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Abstract
In the weak memory consistency literature, the semantics of concurrent programs is typically defined
as a constraint on execution graphs, expressed in relational algebra. Prior work has shown that
basic metatheoretic questions about memory models are decidable as long as they can be expressed
as irreflexivity and emptiness constraints over Kleene Algebra with Tests (KAT), a condition that
rules out practical memory models such the C/C++ and the Linux kernel models.

In this paper, we extend these results to memory models containing arbitrary intersections with
uninterpreted relations. We can thus automatically establish compilation correctness and derive
efficient incremental consistency checkers for RC11, LKMM, and other memory models.
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1 Introduction

In the weak memory consistency literature, the semantics of a concurrent and/or distributed
program is typically defined as a set of labeled directed graphs, each representing a single
possible execution of the program. These execution graphs comprise a set of nodes recording
the individual memory accesses performed and a set of edges recording various ordering
constraints among them. Example constraints [2] include the program order (po), the
reads-from relation (rf), and the coherence order (co).

Each memory model defines a “consistency” constraint on execution graphs, asserting
which graphs are possible outcomes of any program. These constraints are conveniently
expressed in relational algebra with the help of some additional built-in sets (e.g., the
set of read events R, and the set of write events W) and relations (e.g., sameloc relating
events accessing the same memory location, and diffthread relating events originating
from different threads). For example, sequential consistency (SC) [18] can be defined as
the constraint (SC) in Fig. 1; coherence (a.k.a., SC-per-location) as (COH), or equivalently
as (COH2); release-acquire (RA) as (RA), or equivalently as (RA2), or equivalently as the
conjunction of (COH) and (RA3); and Total Store Order (TSO) [22] as the conjunction of
(COH) and (TSO).
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33:2 Automating Memory Model Metatheory with Intersections

irreflexive((po ∪ rf ∪ co ∪ fr)+) where fr △= rf−1; co (SC)
irreflexive((po ∩ sameloc ∪ rf ∪ co ∪ fr)+) (COH)
irreflexive(po?; (rf ∪ co ∪ fr)+) (COH2)
irreflexive(((po ∪ rf)+ ∩ sameloc ∪ co ∪ fr)+) (RA)
irreflexive((po ∪ rf)+; (co ∪ fr)?) (RA2)
irreflexive((ppo ∪ rf)+; (co ∪ fr)?) where ppo △= po \ (W × R) (RA3)
irreflexive((ppo ∪ rf ∩ diffthread ∪ co ∪ fr)+) (TSO)

Figure 1 Sample consistency constraints.

Kokologiannakis et al. [14] present Kater, a framework that can automatically answer
certain fundamental questions about such definitions, but only for the case where the models
are expressed purely as irreflexivity constraints over Kleene Algebra with Tests (KAT) [16].
This restriction to KAT, however, is a severe limitation of Kater: many common model
definitions do not fall into this fragment (e.g., COH, RA, TSO), and although some of the
simpler definitions can be equivalently expressed in KAT, more advanced practical models
such as RC11 [17] and the Linux kernel memory model (LKMM) [1], cannot.

In response, we present KATI, an extension of KAT with intersections with uninterpreted
relations, as well as a top element. KATI can express terms like − ∩ sameloc and − ∩
diffthread in Fig. 1, and supports all the aforementioned memory models. However, KATI
also makes answering the following questions more difficult:
(Incremental) consistency checking: Is a given execution graph G consistent according to

a model M? Moreover, given an execution graph G and an event e ∈ G such that G \ {e}
is M -consistent, is G also M -consistent?

Inclusion: Is memory model A stronger than a memory model B, i.e., does the consistency
predicate of A imply that of B?

Incremental consistency checking is important for testing and automated verification
of concurrent programs (e.g., via stateless model checking [7, 15]). The problem admits a
straightforward cubic solution (in the size of the execution graph) that calculates the relation
appearing in the irreflexivity constraints in a bottom-up fashion. For acyclicity constraints
of KAT expressions, Kater provides a better solution of linear complexity: it performs
a custom DFS of the cross product of the execution graph with a finite state automaton
corresponding to the KAT expression. We extend Kater’s linear-time solution to KATI
with register automata [11], which extend standard finite state automata with a finite set of
registers, which can store arbitrary values and compare them for equality.

Inclusion is not only an important metatheoretical question, but it actually also underlies
the correctness proofs of compilation from one model to another and of local program
transformations (compiler optimizations). Unfortunately, however, we cannot simply use our
encoding into register automata because inclusion between register automata is generally
undecidable [11]. We therefore follow another approach, and reduce relational intersection
to KAT expressions over an extended alphabet with additional “bracket” letters. We prove
that the resulting inclusion algorithm remains decidable (PSPACE-complete for a bounded
number of intersections).

Our contributions can be summarized as follows:
§2 We review KAT and show how it encodes consistency constraints of weak memory models.
§3–§5 We present KATI, an extension of KAT that supports intersections with primitive

relations, prove equivalence between its relational and language interpretation, and
provide a decision procedure for language inclusion based on NFAs.
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§6 We show how KATI can be used to check consistency of execution graphs in linear time.
We conclude the paper with a presentation of related work (§7) and a note about future
work (§8).

2 Kleene Algebra with Tests

In this section, we review the syntax and semantics of Kleene Algebra with Tests (KAT) [16].

2.1 Syntax and Interpretation
Syntax. KAT has two kinds of terms: tests and expressions.

Tests, t ∈ Test, form a boolean algebra over a set of primitive predicates, p ∈ P, i.e., they
are constructed using the standard boolean/set operators: true (⊤), false (⊥), union (∪),
intersection (∩), and complement ( ).

t ::= ⊤ | ⊥ | p | t1 ∪ t2 | t1 ∩ t2 | t

Expressions, e ∈ KAT, form a Kleene algebra over primitive relations, r ∈ R, and tests;
i.e., they are constructed using relational composition (sequencing), union, and repetition.

e ::= r | [t] | e1 ; e2 | e1 ∪ e2 | e∗

Unlike plain Kleene Algebra, KAT does not need special constructs for the empty string and
the empty set, as these are given by the KAT expressions [⊤] and [⊥] respectively.

