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Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e.,
together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to
interval Markov chains. Motivated by applications to the verification of probabilistic noninterference
in security, we study problems of minimising probabilistic bisimilarity distances of labelled MDPs,
in particular, whether there exist strategies such that the probabilistic bisimilarity distance between
the induced labelled Markov chains is less than a given rational number, both for memoryless
strategies and general strategies. We show that the distance minimisation problem is ∃R-complete
for memoryless strategies and undecidable for general strategies. We also study the computational
complexity of the qualitative problem about making the distance less than one. This problem is
known to be NP-complete for memoryless strategies. We show that it is EXPTIME-complete for
general strategies.
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1 Introduction

Given a model of computation (e.g., finite automata), and two instances of it, are they
semantically equivalent (e.g., do the automata accept the same language)? Such equivalence
problems can be viewed as a fundamental question for almost any model of computation. As
such, they permeate computer science, in particular, theoretical computer science.

In labelled Markov chains (LMCs), which are Markov chains whose states (or, equivalently,
transitions) are labelled with an observable letter, there are two natural and very well-studied
versions of equivalence, namely trace (or language) equivalence and probabilistic bisimilarity.

The trace equivalence problem has a long history, going back to Schützenberger [28]
and Paz [21] who studied weighted and probabilistic automata, respectively. Those models
generalise LMCs, but the respective equivalence problems are essentially the same. For
LMCs, trace equivalence asks if the same label sequences have the same probabilities in the
two LMCs. It can be extracted from [28] that equivalence is decidable in polynomial time,
using a technique based on linear algebra; see also [32, 9].

Probabilistic bisimilarity is an equivalence that was introduced by Larsen and Skou [20].
It is finer than trace equivalence, i.e., probabilistic bisimilarity implies trace equivalence.
A similar notion for Markov chains, called lumpability, can be traced back at least to the
classical text by Kemeny and Snell [15]. Probabilistic bisimilarity can also be computed in
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polynomial time [1, 7, 33]. Indeed, in practice, computing the bisimilarity quotient is fast
and has become a backbone for highly efficient tools for probabilistic verification such as
Prism [19] and Storm [12].

Numerous quantitative generalisations of this behavioural equivalence have been proposed,
the probabilistic bisimilarity distance due to Desharnais et al. [8] being the most notable one.
This distance can be at most 1, and is 0 if and only if the LMCs are probabilistic bisimilar.
It was shown in [5] that the distance can be computed in polynomial time.

In this paper, we study distance minimisation problems for (labelled) Markov decision
processes (MDPs), which are LMCs plus nondeterminism; i.e., each state may have several
actions (or “moves”) one of which is chosen by a controller, potentially randomly. An MDP
and a controller strategy together induce an LMC (potentially with infinite state space,
depending on the complexity of the strategy). We consider both general strategies and the
more restricted memoryless ones. There are good reasons to consider memoryless strategies,
particularly their naturalness and simplicity in implementations, and their connection to
interval Markov chains (see, e.g., [14, 6]) and parametric MDPs (see, e.g., [11, 35]). There
are also good reasons to consider general unrestricted strategies, primarily their naturalness
(in their definition for MDPs) and their generality. The latter is important particularly for
security applications, see below, where general strategies can make programs more secure, in
a precise, quantitative sense.

Let us elaborate on the connection to security. Noninterference refers to an information-
flow property of a program, stipulating that information about high data (i.e., data with high
confidentiality) may not leak to low (i.e., observable) data, or, quoting [25], “that a program is
secure whenever varying the initial values of high variables cannot change the low-observable
(observable by the attacker) behaviour of the program”. It was proposed in [25] to reason
about probabilistic noninterference in probabilistic multi-threaded programs by proving
probabilistic bisimilarity; see also [29, 22]. More precisely, probabilistic noninterference is
established if it can be shown that any two states that differ only in high data are probabilistic
bisimilar, as then an attacker who only observes the low part of a state learns nothing about
the high part. The observable behaviour of a multi-threaded program depends strongly on
the scheduler, which in this context amounts to a strategy in the corresponding MDP.

Nevertheless, ensuring perfect (probabilistic) noninterference proves challenging, and
a certain degree of information leakage may be acceptable [13, 24]. In such scenarios,
where (probabilistic) bisimilarity might not hold under any scheduler, turning to bisimilarity
distances allows us to estimate the security degree of a system under different schedulers.
The smaller the distance, the more secure the system. Therefore, we would like to devise
schedulers that minimise the probabilistic bisimilarity distances.

Some qualitative problems have already been studied in previous work. Concerning
memoryless strategies, it was shown in [16] that the bisimilarity equivalence problem, i.e.,
whether strategies exist to make the distance 0, is NP-complete. Similarly, it was also
shown in [16] that the problem whether memoryless strategies exist to make the distance less
than one is NP-complete; cf. Table 1. The bisimilarity inequivalence problem, i.e., whether
strategies exist to make the distance greater than 0, can be decided in polynomial time for
memoryless strategies [16].

Concerning general strategies, the bisimilarity equivalence and inequivalence problems
were studied in [17]. It was shown there that these problems are EXPTIME-complete and
in P, respectively.

It remained open whether the existence of strategies to make the distance less than one is
decidable for general strategies. We show that the distance less than one problem for general
strategies is decidable. In fact, it is EXPTIME-complete, and therefore the problem has the
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Table 1 Summary of results on distance minimisation problems.

Problem Memoryless Strategy General Strategy

distance = 0 NP-complete [16] EXPTIME-complete [17]
distance < 1 NP-complete [16] EXPTIME-complete (Section 6)
distance < θ ∃R-complete (Section 4) undecidable (Section 5)

same complexity as the bisimilarity equivalence problem for general strategies. To obtain
this result, we prove a tight connection between the distance less than one problem and the
bisimilarity equivalence problem: loosely speaking, whenever there are general strategies for
two states to have distance less than one, the two states can reach a pair of states whose
distance can be made 0, thus probabilistic bisimilar. This connection is natural and known
for finite labelled Markov chains, but nontrivial to establish in general.

