
Bi-Reachability in Petri Nets with Data
Łukasz Kamiński
University of Warsaw, Poland

Sławomir Lasota
University of Warsaw, Poland

Abstract
We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from
an infinite data domain, and executability of transitions is conditioned by equalities between data
values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its
two configurations, we ask if each of the configurations is reachable from the other. This pushes
forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem
(which is known to be decidable) and is subsumed by the reachability problem (whose decidability
status is unknown).

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Petri nets, Petri nets with data, reachability, bi-reachability, reversible
reachability, mutual reachability, orbit-finite sets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.31

Funding Łukasz Kamiński: Partially supported by NCN grant 2021/41/B/ST6/00535.
Sławomir Lasota: Partially supported by the ERC grant INFSYS, agreement no. 950398.

Acknowledgements We are grateful to Piotrek Hofman for inspiring discussions.

1 Introduction

We investigate the model of Petri nets with data, where tokens carry values from some fixed
data domain, and executability of transitions is conditioned by relations between data values
involved. We study Petri nets with equality data [20, 22, 28], i.e., a countable infinite data
domain with equality as the only relation. Other data domains have been also studied,
for instance Petri nets with ordered data [22], i.e., a countable infinite, densely and totally
ordered data domain (the model subsumes Petri nets with equality data). One can also
consider an abstract setting of Petri nets with an arbitrary fixed data domain [20].

As an illustrating example, consider a Petri net with equality data which has two places
p1, p2 and two transitions t1, t2, as depicted in Fig. 1. Transition t1 outputs two tokens with
arbitrary but distinct data values onto place p1. Transition t2 inputs two tokens with the
same data value, say a, one from p1 and one from p2, and outputs three tokens: two tokens
with arbitrary but equal data values b, where b ̸= a, one onto p1 and the other onto p2, plus
one token with a data value c ̸= a onto p1. Note that transition t2 does not specify whether
b = c or not, and therefore both options are allowed.

The most fundamental decision problem for Petri nets, the reachability problem, asks,
given a net together with source and target configurations, if there is a run from source to
target. It is well known that the reachability problem is undecidable for Petri nets with
ordered data [22], while the decidability status of this problem for equality data still remains
an intriguing open question. The same applies to two other major extensions of plain Petri
nets, namely pushdown Petri nets [23] and branching Petri nets [9, 29]. On the other hand,
the coverability problem (where we ask if there is a run from source to a configuration that
possibly extends target by some extra tokens) is decidable for both equality and ordered

© Łukasz Kamiński and Sławomir Lasota;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 31; pp. 31:1–31:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0004-1641-9049
https://orcid.org/0000-0001-8674-4470
https://doi.org/10.4230/LIPIcs.CONCUR.2024.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Bi-Reachability in Petri Nets with Data

p1 p2

t1
x1, x2

t2

y1 y2

z1, z3 z2

x1 ̸= x2 z1 = z2 ̸= y1 = y2 ̸= z3

Figure 1 A Petri net with equality data, with places {p1, p2} and transitions {t1, t2}. The shown
configuration engages 5 tokens, carrying 3 different data values, depicted through different colors.

data [20]. As widely known, coverability easily reduces to reachability. Furthermore, the
reachability problem is decidable, also for equality and ordered data, in the special case of
reversible Petri nets (where transitions are closed under reverse), as recently shown in [15].

In this paper we do a step towards decidability of reachability in Petri nets with equality
data, and study a relevant decision problem sandwiched between reachability and the two
latter decidable problems: the bi-reachability problem (also called mutual reachability problem
or reversible reachability problem [24]). It asks, for a net and two its configurations, if each
of the configurations is reachable from the other one. In other words, the problem asks if
two given configurations are in the same bi-reachability equivalence class. Here are all know
reductions, valid for Petri nets with either equality or ordered data, as well as for plain Petri
nets (without data):

coverability // bi-reachability // reachability

reachability in
reversible Petri nets

OO

As our main result we prove decidability of this problem for equality data domain. This
result pushes further the decidability border, subsuming decidability of coverability, and of
reachability in reversible Petri nets with equality data. Our approach is specific to equality
data, and thus we leave unresolved the status of bi-reachability in case of ordered data.

The decision procedure for bi-reachability is inspired by the classical decomposition
approach used to decide reachability in plain Petri nets [18, 19, 27]. There, it is often more
convenient to work with vector addition systems with states (vass) instead of Petri nets
[18, 27]. Following this line, for technical convenience we prefer to work with the model
of data vass (dvass) [16] rather than with Petri nets. In short, our approach consists of
two ingredients. First, we provide a sufficient condition for a dvass to admit bi-reachability
(resembling Θ1 and Θ2 conditions of [18, 27]), which is effectively testable. Second, in case
the condition fails, we provide an effective way of reducing a dvass to an equivalent one,
with respect to bi-reachability, which has smaller rank. As ranks are well founded, the
reduction step guarantees correctness and termination. Importantly, the decision procedure
manipulates dvass, and does not need to resort to manipulation of more general structures
(like generalised vass of [18, 27], or graph-transition sequences of [19], or witness graph
sequences of [25], or KLM sequences of [26]). This allows us to avoid similar generalisations
in the data setting, and allows to keep the algorithm relatively simple.

Our work leaves two exciting open questions: can one extend our approach to bi-
reachability in case of ordered data, or to reachability in case of equality data. Clearly, if
attempting to solve the latter problem, one unavoidably will be faced with some generalisation
of the above-mentioned structures to the data setting.

Ł. Kamiński and S. Lasota 31:3

Related research. Petri nets with equality data are a well established and widely studied
model of concurrent systems, as data allow to model important aspects of such systems not
captured by plain Petri nets, e.g. process identity [1, 5]. The model can be also seen as a
reinterpretation of the classical definition of Petri nets with a relaxed notion of finiteness,
namely orbit-finiteness, where one allows for orbit-finite sets of places and transitions instead
of just finite ones; this is along the lines of [3, 4]. Similar net models have been proposed
already in the early 80ies: high-level Petri nets [13] and colored Petri nets [17]. Since
then, similar formalisms seem to have been rediscovered, for instance constraint multiset
rewriting [6, 7, 8].

In plain Petri nets, bi-reachability is decidable as a consequence of decidability of
reachability [18, 19, 27]. Later, exact ExpSpace complexity was established in [24]. In our
setting, the problem is Ackermann-hard due to [23]. In pushdown Petri nets, decidability
of reachability in the reversible subclass has been shown only recently [12], while decidability
status of bi-reachability is still open. Indeed, it is known that reachability in pushdown Petri
nets with d places reduces to coverability in pushdown Petri nets with d + 1 places, and
the latter problem reduces to bi-reachability in pushdown Petri nets. Hence, decidability of
bi-reachability would imply decidability of reachability in case of pushdown Petri nets.

2 Preliminaries: orbit-finite sets and vectors

In the sequel, let A denote a fixed countable infinite set of data values (called also atoms).
By Aut(A) we denote the set of all permutations of A (called also automorphisms). For
a subset S ⊆ A we define the subgroup AutS(A) = {σ ∈ Aut(A) |σ(s) = s for all s ∈ S}.
Permutations in AutS(A) we call S-automorphisms.

Orbit-finite sets. In the following we study actions of the group Aut(A) on different sets.
An action of Aut(A) on a set Z is a group homomorphism ι from Aut(A) to functions Z → Z.
We write σ(z) instead of ι(σ)(z) for σ ∈ Aut(A) and z ∈ Z. In the sequel we always use
the natural action of Aut(A) that, regardless of Z, renames atoms a ∈ A but leaves other
elements intact. Here are two specific examples of such action that will serve later as building
blocks in the definition of our model:

▶ Example 1. Let ⊥ /∈ A. For any finite sets L and R of locations and register names,
respectively, the group Aut(A) acts naturally on the set of states Q = L× (R → (A ∪ {⊥})),
namely given σ ∈ Aut(A) and q = (ℓ, ν) ∈ Q, we put

σ(q) := (ℓ, σ(ν)) where σ(ν)(r) =
{

σ(ν(r)), if ν(r) ∈ A
⊥ if ν(r) = ⊥.

Furthermore, for any finite sets H, P of plain places and atom places, respectively, Aut(A)
acts naturally on functions H ∪P ×A→ Z, namely given σ ∈ Aut(A) and v : H ∪P ×A→ Z
we put σ(v)(h) := v(h) for h ∈ H, and σ(v)(p, σ(a)) := v(p, a) for p ∈ P . ⌟

Roughly speaking, a set is orbit-finite if it has a finite number of elements up to auto-
morphisms of atoms. We define the orbit of an element z ∈ Z:

Orbit(z) := {σ(z) |σ ∈ Aut(A)} .

CONCUR 2024

31:4 Bi-Reachability in Petri Nets with Data

As different orbits are necessarily disjoint, Z partitions uniquely into orbits. A subset X ⊆ Z

is orbit-finite if it is a finite union of orbits. Clearly all orbits, and hence also all finite unions
thereof, are closed under the action of Aut(A). Orbit-finite sets are closed under finite unions
and products [2, Lem. 3.24].

