := Q ∪ Γ′ ∪ {#} for the set of
symbols in α. It is easy to see that the symbol at position i+n of α is completely determined
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by the symbols at positions i−1 to i+2 and the transition relation of M. We let δ(x1x2x3x4)
denote the symbol which “should” appear at position i + n when the symbols at positions
i − 1 to i + 2 are x1x2x3x4; in particular, δ(x1#x2x4) = #.

Configurations of S. We choose the set of configurations as C := α0#(Λ ∪ {□})∗, and the
initial configurations as CI := α0#□∗. Intuitively, the RTS starts with the representation
of the initial configuration of M, followed by some number of blank cells □. During its
execution, the RTS will “write” the run of M into these blanks.

A configuration is unsafe if it contains some occurrence of qf , the accepting state of M,
so CU := (Λ ∪ {□})∗{qf }(Λ ∪ {□})∗.

Transitions. For convenience, we will denote the i-th position of a word w as w(i) instead
of wi. Given a configuration c, the set ∆(c) contains one single configuration c′, defined as
follows. Let i be some position of c such that ci+n = □. Then c′ coincides with c everywhere
except at position i + n, where instead c′(i + n) := δ(c(i − 1)c(i)c(i + 1)c(i + 2)). It is easy
to see that ∆ is a regular relation: The transducer nondeterministically guesses the position
i − 1, reads the next four symbols, say x1...x4, stores δ(x1...x4) in its state, moves to position
i + n, checks if c(i + n) = □ and writes c′(i + n) := δ(x1...x4). The transducer has O(n2)
states.

It follows from the definitions above that M accepts the empty word iff S can reach CU

from CI , i.e. Reach(CI) ∩ CU ̸= ∅.

Regular abstraction framework. We define a regular abstraction framework F = (C, A, V)
of polynomial size such that PReach(CI) = Reach(CI). Hence, for every configuration
c /∈ Reach(CI), we must find an inductive constraint A ∈ A which separates CI and c. (Note
that CI contains exactly one configuration of length |c|.)

As the reachable configurations are precisely the prefixes of α with some symbols replaced
by □, there is a position i s.t. c(i) /∈ {□, α(i)}. Let us fix the smallest such i. As we noted
above, α(i) is determined entirely by α(i − n − 1)...α(i − n + 2) via the mapping δ. So the
constraint “if c(i − n − 1)...c(i − n + 2) = x1...x4, then c(i) ∈ {□, δ(x1...x4)}” is inductive
and separates CI and c.

Therefore, it is sufficient to define an abstraction framework in which every constraint of
the above form can be expressed. This is relatively straightforward. We set A := □∗Λ4□∗Λ□∗.
Given a constraint A = □ix1...x4□jx□k, define V(A) as the set of all configurations c s.t.
c(i + 1)...c(i + 4) = x1...x4 implies c(i + j + 5) ∈ {□, x}. Clearly, V is a regular relation which
can be recognised by a transducer with 3 states.

▶ Theorem 15 ([19]). The abstract safety problem is PSPACE-hard, even for regular ab-
straction frameworks where the transducer for the interpretation has a constant number of
states.

From PSPACE-hardness to EXPSPACE-hardness

In order to prove EXPSPACE-hardness, we start with a machine M of size n and run it on
a tape with 2n cells. However, if we proceed exactly as in the PSPACE-hardness proof, we
encounter two obstacles: (1) The length of α0 is 2n, so our definitions of C and CI require
automata of exponential size. (2) The transducer for the transition relation ∆ needs to
“count” to 2n, as this is the distance between the corresponding symbols of αi and αi+1.
Again, this requires an exponential number of states.



