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Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition
systems with a pushdown stack. The algorithmic analysis of PVASS has applications such as static
analysis of recursive programs manipulating integer variables. Unfortunately, reachability analysis,
even for one-dimensional PVASS is not known to be decidable. So, we relax the model of one-
dimensional PVASS to make the counter updates continuous and show that in this case reachability,
coverability, and boundedness are decidable in polynomial time. In addition, for the extension of
the model with lower-bound guards on the states, we show that coverability and reachability are
NP-complete, and boundedness is coNP-complete.
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1 Introduction

Vector addition systems with states (VASS) are commonly used to model distributed systems
and concurrent systems with integer variables. A VASS consists of a set of (control) states
and a set of counters. Transitions between states are labelled with vectors of integers
(usually encoded in binary) that are added to the current values of the counters. Importantly,
transitions resulting in a counter value becoming negative are disallowed.

An equivalent way of understanding this model is to see the counters as unary-alphabet
stacks. This alternative formulation has a natural extension obtained by adding one general
stack to it. Pushdown VASS (PVASS), as they are usually called, can be used to model
recursive programs manipulating integer variables [17, Sec. 6.2]. Arguably the most basic
question one can attempt to answer algorithmically in a computational model is that of
reachability. In the context of (pushdown) VASS, we ask whether a given target configuration
(formed by the current state and the values of the counters) can be seen along a run from
a given source configuration. While the complexity of reachability for VASS is now better
understood [15, 6], it is not known to be decidable for PVASS and the best known lower
bound is HyperAck-hardness [14]. The problem is not known to be decidable even for one
dimension and the known lower bound is Pspace-hardness [7].

Motivated by the (complexity) gap in our understanding of reachability for PVASS,
researchers have studied the problem for different relaxations of the model: A PVASS is
bidirected [9] if the effect (on the stack and counters) of every transition can be (immediately)
reversed; A Z-PVASS [11] allows counters to hold negative values; A continuous PVASS [2]
instead allows them to hold nonnegative values and counter updates labelling a transition
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34:2 On Continuous Pushdown VASS in One Dimension

Table 1 Previously known complexity bounds (in black) and our bounds (in green) for problems
in PVASS and relaxations thereof.

PVASS B-PVASS Z-PVASS CPVASS lb-CPVASS

Gen. Reach HypAck-h ∈Ack/Tower-h [9] NP-comp. NEXP-c Undec. [1]
Reach Pspace-h ∈Pspace NP-comp. Ptime-c NP-c

1-dim. Cover ∈EXPspace ∈Pspace [9] ∈NP Ptime-c NP-c
Bound ∈HypAck ∈HypAck ∈HypAck Ptime-c coNP-c

can be scaled by any γ ∈ (0, 1] when taking the transition. For all of these, reachability is
known to be decidable. For some of them, lower complexity bounds for the special case of
one dimension have also been established. See Table 1 for a summary of known results.

In this work, we study reachability, coverability, and boundedness for continuous PVASS in
one dimension. The boundedness problem asks whether the set of all reachable configurations,
from a given source configuration, is bounded. In turn, coverability asks whether a vector at
least as large as the given vector can be reached. In contrast to reachability, coverability
is known to be decidable and in EXPspace for PVASS in one dimension [16]. Similarly,
boundedness is known to be decidable and in HyperAck, this time in general, not only in
one dimension [14].

Contributions

In this paper, we prove that, for continuous PVASS in one dimension, reachability, coverability,
boundedness and even computing the infimum bound are Ptime-complete. We further show
that if one adds to the model lower-bound guards on the states for the counter (thus allowing
for a “tighter” relaxation of the original model, since one can now partially control the
counter values before a transition), then reachability and coverability are NP-complete while
boundedness is coNP-complete.

2 Preliminaries

We first recall a definition of pushdown automata. Then, we extend it to continuous PVASS.

2.1 Pushdown automata and Context-free grammars
▶ Definition 1 (Pushdown automata). A pushdown automaton (PDA, for short) is a tuple
P = (S, Σ, Γ, δ, s0, ⊥, F ) where S is a finite set of states, Σ a finite (possibly empty) alphabet,
Γ a finite stack alphabet, s0 ∈ S the initial state, ⊥ ∈ Γ the initial stack symbol, F ⊆ S a
set of accepting states, and δ : S × S →

(
Σ ∪ ϵ

)
×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
a partial function,

where, a and a denote pushing and popping a from the stack respectively.

A configuration of a PDA P is of the form (s, w, α) ∈ S × Σ∗ × Γ∗ where s represents the
current state of the PDA, w the word read by the PDA until reaching the state s and α the
current stack contents of the PDA (with the right being the “top” from which we pop and
onto which we push). The initial configuration q0 is (s0, ϵ, ⊥).

A run of a PDA P is of the form π = q0q1 . . . qn where the qi = (si, wi, αi) are config-
urations and for all 0 ≤ i < n, δ(si, si+1) is defined, wi+1 = wi · δ(si, si+1)1, αi+1 = αi if
δ(si, si+1)2 = ϵ, αi+1 = αi · a if δ(si, si+1)2 = a, and αi = αi+1 · a if δ(si, si+1)2 = a. Above,
δ(_, _)i represents the i-th component. For any Q ⊆ S, we say the run reaches Q if sn ∈ Q.

We focus on state reachability, that is, a run π of a PDA is accepting if q0 is the initial
configuration and sn ∈ F .
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The language of a PDA P, denoted by L(P), is the set of all words wn ∈ Σ∗ read by
accepting runs q0 . . . (sn, wn, αn) of P. The Parikh image Φ(w) of a word w ∈ Σ∗, i.e. the
vector in N|Σ| such that its ith component is the number of times the ith letter of Σ (assuming
an arbitrary choice of total order) appears in w.

Context-free grammars
CFGs, for short, are a model that is expressively equivalent to PDAs in terms of their
languages. The models are logspace reducible to each other [13, Section 5.3].

▶ Definition 2 (Context-free grammars). A CFG is a tuple G = (V, Σ, P, S), where V is a
set of variables; Σ, a set of terminals; P ⊂ V × {V, Σ}∗, a set of productions; and S ∈ V ,
the start symbol.

A production (A, w) ∈ P is written as A → w, where the production symbol “→” separates
the head (a variable) of the production, to the left of →, from the body (a string of variables
and terminals) of the production, to the right of →. Each variable represents a language,
i.e., a (possibly empty) set of strings of terminals. The body of each production represents
one way to form strings in the language of the head.

▶ Example 3. The grammar G = ({A}, {a, b}, P, S = A) represents the set of all palindromes
over {a, b} where the productions are A → ϵ, A → a, A → b, A → aAa and A → bAb. The
word abaaaba, for example, is in the language of A since it can be obtained by A → aAa →
abAba → abaAaba → abaaaba where the fourth, fifth, again the fourth, and finally, the
second production rules are applied, in that order.

Chomsky normal form (or CNF) [13, Section 4.5] is a normal form for CFGs with the
restriction that all production rules can only be of the form A → BC, or A → a, or S → ε.
Every CFG has an expressively equivalent CFG in CNF.

