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Abstract
When verifying liveness properties on a transition system, it is often necessary to discard spurious
violating paths by making assumptions on which paths represent realistic executions. Capturing that
some property holds under such an assumption in a logical formula is challenging and error-prone,
particularly in the modal µ-calculus. In this paper, we present template formulae in the modal
µ-calculus that can be instantiated to a broad range of liveness properties. We consider the following
assumptions: progress, justness, weak fairness, strong fairness, and hyperfairness, each with respect
to actions. The correctness of these formulae has been proven.
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1 Introduction

Formal verification through model checking requires a formalisation of the properties of
the modelled system as formulae in some logic, such as LTL [32], CTL [17] or the modal
µ-calculus [29]. In this paper, we focus on the modal µ-calculus, a highly expressive logic
used in established model checkers such as mCLR2 [10] and CADP [19].

A frequently encountered problem when checking liveness properties is that spurious
violations are found, such as paths on which some components never make progress. Often,
such paths do not represent realistic executions of the system. It is then a challenge to
restrict verification to those paths that do represent realistic system executions. For this,
we use completeness criteria [21, 22]: predicates on paths that say which paths are to be
regarded as realistic runs of the system. These runs are called complete runs. Examples of
completeness criteria are progress, justness and fairness.

It turns out that writing a modal µ-calculus formula for a property being satisfied under a
completeness criterion is non-trivial. Since the µ-calculus is a branching-time logic, we cannot
separately formalise when a path is complete and when it satisfies the property, and then
combine the two formalisations with an implication. Instead, a more intricate integration
of both aspects of a path is needed. Our aim is to achieve such an integration for a broad
spectrum of liveness properties and establish the correctness of the resulting formulae. To
this end, we shall consider a template property that can be instantiated to a plethora of
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liveness properties and, in particular, covers all liveness property patterns of [16]. Then, we
present modal µ-calculus formulae integrating the completeness criteria of progress, justness,
weak fairness, strong fairness, and hyperfairness with this template property.

As discussed in [23], for the formulation of realistic completeness criteria it is sometimes
necessary to give special treatment to a set of blocking actions, i.e., actions that require
cooperation of the environment in which the modelled system operates. Our template
formulae are therefore parameterised with a set of blocking actions. We shall see that, given
a set of blocking actions, there are two different interpretations of hyperfairness; we call these
weak and strong hyperfairness.

Regarding our presented formulae, the progress formula is similar to those commonly used
for liveness properties even when completeness is not explicitly considered. Our formulae
for justness, weak fairness and weak hyperfairness only subtly differ from each other. We
characterise the similarities these three share and give a generic formula that can be adapted
to represent all completeness criteria that meet these conditions. Lastly, we observe that
strong fairness and strong hyperfairness do not meet these conditions. We give alternative
formulae that are significantly more complex. Whether more efficient formulae for these
completeness criteria exist remains an open problem.

Modal µ-calculus formulae are often hard to interpret. Accordingly, it is not trivial to see
that our formulae indeed express the integration of liveness properties with completeness
criteria. We therefore include elaborate correctness proofs in the full version of this paper.

Our work is essentially a generalisation along two dimensions (viz., the completeness
criterion and the liveness property) of the works of [34] and [6, 36]. In [34], the tool PASS
is presented for automatically translating common property patterns into modal µ-calculus
formulae. Some of those patterns integrate an assumption that excludes paths deemed
unrealistic, but since the exact assumption is not stated separately, we cannot make a formal
comparison with our approach. In [6], a formula for justness is presented, covering one of the
properties we cover. This formula forms the basis for our justness, weak fairness and weak
hyperfairness formulae. Our formulae for strong fairness and strong hyperfairness are in part
inspired by the formula for termination under strong fairness presented in [36].

The organisation of this paper is as follows. In Section 2 we recap the relevant definitions
on labelled transition systems, as well as the syntax and semantics of the modal µ-calculus.
In Section 3, we motive our work with an example, and in Section 4 we give the completeness
criteria we cover in this paper. In Section 5, we formally identify the class of liveness
properties we study and relate it to a popular class of properties. Our template formulae are
presented in Section 6, combining the completeness criteria from Section 4 with the property
template from Section 5. We give a small application example in Section 7 and discuss the
scope of our work in Section 8. Finally, we give our conclusions in Section 9.

2 Preliminaries

We represent models as labelled transition systems (LTSs). In this section, we briefly
introduce the relevant definitions on LTSs, as well as the modal µ-calculus.

2.1 Labelled Transition Systems
▶ Definition 1. An LTS is a tuple M = (S, sinit ,Act,Trans) where

S is a set of states,
sinit ∈ S is the initial state,
Act is a set of action labels, also referred to as the alphabet of the LTS, and
Trans ⊆ S × Act × S is a transition relation.
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In this paper, we only consider finite LTSs, such as the kind used in finite-state model
checking. In particular, our formulae are proven correct under the assumption that Act
is finite. We write s a−→ s′ as shorthand for (s, a, s′) ∈ Trans, and for a given transition
t = (s, a, s′) we write src(t) = s, act(t) = a and trgt(t) = s′.

For the definitions below, we fix an LTS M = (S, sinit ,Act,Trans).

▶ Definition 2. A path is an (alternating) sequence π = s0t1s1t2 . . . of states s0, s1, . . . ∈ S
and transitions t1, t2, . . . ∈ Trans. A path must start with a state, and must be either infinite,
or end in a state. In the latter case, the end of the path is referred to as the final state. For
all i ≥ 0, ti+1 must satisfy src(ti+1 ) = si and trgt(ti+1 ) = si+1.

We sometimes refer to transitions on a path as steps. We say an action occurs on a path if a
transition labelled with that action is on the path. We call a path on which no action in some
set α occurs an α-free path. One path can be appended to another: let π′ = s′

0t
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′
1 . . . t

′
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′
n

and π′′ = s′′
0 t

′′
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1 . . ., where π′ must be finite and π′′ may be finite or infinite. Then the path

π defined as π′′ appended to π′ is written as π = π′ · π′′ = s′
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′
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only allowed when s′
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▶ Definition 3. We say that:
A transition t ∈ Trans is enabled in a state s ∈ S if, and only if, src(t) = s.
An action a ∈ Act is enabled in a state s ∈ S if, and only if, there exists a transition
t ∈ Trans with act(t) = a that is enabled in s.
An action a ∈ Act is perpetually enabled on a path π if a is enabled in every state of π.
An action a ∈ Act is relentlessly enabled on a path π if every suffix of π contains a state
in which a is enabled.
A state without enabled actions is called a deadlock state.

Every action that is perpetually enabled on a path is also relentlessly enabled on that path.

2.2 Modal µ-Calculus
The modal µ-calculus is given in [29]. Our presentation of the logic is based on [7, 8, 9, 26].

The syntax of the modal µ-calculus is described by the following grammar, in which a

ranges over the set of actions Act, and X ranges over a set of formal variables Var .

ϕ, ψ ::= ff | X | ¬ϕ | ϕ ∨ ψ | ⟨a⟩ϕ | µX .ϕ

Here ff is false; ¬ represents negation; ∨ is disjunction; ⟨ ⟩ is the diamond operator; and µ is
the least fixpoint operator. We say that µX .ϕ binds X in ϕ. Variables that are unbound in
a formula are free, and a formula without free variables is closed.