We also study quantitative distance minimisation problems: do there exist memoryless
(resp. general) strategies for two given MDPs such that the induced LMCs have distance less
than a given threshold? We show that the distance minimisation problem is ∃R-complete for
memoryless strategies and undecidable for general strategies. Here, ∃R refers to the class of
problems that are many-one reducible to the existential theory of the reals; it is known that
NP ⊆ ∃R ⊆ PSPACE.

The rest of the paper is organised as follows. We give preliminaries in Section 2. In
Section 3 we discuss probabilistic noninterference. In Sections 4 and 5 we prove our results
on the quantitative distance minimisation problems for general strategies and memoryless
strategies, respectively. We study the distance less than one problem for general strategies in
Section 6. We conclude in Section 7. Missing proofs can be found in the full version of this
paper [18].

2 Preliminaries

We write N for the set of nonnegative integers. Let S be a finite set. We denote by
Distr(S) the set of probability distributions on S. For a distribution µ ∈ Distr(S) we
write support(µ) = {s ∈ S | µ(s) > 0} for its support. We denote the Dirac distribution
concentrated on an element s ∈ S by 1s, that is, 1s(s) = 1 and 1s(t) = 0 for all t ̸= s. We
denote by ρ(i) the i-th element of a sequence ρ. We denote the least fixed point of a function
f by µ.f .

A labelled Markov chain (LMC) is a quadruple ⟨S, L, τ, ℓ⟩ consisting of a nonempty
countable set S of states, a nonempty finite set L of labels, a transition function τ : S →
Distr(S), and a labelling function ℓ : S → L. We denote by τ(s)(t) the transition probability
from s to t. Similarly, we denote by τ(s)(E) =

∑
t∈E τ(s)(t) the transition probability from

s to E ⊆ S. We require the LMCs to be finitely branching, that is, |support(τ(s))| is finite
for every s ∈ S.

An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all (s, t) ∈ R,
ℓ(s) = ℓ(t) and τ(s)(E) = τ(t)(E) for each R-equivalence class E. Probabilistic bisimilarity,
denoted by ∼M (or ∼ when M is clear), is the largest probabilistic bisimulation.

The probabilistic bisimilarity distance, a pseudometric on LMCs, was first defined by
Desharnais, Gupta, Jagadeesan and Panangaden in [8]. Their definition is based on a
real-valued modal logic. This logic can be viewed as a function which maps a formula f

of the logic and a state s of the LMC to a real number f(s) ∈ [0, 1]. The distance d(s, t)
between two states s, t is defined as supf |f(s) − f(t)|. Later, Van Breugel and Worrell [34]
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defined probabilistic bisimilarity distances on LMCs as a fixed point of a function. They
showed that their pseudometric coincides with the one defined in [8]. In this paper, we use
the definition from [34]. The probabilistic bisimilarity distance, denoted by dM (or d when
M is clear), is a function from S × S to [0, 1], that is, an element of [0, 1]S×S . It is the least
fixed point of the following function:

∆(e)(s, t) =


1 if ℓ(s) ̸= ℓ(t)

min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) e(u, v) otherwise

where the set Ω(µ, ν) of couplings of µ, ν ∈ Distr(S) is defined as Ω(µ, ν) ={
ω ∈ Distr(S × S)

∣∣ ∑
t∈S ω(s, t) = µ(s) ∧

∑
s∈S ω(s, t) = ν(t)

}
. Note that a coupling ω ∈

Ω(µ, ν) is a joint probability distribution with marginals µ and ν (see, e.g., [2, page 260-262]).
For all s, t ∈ S, s ∼ t if and only if s and t has probabilistic bisimilarity distance zero [8,
Theorem 1].

A (labelled) Markov decision process (MDP) is a tuple ⟨S, Act, L, φ, ℓ⟩ consisting of a
finite set S of states, a finite set Act of actions, a finite set L of labels, a partial function
φ : S × Act 7→ Distr(S) denoting the probabilistic transition, and a labelling function
ℓ : S → L. The set of available actions in a state s is Act(s) = {m ∈ Act | φ(s, m) is defined}.

A path is a sequence ρ = s0m1s1 · · · mnsn such that φ(si, mi+1) is defined and
φ(si, mi+1)(si+1) > 0 for all 0 ≤ i < n. The last state of ρ is last(ρ) = sn. Let Paths(D)
denote the set of paths in D.

A (general) strategy for an MDP is a function α : Paths(D) → Distr(Act) that given a
path ρ, returns a probability distribution on the available actions at the last state of ρ, last(ρ).
A memoryless strategy depends only on last(ρ); so we can identify a memoryless strategy
with a function α : S → Distr(Act) that given a state s, returns a probability distribution on
the available actions at that state.

A general strategy α for D induces an LMC D(α) = ⟨P, L, τ, ℓ′⟩, where P ⊆ Paths(D).
For ρ ∈ P, we have τ(ρ)(ρmt) = α(ρ)(m)φ(s, m)(t) and ℓ′(ρ) = ℓ(s) where s = last(ρ) and
m ∈ Act(s).

3 Probabilistic Noninterference

In this section we provide examples that show some challenges in distance minimisation and
illustrate the relation between distance minimisation and probabilistic noninterference in
security. As described in the introduction, we are interested in schedulers that minimise the
information leakage.

▶ Example 1. We borrow an example from [25, Section 4] and [17, Section 3]. Consider the
following simple program composed of two threads, involving a high boolean variable h (high
confidentiality) and a low boolean variable l (observable):

l := h | l := ¬h

The vertical bar | separates two threads. The order in which the threads are executed is
determined by a scheduler. We assume that assignments to the value of variable l are visible.
One may model the program as the following MDP in Figure 1. Here, s0 and s1 correspond
to initial states with h = 0 and h = 1, respectively. The two actions in the MDP, m0 and m1,
correspond to the two possible orders of execution: action m0 models the choice of executing
l := h first, followed by l := ¬h, while m1 models the reverse order. The different colours
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s0
m0

0

1

m1

1

0

t0

s1
m0

1

0

m1

0

1

t1

Figure 1 The program from Example 1 as an MDP. The states s0 and s1 have two available
actions, m0 and m1. The default action m for the other states is omitted. Different colours (state
labels) indicate the distinct values of the low data. Throughout the paper, transition probabilities
out of each action are one unless explicitly specified.