2.2 Continuous pushdown VASS
A CPVASS in one dimension is a PDA with a continuous counter.

▶ Definition 4 (lb-C1PVASS). A continuous pushdown VASS (with lower-bound guards) in
one dimension is a tuple A = (S, Σ, Γ, δ, ⊥, s0, F, ℓ) where S is a finite set of states; s0 ∈ S,
the initial state; F ⊆ S, a set of accepting states; Σ, a finite alphabet; Γ, a finite stack
alphabet; ⊥ ∈ Γ, the initial stack symbol; δ : S × S →

(
Σ ∪ ϵ

)
× Z ×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
, a

partial transition function; and ℓ : S → N, a function that assigns lower bounds to states.

Since we only study runs, and not languages, of lb-C1PVASS, we henceforth omit Σ. We
also assume, without loss of generality, that the set F is a singleton. This can be done by
adding a new final state f ′ to S and adding transitions for all f ∈ F to f ′ which read ϵ,
have a +0 counter update, and do not modify the stack. With these assumptions, we have a
simpler representation of a lb-C1PVASS A = (S, Γ, δ, ⊥, s0, f, ℓ) where δ is now of the form
δ : S × S → Z ×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
.

A configuration of a lb-C1PVASS is of the form (s, α, c) where s and α are as for PDAs,
and c ∈ R≥0 is the current nonnegative value of the counter with the property that c ≥ ℓ(s),
that is, the counter value at a state must be at least the lower bound on that state. The
initial configuration q0 of the lb-C1PVASS is (s0, ⊥, 0).

CONCUR 2024
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s0, 0start s1, 2

s2, 0

s3, 2

s4, 0

f, 4
+2

push a

+0

−1

+1

+0
+1

+0

+1

+0
pop a

Figure 1 An example of a lb-C1PVASS A.

A run of the lb-C1PVASS A is a sequence of configurations π = q0q1 . . . qn with qi =
(si, αi, ci) such that π|PA

, obtained by removing the counter values ci, is a run in the PDA
PA, which is obtained by removing the counter updates from A, and for all 0 ≤ i < n,
ci+1 = ci + γδ(si, si+1)1 holds for some γ ∈ R ∩ (0, 1] where γ are the scaling factors.

▶ Example 5. Figure 1 shows a lb-C1PVASS with 6 states. The second component of the
tuple inside the states denotes the lower bound on that state. For instance, ℓ(s1) = 2. This
lb-C1PVASS does not have any run reaching f . This is because the only way to make the
counter reach 4 is via s2 or s3. The run through s2 does not push an a into the stack which
has to be popped later in order to reach f . Also, s3 cannot be reached, since there are only
two updates +2 and −1 before s3 and γ1 · 2 + γ2 · (−1) < 2 for all γ1, γ2 ∈ (0, 1].

Acceptance conditions of a lb-C1PVASS
There are two classical ways of extending (state reachability) acceptance from runs of a PDA
to runs π = q0 . . . qn of lb-C1PVASS, namely: reachability and coverability for k ∈ R≥0.
k-Reachability says the run is accepting if π|PA

is accepting in PA and cn = k.
k-Coverability says the run is accepting if π|PA

is accepting in PA and cn ≥ k.
Like in PDAs, q0 = (s0, α0, c0) = (s0, ⊥, 0) means that accepting runs start with the initial
configuration. We refer to accepting runs according to the above conditions as k-reaching
and k-covering runs, respectively.

We make the following simplifying assumption. All the counter updates in the transition
function are in the set {−1, +0, +1}. This is no loss of generality, due to the following lemma.

▶ Lemma 6. Given a lb-C1PVASS A = (S, Γ, δ, ⊥, s0, f, ℓ), there exists an equivalent lb-
C1PVASS1 with counter updates in the set {−1, +0, +1}, which is quadratic in the size of
the encoding of A, thus polynomial even if the counter updates are encoded in binary.

The proof follows from the construction of a simple gadget that takes as input the binary
encoding of the update and outputs that exact number of +1 (or −1) updates.

We also study lb-C1PVASS where all lower-bound guards are 0 (a looser approximation
of PVASS) where we give simpler algorithms to solve the decision problems we consider.

▶ Definition 7 (C1PVASS). A C1PVASS is a lb-C1PVASS A = (S, Γ, δ, ⊥, s0, f) where
ℓ(s) = 0 for all s ∈ S.

For C1PVASS, we omit ℓ. Configurations, runs, and accepting runs are defined similarly
to lb-C1PVASS. Note that, in a configuration (s, α, c), instead of c ≥ ℓ(s), we now only have
the restriction that c ≥ 0, that is, the counter values never go below 0.

1 To be precise: there is a clear relation between their sets of reachable configurations.
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▶ Example 8. In Figure 1, if all the lower bounds were 0, then we would be able to reach f

with a counter value of at least 4 by taking the run to s3 and taking the self loop a few times
before entering f with a counter value of at least 4. However, the run via s2 would still not
be a 4-reaching run since there is no a to pop from the stack when the run reaches s4.

2.3 Decision problems
We focus on the computational complexity of two decision problems we call reachability and
coverability, respectively: Given a lb-C1PVASS and k ∈ N (in binary), determine whether it
has a k-reaching run. Given a lb-C1PVASS and k ∈ N (in binary), determine whether it has
a k-covering run. In addition, we also study the complexity of the boundedness problem:
Given a lb-C1PVASS, determine whether for some k ∈ R≥0 it has no k-covering run.

▶ Remark 9. Note that our definition of lb-C1PVASS is equivalent to the one where δ and ℓ

map to rationals and k ∈ Q≥0, that is, δ : S × S →
(
Σ ∪ ϵ

)
× Q ×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
and

ℓ : S → Q≥0, as one can multiply all counter updates, lower bounds and k by the product of
all the denominators. Since the numbers are encoded in binary, the representation of the
new integers will be polynomial in the size of the rationals (i.e. the bitsize of integer pairs).
This preserves all the properties studied in this paper.

3 Counter properties of C1PVASS

We first show a relation between reachability and coverability.

▶ Lemma 10. The reachability and coverability problems are equivalent for C1PVASS with
k > 0, but 0-coverability does not imply 0-reachability.

Proof. By definition, k-reachability implies k-coverability. To show the converse, take any
covering run with counter value at the end of the run being k + c, for some c ≥ 0. Now, we
modify the run by scaling all of the counter updates in that run by k

k+c . The reader can
easily verify that this is indeed a reaching run.

This proof does not work for k = 0 since we cannot scale the counter updates by 0.
A simple example for the second part of the lemma would be a C1PVASS with a single
transition, which goes from s0 to f with a +1 counter update (and no stack update). In this
case, 0 can be covered but not reached. ◀

From the proof above we directly get the following.

▶ Remark 11. Let k ∈ N>0. Then, for all k′ ∈ (0, k], k-reachability implies k′-reachability.

We also have the following simple observation about the first nonzero counter update due to
our choice of q0.