A modal µ-calculus formula ϕ must both adhere to this grammar and be syntactically
monotonic, meaning that for every occurrence of µX.ψ in ϕ, every free occurrence of X in ψ
must always be preceded by an even number of negations.

We give the semantics of a modal µ-calculus formula ϕ with respect to an arbitrary LTS
M = (S, sinit ,Act,Trans) and environment e : Var → 2S .

Jff KM
e = ∅ Jϕ ∨ ψKM

e = JϕKM
e ∪ JψKM

e

JXKM
e = e(X) J⟨a⟩ϕKM

e =
{
s ∈ S | ∃s′∈S .s

a−→ s′ ∧ s′ ∈ JϕKM
e

}
J¬ϕKM

e = S \ JϕKM
e JµX .ϕKM

e =
⋂ {

S ′ ⊆ S | S ′ ⊇ JϕKM
e[X:=S′]

}
In contexts where the model is fixed, we drop the M from JϕKM

e . Additionally, we drop e
when the environment does not affect the semantics of the formula, e.g. with closed formulae.
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We use conjunction, ∧, and implication, ⇒, as the usual abbreviations. We also add
several abbreviations: tt = ¬ff for true; [a]ϕ = ¬⟨a⟩¬ϕ for the box operator; and νX.ϕ =
¬µX.(¬ϕ[X := ¬X]) for the greatest fixpoint.

To express formulae more compactly, we extend our syntax to allow regular expressions
over finite sets of actions to be used in the box and diamond operators. Since we limit this
to finite sets of actions, the syntactical extension does not increase the expressivity of the
logic, it merely simplifies the presentation. This is a common extension of the µ-calculus
syntax, for instance shown in [26], based on the operators defined for PDL [18]. We overload
the symbol for a single action to also represent the singleton set containing that action. We
use union, intersection, set difference, and set complement to describe sets of actions as
usual. Regular expressions over sets of actions, henceforth referred to as regular formulae,
are defined by the following grammar:

R,Q ::= ε | α | R ·Q | R+Q | R⋆

The empty sequence is represented by ε, and α ranges over sets of actions. The symbol ·
represents concatenation, + the union of formulae, and ⋆ is closure under repetition.

We define the meaning of the diamond operator over the new regular formulae as
abbreviations of standard modal µ-calculus formulae:

⟨ε⟩ϕ = ϕ ⟨α⟩ϕ =
∨
a∈α

⟨a⟩ϕ ⟨R · Q⟩ϕ = ⟨R⟩⟨Q⟩ϕ

⟨R + Q⟩ϕ = ⟨R⟩ϕ ∨ ⟨Q⟩ϕ ⟨R⋆⟩ϕ = µX .(⟨R⟩X ∨ ϕ)

The box operator is defined dually. We say a path π matches a regular formula R if the
sequence of actions on π is in the language of R.

3 Motivation

When analysing algorithms and systems, there are many different properties which may need
to be checked. For instance, when model checking mutual exclusion algorithms we want to
check linear properties such as mutual exclusion and starvation freedom, but also branching
properties such as invariant reachability of the critical section. The modal µ-calculus, which
subsumes even CTL⋆, is able to express all these properties and more, and is therefore used
in toolsets such as mCLR2 [10] and CADP [19].

An issue that is frequently encountered when checking liveness properties in particular, is
that the model admits executions that violate the property but do not represent realistic
executions of the real system. For example, models of algorithms that contain a busy waiting
loop usually admit executions where processes do nothing except wait. Infinite loops can
also be introduced by abstractions of reality, such as modelling a loop to represent an event
that occurs an arbitrary, but finite, number of times. Counterexamples that are due to such
modelling artefacts obscure whether the property is satisfied on all realistic executions. The
problem we address in this paper is how to avoid such counterexamples and check properties
only on realistic executions. We illustrate the problem with an example, which we also
employ as a running example throughout this paper.

▶ Example 4. Consider the coffee machine modelled in Figure 1. When a user places an
order for one or more cups of coffee, they are required to scan their payment card. If the user
prefers using coinage, they switch the machine to its alternate mode (to_cash), and then
pay in cash. In the alternate mode, the machine can be switched back using to_card. After
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s0 s1

s2

s3 s4

t1:order

t2:to_cash t3:to_card

t4 :card

t5:cash
t6:brew

t7:brew

t8:deliver

Figure 1 The LTS for the running example.

payment, the machine will brew the cup(s) of coffee. This is modelled as a non-deterministic
choice between a looping and a final brew action, since at least one cup was ordered. Finally,
the coffee is delivered and the machine awaits the next order.

We consider three example properties.
1. Single order : whenever an order is made, there may not be a second order until a deliver

has taken place, [Act⋆ · order · deliver⋆ · order ]ff .
2. Inevitable delivery: whenever an order is made, there will inevitably be an occurrence of

deliver , [Act⋆ · order ]µX.(⟨Act⟩tt ∧ [deliver ]X).
3. Possible delivery: it is invariantly possible to eventually execute the deliver action,

[Act⋆]⟨Act⋆ · deliver⟩tt.

The described problem occurs with inevitable delivery: s0t1s1t4(s3t6)ω is a violating path,
on which infinitely many cups are part of the same order. Similarly, s0t1(s1t2s2t3)ω violates
the property because the user never decides on a payment method. The first counterexample
represents an impossible scenario, and the second gives information on problematic user
behaviour but tells us little about the machine itself.

The kind of spurious counterexamples discussed in the example above primarily occur
when checking liveness properties. We therefore focus on liveness properties, such as inevitable
delivery, in this paper. We will briefly discuss safety properties in Section 8.

There are ad-hoc solutions to exclude unrealistic counterexamples, e.g. altering the model
to remove the unrealistic executions, or tailoring the formula to exclude specific problematic
counterexamples [25]. Such ad-hoc solutions are undesirable because they clutter the model
or the formula, and are therefore error-prone. We aim for a more generic solution, of which
the correctness can be established once and for all. Such a generic solution requires, on the
one hand, a general method to distinguish between realistic and unrealistic executions, and,
on the other hand, a general class of liveness properties.

A general method to distinguish between realistic and unrealistic executions is provided
by completeness criteria [21, 22], i.e., predicates on paths that label some as complete and
all others as incomplete. If a property is satisfied on all complete paths, it is satisfied under
the given completeness criterion. Completeness criteria give us a model-independent way
to determine which paths are unrealistic, and therefore a generic solution to the stated
problem. Depending on the property and the model, we may prefer a different completeness
criterion. We therefore consider several criteria instead of fixing one specific criterion. These
completeness criteria are discussed in Section 4.

To find a general class of liveness properties, we take the property specification patterns
(PSP) of [16] as a starting point. Since the modal µ-calculus as presented in Section 2.2
supports references to action occurrences but not state information, we specifically interpret
these patterns on action occurrences. Our first contribution, in Section 5, will be to
characterise a class of liveness properties that subsumes all liveness properties expressible in
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PSP. Our second and main contribution is then presented in Section 6, where we combine
the identified completeness criteria with our class of liveness properties, yielding template
formulae for each combination.