▶ Example 2. We continue Example 1. The whole set Q = L × (R → (A ∪ {⊥})) is
orbit-finite, since the orbit of a state q = (ℓ, ν) ∈ Q is determined by its location ℓ, the
inverse image of ⊥, namely {r ∈ R | ν(r) = ⊥}, and the equality type of ν, namely the set{

(r, r′) ∈ R2
∣∣ ν(r) = ν(r′) ̸= ⊥

}
. Indeed, for every two states q = (ℓ, ν) and q′ = (ℓ′, ν′)

such that ℓ = ℓ′, and ν and ν′ have the same inverse image of ⊥ and the same equality type,
there is an automorphism σ ∈ Aut(A) such that σ(q) = q′.

On the other hand, the function space (H ∪ P × A)→ Z is not orbit-infinite. ⌟

Vectors. Given a set X, by X →fin Z we denote the commutative group freely generated by
X, and the group operation we denote by ⊕. We write v⊖w instead of v⊕w−1. Equivalently,
X →fin Z can be identified with the set of all functions v : X → Z which map almost all
elements of X to 0, i.e., those functions where the set {x ∈ X |v(x) ̸= 0} is finite. Elements
of X →fin Z we call X-vectors, or simply vectors if the generating set X is clear from the
context. The zero vector we denote by 0, irrespectively of X, and a single-generator vector
x ∈ X we denote by 1x. Seen as a function X → Z, the vector 1x maps x to 1 and all
other elements of X to 0. When X is finite, we call X-vectors finite as well. Nonnegative
vectors, denoted X →fin N, are elements of the commutative monoid freely generated by
X, or functions v : X → N which map almost all elements of X to 0 or, equivalently, finite
multisets of elements of X. We write ⊕W to denote the sum of a finite set W of vectors.

In the sequel the generating set X is most often of the form H ∪P×A for some finite sets
P , H. Clearly, (H ∪ P×A) →fin Z is isomorphic to (H →fin Z) × (P×A →fin Z), as every
vector v : (H ∪ P×A)→fin Z decomposes uniquely as the sum v = u⊕w, where u : H →fin Z,
w : P×A →fin Z. Given v : (H ∪ P×A) →fin Z, we define its support supp(v) ⊆ A, as the
(necessarily finite) set of those atoms which are sent by v to a nonzero value:

supp(v) := {a ∈ A | ∃p ∈ P : v(p, a) ̸= 0} .

Intuitively, supp(v) contains those atoms that ’appear’ in v. We observe that σ(v) = v
as long as σ(a) = a for all a ∈ supp(v). The natural action of Aut(A) given in Example 1
restricts to the set of vectors (H ∪ P×A)→fin Z, which is still not orbit-infinite.

▶ Example 3. Transitions t1, t2 of Petri net in Figure 1 are semantically orbit-finite sets of
(P×A)-vectors, where P = {p1, p2} (i.e., H = ∅). Indeed, the effect of firing t1 amounts to
adding two arbitrary but different atoms a ̸= b to place p1, i.e., is described by an X-vector

v1 = (p1, a)⊕ (p1, b) (a ̸= b).

As the choice of atoms a ̸= b is arbitrary, all possible effects of firing the transition span one
orbit of vectors: V1 = Orbit(v1). The effect of firing t2 amounts to removing some arbitrary
atom a from both p1 and p2, and adding two further atoms b, c not equal to a: one of them
is added to both p1 and p2, while the other one only to p1. As it is not specified whether
b = c or not, we describe t2 by two X-vectors:

v2 = (p1, c)⊕ (p1, b)⊕ (p2, b)⊖ (p1, a)⊖ (p2, a) (a ̸= b ̸= c ̸= a) (1)
v′

2 = (p1, b)⊕ (p1, b)⊕ (p2, b)⊖ (p1, a)⊖ (p2, a) (a ̸= b). (2)

Ł. Kamiński and S. Lasota 31:5

As before, the choice of atoms is arbitrary, and hence all possible effects of firing t2 span
the union of two orbits of vectors: V2 = Orbit(v2) ∪Orbit(v′

2). Intuitively, different orbits
in T2 correspond to different equality types of a tuple of atoms (a, b, c): one defined by
inequalities a ̸= b ̸= c ̸= a, and another defined by a ̸= b = c. This example illustrates a
transformation of Petri nets to data vass, the model we work with in this paper.1 ⌟

Multiset sum problem. The following core decision problem, parametrised by an orbit-finite
set X, will be useful later:

Multiset Sum
Input: an orbit-finite set M of X-vectors, and an X-vector b.
Question: is b equal to the sum of a finite multiset of vectors from M?

In other words, we ask if b is a nonnegative integer linear combination of vectors from M .
We assume that M is represented by a finite set of representatives, one per orbit.

▶ Lemma 4 ([14, Thm. 17]). Multiset Sum is decidable.

3 Data vector addition systems with states

Classical Petri nets are equivalent, with respect to most decision problems, to vector addition
systems (vass). Likewise, we introduce here a formalism equivalent to Petri nets with data,
called data vector addition systems with states (dvass). It is an extension of (stateless) data
vector addition systems (dvas) studied in [16].

Data VASS. A data vass (dvass) V = (L,R, H, P, T) consists of pairwise disjoint finite
sets of locations L, register names R, plain places H, atom places P , and an orbit-finite set

T ⊆ Q× ((H ∪ P×A)→fin Z)×Q

of transitions, where Q = L × (R → (A ∪ {⊥})) is the set of states. The set T is thus
assumed to be a finite union of orbits, under the natural action of Aut(A) on transitions
that extends the action on vectors and states given in Example 1: for t = (q, v, q′) ∈ T we
put σ(t) := (σ(q), σ(v), σ(q′)). In particular, T is closed under the action of Aut(A). Given
a state q = (ℓ, ν) ∈ Q, the function ν is called register valuation. Intuitively, ν(r) = a means
that register r contains atom a, while ν(r) = ⊥ means that r is empty. The vector v is called
the effect of transition (q, v, q′).

The model of (plain) vass corresponds to the special case where R = ∅ and P = ∅, i.e.,
dvass without registers and atom places. In this case the set T ⊆ Q× (H →fin Z)×Q, being
orbit-finite, is necessarily finite. The model of dvas corresponds to the special case when
L = {∗} is a singleton and R = ∅ and H = ∅, i.e., dvass without locations, registers and
plain places.

A pseudo-configuration of V is a pair (q, v) ∈ Q × ((H ∪ P×A) →fin Z), written
q(v). A pseudo-run from q1(v0) to qk(vk) is a sequence of pseudo-configurations π =
q0(v0) q1(v1) . . . qk(vk) such that ti = (qi−1, vi − vi−1, qi) ∈ T for every i = 1, . . . , k. We
say that the pseudo-run π uses the transitions t1, . . . , tk ∈ T . The support of a state
q = (ℓ, ν) is the set of all atoms used in registers, i.e. supp(q) = ν(R) ∩ A. The sup-
port of a transition t = (q, v, q′) is supp(t) = supp(q) ∪ supp(v) ∪ supp(q′). We also

1 As in a transformation from plain Petri nets to vass, in case of Petri net with tight loops, i.e., transitions
that simultaneously input and output the same atom from/to the same place, we would have to split
every such transition into input and output part.

CONCUR 2024

31:6 Bi-Reachability in Petri Nets with Data

define the support of a pseudo-run as the union of supports of all its pseudo-configurations:
supp(π) = supp(q0) ∪ supp(v0) ∪ supp(q1) ∪ . . . ∪ supp(qk) ∪ supp(vk). We again extend
the action of Aut(A), this time to pseudo-runs, in an expected way:

σ
(
q0(v0) q1(v1) . . . qk(vk)

)
:= σ(q0)(σ(v0)) σ(q1)(σ(v1)) . . . σ(qk)(σ(vk)).

The set of pseudo-runs is closed under the action of Aut(A).
Configurations are those pseudo-configurations q(v) where the vector v is nonnegative,

i.e., v : (H ∪ P×A) →fin N. Let Conf = Q ×
(
(H ∪ P×A) →fin N

)
denote the set of all

configurations. A run is a pseudo-run where every pseudo-configuration qi(vi) is actually
a configuration. We write q(v) 99K q′(v′) (resp. q(v) −→ q′(v′)) if there is a pseudo-run
(resp. a run) from q(v) to q′(v′).

▶ Example 5. Continuing Example 3, Petri net in Figure 1 is equivalent to a dvas V =
({∗} , ∅, ∅, {p1, p2} , T), whose transitions are (as R = ∅, we omit register valuations)

T = {∗} × (V1 ∪ V2)× {∗} .

The initial configuration shown in Figure 1 is ∗(v), where v = (p1, a)⊕(p1, c)⊕(p1, c)⊕(p2, a)⊕
(p2, b) for some distinct atoms a, b, c ∈ A. In order to illustrate dvass, we drop the first
inequality in the constraint on t2, and consider the relaxed constraint z1 = z2 ∧ y1 = y2 ̸= z3
instead. This adds a third orbit of possible effects of firing t2, when the atom b added to
places p1 and p2 is the same as the atom a removed (c.f. (1) in Example 3):

v′′
2 = (p1, c)⊕ (p1, a)⊕ (p2, a)⊖ (p1, a)⊖ (p2, a) (a ̸= c).