▶ Remark 12. Along any run, the first nonzero counter update must be positive, since the
updates cannot be scaled to 0 and the counter values must always be nonnegative

Since we have shown that k-reachability and coverability are different for k = 0 but
the same for k > 0, we first analyse the complexity of 0-reachability and 0-coverability in
Section 3.1. We then show, in Section 3.2, that boundedness is decidable in PTime and that,
if a C1PVASS is bounded, computing the infimum upper bound is also in PTime. Finally,
in Section 3.3, we leverage the size of the upper bound along with Remark 11 to show that
k-reachability and k-coverability, for k > 0, are also in PTime.

CONCUR 2024
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3.1 0-reachability and 0-coverability
In this section, reduce both 0-reachability and 0-coverability to checking nonemptiness of
PDAs (with an empty alphabet) to show the following:

▶ Theorem 13. The 0-reachability and 0-coverability problems for a C1PVASS are decidable
in PTime.

The result follows from the fact that checking nonemptiness of the language of a PDA can
be done in polynomial time (see, e.g. [13, Proof of Lemma 4.1]) and the following lemma.

▶ Lemma 14. The 0-reachability and 0-coverability problems for C1PVASS are polynomial
time reducible to the nonemptiness of the language of a PDA.

Proof sketch. For 0-coverability, first note the fact that any run in the underlying PDA
of the C1PVASS A corresponds to a 0-covering run in A if and only if the first non-zero
counter update in the run is a +1. We design a PDA as shown in Figure 2 (the blue dashed
box) which simulates this property of 0-covering runs, where P0 and P1 are copies of the
underlying PDA where P0 only has transitions corresponding to +0 updates in A, and the
run can enter P1 only after a +1 update.

s0start u2

u1

u3f

P0 v2

v1

v3 f

w2

w1

w3

P1 x2

x1

x3 f

P ′
0

P

+1

+1

+1

-1

-1

-1

Figure 2 The construction of the PDA P where P0 and P ′
0 are copies of A obtained by the

counter and removing all the transitions that have a nonzero counter update; the transitions from
P0 to P1 are exactly the transitions in A with a positive counter update and those from P1 to P ′

0
are exactly the ones with a negative counter update. For coverability, P consists of just P0 and P1

and the copies of accepting states in P1 are also accepting in this case.

For reachability, note that a run in the underlying PDA of A corresponds to a 0-reaching
run in A if and only if the first non-zero counter update is +1 and the last non-zero counter
update is −1. Figure 2 (the green dashed box) simulates this by creating 3 copies of the
underlying PDA of A, namely, P0, P1 and P ′

0 where P0 and P ′
0 only contain transitions

corresponding to +0 updates in A. ◀

3.2 Boundedness for C1PVASS
In this section, we first analyze the complexity of deciding whether a C1PVASS is bounded
or not. If it is bounded, we provide a bound which is polynomial (when encoded in binary)
in the size of the encoding of the C1PVASS. We next show that, for a bounded C1PVASS,
the “tight” bound, that is,

b = inf{k ∈ R | A has no k-covering run} (1)
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is an integer and the natural decision problem associated to finding b is in PTime. First,
we convert the C1PVASS into a PDA P ′ as we did in the proof of Lemma 14 in Figure 2
(the blue dashed box), further modify its alphabet, and observe some properties about the
resulting PDA.

Let A be the C1PVASS. Make two copies P0 and P1 of A without the counter. Next,
remove from P0 all the transitions that were not a +0 counter update in A and add, for each
transition in A with a positive counter update, a transition from P0 to P1. The copies of
accepting states in P0 and P1 are all accepting in the resulting PDA, which we call P (see the
blue dashed box in Figure 2). To obtain P ′ from P , we modify its alphabet. The alphabet Σ
of P ′ is unary, i.e. Σ = {a}. The transitions of P ′ read a if they had a +1 counter update in
A and read the empty letter ϵ otherwise.

One can see a relation between accepting runs in A and P ′. Let π be an accepting run in
P ′. The corresponding run in A has the property that the first nonzero update is a positive
update (i.e., a transition from P0 to P1) which makes it an accepting run in A. Similarly, an
accepting run in A must have a +1 as the first nonzero update, hence, it is also an accepting
run in P ′ by construction.

The lemma below follows immediately from the construction.

▶ Lemma 15. am ∈ L(P ′) if and only if there is an accepting run in A with exactly m many
+1 updates.

For all 0 < ε < 1, and an accepting run in the PDA P ′, in the corresponding run in A,
one can choose γ = 1 for all the +1 updates and γ ∈ (0, 1] small enough, for all negative
updates, so that their sum is in the interval [0, ε). This leads to the following result.

▶ Lemma 16. The cardinality of L(P ′) is bounded if and only if the C1PVASS A is bounded.
Moreover, if the maximum length of a word accepted by P ′ is p ∈ N then b = p, where b is as
in Equation (1).

There are Ptime algorithms (see, e.g., [13, Theorem 6.6]) to determine whether the language
of a PDA is finite. We thus get:

▶ Theorem 17. Deciding boundedness of a C1PVASS A is in PTime. Moreover, the bound
can be at most 2O(|A|6), where |A| is the size of the encoding of A.

The first part of the proof follows from the discussion above. The bound is due to the facts
that any PDA of size n can be converted to a CFG in CNF of size at most O(n6) (at most
2500n6 to be exact), the size of P is at most twice that of A, and 2m is a bound on the
length of the words accepted by a (bounded) CFG in CNF of size m.

Using this upper bound on the largest reachable counter for a bounded C1PVASS, we
argue the tight upper bound is an integer and give an algorithm to compute it.
▶ Remark 18. Using Lemma 15 and the fact that nonnegative updates can be scaled down
arbitrarily, one can see that the bound b defined in Equation (1) is a nonnegative integer
when it exists.

▶ Theorem 19. The tight upper bound of a bounded C1PVASS can be computed in PTime.

Proof. The idea for the proof comes from [8] which gives a PTime algorithm to find the
shortest word accepted by a CFG.

Assume the language is not empty. Construct the PDA described in Lemma 16. We
know that if m is the length of a longest word accepted by the PDA P, then m is the tight
bound. We also know, by Theorem 17, that m ≤ 2k where k = O(|A|)6. We construct a

CONCUR 2024
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grammar (V, Σ, P, S) in CNF for the PDA. This grammar has size at most 2O(|A|)6 , as shown
in Theorem 17. Since the grammar is in CNF, all productions are of the form A → BC or
A → a and the language of all variables is nonempty.

Define the function N : V → N such that N(A) is the length of the longest word produced
by the variable A, for all A ∈ V . The following algorithm computes N(A) for all A ∈ V .
1. Initialize W (A) = 0 for all A ∈ V , W (a) = 1 for all a ∈ T .
2. Repeat, for all A and all productions with head A:

W (A) =
{

max{W (B) + W (C), W (A)} if A → BC;
max{W (a), W (A)} if A → a.

until we reach a fixed point (we know a fixed point will be reached eventually since the
length of words is bounded).

