Validity of Contextual Formulas

Javier Esparza &
Technical University of Munich, Germany

Rubén Rubio &
Universidad Complutense de Madrid, Spain

—— Abstract
Many well-known logical identities are naturally written as equivalences between contextual formulas.
A simple example is the Boole-Shannon expansion c[p] = (p A c[true]) V (- p A c[false]), where ¢

denotes an arbitrary formula with possibly multiple occurrences of a “hole”, called a context, and
c[¢] denotes the result of “filling” all holes of ¢ with the formula . Another example is the unfolding
rule uX.c[X] = c[uX.c[X]] of the modal p-calculus.

We consider the modal p-calculus as overarching temporal logic and, as usual, reduce the problem
whether ¢1 = @2 holds for contextual formulas 1, 2 to the problem whether 1 > @2 is valid. We
show that the problem whether a contextual formula of the p-calculus is valid for all contexts can
be reduced to validity of ordinary formulas. Our first result constructs a canonical context such
that a formula is valid for all contexts iff it is valid for this particular one. However, the ordinary
formula is exponential in the nesting-depth of the context variables. In a second result we solve
this problem, thus proving that validity of contextual formulas is EXP-complete, as for ordinary
equivalences. We also prove that both results hold for CTL and LTL as well. We conclude the paper
with some experimental results. In particular, we use our implementation to automatically prove the
correctness of a set of six contextual equivalences of LTL recently introduced by Esparza et al. for
the normalization of LTL formulas. While Esparza et al. need several pages of manual proof, our
tool only needs milliseconds to do the job and to compute counterexamples for incorrect variants of
the equivalences.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics
Keywords and phrases p-calculus, temporal logic, contextual rules

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.24

Related Version Extended Version: arXiv:2407.07759 [§]

Supplementary Material Software (Source Code): https://github.com/ningit/ctxform [12]

Funding This work was partially supported by the Agencia Estatal de Investigacién (AEI) under
project PID2019-108528 RB-C22.

1 Introduction

Some well-known identities useful for reasoning in different logics can only be easily formulated
as contextual identities. One example is the Boole-Shannon expansion of propositional logic,
which constitutes the foundation of Binary Decision Diagrams and many SAT-solving
procedures [1]. It can be formulated as

c[p] = (p A cltrue]) V (- p A clfalse]) (1)

where, intuitively, ¢ denotes a Boolean formula with “holes”, called a context, and c[g]
denotes the result of “filling” every hole of the context ¢ with the formula . For example,
ife:=(]Ap)V(¢g—1[]) and ¢ := p, then ¢[p] = (p Ap) V (¢ = p). More precisely, c is
a context variable ranging over contexts, and the equivalence sign = denotes that for all
possible assignments of contexts to ¢ the ordinary formulas obtained on both sides of = are
equivalent.

© Javier Esparza and Rubén Rubio;

37 licensed under Creative Commons License CC-BY 4.0
35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 24; pp. 24:1-24:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:esparza@in.tum.de
https://orcid.org/0000-0001-9862-4919
mailto:rubenrub@ucm.es
https://orcid.org/0000-0003-2983-3404
https://doi.org/10.4230/LIPIcs.CONCUR.2024.24
https://doi.org/10.48550/arXiv.2407.07759
https://github.com/ningit/ctxform
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2

Validity of Contextual Formulas

1 Utha] Wo (GF ¢ A clty Wihs] W) V c[thy Uths] U (¢ V G clfalse])
eWep1 U] = @Uc[thy U]V Gy

c|[GFv¢] = (GF ¢ A cltrue]) V c[false]

c[FGyY] = (FG1 Acftrue]) V clfalse]
GF c[y1 W] = GF [ty U] V (FG 1 A GF cltrue))
FG 1 U] = (GF sy AFG c[thy W b)) V FG c|false]

Figure 1 Rewrite system for the normalization of LTL formulas [9].

For linear-time temporal logic in negation normal form, a useful identity similar to the
Boole-Shannon expansion is

c|GF p] = (GF p A c[true]) V c[false] (2)

where ¢ now ranges over formulas of LTL with holes. For example, the identity shows that
qU (GFp Ar) is equivalent to GFp A qUr V qU false, and so after simplifying equivalent
to GFpAqUr.! As a third example, the unfolding rule of the u-calculus (the fundamental
rule in Kozen’s axiomatization of the logic [2]

uX.c[X] = c[uX.c[X]]

whose formulation requires nested contexts. Further examples of contextual LTL identities
are found in [9], where, together with Salomon Sickert, we propose a rewrite system to
transform arbitrary LTL formulas into formulas of the syntactic fragment As, with at most
single-exponential blowup.? The rewrite system consists of the six identities (oriented from
left to right) shown in Figure 1.

Remarkably, to the best of our knowledge the automatic verification of contextual
equivalences like the ones above has not been studied yet. In particular, we do not know
of any automatic verification procedure for any of the identities above. In [9] we had to
prove manually that the left and right sides of each identity are equivalent for every context
(Lemmas 5.7, 5.9, and 5.11 of [9]), a tedious and laborious task; for example, the proof of the
first identity alone takes about 3/4 of a page. This stands in sharp contrast to non-contextual
equivalences, where an ordinary equivalence ¢ = o of LTL can be automatically verified by
constructing a Biichi automaton for the formula — (¢1 <> ¢2) and checking its emptiness. So
the question arises whether the equivalence problem for contextual formulas is decidable, and
in particular whether the manual proofs of [9] can be replaced by an automated procedure.
In this paper we give an affirmative answer.

Let o be a mapping assigning contexts to all context variables of a formula ¢, and let o(¢p)
denote the ordinary formula obtained by instantiating ¢ with o. The equivalence, validity,
and satisfiability problems for contextual formulas are:

The restriction to formulas in negation normal form is necessary. For example, taking ¢ := =(p A [])
does not yield a valid equivalence.

Ao contains the formulas in negation normal form such that every path of the syntax tree exhibits at
most one alternation of the strong and weak until operators U and W . They have different uses, and
in particular they are easier to translate into deterministic w-automata [9].

J. Esparza and R. Rubio

1. Equivalence of @1 and pq: does o(p1) = o(y2) hold for every o7

2. Validity of ¢: is o(p) valid (in the ordinary sense) for every o?

3. Satisfiability of ¢: is o(p) satisfiable (in the ordinary sense) for some o?

We choose the modal p-calculus as overarching logic, and prove that these problems can be

reduced to their counterparts for ordinary p-calculus formulas. As corollaries, we also derive
reductions for CTL and LTL. More precisely, we obtain the following two results.

