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Abstract
This paper studies various notions of approximate probabilistic bisimulation on labeled Markov
chains (LMCs). We introduce approximate versions of weak and branching bisimulation, as well as
a notion of ε-perturbed bisimulation that relates LMCs that can be made (exactly) probabilistically
bisimilar by small perturbations of their transition probabilities. We explore how the notions
interrelate and establish their connections to other well-known notions like ε-bisimulation.
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1 Introduction

Probabilistic model checking is widely used for the automatic verification of probabilistic
models, like labeled Markov chains (LMC), against properties specified in (temporal) logics
like PCTL∗ [11]. In practice, a big obstacle is the state space explosion problem: the number
of states required to model a system can make its verification intractable [37, 11, 36].

To circumvent this issue, a well-established approach is the use of abstractions. For a
given LMC M, an abstraction A is a model derived from M that is (oftentimes) smaller
than M and preserves some properties of interest. Instead of verifying a formula on M, one
does so on A and afterwards transfers the result back to the original model [11, 27, 38].
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37:2 A Spectrum of Approximate Probabilistic Bisimulations

A prominent type of abstraction are probabilistic bisimulation quotients. They are
constructed w.r.t. probabilistic bisimulations, a class of behavioral equivalences introduced
by Larsen and Skou [41] as an extension of Milner’s bisimulation [43] to probabilistic
models. A probabilistic bisimulation is an equivalence R on the state space of an LMC
M that only relates states that behave exactly the same, i.e., that have the same local
properties, and transition to R-equivalence classes with equal probability. The coarsest
probabilistic bisimulation ∼, called (probabilistic) bisimilarity, is the union of all probabilistic
bisimulations in M [11]. The bisimilarity relation can be computed efficiently [9, 19, 48] and
preserves PCTL∗ state formulas [8, 33]. Since verifying PCTL∗ on bisimulation quotients
can significantly speed up the verification process [37], their use is a vital part of probabilistic
model checkers such as, e.g., Storm [34].

Other notions of behavioral equivalence are weak and branching probabilistic bisimulations
[42, 51, 10, 12, 18, 50], which were introduced with the intention to abstract from sequences of
internal actions or stutter steps a model can perform. Intuitively, these notions can abstract
from the possibility of a state to, for some time, only visit equally labeled states (weak) or
stay in its own equivalence class (branching) [35]. It is well-known that weak and branching
probabilistic bisimilarity, denoted ≈w and ≈b, respectively, coincide for LMCs [10], and that
they characterize satisfaction equivalence for a variant of PCTL∗ [24].

A problem with all of the above notions lies, however, in their lack of robustness against
errors in the transition probabilities. The requirement of related states to have exactly
the same transition probabilities to equivalence classes implies that even an infinitesimally
small perturbation of any of these probabilities can cause two bisimilar states to become
non-bisimilar, resulting in larger quotients [20, 52, 27]. This disadvantage was first observed
in [30], where the use of approximate notions of bisimulation is suggested for its mitigation.

The literature proposes various types of approximate bisimilarity, the most well-known
and well-studied one being ε-bisimilarity (∼ε) [25]. Other notions include approximate
probabilistic bisimilarity with precision ε (≡ε), or ε-APB for short [27, 1, 2], up-to-(n, ε)-
bisimilarity (∼n

ε ) [25, 13], or ε-lumpability of a given LMC [17, 29, 28]. Here, we propose
definitions for approximate versions of weak (≈w

ε ) and branching probabilistic bisimilarity
(≈b

ε). Similar notions have, to the best of our knowledge, only been discussed sporadically
in the context of noninterference under the term “weak bisimulation with precision ε”
[4, 7, 5, 6, 26, 3]. Moreover, we introduce ε-perturbed bisimilarity (≃ε) which relates two
LMCs if they can be made bisimilar by small perturbations of their transition probabilities.
Implicitly, this relation arises in the work [38] on a type of abstraction called ε-quotients.
With our definition, two LMCs are ε-perturbed bisimilar iff they have bisimilar ε-quotients.

All of the approximate notions have in common that they allow a small tolerance, say
ε > 0, in the transition probabilities of related states, but differ in the specifics of where
and how this tolerance is put to use. Broadly speaking, we can distinguish two groups of
relations: while ∼ε, ≡ε, ∼n

ε and ≈w
ε are additive in their tolerances and are closer to classic

process relations, the notions underlying ∼∗
ε and ≡∗

ε, denoting transitive ε-bisimilarity and
transitive ε-APB, respectively, as well as ≃ε and ≈b

ε are better suited for the construction of
abstractions since they are required to be equivalences. Collapsing the equivalence classes of
such a relation into single states yields quotient models, which in some cases are such that
formulas given in specific (fragments of) logics are (approximately) preserved between the
original LMC and its quotient. However, it turns out that requiring transitivity can cause
some unnatural behavior, like the possibility to distinguish probabilistically bisimilar LMCs
and a lack of additivity. Furthermore, the induced bisimilarity relations, which are again
defined as the union of all corresponding relations in the model M (e.g., ≈b

ε is the union of
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Table 1 Overview of the notions of approximate bisimulation we consider and some of their
properties. Being suitable for “quotienting” is meant w.r.t. the underlying bisimulation relation.

Notion Symbol for Union Additive Quotienting
ε-Bisimulation [25, 14] ∼ε

 ✓ ×
ε-APB [27, 1, 2] ≡ε

Up-To-(n, ε)-Bisimulation [25, 13] ∼n
ε

Weak ε-Bisimulation ≈w
ε

Transitive ε-Bisimulation ∼∗
ε

 × ✓
Transitive ε-APB ≡∗

ε

Branching ε-Bisimulation ≈b
ε

ε-Perturbed Bisimulation [38] ≃ε

all branching ε-bisimulations in M) might themselves not be of the respective type anymore
(e.g., ≈b

ε is not necessarily a branching ε-bisimulation). This contrasts the non-transitive case,
where the induced bisimilarity relations are always of the respective type. We summarize the
relations we consider, together with some of their properties, in Table 1.

Main Contributions. The main contributions are as follows:
1. Starting with the classic notion of ε-bisimilarity, we show tightness of a bound from [32]

on the absolute difference of unbounded reachability probabilities in ε-bisimilar states
(Example 3.13).

2. We introduce ε-perturbed bisimilarity (≃ε), a notion that relates two LMCs if they have
bisimilar ε-quotients á la [38], i.e., if they can be made probabilistically bisimilar by small
perturbations of their transition probabilities. We show that ≃ε is strictly finer than
(transitive) ε-bisimilarity ∼(∗)

ε (Lemma 4.6 and Theorem 4.7) and that deciding both ≃ε

and ∼∗
ε is NP-complete (Theorem 4.12). Furthermore, we characterize ≃ε in terms of

transitive ε-bisimulations satisfying a centroid property (Theorem 4.10) and discuss some
anomalies of ≃ε: the relation is not always an ε-perturbed bisimulation itself, it is not
additive in ε and it can distinguish bisimilar LMCs (Proposition 4.4).

