
MITL Model Checking via Generalized Timed
Automata and a New Liveness Algorithm
S. Akshay #

Department of CSE, Indian Institute of Technology Bombay, Mumbai, India

Paul Gastin #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

R. Govind #

Uppsala University, Sweden

B. Srivathsan #

Chennai Mathematical Institute, India
CNRS, ReLaX, IRL 2000, Siruseri, India

Abstract
The translation of Metric Interval Temporal Logic (MITL) to timed automata is a topic that
has been extensively studied. A key challenge here is the conversion of future modalities into
equivalent automata. Typical conversions equip the automata with a guess-and-check mechanism
to ascertain the truth of future modalities. Guess-and-check can be naturally implemented via
alternation. However, since timed automata tools do not handle alternation, existing methods
perform an additional step of converting the alternating timed automata into timed automata. This
“de-alternation” step proceeds by an intricate finite abstraction of the space of configurations of the
alternating automaton.

Recently, a model of generalized timed automata (GTA) has been proposed. The model comes
with several powerful additional features, and yet, the best known zone-based reachability algorithms
for timed automata have been extended to the GTA model, with the same complexity for all the
zone operations. An attractive feature of GTAs is the presence of future clocks which act like timers
that guess a time to an event and stay alive until a timeout. Future clocks seem to provide another
natural way to implement the guess-and-check: start the future clock with a guessed time to an
event and check its occurrence using a timeout. Indeed, using this feature, we provide a new concise
translation from MITL to GTA. In particular, for the timed until modality, our translation offers an
exponential improvement w.r.t. the state-of-the-art.

Thanks to this conversion, MITL model checking reduces to checking liveness for GTAs. However,
no liveness algorithm is known for GTAs. Due to the presence of future clocks, there is no finite
time-abstract bisimulation (region equivalence) for GTAs, whereas liveness algorithms for timed
automata crucially rely on the presence of the finite region equivalence. As our second contribution,
we provide a new zone-based algorithm for checking Büchi non-emptiness in GTAs, which circumvents
this fundamental challenge.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Quantitative automata; Theory of computation → Logic and verification

Keywords and phrases MITL model checking, timed automata, zones, liveness

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.5

Related Version Full Version: https://arxiv.org/abs/2407.08452 [2]

1 Introduction

The translation of Linear Temporal Logic (LTL) [32] to Büchi automata is a fundamental
problem in model checking, with a long history of theoretical advances [20, 36, 18], tool
implementations [25, 14, 18, 30, 12] and practical applications [33, 34, 26, 27]. In the real-time
setting, Metric Interval Temporal Logic (MITL) is close to LTL, with the modalities Next

© S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:govind.rajanbabu@it.uu.se
https://orcid.org/0000-0002-1634-5893
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.CONCUR.2024.5
https://arxiv.org/abs/2407.08452
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Generalized Timed Automata: Liveness and MITL Model Checking

(X) and Until (U) extended with timing intervals – for instance, X[a,b]p says that the next
event is a p and it occurs within a delay θ ∈ [a, b]. Model checking for MITL is known to be
EXPSPACE-complete [4]. This has led to the study of “efficient” conversions from MITL to
timed automata, with each new construction aiming to make the automata more succinct.
Our work is another step in this direction.

There are two ways to interpret MITL formulae: over (continuous) timed signals [4, 29, 15]
or (pointwise) timed words [6, 37, 11]. Since the current timed automata tools work with
timed words, we stick with the pointwise semantics. The state-of-the-art for MITL-to-
TA is based on an initial translation of MITL to one-clock Alternating Timed Automata
(OCATA) [31]. It has been shown that these OCATA can be converted to a network of timed
automata [9, 10]. The tool MightyL [11] implements the entire MITL-to-TA translation.
One of the difficulties in the MITL-to-TA translation is the inherent mismatch between the
logic and the automaton in the way timing constraints are enforced. A future modality
declares that a certain event takes place at a certain timing distance, in the future. In a timed
automaton, clocks measure time elapsed since some event in the past and check constraints
on these values. To implement a future modality, the automaton needs to make a prediction
about the event and verify that the prediction is indeed true. Therefore, each prediction
typically resets a clock and stores a new obligation in the state. The automaton needs to
discharge these obligations at the right times in the future.

