
A Unifying Categorical View of Nondeterministic
Iteration and Tests
Sergey Goncharov #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Tarmo Uustalu #

Reykjavik University, Iceland, and Tallinn University of Technology, Estonia

Abstract
We study Kleene iteration in the categorical context. A celebrated completeness result by Kozen
introduced Kleene algebra (with tests) as a ubiquitous tool for lightweight reasoning about program
equivalence, and yet, numerous variants of it came along afterwards to answer the demand for more
refined flavors of semantics, such as stateful, concurrent, exceptional, hybrid, branching time, etc.
We detach Kleene iteration from Kleene algebra and analyze it from the categorical perspective. The
notion, we arrive at is that of Kleene-iteration category (with coproducts and tests), which we show
to be general and robust in the sense of compatibility with programming language features, such as
exceptions, store, concurrent behaviour, etc. We attest the proposed notion w.r.t. various yardsticks,
most importantly, by characterizing the free model as a certain category of (nondeterministic)
rational trees.

2012 ACM Subject Classification Theory of computation Ñ Categorical semantics; Theory of
computation Ñ Axiomatic semantics

Keywords and phrases Kleene iteration, Elgot iteration, Kleene algebra, coalgebraic resumptions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.25

Related Version Full Version: https://arxiv.org/abs/2407.08688

Funding Sergey Goncharov: German Research Foundation (DFG) project 501369690, Icelandic
Research Fund project 228684-052
Tarmo Uustalu: Icelandic Research Fund project 228684-052

1 Introduction

Axiomatizing notions of iteration both algebraically and categorically is a well-established
topic in computer science where two schools of thought can be distinguished rather crisply:
the first one is based on the inherently nondeterministic Kleene iteration, stemming from the
seminal work of Stephen Kleene [22] and deeply rooted in automata and formal language
theory; the second one stems from another seminal work – by Calvin Elgot [12] – and is based
on another notion of iteration, we now call Elgot iteration. The most well-known instance
of Kleene iteration is the one that is accommodated in the algebra of regular expressions
where a˚ represents n-fold compositions a ¨ ¨ ¨ a and n nondeterministically ranges over all
naturals. More abstractly, Kleene iteration is an operation of the following type:

p : X Ñ X

p˚ : X Ñ X

Intuitively, we think of p as a program whose inputs and outputs range over X, and of p˚

as a result of composing p nondeterministically many times with itself. Elgot iteration, in
contrast, is agnostic to nondeterminism, but crucially relies on the categorical notion of
binary coproduct, and thus can only be implemented in categorical or type-theoretic setting.

© Sergey Goncharov and Tarmo Uustalu;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 25; pp. 25:1–25:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergey.goncharov@fau.de
https://orcid.org/0000-0001-6924-8766
mailto:tarmo@ru.is
https://orcid.org/0000-0002-1297-0579
https://doi.org/10.4230/LIPIcs.CONCUR.2024.25
https://arxiv.org/abs/2407.08688
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 A Unifying Categorical View of Nondeterministic Iteration and Tests

Concretely, the typing rule for Elgot iteration is

p : X Ñ Y ` X

p: : X Ñ Y
(:)

That is, given a program that receives an input from X, and can output either to Y or
to X, p: self-composes p precisely as long as p outputs to X.

A profound exploration of both versions of iteration and their axiomatizations in the
categorical context, more precisely, in the context of Lavwere theories, has been done by
Bloom and Ésik in a series of papers and subsumed in their monograph [6]. One outcome of
this work is that in the context of Lawvere theories, in presence of nondeterminism, Kleene
iteration and Elgot iteration are essentially equivalent – the ensuing theory was dubbed
iteration grove theory [5]. The existing analysis still does not cover certain aspects, which we
expressly address in our present work, most importantly, the following.

Lavwere theories are only very special categories, while iteration is a common ingredient
of semantic frameworks, which often involve it directly via an ambient category with
coproducts, and not via the associated Lavwere theory.
Previous results on the equivalence of Elgot iteration and Kleene iteration do not address
the connection between control mechanisms involved in both paradigms: Elgot iteration
fully relies on coproducts for making decisions whether to continue or to end the loop,
while Kleene iteration for the same purpose uses an additional mechanism of tests [24],
which are specified axiomatically and thus yield a higher degree of flexibility.
A key feature of Kleene iteration of Kleene algebra, are the quasi-equational laws, which
can be recast [16] to a form of the versatile and powerful uniformity principle (e.g. [36]).
The latter is parameterized by a class of well-behaved elements, which in Kleene algebra
coincide with the algebra’s entire carrier. However, in many situations, this class has to
be restricted, which calls for axiomatizing it, analogously to tests.

Here, we seek a fundamental, general and robust categorical notion of Kleene iteration, which
addresses these issues, is in accord with Elgot iteration and the corresponding established
laws for it (Elgot iteration operators that satisfy these laws are called Conway operators). In
doing so, we depart from the laws of Kleene algebra, and relax them significantly. Answering
the question how to do this precisely and in a principled way is the main insight of our work.

Let us dwell briefly on the closely related issues of generality and robustness. The laws
of Kleene algebra, as originally axiomatized by Kozen [23], capture a very concrete style of
semantics, mirrored in the corresponding free model, which is the algebra of regular events,
i.e. the algebra of regular sets of strings over a finite alphabet of symbols, with iteration
rendered as a least fixpoint. Equations validated by this model are thus shared by the whole
class of Kleene algebras. By regarding Kleene algebra terms as programs, the interpretation
over the free model can be viewed as finite trace semantics of linear-time nondeterminism.
A standard example of properly more fine-grained – branching-time – nondeterminism is
(bisimulation-based) process algebra, which fails the Kleene algebra’s law of distributivity
from the left:

p ; pq ` rq “ p ; q ` p ; r. (1)

Similarly, if we wanted to allow our programs to raise exceptions, the laws of Kleene algebra
would undesirably force all exceptions to be equal:

raise e1 “ raise e1 ; 0 “ 0 “ raise e2 ; 0 “ raise e2.

S. Goncharov and T. Uustalu 25:3

Here, we combine the law p ; 0 “ 0 of Kleene algebra with the equation raisei ; p “ raisei that
alludes to the common programming knowledge that raising an exception exits the program
instantly and discards any subsequent fragment p. The resulting equality raise e1 “ raise e2
states that raising exception e1 is indistinguishable from raising exception e2.

We can interpret these and similar examples as evidence that the axioms of Kleene
algebra are not sufficiently robust under extensions by programming language features. More
precisely, Kleene algebras can be scaled up to Kleene monads [17], and thus reconciled with
Moggi’s approach to computational effects [30]. An important ingredient of this approach
are monad transformers, which allow for combining effects in a principled way. For example,
one uses the exception monad transformer to canonically add exception raising to a given
monad. The above indicates that Kleene monads are not robust under this transformer.

Finally, even if we accept all iteration-free implications of Kleene algebra, these will not
jointly entail the following identity:

1˚ “ 1, (2)

which is however entailed by the Kleene algebra axioms. One setting where (2) is undesirable
is domain theory, which insists on distinguishing deadlock from divergence, in particular, (2)
is failed by interpreting programs over the Plotkin powerdomain [33]. Intuitively, (2) states
that, if a loop may be exited, it will eventually be exited, while failure of (2) would mean
that the left program may diverge, while the right program must converge, and this need not
be the same. Let us call the corresponding variant of Kleene algebra, failing (2), may-diverge
Kleene algebra. However, it is not a priori clear how the axioms of may-diverge Kleene
algebras must look like, given that (2) is not a Kleene algebra axiom, but a consequence
of the assumption that Kleene iteration is a least fixpoint. Hence, in may-diverge Kleene
algebras Kleene iteration is not a least fixpoint (w.r.t. the order, induced by `).

The notion we develop and present here is that of Kleene-iteration category (with tests)
(KiC(T)). It is designed to address the above issues and to provide a uniform general and
robust framework for Kleene iteration in a category. We argue in various ways that KiC(T)
is in a certain sense the most basic practical notion of Kleene iteration, most importantly by
characterizing its free model, as a certain category of (nondeterministic) rational trees.

Related work. The (finite or ω-complete) partially additive categories (PACs) by Arbib
and Manes [2] and the PACs with effects of Cho [8] are similar in spirit to KiCs in that they
combine structured homsets and coproducts, but significantly more special; in particular they
support relational, sets of traces and similar semantics, but not branching time semantics.
A PAC is a category with coproducts enriched in partial commutative monoids (PMC).
The PMC structure of homsets and the coproducts are connected by axioms that make the
PMC structure unique. In an ω-complete PAC, these axioms also ensure the presence of an
Elgot iteration operator, which is computed as a least fixpoint. A PAC with effects comes
with a designated effect algebra object; this defines a wide subcategory of total morphisms,
with coproducts inherited from the whole category. Effectuses [21] achieve the same as
PACs with effects, but starting with a category of total morphisms and then adding partial
morphisms. Cockett [9] recently proposed a notion of iteration in a category, based on
restriction categories, and analogous to Elgot iteration (:), but avoiding binary coproducts
in favor of a suitably axiomatized notion of disjointness for morphisms.

In the strand of Kleene algebra, various proposals were made with utilitarian motivations
to weaken or modify the Kleene algebra laws, and thus to cope with process algebra [14],
branching behaviour [31], probability [27], statefulness [20], graded semantics [15], without

CONCUR 2024

25:4 A Unifying Categorical View of Nondeterministic Iteration and Tests

however aiming to identify the conceptual core of Kleene iteration, which is our objective here.
A recent move within this tendency is to eliminate nondeterminism altogether, with guarded
Kleene algebras [37], which replace nondeterministic choice and iteration with conditionals
and while-loops. This is somewhat related to our analysis of tests and iteration via while-loops,
but largely orthogonal to our main objective to stick to Kleene iteration as nondeterministic
operator in the original sense. Our aim to reconcile Kleene algebra, (co)products and Elgot
iteration is rather close to that of Kozen and Mamouras [25].