3. We define approximate versions of weak (≈w
ε ) and branching probabilistic bisimilarity

(≈b
ε). Our definitions can be evaluated locally and coincide with the exact notions ≈b

and ≈w, respectively, if ε = 0. We discuss how ≈w
ε and ≈b

ε are related to one another, as
well as to ε-bisimilarity (Propositions 5.4 and 5.5). Moreover, we extend the bounds for
reachability probabilities of Theorem 3.11 to states related by ≈w

ε and ≈b
ε (Corollary 5.9

and Proposition 5.10), and prove that deciding ≈b
ε is NP-complete (Theorem 5.11).

Together with various known results from the literature and some easy observations, our
results complete the relation between several notions of approximate probabilistic bisimulation,
as summarized in Figure 1.

Structure. Section 2 presents preliminaries. Section 3 considers ε-bisimulations, ε-APBs
and up-to-(n, ε)-bisimulations. Section 4 introduces and analyzes ε-perturbed bisimulations.
Section 5 introduces weak and branching ε-bisimulations and establishes how they relate to
ε-bisimulations. Section 6 summarizes our results and points out future work.

2 Preliminaries

Distributions. Distr(S) = {µ : S → [0, 1] |
∑

s∈S µ(s) = 1} is the set of distributions over
countable S ̸= ∅. µ ∈ Distr(S) has support supp(µ) = {s ∈ S | µ(s) > 0}, and for A ⊆ S we
set µ(A) =

∑
s∈A µ(s). The L1-distance of µ, ν ∈ Distr(S) is ∥µ − ν∥1 =

∑
s∈S |µ(s) − ν(s)|.

CONCUR 2024
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M ∼ε N M ∼∗
ε N M ∼∗

ε N
+ centroid property

M ≡ε N M ≡∗
ε N

M ∼n
ε N ∀n ∈ N M ≃ε N

M ≈b
ε N

M ≈w
ε N

[25]

Thm. 4.10

Prop. 5.5
×

Prop. 5.5×

Prop. 5.5×Prop. 5.5×
Prop. 5.4

×

Thm. 4.8

×

[14] ×

×

× ×
[38]

Lem. 4.5 × Lem. 4.6

Figure 1 The relationship of different approximate probabilistic bisimulations.

Labeled Markov chains. Fix a countable set AP of atomic propositions. A labeled Markov
chain (LMC ) M = (S, P, sinit, l) has a countable set of states S ̸= ∅, a transition distribution
function P : S → Distr(S), a unique initial state sinit, and a labeling function l : S → 2AP .
We use M and N to range over LMCs. For s ∈ S, let L(s) = {t ∈ S | l(s) = l(t)}. M is
finitely branching if |supp(P (s))| < ∞ for all s ∈ S, and M is finite if |S| < ∞. The direct
sum M ⊕ N is the LMC obtained from the disjoint union of M and N . The initial state of
M ⊕ N is not relevant for our purposes.

For s, t ∈ S, P (s)(t) denotes the probability to move from s to t in a single step. We write
Succ(s) = supp(P (s)) for the set of direct successors of s. π = s0s1 · · · ∈ Sω is an (infinite)
path of M if si+1 ∈ Succ(si) for all i ∈ N. π[i] = si is the state at position i of π, and
trace(π) = l(s0)l(s1) · · · ∈ (2AP )ω is the trace of π. The set of infinite paths is Paths(M).
Finite paths π = s0s1 . . . sk ∈ Sk+1 for some k ∈ N and their traces are defined analogously.

Let s ∈ S. We consider the standard probability measure PrM
s on sets of infinite paths of

LMCs, defined via cylinder sets Cyl(ρ) = {π ∈ Paths(M) | ρ is a prefix of π} of finite paths
ρ ∈ S∗. See [11] for details. For ρ = s0s1 . . . sn, we abbreviate PrM

s (Cyl(ρ)) by PrM
s (ρ) and

the measure yields PrM
s (ρ) = 0 if s0 ≠ s and PrM

s (ρ) =
∏n−1

j=0 P (sj)(sj+1) otherwise. We
write PrM for PrM

sinit
and drop the superscript if M is clear from the context. Given a set of

finite traces T ⊆ (2AP )k+1 for some k ∈ N, Prs(T ) denotes the probability to follow, when
starting in s, a finite path π = ss1 . . . sk−1 with trace(π) ∈ T . EM

s (X) or simply Es(X)
denotes the expected value of a random variable X on Paths(M) w.r.t. PrM

s .

LTL. A popular logic for the specification of desired properties of LMCs is the linear
temporal logic (LTL) which can be used to, e.g., specify properties such as reachability, safety
or liveness [44, 11]. For a ∈ AP , LTL formulas are formed w.r.t. the grammar

φ ::= true | a | ¬φ | φ1 ∨ φ2 | ⃝φ | φ1Uφ2.

Here, ⃝ is the next operator, so π ∈ Paths(M) satisfies ⃝φ iff φ is true in π[1]. For the
until operator U, π satisfies φ1Uφ2 iff, alongside π, φ1 holds until φ2 is true. As syntactic
sugar we define the reachability operator ♢φ ≡ trueUφ and the always operator □φ ≡ ¬♢¬φ.

For B, C ⊆ S and s ∈ S, Prs(BUC) is the probability to reach a state in C via a (finite)
path from s that only consists of states in B. Moreover, Prs(♢≤nφ) denotes the probability
to reach a state satisfying φ from s in at most n ∈ N steps. For details on LTL, see [11].

Relations. Given a relation R ⊆ S×S and an A ⊆ S, R(A) = {t ∈ S | ∃ s ∈ A : (s, t) ∈ R} is
the image of A under R. If R is reflexive then A ⊆ R(A), and A is called R-closed if R(A) ⊆ A.
When R is an equivalence, i.e., when it is reflexive, symmetric and transitive, the equivalence
class of s ∈ S is [s]R = R({s}) = {t ∈ S | (s, t) ∈ R}, and we set S/R = {[s]R | s ∈ S}. For
an equivalence R, the R-closed sets are precisely the (unions of) R equivalence classes.
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Bisimulation. An equivalence R ⊆ S × S is a (probabilistic) bisimulation on M if for all
(s, t) ∈ R and all R-equivalence classes C it holds that l(s) = l(t) and P (s)(C) = P (t)(C).
States s, t ∈ S are (probabilistically) bisimilar, written s ∼M t or simply s ∼ t, if there is a
bisimulation R on M with (s, t) ∈ R. We call two LMCs M, N bisimilar, written M ∼ N ,
if sM

init ∼ sN
init in M ⊕ N . An alternative characterization of bisimulations can be found

in, e.g., [23, 25, 27, 14]: an equivalence R is a bisimulation iff for all (s, t) ∈ R and all
R-closed sets A ⊆ S it holds that l(s) = l(t) and P (s)(A) = P (t)(A). The (probabilistic
bisimulation) quotient of M is the LMC M/∼ = (S/∼, P∼, [sinit]∼, l∼) with l∼([s]∼) = l(s),
and P∼([s]∼)([t]∼) =

∑
q∈[t]∼

P (s)(q) for all [s]∼, [t]∼ ∈ S/∼. It holds that M ∼ M/∼. An
important result is that bisimilarity ∼ preserves the satisfaction of PCTL∗ state formulas [8].