3. Output the vector W (V ).
We know that the above algorithm terminates since the length of the longest word is bounded.
It remains to show that it terminates in polynomially many iterations. Each iteration has
|V ||P | comparisons of numbers bounded by 2O(|A|)6 , and we know that such numbers can
be compared in time polynomial in |A|. Hence, showing that the fixed point is obtained in
polynomially many iterations of the algorithm suffices to establish that the tight bound can
be obtained in polynomial time.

Consider the directed graph with V ∪ Σ as vertices and where we add the edge (A, β),
where A ∈ V and β ∈ V ∪ Σ, if and only if there is a production in P whose head is A

and with β in its body. The graph can be shown to be acyclic, since the language of the
grammar is finite and the language of every variable is nonempty. Now, every iteration of
the algorithm induces a labelling of the vertices of the graph via W . Observe that the label
of a vertex only changes if the label of one of its immediate successors changes. It follows
that the fixed point is reached after at most |V | iterations. ◀

▶ Lemma 20. The set of all reachable values in a C1PVASS is closed on the right (i.e., the
bound b can be reached) if and only if there is an accepting run for ab in P ′ which does not
contain any −1 transitions from A.

The proof follows from the simple fact that any −1 update in A cannot be scaled down to 0,
and b is an upper bound on the counter value in the final configuration of any accepting run.

Lemma 20 gives us an easy way to check whether the interval of all reachable counter
values is closed on the right. Remove all transitions from P ′ which correspond to a −1
update transition in A. This PDA P ′′ will accept am if and only if A has an accepting run
with exactly m many +1 updates and no negative updates. This can be checked in PTime
due to [5].

3.3 k-reachability and k-coverability for k > 0
The following stronger theorem implies that both k-reachability and coverability are in
PTime for all k ≥ 0.

▶ Theorem 21. The interval of all reachable counter values of a C1PVASS is computable in
polynomial time.

Proof. Use Theorem 13 to decide whether 0 is reachable. If so, the interval is closed on
the left, open otherwise. Next, use Theorem 17 to decide if the highest reachable counter
value is bounded. If not, the upper bound will be ∞ (and thus open). If it is bounded,
use Theorem 19 to compute the tight bound b. Finally, use Lemma 20 to find whether the
interval is closed on the right. ◀
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Ptime-hardness for all the problems in this section follows from the nonemptiness problem
for PDAs being Ptime-hard (see, e.g. [5, Prop. 1]). For coverability and reachability this
is immediate, for boundedness one can add a self loop with a positive counter update on
accepting states.

4 Counter properties of lb-C1PVASS

In this section, we show that coverability and reachability for lb-C1PVASS are decidable in
NP and comment on how our treatment of boundedness from the previous section adapts
almost identically to lb-C1PVASS to yield, in this case, a complexity of coNP. Finally,
we provide a two-step reduction from the subset-sum problem to show completeness in the
respective complexity classes.

Both for coverability and reachability, we proceed as follows. First, we convert the given
lb-C1PVASS into a PDA P such that the Parikh image of a word accepted by the PDA
satisfies some quantifier-free Presburger formula φ if and only if the lb-C1PVASS has an
accepting run. Then, we use a construction from [18, Theorem 4] (later corrected in [12]) to
obtain, in polynomial time, an existential Presburger formula φL whose models correspond
to the Parikh images of words in the language of P. The problem thus reduces to checking
satisfiability of the existential Presburger formula φ∧φL. The result follows since satisfiability
for such formulas is known to be NP-complete [10].

▶ Theorem 22. Deciding k-coverability and k-reachability for lb-C1PVASS is NP-complete,
and boundedness is coNP-complete.

4.1 k-coverability for lb-C1PVASS
For lb-C1PVASS, k-coverability is equivalent to state reachability, i.e. without asking for
the final counter value to be at least some given value: to check k-coverability, we add a
new final state with lower-bound guard k and transitions from the old final state(s) to this
new state with +0 counter updates and no stack update. Because of this, we focus on state
reachability as acceptance condition and omit k when speaking of coverability in the sequel.

Let A = (S, Γ, δ, ⊥, s0, f, ℓ) be the lb-C1PVASS. Recall that ℓ : S → N is the mapping
from states to the lower bounds on those states. That is, ℓ(s) = x implies that the counter
value must be at least x in order to enter the state s. Let n = |S| be the number of states.
We have the assumption, from Lemma 6, that the only counter updates in the lb-C1PVASS
are in the set {−1, +0, +1}. Let m + 1 ≤ n be the size of the range of ℓ. That is, there are
m + 1 distinct lower bounds 0 = ℓ0 < ℓ1 < ℓ2 < · · · < ℓm that occur in the lb-C1PVASS A.
Note that 0 must be one of the lower bounds since ℓ(s0) = 0 in order for any run to exist.

Now, we construct the PDA, followed by the Presburger formula. The PDA P has
4(m + 1) “blocks” and its alphabet is Σ = {ai, a′

i, bi | 0 ≤ i ≤ m + 1}. Each block is a
subPDA (so, we ignore counter updates) of the lb-C1PVASS with some restrictions. For
each 0 ≤ i ≤ m, the 4 types of blocks we use all have copies of the same set of states: all
s ∈ S such that ℓ(s) ≤ ℓi.
1. Ii The transitions come from those in A with counter update +0 and they read ϵ in P;
2. I+

i The transitions come from those in A with +0 or +1 updates and the PDA P reads
an ai on the +1 transitions;

3. A−
i The transitions come from those in A with +0 or −1 updates and the PDA P reads

a bi on the −1 transitions;
4. A±

i And here, all transitions in A are present and the PDA will read bi on −1 and ai on
the +1 transitions.
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+0 : ϵ

Ii

+1 : ai

I+
i

Ii+1

−1 : bi

A−
i−1

−1 : bi, +1 : ai

A±
i

A±
i+1

+1
ai

+1
a′

i

+1
a′

i

−1bi

+1ai

−1 bi

+1
a′

i

Figure 3 A slice of the PDA P constructed for k-coverability of a lb-C1PVASS. The subscript
being i for 0 ≤ i ≤ m of a block (for example, i in Ii) denotes that all the states in the block have
lower bounds at most ℓi. Note +0 : ϵ is omitted unless it is the only option for transitions in the
block.

Figure 3 depicts how the blocks are connected in what we henceforth call a slice (depicted by
the dashed box), i.e. Ii, I+

i , A−
i−1 and A±

i , for some 0 ≤ i ≤ m. It also shows how the slices
themselves are connected. Note that the transitions in the PDA do not actually have the
counter updates −1, +0, +1, but we include them in the explanation and figure for clarity.
The accepting states of P are all the copies of accepting state in A.

Now, we define a Presburger formula for the Parikh images of accepting runs in P that
correspond to the accepting runs in A (#a denotes the number of a’s read during the run).

m∧
k=1


(
#a′

k−1
= 0

)
∨

(( k−1∑
i=0

#ai + #a′
i

≥ ℓk

)
∧

( k−1∑
i=0

#bi = 0
))

∨

(( k−1∑
i=0

#ai
+ #a′

i
> ℓk

)
∧

( k−1∑
i=0

#bi
> 0

))
 (2)

Intuitively, the second disjunct ensures that if the run saw no negative updates (stayed
in the green layer), then the number of +1 updates in order to enter the kth slice must be at
least the kth lower bound; The third disjunct ensures that if there was a negative update
seen then the number of +1 updates seen must be strictly greater than the kth lower bound;
and the first disjuct is if the run never enters the kth slice.