Our characterization of the free KiCT in a way reframes the original Kozen’s characteriz-
ation of the free Kleene algebra [23]. We are not generalizing this result though, essentially
because we work in categories with coproducts, while a true generalization would only be
achieved via categories without any extra structure (noting that algebras are single-object
categories). This distinction becomes particularly important in the context of branching time
semantics, which we also cover by allowing a controlled use of programs that fail distributivity
from the left (1). An axiomatization for such semantics has been proposed by Milner [29]
and was shown to be complete only recently [19]. Again, we are not generalizing this result,
since the definability issues, known to be the main obstruction for completeness arguments
there, are not effective in presence of coproducts.

Plan of the paper. We review minimal notations and conventions from category theory in
Section 2. We then introduce idempotent grove and Kleene-Kozen categories in Section 3 to
start off. In Section 4, we formally compare two control mechanisms in categories: decisions
and tests. In Sections 5, 6, we establish equivalent presentations of nondeterministic iteration
as Kleene iteration, as Elgot iteration and as while-iteration. In Section 7 we construct a
free model for our notion of iteration, and then come to conclusions in Section 8.

2 Notations and Conventions

We assume familiarity with the basics of category theory [26, 3]. In a category C, |C| will
denote the class of objects and CpX, Y q will denote the set of morphisms from X to Y .
The judgement f : X Ñ Y will be regarded as an equivalent to f P CpX, Y q if C is clear
from the context. We tend to omit indexes at natural transformations for readability. A
subcategory D of C is called wide if |C| “ |D|. We will use diagrammatic composition ; of
morphisms throughout, i.e. given f : X Ñ Y and g : Y Ñ Z, f ; g : X Ñ Z. We will denote
by 1X , or simply 1 the identity morphism on X.

Coproducts. In this paper, by calling C “a category with coproducts” we will always mean
that C has selected binary coproducts, i.e. that a bi-functor ‘ : C ˆ C Ñ C exists such
that X ‘ Y is a coproduct of X and Y . In such a category, we write in0 : X Ñ X ‘ Y

and in1 : Y Ñ X ‘ Y for the left and right coproduct injections correspondingly. We will
occasionally condense ini ; inj to ini j for the sake of succinctness.

Monads. A monad T on C is determined by a Kleisli triple pT, η, p´q7q, consisting of a
map T : |C| Ñ |C|, a family of morphisms pηX : X Ñ TXqXP|C| and Kleisli lifting sending
each f : X Ñ TY to f 7 : TX Ñ TY and obeying monad laws:

η7 “ 1, η ; f 7 “ f, pg ; f 7q7 “ g7 ; f 7.

S. Goncharov and T. Uustalu 25:5

It follows that T extends to a functor, η extends to a natural transformation – unit,
µ “ 17 : TTX Ñ TX extends to a natural transformation – multiplication, and that pT, η, µq

is a monad in the standard sense [26]. We will generally use blackboard capitals (such as T)
to refer to monads and the corresponding Roman letters (such as T) to refer to their functor
parts. Morphisms of the form f : X Ñ TY are called Kleisli morphisms and form the Kleisli
category CT of T under Kleisli composition f, g ÞÑ f ; g7 with identity η. If C has binary
coproducts then so does CT: the coproduct injections are Kleisli morphisms of the form
in0 ; η : X Ñ T pX ‘ Y q, in1 ; η : Y Ñ T pX ‘ Y q.

Coalgebras. Given an endofunctor F : C Ñ C, a pair pX P |C|, c : X Ñ FXq is called an F -
coalgebra. Coalgebras form a category under the following notion of morphism: h : X Ñ X 1

is a morphism from pX, cq to pX 1, c1q if h ; c1 “ c ; Fh. A terminal object in this category is
called a final coalgebra. We reserve the notation pνF, outq for a selected final coalgebra if it
exists. A well-known fact (Lambek’s lemma) is that out is an isomorphism.

For a coalgebra pX, c : X Ñ FXq on Set a relation B Ď X ˆ X is a (coalgebraic)
bisimulation if it extends to a coalgebra pB, b : B Ñ FBq, such that the left and the right
projections from B to X are coalgebra morphisms; x P X and y P X are bisimilar if x B y for
some bisimulation B; the coalgebra pX, c : X Ñ FXq is strongly extensional [38] if bisimilarity
entails equality. Final coalgebras are the primary example of strongly extensional coalgebras.

3 Idempotent Grove and Kleene-Kozen Categories

A monoid is precisely a single-object category. Various algebraic structures extending monoids
can be generalized to categories along this basic observation (e.g. a group is a single-object
groupoid, a quantale is a single-object quantaloid, etc.). In this section, we consider two classes
of categories for nondeterminism and Kleene iteration, which demonstrate our principled
categorical approach of working with algebraic structures.

▶ Definition 1 (Idempotent Grove Category, cf. [4, 5]). Let us call a category C an idempotent
grove category if the hom-sets of CpX, Y q are equipped with the structure p0, `q of bounded
join-semilattice such that, for all p P CpY, Zq and q, r P CpX, Y q,

0 ; p “ 0, pq ` rq ; p “ q ; p ` r ; p. (3)

In such a category, we call a morphism p P CpX, Y q linear if it satisfies, for all q, r P CpY, Zq,

p ; 0 “ 0, p ; pq ` rq “ p ; q ` p ; r. (4)

An idempotent grove category with coproducts is an idempotent grove category with selected
binary coproducts and with in0 and in1 linear.

Given p, q P CpX, Y q, let p ď q if p ` q “ q. This yields a partial order with 0 as the bottom
element, and morphism composition is monotone on the left, while linear morphisms are
additionally monotone on the right. The class of all linear morphisms of an idempotent
grove category thus forms a sub-category enriched in bounded join-semilattices (equivalently:
commutative and idempotent monoids) – thus, an idempotent grove category where all
morphisms are linear is an enriched category. However, we are interested in categories where
not all morphisms are linear. An instructive example is as follows.

CONCUR 2024

25:6 A Unifying Categorical View of Nondeterministic Iteration and Tests

▶ Example 2 (Synchronization Trees). Let A be some non-empty fixed set of labels, and let
TX “ νγ. Pω1 pX ‘Aˆγq where Pω1 is the countable powerset functor. By generalities [39], T

extends to a monad T on Set. The elements of TX can be characterized as countably-
branching strongly extensional synchronization trees with exit labels in X. Synchronization
trees have originally been introduced by Milner [28] as denotations of process algebra terms,
and subsequently generalized to infinite branching and to explicit exit labels (e.g. [1]). A
generic element t P TX can be more explicitly represented using the following syntax:

t “
∑

iPI
ai. ti `

∑
iPJ

xi

where I and J are at most countable, the ai range over A, the ti range over TX, and xi range
over X. The involved summation operators

∑
iPI are considered modulo countable versions

of associativity, commutativity and idempotence, and 0 “
∑

iP∅ ti and t1 ` t2 “
∑

iP{1,2} ti.
Recall that strong extensionality means that bisimilar elements are equal [38]. The

Kleisli category of T is idempotent grove with 0 and ` inherited from Pω1 and ensuring (3)
automatically. It is easy to see that linear morphisms are precisely those that do not
involve actions.

A straightforward way to add a Kleene iteration operator to a category is as follows.

▶ Definition 3 (Kleene-Kozen Category [16]). An idempotent grove category C is a Kleene-
Kozen category if all morphisms of C are linear and there is a Kleene iteration operator
p--q˚ : CpX, Xq Ñ CpX, Xq such that, for any p : X Ñ X, q : Y Ñ X and r : X Ñ Z, the
morphism q ; p˚ is the least (pre-)fixpoint of q ` p--q ; p and the morphism p˚ ; r is the least
(pre-)fixpoint of r ` p ; p--q.

It is known [16] that Kleene algebra is precisely a single-object Kleene-Kozen category.
In idempotent grove categories with coproducts, the following property is a direct con-

sequence of linearity of in0, in1, and will be used extensively throughout.

▶ Proposition 4. In idempotent grove categories with coproducts, rp, qs ` rp1, q1s “

rp ` p1, q ` q1s.

4 Decisions and Tests in Category

We proceed to compare two mechanisms for modeling control in categories: decisions and
tests. The first one is inherently categorical, and requires coproducts. The second one needs
no coproducts, but requires nondeterminism. The latter one is directly inspired by tests of
the Kleene algebra with tests [24]. We will show that tests and decisions are in a suitable
sense equivalent, when it comes to modeling control that satisfies Boolean algebra laws.

▶ Definition 5 (Decisions [10, 16]). In a category C with binary coproducts, we call morphisms
from CpX, X ‘ Xq decisions.

We consider the following operations on decisions, modeling truth values and logical con-
nectives: tt “ in1 (true), ff “ in0 (false), ~ d “ d ; rin1, in0s (negation), d || e “ d ; re, in1s

(disjunction), d && e “ d ; rin0, es (conjunction). Even without constraining decisions in
any way, certain logical properties can be established, e.g. (not necessarily commutative
or idempotent) monoidal structures pff, ||q, ptt, &&q, involutivity of ~, “de Morgan laws”
~ pd || eq “ ~d && ~e, ~ pd && eq “ ~d || ~e, and the laws tt || d “ tt, ff && d “ ff.