We also consider weak and branching probabilistic bisimulations [43, 51, 10, 35]. An
equivalence R is a weak probabilistic bisimulation if, for all (s, t) ∈ R and all R-equivalence
classes C ̸= [s]R = [t]R, it holds that l(s) = l(t) and Prs(L(s)UC) = Prt(L(t)UC). R is a
branching probabilistic bisimulation if, instead of the second condition in the previous defini-
tion, Prs([s]RUC) = Prt([t]RUC) holds. Weak probabilistic bisimilarity ≈w and branching
probabilistic bisimilarity ≈b are defined like ∼, and lifted to LMCs in the same way.

3 ε-Bisimulation, ε-APB and Up-To-(n, ε)-Bisimulation

If not specified otherwise, we always assume ε ∈ [0, 1] and M = (S, P, sinit, l) to be finitely
branching. This section summarizes various notions of approximate probabilistic bisimulation
from the literature. We first provide their formal definitions and discuss how the notions
interrelate. Afterwards, in Section 3.2, we present some logical preservation results.

3.1 Definitions and Interrelation
We start with the seminal notion of ε-bisimulations of Desharnais et al. [25]. While originally
introduced for labeled Markov processes [21, 22], ε-bisimulations were later adapted to other
models like LMCs [14, 38] or Segala’s probabilistic automata [45, 47].

▶ Definition 3.1 ([25, 14]). A reflexive1 and symmetric relation R ⊆ S×S is an ε-bisimulation
if for all (s, t) ∈ R and any A ⊆ S it holds that

(i) l(s) = l(t) and (ii) P (s)(A) ≤ P (t)(R(A)) + ε.

States s, t are ε-bisimilar, denoted s ∼ε t, if there is an ε-bisimulation R with (s, t) ∈ R.
LMCs M, N are ε-bisimilar, denoted M ∼ε N , if sM

init ∼ε sN
init in M ⊕ N .

Intuitively, s ∼ε t if both states can mimic the other’s transition probabilities to any
A ⊆ S by transitioning to the (potentially bigger) set ∼ε(A) with a probability that is smaller
by at most ε than the original one. The parameter ε describes how much the behavior of
related states may differ: for ε close to 1 more states can be related, while for ε ≈ 0 related
states behave almost equivalently. In the extreme case of ε = 0, we have ∼0 = ∼ [25, 14].

Instead of being transitive, ε-bisimulations are additive in their tolerances: s ∼ε1 t and
t ∼ε2 u implies s ∼ε′ u for some 0 ≤ ε′ ≤ min{1, ε1 + ε2} [25]. As the next example suggests,
transitivity is not always desirable for ε-bisimulations if ε > 0.

1 In contrast to [25, 14] we require reflexivity of ε-bisimulations. This is a rather natural assumption (a
state should always simulate itself) that does not affect ∼ε.

CONCUR 2024
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s0 s1 s2 . . . sn

x

1 1 − ε

ε

1 − 2ε

2ε

ε

1
1

∅ ∅ ∅ ∅
{a}

Figure 2 The LMC used in Example 3.2.

s u0 u1 . . . ui . . . un−1 un t

x y

1

1 1−ε
ε 1−iε iε ε

1−ε 1

1 1

1

{a} {a}{a}

{a}

{a}

{a}

{a}

{c}{b}

Figure 3 The LMC used in Example 3.5, adapted from [14].

▶ Example 3.2. Let ε = 1
n for n ≥ 1 and consider the LMC of Figure 2. There, the reflexive

and symmetric closure of R = {(si, si+1) | 0 ≤ i ≤ n − 1} is an ε-bisimulation. Hence, s0 and
sn are related by a chain of ε-bisimilar states, even though they behave completely different:
s0 transitions to the {a}-labeled state x with probability 0, sn does so with probability 1.

Desharnais et al. [25] describe how to check condition (ii) of Definition 3.1 in terms
of the values of maximum flows in specific flow networks á la [46, 9]. Their result is well-
suited for algorithmic purposes, but is restricted to finite models. Equivalently, one can
characterize ε-bisimulations by the existence of weight functions ∆: S → Distr(S) that
describe how to split the successor probabilities of related states. This formulation is used in,
e.g., [47, 38, 39, 31]. The following lemma provides one such characterization that is proved
using ideas from [14, 15] and a technical measure-theoretic statement from [16].

▶ Lemma 3.3. A reflexive and symmetric relation R ⊆ S ×S that only relates states with the
same label is an ε-bisimulation iff for all (s, t) ∈ R there is a map ∆: Succ(s) → Distr(Succ(t))
such that
1. for all t′ ∈ Succ(t) we have P (t)(t′) =

∑
s′∈Succ(s) P (s)(s′) · ∆(s′)(t′), and

2.
∑

s′∈Succ(s) P (s)(s′) · ∆(s′)(R(s′) ∩ Succ(t)) ≥ 1 − ε.

Intuitively, Lemma 3.3 tells us that, if s ∼ε t, the successors s′ of s can be mapped to
distributions ∆(s′), i.e., convex combinations, of successors of t. More precisely, it shows
that (i) if we move from s to a successor s′ with probability P (s)(s′) and, afterwards, from
s′ to a successor t′ of t with probability ∆(s′)(t′), then we reach t′ with probability P (t)(t′),
and that (ii) the overall probability that the states s′ and t′ are ε-bisimilar is at least 1 − ε.

A second notion of approximate probabilistic bisimulation are ε-APBs, which stands
short for approximate probabilistic bisimulations with precision ε [27, 1, 2]. In contrast
to ε-bisimulations, where the differences in transition probabilities of related states are
bounded w.r.t. all subsets A ⊆ S, an ε-APB R only requires a difference of at most ε for the
probabilities of related states to transition to R-closed subsets of S.

▶ Definition 3.4 ([27]). A reflexive and symmetric relation R ⊆ S × S is an ε-APB if for
all (s, t) ∈ R and any R-closed set A ⊆ S it holds that

(i) l(s) = l(t) and (ii) |P (s)(A) − P (t)(A)| ≤ ε.

We write s ≡ε t if s and t are related by any ε-APB, and M ≡ε N if sM
init ≡ε sN

init in M⊕N .

Like ∼ε, ε-APBs are additive in their tolerances, and we have ≡0 = ∼ = ∼0 [25, 27].
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▶ Example 3.5 ([14]). Let ε ∈ (0, 1] and n =
⌈ 1

ε

⌉
∈ N. Consider M as in Figure 3, and let R

be the reflexive and symmetric closure of {(s, t), (x, x), (y, y)} ∪ {(ui, ui+1) | 0 ≤ i ≤ n − 1}.
The R-closed sets in M are {s, t}, {x}, {y}, {ui | 0 ≤ i ≤ n} and their unions. For all
(p, q) ∈ R and R-closed sets A it holds that |P (p)(A) − P (q)(A)| ≤ ε, so R is an ε-APB.