The modified Petri net is equivalent to a dvass V ′ = (L, ∅, ∅, P, T ′) with two locations
L = {ℓ, ℓ′}, still no registers, a larger set of atom places P = {p1, p2, p}, and transitions:

T ′ = {ℓ} × (V1 ∪ V2)× {ℓ} ∪ {ℓ} ×Orbit(w)× {ℓ′} ∪ {ℓ′} ×Orbit(w′)× {ℓ} ,

where vectors w, w′ are splitting v′′
2 into input and output part, using an auxiliary place p

to temporarily store atom a:

w = (p, a)⊖ (p1, a)⊖ (p2, a) w′ = (p1, c)⊕ (p1, a)⊕ (p2, a)⊖ (p, a) (a ̸= c). (3)

Transitions in T ′ corresponding to V1 ∪ V2 go from ℓ to ℓ, while the other transitions go from
ℓ to ℓ′, or from ℓ′ to ℓ. The initial configuration of V ′ is ℓ(v). Instead of place p one could
also use a single register R = {r}, and transitions of the form

((ℓ,⊥), ⊖(p1, a)⊖ (p2, a), (ℓ′, a)) ((ℓ′, a), (p1, c)⊕ (p1, a)⊕ (p2, a), (ℓ,⊥)) (a ̸= c),

to the same effect as in (3). The initial configuration would be then q(v), where q = (ℓ,⊥). ⌟

▶ Remark 6. Our model of dvass syntactically extends dvas by locations, registers and
plain places. The extended model is convenient for our decidability argument, while being
equivalent to dvas with respect to most of decision problems. Indeed, a dvass may be
transformed into an essentially equivalent dvas in three steps (as in the proof of Lemma 12):

locations 2
// plain places

3

��
registers

1 //

1

OO

atom places

(4)

First, we eliminate registers using locations and atom places, then we encode locations into
plain places, and finally we encode plain places into atom ones.

Ł. Kamiński and S. Lasota 31:7

State graph. We define the state graph Graph(T) = (Q, E) of a dvass V. Its nodes are
states Q, and its edges E ⊆ Q×Q are pairs of states related by some transition of V:

E =
{

(q, q′) ∈ Q2 ∣∣ (q, v, q′) ∈ T for some vector v : (H ∪ P×A)→fin Z
}

.

When R is non-empty, the sets of nodes and edges of Graph(T) are infinite but orbit-finite.

Bi-reachability problem. We say that a configuration q′(v′) is reachable from q(v) if there
is a run q(v) −→ q′(v′). Two configurations q(v), q′(v′) are bi-reachable if each of them is
reachable from the other: q(v) −→ q′(v′) and q(v)←− q′(v′).

dvass bi-reachability
Input: a dvass (L,R, H, P, T) and two configurations, q(v) and q′(v′) .
Question: are q(v), q′(v′) bi-reachable?

As before, we assume that the orbit-finite set T of transitions is represented by a finite set of
representatives, one per orbit. As our main result we prove:

▶ Theorem 7. dvass bi-reachability problem is decidable.

Since our model of dvass includes plain places, we can assume w.l.o.g. a convenient form of
source and target configuration that consists, essentially, of just a location. Let ⊥⊥ denote
the empty register valuation: ⊥⊥(r) = ⊥ for every r ∈ R.

▶ Lemma 8. In dvass bi-reachability problem we may assume, w.l.o.g., that q = (ℓ,⊥⊥),
q′ = (ℓ′,⊥⊥), and v = v′ = 0.

4 Toolset

Our decision procedure relies on a number of existing tools. One of them is solvability of
Multiset sum (Lemma 4). Here we introduce two further tools: a sufficient condition for
vass reachability, and computability of coverability sets in dvas.

Sufficient condition for VASS reachability. We recall a condition that guarantees existence
of a run in a vass. It is a simplification of the classical condition of [18, 19, 27] which
guarantees existence of a run in a generalised vass. Consider a vass V with plain places H.
For v : H →fin N we write v≫ 0 to mean that for every h ∈ H we have v(h) > 0.

Θ1: For every m ∈ N, there is a pseudo-run q(0) 99K q′(0) using every transition at least
m times.
Θ2: For some vectors ∆, ∆′ ≫ 0, there are runs: q(0) −→ q(∆) and q′(∆′) −→ q′(0).

▶ Lemma 9 (Thm. 2 in [18], Prop. 1 in [21]). For every vass, Θ1 ∧Θ2 implies q(0) −→ q′(0).

Coverability sets in dvass. Let V = (L,R, H, P, T) be a dvass, and let X = H ∪ (P×A).
We define the pointwise order on nonnegative vectors X →fin N: v ≤ v′ if and only if for
every x ∈ X we have v(x) ≤ v′(x). We define a quasi-order by relaxation of ≤, up to
automorphisms: v ⊑ v′ if σ(v) ≤ v′ for some σ ∈ Aut(A). We extend the relation ⊑ to
configurations: for states q, q′ and vectors v, v′ ∈ X →fin N we put q(v) ⊑ q′(v) if σ(q) = q′

and σ(v) ≤ v′ for some σ ∈ Aut(A).

▶ Lemma 10. ⊑ is a wqo on configurations.

CONCUR 2024

31:8 Bi-Reachability in Petri Nets with Data

The coverability set of a configuration q(v) is defined as the downward closure, with
respect to ⊑, of the reachability set:

Cover(q(v)) = {s(w) ∈ Conf | ∃s(w) ∈ Conf : s(w) ⊑ s(w) ∧ q(v) −→ s(w)} .

It is known that the coverability set is representable by a finite union of ideals (downward
closed directed sets) [10, 11]. Let’s complete N with a top element, Nω

def= N ∪ {ω}, which
is larger than all numbers: n < ω for all n ∈ N. We consider pairs (q, f) ∈ Q× (X → Nω),
written q(f), and called ω-configurations. Each such pair determines a set of configurations
(we extend ⊑ to all ω-configurations in the expected way):

q(f)↓ := {s(v) ∈ Conf | s(v) ⊑ q(f)} ,

which is downward closed (whenever s(v) ∈ q(f)↓ and s′(v′) ⊑ s(v) then s′(v′) ∈ q(f)↓) and
directed (for every two s(v), s′(v′) ∈ q(f)↓ there is s(v) ∈ q(f)↓ such that s(v) ⊑ s(v) and
s′(v′) ⊑ s(v)). The set q(f)↓ is thus an ideal. We call an ω-configuration q(f) simple if for
every p ∈ P , either f(p, a) = 0 for almost all a ∈ A (i.e., for all a ∈ A except finitely many),
or f(a, p) = ω for almost all a ∈ A. Simple ω-configurations are thus finitely representable.
Ideals determined by simple ω-configurations we call simple too.

▶ Example 11. In the dvass V ′ in Example 5, Cover(ℓ(v)) = ℓ(f) ↓ ∪ ℓ(g) ↓ ∪ ℓ′(f ′) ↓
∪ ℓ′(g′)↓ , where f(p1, c) = g(p1, c) = f ′(p1, c) = g′(p1, c) = ω for every c ∈ A,

f(p2, a) = f(p2, b) = 1 g(p2, a) = 2
f ′(p2, a) = f ′(p, b) = 1 g′(p2, a) = g′(p, a) = 1

for some a ̸= b ∈ A, and all other arguments are mapped by f , g, f ′ and g′ to 0. Indeed,
due to transition t1, place p1 can be filled up with arbitrary many tokens with any atoms.
On the other hand place p2 has two tokens in the initial configuration ℓ(v), and hence will
invariantly have, in location ℓ, two tokens whose atoms may be equal or not. Furthermore,
in location ℓ′, places p2 and p have always one token each, with atoms equal or not. ⌟

Simple ω-configurations provide finite representations of simple ideals. Relying on the result
of [16], the coverability set in a dvas is a union of a finite set of simple ideals, which is
computable. We lift this result to the model of dvass:

▶ Lemma 12. Given a dvass and its configuration q(v), one can compute a finite set of simple
ω-configurations {s1(f1), . . . , sn(fn)} such that Cover(q(v)) = s1(f1)↓ ∪ . . . ∪ sn(fn)↓ .

Proof. Let V = (L,R, H, P, T) be a dvass, let q(v) be its configuration, where q = (ℓ, η).
Theorem 3.5 in [16] proves the claim in the special case of dvas. We reduce dvass to dvas
in three steps, as shown in the diagram (4) in Remark 6.