represent the distinct values of the low, observable data. For instance, in state s0, if the
scheduler selects m0 (the left branch of s0), then l becomes 0 after executing l := h and 1
after executing l := ¬h. All transitions are with probability one. A memoryless strategy that
chooses actions m0, m1 uniformly at random (i.e., with probability 0.5 each) makes s0, s1
probabilistic bisimilar; i.e., d(s0, s1) = 0 under this strategy. ⌟

▶ Example 2. Consider the following variant of Example 1.

repeat
l := h | l := ¬h

until coin(p) ∨ h

Here, coin(p), for a fixed parameter p ∈ [0, 1], models a biased coin that returns true with
probability p and false with probability 1 − p. One may model the program as the MDP
in Figure 2, except that t0, t1 are sinks, as in Example 1. The value of h influences the
termination condition of the loop and therefore “leaks” (with probability 1 − p). As a result,
under the optimal (in terms of minimising the distance) strategy, which is the same as in
Example 1, we have now d(s0, s1) = 1 − p. The smaller p, the “worse” the leak. ⌟

The following example shows that general strategies may be needed for optimal security.

▶ Example 3. In order to mitigate the leak from Example 2, one might extend the program
as follows, so that the scheduler is given an opportunity to disguise the fact that the program
with h = 1 tends to terminate earlier than the program with h = 0:

repeat
l := h | l := ¬h

until coin(p) ∨ h

repeat forever
l := 0 ⊕ l := 1

Here, ⊕ stands for a nondeterministic choice, to be made by the scheduler, where exactly
one of the instructions l := 0 and l := 1 is executed. In Figure 2, this corresponds to
taking actions m2 and m3, respectively. One can show that the optimal memoryless strategy
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s0
m0

0

1

m1

1

0

t0m2

0

m3

1

p p

1 − p 1 − p

s1
m0

1

0

m1

0

1

t1m2

0

m3

1

Figure 2 The program from Example 3 as an MDP. The states s0 and s1 have two available
actions, m0 and m1. The states t0 and t1 also have two available actions, m2 and m3. Different
colours (state labels) indicate the distinct values of the low data.

chooses between m0 and m1 uniformly at random (as before), and also chooses between m2
and m3 uniformly at random. Under this strategy we have d(s0, t1) = 0.5+0.5(1−p)d(s0, t1),
implying d(s0, t1) = 1

1+p , and thus d(s0, s1) = (1 − p)d(s0, t1) = 1−p
1+p , which is, for p ∈ (0, 1),

smaller (i.e., better) than the distance achievable in Example 2.
However, there is a general strategy α, not memoryless, that perfectly disguises when the

first loop is exited. This strategy α chooses between m0 and m1 uniformly at random (as
before). When the execution path visits t0 or t1 for the ith time, i ≥ 1, then, if i is odd, α

chooses between m2 and m3 uniformly at random, and if i is even, α chooses the action that
was not taken upon the (i − 1)th visit of t0 or t1. Under this strategy α we have d(s0, s1) = 0,
i.e., s0 and s1 are probabilistic bisimilar. ⌟

4 Memoryless Strategies: Distance Minimisation

In this section we consider the memoryless distance minimisation problem which, given
an MDP, two states s1, s2 of the MDP, and a rational number θ, asks whether there is a
memoryless strategy α such that d(s1, s2) < θ holds in the LMC induced by α.

We show that the memoryless distance minimisation problem is ∃R-complete. We prove
the lower and upper bound in Theorems 7 and 8, respectively.

The existential theory of the reals, ETR, is the set of valid formulas of the form

∃x1 . . . ∃xn R(x1, . . . , xn),

where R is a Boolean combination of comparisons of the form p(x1, . . . , xn) ∼ 0, in
which p(x1, . . . , xn) is a multivariate polynomial (with rational coefficients) and ∼ ∈
{<, >, ≤, ≥, =, ̸=}. The complexity class ∃R [27] consists of those problems that are many-
one reducible to ETR in polynomial time. Since ETR is NP-hard and in PSPACE [4, 23], we
have NP ⊆ ∃R ⊆ PSPACE.
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To prove that the memoryless distance minimisation problem is ∃R-hard (Theorem 7),
we proceed via a sequence of reductions, represented by the following lemmas, Lemmas 4–6.

▶ Lemma 4. The following problem is ∃R-complete: given a multivariate polynomial p :
Rn → R of (total) degree at most 6, does there exist x ∈ Rn with p(x) < 0? The problem
remains ∃R-complete under the promise that if there is x with p(x) < 0 then there is x′ with
p(x′) < 0 and ∥x′∥ < 1 (where ∥ · ∥ denotes the Euclidean norm).

Proof. Membership in ∃R is clear. It remains to prove ∃R-hardness. It is shown in [26,
Lemma 3.9] that the following problem is ∃R-complete: given multivariate polynomials
f1, . . . , fs : Rn → R, each of degree at most 2, does there exist x ∈ Rn with ∥x∥ < 1 such
that

∧s
i=1(fi(x) = 0)? It follows from the proof that the problem remains ∃R-complete

under the promise that
∧

i fi(x) = 0 implies ∥x∥ < 1. We reduce from this promise problem.
Let f1, . . . , fs : Rn → R, each of degree at most 2, such that for all x ∈ Rn we have that∧

i fi(x) = 0 implies ∥x∥ < 1. Define the polynomial q : Rn → R by q(x) :=
∑s

i=1 fi(x)2.
Clearly, q(x) ≥ 0 always holds, and we have q(x) = 0 if and only if

∧
i fi(x) = 0. Consider the

two sets {(q(x), x) ∈ Rn+1 | ∥x∥ ≤ 1} and {(0, x) ∈ Rn+1 | ∥x∥ ≤ 1}. If q has a root x, then
the two sets overlap in the point (0, x); otherwise, by [27, Corollary 3.4], they have distance
at least 22−k , where k is a natural number whose unary representation can be computed in
polynomial time. It follows that if ∥x∥ ≤ 1 and q(x) < 22−k then there exists x′ such that
q(x′) = 0.

In the following let us use real-valued variables x1, . . . , xn, y1, . . . , yk and write x =
(x1, . . . , xn) and y = (y1, . . . , yk). Define the polynomial r : Rn+k → R (of degree at most 6)
by

r(x, y) := (y1 − 4)2 + (y2 − y2
1)2 + · · · + (yk − y2

k−1)2 + y2
kq(x) + ∥x∥2 − 1 .