X p ¬ X p

p | 1 ¬p | 0

p | 0

¬p | 1

X p ¬ X p

p | † ¬p | 0

p | 0

¬p | †

XI p

¬ X p

X p ∧ ¬ XI p

p π1 | 1

¬p | 0

p π2 | 0

p π1 | 0

¬p [x] | 1

p π2 | 0

¬p [x] | 0

p

π1

| 0

p

π2

| 1

Figure 1 (top left) Büchi transducer (with outputs) for LTL formula X p (right) Timed transducer
with clock x for MITL formula XI p; π1 := x ∈ I; [x], π2 := x /∈ I; [x] (bottom left) a hypothetical
transducer with a variable θ that predicts time to next action; † := θ ∈ I ? 1 : 0.

Figure 1 (top left) shows an automaton with outputs for the LTL formula X p. On an
infinite word w1w2 . . . (where each wi is a subset of atomic propositions) the automaton
outputs 1 at wi iff wi+1 contains p. While reading wi, the automaton needs to guess whether
p ∈ wi+1 or not. Depending on the guess, it stores an appropriate obligation. This is reflected
in the states and transitions: transitions with output 1 go to a state X p which can only read
p next, whereas those with output 0 go to ¬ X p which can only read ¬p. The X p and ¬ X p

can be seen as obligations that the automaton has to discharge from the state.
Now, let us consider a timed version XI p interpreted on timed words. An automaton

for XI p needs to guess whether the next letter is a p and if so, whether it appears within θ

time units for some θ ∈ I. Figure 1 (bottom left) represents a hypothetical automaton that
implements this idea: assuming it has access to a variable θ which contains the time to the
next event, the output should depend on whether θ ∈ I or not. This is exactly what the
if-then-else condition † does: if θ ∈ I output 1, else output 0. Classical timed automata do
not have direct access to θ. They implement this idea differently, by making use of extra

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:3

states. Figure 1 (right) shows a timed automaton for XI p. The state X p is split into two
different obligations: XI p where the timing constraint is satisfied, and X p ∧ ¬ XI p where it
is not. The outgoing guards discharge these obligations. This example shows the convenience
of having access to a variable that can predict time to future events.

This is precisely where the recently proposed model of Generalized Timed Automata
(GTA) [1] enters the picture. This model subsumes event-clock automata [5] and automata
with timers [13]. GTA come equipped with the additional resources to implement predictions
better. GTA have two types of clocks: history clocks and future clocks. History clocks are
similar to the usual clocks of timed automata. Future clocks are like timers, but instead of
starting them at some non-negative value and making them go down to zero, they get started
with some arbitrary negative value and go up until they hit zero. For example, in Figure 1
(bottom left), each transition can start a future clock, guessing the time to the next event.
This immediately gives us the required θ. The exact GTA for XI p is quite close to Figure 1
(bottom left) and is given in Figure 4. Apart from the use of future clocks, the syntax of
transitions in a GTA is much richer than a guard-reset pair as in timed automata. Transitions
contain an “instantaneous timed program”, which consists of a sequence of guards, resets
and releases (for future clocks). When difference constraints are present, the model becomes
powerful enough to encode counter machines and is therefore undecidable. A safe fragment,
with a careful use of diagonal constraints is known to be decidable.