Given d P CpX, X ‘ Xq and p, q P CpX, Y q, let

if d then p else q “ d ; rq, ps. (5)

S. Goncharov and T. Uustalu 25:7

▶ Definition 6 (Tests). Given an idempotent grove category C, we call a family of linear
morphisms C? “ pC?pXq Ď CpX, XqqXP|C| tests if every C?pXq forms a Boolean algebra
under ; as conjunction and ` as disjunction.

It follows that 1 P C?pXq and 0 P C?pXq correspondingly are the top and bottom elements
of C?pXq. Given b P C?pXq, p, q P CpX, Y q, let

if b then p else q “ b ; p ` b̄ ; q. (6)

In an idempotent grove category C with coproducts and tests C?, let ? : CpX, X ‘ Xq Ñ

C?pXq be the morphism d? “ d ; r0, 1s.

▶ Proposition 7. Let C be an idempotent grove category with coproducts. If a decision d is
linear, then, for all p and q, we have if d then p else q “ if d? then p else q.

Let us say that a pair pb, cq P CpX, Xq ˆ CpX, Xq satisfies (the law of) contradiction if
b ; c “ 0, and that it satisfies (the law of) excluded middle if b ` c “ 1. The following
characterization is instructive.

▶ Proposition 8. Given an idempotent grove category C, a family of linear morphisms
C? “ pC?pXq Ď CpX, XqqXP|C| forms tests for C iff, for every b P C?, there is b̄ P C? such
that pb, b̄q satisfies contradiction and excluded middle.

Note that the smallest choice of tests in C is C?pXq “ {0, 1}. We proceed to characterize
the smallest possible choice of tests, sufficient for modeling control.

▶ Definition 9 (Expressive Tests). We call the tests C? expressive if every C?pXq con-
tains rin0, 0s whenever X “ X1 ‘ X2.

▶ Lemma 10. The smallest expressive family of tests always exists and is obtained by closing
tests of the form 0, 1, rin0, 0s, and r0, in1s under ` and ; .

In the sequel, we will use the notation J, K, ^, _ for tests, synonymously to 1, 0, ; , ` to
emphasize their logical character.

▶ Lemma 11. Let C? be tests in an idempotent grove category C with binary coproducts.
1. The morphisms ˛ : C?pXq Ñ CpX, X ‘ Xq, ?: CpX, X ‘ Xq Ñ C?pXq defined by ˛ b “

b̄ ; in0 `b ; in1, d? “ d ; r0, 1s form a retraction.
2. Every morphism d in the image of ˛ is linear. Moreover, we have d ; ∇ “ 1, d “ d && d,

and d “ d || d.
3. For all e and d in the image of ˛, it holds that pe || dq? “ e? _ d?, pe && dq? “ e? ^ d?,

and p ~dq? “ d?.

Lemma 11 indicates that in presence of coproducts and with linear coproduct injections,
instead of Boolean algebras on subsets of CpX, Xq, one can equivalently work with Boolean
algebras on subsets of CpX, X ‘ Xq.

We conclude this section by an illustration that varying tests, in particular, going beyond
smallest expressive tests is practically advantageous.

▶ Example 12. Consider the nondeterministic state monad T with TX “ PpS ˆXqS on Set,
where S is a fixed global store, which the programs, represented by Kleisli morphisms of T
are allowed to read and modify. Morphisms of the Kleisli category SetT are equivalently (by
uncurrying) maps of the form p : S ˆ X Ñ PpS ˆ Y q, meaning that SetT is equivalent to
a full subcategory of SetP , from which SetT inherits the structure of an idempotent grove

CONCUR 2024

25:8 A Unifying Categorical View of Nondeterministic Iteration and Tests

in0 ; rp, qs “ p in1 ; rp, qs “ q rin0, in1s “ 1 rp, qs ; r “ rp ; r, q ; rs

0 ` p “ p p ` p “ p p ` q “ q ` p pp ` qq ` r “ p ` pq ` rq

0 ; p “ 0 pq ` rq ; p “ q ; p ` r ; p u ; 0 “ 0 u ; pp ` qq “ u ; p ` u ; q

p˚-Fixq p˚ “ 1 ` p ; p˚ p˚-Sumq pp ` qq˚ “ p˚ ; pq ; p˚q˚ p˚-Uniq
u ; p “ q ; u

u ; p˚ “ q˚ ; u

Figure 1 Axioms of KiCs, including binary coproducts (p, q, r range over C, u ranges over C).

category. The tests identified in Lemma 10 are those maps b : S ˆ X Ñ PpS ˆ Xq that are
determined by decompositions X “ X1 ‘ X2, in particular, they can neither read nor modify
the store. In practice, only the second is regarded as undesirable (and indeed would break
commutativity of tests), while reading is typically allowed. This leads to a more permissive
notion of tests, as those that are determined by the decompositions S ˆ X “ X1 ‘ X2.

5 Kleene Iteration, Categorically

We now can introduce our central definition by extending idempotent grove categories with
a selected class of linear morphisms, called tame morphisms, and with Kleene iteration.
Crucially, we assume the ambient category C to have coproducts as a necessary ingredient.
Finding a general definition, not relying on coproducts, presently remains open.

▶ Definition 13 (KiC(T)). We call a tuple pC, Cq a Kleene-iteration category (KiC) if
1. C is an idempotent grove category with coproducts;
2. C is a wide subcategory of C, whose morphisms we call tame such that

C has coproducts strictly preserved by the inclusion to C;
the morphisms of C are all linear;

3. for every X P |C|, there is a Kleene iteration operator p--q˚ : CpX, Xq Ñ CpX, Xq such
that the laws ˚-Fix, ˚-Sum and ˚-Uni in Figure 1, with u ranging over C, are satisfied.

A functor F : pC, Cq Ñ pD, Dq between KiCs is a coproduct preserving functor F : C Ñ D
such that F 0 “ 0, F pq ` rq “ Fq ` Fr and Fp˚ “ pFpq˚ for all q, r P CpX, Y q, p P CpX, Xq,
and Fp P DpFX, FY q for all p P CpX, Y q.

A KiC pC, Cq equipped with a choice of tests C? in C we call a KiCT (=KiC with tests).
Correspondingly, functors between KiCTs are additionally required to send tests to tests.

It transpires from the definition that the role of tameness is to limit the power of the uniformity
rule ˚-Uni. The principal case for C ‰ C is Example 2. As we see later (Example 24), this
yields a KiC. More generally, unless we restrict C to programs that satisfy the linearity
laws (4), the uniformity principle ˚-Uni would tend to be unsound. Very roughly, uniformity
is some infinitary form of distributivity from the left and it fails for programs that fail
the standard left distributivity. This phenomenon is expected to occur for other flavors of
concurrent semantics: as long as C admits morphisms that fail (4), C would have to be
properly smaller than C. Apart from concurrency, if C models a language with exceptions,
those must be excluded from C, for otherwise uniformity would again become unsound.

If we demand all morphisms to be tame, we will obtain a notion very close to that of
Kleene-Kozen category (Definition 3).

S. Goncharov and T. Uustalu 25:9

▶ Definition 14 (˚-Idempotence). A KiC is ˚-idempotent if it satisfies (2).

▶ Proposition 15. A category C is Kleene-Kozen iff pC, Cq is a ˚-idempotent KiC.

Proof. As shown previously [16], C is a Kleene-Kozen category iff
1. C is enriched over bounded join-semilattices and strict join-preserving morphisms;
2. there is an operator p--q˚ : CpX, Xq Ñ CpX, Xq such that

a. p˚ “ 1 ` p ; p˚;
b. 1˚ “ 1;
c. p˚ “ pp ` 1q˚;
d. u ; p “ q ; u implies u ; p˚ “ q˚ ; u.

This yields sufficiency by noting that (1) states precisely that all morphisms in C are linear. To
show necessity, it suffices to obtain (2.c) from the assumptions that pC, Cq is a ˚-idempotent
KiC and that all morphisms in C are linear. Indeed, we have pp`1q˚ “ 1˚ ; pp; 1˚q˚ “ p˚. ◀

KiCs thus deviate from Kleene algebras precisely in four respects:
1. by generalizing from monoids to categories,
2. by allowing non-linear morphisms,
3. by dropping ˚-idempotence, and
4. by requiring binary coproducts.

▶ Example 16. The axiom ˚-Sum, included in Definition 13, is one of the classical Conway
identities. The other one pp; qq˚ “ 1`p; pq ; pq˚ ; q is derivable if C “ C, e.g. in Kleene-Kozen
categories. Indeed, q ; p ; q “ q ; p ; q entails q ; pp ; qq˚ “ pq ; pq˚ ; q by ˚-Uni, and using ˚-Fix,
pp ; qq˚ “ 1 ` p ; q ; pp ; qq˚ “ 1 ` p ; pq ; pq˚ ; q.

Clearly, this argument remains valid with only q being tame, but otherwise the requisite
identity is not provable.

It may not be obvious why the requirement to support binary coproducts is part of Defini-
tion 13, given that the axioms of iteration do not involve them. The reason is that certain
identities that also do not involve coproducts are only derivable in their presence.

▶ Example 17. The identity p˚ “ pp ; p1 ` pqq˚ holds in any KiC.

A standard way to instantiate Definition 13 is to start with a category V with coproducts, and
a monad T on it, and take C “ VT, C “ V or, possibly, C “ VT. The monad must support
nondeterminism and Kleene iteration so that the axioms of KiC are satisfied. Consider a
class of Kleene-Kozen categories that arise in this way.