4 Completeness Criteria

It is often assumed, sometimes implicitly, that as long as a system is capable of executing
actions, it will continue to do so [24]. One could consider this the “default” completeness
criterion, also known as progress [21]; it says that only paths that are infinite or end in
a deadlock state model complete runs and are hence complete paths. We first present a
modified version of the progress assumption that allows some actions to be blocked by the
environment. We then define the other completeness criteria considered in this paper. As
already remarked in the previous section, the modal µ-calculus is most suited to reasoning
about action occurrences. Hence, we focus on completeness criteria defined on action labels.
For more general definitions on sets of transitions, see [24].

4.1 Progress with Blocking Actions
In [23], it is argued that it is useful to consider some actions of an LTS as blocking. A
blocking action is an action that depends on participation by the environment of the modelled
system. Consequently, even when such an action is enabled in a state because the system is
willing to perform it, it may not be possible for the action to occur because the environment
is uncooperative. In this paper, we refer to the set of blocking actions as B ⊆ Act, and the
set of non-blocking actions as B = Act \ B. Which actions are in B is a modelling choice.

The default progress assumption can be adapted to account for blocking actions [20, 24].

▶ Definition 5. A state s ∈ S is a B-locked state if, and only if, all actions enabled in s are
in B. A path π is B-progressing if, and only if, it is infinite or ends in a B-locked state.

We refer to the assumption that only B-progressing paths represent complete executions
as B-progress. The “default” completeness criterion is equivalent to ∅-progress.

▶ Example 6. Consider Figure 1. Here, order is an environment action, since it involves the
user. If we do not assume that there will always be a next user, we should add order to B.
In some cases, we may want to consider the possibility that the machine is broken and not
capable of producing coffee. In those cases, we should add brew to B. Our choice of B affects
which paths are progressing: s0t1s1t4s3 is not ∅-progressing, but it is {brew}-progressing.

All completeness criteria we discuss in this paper are parameterised with a set of blocking
actions. The justness and fairness assumptions discussed in the remainder of this section
label paths as incomplete if certain actions do not occur. Since it can never be assumed that
the environment supports the occurrence of blocking actions, we do not want justness and
fairness to label paths as incomplete due to the non-occurrence of blocking actions.

For readability the prefix B- will sometimes be dropped from the names of the completeness
criteria and their acronyms. From this point, we will always discuss completeness criteria
with respect to a set of blocking actions.

4.2 Justness
Justness [20, 24] is a natural extension of progress to exclude infinite paths instead of
finite paths. The idea is that in addition to the system as a whole progressing, individual
components in that system should also be able to make progress unless they are prevented
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from doing so by other components. It is a weaker, and hence frequently more justifiable,
assumption than the fairness assumptions we cover in the next section. In its original
presentation, justness is defined with respect to sets of transitions. Which components
contribute to a transition and how they contribute to them determines which transitions
interfere with each other. We here consider justness defined with respect to actions instead,
based on [6]. We do not go into how it is determined which actions interfere with each other
here. For discussions on this topic and when the two definitions coincide, see [5, 6, 20].

Intuitively, justness of actions says that if an action a is enabled at some point of a path,
then eventually some action that can interfere with the occurrence of a must occur in that
path. That action may be a itself. In order to formalise the concept of interference, we
require the concept of a concurrency relation on actions, ⌣•.

▶ Definition 7. Relation ⌣• ⊆ Act × Act is a concurrency relation on actions if, and only if:
1. ⌣• is irreflexive, and
2. for all a ∈ Act, if π is a path from a state s in which a is enabled to a state s′ ∈ S such

that a⌣• b for all actions b occurring in π, then a is enabled in s′.
We write ⌣̸• for the complement of ⌣•. Note that ⌣• may be asymmetric.

Read a⌣• b as “a is concurrent with b”, and a⌣̸• b as “b interferes with a” or “b eliminates
a”. A labelled transition system can be extended with a concurrency relation on actions,
which produces a labelled transition system with concurrency (LTSC).

We here present the definition for justness of actions with blocking actions.

▶ Definition 8. A path π satisfies B-justness of actions (B-JA) if, and only if, for each
action a ∈ B that is enabled in some state s in π, an action a′ ∈ Act occurs in the suffix π′

of π starting in s such that a ⌣̸• a′.

▶ Example 9. Consider Figure 1, specifically the path s0t1(s1t2s2t3)ω. On this path the
user keeps switching the mode of the machine, without paying. To see if this path satisfies
∅-JA, we need a concrete ⌣•. Consider a ⌣• such that card ⌣̸• to_cash, cash ⌣̸• to_card,
and a ⌣̸• a for all action labels a. These are all required for ⌣• to be a valid concurrency
relation. This is because by Definition 7, ⌣• must be irreflexive, and when an action is
enabled it must remain enabled on any path on which no interfering action occurs. Since
card is enabled in s1 but not s2, it must be the case that card ⌣̸• to_cash. Similarly, we must
have cash ⌣̸• to_card. With such a concurrency relation, the path satisfies ∅-JA since every
action that is enabled is subsequently eliminated. In this LTS, there is no valid choice of ⌣•

that makes this path violate ∅-JA. However, if we modify Figure 1 by replacing both card
and cash with the action pay, then Definition 7 does not enforce that to_cash and to_card
interfere with the actions on t4 and t5, since pay is enabled in both s1 and s2. We can choose
whether pay ⌣• to_cash and pay ⌣• to_card. If pay is concurrent with both, then the path
s0t1(s1t2s2t3)ω violates ∅-JA. If either interferes with pay, then the path satisfies ∅-JA.

4.3 Fairness
There are situations where we want to exclude a larger set of infinite paths than those
excluded by justness, or where we do not have a concurrency relation. For this, we can use
what are called fairness assumptions in the literature. These are a class of predicates on
paths that distinguish between fair and unfair infinite paths. It is assumed that only the fair
paths are complete. For an overview of many common fairness assumptions, see [24]. In this
paper, we consider weak fairness of actions, strong fairness of actions, and (weak and strong)
hyperfairness of actions. Each of the assumptions we discuss has the general shape, adapted
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from [2], “if it is sufficiently often possible for an action to occur, it will occur sufficiently
often”. What it means for an action to be “sufficiently often possible” and “occur sufficiently
often” depends on the exact assumption.

We first discuss weak fairness of actions, which says that actions that are always enabled
must eventually occur. It is one of the most commonly discussed fairness assumptions. We
define weak fairness of actions formally, with respect to a set of blocking actions B.

▶ Definition 10. A path π satisfies B-weak fairness of actions (B-WFA) if, and only if, for
every suffix π′ of π, every action a ∈ B that is perpetually enabled in π′ occurs in π′.

▶ Example 11. Consider again Figure 1, with card and cash both replaced by pay. Then
the path s0t1(s1t2s2t3)ω violates ∅-WFA, since pay is perpetually enabled in a suffix of this
path without occurring. If there are two separate actions for paying with cash or card, the
path satisfies ∅-WFA because no actions are perpetually enabled in any suffix.

Next, strong fairness of actions says that on a path, all actions that are enabled infinitely
often, must occur infinitely often. Formally, we define strong fairness of actions as:

▶ Definition 12. A path π satisfies B-strong fairness of actions (B-SFA) if, and only if, for
every suffix π′ of π, every action a ∈ B that is relentlessly enabled in π′ occurs in π′.

