
Phase-Bounded Broadcast Networks over
Topologies of Communication
Lucie Guillou #

IRIF, CNRS, Université Paris Cité, France

Arnaud Sangnier #

DIBRIS, Università di Genova, Italy

Nathalie Sznajder #

LIP6, CNRS, Sorbonne Université, Paris, France

Abstract
We study networks of processes that all execute the same finite state protocol and that communicate
through broadcasts. The processes are organized in a graph (a topology) and only the neighbors of a
process in this graph can receive its broadcasts. The coverability problem asks, given a protocol and
a state of the protocol, whether there is a topology for the processes such that one of them (at least)
reaches the given state. This problem is undecidable [6]. We study here an under-approximation of
the problem where processes alternate a bounded number of times k between phases of broadcasting
and phases of receiving messages. We show that, if the problem remains undecidable when k is
greater than 6, it becomes decidable for k = 2, and ExpSpace-complete for k = 1. Furthermore, we
show that if we restrict ourselves to line topologies, the problem is in P for k = 1 and k = 2.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Parameterized verification, Coverability, Broadcast Networks

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.26

Related Version Long Version: https://arxiv.org/abs/2406.15202 [15]

Funding Lucie Guillou: ANR project PaVeDyS (ANR-23-CE48-0005)

1 Introduction

Verifying networks with an unbounded number of entities. Ensuring safety properties for
concurrent and distributed systems is a challenging task, since all possible interleavings must
be taken into account; hence, even if each entity has a finite state behavior, the verification
procedure has to deal with the state explosion problem. Another level of difficulty arises when
dealing with distributed protocols designed for an unbounded number of entities. In that case,
the safety verification problem consists in ensuring the safety of the system, for any number
of participants. Here, the difficulty comes from the infinite number of possible instantiations
of the network. In their seminal paper [13], German and Sistla propose a formal model to
represent and analyze such networks: in this work, all the processes in the network execute the
same protocol, given by a finite state automaton, and they communicate thanks to pairwise
synchronized rendez-vous. The authors study the parameterized coverability problem, which
asks whether there exists an initial number of processes that allow an execution leading to a
configuration in which (at least) one process is in an error state (here the parameter is the
number of processes). They show that it is decidable in polynomial time. Later on, different
variations of this model have been considered, by modifying the communication means:
token-passing mechanism [1,5], communication through shared register [8, 11], non-blocking
rendez-vous mechanism [14], or adding a broadcast mechanism to send a message to all the

© Lucie Guillou, Arnaud Sangnier, and Nathalie Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillou@irif.fr
https://orcid.org/0000-0002-6101-2895
mailto:arnaud.sangnier@unige.it
https://orcid.org/0000-0002-6731-0340
mailto:nathalie.sznajder@lip6.fr
https://orcid.org/0000-0002-4199-2443
https://doi.org/10.4230/LIPIcs.CONCUR.2024.26
https://arxiv.org/abs/2406.15202
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Phase-Bounded Broadcast Networks over Topologies of Communication

entities [9]. The model of population protocol proposed in [2] and for which verification
methods have been developed recently in [10,12] belongs also to this family of systems. In this
latter model, the properties studied are different, and more complex than safety conditions.

Broadcast networks working over graphs. In [6], Delzanno et. al propose a new model of
parameterized network in which each process communicates with its neighbors by broadcasting
messages. The neighbors of an entity are given thanks to a graph: the communication topology.
This model was inspired by ad hoc networks, where nodes communicate with each other
thanks to radio communication. The difficulty in proving safety properties for this new
model lies in the fact that one has to show that the network is safe for all possible numbers
of processes and all possible communication topologies. So the verification procedure not
only looks for the number of entities, but also for a graph representing the relationship of the
neighbours to show unsafe execution. As mentioned earlier, it is not the first work to propose a
parameterized network with broadcast communication; indeed the parameterized coverability
problem in networks with broadcast is decidable [9] and non-primitive recursive [24] when the
communication topology is complete (each entity is a neighbor of all the others). However,
when there is no restriction on the allowed communication topologies the problem becomes
undecidable [6] but decidability can be regained by providing a bound on the length of all
simple paths in allowed topologies [6]. This restriction has then been extended in [7] to allow
also cliques in the model. However, with this restriction, the complexity of parameterized
coverability is non-primitive recursive [7].

Bounding the number of phases. When dealing with infinite-state systems with an unde-
cidable safety verification problem, one option consists in looking at under-approximations of
the global behavior, restricting the attention to a subset of executions. If proving whether the
considered subset of executions is safe is a decidable problem, this technique leads to a sound
but incomplete method for safety verification. Good under-approximation candidates are
the ones that can be extended automatically to increase the allowed behavior. For instance,
it is known that safety verification of finite systems equipped with integer variables that
can be incremented, decremented, or tested to zero is undecidable [19], but if one considers
only executions in which, for each counter, the number of times the execution alternates
between an increasing mode and a decreasing mode is bounded by a given value, then safety
verification becomes decidable [16]. Similarly, verifying concurrent programs manipulating
stacks is undecidable [22] but decidability can be regained by bounding the number of allowed
context switches (a context being a consecutive sequence of transitions performed by the same
thread) [20]. Context-bounded analysis has also been applied to concurrent programs with
stacks and dynamic creation of threads [3]. Another type of underapproximation analysis has
been conducted by [17] (and by [4] in another context), by considering bounded round-robin
schedules of processes. Inspired by this work, we propose here to look at executions of
broadcast networks over communication topologies where, for each process, the number
of alternations between phases where it broadcasts messages and phases where it receives
messages is bounded. We call such protocols k-phase-bounded protocols where k is the
allowed number of alternations.

Our contributions. We study the parameterized coverability problem for broadcast networks
working over communication topologies. We first show in Section 2 that it is enough to
consider only tree topologies. This allows us to ease our presentation in the sequel and is
also an interesting result by itself. In Section 3, we prove that the coverability problem

L. Guillou, A. Sangnier, and N. Sznajder 26:3

qin

q4 q5

q1 q2 q3

!!a, !!b ?c

?b

!!a

?a !!c

?a

Figure 1 Example of a broadcast protocol denoted P .

is still undecidable when considering k-phase-bounded broadcast protocols with k greater
than 6. The undecidability proof relies on a technical reduction from the halting problem
for two counter Minsky machines. We then show in Sections 4 and 5 that if the number of
alternations is smaller or equal to 2, then decidability can be regained. More precisely, we
show that for 1-phase-bounded protocols, we can restrict our attention to tree topologies
of height 1, which provides an ExpSpace-algorithm for the coverability problem. To solve
this problem in the case of 2-phase-bounded protocols, we prove that we can bound the
height of the considered tree and rely on the result of [6] which states that the coverability
problem for broadcast networks is decidable when considering topologies where the length of
all simple paths is bounded. We furthermore show that if we consider line topologies then
the coverability problem restricted to 1- and 2-phase-bounded protocols can be solved in
polynomial time.

Due to lack of space, omitted proofs and reasonings can be found in [15].

