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—— Abstract
Markov Decision Processes (MDPs) model systems with uncertain transition dynamics. Multiple-
environment MDPs (MEMDPs) extend MDPs. They intuitively reflect finite sets of MDPs that
share the same state and action spaces but differ in the transition dynamics. The key objective in
MEMDPs is to find a single strategy that satisfies a given objective in every associated MDP. The
main result of this paper is PSPACE-completeness for almost-sure Rabin objectives in MEMDPs.
This result clarifies the complexity landscape for MEMDPs and contrasts with results for the more
general class of partially observable MDPs (POMDPs), where almost-sure reachability is already
EXP-complete, and almost-sure Rabin objectives are undecidable.
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1 Introduction

Markov decision processes (MDPs) are the ubiquitous model for decision-making under uncer-
tainty [34]. An elementary question in MDPs concerns the existence of strategies that satisfy
qualitative temporal properties, such as is there a strategy such that the probability of reaching
a set of target states is one? Qualitative properties in MDPs have long been considered as
pre-processing for probabilistic model checking of quantitative properties [6, 24]. Recently,
however, qualitative properties have received interest in the context of shielding [1, 29], i.e.,
the application of model-based reasoning to ensure safety in reinforcement learning [25, 39].

An often prohibitive assumption in using MDPs is that the strategy can depend on
the precise state. To follow such a strategy, one must precisely observe the state of the
system, i.e., of an agent and its environment. The more general partially observable MDPs
(POMDPs) [30] do not make this assumption. In POMDPs, a strategy cannot depend on the
precise states of the system but only on the (sequence of) observed labels of visited states. As
a consequence, and in contrast to MDPs, winning strategies may require memory. Indeed, the
existence of strategies that satisfy qualitative objectives on MDPs is efficiently decidable in
polynomial time using standard graph-algorithms [15, 14]. In contrast, in POMDPs, deciding
almost-sure reachability is already EXPTIME-complete [4, 14], and the existence of strategies
for a more general class of almost-sure Rabin objectives is undecidable [4].
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Figure 1 A MEMDP with three environments.

Multi-environment MDPs (MEMDPs) [36] model a finite set of MDPs, called environments,
that share the state space but whose transition relation may be arbitrarily different. For
any given objective, the key decision problem asks to find a single strategy that satisfies the
objective in every associated MDP. MEMDPs are particularly suitable to model settings where
one searches for a winning strategy that is robust to perturbations or random initialization
problems. Examples of MEMDPs range from code-breaking games such as Mastermind, card
games such as Free-cell, or Minesweeper, to more serious applications in robotics [17], e.g.,
high-level planning where an artifact with unknown location must be recovered.

MEMDPs are special POMDPs [11]: An agent can observe the current state but not the
transition relation determining the outcomes of its actions. This type of partial observation
has an important effect: When an agent observes the next state, it may rule out that a
certain MDP describes the true system. Thus, the set of MDPs that may describe the system
is monotonically decreasing [11]. We call this property as monotonic information gain.

We illustrate MEMDPs in Fig. 1. This MEMDP consists of three environments. When
playing action a; in state sg, we end up in state s; in every environment. If we play action
as and observe that we end up in state so, we can infer that we have to either be in the left
or the middle environment, while observing ss after as rules out the middle environment.
Such information cannot be lost in a MEMDP, hence monotonic information gain.

The most relevant results for qualitative properties on MEMDPs are by Raskin and
Sankur [36], and by Van der Vegt et al. [40]. The former paper focuses on the case with
only two environments, which we refer to as 2-MEMDPs (and more generally, k-MEMDPs).
It shows, among others, that almost-sure parity can be decided in polynomial time. In
2-MEMDPs, the memory for a winning strategy is polynomial in the size of the MEMDP,
while for arbitrary environments, winning strategies for almost-sure reachability may be
exponential [40]. However, despite the need for exponential strategies, almost-sure reachability
in MEMDPs is decidable in PSPACE via a recursive algorithm that exploits the aforementioned
monotonic information gain [40].

Table 1 Known complexity (completeness) for MEMDPs, new results are in boldface. NL and
EXP denote the classes NLOGSPACE and EXPTIME, and UD denotes UNDECIDABLE.

Semantics Almost-sure Possible

Model MDP 2-MEMDP k-MEMDP MEMDP POMDP MDP MEMDP POMDP
Reachability | P [14] P [36] P Cor. 49 PSPACE [40] EXP [4, 14] [NL [14] NL Thm. 6 NL [14]
Safety P [14] P [36] P Cor. 49 PSPACE Thm. 41 EXP [8, 35]|P [14] P Thm. 6 EXP [14]
Bichi P [14] P [36] P Cor. 49 PSPACE Thm. 41 EXP [4, 14]|P [14] P Thm. 6 UD [4]
Co-Biichi P [14] P [36] P Cor. 49 PSPACE Thm. 41 UD [4] P [14] P Thm.6 EXP [14]
Parity P [14] P [36] P Cor. 49 PSPACE Thm. 41 UD [4] P [14] P Thm.6 UD [4]
Rabin P [13] P Cor.49 P Cor.49 PSPACE Thm. 41 UD [4] P [6] P Thm. 6 UD [4]
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The main result of this paper is a landscape of qualitative Rabin objectives and their
subclasses in MEMDPs, see Thl. 1. The key novelty is a PSPACE algorithm to decide the
existence of strategies in MEMDPs that satisfy an almost-sure Rabin objective. The algorithm
relies on two key ingredients: First, as shown in Sect. 4, for almost-sure Rabin objectives,
a particular type of finite-memory strategies (with memory exponential in the number of
environments) is sufficient, in contrast to POMDPs. Second, towards an algorithm, we
observe that a traditional, per Rabin-pair, approach for Rabin objectives does not generalize
to MEMDPs (Sect. 6.1). It does, however, generalize to what we call belief-local MEMDPs,
in which one, intuitively, cannot gain any information (Sect. 6.3). Exploiting the monotonic
information gain of (general) MEMDPs, we construct a recursive algorithm with polynomial
stack size, inspired by [40], that solves Rabin objectives in belief-local MEMDPs (Sect. 6.4).
Finally, we establish PSPACE-hardness for almost-sure safety and clarify that for possible
objectives, MEMDPs can be solved as efficiently as MDPs. Proofs are in the appendix of the
full version of this paper [38].