Let us also use a real-valued variable z. Define the polynomial p : Rn+k+1 (of degree at
most 6) by

p(x, y, z) := z6r
(x1

z
, . . . ,

xn

z
,

y1

z
, . . . ,

yk

z

)
.

Suppose there is x ∈ Rn with
∧

i fi(x) = 0. Then q(x) = 0. For 1 ≤ i ≤ k, set yi := 22i .
Then r(x, y) = ∥x∥2 − 1 < 0. Set z > 0 small enough so that z2 (

∥x∥2 + ∥y∥2 + 1
)

< 1. For
1 ≤ i ≤ n, set x′

i := xiz. For 1 ≤ i ≤ k, set y′
i := yiz. Then p(x′, y′, z) = z6r(x, y) < 0 and

∥x′∥2 + ∥y′∥2 + z2 = z2 (
∥x∥2 + ∥y∥2 + 1

)
< 1.

Towards the other direction, suppose there is (x′, y′, z) ∈ Rn+k+1 with p(x′, y′, z) < 0.
Since p is a polynomial, it is continuous. So we can assume without loss of generality
that z ̸= 0. For 1 ≤ i ≤ n, set xi := x′

i/z. For 1 ≤ i ≤ k, set yi := y′
i/z. Then

r(x, y) = p(x′, y′, z)/z6 < 0. This implies y2
kq(x) < 1 and ∥x∥ < 1. Using r(x, y) < 0, we

show by induction that yi ≥ 22i−1 + 1 holds for all i ∈ {1, . . . , k}. For the induction base
(i = 1) we have (y1 − 4)2 ≤ 1. Thus, y1 − 4 ≥ −1, and so y1 ≥ 3 = 221−1 + 1. For the step
(1 ≤ i ≤ k − 1), suppose that yi ≥ 22i−1 + 1. Since r(x, y) < 0, we have (yi+1 − y2

i )2 ≤ 1, and
so

yi+1 ≥ y2
i − 1 ≥ (22i−1

+ 1)2 − 1 = 22i

+ 2 · 22i−1
≥ 22i

+ 1 .

Hence, we have shown that yk ≥ 22k−1 + 1 > 22k−1 . It follows that q(x) < 1/y2
k < 2−2k . Since

∥x∥<1, it follows from the argument at the beginning that there exists x′ such that q(x′) = 0
and so

∧
i fi(x′) = 0.
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This completes the hardness proof. Note that by combining the two directions, it follows
that if there is w ∈ Rn+k+1 with p(w) < 0, then there is w′ ∈ Rn+k+1 with p(w′) < 0 and
∥w′∥ < 1, showing also ∃R-hardness of the promise version of the problem. ◀

▶ Lemma 5. The following problem is ∃R-complete: given a multivariate polynomial p :
Rn → R of degree at most 6, does there exist x ∈ [0, 1]n with p(x) > 0?

Proof. Membership in ∃R is clear. For hardness we reduce from the promise problem from
the previous lemma. Let p : Rn → R be a multivariate polynomial of degree at most 6 such
that if there is x ∈ Rn with p(x) < 0 then there is x′ ∈ Rn with p(x′) < 0 and ∥x′∥ < 1. Define
the polynomial q : R2n → R by q(y1, . . . , yn, z1, . . . , zn) := −p(y1 − z1, . . . , yn − zn). The
degree of q is at most 6. We have to show that there is x ∈ Rn with p(x) < 0 if and only if
there are y1, . . . , yn, z1, . . . , zn ∈ [0, 1] with q(y1, . . . , yn, z1, . . . , zn) > 0.

Suppose there are x1, . . . , xn ∈ R with p(x1, . . . , xn) < 0. By the property of p we can
assume that x2

1 + · · · + x2
n < 1. It follows that xi ∈ [−1, 1] holds for all i. For all i with xi ≥ 0

define yi := xi and zi := 0. For all i with xi < 0 define yi := 0 and zi := −xi. Then we have
xi = yi − zi and yi, zi ∈ [0, 1] for all i. Further,

q(y1, . . . , yn, z1, . . . , zn) = −p(y1 − z1, . . . , yn − zn) = −p(x1, . . . , xn) > 0 .

Towards the other direction, suppose that there are y1, . . . , yn, z1, . . . , zn ∈ [0, 1] with
q(y1, . . . , yn, z1, . . . , zn) > 0. For all i define xi := yi − zi. Then we have

p(x1, . . . , xn) = p(y1 − z1, . . . , yn − zn) = −q(y1, . . . , yn, z1, . . . , zn) < 0 ,

as required. ◀

▶ Lemma 6. The following problem is ∃R-complete: given a rational number θ ≥ 0 and a
multivariate (degree-6) polynomial p : Rn → R of the form p(x) =

∑k
j=1 fj(x) where each

fj(x1, . . . , xn) is a product of a nonnegative coefficient and 6 terms of the form xi or (1 − xi),
does there exist x ∈ [0, 1]n with p(x) > θ?

Proof. Membership in ∃R is clear. Towards hardness, suppose m : Rn → R is a monomial
with a negative coefficient, i.e.,

m(x1, . . . , xn) = −c

d∏
j=1

xij
for some c > 0 and i1, . . . , id ∈ {1, . . . , n} .

Then we have

m(x1, . . . , xn) = −c

d∏
j=1

xij
= c(1 − xi1)

d∏
j=2

xij
− c

d∏
j=2

xij
= . . .

= −c +
d∑

k=1
c(1 − xik

)
d∏

j=k+1
xij .