▶ Theorem 23. For all runs π in A, there is one in P with the same sequence of states
whose Parikh image satisfies the Presburger formula from Equation (2) if and only if π is
accepting in A.

The following auxiliary lemmas are helpful in the intuition for the proof of the theorem.

▶ Lemma 24. Let 0 < ε < 1. For any run π in A, there is another run π′ with the same
sequence of states such that all the +1 counter updates in the run are scaled up to 1 and all
the −1 updates in the run are scaled down so as to add up to −ε.
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The proof follows from a few simple observations: Since π is a run and π′ is a run with the
same sequence of states, the stack will behave the same in both runs. For the counter, since
we only have lower bounds, and we chose small coefficients for negative updates, all the
counter updates in π′ are greater than, or equal to the counter updates in π, hence satisfying
all lower bounds along the run.

▶ Lemma 25. A run ends in a green state (i.e., a state in Ii or I+
i for some 0 ≤ i ≤ m) in

P if and only if there was no bj read along the run for all 0 ≤ j ≤ m.

This follows from the construction since there is no path from the blue states (states in A−
i

for 0 ≤ i ≤ m) or the red states (states in A±
i for 0 ≤ i ≤ m) to any green state. Intuitively,

the counter values are integers when reaching green states and nonintegers when reaching
blue or red states.

This gives us NP inclusion for deciding coverability in lb-C1PVASS.

4.2 k-reachability for lb-C1PVASS

Here, we show that k-reachability for k ∈ N is also in NP for lb-C1PVASS. Unlike for
C1PVASS, k-coverability does not imply k-reachability in lb-C1PVASS: scaling down the
vectors along the entire run can lead to some lower bounds being violated. E.g., consider a
lb-C1PVASS with 3 states s0, s1 and f with ℓ(s1) = 1 and a +1 update on both s0 → s1
and s1 → f . For any accepting run π, the counter value at s1 must be 1. This means that
even if the second +1 update is scaled down, the counter value at f must be strictly greater
than 1. For this lb-C1PVASS, 1-coverability holds but 1-reachability does not.

Like in the previous section, we construct a PDA and a Presburger formula such that the
PDA accepts a word that satisfies the Presburger formula if and only if the lb-C1PVASS has
a k-reaching run, for some given k ∈ N. However, the construction is more involved since it
is not always possible to reach a specific counter value by scaling down all negative counter
updates to arbitrarily small numbers. Instead, we first introduce a normal form of scaled
runs (i.e. the sequences of coefficients) that guides our construction for a PDA with no block
cycles in the same way Lemma 24 guided our construction for reachability.

4.2.1 The Dense Normal Form (DNF)

We show that all k-reaching runs have a normal form which scales the counter updates in
the run so that the positive updates are concentrated towards the start of the run and the
negative updates towards the end of the run. Formally, let π be a run in the lb-C1PVASS
which reaches the counter value k ∈ N. Let Pπ be the sum of all positive updates in π and
Nπ be the sum of all negative updates. Define Iπ

P = ⌊Pπ⌋, F π
P = Pπ − Iπ

P , Iπ
N = ⌈Nπ⌉ and

F π
N = Nπ − Iπ

N . Clearly Iπ
P + F π

P + F π
N + Iπ

N = k and, moreover, Iπ
P + Iπ

N = k and F π
P = −F π

N

since k is an integer. To define a normal form and argue all runs can be put in it, we scale
consecutive positive updates and consecutive Iπ

N negative updates at the start and at the end
the run in full, i.e. γ = 1 (except for a special case where we scale one of the negative updates
by ∆ close to 1). The remaining positive and negative updates can be scaled arbitrarily
(small) as long as their sum adds up to 0. For the latter, we will scale down positive and
negative updates by coefficients from E and D respectively, where E and D are finite sets
of arbitrarily small “epsilons” (ε) and “deltas” (δ) in the interval (0, 1). The updates are
concentrated at the start and the end of the run, hence the name dense normal form. For
simplicity, we also add ∆ to D.
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▶ Lemma 26. Let π be a run in the lb-C1PVASS which reaches the counter value k ∈ N.
Then, there exists a run π′ such that:
1. The sequence of states in π′ is the same as in π, and
2. π′ is also a k-reaching run.
3. All positive and negative updates in π′ are scaled from the set {1} ∪ E and {1} ∪ D ∪ ∆,

respectively.
4. The sequence of all nonzero updates in π′ is of the form ({+1}∪−D)∗(−D∪+E)∗({−1}∪

+E)∗ or ({+1})∗(−D)+(−∆)({−1})∗.
5. Let π′|E∪D be the sequence of counter updates restricted to +E’s and −D’s. Then,

π′|E∪D is of the form:
(−D)∗(+E)(+E ∪ −D)∗(−D), in which case, for any proper prefix of π′|E∪D with at
least one epsilon, the sum of all epsilons and deltas is positive; or
(+E ∪ −D)∗(−D)(+E)+, and for any proper prefix of π′|E∪D that contains an epsilon
and not the final delta, the sum of all epsilons and deltas is positive while for any
proper prefix with the final delta, the sum is negative; or
(−D)+(−∆), and none of the deltas occur before a +1 counter update.

6. For configurations q = (s, α, c) in π and q′ = (s, α, c′) in π′ which occur in the same
position in both runs, c′ ≥ ⌊c⌋.

Note that the DNF (in particular Item 4) precludes −1 updates before a +1 update. It
also visits the same sequence of states, satisfies all lower-bound guards along the run and
reaches the same counter value k as the given run.

▶ Example 27. Let the sequence of nonzero updates in a 1-reaching run be +1, +0.8, −0.9,
−0.9, +1, −1, +1. This run is not in the dense normal form. To transform it into the
normal form, we choose different values of γ to scale the updates along the run to obtain
+1, +1, −δ1, −δ2, +ε1, −1, +ε2. It is easy to see that this is also a 1-reaching run and the
integer parts of the counter values along the run are at least those along the original run.

Since, if a k-reaching run exists, a k-reaching run in dense normal form exists, we construct
a PDA and a Presburger formula which simulate runs of the lb-C1PVASS in DNF.

4.2.2 Constructing the PDA P
The construction of P is shown in Figure 4. Each slice consists of 9 layers, namely L1, . . . , L9,
each of which contains one or two blocks. Each block, like in Section 4.1 is a copy of the
lb-C1PVASS A restricted to states with lower bounds at most ℓi, where i is the subscript of
the block, and transitions with updates written inside the block. The transitions labelled
+ε and −δ correspond to +1 and −1 update transitions respectively, but we label them
differently to make the explanation later easier to read. Each block also has all transitions
from A with a +0 update. Note that the connections between blocks allow exactly the
transitions on the labels and not the +0 transitions from A.