Related Work

Besides almost-sure objectives, Raskin and Sankur [36] also study limit-sure objectives for
MEMDPs of two environments. Where almost-sure objectives require that the satisfaction
probability of the objective equals one, an objective is satisfied limit-surely whenever for any
€ > 0, there is a strategy under which the objective is satisfied with probability at least 1 — e.
For 2-MEMDPs, limit-sure parity objectives are decidable in P [36].

Closely related to the study of almost-sure objectives in MEMDPs and POMDPs is the
value 1 problem for probabilistic automata (PA). A PA can be seen as a POMDP where all
states have the same observation and are thus indistinguishable. The value 1 problem is to
decide whether the supremum of the acceptance probability over all words equals one. This
problem is undecidable for general PA [26], but recent works have studied several subclasses of
PA for which the value 1 problem is decidable. Most notably, #-acyclic PA [26], structurally
simple and simple PA [16], and leaktight PA [23]. Leaktight PA are the most general of these
subclasses [20]. They contain the others, and the value 1 problem is PSPACE-complete [22].

The interpretation of MEMDPs as a special POMDP is successfully used in the quantitat-
ive setting, where the goal is to find a strategy that maximizes the probability of reaching a
target. Finding a strategy that maximizes the finite-horizon expected reward in MEMDPs is
PSPACE-complete [9], as is also the case for the same problem in more general POMDPs [33].

Besides a special class of POMDP, MEMDPs are also a class of robust MDP with discrete
uncertainty sets [32, 27]. In the robotics and AT communities MEMDPs are studied in that
context, primarily for quantitative objectives such as maximizing discounted reward or regret
minimization [37]. Parametric MDPs (pMDPs) are another formalism for defining MDPs with
a range of transition functions [28]. Where we seek a single strategy that is winning for all
environments, parameter synthesis is often about finding a single parameter instantiation (or:
environment) such that all strategies are winning [18, 2]. That is, the quantifiers are reversed.
A notable exception is work on quantitative properties in pMDPs by Arming et al. [3], which
interprets a parametric MDP as a MEMDP and solves it as a POMDP. With the (altered)
quantifier order in pMDPs, memoryless deterministic strategies are sufficient: The complexity
of finding a parameter instantiation such that under all (memoryless deterministic) strategies
a quantitative reachability objective is satisfied is in NP when the number of parameters
is fixed and ETR-complete in the general case [41]. Determining whether a memoryless
deterministic policy is robust is both ETR and co-ETR-hard [41].
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Concurrent parameterized games have a similar type of partial observability as MEMDPs
but lack a probabilistic transition function. The complexity of deciding reachability objectives
in concurrent parameterized games is PSPACE-complete [7], equal to that of almost-sure
reachability objectives in MEMDPs [40].

2 Background and Notation

Let N denote the natural numbers. For a set X, the powerset of X is denoted by P(X), and
the disjoint union of two sets X,Y is denoted X LY. A discrete probability distribution
over a finite set X is a function p: X — [0,1] with ) _ p(z) = 1, the set of all discrete
probability distributions over X is Dist(X). The support of a distribution u € Dist(X) is
the set of elements x with p(x) > 0 and is denoted by Supp(p). We denote the uniform
distribution over X by unif(X) and the Dirac distribution with probability 1 on x by dirac(z).

2.1 Markov Decision Processes

We briefly define standard (discrete-time) Markov decision processes and Markov chains.

» Definition 1 (MDP). A Markov decision process (MDP) is a tuple M := (S, A, ¢, p) where
S is a finite set of states and ¢ € S is the initial state, A is the finite set of actions, and
p: S x A — Dist(S) is the partial probabilistic transition function. By A(s), we denote the
set of enabled actions for s, which are the actions for which p(s,a) is defined.

For readability, we write p(s,a,s’) for p(s,a)(s’). A path in an MDP is a sequence of
successive states and actions, ™ = sgagsia; ... € (SA)*S, such that so = ¢, a; € A(s), and
p(8i,ai, 8;41) > 0 for all ¢ > 0, and we write T for only the sequence of states in m. The
probability of following a path 7 in an MDP with transition function p is defined as p(7) =
p(s0ao - ..) = [L;oP(si,a:, sit1). The set of all (finite) paths on an MDP M is Path(M) (resp.
Pathgn(M)). Whenever clear from the context, we omit the MDP M from these notations.
We write first(m) and last(w) for the first and last state in a finite path, respectively, and
the concatenation of two paths 7y, mo is written as w1 - mo. The set of reachable states from
S’ C S is Reachable(S’) := {s' € S | Ir € Pathqay: first(r) € S’, last(w) = s'}. A state s € S
is a sink state if Reachable({s}) = {s}. An MDP is acyclic if each state is a sink state or not
reachable from its successor states. The underlying graph of an MDP is a tuple (V, E) with
vertices V := {v, | s € S} and edges E := {{vs,vs) | Vs,8’ € S: Ja € A: p(s,a,s’) > 0}.