We reduce from the problem from Lemma 5. Let p : Rn → R be a multivariate polynomial
of degree at most 6. By rewriting each monomial of p that has a negative coefficient using
the pattern above, we can write p(x) = −θ + q(x) for some θ ≥ 0 and some q : Rn → R of
the form q(x) =

∑k
j=1 fj(x) where each fj(x) is a product of a nonnegative coefficient and at

most 6 terms of the form xi or (1 − xi). As long as there is an fj(x1, . . . , xn) of degree less
than 6, we can replace it by the two summands x1fj(x1, . . . , xn) and (1 − x1)fj(x1, . . . , xn).
So we can assume that every fj(x) has the required form. For all x ∈ Rn we have that
p(x) > 0 if and only if q(x) > θ, as required. ◀



S. Kiefer and Q. Tang 32:9

s1

u11 v11 w11

1
u12 v12 w12

1
u13 v13 w13

−2

u21 v21 w21

2
u22 v22 w22

4
u23 v23 w23

−4
u′

t

1
3

2
3

s2

u

v1 v2 v3 v4 t′

w11 w−1−1 w22 w−2−2 w33 w−3−3 w44 w−4−4

1
5

1
5

1
5 1

5

1
5

Figure 3 An illustration of the proof of Theorem 7. Consider the polynomial p with
p(x1, x2, x3, x4) = 1

3 x2
1(1 − x2) + 2

3 x2x4(1 − x4). This example polynomial has degree 3 (instead of
degree 6 in the proof) to allow for a more succinct picture. The analogous construction from the
reduction yields the shown MDP. The labels are written next to the states in blue, unlike the other
figures in this paper where we usually use different colours to indicate different state labels. We omit
label 0. There is a one-to-one correspondence between an assignment x ∈ [0, 1]4 and a memoryless
strategy α(x) in the MDP. It is such that d(s1, s2) = 1 − p(x)

54 , establishing a connection between an
evaluation of p and the distance.

To show that the memoryless distance minimisation problem is ∃R-hard, we reduce from
the problem in Lemma 6. We give a brief outline of the reduction. Given a multivariate
polynomial p : Rn → R of the form as in Lemma 6, we construct an MDP with initial states
s1 and s2 such that each assignment x ∈ [0, 1]n corresponds to a memoryless strategy α(x)
of the MDP. The distance of s1 and s2 in the LMC induced by the memoryless strategy α(x)
is 1 − c · p(x) where c is a constant. Therefore, there exists x ∈ [0, 1]n with p(x) > θ if and
only if there exists a memoryless strategy α(x) such that the distance of s1 and s2 is less
than 1 − c · θ.

▶ Theorem 7. The memoryless distance minimisation problem is ∃R-hard.

Proof. We reduce from the problem from Lemma 6. Let θ ≥ 0 and let p : Rn → R be
a multivariate polynomial of the form p(x) =

∑m
j=1 fj(x) where each fj(x1, . . . , xn) is a

product of a nonnegative coefficient and 6 terms of the form xi or (1 − xi). Let us write
fj(x1, . . . , xn) = cj

∏6
k=1 xℓ(j,k) where each cj ≥ 0 and each ℓ(j, k) ∈ {−n, . . . , −1, 1, . . . , n}

and we use the notation x−i for i > 0 to mean 1 − xi. We can assume that
∑m

j=1 cj = 1
(otherwise, divide θ and each cj by

∑m
j=1 cj).

Construct an MDP which consists of two disjoint parts as follows; see Figure 3 for an
illustration. The first part is an LMC. Include states uj,k, vj,k, wj,k for each j ∈ {1, . . . , m}
and each k ∈ {1, . . . , 6}. Each uj,k, vj,k has label 0, and each wj,k has label ℓ(j, k). Each
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uj,k transitions with probability 1 to vj,k. Each vj,k transitions with probability 1 to wj,k.
Each wj,k, except those with k = 6, transitions with probability 1 to uj,k+1. Include also
states s1, u′ and t with label 0. State s1 transitions with probability cj to uj,1, for each j.
State u′ transitions with probability 1 to t. State t is a sink state, that is, it transitions with
probability 1 to itself. Also each wj,6 transitions with probability 1 to u′.

The second part is an MDP. Include states s2, u, t′ with label 0. State s2 transitions
with probability 1 to u. Include also states v1, . . . , vn, each with label 0. State u transitions
to each vi and t′ with probability 1

n+1 . State t′ is a sink state. Include also states
w−n, . . . , w−1, w1, . . . , wn, where each wi has label i. Each vi has two actions, one of which
leads with probability 1 to wi, the other one with probability 1 to w−i. Each wi transitions
with probability 1 to u.

Each assignment x ∈ [0, 1]n corresponds to a memoryless strategy α(x) such that in
state vi the memoryless strategy α(x) takes with probability xi the action that leads to wi,
and α(x) takes with probability 1 − xi the action that leads to w−i. In fact, this mapping α

(from an assignment to a memoryless strategy) is a bijection. Fix an arbitrary x ∈ [0, 1]n
and consider the distances in the LMC induced by α(x). For notational convenience, for any
states s, s′ let us write d(s, s′) := 1 − d(s, s′). Further, let us write uj,7 for u′.

Let j ∈ {1, . . . , m} and k ∈ {1, . . . , 6}. Then we have

d(uj,k, u) = 1
n + 1d(vj,k, v|ℓ(j,k)|) = 1

n + 1xℓ(j,k)d(wj,k, wℓ(j,k)) = 1
n + 1xℓ(j,k)d(uj,k+1, u) .

Since d(uj,7, u) = d(u′, u) = 1
n+1 , it follows

d(uj,1, u) =
(

1
n + 1

)7 6∏
k=1

xℓ(j,k) .

Hence,

d(s1, s2) =
m∑

j=1
cjd(uj,1, u) =

m∑
j=1

cj

(
1

n + 1

)7 6∏
k=1

xℓ(j,k) =
(

1
n + 1

)7 m∑
j=1

fj(x)

= p(x)
(n + 1)7 .

Thus, we have p(x) > θ if and only if d(s1, s2) > θ
(n+1)7 if and only if d(s1, s2) < 1 − θ

(n+1)7 .
This completes the hardness proof. ◀

The following theorem, proved in [18, A.1], provides a matching upper bound.

▶ Theorem 8. The memoryless distance minimisation problem is in ∃R.

Together with Theorem 7 we obtain:

▶ Corollary 9. The memoryless distance minimisation problem is ∃R-complete.

5 General Strategies: Distance Minimisation

In this section we consider the general distance minimisation problem which, given an MDP,
two states s1, s2 of the MDP, and a rational number θ, asks whether there is a general
strategy α such that d(s1, s2) < θ holds in the LMC induced by α.