Relational Interpretation. KAT terms can be interpreted in the context of a graph G,
which defines the interpretations of primitive tests and relations. Formally, a graph G is
a tuple ⟨EG, IP

G, IR
G⟩ where EG is a set of nodes (events) and IP

G is a function interpreting
primitive tests over subsets of EG and IR

G primitive relations over binary relations on EG.

IP
G : P → P(EG) IR

G : R → P(EG × EG)

We extend these interpretations to arbitrary KAT terms as follows:

JpKG
△= IP

G(p) JrKG
△= IR

G(r)
J⊤KG

△= EG J[t]KG
△=

{
⟨a, a⟩ a ∈ JtKG

}
J⊥KG

△= ∅ Je1; e2KG
△=

{
⟨a, c⟩ ∃b. ⟨a, b⟩ ∈ Je1KG ∧ ⟨b, c⟩ ∈ Je2KG

}
JtKG

△= EG \ JtKG Je∗KG
△= (JeKG)∗

Jt1 ∪ t2KG
△= Jt1KG ∪ Jt2KG Je1 ∪ e2KG

△= Je1KG ∪ Je2KG

Jt1 ∩ t2KG
△= Jt1KG ∩ Jt2KG

Language Interpretation. The main property of KAT is that inclusion and equivalence
between KAT expressions is decidable (PSPACE-complete). This can be shown either with
an algebraic axiomatization of KAT [16] or, as we show below, via an equivalent model of
KAT expressions as a regular language.

Specifically, KAT expressions can be seen as regular languages over guarded strings,
which we shall define below. To do so, we first define the atoms of a set of primitive tests.

▶ Definition 1 (Atom). An atom over P = {p1, ... , pk} is a string of literals c1c2 ... ck such
that ci ∈ {pi, pi}, 1 ≤ i ≤ k. Furthermore, the set of all 2k atoms over P is denoted AP.

CONCUR 2024



33:4 Automating Memory Model Metatheory with Intersections

We use the greek lowercase letters α, β, ... to denote atoms. For an atom α and a test t we
write α ≤ t to denote that α → t is a propositional tautology.

▶ Definition 2 (Guarded String). A guarded string is a string over GS △= (AP; R)∗; AP, i.e.,
consists of a non-empty, alternating sequence of atoms and primitive relations, starting and
ending with an atom.

Concatenation and Kleene closure can be lifted to languages of guarded strings:

X # Y
△= {u · α · v | u · α ∈ X, α · v ∈ Y }

X(0) △= AP X(n+1) △= X # X(n) X⊛ △=
⋃

n≥0 X(n)

Observe that concatenation is guarded, i.e., it is only defined if the two strings are composable.
The language interpretation, J.KL, maps tests to sets of atoms and KAT expressions to

(regular) sets of guarded strings.

JpKL
△= {α ∈ AP | α ≤ p} JrKL

△= {α · r · β | α, β ∈ AP}
J⊤KL

△= AP J[t]KL
△= JtKL

J⊥KL
△= ∅ Je1 ∪ e2KL

△= Je1KL ∪ Je2KL

JtKL
△= AP \ JtKL Je1 ; e2KL

△= Je1KL # Je2KL

Jt1 ∪ t2KL
△= Jt1KL ∪ Jt2KL Je∗KL

△= (JeKL)⊛

Jt1 ∩ t2KL
△= Jt1KL ∩ Jt2KL

2.2 Interpretation Equivalence
The language and relational interpretations of KAT expressions are equivalent in the sense
that e1 is included in e2 according to the one interpretation if and only if it is included
according to the other.

▶ Theorem 3 (Interpretation Equivalence). Je1KL ⊆ Je2KL if and only if ∀G. Je1KG ⊆ Je2KG.

Proof sketch. For the “⇒” direction, we define a function ρG : GS → P(EG × EG) that
interprets guarded strings as relations on a graph G as follows:

ρG(α) △=
{

⟨a, a⟩ a ∈ JαKG

}
ρG(α · r · w) △= ρG(α) ; JrKG ; ρG(w)

Here, JαKG interprets the atom α as the composition of its primitive tests. We show that
JeKG =

⋃
w∈JeKL

ρG(w) (by induction on e). Then,

Je1KG =
⋃

w∈Je1KL
ρG(w) ⊆

⋃
w∈Je2KL

ρG(w) = Je2KG .

For the “⇐” direction, from a word w ∈ Je1KL, we construct a “canonical” graph Gw as a
sequence of nodes n0, ... , nk, such that the only guarded string w′ such that ⟨n0, nk⟩ ∈ ρGw

(w′)
is w′ = w. Then it follows that ⟨n0, nk⟩ ∈ Je1KGw

⊆ Je2KGw
, and thus w ∈ Je2KL. ◀

Deciding Language Inclusion with NFAs. When deciding the inclusion Je1KL ⊆ Je2KL, it is
convenient to use NFAs that accept guarded strings.

▶ Definition 4. An NFA over an alphabet Σ is a tuple ⟨Q, ι, F, δ⟩, where Q is the set of
states, ι ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ ⊆ Q × Σ × Q is the
transition relation.
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Given an NFA, we abuse notation and write δ(S, a) for the set
{

q ∈ Q ∃s ∈ S. ⟨s, a, q⟩ ∈ δ
}

.
We also lift the transition relation to words as follows δ(S, ϵ) △= S, and δ(S, aw) △= δ(δ(S, a), w).

The language accepted by an NFA contains all words accepted by the NFA: L(⟨Q, ι, F, δ⟩) △={
w ∈ Σ δ({ι}, w) ∩ F ̸= ∅

}
.

Let us now define the function J−KNFA to convert an expression e ∈ KAT to an NFA over
the alphabet of atoms and primitive relations: Σ △= AP ∪ R.