▶ Example 18. Let Q be a unital quantale, and let TX “ QX for every set X. Then T

extends to a monad on Set as follows: ηpxqpxq “ 1, ηpxqpyq “ K if x ‰ y, and

pp : X Ñ QY q7pf : X Ñ Qqpy P Y q “
∨

xPX
ppxqpyq ¨ fpxq.

We obtain a Kleene-Kozen structure in SetT as follows:
0 : X Ñ QY sends x to λy. K;
p ` q : X Ñ QY sends x to λy. ppxqpyq _ qpxqpyq;
p˚ : X Ñ QX is the least fixpoint of the map q ÞÑ 1 ` q ; p.

This construction restricts to QX
ω1

“ {f : X Ñ Q | | supp f | ď ω} where supp f is the set of
those x P X, for which fpxq ‰ 0. Thus, e.g. the Kleisli categories of the powerset monad P
and the countable powerset monad Pω1 are Kleene-Kozen.

For a contrast, consider a similar construction that yields a KiC, which is not Kleene-Kozen.

CONCUR 2024

25:10 A Unifying Categorical View of Nondeterministic Iteration and Tests

▶ Example 19. Let Q “ {0, 1, 8} be the complete lattice under the ordering 0 ă 1 ă 8,
and let us define commutative binary multiplication as follows: 0 ¨ x “ 0, 1 ¨ x “ x and
8 ¨ 8 “ 8. This turns Q into a unital quantale, hence an idempotent semiring, whose binary
summation ` is binary join. Next, define infinite summation with the formula

∑
iPI

xi “

{∨
iPI1 xi, if I 1 “ {i P I | xi ą 0} is finite

8, otherwise

This makes Q into a complete semiring [11]. Let us define the monad R and the idem-
potent grove structure on SetR like Q

p--q
ω1 in Example 18 (with

∑
instead of

∨
). For every

f : X Ñ RX, let p˚ “
∑

nPN pn : X Ñ RX where, inductively, p0 “ 1 and pn`1 “ p ; pn,
and infinite sums are extended from Q to the Kleisli hom-sets pointwise.

It is easy to verify that pSetR, SetRq is a KiC, but SetR is not a Kleene-Kozen category,
for ˚-idempotence fails: η˚ “

∑
nPN ηn “

∑
nPN η “ λx, y. 8 ‰ η. We will use a more

convenient notation for the elements of RX as infinite formal sums
∑

iPI xi (xi P X), modulo
associativity, commutativity, idempotence (but without countable idempotence

∑
iPI x “ x!).

Below, we provide two results for constructing new KiCs from old: Theorem 20 and The-
orem 23, which are also used prominently in our characterization result in Section 7.

▶ Theorem 20. Let pC, Cq be a KiC and let T be a monad on C such that
1. Tr˚ “ pTrq˚, for all r P CpX, Xq;
2. the monad T restricts to a monad on C.

Then CT is a subcategory of C and pCT, CTq is a KiCT where 0 and ` are defined as in C,
and for any p : X Ñ TX, the corresponding Kleene iteration is computed as η ; pp7q˚.

Let us illustrate the use of Theorem 20 by a simple example.

▶ Example 21 (Finite Traces). Consider the monad PpA‹ ˆ--q on Set. Elements of PpA‹ ˆXq

are standardly used as (finite) trace semantics of programs. A trace is then a sequence of
actions from A, followed by an end result in X. Of course, it can be verified directly that the
Kleisli category of PpA‹ ˆ --q is Kleene-Kozen. Let us show how this follows from Theorem 20.

The Kleisli category of P is isomorphic to the category of relations, and is obviously
Kleene-Kozen. For P , like for any commutative monad, the Kleisli category SetP is symmetric
monoidal: X b Y “ X ˆ Y and, given p : X Ñ PY , q : X 1 Ñ PY 1,

pp b qqpx, x1q “ {py, y1q | y P ppxq, y1 P qpx1q}.

The set A‹ is a monoid in SetP w.r.t. this monoidal structure. This yields a writer monad T
on SetP via TX “ A‹ b X and pTpqpw, xq “ {pw, yq | y P ppxq}. Its Kleisli category
pSetPqT is isomorphic to our original Kleisli category of interest. The assumptions (1)
of Theorem 20 are thus satisfied in the obvious way. The assumption (2) is vacuous, as we
chose all morphisms to be tame.

Finally, we establish robustness of KiCs under the generalized coalgebraic resumption monad
transformer [32, 18], which is defined as follows.

▶ Definition 22 (Coalgebraic Resumptions). Let V be a category with coproducts and let T be
a monad on V. Let H : V Ñ V be some endofunctor and assume that all final coalgebras
νγ. T pX ‘ Hγq exist. The assignment X ÞÑ νγ. T pX ‘ Hγq yields a monad TH , called the
(generalized) coalgebraic resumption monad transformer of T.

S. Goncharov and T. Uustalu 25:11

▶ Theorem 23. Let TH be as in Definition 22 and such that pVT, Cq is a KiC for some
choice of C. Then VT is a wide subcategory of VTH

and pVTH
, Cq is a KiC w.r.t. the

following structure:
the bottom element in every VpX, THY q is 0 ; out-1, and the join of p, q P VpX, THY q is
pp ; out ` q ; outq ; out-1;
given p P VpX, THXq, p˚ P VpX, THXq is the unique solution of the equation

p˚ ; out “ in0 ; rp ; out, 0s˚ ; T p1 ‘ Hp˚q.

We defer the proof to Section 6 where we use reduction to the existing result [18], using the
equivalence of Kleene and Elgot iterations, we establish in Section 6.

▶ Example 24. By taking T “ Pω1 and H “ A ˆ -- in Theorem 23, we obtain THX “

νγ. Pω1 pX ‘ A ˆ γq from Example 2. Let us illustrate the effect of Kleene iteration by
example. Consider the system of equations

P “ a. P ` Q, Q “ b. Q ` P

for defining the behaviour of two processes P and Q. This system induces a function
p : {P, Q} Ñ TH{P, Q}, sending P to a. P ` Q and Q to b. Q ` P . The expression rp ; out, 0s˚

calls the iteration operator of the powerset-monad, resulting in the function that sends
both P and Q to a. P ` b. Q ` Q ` P . Finally, p˚ sends P to P 1 and Q to Q1, where P 1

and Q1 are the synchronization trees, obtained as unique solutions of the system:

P 1 “ a. P 1 ` b. Q1 ` Q ` P, Q “ a. P 1 ` b. Q1 ` Q ` P.

6 Elgot Iteration and While-Loops

In this section, we establish an equivalence between Kleene iteration, in the sense of KiC and
Elgot iteration, as an operation with the following profile in a category C with coproducts:

p--q: : CpX, Y ‘ Xq Ñ CpX, Y q. (7)

This could be done directly, but we prove an equivalence between Elgot iteration and while-
loops first, and then prove the equivalence of the latter and Kleene iteration. In this chain of
equivalences, only while-loops need tests, and it will follow that a particular choice of tests is
not relevant, once they are expressive. On the other hand, existence of expressive tests is
guaranteed by Lemma 10. This explains why tests disappear in the resulting equivalence.

▶ Definition 25 (Conway Iteration, Uniformity). An Elgot iteration operator (7) in a category C
with coproducts is Conway iteration [13] if it satisfies the following principles:

Naturality : p: ; q “ pp ; pq ‘ 1qq: Dinaturality : pp ; rin0, qsq: “ p ; r1, pq ; rin0, psq:s

Codiagonal : pp ; r1, in1sq: “ p::

Moreover, given a subcategory D of C, p--q: is uniform w.r.t. D, or D-uniform, if it satisfies

Uniformity : u ; q “ p ; p1 ‘ uq

u ; q: “ p:
(with u from D)

By taking q “ in1 in Dinaturality, we derive

Fixpoint : p ; r1, p:s “ p:.

CONCUR 2024

25:12 A Unifying Categorical View of Nondeterministic Iteration and Tests

DW-Fix: while d do p “ if d then p ; pwhile d do pq else 1

DW-Or: while pd || eq do p “ pwhile d do pq ; while e do pp ; while d do pq

DW-And: while pd && pe || ttqq do p “ while d do pif e then p else pq

DW-Uni: u ; if d then p ; tt else ff “ if e then q ; u ; tt else v ; ff
u ; while d do p “ pwhile e do qq ; v

Figure 2 Uniform Conway iteration in terms of decisions.

▶ Theorem 26. Let C be a category with coproducts, let D be its wide subcategory with
coproducts, preserved by the inclusion, and let for every X P |C|, C˛pXq be a set of decisions
such that (i) in0, in1 P C˛pXq, (ii) C˛pXq is closed under (5), (iii) in0 ‘ in1 P C˛pXq if
X “ X1 ‘ X2. Then, to give a D-uniform Conway iteration on C is the same as to give an
operator

d P C˛pXq p P CpX, Xq

while d do p P CpX, Xq

that satisfies the laws in Figure 2 with p, q ranging over C, and with u, v ranging over D.

Theorem 26 yields an equivalence between two styles of iteration: Elgot iteration and while-
iteration. We next specialize it to idempotent grove categories with tests using Lemma 11.

Note that in any KiC pC, Cq with tests C?, in addition to the if-then-else (6), we have
the while operator, defined in the standard way: given b P C?pXq, p P CpX, Xq,

while b do p “ pb ; pq˚ ; b̄. (8)

▶ Proposition 27. Let C be an idempotent grove category, let D be a wide subcategory of C
with coproducts, which are preserved by the inclusion to C, and with expressive tests C?.
Then C supports D-uniform Conway iteration iff it supports a while-operator that satisfies
the laws in Figure 3, where b and c come from C?, p and q come from C and u, v come
from D and the if-then-else operator is defined as in (8).