First result. Given a contextual formula ¢ with possibly multiple occurrences of a context
variable ¢, there exists a canonical instantiation k, of c, also called the canonical context,
such that ¢ is valid/satisfiable iff the ordinary formula k() is valid/satisfiable. Further,
ke can be easily computed from ¢ by means of a syntax-guided procedure.

To give a flavour of the idea behind the canonical instantiation consider the distributive
law 1 A (w2 V p3) = (1 A p2) V (p1 A p3) for ordinary Boolean formulas. It is well-known
that such a law is correct iff it is correct for the special case in which 1, 2, @3 are distinct
Boolean variables, say p1, p2, ps. In other words, the law is correct iff the Boolean formula
p1 A (p2 Vp3) < (p1 Ap2) V (p1 A ps) is valid. This result does not extend to contextual
formulas. For example, consider the contextual equivalence (2), reformulated as the validity
of the contextual formula

¢ :=c[GFp] + ((GFp A c[true]) V c[false]) (3)

While ¢ is valid, the ordinary formula ¢? := p; <> ((GF pAp2)V pg) obtained by replacing
¢[GF ¢, c[true], and c[false] by atomic propositions p1, pa, p3, respectively, is not. (We call
©? the deconteztualization of ¢.) Loosely speaking, the replacement erases dependencies
between ¢[GF ¢, c[true], and c[false]. For example, since contexts are formulas in negation
normal form, c[false] |= ¢[true] or c[false] = ¢[GF p] hold for every context ¢, but we do not
have ps = ps and ps = p1. To remedy this, we choose a context k, that informally states:

At every moment in time, p; holds if the hole is filled with a formula globally entailing
GF p and py holds if it is filled with a formula globally entailing true and p3 holds if
it is filled with a formula globally entailing false.

The context is:
kp =G ((G ([]= GFp) = p1) A (G ([] = true) = p2) A (G ([] — false) %psﬂ))

Our result shows that s, is a canonical context for ¢. In other words, the contextual formula
@ of (3) is valid iff the ordinary formula

ko(p) = Ku[GFp] < ((GFp A kyltrue]) V ko [false])

obtained by setting ¢ := &, in (3), is valid. After substituting according to (4) and simplifying,
we obtain

ko (9) = (G (p1 Ap2) AG (GF pVps)) <> (GF pAG ((GF p — p1) Ap2) VG (p1ApaAps)) (5)

So (3) is valid iff the formula on the right-hand-side of (5) is valid, which is proved by SPoT
2.11 [4] in milliseconds.

24:3

CONCUR 2024

24:4

Validity of Contextual Formulas

Second result. Given a contextual formula ¢, the ordinary formula r, () has O(]o|9)
length, where d is the nesting depth of the context variables. Since d € O(n), the blowup is
exponential. Our second result provides a polynomial reduction. Let c[¢1], ..., ¢[t),] be the
context expressions appearing in ¢. Instead of finding a canonical instantiation, we focus on
adding to the decontextualized formula ¢¢ information on the dependencies between c[i],
..., c[ty]. For every pair ;,1;, we add to ¢ the premise G (G (v; — ¥;) = (p;i — pj)).
Intuitively, the premise “transforms” dependencies between 1; and v; into dependencies
between fresh atomic propositions p; and p;. For example, we obtain that (3) is valid iff the
ordinary LTL formula

G

S

7

3
/\ (G (Wi = ;) = (pi = pj)) | = (p1 > (GFpAp2)Vps)

is valid or, after simplification, iff

(FG—p — (p1 = p3)) AN (GFp — (p2 — p1))
G A — (p1 ¢ ((GFpAp2) Vps)) (6)
(p3 = p1) A (p1 — p2)

is valid. Again, SPOT 2.11 proves that (6) is valid within milliseconds. Since the premise has
polynomial size in the size of the original contextual formula, we obtain a reduction from
contextual validity to ordinary validity with polynomial blowup. Observe, however, that the
ordinary formula is not obtained by directly instantiating the context variable c.

Experiments. We have implemented our reductions and connected them to validity and
satisfiability checkers for propositional logic (PySAT [10] and MiniSat [5]), LTL (SpoT
2.11 [4]), and CTL (CTL-SAT [11]). We provide some experimental results. In particular,
we can prove the correctness of all the LTL identities of [9] within milliseconds.

Structure of the paper. Section 2 recalls the standard p-calculus and presents its contextual
extension. Section 3 studies the validity problem of contextual propositional formulas, as an
appetizer for the main results on the p-calculus in Section 4. These are extended to CTL and
LTL in Sections 4.4 and 4.5. Experimental results are presented in Section 5, and Section 6
gives some conclusions.

2 The contextual p-calculus

We briefly recall the syntax and semantics of the p-calculus [2], and then introduce the
syntax and semantics of the contextual u-calculus.

The modal p-calculus. The syntax of the modal p-calculus over a set AP of atomic
propositions and a set V' of variables is

pu=plaplXloneloVel(HelllelpXe|vXe (7)

where p € AP and X € V. The semantics is defined with respect to a Kripke structure and
a valuation. A Kripke structure is a tuple K = (S,—, I, AP {), where S and I are sets of
states and initial states, — C S x S is the transition relation (where we assume that every
state has at least one successor), and £: S — P(S) assigns to each state a set of atomic

J. Esparza and R. Rubio 24:5

propositions. A waluation is a mapping n: V — P(S). Given K and 7, the semantics assigns
to each formula ¢ a set [¢], C S, the set of states satisfying ¢ A. A Kripke structure K
satisfies ¢ if I C [¢],. The mapping [- - -], is inductively defined by:

[l = {5 € S | p € €s)) o
[[ﬁp]]ﬂ :S\[[pﬂn H<>90]]?7 ={seS|3Is's>sNns€ H@Hn}

[[1ely, ={seS|Vss—s =5 €[]}

[XT]y =n(X)
[[(,01 A\ (,02]]7, = [[@1]}7, N [[(pg]]n [[NX@]]W = ﬂ{U cs | [[SOHTJ[X/U] - U}
[o1 V 2]y = [ealy U [ip2l, X .ol, = J{U € 51U C [elyixjo}

Let FV () C V be the set of free variables, i.e. not bound by a fixpoint operator, in a formula
¢. Observe that if ¢ is a closed formula (that is, FV(¢) = 0), then [¢], depends only on
K, not on n, so we just write [¢]. On the contrary, when dealing with multiple Kripke
structures at the same time, we write [¢]x , or [¢]i to avoid ambiguity. We say that K
satisfies ¢, denoted K |= ¢, if I C [¢],, that is, if every initial state satisfies ¢. A closed
formula ¢ is valid (satisfiable) if K |= ¢ for every (some) Kripke structure K.