JrKNFA
△= ⟨{q0, q1, q2, q3}, q0, {q3}, {⟨q1, r, q2⟩} ∪

⋃
α∈AP

{⟨q0, α, q1⟩, ⟨q2, α, q3⟩}⟩

J[t]KNFA
△= ⟨{q0, q1}, q0, {q1},

{
⟨q0, α, q1⟩ α ∈ JtKL

}
⟩

Je1; e2KNFA
△= ⟨Q1 ⊎ Q2, ι1, F2, δ1 ∪ δ2 ∪

{
⟨q1, α, q2⟩ δ1(q1, α) ∈ F1 ∧ (ι2, α, q2) ∈ δ2

}
⟩

where JeiKNFA = ⟨Qi, ιi, Fi, δi⟩ for i ∈ {1, 2}
Je1 ∪ e2KNFA

△= ⟨Q1 ⊎ Q2, ι1, F1 ∪ F2, δ1 ∪ δ2 ∪
{

⟨ι1, α, q2⟩ ⟨ι2, α, q2⟩ ∈ δ2
}

⟩

where JeiKNFA = ⟨Qi, ιi, Fi, δi⟩ for i ∈ {1, 2}
Je∗KNFA

△= ⟨Q ⊎ {q}, ι, F ∪ {q}, δ ∪
{

⟨q2, α, q1⟩ ⟨ι, α, q1⟩ ∈ δ, ⟨q2, α, qF ⟩ ∈ δ, qF ∈ F
}

∪
{

⟨ι, α, q⟩ α ∈ AP
}

⟩

where JeKNFA = ⟨Q, ι, F, δ⟩

By construction, the function J−KNFA creates an NFA that accepts only guarded strings. In
fact, JeKNFA accepts precisely the words in JeKL.

▶ Proposition 5 (NFA Equivalence). For all e ∈ KAT, JeKL = L(JeKNFA).

Language inclusion between KAT expressions can thus be checked via NFA automata and is
PSPACE-complete.

2.3 Memory Models as KAT Constraints
Kokologiannakis et al. [14] observe that declarative memory models M can be formulated as a
pair ⟨e∅, eirr⟩ of an emptiness and an irreflexivity constraint over KAT. A memory model is in-
terpreted as a set of execution graphs as follows J⟨e∅, eirr⟩K

△=
{

G Je∅KG ∪ JeirrKG ∩ id = ∅
}

,
where id △= {⟨x, x⟩ | x ∈ EG} is the identity relation.

Crucially, Kokologiannakis et al. [14] prove that various metatheoretic properties about
memory models (such properties boil down to irreflexivity implications) can be decided in a
sound and complete fashion:

▶ Theorem 6 (Kater). For every e1, e2 ∈ KAT, sameEnds(Je1KL) ⊆ DEDUP(ROT(Je2KL))
if and only if for all G, irreflexive(Je2KG) implies irreflexive(Je1KG).

In the theorem above, sameEnds(L) △=
{

α · v · α α · v · α ∈ L
}

restricts L so that its end-
points are compatible, ROT(L) △=

{
α · u · β · v · α β · v · α · u · β ∈ L

}
is the rotation closure

of L, and DEDUP(L) △=
{

α · w · α ∃n. (α · w)n · α ∈ L
}

the deduplication closure.
Kokologiannakis et al. [14] further observe that the deduplication closure is never needed

in practice, and so their tool, Kater, simply checks sameEnds(Je1KL) ⊆ ROT(Je2KL).

3 KATI: Kleene Algebra with Tests and Intersections

In this section, we present our extension of KAT with relational intersection. KATI
(Kleene Algebra with Tests and Intersections) extends KAT with relational intersection with
intersection relations, ir ∈ IR, with the standard relational interpretation.

e ∈ KATI ::= ... | e ∩ ir Je ∩ irKG
△= JeKG ∩ JirKG

CONCUR 2024
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In this section, for simplicity, we assume that the set of primitive relations R and the set of
intersection relations IR are disjoint. We will later lift this assumption in §5.

3.1 Language Interpretation
To show that inclusion between KATI expressions remains decidable, we need to suitably
extend the language interpretation. To do so, we cannot employ the usual interpretation
of intersection between formal languages because JrKL ∩ JirKL =

{
α · r · β α, β ∈ AP

}
∩{

α · ir · β α, β ∈ AP
}

= ∅.
Our idea is to introduce a set of bracket symbols IR()

△=
⋃

ir∈IR{(ir , )ir} and interpret
intersections as well-bracketed words over IR() ∪ R ∪ AP. Note, however, that we cannot
simply interpret e ∩ ir as

{
(ir · w · )ir w ∈ JeKL

}
, as such an interpretation fails to validate

the following four important equivalences between KATI expressions that hold according to
the relational interpretation.

(e ∩ ir) ∩ ir = e ∩ ir (e ∩ ir) ∩ ir ′ = (e ∩ ir ′) ∩ ir
([t] ; e) ∩ ir = [t] ; (e ∩ ir) (e ; [t]) ∩ ir = (e ∩ ir) ; [t]

Idempotence fails because the LHS has more brackets the RHS, while the commutativity
properties fail because the brackets (and the tests) appear in different orders. In addition,
we sometimes want intersection relations, such as sameloc, to be reflexive, in which case we
would like to support the equivalence [t] ∩ ir = [t].

To resolve these problems, we assume a total order ≺ on IR and a function1 id : IR → Test
such that J[id(ir)]KG = J[⊤] ∩ irKG. Then, we can extend the notion of guarded strings to
enforce a number of well-formed properties: (1) ignoring bracket symbols, words form an
non-empty alternating sequence of atoms and primitive relations, starting and ending with
an atom; (2) brackets are properly nested; (3) words inside brackets do not start or end with
an atom, (4) directly nested brackets are sorted according to ≺. To do so, we introduce a
set PGS of non-empty words indexed by a set S ⊆ IR constraining any end-to-end bracket
symbol to be indexed by an intersection relation in S,

PGSS
△=

{
r r ∈ R

}
∪

{
w1 · α · w2 w1, w2 ∈ PGSIR, α ∈ AP

}
∪

{
(ir · w · )ir ir ∈ S, w ∈ PGS{≻ir}

}
GS △=

{
α α ∈ AP

}
∪

{
α · w · β α, β ∈ AP, w ∈ PGSIR

}
where {≻ir} △=

{
ir ′ ir ≺ ir ′}.