Proof. For every X P |C|, let C˛pXq be the image of C?pXq under ˛ from Lemma 11. As
shown in the lemma, C˛pXq inherits the Boolean algebra structure from C?pXq. Using the
isomorphism between C˛pXq and C?pXq and Proposition 7, the laws from Figure 2 can be
reformulated equivalently, resulting in TW-Fix, TW-Or, TW-Uni, and additionally

while pb ^ pc _ Jqq do p “ while b do pif c then p else pq

which however holds trivially. ◀

Thus, in grove categories with expressive tests, Elgot iteration and while-loops are equivalent.
We establish a similar equivalence between Kleene iteration and while-loops, which will entail
an equivalence between Elgot iteration and Kleene iteration by transitivity.

▶ Theorem 28. Let C, C and C? be as follows.
1. C is an idempotent grove category with coproducts.
2. C is a wide subcategory of C with coproducts, consisting of linear morphisms only and

such that the inclusion of C to C preserves coproducts.
3. C? are expressive tests in C.

Then pC, Cq is a KiCT iff C supports a while-operator satisfying the laws in Figure 3.

S. Goncharov and T. Uustalu 25:13

TW-Fix: while b do p “ if b then p ; pwhile b do pq else 1

TW-Or: while pb _ cq do p “ pwhile b do pq ; while c do pp ; while b do pq

TW-Uni: u ; b̄ “ c̄ ; v u ; b ; p “ c ; q ; u

u ; while b do p “ pwhile c do qq ; v

Figure 3 Uniform Conway iteration in terms of tests.

We can now characterize KiCs in terms of Elgot iteration.

▶ Theorem 29. Let C be an idempotent grove category with coproducts, and let C be a
wide subcategory of C with coproducts, consisting of linear morphisms only and such that the
inclusion of C to C preserves coproducts.

Then pC, Cq is a KiC iff C supports C-uniform Conway iteration.

Proof. Let us define C? as in Definition 9. By Theorem 28, pC, Cq is a KiCT iff C supports
a while-operator, satisfying the laws in Figure 3. By Proposition 27, the latter is the case
iff C supports C-uniform Conway iteration. ◀

Now we can prove Theorem 23.

Proof Theorem 23 (Sketch). We need to check that pVTH
, Cq is a KiC. By Theorem 29, we

equivalently prove that VTH
supports C-uniform Conway iteration. It is already known [18,

Lemma 7.2] that if T supports Conway iteration, then so does TH . By Theorem 29, we are
left to check that TH satisfies Uniformity, which is a matter of calculation. ◀

7 Free KiCTs and Completeness

In this section, we characterize a free KiCT with strict coproducts (i.e. those, for which
coherence maps X ‘ pY ‘ Zq – pX ‘ Y q ‘ Z are identities) on a one-sorted signature. We
achieve this by combining techniques from formal languages [7], category theory and the
theory of Elgot iteration with coalgebraic reasoning [34], in particular proofs by coalgebraic
bisimilarity. We claim that a more general characterization of a free KiCT on a multi-sorted
signature can be achieved along the same lines, modulo a significant notation overhead and
the necessity to form final coalgebras in the category of multisorted sets SetS where S is the
set of sorts. We dispense with this option for the sake of brevity and readability. Let us fix

a signatures of n-ary symbols Σn for each n P N, and let Σ “
⋃

n Σn;
a signature Γ of (unary) symbols, disjoint from Σ;
a finite (!) signature Θ of (unary) symbols, disjoint from Σ Y Γ.

Let Θ̂ denote the set of finite subsets of Θ. We regard Θ as a signature for tests, Γ as
a signature for tame morphisms and Σ as a signature for general morphisms; Θ̂ is meant
to capture finite conjunctions of the form b1 ^ . . . ^ bn ^ b̄n`1 ^ . . . ^ b̄m as semantic
correspondents of subsets {b1, . . . , bn} P Θ̂, assuming an enumeration Θ “ {b1, . . . , bm}.
This is inspired by Kleene algebra with tests [24]. Furthermore, we accommodate guarded
strings from op. cit.: let ΓΘ be the set of strings ⟨b1, u1, . . . , bn, un, bn`1⟩ with ui P Γ, bi P Θ̂.

CONCUR 2024

25:14 A Unifying Categorical View of Nondeterministic Iteration and Tests

7.1 Interpretations
An interpretation J--K of pΣ, Γ, Θq over a KiCT pC, C, C?q is specified as follows:

J1K P |C| JfK P CpJ1K, JnKq pf P Σnq

JuK P CpJ1K, J1Kq pu P Γq JbK P C?pJ1K, J1Kq pb P Θq

where JnK abbreviates the n-fold sum J1K ‘ . . . ‘ J1K. The latter immediately extends to Θ̂:
J{ }K “ 1, J{b1, . . . , bn}K “ b1 ; . . . ; bn ; b̄n`1 ; . . . ; b̄m, assuming that Θ “ {b1, . . . , bm}.
Note that we interpret n-ary symbols over CpJ1K, JnKq “ CoppJ1Kn, J1Kq. This equation seems
to suggest that it could be more natural to use categories with products as models, rather
than categories with coproducts. Our present choice helps us to treat generic KiCTs on the
same footing with the free KiCT, which is defined in terms of coproducts and not products.

▶ Definition 30 (Free KiCT). A free KiCT w.r.t. pΣ, Γ, Θq is a KiCT pFΣ,Γ,Θ,FΣ,Γ,Θ,F?
Σ,Γ,Θq

together with an interpretation of pΣ, Γ, Θq in FΣ,Γ,Θ, such that for any other inter-
pretation of pΣ, Γ, Θq over a KiCT pC, C, C?q, there is unique compatible functor from
FΣ,Γ,Θ to C. More formally, for any interpretation J--K, there is unique KiCT-functor
J--K� : pFΣ,Γ,Θ,FΣ,Γ,Θ,F?

Σ,Γ,Θq Ñ pC, C, C?q such that the diagram

FΣ,Γ,Θ C

pΣ, Γ, Θq

J--K�

J--KF J--K (9)

commutes.

In what follows, we characterize FΣ,Γ,Θ as a certain category of rational trees, i.e. trees
with finitely many distinct subtrees. An alternative, equivalent formulation would be to
view FΣ,Γ,Θ as a free model of the (Lawvere) theory of KiCTs.

Like in the case of original Kozen’s completeness result [23], a characterization of the free
model immediately entails completeness of the corresponding axiomatization over it. Indeed,
by generalities, a free KiCT is isomorphic to the free algebra of terms, quotiented by the
provable equality relation. Hence, if an equality holds over the free model, it is provable.

7.2 A KiCT of Coalgebraic Resumptions
For any set X, define TX “ RpΓΘ ˆ Xq and TνX “ νγ. T pX ‘ Σγq, in the category of
sets Set where R is the monad from Example 19.

A stepping stone for constructing FΣ,Γ,Θ is the observation that pSetTν
, SetTq forms a

KiC. Indeed, pSetR, SetRq is a KiC and the monad R is commutative, hence symmetric
monoidal. In SetR, ΓΘ is a monoid under the following operations:

⟨w1, . . . , wn`1⟩ ¨ ⟨u1, . . . , um`1⟩ “

{
⟨w1, . . . , wn, u2, . . . , um`1⟩ if wn “ u1

0 otherwise

This produces the monad T, whose Kleisli category is a KiC by Theorem 20, analogously
to Example 21. Now, pSetTν

, SetTq is a KiC by Theorem 23. We will use the following
representation for generic elements of TνX:

t “
∑

iPI
bi. ui. ti `

∑
iPJ

bi. fipti,1, . . . , ti,ni
q `

∑
iPK

bi. xi (10)

S. Goncharov and T. Uustalu 25:15

where I, J , K are mutually disjoint countable sets, bi range over Θ̂, ui range over Γ, fi range
over Σ, ti, ti,j range over TνX and xi range over X.

▶ Definition 31 (Derivatives). For every t P TνX, as in (10), define the following derivative
operations:

Bb,uptq “
∑

iPI,b“bi,u“ui
ti, for b P Θ̂, u P Γ;

Bk
b,fptq “

∑
iPJ,b“bi,f“fi

ti,k, for b P Θ̂, k P {1, . . . , ni}, f P Σni
with ni ą 0.

Additionally, let optq “
∑

iPK bi. xi. We extend these operations to arbitrary morphisms
Y Ñ TνX pointwise. The set of derivatives of t P TνX is the smallest set Dptq that
contains t and is closed under all Bb,u and Bk

b,f .

The following property is a direct consequence of these definitions:

▶ Lemma 32. Let t P TνX be as in (10), and let s : X Ñ TνY . Then

Bb,upt ; s7q “ Bb,uptq ; s7 ` optq ; pBb,upsqq7 opt ; s7q “ optq ; popsqq7

Bk
b,fpt ; s7q “ Bk

b,fptq ; s7 ` optq ; pBk
b,fpsqq7

▶ Lemma 33. Given a set X, let B Ď TνX ˆ TνX be such a relation that whenever t B s,
1. Bb,uptq B Bb,upsq for all b P Θ̂, u P Γ,
2. Bk

b,fptq B Bk
b,fpsq for all b P Θ̂, f P Σ,

3. optq “ opsq.
Then, t “ s whenever t B s.