2 Preliminaries

Let A be a countable set, we denote A∗ as the set of finite sequences of elements taken in
A. Let w ∈ A∗, the length of w is defined as the number of elements in the sequence w and
is denoted |w|. For a sequence w = a1 · a2 · · · ak ∈ A+, we denote by w[−1] the sequence
a1 ·a2 · · · ak−1. Let ℓ, n ∈ N with ℓ ≤ n, we denote by [ℓ, n] the set of integers {ℓ, ℓ+1, . . . , n}.

2.1 Networks of processes
We study networks of processes where each process executes the same protocol given as a
finite-state automaton. Given a finite set of messages Σ, a transition of the protocol can be
labelled by three types of actions: (1) the broadcast of a message m ∈ Σ with label !!m, (2)
the reception of a message m ∈ Σ with label ?m or (3) an internal action with a special label
τ ̸∈ Σ. Processes are organised according to a topology which gives for each one of them
its set of neighbors. When a process broadcasts a message m ∈ Σ, the only processes that
can receive m are its neighbors, and the ones having an output action ?m have to receive it.
Furthermore, the topology remains fixed during an execution.

Let Σ be a finite alphabet. In order to refer to the different types of actions, we write !!Σ
for the set {!!m | m ∈ Σ} and ?Σ for {?m | m ∈ Σ}.

▶ Definition 2.1. A Broadcast Protocol is a tuple P = (Q, Σ, qin, ∆) such that Q is a
finite set of states, Σ is a finite alphabet of messages, qin is an initial state and ∆ ⊆
Q × (!!Σ×?Σ ∪ {τ}) × Q is a finite set of transitions.

We depict an example of a broadcast protocol in Figure 1. Processes are organised according
to a topology, defined formally as follows.

CONCUR 2024

26:4 Phase-Bounded Broadcast Networks over Topologies of Communication

▶ Definition 2.2. A topology is an undirected graph, i.e. a tuple Γ = (V, E) such that V is
a finite set of vertices, and E ⊆ V × V is a finite set of edges such that (u, v) ∈ E implies
(v, u) ∈ E for all (u, v) ∈ V 2, and for all u ∈ V , (u, u) ̸∈ E (there is no self-loop).

We will use V(Γ) and E(Γ) to denote the set of vertices and edges of Γ respectively, namely
V and E. For v ∈ V , we will denote NΓ(v) the set {u | (v, u) ∈ E}. When the context is
clear, we will write N(v). For u, v ∈ V(Γ), we denote ⟨v, u⟩ for the two pairs (v, u), (u, v). We
name Graphs the set of topologies. In this work, we will also be interested in some families of
topologies: line and tree topologies. A topology Γ = (V, E) is a tree topology if V is a set of
words of N∗ which is prefix closed with ϵ ∈ V , and if E = {⟨w[−1], w⟩ | w ∈ V ∩ N+}. This
way, the root of the tree is the unique vertex ϵ ∈ V and a node w ∈ V ∩ N+ has a unique
parent w[−1]. The height of the tree is max{n ∈ N | |w| = n}. We denote by Trees the set of
tree topologies. A topology Γ = (V, E) is a line topology if V is such that V = {v1, . . . , vn} for
some n ∈ N and E = {⟨vi, vi+1⟩ | 1 ≤ i < n}. We denote by Lines the set of line topologies.

Semantics. A configuration C of a broadcast protocol P = (Q, Σ, qin, ∆) is a tuple (Γ, L)
where Γ is a topology, and L : V(Γ) → Q is a labelling function associating to each vertex v of
the topology its current state of the protocol. In the sequel, we will sometimes call processes
or nodes the vertices of Γ. A configuration C is initial if L(v) = qin for all v ∈ V(Γ). We let
CP be the set of all configurations of P , and IP the set of all initial configurations. When P is
clear from the context, we may drop the subscript and simply use C and I. Given a protocol
P = (Q, Σ, qin, ∆), and a state q ∈ Q, we let R(q) = {m ∈ Σ | ∃q′ ∈ Q, (q, ?m, q′) ∈ ∆} be
the set of messages that can be received when in the state q.

Consider δ = (q, α, q′) ∈ ∆ a transition of P , and C = (Γ, L) and C ′ = (Γ′, L′) two
configurations of P , and let v ∈ V(Γ) be a vertex. The transition relation v,δ−−→ ∈ C × C
is defined as follows: we have C

v,δ−−→ C ′ if and only if Γ = Γ′, and one of the following
conditions holds:

α = τ and L(v) = q, L′(v) = q′ and L′(u) = L(u) for all u ∈ V(Γ)\{v}: vertex v performs
an internal action;
α =!!m and L(v) = q, L′(v) = q′ (vertex v performs a broadcast), and for each process
u ∈ N(v) neighbor of v, either (L(u), ?m, L′(u)) ∈ ∆ (vertex u receives message m

from v), or m ̸∈ R(L(u)) and L(u) = L′(u) (vertex u is not in a state in which it can
receive m and stays in the same state). Furthermore, L′(w) = L(w) for all other vertices
w ∈ V(Γ) \ ({v} ∪ N(v)) (vertex w does not change state).

We write C −→ C ′ whenever there exists v ∈ V(Γ) and δ ∈ ∆ such that C
v,δ−−→ C ′. We

denote by →∗ [resp. →+] for the reflexive and transitive closure [resp. transitive] of →. An
execution of P is a sequence of configurations C0, . . . , Cn ∈ CP such that for all 0 ≤ i < n,
Ci → Ci+1.

▶ Example 2.3. We depict in Figure 2 an execution of protocol P (from Figure 1): it starts
with an initial configuration with three processes v1, v2, v3, organised as a clique (each vertex
is a neighbour of the two others), each on the initial state qin. More formally, Γ = (V, E)
with V = {v1, v2, v3} and E = {⟨v1, v2⟩, ⟨v2, v3⟩, ⟨v1, v3⟩}. From the initial configuration, the
following chain of events happens: C0

v1,(qin,!!b,q4)−−−−−−−−−→ C1
v2,(q1,!!a,qin)−−−−−−−−−→ C2

v3,(q2,!!c,q3)−−−−−−−−→ C3.

2.2 Verification problem
In this work, we focus on the coverability problem which consists in ensuring a safety property:
we want to check that, no matter the number of processes in the network, nor the topology
in which the processes are organised, a specific error state can never be reached.

L. Guillou, A. Sangnier, and N. Sznajder 26:5

v1 : qin

v2 : qinv3 : qin

v1
v1 : q4

v2 : q1v3 : q1

v2
v1 : q4

v2 : qinv3 : q2

v3
v1 : q5

v2 : qinv3 : q3

Figure 2 Example of an execution of protocol P (Figure 1).

The coverability problem over a family of topologies S ∈ {Graphs, Trees, Lines} is stated
as follows:

Cover[S]

Input: A broadcast protocol P and a state qf ∈ Q;
Question: Is there Γ ∈ S, C = (Γ, L) ∈ IP and C′ = (Γ, L′) ∈ CP and v ∈ V(Γ) such that

C →∗ C′ and L′(v) = qf ?