As the first step we get rid of registers by considering them as additional atom places
that store at most one token, while keeping track, in locations, of the set of currently empty
registers. We set P1 := P ∪ R ∪ R, where R = {r | r ∈ R} is distinct a copy of R, and
L1 = (L ∪ L) × P(R), where L =

{
ℓ

∣∣ ℓ ∈ L
}

, and define the new set of transitions T1 by
transforming transitions from T as follows. In the construction we identify a register valuation
µ with a vector µ = ⊕{(r, a) |µ(r) = a ̸= ⊥}, or with a vector µ = ⊕{(r, a) |µ(r) = a ̸= ⊥}.
Every transition t = ((ℓ, µ), v, (ℓ′, µ′)) ∈ T gives rise to a transition in T1(

(ℓ, µ−1(⊥)), v⊖ µ⊕ µ′, (ℓ′
, (µ′)−1(⊥))

)

Ł. Kamiński and S. Lasota 31:9

that starts in location (ℓ, µ−1(⊥)), ends in a location (ℓ′
, (µ′)−1(⊥)) and whose effect is v

plus, intuitively speaking, removing µ from places R and putting µ′ to places R. In addition,
all transitions of the form(

(ℓ′
, ν−1(⊥)), ν ⊖ ν, (ℓ′, ν−1(⊥))

)
are added to T1, where ν : R → (A ∪ {⊥}) is any register valuation. Intuitively, these
transitions flash back all tokens from places R to the corresponding places R. This yields
a dvass V1 := (L1, ∅, H, P1, T1) computable from V, and its location ℓ1 = (ℓ, η−1(⊥))
corresponding to state q such that the coverability sets in V (on the left) is computable from
the one in V1 (on the right):

▷ Claim 13. Cover(q(v)) =
{

(ℓ′, µ′)(v′)
∣∣ (ℓ′, (µ′)−1(⊥))(v′ ⊕ µ′) ∈ Cover(ℓ1(v⊕ η))

}
.

As the second step, we dispose of locations L1 by moving them to plain places. We set
H2 := H ∪L1 ∪ L̃1, where L̃1 =

{
ℓ̃

∣∣∣ ℓ ∈ L1

}
, and transform each transition t = (ℓ, v, ℓ′) ∈ T1

into a transition in T2:

(∗, v⊖ ℓ⊕ ℓ̃′, ∗).

We also add a new transition (∗, ℓ ⊖ ℓ̃, ∗) for every ℓ ∈ L1. This yields a dvass V2 :=
({∗} , ∅, H2, P1, T2) computable from V1, and the corresponding configuration ∗(v⊕ ℓ) such
that the coverability sets in V1 (on the left) is computable from the one in V2 (on the right):

▷ Claim 14. Cover(ℓ(v)) = {ℓ′(v′) |v′ ⊕ ℓ′ ∈ Cover(∗(v⊕ ℓ))}.

Eventually, as the last step we get rid of plain places H2 by moving them to atom ones,
and considering atoms residing on these atom places irrelevant. Let P3 := H2 ∪ P1. In
order to transfer transitions T2 from plain places to the new atom places, we introduce the
projection mapping π : (H2 ∪ P1)×A→ H2 ∪ (P1×A),

(h, a) 7→ h (p, a) 7→ (p, a) (h ∈ H2, p ∈ P1, a ∈ A),

that forgets, intuitively speaking, about atoms on the new atom places. It extends uniquely
to a commutative group homomorphism π from (H2 ∪ P1)×A→fin Z to H2 ∪ (P1×A)→fin Z.
We define transitions as the inverse image of T2 along π:

T3 := π−1(T2).

This yields a dvas V3 := ({∗} , ∅, ∅, P3, T3). We observe that π−1(v) is orbit-finite for every
vector v, and therefore π−1(T2), being orbit-finite union of orbit-finite sets, is itself orbit-finite
[2, Ex. 62]. Therefore V3 is computable from V2. The coverability set in V2 is computable
from the one in V3, since coverability sets commute the projection (the coverability set on
the left is in V2, while the one on the right is in V3):

▷ Claim 15. Cover(∗(π(w))) = π(Cover(∗(w))).

Indeed, in order to compute a representation Cover(∗(v)) = g1 ↓ ∪ . . . ∪ gn ↓ in V2, we
take any w with π(w) = v, compute a representation Cover(∗(w)) = f1 ↓ ∪ . . . ∪ fn ↓
in V3 using [16, Thm. 3.5], and modify the functions fi by summing up, for every h ∈ H2,
namely (under the proviso that ω + n = ω + ω = ω):

gi(h) :=
∑
a∈A

fi(h, a) gi(p, a) := fi(p, a) (h ∈ H2, p ∈ P1, a ∈ A).

This concludes the proof. ◀

CONCUR 2024

31:10 Bi-Reachability in Petri Nets with Data

5 Sufficient condition for DVASS bi-reachability

In this and in the next section we prove Theorem 7. Throughout the rest of the paper let
V = (L,R, H, P, T) be an input dvass. Relying on Lemma 8 we investigate bi-reachability of
q(0) and q′(0), for states q = (ℓ,⊥⊥) ∈ Q and q′ = (ℓ′,⊥⊥′) ∈ Q with empty register valuations.
The states q, q′ are invariant under the action of Aut(A), which is crucial in the sequel:

▷ Claim 16. For every σ ∈ Aut(A), we have σ(q) = q and σ(q′) = q′.

We now formulate a sufficient condition for bi-reachability of q(0) and q′(0), as an
adaptation of the classical Θ1 and Θ2 conditions. In the context of bi-reachability, it is
enough to rely on a simplified version of these conditions given by Lemma 9. We write below
v≫ 0 to mean that v(h) > 0 for every h ∈ H, and for every p ∈ P there is some a ∈ A such
that v(p, a) > 0.

Φ1: There are pseudo-runs, each of them using some transition from every orbit in T :

q(0) 99K q′(0) q(0) L99 q′(0). (5)

Φ2: For some vectors ∆, ∆′, Γ, Γ′ ≫ 0, there are runs:

q(0) −→ q(∆) q′(∆′) −→ q′(0)
q(0)←− q(Γ) q′(Γ′)←− q′(0).

(6)

▶ Lemma 17. Φ1 ∧Φ2 implies q(0) −→ q′(0) and q(0)←− q′(0).

Proof. Assume V satisfies Φ1 ∧ Φ2. Let S be the union of supports of the two pseudo-
runs (5) and the four runs (6). Recall that AutA\S(A) ⊆ Aut(A) denotes the subset of those
automorphisms σ that are identity outside S: σ(a) = a for every a /∈ S. When restricted
to S, each such automorphism is a permutation, i.e., σ(S) = S. In the sequel we will apply
permutations σ ∈ AutA\S(A) to atoms from S only, and therefore the value σ(a) = a, for
a /∈ S, will be irrelevant. The set AutA\S(A) is finite, |AutA\S(A)| = |S|!.

We define a (plain) vass VS by, intuitively speaking, restricting the set of atoms to
the finite set S. The set of locations of VS is LS := L × (R → S ∪ {⊥}), its places are
HS := H ∪P×S, and its transitions TS ⊆ T are all transitions of V that use only atoms from
S. Formally, VS = (LS , ∅, HS , ∅, TS), where TS := {t ∈ T | supp(t) ⊆ S} . We claim that the
vass satisfies the conditions Θ1 and Θ2 of Lemma 9.

We consider Θ1 first. Let π : q(0) 99K q′(0) and π′ : q′(0) 99K q(0) be the pseudo-runs
in (5). By applying all permutations σ ∈ AutA\S(A) to their concatenation π; π′ : q(0) 99K
q′(0) 99K q(0) , and concatenating all the |S|! resulting cyclic pseudo-runs, we get a cyclic
pseudo-run δ : q(0) 99K q(0). This pseudo-run uses every transition from TS at least once,
since π uses a representative of every orbit of T , and the following fact holds:

▷ Claim 18. Let t, t′ ∈ T be two transitions in the same orbit such that supp(t), supp(t′) ⊆ S.
Then t′ = σ(t) for some σ ∈ AutA\S(A).

Likewise we get a cyclic pseudo-run δ′ : q′(0) 99K q′(0) that uses every transition from TS

at least once. Furthermore, for every m ∈ N, the m-fold concatenation of δ or δ′ yields a
cyclic pseudo-run that uses every transition from TS at least m times. We thus have two
pseudo-runs

δm; π : q(0) 99K q′(0) (δ′)m; π′ : q(0) L99 q′(0)

Ł. Kamiński and S. Lasota 31:11

each of them using every transition from TS at least m times. Thus the vass VS satisfies
two instances of Θ1, one towards a run q(0) −→ q′(0) and the other one towards a run
q′(0) −→ q(0).

Now we concentrate on Θ2. We proceed similarly as before, namely apply all automorph-
isms σ ∈ AutA\S(A) to ∆, and sum up all the resulting vectors:

∆S := ⊕
{

σ(∆)
∣∣ σ ∈ AutA\S(A)

}
.