Example 3.5 illustrates that the use of ε-APBs as a notion that relates states with almost
equivalent behavior is questionable: even though states s and t in Figure 3 are related by
≡ε, they behave completely different. This is caused by the set {u0, . . . , un} of (unreachable)
states being R-closed, which in turn allows to relate s and t by the relation R from the
example. Such an anomaly cannot occur for ∼ε, and we in fact have s ≁ε t in Figure 3 for
every ε ∈ (0, 1). In particular, this shows that ∼ε can be strictly finer than ≡ε for ε ∈ (0, 1).

Lastly, we introduce up-to-(n, ε)-bisimulations [25, 13], which are relations that require
the behaviors of related states to differ by at most ε for at least n steps.

▶ Definition 3.6 ([25, 13]). The up-to-(n, ε)-bisimulation ∼n
ε ⊆ S × S is inductively defined

on n via s ∼0
ε t for all s, t ∈ S and, for n ≥ 0, s ∼n+1

ε t iff for all A ⊆ S

(i) l(s) = l(t), (ii) P (s)(A) ≤ P (t)(∼n
ε (A)) + ε and (iii) P (t)(A) ≤ P (s)(∼n

ε (A)) + ε.

States s, t are (n, ε)-bisimilar if s ∼n
ε t, and the notion is lifted to LMCs as usual. Similar

to ∼ε and ≡ε, ∼n
ε is reflexive and symmetric, but not transitive. Instead, it is additive in the

tolerances and monotonic in n and ε, i.e., for n ≥ n′ and ε ≤ ε′, s ∼n
ε t implies s ∼n′

ε′ t [13].
It is clear that s ∼n

ε t for a fixed n does not necessarily imply s ∼ε t or s ≡ε t, as (n, ε)-
bisimilarity only restricts the behavior of related states for n steps. However, considering the
limit n → ∞ makes ∼ε and ∼n

ε coincide, i.e., s ∼ε t iff s ∼n
ε t for all n ∈ N [25].

We now make precise the relationship between ε-APBs and up-to-(n, ε)-bisimulations.

▶ Proposition 3.7. If ε ∈ (0, 1), s ≡ε t implies s ∼n
ε t if n ≤ 2, but not necessarily if n ≥ 3.

3.2 Preservation of Logical Properties

A key application of exact probabilistic bisimilarity ∼ is the use of quotients Q = M/∼ to
speed up PCTL∗ model checking [37, 36]. As abstractions built by grouping states related
by approximate probabilistic bisimulations can be smaller than Q [27], these notions might
prove useful to combat the state space explosion problem of model checking [37, 11, 36]. It is
hence of interest to see which logical properties these relations preserve.

We start by considering ∼ε. As shown by Bian and Abate [14], ε-bisimilarity induces
bounds on the absolute difference of satisfaction probabilities of finite horizon properties,
i.e., of properties that only depend on traces of finite length, in related states.

▶ Theorem 3.8 ([14]). Let s ∼ε t, k ∈ N and T ⊆ (2AP )k+1 a set of traces of length k + 1.
Then |Prs(T ) − Prt(T )| ≤ 1 − (1 − ε)k.

Since any finite horizon LTL formula coincides with a set of traces of finite length,
Theorem 3.8 in particular bounds the satisfaction probabilities of such formulas in ε-bisimilar
states. Furthermore, as argued in [14] and the next example, this bound is tight.

▶ Example 3.9. Consider Figure 4. For i ∈ {0, . . . , n}, let l(si) = l(ti) = ai for pairwise
distinct ai, l(G1) = g = l(G2) and l(F ) = f for some f ̸= g. Then s0 ∼ε t0 and the upper
bound of Theorem 3.8 is met exactly: |Prs0(♢≤n+1g) − Prt0(♢≤n+1g)| = 1 − (1 − ε)n+1.
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s0 s1 . . . sn G1 t0 t1 . . . tn
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ε
1

1
{a0} {a1} {an}

{g}
{a0} {a1} {an}

{g}{f}

Figure 4 An LMC in which s0 ∼ε t0 and |Prs0 (♢≤n+1g) − Prt0 (♢≤n+1g)| = 1 − (1 − ε)n+1.
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1
2

1
2 ε

1−ε

1 1

{a}{a} {a} {g}

Figure 5 The LMC used in Example 3.10.

A disadvantage of the bound provided in Theorem 3.8 is, however, that it rapidly converges
to 1 for increasing k and is thus not suitable when reasoning about long (or infinite) time
horizons. In fact, it is the case that – without further assumptions – even simple unbounded
reachability probabilities in ε-bisimilar states can strongly deviate.

▶ Example 3.10. Let ε ≥ 0. The states s0, s1, and s2 in Figure 5 are pairwise ε-bisimilar.
However, if ε > 0, we have Prs0(♢g) = 1

2 , Prs1(♢g) = 0, and Prs2(♢g) = 1.

The difference in reachability probabilities observed in the last example is caused by ∼ε

relating states that are able to reach a goal state g with positive probability to those that
can not reach g at all. One way to avoid this issue is to require that states from which
g is not reachable are labeled with a distinct label f . The existence of such a label f is
a rather natural assumption, as a typical preprocessing step when computing reachability
probabilities is to identify the states from which no goal state is reachable, i.e., to identify
the states we assume to be labeled with f [11]. A result in the spirit of Theorem 3.8 that
deals with unbounded reachability properties can then be obtained as follows.

▶ Theorem 3.11 ([31, 32]). Let some states in M be labeled with g, and let exactly the states
that cannot reach a g-labeled state be labeled with f . Further, let s ∼ε t, and let N be the
random variable that counts the number of steps until reaching a g- or f -labeled state. Then,

|Prs(♢g) − Prt(♢g)| ≤ ε · Es(N).

▶ Remark 3.12. A result similar to Theorem 3.11 is derived by Haesaert et al. in [31, 32]
in the context of policy synthesis in control theory. In fact, their result is more general,
as it considers all properties that can be described as the language of a deterministic
finite automaton. These properties include, among others, the syntactically co-safe LTL
formulas [40], which form a fragment of LTL built according to the grammar

φ ::= true | a | ¬a | φ1 ∨ φ2 | φ1 ∧ φ2 | ⃝φ | φ1Uφ2,

where a ∈ AP . As unbounded reachability ♢g is a syntactically co-safe LTL formula, the
results of [31, 32] extend the bound in Theorem 3.11 to a broader class of properties.

Next, we show that the bound described in Theorem 3.11 is actually tight.

▶ Example 3.13. Let p ∈ (0, 1), ε < p
2 and consider Figure 6, where s ∼ε t. There,

Prs(♢g) = 1
2 , Prt(♢g) = 1

2 − ε
p and Es(N) = Et(N) = 1

p . Hence, the bound in Theorem 3.11
is met exactly: |Prs(♢g) − Prt(♢g)| = ε

p = ε · Es(N) = ε · Et(N).
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s rq t r′q′
p
2

1−p
p
2 11

p
2 +ε

1−p
p
2 −ε

11

{a}{g} {f} {a}{g} {f}

Figure 6 The LMC used in Example 3.13. The states s and t are ε-bisimilar.