For a family S, if indeed there exist C = (Γ, L) and C ′ = (Γ, L′) such that C →∗ C ′ and
L′(v) = qf for some v ∈ V(Γ), we say that qf is coverable (in P) with Γ. We also say that
the execution C →∗ C ′ covers qf . For short, we write Cover instead of Cover[Graphs].
Observe that Cover is a generalisation of Cover[Trees] which is itself a generalisation of
Cover[Lines]. In [6], the authors proved that the three problems are undecidable, and they
later showed in [7] that the undecidability of Cover still holds when restricting the problem
to families of topologies with bounded diameter.

However, in [6], the authors show that Cover becomes decidable when searching for an
execution covering qf with a K-bounded path topology for some K ∈ N, i.e. for a topology
in which all simple paths between any pair of vertices v1, v2 ∈ V have a length bounded by
K. In [7], it is also shown that Cover is Ackermann-hard when searching for an execution
covering qf with a topology where all maximal cliques are connected by paths of bounded
length. We establish the first result.

▶ Theorem 2.4. Cover[Graphs] and Cover[Trees] are equivalent.

Indeed, if it is obvious that when a state is coverable with a tree topology, it is coverable
with a topology from Graphs, we can show that whenever a state is coverable, it is coverable
with a tree topology. If a set qf of a protocol P is coverable with a topology Γ ∈ Graphs,
let ρ = C0 → · · · → Cn = (Γ, Ln) be an execution covering qf , and a vertex vf ∈ V(Γ) such
that Ln(vf) = qf . We can build an execution covering qf with a tree topology Γ′ where the
root reaches qf . Actually, Γ′ is the unfolding of Γ in a tree of height n.

3 Phase-Bounded Protocols

As Cover[Graphs], Cover[Trees] and Cover[Lines] are undecidable in the general case, we
investigate a restriction on broadcast protocols: phase-bounded protocols.

For k ∈ N, a k-phase-bounded protocol is a protocol that ensures that each process
alternates at most k times between phases of broadcasts and phases of receptions. Before
giving our formal definition of a phase-bounded protocol, we motivate this restriction.

Phase-bounded protocols can be seen as a semantic restriction of general protocols in
which each process can only switch a bounded number of times between phases where it
receives messages and phases where it broadcasts messages. When, usually, restricting the
behavior of processes immediately yields an underapproximation of the reachable states, we
highlight in [15] the fact that preventing messages from being received can in fact lead to
new reachable states. Actually, the reception of a message is something that is not under

CONCUR 2024

26:6 Phase-Bounded Broadcast Networks over Topologies of Communication

q0
in

qb,1
4 qr,2

5

qr,1
1

qr,1
2

qb,2
3

qb,2
in qb,2

4

qr,2
1 qr,2

2

Phase 0
Phase 1 Phase 2

!!a, !!b
?c

?b ?a

!!c ?a

!!a
?b

!!a, !!b

?a

?a

Figure 3 P2: the 2-unfolding of protocol P (Figure 1).

the control of a process. If another process broadcasts a message, a faithful behavior of the
system is that all the processes that can receive it indeed do so, no matter in which phase
they are in their own execution. Hence, in a restriction that attempts to limit the number
of switches between broadcasting and receiving phases, one should not prevent a reception
to happen. This motivates our definition of phase-bounded protocols, in which a process
in its last broadcasting phase, can still receive messages. A k-unfolding of a protocol P is
then a protocol in which we duplicate the vertices by annotating them with the type and the
number of phase (b or r for broadcast or reception and an integer between 0 and k for the
number).

▶ Example 3.1. Figure 3 pictures the 2-unfolding of protocol P (Figure 1). Observe that
from state qb,2

4 , which is a broadcast state, it is still possible to receive message a and go to
state qr,2

5 . However, it is not possible to send a message from qr,2
5 (nor from any reception

state of phase 2).

We show in [15] that this definition of unfolding can be used as an underapproximation
for Cover. In the remaining of the paper, we study the verification problems introduced
in Section 2.2 when considering phase-bounded behaviors. We turn this restriction into a
syntactic one over the protocol, defined as follows.

▶ Definition 3.2. Let k ∈ N. A broadcast protocol P = (Q, Σ, qin, ∆) is k-phase-bounded if
Q can be partitioned into 2k + 1 sets Q = {Q0, Qb

1, Qr
1, . . . Qb

k, Qr
k}, such that qin ∈ Q0 and

for all (q, α, q′) ∈ ∆ one of the following conditions holds:
1. there exist 0 ≤ i ≤ k and β ∈ {r, b} such that q, q′ ∈ Qβ

i and α = τ (for ease of notation,
we take Q0 = Qb

0 = Qr
0);

2. there exists 1 ≤ i ≤ k such that q, q′ ∈ Qb
i and α ∈!!Σ;

3. there exists 1 ≤ i ≤ k such that q, q′ ∈ Qr
i and α ∈?Σ;

4. there exists 0 ≤ i < k such that q ∈ Qb
i , q′ ∈ Qr

i+1 and α ∈?Σ;
5. there exists 0 ≤ i < k such that q ∈ Qr

i , q′ ∈ Qb
i+1 and α ∈!!Σ;

6. q ∈ Qb
k, q′ ∈ Qr

k and α ∈?Σ

A protocol P is phase-bounded if there exists k ∈ N such that P is k-phase-bounded.

▶ Example 3.3. Observe that the protocol P displayed in Figure 1 is not phase-bounded:
by definition, it holds that Q0 = {qin}, and q1 ∈ Qr

1 (because of the transition (qin, ?b, q1)).
As a consequence qin ∈ Qb

2, because of the transition (q1, !!a, qin). This contradicts the fact
that Qb

2 ∩ Q0 = ∅. Intuitively, P does not ensure that every vertex alternates at most a
bounded number of times between receptions and broadcasts, in particular, for any integer
k ∈ N, it might be that there exists an execution where a process alternates k + 1 times

L. Guillou, A. Sangnier, and N. Sznajder 26:7

between reception of a message b from state qin, and broadcast of a message a from state
q1. Removing the transition (q1, !!a, qin) from P would give a 2-phase-bounded protocol P ′:
Q0 = {qin}, Qr

1 = {q1, q2}, Qb
1 = {q4}, Qb

2 = {q3} and Qr
2 = {q5}.

The following table summarizes our results (PB stands for phase-bounded).