Let ∆S : H ∪ P×S →fin N be the restriction of ∆S to H ∪ P×S. Knowing that ∆≫ 0, we
deduce that ∆S(h) > 0 for every h ∈ H, and ∆S(p, a) > 0 for every (p, a) ∈ P × S. In other
words, ∆S ≫ 0. By applying all automorphisms σ ∈ AutA\S(A) to the run q(0) −→ q(∆)
in Φ2, and concatenating all the resulting runs, we get a run q(0) −→ q(∆S) in V. Clearly,
only atoms from S appear in this run, and therefore it is also a run q(0) −→ q(∆S) in VS .
In a similar way we define vectors ∆′

S , ΓS and Γ′
S , and the corresponding runs in VS :

q(0) −→ q(∆S) q′(∆′
S) −→ q′(0) (7)

q(0)←− q(ΓS) q′(Γ′
S)←− q′(0). (8)

Therefore, the vass VS satisfies two instances of Θ2, one towards a run q(0) −→ q′(0) and
the other one towards a run q′(0) −→ q(0).

Finally, using Lemma 9 we deduce two runs in VS , which are automatically also runs in
V. This completes the proof. ◀

6 Reduction algorithm

As the rank of a dvass V = (L,R, H, P, T) we take the triple Rank(V) = (|P |, |H|, ||T ||),
consisting of the number of atom places, the number of plain places, and the number of
orbits ||T || the set T partitions into. Ranks are compared lexicographically.

Given a dvass V , the algorithm verifies the conditions Φ1 and Φ2. If they are all satisfied,
it answers positively, relying on Lemma 17. Otherwise, depending on which of the conditions
is violated, the algorithm either immediately answers negatively, or applies a reduction step,
as outlined below in Sections 6.1 and 6.2. Each of the steps produces a new dvass V̂ of
strictly smaller rank, which guarantees termination. Finally, when both P and H are empty,
the problem reduces to reachability from q to q′ in state graph Graph(V), which is decidable
due to:

▶ Lemma 19. For a set E ⊆ Q×Q of edges between states, given as a finite union of orbits,
and a pair (s, s′) ∈ Q×Q, it is decidable if there is a path from s to s′ in the graph (Q, E).

Proof. The orbit of an edge ((ℓ, ν), (ℓ′, ν′)) ∈ E is determined by the following data: locations
ℓ, ℓ′; the inverse images ν−1(⊥), (ν′)−1(⊥); and the equality type of the remaining entries in
ν and ν′, that is:

{(r, r′) | ν(r) = ν(r′) ̸= ⊥} {(r, r′) | ν′(r) = ν′(r′) ̸= ⊥} {(r, r′) | ν(r) = ν′(r′) ̸= ⊥} .

Using equational reasoning, one computes the transitive closure E∗ of E, by consecutively
adding to E∗ every new orbit which is forced to be included in E∗ by some two orbits already
included in E∗, until saturation. Termination is guaranteed as Q ×Q is orbit-finite. The
transitive closure is thus forcedly a finite union of orbits. Finally, one tests if the orbit of
(s, s′) is included in E∗. ◀

CONCUR 2024

31:12 Bi-Reachability in Petri Nets with Data

For future use we note an immediate consequence of the above proof: for every pair of
states, if there is a path from one to the other, then there is also a path of bounded length.
This implies a bound on the number of atoms involved:

▶ Corollary 20. There is an effective bound b(Q) ∈ N such that whenever there is a path
from s ∈ Q to s′ ∈ Q in the graph (Q, E), then there is such a path π with |supp(π)| ≤ b(Q).

Below we describe the two reduction steps, proving their progress property (decreasing
rank), correctness and effectiveness.

6.1 Violation of Φ1

Suppose V violates Φ1. If states q, q′ are not in the same strongly connected component of
Graph(T), which is testable using Lemma 19, the configurations q(0), q′(0) are clearly not
bi-reachable and the algorithm answers negatively. Otherwise, the algorithm constructs a
dvass V̂ of smaller rank, as defined below, such that bi-reachability of q(0) and q′(0) in V is
equivalent to their bi-reachability in V̂.

Let Graph(T) = (Q, E). Transitions witnessing bi-reachability of q(0) and q′(0), namely
used in some cyclic run q(0) −→ q′(0) −→ q(0), form a cycle in Graph(T). As a consequence,
a transition (s, v, s′) ∈ T may be useful for bi-reachability only if the edge (s, s′) belongs to the
strongly connected component of Graph(T) containing q and q′. Therefore, bi-reachability
of q(0), q′(0) in V reduces to bi-reachability of q(0), q′(0) in V̂ obtained by restriction to the
strongly connected component of q and q′. This component is computed by enumerating
all orbits included in E. For every orbit o ⊆ E one chooses a representative (s, s′) ∈ o, and
uses Lemma 19 to test reachability, in Graph(T), for the four pairs: (q, s), (s′, q), (q′, s) or
(s′, q′). Then one removes from T all orbits of transitions (s, v, s′) such that reachability test
fails for any of the four pairs above. The resulting set of transitions is still a finite union
of orbits. Consequently, from now on we may assume, w.l.o.g., that Graph(T) is strongly
connected (we ignore isolated vertices).

Useful transitions. By a finite multiset of transitions we mean a nonnegative vector
f : T →fin N. Given such a finite multiset, let State-Eq(q, q′) denote conjunction of the
following conditions:
(a) the sum of effects of all transitions in the multiset is 0,
(b) for every state s /∈ {q, q′}, the number of transitions incoming to s equals the number of

ones outgoing from s,
(c) the number of transitions outgoing from q exceeds by one the number of incoming ones,
(d) the number of transitions incoming to q′ exceeds by one the number of outgoing ones;

Symmetrically, let State-Eq(q′, q) denote the conjunction of (a), (b) and the symmetric
versions of (c) and (d) with q and q′ swapped. Let O = {Orbit(t) | t ∈ T} be the set of all
orbits in T . We call an orbit o ∈ O useful if there are two finite multisets of transitions f , f ′

satisfying State-Eq(q, q′) and State-Eq(q′, q), respectively, each of them containing some
transition from o.

▶ Lemma 21. Φ1 holds if and only if all orbits of transitions are useful.

Proof. The only if direction of the characterisation is immediate, as the multiset of transitions
used in a pseudo-run q(0) 99K q′(0) necessarily contains some transition from every orbit
and satisfies all the conditions (a)–(d), and likewise for a pseudo-run q′(0) 99K q(0). For

Ł. Kamiński and S. Lasota 31:13

the opposite direction, suppose that for every orbit o ∈ O there are finite multisets fo, f ′
o

satisfying State-Eq(q, q′) and State-Eq(q′, q), respectively, each of them containing some
transition from o. Let

f := ⊕{fo | o ∈ O} f ′ := ⊕{f ′
o | o ∈ O} S := supp(f) ∪ supp(f ′),

where ⊕ denotes the multiset sum operator. Thus S is the (finite) set of atoms used in
all the transitions appearing in f or f ′. Similarly as in the proof of Lemma 17 we use the
subgroup AutA\S(A) ⊆ Aut(A) of automorphisms σ of A that are identity outside S, and
define a plain vass VS = (LS , ∅, HS , ∅, TS) by restricting the set of atoms to S. Locations
of VS are LS := L × (R → S ∪ {⊥}), its places are HS := H ∪ P×S, and its transitions
TS ⊆ T are all transitions of V that use only atoms from S: TS = {t ∈ T | supp(t) ⊆ S} . The
state graph Graph(TS) is a subgraph of Graph(T). As Graph(T) is strongly connected,
we use Corollary 20 to deduce that, for sufficiently large S, the state graph Graph(TS) is
also strongly connected. Therefore we enlarge S, if necessary, to assure that Graph(TS) is
strongly connected.

As finite multisets f , f ′ are just nonnegative vectors T →fin N, they inherit the natural
(pointwise) action of Aut(A). Basing on f , f ′ we define two larger multisets of transitions by
applying all automorphisms from AutA\S(A) to f and f ′, respectively, and summing up all
the resulting multisets:

g := ⊕
{

σ(f)
∣∣ σ ∈ AutA\S(A)

}
g′ := ⊕

{
σ(f ′)

∣∣ σ ∈ AutA\S(A)
}

.

By Claim 18, each of g, g′ contains all transitions from TS . Furthermore, the multiset
h = f⊕g⊕g′ satisfies State-Eq(q̂, q̂′), where q̂, q̂′ are locations (=states) of VS corresponding
to q and q′ respectively. Likewise, the multiset h′ = f ′ ⊕ g ⊕ g′ satisfies State-Eq(q̂′, q̂).
Using the standard Euler argument in the (strongly) connected graph Graph(TS), and
relying on conditions (b)–(d), we deduce existence of a pseudo-run in VS that uses exactly
transitions h. Due to condition (a), this is a pseudo-run q̂(0) 99K q̂′(0) in VS . Likewise we
deduce a pseudo-run q̂′(0) 99K q̂(0) in VS . The pseudo-runs are essentially also pseudo-runs
in V, both supported by S, and both using some transition from every orbit in T . This
completes the proof of the characterisation. ◀

Reduction step. We define a dvass V̂ by removing some useless orbit of transitions,
V̂ = (L,R, H, P, T̂). It has the same locations, registers and places as V.