Regarding ε-APBs and up-to-(n, ε)-bisimilarity, some preservation results w.r.t. the
(approximate or robust) satisfaction of PCTL state-formulas can be found in the literature.
Since, as we have seen in Section 3.1, s ∼ε t implies both s ≡ε t and s ∼n

ε t for any n ∈ N
and any two states s, t, the following results also hold for ε-bisimilar states.

An important property of ε-APBs is that related states satisfy the same ε-robust PCTL
state formulas Φrobust [27], i.e., that s ≡ε t implies that s ⊨ Φrobust iff t ⊨ Φrobust, where ⊨ is
the usual PCTL satisfaction relation [11]. Intuitively, Φrobust is ε-robust if for all subformulas
ϕ of Φrobust and all s ∈ S either a strengthened version of ϕ, obtained by making ϕ’s
probability thresholds harder to meet, holds in s, or even relaxing ϕ’s probability thresholds
is not sufficient to ensure that s satisfies ϕ. For details, see [27].

Furthermore, it was shown in [13] that (n, ε)-bisimilar states approximately satisfy the
same bounded PCTL state formulas. The fragment of PCTL considered does not allow
unbounded until, and requires all until operator appearing in a formula to have the same time
bound k ∈ N. Under these assumptions, the precision of the approximation of satisfaction
probabilities between (n, ε)-bisimilar states is proved to depend linearly on the parameters n

and ε, as well as the common step bound k of the until operators. For details, see [13].

4 ε-Perturbed Bisimulation

In this section we consider finite LMCs. In [38], Kiefer and Tang define the notion of ε-
quotients for ε ≥ 0. Their goal is to construct, from a given perturbed LMC M′, an abstraction
that is as close as possible to the exact bisimulation quotient of an unknown, unperturbed
LMC M corresponding to M′. This inspires us to introduce ε-perturbed bisimulations, which
relate two LMCs iff they can be made probabilistically bisimilar by small perturbations of
their transition probabilities. Since we require ε-perturbed bisimulations to be equivalences,
these relations are well-suited for the construction of quotients of a given model.

Like the ε-quotients of [38], we base our definition on ε-perturbations of LMCs.

▶ Definition 4.1 ([38]). M′ = (S, P ′, sinit, l) is an ε-perturbation of M = (S, P, sinit, l) if
∥P (s) − P ′(s)∥1 ≤ ε for all s ∈ S.

M and any of its ε-perturbations M′ have the same state space and labeling, and we
often write S′ = {s′ | s ∈ S} for the state space of M′. Hence, M and M′ only differ in
their transition distribution functions. However, M′ does not need to preserve the structure
of M, i.e., there can be transitions in M that have probability 0 in M′ and vice versa. As
the next lemma shows, the total probability mass of these transitions cannot exceed ε

2 .

▶ Lemma 4.2. For all s ∈ S and A ⊆ S it holds that |P (s)(A) − P ′(s′)(A′)| ≤ ε
2 .

We now define the novel notion of ε-perturbed bisimulation.

▶ Definition 4.3. An equivalence R ⊆ S × S is called an ε-perturbed bisimulation on M
if there is an ε-perturbation M′ of M such that R is a bisimulation on M′. Two states
s, t ∈ S are ε-perturbed bisimilar, denoted s ≃ε t, if they are related by some ε-perturbed
bisimulation. Given LMCs M and N , then M ≃ε N if sM

init ≃ε sN
init in M ⊕ N .
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Figure 7 An LMC in which there is no unique maximal transitive ε-bisimulation.
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Figure 8 Two LMCs Ms and Mt (left) with initial states s and t, respectively, and Q = Ms/∼
(right), demonstrating that ≃ε and ∼∗

ε can differentiate bisimilar models and are not additive.

In the terminology of [38], M ≃ε N iff M and N have bisimilar ε-perturbations iff there
are bisimilar ε-quotients of M and N . If all states of M and N are reachable, even the
stronger characterization M ≃ε N iff M and N have isomorphic ε-perturbations iff there
are isomorphic ε-quotients of M and N holds. Since the unique 0-perturbation of any LMC
is the LMC itself, M ≃0 N iff M ∼ N . Moreover, ≃ε is symmetric and reflexive, but not
always transitive, which implies that ≃ε is not necessarily an ε-perturbed bisimulation itself.

Let s ∼∗
ε t denote that states s and t are related by a transitive ε-bisimulation. We

remark that both ≃ε and ∼∗
ε are definitions in the spirit of a notion called ε-lumpability (or

quasi-lumpability), which describes that a LMC can be made exactly lumpable w.r.t. a given
equivalence by slight changes (up to ε in each value) of its transition probabilities [17, 29, 28].
In contrast to the non-transitive case, any transitive ε-APB is also an ε-bisimulation.

The requirement of transitivity comes with the downside that there is not always a unique
largest transitive ε-bisimulation: in Figure 7, no transitive ε-bisimulation R can contain
both (s, t) and (t, u), as otherwise also (s, u) ∈ R must hold. However, s ∼∗

ε t and t ∼∗
ε u

as R1 = {{s, t}, {u}, {x}, {y}} and R2 = {{s}, {t, u}, {x}, {y}} are transitive ε-bisimulations.
Hence, the union of all transitive ε-bisimulations in a given model is thus not always a
transitive ε-bisimulation itself. This is different than in the non-transitive case, where ∼ε is
always an ε-bisimulation [25]. Since s ≃ε t and t ≃ε u but s ̸≃ε u in Figure 7, it follows that
there is also not always a unique largest ε-perturbed bisimulation.

Now consider, for ε < 1
4 , the LMCs Ms and Mt on the left of Figure 8, with initial

states s and t, respectively. In both models, ∼ is the finest equivalence that contains (u2, u3).
Let R1 be the finest equivalence that contains (s, t), (u1, u2), (u3, u4), and let R2 be the one
that contains (s, t), (u1, u3), (u2, u4). Both R1 and R2 are transitive ε-bisimulations, and
since u1 ≁ε u4 no other transitive ε-bisimulation can contain (s, t). Hence, no such relation
contains (u2, u3). Let Q = Ms/∼ be as on the right of the figure. Then Ms ∼ Q and
Ms ≃ε Mt as, e.g., the ε-perturbations M′

s and M′
t that enforce u′

1 ∼ u′
2 and u′

3 ∼ u′
4 and

are otherwise unchanged are bisimilar. However, there are no bisimilar ε-perturbations of
Mt and Q, i.e., Mt ̸≃ε Q. Since ≃0 = ∼ this observation additionally yields that ≃ε cannot
be additive, as otherwise Ms ∼ Q and Ms ≃ε Mt would have to imply Mt ≃ε Q. All in
all, this leads to the following result.
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Figure 9 An LMC that demonstrates that ≃ε is strictly finer than ∼∗
ε .
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Figure 10 The LMCs M2 (left) and N2 (right), as used in the proof of Theorem 4.8.

▶ Proposition 4.4. The relation ≃ε is not additive in the tolerances and can distinguish
bisimilar LMCs in the following sense: there are LMCs M1, M2 and N such that M1 ∼ M2
and M1 ≃ε N , but M2 ̸≃ε N .