In the figure, we are assuming that ℓi−1 < ℓi − 1. If ℓi−1 = ℓi − 1, there will be the
following changes:
1. All transitions entering A−

i−1 will now go to A−
i−2 instead (both in L7), and

2. All transitions entering I−
i−1 will now go to Ii−1 instead.

Checking whether ℓi−1 = ℓi − 1 can be done beforehand for all 0 < i ≤ m, and P can be
constructed accordingly. The discussion that follows still holds.

Due to the complexity of the PDA, a fully formal proof like in Section 4.1 would obscure
rather than support our claims. Instead, we focus on providing the high-level intuition behind
the construction of the PDA and the Presburger formula.
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+0

Ii

+1

I+
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Ii+1

−δA−
i−1 −δ, +1

A±
i

A±
i+1

+ε

A+
i

+ε

A+
i

+ε, −δ

A±
i

+ε, −δ

A±
i

+ε

A+
i−1

+ε

A+
i

+ε, −δ

A±
i

+0

Ai−1

−1

A−
i

A−
i−1

+ε

A+
i−1

−1, +ε

A±
i

A±
i−1

−1 I−
i

I−
i−1

L1: Only +1 updates yet.

L2: Only +1 and at least one
−δ updates have been seen. A
+ε update must be seen later
unless it is a type 3 run and

reads −∆

L3: Only +1 and at least one +ε have
been seen, i.e., the (+1 ∪ −D)∗ part only
had +1 updates. At least one −δ update
must be seen later. Counter values here
are slightly greater than some integer.

L4: The last fractional update will be +ε.
Counter values here are slightly greater
than some integer since the final −δ has
not yet been seen. At least one +ε and

one −δ have been seen but no −1.

L5: The last fractional update will be +ε.
The final −δ update has been seen but
no −1. Counter values here are slightly

less than some integer.

L6: The last fractional update will be −δ.
At least one +ε and one −δ updates have
been seen but no −1 yet. Counter values

here are slightly greater than some
integer.

L7: At least one +ε seen later and final
fractional update is +ε. The final −δ and

one −1 have been seen. Counter values here
are slightly less than some integer.

L8: After seeing at least one +ε and one
−δ update, there are no more −δ updates.

L9: Only −1 updates from here.

−1

+ε

+ε

−δ

−δ

+ε

+ε
−1

+1

+1

−δ

−1

+ε

+1

−δ

−1

+ε

+1

−1

−∆

+1

−δ −δ

−1

−δ

−1

+ε

−1

+ε

−1

+ε

−1
+ε

−1

Figure 4 The ith slice of the PDA P constructed for k-reachability of a lb-C1PVASS. The slice
itself is inside the dashed box, the text to the right provides intuition for the layer. The subscript
being i for 0 ≤ i ≤ m of a block (eg, i in Ii) denotes that all the states in the block have lower
bounds at most ℓi. Note +0 is omitted unless it is the only option for transitions in the block.

▶ Remark 28. By construction, there are no block cycles in P. That is, once a run exits a
block, it cannot enter the same block later. This follows due to the simple observation that,
from every block, there are transitions only to a block either to the left or to the right on
the same level (but never both), or a block in a lower layer.

Note that, since there is no way to enter a block in an upper layer from a lower one,
and a run always starts from I0 (the leftmost green block), any run will first traverse green
blocks, moving to the right, then it will either enter a blue block and move down or directly
enter a red block and start moving to the left.
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▶ Lemma 29. The sequence of states in any run in P is a sequence of states in green blocks,
followed by a (possibly empty) sequence of states in blue blocks, followed by a (possibly empty)
sequence of states in red blocks. Furthermore, while the run is visiting green, blue and red
blocks, the index of the slices is non-decreasing, constant and non-increasing, respectively.

The proof follows by construction.
We now show how the PDA P is split into 3 main components and the letters read on

the transitions in slice i.

The green component consists of the first two layers. This component corresponds to
the (+1 ∪ −D)∗ part of the run in Item 4. This is easy to see since this component looks
exactly like Figure 3, with the exception that the states in the second layer (which were
the states in blue and red states in Figure 3), are not accepting. The PDA reads alphabet
ai on all +1 transitions in and to green blocks in Figure 4, except the transitions entering
the next slice, on which it reads a′

i, and it reads di on all the −δ transitions.

The blue component consists of layers 3, 4, 5 and 6 which correspond to the (+E ∪ −D)∗

part of the run. This component is entered after reading the first +ε update. Due to
Item 5, the run stays in a single slice during this part of the run. The empty letter ϵ is
read on all transitions in and to this component.

The red component, consisting of the last 3 layers, corresponds to the (−1 ∪ +E)∗ part
of the run, and is entered after the first −1 or the last fractional update. Note that the
run can never exit this component once it is entered. The PDA reads b′

i on all the −1
transitions in and to L7, bi on all −1 transitions in and to L8 and L9, ϵ on all other
transitions and a d′

i on the −∆ transition entering L9. Note that
∑m

i=1 #d′
i

∈ {0, 1} since
a −∆ transition can occur at most once in any run.

▶ Lemma 30. If the lb-C1PVASS accepts some run in DNF which reaches some k ∈ N, there
exists an accepting run in the PDA P such that

∑m
i=1 #ai + #a′

i
− #bi − #b′

i
− #d′

i
= k.

The proof follows from the fact that the run (in DNF) can be simulated on the PDA P
by staying in the green component for the (−1 ∪ −D)∗ portion of the run, then going to the
(+E ∪ −D)∗ portion of the run, and finally the run enters the red portion for the (−1 ∪ +E)∗

part of the run (except for the case where the run is of the form ({+1})∗(−D)+(−∆)({−1})∗,
in which case the run enters the last layer on the −∆ update). The run moves between layers
as the counter values move between different slice bounds.

4.2.3 The Presburger formula

The main intuition for having the Presburger formula is to make sure that the run stays in
the correct block. For example, on reading a +1 in I+

i , there is a choice to either stay within
the block or move to Ii+1. The formula ensures that it stays in I+

i when the counter value
is in the interval (ℓi, ℓi+1) and moves to Ii+1 when the counter value reaches ℓi+1.

We also use a formula to ensure that the sum of all the +1 and −1 updates is exactly k.
Using Lemma 29, we are able to split the Presburger formula into 4 conjuncts as well.
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φG =
m∧

k=1


(
#a′

k−1
= 0

)
∨

(( k−1∑
i=0

#ai
+ #a′

i
≥ ℓk

)
∧

( k−1∑
i=0

#di
= 0

))
∨

(( k−1∑
i=0

#ai + #a′
i

> ℓk

)
∧

( k−1∑
i=0

#di > 0
))


φ′

R =
m∧

k=1

(
#b′

k
= 0

)
∨

( m∑
i=1

#ai
+ #a′

i
−

m∑
j=k

#b′
j

> ℓk

)
φR =

m∧
k=1

(
#bk

+ #d′
k+1

= 0
)

∨
( m∑

i=1
#ai

+ #a′
i

−
m∑

j=k

#b′
j

+ #bj
+ #d′

j+1
≥ ℓk

)
φk =

m∑
i=0

#ai + #a′
i

− #bi − #b′
i

− #d′
i

= k

The final formula φ will be a conjunction of all the formulas described above.