It is well-known that every formula of the u-calculus is equivalent to a formula in which all
occurrences of a variable are either bound or free, and every two distinct fixpoint subformulas
have different variables.

The contextual modal p-calculus. Contezrtual formulas are expressions over a set AP of
atomic propositions, a set V' of variables, and a set C' of context variables. (The contextual
formulas of the introduction only had one contextual variable, but in general they can have
multiple and arbitrarily nested variables.) They are obtained by extending the syntax (7)
with a new term:

pu=plop| X |- [vX.p |l

where ¢ € C. For the semantics, we need to introduce contexts and their instantiations. A
context is an expression over the syntax that extends (7) with holes:

pu=pl-p| X |- |[vXpl|]]

We let C denote the set of all contexts. An instantiation of the set C' of context variables is a
mapping o: C — C. Given a contextual formula ¢, we let o(p) denote the ordinary formula
obtained as follows: in the syntax tree of ¢, proceeding bottom-up, repeatedly replace each
expression c[t)] by the result of filling all holes of the context o(c) with ¢. Here is a formal
inductive definition:

» Definition 1 (instantiation). Let F and C be the sets of ordinary and contextual formulas
of the p-calculus. An instantiation is a function o : C' — C binding each context variable to a
context. We lift an instantiation o to a mapping . : C — F as follows:

1. oc(p) =p

2. a.(clp]) = (a(e)][1/ac(w)] (i.e., the result of substituting o.(¢) for [] in o(c)).
3. ac(p1 Ap2) = ac(p1) A ae(p2)-

4. Go(p1V p2) = ae(p1) V ae(p2).

5. 6c(<'> 90) = <> 6-0(()0)

6. o.([]p) =[]oc(e)

7. 0c(pX.p) = pX.0c(p)

8

.o (vX.p) =vX.0.(p).
Abusing language, we overload o and write o(p) for a(yp).

CONCUR 2024

24:6

Validity of Contextual Formulas

» Example 2. Let ¢ = pUci[(pV erlg]) Wee[-pV q)]]. Further, let o(c1) := G] and
a(c2) = ([] A q). We have o(0) =pUG ((pV Gq) W ((=pV q) Aq)).

We can now extend the notions of validity and satisfaction from ordinary to contextual
formulas.

» Definition 3 (validity and satisfiability). A closed contextual formula ¢ is valid if K |= o(p)
for every instantiation o and Kripke structure IC, and satisfiable if K = o(p) for some
instantiation o and Kripke structure K.

3 Validity of contextual propositional formulas

As an appetizer, we study the validity and satisfiability problems for the propositional
fragment of the modal p-calculus, which allows us to introduce the main ideas in the simplest
possible framework. The syntax of contextual propositional formulas over sets AP and C of
propositional and contextual variables is

pu=plopleAe|eVelcy] (8)

where p € AP and ¢ € C. The semantics is induced by the semantics of the modal u-calculus,
but we quickly recall it. Given a waluation 8: AP — {0,1}, the semantics of an ordinary
formula ¢ is the Boolean [¢]g € {0,1}, defined as usual, e.g. o1 A @2]g = 1 iff [p1]s =1
and [y2]g = 1. Given a valuation § and an instantiation o: C' — C of the context variables,
the semantics of a contextual formula is the boolean [o(¢)]s, where () is the formula
obtained by instantiating each context variable ¢ with the context o(c).

We will use the substitution lemma of propositional logic. Let F and C be the set of all
ordinary and contextual propositional formulas, respectively.

» Lemma 4 (substitution lemma). For any ¢ € F, valuation : AP — {0,1}, and substitution
o: AP = T, [o(p)]ls = [¢ls where 3" is given by B'(p) := [o(p)]s for everyp e V.

Moreover, since formulas with syntax (8) are in negation normal form, we have the following
monotonicity result.

» Lemma 5 (monotonicity). For any p,v,v¢" € F, propositional variable p that does not appear
negated in o, and valuation B: AP — {0,1}, if [— ¢']g =1 then [p[p/v] = p/¥']ls = 1.

3.1 Canonical instantiations

Let us now prove that a contextual propositional formula ¢ € C is valid (satisfiable) iff it is
valid (satisfiable) for the following canonical instantiation k., of its context variables.

» Definition 6 (maximal context subformulas). A context subformula of ¢ € C is a subformula
of v of the form c[y] for some ¢ € C and ¢ € C. The set of context subformulas of ¢ is
denoted CSub(p). A context subformula is maximal if it is not a proper subformula of any
other context subformula. The decontextualization of p, denoted @?, is the result of replacing
every mazimal context subformula c[1] of ¢ by a fresh propositional variable pepy).

» Definition 7 (canonical instantiation of a contextual formula). The canonical instantiation
of ¢ € C, also called the canonical context, is the mapping x,: C — C that assigns to every
context variable ¢ € C the context

ko)== N\ ([1= %) = pey

c[]€ CSub()

J. Esparza and R. Rubio

» Example 8. Let us illustrate Definition 7 on an example. Boole-Shannon’s expansion
holds iff the contextual formula

¢ = c[p] < ((p A cltrue]) V (= p A clfalse]))

is valid. We have CSub(p) = {c[p], c[true], c[false]}. All elements of CSub(y) are maximal.

d

Since p? = p, true? = true, and false” = false, the canonical instantiation is given by

HQO(C) = (([] - p) — pc[p]) A (([} - true) — pc[true]) A (([] — false) — pc[false])
We need an auxiliary lemma.

» Lemma 9. For any ¢ € C, instantiation o, and valuation (3, there is a valuation 3’ that
coincides with [in every variable occurring in o(p) and satisfies [o(p)]s = [ke(@)] s -

Proof sketch (full proof in [8]). Given ¢, o, and 3, we define 3'(p.y)) = [o(c[¢])]s for
every c[y] € CSub(p) and B'(p) = B(p) otherwise. We first prove [o(¢)]s = [¢%]s as
a direct application of the substitution lemma with v, (pcfy)) = o(c[¢]), which satisfies
Yo (%) = o(¢). Then, we prove [o(4)]s = [rky(¢)]s by induction on ¢, using the previous
statement and some calculations on the expression of k,(c[¢]) using the monotonicity of
contexts by Lemma 5. |

» Proposition 10 (fundamental property of the canonical instantiation). A conteztual formula
@ € C is valid (resp. satisfiable) iff the ordinary formula k,(p) € F is valid (resp. satisfiable).