A sub-MDP of an MDP M = (S, A,¢,p) is a tuple (S’, A’ //,p') with states § # 5" C S,
actions () # A’ C A, initial state «' € S/, and a transition function p’ such that Vs € S: () #
A'(s) C A(s) and Vs, s" € §’,a € A'(s): Supp(p(s,a)) C S and p'(s,a,s’) := p(s,a,s’). An
end-component of an MDP M is a sub-MDP where Reachable(S’) = S’. Sub-MDPs and
end-components are standard notions; for details, cf. [19, 6, 36].

A Markov chain is an MDP where there is only one action available at every state:
Vs € S: JA(s)| = 1. We write an MC as a tuple C := (S,¢,p) where S is a set of states,
L € S is the initial state, and p: S — Dist(S) is the transition function. Paths in MCs are
sequences of successive states, and their underlying graph is analogously defined as for MDPs.
A subset T' C S is strongly connected if for each pair of states (s,s’) € T there exists a
finite path 7 with first(w) = s and last(w) = s'. A strongly connected component (SCC) is a
strongly connected set of states T such that no proper superset of T is strongly connected.
A bottom SCC (BSCC) is an SCC S’ where no state s € S\ S’ is reachable.
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2.2 Strategies and Objectives

We now formally define strategies and their objectives. Strategies resolve the action choices
in MDPs. A strategy is a measurable function o: Pathg, — Dist(A) such that for all finite
paths m € Pathg, we have Supp(o(last(m))) C A(last(m)). A strategy is deterministic if
it maps only to Dirac distributions, and it is memoryless if the action (distribution) only
depends on the last state of every path. We write X for the set of all strategies.

A strategy o applied to an MDP M induces an infinite-state MC M (o] = (S™*, ¢, ps) such
that for any path 7: p, (7, 7-5") = >, c 4 o(7)(a) -p(last(r),a, s"). This MC has a probability
space with a unique probability measure P[5} via the cylinder construction [6, 21].

A strategy is a finite-memory strategy if it can be encoded by a stochastic Moore machine,
also known as a finite-state controller (FSC) [31]. An FSC is a tuple F = (N,n,,a,n),
where N is a finite set of memory nodes, the initial node n, € N, a: S x N — Dist(A) is
the action mapping, and n: N x A x S — Dist(N) is the memory update function. The
induced MC M[F] of an MDP M and finite-memory strategy represented by an FSC F is
finite and defined by the following product construction: M[F] = (S x N, (t,n,), pF), where
pr((s,n), (s,n)) = ,caals,n,a)-p(s,a,8)-n(n,a,s',n'). A strategy is memoryless if its
FSC representation has a single memory node, i.e., |N| = 1.

We consider both almost-sure and possible objectives for MDPs and MCs with state space
S. An objective @ is a measurable subset of P C S“. An MC C is almost-surely (or possibly)
winning for an objective ® iff Po(Path(C) N ®) =1 (or Pc(Path(C) N ®) > 0). A state s is
winning whenever the MC with its initial state replaced by s is winning. We write C' = ®
and s =Y ® to denote that MC C' and state s are winning for ®.

» Definition 2 (Winning). An MDP M is winning for ® if there exists a strategy o € ¥ such
that the induced MC M|o] is winning for ®, and the strategy o is then also called winning.

Like above, we denote winning in MDPs with M = ® or s =™ ®, respectively. Sometimes,
we explicitly add the winning strategy and write M[o] = ® and s =17 & for the MDP
winning ® under o from its initial state or some other state s, respectively.

» Definition 3 (Winning Region). We call the set of states of an MDP (or MC) that are
winning objective ® the winning region, denoted as Winy (®) = {s € S | s =M ®}.

We define Rabin objectives. Let C = (S, ¢, p) be a MC with associated probability measure
Pe, m € Path(C) a path, and Inf(7) C S the set of states reached infinitely often along 7.

» Definition 4 (Rabin objective). A Rabin objective is a set of Rabin pairs: ® = {{$B;, ;) |
1<i<k € CB;, CS}. A pathn € Path(C) wins ® if there is a Rabin pair (B;,€;)
in ® where the path leaves the states in B; only finitely many times, and states in €; are
visited infinitely often. The MC C wins a Rabin objective almost-surely (or possibly) if
Po(m € Path(C) | 3(B;, ;) € : Inf(m) € B; AInf(r)NE; £ 0) =1 (or possibly when > 0).

For MDPs, almost-sure and possible Rabin objectives can be solved in polynomial time [6,
Thm. 10.127], and the strategies are memoryless deterministic [13, Thm. 4]. Other objectives,
specifically reachability (0T, safety (OT), Biichi (00T, co-Biichi (QUT'), and parity are
included in Rabin objectives [13] for a set T C S. App. A contains formal definitions.

3 Multi-Environment MDPs and the Problem Statement

Next, we introduce the multi-environment versions of MDPs and MCs. Intuitively, these can
be seen as finite sets of MDPs and MCs that share the same states and actions.

40:5
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» Definition 5 (MEMDP). A multi-environment MDP is a tuple M = (S, A, 1, {pi}icr)
with S, A, v as for MDPs, and {p;}icr is a finite set of transition functions, where I are the
environment indices. We also write M = {M;};cr as a set of MDPs, where M; = (S, A, ¢, p;).

For a MEMDP M and a set I’ C I, we define the restriction to I’ as the MEMDP M =
(S, A, 1,{pi}icr). To change the initial state of M, we define M* = (S, A,/ {pi}ier)-

A multi-environment MC (MEMC) is a MEMDP with Vs € S: |A(s)| = 1. A MEMC is
a tuple C = (S, ¢, {p; }ier) or equivalently a set of MCs C = {C;}ier. A BSCC in a MEMC
is a set of states S’ C S such that S’ forms a BSCC in every MC C; € C. The underlying
graph of a MEMDP or MEMC is the disjoint union of the graphs of the environments.