1-PB Protocols 2-PB Protocols PB Protocols
Cover[Lines] ∈ P (Section 6.2) Undecidable (k ≥ 4) (Sec 4)
Cover[Graphs] ExpSpace-complete Decidable Undecidable (k ≥ 6)
Cover[Trees] (Section 5) (Section 6.1) (Section 4)

4 Undecidability Results

We prove that Cover restricted to k-phase-bounded protocols (with k ≥ 6) is undecidable
by a reduction from the halting problem of a Minksy machine [19]: a Minsky machine is a
finite-state machine (whose states are called locations) with two counters, x1 and x2 (two
variables that take their values in N). Each transition of the machine is associated with an
instruction: increment one of the counters, decrement one of the counters or test if one of
the counters is equal to 0. The halting problem asks whether there is an execution that ends
in the halting location. In a first step, the protocol will enforce the selection of a line of
nodes from the topology. All other nodes will be inactive. In a second step, the first node of
the line (that we call the head) visits the different states of the machine during an execution,
while all other nodes (except the last one) simulate counters’ values: they are either in a state
representing value 0, or a state representing x1 (respectively x2). The number of processes on
states representing x1 gives the actual value of x1 in the execution. The last node (called the
tail) checks that everything happens as expected. When the head has reached the halting
location of the machine, it broadcasts a message which is received and forwarded by each
node of the line until the tail receives it and reaches the final state to cover.

When the head of the line simulates a transition of the machine, it broadcasts a message
(the instruction for one of the counters), which is transmitted by each node of the line
until the tail receives it. A classical way of forwarding the message through receptions and
broadcasts would not give a phase-bounded protocol. Hence, during the transmission, the tail
only receives messages and all other nodes only broadcast and do not receive any message.
The main idea is that we do not use the reception of messages to move into the next state of
the execution but to detect errors (and in that case, go to a bad sink state from which the
process can not do anything). The processes will have to guess the correct message to send,
and the correct instant to send it, otherwise some of them will go to the sink state upon the
reception of this “wrong” message. Hence, when everyone makes the correct guesses, the only
reception that occurs in the transmission is done by the tail process, whereas when someone
makes an incorrect guess, a process goes to a bad state with a reception. In the reduction, if
the halting state of the Minsky Machine is not reachable, there will be no way to make a
correct guess that allows to cover the final state. In the next subsection, we explain how this
is achieved. To do so, we explain the mechanism by abstracting away the actual instruction,
and just show how to transmit a message.

4.1 Propagating a message using only broadcasts in a line
In a line, a node has at most two neighbors, but cannot necessarily distinguish between the
two (its left and its right one). To do so, nodes broadcast messages with subscript 0, 1 or
2, and we ensure that: if a node broadcasts with subscript 1, its right [resp. left] neighbor
broadcasts with subscript 0 [resp. subscript 2]. Similarly, if a node broadcasts with subscript

CONCUR 2024

26:8 Phase-Bounded Broadcast Networks over Topologies of Communication

s0 s1 s2

§ § §

!!td0 !!td0

?m, m ∈ Σ
?m, m ̸∈
{td1, d1}

?m, m ̸∈
{td1, d1}

Figure 4 Protocol Ph executed by v0.

idl ch§ §
?d1

?d1

?m, m ̸= d1 ?m, m ̸= d1

Figure 5 Protocol Pt executed by vn.

idl0

ex0

hlt0

§

§

§

tr0
td

tr0
d

!!td0

!!d0!!td0

!!td0

!!d0

!!d0

?m,
m ̸∈ {td2,
d2, td1, d1}

?m,
m ̸∈ {td2, d2,

td1, d1}

?m,
m ̸∈ {td2, d2,

td1, d1}

?m, m ̸∈
{td2, td1}

?m, m ̸∈
{d2, d1}

Figure 6 P0.

idl1

ex1

hlt1

§

§

§

tr1
td

tr1
d

!!td1

!!d1!!td1

!!td1

!!d1

!!d1

?m,
m ̸∈ {td0,
d0, td2, d2}

?m,
m ̸∈ {td0, d0,

td2, d2}

?m,
m ̸∈ {td0, d0,

td2, d2}

?m, m ̸∈
{td0, td2}

?m, m ̸∈
{d0, d2}

Figure 7 P1.

idl2

ex2

hlt2

§

§

§

tr2
td

tr2
d

!!td2

!!d2!!td2

!!td2

!!d2

!!d2

?m,
m ̸∈ {td1,
d1, td0, d0}

?m,
m ̸∈ {td1, d1,

td0, d0}

?m,
m ̸∈ {td1, d1,

td0, d0}

?m, m ̸∈
{td1, td0}

?m, m ̸∈
{d1, d0}

Figure 8 P2.

0 [resp. 2], its right neighbor broadcasts with subscript 2 [resp. 1] and its left one with
subscript 1 [resp. 0].

Consider the five protocols displayed in Figures 4–8. The states marked as initial are the
ones from which a process enters the protocol. Protocol Ph is executed by the head of the
line, Pt by the tail of the line and other nodes execute either P0, P1 or P2. Observe that
messages go by pairs: tdi, tdi and di, di for all i ∈ {0, 1, 2}.

The head broadcasts a request to be done with the pair of messages td0, td0. Each
process in one of the Pi starts in idli and has a choice: either it transmits a message without
executing it, or it “executes” it and tells it to the others. When it transmits a message not
yet executed, it broadcasts the messages tdi and tdi and visits states tri

td and idli. When
it executes the request, it broadcasts the messages tdi and di and visits states exi and hlti.
Finally, when it transmits a request already done, it broadcasts the messages di and di and
visits states tri

d and idli. Once a process has executed the request (i.e. broadcast a pair tdj ,
dj for some j ∈ {0, 1, 2}), only pairs dj , dj , with j ∈ {0, 1, 2}, are transmitted in the rest of
the line.

Correct transmission of a request. Take for instance the configuration C0 depicted in
Figure 9 for n = 5 (i.e. there are six vertices). We say that a configuration is stable if the head
is in s0 or s2, the tail is in idl and other nodes are in idli or hlti for i ∈ {0, 1, 2}. Note that C0
is stable. We depict a transmission in Figures 10a and 10b, starting from C0. We denote the
successive depicted configurations C0, C1, . . . C11. Note that C11 is stable. Between C0 and

v0 : s0 v1 : idl1 v2 : idl2 v3 : idl0 v4 : idl1 vn−1 : idl1 vn : idl. . .

Figure 9 A configuration from which the transmission can happen: a node in state idli can only
broadcast messages with subscript i.

L. Guillou, A. Sangnier, and N. Sznajder 26:9

v0 :s0 v1 : idl1 v2 :idl2
!!td0

v0 :s1 v1 : idl1 v2 :idl2

!!td1
v0 :s1 v1 : tr1

td v2 :idl2
!!td0

v0 :s2 v1 : tr1
td v2 :idl2

!!td2
v0 :s2 v1 : tr1

td v2 :tr2
td

!!td1
v0 :s2 v1 : idl1 v2 :tr2

td

(a) C0 → C1 → · · · → C5.

v2 :tr2
td v3 :idl0 v4 :idl1 v5 :idl

!!td0

v2 :tr2
td v3 :ex0 v4 :idl1 v5 :idl

!!td2

v2 :idl2 v3 :ex0 v4 :idl1 v5 :idl
!!d1

v2 :idl2 v3 :ex0 v4 :tr1
d v5 :ch

!!d0
v2 :idl2 v3 :hlt0 v4 :tr1

d v5 :ch
!!d1

v2 :idl2 v3 :hlt0 v4 :idl1 v5 :idl

(b) C6 → C7 → · · · → C11.