P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:11

00 000 #0 q0
0 □0 □0 □0 □0 □0 □0 □0 □0

mark(2,1)−−−−−−→ 01 000 #1 q0
0 □1 □0 □1 □0 □1 □0 □1 □0

mark(3,0)−−−−−−→ 01 100 #1 q1
0 □1 □0 □1 □1 □1 □1 □1 □0

init−−→ 00 000 #0 q0
0 □0 B0 □0 □0 □0 □0 □0 □0

mark(2,0)−−−−−−→ 10 000 #0 q1
0 □0 B1 □0 □1 □0 □1 □0 □1

mark(3,0)−−−−−−→ 10 100 #0 q1
0 □1 B1 □1 □1 □0 □1 □1 □1

init−−→ 00 000 #0 q0
0 □0 B0 □0 □0 #0 □0 □0 □0

···−→ 00 000 #0 q0
0 B0 B0 B0 B0 #0 □0 □0 □0

···−→ 10 001 #1 q1
0 B0 B1 B1 B1 #1 □1 □0 □1

write−−−→ 00 000 #0 q0
0 B0 B0 B0 B0 #0 □0 q1

1 □0

···−→ 01 010 #1 q0
0 B1 B1 B1 B1 #1 □0 q1

1 □1

write−−−→ 00 000 #0 q0
0 B0 B0 B0 B0 #0 x0 q0

1 □0

Figure 3 A sample run of the regular transition system described in Example 16. Here, mark(x, y)
means that the y-th bit of the prime number x is changed to 1, and thus every position not equivalent
to y (mod x) is unmarked. Note that the first position of the TM part (the one with #) is position
0. We write xy instead of [ y

x
]. We highlight bits and symbols that were written to in pink (bits

which are unmarked by the mark transition, but were already unmarked, are drawn in darker pink).

Obstacle (1) will be easy to overcome. Essentially, instead of starting the RTS with the
entire initial configuration α0 of M already in place, we set CI := # q0 □∗ and modify the
transitions of S to also write out α0.

However, obstacle (2) poses a more fundamental problem. On its face, it is easy to
construct an RTS that can count to 2n by executing multiple transitions in sequence, e.g.
by implementing a binary counter. However, we need to balance this with the needs of the
abstraction framework: if the RTS is too sophisticated, our constraints can no longer capture
its behaviour using only regular languages.

We now sketch an RTS S ′ which extends the RTS S from the PSPACE-hardness proof.

A two-phase system. In order to write the run of M, the RTS S ′ uses a “mark and write”
approach. In a first phase, it executes n transitions to mark positions with distance m, where
m ≥ 2n is some fixed constant. Then, it nondeterministically guesses a marked position,
reads and stores 4 symbols from that position, and moves to the next marker to write the
symbol according to δ.

Let p1, . . . , pn be the first n prime numbers (i.e. p1 = 2, p2 = 3, etc.). Define m :=
∏n

j=1 pj

and s :=
∑n

j=1 pi. We have m ≥ 2n and, by the Prime Number Theorem, s ∈ O(n2 log n).
The configurations of S ′ are of the form w [ m

c ], where w ∈ {0, 1}s stores the current state
of the mark phase, m ∈ {0, 1}∗ are the markers (0 means marked), and c ∈ (Λ ∪ {□})∗ is as
for S, with the reachable configurations being the prefixes of α with some symbols replaced
by □. We refer to [ m

c ] as the TM part.
The RTS has three kinds of transitions: ∆′ := ∆mark ∪ ∆write ∪ ∆init .
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u = 00 000 #0 q0
0 □0 □0 □0 □0 □0 □0 □0 □0

v = 00 000 #0 q0
0 B0 B0 B0 B0 #0 x0 q0

1 q0
f

(1)

A1 = □ ... □ □ □ B B B B □ □ □ B (2)

A2 = 01 100 0 1 0 2 0 1 0 1 0 2 (3)

Figure 4 Constraints in Example 16. (1) Two configurations u, v, where u ∈ CI , v ∈ CU . (2) The
(not necessarily inductive) constraint A1, separating u, v. (3) The matching inductive constraint A2.

