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Abstract
We study nested conditions, a generalization of first-order logic to a categorical setting, and provide
a tableau-based (semi-decision) procedure for checking (un)satisfiability and finite model generation.
This generalizes earlier results on graph conditions. Furthermore we introduce a notion of witnesses,
allowing the detection of infinite models in some cases. To ensure completeness, paths in a tableau
must be fair, where fairness requires that all parts of a condition are processed eventually. Since the
correctness arguments are non-trivial, we rely on coinductive proof methods and up-to techniques
that structure the arguments. We distinguish between two types of categories: categories where
all sections are isomorphisms, allowing for a simpler tableau calculus that includes finite model
generation; in categories where this requirement does not hold, model generation does not work, but
we still obtain a sound and complete calculus.
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1 Introduction

Nested graph conditions (called graph conditions subsequently) are a well-known specification
technique for graph transformation systems [8] where they are used, e.g., to specify graph
languages and application conditions. While their definition is quite different from first-order
logic (FOL), they have been shown to be equivalent to FOL in [23, 8]. They are naturally
equipped with operations such as shift, a form of partial evaluation, which is difficult to
specify directly in FOL. This operation can be used to compute weakest preconditions and
strongest postconditions for graph transformation systems [1].
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39:2 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

In [1] it has also been observed that graph conditions can be generalized to the categorical
setting of reactive systems [16] as an alternative to the previously considered instantiation to
graphs and injective graph morphisms that is equivalent to FOL. Further possible instan-
tiations include cospan categories where the graphs, equipped with an inner and an outer
interface, are the arrows, as well as Lawvere theories. To derive analysis techniques for all
such instantiations, we consider nested conditions in the general categorical setting.

Here we are in particular interested in satisfiability checks on the general categorical level.
As in FOL, satisfiability can be an undecidable problem (depending on the category), and we
propose a semi-decision procedure that can simultaneously serve as a model finder. For FOL
there are several well-known methods for satisfiability checking, for instance resolution or
tableau proofs [6], while model generation is typically performed separately. The realization
that satisfiability checking is feasible directly on graph conditions came in [18, 19], and a set
of tableau rules was presented [18] without a proof of (refutational) completeness that was
later published in [13], together with a model generation procedure [26]. A generalization to
non-injective graph morphisms was given in [17].

The contributions of the current paper can be summarized as follows:
We generalize the tableau-based semi-decision procedure for graph conditions from [13]
to the level of general categories, under some mild constraints (such as the existence of
so-called representative squares [1]). We present a procedure that has some resemblance
to the construction of a tableau in FOL.
We distinguish between two cases: one simpler case in which all sections (arrows that
have a right inverse) in the category under consideration are isomorphisms (Section 3);
and a more involved case where this does not necessarily hold (Section 5). The tableau
rules of the former case (Section 3) are easier to present and implement, and we can
give additional guarantees, such as model generation whenever there exists a so-called
finitely decomposable model, generalizing the notion of finite models. The latter case
(Section 5) does not guarantee model generation and has more involved tableau rules, but
it allows for instantiations to more categories, such as graphs and arbitrary morphisms.
The results of both cases generalize [13, 17, 26] from graphs and graph morphisms to
an abstract categorical level, which allows application to additional categories such as
cospan categories and Lawvere theories (see [28]).
The completeness argument for the satisfiability checking procedure – in particular
showing that non-termination implies the existence of an infinite model – requires that
the tableau construction satisfies a fairness constraint. The resulting proof is non-trivial
and – compared to the proof in [13] – we show that it can be reformulated using up-to
techniques. Here we give it a completely new and hopefully clarifying structure that relies
on coinductive methods [20, 22]. The alternative would be to inline the up-to techniques,
or to rely on complex ad-hoc notation that are less clear and further complicate the proof.
Furthermore we use coinductive techniques to display witnesses for infinite models
(Section 4): in some cases where only infinite models exist and hence the tableau
construction is non-terminating, we can still stop and determine that there does exist
an infinite model. Coinductive techniques [24, 22] are reasoning techniques based on
greatest fixpoints, suitable to analyze infinite or cyclic structures. To the best of our
knowledge, such techniques have not yet been employed in the context of satisfiability
checking for FOL and graph conditions.

The main contribution compared to previous work consists of a categorical generalization to
reactive systems on the one hand, and the use of coinductive (up-to) techniques on the other
hand. The implication of the first type of contribution is that the theory becomes available
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for new instantiations such as adhesive categories (which includes all variants of graphs, such
as typed graphs, Petri nets, but also algebraic specifications, cf. [3]), as well as other cases
such as cospan categories and Lawvere theories. The second type of contribution implies
that the proofs (especially for completeness) can now be presented in a more systematic way.

2 Preliminaries

2.1 Coinductive Techniques

A complete lattice is a partially ordered set (L,⊑) where each subset Y ⊆ L has a greatest
lower bound, denoted by

d
Y and a least upper bound, denoted by

⊔
Y .

A function f : L → L is monotone if for all l1, l2 ∈ L, l1 ⊑ l2 implies f(l1) ⊑ f(l2),
idempotent if f ◦ f = f , and extensive if l ⊑ f(l) for all l ∈ L.

Given a monotone function f : L→ L we are in particular interested in its greatest fixpoint
νf . By Tarski’s Theorem [29], νf =

⊔
{x | x ⊑ f(x)}, i.e., the greatest fixpoint is the least

upper bound of all post-fixpoints. Hence for showing that l ⊑ νf (for some l ∈ L), it is
sufficient to prove that l is below some post-fixpoint l′, i.e., l ⊑ l′ ⊑ f(l′).

In order to employ up-to techniques one defines a monotone function u : L → L (the
up-to function) and checks whether u is f-compatible, that is u ◦ f ⊑ f ◦ u. If that holds
every post-fixpoint l of f ◦ u (that is l ⊑ f(u(l))) is below the greatest fixpoint of f (l ⊑ νf).
This simple technique can often greatly simplify checking whether a given element is below
the greatest fixpoint. For more details see [20].

2.2 Categories

We will use standard concepts from category theory. Given an arrow f : A→ B, we write
dom(f) = A, cod(f) = B. For two arrows f : A→ B, g : B → C we denote their composition
by f ; g : A→ C. An arrow s : A→ B is a section (also known as split mono) if there exists
r : B → A such that s; r = id. That is, sections are those arrows s that have a right-inverse r.
Arrows that have a left-inverse (in this case r) are called retractions.

As in graph rewriting we will consider the category Graphfin, which has finite graphs
as objects and graph morphisms as arrows. We also consider Graphinj

fin, the subcategory of
Graphfin that has the same objects, but only injective, i.e. mono, graph morphisms. In this
category the sections are exactly the isos, while this is not the case in Graphfin.

Another important example category that will be used in Section 4 is based on cospans:
note that reactive systems instantiated with cospans [11, 25, 27] yield exactly double-pushout
rewriting [5]. Given a base category D with pushouts, the category Cospan(D) has as
objects the objects of D and as arrows cospans, which are equivalence classes of pairs of
arrows of the form A

fL−→ X
fR←−− B, where the middle object is considered up to isomorphism.

Cospan composition is performed via pushouts (for details see Appendix A).
A cospan is left-linear if its left leg fL is mono. For adhesive categories [12], the

composition of left-linear cospans again yields a left-linear cospan, and ILC(D) is the
subcategory of Cospan(D) where the arrows are restricted to left-linear cospans.