Note that given w ∈ PGSIR and ir ∈ IR, there exist u ∈ ({≺ir}
∗, v ∈ (?

ir , w′ ∈ PGS{≻ir}
such that w = u · v · w′ · v · u, where for a sequence of opening brackets u, we write u for the
corresponding sequence of closing brackets such that u · u is well-nested.

We extend the language interpretation of KAT to KATI as follows:

Je ∩ irKL
△=

{
α · u · (ir · w · )ir · u · β

α · u · v · w · v · u · β ∈ JeKL,

u ∈ ({≺ir}
∗
, v ∈ (?

ir , w ∈ PGS{≻ir}

}
∪ {α | α ∈ JeKL, α ∈ Jid(ir)KL}

Using this definition, one can show that inclusion of the language interpretation implies
inclusion of the relational interpretation.

1 Such a function can always be defined by extending P with additional primitive tests if necessary.
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▶ Proposition 7. For all KATI expressions e1, e2, if Je1KL ⊆ Je2KL, then ∀G. Je1KG ⊆ Je2KG.

Proof sketch. The conclusion follows by showing that JeKG =
⋃

w∈JeKL
ρG(w), where the

function ρG : (GS ∪ PGSIR) → P(EG × EG) is defined recursively as follows:

ρG(α) △= J[α]KG ρG(α · u · β) △= J[α]KG ; ρG(u) ; J[β]KG

ρG(r) △= JrKG ρG(u · α · v) △= ρG(u) ; J[α]KG ; ρG(v)
ρG((ir · u · )ir) △= ρG(u) ∩ JirKG ◀

The other direction, however, does not hold because r ∩ ir ⊆ r clearly holds according
to the relational interpretation, but not according to the language interpretation. More
generally, the issue is that RHS can have fewer intersections than the LHS and so its language
interpretation can have fewer brackets than that of the LHS.

We therefore define a partial order ≲B on guarded strings (GS ∪ PGSIR) that allows the
LHS to contain more brackets than the RHS as the least structure-preserving partial order
relating (ir · w · )ir ≲B w for all w ∈ PGSIR, where we call an order ≲B structure-preserving if:

u ≲B w

α · u · β ≲B α · w · β

u1 ≲B w1 u2 ≲B w2

u1 · α · u2 ≲B w1 · α · w2

u ≲B w

(ir · u · )ir ≲B (ir · w · )ir

We can easily define the bracketed saturation of a language BR(L) △=
{

u w ∈ L ∧ u ≲B w
}

,
and write L1 ≲B L2 when L1 ⊆ BR(L2), i.e., when for all u ∈ L1, there exists w ∈ L2 such
that u ≲B w.

With the above building blocks in place, we can prove the following equivalence between
the two KATI representations.

▶ Theorem 8 (Interpretation Equivalence). Je1KL ≲B Je2KL if and only if ∀G. Je1KG ⊆ Je2KG.

Proof sketch. The “⇒‘” direction follows from Prop. 7 and the observation that u ≲B v

implies ρG(u) ⊆ ρG(v).
In the “⇐‘” direction, from a guarded string w ∈ Je1KL, we construct a “canonical‘” graph

Gw as a sequence of nodes n0, ... , nk, such that a guarded string u has ⟨n0, nk⟩ ∈ ρGw (u) iff
w ≲B u. Then, it follows that ⟨n0, nk⟩ ∈ Je1KGw

⊆ Je2KGw
, and thus w ∈ BR(Je2KL). ◀

Theorem 8 provides a way to use language-based techniques to reason about inclusion of
KATI expressions. There are two remaining questions:

How can we finitely represent JeKL?
How can we finitely represent the bracketing closure, BR(L)?

We first tackle the former question in § 3.2, and relegate the second to § 3.3.
Before we do so, we present an improvement of the bracketing closure that does not

blindly add further brackets, but only ones that appear in the LHS of the inclusion. We
say that the nesting context at given index of a guarded string is the sequence of relations
corresponding to unmatched open brackets up to that index. We will be mainly interested in
the set of all nesting contexts of a string, c(w), which can be defined inductively as follows:

c(α) △= c(r) △= {ϵ} c((ir · w · )ir) △= {ϵ} ∪ {ir · u | u ∈ c(w)}
c(w1 · α · w2) △= c(w1) ∪ c(w2) c(α · w · β) △= c(w)

Given a set of nesting contexts C and a language of guarded strings L, its restricted
bracketing closure is BRC(L) △=

{
u w ∈ L ∧ u ≲B w ∧ c(u) ⊆ C

}
. Using the restricted

bracketing closure suffices to show inclusion.

▶ Proposition 9. L1 ≲B L2 if and only if L1 ⊆ BRc(L1)(L2).

CONCUR 2024



33:8 Automating Memory Model Metatheory with Intersections

3.2 Converting KATI Expressions to Automata
As in §2, we will again use NFAs to compute J.KL albeit with a much more complex construction.
As it is difficult to provide a direct NFA construction corresponding to Je ∩ irKL, we will first
put e in a normal form that enables a straightforward construction.