Strong fairness is a stronger assumption than weak fairness, since it classifies more paths
as incomplete. This follows from perpetual enabledness implying relentless enabledness.

▶ Example 13. The path s0t1(s1t2s2t3)ω in Figure 1 satisfies ∅-WFA since there are no
perpetually enabled actions in any suffix of the path. However, cash is relentlessly enabled
in suffixes of this path, and yet does not occur. Hence, this path violates ∅-SFA.

Finally, we discuss hyperfairness of actions. Informally, it says that on all fair paths,
every action that can always become enabled must occur infinitely often. The idea is that if
there is always a reachable future where the action occurs, then it is merely unlucky if the
action does not occur infinitely often. The concept of hyperfairness is introduced and named
in [3]. For our presentation of hyperfairness, we use the generalisation from [30]. We first
formalise what it means that an action “can become” enabled, by defining reachability.

▶ Definition 14. We say that:
A state s ∈ S is B-reachable from some state s′ ∈ S if, and only if, there exists a B-free
path starting in s′ that ends in s.
An action a ∈ Act is B-reachable from some state s ∈ S if, and only if, there exists a
state s′ ∈ S that is B-reachable from s and in which a is enabled.
A state s ∈ S or action a ∈ Act is perpetually B-reachable on a path π if, and only if, it
is B-reachable from every state of π.
A state s ∈ S or action a ∈ Act is relentlessly B-reachable on a path π if, and only if,
every suffix of π contains a state from which it is B-reachable.

From the intuitive description of hyperfairness, it is clear it is a variant of weak or
strong fairness with reachability instead of enabledness, giving us two possible definitions of
hyperfairness. We name the two interpretations weak hyperfairness and strong hyperfairness
respectively. Both interpretations of hyperfairness are reasonable, and in fact when not
considering blocking actions, they coincide [30]. However, this is not the case when blocking
actions are included in the definitions. We therefore consider both variants.
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▶ Definition 15. A path π satisfies weak B-hyperfairness of actions (B-WHFA) if, and only
if, for every suffix π′ of π, every action a ∈ B that is perpetually B-reachable in π′ occurs
in π′.

▶ Definition 16. A path π satisfies strong B-hyperfairness of actions (B-SHFA) if, and only
if, for every suffix π′ of π, every action a ∈ B that is relentlessly B-reachable in π′ occurs
in π′.

Since enabledness implies reachability, WHFA is stronger than WFA, and SHFA is stronger
than SFA. Perpetually reachability implies relentless reachability, so SHFA is also stronger
than WHFA. However, as the next examples will show, SFA and WHFA are incomparable.

▶ Example 17. The impact of hyperfairness can clearly be seen when non-determinism is
used. Consider the path s0t1s1t4(s3t6)ω in Figure 1. This path satisfies ∅-SFA, since the only
action that is relentlessly enabled on this path, brew, also occurs infinitely often. However,
as long as deliver ̸∈ B and brew ̸∈ B, this path does not satisfy B-WHFA or B-SHFA: deliver
is B-reachable from s3, and therefore is perpetually and relentlessly B-reachable in a suffix of
this path, but does not occur. We here see B-SFA does not imply B-WHFA.

▶ Example 18. In Figure 1, consider s0t1(s1t2s2t3)ω with B = {order , to_cash, to_card}.
This path satisfies B-WHFA because card and cash are only B-reachable from s1 and s2
respectively. They are not perpetually B-reachable in any suffix of this path, therefore
B-WHFA is satisfied. However, they are relentlessly B-reachable, so B-SHFA is violated.
This demonstrates that B-WHFA and B-SFHA do not coincide when blocking actions are
considered. The actions card and cash are also relentlessly B-enabled, so B-SFA is also
violated. Hence, B-WHFA does not imply B-SFA.

5 A Generalisation of the Property Specification Liveness Patterns

Dwyer, Avrunin and Corbett observed that a significant majority of properties that are used
in practice can be fit into a set of property specification patterns [16]. These patterns consist
of a behaviour that must be satisfied and a scope within a path that delimits where the
behaviour must be satisfied. We focus on expressing properties that are captured by PSP.

Of all behaviours considered in [16], only existence, existence at least, response and chain
response represent pure liveness properties. The global and after scopes, when combined
with any of these four behaviours, give liveness properties.1 All other scopes result in safety
properties or properties that combine safety and liveness. Of those, we cover the until and
after-until scopes, since we can incorporate those into our formulae with little difficulty.

For behaviours, existence at least says some action in a set Sr must occur at least k
times in the scope; when k = 1 we call this existence. The response behaviour requires that
whenever an action in a set Sq occurs, it must be followed by the occurrence of an action in
Sr. When chains of action occurrences are used instead of individual action occurrences, this
is called chain response. For the scopes, global refers to the full path and after to the path
after the first occurrence of an action in a set Sa. The until scope refers to the path before
the first occurrence of an action in a set Sb, or the full path if no such action occurs. Finally,
after-until combines after and until, referring to every subpath of the path that starts after
any occurrence of an action in Sa and ends before the following occurrence of an action in
Sb. If no action in Sb occurs, the behaviour must still be satisfied after Sa.

1 In the full version, we recap PSP and argue why only these patterns represent pure liveness properties.
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▶ Example 19. Consider again the properties we presented in Example 4. Single order is
absence after-until, with Sa = {order}, Sb = {deliver} and Sr = {order}. Inevitable delivery
is global response with Sq = {order} and Sr = {deliver}. Possible delivery does not fit into
the patterns on occurrences of actions, since it contains a requirement on states, specifically
that the state admits a path on which delivery occurs.

We want to create formulae for all 16 combinations of the selected behaviours and scopes.
To make our results more compact and generic, we first generalise these 16 patterns into a
single template property. This template works by describing the shape of a violating path for
a property that fits one of these patterns. Intuitively, this shape is: “after the occurrence of
ρ, there are no occurrences of αf up until the (optional) occurrence of αe”. For our template
formulae to be syntactically correct, it is important that ρ is a regular formula, describing the
prefix that a violating path must have, whereas αf and αe are sets of actions. The actions
in αf are those that are forbidden from occurring after ρ on a violating path, whereas the
actions in αe indicate the end of the scope in which αf may not occur.

We formalise this template as follows:

▶ Definition 20. A path π is (ρ, αf , αe)-violating if, and only if, there exist πpre and πsuf
such that:
1. π = πpre · πsuf , and
2. πpre matches ρ, and
3. πsuf satisfies at least one of the following conditions:

a. πsuf is αf -free, or
b. πsuf contains an occurrence of an action in αe, and the prefix of πsuf before the first

occurrence of an action in αe is αf -free.
For readability, we frequently refer to (ρ, αf , αe)-violating paths as violating paths. We
sometimes summarise condition 3 as “πsuf is αf -free up until the first occurrence of αe”. See
Figure 2 for an illustration of what types of paths are considered violating.

ρ αf -free ρ αf -free ρ αf -free ρ αf -freeαe αe

Figure 2 The four types of (ρ, αf , αe)-violating paths: finite or infinite, and without or with αe.
Always, it has a prefix matching ρ and is αf -free up until the first occurrence of an action in αe.