Note that Graphinj
fin can be embedded into ILC(Graphfin) by transforming an injective

graph morphism f to a left-linear cospan with f as the left leg and id as the right leg.
Another application are Lawvere theories, where arrows are (tuples of) terms, an approach

we explore in the full version of this paper [28].
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39:4 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

2.3 Generalized Nested Conditions
We consider (nested) conditions over an arbitrary category C in the spirit of reactive
systems [16, 15]. Following [23, 8], we define conditions as finite tree-like structures, where
nodes are annotated with quantifiers and objects, and edges are annotated with arrows.

▶ Definition 1 (Condition). Let C be a category. A condition A over an object A in C is
defined inductively as follows: it is either

a finite conjunction of universals
∧
i∈{1,...,n} ∀fi.Ai = ∀f1.A1 ∧ . . . ∧ ∀fn.An, or

a finite disjunction of existentials
∨
i∈{1,...,n} ∃fi.Ai = ∃f1.A1 ∨ . . . ∨ ∃fn.An

where fi : A→ Ai are arrows in C and Ai ∈ Cond(Ai) are conditions. We call A = RO(A)
the root object of the condition A. Each subcondition Qfi.Ai (Q ∈ {∀,∃}) is called a child
of A. The constants trueA (empty conjunction) and falseA (empty disjunction) serve as the
base cases. We will omit subscripts in trueA and falseA when clear from the context.

The set of all conditions over A is denoted by Cond(A).

Instantiated with Graphfin respectively Graphinj
fin, conditions are equivalent to graph

conditions as defined in [8], and equivalence to first-order logic has been shown in [23].
Intuitively, these conditions require the existence of certain subgraphs or patterns, or that
whenever a given subgraph occurs, the surroundings of the match satisfy a child condition.
For instance, ∀ ∅ → 1 2 .∃ 1 2 → 1 2 .true requires that for every edge, a second
edge in the reverse direction also exists. For additional examples of conditions we refer to
Examples 19, 24, and 27 given later.

To simplify our algorithms and their proofs, the definition of conditions requires that
conjunctions contain only universal children and disjunctions only existential children (e.g.,
∃f.A ∧ ∃g.B is excluded). However, this can be simulated using ∀id.∃f.A ∧ ∀id.∃g.B, and
similarly for disjunctions of universals. Hence we sometimes write A∧B or A∨B for arbitrary
conditions in the proofs.

While in [1] a model for a condition was a single arrow, we have to be more general,
since there are some satisfiable conditions that have no finite models. Here we want to work
in categories of finite graphs (so that conditions are finite), but at the same time we want
to consider infinite models. The solution is to evaluate conditions on infinite sequences of
arrows ā = [a1, a2, a3, ...], where A a1−→ A1

a2−→ A2
a3−→ . . . , called composable sequences.1 We

define dom(ā) = dom(a1) = A and we call such a sequence finite iff for some index k all ai
with i > k are identities.

Intuitively, the model is represented by the “composition” of the infinite sequence of
arrows. In the category Graphinj

fin this would amount to taking the limit of this sequence.
As we will later see, it does not play a role how exactly an infinite structure is decomposed
into arrows, as all decompositions are equivalent with respect to satisfaction.

▶ Definition 2 (Satisfaction). Let A ∈ Cond(A). Let ā = [a1, a2, a3, ...] be a composable
sequence with A = dom(ā). We define the satisfaction relation ā |= A as follows:

ā |=
∧
i∈I ∀fi.Ai iff for every i ∈ I and every arrow g : RO(Ai)→ B and all n ∈ N0 we

have: if a1; ...; an = fi; g, then [g, an+1, ...] |= Ai.
ā |=

∨
i ∃fi.Ai iff there exists i ∈ I and an arrow g : RO(Ai)→ B and some n ∈ N0 such

that a1; ...; an = fi; g and [g, an+1, ...] |= Ai.

1 Another option would be to work in the category of potentially infinite graphs. However, that would
allow conditions based on infinite graphs for which satisfiability checks become algorithmically infeasible.
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Note that this covers the base cases (ā |= true, ā |̸= false for every sequence ā). Furthermore
a1; ...; an equals the identity whenever n = 0. For a finite sequence ā = [a1, ..., ak, id, id, ...]
this means that ā |= A iff a = a1; ...; ak is a model for A according to the definition of
satisfaction given in [1]. In this case we write [a1, ..., ak] |= A or simply a |= A.
▶ Remark 3. In the following we use Cond to denote the set2 of all conditions and Seq as the
set of all composable sequences of arrows (potential models). ⌟

We write A |= B (A implies B) if RO(A) = RO(B) and for every ā with dom(ā) = RO(A)
we have: if ā |= A, then ā |= B. Two conditions are equivalent (A ≡ B) if A |= B and B |= A.

Every condition can be transformed to an equivalent condition that alternates between
∀,∃ by inserting ∀id or ∃id as needed. Such conditions are called alternating.

We also define what it means for two conditions to be isomorphic. It is easy to see that
isomorphic conditions are equivalent, but not necessarily vice versa.

▶ Definition 4 (Isomorphic Conditions). For conditions A,B and an iso h : RO(B)→ RO(A),
we say that A,B are isomorphic (A ∼= B) wrt. h, whenever both are universal, i.e.,
A =

∧
i∈I ∀fi.Ai, B =

∧
j∈J ∀gj .Bj, and for each i ∈ I there exists j ∈ J and an iso

hj,i : RO(Bj)→ RO(Ai) such that h; fi = gj ;hj,i and Ai ∼= Bj wrt. hj,i; and vice versa (for
each j ∈ J there exists i ∈ I . . . ). Analogously if both conditions are existential.

2.4 Representative Squares and the Shift Operation
We will now define the notion of representative squares, which describe representative ways to
close a span of arrows. They generalize idem pushouts [16] and borrowed context diagrams [4].

▶ Definition 5 (Representative squares [1]). A class κ of commuting squares in a category C is
representative if for every commuting square α1; δ1 = α2; δ2 in C there exists a representative
square α1;β1 = α2;β2 in κ and an arrow γ such that δ1 = β1; γ and δ2 = β2; γ.

A B

C
D

D′

α1

α2
β1

β2 γ
δ1

δ2

For two arrows α1 : A→ B, α2 : A→ C, we define κ(α1, α2) as the set of pairs of arrows
(β1, β2) which, together with α1, α2, form representative squares in κ.

Compared to weak pushouts, more than one square might be needed to represent all
commuting squares that extend a given span (α1, α2). In categories with pushouts (such as
Graphfin), pushouts are the most natural candidate for representative squares. In Graphinj

fin
pushouts do not exist, but jointly epi squares can be used instead. For cospan categories,
one can use borrowed context diagrams [4] (see Appendix A for a summary).

For many categories of interest – such as Graphfin and ILC(Graphfin) – we can
guarantee a choice of κ such that each set κ(α1, α2) is finite and computable. In the rest of
this paper, we assume that we work in such a category, and use such a class κ. Hence the
constructions described below are effective since the finiteness of the transformed conditions
is preserved.

2 Actually, without restrictions these are proper classes rather than sets. We tacitly assume that we
are working in the corresponding skeleton category where no two different objects are isomorphic and
assume that we can consider Cond, Seq as sets.

CONCUR 2024



39:6 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

One central operation is the shift of a condition along an arrow. The name shift is taken
from an analogous operation for nested application conditions (see [19]).