▶ Lemma 22 (Progress). ||T̂ || < ||T ||, and hence Rank(V̂) < Rank(V).

Proof. As some useless orbit of transitions is removed from T̂ , we have ||T̂ || < ||T ||, and
therefore Rank(V̂) = (|P |, |H|, ||T̂ ||) < (|P |, |H|, ||T ||) = Rank(V). ◀

▶ Lemma 23 (Correctness). The configurations q(0), q′(0) are bi-reachable in V if and only
if they are bi-reachable in V̂.

Proof. Indeed, useless transitions can not be used in runs between q(0) and q′(0). ◀

▶ Lemma 24 (Effectiveness). The condition Φ1 is decidable. When it fails, some useless
orbit of transitions is computable.

Proof. It is sufficient to prove that it is decidable if a given orbit o ∈ O is useful. We show
decidability by reduction to Multiset sum (recall Lemma 4), i.e., we use the algorithm for
Multiset Sum to check existence of a finite multiset f that satisfies conditions (a)–(d) and

CONCUR 2024

31:14 Bi-Reachability in Petri Nets with Data

contains a transition from o (and likewise to check existence of f ′). Let X = H ∪ P×A and
Y = X ∪Q ∪ {∗}. The set Y is orbit-finite. Let every transition t = (s, v, s′) ∈ T determine
a vector yt : Y →fin Z, and let every transition t = (s, v, s′) ∈ o determine additionally a
vector xt : Y →fin Z, each of them extending the vector v : X →fin Z as follows:

xt(s) = −1 xt(s′) = 1 xt(∗) = 1,

yt(s) = −1 yt(s′) = 1 yt(∗) = 0,
(9)

and xt(r) = yt(r) = 0 for other states r ∈ Q \ {s, s′}. Intuitively, the first two columns track
contribution of t to the number of transitions outgoing from s, or incoming to s′, while the
latter column tracks the number of usages of transitions from o. Likewise, let the target
vector b : Y →fin Z extend 0 : X →fin Z by

b(q) = −1 b(q′) = 1 b(∗) = 1, (10)

and b(s) = 0 for other states s ∈ Q \ {q, q′}. Let M = {yt | t ∈ T}∪{xt | t ∈ o}, and consider
the instance let (M, b) of Multiset Sum. Observe that solutions of (M, b) necessarily use
exactly one vector xt exactly once, as in (11) below. It remains to prove that some finite
multiset f = {t, u1, . . . , um} of transitions from T , where t ∈ o, satisfies the conditions (a)–(d)
exactly when

b = xt + yu1 + . . . + yum
. (11)

As b(c) = 0 for all c ∈ H ∪ P×A, condition (a) is equivalent to the equality (11) restricted
to H ∪P×A. By the first two columns in (9) and (10), and since b(s) = 0 for s ∈ Q \ {q, q′},
condition (b) is equivalent to the equality (11) restricted to Q \ {q, q′}, and the conditions
(c) and (d) are equivalent to the equality (11) restricted to {q, q′}. ◀

6.2 Violation of Φ2

Suppose V violates Φ2. We define a dvass V̂ of smaller rank and two its states q̂, q̂′ such
that bi-reachability of q(0) and q′(0) in V is equivalent to bi-reachability of q̂(0) and q̂′(0) in
V̂.

Pumpability and boundedness. Any run of the form q(0) −→ q(∆) (resp. q(∆) −→ q(0))
we call forward (resp. backward) pump from q. Likewise we define forward (resp. backward)
pumps from q′.

A plain place h ∈ H (resp. an atom place p ∈ P) we call forward pumpable from q if
there is a pump q(0) −→ q(∆) such that ∆(h) > 0 (resp. ∆(p, a) > 0 for some atom a ∈ A).
Symmetrically, a place h ∈ H (resp. p ∈ P) we call backward pumpable from q if there is a
pump q(∆) −→ q(0) such that ∆(h) > 0 (resp. ∆(p, a) > 0 for some atom a ∈ A). Likewise
we define places forward (resp. backward) pumpable from q′. Finally, a (plain or atom)
place is called pumpable if it is forward and backward pumpable both from q and from q′.
Otherwise, the place is called unpumpable.

▶ Lemma 25. Φ2 holds if and only if all places are pumpable.

Proof. In one direction, Φ2 amounts to simultaneous (= using one pump) forward and
backward pumpability of all places, from both q and q′. In the converse direction, suppose
all places are forward and backward pumpable from both q and q′. We observe that forward
(resp. backward) pumps from q compose, and hence all places are simultaneously forward
(resp. backward) pumpable from q. Likewise for q′. ◀

Ł. Kamiński and S. Lasota 31:15

We now introduce a suitable version of boundedness. In case of plain places h ∈ H

boundedness applies, as expected, to the value v(h) in a configuration s(v). On the other
hand in case of atom places p ∈ P , boundedness applies to the number of tokens on a place.
For uniformity we define the size of a place p ∈ P in a vector v as

v(p) =
∑
{v(p, a) | a ∈ A, v(p, a) > 0} ∈ N. (12)

For a family F of runs, we say that a place c ∈ H ∪ P is bounded on F by B ∈ N if for every
configuration s(v) appearing in every run in the family F , v(c) ≤ B. A place is bounded on
F , if it is bounded on F by some B. Otherwise, the place is called unbounded on F .

As forward (resp. backward) pumps compose, every place which is forward (resp. backward)
pumpable from q (resp. q′) is necessarily unbounded on respective pumps. We show the
opposite implication, namely unpumpable places are bounded on respective pumps:

▶ Lemma 26. A place which is not forward (resp. backward) pumpable from q is bounded on
forward (resp. backward) pumps from q. Likewise for q′.

Proof. W.l.o.g. we focus on forward pumps from q only. (Backward pumps are tackled simil-
arly as forward ones, but in the reversed dvass, whose transitions {(s′,−v, s) | (s, v, s′) ∈ T}
are inverses of transitions of V .) Assuming that a place c ∈ H ∪ P is unbounded on forward
pumps from q, we show that c is forward pumpable from q. Unboundedness of c means that
for every i ∈ N there is a run

q(0) −→ si(vi) −→ q(∆i) (13)

such that ni := vi(c) > i. By choosing a subsequence of (ni)i we may assume w.l.o.g. that this
sequence is strictly increasing. As ⊑ is a wqo, for some j < i we have sj(vj) ⊑ si(vi), i.e.,
there is some σ ∈ Aut(A) such that σ(sj) = si and σ(vj) ≤ vi. Equivalently, σ(vj) + ∆ = vi

for some nonnegative vector ∆. Recall that q = (ℓ,⊥⊥) and hence σ(q) = q. Therefore, we can
construct a new run, by first using the first half of (13) to go from p(0) to si(vi), and then
applying σ to the second half sj(vj) −→ q(∆j) to return from σ(sj(vj)) = σ(sj)(σ(vj)):

q(0) −→ si(vi) = σ(sj)(σ(vj) + ∆) −→ q(σ(∆j) + ∆).

By strict monotonicity of (ni)i we have nj < ni, i.e., vj(c) < vi(c), which implies ∆(c) > 0.
The place c is thus forward pumpable from q, as required. ◀

Reduction step. Let B ∈ N be the universal bound for all unpumpable places on all
respective pumps. Formally, let’s assume that B bounds every place which is not forward
(resp. backward) pumpable from q, on all forward (resp. backward) pumps from q, and B

also bounds every place which is not forward (resp. backward) pumpable from q′, on all
forward (resp. backward) pumps from q′. As V violates Φ2, we know by Lemma 25 that
there are some unpumpable places. We define a dvass V̂ = (L̂, R̂, Ĥ, P̂ , T̂) by, intuitively
speaking, removing some such place. Let X = H ∪ P×A.

Case 1: some plain place is unpumpable. Let P̂ := P and R̂ = R. We choose
an arbitrary unpumpable h ∈ H, and let Ĥ := H \ {h}. We keep track of values on h

by extending the locations L̂ := L × {0 . . . B}. Finally, transitions T̂ are obtained from
transitions T by replacing each t = ((ℓ, µ), v, (ℓ′, µ′)) ∈ T by all the transitions of the form

t̂ = ((⟨ℓ, n⟩, µ), w, (⟨ℓ′, n + v(h)⟩, µ′)),

where w is the restriction of v : (H ∪ P×A) →fin Z to Ĥ ∪ P×A. Let q̂ = (⟨ℓ, 0⟩,⊥⊥) and
q̂′ = (⟨ℓ′, 0⟩,⊥⊥).