Proof Sketch. It suffices to show that B is a coalgebraic bisimulation. The claim is then a
consequence of strong extensionality of the final coalgebra TνX. Let us spell out what it
means for B to be a coalgebraic bisimulation. Given t and t1, such that t B t1, and assuming
representations

t “
∑

iPI
gi. fipti,1, . . . , ti,ni q `

∑
iPJ

gi. xi,

t1 “
∑

iPI1
gi. fipti,1, . . . , ti,ni

q `
∑

iPJ 1
gi. xi

where the gi range over ΓΘ, the sums
∑

iPJ gi. xi and
∑

iPJ 1 gi. xi must be equal, and there
must exist a set K and surjections e : K Ñ I, e1 : K Ñ I 1, such that for every k P K,
gepkq “ ge1pkq, fepkq “ fe1pkq and tepkq,1 B te1pkq,1, . . . , tepkq,m B te1pkq,m where m is the arity
of fepkq. This is indeed true for B. The reason for it is that t and t1 can be represented as

t “
∑

nPN

∑
iPI,|gi|“n

gi. fipti,1, . . . , ti,ni
q `

∑
nPN

∑
iPJ,|gi|“n

gi. xi,

t1 “
∑

nPN

∑
iPI1,|gi|“n

gi. fipt1
i,1, . . . , t1

i,ni
q `

∑
nPN

∑
iPJ 1,|gi|“n

gi. xi

and we can derive the requisite properties for inner sums by induction on n from the
assumptions. ◀

7.3 Rational Trees
In what follows, we identify every n P N with the set {0, . . . , n ´ 1}, and select binary
coproducts in Set so that n‘m “ {0, . . . , n´1}‘{0, . . . , m´1} “ {0, . . . , n`m´1} “ n`m.
The inclusion of n to m ě n is then a coproduct injection, which we refer to as inm

n .

CONCUR 2024

25:16 A Unifying Categorical View of Nondeterministic Iteration and Tests

▶ Definition 34 (Prefinite, Flat, (Non-)Guarded, Rational, Definable).
1. The set of prefinite elements of TνX is defined by induction: t P TνX of the form (10)

is prefinite if the involved sums contain finitely many distinct elements and all the
ti, ti,j P TνX are prefinite.

2. A prefinite t P TνX of the form (10) is flat if ti, ti,j P X.
3. An element t P TνX of the form (10) is guarded if K “ ∅.
4. An element t P TνX of the form (10) is non-guarded if I Y J “ ∅.
5. An element t P TνX is rational if Dptq is finite and t depends on a finite subset of Σ Y Γ.
A map t : Y Ñ TνX is prefinite/flat/guarded/non-guarded if correspondingly for every x P X,
every tpxq is prefinite/flat/guarded/non-guarded. Finally:
6. A map t : k Ñ Tνn (with k, n P N) is definable if for some m ě k there is flat guarded

s : m Ñ Tνm and non-guarded r : m Ñ Tνn, such that t “ inm
k ; s˚ ; r7.

Using Lemma 32, one can show

▶ Lemma 35. Sum, composition and Kleene iteration of rational maps are again rational.

The following property is a form of Kleene theorem, originally stating the equivalence of
regular and recognizable languages [35]. In our setting it is proven with the help of Lemma 33.

▶ Proposition 36. Given n, k P N, a map n Ñ Tνk is rational iff it is definable.

Let F “ FΣ,Γ,Θ be the (non-full) subcategory of SetTν
, identified as follows:

the objects of F are positive natural numbers,
the morphisms in Fpn, kq are rational maps f : n Ñ Tνk (equivalently: (co)tuples
rt0, . . . , tn´1s of rational elements of Tνk).

Let the wide subcategory of tame morphisms F consist of such tuples rt0, . . . , tn´1s that ti P Tk

for all i, and let F? consist of those maps in F that do not involve symbols from Γ. This
defines a KiCT essentially due to the closure properties from Lemma 35.

Given an interpretation J--K : pΣ, Γ, Θq Ñ C, let us extend it to flat elements first via

J0K “ 0, Jt ` sK “ JtK ` JsK, Jη˚K “ J1K˚, Jt ; s7K “ JtK ; JsK, JkK “ ink pk P nq

where η˚ stands for a tuple of infinite sum r
∑

iPN{}.0, . . . ,
∑

iPN{}.pn ´ 1qs, and is the
interpretation of η‹ in F. The clause for η˚ in necessary to cater for infinite sums that can
occur in prefinite elements. Such sums can only contain finitely many distinct elements, and
thus can be expressed via finite sums and composition with η˚. Next, define J--K� : F Ñ C

on objects via JnK� “ J1K ‘ . . . ‘ J1K (J1K repeated n times),
on morphisms, via JtK� “ inm

n ; JsK˚ ; JrK, where t “ inm
n ; s˚ ; r7, for a guarded flat

s : m Ñ Tνm, and a non-guarded r : m Ñ Tνk, computed with Proposition 36.

▶ Theorem 37. FΣ,Γ,Θ is a free KiCT over Σ, Γ, Θ.

The following property is instrumental for proving this result:

▶ Lemma 38. Let pC, Cq and pD, Dq be two KiCs, and let F be the following map, acting
on objects and on morphisms: FX P |D| for every X P |C|, Fp P DpFX, FY q for every
p P CpX, Y q. Suppose that F preserves coproducts, Fp P DpFX, FY q for all p P CpX, Y q.
F is a KiC-functor if the following further preservation properties hold

Fp˚ “ pFpq˚, F pp ; in0q “ Fp ; in0, F pp ; in1q “ Fp ; in1, F pp ; r0, 1sq “ Fp ; r0, 1s.

Let us briefly outline a potential application of Theorem 37 to may-diverge Kleene algebras,
which we informally described in the introduction. Let us now define them formally:

S. Goncharov and T. Uustalu 25:17

▶ Definition 39 (May-Diverge Kleene Algebra). A may-diverge Kleene algebra is an idempotent
semiring pS, 0, 1, `, ; q equipped with an iteration operator p--q˚ : S Ñ S satisfying the laws:

p˚ “ 1 ` p ; p˚ pp ` qq˚ “ p˚ ; pq ; p˚q˚
r ; p “ q ; r

r ; p˚ “ q˚ ; r

Thus, may-diverge Kleene algebras are very close to KiCs of the form pC, Cq with |C| “ 1,
except that in our present treatment all KiCs come with binary coproducts as an additional
structure. We conjecture though that any may-diverge Kleene algebra, viewed as a category,
can be embedded to a KiC pC, Cq with |C| “ {1, 2, . . .}. Theorem 37 will then entail a
characterization of the free may-diverge Kleene algebra on Γ as the full subcategory induced
by the single object 1 of the Kleisli category of the monad TX “ RpΓ‹ ˆ Xq. In other words,
the free may-diverge Kleene algebra is carried (up-to-isomorphism) by rational elements of
RpΓ‹q, similarly to that how the free Kleene algebra is carried by rational elements of PpΓ‹q.

8 Conclusions and Further Work

We developed a general and robust categorical notion of Kleene iteration – KiC(T) (=Kleene-
iteration category (with tests)) – inspired by Kleene algebra (with tests) and its numerous
cousins. We attested this notion with various yardsticks: stability under the generalized
coalgebraic resumption monad transformer (hence under the exception transformer, as its
degenerate case), equivalence to the classical notion of Conway iteration and to a suitably
axiomatized theory of while-loops, but most remarkably, we established an explicit description
of the ensuing free model, as a category of certain nondeterministic rational trees, playing
the same role for our theory as the algebra of regular events for Kleene algebra. However, in
our case, the free model is much more intricate and difficult to construct, as the iteration
operator of it is neither a least fixpoint nor a unique fixpoint. A salient feature of our notion,
mirrored in the structure of the free model, is that it can mediate between linear time and
branching time semantics via corresponding specified classes of morphisms.

Given the abstract nature of our results, we expect them be be reusable for varying and
enriching the core notion of Kleene iteration with other features. For example, our underlying
notion of nondeterminism is that of idempotent grove category. General grove categories are
a natural base for probabilistic or graded semantics, and we expect that most of our results,
including completeness can be adapted to this case. Yet more generally, a relevant ingredient
of our construction is monad R, currently capturing the effect of nondeterminism, but which
can potentially be varied to obtain other flavors of linear behavior.

An important open problem that remains for future work is that of defining KiCTs without
coproducts, potentially providing a bridge to relevant algebraic structures as single-object
categories. Now that the free KiCT with coproduct is identified, the free KiCT without
coproducts is expected to be complete over the same model. Identifying such a notion is
hard, because it would simultaneously encompass independent axiomatizations of iterative
behavior, e.g. branching time and linear time. As of now, such axiomatizations are built on
hard-to-reconcile approaches to iteration as either a least or a unique fixpoint.

References

1 Luca Aceto, Arnaud Carayol, Zoltán Ésik, and Anna Ingólfsdóttir. Algebraic synchronization
trees and processes. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer,
editors, Proc. of 39th Int. Coll on Automata, Languages, and Programming, ICALP 2012,
Part 2, volume 7392 of Lect. Notes in Comput. Sci., pages 30–41. Springer, 2012. doi:
10.1007/978-3-642-31585-5_7.

CONCUR 2024

https://doi.org/10.1007/978-3-642-31585-5_7
https://doi.org/10.1007/978-3-642-31585-5_7

25:18 A Unifying Categorical View of Nondeterministic Iteration and Tests

2 Michael A. Arbib and Ernest G. Manes. Partially additive categories and flow-diagram
semantics. J. Algebra, 62(1):203–227, 1980. doi:10.1016/0021-8693(80)90212-4.

3 Steve Awodey. Category Theory. Oxford University Press, 2nd edition, 2010.
4 David B. Benson and Jerzy Tiuryn. Fixed points in free process algebras, part I. Theor.