In the mark phase, S ′ executes a transition of ∆mark for each j ∈ [n]. When executing
such a transition, S ′ chooses a remainder r ∈ [0, pj − 1] and sets the corresponding bit in w.
It then unmarks every position in the TM part which is not equivalent to r modulo pj (by
replacing the 0 with a 1). Hence, after executing n transitions in ∆mark, the positions of
all 0’s in the TM part are equivalent modulo every pj . By the Chinese remainder theorem,
these positions must also be equivalent modulo m.

Afterwards, S ′ executes either a transition in ∆write or ∆init . To execute ∆write, the RTS
nondeterministically guesses a marked position i, reads x := c(i − 1)...c(i + 2), moves to the
next marked position i′, and writes δ(x).

As mentioned in obstacle (1) above, the RTS must write out the initial configuration of
M. This is done by ∆init . If the first position of the TM part is not marked, the transducer
moves to the first marked position and writes B, otherwise it moves to the second marked
position and writes #. By executing this transition multiple times, eventually a configuration
w [ m

c ] with c = #q0Bm−2#□i can be reached.
While executing either ∆write or ∆init, the transducer resets the mark phase state and

marks all positions, i.e. the resulting configurations have w = 0s and m ∈ 0∗.

▶ Example 16. Take n = 2. Here, we have p1 = 2, p2 = 3, m = 6 and s = 5. The set
of initial and unsafe configurations is thus CI := L(05[ 0

# ][ 0
q0

][ 0
□ ]∗) and CU := {0}5({0} ×

Λ)∗{[ 0
qf

]}({0} × Λ)∗, respectively. In Figure 3, we give a possible run of the RTS for a TM
with states {q0, q1, qf } (q0 is initial, qf is final), and one transition from q0, which reads B,
moves the head to the right and goes to state q1.

The abstraction framework. If M accepts, no constraint proving safety can exist, as an
unsafe configuration is reachable. Consequently, when constructing the abstraction framework
we only need to ensure that – provided M does not accept – for every pair (u, v) ∈ CI × CU

there is an inductive constraint separating u and v.
The abstraction framework (C, A, V) is the convolution of two independent parts, i.e.

A := A1 × A2 and V([ A1
A2

]) := V1(A1) ∩ V2(A2).
For every pair (u, v) ∈ CI × CU there will be a constraint A1 ∈ A1 separating u and v.

This is similar to before: v must contain an “error” somewhere, so our constraint will state “if
c(i − 1)...c(i + 2) = x, then c(i + m) ∈ {δ(x),□}”, for some i, x. (Depending on v we instead
may need A1 stating just “c(i) ∈ {α(i),□}”.) Concretely, we set A1 := □s□∗(Λ4□∗Λ+Λ)□∗,
so the constraint is represented by a word in □∗x□∗δ(x)□∗ (or a word in □∗α(i)□∗). An
example is shown in Figure 4.

This is enough to separate u and v, as v must contain an “error” somewhere (i.e. a
deviation from α). But it is not inductive: We can take any configuration which has
c(i + m) = □, but where the cells have not been marked correctly, s.t. executing ∆write would
write to position i + m after reading symbols c(j − 1)...c(j + 2) with j ̸= i. So the resulting
configuration may have c(i + m) ̸= δ(x), which no longer fulfils A1.
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We solve this issue via V2. For the constraint A1 above there is going to be a constraint
A2 ∈ A2 s.t. the combination V1(A1) ∩ V2(A2) is inductive. Essentially, A2 will ensure that
it is impossible to write to position i + m without reading from position i. (Note that for a
particular constraint the value of i is fixed.)

Let A2 := {0, 1}s[0, n]∗. Intuitively, a constraint x y ∈ A2 (where |x| = s) states: “if
remainders for the first j primes have been chosen according to x, then exactly the positions
k with y(k) ≥ j are marked, otherwise positions k with y(k) = n are unmarked”, where j is
the number of primes that have been chosen.