To show that the general distance minimisation problem is undecidable, we establish a
reduction from the emptiness problem for probabilistic automata.
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A probabilistic automaton is a tuple A = ⟨Q, q0, L, δ, F ⟩ consisting of a finite set Q of
states, an initial state q0 ∈ Q, a finite set L of letters, a transition function δ : Q × L →
Distr(Q) assigning to every state and letter a distribution over states, and a set F of final states.
We also extend δ to words, by letting δ(q0, ε) = 1q0 and δ(q0, σw) =

∑
q∈Q δ(q0, σ)(q)δ(q, w)

for σ ∈ L and w ∈ L∗. For a state q ∈ Q, Aq is the probabilistic automaton obtained from
A by making q the initial state.

We write PrA(w) =
∑

q∈F δ(q0, w)(q) to denote the probability that A accepts a word
w. The emptiness problem asks, given a probabilistic automaton A, whether there exists a
word w such that PrA(w) > 1

2 holds. The probabilistic automaton A is called empty if no
such word exists. This problem is known to be undecidable [10, 21], even for probabilistic
automata with only two letters [3]1.

Let A = ⟨Q, q0, L, δ, F ⟩ be a probabilistic automaton; without loss of generality we assume
that q0 ̸∈ F and L = {a, b}. We construct an MDP D with states s1 and s2 and a number θ

such that A is nonempty if and only if there is a general strategy such that d(s1, s2) < θ in
the induced LMC.

Let us first outline the idea of the construction. Our MDP includes the part shown in
Figure 4, where after a random word w ∈ L∗ is produced, the strategy must choose between
taking the transition to x or to y. Lemma 10 below characterises the distance of s1 and
s2 under strategy α in terms of α and PrA. It follows from Lemma 10 that the following
strategy minimises the distance: if the random word w satisfies PrA(w) ≤ 1

2 , choose the
transition to x; otherwise choose the transition to y. Setting θ as the distance under the
strategy that always chooses the transition to x, we obtain that the distance can be made
less than θ if and only if there is a word w with PrA(w) > 1

2 .

a b

$mx my

x y

1
3

1
3

1
3

1
3

1
3

1
3

1 1

1 1

Figure 4 The first part of the MDP D. The $ state is the only one that has nondeterministic
choices: it has two available actions, mx and my. The default action m for the other states is omitted.
Different colours indicate different state labels.

We now give the details of the construction. The MDP D = ⟨S, Act, L′, φ, ℓ⟩ consists of two
disjoint parts as follows; see Figure 4 and Figure 5. The set of actions is Act = {m, mx, my}.
The set of labels is L′ = {a, b, $, x, y}.

The first part is an MDP shown in Figure 4. Its set of states is {a, b, $, x, y}. The state
s1 is defined to be a. The transitions φ are defined as follows:

1 It is stated in [3, Theorem 2.1] that the emptiness problem with unfixed threshold λ, i.e., whether there
exists a word w such that PrA(w) > λ, is undecidable for probabilistic automata with only two letters.
It is easy to adapt the proof to show undecidability of the emptiness problem with fixed threshold 1

2 .
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The state a (resp. b) transitions with uniform probability to its three successors a, b and
$, that is, φ(s, m)(a) = φ(s, m)(b) = φ(s, m)($) = 1

3 for s ∈ {a, b}.
The state $ has two actions mx and my; the action mx goes with probability 1 to x and
the action my goes with probability 1 to y. That is, φ($, mx)(x) = φ($, my)(y) = 1.
The states x and y are sink states, that is, φ(s, m)(s) = 1 for s ∈ {x, y}.

Each of the states is labelled with its name, that is, ℓ(s) = s for s ∈ {a, b, $, x, y}. This
sub-MDP “is almost” an MC, in the sense that a strategy α does not influence its behaviour
until eventually a transition to x or y is taken. Since a, b, x and y have only one available
action, we may omit the default action m in the paths that contain m only. For example, we
may write s1ab$ to represent the path s1mambm$.

q

q1

q2
q ̸∈ F

p1 and p2 are transition
probabilities:
p1 = δ(q, a)(q1) and
p2 = δ(q, b)(q2).

p1, a

p2, b

(a, q)

(a, q1)

(b, q2)

$x

x′

p1
3

p2
31

3

1

1

f

q3

q4
f ∈ F

p3 and p4 are transition
probabilities:
p3 = δ(f, a)(q3) and
p4 = δ(f, b)(q4).

p3, a

p4, b

(a, f)

(a, q3)

(b, q4)

$y

y′

p3
3

p4
31

3

1

1

The probabilistic automaton A The second part of D

Figure 5 The second part of the MDP D is an LMC, constructed from the probabilistic automaton
A. The default deterministic action m for all states is omitted. The state (b, q) in the MDP D,
where q ∈ Q, has the same transitions as the state (a, q); it is labelled with b.

The other part of D is an LMC constructed from A as follows; see Figure 5. The set of
states is (L × Q) ∪ {$x, $y, x′, y′}. The state s2 is defined to be (a, q0).

We describe the transitions of the LMC using the transition function δ of A. Con-
sider a letter σ ∈ L and a state q ∈ Q. The state (σ, q) with probability 1

3 simulates
the probabilistic automaton A reading the letter a, and with probability 1

3 simulates the
probabilistic automaton A reading the letter b. That is, φ

(
(σ, q), m

)(
(a, q′)

)
= 1

3 δ(q, a)(q′)
and φ

(
(σ, q), m

)(
(b, q′)

)
= 1

3 δ(q, b)(q′).



S. Kiefer and Q. Tang 32:13

For the remaining probability of 1
3 , we distinguish the following two cases:

If q ̸∈ F , the state (σ, q) transitions to $x with probability 1
3 , that is, φ

(
(σ, q), m

)
($x) = 1

3 .
Otherwise, if q ∈ F , the state (σ, q) transitions to $y with probability 1

3 , that is,
φ

(
(σ, q), m

)
($y) = 1

3 .
The state $x (resp. $y) transitions with probability one to the sink state x′ (resp. y′). That
is, φ($x, m)(x′) = φ($y, m)(y′) = φ(x′, m)(x′) = φ(y′, m)(y′) = 1.

A state (σ, q) ∈ L × Q is labelled with σ. The states $x and $y are labelled with $. The
states x′ and y′ are labelled with x and y, respectively.