Comput. Sci., 63(3):275–294, 1989. doi:10.1016/0304-3975(89)90010-8.
5 S.L. Bloom, Z. Esik, and D. Taubner. Iteration theories of synchronization trees. Information

and Computation, 102(1):1–55, 1993. doi:10.1006/inco.1993.1001.
6 Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The Equational Logic of Iterative

Processes. Springer, 1993. doi:10.1007/978-3-642-78034-9.
7 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.

doi:10.1145/321239.321249.
8 Kenta Cho. Total and partial computation in categorical quantum foundations. In Chris

Heunen, Peter Selinger, and Jamie Vicary, editors, Proc. of 12th Int. Workshop on Quantum
Physics and Logic, QPL 2015, volume 195 of Electron. Proc. in Theor. Comput. Sci., pages
116–135. Open Publishing Assoc., 2015. doi:10.4204/eptcs.195.9.

9 Robin Cockett. Itegories & PCAs, 2007. Slides from Fields Institute Meeting on Traces
(Ottawa, 2007). URL: https://pages.cpsc.ucalgary.ca/~robin/talks/itegory.pdf.

10 Robin Cockett and Stephen Lack. Restriction categories III: colimits, partial limits and ex-
tensivity. Math. Struct Comput. Sci., 17(4):775–817, 2007. doi:10.1017/s0960129507006056.

11 Manfred Droste and Werner Kuich. Semirings and formal power series. In Handbook of
Weighted Automata, pages 3–28. Springer, 2009. doi:10.1007/978-3-642-01492-5_1.

12 Calvin Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose and J.C.
Shepherdson, editors, Logic Colloquium 1973, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 175–230. Elsevier, 1975. doi:10.1016/s0049-237x(08)71949-9.

13 Zoltán Ésik. Equational properties of fixed-point operations in cartesian categories: An
overview. Math. Struct. Comput. Sci., 29(6):909–925, 2019. doi:10.1017/s0960129518000361.

14 Wan J. Fokkink and Hans Zantema. Basic process algebra with iteration: Completeness of its
equational axioms. Comput. J., 37(4):259–268, 1994. doi:10.1093/comjnl/37.4.259.

15 Leandro Gomes, Alexandre Madeira, and Luís S. Barbosa. On Kleene algebras for weighted
computation. In Simone Cavalheiro and José Fiadeiro, editors, Proc. of 20th Brazilian Symp.
on Formal Methods, SBMF 2017, volume 10623 of Lect. Notes in Comput. Sci., pages 271–286.
Springer, 2017. doi:10.1007/978-3-319-70848-5_17.

16 Sergey Goncharov. Shades of iteration: From Elgot to Kleene. In Alexandre Madeira and
Manuel A. Martins, editors, Revised Selected Papers from 26th IFIP WG 1.3 Int. Workshop
on Recent Trends in Algebraic Development Techniques, WADT 2022, volume 13710 of Lect.
Notes in Comput. Sci., pages 100–120. Springer, 2023. doi:10.1007/978-3-031-43345-0_5.

17 Sergey Goncharov, Lutz Schröder, and Till Mossakowski. Kleene monads: Handling iteration
in a framework of generic effects. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki,
editors, Proc. of 3rd Int. Conf. Algebra and Coalgebra in Computer Science, CALCO 2009,
volume 5728 of Lect. Notes in Comput. Sci., pages 18–33. Springer, 2009. doi:10.1007/
978-3-642-03741-2_3.

18 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Julian Jakob. Unguarded recursion
on coinductive resumptions. Log. Methods in Comput. Sci., 14(3):10:1–10:47, 2018. doi:
10.23638/lmcs-14(3:10)2018.

19 Clemens Grabmayer. Milner’s proof system for regular expressions modulo bisimilarity is
complete: Crystallization: Near-collapsing process graph interpretations of regular expressions.
In Proc. of 37th Ann. ACM/IEEE Symp. on Logic in Computer Science, LICS ’22, pages
34:1–34:13, New York, 2022. doi:10.1145/3531130.3532430.

20 Niels Grathwohl, Dexter Kozen, and Konstantinos Mamouras. KAT + B! In Proc. of 23rd EACL
Ann. Conf. on Computer Science Logic and 29th Ann. ACM/IEEE Symp. on Logic in Computer
Science, CSL-LICS 2014, pages 44:1–44:10. ACM, 2014. doi:10.1145/2603088.2603095.

https://doi.org/10.1016/0021-8693(80)90212-4
https://doi.org/10.1016/0304-3975(89)90010-8
https://doi.org/10.1006/inco.1993.1001
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1145/321239.321249
https://doi.org/10.4204/eptcs.195.9
https://pages.cpsc.ucalgary.ca/~robin/talks/itegory.pdf
https://doi.org/10.1017/s0960129507006056
https://doi.org/10.1007/978-3-642-01492-5_1
https://doi.org/10.1016/s0049-237x(08)71949-9
https://doi.org/10.1017/s0960129518000361
https://doi.org/10.1093/comjnl/37.4.259
https://doi.org/10.1007/978-3-319-70848-5_17
https://doi.org/10.1007/978-3-031-43345-0_5
https://doi.org/10.1007/978-3-642-03741-2_3
https://doi.org/10.1007/978-3-642-03741-2_3
https://doi.org/10.23638/lmcs-14(3:10)2018
https://doi.org/10.23638/lmcs-14(3:10)2018
https://doi.org/10.1145/3531130.3532430
https://doi.org/10.1145/2603088.2603095

S. Goncharov and T. Uustalu 25:19

21 Bart Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic.
Log. Methods Comput. Sci., 11(3):24:1–24:76, 2015. doi:10.2168/lmcs-11(3:24)2015.

22 S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, 1956.

23 Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Inf. Comput., 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

24 Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443,
1997. doi:10.1145/256167.256195.

25 Dexter Kozen and Konstantinos Mamouras. Kleene algebra with products and iteration
theories. In Simona Ronchi Della Rocca, editor, Proc. of 22nd EACSL Ann. Conf. on
Computer Science Logic, CSL 2013, volume 23 of Leibniz Int. Proc. in Inform., pages 415–431.
Dagstuhl Publishing, 2013. doi:10.4230/lipics.csl.2013.415.

26 Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts
in Mathematics. Springer, 1971.

27 Annabelle McIver, Tahiry M. Rabehaja, and Georg Struth. On probabilistic Kleene algebras,
automata and simulations. In Harrie de Swart, editor, Proc. of 12th Int. Conf. on Relational
and Algebraic Methods in Computer Science, RAMICS 2011, volume 6663 of Lect. Notes in
Comput. Sci., pages 264–279. Springer, 2011. doi:10.1007/978-3-642-21070-9_20.

28 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lect. Notes in Comput.
Sci. Springer, 1980. doi:10.1007/3-540-10235-3.

29 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.

30 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
doi:10.1016/0890-5401(91)90052-4.

31 Bernhard Möller. Kleene getting lazy. Sci. Comput. Program., 65(2):195–214, 2007. doi:
10.1016/j.scico.2006.01.010.

32 Maciej Piróg and Jeremy Gibbons. Monads for behaviour. Electron. Notes Theor. Comput.
Sci., 298:309–324, 2013. doi:10.1016/j.entcs.2013.09.019.

33 Gordon D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–487, 1976.
doi:10.1137/0205035.

34 J.J.M.M. Rutten. Behavioural differential equations: A coinductive calculus of streams, auto-
mata, and power series. Theor. Comput. Sci., 308(1):1–53, 2003. doi:10.1016/S0304-3975(02)
00895-2.

35 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
36 Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In

Proc. of 15th Ann. IEEE Symp. on Logic in Computer Science, LICS ’00, pages 30–41. IEEE,
2000. doi:10.1109/lics.2000.855753.

37 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva.
Guarded Kleene algebra with tests: Verification of uninterpreted programs in nearly linear
time. Proc. ACM Program. Lang., 4(POPL), 2020. doi:10.1145/3371129.

38 Daniele Turi and Jan Rutten. On the foundations of final coalgebra semantics: non-well-
founded sets, partial orders, metric spaces. Math. Struct. Comput. Sci., 8(5):481–540, 1998.
doi:10.1017/s0960129598002588.

39 Tarmo Uustalu. Generalizing substitution. Theor. Inform. Appl., 37(4):315–336, 2003.
doi:10.1051/ita:2003022.

A Selected Proof Details

Proof of Proposition 8. The necessity is obvious. Let us show sufficiency. For every b P

C?pXq, let us fix some choice of b̄ P C?pXq, for which the pair pb, b̄q satisfies contradiction and
excluded middle, and show that C?pXq forms a Boolean algebra, i.e. C?pXq is a complemented
distributive lattice. Complementation amounts to the assumed identities, and we are left to

CONCUR 2024

https://doi.org/10.2168/lmcs-11(3:24)2015
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/256167.256195
https://doi.org/10.4230/lipics.csl.2013.415
https://doi.org/10.1007/978-3-642-21070-9_20
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/j.scico.2006.01.010
https://doi.org/10.1016/j.scico.2006.01.010
https://doi.org/10.1016/j.entcs.2013.09.019
https://doi.org/10.1137/0205035
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1109/lics.2000.855753
https://doi.org/10.1145/3371129
https://doi.org/10.1017/s0960129598002588
https://doi.org/10.1051/ita:2003022

25:20 A Unifying Categorical View of Nondeterministic Iteration and Tests

show the laws of distributive lattices. Since complements are uniquely defined in Boolean
algebras, it will follow that b̄ is uniquely determined by b. Of course, this is not used in the
subsequent proof.