GTAs are advantageous in another sense. In spite of the powerful features, the best
zone-based algorithms from the timed automata literature have been shown to suitably
adapt to the GTA setting, with the same complexity for zone operations, and have been
implemented in the tool TChecker [21]. Therefore, an MITL to GTA conversion allows us to
capitalize on the features and succinct syntax of GTA, and at the same time, lets us model
check MITL directly on richer GTA models. In summary:

We provide a translation of MITL formulae to safe GTA. The translation is compositional
and implementable, and yields an exponential improvement in the number of locations
compared to the state-of-the-art technique for pointwise semantics [11], while the number
of clocks remains the same up to a constant.
Model checking MITL against GTA requires to solve the liveness problem for (safe) GTAs,
which has been open so far. We settle the liveness question in this work. Zone based
algorithms for event-clock automata have been studied in [19]. A notion of weak regions
has been developed and this can be used for solving both reachability and liveness using
zones. The GTA model that we consider in this paper strictly subsumes event-clock
automata. In particular, the presence of diagonal constraints makes the problem more
challenging. Our solution to liveness for GTAs therefore gives an alternate liveness
procedure for event-clock automata, and also settles liveness for event-clock automata
with diagonal constraints, a model defined in [8].

We remark that the techniques used in continuous semantics do not extend to pointwise
semantics. In [15] the authors simplify general MITL formulae into formulae containing
only one-sided intervals (of the form [0, c] or [c, ∞)), for which automata are considerably
simpler to construct. However, this simplification at the formula level works only in the
continuous semantics – it does not work in the pointwise-semantics (as Lemma 4.3, 4.4 of [15]
do not extend to pointwise-semantics). The fundamental difference is that in the continuous
semantics we can assert a formula at any time point t. However, in pointwise-semantics,
we can evaluate a formula only at action points, i.e., points where there is an actual action.
For example, in continuous semantics one can rewrite F[a+c,b+c] p as F[0,c] G[0,c] F[a,b] p when
c ≤ b − a (Lemma 4.3, [15]). However, in the pointwise semantics there may be no event in
the interval [0, c] on which we can evaluate G[0,c] F[a,b] p. Therefore, we need a completely
different approach to deal with intervals in the pointwise semantics.

CONCUR 2024

5:4 Generalized Timed Automata: Liveness and MITL Model Checking

Organization of the paper. We start with preliminary definitions of Generalized Timed
Automata (Section 2) and provide our solution to the liveness problem in Section 3. We
present our MITL to GTA translation in Section 4. Missing proofs and additional explanations
can be found in the full version available at [2].

2 Preliminaries

Let X = XF ⊎ XH be a set of real-valued variables called clocks, which is further partitioned
into future clocks XF and history clocks XH . Let Φ(X) denote a set of clock constraints
generated by the grammar: φ ::= x − y ◁ c | φ ∧ φ where x, y ∈ X ∪ {0}, ◁ ∈ {<, ≤} and
c ∈ Z = Z ∪ {−∞, +∞} (the set of integers equipped with the two special values to say
that a clock is “undefined”). We also allow renamings of clocks. Let permX be the set of
permutations σ over X ∪ {0} mapping history (resp. future) clocks to history (resp. future)
clocks (σ(XF) = XF and σ(XH) = XH).

GTA syntax. A Generalized Timed Automaton (GTA) is given by (Q, Σ, X, ∆, I, Qf) where
Q is a finite set of states, Σ is a finite alphabet of actions, X = XF ⊎ XH is a set of clocks
partitioned into future clocks XF and history clocks XH . The initialization condition I is
a set of pairs (q0, g0) where a pair consists of an initial state q0 ∈ Q and an initial guard
g0 ∈ Φ(X), and the accepting condition is given by a set Qf ⊆ Q of Büchi states. The
transition relation ∆ ⊆ (Q×Σ×Programs×Q) contains transitions of the form (q, a, prog, q′),
where q is the source state, q′ is the target state, a is the action triggering the transition,
and prog is an instantaneous timed program generated by the grammar:

prog := guard | change | rename | prog; prog

where guard = g ∈ Φ(X), change = [R] for an R ⊆ X, and rename = [σ] for a σ ∈ permX .
Figure 4 with the blue parts removed illustrates a GTA. Both states ℓ1 and ℓ2 are initial,

denoted by incoming arrows to each of them, and accepting, marked by the double circle.
The initial guard is the trivial true constraint. The alphabet Σ = {0, 1} (written in black).
The constraint −x ∈ I is short form for a conjunction of constraints requiring the clock to be
in the interval I. For example, if I = (4, 5], then −x ∈ I is the constraint 4 < −x ∧ −x ≤ 5.
During our MITL to GTA translation, we extend GTAs to include outputs (a formal definition
is given in [2]). The dagger condition (−x ∈ I) ? 1 : 0 is a short form for two transitions, one
which checks −x ∈ I and outputs 1, and the other which checks −x /∈ I and outputs 0.