Given a general strategy α, the next lemma expresses the distance between s1 and s2 in
terms of α and PrA. The proof is technical and can be found in [18, A.2].

▶ Lemma 10. For any general strategy α, we have

dα(s1, s2) =
∑

w∈L∗

1
3|w|+1

(
(1 − PrA(w))α(s1w$)(my) + PrA(w)α(s1w$)(mx)

)
.

Using Lemma 10, we prove the main theorem of this section:

▶ Theorem 11. The general distance minimisation problem is undecidable.

Proof. We reduce from the emptiness problem for probabilistic automata. Let A =
⟨Q, q0, L, δ, F ⟩ be a probabilistic automaton; without loss of generality we assume that
q0 ̸∈ F and L = {a, b}. Let D be the MDP constructed from A shown in Figures 4 and 5.

Let αx be the memoryless strategy that chooses the action mx whenever it is in state
$, that is, αx(s1w$) = 1mx

for all w ∈ L∗. Let θ be the distance between s1 and s2 in the
LMC D(αx). It can be computed in polynomial time [5]. We show in [18, A.3]that there is a
word w ∈ L∗ such that PrA(w) > 1

2 (A is nonempty) if and only if there is a general strategy
α such that dα(s1, s2) < θ in the induced LMC. ◀

6 General Strategies: Distance Less Than One

In this section, we consider the distance less than one problem which, given an MDP and two
states, asks whether there is a general strategy such that the two states have probabilistic
bisimilarity distance less than one in the LMC induced by the general strategy. The challenge
here is that general strategies induce, in general, LMCs with infinitely many states.

We show that the distance less than one problem is EXPTIME-complete. We prove the
upper and lower bound in Sections 6.1 and 6.2, respectively.

6.1 Membership in EXPTIME
Let M = ⟨S, L, τ, ℓ⟩ be a (possibly infinite) LMC. We partition the set S2 of state pairs into

S2
0 = { (s, t) ∈ S2 | s ∼ t }

S2
1 = { (s, t) ∈ S2 | ℓ(s) ̸= ℓ(t) }

S2
? = S2 \ (S2

0 ∪ S2
1) .

We call T : S2
? → Distr(S2) a policy for the LMC if for all (s, t) ∈ S2

? we have T (s, t) ∈
Ω(τ(s), τ(t)). We write T for the set of policies. Given a policy T ∈ T , the Markov chain
CT

M = ⟨S2, τ ′⟩ induced by T is defined by

τ ′((u, v)
)(

(u, v)
)

= 1 if (u, v) ∈ S2
0 ∪ S2

1 ;
τ ′((u, v)

)(
(x, y)

)
= T (u, v)(x, y) otherwise.
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s0 s1 s2 s3 · · · t1
1
3

2
3

2
3

1
3

1
3

1

(a) An infinite LMC M.

(s0, t) (s1, t) (s2, t) (s3, t) · · ·1
1
3

2
3

2
3

1
3

1
3

(b) The Markov chain CT
M.

Figure 6 (a) An infinite state LMC M with an infinite state space S =
{

si | i ∈ {0, 1, 2, . . .}
}

∪{t}.
All states have the same label except s0. The states s0 and t are sink states, that is, τ(s0)(s0) =
τ(t)(t) = 1. Each si where i ∈ {1, 2, . . .} transitions to si−1 with probability 1

3 and si+1 with
probability 2

3 . (b) The Markov chain CT
M induced by an arbitrary policy T in which only the states

reachable from (s1, t) are shown. The shown part of CT
M is the same for every policy T .

For (s, t) ∈ S2 and a set of state pairs Z ⊆ S2 we write RT
M((s, t), Z) ∈ [0, 1] for the

probability that in the Markov chain CT
M the state (s, t) reaches a state (u, v) ∈ Z.

By [31, Theorem 4, Proposition 5], the following proposition holds.

▶ Proposition 12. Let M = ⟨S, L, τ, ℓ⟩ be a finite LMC and s, t ∈ S. We have d(s, t) < 1 if
and only if there exists a policy T such that RT

M((s, t), S2
0) > 0.

The “only if” direction of Proposition 12 does not generally hold for LMCs with infinite
state space, as the following example shows.

▶ Example 13. Consider the LMC M in Figure 6a. Let T be an arbitrary policy for M. We
have T (si, t)(si−1, t) = 1

3 and T (si, t)(si+1, t) = 2
3 for all i ∈ {1, 2, . . .}. The Markov chain

CT
M induced by T is shown in Figure 6b; we only show the states that are reachable from

(s1, t). The shown part of CT
M is the same for every policy.

We have d(si, t) = 1
2i for all i ∈ {0, 1, 2, . . .}. In the Markov chain CT

M, all state pairs
that (s1, t) can reach have distances greater than zero: for all i ∈ {1, 2, . . .} the pair (s1, t)
can reach (si, t) and we have d(si, t) = 1

2i > 0. ⌟

The following theorem follows from [30, Theorem 6.1.7] for LMCs with finite state space.
The same proof, see [18, A.4], works for LMCs with infinite state space.

▶ Theorem 14. Let M = ⟨S, L, τ, ℓ⟩ be an LMC. There is a policy T ∈ T such that we have

d(s, t) = RT
M((s, t), S2

1) ≤ RT ′

M((s, t), S2
1) for all (s, t) ∈ S2 and all T ′ ∈ T .

In short, d = min
T ∈T

RT
M(·, S2

1).

The following corollary of Theorem 14 is similar to Proposition 12 but holds even for
infinite-state LMCs.

▶ Corollary 15. Let M = ⟨S, L, τ, ℓ⟩ be an LMC and s, t ∈ S. We have d(s, t) < 1 if and only
if there exists a policy T such that RT

M((s, t), S2
1) < 1. In particular, if there is a policy T

with RT
M((s, t), S2

0) > 0 then d(s, t) < 1.
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Corollary 15 falls short of an “if and only if” connection between distance less than one
and bisimilarity. Indeed, as we have seen, Proposition 12 does not always hold in infinite-state
LMCs. However, the key technical insight of this section is that a version of Proposition 12
holds for (finite-state) MDPs and general strategies. More precisely, the following proposition
characterises the existence of a strategy such that the distance is less than one.