All 16 patterns can indeed be represented by the non-existence of (ρ, αf , αe)-violating
paths, albeit some more directly than others. It turns out that ρ, αf and αe can mostly be
determined separately for behaviour and scope. For these patterns, αf is only affected by
behaviour and αe only by scope. However, we must split up the regular formula ρ into a
behaviour component, ρb, and scope component, ρs, such that ρ = ρs · ρb. See Table 1a and
Table 1b for how the variables should be instantiated for the four scopes and three of the
four behaviours. For a compact representation, we use

∑
to generalise the union operator

on regular formulae (+). We also use xi to represent i concatenations of x, where x0 = ε.
We do not include chain response in Table 1b, since it does not fit into a single formula.

However, it is possible to represent chain response as several response formulae placed in
conjunction with each other.2

2 We give an example of this in the full version of this paper.
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Table 1 Variable instantiation for templates.

(a) For scopes.

Scope ρs αe

Global ε ∅
Until ε Sb

After Sa
⋆ · Sa ∅

After-until Act⋆ · Sa Sb

(b) For behaviours.

Behaviour ρb αf

Existence ε Sr

Existence at least k
∑

0≤i<k
(αe ∪ Sr

⋆ · Sr)i Sr

Response αe
⋆ · Sq Sr

Chain response - -

6 Template Formulae

In this section, we present the modal µ-calculus formulae representing the non-existence of a
violating path, as defined in Section 5, that satisfies one of the completeness criteria from
Section 4. We express the non-existence of such a path, rather than expressing the equivalent
notion that all complete paths satisfy the property, because we find the resulting formulae to
be more intuitive. We first present a formula for B-progress only. Subsequently, we give the
formulae for weak fairness, weak hyperfairness and justness using a common structure all
three share. Finally, we present the formulae for strong fairness and strong hyperfairness. In
the justness and fairness formulae, B-progress is also included: these assumptions eliminate
unrealistic infinite paths, but we still need progress to discard unrealistic finite paths.

Proofs of the theorems in this section are included in the full version of this paper. A
sketch of the proof of Theorem 24 is included in Appendix A to illustrate our approach.

6.1 Progress
A formula for the non-existence of a violating path without progress is uninteresting. If
progress is not assumed then all finite paths are complete, and therefore a path consisting of
just ρ is a violating path whenever αf ̸= ∅. The non-existence of a violating path would then
be captured by ¬⟨ρ⟩tt. This is why we include progress in all our formulae.

To represent progress, we must capture that as long as non-blocking actions are enabled,
some transitions must still be executed. The following formula captures the non-existence of
violating paths under B-progress:

¬⟨ρ⟩νX.(⟨αe⟩tt ∨ [B]ff ∨ ⟨αf ⟩X) (1)

Intuitively, this formula says that there is no path that starts with a prefix matching ρ, after
which infinitely often a transition can be taken that is not labelled with an action in αf , or
such transitions can be taken finitely often before a state is reached that is B-locked or in
which αe is enabled. In the former case there is a B-progressing path on which no actions in
αf occur after ρ. If a state in which αe is enabled is reached, then it is guaranteed a violating
and B-progressing path exists: by arbitrarily extending the path as long as non-blocking
actions are still enabled, a B-progressing and violating path can be constructed.

▶ Theorem 21. A state in an LTS satisfies Formula 1 if, and only if, it does not admit
B-progressing paths that are (ρ, αf , αe)-violating.

Since representing a liveness pattern without progress leads to uninteresting formulae,
it is unsurprising that previous translations of PSP to the µ-calculus have also implicitly
included progress. For instance, the translations from [31] for the liveness patterns of PSP
are very similar to Formula 1, albeit in positive form and without blocking actions.
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6.2 Weak Fairness, Weak Hyperfairness and Justness
For weak fairness, weak hyperfairness and justness, we employ a trick inspired by the formula
for justness presented in [6] (which was in turn inspired by [11]): we translate a requirement
on a full path into an invariant that can be evaluated within finitely many steps from every
state of the path. We illustrate this using weak fairness.

On every suffix of a weakly fair path, every perpetually enabled non-blocking action
occurs. To turn this into an invariant, we observe that we can evaluate a property on all
suffixes of a path by evaluating it from every state of the path instead. Next we must
determine, within finitely many steps, if an action is perpetually enabled on a possibly
infinite path. We do this by observing that if an action is not perpetually enabled, it must
become disabled within finitely many steps. An equivalent definition of WFA therefore is:
a path π satisfies WFA if, and only if, for every state s in π, every action a ∈ B that is
enabled in s occurs or becomes disabled within finitely many steps on the suffix of π starting
in s. This translation of WFA determines three things for every non-blocking action a. First,
which actions may need to occur because of a; in the case of WFA this is a itself. Second,
when those actions need to occur; for WFA this is when a is enabled. We refer to this as
the action being “on”. Finally, when those actions do not need to occur; for WFA this is
when a becomes disabled. We refer to this as the action being “off”. When an action that
was previously on becomes off, or one of the required actions occurs, we say the action is
“eliminated”. By choosing different definitions for an action being on or off, and when an
action is eliminated, we can also represent justness and weak hyperfairness in the same way.

We find that completeness criteria for which such a translation can be made can be
represented using the same generalised formula. We will present this formula and how to
instantiate it for WFA, WHFA and JA. However, we must first formalise what it means for a
predicate on paths to be translatable to an invariant that can be evaluated within finitely
many steps. We introduce the term finitely realisable (path) predicates for this purpose.

▶ Definition 22. A path predicate P is finitely realisable if, and only if, there exist mappings
ϕon and ϕof from non-blocking actions to closed modal µ-calculus formulae, and a mapping
αel from non-blocking actions to sets of actions, such that:
1. A path π satisfies predicate P if, and only if, all states s on π satisfy the following: for all

a ∈ B, if s satisfies ϕon(a) then the suffix π′ of π starting in s must contain an occurrence
of some action in αel(a) or a state that satisfies ϕof (a).

2. A state s is a B-locked state if, and only if, s ̸∈ Jϕon(a)K for all a ∈ B.
3. For every state s and for all a ∈ B, s ∈ Jϕon(a)K implies s ̸∈ Jϕof (a)K.
4. For all states s and all a ∈ B such that s ∈ Jϕon(a)K, if there exists a finite path π from s

to a state s′ such that there is no occurrence of an action in αel(a) on π and there is no
state on π that satisfies ϕof (a), then s′ ∈ Jϕon(a)K.

We refer to these four properties as the invariant property, the locking property, the exclusive
property and the persistent property, respectively.

The general formula for finitely realisable predicates is as follows:

¬⟨ρ⟩νX.(
∧

a∈B

(ϕon(a) ⇒ ⟨αf
⋆⟩(⟨αe⟩tt ∨ (ϕof (a) ∧X) ∨ ⟨αel(a) \ αf ⟩X))) (2)

This formula has similarities to Formula 1, particularly how ρ and αe are integrated. The
important part is that after ρ, it must invariantly hold that all non-blocking actions for which
ϕon(a) is satisfied are later eliminated. An action a is eliminated if, within finitely many
steps, ϕof (a) is satisfied or an action in αel(a) occurs. In both cases, the invariant must
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once again hold. After ρ, no actions in αf may occur. The formula works correctly for finite
paths as well as infinite ones: if it is possible to reach a B-locked state after ρ without taking
actions in αf , then X is satisfied due to the locking property, and a violating path is found.