Figure 10 Example of correct transmission.

C11, the following happens: Between C0 and C3, v0 broadcasts the request with messages
td0 and td0. Between C1 and C8, v1 and v2 successively repeat the request to be done with
messages td1 and td1 for v1 and td2 td2 for v2. Between C6 and C10, v3 executes the request
by broadcasting messages td0 and d0. Between C7 and C11, v4 transmits the done request
with messages d1 and d1. Hence, the request is executed by exactly one vertex (namely
v3), as highlighted in Figure 10b. Observe that the processes sort of spontaneously emit
broadcast to avoid to receive a message. A correct guess of when to broadcast yields the
interleaving of broadcasts that we have presented in this example.

How to prevent wrong behaviors? Observe that, when a node is in state idl1, if one of its
neighbor broadcasts a message which is not td0, d0 or td2, d2, then the node in idl1 reaches
§. We say that a process fails whenever it reaches §. We have the following lemma:

▶ Lemma 4.1. Let C ∈ C be a stable configuration such that C0 →+ C. Then in C, it holds
that v0 is in s2, and there is exactly one vertex v ∈ {v1, v2, v3, v4} on a state hltj for some
j ∈ {0, 1, 2}.

Indeed, let C be a stable configuration such that C0 →+ C. It holds that:
1. From C0, the first broadcast is from v0 and it broadcasts td0.

Indeed, if another vertex than v0 broadcasts a message m with subscript i from C0, its left
neighbor would fail with transition (idlj , ?m,§) as j = (i − 1) mod 3 and m ∈ {tdi, di}.
Let us consider an example depicted in Figure 11b: Assume v1 is in state idl1 and v2
broadcasts td2 or d2 (it issues a request whereas v1 is not broadcasting any request), then
v1 receives the message with transition that goes from idl1 to §, as depicted in Figure 7.
Hence, we can not reach a stable configuration from there.

2. Each vertex (except the tail) broadcasts one pair of messages between C0 and C.
Assume for instance that v1 does not broadcast anything. From Item 1, v0 broadcasts
td0, and so at some point it will also broadcasts td0 otherwise it would not be in s0 or s2
in C. Hence v1 fails as depicted in Figure 11a. Actually, each vertex (except the tail)
broadcasts exactly one pair: if it broadcasts more, its left neighbor would fail as well.

3. When a node broadcasts a pair (tdj, tdj), its right neighbor broadcasts either a pair (tdi,
tdi) or (tdi, di), for j, i ∈ {0, 1, 2}.
Assume its right neighbor broadcasts di, it must be that i = (j + 1) mod 3. Such an
example is depicted in Figure 11b: v1 fails with (tr1

td, ?d2,§). Similarly, we have:
4. When a node broadcasts a pair (tdj , dj) or a pair (dj , dj), its right neighbor broadcasts a

pair (di, di), for j, i ∈ {0, 1, 2}.

CONCUR 2024

26:10 Phase-Bounded Broadcast Networks over Topologies of Communication

v0 :s0 v1 : idl1
!!td0

v0 :s1 v1 : idl1
!!td0

v0 :s2 v1 : §
(a) v1 does not transmit the request.

v1 : idl1 v2 :idl2
!!td1

v1 : tr1
td v2 :idl2

!!d2
v1 : § v2 :tr2

d

(b) v2 broadcasts the wrong pair of messages.

Figure 11 Example of wrong behaviors during the transmission.

4.2 Putting everything together

We adapt the construction of Section 4.1 to propagate operations on counters of the machine
issued by the head of the line. Counters processes will evolve in three different protocols as
in Section 4.1. They can be either in a zero state, from which all the types of instructions
can be transmitted, or in a state 1x for x one of the two counters, from which all the types of
operations can be transmitted, except 0-tests of x. Increments and decrements of a counter x
are done in a similar fashion as in Section 4.1 (exactly one node changes its state). 0-tests
are somewhat easier: no node changes state nor executes anything, and the tail accepts the
same pair as the one broadcast by the head. However, if a node is in a 1x when x is the
counter compared to 0, it fails when its left neighbor broadcasts the request.

We ensure that we can select a line with a similar structure as the one depicted in
Figure 9 thanks to a first part of the protocol where each node: (i) receives an announcement
message from its predecessor with a subscript j (except the head which broadcasts first), (ii)
broadcasts an announcement message with the subscript (j + 1) mod 3 (head broadcasts
with subscript 0) and (iii) waits for the announcement of its successor with subscript (j + 2)
mod 3 (except for the tail). If it receives any new announcement at any point of its execution,
it fails. When considering only line topologies, as each node has at most two neighbors, this
part can be achieved with fewer alternations. We get the two following theorems.

▶ Theorem 4.2. Cover and Cover[Trees] are undecidable for k-phase-bounded protocols
with k ≥ 6.

▶ Theorem 4.3. Cover[Lines] is undecidable for k-phase-bounded protocols with k ≥ 4.

5 Cover in 1-Phase-Bounded Protocols

We show that Cover[Graphs] restricted to 1-phase-bounded protocols is ExpSpace-complete.
We begin by proving that for such protocols Cover[Graphs] and Cover[Stars] are

equivalent (where Stars correspond to the tree topologies of height one). To get this property,
we first rely on Theorem 2.4 (stating that Cover and Cover[Trees] are equivalent) and
without loss of generality we can assume that if a control state can be covered with a tree
topology, it can be covered by the root of the tree. We then observe that when dealing
with 1-phase-bounded protocols, the behaviour of the processes of a tree which are located
at a height strictly greater than 1 have no incidence on the root node. Indeed if a process
at depth 2 performs a broadcast received by a node at depth 1, then this latter node will
not be able to influence the state of the root because in 1-phase-bounded protocols, once
a process has performed a reception, it cannot broadcast anymore. In the sequel we fix a
1-phase-bounded protocol P = (Q, Σ, qin, ∆) and a state qf ∈ Q. We then have:

L. Guillou, A. Sangnier, and N. Sznajder 26:11

▶ Lemma 5.1. There exist Γ ∈ Graphs, C = (Γ, L) ∈ IP and D = (Γ, L′) ∈ CP and
v ∈ V(Γ) such that C →∗ D and L′(v) = qf iff there exists Γ′ ∈ Stars, C ′ = (Γ′, L′′) ∈ I and
D′ = (Γ′, L′′′) ∈ CP such that C ′ →∗

P D′ and L′′′(ϵ) = qf .

To solve Cover[Stars] in ExpSpace, we proceed as follows (1) we first propose an
abstract representation for the configurations reachable by executions where the root node
does not perform any reception, and that only keeps track of states in Q0 and Qb

1 (2) we
show that we can decide in polynomial space whether a configuration corresponding to a
given abstract representation can be reached from an initial configuration (3) relying on
reduction to the control state reachability problem in VASS (Vector Addition System with
States), we show how to decide whether there exists a configuration corresponding to a given
abstract representation from which qf can be covered in an execution where the root node
does not perform any broadcast. This reasoning relies on the fact that a process executing
a 1-phase-bounded protocol first performs only broadcast (or internal actions) and then
performs only receptions (or internal actions).