CONCUR 2024

31:16 Bi-Reachability in Petri Nets with Data

Case 2: some atom place is unpumpable. Let L̂ := L and Ĥ := H. We choose an
arbitrary unpumpable p ∈ P , remove place p, namely P̂ := P \ {p}, and add B new registers,
namely R̂ = R ∪ {r1, . . . , rB}, which store, intuitively speaking, every possible content of
the place p. Using the new registers the transitions T̂ track, intuitively speaking, the effect
of transitions from T on the removed place p. Every register valuation µ naturally induces a
vector µ̂ : {p}×A→fin N, namely µ̂ := ⊕{(p, a) |µ(ri) = a ̸= ⊥, i ∈ {1 . . . B}} . Using this
notation we define the transitions T̂ by replacing every transition ((ℓ, ν), v, (ℓ′, ν′)) ∈ T with
all the transitions of the form(

(ℓ, ν ⊕ µ), w, (ℓ′, ν′ ⊕ µ′)
)
,

where w is the restriction of v : (H ∪ P×A)→fin Z to H ∪ P̂×A, and v = w⊕ µ̂′ ⊖ µ̂. Let
q̂, q̂′ be extensions of the states q, q′, respectively, by empty valuation of all the new registers
{r1, . . . , rB}.

▶ Lemma 27 (Progress). Rank(V̂) < Rank(V).

Proof. In the former case P̂ = P and |Ĥ| < |H|, while in the latter case |P̂ | < |P |. In each
case, Rank(V̂) = (|P̂ |, |Ĥ|, ||T̂ ||) < (|P |, |H|, ||T ||) = Rank(V). ◀

▶ Lemma 28 (Correctness). The configurations q(0), q′(0) are bi-reachable in V if and only
if q̂(0), q̂′(0) are bi-reachable in V̂.

Proof. As V̂ is obtained from V by restricting values in configurations on some places, each
run in V̂ is automatically a run in V, and bi-reachability in V̂ implies bi-reachability in V.

For the converse implication, suppose q(0), q′(0) are bi-reachable in V, and fix two
arbitrary runs π : q(0) −→ q′(0) and π′ : q′(0) −→ q(0). Consider any unpumpable place
c ∈ H ∪ P and suppose, w.l.o.g., that the place is not forward pumpable from q. By Lemma
26 the place is bounded by B on all forward pumps from q. In particular, it is bounded by B

on the composed run π; π′ : q(0) −→ q(0), i.e., on both π and π′. Therefore we know that in
each configuration (s, v) in both runs, v(c) ≤ B. If c ∈ H we keep track of v(c) in locations;
and if c ∈ P , we keep track of all tokens on c by storing their atoms in the new registers
{r1, . . . , rB}. Therefore, both runs are realisable in V̂. ◀

▶ Lemma 29 (Effectiveness). The set of pumpable places and the universal bound B are
computable (and therefore the condition Φ2 is decidable).

Proof. For a simple ω-configuration s(f) and an atom place p ∈ P we define f(p) = ω if
f(p, a) = ω for some atom a ∈ A, and otherwise f(p) :=

∑
{f(p, a) | f(p, a) > 0, a ∈ A} .

Relying on Lemma 25, we test forward (resp. backward) pumpability of every place from q

(and likewise from q′). Specifically, to test if a place is forward pumpable from q, we apply
Lemma 12 and compute a simple-ideal representation of the coverability set Cover(q(0)),
given by simple ω-configurations G = {s1(g1), . . . , sn(gn)}. A plain or atom place c ∈ H ∪ P

is forward pumpable from q if for some i ∈ {1 . . . n} we have si = q and gi(c) > 0. Likewise
we test if a place is backward pumpable from q (using the reverse dvass), or forward
(resp. backward) pumpable from q′. The set of pumpable places is thus computable.

Suppose there is some unpumpable place c, w.l.o.g. say not forward pumpable from
q. By Lemma 26, the place c is bounded on all forward pumps from q, but may be a
priori unbounded on some other run, and therefore it may happen that gi(c) = ω for some
i ∈ {1 . . . n}. Nevertheless we claim the following bound on forward pumps:

B := max {gi(c) | gi(c) < ω, i ∈ {1 . . . n}} . (14)

Ł. Kamiński and S. Lasota 31:17

▷ Claim 30. The place c is bounded on all forward pumps from q by B.

Proof. Consider an atom place p ∈ P (the argument for plain places is similar but simpler).
Towards contradiction, suppose that some configuration s(v) on some forward pump from q

satisfies v(p) > B. We have thus two runs:

π : q(0) −→ s(v) ρ : s(v) −→ q(w)

for some s ∈ Q and nonnegative vector w. Therefore s(v) ∈ Cover(q(0)), and hence
s(v) ∈ I = sj(gj) ↓ for some j ∈ {1 . . . n}. As v(p) is larger than all gi(p) < ω for
i ∈ {1 . . . n}, we deduce that gj(p) = ω. Therefore the ideal I contains configurations s′(v′)
with arbitrary large values of v′(p). In particular, I contains some configuration s′(v′) with
v(p) < v′(p). As I is directed, it contains a configuration s′′(v′′) such that

s(v) ⊑ s′′(v′′) s′(v′) ⊑ s′′(v′′),

which implies v(p) < v′′(p). Finally, as I ⊆ Cover(q(0)), it must contain a configuration s(v)
reachable from q(0), such that s′′(v′′) ⊑ s(v). We thus have s(v) ⊑ s(v) and v(p) < v(p),
which means that for some automorphism σ ∈ Aut(A) and vector w we have

σ(s) = s σ(v) + w = v w(p) > 0.

By composing runs π : q(0)→ s(v) and σ(ρ) : s(σ(v)) −→ q(σ(w)) we get a run

π; σ(ρ) : q(0) −→ q(σ(w) + w),

i.e., we deduce that p is forward pumpable from q, which is a contradiction. ◁

The universal bound is computed as the maximum of (14) for forward and backward pumps
from q and q′, for all unbounded places c. ◀

7 Final remarks

We show decidability of the bi-reachability problem for Petri nets with equality data. The
problem subsumes coverability, and reachability in the reversible subclass, and therefore the
result pushes further the decidability border towards the reachability problem. The latter
problem (which we believe to be decidable) is still beyond our reach, and development of
this paper is not sufficient. For instance, the approach of proving of Lemma 17 would fail
for reachability, as we rely on the fact that bi-reachability implies a cycle. Moreover, Φ1
reduction step would fail as well, as it assumes that a transition (orbit) is either unusable, or
usable unboundedly, while in case of reachability a transition can be usable only boundedly.

Our approach is specific to equality data, and thus we leave unresolved the status of
bi-reachability in case of ordered data. In case of ordered data domain the approach of
proving Lemma 17 would fail again, as the trick of applying all permutations of S would be
impossible. Moreover, it is not clear how to implement Φ2 reduction step, as no procedure
computing coverability sets is known.

References
1 Michael Blondin and Franccois Ladouceur. Population protocols with unordered data. In

Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, Proc. ICALP 2023, volume
261 of LIPIcs, pages 115:1–115:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ICALP.2023.115.

CONCUR 2024

https://doi.org/10.4230/LIPICS.ICALP.2023.115

31:18 Bi-Reachability in Petri Nets with Data

2 Mikołaj Bojańczyk. Slightly infinite sets, 2019. URL: https://www.mimuw.edu.pl/~bojan/
paper/atom-book.

3 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.
Logical Methods in Computer Science, 10(3:4):paper 4, 2014.

4 Mikołaj Bojańczyk, Bartek Klin, Slawomir Lasota, and Szymon Toruńczyk. Turing machines
with atoms. In LICS, pages 183–192, 2013.

5 Iliano Cervesato, Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov.
A meta-notation for protocol analysis. In Proc. CSFW 1999, pages 55–69. IEEE Computer
Society, 1999. doi:10.1109/CSFW.1999.779762.

6 Iliano Cervesato, Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov. A
meta-notation for protocol analysis. In Proc. CSFW 1999, pages 55–69, 1999.

7 Giorgio Delzanno. An overview of MSR(C): A CLP-based framework for the symbolic
verification of parameterized concurrent systems. Electr. Notes Theor. Comput. Sci., 76:65–82,
2002.

8 Giorgio Delzanno. Constraint multiset rewriting. Technical Report DISI-TR-05-08, DISI,
Universitá di Genova, 2005.

9 Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-
space completeness of reachability for succinct branching VASS in dimension one. In Proc. IC-
ALP 2017, volume 80 of LIPIcs, pages 119:1–119:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPICS.ICALP.2017.119.

10 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: completions. In
Susanne Albers and Jean-Yves Marion, editors, Proc. STACS 2009, volume 3 of LIPIcs, pages
433–444. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2009.

11 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part II: complete WSTS.
Log. Methods Comput. Sci., 8(3), 2012.

12 Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche.
Reachability in bidirected pushdown VASS. In Proc. ICALP 2022, volume 229 of LIPIcs,
pages 124:1–124:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

13 Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level Petri nets.
Theor. Comput. Sci., 13:109–136, 1981.

14 A. Ghosh, P. Hofman, and S. Lasota. Orbit-finite linear programming. In Proc. LICS 2023,
pages 1–14, 2023.

15 Arka Ghosh and Slawomir Lasota. Equivariant ideals of polynomials. In Proc. LICS 2024,
pages 38:1–38:14. ACM, 2024. doi:10.1145/3661814.3662074.

16 Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability trees for petri nets with unordered data. In Bart Jacobs and Christof
Löding, editors, Proc. FOSSACS 2016, volume 9634 of Lecture Notes in Computer Science,
pages 445–461. Springer, 2016.