GTA semantics. A valuation of clocks is a function v : X ∪{0} 7→ R = R∪{−∞, +∞} which
maps the special clock 0 to 0, history clocks to R≥0 ∪{+∞} and future clocks to R≤0 ∪{−∞}.
We denote by V(X) or simply by V the set of valuations over X. For a valuation v ∈ V,
define1 v |= y − x ◁ c as v(y) − v(x) ◁ c. We say that v satisfies a constraint φ, denoted as
v |= φ, when v satisfies all the atomic constraints in φ. We denote by v + δ the valuation
obtained from valuation v by increasing by δ ∈ R≥0 the value of all clocks in X. Note that,
from a given valuation, not all time elapses result in valuations since future clocks need to
stay at most 0. We now define the change operation that combines the reset operation for
history clocks (which sets history clocks to 0) and release operation for future clocks (which

1 To allow evaluation of all the constraints in Φ(X), the addition and the unary minus operation on real
numbers is extended [1] with the following conventions (i)(+∞) + α = α + (+∞) = +∞ for all α ∈ R,
(ii) (−∞) + β = β + (−∞) = −∞, as long as β ̸= +∞, and (iii) −(+∞) = −∞ and −(−∞) = +∞.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:5

assigns a non-deterministic value to a future clock). Given a set of clocks R ⊆ X, we define
RF = R ∩ XF as the set of future clocks in R, and RH = R ∩ XH as the set of history clocks
in R. Then, [R]v := {v′ ∈ V | v′(x) = 0 ∀ x ∈ RH and v′(x) = v(x) ∀ x ̸∈ R}. Observe that
v′ has no constraints for the future clocks in R, as they can take any arbitrary value in v′.
For a valuation v ∈ V(X), and σ ∈ permX , we define [σ]v as v ◦ σ, i.e., ([σ]v)(x) = v(σ(x))
for all x ∈ X ∪ {0}.

For valuations v, v′ and a guard g ∈ Φ(X) we write v
g−→ v′ when v′ = v |= g, and

v
[R]−−→ v′ when R ⊆ X and v′ ∈ [R]v, and v

[σ]−−→ v′ when σ ∈ permX and v′ = [σ]v. When
prog = prog1; . . . ; progn, we write v

prog−−→ v′ when there are valuations v1, . . . , vn such that
v

prog1−−−→ v1
prog2−−−→ · · · progn−−−→ vn = v′. The semantics of the GTA A defined above is given by a

transition system TST whose states are configurations (q, v) of A, where q ∈ Q and v ∈ V is
a valuation. A configuration (q, v) is initial if v |= g for some (q, g) ∈ I, and it is accepting
if q ∈ Qf . Transitions of TST are of two forms: (1) delay transition: (q, v) δ−→ (q, v + δ) if
v + δ is a valuation, i.e., (v + δ) |= XF ≤ 0, and (2) discrete transition: (q, v) t−→ (q′, v′)
if t = (q, a, prog, q′) ∈ ∆ and v

prog−−→ v′. A finite (respectively infinite) run ρ of a GTA is
a finite (respectively infinite) sequence of transitions from an initial configuration of TSA:
(q0, v0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · .

For example, consider the run of GTA in Figure 4 on a timed word (1, 1)(0, 2)(1, 3)(0, 4) . . .