▶ Definition 6 (Shift of a Condition). Given a fixed class of representative squares κ, the
shift of a condition A along an arrow c : RO(A)→ B is inductively defined as follows:(∧

i∈I
∀fi.Ai

)
↓c

=
∧
i∈I

∧
(α,β)∈κ(fi,c)

∀β.(Ai)↓α

fi

c α

βShifting of existential conditions is performed analogously.

The shift operation can be understood as a partial evaluation of A under the assumption
that c is already “present”. In particular it satisfies [c; d1, d2, ...] |= A ⇐⇒ [d1, d2, ...] |= A↓c.
This implies that while the representation of the shifted condition may differ depending on
the chosen class of representative squares, the resulting conditions are equivalent. Since we
assume that each set κ(fi, c) is finite, shifting a finite condition will again result in a finite
condition.

As an example in Graphinj
fin, shifting ∀ ∅ → 1 .∃ 1 → 1 2 .true (every node has

an outgoing edge) over ∅ → (a node exists) yields ∀ → .∃ → 1 .true ∧
∀ → 1 .

(
∃ 1 → 1 2 .true ∨ ∃ 1 → 1 .true

)
(the designated node has

an outgoing edge, and so does every other node, possibly to the designated node).
In the case where α1 in Definition 5 is an iso, we can always assume that κ(α1, α2) =

{(α−1
1 ;α2, id)} and we will use this assumption in the paper.

2.5 Further Concepts
Our goal is to develop a procedure that finds a finite model if one exists, produces unsatis-
fiability proofs if a condition has neither finite nor infinite models, and otherwise does not
terminate. In order to state the correctness of this procedure, we will need an abstract notion
of finiteness and to this aim we introduce finitely decomposable morphisms. Intuitively this
means that every infinite decomposition contains only finitely many non-isomorphisms.

▶ Definition 7 (Finitely decomposable morphism). A morphism m : A→ B is finitely decom-
posable if for every infinite sequence of (fi, gi), i ∈ N0, such that f0 = m and fi = gi; fi+1
(cf. the diagram below), only finitely many gi are non-isomorphisms.

A

B

· · ·
m = f0

g0 g1

f1 f2

Note that in Graphinj
fin all arrows are finitely decomposable, while this is not the case

in Graphfin. In Graphfin, there exists a section s (with associated retraction r such that
s; r = id) that is not an iso (example: s = 1 → 1 2 , r = 1 2 → 1 ). Then, the identity on
the domain of s has a decomposition into infinitely many non-isos (an alternating sequence
of s and r, more concretely: g2i = s, g2i+1 = r and f2i = id, f2i+1 = r) and is hence not
finitely decomposable.

While satisfaction is typically defined inductively (as in Definition 2), i.e., as a least
fixpoint, we can also view it coinductively, i.e., as a greatest fixpoint, due to the fact that all
conditions are finite.

▶ Proposition 8 (Fixpoint function for satisfaction). Let ā = [a1, a2, a3, ...] ∈ Seq be a
composable sequence of arrows. We define the function s : P(Seq× Cond)→ P(Seq× Cond)
as follows: Let P ⊆ Seq× Cond, then
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(ā,
∧
i ∀fi.Ai) ∈ s(P ) iff for every i ∈ I and every arrow g : RO(Ai)→ B and all n ∈ N0

we have: if a1; ...; an = fi; g, then ([g, an+1, ...],Ai) ∈ P .
(ā,
∨
i ∃fi.Ai) ∈ s(P ) iff there exists i ∈ I and an arrow g : RO(Ai)→ B and some n ∈ N0

such that a1; ...; an = fi; g and ([g, an+1, ...],Ai) ∈ P .
The least and greatest fixpoint of s (µs, νs) coincide and they equal the satisfaction relation |=.

3 Satisfiability Checking in the Restricted Case

Given a condition A, we want to know whether A is satisfiable and generates a finitely
decomposable model, if it exists. Here we provide a procedure that works under the
assumption that we are working in a category where all sections are isos. This is for instance
true for Graphinj

fin and ILC(Graphinj
fin), where non-trivial right-inverses do not exist. It does

not hold for non-injective graph morphisms (see counterexample above) or left-linear cospans
(counterexample: id = 1 → 1 ← 1 2 ; 1 2 → 1 2 ← 1 ).

The general case where this assumption does not hold will be treated in Section 5.

3.1 Tableau Calculus
The underlying idea is fairly straightforward: we take an alternating condition A and
whenever it is existential, that is A =

∨
i∈I ∃fi.Ai, we branch and check whether some Ai

is satisfiable. If instead it is universal, i.e., A =
∧
i∈I ∀fi.Ai, we check whether some fi is

an iso. If that is not the case, clearly the sequence of identities on RO(A) is a model, since
there is no arrow g such that id = fi; g, assuming that all sections are isos. If however some
fi is an iso, we invoke a pull-forward rule (see below for more details) that transforms the
universal condition into an existential condition and we continue from there. We will show
that this procedure works whenever the pull-forward follows a fair strategy: in particular
every iso (respectively one of its successors) must be pulled forward eventually.

The pull-forward rule relies on the equivalence (A ∧ ∃f.B) ≡ ∃f.(A↓f ∧ B).

▶ Lemma 9 (Pulling forward isomorphisms). Let
∧
i∈I ∀fi.Ai be a universal condition and

assume for some p ∈ I, fp is an iso and Ap =
∨
j∈J ∃gj .Bj. Then fp can be pulled forward:

∧
i∈I
∀fi.Ai ≡ ∃fp.

∨
j∈J
∃gj .

(
Bj ∧

( ∧
m∈I\{p}

∀fm.Am
)

↓fp;gj

)

▶ Definition 10 (SatCheck tableau construction rules). Given an alternating condition A, we
give rules for the construction of a tableau for A that has conditions as nodes, A as root
node, and edges (→) labeled with arrows. The tableau is extended at its leaf nodes as follows:

For every p ∈ I: For one p ∈ I such that fp is iso and Ap =
∨
j∈J ∃gj .Bj:∨

i∈I
∃fi.Ai

fp−→ Ap
∧
i∈I
∀fi.Ai

fp−→
∨
j∈J
∃gj .

(
Bj︸ ︷︷ ︸

Ap

∧
( ∧
m∈I\{p}

∀fm.Am
)

↓fp;gj︸ ︷︷ ︸
other children, shifted to include gj

)

For existential conditions, for each(!) child condition ∃fp.Ap, add a new descendant.
For universal conditions, non-deterministically pick one(!) child condition ∀fp.Ap that
can be pulled forward (fp is an iso), pull it forward (cf. Lemma 9), and add the result as
its (only) descendant. If a universal condition contains no isos, then add no descendant.

CONCUR 2024



39:8 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

A branch of a tableau is a (potentially infinite) path A0
u1−→ A1

e1−→ A2
u2−→ . . . starting

from the root node. A finite branch is extendable if one of the tableau construction rules is
applicable at its leaf node and would result in new nodes (hence, a branch where the leaf is
an empty existential or a universal without isomorphisms is not extendable). A branch is
closed if it ends with an empty existential, otherwise it is open.

Due to Lemma 9 each universal condition is (up to iso fp) equivalent to its (unique)
descendant (if one exists), while an existential condition is equivalent to the disjunction of
its descendants prefixed with existential quantifiers.

The labels along one branch of the tableau are arrows between the root objects of
the conditions. Their composition corresponds to the prefix of a potential model being
constructed step by step. Finite paths represent a model if they are open and not extendable.
For infinite paths, we need an additional property to make sure that the procedure does not
“avoid” a possibility to show unsatisfiability of a condition.