Formula 2 is a template formula in two ways: ρ, αf and αe determine what property is
captured, and ϕon, ϕof and αel determine the completeness criterion. In this paper, we only
cover how to instantiate the formula for WFA, WHFA and JA, but it can also be used for
other finitely realisable predicates. However, the correctness proof of the formula depends on
the criterion being feasible. Feasibility on paths [2] is defined as follows.

▶ Definition 23. A predicate on paths P is feasible if, and only if, for every LTS M , every
finite path π in M can be extended to a path π′ that satisfies P and is still a valid path in M .

That WFA, WHFA and JA are indeed feasible for finite LTSs is proven in the full version.

▶ Theorem 24. For all feasible and finitely realisable path predicates P , it holds that an
LTSC satisfies Formula 2 if, and only if, its initial state does not admit B-progressing paths
that satisfy P and are (ρ, αf , αe)-violating.

By instantiating the theorem for each completeness criterion, we derive the following:

▶ Corollary 25. A state in an LTS satisfies Formula 2 with ϕon(a) = ⟨a⟩tt, ϕof (a) = [a]ff
and αel(a) = {a} for all a ∈ B if, and only if, it does not admit B-progressing paths that
satisfy B-weak fairness of actions and are (ρ, αf , αe)-violating.

▶ Corollary 26. A state in an LTS satisfies Formula 2 with ϕon(a) = ⟨B⋆ · a⟩tt, ϕof (a) =
[B⋆ · a]ff and αel(a) = {a} for all a ∈ B if, and only if, it does not admit B-progressing paths
that satisfy weak B-hyperfairness of actions and are (ρ, αf , αe)-violating.

▶ Corollary 27. A state in an LTSC satisfies Formula 2 with ϕon(a) = ⟨a⟩tt, ϕof (a) = ff
and αel(a) = {b ∈ Act | a ⌣̸• b} for all a ∈ B if, and only if, it does not admit B-progressing
paths that satisfy B-justness of actions and are (ρ, αf , αe)-violating.

6.3 Strong Fairness and Strong Hyperfairness
SFA is not finitely realisable because we cannot observe within finitely many steps whether
an action is relentlessly enabled: even if we observe several times that it is disabled, it may
still be infinitely often enabled along the whole path. Hence, we cannot use Formula 2.

Instead we observe that, on a path, actions that are not relentlessly enabled must
eventually become perpetually disabled. If the path is strongly fair, then all relentlessly
enabled non-blocking actions occur infinitely often. We can therefore say that a path is
strongly fair if we can divide all non-blocking actions into two disjoint sets: those that occur
infinitely often and those that eventually become perpetually disabled. This observation is
also made in [36], where a µ-calculus formula for termination under strong fairness is given.

Using this idea, we give the following template formula for SFA:

¬⟨ρ · αf
⋆⟩(⟨αe⟩tt ∨ [B]ff ∨

∨
∅̸=F ⊆B

νX.(
∧

a∈F

µW.((
∧

b∈B\F

[b]ff ) ∧ (⟨a \ αf ⟩X ∨ ⟨αf ⟩W )))) (3)

The use of negation, the exclusion of αf , and ρ in the diamond operator at the start of this
formula are the same as in Formula 1. We explain the start of the formula after addressing
the part starting with

∨
∅̸=F ⊆B. Here, we use that on a strongly fair path, all non-blocking
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actions can be divided into those that occur infinitely often and those that become perpetually
disabled. The disjunction over subsets considers all possible ways of selecting some non-empty
subset F of B that should occur infinitely often. The greatest fixpoint states that infinitely
often, all those actions must indeed occur within finitely many steps. Additionally, at no
point may a non-blocking action not in F be enabled. We exclude F = ∅ because the logic
of the greatest fixed point formula we give relies on there being at least one a in F . The
special case that F is empty and therefore a B-locked state should be reached, is instead
covered by explicitly considering [B]ff earlier in the formula. Returning to the start of the
formula, we allow a finite αf -free path before the greatest fixpoint is satisfied. The reason
is that it may take several steps before all the non-blocking actions that are only finitely
often enabled become perpetually disabled. Since we include a finite prefix already, we also
add the cases that an action in αe becomes enabled or that a B-locked state is reached here,
rather than deeper into the formula like in Formula 2.

▶ Theorem 28. An LTS satisfies Formula 3 if, and only if, its initial state does not admit
B-progressing paths that satisfy B-strong fairness of actions and are (ρ, αf , αe)-violating.

Due to the quantification over subsets, the formula is exponential in the number of actions
in B. Beyond small models, it is therefore not practical. However, it can serve as a basis
for future work. For instance, if fairness is applied to sets of actions rather than individual
actions, the formula is exponential in the number of sets instead, which may be smaller
depending on how the sets are formed [35].

We can adapt the formula for strong fairness to a formula for strong hyperfairness, by re-
placing perpetual disabledness of non-blocking actions not in F with perpetual unreachability.

¬⟨ρ · αf
⋆⟩(⟨αe⟩tt ∨ [B]ff ∨

∨
∅̸=F ⊆B

νX.(
∧

a∈F

µW.((
∧

b∈B\F

[B⋆ · b]ff )∧(⟨a \ αf ⟩X∨⟨αf ⟩W )))) (4)

▶ Theorem 29. An LTS satisfies Formula 4 if, and only if, its initial state does not admit a
B-progressing path that satisfies strong B-hyperfairness of actions and is (ρ, αf , αe)-violating.

Since we are not aware of other completeness criteria that fit the same structure, we do
not provide a generalised formula here like we did with Formula 2.

7 Application Example

We here give an example of an application of the template formulae. In [25], several mutual
exclusion algorithms are analysed using the mCRL2 toolset. Their analysis of Dekker’s
algorithm [14] presents the following modal µ-calculus formula for starvation freedom of
processes with id’s 0 and 1. For clarity, the notation has been adjusted to match the previous
sections and action names have been simplified.