Proof. For validity, if ¢ is valid, then o(p) is valid for every instantiation o, and so in
particular £, () is valid. For the other direction, assume () is valid. We prove that o(y)
is also valid for any instantiation o. Let 8 be a valuation. By Lemma 9 there is another
valuation 4’ such that [o(p)]s = [k(¢)]s . Moreover, we have [k(p)]g = 1 because k(p) is
valid. So o(y) is valed, because § is arbitrary.

Satisfiability is handled by a dual proof. If s (¢) is satisfiable, then so is ¢ by definition.

If ¢ is satisfiable, then there is an instantiation ¢ such that [o(¢)]g = 1. Lemma 9 give us a
valuation 8’ such that [k, (¢)]s = [o(p)]s = 1. <

» Example 11. Let ¢ and k,(c) be as in Example 8. By definition, we have k,(p) :=
ke(clp]) <> ((p A kp(cltrue])) V (= p A ky(clfalse]))). Simplification yields

Pefp] /\ Deftrue] A (7P = Peffalse])
Ke(p) = >
(p A (p — pc[p]) /\pc[true]) \ (ﬁp A Pe[p] A Pcltrue] /\pc[false]>

This formula is not valid, and so by Proposition 10 Boole-Shannon’s expansion is valid.

The following example shows that the ordinary formula k,(¢) may be exponentially
larger than the contextual formula ¢ when ¢ contains nested contexts.

» Example 12. Consider the contextual formula ¢ := ¢"[g], where °[¢)] := 1) and ¢"[¢] :=
cle" 1 [y]] for every formula 1. The size of ¢ is n + 4. The canonical context is ky(c) =
AN ([] — Pet-1[q]) —* Pellg) With peop = ¢. Instantiating the “holes” of ry(c) with a
formula v of size k yields the formula s (c)[[/9] of size n(7+ k) — 1 > nk. Since k(@) =
ke (c"[q]) = k(e)[[1/k(c"g])] by definition, the size of k() is at least n! = (J¢| — 4)!, and
so exponential in the size of ¢.

24:7

CONCUR 2024

24:8

Validity of Contextual Formulas

3.2 A polynomial reduction

As anticipated in the introduction, in order to avoid the exponential blowup illustrated
by the previous example, we consider a second method that relies on finding an ordinary
formula equivalid to the contextual formula. This will lead us to the complexity result of
Corollary 14.

» Proposition 13. A propositional contextual formula ¢ € C s valid iff the ordinary
propositional formula

SDE = /\ (¢f — Ql)g) — (pc[wl] — pc[w2]) - Sod
c[1],c[pp2]€ CSub(e)

s valid.

Proof sketch (full proof in [8]). We follow here the same ideas of Section 3.1. (=) If .
is valid, for a given substitution ¢ and Kripke structure K, we define the Kripke structure
K' of Lemma 9. After showing again that [¢]s = [o(#)]s for every subformula, we
see that the condition of ¢, holds through a calculation, and then its conclusion yields
[¢4s = [o(p)]s =1, so ¢ is valid. (<) If ¢ is valid, so is k() with a valuation 3. We
show ¢, holds under the same valuation. This is immediate if the premise does not hold.
Otherwise, we can use the monotonicity encoded in the premise of . to almost repeat the
calculation on k., (c[t)]) in Lemma 9 and conclude [k, ()]s = [¢?]s = 1. <

» Corollary 14. The validity and satisfiability problems for contextual propositional formulas
are co-NP-complete and NP-complete, respectively.

Proof. Proposition 13 gives a polynomial reduction to validity of ordinary formulas. Indeed,
lo?] < ||+ 1) - (2]0] +5) < 8|¢[*. For satisfiability, it suffices to replace the top implication
of ¢, by a conjunction. <

» Remark 15. In the propositional calculus, once we assign truth values to the atomic
propositions every formula is equivalent to either true or false. Similarly, every context is
equivalent to true, false, or []. Hence, an alternative method to check validity of a contextual
propositional formula is to check the validity of all possible instantiations of the context
variables with these three contexts. However, for n different context variables, this requires
3" validity checks.

» Remark 16. Other examples of valid identities are c[p A q] = c[p] A c[q], c[p V q] = ¢[p] V c[q],
and c[p] = ¢[c[p]]. Example of valid entailments are (p <> ¢) = (¢[p] + ¢[¢]) and (p —
q) = (¢[p] — ¢[q]); the entailments in the other direction are not valid, as witnessed by the
instantiation o(c) := false. Finally, p = ¢[p] is an example of an identity that is not valid
in any direction. All these facts can be automatically checked using any of the methods
described in the section.

4 Validity of contextual p-calculus formulas

We extend the reductions of Section 3 to the contextual modal p-calculus. In particular,
this requires introducing a new definition of canonical instantiation and a new equivalid
formula. The main difference with the propositional case is that contexts may now contain
free variables (that is, variables that are bound outside the context). For example, in the
unfolding rule we find the context ¢[X], and X appears free in the argument of c¢. This

J. Esparza and R. Rubio

problem will be solved by replacing each free variable X by either the fixpoint subformula that
binds it, or by a fresh atomic proposition px. We will also need to tweak decontextualizations.
More precisely, the canonical instantiation will have the shape

kp(c) == /\ (AG ([] = ¥") = pepy)
c[yp]€ CSub(p)

where AG 1 is an abbreviation for vX.([]X A), and ¢* is a slight generalization of %

Throughout the section we let F and C denote the sets of all ordinary and contextual
formulas of the contextual p-calculus over sets AP, V, and C, of atomic propositions,
variables, and context variables, respectively. Further, we assume w.l.0.g. that all occurrences
of a variable in a formula are either bound or free, and that distinct fixpoint subformulas
have distinct variables. The following notation is also used throughout:

» Definition 17. Given a formula ¢ € C and a bound variable X occurring in ¢, we let
aX.px denote the unique fixpoint subformula of ¢ binding X .

4.1 Variable and propositional substitutions

A key tool to obtain the results of Section 3 was the substitution lemma for propositional
logic. On top of atomic propositions, the p-calculus has also variables, and we need separate
substitution lemmas for both of them. We start with the variable substitution lemma. In
this case, we have a p-calculus formula ¢ with some free variables X € FV(y) and we want
to replace them by closed formulas o(X) € F. As usual, bound variables are not replaced
by variable substitutions, i.e. o(aX.¢) = a.oly\(x}(#). The following lemma is a direct
translation of the substitution lemma for propositional logic.