To capture that, we introduce the notion of fairness, meaning that all parts of a condition
are eventually used in a proof and are not postponed indefinitely (a related concept is
saturation, see e.g. [13], though the definition deviates due to a different setup). For this
we first need to track how pulling forward one child condition changes the other children
by shifting. We define a successor relation that, for each pair of ∀-condition and one of its
∀-grandchildren, relates child conditions of the ∀-condition to their shifted counterparts (the
successors) in the ∀-condition of the second-next nesting level. The successor relation is
similar in spirit to the one used in [13]. In this work, saturation is given in a more descriptive
way and has to account for nesting levels in the tableau, a complication that we were able to
avoid in the present paper.

▶ Definition 11 (Successor relation). Assume in the construction of a tableau we have a path∧
i∈I
∀fi.Ai

fp−→ C gj−→ Bj∧
( ∧
m∈I\{p}

∀fm.Am
)

↓fp;gj

= Bj∧
∧

m∈I\{p}

∧
(α,β)∈κ(fm, fp;gj)

∀β.(Am)↓α

where C is the existential condition given in Definition 10. Then for each m ∈ I \ {p}, each
∀β.(Am)↓α where (α, β) ∈ κ(fm, fp; gj) is a successor of ∀fm.Am. The transitive closure of
the successor relation induces the indirect successor relation.

▶ Definition 12 (Fairness). An infinite branch of a tableau is fair if for each universal
condition A on the branch and each child condition ∀fi.Ai of A where fi is an iso, it holds
that some indirect successor of ∀fi.Ai is eventually pulled forward.

▶ Remark 13 (Fairness strategies). One possible strategy that ensures fairness is to maintain
for each incomplete branch a queue of child conditions for which a successor must be pulled
forward. Then the first entry in this queue is processed. Note that by the assumption on κ

made earlier at the end of Section 2.4, each iso in a universal condition that is not pulled
forward has exactly one successor and the queue is modified by replacing each condition
accordingly and adding newly generated child conditions with isos at the end. ⌟

3.2 Up-To Techniques, Fair Branches and Models
While showing soundness of the tableau method is relatively straightforward, the crucial
part of the completeness proof is to show that every infinite and fair branch of the tableau
corresponds to a model. The proof strategy is the following: given such a branch, we aim
to construct a witness for this model, by pairing conditions on this path with the suffix
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consisting of the sequence of arrows starting from this condition. If one could show that
the set P ⊆ Seq× Cond of pairs so obtained is a post-fixpoint of the satisfaction function s

defined in Proposition 8 (P ⊆ s(P )), we could conclude, as the satisfaction relation |= is the
greatest fixpoint of s (Proposition 8) and hence above any post-fixpoint.

However, P is in general not a post-fixpoint, which is mainly due to the fact that universal
conditions are treated “sequentially” one after another and are “pulled forward” only if they
become isos. Hence, if we want to show that for a chain [a1, a2, ...] the universal condition
of the form

∧
i ∀fi.Ai is satisfied, we have to prove for every child ∀fi.Ai that whenever

a1; ...; an = fi; g it holds that [g, an+1, ...] |= Ai. If ∀fi.Ai actually is the child that is pulled
forward in the next tableau step, P contains the tuple required by s. If not, there is a “delay”
and intuitively that means that we can not guarantee that P is indeed a post-fixpoint.

However it turns out that it is a post-fixpoint up-to (P ⊆ s(u(P ))), where u is a
combination of one or more suitable up-to functions. We first explore several such up-
to functions: u∧(P ) obtains new conditions by non-deterministically removing parts of
conjunctions; with u#(P ) we can arbitrarily recompose (decompose and compose) the arrows
in a potential model; with u↓(P ) we can undo a shift; and u∼=(P ) allows replacing conditions
with isomorphic conditions. For each, we show their s-compatibility (i.e., u(s(P )) ⊆ s(u(P ))).

▶ Theorem 14 (Up-to techniques). Let P ⊆ Seq× Cond, i.e. tuples of potential model and
condition. Then the following four up-to functions are s-compatible:

Conjunction removal: We inductively define a relation U∧ containing a pair of conditions
(A, T ) iff T is the same as A but with some conjunctions removed. That is, U∧ contains(∧

i∈I ∀fi.Ai,
∧
j∈J⊆I∀fj .Tj

)
whenever (Aj , Tj) ∈ U∧ for all j ∈ J(∨

i∈I ∃fi.Ai,
∨
i∈I ∃fi.Ti

)
whenever (Ai, Ti) ∈ U∧ for all i ∈ I

Then define: u∧(P ) = {(c̄, T ) | (c̄,A) ∈ P, (A, T ) ∈ U∧}
Recomposition: u#(P ) = {([b1, ..., bℓ, c̄],A) | ([a1, ..., ak, c̄],A) ∈ P, a1; ...; ak = b1; ...; bℓ}
Shift: u↓(P ) = {([(c; c1), c2, ...],B) | ([c1, c2, ...],B↓c) ∈ P}
Isomorphic condition: u∼=(P ) = {([(h; c1), c2, ...],B) | ([c1, c2, ...],A) ∈ P, A ∼= B with
iso h : RO(B)→ RO(A)}

Note however that up-to equivalence u≡ is not a valid up-to technique: let U be an unsatisfiable
condition and let P = {([id, ...],∀id.U)}. As U ≡ ∀id.U , then also ([id, ...],U) ∈ u≡(P ) and
hence P ⊆ s(u≡(P )). If the technique were correct, this would imply id |= U .

A convenient property of compatibility is that it is preserved by various operations, in
particular, composition, union and iteration (fω =

⋃
i∈N0

f i). This can be used to combine
multiple up-to techniques into a new one that also has the compatibility property. [21]

▶ Lemma 15 (combining up-to techniques). Let u = (u# ∪ u∧ ∪ u↓ ∪ u∼=)ω be the iterated
application of the up-to techniques from Theorem 14, then u is s-compatible.

We are now able to prove the central theorem needed for showing completeness.

▶ Theorem 16 (Fair branches are models). Let A0 be an alternating condition. Let a fixed
tableau constructed by the rules of Definition 10 be given. Let A0

b1−→ A1
b2−→ A2

b3−→ . . . be a
branch of the tableau that is either not extendable and ends with a universal quantification
(i.e., it is open), or is infinite and fair. For such a branch, we define P = {(b̄,Ai) | i ∈
N0, b̄ = [bi+1, bi+2, ...]} ⊆ Seq× Cond, i.e., the relation P pairs suffixes of the branch with
the corresponding conditions. Finally, let u be the combination of up-to techniques defined
in Lemma 15. Then, P ⊆ s(u(P )), which implies that P ⊆ |=. In other words, every such
branch in a tableau of Definition 10 corresponds to a model of A0.
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Proof sketch. Let ([c1, c2, ...], C0) ∈ P , which corresponds to a suffix C0
c1−→ C1

c2−→ C2
c3−→ . . .