Again, the constraint A1 is only concerned with one position i. Moreover, there is only
one sequence of remainders r1, ..., rn to choose for the ∆mark transitions, s.t. position i is
marked (i.e. rj ≡ i (mod pj)). So for each position k we can determine the index in the
sequence of ∆mark transitions at which position k will first become unmarked. Concretely,
we have y(k) := min{j | k ̸≡ i (mod pj)} − 1.

This constraint is inductive and, crucially, the intersection of A1 and A2 is inductive as
well. Essentially, every ∆mark transition either continues the sequence r1, ..., rn, and then
the positions must be marked precisely according to y, or at some point a different remainder
has been chosen, and the position i is unmarked and cannot be written to.

To summarise, constraint A1 is sufficient to exclude any unsafe configuration and, in
combination with A2, does so inductively. Therefore, if M does not accept, then the RTS
can be proven safe using the abstraction framework.

For the full proof, see the full version of the paper [16].

5 Learning regular sets of inductive constraints

Recall the algorithm for AbstractSafety underlying Theorem 14. It computes an auto-
maton recognising the set Ind of inductive constraints (Lemma 12); uses this automaton to
compute a transducer recognising the potential reachability relation PReach (Lemma 13);
uses this transducer to compute an automaton recognising PReach(CI) ∩ CU ; and finally uses
this automaton to check if PReach(CI) ∩ CU is empty (Theorem 14). The main practical
problem of this approach is that, while the automaton for Ind has polynomial size in the
input, the automaton for Ind can be exponential, and, while the automaton for PReach has
polynomial size in Ind, the size of the automaton for PReach can be exponential.

In practice one typically does not need all inductive constraints to prove safety. This can
be illustrated even on the tiny RTS of Example 2.

▶ Example 17. Consider the RTS of the token passing system of Example 2, where Σ = {t, n},
and the second abstraction framework of Example 10, where Γ = 2Σ = {∅, {t}, {n}, {t, n}}.
Recall that in this abstraction framework a constraint is an exclusive disjunction of literals,
that is, a configuration satisfies the constraint if it satisfies exactly one of its literals. The
minimal DFA recognising all non-trivial inductive constraints was shown on the left of
Figure 2. The set of inductive constraints {t}{t}∗ is satisfied by the configurations n∗tn∗,
and so the DFA on the right is already strong enough to prove any safety property.

We present a learning algorithm that computes automata recognising increasingly large
sets H ⊆ Ind of inductive constraints until either H is large enough to prove safety, or it
becomes clear that even the whole set Ind is not large enough. More precisely, recall that, by
definition, we have PReach := {(c, c′) ∈ C × C | ∀A ∈ Ind : c ∈ V(A) → c′ ∈ V(A)}. Given a
set H ⊆ Ind, define the relation PReachH exactly as PReach, just replacing Ind by H. Clearly,
we have PReachH ⊇ PReach and PReachInd = PReach.
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5.1 The learning algorithm
Let S = (C, ∆) and F = (C, A, V) be a regular transition system and a regular abstraction
framework, respectively. Further, let CI and CU be regular sets of initial and unsafe
configurations. The algorithm refines Angluin’s algorithm L∗ for learning a DFA for the full
set Ind [7, 30]. Recall that Angluin’s algorithm involves two agents, usually called Learner
and Teacher. Learner sends Teacher membership and equivalence queries, which are answered
by Teacher according to the following specification:

Membership Query:
Input: a constraint A ∈ A
Output: ✓ if A ∈ Ind, and × otherwise.

Equivalence Query:
Input: a DFA recognising a set H ⊆ A.
Output: ✓ if H = Ind, otherwise a constraint A ∈ (H \ Ind) ∪ (Ind \ H).

Angluin’s algorithm describes a strategy for Learner guaranteeing that Learner eventually
learns the minimal DFA recognising Ind. The number of equivalence queries asked by Learner
is at most the number of states of the DFA.