» Lemma 18 (variable substitution lemma). For any Kripke structure with set of states S,
valuation n : V- — P(S), and substitution o : V. — F such that o(X) is either X or a closed
formula for all X € V', we have [o(¢)], = [¢ly where ' is defined by ' (X) := [o(X)],-

Replacing atomic propositions is more subtle, since they can be mapped to non-ground p-
calculus formulas. While propositions have a fixed value, the semantics of their replacements
may depend on the valuation, which could be the dynamic result of fixpoint calculations
appearing in the formula. Consequently, the substitution lemma will not work for an arbitrary
valuation like in Lemma 18, but only for those who match the values of the fixpoint variables
of the formula.

» Definition 19 (fixpoint valuation). 1 is a fixpoint valuation of a formula ¢ € F iff
n(X) = [aX.¢], for every bound variable X of ¢.

» Lemma 20 (propositional substitution lemma). For any Kripke structure K =
(S,—,I,AP,{), formula ¢ € F, substitution o : AP — T such that o(p) = p if p ap-
pears negated in @, and valuation n: V — P(S) such that n(X) = [aX.0(¢x)], for every
subformula aX.¢x of ¢, we have [o(¢)]kn = [¢lx,n where K' = (S,—, AP,I1,l') is the
Kripke structure with ¢'(p) = [o(p)], for every p € AP.

These two lemmas will be very helpful in the proof of the main theorems, where we
turn subformulas and variables into atomic propositions to make formulas like k., (¢) and ¢,
ordinary and closed, respectively. For example, consider uX.c[X] = c[uX.c[X]]. If we take
1® instead of ¢* in the canonical instantiation, we obtain

ke(c) = ((AG ([] = X)) = peix)) A ((AG ([] = #Xpeix))) = Pefux.c(x]]) 9)

24:9

CONCUR 2024

24:10

Validity of Contextual Formulas

Since X is free in this context, which value should it take? The following lemma proves there
is a unique fixpoint valuation 7 for each formula ¢ and Kripke structure . This will give
the answer to this question.

» Lemma 21 (existence of fixpoint valuation). For every Kripke structure K and closed
formula p € F, there is a unique fixpoint valuation 7}, up to variables that do not appear in .

Moreover, in (9), we will be interested in getting rid of the free occurrence of X to reduce
the problem to validity of ordinary closed formulas. The following lemma claims that we can
replace the free variables in the formula by the fixpoint subformula defining those variables,
without changing the semantics of the formula. We call the substitution achieving this, which
we show to be independent of any Kripke structure, the fixpoint substitution of .

» Lemma 22 (fixpoint substitution). For every closed formula ¢ € F, there is a (unique)
variable substitution & : X — F such that 6(X) is closed and 6(X) = 6(aX.¢x). Moreover,
for every Kripke structure KC, every subformula ¢ of ¢, and every fixpoint valuation n for ¢,

we have [o(@)] = [¢],.

4.2 Canonical instantiation
We are now ready to define the canonical instantiation of a contextual formula.

» Definition 23 (canonical instantiation of a contextual formula). Let ¢ € C be a contertual
formula of the p-calculus. Given a subformula v of o, let ¢* be the result of applying to ¢
its fizpoint substitution. The canonical instantiation of ¢ is the mapping k, : C — C defined

ro(@)i= N\ (AG([]=¢") = pey

clp]€ CSub(e)
where AG ¢ is an abbreviation for vX.([[|X A1) for some fresh variable X.

We prove that ¢ is valid (resp. satisfiable) iff x,(¢) is valid (satisfiable). We need two
lemmas. The first one is the extension of Lemma 5 to the p-calculus.

» Lemma 24 (monotonicity). For every ¢, v, € F, where only ¢ may contain |], fixpoint
valuation 7, and every s € S, if s € [AG (Y — ¢')],, then s € [¢[[]/¥]]; implies s €

[l 1/ 1]

The second lemma is the key one.

» Lemma 25. For every ¢ € F, instantiation o, and Kripke structure KK = (S, —,I, AP,{),
there is a Kripke structure K' = (S, —, AP',I,1'), where AP C AP' and {' extends {, such

that [o(@)]x = [re (@)l -

Proof sketch (full proof in [8]). The ideas of Lemma 9 are reproduced here, although with
the additional complication of u-calculus variables. Given ¢, o, and K, we define K’ :=
(S —, I, AP, l'), AP' := AP U {p.y) | c[¢] € CSub(p)}, ¢'(p) = (p) if p € AP, and

V' (pery)) = [o(c[¢])]4 using the fixpoint valuation 7 of Lemma 21 for o(¢). First, we show
[¢*14 = [¢9]5 for every subformula ¢ of ¢ using the variable substitution lemma (Lemma 18)
with 7.(X) = aX.@x. Then, like in the proposition case, we prove [o(¢)]; = [¢¢]; for any
subformula ¢ using the propositional substitution lemma (Lemma 20) with v4 (pefy)) = o(c[t]).
Finally, we prove [o(¢)]; = [ky(¢)]5 by induction using some calculation (essentially the
same in Lemma 9) by the monotonicity of Lemma 24 on the expression of x,(c) as well as
the propositional substitution lemma. <

J. Esparza and R. Rubio

» Theorem 26. For every ¢ € C,p is wvalid (resp. satisfiable) iff k,(p) € F is valid
(satisfiable).

Proof. For validity: (=) If ¢ is valid, then o(p) is valid for every instantiation o. In
particular, k() is valid. (<) Assuming k() is valid and for any instantiation o, we must
prove that o(¢p) is also valid. Let K be a Kripke structure, Lemma 25 claims there is another
Kripke structure K’ such that [o(¢)]x = [ke(@)]kr, so K = o(p) iff K’ = k4 (). Moreover,
we have K’ |= k4 () because k() is valid, so o(¢p) is valid too since K is arbitrary.

For satisfiability, («<=) If k() is satisfiable, then ¢ is satisfiable by definition. (=) If
¢ is satisfiable, then K |= o(¢) for some o and K. Lemma 25 then ensures K’ |= k() for
some K', so k,(p) is satisfiable. <

As in the propositional case, the length of k. (¢) grows exponentially in the nesting depth
of the context. However, in the u-calculus it can also grow exponentially even for non-nested
contexts. The reason is that applying the fixpoint substitution to a u-formula can yield an
exponentially larger formula.