of the chosen branch. We show that ([c1, c2, ...], C0) ∈ s(u(P )):
C0 is existential: The next label on the branch is the arrow of some child ∃c1.C1 of C0
and ([c2, c3, ...], C1) ∈ P implies ([c1, c2, ...], C0) ∈ s(P ) ⊆ s(u(P )).
C0 is universal and contains no iso: The branch ends at this point, so the sequence of
arrows in the tuple is empty and represents id, where (id, C0) ∈ s(u(P )): no fi is an iso,
therefore fi; g = id is never true and hence the universal condition is trivially satisfied.
C0 is universal and contains at least one iso: By definition of s, we need to be able
to satisfy any given child ∀d0.D0, i.e., show that whenever c1; ...; cn = d0; g for some g, n,
then ([g, cn+1, ...],D0) ∈ u(P ).
Fairness guarantees that an indirect successor ∀dq.Dq of ∀d0.D0 is pulled forward, which
results (after up-to conjunction removal) in a tuple ([cm, ...],Dq) ∈ u(P ). The intermediate
steps on the branch, where other children are pulled forward instead, allow expressing Dq
as (D0)↓α1↓...↓αq

. Use up-to shift to transform to ([α1; ...;αq; cm, ...],D0) ∈ u(P ), then
up-to recomposition to the required ([g0, cn+1, ...],D0) ∈ u(P ). ◀

3.3 Soundness and Completeness
We are finally ready to show soundness and completeness of our method.

As a condition is essentially equivalent to any of its tableaux, which break it down into
existential subconditions, a closed tableau represents an unsatisfiable condition.

▶ Theorem 17 (Soundness). If there exists a tableau T for a condition A where all branches
are closed, then the condition A in the root node is unsatisfiable.

Proof sketch. By induction over the depth of T . Base case is false (obviously unsatisfiable).
Induction step for ∃:

∨
i ∃fi.Ai is unsatisfiable if all Ai are. For ∀: by construction, the only

child contains an equivalent condition. ◀

We now prove completeness, which – to a large extent – is a corollary of Theorem 16.

▶ Theorem 18 (Completeness). If a condition A is unsatisfiable, then every tableau con-
structed by obeying the fairness constraint is a finite tableau where all branches are closed.
Furthermore, at least one such tableau exists.

Proof. The contraposition follows from Theorem 16: If the constructed tableau is finite with
open branches or infinite, then A is satisfiable. Furthermore, a fair tableau must exist and
can be constructed by following the strategy described in Remark 13. ◀

In the next section we will show how the open branches in a fully expanded tableau can
be interpreted as models, thus giving us a procedure for model finding.

▶ Example 19 (Proving unsatisfiability). We work in Graphinj
fin. For this example, we use

the following shorthand notation for graph morphisms: [ 1 2 ] means 1 → 1 2 , i.e., the
morphism is the inclusion from the light-gray graph elements to the full graph.

Consider the condition A = ∀[∅].∃[ 1 ].true∧∀[ × ].false, meaning (1) there exists a node
and (2) no node must exist. It is easily seen that these contradict each other and hence A is
unsatisfiable. We obtain a tableau with a single branch for this condition:

A [∅]−−→ ∃[ 1 ].
(
true ∧ (∀[ × ].false)↓[ 1 ]

) [ 1 ]−−→ ∀[ 1 ].false ∧ ∀[ 1 × ].false [ 1 ]−−→ false
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In the first step, A is universal with an isomorphism ∅ → ∅, which is pulled forward.
Together with its (only) existential child, this results in the partial model [ 1 ] and another
universal condition with the meaning: (1) the just created node 1 must not exist, and
(2) no additional node × may exist either.

This condition includes another isomorphism ([ 1 ]) to be pulled forward. Its child
Ap =

∨
j∈J ∃gj .Bj = false is an empty disjunction, so the tableau rule for universals adds an

empty disjunction (false) as the only descendant. This closes the (only) branch, hence the
initial condition A can be recognized as unsatisfiable. ⌟

3.4 Model Finding
We will now discuss the fact that the calculus not only searches for a logical contradiction
to show unsatisfiability, but at the same time tries to generate a (possibly infinite) model.
We can show that every finitely decomposable (i.e., “finite”) model (or a prefix thereof)
can be found after finitely many steps in a fully expanded tableau, i.e., a tableau where all
branches are extended whenever possible, including infinite branches. This is a feature that
distinguishes it from other known calculi for first-order logic.

The following lemma shows that an infinite branch always makes progress towards
approximating the infinite model.

▶ Lemma 20. Let A be a condition and T be a fully expanded tableau for A. Then,
for each branch it holds that it either is finite, or that there always eventually is another
non-isomorphism on the branch.

Proof sketch. We define the size of a condition and show that it decreases if an iso occurs
on a path. This means that eventually there will always occur another non-iso on a path. ◀

▶ Theorem 21 (Model Finding). Let A be a condition, m a finitely decomposable arrow such
that m |= A and let T be a fully expanded tableau for A.

Then, there exists an open and unextendable branch with arrows c1, ..., cn in T , having
condition R in the leaf node, where m = c1; ...; cn; r for some r with r |= R. Furthermore
the finite prefix is itself a model for A (i.e., [c1, ..., cn] |= A).

Note that this finite branch can be found in finite time, assuming a suitable strategy for
exploration of the tableau such as breadth-first search or parallel processing.

▶ Algorithm 22 (Satisfiability Check). Given a condition A, we define the procedure SAT (A)
that may either produce a model c : RO(A)→ C, answer unsat or does not terminate.

Initialize the tableau with A in the root node.
While the tableau still has open branches:

Select one of the open branches as the current branch, using an appropriate strategy
that extends each open branch eventually.
If the leaf is a universal condition without isomorphisms, terminate and return the
labels of the current branch as model.
Otherwise, extend the branch according to the rules of Definition 10, obeying the
fairness constraint.

If all branches are closed, terminate and answer unsat.

This procedure has some similarities to the tableau-based reasoning from [13]. The aspect of
model generation was in particular considered in [26]. Overall, we obtain the following result:
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▶ Theorem 23. There is a one-to-one correspondence between satisfiability of a condition
(A unsatisfiable; A has a finitely decomposable model; A is satisfiable, but has no finitely
decomposable model) and the output of Algorithm 22 (SAT(A)) (terminates with unsat,
terminates with a model, does not terminate).

Proof.
A unsatisfiable ⇐⇒ algorithm outputs unsat: (⇒) Theorem 18, (⇐) Theorem 17
A has a finitely decomposable model ⇐⇒ algorithm finds finitely decomposable model:
(⇒) Theorem 21, (⇐) Theorem 16
A has only models that are not finitely decomposable ⇐⇒ algorithm does not terminate:
(⇒) exclusion of other possibilities for non-termination, Lemma 20 for model in the limit
(⇐) Theorem 16 ◀

▶ Example 24 (Finding finite models). We now work in Graphinj
fin and use the shorthand

notation introduced in Example 19. Let the following condition be given:

∀ ∅→ ∅.∃∅→ 1 .true (there exists a node 1 ,

∧∀ ∅→ 1 .∃ 1 → 1 2 .true and every node has an outgoing edge to some other node)

This condition has finite models, the smallest being the cycle 1 2 . When running
Algorithm 22 on this condition, it obtains the model in the following way:

1. The given condition is universal with an iso ∅→ ∅, which is pulled forward. Together
with its (only) existential child, this results in the partial model [ 1 ] and the condition

true ∧
(
∀[ 1 ] .∃ [ 1 2 ].true

)
↓[ 1 ]

= ∀[ 1 ] .∃ [ 1 2 ].true ∧ ∀[ 1 A ].
( B︷ ︸︸ ︷
∃[ 1 A B ].true ∨ ∃[ 1 A ].true

)
meaning: (1) the just created node 1 must have an outgoing edge; (2) and every other
node A must also have an outgoing edge to either another node or to the existing node.