We use Qb to represent the set Q0 ∪ Qb
1 and we say that a configuration C = (Γ, L)

in CP is a star-configuration whenever Γ ∈ Stars. For a star-configuration C = (Γ, L)
in CP such that L(ϵ) ∈ Qb, the broadcast-print of C, denoted by bprint(C), is the pair
(L(ϵ), {L(v) ∈ Qb | v ∈ V(Γ) \ {ϵ}}) in Qb × 2Qb . We call such a configuration C a
b-configuration. Note that any initial star-configuration Cin = (Γin, Lin) ∈ I is a b-
configuration verifying bprint(Cin) ∈ {(qin, ∅), (qin, {qin})} (the first case corresponding to
V(Γ) = {ϵ}). We now define a transition relation ⇒ between broadcast-prints. Given (q, Λ)
and (q′, Λ′) in Qb × 2Qb , we write (q, Λ) ⇒ (q′, Λ′) if there exists two b-configurations C and
C ′ such that bprint(C) = (q, Λ) and bprint(C ′) = (q′, Λ′) and C → C ′. We denote by ⇒∗

the reflexive and transitive closure of ⇒.
One interesting point of this abstract representation is that we can compute in polynomial

time the ⇒-successor of a given broadcast-print. The intuition is simple: either the root
performs a broadcast of m ∈ Σ, and in that case we have to remove from the set Λ all the
states from which a reception of m can be done (as the associated processes in C ′ will not
be in a state in Qb anymore) or one process in a state of Λ performs a broadcast and in that
case it should not be received by the root node (otherwise the reached configuration will not
be a b-configuration anymore).

▶ Lemma 5.2. Given (q, Λ) ∈ Qb × 2Qb , we can compute in polynomial time the set
{(q′, Λ′) | (q, Λ) ⇒ (q′, Λ′)}.

In order to show that our abstract representation can be used to solve Cover[Stars], we need
to rely on some further formal definitions. Given two star-configurations C = (Γ, L) and
C ′ = (Γ′, L′), we write C ⪯ C ′ iff the two following conditions hold (i) L(ϵ) = L′(ϵ), and, (ii)
|{v ∈ V(Γ)\{ϵ} | L(v) = q}| ≤ |{v ∈ V(Γ′)\{ϵ} | L′(v) = q}| for all q ∈ Qb. We then have the
following lemma where the two first points show that when dealing with star-configurations,
the network generated by 1-phase-bounded protocol enjoys some monotonicity properties.
Indeed, if the root node performs a broadcast received by other nodes, then if we put more
nodes in the same state, they will also receive the message. On the other hand if it is another
node that performs a broadcast, only the root node is able to receive it. The last point of the
lemma shows that we can have as many processes as we want in reachable states in Qb (as
soon as the root node does not perform any reception) by duplicating nodes and mimicking
behaviors.

CONCUR 2024

26:12 Phase-Bounded Broadcast Networks over Topologies of Communication

▶ Lemma 5.3. The following properties hold:
(i) If C1, C ′

1 and C2 are star-configurations such that C1 → C ′
1 and C1 ⪯ C2 then there

exists a star-configuration C ′
2 such that C ′

1 ⪯ C ′
2 and C2 →∗ C ′

2.
(ii) If C1, C ′

1 and C2 are b-configurations such that C1 → C ′
1 and bprint(C1) = bprint(C2)

and C1 ⪯ C2 then there exists a b-configuration C ′
2 such that C ′

1 ⪯ C ′
2 and bprint(C ′

1) =
bprint(C ′

2) and C2 →∗ C ′
2 .

(iii) If C is a b-configuration such that Cin →∗ C for some initial configuration Cin then for
all N ∈ N, there exists an initial configuration C ′

in and a b-configuration C ′ = (Γ′, L′)
such that C ′

in →∗ C ′ and bprint(C) = bprint(C ′) = (q, Λ) and |{v ∈ V(Γ′) \ {ϵ} |
L′(v) = q′}| ≥ N for all q′ ∈ Λ.

We can now prove that we can reason in a sound and complete way with broadcast prints
to characterise the b-configurations reachable from initial star-configurations. To prove this
next lemma, we rely on the two last points of the previous lemma and reason by induction
on the length of the ⇒-path leading from (qin, Λin) to (q, Λ).

▶ Lemma 5.4. Given (q, Λ) ∈ Qb × 2Qb , we have (qin, Λin) ⇒∗ (q, Λ) with Λin ∈ {∅, {qin}}
iff there exist two b-configurations Cin ∈ I and C ∈ C such that Cin →∗ C and bprint(C) =
(q, Λ).

Finally, we show that we can verify in exponential space whether there exists a configura-
tion with a given broadcast-print (q, Λ) from which we can reach a configuration covering qf

thanks to an execution where the root node does not perform any broadcast. This result is
obtained by a reduction to the control state reachability problem in (unary) VASS which is
known to be ExpSpace-complete [18, 21]. VASS are finite state machines equipped with
variables (called counters) taking their values in N, and where each transition of the machine
can either change the value of a counter, by incrementing or decrementing it, or do nothing.
In our reduction, we encode the state of the root in the control state of the VASS and we
associate a counter to each state of Qb to represent the number of processes in this state.
In a first phase, the VASS generates a configuration with (q, Λ) as broadcast-print and in
a second phase it simulates the network. For instance, if a process performs a broadcast
received by the root node, then we decrement the counter associated to the source state
of the broadcast, we increment the one associated to the target state and we change the
control state of the VASS representing the state of the root node accordingly. We need a last
definition to characterise executions where the root node does not perform any broadcast:
given two star-configurations C = (Γ, L) and C ′ = (Γ, L′), we write C −→r C ′ whenever there
exist v ∈ V(Γ) and δ ∈ ∆ such that C

v,δ−−→ C ′ and either v ̸= ϵ or δ = (q, τ, q′) for some
q, q′ ∈ Q. We denote by →∗

r the reflexive and transitive closure of →r.

▶ Lemma 5.5. Given (q, Λ) ∈ Qb × 2Qb , we can decide in ExpSpace whether there exist a
b-configuration C = (Γf , L) and a star-configuration Cf = (Γf , Lf) such that bprint(C) =
(q, Λ) and Lf (ϵ) = qf and C →∗

r Cf .