Similarly to Def. 2 for MDPs, a strategy o for a MEMDP M is winning for objective
® if and only if the induced MEMC M]o] = {M[o];}ier is winning in all environments:
Vi € I: M|o]; is winning for ®. Winning regions, Def. 3, extend similarly to MEMDPs:
Winp(®) = {s € S | s EM ).

The central decision problem in this paper is:

Given a MEMDP M and a Rabin objective @, is there a winning strategy for ® in M.

We assume MEMDPs are encoded as an explicit list of MDPs and each MDP is given by the
explicit transition function. The value of the probabilities are not relevant.

We first consider possible semantics in MEMDPs, completing Thl. 1. For POMDPs,
co-Biichi objectives are known to be undecidable [4]. We show that for various objectives,
deciding them in MEMDPs is equally hard as in their MDP counterparts.

» Theorem 6. Deciding possible reachability objectives for MEMDPs is in NL. Deciding
possible safety, Biichi, co-Biichi, parity and Rabin objectives for MEMDPs is in P.

Using results on MDPs from [14], these upper bounds are tight. The main observation

for membership is that a MEMDP is winning possibly objectives iff each MDP is possibly

winning, due to a randomization over the individual winning strategies. We can then construct

algorithms that solve each environment sequentially to answer the query on MEMDPs.
From here on, we focus exclusively on the almost-sure objectives.

» Theorem 7. Almost-sure reach, safety, (co-)Biichi, and Rabin objectives for MEMDPs are
PSPACE-hard.

This theorem follows from [40], which shows that almost-sure reachability is PSPACE-complete.
PSPACE-hardness of almost-sure safety can be established by minor modifications to the proof:
In particular, the PSPACE-hardness proof for reachability operates on acyclic MEMDPs,
where we may reverse the target and non-target states to change the objective from almost-
sure reachability to safety. PSPACE-hardness of almost-sure (co-)Biichi, parity, and Rabin
objectives follows via reduction from almost-sure reachability.

4 Belief-Based Strategies are Sufficient

In this section, we fix a MEMDP M = (S, A, ¢, {pi }icr) with an almost-sure Rabin objective
®, and constructively show a more refined version of the following statement.

» Corollary 8. For a MEMDP M and an almost-sure Rabin objective @, if there exists a
winning strategy for ®, there also exists a winning finite-memory strategy o* such that the
finite-state controller (FSC) for o* is exponential (only) in the number of environments.
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This corollary to Thm. 15 below immediately gives rise to EXP algorithms for the decision
problem that simply iterate over all strategies. The particular shape of the strategy, a notion
that we call belief-based, will be essential later to establish PSPACE algorithms.

4.1 Beliefs in MEMDPs

It is helpful to consider the strategy as a model for a decision-making agent. Then, in
MEMDPs, the agent observes in which state s € S it currently is but does not have
access to the environment ¢ € I. The hiding of environments gives rise to the notion of a
belief-distribution in MEMDPs, akin to beliefs in partially observable MDPs [30]. A belief
distribution in a MEMDP is a probability distribution over environments p € Dist(I) that
assigns a probability to how likely the agent is operating in each environment. As we show
below, we only need to consider the belief-support, i.e., a subset of environments that keeps
track of whether it is possible that the agent operates in those environments. From now on,
we shall simply write belief instead of belief-support.

» Definition 9 (Belief, belief update). Given a finite path 7, we define its belief as its last state
together with the set of environments for which this path has positive probability: Belief(n) =
(last(m),{i € I | p;(w) > 0}). For path 7 - as’, the belief can be characterized recursively
by the belief update function BU: S x P(I) x A x S — S x P(I). Let (s,J) = Belief(r),
then: (s',J") = BU((s,J),a,s’) := Belief(r - as’), where J' = {j € J | p;(s,a,s’) > 0}. We
also liberally write BU((s, J),a) for the set of beliefs (s',J') that are possible from (s, J) via
action a, and define the two projection functions: St({s,J)) = s and Env({s, J)) = J.

Key to MEMDPs is the notion of revealing transitions [36]. A revealing transition is a
tuple (s, a,s’) such that there exist two environments i, € 1,7 # i’ with p;(s,a,s’) > 0
and py(s,a,s’) = 0. Intuitively, a transition is revealing whenever observing this transition
reduces the belief over environments the agent is currently in, since we observed a transition
that is not possible in one or more environments. From this notion of revealing transitions
immediately follows the property of monotonic information gain in MEMDPs.

» Corollary 10. Let 7 - as’ be a finite path. Then: (1) Env(Belief(r - as’)) C Env(Belief(r)),
and (2) If there are environments j,j' € Env(Belief(m)) with p;(last(m),a,s’) > 0 =
pj(last(m), a, s")), then j' ¢ Env(Belief(m-as’)) and thus Env(Belief(m-as’)) C Env(Belief(r)).

Key to our analysis of MEMDPs is the notion of belief-based strategies.

» Definition 11 (Belief-based strategy). A strategy o is belief-based when for all finite paths
m, © such that Belief(7) = Belief(n’) implies o(7) = o(n’). Belief-based strategies can also
be written as a function o: S x P(I) — Dist(A).

Belief-based strategies are a form of finite-memory strategies and are representable by FSCs.

» Lemma 12. A belief-based strategy o: S x P(I) — Dist(A) for a MEMDP M with states
S and actions A can be represented by an FSC.

Similar to how states may be winning, beliefs can also be winning.

» Definition 13 (Winning belief). We call the belief (s,.J) winning for objective ® in M,
written as (s, J) EM @, if there exists a strategy o: Pathg, — Dist(A) such that for every
environment j € J, the induced MC is winning. That is, Vj € J: M,[o] = ®.