2. Pull forward iso [ 1 ] and extend the partial model by [ 1 2 ], resulting in:

true ∧
(
∀[ 1 A ].B

)
↓[ 1 2 ] = ∀[ 1 2 ].B↓[ 1 A ] ∧ ∀[ 1 2 A ].B↓[ 1 A2 ]

= ∀[ 1 2 ].
(
∃[ 1 2 3 ].true ∨ ∃[ 1 2 ].true

)
∧ ∀[ 1 2 A ].

(
∃[ 1 2 A B ].true ∨ ∃[ 1 2 A ].true ∨ ∃[ 1 2 A ].true

)
meaning: (1) the second node has an edge to a third node or to the first one; (2) and every
other node A also has an edge to either another node or to one of the existing nodes.

3. Next, we pull forward [ 1 2 ] and extend the model by [ 1 2 ]:

true ∧
(
∀[ 1 2 A ]. . . .

)
↓[ 1 2 ] = ∀[ 1 2 A ]. . . .

4. This condition does not have any children with isos, so it is satisfiable by id. Hence the
composition of the partial models so far ([ 1 2 ]) is a model for the original condition. ⌟

4 Witnesses for infinite models

If there is no finitely decomposable model for a satisfiable condition A (such as in Example 27
below), then the corresponding infinite branch produces a model in the limit. To detect such
models in finite time we introduce an additional use of coinductive techniques based on the
tableau calculus previously introduced: We will show that under some circumstances, it is
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possible to find some of these infinite models while checking for satisfiability. Naturally, one
can not detect all models, since this would lead to a decision procedure for an undecidable
problem. We first have to generalize the notion of fairness to finite path fragments:

▶ Definition 25. Let C0
b1−→ C1

b2−→ . . .
br−→ Cr be a finite path (also called segment) in a

tableau (cf. Definition 30). Such a finite path is called fair if for every child of C0 where the
morphism is an iso, an indirect successor is pulled forward at some point in the path.

This notion of fairness does not preclude that new isos appear. It only states that all isos
present at the beginning are pulled forward at some point.

▶ Theorem 26 (Witnesses). Let C0 be an alternating, universal condition. Let a fixed tableau
constructed by the rules of Definition 10 be given. Let C0

b1−→ C1
b2−→ . . .

br−→ Cr be a fair segment
of a branch of the tableau where r > 0, and let some arrow m be given such that C0 ∼= (Cr)↓m for
an iso ι : RO(Cr↓m)→ RO(C0). Then, [b1, ..., br,m; ι]ω := [b1, ..., br,m; ι, b1, ..., br,m; ι, ...]
is a model for C0.

Proof sketch. Construct the relation

P = {([ b1, b2, ..., br,m; ι, (b1, ..., br,m; ι)ω], C0),
([ b2, ..., br,m; ι, (b1, ..., br,m; ι)ω], C1), . . . , ([ m; ι, (b1, ..., br,m; ι)ω], Cr)}

and show that P ⊆ s(u(P )), using an approach similar to that of Theorem 16. Steps b1, . . . , br
are handled in the same way as in Theorem 16. For the newly introduced step based on m; ι,
the next element of the sequence of representative squares and the successor di are chosen
from a child of Cr↓m instead of from a successor of Di. ◀

▶ Example 27 (Finding witnesses). Consider the following condition:

∀ ∅→ ∅.∃∅→ 1 .∀ 1 → 1 .false (there is a node 1 without an incoming edge

∧∀ ∅→ .∃ → + .true and every node has an outgoing edge to some other node

∧∀ ∅→ 1 2 .false and no node has two incoming edges)

This condition has an infinite model, namely an infinite path ( 1 2 3 · · · ). It does
not have any finite model.

In order to display a witness for this model, we need to consider the condition in the
category of cospans ILC(Graphinj

fin), into which Graphinj
fin can be embedded. We use the

following shorthand notation for cospans: J 1 2 K means 1 → 1 2 ← 1 2 , i.e., the left
object consists of only the light-gray graph elements, the center and right objects consist of
the full graph, the left leg is the inclusion and the right leg is always the identity.

If we execute our algorithm on the condition, after one step we obtain a condition C0 that
is rooted at 1 , and spells out the requirements of the original condition for node 1 and all
other nodes separately ( 1 has a successor, and all other nodes have successors, and so on).

After another step, we obtain C1, which is rooted at 1 2 , and does the same for node
2 separately as well. (These steps are displayed more concretely in the appendix, Table 1.)

Now let m = 1 2 → 1 2 ← 2 . Then, we can compute (C1)↓m, which essentially
“forgets” node 1 from all subconditions of C1. (Subconditions that contain edges from or to
this node disappear entirely, which is a consequence of the way borrowed context diagrams
are constructed (via pushout complements).) Then, (C1)↓m is similar in structure to C0, and
in fact, using a renaming isomorphism ι = 2 → ← 1 , it holds that (C1)↓m ∼= C0 wrt. ι. ⌟

In general this witness construction will almost never be applicable for simple graph
categories, we need to work in other categories, such as cospan categories.
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5 Satisfiability in the General Case

Section 3 heavily depends on the fact that all sections are isos, i.e., only isos have a right
inverse. However, in the general case we might have conditions of the form ∀s.A where s has
a right inverse r with s; r = id (note that r need not be unique). This would invalidate our
reasoning in the previous sections, since the identity is not necessarily a model of ∀s.A.

▶ Example 28. We work in the category Graphfin. Consider the following condition
A = ∀ 1 → 1 2 .∃ 1 2 → 1 2 .true, defined over a single node 1 as root object,
which states that the distinguished node has an edge to every other node – including itself,
since a non-injective match may merge the two nodes. The first morphism of A is a section,
while the second is injective, but not a section.

The identity on the single node is not a model of A, but 1 → 1 is. However, the
condition A ∧ ∀ 1 → 1 .false is unsatisfiable, a fact that would not be detected by
Algorithm 22, since neither of the universal quantifiers contains an iso. ⌟

Pulling forward isos is still sound even in the general case as the equivalence of Lemma 9
still holds, but it is not sufficient for completeness. Hence we will now adapt the tableau
calculus to deal with sections.

▶ Lemma 29 (Pulling forward sections). Let
∧
i∈I ∀fi.Ai be a universal condition and assume

that fp, p ∈ I, is a section, and rp is a right inverse of fp (i.e., fp; rp = id). Furthermore let
Ap↓rp

=
∨
j∈J ∃hj .Hj be the result of shifting the p-th child over the right inverse. Then fp

can be pulled forward:∧
i∈I
∀fi.Ai ≡

∨
j∈J
∃hj .

(
Hj ∧

(∧
i∈I
∀fi.Ai

)
↓hj

)

As for the analogous Lemma 9, pulling forward sections produces an equivalent condition.
However, here the child being pulled forward is still included in the children shifted by hj .
Hence the condition will increase in size, unlike for the special case. This is necessary, since
fp might have other inverses which can be used in pulling forward and might lead to new
results. This leads to the following adapted rules.

▶ Definition 30 (SatCheck rules, general case). Let A be an alternating condition. We can
construct a tableau for A by extending it at its leaf nodes as follows:

For every p ∈ I: For one p ∈ I such that fp is section, fp; rp = id,
and

∨
j∈J ∃hj .Hj = Ap↓rp

:∨
i∈I
∃fi.Ai

fp−→ Ap
∧
i∈I
∀fi.Ai

id−→
∨
j∈J
∃hj .