[Act⋆]
∧

i∈{0,1}

[{wish_flag(i, b) | b ∈ B}]µX.([enter(i)]X ∧ ⟨Act⟩tt) (5)

Starvation freedom is a global response property. In this case, the starvation freedom of a
process i is represented as an instantiation of the pattern with Sq = {wish_flag(i, b) | b ∈ B}
and Sr = {enter(i)}. Indeed, the above formula is equivalent to:∧

i∈{0,1}

¬⟨Act⋆ · {wish_flag(i, b) | b ∈ B}⟩νX.(⟨∅⟩tt ∨ [Act]ff ∨ ⟨enter(i)⟩X) (6)
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Observe that, when taking B = ∅, the above matches a conjunction of two instances of
Formula 1, taking ρ, αe and αf as suggested in Table 1 for global response. Thus, this formula
captures starvation freedom under ∅-progress. In [25], it is reported that mCRL2 finds a
violating path for this formula; a path which the authors note is unfair. The exact fairness
assumption considered is not made concrete. As an ad-hoc solution, the modal µ-calculus
formula is adjusted to specifically ignore that counterexample. Subsequently, mCRL2 finds
another counterexample, which the authors again claim is unfair. Instead of creating yet
another formula, they move on to Peterson’s algorithm, which is deemed easier to analyse.
Using our template formulae, we can easily produce a formula for starvation freedom under
several different completeness criteria. We give the formula for ∅-WFA, as an example.∧

i∈{0,1}

¬⟨Act⋆ · {wish_flag(i, b) | b ∈ B}⟩

νX.(
∧

a∈Act
(⟨a⟩tt ⇒ ⟨enter(i)

⋆
⟩(⟨∅⟩tt ∨ ([a]ff ∧X) ∨ ⟨a \ enter(i)⟩X))) (7)

We check this formula on the model from [25] using mCRL2. Since mCRL2 only supports
quantification over data parameters and not over actions, the conjunction over Act must
be written out explicitly. The tool reports that the formula is violated. Examining the
counterexample reveals this is because actions in the model do not show which process
performs the action. Therefore, process i reading value v from a register r is labelled with
the same action as process j reading v from r. We add the responsible process to each action
label, and also define B = {wish_flag(i, i, b) | i ∈ {0, 1}, b ∈ B}, to capture that processes
are allowed to remain in their non-critical section indefinitely. This was not considered in
Formula 5, but it is part of the mutual exclusion problem [15, 22]. The tool reports that the
modified formula is satisfied. We can therefore conclude that Dekker’s algorithm satisfies
starvation freedom when assuming weak fairness of actions, as long as it is taken into account
for each action which process is responsible for it.

Our other formulae can be used in similar ways. An example of how to use the justness
formula in mCRL2, including a method for encoding the concurrency relation, is given in [6].

8 Discussion

In this section, we briefly reflect on the coverage of the properties we consider, and our choice
in focusing on the modal µ-calculus.

Firstly, we have exclusively addressed liveness properties in this paper thus far. As
indicated previously, the problem we are considering primarily crops up for these properties.
This is because, as pointed out in [22], when a completeness criterion is feasible, assuming
the criterion holds true or not has no impact on whether a safety property is satisfied or not.
The reason is that for safety properties on paths, any path that violates the property must
contain a finite prefix such that any extension of that prefix also violates the property [1].
Therefore, if a completeness criterion is feasible, then whenever a model contains incomplete
paths that violate a safety property it also contains complete paths that violate the property.
All completeness criteria discussed in Section 4 are feasible with respect to finite LTSs,
and hence we do not need to consider patterns that capture safety properties. For modal
µ-calculus formulae for the safety properties of PSP, without integrated completeness criteria,
we refer to [31] and [34]. For properties that are a combination of safety and liveness, the
components can be turned into separate formulae and checked separately.
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Readers may also wonder about alternative methods of representing properties under
completeness criteria, such as using LTL. As indicated in Section 3, there are many contexts
where we also want to consider non-linear properties, and hence the modal µ-calculus is
preferred. Automatic translations from LTL to the modal µ-calculus exist, but can be
exponential in complexity [13] and it is unclear at this time if this blow-up is avoided in this
case. Anecdotal evidence [33] suggests this is not the case for existing translations. In [22]
several completeness criteria are represented in LTL, but it is noted that this translation
requires introducing new atomic propositions which hides the complexity of this translation.
The representation of hyperfairness in particular may be expensive, since atomic propositions
for all reachable actions are required. It is also unclear how to combine LTL-based translations
effectively with symbolic model checking approaches. For these reasons, a direct representation
in the modal µ-calculus is preferable.

9 Conclusion
In this paper, we have presented formulae for liveness properties under several completeness
criteria. As part of this, we defined a property template that generalises the liveness properties
of PSP, which has been estimated to cover a majority of properties found in the literature [16].
The completeness criteria covered are progress, justness, weak fairness, strong fairness, and
hyperfairness, all defined with respect to actions and parameterised with a set of blocking
actions. The formulae have all been manually proven to be correct.

For future work, one goal is to formalise our manual proofs using a proof assistant. Another
avenue for future work is extending our formulae to cover a wider range of completeness
criteria and properties. We suggest some potential extensions here.

One of our contributions is the identification of a shared common structure underlying
justness, weak fairness and weak hyperfairness: they are finitely realisable path predicates.
Our formula for such predicates can be adapted to arbitrary feasible finitely realisable path
predicates. While we do not have such a generic formula for other completeness criteria,
our characterisation of (ρ, αf , αe)-violating paths can be used as a basis to express the
non-existence of complete paths violating many common properties for different notions
of completeness as well, as we demonstrate with strong fairness and strong hyperfairness.
We are especially interested in extending our formulae to allow fairness over sets of actions,
rather than individual actions, similar to the task-based definitions from [24].

In terms of properties, we can look at proposed extensions of PSP, such as those suggested
in [12]. There is also the constrained chain behaviour, which is a modification of precedence
chain and response chain given in [16]. There are extensions of PSP to real-time [4, 28] and
probabilistic [27] contexts as well. Finally, in [5] the formula from [6] that formed the basis
of Formula 2 is extended to also include state information.

There are therefore many potentially useful extensions of the formulae presented in this
paper. However, the presented template formulae already cover many completeness criteria
and liveness properties, making them useful for model checking in practice.
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A Proof Sketch

Full proofs are included in the appendices of the full version of this paper. Here, we provide an
outline of the proof of Theorem 24 by presenting all the supporting lemmas and propositions
proven. We include brief sketches of how we prove these claims, but not the full proofs. This
is done to illustrate the approach we have taken. This appendix corresponds to Appendix
D.3 in the full version. We begin with restating Theorem 24.

▶ Theorem 24. For all feasible and finitely realisable path predicates P , it holds that an
LTSC satisfies Formula 2 if, and only if, its initial state does not admit B-progressing paths
that satisfy P and are (ρ, αf , αe)-violating.

The following propositions3 give properties of finitely realisable paths that can be derived
from the invariant, locking, exclusive and persistent properties.

▶ Proposition 46. Every B-progressing, finite path satisfies every finitely realisable path
predicate, for all B ⊆ Act.

▶ Proposition 47. Every path that satisfies a finitely realisable path predicate P is B-
progressing.

▶ Proposition 48. If a path π satisfies finitely realisable path predicate P , then every path of
which π is a suffix also satisfies P .

▶ Proposition 49. If a path π satisfies a finitely realisable path predicate P , then every suffix
of π also satisfies P .

Proposition 46 follows from the invariant, locking, and persistent properties. For Proposi-
tion 47, we use the invariant, locking, and exclusive properties, and for Proposition 48, the
invariant and persistent property are enough. Finally, Proposition 49 follows directly from
the invariant property.

For the proof of the main theorem, we fix an LTS M , as well as B, ρ, αf and αe. We
also fix a feasible, finitely realisable path predicate P . To characterise the semantics of the
formula, we first split it into multiple smaller subformulae.