▶ Proposition 16. Let D = ⟨S, Act, L, φ, ℓ⟩ be an MDP, and let s, t ∈ S. There exists
a strategy α′′ with dD(α′′)(s, t) < 1 if and only if there are strategies α, α′, a policy T for
the LMC D(α), two states u, v ∈ S and two paths ρ1, ρ2 ∈ Paths(D) with u = last(ρ1) and
v = last(ρ2), such that RT

D(α)((s, t), {(ρ1, ρ2)}) > 0 and u and v are probabilistically bisimilar
in the LMC D(α′).

The more difficult direction of the proof is the “only if” direction. It is based on Lévy’s
zero-one law, several applications of the Bolzano-Weierstrass theorem, and a characterisation
of probabilistic bisimilarity in MDPs in terms of an “attacker-defender” game defined [17,
Section 3.1].

The starting point of the proof of Proposition 16 is the following statement, which follows
from Theorem 14 and Corollary 15 using Lévy’s zero-one law.

▶ Corollary 17. Let M = ⟨S, L, τ, ℓ⟩ be an LMC and s, t ∈ S with d(s, t) < 1. There exists a
policy T such that for all ε>0 there is (u, v) ∈ S2 with d(u, v) ≤ ε and RT

M((s, t), {(u, v)})>0.

Proof. Let M = ⟨S, L, τ, ℓ⟩ be an LMC and s, t ∈ S with d(s, t) < 1. By Corollary 15 there
exists a policy T such that RT

M((s, t), S2
1) < 1. By Lévy’s zero-one law, the probability in CT

M
is one that a random run (s0, t0)(s1, t1) . . . started from (s0, t0) = (s, t) satisfies one of the
following conditions:
1. the sequence RT

M((s0, t0), S2
1), RT

M((s1, t1), S2
1), . . . converges to 1 and S2

1 is reached;
2. the sequence RT

M((s0, t0), S2
1), RT

M((s1, t1), S2
1), . . . converges to 0 and S2

1 is not reached.
Event 1 can be equivalently characterised by saying that S2

1 is reached. Since RT
M((s, t), S2

1)<

1, Event 2 happens with a positive probability. It follows that in CT
M there exists a run

(s0, t0)(s1, t1) . . . started from (s0, t0) = (s, t) such that RT
M((s0, t0), S2

1), RT
M((s1, t1), S2

1), . . .

converges to 0. Let ε > 0. Then there exists (u, v) ∈ S2 such that RT
M((u, v), S2

1) ≤ ε and
RT

M((s, t), {(u, v)}) > 0. By Theorem 14 it follows that d(u, v) ≤ ε. ◀

▶ Example 18. Consider again Example 13. We have d(s1, t) = 1
2 . Corollary 17 asserts that

there is a policy T such that for all ε > 0, in CT
M the pair (s1, t) can reach (u, v) ∈ S2 with

d(u, v) ≤ ε. Indeed, take an arbitrary policy T . Given any ε > 0 choose i with 1
2i ≤ ε. Then

(s1, t) can reach (si, t) and d(si, t) = 1
2i ≤ ε. ⌟

See [18, A.5] for the rest of the proof of Proposition 16. Proposition 16 is the key to
proving the following result.

▶ Theorem 19. The distance less than one problem is in EXPTIME.

Proof. Let ⟨S, Act, L, φ, ℓ⟩ be an MDP. Abusing the notation from the beginning of Sec-
tion 6.1, let us define

S2
0 = { (s, t) ∈ S2 | ∃ α′ such that s, t are probabilistically bisimilar in D(α′) }

S2
1 = { (s, t) ∈ S2 | ℓ(s) ̸= ℓ(t) }

S2
? = S2 \ (S2

0 ∪ S2
1) .

By [17, Theorem 7] the set S2
0 can be computed in exponential time. Consider the elements

of S2 as vertices of a directed graph with set of edges
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E := {(z, z) | z ∈ S2
0 ∪ S2

1} ∪{(
(s1, s2), (t1, t2)

)
∈ S2

? × S2 | ∀ i ∈ {1, 2} ∃ mi ∈ Act(si) : support(φ(si, mi)) ∋ ti

}
.

After S2
0 has been computed (in exponential time), the directed graph G := (S2, E) can be

computed in polynomial time, and given two states s, t ∈ S, it can be checked in polynomial
time if S2

0 can be reached from (s, t) in G. It follows from Proposition 16 that this is the
case if and only if there exists a strategy α′′ with dD(α′′)(s, t) < 1. ◀

6.2 EXPTIME-Hardness
Given an MDP and two (initial) states, the bisimilarity problem asks whether there is a
general strategy such that the two states are probabilistically bisimilar in the induced LMC.
The bisimilarity problem was shown EXPTIME-complete in [17, Theorem 7]. We show in
[18, A.6] that it can be reduced to the distance less than one problem. This gives us the
following theorem.

▶ Theorem 20. The distance less than one problem is EXPTIME-hard.

Together with Theorem 19 we obtain:

▶ Corollary 21. The distance less than one problem is EXPTIME-complete.

7 Conclusion

Motivated by probabilistic noninterference, a security notion, we have settled the decidability
and complexity of the most natural bisimilarity distance minimisation problems of MDPs
under memoryless and general strategies.

Specifically, we have proved that the distance minimisation problem for memoryless
strategies is ∃R-complete (which implies, in particular, that it is NP-hard and in PSPACE).
In contrast, we have shown that the distance minimisation problem for general strategies is
undecidable, reducing from the emptiness problem for probabilistic automata.

We have also shown that it is EXPTIME-complete to decide if there are general strategies
to make the probabilistic bisimilarity distance less than one. This extends a result from [17]
that the bisimilarity equivalence problem under general strategies is EXPTIME-complete.
The key technical link we need here is natural but nontrivial to establish under general
strategies: if there are general strategies such that two states have distance less than one,
these two states can reach another pair of states which can be made probabilistic bisimilar.

Distance maximisation problems also relate to probabilistic noninterference, but in terms
of antagonistic schedulers wanting to maximise the information leakage. The decidability
and complexity of several distance maximisation problems in MDPs is still open, including
the distance equals one problem for general strategies.
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