(1 occurs at all odd numbers, and 0 at all even numbers, starting from first timestamp 1).
The program (x = 0); [x] used in the transitions first checks if x is 0, and then releases it
to an arbitrary non-deterministic value. The run on the above word would be: (ℓ1, x =
−1) 1,t1−−→ (ℓ2, x = −1) 1,t2−−→ (ℓ1, x = −1) · · · . A transition δ,t−→ denotes a time elapse of δ

followed by application of the program associated to transition t. At each point the value of
x is released to −1, and is checked with the guard x = 0 at the next event.

An infinite run is accepting if it visits accepting configurations infinitely often. The
run is said to be Zeno if Σi≥0δi is bounded and non-Zeno otherwise. In this work, we
will be interested in strongly non-Zeno GTA: these are GTA where every accepting run
is non-Zeno. It is possible to convert every GTA into a strongly non-Zeno GTA using a
standard construction from timed automata literature [35]. In the rest of the document, we
will drop the “strongly non-Zeno” prefix and simply say GTA.

Liveness problem. The non-emptiness or liveness problem for a GTA asks whether the given
GTA has an accepting non-Zeno run. Due to our assumption about strong non-Zenoness,
the question reduces to asking if a given GTA has an accepting run. Unfortunately, the
non-emptiness problem even for finite words turns out to be undecidable for general GTA [1].
Therefore, we focus our attention on a restricted sub-class of GTA’s for which non-emptiness
in the finite words case is decidable, called safe GTA [1].

▶ Definition 1 (Safe GTA [1]). Given a GTA A, let XD ⊆ XF be the subset of future clocks
used in diagonal guards of A between future clocks, i.e., if x − y ◁ c with x, y ∈ XF occurs
in some guard of A then x, y ∈ XD. Then, a program prog is XD-safe if clocks in XD are
checked for being 0 or −∞ before being released and renamings [σ] used in prog preserve XD

clocks (σ(XD) = XD). A GTA A is safe if it only uses XD-safe programs on its transitions
and the initial guard g0 sets each history clock to either 0 or ∞.

The GTA in Figure 4 is vacuously safe, since there are no diagonal constraints at all.

▶ Remark 2. Renaming operations may be considered as syntactic sugar allowing for more
concise representations of GTAs. Indeed, we can transform a GTA A with renamings to
an equivalent GTA A′ without renamings by adding to the state the current permutation

CONCUR 2024

5:6 Generalized Timed Automata: Liveness and MITL Model Checking

of clocks (composition of the permutations applied since the initial state) and change the
programs of outgoing transitions accordingly. The number of states is multiplied by the
number of permutations that may occur as described above.

Zones, zone graph and simulations. Reachability for GTA proceeds by an enumeration of
its reachable configurations stored as constraint systems called zones. A zone over a set of
variables X ∪ {0} is a conjunction of difference constraints x − y ◁ c where x, y ∈ X ∪ {0},
◁ ∈ {<, ≤} and c ∈ Z. For a zone Z and a valuation v, we write v ∈ Z if the valuation v

satisfies every constraint in Z. Therefore, we also interpret Z as a set of valuations, which
satisfy its constraints.

A pair (q, Z) with q a control state and Z a zone represents {(q, v) | v ∈ Z}. Successors for
(q, Z) can be defined based on the outgoing transitions of q. For a transition t := (q, a, prog, q′),
we write (q, Z) t−→ (q′, Zt) if Zt = {v′ | v′ is a valuation and (q, v) t−→ δ−→ (q′, v′) for some v ∈
Z and δ ∈ R≥0}. It was shown in [1] that the successor Zt is also a zone. This observation
is used to define the notion of the Zone graph of a GTA.

▶ Definition 3 (GTA zone graph [1]). Given a GTA A, its GTA zone graph, denoted
GZG(A), is defined as follows: Nodes are of the form (q, Z) where q is a state and Z is a
GTA zone. Initial nodes are pairs (q0,

−→
Z0) where (q0, g0) ∈ I is an initial condition and Z0 is

given by g0 ∧
(
XF ≤ 0

)
∧

(
XH ≥ 0

)
(Z0 is the set of all valuations which satisfy the initial

constraint g0). For every node (q, Z) and every transition t := (q, a, prog, q′) there is an edge
(q, Z) t−→ (q′, Zt) in the GTA zone graph.