Normalization. The idea of the normal form is to ensure that (1) there are no tests
immediately inside a bracket, and (2) directly nested brackets appear in ≺-order. To arrive
at such a form, we first convert an expression e into a form that makes all possible tests at
the beginning and the end of a string explicit. For this, we define pred(e), which returns a
test t such that [t] = e ∩ [⊤], and pull(e), which makes explicit any tests at the beginning of e.

pred([t]) △= t

pred(r) △= ⊥
pred(e ∩ ir) △= ⊥

pred(e1 ∪ e2) △= pred(e1) ∪ pred(e2)
pred(e1 ; e2) △= pred(e1) ∩ pred(e2)

pred(e∗) △= ⊤

pull([t]) △= ∅
pull(r) △= r

pull(e ∩ ir) △= e ∩ ir
pull(e1 ∪ e2) △= pull(e1) ∪ pull(e2)
pull(e1 ; e2) △= [pred(e1)] ; pull(e2) ∪ pull(e1) ; e2

pull(e∗) △= pull(e) ; e∗

▶ Definition 10. The converse of an expression e ∈ KATI, written e−1, is defined as follows:

[t]−1 △= [t] (e1 ∪ e2)−1 △= e−1
1 ∪ e−1

2 (e1 ; e2)−1 △= e−1
2 ; e−1

1

(e∗)−1 △= (e−1)∗ (e ∩ ir)−1 △= e−1 ∩ ir−1 (x−1)−1 △= x for x ∈ R ∪ IR.

▶ Lemma 11. JeKL = J[pred(e)] ∪ pull(e)KL = J[pred(e)] ∪ pull((pull(e−1))−1)KL.

To convert an expression into normal form, we apply the following rewrite rules in a
bottom-up fashion. The first rule is applied only once for each intersection in the KATI
expression; the remaining rules as much as possible.

e ∩ ir = [pred(e) ∩ id(ir)] ∪ pull((pull(e−1))−1) ∩ ir
([t] ; e) ∩ ir = [t] ; (e ∩ ir)
(e ; [t]) ∩ ir = (e ∩ ir) ; [t]

(e1 ∪ e2) ∩ ir = e1 ∩ ir ∪ e2 ∩ ir
((e1 ∪ e2) ; e) ∩ ir = (e1 ; e) ∩ ir ∪ (e2 ; e) ∩ ir
(e ; (e1 ∪ e2)) ∩ ir = (e ; e1) ∩ ir ∪ (e ; e2) ∩ ir

(e ∩ ir) ∩ ir = e ∩ ir
(e ∩ ir ′) ∩ ir = (e ∩ ir) ∩ ir ′ if ir ′ ≺ ir

It is easy to show that all these rules are equivalences according to the language interpretation,
and thus Jnormalize(e)KL = JeKL. We observe that the size of the normalized expression
increases exponentially with the nesting depth of the expression. However, if we assume a
bounded nesting of intersections in KATI expressions (as in all memory models), then our
decision procedure for inclusion remains PSPACE-complete.

NFA Conversion. Once e is in normal form, conversion to an NFA is fairly straightforward.
The only new case is that of the intersection of an automaton with ir , which adds (ir and )ir
transitions at the start and end of the automaton, and ensures that any α-transition from the
initial to a final state satisfies α ∈ Jid(ir)KL. Assuming that JeKNFA = ⟨Q, ι, F, δ⟩, Je ∩ irKNFA
returns the NFA ⟨Q′, ι, F, δ′⟩, where:
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Q′ = Q ⊎
{

qopen ⟨ι, _, q⟩ ∈ δ
}

⊎
{

qclose ⟨q, _, qF ⟩ ∈ δ, qF ∈ F
}

δ′ =
{

⟨q, σ, q′⟩ ∈ δ q ̸= ι, q′ /∈ F
}

∪
{

⟨ι, α, qopen⟩, ⟨qopen, (ir , q⟩ ⟨ι, α, q⟩ ∈ δ
}

∪
{

⟨q, )ir , qclose⟩, ⟨qclose, α, qF ⟩ ⟨q, α, qF ⟩ ∈ δ, qF ∈ F
}

∪
{

⟨ι, α, qF ⟩ ⟨ι, α, qF ⟩ ∈ δ, qF ∈ F, α ∈ Jid(ir)KL
}

The correctness of the conversion is captured by the following proposition.

▶ Proposition 12. For all KATI expressions e, L(Jnormalize(e)KNFA) = JeKL.

3.3 Saturating NFAs with Brackets
We move on to define the bracketing saturation of an NFA. We begin by making an observation
about the structure of the automaton JeKNFA corresponding to a KATI expression e. Observe
that every state q in JeKNFA has a unique nesting context: all runs from the initial state(s) to
q go through the same sequence of unmatched brackets. As such, we first define the function
c(·) : Q → IR∗ returning the nesting context of each state.

▶ Definition 13 (Nesting context). Given an NFA ⟨Q, ι, F, δ⟩ and a state q ∈ Q, the nesting
context of q, written c(q), is the word ir1 · · · irk corresponding to the unmatched open bracket
symbols (ir1

· · · (irk
along any run from an initial state ι to q.

Then, we define the notion of nesting context completion (or nesting completion for short).
Intuitively, a nesting completion is used to saturate a KATI expression with matching
brackets. In practice, we want to saturate the right-hand side of an inclusion with brackets
that exist in the left-hand side, and as such we define the nesting completion of a context d

w.r.t. a set of nesting contexts C.

▶ Definition 14 (Nesting completion). Given a nesting context d = ir1 · · · irk and a set of
nesting contexts C, the sequence N = [w1, ... , wk+1] of k + 1 words wi ∈ IR∗ is called a
nesting completion of d with respect C, written d⇝N C, if w1 · ir1 · · · irk · wk+1 ∈ C.

Given a sequence N of words wi ∈ IR∗, we write:
N.ϵ for the sequence that appends the empty string at the end of N : [w1, w2, ... , wk+1, ϵ].
N/ir for the sequence that appends ir ∈ IR at the last word of N : [w1, ... , wk, (wk+1 · ir)].