This behavior of ≃ε is in contrast to, e.g., ∼ε, as s1 ∼ s2 and s1 ∼ε t always implies
s2 ∼ε t. In particular, the non-additivity does not hinge on the existence of bisimilar states
in the model. To see this consider, e.g., slight perturbations M′

s and M′
t of the LMCs on the

left of Figure 8, where for some δ < ε we set P (u2)(v) = 1
2 − ε − δ and P (u2)(w) = 1

2 + ε + δ,
and leave the rest of the models unchanged. Then u2 ≁ u3 in M′

s and M′
t, but still M′

s ≃δ Q
and M′

s ≃ε M′
t while M′

t ̸≃ε+δ Q, where Q is again the (unperturbed) LMC on the right
of the figure. Similar results hold for ∼∗

ε, as Ms ∼∗
ε Mt and Ms ∼ Q, but Mt ≁∗

ε Q.
We now discuss how ≃ε relates to ∼ε and ∼∗

ε, starting with the direction from left to
right. From [39] it follows directly that M ≃ε N implies M ∼ε N . As we show next, the
claim also holds when considering the stronger requirement of transitive ε-bisimilarity.

▶ Lemma 4.5. M ≃ε N implies M ∼∗
ε N .

It is thus possible to transfer known results for ∼ε like, e.g., the preservation of approx-
imate satisfaction of bounded PCTL state formulas [13], the exact preservation of ε-robust
PCTL [27], or the bounds on finite horizon [14] and syntactically co-safe [31, 32] LTL
satisfaction probabilities to ε-perturbed bisimilar LMCs.

Regarding the reverse implication, consider Figure 9. There, the finest equivalence that
relates u1, u2 and u3 and contains (s, t) is a transitive ε-bisimulation. However, there is no
ε-perturbation of the LMC in which s and t are bisimilar. Hence, s ∼∗

ε t, but s ̸≃ε t.

▶ Lemma 4.6. ≃ε is strictly finer than ∼∗
ε.

In fact, ε-bisimilarity is not even guaranteed to imply δ-perturbed bisimilarity if ε ≪ δ,
or if the Markov chains in question are graph-isomorphic.

▶ Theorem 4.7. Let ε ∈
(
0, 1

4
]
. There are LMCs M and N with M ∼ε N but M ̸≃ 1

4
N .
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▶ Theorem 4.8. There is a family F = {(Mn, Nn) | n ∈ N≥1} of pairs of finite LMCs
such that, for all n ∈ N≥1 and ε ∈

(
0, 1

n·(n+1)2

]
, Mn and Nn are graph-isomorphic and

ε-bisimilar, but Mn ̸≃δ Nn for any δ < nε.

Proof sketch. We sketch the case n = 2, with M2 and N2 as in Figure 10, ε ∈
(
0, 1

18
]

and ∼ε

the symmetric and reflexive closure of {(s, t), (s1, t1), (s1, t2), (s2, t2), (s2, t3), (s3, t3), (x, y)}.
Any bisimilar perturbations M′

2 and N ′
2 must ensure s′ ∼ t′. The smallest (w.r.t. the

required tolerances) perturbations that achieve this make s′
2, s′

3 and t′
3, as well as s′

1, t′
1 and

t′
2, bisimilar, and set the total probability mass from s′ (resp. t′) to reach these (sets of)

state(s) to 1
2 each. But this requires a perturbation by at least δ = 1

9 ≥ 2ε. ◀

▶ Remark 4.9. Theorems 4.7 and 4.8 seem to resemble results of [38, 39]. There, an LMC is
presented in which a specific order of merging ε-bisimilar states results in an approximate
quotient that requires tolerance ≥ 1

4 , and a family of LMCs is provided [39, Thm. 12] in
which merging ε-bisimilar states yields an approximate quotient that requires tolerance ≥ nε.
Our results differ in that we consider the existence of bisimilar ε-perturbations of two LMCs,
and in that we show that no suitable smaller tolerance exists.

The observation that ≃ε is strictly finer than ∼ε (and even ∼∗
ε) raises the question

whether there are logical properties which are preserved under ≃ε, but not necessarily under
∼(∗)

ε . It is future work to make this precise. Here, we note that the bound for reachability
probabilities from Theorem 3.11 remains tight under ≃ε: the LMCs M and N in Figure 6
satisfy M ≃ε N , but the bounds are tight by Example 3.13.

The following theorem characterizes ≃ε in terms of transitive ε-bisimulations that satisfy
an additional centroid property specified as in Equation (1) below.

▶ Theorem 4.10. The following statements are equivalent:
(i) M ≃ε N .
(ii) There is an ε-perturbation of M ⊕ N in which sM

init ∼ sN
init.

(iii) There is a transitive ε-bisimulation R on M ⊕ N with (sM
init, sN

init) ∈ R such that for
each A ∈ S/R, where S is the disjoint union of SM and SN , there is a P ∗

A ∈ Distr(S/R)
with

|P (s)(C) − P ∗
A(C)| ≤ ε

2 for all s ∈ A and all R-closed sets C. (1)

From the next lemma it follows immediately that, for a given equivalence R ⊆ S × S, the
centroid property in Equation (1) can be checked efficiently.

▶ Lemma 4.11. For a finite set X and µ1, . . . , µk ∈ Distr(X), the following are equivalent:
(i) There exists µ∗ ∈ Distr(X) with |µl(B) − µ∗(B)| ≤ ε

2 for all l ∈ {1, . . . , k} and B ⊆ X.
(ii) There exists µ ∈ Distr(X) with ∥µl − µ∥1 ≤ ε for all l ∈ {1, . . . , k}.
(iii) The following linear constraint system over non-negative variables δl,i and xi for

l ∈ {1, . . . , k} and i ∈ X is solvable:∑
i∈X

xi = 1 and xi − µl(i) ≤ δl,i and µl(i) − xi ≤ δl,i and
∑
i∈X

δl,i ≤ ε.

The equivalence to (iii) further implies that µ∗ = µ can be computed in polynomial time.

However, as we show next, for given M, N and ε it is NP-complete to decide if M ≃ε N
and if M ∼∗

ε N . This stands in contrast to the polynomial time computability of ∼ε [25],
which is possible in O(|S|7) by iteratively solving maximum flow problems. Our proofs are
inspired by [39, Thm. 1], which proves that deciding if a LMC has an ε-quotient with a fixed
number of states is NP-complete.
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▶ Theorem 4.12. For given finite LMCs M and N and given ε ∈ (0, 1], it is NP-complete
to decide if (i) M ≃ε N and to decide if (ii) M ∼∗

ε N .

Nevertheless, one can check in polynomial time if a given equivalence R is a transitive
ε-bisimulation or an ε-perturbed bisimulation. Since constructing quotients w.r.t. these
relations by collapsing equivalence classes into single states can be done efficiently as well,
the notions are therefore still suitable for constructing abstractions in practical applications.

▶ Proposition 4.13. Given an equivalence R, one can decide in polynomial time if (i) R is
a transitive ε-bisimulation and if (ii) R is an ε-perturbed bisimulation.