(
Hj ∧

(∧
i∈I
∀fi.Ai

)
↓hj

)

For existential conditions, for each(!) child condition ∃fp.Ap, add a new descendant.
For universal conditions, pick one(!) child condition ∀fp.Ap that can be pulled forward in
the sense of Lemma 29 and add the result as its (only) descendant.

The rules are similar to those of the specialized case (Definition 10) and as in the special
case, we need to define a successor relation on children with sections, that in addition tracks
the corresponding right-inverses. The definition of the successor relation is slightly more
complex than in the previous case (Definition 11).
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▶ Definition 31 (Successor relation and tracking right-inverses). We define a relation on pairs
of (fi, ri), where fi is a morphism of a child of a universal condition and ri is one of its
right-inverses. Assume that in the construction of a tableau we have a path∧

i∈I
∀fi.Ai

id−→ C hj−→ Hj ∧
(∧
i∈I
∀fi.Ai

)
↓hj

= Hj ∧
∧
i∈I

∧
(α,β)∈κ(fi,hj)

∀β.(Ai)↓α

where C is the existential condition given in Lemma 29. Given (fi, ri) (where fi; ri = id),
we can conclude that the outer square below commutes and hence there exists an inner
representative square (α, β) ∈ κ(fi, hj) and rβ such that the diagram below commutes (in
particular β is a section and rβ is a retraction). In this situation, we say that (β, rβ) is a
(retraction) successor of (fi, ri).

hj

fi
β

α rβ
id

ri;hj
We extend the definition of fairness to cover sections (not just isomorphisms) and also

require that all right-inverses of each section are eventually used in a pull-forward step:

▶ Definition 32 (Fairness in the general case). A branch of a tableau is fair if for each
universal condition A on the branch, each child condition ∀fi.Ai of A where fi is a section,
and each right-inverse ri of fi, there is n ∈ N0 such that in the n-th next step, for some
indirect successor (f ′

i , r
′
i) of (fi, ri) it holds that f ′

i is pulled forward using the right inverse
r′
i. (Every universally-quantified section is eventually pulled forward with every inverse.)

For this definition to be effective, we need to require that every section has only finitely
many right-inverses (this is true for e.g. Graphfin). Given that property, one way to imple-
ment a fairness strategy is to use a queue, to which child conditions (and the corresponding
right-inverses) are added. This queue has to be arranged in such a way that for each
section/retraction pair a successor is processed eventually.

We now show how to adapt the corresponding results of the previous section (Theorems 16–
18) and in particular show that infinite and fair branches are always models, from which we
can infer soundness and completeness.

▶ Theorem 33 (Fair branches are models (general case)). Let A0 be an alternating condition.
Let a fixed tableau constructed by the rules of Definition 30 be given. Let A0

b1−→ A1
b2−→

A2
b3−→ . . . be a branch of the tableau that is either unextendable and ends with a universal

quantification, or is infinite and fair. For such a branch, we define: P = {(b̄,Ai) | i ∈ N0,

c̄ = [bi+1, bi+2, ...]} ⊆ Seq × Cond. Then, P ⊆ s(u(P )). (Every open and unextendable or
infinite and fair branch in a tableau of Definition 30 corresponds to a model.)

▶ Theorem 34 (Soundness and Completeness).
If all branches in a tableau are closed, then the condition in the root node is unsatisfiable.
If a condition A is unsatisfiable, then in every tableau constructed by obeying the fairness
constraint all branches are closed.

Proof. Use the proof strategies of Theorems 17 and 18. Tableaux constructed by the rules of
Definition 30 have all properties that are required for the proofs (in particular, universal steps
lead to an equivalent condition). Use Theorem 33 to obtain models for open branches. ◀
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In the general case, although soundness and completeness still hold, we are no longer
able to find all finite models as before. This is intuitively due to the fact that a condition
might have a finite model, but what we find is a seemingly infinite model that always has
the potential to collapse to the finite model.

On the other hand, the weaker requirements on the category imply that more instantiations
are possible, such as to Graphfin (graphs and arbitrary morphisms). Here, pushouts can be
used for representative squares, which allows for a more efficient shift operation that avoids
the blowup of the size of the conditions that is associated with jointly epi squares.

6 Conclusion

We introduced a semi-decision procedure for checking satisfiability of nested conditions at
the general categorical level. The correctness of this tableau-based procedure has been
established using a novel combination of coinductive (up-to) techniques. In the restricted
case we also considered the generation of finite models and witnesses for (some) infinite
models. Our procedure thereby generalizes prior work [13, 26, 17] on nested graph conditions
that are equivalent to first-order logic [6]. As a result, we can also handle cospan categories
over adhesive categories (using borrowed context diagrams for representative squares) and
other categories, such as Lawvere theories.

There is a notion of Q-trees [7] reminiscent of the nested conditions studied in this paper,
but to our knowledge no generic satisfiability procedures have been derived for Q-trees.

We plan to transfer the technique of counterexample-guided abstraction refinement
(CEGAR) [9], a program analysis technique based on abstract interpretation and predicate
abstraction, to graph transformation and reactive systems. The computation of weakest
preconditions and strongest postconditions for nested conditions is fairly straightforward [1]
and satisfiability checks give us the necessary machinery to detect and eliminate spurious
counterexamples. One still has to work around undecidability issues and understand whether
there is a generalization of Craig interpolation, used to simplify conditions.

One further direction for future work is to understand the mechanism for witness gener-
ation in more detail. In particular, since it is known that FOL satisfiability for graphs of
bounded treewidth is decidable [2], the question arises whether we can find witnesses for all
models of bounded treewidth (or a suitable categorical generalization of this notion).

Another direction is to further explore instantiation with a Lawvere theory [14], where
arrows are n-tuples of m-ary terms. In this setting representative squares are closely related
to unification. The full version [28] contains some initial results.

Finally we plan to complete development of a tool that implements the satisfiability check
and explore the potential for optimizations regarding its runtime.
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A Additional Material for §2 (Preliminaries)

Graphs and graph morphisms

We will define in more detail which graphs and graph morphisms we are using: in particular, a
graph is a tuple G = (V,E, s, t, ℓ), where V,E are sets of nodes respectively edges, s, t : E → V

are the source and target functions and ℓ : V → Λ (where Λ is a set of labels) is the node
labelling function. In the examples we will always omit node labels by assuming that there
is only a single label.

A graph G is finite if both V and E are finite.
Furthermore, given two graphs Gi = (Vi, Ei, si, ti, ℓi), i ∈ {1, 2}, a graph morphism

φ : G1 → G2 consists of two maps φV : V1 → V2, φE : E1 → E2 such that φV ◦ s1 = s2 ◦ φE ,
φV ◦ t1 = t2 ◦ φE and ℓ1 = ℓ2 ◦ φV .

In the examples, the mapping of a morphism is given implicitly by the node identifiers:
for instance, 1 2 → 1 23 adds the node identified by 3 and adds two edges from the
existing nodes identified by 1 and 2.

Cospans and cospan composition

Two cospans f : A fL−→ X
fR←−− B, g : B gL−→ Y

gR←−− C are composed by taking the pushout
(pL, pR) of (fR, gL) as shown in Figure 1. The result is the cospan f ; g : A fL;pL−−−−→ Z

gR;pR←−−−− C,
where Z is the pushout object of fR, gL. We see an arrow f : A→ C of Cospan(D) as an
object B of D equipped with two interfaces A,C and corresponding arrows fL, fR to relate
the interfaces to B, and composition glues the inner objects of two cospans via their common
interface.