At this point we are ready to define our bracketed substring saturation on NFAs. Using
nesting completions, we can construct the saturated automaton. Given an NFA ⟨Q, ι, F, δ⟩
we define its bracketed saturation w.r.t. a set of nesting contexts C, written BRC(⟨Q, ι, F, δ⟩),
as the automaton ⟨Qsat, ιsat, Fsat, δsat⟩, where:

Qsat
△={(q, N) | q ∈ Q, c(q)⇝N C}

ιsat
△=(ι, [ϵ])

Fsat
△={(q, [ϵ]) | q ∈ F}

δsat
△={((q, N), a, (q′, N)) | (q, a, q′) ∈ δ, (q, N), (q′, N) ∈ Qsat}

∪ {((q, N), (ir , (q′, N.ϵ)) | (q, (ir , q′) ∈ δ, (q, N), (q′, N.ϵ) ∈ Qsat}
∪ {((q, N.ϵ), )ir , (q′, N)) | (q, )ir , q′) ∈ δ, (q, N), (q′, N.ϵ) ∈ Qsat}
∪ {((q, N), (ir , (q, N/ir)) | (q, N/ir), (q, N) ∈ Qsat}
∪ {((q, N/ir), )ir , (q, N)) | (q, N/ir), (q, N) ∈ Qsat}
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As can be seen, the saturated NFA has the initial and final states of the original NFA with
the empty completion as its initial states and final states, while its transition relation has
three kinds of edges: (a) those maintaining the same nesting completion (modulo adding or
removing an empty word at the end), when the original NFA performs the corresponding
transition, (b) those incrementing the last word of the current nesting completion by reading
an open bracket, and (c) those decrementing the last word of the current nesting completion
by closing a bracket.

Correctness. We next prove that bracketing saturation at the level of NFAs is a sound and
complete method for proving inclusion between KATI expressions, and thus inclusion is
decidable.

▶ Proposition 15 (Bracketing Saturation Correctness). Let A be an automaton accepting only
guarded strings and C be a set of nesting contexts. Then, BRC(L(A)) = L(BRC(A)) ∩ GS.

Proof sketch. In the “⊇‘” direction, let w ∈ L(BRC(A)) ∩ GS, and (s, [ϵ]) w−→ (t, [ϵ]) the
respective accepting run on BRC(A). By induction on the structure of w, we show that there
exists a corresponding run s

u−→ t in A such that w ≲B u. This run is accepting on A, since s

and t are an initial and final state of A, respectively, so w ∈ BRC(L(A)).
In the “⊆‘” direction, let s

u−→ t be an accepting path in A and w ≲B u with c(w) ⊆ C. By
induction on the structure of ≲B, we show that there exists a corresponding path (s, [ϵ]) w−→
(t, [ϵ]) in BRC(A). Since (s, [ϵ]) w−→ (t, [ϵ]) are initial/final in BRC(A) by construction, we
obtain the desired result. ◀

Putting Propositions 9, 12, and 15 together, we can derive the soundness and completeness
of the NFA-based checking of inclusion.

▶ Theorem 16 (Decidability of Inclusion). For all e1, e2 ∈ KATI, Je1KL ≲B Je2KL if and only
if L(Jnormalize(e1)KNFA) ⊆ L(BRc(e1)(Jnormalize(e2)KNFA)).

Proof. We show that the LHS is equivalent to the RHS:

L(Jnormalize(e1)KNFA) = Je1KL by Prop. 12
⊆ BRc(e1)(Je2KL) by Prop. 9 and the LHS
= BRc(e1)(L(Jnormalize(e2)KNFA)) by Prop. 12
= L(BRc(e1)(Jnormalize(e2)KNFA)) by Prop. 15 ◀

4 Memory Models as KATI Constraints

Let us now revisit §2, and see how irreflexivity implications between model definitions in
KATI can be proved in a sound fashion. Recall from Theorem 6 that Kater reduces
irreflexivity implications to a language inclusion problem, after taking some closures on the
involved expressions. We would of course like to follow the same strategy in KATI, but
unfortunately the deduplication closure DEDUP(L) cannot be easily adjusted to bracketed
strings.

Nonetheless, we can adjust the rotation closure ROT(L) which raises a problem when
applied to bracketed strings. Indeed, assuming the previous definition of ROT(L), if the
language L contains the string α · u1 · β · (ir · w1 · γ · w2)ir · α, ROT(L) will include strings
that are not well-bracketed like γ · w2 · )ir · α · u1 · β · (ir · w1 · γ.
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To retain well-bracketedness, we have to redefine ROT(L). To that end, we first define a
helper function split() that splits a string into a prefix and a suffix, and inverts the unmatched
brackets of each substring.

split(r) △= ∅
split((ir · w · )ir) △=

{
⟨)ir−1 · u, β, v · (ir−1⟩ ⟨u, β, v⟩ ∈ split(w)

}
split(w1 · α · w2) △=

{
⟨u, β, v′ · r · α · (S · w2⟩ ⟨u, β, v′ · r · (S⟩ ∈ split(w1)

}
∪

{
⟨w1 · )S · α · r · u′, β, v⟩ ⟨)S · r · u′, β, v⟩ ∈ split(w2)

}
∪ {⟨w1, α, w2⟩}

Inverting a bracket, inverts the corresponding intersection relation; if the relation is symmetric,
then ir−1 = ir . In the definition above, (S , )S denotes a sequence of zero or more opening
and closing brackets respectively and S is the sequence of intersection relations ir that
appear in the bracket subscripts. We can easily verify that if ⟨u, α, v⟩ ∈ split(w), then
u, v ∈ ((R ∪ IR()) · AP)∗ · (R ∪ IR()), i.e., they are in guarded form.

Given split(), we define ROT(L) as follows:

ROT(α) △= {α}

ROT(α · w · α) △=
{

β · v · r′ · α · r · u · β
⟨)S · r · u, β, v · r′ · (S⟩ ∈ split(w)
∀ir ∈ S. α ≤ id(ir)

}
∪ {α · w · α}

ROT(L) △=
{

u ∈ ROT(w) w ∈ L
}

Observe that rotation produces only guarded strings because it commutes tests outside of
brackets and split() inverts the direction of brackets.

We obtain the following equivalences.