5 Branching and Weak ε-Bisimulation

We now introduce approximate versions of branching and weak probabilistic bisimulation. A
similar approach has been discussed sporadically in the context of noninterference under the
term “weak bisimulation with precision ε” [4, 7, 5, 6, 26, 3]. While our notion of branching
ε-bisimilarity is a branching variant of transitive ε-bisimilarity ∼∗

ε, the weak ε-bisimilarity
we propose is a weak variant of ∼ε. Hence, the former is tailored to the construction of
quotients of a given model, while the latter is closer to classic process relations.

▶ Definition 5.1. An equivalence R ⊆ S ×S is a branching ε-bisimulation if for all (s, t) ∈ R

and all R-closed sets A ⊆ S it holds that

(i) l(s) = l(t) and (ii) |Prs([s]RUA) − Prt([t]RUA)| ≤ ε.

We call s, t ∈ S branching ε-bisimilar, written s ≈b
ε t, if they are related by a branching

ε-bisimulation. LMCs M and N are branching ε-bisimilar, written M ≈b
ε N , if sM

init ≈b
ε sN

init

in M ⊕ N .

We require branching ε-bisimulations to be equivalences, as their goal is to abstract from
stutter steps inside a state’s equivalence class. Because of transitivity, Definition 5.1 can also
be formulated in the style of Definition 3.1 and should thus not be understood as an explicit
extension of Definition 3.4. With the same arguments as for ∼∗

ε and ≃ε, transitivity causes
that there may not be a unique maximal branching ε-bisimulation, that ≈b

ε is not additive in
the tolerances, and that it can differentiate bisimilar models: the first claim follows from
s ≈b

ε t and t ≈b
ε u but s ̸≈b

ε u in Figure 7, the others from ∼∗
ε = ≈b

ε in Figure 8.

▶ Definition 5.2. A reflexive and symmetric relation R ⊆ S × S is a weak ε-bisimulation if
for all (s, t) ∈ R and all A ⊆ S it holds that

(i) l(s) = l(t) and (ii) Prs(L(s)UA) ≤ Prt(L(t)UR(A)) + ε.

We call s, t ∈ S weakly ε-bisimilar, written s ≈w
ε t, if they are related by a weak ε-bisimulation.

LMCs M and N are weakly ε-bisimilar, written M ≈w
ε N , if sM

init ≈w
ε sN

init in M ⊕ N .

In contrast to branching ε-bisimulations, we do not require transitivity for weak ε-
bisimulations. As it turns out, ≈w

ε is instead additive in the tolerances.

▶ Lemma 5.3. s ≈w
ε t and t ≈w

δ u implies s ≈w
ε+δ u.

Further, ≈w
0 and ≈b

0 coincide with ≈w and ≈b, respectively, so our notions are conservative
extensions of their exact counterparts. In particular, as ≈w = ≈b for LMCs [10], it follows
that ≈w

0 = ≈b
0. For ε > 0 the notions can, however, become incomparable. This is different

compared to the nonprobabilistic case, where ≈b is strictly finer than ≈w [51].
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Figure 11 The LMCs used in the proof of Proposition 5.4.
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Figure 12 The LMCs used in the proof of (i) of Proposition 5.5.

▶ Proposition 5.4. For 0 < ε < 1
4 , s ≈b

ε t ⇏ s ≈w
ε t and s ≈w

ε t ⇏ s ≈b
ε t.

Proof. Let ε ∈ (0, 1
4 ) and consider Figure 11. In the left LMC, s ≈b

ε t, as the largest
branching ε-bisimulation is induced by the equivalence classes {{s, t}, {s1, t1}, {x}, {y}} and,
in particular, s ̸≈b

ε s1 and t ̸≈b
ε t1. However, s ̸≈w

ε t as Prt(L(t)U{x}) = 5
8 + 5

4 ε − ε2 >
5
8 + ε = Prs(L(s)U{x}) + ε. Furthermore, in the right LMC, s ≈w

ε t while s ̸≈b
ε t since any

branching ε-bisimulation R that contains (s, t) must also contain (u, w) due to transitivity,
which is not possible as, e.g., |Pru([u]RU[x]R) − Prw([w]RU[x]R)| > ε. ◀

The major difference between ≈w
ε , ≈b

ε and ∼ε, ≡ε is that the former can abstract from
(some) stutter steps. Consequently, if no stuttering is possible, i.e., when P (s)(L(s)) = 0 for
all s ∈ S, we have ∼∗

ε = ≈b
ε and ∼ε = ≈w

ε . Otherwise, the notions become incomparable.

▶ Proposition 5.5. Let ≈ε ∈ {≈b
ε, ≈w

ε }. Then there are LMCs with states s, t ∈ S such that
(i) s ∼ε t and s ≡ε t but s ̸≈ε t, and (ii) s ≈ε t but s ≁ε t and s ̸≡ε t. Hence, ≈ε and ∼ε, ≡ε

are incomparable. Furthermore, (i) and (ii) also hold for ∼∗
ε and ≡∗

ε instead of ∼ε and ≡ε.

Proof. To show (i) we do a case distinction on ≈ε. If ≈ε = ≈b
ε, consider the LMC on the

left of Figure 12 where ε1, ε2 ∈ (0, 1), ε1 ̸= ε2, ε1 + ε2 < 1, and ε = |ε1 − ε2|. In this model,
both s ∼ε t and s ≡ε t. However, for any equivalence R that only relates states with the
same label, |Prs([s]RU{x1}) − Prt([t]RU{x1})| = |ε1−ε2|

ε1+ε2

ε1+ε2<1
> |ε1 − ε2| = ε, so s ̸≈b

ε t.
If ≈ε = ≈w

ε , consider the right of Figure 12 with ε ∈ (0, 1). There, s ∼ε t and s ≡ε t.
However, Prt(L(t)U{x}) = 1 > 4(1−ε)2

(2−ε)2 = Prs(L(t)U{x}) for all ε ∈ (0, 1), so s ̸≈w
ε t.

The second claim follows when considering an LMC with three states, say s, t and x,
with initial state s and l(s) = l(t) ̸= l(x) as well as P (s)(t) = P (t)(x) = P (x)(x) = 1. There,
s ≈b

ε t and s ≈w
ε t for any ε, but neither s ≡ε t nor s ∼ε t.

The claims are shown analogously when replacing ∼ε and ≡ε with ∼∗
ε resp. ≡∗

ε. ◀

Note that the anomaly of ≡ε described in Example 3.5 does not occur for branching
ε-bisimilarity, as here transitivity would enforce ui ≈b

ε uj for all i, j in Figure 3 if s ≈b
ε t.

The next lemma bounds the probabilities of states related by ≈b
ε or ≈w

ε to stutter forever.
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Figure 13 An LMC M (left) and its transformation MR (right) w.r.t. the branching ε-bisimulation
R with equivalence classes {s, t, s1, t1}, {p, q}, {x} for 0 < ε < 1 − 2δ and divR = {{s, t, s1, t1}, {x}}.