40:7
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A MEMDP M is winning, M |= @, iff the initial belief (¢, I) is winning. We can extend
the notion of a winning region to beliefs. The (belief) winning region of a MEMDP M is
Win(®) = {{s,J) € S x P(I) | (s, J) ™ ®}. The notion of winning beliefs has been used
before in the context of POMDPs with other almost-sure objectives [10].

The induced MEMC of a MEMDP and FSC conservatively extends the standard product
construction between an MDP and FSC to be applied to each transition function {p;};cr
individually. In that MEMC, the objective must be lifted to the new state space S x N.

» Definition 14 (Lifted Rabin objective). For Rabin objective ® = {{%B;,&;) |1 <i < k. &; C
B; C S} on S, the lifted Rabin objective to S x N is ® := {{(€; x N,B; x N) |1 <i < k}.

When clear from the context, we implicitly apply this lifting where needed.

4.2 Constructing Winning Belief-Based Strategies
We are now ready to state the main theorem of this section.

» Theorem 15. For MEMDP M and Rabin objective ®, there exists a winning strategy o
for @ iff there exists a belief-based strategy o* that is winning for ®.

The remainder of this section is dedicated to the necessary ingredients to prove Thm. 15.

» Definition 16 (Allowed actions). The set of allowed actions for a winning belief (s, J) is
Allow((s, J)) := {a € A(s) | V(s',J") € BU({s,J),a): (s',J") =M ®}.

That is, an action at a winning belief is allowed if all possible resulting successor beliefs are still
winning. Using allowed actions we define the belief-based strategy oajow : S x P(I) — Dist(A):

unif (Allow((s, J})) if Allow({(s, J)) # 0,
unif(A(s)) otherwise.

0'A||0W(<S, J>) = {

The strategy oajow randomizes uniformly over all allowed actions when the successor beliefs
are still winning and over all actions when the belief cannot be winning. We now sketch how
to use oajew to construct a winning belief-based strategy. See App. C for the details.

When playing oajiew, the induced MEMC M o ajiow] Will almost-surely end up in a BSCC.
Given belief (s, J), we compute all environments j € J for which M [oajiow] is in a BSCC Sg:
\7(37J> = {] eJ | dSg C S x P(I) Sg is a BSCC in MC M[UAIIow}j A <S,J> S SB}

As a consequence, since oajew is a belief-based strategy, every BSCC of the MEMC
M oaiow] has a fixed set of environments that cannot change anymore. As oajon uniformly
randomizes over all allowed actions, and it remains possible to win, there has to exist a
strategy ogscc: Sg — Dist(A) that is a sub-strategy of oajiow, €., it only plays a subset of
actions that are also played by oajow. We construct appropriate sub-MDPs to compute ogscc
for a belief (s, J) that is almost-surely winning for ®. Using cajow and ogscc, we construct
the following belief-based strategy and show it is indeed winning. The other direction follows
since beliefs are based on paths, which proves Thm. 15.

oatew((s,J)) if Tis,0y =0,
ogscc((s,J)) otherwise.

a*((s,J)) == {

Thm. 15 shows that belief-based strategies are sufficient for almost-sure Rabin objectives
in MEMDPs, which is not true on more general POMDPs [12]. Key is the monotonic
information gain in MEMDPs, a property that POMDPs do not have in general [11].

» Remark. For the remainder of this paper, we assume all strategies are finite-memory
strategies, and the induced (ME)MCs are defined via the product construction from Sect. 2.2.
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5 Explicitly Adding Belief to MEMDPs

Above, we showed that it is sufficient for a strategy to reason over the beliefs. Now, we show
how to add beliefs to the MEMDP, yielding a belief observation MDP (BOMDP). We discuss
their construction (Sect. 5.1) and then algorithms on BOMDPs for reachability (Sect. 5.2)
and so-called safe Biichi objectives (Sect. 5.3). We discuss Rabin objectives in Sect. 6.

5.1 Belief-Observation MDPs

We create a product construction between the MEMDP and the beliefs P(I) such that the
beliefs of the MEMDP M are directly encoded in the state space:

» Definition 17 (BOMDP). The belief observation MDP (BOMDP) of MEMDP M =
(S, A, v,{piticr) is a MEMDP Ba = (S', A,V {p}}ici) with states 8" = S x P(I), initial

state o' = (1, I), and partial transition functions that are defined when a € A(s) such that

pi(s,a,s") if (s, J) =BU((s,J),a,s)ANjeEJ,

0 otherwise.

p;‘(<57 J>va7 <S/a J/>) = {

BOMDPs are special MEMDPs; hence, all definitions for MEMDPs apply to BOMDPs. Due
to the product construction, a belief-support-based strategy for M can be turned into a
memoryless strategy for B, and vice versa. In BOMDPs, the belief J is already part of the

state, so we simplify the satisfaction notation to (s, J) =5 @ instead of ((s,J), J) 5 ®.

» Definition 18 (Lifted strategy). Given MEMDP M and a belief-based strategy o. The
lifted memoryless strategy 6: (S x P(I)) — Dist(A) on Baq is 6(s,J) :=oc((s,J)).

This lifting ensures that belief-based strategies and their liftings to BOMDPs coincide.

» Lemma 19. Given a MEMDP M, its BOMDP B, a belief-based strategy o for M and
its lifted strategy & for B, we have that the two induced MEMCs coincide: M[o] = Bm|[6].

Consequently, satisfaction of objectives is preserved by the transformation.

» Theorem 20. Let M be a MEMDP with state space S and ® a Rabin objective. Let
O be the lifted Rabin objective to S x P(I) by Def. 14. A belief-based strategy o for M is

winning the Rabin objective ® iff the lifted strategy 6 is winning the lifted objective o for
Bu: Vo (s, J) EMIEL & & (s,.]) EBMIT §,

As a result of Thm. 20, we will implicitly lift strategies and objectives.