φ = φG ∧ φ′
R ∧ φR ∧ φk. (3)

Now, with the PDA P and formula φ, we get the main result of this section.

▶ Theorem 31. For all runs π in A, there is one in P with the same sequence of states
whose Parikh image satisfies the Presburger formula φ from Equation (3) if and only if π is
k-reaching in A.

The proof is similar to that of Theorem 23, simulating the k-reaching runs of A using
accepting runs in P satisfying φ and vice-versa.

4.3 Boundedness for lb-C1PVASS
For boundedness, we first note that the set of all reachable counter values from a lb-C1PVASS
A is a subset of all reachable values of the C1PVASS A′, where A′ is obtained by replacing
the lower bounds in A by 0. It follows, from Theorem 17, that 2O(|A|6) is an upper bound
on the largest reachable counter value in A, if A is bounded, where |A| is the size of the
encoding of A. Hence, we can ask for k-coverability with k = 2O(|A|6) and if the answer is
yes, the set of all reachable counter values is unbounded. Hence, boundedness is in coNP.

4.4 Hardness of k-reachability, k-coverability and boundedness
We now show that reachability and coverability are NP-hard for lb-C1PVASS and coNP-
hard for boundedness. This gives us NP-completeness for reachability and coverability, and
coNP-completeness for boundedness.

▶ Lemma 32 (Context-free sum problem). Given a context-free language L ⊆ a∗b∗ and two
numbers k, ℓ ∈ N (encoded in binary), determining whether there exists a word ambn ∈ L
such that m ≥ k and m + n ≥ ℓ is NP-hard.

Proof. We reduce from the subset sum problem: Given a set of positive integers S =
{x1, . . . , xn} and an integer X, is there a subset S′ ⊆ S such that

∑
xi∈S′ xi = X?
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We construct the CFG as follows: We have non-terminals A0, . . . , An where A0 is the
start symbol, and productions Ai → axi+1Ai+1, Ai → Ai+1b2xi+1 , for all 0 ≤ i ≤ n − 1,
and An → ε. This CFG defines the following language: L = {arbs | ∃S′ ⊆ S : r =∑

xi∈S′ xi and s = 2
∑

j ̸∈S′ xj}. One can easily verify that a word anbm satisfying n ≥ X

and n + m ≥ 2
∑n

i=1 xi − X is in L if and only if the subset sum instance is positive. ◀

We now give the reduction from this problem to reachability, coverability and unboundedness
in an lb-C1PVASS. Without loss of generality, we assume that the context-free language
is given as a PDA such that there is a partition between all the states with an outgoing
transition labelled by an a and those with a transition labelled by a b as shown in Figure 5.

s0start u2

u1

u3

A v2, k

v1, k

v3, k

f1

f2

f3

f ′, ℓB

a

+1

a

+1

a

+1

ε

+0
ε

+0
ε

+0

ε, +1

Figure 5 The construction of the lb-C1PVASS where A is the part of the PDA consisting of only
the transitions which do not read b’s and on the last a, there is a check verifying that at least k

many a’s were seen, before seeing the bs. From the final states, there is a transition to the new final
state f ′ with a lower bound of ℓ which checks that the total number of a’s and b’s is at least ℓ.

To show that this construction establishes a reduction from the context-free sum problem
to reachability, coverability and unboundedness, it is enough to see that an accepting run
from the PDA will be accepting in this C1PVASS if and only if the total number of a’s is at
least k and the total number of a’s and b’s is at least ℓ. Thus ℓ is reachable if and only if it is
coverable if and only if there exists a solution to the context-free sum problem. Finally, due
to the +1 self loop on the final state, there is are accepting runs with unbounded value if and
only if the context-free sum instance is positive. This gives us NP-hardness for reachability
and coverability, and coNP-hardness for boundedness.

5 Conclusion

In this work we established reachability, coverability, and boundedness are decidable in
polynomial time for continuous PVASS in one dimension (C1PVASS). When the model is
extended with lower-bound guards for the counter on the states, we proved reachability
and coverability are NP-complete while boundedness is coNP-complete. There are cells of
Table 1 for which complexity bounds can be tightened in the future. Our algorithms can be
used as heuristics to guide the exact algorithm for the reachability problem if it is decidable
(cf. [3]). In the direction of using C1PVASS as approximations of PVASS, we posit the most
interesting direction is to add both upper and lower bounds to the values the counter can
take (cf. [4]) towards an approximation of one-counter pushdown automata. This model
with upper and lower bounds can be seen as a generalization of one clock pushdown timed
automata without resets.
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A Appendix

A.1 Proof of Lemma 26
Proof. We first construct a run π′′ which satisfies Iπ′

P = Iπ
P and Iπ′

N = Iπ
N . Notice that none

of the lower bounds along the run π can exceed Iπ
P .
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Figure 6 A graphical representation of the multiple cases.

π must have at least Iπ
P positive and Iπ

N negative updates due to Lemma 6. The idea is
to scale up the first Iπ

P many +1 updates and the last Iπ
N many −1 updates in the π′′ by 1

(call this the 1-scaling), and scale the remainder of +1 and −1 updates by updates in E and
D. There are two major cases for this:
1. The Iπ

P ’th 1-scaled +1 update occurs before the first 1-scaled −1 update.
2. The Iπ

P ’th 1-scaled +1 update occurs after the first 1-scaled −1 update.
If the first case holds, π′′ is of the form ({+1} ∪ −D)∗(−D ∪ +E)∗({−1} ∪ +E)∗ and we
scale the updates in E and D according to Figure 6 on a case-by-case basis:
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There are exactly Iπ
P many positive updates and Iπ

N many negative updates in π (which
means that all of them must have been scaled to 1 and F π

P = F π
N = 0), π′′ = π′ = π and

the bounds are satisfied.
The number of positive updates in π is strictly greater than Iπ

P and has exactly Iπ
N many

negative updates. π′′ is of the form (+1)∗({−1} ∪ E)∗. Note that π′′ does not reach k,
but k + e where e is the sum of all epsilons in the run. Since all the −1 updates are
1-scaled even in π, there must be some update in the first Iπ

P +1 updates which is not
1-scaled. Also, the lower bound in any state in π is at most Iπ

P − 1. For π′, we scale
down the Iπ

P ’th +1 update in π′′ to +ε (the solid black edge in Figure 6) and the first
1-scaled −1 update to −δ, such that the sum of all the epsilons and deltas is now 0. The
lower bounds until the Iπ

P ’th positive update (i.e., the first epsilon update) are satisfied
since they were satisfied in π and the counter value after this sequence of update will
be Iπ

P − 1 + ε. The counter values until the (only) delta updates will be satisfied since
the counter values will be between Iπ