▶ Proposition 17 (Irreflexivity Equivalence). Given a graph G and a language L ⊆ GS:

irreflexive(ρG(L)) ⇔ irreflexive(ρG(sameEnds(L))) ⇔ irreflexive(ρG(BR(L)))
⇔ irreflexive(ρG(ROT(L))) ,

where ρG(L) △=
⋃

w∈L ρG(w) and ρG(w) is defined in the proof sketch of Prop. 7.

Proof sketch. The first equivalence can be shown in a similar fashion to that in [14]. The
second equivalence follows directly from the observation that w ≲B u implies ρG(w) ⊆ ρG(u).
For the final one, the “⇐‘” direction is trivial because L ⊆ ROT(L).

To prove that irreflexive(ρG(L)) ⇒ irreflexive(ρG(ROT(L))), consider ⟨b, b⟩ ∈ ρG(w) for
some w ∈ ROT(L) \ L. (If w ∈ L, the conclusion holds trivially.) Expanding the definition
of rotation, w = β · v · α · u · β with ⟨u, α, v⟩ ∈ split(w), where u, v are the result of inverting
the unmatched brackets of u′, v′ respectively, and w′ = α · u′ · β · v′ · α ∈ L. Here, b is the
node of G that corresponds to the atom β, and let a be the node that corresponds to the
atom α in the cycle ⟨b, b⟩. Let γ1, γ2 be the atom adjacent to a possible unmatched bracket
(originating from a matching pair of brackets (ir , )ir) in v and u respectively and g1, g2 the
corresponding nodes of G for these atoms in the cycle ⟨b, b⟩. Also, since ⟨b, b⟩ ∈ ρG(w), we
know that ⟨g1, g2⟩ ∈ JirKG. When calculating ρG(w′) we would interpret this pair of brackets
with an intersection of the tuple {⟨g2, g1⟩} with Jir−1KG, which includes {⟨g2, g1⟩}. Therefore,
⟨a, a⟩ ∈ ρG(w′) contradicting that ρG(L) is irreflexive. ◀

▶ Theorem 18 (Irreflexivity Implications). For every e1, e2 ∈ KATI, if sameEnds(Je1KL) ⊆
ROT(BR(Je2KL)) then for all G, irreflexive(Je2KG) ⇒ irreflexive(Je1KG).

Proof sketch. Follows by repeated application of Prop. 17. ◀
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5 KATI: Adding a “Top” Element

In this section, we extend KATI so that any relation r ∈ R can be used in intersections (and
not only some dedicated relations).

The problem when doing so is that KATI’s language interpretation is inadequate when it
comes to prove certain relational properties. For instance, even though Jr1 ∩r2KG = Jr2 ∩r1KG,
our bracketed language interpretation will yield Jr1 ∩ r2KL = (r2

· r1 · )r2
which in turn is

not equal to (r1
· r2 · )r1

= Jr2 ∩ r1KL. Of course, this particular case could be handled
as part of our normalization procedure, but more complicated relational inclusions (e.g.,
J(r1; r2) ∩ r3KG ⊆ Jr3KG) cannot be handled with said normalization.

To remedy this, we introduce a top relation, top, and express all primitive relations as
intersections with top as follows:

JtopKL
△=

{
α · top · β α, β ∈ AP

}
JrKL

△= Jtop ∩ rKL =
{

α · (r · top · )r · β α, β ∈ AP
}

∪ {α | α ∈ Jid(r)KL}

Observe that using the definition above and assuming that ≺ totally orders R(), we can already
easily prove inclusions like Jr1 ∩ r2KL = Jr2 ∩ r1KL, since KATI’s language interpretation of
intersections already imposes a total order on brackets: the language interpretation of both
expressions is (r1

· (r2
· top · )r2

· )r1
.

To be able to prove inclusions like (r1; r2) ∩ r3 ⊆ r3, we introduce the top-closure ≲T
as the least structure-preserving partial order on GS ∪ PGSIR containing w ≲T top for all
w ∈ PGS∅, and define ≲BT

△= (≲B ∪≲T)+, which is in fact equivalent to ≲B ;≲T. The top
closure of a language L ⊆ GS is T(L) △=

{
u1 · w · u2 u1 · top · u2 ∈ L, w ∈ PGS∅

}
.

With the above definition for ≲T we can prove equivalence between the language and the
relational interpretation of KATI (Theorem 8).

As far as the decision procedure of §3.2 and §3.3 is concerned, we can extend it to handle
the new top element by modifying the NFA conversion of expressions consisting of a single
primitive relation r, and our bracketed saturation. For the former, we redefine JrKNFA as the
automaton ⟨{q0, q1, q2, q3, q4, q5}, q0, {q5}, δtop∩r⟩ where

δtop∩r
△=

⋃
α∈AP

{⟨q0, α, q1⟩} ∪ {⟨q1, (r, q2⟩, ⟨q2, top, q3⟩, ⟨q3, )r, q4⟩} ∪
⋃

α∈AP
{⟨q4, α, q5⟩} .

For the latter, given an NFA A = ⟨Q, ι, F, δ⟩, we define its top-closure T(A) as the automaton
⟨Q, ι, F, δ ∪ δtop⟩ where δtop = {⟨q′, α, q⟩ | ⟨q, top, q′⟩ ∈ δ, α ∈ AP}

▶ Proposition 19 (Top Closure Correctness). For every automaton A accepting only guarded
strings, T(L(A)) = L(T(A)).

Then, we take the combined bracketing-top closure as BRtop
C (A) △= BRC(T(A)), and we

obtain as corollary of Theorem 16 and Prop. 19 our main decidability result.

▶ Theorem 20. Je1KL ≲BT Je2KL iff L(Jnormalize(e1)KNFA) ⊆ L(BRtop
c(e1)(Jnormalize(e2)KNFA)).

6 Consistency Checking

Similarly to Kater, KATI can also be used to generate consistency-checking code for a
memory model’s acyclicity constraints. In this section, we briefly recall Kater’s code-
generating infrastructure, and then show this infrastructure can be extended for the KATI
language.
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6.1 Consistency Checking with Kater
The key idea behind Kater’s consistency-checking infrastructure is twofold. First, given a
constraint demanding that a KAT expression e be acyclic, any e-cycle in a given graph G

will ultimately be composed of primitive relations and predicates r ∈ R and π ∈ P, i.e., the
same primitives used to express e in KAT. As such, to find e-cycles in G, one only has to
find some cyclic path in G, a permutation of which is accepted by JeKNFA.