5.2 An Algorithm for Reachability in BOMDPs

In this subsection, we establish an algorithm for computing the winning region for reachability
objectives in a BOMDP. The winning region of a BOMDP B is precisely the set of winning
beliefs of its MEMDP M: Wing,, (®) = {(s,J) € S x P(I) | (s,J) ™ ®}. The algorithm
specializes a similar fixed-point computation for POMDPs [12] to BOMDPs.

Alg. 1 computes these winning regions. It relies on a state-remove operation defined
below. Intuitively, the algorithm iteratively removes losing states, which does not affect the
winning region until all states that remain in B, are winning.

Removing state s from a BOMDP removes the state and disables outgoing action from
any state where that action that could reach s with positive probability. This operation thus
also removes any action and its transitions that could reach the designated state.

40:9
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Algorithm 1 Reachability algorithm for a BOMDP Bas of MEMDP M.

1: function REACH(BOMDP By, T C S)

2 do

3 forve I do

4 Si — {{(s,J) e SxP)|ieJ}

5: for (s,J) € S; \ Wing,,,(0T) do > Iterate over all losing states
6 B + StateRemove(Bay, (s, J)) > See Def. 21
7 while \,.; S; # Wing,,,(0T) > Check if stable
8 return S5m

» Definition 21 (State removal). Let Bag = (S x P(I), A, 1,{pi};c;) be a BOMDP, and
1¢ 8 xP(I) a sink state. The BOMDP StateRemove(Ba, (s, J)) for Bam and state (s, J) €
S x P(I) is given by ({L}US x P(I)\{(s, J)}, A,/ Api}icr), where ' =L if (s,J) =1, and
V' = otherwise, and for all states (s', J') # (s, J) and environments i € I we have

pi{(s",J"),a) if (s, J) & Supp(pi((s', J'), ),

((s',J),a) =
pls', 7). a) {dirac(J_) if (s,J) € Supp(p;((s', J'), ).

The main results in this section are the correctness and the complexity of Alg. 1:
» Theorem 22. For BOMDP Bpq and targets T: Wing,,(0T) = REACH(Bam, T) in Alg. 1.

Towards a proof, the notions of losing states and strategies as defined for MDPs also apply
to BOMDP states and strategies. For BOMDPs, we additionally define losing actions as
state-action pairs that lead with positive probability to a losing state. It follows that a
BOMDP state is losing iff every action from that state is losing, and a single environment
where a BOMDP state is losing suffices as a witness that the state is losing in the BOMDP
(see the App. D). Finally, the following lemma is the key ingredient to the main theorem.

» Lemma 23. Remowving losing states from Baq does not affect the winning region, i.e.,

<Sv J> ¢ WZ”BM (OT) implies WinStateRemove(BM,<S,J>)(<>T) = WZTLBM (<>T)

» Lemma 24. Alg. 1 takes polynomial time in the size of Bag.

5.3 Safe Biichi in BOMDPs

In this section, we consider winning regions for safe Biichi objectives of the form OB A OO,
where € C B C S. The condition € C *B is convenient but does not restrict the expressivity.
These objectives are essential for our Rabin algorithm in Sect. 6. The main result is:

» Theorem 25. For BOMDP B, Wing,, (OB AOOC) is computable in polynomial time.
We provide the main ingredients for the proof below. We first consider arbitrary MEMDPs.

» Definition 26 (State restricted (ME)MDP). Let M = (S, A,¢,p) be an MDP and S" C S a
set of states. The MDP Mpg = (S"U{L}, A, //,p') is M restricted to S’, with L a sink
state, V' = v if 1 € S and L otherwise, and for s € S’, a € A(s) and s’ € S"U{ L}, we define:

= {Zsues\sw(&w”) ifs' =1,

p/(87a7 S

p(s,a,s") otherwise.

This definition conservatively extends to MEMDPs per environment i: (Mpg/); = (M;)gg -
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12 1/2
o o

Figure 2 Example of a BOMDP fragment with Rabin objective ® = {{{s1}, {s1}), ({s2}, {s2})}-

The winning regions of a MEMDP M and Mpg coincide as, intuitively, winning strategies
must remain in B, thus removing other states does not affect the winning region.

» Lemma 27. The winning regions for B A OO with € C B in Mpy and M coincide.
Satisfying the Biichi objective JOC inside Moy implies satisfying the safety condition, thus:
» Lemma 28. The winning regions for (1B A Q€ with € C B and JOC in Moy coincide.
We can lift these lemmas to the BOMDP associated with a MEMDP.

» Lemma 29. The winning regions for OB AOOC with € C B in By and Baqy,,) coincide.

Almost-sure Biichi objectives can be reduced to almost-sure reachability objectives using a
construction similar to the one in [5], see the proof in the App. D for details.

» Lemma 30. Biichi in BOMDPs is decidable in polynomial time.

Now, to prove Thm. 25, Wing,, (0% A 00C€) is computable as Biichi objective on a polyno-
mially larger MEMDP (Lem. 29) in polynomial time (Lem. 30).

6 A Recursive PSPACE Algorithm for Rabin Objectives

We now show how to exploit the structure of BOMDPs to arrive at our PSPACE algorithm
for Rabin objectives in MEMDPs. We first discuss the non-local behavior of Rabin objectives,
and in particular, why the standard approach for almost-sure Rabin objectives for MDPs
fails on BOMDPs. Then, in Sect. 6.2, we introduce J-local MEMDPs, which are MEMDPs
where the belief J does not change. These J-local MEMDPs also occur as fragments of the
BOMDPs. In J-local MEMDPs, whenever a transition is made that would cause a belief
update to a strict subset of J, we transition to dedicated sink states, which we refer to as
frontier states. These frontier states reflect transitioning into a different fragment of the
BOMDP, from which all previously accessed BOMDP states are unreachable due to the
monotonicity of the belief update operator. Next, in Sect. 6.3, we present an algorithm for
efficiently computing the winning region of Rabin objectives on J-local MEMDPs. Finally, in
Sect. 6.4, we prove that frontier states can be summarized as being either winning or losing,
ultimately leading to a PSPACE algorithm for deciding Rabin objectives in MEMDPs.