17 Kurt Jensen. Coloured Petri nets and the invariant-method. Theor. Comput. Sci., 14:317–336,
1981.

18 S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version).
In Proc. STOC 1982, pages 267–281, 1982.

19 Jean-Luc Lambert. A structure to decide reachability in Petri nets. Theor. Comput. Sci.,
99(1):79–104, 1992.

20 Slawomir Lasota. Decidability border for Petri nets with data: WQO dichotomy conjecture.
In Proc. Petri Nets 2016, volume 9698 of Lecture Notes in Computer Science, pages 20–36.
Springer, 2016.

21 Slawomir Lasota. VASS reachability in three steps. CoRR, abs/1812.11966, 2018. arXiv:
1812.11966.

22 Ranko Lazic, Thomas Christopher Newcomb, Joël Ouaknine, A. W. Roscoe, and James Worrell.
Nets with tokens which carry data. In Proc. ICATPN 2007, volume 4546 of Lecture Notes in
Computer Science, pages 301–320. Springer, 2007.

https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://doi.org/10.1109/CSFW.1999.779762
https://doi.org/10.4230/LIPICS.ICALP.2017.119
https://doi.org/10.1145/3661814.3662074
https://arxiv.org/abs/1812.11966
https://arxiv.org/abs/1812.11966

Ł. Kamiński and S. Lasota 31:19

23 Ranko Lazic and Patrick Totzke. What makes Petri nets harder to verify: stack or data?
In Concurrency, Security, and Puzzles - Essays Dedicated to Andrew William Roscoe on the
Occasion of His 60th Birthday, volume 10160 of Lecture Notes in Computer Science, pages
144–161. Springer, 2017.

24 Jérôme Leroux. Vector addition system reversible reachability problem. Log. Methods Comput.
Sci., 9(1), 2013.

25 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In
Proc. LICS 2015, pages 56–67. IEEE Computer Society, 2015.

26 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In Proc. LICS 2019, pages 1–13. IEEE, 2019.

27 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. STOC
1981, pages 238–246, 1981.

28 Fernando Rosa-Velardo and David de Frutos-Escrig. Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci., 412(34):4439–4451, 2011.

29 Kumar Neeraj Verma and Jean Goubault-Larrecq. Karp-Miller trees for a branching extension
of VASS. Discret. Math. Theor. Comput. Sci., 7(1):217–230, 2005. doi:10.46298/DMTCS.350.

A Proofs for Section 3 (Data vector addition systems with states)

▶ Lemma 8. In dvass bi-reachability problem we may assume, w.l.o.g., that q = (ℓ,⊥⊥),
q′ = (ℓ′,⊥⊥), and v = v′ = 0.

Proof. Consider a dvass V = (L,R, P, H, T) and two configurations q(v), q′(v′), where
q = (ℓ, ν), q′ = (ℓ′, ν′). We proceed in three steps, as shown in the diagram (cf. diagram (4)
in Remark 6):

locations plain places3
oo

registers
1 //

1

OO

atom places

2
OO

As the first step we redo the first step of the proof of Lemma 12 which yields a dvass
V1 = (L1, ∅, H, P1, T1) without registers (which implies q = (ℓ,⊥⊥) and q′ = (ℓ′,⊥⊥)). We
choose initial and final location

ℓ := (ℓ, ν−1(⊥)) ℓ
′ := (ℓ′, (ν′)−1(⊥)) ∈ L1

and, identifying a register valuation ν with the vector ⊕{(r, a) | ν(r) = a ̸= ⊥}, we choose
initial and final vector H ∪ P1×A→fin N,

v := v⊕ ν v′ := v′ ⊕ ν′,

and claim that the reachability is preserved (we omit registers, and write e.g. ℓ(v)):

▷ Claim 31. The configurations q(v), q′(v′) are bi-reachable in V if and only if ℓ(v), ℓ
′(v′)

are bi-reachable in V1.

Second, consider a register-less dvass V1 = (L1, ∅, H1, P1, T1) and two configurations
ℓ(v) = q(u⊕w) and ℓ′(v′) = q′(u′ ⊕w′), where u, u′ : H1 →fin N and w, w′ : P1×A→fin N.
We argue that w.l.o.g. we can assume w = w′ = 0. Let S = supp(v)∪ supp(v′) be the set of
those atoms which appear in w or w′. Intuitively, we move the set P1×S to plain places. We
take H2 = H1 ∪ P1×S as plain places, and consider atoms A′ = A \ S instead of A. Clearly,

H1 ∪ (P1×A) = H2 ∪ (P1×A′)

CONCUR 2024

https://doi.org/10.46298/DMTCS.350

31:20 Bi-Reachability in Petri Nets with Data

and therefore we may take the same transitions T1 as transitions of the new dvass V2 =
(L1, ∅, H2, P1, T1). As S is finite, the set T1 is still orbit-finite with respect to Aut(A′).

▷ Claim 32. The configurations ℓ(v), ℓ′(v′) are bi-reachable in V1 if and only if ℓ(v), ℓ′(v′)
are bi-reachable in V2.

In the last third step, consider a dvass V = (L2, ∅, H2, P2, T2) without registers and
two configurations ℓ(u) and ℓ′(u′), where u, u′ : H2 →fin N. We eliminate the initial
and final values u, u′ on plain places in a classical way, by introducing new initial and
final locations ℓ, ℓ

′ and adding to T2 the following four transitions, and thus defining
V3 = (L2 ∪

{
ℓ, ℓ

′}
, ∅, H2, P2, T3):

(ℓ, u, ℓ) (ℓ′,−u′, ℓ
′) (ℓ,−u, ℓ) (ℓ′

, u′, ℓ′). (15)

▷ Claim 33. The configurations ℓ(u), ℓ′(u′) are bi-reachable in V2 if and only if ℓ(0), ℓ
′(0)

are bi-reachable in V3.

Indeed, a run ℓ(u) −→ ℓ′(u′) in V2 extended with the first two transitions in (15) yields
a run ℓ(0) −→ ℓ

′(0) in V3, and likewise a run ℓ′(u′) −→ ℓ(u) in V2 extended with the
last two transitions in (15) yields a run ℓ

′(0) −→ ℓ(0) in V3. Conversely, consider a run
π : ℓ(0) −→ ℓ

′(0) in V3. It necessarily starts with the first transition in (15), and ends with
the second one. If transitions (15) are used elsewhere in π, they are necessarily used in pairs,
namely the second one followed immediately by the fourth one, or the third one is followed
immediately by the first one. Effects of each such pair cancel out, and thus each pair can be
safely removed from π. Finally, removing the first and the last transition makes π into a run
ℓ(u) −→ ℓ′(u′) in V2, as required. Likewise we transform a run ℓ

′(0) −→ ℓ(0) in V3. ◀

B Proofs for Section 4 (Toolset)

▶ Lemma 10. ⊑ is a wqo on configurations.

Proof. Recall the sets of states Q = L × (R → (A ∪ {⊥})) and configurations Conf =
Q ×

(
(H ∪ P×A) →fin N

)
. The quasi-order ⊑ is a wqo on the set of nonnegative vectors

P×A →fin N, as it is quasi-order-isomorphic to M(P →fin Z), the set of finite multisets
of finite vectors from P →fin Z, ordered by multiset inclusion. Furthermore, ⊑ is a wqo
on (H ∪ P×A) →fin N, as it is quasi-order-isomorphic to the Cartesian product (H →fin

N)× (P×A→fin N) of two wqo’s, and Cartesian product preserves wqo.
Every register valuation ν : R → (A ∪ {⊥}) may be seen as an R′-vector, where R′ =

ν−1(A) is the set of non-empty registers, namely ν̂ = ⊕{(r, a) | ν(r) = a ̸= ⊥} : R′ →fin N.
We use this fact to argue that ⊑ is a wqo on Y = (R → (A ∪ {⊥}))× ((H ∪ P×A)→fin N).
Indeed, we split this set into 2|R| subsets, determined by non-empty registers, i.e., for every
subset R′ ⊆ R we consider a subset

CR′ :=
{

(ν, v)
∣∣ ν−1(A) = R′} ⊆ Y.

For every fixed R′, the set CR′ is essentially a subset of H ∪ (P ∪R′)× A →fin N, due to
the bijection (ν, v) 7→ ν̂ ⊕ v, containing those vectors which use exactly one generator from
R′ × A. Therefore CR′ is a wqo. In consequence, Y is a wqo too, as finite sums preserve
wqo.

Finally, the set Conf = L × Y is a wqo, as Cartesian product of the finite set L and
a wqo. ◀

	1 Introduction
	2 Preliminaries: orbit-finite sets and vectors
	3 Data vector addition systems with states
	4 Toolset
	5 Sufficient condition for DVASS bi-reachability
	6 Reduction algorithm
	6.1 Violation of Phi_1
	6.2 Violation of Phi_2

	7 Final remarks
	A Proofs for Section 3 (Data vector addition systems with states)
	B Proofs for Section 4 (Toolset)