To determine whether a cyclic path is accepted by JeKNFA, Kater treats G as another
automaton, and takes its intersection with JeKNFA

2. Given the intersection, Kater searches
for strongly connected components (SCCs) that contain at least one accepting state of
JeKNFA. (Observe that such SCCs are guaranteed to represented cycles in G that are accepted
by JeKNFA.) By using a depth-first-search algorithm (e.g., Tarjan’s SCC algorithm [5]),
the complexity of the generated consistency-checking code is O(nm), where n = |G| and
m = |JeKNFA|.

6.2 Consistency Checking in KATI
When generating code for KATI expressions, we can employ the language representation of
§3, as in the weak memory literature there is a disjoint set of relations used in intersections.

As such, we can extend Kater’s code-generating infrastructure by making the following
observation: the language representation of the KATI expressions JeKL and Je ∩ irKL is the
same, modulo the (ir symbols. This observation implies that in order to check for acyclicity
of e ∩ ir , we can use the procedure of § 6.1 to enumerate all e-paths, and then simply restrict
to paths whose endpoints are ir-matching (e.g., have the same location, if ir = sameloc).

Such a restriction can easily be performed by using dedicated variables vc,ir for ir ∈ R
and 0 < c ≤ c(e). Whenever the intersection of Je ∩ irKNFA and G encounters the symbol (ir ,
the corresponding information of the respective graph event is saved in vir (e.g., the event’s
location, if ir = sameloc), and the exploration proceeds as normal. Subsequently, when the
intersection encounters the matching )ir , the exploration only proceeds if the corresponding
information of the respective graph event matches the information stored in vir .

Incremental Consistency Checking
In certain scenarios like testing or stateless model checking [15], we know that a given graph
G′ is consistent, and we want to check whether an event a can be added in a particular way
maintaining consistency.

Even though we can use the algorithm of § 6.2 to check whether the newly constructed
graph G is consistent, we can devise a more efficient procedure for checking G’s consistency,
inspired by the respective algorithm of Kokologiannakis et al. [14]. The key idea is that,
since G′ is consistent, any inconsistency in G will be caused by a (cyclic) path that passes
through a. As such, we only have to find a cyclic paths in G that starts from a and is also a
word accepted by Je ∩ irKNFA. The only problem is that the word accepted by Je ∩ irKNFA
might not have a in the beginning, but rather in the middle of the word.

To solve this, we perform a variation of the algorithm using the following construction.
First, we enforce that Je ∩ irKNFA has a single starting/accepting state q0 (e.g., by taking
its reflexive-transitive closure), and we assume that G has a as its single starting/accepting
state. Then, we run the algorithm, but instead of following the algorithm of § 6.2 and look

2 In this construction, all of G’s states are considered starting/final.
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for SCCs starting from any state of the product (i.e., for each state ⟨e, q0⟩, where e ∈ G), we
can instead only look for SCCs starting from the states ⟨a, q⟩ of the product, where q is a
state in Je ∩ irKNFA.

Observe that any such SCC that we find represents a consistency violation, as some
permutation of the respective path in G is guaranteed to be accepted by Je ∩ irKNFA. Such
an algorithm leads to better performance, as it essentially corresponds to taking all rotations
of Je ∩ irKNFA (instead of taking all rotations of G), and typically |Je ∩ irKNFA| ≪ |G|.

7 Related Work and Conclusion

There has been an abundance of work building on Kleene Algebra (with Tests) [16].
Many works focus on extending KA(T) to particular program domains. [8] support more

program transformations than plain KAT by adding mutable tests. Anderson et al. [3] develop
an instance of KAT called NetKAT to model packet transmission in networks, Wagemaker
et al. [23] extend NetKAT for concurrency. Hoare et al. [9] presents Concurrent KA (CKA),
an extension of Kleene Algebra with a built-in operator modeling parallel composition, and
Jipsen [10] extends CKA with tests. Kappé et al. [12] present an alternative foundation
for the concurrent setting called KA with Observations (KAO), to which they subsequently
add tests [13]. Pous et al. [19] show that a lot of KA variants that have extra assumptions
or impose additional structure (e.g., KAO, NetKAT) fit into the framework of KA with
Hypotheses, and provide modular proofs for various such variants.

Others focus on handling a richer algebraic structure. Pous and Wagemaker [21] present
two variants of KAT with an additional top element: one that only supports JeKG ⊆ JtopKG,
and one that has the additional property that JeKG ⊆ Je; top; eKG. Ésik and L. Bernátsky [6]
extend KA with a converse operator, and prove equivalence between the language, relational
and algebraic models. Brunet and Pous [4] prove that the equational theory of relation
algebras that support union, intersection (with arbitrary relations) and concatenation, but do
not support converse or the identity relation is decidable. Pous and Vignudelli [20] show that
the equational theory of relation algebras that support concatenation, converse, arbitrary
intersections and the identity relation (but neither union nor star!) is decidable.

As Pous and Wagemaker [21] note, however: “The case of intersection (with or without
converse or the various constants) is significantly more difficult, and remains partly open
[. . . ]”. KATI attempts to tackle a useful instance of this problem by providing a decision
procedure for KAT with intersections, assuming that intersections are restricted to primitive
relations. Such a restriction is common when using KAT to describe weak memory consistency
models, as per the work of Kokologiannakis et al. [14], which forms the basis for KATI.

8 Conclusion

In this paper, we have extended the results of Kokologiannakis et al. [14] to handle memory
models containing intersections with uninterpreted relations. While this restriction on
intersections appears sufficient for existing memory model definitions, it would definitely be
nice to devise a more general technique that can handle arbitrary intersections. We leave the
exploration of such a technique for future work.
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