» Example 27. Consider ¢ = pXi. - puX,.X3 A -+ A X, for any n € N, whose size
is || = 3n — 1. It can be proven by induction that |o(X3)| = 2¥71(3n — 2) + 1, so
jo(Xn)| =2 (30 — 2) +1 = 250172 (jp| +1) + 1 € O(21¢]).3

Both problems are solved in the next section by giving an alternative reduction to
validity /satisfiability of ordinary p-calculus formulas.

4.3 A polynomial reduction

Given a contextual formula ¢ of the u-calculus, we construct an ordinary formula ¢, equivalid
to ¢ of polynomial size in . Following the idea of Proposition 13, we replace all context
occurrences in ¢ by fresh atomic propositions, and insert additional conditions to ensure that
the values of these propositions are consistent with what they represent. However, in the
p-calculus, these conditions may introduce unbound variables, and the strategy to remove
them in Theorem 26 involves the exponential blowup attested by Example 27. To solve this
problem, we also replace the free p-calculus variables in the context occurrences by fresh
atomic propositions; further, we add additional clauses to ensure that they take a value
consistent with the fixpoint calculation.

» Definition 28 (equivalid formula). For every contextual formula ¢ € C,
let F' = Uc[1/)]€CSub(<p) FV (1) be the free variables in all context arguments of ;
for every X € F, let px be a fresh variable that does not occur in ¢; and
for every subformula ¢ of , let ¢ be the result of replacing every free occurrence of X
in the formula ¢% by px.
We define the ordinary formula ¢. € F as

N\ AG(AG (] = ¥3) = (Def] = Pewa)) A\ AG (px <> aX.0%) [= ¢"

clh1],c[y2] XeF
€ CSub(yp)

We say K’ is an extension of K if K' = (S, {—}, I, AP, ¢'), AP C AP', and {'| sp = /.

3 The difficulty in the previous example are fixpoint formulas with free variables. Otherwise, |o(X)| =
lo(aX.ox)| = laX.ox| < [l

24:11

CONCUR 2024

24:12

Validity of Contextual Formulas

» Proposition 29. For every contextual formula ¢ € C, instantiation o, and Kripke structure
K=(S,—,I,AP,?),

1. there is an extension K' of K such that K = o(p) iff K' | .

2. for any extension K' of IC such that K' is a model for the premise of ., K' |= k() iff

K'= pe.

Proof sketch (full proof in [8]). We follow the main strategy of Proposition 13. (1) Using
the valuation # given by Lemma 21 for o(y), we define the Kripke structure X’ of Lemma 25
with some more variables ¢'(px) = [aX.px]k 7. Again, for every subformula, we prove
[0k 5 = (655 [9%xr 5 = [0(¢)]k,5 invoking the appropriate substitution lemmas.
This let us prove that the premise of ¢, holds because of the monotonicity of contexts
reflected in Lemma 24 and the matching definitions of 9 and ¢'(px). Hence, ¢, is equivalent
to its conclusion, and we have proven [¢?]x.s = [o(¢)]i,4, which implies the statement.
(2) Let e = ¢, — ¢, we now assume K’ |= ¢, and must prove K’ = k,(¢) iff K’ | ¢,
or equivalently iff K’ = 1. Using the fixpoint valuation 7 of k., (y), we inductively extract
from the premise that ¢'(px) = 7(X) and ¢ (pey)) = [k (c[v)])]4 with the usual calculations
and substitutions. Then, we conclude that the right argument of the top implication in ¢,
satisfies [p*] = [o(p)], which implies the statement. <

» Theorem 30. A contextual p-calculus formula ¢ € C is valid iff . € F is valid.

Proof. (<) ¢ is valid if o(y) is valid for every instantiation o. Let IC be any Kripke structure,
K = o(p) must hold. However, Proposition 29 ensures there exists K’ such that K |= o(y)
if K = .. Since ¢, is valid, we are done. (=) If ¢ is valid, so is k(). We should prove
that @, is valid, which means IC |= ¢, for all K. If the premise of . does not hold, K | ¢,
trivially. Otherwise, Proposition 29 reduce the problem to K |= k,(¢), which holds by
hypothesis. |

» Corollary 31. The validity and satisfiability problems for contextual p-calculus formulas
are EXPTIME-complete.

Proof. The validity and satisfiability problems for ordinary formulas of the p-calculus are
EXPTIME-complete [2]. Theorem 30 gives a polynomial reduction from contextual to ordinary
validity. Indeed, a rough bound is || < [¢]® - (2|¢| +5) + || - (|| + 2) + || < 11]¢|*. For
satisfiability, we can again replace the top implication of ¢, by a conjunction. |

4.4 Validity of contextual CTL formulas

We assume that the reader is familiar with the syntax and semantics of CTL (see e.g. [3]), and
only fix a few notations. The syntax of contextual CTL over a set AP of atomic propositions
is:

pu=ploplonpleVelcel |A(@Ue) | A(eWo) |E(eUg) |E(eWop)

where p € AP, ¢ € C, and U, W are the strong until and weak until operators. As for the
p-calculus, the syntax of contextual CTL-formulas adds a term c[y], and the syntax of CTL
contexts adds the hole term [].

Given a Kripke structure K = (S, —, I, AP, ¢) and a mapping £: S — P(S), the semantics
assigns to each ordinary formula ¢ the set [¢] C S of states satisfying ¢. For example,
[E (91 W ©2)] is the set of states sg such that some infinite path sgs1s2--- of the Kripke

J. Esparza and R. Rubio

structure satisfies either s; € [¢;1] for every i € N, or s; € [¢2] and sq,...,s.-1 € [¢1]
for some k > 1. We extend the semantics to contexts and contextual formulas as for the
p-calculus.

We proceed to solve the validity problem for contextual CTL using the syntax-guided
translation from CTL to the u-calculus [6, Pag. 1066]. The translation assigns to each
CTL-formula ¢ a closed formula ¢* of the p-calculus such that [¢] = [¢*] holds for every
Kripke structure K and mapping /.

» Definition 32 (CTL to p-calculus translation). For any context or contextual CTL formula
@ we inductively define the p-calculus formula " by

—
o

1. pt=p

2. (=pt=-p

3.([hr=1]

4. (c[Y)H = c[p*]

5. (01 A w2) = o Aol

6. (¢1V o)t =l VwZ

7. A(p1 Upo)t = pX([] X A gl) V.

8. A (p1 W) ZVX([]X/\%)\“PQL-

9. E(p1 Ugpo) = puX.((-) X Apl) Vil
(

E (01 W) =vX.(() X Apl) V b
The translations of AF, AG, EF, and EG follow by instantiating (7-10) appropriately.