Answering the queries. We describe the algorithms used by Teacher to answer queries. For
membership queries, Teacher constructs an NFA for Ind ∩ {A} with O(|A| · n∆ · n2

V) states
(see Lemma 12), and checks it for emptiness.

For equivalence queries, Teacher proceeds as follows :
1. Teacher first checks whether H \ Ind ̸= ∅ holds by computing an NFA recognising H ∩ Ind

with O(nH · n∆ · n2
V) states (see Lemma 12), and checking it for emptiness. If H \ Ind is

nonempty, then Teacher returns one of its elements.
2. Otherwise, Teacher constructs an automaton for PReachH(CI) ∩ CU of size O(2n2

V ·nH)
and checks it for emptiness. There are two cases:
a. If PReachH(CI) ∩ CU = ∅, then the system is safe; Teacher reports it and terminates.

In this case, the learning algorithm is aborted without having learned a DFA for Ind,
because it is no longer necessary.

b. Otherwise, Teacher chooses an element (c, c′) ∈ PReachH ∩ (CI × CU ), and searches
for an inductive constraint A such that c ∈ V(A) and c′ /∈ V(A). We call this problem
the separability problem, and analyze it further in Section 5.2.

5.2 The separability problem
The Separability problem is formally defined as follows:

Given: a nondeterministic transducer recognising a regular relation ∆ ⊆ Σ∗ ×Σ∗; a determin-
istic transducer recognising a regular interpretation V over Γ × Σ; and two configurations
c, c′ ∈ C

Decide: is c′ separable from c, i.e. does there exist A ∈ Ind s.t. c ∈ V(A) and c′ /∈ V(A)?

Contrary to AbstractSafety, the complexity of Separability is different for arbitrary
transducers, and for length-preserving ones.

▶ Theorem 18. Separability is PSPACE-complete, even if ∆ is length-preserving. If V is
length-preserving, then Separability is NP-complete.

Proof. See the full version of the paper [16]. ◀
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Table 1 Comparison of the sizes of the automata computed by the lazy and direct approaches.
In each table, the first three columns contain the name of the RTS and the sizes of the automata for
CI and ∆. The fourth column (Pr.) indicates the checked property, where D, M, and O stand for
“deadlock freedom”, “mutex” (at most one process in a given state), and “other” (custom properties
of the particular RTS). The next two columns give the results for the lazy approach: sizes of the
DFAs for H and PReachH (abbreviated as PRH), and the next two the same results for the direct
approach. The last column (Re.) indicates the result of the check: the property could be proved
(✓), could not (×), or, in the case of multiple properties, how many of the properties were proved.

Lazy Direct
System |CI | |∆| Pr. |H| |PRH| |Ind| |PR| Re.

Bakery 3 5 D 1 1 9 8 ✓

M 4 3 ✓

Burns 1 6 D 1 1 10 6 ✓

M 5 3 ✓

Dijkstra 2 17 D 4 4 218 22 ✓

M 11 8 ✓

Dijkstra 2 12 D 9 9 47 17 ✓

(ring) M 9 7 ×
Dining 2 8 D 23 18 86 19 2/2
crypto.

Herman 2 11 D 3 2 8 7 ✓

O 1 2 ✓

Herman 2 3 D 1 2 7 7 ×
(linear) O 1 2 ✓

Israeli-Jafon 3 10 D 1 4 21 7 ✓

O 1 4 ✓

Token passing 2 3 O 4 4 9 7 ✓

Lehmann-Rabin 1 7 D 5 6 29 13 ✓

LR phils. 1 1 11 D 13 14 29 15 ×
LR phils. 2 1 11 D 25 11 29 9 ✓

Atomic phils. 1 8 D 13 9 22 20 ✓

Mux array 2 4 D 1 2 7 8 ✓

M 3 5 ×

Res. alloc. 1 5 D 5 5 9 8 ✓

M 3 3 ×

Lazy Direct
System |CI | |∆| Pr. |H| |PRH| |Ind| |PR| Re.