▶ Lemma 5.6. Let ε ∈ [0, 1] and let R be a branching ε-bisimulation.
1. If (s, t) ∈ R and C = [s]R = [t]R then |Prs(□C) − Prt(□C)| ≤ ε.
2. If M is finite and (s, t) ∈ R then, for any C ∈ S/R, either (i) Prs(□C) = 0 or

(ii) Prs(□C) ≥ 1 − ε for all s ∈ C.
3. If s ≈w

ε t and b = l(s) = l(t) then |Prs(□b) − Prt(□b)| ≤ ε.

Since ≈b
ε and ≈w

ε cannot differentiate single steps from steps after an arbitrary (but
finite) amount of stuttering, they do not preserve any next-step probabilities. Furthermore,
in Figure 4 both s ≈b

ε t and s ≈w
ε t, so by Example 3.9 we cannot expect a better bound

for finite horizon satisfaction probabilities in related states than the one from [14] stated in
Theorem 3.8. We can, however, extend Theorem 3.11 to states related by ≈b

ε and ≈w
ε .

Given an equivalence R on a finite LMC M, let divR ⊆ S/R be the set of divergent
R-equivalence classes, i.e., C ∈ divR iff Prs(□C) ≥ 1 − ε for all s ∈ C. We construct from M
an LMC MR and an equivalence Rb on MR with R ⊆ Rb. Intuitively, MR is obtained from
M by redirecting the probabilities Prs(□C) for C = [s]R to fresh “divergence states” sC .

▶ Definition 5.7. Given a finite LMC M and an equivalence R that only relates states with
the same label, let MR = (SR, PR, sinit, lR) with

SR = S ∪ {sC | C ∈ divR} where the sC are fresh, pairwise different states
lR(s) = l(s) if s ∈ S and l(sC) = l(s) for some s ∈ C

for s ∈ S and C = [s]R, the values of the distribution PR(s) are defined by

PR(s)(t) =


Prs(CUt), if t ∈ S \ C

Prs(□C), if s ̸= sC and t = sC

1, if s = t = sC

0, otherwise

.

An example for the transformation from M to MR can be found in Figure 13. We now
show the connection between branching ε-bisimulations R on finite LMCs M and transitive
ε-bisimulations on their transformations MR.

▶ Lemma 5.8. Let M be finite, R an equivalence relating only equally labeled states, and
Rb the finest equivalence on SR with R ⊆ Rb and (s, sC) ∈ Rb for all C ∈ divR and s ∈ C.
Then R is a branching ε-bisimulation on M iff Rb is a transitive ε-bisimulation on MR.

It is clear from the definition of MR that for every C ∈ S/R and all s ∈ S with s /∈ C we
have PrM

s ([s]RUC) = PR(s)(C). Hence, Lemma 5.8 allows us to transfer Theorem 3.11 to
states s ≈b

ε t, since they are ε-bisimilar in MR. As in MR any transition from s to a u ∈ S

represents an equivalence class change in M, the random variable N b now has to count the
number of equivalence class changes on paths to a g- or f -labeled state.
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▶ Corollary 5.9. Let M be finite, let some states in M be labeled with g, and let exactly the
states that cannot reach a g-labeled state be labeled with f . Further, let s ≈b

ε t, and let N b

denote the random variable that counts the number of equivalence class changes until a g- or
f -labeled state is reached. Then |Prs(♢g) − Prt(♢g)| ≤ ε · Es(N b).

Furthermore, it is possible to extend Theorem 3.11 to weakly ε-bisimilar states.
▶ Proposition 5.10. Let M, f and g be as in Corollary 5.9, let s ≈w

ε t and let Nw denote
the random variable that counts the number of label changes until a g- or f-labeled state is
reached. Then |Prs(♢g) − Prt(♢g)| ≤ ε · Es(Nw).
Proof sketch. Let L = {b ∈ 2AP | ∃ s ∈ S : Prs(□b) > 0}. From M we construct an LMC
Mw, almost similar to MR in Definition 5.7. The main differences are that we introduce fresh
states sb for all b ∈ L, and that we set P w(s)(t) = Prs(L(s)Ut) for all s, t ∈ S with l(s) ̸= l(t)
as well as P w(s)(sb) = Prs(□b) if l(s) = b ∈ L. Because for any weak ε-bisimulation R the
finest reflexive and symmetric relation Rw on Mw with R ⊆ Rw and (s, sb) ∈ Rw iff b = l(s)
and Prs(□b) ≥ 1 − ε is an ε-bisimulation on Mw, the result follows from Theorem 3.11. ◀

As the LMCs in Figure 6 are both branching ε
p -bisimilar and weak ε

p -bisimilar, and since
in these models Es(N b) = Es(Nw) = 1, the bounds are again tight by Example 3.13.

We finish this section by analyzing the complexity of deciding if two given states s, t are
branching ε-bisimilar, i.e., if s ≈b

ε t. The analogous problem for ≈w
ε is left open.

▶ Theorem 5.11. Given a finite M, s, t ∈ S, and ε ∈ (0, 1], deciding if s ≈b
ε t is NP-complete.

6 Conclusion and Future Work

We investigated several new types of approximate probabilistic bisimulation and showed how
they interrelate, as well as how they are connected to notions from the literature like, e.g., ∼ε

and ≡ε (see Figure 1). These connections in turn allowed the transfer of known preservation
results for logical formulas between the different notions, which we extended by tight bounds
on the absolute difference of unbounded reachability probabilities in weak and branching
ε-bisimilar states. Additionally, we established complexity results for most of our relations.

The results of Section 4 indicate that ε-perturbed bisimilarity ≃ε and transitive ε-
bisimilarity ∼∗

ε show some anomalies (lack of additivity, the possibility to differentiate
bisimilar models and the fact that they themselves are not necessarily an ε-perturbed resp. a
transitive ε-bisimulation) when viewed as process relations. However, both relations can be
interesting for algorithmic purposes as they permit efficient quotienting techniques: given a
transitive ε-bisimulation R (with or without the centroid property) on an LMC M, one can
build in polynomial time a quotient LMC that arises from M by collapsing all R-equivalence
classes into single states. The quotient under an ε-perturbed bisimulation R1 enjoys the
property that every state s and its R1-equivalence class [s]R1 are ε

2 -bisimilar [38], while for
the quotients under a transitive ε-bisimulation R2 that lacks the centroid property we can
only guarantee s ∼ε [s]R2 . On the other hand, transitive ε-bisimulations can identify more
states and hence can induce smaller quotients.

Similarly, the transitivity of branching ε-bisimulations causes the same anomalies as for
≃ε and ∼∗

ε. However, checking if a given equivalence is a branching ε-bisimulation and con-
structing a corresponding quotient is again possible in polynomial time. Hence, investigating
the potential of transitive (or branching) ε-bisimulations as abstraction techniques for an
approximate analysis of LMCs in practice is an interesting future research direction.

Other open questions include the search for a characterization of logical formulas that
distinguish ∼ε, ∼∗

ε, ≈w
ε , ≈b

ε and ≃ε, and how our results relate to bisimilarity distances [49].
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