Combining the results of the previous lemmas leads to an ExpSpace-algorithm to solve
Cover[Stars]. We first guess a broadcast-print (q, Λ) and check in polynomial space whether
it is ⇒-reachable from an initial broadcast-print in {(qin, ∅), (qin, {qin})} thanks to Lemma 5.2
(relying on a non-deterministic polynomial space algorithm for reachability). Then we use
Lemma 5.5 to check the existence of a b-configuration C with bprint(C) = (q, Λ) from
which we can cover qf . By Savitch’s theorem [23], we conclude that the problem is in
ExpSpace. The completeness of this method is direct. For the soundess, we reason as

L. Guillou, A. Sangnier, and N. Sznajder 26:13

follows: using Lemma 5.4, there exists a configuration C reachable from an initial star-
configuration such that bprint(C) = (q, Λ), and by Lemma 5.5, there is a configuration C ′

such that bprint(C ′) = (q, Λ) from which we cover qf . Thanks to Lemma 5.3.(iii), there is
a configuration C ′′ reachable from an initial configuration such that C ⪯ C ′′ and C ′ ⪯ C ′′

and bprint(C ′′) = (q, Λ). Thanks to Lemma 5.3.(i) applied to each transition, we can build
an execution from C ′′ that covers qf . The lower bound is obtained by a reduction from the
control state reachability in VASS.

▶ Theorem 5.6. Cover[Graphs] and Cover[Trees] are ExpSpace-complete for 1-phase-
bounded protocols.

6 Decidability Results for 2-Phase-Bounded Protocols

6.1 Cover and Cover[Trees] are Decidable on 2-PB Protocols

A simple path between u and u′ in a topology Γ = (V, E) is a sequence of distinct vertices
v0, . . . , vk such that u = v0, u′ = vk, and for all 0 ≤ i < k, (vi, vi+1) ∈ E. Its length is
denoted d(v0, . . . , vk) and is equal to k. Given an integer K, we say that a topology Γ is
K-bounded path (and we write Γ ∈ K − BP) if there is no simple path v0, . . . , vk such that
d(v0, . . . , vk) > K The result of this subsection relies on the following theorem.

▶ Theorem 6.1 ([6],Theorem 5). For K ≥ 1, Cover[K-BP] is decidable.

Hence, we show that if a state qf of a protocol P is coverable with a tree topology, then
qf is actually coverable with a tree topology that is also 2(|Q| + 1) − BP. To establish this
result, consider a coverable state qf of a protocol P with a tree topology Γ, such that Γ is
minimal in the number of nodes needed to cover qf . We can suppose wlog that qf is covered
by the root of the tree. We argue that all nodes (except maybe the root) in the execution
covering qf broadcast something, as otherwise they are useless and could then be removed.
We also argue that, since P is 2-phase-bounded, a node that would first broadcast after the
first broadcast of its father would also be useless for the covering of qf : this broadcast will
only be received by its father in its last phase of reception, hence it will have no influence on
the behavior of the root. These two properties are the key elements needed to establish the
following lemma.

▶ Lemma 6.2. Let P = (Q, Σ, qin, ∆) be a 2-phase-bounded protocol and qf ∈ Q. If qf can
be covered with a tree topology, then it can be covered with a topology Γ ∈ Trees such that, for
all u ∈ V(Γ), |u| ≤ |Q| + 1.

Indeed, a counting argument implies that if this is not the case, there exist two nodes u1
and u2 on the same branch, different from the root, with u1 a prefix of u2, that both execute
their first broadcast from the same state q. In this case, we could replace the subtree rooted
in u1 by the subtree rooted in u2, and still obtain an execution covering qf . Once u1 has
reached q (possibly by receiving broadcasts from the children of u2), it will behave as in
the initial execution. Behaviors of the children of u1 might differ in this second part, but it
can only influence u1 in its reception phase, which will be the last phase, and hence will not
influence the behavior of the root. Thanks to Theorems 2.4 and 6.1, we can then conclude.

▶ Theorem 6.3. Cover and Cover[Trees] are decidable for 2-phase-bounded protocols.

CONCUR 2024

26:14 Phase-Bounded Broadcast Networks over Topologies of Communication

v1 :qin vN−2 :qin vN−1 :qin vN :qin vN+1 :qin vN+2 :qin vℓ :qin.

∗

C0

v1 :_ vN−2 :q1 vN−1 :qin vN :qin vN+1 :qin vN+2 :qin vℓ :qin.

∗

Cj1

v1 :_ vN−2 :q1 vN−1 :qin vN :qin vN+1 :qin vN+2 :q2 vℓ :_.

∗

Cj2

v1 :_ vN−2 :_ vN−1 :_ vN :qf vN+1 :_ vN+2 :_ vℓ :_.Cn

no broadcast from vN−2

no broadcast from vN+2

Figure 12 Illustration of execution ρ obtained from Lemma 6.4.

6.2 Polynomial Time Algorithm for Cover[Lines] on 2-PB Protocols
In the rest of this section, we fix a 2-phase-bounded protocol P = (Q, Σ, qin, ∆) and a state
qf ∈ Q to cover. For an execution ρ = C0 −→ C1 −→ · · · −→ Cn with Cn = (Γ, Ln), for all
v ∈ V(Γ), we denote by bfirst(v, ρ) the smallest index 0 ≤ i < n such that Ci

v,t−−→ Ci+1 with
t = (q, !!m, q′) ∈ ∆. If v never broadcasts anything, bfirst(v, ρ) = −1. We also denote by
tlast(v, ρ) the largest index 0 ≤ i < n, such that Ci

v,t−−→ Ci+1 for some transition t ∈ ∆. If v

never issues any transition, we let tlast(v, ρ) = −1.
The polynomial time algorithm relies on the fact that to cover a state, one can consider

only executions that have a specific shape, described in the following lemma.

▶ Lemma 6.4. If qf is coverable with a line topology Γ such that V(Γ) = {v1, . . . , vℓ}
then there exists an execution ρ = C0 −→ C1 −→ · · · −→ Cn such that Cn = (Γ, Ln), and
3 ≤ N ≤ ℓ − 2 with Ln(vN) = qf , and

1. there exist 0 ≤ j1 < j2 < n such that for all 0 ≤ j < n, if we let Cj
vj ,tj

−−−→ Cj+1:
(a) if 0 ≤ j < j1, then vj ∈ {v1, . . . , vN−2} and if vj = vN−2, then tj = (q, τ, q′) for

some q, q′ ∈ Q; and
(b) if j1 ≤ j < j2, then vj ∈ {vN+2, . . . , vℓ} and if vj = vN+2, then tj = (q, τ, q′) for

some q, q′ ∈ Q; and
(c) if j2 ≤ j < n, then vj ∈ {vN−2, . . . , vN+2}.

2. (a) for all 1 ≤ i ≤ N − 2, tlast(vi, ρ) ≤ bfirst(vi+1, ρ), and
(b) for all N + 2 ≤ i ≤ ℓ, tlast(vi, ρ) ≤ bfirst(vi−1, ρ).