Berkeley 1 9 D 1 1 12 9 ✓

O 4 4 2/3

Dragon 1 23 D 1 1 37 11 ✓

O 15 7 6/7

Firefly 1 16 D 1 1 12 7 ✓

O 4 3 0/4

Illinois 1 16 D 1 1 18 14 ✓

O 4 3 0/2

MESI 1 7 D 1 1 8 7 ✓

O 4 4 2/2

MOESI 1 7 D 1 1 15 10 ✓

O 4 4 7/7

Synapse 1 5 D 1 1 8 7 ✓

O 2 3 2/2

Lazy Direct
System |CI | |∆| Pr. |H| |PRH| |Ind| |PR| Re.
Dijkstra 2 12 M 9 7 ✓
(ring)
LR phils. 1 1 11 D 34 11 ✓

Mux array 2 4 M 5 3 ✓

Res. alloc. 1 5 M 5 5 ✓

Most applications of regular model checking to the verification of parameterised systems,
and in particular all the examples studied in [19, 20], have length-preserving transition
functions and length-preserving interpretations. For this reason, in our implementation we
only consider this case, and leave an extension for future research. Since Separability is
NP-complete in the length-preserving case, it is natural to solve it by reduction to SAT. A
brief description of the reduction is given in the full version of the paper [16].

5.3 Some experimental results
We have implemented the learning algorithm in a tool prototype, built on top of the libraries
automatalib and learnlib [22] and the SAT solver sat4j [9]. We compare our learning
approach with the one of [19], which constructs automata for Ind and PReach using the
regular abstraction framework of Example 7. In the rest of this section we call these two
approaches the lazy and the direct approach, respectively. We use the same case studies
as [19]. We compare the sizes of the DFA for the final hypothesis H and PReachH with the
sizes of the DFA for Ind and PReach. The results are available at [33] and are shown in
Table 1.

The left table in Table 1 shows results on RTSs modeling mutex and leader election
algorithms, and academic examples, like various versions of the dining philosophers. The
right top table shows results on models of cache-coherence protocols. Observe that Ind and
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PReach do not depend on the property, but H and PReachH do, because the algorithm can
finish early. In this case, the sizes given in columns H and PReachH are the largest ones
computed over all properties checked.

The main result is that the automata computed by our tool are significantly smaller than
those for [19]. (Note that in all cases we compute minimal DFAs, and so the differences
are not due to algorithms for the computation of automata.) Observe that in five cases the
deadlock-freedom and the mutex properties could not be proved. In one case (deadlock-
freedom of Herman (linear)) this is because the property does not hold. In the other four
cases, the problem is that [19] uses only a specific regular abstraction framework, namely
the one of Example 7. We can prove the property by refining the abstraction: we take the
union of the “disjunctive” and the “exclusive disjunctive” abstractions of Example 10. The
bottom-right table gives the results of these four cases.

Both tools take less than three seconds in 54 out of the 59 case studies in the left and top
right tables. We do not report the exact times; the implementation of [19] uses MONA, while
the experiments of this paper use automatalib and learnlib, and so small time differences
may have any number of reasons. In the other five cases, the implementation of [19] still
needs less than one second, while our implementation takes minutes (more than ten minutes
in two cases). In these five cases the time performance is dominated by the SAT solver sat4j.
We have not yet identified a pattern explaining why sat4j takes so much time, in particular
the number and size of the formulas passed to it is similar to the other cases.

6 Conclusions

We have generalised the technique of [19, 20] for checking safety properties of RTS to
arbitrary regular abstraction frameworks. We have shown that the abstract safety problem is
EXPSPACE-complete, solving an open problem of [19, 20], by means of a complex reduction
of independent interest. For particular abstraction frameworks the complexity can be better.

We have used automata learning to design a lazy algorithm that stops when the inductive
constraints computed so far are enough to prove safety. Its combination with other learning
techniques, as those proposed in [28, 31, 15, 32, 29], is a question for future research.
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