The proof of the following corollary can be found in [8]. Intuitively, it is a consequence of
the fact that the canonical instantiation of Definition 23 is a formula of the CTL-fragment of
the p-calculus.

» Corollary 33. For any contextual CTL formula ¢, let k, : C — CTL be the instantiation
of contexts defined by

Kp(c) = A (AG ([] = ¢%) = pejyy
cly]e CSub(yp)
Then, the following statements are equivalent:
1. ¢ is valid,
2. ky(yp) is valid, and

3. e = (/\c[wl],c[wz]ecsw(@) AG (AG (9] = ¥8) = (Pefyr) — pqw]))) — ¢? is valid.

Proof sketch (full proof in [8]). A straightforward induction shows that (o(¢))* = o (")
for any instantiation o. Moreover, k = kyu and @b = (p")e. Hence, going back and forth
between CTL and the p-calculus, we can translate Theorems 26 and 30 to CTL. |

» Corollary 34. The validity problem for contextual CTL formulas is EXPTIME-complete.

Proof. The validity problem for CTL is known to be EXPTIME-complete [7], it is a specific
case of the contextual validity problem, and Corollary 33 gives a polynomial reduction from
the latter to the former. |

» Example 35. Let us use item (2) of Corollary 33 to show that the Boole-Shannon expansion
is not valid in CTL. As in Example 11, let ¢ := ¢[p] <> (p A c[true]) V (—p A c[false]). By
definition, k(@) := Ky(c[p]) ¢ ((PAKp(cltrue]))V (= pArg(clfalse]))). Simplification yields

Pefp] A\ Peftrue] N (AG 7P = Deffaise])
Kp(p) = +
(p A (AGp — pc[p]) A pc[true]) vV (_'p A Pelp) A Pcltrue] A pc[false])

24:13

CONCUR 2024

24:14

Validity of Contextual Formulas

This formula is not valid. For example, take any Kripke structure with a state s satisfying
p and pefirue], but neither p.,; nor AGp. Then s satisfies the right-hand side of the bi-
implication, because it satisfies the left disjunct, but not the left-hand side, because it does
not satisfy p.p,). By Corollary 33, the Boole-Shannon expansion is not valid.

Either item (2) or (3) of Corollary 33 can be used to check, for instance, that the
substitution rules AG (a < b) E AG (c[a] + ¢[b]), and AG (a = b) E AG (c[a] — ¢[b]) do
hold.

4.5 Validity of contextual LTL formulas

The syntax of LTL is obtained by dropping E and A from the syntax of CTL. Formulas
are interpreted over infinite sequences of atomic propositions [3], and a state sy of a Kripke
structure satisfies a formula ¢ if every infinite path sgsiso -« - of the Kripke structure satisfies
. The Kripke structure itself satisfies ¢ if all its initial states satisfy .

Unlike for CTL, there is no syntax-guided translation from LTL to p-calculus. However,
there is one for lassos, finite Kripke structures in which every state has exactly one infinite
path rooted at it.

» Definition 36. A Kripke structure K = (S,—,I, AP, () is a lasso if S is finite and for
every s € S there is exactly one state ' € S such that s — s'.

Consider the variation of the translation p* from CTL where X, U, G, and F are
translated as AX, AU, AG, and AF. For example, we define (¢1 U)" := pX.([[] X A
o) V¢, We have:

» Lemma 37. An LTL formula is valid iff it holds over all lassos. Further, for every lasso
K and every formula ¢ of LTL, K =11 ¢ iff K = ¢*.

The results of Theorems 26 and 30 can be extended to LTL similarly to the CTL case.
However, since ¢ and ¢ are only guaranteed to be equivalent in lassos, some care should be
taken to always use them.

» Corollary 38. For any LTL formula ¢, let k, : C'— LTL be the instantiation of contexts
defined by

ro(e) = N\ (G(T=¥D) = Py

el € CSub(y)

Then, the following statements are equivalent
1. ¢ is valid,
2. ky(p) is valid, and

3. e = (/\c[zpl],c[wg]GCSub(Lp) G (G (¥f = ¥5) = (Pefy) — pqw]))) — ¢? is valid.

Proof sketch (full proof in [8]). Like for CTL, (o(¢))* = o¥(c"), k) = kyu, and pt =
(¢")e. Each implication of the equivalence can be derived as depicted in Figure 2. Notice
that, while o(¢) and o#(p*) are not equivalent in general, they are when evaluated on a
lasso by Lemma 37. This allows going back and forth between LTL and the u-calculus, and
Lemma 25 and Proposition 29 complete the proof. <

Using the procedure just described, we can check that the rules in Figure 1 are valid,
that the Boole-Shannon expansion does not hold in LTL, and one-side implications like

clGpl = clpl, G (a < b) = G (pla] < ¢[b]) and G (a = b) = G (p[a] — ©[b]).

J. Esparza and R. Rubio

LTL L'Ekre(p) pisvalid 2% L = o(p) L'E pe
A |
I k i
pecaleulus L1 Kpu (@) «———n— L |= 0¥ (¢") sy L E
S g 39 TS |
=00 — (3)= (1) @)= (3) -----

Figure 2 Proof summary of Corollary 38 (arrow is problem reduction).

5 Experiments

We have implemented the methods of Propositions 10 and 13 and Corollaries 33 and 38 in a
prototype that takes two contextual formulas as input and tells whether they are equivalent,
one implies another, or they are incomparable.* The prototype is written in Python and calls
external tools for checking validity of ordinary formulas: MiniSat [5] through PySAT [10] for
propositional logic, SPOT 2.11 [4] for LTL, and CTL-SAT [11] for CTL. No tool has been
found for deciding pu-calculus satisfiability, so this logic is currently not supported.

Most formulas of Figure 1 are solved in less than 10 milliseconds by the first and second
methods. The hardest formula is the second one: using the equivalid formula, the largest
automaton that appears in the process has 130 states and it is solved in 16.21 ms; with
the canonical instantiation, the numbers are 36 and 20.22 ms. We have also applied small
mutations to the rules of Figure 1 to yield other identities that may or may not hold (see
Appendix C of [8] for a list). Solving them takes roughly the same time and memory as the
original ones. For CTL, the behavior even with small formulas is much worse because of the
worse performance of CTL-SAT. The canonical context method takes 20 minutes to solve
cla ANb] = c[a] A ¢[b], while the method by the equivalid formula runs out of memory with
that example and requires 22 minutes for the Boole-Shannon expansion. Hence, we have
not continued with further benchmarks on CTL. The first three rows of Table 1 show the
time, peak memory usage (in megabytes), and number of states of the automata (for LTL)
required for checking the aforementioned examples. The experiments have been run under
Linux in an Intel Xeon Silver 4216 machine limited to 8 Gb of RAM. Memory usage is as
reported by Linux cgroups’ memory controller.