3 We use the same numbering here as in the full version, hence the jump to 46.
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violateG = ⟨ρ⟩invariantG

invariantG = νX.(
∧

a∈B

(ϕon(a) ⇒ eliminateG(a)))

eliminateG(a) = ⟨αf
⋆⟩(⟨αe⟩tt ∨ (ϕof (a) ∧X) ∨ ⟨αel(a) \ αf ⟩X)

We have that Formula 2 = ¬violateG.
The proof proceeds by characterising the semantics of every subformulae. We define the

length of a path to be the number of transitions. A path of length 0 is called the empty path.

▶ Lemma 50. For all environments e, states s ∈ S, actions a ∈ B and sets F ⊆ S, it holds
that s ∈ JeliminateG(a)Ke[X:=F ] if, and only if, s admits a finite path π with final state sfinal
that satisfies the following conditions:
1. π is αf -free, and
2. one of the following three holds:

a. at least one action in αe is enabled in sfinal, or
b. sfinal ∈ F and sfinal satisfies ϕof (a), or
c. sfinal ∈ F and the last transition in π, tfinal, is labelled with an action in αel(a) \ αf .

In the full proof of Lemma 50, we use another supporting proposition that characterises
the semantics of a simple least fixpoint formula that generalises eliminateG(a), and then show
in detail how the lemma follows. For this overview, we only give an intuitive explanation: the
⟨αf

⋆⟩ part of eliminateG(a) gives us the finite, αf -free path π that the lemma refers to. The
conditions on the final state of this path follow from the rest of the formula: ⟨αe⟩tt considers
the possibility that an action in αe is enabled; ϕof (a) ∧X represents reaching a state in F
where ϕof (a) is satisfied (recall that Lemma 50 refers to the environment where X is mapped
to F); and ⟨αel(a) \ αf ⟩X appends one extra transition to a state in F , eliminating a. Since
the total path has to be αf -free, the eliminating action may not be in αf .

The next step is invariantG. This formula exactly describes those states that admit paths
that are B-progressing, (ε, αf , αe)-violating and satisfy P . Since ε is the empty sequence, we
are ignoring the ρ-prefix for now. We define the set SG to be exactly those states in M that
admit a path π meeting the following conditions:

π satisfies P , and
π is B-progressing, and
π satisfies one of the following conditions:
π is αf -free, or
π contains an occurrence of an action in αe, and the prefix of π before the first
occurrence of an action in αe is αf -free.

Our goal is then to prove that JinvariantGKe = SG. This takes two steps: first we prove
that SG is a fixed point of the transformer characterising invariantG, and then that it is the
greatest fixed point.

▶ Lemma 51. SG is a fixed point of the transformer TG defined by:

TG(F) =
⋂

a∈B

{
s ∈ S | s ∈ Jϕon(a)Ke[X:=F ] ⇒ s ∈ JeliminateG(a)Ke[X:=F ]

}
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Proving that SG is a fixed point means proving TG(SG) = SG, which we do by mutual
set inclusion. We briefly explain how we reach the conclusion that if a state s is in TG(SG),
then it must also be in SG. If there are no non-blocking actions a such that s ∈ Jϕon(a)K,
then the empty path witnesses that s is in SG; for this we use the locking property as well
as Proposition 46. If there is an action a ∈ B such that s ∈ Jϕon(a)K, then we know from
s ∈ TG(SG) that s ∈ JeliminateGKe[X:=SG]. Then Lemma 50 yields a finite path π that is
αf -free and on which a state in which αe is enabled is reached, or a is eliminated and a state
in SG is reached. In the former case, we can use feasibility of P and Proposition 47 to find a
path that satisfies P and is B-progressing, and that is also αf -free until the first occurrence
of an action in αe. Hence, we find a path that witnesses s ∈ SG. If a is eliminated instead,
then since π reaches a state that is in SG, we can create a path π′′ = π · π′, where π′ is a
path from the final state of π that is B-progressing, satisfies P , and is αf -free up until the
first occurrence of an action in αe. Using Proposition 48, we can then show π′′ witnesses
s ∈ SG. The other part of the proof, that an arbitrary state in SG is also in TG(SG), works
very similarly, just in the other direction. We need Proposition 49 in that part of the proof
in place of Proposition 48.

To prove that SG is actually the greatest fixed point of TG, we use the following supporting
lemma:

▶ Lemma 52. For all states s in a fixed point F of TG as defined in Lemma 51, if there is
no action in αe that is reachable from s without doing an action in αf and there exists at
least one action a ∈ B such that s satisfies ϕon(a), then there exists a finite path π from s to
some state s′ meeting all of the following conditions:
1. s′ ∈ F , and
2. π has length at least one, and
3. π is αf -free, and
4. for all actions a ∈ B such that s satisfies ϕon(a), there is a state on π that satisfies ϕof (a)

or there is a transition on π labelled with an action in αel(a).

However, for an intuitive explanation of the proof that SG is the greatest fixed point of
TG we do not need this supporting lemma. We therefore do not go into its proof here.

▶ Lemma 53. SG is the greatest fixed point of the transformer TG as defined in Lemma 51.

In the proof of Lemma 53, we take an arbitrary state s in an arbitrary fixed point F of
TG, and then prove that s ∈ SG. This is done by constructing a path π from s that satisfies
P , is B-progressing, and (ε, αf , αe)-violating. The proof considers three cases. The first case
is when s is B-locked. In that case, the empty path is trivially B-progressing and violating,
and by Proposition 46 also satisfies P . The second case is that it is possible to reach a state
in which an action in αe is enabled without taking actions in αf . If this is the case, then
that path can be extended using feasibility of P to create a path that is violating, satisfies
P , and, by Proposition 47, is B-progressing. The most complicated case is the one in which
neither of the previous two is true. The idea is that we construct a path from s by repeatedly
adding αf -free path segments to an initial path π = s, in a potentially endless construction.
In every iteration, we consider whether the final state of the path constructed thus far is
B-locked. If so, then, similar to the first case, we have found a witness for s ∈ SG. If not,
then there is some non-blocking action a that is “on”. And therefore, by the definition of
TG, there is a finite αf -free path on which a is eliminated. We can disregard the possibility
that we instead reach a state in which αe is enabled, since we addressed that case separately.
The segment we append to π is the finite αf -free path on which a is eliminated. By the
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persistent property, non-blocking actions for which ϕon is satisfied but are not eliminated
remain “on”, and hence can be eliminated later in π. We can therefore simply keep track of
all the actions for which ϕon is satisfied in states we encounter, and eliminate them all in
turn. This produces an infinite, and therefore B-progressing, path that satisfies P , and that
is entirely αf -free. So in this case too, we construct a path that witnesses s ∈ SG.

Since the semantics of invariantG are characterised as the greatest fixed point of TG, we
can conclude the following from the definition of SG.

▶ Corollary 54. The set of states characterised by invariantG is exactly the set of states that
admit B-progressing, (ε, αf , αe)-violating paths that satisfy P .

We then prepend the ρ part of the formula.

▶ Lemma 55. For all environments e and states s ∈ S, it holds that s ∈ JviolateGKe if, and
only if, s admits a path that is B-progressing, satisfies P and is (ρ, αf , αe)-violating.

This step is rather trivial, since it follows directly from Corollary 54 and the basic definition
of the modal µ-calculus.

The final step of the proof is then to negate violateG. Theorem 24 follows directly.
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