Finally, just as is the case for zone graphs for timed automata, GZG(A) is not guaranteed
to be finite. In order to use it to check Büchi non-emptiness or reachability, we need a finite
abstraction of the zone graph. The standard technique to obtain such finite abstractions is
using the notion of simulations, that we recall next.

▶ Definition 4 (Simulation). A (time-abstract) simulation relation on the semantics of a
GTA is a reflexive, transitive relation (q, v) ⪯ (q, v′) relating configurations with the same
control state and
1. for every δ ∈ R≥0 such that v + δ ∈ V is a valuation, there exists δ′ ∈ R≥0 such that

v′ + δ′ ∈ V is a valuation and (q, v + δ) ⪯ (q, v′ + δ′),
2. for every transition t, if (q, v) t−→ (q1, v1) for some valuation v1, then (q, v′) t−→ (q1, v′

1) for
some valuation v′

1 with (q1, v1) ⪯ (q1, v′
1),

3. for all future clocks x ∈ XF , if v(x) = −∞ then v′(x) = −∞.
For two GTA zones Z, Z ′, we say (q, Z) ⪯ (q, Z ′) if for every v ∈ Z there exists v′ ∈ Z ′ such
that (q, v) ⪯ (q, v′).

3 Liveness for GTA

In this section, we will discuss a zone-based procedure to check liveness for safe generalized
timed automata. We start by explaining how the standard zone based algorithm for solving
liveness in classical timed automata can be adapted to the setting of safe GTAs. The approach
for timed automata crucially depends on the existence of a finite time-abstract bisimulation
between valuations, namely the region-equivalence [3]. However, there exists no such finite
time-abstract bisimulation for GTAs (extension of a result of [19]), as illustrated in Figure 2.
The issue is that we cannot forget (abstract) the values of future clocks, unlike history clocks
where values above a maximum constant are equivalent. Therefore, our approach involves a
significant deviation from the standard one.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:7

ℓ0 ℓ1 ℓ2

b y = 1; [y]

a [x, y] c x = 0; y = 0

Figure 2 Example to illustrate no finite bisimulation in GTA; x is a future clock, y a history clock.
The initial transition releases clock x to an arbitrary value, and resets y to 0. From configuration
⟨ℓ1, x = −n, y = 0⟩ (n ∈ N), the only way to reach ℓ2 is by executing bnc, with 1 time unit between
consecutive b’s. Therefore, ⟨ℓ1, x = −n, y = 0⟩ and ⟨ℓ1, x = −m, y = 0⟩ are simulation incomparable,
when n ̸= m. Hence there is no finite bisimulation.

We fix a safe GTA A for the rest of this section. We recall that our GTA are strongly
non-Zeno, that is, every accepting run is non-Zeno. In order to focus on the main difficulties
and avoid additional technicalities, we assume that the GTA A is without renamings. We
start by noting that non-Zeno runs have a special form: future clocks which are not ultimately
−∞ should be released infinitely often. If not, there is a last point where a future clock is
released to a finite value, and the entire suffix of the run should fall under this finite time,
which contradicts non-Zenoness.

▶ Lemma 5. Let ρ := (q0, v0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · be a non-Zeno run of the GTA A.
Then, for every future clock x of A, and for every index i ≥ 0, if vi(x) ̸= −∞, there exists
j ≥ i such that x is released in tj.

Overview of our solution. In classical timed automata, the liveness problem is solved by
enumerating the zone graph, and using a simulation equivalence [23, 7, 16, 17] for termination:
exploration from (q, Z) is stopped if there exists an already visited node (q, Z ′) such that
(q, Z) ⪯ (q, Z ′) and (q, Z ′) ⪯ (q, Z) for some simulation relation ⪯. In this case a special
edge is added between (q, Z) and (q, Z ′) to indicate a simulation equivalence. There is an
(infinite) accepting run iff there is a cycle in the zone graph thus computed, containing an
accepting state. The main point is that, from a cycle in the zone graph with simulation
equivalences, we can conclude the existence of an infinite run over configurations.