6.1 Non-Local Behavior of Rabin Objectives

The traditional approach for checking almost-sure Rabin objectives on MDPs, see e.g. [6],
computes for each state s € S, whether there is a strategy that immediately satisfies a Rabin
pair ®; = (B, ¢;), i.e., satisfying OB; A JOC;, and is a stronger condition. A state satisfies
the Rabin condition & iff it almost-surely reaches the set of immediately winning states (the
win set). The example below illustrates why this approach fails to generalize to MEMDPs.

» Example 31. In Fig. 2, we see a BOMDP for which the “MDP approach” does not work.
First, note that the only strategy that always plays a is winning in every state. Now, consider
the algorithm and the first Rabin pair ®; = ({s1}, {s1}). State (s9,{2}) does not satisfy
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O{s1} AOO{s1}. State (s1,{1,2}) also does not belong to the win set, as in My there is a
1/2 probability of reaching the sink state (s3, {2}). For the second Rabin pair, (only) state
(s2,{2}) is immediately winning. Thus, the win set is the singleton set containing (s2,{2}).
From the initial state (s1, {1,2}), it is not possible to almost-surely reach the state (s2, {2}),
due to M. Therefore, a straightforward adaption of the traditional algorithm for MDPs
would yield that the initial state is losing.

The difficulty in the example above lies in the fact that in the different environments, a
different Rabin pair is satisfied. However, taking the self-loop in s; does not update the
belief and it remains unclear whether we will eventually satisfy ®; or ®,.

6.2 Local View on BOMDPs

We formalize J-local MEMDPs, that transition into frontier states if the belief updates.

» Definition 32 (J-local MEMDPs). Given a MEMDP M = (S, A, ,{p; }icr1), the J-local
MEMDP M{J} = (S U F, A {p}}jes,t) is a MEMDP, with as state space the disjoint
union of the (original) states S and the frontier states F := S x A x S. The transition
functions {p;: SUF x A — Dist(SUF)}jes are defined s.t. (1) pi(f,a, f) =1 forall f € F,
(2) pj(s, a) is undefined if p; (s, a) is undefined, and (3) for every state s € S and a € A(s), we
define p'i(s, a, (s,a,s")) = p;j(s,a,s") if BU((s, J),a,s") # (s',J) and p}(s,a,s") = p;(s,a,s)
otherwise.

By definition of the transition functions {p} e s of a J-local MEMDP M{.J}, all environments
of M{J} share the same underlying graph within the states of S. Transitions to the frontiers
may, however, differ (made formal in App. E). As both M and M{J} have states in S, a
Rabin objective ® can readily be applied to both. To give meaning to the frontier states F’
in M{J}, we introduce localized Rabin objectives:

» Definition 33 (Localized Rabin objective, winning frontier). Given Rabin objective ® =
{(B;, ;) |1 <i<k. € CB; CS} and some subset of frontier state WF C F, the localized
Rabin objective for J-local MEMDP M{J} is ®Lo¢(WF) := {(B;UWF,;UWF) |1 <i < k}.
We call WF the winning frontier, as any path that reaches a state in WF is winning.

6.3 An Algorithm for Localized Rabin Objectives

Below, we present an algorithm to compute the winning region of a localized Rabin objective
on a J-local MEMDP, using some auxiliary definitions on winning in a J-local MEMDPs.

» Definition 34 (Immediately winning Rabin pair/state). A J-local MEMDP state s € SUF
has an immediately winning Rabin pair ®; = (3B;, ¢;) when s =M OB, A OOC;. A state
s € SUF is immediately winning if it has an immediately winning Rabin pair.

Immediately winning states are, in particular, also winning states (see Lem. 59, App. E). It
is natural also to consider specialized winning regions for just immediately winning states:

» Definition 35. The Rabin win set Wgro is {s € SU F | s is immediately winning }.

The crux of our algorithm is that in J-local MEMDPs, as in MDPs but unlike in BOMDPs,
winning a Rabin objective is equivalent to almost-surely reaching the Rabin win set.

» Lemma 36. A state s in a J-local MEMDP is winning iff it can almost-surely reach Wroc.
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Algorithm 2 Local Rabin Algorithm.

1: function RABIN(Local MEMDP £ = M{J}, WF,® = {(B1,¢1), - ,(Bn, )} )

2 Swin — 0

3 for 1 <i<ndo

4 B! B, UWF ; €« ¢ UWF

5 Swin < Swin U Wing (OB, AOOC,) > See Thm. 25
6 return Wing(OSwin)

We sketch the proof ingredients later. We first introduce Alg. 2, which lifts the MDP approach
(Sect. 6.1) to J-local MEMDPs. The set Sy, on line 2 stores states for which an immediately
winning Rabin pair has been found. For each Rabin pair ®;, the algorithm computes the
localized Rabin pair ®£°¢. Next, in line 5, it compute the winning region Win, (OB, A OO€?)
using the approach described in Sect. 5.3. These are exactly the states that have ®£°¢ as an
immediately winning Rabin pair, i.e., they constitute the win set Sy,;,. Finally, the algorithm
outputs the winning region by computing states that almost-surely reach Sy, using Alg. 1.

» Theorem 37. Alg. 2 yields winning regions for local MEMDPs and localized Rabin objectives.