In addition to these natural formulas, we have tried with some artificial ones with greater
sizes and nested contexts to challenge the performance of the algorithm. We have considered
two repetitive expansions of the rules in Figure 1:

1. There is a dual of the first rule in Figure 1 that removes a W-node below a U-node:

eUc[thy Wihs] = o Uc[thy Utha] V (FG ¢ A (p A F cftrue]) W c[1h1 W 1h]).

Then, we can build formulas like ¢1[ty U] W (n = 1), c1[th1 U ca[tha W bs]] W
(n =2), c1[t)1 Ucaltha W ez[ths U ¢4]]] W ¢ (n = 3), and so on, and apply the first rule of
the rewrite system and its dual to obtain the normalized right-hand side. Table 1 shows
that the first method does not finish within an hour for n = 2, and the second reaches this
time limit for n = 3. For n = 2 the second method checks the emptiness of an automaton
of 1560 states (and another of 720 states for the other side of the implication).

4 The prototype and its source code are publicly available at https://github.com/ningit/ctxform.

24:15

CONCUR 2024

https://github.com/ningit/ctxform

24:16

Validity of Contextual Formulas

Table 1 Compared performance with the challenging examples (memory in Mb).

Method 1 Method 2

Example Time | Memory | States Time | Memory | States

Shannon Bool 8.18 ms 3.67 15.08 ms 3.67
LTL 5 ms 2.62 9 8.07 ms 2.62 12
Rules [9] (max) 23.88 ms 5.24 36 16.21 ms 4.71 130
Mutated (max) 44.12 ms 5.72 48 31.68 ms 4.98 130
0 1.66 ms 1.05 4 1.53 ms 1.05 4
(1) 1 17.40 ms 4.92 36 15.62 ms 4.46 130
2 timeout 3:25 min 413.83 1560
1 36.19 ms 5.24 45 22.40 ms 5.24 80
(2) 2 623.07 ms 26.96 168 || 117.79 ms 10.49 160
3 5:21 min | 1245.95 1140 26.04 s 100.25 220

2. The third and fourth rules of Figure 1 can also be nested. We can consider ¢o[FG ¢ [p]]
(n=1), ¢o[FG c1[GF c2[p]]] (n =2), ¢o|FG c1|GF c2[FG c3[pl]]]] (n = 3), and so on. We
also take cg = ¢; = -+ - = ¢, to make the problem harder. As shown in Table 1, we can
solve up to n = 3 within the memory constraints.

6 Conclusions

We have presented two different methods to decide the validity and satisfiability of contextual
formulas in propositional logic, LTL, CTL, and the u-calculus. Moreover, we have shown that
these problems have the same complexity for contextual and ordinary formulas. Interesting
contextual equivalences can now be checked automatically. In particular, we have replaced
the manual proofs of the several LTL simplification rules in [9] to a few milliseconds of
automated check.

While we have limited our exposition to formulas in negation normal form, and hence to
monotonic contexts, the results for propositional logic, CTL, and LTL can be generalized to
the unrestricted syntax of the corresponding logics and to arbitrary contexts. Some clues are
given in Appendix B of [8].

—— References

1 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021. doi:10.3233/FAIA336.

2 Julian C. Bradfield and Igor Walukiewicz. The mu-calculus and model checking. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 871-919. Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

3 Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Introduction to model checking.
In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors,
Handbook of Model Checking, pages 1-26. Springer, 2018. doi:10.1007/978-3-319-10575-8_1.

4 Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexan-
dre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jéréme
Dubois, Clément Gillard, and Henrich Lauko. From Spot 2.0 to Spot 2.10: What’s
new? In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
11, volume 13372 of Lecture Notes in Computer Science, pages 174—187. Springer, 2022.
doi:10.1007/978-3-031-13188-2_9.

https://doi.org/10.3233/FAIA336
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-031-13188-2_9

J. Esparza and R. Rubio

10

11

12

Niklas Eén and Niklas Sorensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502-518. Springer, 2003.
d0i:10.1007/978-3-540-24605-3_37.

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 995-1072.
Elsevier and MIT Press, 1990. doi:10.1016/B978-0-444-88074-1.50021-4.

E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. J. Comput. Syst. Sci., 30(1):1-24, 1985. doi:10.1016/
0022-0000(85)90001-7.

Javier Esparza and Rubén Rubio. Validity of contextual formulas (extended version). arXiv,
2024. doi:10.48550/arXiv.2407.07759.

Javier Esparza, Rubén Rubio, and Salomon Sickert. Efficient normalization of linear temporal
logic. J. ACM, 71(2):16:1-16:42, 2024. doi:10.1145/3651152.

Alexey Ignatiev, Anténio Morgado, and Jodo Marques-Silva. PySAT: A Python toolkit for
prototyping with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors,
Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Ozford, UK, July

9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 428—-437.

Springer, 2018. doi:10.1007/978-3-319-94144-8_26.

Nicola Prezza. CTL (Computation Tree Logic) SAT solver, 2014. URL: https://github.

com/nicolaprezza/CTLSAT.

Rubén Rubio. Equivalence checker for contextual formulas. Software (visited on 2024-07-25).

URL: https://github.com/ningit/ctxform.

24:17

CONCUR 2024

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.48550/arXiv.2407.07759
https://doi.org/10.1145/3651152
https://doi.org/10.1007/978-3-319-94144-8_26
https://github.com/nicolaprezza/CTLSAT
https://github.com/nicolaprezza/CTLSAT
https://github.com/ningit/ctxform

	1 Introduction
	2 The contextual µ-calculus
	3 Validity of contextual propositional formulas
	3.1 Canonical instantiations
	3.2 A polynomial reduction

	4 Validity of contextual µ-calculus formulas
	4.1 Variable and propositional substitutions
	4.2 Canonical instantiation
	4.3 A polynomial reduction
	4.4 Validity of contextual CTL formulas
	4.5 Validity of contextual LTL formulas

	5 Experiments
	6 Conclusions