At a high level the proof of this fact is as follows. Let us start by ignoring simulations
for the moment: suppose (q, Z) σ−→ (q, Z) for a sequence of transitions σ. By definition of
successor computation in the zone graph, for every v in the zone Z (on the right), there
exists a predecessor u in the zone Z (on the left). Repeatedly applying this argument gives
a valuation u ∈ Z from which σ can be iterated ℓ times, for any ℓ ≥ 1. When ℓ is greater
than the number of Alur-Dill regions [3], we get a run (q, u) σℓ

−→ (q, u′) such that u and
u′ are region equivalent. Since the region equivalence is a time-abstract bisimulation, this
shows that we can once again do σℓ from (q, u′), and so on. This leads to an infinite run
from (q, u) where σ can be iterated infinitely often. Now, when simulations are involved,
we need to consider sequences of the form (q, Z) σ−→ (q, Z ′) where (q, Z) ⪯ (q, Z ′) and
(q, Z ′) ⪯ (q, Z). An argument similar to the above can be adapted in this case too [28, 24, 22].
The critical underlying reason that makes such an argument possible is the presence of a finite
time-abstract bisimulation, which in timed automata, is given by the region equivalence.

The same idea cannot be directly applied in the GTA setting, as there is no finite time-
abstract bisimulation for GTAs, even with the safety assumption (Figure 2). However, [1]
have defined a finite equivalence v1 ∼M v2 and shown that the downward closures of the
reachable zones w.r.t. a certain simulation called the G simulation [16, 17] are unions of ∼M

equivalence classes. Therefore, applying an argument of the above style will give us a run
(q, u) σℓ

−→ (q, u′) such that u ∼M u′. But we cannot conclude an infinite run immediately as
∼M is not a bisimulation.

CONCUR 2024

5:8 Generalized Timed Automata: Liveness and MITL Model Checking

To circumvent this problem, we will define an equivalence ≈M which is in spirit like the
region equivalence in timed automata. As expected, ≈M will be a bisimulation. However, in
accordance with the no finite timed-bisimulation result, ≈M will have an infinite index. We
make a key observation: if we have a run (q, u) σ−→ (q, u′) such that u ∼M u′ and if σ releases
every future clock, then we can get a run (q, u) σ−→ (q, u′′) where u ≈M u′′ for a suitably
modified valuation u′′. Since ≈M is a bisimulation, this will then give an infinite run where
σ can be iterated infinitely often. As we have seen from Lemma 5, if we are interested in
non-Zeno runs, only such cycles where all future clocks are released (or remain −∞) are
relevant. Therefore, in order to decide liveness for safe GTAs, it suffices to construct the zone
graph with the simulation equivalence edges and look for a reachable cycle that contains
an accepting state such that for every future clock x, either x is released on the cycle, or
valuation −∞ is possible for clock x.

This section is organized as follows: we will first define the equivalence ≈M and show
that it is a bisimulation; then we recall ∼M , and prove the key observation mentioned above.
One of the main challenges is in addressing diagonal constraints, which is exactly where the
safety assumption is helpful.

A region-like equivalence for GTA. The definition of ≈M looks like the classical region
equivalence extended from [0, +∞) to R: all clocks which are lesser than M (which auto-
matically includes all future clocks) have the same integral values, and the ordering of
fractional parts among these clocks is preserved. To account for diagonal constraints in
guards, we explicitly add a condition to say that all allowed diagonal constraints are satisfied
by equivalent valuations. This new equivalence does not have a finite index, but it turns out
to be a time-abstract bisimulation, similar to the classical regions.