The remainder of this subsection discusses the ingredients for proving Lem. 36 and the
theorem above. Therefore, we consider the induced Markov chain C' of environment j under
any strategy, i.e., C = M{J}[o];. In any state that is in a BSCC of C, we notice that the
reachable states in any environment are contained by the BSCC and the frontier states.
Furthermore, we observe that in any environment, either the BSCCs in those states are
the original BSCC or are (trivial) BSCCs in the frontier. Formal statements are given in
App. E. The next lemma shows that states that are (under a winning strategy and in some
environment) in a BSCC are immediately winning with some Rabin pair. The main challenge
is that this BSCC may not be a BSCC in every environment. Using the observations above,
if the states do not constitute a BSCC, they will almost surely reach (winning) frontier states,
which allows us to derive the following formal statement:

» Lemma 38. Given a J-local MEMDP M{J} and a winning strategy o. Every state that
is in a BSCC Sgj of M{J}[c]; of some environment j € J, is in Wt

With this statement, we can now prove Lem. 36 as under any winning strategy, we almost-
surely end up in BSCCs. We return to the proof of the main theorem about the correctness
of Alg. 2. First, we observe that we correctly identify the immediately winning states.

» Lemma 39. Alg. 2 computes the set of states that are immediately winning, Wegroc.
Lems. 36 and 39 together prove Thm. 37. Finally, we remark:

» Lemma 40. Alg. 2 is a polynomial time algorithm.

6.4 Recursive Computation of Winning Regions

We now detail how to combine the local computations of winning regions towards a global
winning region. Furthermore, we show that to obtain the winning region at the root (i.e.,
I-local), we can forget about the winning regions below and, consequently, present a recursive
approach (akin to [40]) to decide almost-sure Rabin objectives for MEMDPs in PSPACE.

» Theorem 41. Winning almost-sure Rabin objectives in MEMDPs is decidable in PSPACE.
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Algorithm 3 Generic recursive algorithm for MEMDPs.

1: function CHECK(MEMDP M = (S, A, ¢, {p;}ic1), P )

2: L+ M{I}

3:  RF < Reachable(S*) N F* > Compute the reachable frontier states
4 WF < {(s,a,s') € RF | (s, J') = BU((s, J),a,s') A CHECK(M® | ;;, ®)}

5 return ¢ € RABIN(L, WF, @) > Compute winning set with winning frontier

In the remainder, we show this by providing a recursive algorithm and proving its correctness.
An important construction is to project the winning region into a particular set of beliefs.

» Definition 42 (Belief-restricted winning regions). For a Rabin objective ®, we define the
following restrictions of the winning region: (1) Winp(®); := Winp (D) N (S x {J}),
(2) Winp(®)cg :=Uycy Winp(®) g, and (8) Winpg(®)cy := Winp(®)cs U Winaq ().

We now define the localized Rabin objective where we determine the winning frontiers based
on the actual winning states in a BOMDP. We use the following auxiliary notation: We
define the reachable frontier RF := Reachable(S) N F. Then, we can determine where a
local transition s % s’ leads in the global system, ToGlob({(s,a,s")) := BU((s,J),a, s") and
finally consider WinLocal ;(F,B) :={f € F | ToGlob;(f) € B}.

» Definition 43 (Correct localized Rabin objective). For belief J, the correct localized Rabin
objective is ®CLo¢(J) := ®Lo°( WinLocal ;(RF, Wina (®)c1)).

The notion of correctness in the definition above is justified by the following theorem, which
says that computing the correct localized Rabin objective provides the belief-restricted
winning region. That is, the winning region of the J-local MEMDP M{J} with its correct
localized Rabin objective is equal to the global winning region restricted to J.

» Theorem 44. For Rabin objective ®: (Winpqqsy(®L0%()) N S) x {J} = Wina ().
The theorem immediately leads to the following characterization of the winning region.
» Corollary 45. For Rabin objective ®: Winp (®) =, (Winpqy (200(J)) N S) x {J}.

Cor. 45 suggests computing the winning region from local MEMDPs. The computation can
go bottom-up, as the winning region of a MEMDP restricted to a belief J only depends on
the J-local MEMDP M{J} and the winning regions of beliefs J' C J. These observations
lead us to Alg. 3. We construct the J-local MEMDP, recursively determine the winning
status of all its frontier states, and then compute the local winning region of M{J}.

» Theorem 46. In Alg. 3 with Rabin objective ®: CHECK(M, ®) iff « € Win (P).

» Lemma 47. Alg. 3 runs in polynomial space.

This lemma follows from observing that a local MEMDP and thus its frontier is polynomial
and that the recursion depth is limited by |I]|. Thm. 46 and Lem. 47 together prove the main
theorem Thm. 41: The decision problem of almost-sure Rabin objectives in MEMDPs is in
PSPACE. Thus, almost-sure safety, Biichi, co-Biichi, and parity are in PSPACE too [13].

» Theorem 48. The time complexity of Alg. 3 is in O((|S| - |A)! - poly(|I M|, |®])).
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The bound in Thm. 48 is conservative?, and it shows that deciding almost-sure Rabin
objectives for 2-MEMDPs is in P. Almost-sure parity objectives for 2-MEMDPs were already
known to be in P [36]. Indeed, it establishes the complexity for any fixed number of constants®.

» Corollary 49. For constant k, deciding almost-sure Rabin for k-MEMDPs is in P.

7 Conclusion

We have presented a PSPACE algorithm for almost-sure Rabin objectives in MEMDPs. This
result establishes PSPACE-completeness for many other almost-sure objectives, including
parity, and completes the complexity landscape for MEMDPs. We additionally showed that
all objectives under the possible semantics we consider in MEMDPs belong to the same
complexity classes as MDPs. Interesting directions for future work are to investigate whether
the constructions used in this paper can also be of benefit for quantitative objectives in
MEMDPs or more expressive subclasses of POMDPs, for example, a form of MEMDPs where
the environments may change over time.
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