P − 1 and Iπ
P . After the delta update, the counter

values are satisfied in π′ because they were satisfied in π, both runs reach k and π′ scales
up the −1 updates by 1 and scaled down the +1 updates to ε in this section of the run
(intuitively, reaching the same number with lower positive updates and higher negative
updates implies that the counter values must be better).
The number of negative updates in π is strictly greater than Iπ

N and has exactly Iπ
P many

positive updates. π′′ is of the form ({+1} ∪ D)∗(−1)∗. Note that π′′ does not reach k,
but k − d where d is the sum of all deltas in the run. Here, we encounter the special case
which calls for the need of ∆, that is there might be no negative update in π before a
positive update, in which case, the Iπ

P ’th +1 update may not be able to be scaled down
in π′ since the lower bound after the Iπ

P ’th +1 update might be Iπ
P . If this is the case, π′

1-scales all of the +1 updates and the last Iπ
N − 1 many −1 updates. The remaining −1

updates are scaled to some small values in D (the dotted blue edge in Figure 6) except
the last one, which is scaled to ∆ (the brown edge in Figure 6). Thus, the sum is still k

since all of the negative updates which are not 1-scaled add up to exactly −1. The lower
bounds in this case are satisfied since they were satisfied in π and all of the +1 updates
are scaled to 1 and the negative updates are postponed as much as possible.
If this is not the case, that is the lower bound after the Iπ

P ’th positive update is not Iπ
P ,

it follows that none of the lower bounds along π are Iπ
P . In π′, we 1-scale the first Iπ

P

many +1 updates and the last Iπ
N − 1 many −1 updates, scale down the Iπ

P ’th +1 update
to a value in E (the solid black edge or the solid blue edge in Figure 6) in π′, and scale
the −1 updates which were not 1-scaled to small values in D (the zigzag line and the
green edge in Figure 6). The lower bounds are satisfied until the (only) +ε since they
were satisfied in π, all +1 updates are scaled to 1 and all negative updates are scaled
down to small values in D. The lower bound immediately after the +ε update is satisfied
since the counter value at this point is between Iπ

P − 1 and Iπ
P . The lower bounds in the

remainder are satisfied since π and π′ both reach k, there are no positive updates and π′

postpones the negative updates as much as possible.
For the remaining cases, we assume the number of positive and negative updates in π

is strictly greater than Iπ
P and Iπ

N respectively. We also fix π′ = π′′ for these cases and
hence omit the use of π′′.
After the 1-scaling, the first non-zero update remaining is a +1 and the last one is a
−1 (i.e., the first scaled down update in π′ is a +ε and the last one is a −δ). Since the
first nonzero update in the run apart from the 1-scaled ones is a +1 and this update
must occur after all the 1-scaled +1 updates (because we scale the first Iπ

P consecutive
updates), this implies the absence of a negative update until the Iπ

P ’th +1 update. The
bounds in π′ until this point are satisfied because they were satisfied in π, π′ scales all the
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+1 updates to 1 and the remaining updates are +0. The counter value at this point is Iπ
P .

The first +1 update after this sequence is scaled down to some ε ∈ E (denoted by the first
black edge in Figure 6). Similarly, since the last nonzero update apart from the 1-scaled
ones is a 11 and this update must occur before all the 1-scaled +1 updates (because we
scale the last Iπ

N consecutive updates), this implies the absence of a negative update after
the Iπ

N ’th −1 update from the end. The last −1 update after this sequence is scaled down
to some δ ∈ D (denoted by the green edge in Figure 6). The lower bounds until the first
−1 update which was 1-scaled are satisfied since the counter values always stayed above
Iπ

P . The lower bounds in the final section of the string of −1 1-scaled updates are also
satisfied since they were satisfied in π, π′ delayed the −1 updates as much as possible
and they both reach the same value k.
After the 1-scaling, the first non-zero update remaining is a −1 and the last one is a +1
(i.e., the first scaled down update in π′ is a +δ and the last one is a −ε). The lower bounds
in the first section with the Iπ

P many 1-scaled +1 updates (and possibly some −δ updates)
are satisfied because they were satisfied in π and π′ scales the +1 updates to 1 and the
−1 updates to −δ whose sum never crosses −1 (as depicted by the dashed blue lines in
Figure 6). The bounds are satisfied up to the first +ε update by the same argument,
even if there are more −δ updates after the Iπ

P ’th 1-scaled +1 update. Similarly, the
bounds after the last −δ update are satisfied since they are satisfied in π, both π and π′

reach k, and all −1 updates are scaled up by 1 and all +1 updates are scaled down to
+ε. Now, we only need to show that the bounds were satisfied from the first +ε to the
final −δ. If there was exactly one +ε (the solid red edge labelled ε in Figure 6), then the
bounds are satisfied since it must occur after the last −δ update. Else, the first +ε (the
solid blue edge in Figure 6) update takes the counter value over Iπ

P , it stays there until
the final −δ and the counter values are satisfied.
For the remaining 2 cases, namely, the first and last scaled down updates in π′ are both
in +E or −D, the proof follows from a permutation of the arguments in the previous two
cases.

Now that we have shown that the bounds are satisfied in π′, one can easily check that the
rest of the properties are satisfied by π′ by construction.

Next, if the second case holds, that is there exists a 1-scaled −1 update before a 1-
scaled +1 update, π′′ does not satisfy Item 4 of the normal form. The run π′′ is of the
form ({+1} ∪ −D)∗ · −1 · {+1, −1}∗ · +1 · ({−1} ∪ +E)∗. π′′ does not necessarily satisfy
the lower bounds, nor reach k, but it does have the property that Iπ′′

P − Iπ′′

N = k. We
construct π′ using π′′ and show that the lower bounds hold sequentially. First, the bounds
along the ({+1} ∪ −D)∗ section of π′′ are satisfied since they were satisfied in π, all
+1 updates are 1-scaled and all −1 updates are scaled down to values in D. Similarly,
the bounds in the ({−1} ∪ +E)∗ of π′′ are satisfied. These sections are the same for
π′. We scale down the last 1-scaled +1 and the first 1-scaled −1 update in π′′ to a +ε

and −δ respectively. Thus, these two updates are “absorbed” into the ({−1} ∪ +E)∗

and ({+1} ∪ −D)∗ sections of the run respectively. Call this new run π′′
1 . This run also

has the property that the +1 updates are concentrated on the left, the −1 updates are
concentrated on the right, and I

π′′
1

P − I
π′′

1
N = k (since I

π′′
1

P = Iπ′′

P − 1 and I
π′′

1
N = Iπ′′

N − 1).
If π′′

1 is of the form ({+1} ∪ −D)∗(−D ∪ +E)∗({−1} ∪ +E)∗, construct a k-reaching run
in DNF as in case 1, but with π′′

1 as input instead of π. Otherwise, π′′
1 is also of the form

({+1}∪−D)∗ ·−1 · {+1, −1}∗ ·+1 · ({−1}∪+E)∗, but the size of the {+1, −1}∗ section of the
run will be strictly smaller than that of π′′, and we make π′′

2 by absorbing the first 1-scaled
−1 and the last 1-scaled +1 update. Continue this until a run where the first 1-scaled −1
update occurs after the last 1-scaled +1 update. ◀
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