A X

B

Y C

Z

fL

fR gL

gR

pL pR

f g

f ; g

(PO)

Figure 1 Composition of cospans f and g is done via pushouts.

In order to make sure that arrow composition in Cospan(D) is associative on the nose,
we quotient cospans up to isomorphism. In more detail: two cospans f : A fL−→ X

fR←−− B,
g : A gL−→ Y

gR←−− B are equivalent whenever there exists an iso ι : X → Y such that fL; ι = gL,
fR; ι = gR. Then, arrows are equivalence classes of cospans.

Equivalence laws for conditions

We rely on the results given in the following two propositions that were shown in [1]. They
were originally stated for satisfaction with single arrows, but it is easy to see they are valid
for possibly infinite sequences as well: conditions have finite depth and satisfaction only
refers to finite prefixes of the sequence.

https://arxiv.org/abs/2407.06864
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▶ Proposition 35 (Adjunction). Let A,B be two conditions with root object A, let C,D be
two conditions with root object B and let φ : A→ B. Then it holds that:
1. A |= B implies A↓φ |= B↓φ.
2. C |= D implies Qφ.C |= Qφ.D for Q ∈ {∃,∀}.
3. ∃φ.(A↓φ) |= A and for every C with ∃φ.C |= A we have that C |= A↓φ.
4. A |= ∀φ.(A↓φ) and for every C with A |= ∀φ.C we have that A↓φ |= C.

▶ Proposition 36 (Laws for conditions). One easily obtains the following laws for shift and
quantification, conjunction and disjunction:

A↓id ≡ A A↓φ ;ψ ≡ (A↓φ)↓ψ

∀id.A ≡ A ∀(φ ;ψ).A ≡ ∀φ.∀ψ.A
∃id.A ≡ A ∃(φ ;ψ).A ≡ ∃φ.∃ψ.A

(A ∧ B)↓φ ≡ A↓φ ∧ B↓φ (A ∨ B)↓φ ≡ A↓φ ∨ B↓φ

∀φ.(A ∧ B) ≡ ∀φ.A ∧ ∀φ.B ∃φ.(A ∨ B) ≡ ∃φ.A ∨ ∃φ.B

Borrowed context diagrams

For cospan categories over adhesive categories (such as ILC(Graphfin)), borrowed context
diagrams – initially introduced as an extension of DPO rewriting [4] – can be used as
representative squares. Before we can introduce such diagrams, we first need the notion of
jointly epi.

▶ Definition 37 (Jointly epi). A pair of arrows f : B → D, g : C → D is jointly epi (JE) if
for each pair of arrows d1, d2 : D → E the following holds: if f ; d1 = f ; d2 and g; d1 = g; d2,
then d1 = d2.

In Graphfin jointly epi equals jointly surjective, meaning that each node or edge of D is
required to have a preimage under f or g or both (it contains only images of B or C).

This criterion is similar to, but weaker than a pushout: For jointly epi graph morphisms
d1 : B → D, d2 : C → D, there are no restrictions on which elements of B,C can be merged
in D. However, in a pushout constructed from morphisms a1 : A→ B, a2 : A→ C, elements
in D can (and must) only be merged if they have a common preimage in A. (Hence every
pushout generates a pair of jointly epi arrows, but not vice versa.)

▶ Definition 38 (Borrowed context diagram [10]). A commuting diagram in the category
ILC(C), where C is adhesive, is a borrowed context diagram whenever it has the form of
the diagram shown in Figure 2a, and the four squares in the base category C are pushout
(PO), pullback (PB) or jointly epi (JE) as indicated. Arrows depicted as ↣ are mono. In
particular L↣ G+, G↣ G+ must be jointly epi.

Figure 2b shows a more concrete version of Figure 2a, where graphs and their overlaps
are depicted by Venn diagrams (assuming that all morphisms are injective). Because
of the two pushout squares, this diagram can be interpreted as composition of cospans
a; f = ℓ; c = D → G+ ← K with extra conditions on the top left and the bottom right
square. The top left square fixes an overlap G+ of L and G, while D is contained in the
intersection of L and G (shown as a hatched area). Being jointly epi ensures that it really is
an overlap and does not contain unrelated elements. The top right pushout corresponds to
the left pushout of a DPO rewriting diagram. It contains a total match of L in G+. Then,
the bottom left pushout gives us the minimal borrowed context F such that applying the
rule becomes possible. The top left and the bottom left squares together ensure that the
contexts to be considered are not larger than necessary. The bottom right pullback ensures
that the interface K is as large as possible.
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D L I

G G+ C

J F K

JE PO

PO PB

ℓ

a c

f

(a) Structure of a borrowed context diagram.
The inner, lighter arrows are morphisms of the
base category C, while the outer arrows are
morphisms of ILC(C).

D L I

G G+ C

J F K

JE PO

PO PB

(b) Borrowed context diagrams represented as Venn
diagrams. The outer circles represent graphs L, G, and
the area between the inner and outer circles represents
their interfaces I, J .

Figure 2 Borrowed context diagrams.

For more concrete examples of borrowed context diagrams, we refer to [4, 11].
For cospan categories over adhesive categories, borrowed context diagrams form a represen-

tative class of squares [1]. Furthermore, for some categories (such as Graphinj
fin), there are –

up to isomorphism – only finitely many jointly epi squares for a given span of monos and
hence only finitely many borrowed context diagrams given a, ℓ (since pushout complements
along monos in adhesive categories are unique up to isomorphism).

Whenever the two cospans ℓ, a are in ILC(Graphinj
fin), it is easy to see that f, c are in

ILC(Graphinj
fin), i.e., they consist only of monos, i.e., injective morphisms.

Note also that representative squares in Graphinj
fin are simply jointly epi squares and they

can be straighforwardly extended to squares of ILC(Graphinj
fin).

Visualization of shifts

Given a condition A and an arrow c : A = RO(A)→ B, we will visualize shifts in diagrams
as follows:

A B X
c d

A A↓c

Remember that for an arrow d : B → X it holds that d |= A↓c ⇐⇒ c; d |= A.

B Additional Material for §4 (Witnesses for infinite models)

Table 1 Steps for the condition of Example 27, showing that a repeating infinite model exists.

C0 C1 (C1)↓m
∀J 1 K.false ∀J 1 2 K.false

∧ ∀J 1 2 K.false
∧ ∀J 1 + K.

(
∧ ∀J 1 2 + K.

(
∀J 2 + K.

(
∃J 1 + K.true ∃J 1 2 + K.true ∃J 2 + K.true
∨∃J 1 + K.true

)
∨∃J 1 2 + K.true ∨∃J 2 + K.true

)
∨∃J 1 2+ K.true

)
∧ ∀J 1 K.∃J 1 2 K.true ∧ ∀J 1 2 K.

(
∃J 1 2 3 K.true ∧ ∀J 2 K.∃J 2 3 K.true
∨∃J 1 2 K.true

)
∧ ∀J 1 A × B K.false ∧ ∀J 1 2 A × B K.false ∧ ∀J 2 A × B K.false
∧ ∀J 1 × B K.false ∧ ∀J 1 2 × B K.false ∧ ∀J 2 × B K.false

∧ ∀J 1 2 B K.false ∧ ∀J 2 B K.false
∧ . . . ∧ . . . ∧ . . .
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