Figure 12 illustrates the specific form of the execution described in Item 1 of Lemma 6.4:
the first nodes to take actions are the ones in the purple part (on the left), then, only nodes
in the green part (on the right) issue transitions), and finally the nodes in the orange central
part take actions in order to reach qf . The fact that P is 2-phase bounded allows us to
establish Item 2 of Lemma 6.4: when vi+1 starts broadcasting, no further broadcasts from vi

will influence vi+1’s broadcasts (it can only receive them in its last reception phase).
Figure 12 highlights why we get a polynomial time algorithm: when we reach the orange

part of the execution, the nodes vN−1, vN and vN+1 are still in the initial state of the protocol.
Moreover, in the orange part (which is the one that witnesses the covering of qf), only five
nodes take actions. Once one has computed in which set of states the nodes vN−2 and vN+2
can be at the beginning of the orange part, it only remains to compute the set of reachable
configurations from a finite set of configurations. Let H be the set of possible states in which

L. Guillou, A. Sangnier, and N. Sznajder 26:15

vN−2 and vN+2 can be at the beginning of the last part of the execution, and for q1, q2 ∈ H,
let Cq1,q2 = (Γ5, Lq1,q2) where Γ5 is the line topology with five vertices {v1, v2, v3, v4, v5} and
Lq1,q2(v1) = q1, Lq1,q2(v5) = q2 and for all other vertex v, Lq1,q2(v) = qin.

Our algorithm is then: (1) Compute H; (2) For all q1, q2 ∈ H, explore reachable
configurations from Cq1,q2 ; (3) Answer yes if we reach a configuration covering qf , answer no
otherwise. It remains to explain how to compute H. This computation relies on Item 2 of
Lemma 6.4: locally, each node vi at the left of vN−1 (resp. at the right of vN+1) stops issuing
transitions once its right neighbor vi+1 (resp. its left neighbor vi−1) starts broadcasting.

Hence we compute iteratively set of coverable pairs of states S ⊆ Q × Q by relying on a
family (Si)i∈N of subsets of Q × Q formally defined as follows:

S0 = {(qin, qin)}
Si+1 = Si ∪ {(q1, q2) | there exist (p1, p2) ∈ Si, j ∈ {1, 2} s.t. (pj , τ, qj) ∈ ∆ and p3−j = q3−j}
∪ {(q1, q2) | there exists (p1, p2) ∈ Si, s.t. (p2, !!m, q2) ∈ ∆, (p1, ?m, q1) ∈ ∆, m ∈ Σ}
∪ {(q1, q2) | there exists p2 ∈ Q s.t. (q1, p2) ∈ Si, and (p2, !!m, q2) ∈ ∆ and m ̸∈ R(q1)}
∪ {(qin, q) | there exists (q, q′) ∈ Si for some q′ ∈ Q}.

We then define S =
⋃

n ∈N Sn, and H = {q ∈ Q | there exists q′ and (q, q′) ∈ S}. Observe
that (Si)i∈N is an increasing sequence bounded by |Q|2. The computation reaches then a
fixpoint and S can be computed in polynomial time. We define H = {q | ∃q′ ∈ Q, (q, q′) ∈ S}.
Note that H ⊆ Q0 ∪ Qr

1, as expected by Item 2 of Lemma 6.4. We also state that our
construction is complete and correct, leading to the following theorem.

▶ Theorem 6.5. Cover[Lines] is in P for k-phase-bounded protocols with k ∈ {1, 2}.

Proof. We explain why the algorithm takes a polynomial time: step 1 (computing H) is done
in polynomial time as explained above. For step 2, there are at most |H| × |H| ≤ |Q|2 pairs,
and for each pair, we explore a graph of at most |Q|5 nodes in which each vertex represents
a configuration C = (Γ5, L). Accessibility in a graph can be done non-deterministically in
logarithmic space, and so in polynomial time. Observe that all the lemmas of this section
hold true when considering 1-phase-bounded protocols, hence the theorem. ◀

References
1 B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parametrized model checking of token-

passing systems. In VMCAI’14, volume 8318 of LNCS, pages 262–281. Springer-Verlag,
2014.

2 D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. In PODC’04, pages 290–299. ACM, 2004.

3 M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent programs
with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011.

4 B. Bollig, M. Lehaut, and N. Sznajder. Round-bounded control of parameterized systems. In
ATVA’18, volume 11138 of Lecture Notes in Computer Science, pages 370–386. Springer, 2018.

5 E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decomposition. In
CONCUR’04, volume 3170 of LNCS, pages 276–291. Springer-Verlag, 2004.

6 G. Delzanno, A.Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks. In
CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer, 2010.

7 G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the parameterized
verification of ad hoc networks. In FOSSACS’11, volume 6604 of LNCS, pages 441–455.
Springer, 2011.

8 A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar. Model checking parameterized
asynchronous shared-memory systems. Formal Methods Syst. Des., 50(2-3):140–167, 2017.

CONCUR 2024

26:16 Phase-Bounded Broadcast Networks over Topologies of Communication

9 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In LICS’99,
pages 352–359. IEEE Computer Society, 1999.

10 J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. Verification of population protocols. Acta
Informatica, 54(2):191–215, 2017.

11 J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous shared-
memory systems. J. ACM, 63(1):10:1–10:48, 2016.

12 J. Esparza, S. Jaax, M. A. Raskin, and C. Weil-Kennedy. The complexity of verifying
population protocols. Distributed Comput., 34(2):133–177, 2021.

13 S. M. German and A. P. Sistla. Reasoning about systems with many processes. Journal of the
ACM, 39(3):675–735, 1992.

14 L. Guillou, A. Sangnier, and N. Sznajder. Safety analysis of parameterised networks with
non-blocking rendez-vous. In CONCUR’23, volume 279 of LIPIcs, pages 7:1–7:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

15 L. Guillou, A. Sangnier, and N. Sznajder. Phase-bounded broadcast networks over topologies
of communication, 2024. arXiv:2406.15202.

16 O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J. ACM,
25(1):116–133, 1978.

17 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV’10, volume 6174 of LNCS, pages 629–644. Springer,
2010.

18 R.J. Lipton. The reachability problem requires exponential space. Research report (Yale Uni-
versity. Department of Computer Science). Department of Computer Science, Yale University,
1976.

19 M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
20 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS’05,

volume 3440 of LNCS, pages 93–107. Springer, 2005.
21 C. Rackoff. The covering and boundedness problems for vector addition systems. Theoretical

Computer Science, 6:223–231, 1978.
22 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM

Trans. Program. Lang. Syst., 22(2):416–430, 2000.
23 W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J.

Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.
24 S. Schmitz and P. Schnoebelen. The power of well-structured systems. In CONCUR’13,

volume 8052 of LNCS, pages 5–24. Springer, 2013.

https://arxiv.org/abs/2406.15202
https://doi.org/10.1016/S0022-0000(70)80006-X

	1 Introduction
	2 Preliminaries
	2.1 Networks of processes
	2.2 Verification problem

	3 Phase-Bounded Protocols
	4 Undecidability Results
	4.1 Propagating a message using only broadcasts in a line
	4.2 Putting everything together

	5 Cover in 1-Phase-Bounded Protocols
	6 Decidability Results for 2-Phase-Bounded Protocols
	6.1 Cover and Cover[Trees] are Decidable on 2-PB Protocols
	6.2 Polynomial Time Algorithm for Cover[Lines] on 2-PB Protocols