It follows by definition that pC?pXq, 0, `q and pC?pXq, 1, ; q are monoids. Showing that
they are idempotent and commutative (hence, are semilattices) amounts to showing that
b ; b “ b and b ; c “ c ; b for all b, c P C?pXq. The first identity is shown as follows, using
linearity and the assumed identities:

b “ b ; 1 “ b ; pb ` b̄q “ b ; b ` b ; b̄ “ b ; b ` 0 “ b ; b.

For the second one, note that 1 “ b ` b̄ “ b ` b ` b̄ “ b ` 1, and then

b ; c “ b ; c ; 1 “ b ; c ; pb ` 1q “ b ; c ; b ` b ; c

“ b ; c ; b ` b ; c ; b ; c “ b ; c ; b ; p1 ` cq “ b ; c ; b,

where we used the instance of idempotence b ; c “ b ; c ; b ; c that we just established.
Analogously, c ; b “ b ; c ; b, and hence b ; c “ c ; b.

Finally, distributivity amounts to pa ` bq ; c “ a ; c ` b ; c and a ` b ; c “ pa ` bq ; pa ` cq

for all a, b, c P C?pXq. The first identity is an axiom of idempotent grove categories. The
second one is obtained as follows:

pa ` bq ; pa ` cq “ a ; a ` a ; c ` b ; a ` b ; c “ a ` a ; c ` a ; b ` b ; c

“ a ; p1 ` c ` bq ` b ; c “ a ; 1 ` b ; c “ a ` b ; c ◀

Proof of Lemma 10. Negation is defined as follows:

0̄ “ 1, rin0, 0s “ r0, in1s, b ` c “ b̄ ; c̄,

1̄ “ 0, r0, in1s “ rin0, 0s, b ; c “ b̄ ` c̄.

For every X, let C?pXq be the smallest subset of CpX, Xq that contains 0, 1, rin0, 0s and
r0, in1s, and closed under ` and ; . By Proposition 8, we need to show that every b P C?pXq

is linear and satisfies b ; b̄ “ 0, b ` b̄ “ 1, which we do by induction. Let us strengthen
the induction invariant by also adding b̄ ; b “ 0. Note that the above equations do not
uniquely define complement, e.g. rin0, 0s “ r0, in1s refers to a particular decomposition of X

as X1 ‘ X2, while another decomposition could theoretically produce a different result. Thus,
more precisely, we use the fact that every element of C?pXq has a representation in the free
algebra of terms over 0, 1, rin0, 0s, r0, in1s, ` and ; . The claim is then obtained by induction
over this representation. ◀

Proof of Lemma 35. The dependency condition is obvious in all three cases. We will prove
finiteness of sets of derivatives only.

Sum. Let t, s P Tνn be rational. Then Dpt ` sq “ {t ` s} Y Dptq Y Dpsq, which is finite,
since Dptq and Dpsq are so.

Composition. It suffices to stick to the following instance: given n, k P N, a rational element
t P Tνn and a rational map s : n Ñ Tνk, show that t ; s7 P Tνk is rational. Consider the set
P of sums of the form

t1 ; s7 `
∑

s1PDpsq
rs1 ; ps1q7

S. Goncharov and T. Uustalu 25:21

where t1 ranges over Dptq and rs1 range over non-guarded elements of Tνn. Then P is finite.
Moreover, P is closed under derivatives: using Lemma 32,

Bb,upt1 ; s7 `
∑

s1PDpsq
rs1 ; ps1q7q

“ Bb,upt1q ; s7 ` opt1q ; pBb,upsqq7 `
∑

s1PDpsq
Bb,uprs1 q ; ps1q7

`
∑

s1PDpsq
oprs1 q ; pBb,ups1qq7

“ Bb,upt1q ; s7 ` opt1q ; pBb,upsqq7 `
∑

s1PDpsq
oprs1 q ; pBb,ups1qq7

“ Bb,upt1q ; s7 ` popt1q ` oprsqq ; pBb,upsqq7 `
∑

s1PDpsq∖{s}
oprs1 q ; pBb,ups1qq7,

and analogously for Bk
b,f . Note that t ; s7 P P . Therefore Dpt ; s7q Ď P . Since P is finite, so

is Dpt ; s7q.

Iteration. Let t “ rt0, . . . , tn´1s : n Ñ Tνn, and Dptiq be finite for i “ 0, . . . , n ´ 1. Analog-
ously to the previous clause, consider the set P of sums of the form∑

t1PDptq
rt1 ; pt1q7 ; pt˚q7 ` r

where t1 ranges over Dptq and rs1 , r range over those non-guarded elements of Tνn. In the
same manner as in the previous clause: P is finite, contains t˚ and is closed under derivatives,
hence Dpt˚q is finite. ◀

Proof of Theorem 37. The key observation is that Jinm
n ; s˚ ; r7K� does not depend on the

choice of s and r. This is argued as follows. Using the construction in Proposition 36, for a
given t “ inm

n ; s˚ ; r7, we obtain a canonical representation t “ inl
n ; ŝ˚ ; r̂ 7, with ŝ : l Ñ Tν l,

r̂ : l Ñ Tνk, and this representation only depends on t, hence, it suffices to show that

Jinm
n ; s˚ ; r7K� “ Jinl

n ; ŝ˚ ; r̂ 7K�. (11)

Because of the restrictions on s and r, there is an epimorphism u : m Ñ l, such that
s ; Tνu “ u ; ŝ and u ; r̂ “ r. W.l.o.g. assume that inl,m is a left inverse of u. Now, (11) is
obtained as follows:

Jinm
n ; s˚ ; r7K� “ inm

n ; JsK˚ ; JrK

“ inm
n ; JsK˚ ; JuK ; J r̂K

“ inm
n ; u ; J ŝK˚ ; J r̂K // ˚-Uni

“ inl
n ; inl,m ; u ; J ŝK˚ ; J r̂K

“ inl
n ; J ŝK˚ ; J r̂K

“ Jinl
n ; ŝ˚ ; r̂ 7K�

The defined lifting J--K� : F Ñ C is easily seen to make (9) commute. Also, note that there
is no more than one structure-preserving candidate for J--K�, to make (9) commute: indeed,
since every morphism in F is representable as t “ inm

n ; s˚ ; r7, JtK� must only be defined as
inm

n ; JsK˚ ; JrK.
We are left to check that J--K� is a KiCT-functor, which is facilitated by Lemma 38. The

only non-trivial clause is preservation of Kleene star. As an auxiliary step, we show that

Jη ` inm
n ; s˚ ; r7K� “ JηK� ` Jinm

n ; s˚ ; r7K� (12)

CONCUR 2024

25:22 A Unifying Categorical View of Nondeterministic Iteration and Tests

for any guarded flat s : m Ñ Tνm, and a non-guarded r : m Ñ Tνn. In order to calculate
the left-hand side of (12), we need to find a suitable representation for 1 ` inm

n ; s˚ ; r7.
Concretely, we show that

η ` inm
n ; s˚ ; r7 “ inm`m

n ; rin1 ; η, s ; Tν in1s˚ ; rrηn, 0s, rs7

Indeed, using ˚-Fix and ˚-Uni,

inm`m
n ; rin1 ; η, s ; Tν in1s˚ ; rrηn, 0s, rs7

“ inm`m
n ; pη ` rin1 ; η, s ; Tν in1s ; prin1 ; η, s ; Tν in1s˚q7q ; rrηn, 0s, rs7

“ η ` inm
n ; in1 ; η ; prin1 ; η, s ; Tν in1s˚q7 ; rrηn, 0s, rs7

“ η ` inm
n ; s˚ ; Tν in1 ; rrηn, 0s, rs7

“ η ` inm
n ; s˚ ; r7.

Now, (12) turns into

inm`m
n ; rin1, JsK ; in1s˚ ; rr1n, 0s, JrKs “ 1 ` inm

n ; JsK˚ ; JrK.

This equation is shown as above, since ˚-Fix and ˚-Uni are sound for C.
An analogous method is used to show that J--K� preserves Kleene star. Let s : m Ñ Tνm

be guarded flat, and let r : m Ñ Tνn be non-guarded, and prove that:

Jpinm
n ; s˚ ; r7q˚K� “ Jinm

n ; s˚ ; r7K˚
� . (13)

The following equation is provable using the axioms of KiC

pinm
n ; s˚ ; r7q˚ “ η ` inm

n ; ppr ; Tν inm
n q˚ ; s7q˚ ; ppr ; Tν inm

n q˚ ; r7q7,

hence, the equation

pinm
n ; JsK˚ ; JrK7q˚ “ 1 ` inm

n ; ppJrK ; inm
n q˚ ; JsKq˚ ; pJrK ; inm

n q˚ ; JrK

is provable as well. Now, the proof of (13) is as follows:

Jpinm
n ; s˚ ; r7q˚K� “ Jη ` inm

n ; ppr ; Tν inm
n q˚ ; s7q˚ ; ppr ; Tν inm

n q˚ ; r7q7K�

“ 1 ` inm
n ; ppJrK ; inm

n q˚ ; JsK7q˚ ; pJrK ; inm
n q˚ ; JrK // (12)

“ pinm
n ; JsK˚ ; JrK7q˚

“ Jinm
n ; s˚ ; r7K˚

� . ◀

	1 Introduction
	2 Notations and Conventions
	3 Idempotent Grove and Kleene-Kozen Categories
	4 Decisions and Tests in Category
	5 Kleene Iteration, Categorically
	6 Elgot Iteration and While-Loops
	7 Free KiCTs and Completeness
	7.1 Interpretations
	7.2 A KiCT of Coalgebraic Resumptions
	7.3 Rational Trees

	8 Conclusions and Further Work
	A Selected Proof Details