▶ Definition 6. Let v1, v2 ∈ V be valuations. We say v1 ≈M v2 if for all clocks x, y:
1. v1(x) ◁ c iff v2(x) ◁ c for all ◁ ∈ {<, ≤} and c ∈ {−∞, +∞} or c ∈ Z with c ≤ M ,
2. v1 |= x − y ◁ c iff v2 |= x − y ◁ c for all ◁ ∈ {<, ≤} and c ∈ {−∞, +∞} or c ∈ Z with

|c| ≤ M ,
3. if −∞ < v1(x), v1(y) ≤ M then we have {v1(x)} ≤ {v1(y)} iff {v2(x)} ≤ {v2(y)}.

Notice that when v1 ≈M v2, the first condition implies v1(x) = +∞ iff v2(x) = +∞,
v1(x) = −∞ iff v2(x) = −∞, −∞ < v1(x) ≤ M iff −∞ < v2(x) ≤ M , and in this case
⌊v1(x)⌋ = ⌊v2(x)⌋ and {v1(x)} = 0 iff {v2(x)} = 0.

▶ Lemma 7. ≈M is a time-abstract bisimulation.

The equivalence ∼M , and moving from ∼M to ≈M . The equivalence ∼M is defined on
the space of all valuations. Our goal in this part is to start from v1 ∼M v2 and generate a
valuation v′

2 by modifying some values of v2, so that we get v1 ≈M v′
2. Let us first recall the

definition of ∼M , with n be the number of clocks in the GTA.
First, we define ∼M on α, β ∈ R by α ∼M β if (α ◁ c ⇐⇒ β ◁ c) for all ◁ ∈ {<, ≤}
and c ∈ {−∞, +∞} or c ∈ Z with |c| ≤ M . In particular, α ∼M β implies α = −∞
iff β = −∞ and α = +∞ iff β = +∞. Also, if −M ≤ α ≤ M then α ∼M β implies
⌊α⌋ = ⌊β⌋ and {α} = 0 iff {β} = 0.
For valuations v1, v2 ∈ V we define v1 ∼M v2 if (i) v1(x) ∼nM v2(x) for all x ∈ X, and
(ii) v1(x) − v1(y) ∼(n+1)M v2(x) − v2(y) for all pairs of clocks x, y ∈ X.

Notice that ≈M and ∼M are incomparable, in the sense that neither of them is a refinement
of the other. The equivalence ≈M constrains values up to M , whereas ∼M looks at values
up to nM , i.e., between −nM and nM . For instance, consider v1 := ⟨x = M + 2, y = 1⟩ and

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:9

v2 := ⟨x = M + 3, y = 1⟩ for some M ≥ 2. We have v1 ≈M v2, but v1 ̸∼M v2. For the other
way around, notice that ∼M has finite index, whereas ≈M does not. So, v1 ∼M v2 does not
imply v1 ≈M v2. To see it more closely, v1 ≈M v2 enforces the same integral values for all
future clocks. For clocks less than −(n + 1)M , there is no such constraint on the actual
values in ∼M .

As mentioned above, our objective is to obtain ≈M equivalent valuations starting from
∼M equivalent ones. Lemma 8 is a first step in this direction. It essentially shows that, when
restricted to clocks within −M and +M , ∼M entails ≈M .

▶ Lemma 8. Suppose v1 ∼M v2. Let x, y be clocks such that −M ≤ v1(x), v1(y) ≤ M . Then,
⌊v1(x)⌋ = ⌊v2(x)⌋, {v1(x)} = 0 iff {v2(x)} = 0, and {v1(x)} ≤ {v1(y)} iff {v2(x)} ≤ {v2(y)}.

Lemma 8 considers clocks within −M and +M . What about clocks above M? Directly
from v1 ∼M v2, we have M < v1(x) iff M < v2(x), and moreover diagonal constraints up
to M are already preserved by ∼M . Therefore, together with Lemma 8, v1 ∼M v2 implies
v1 ≈M v2 when restricted to clocks greater than −M . We cannot say the same for clocks
lesser than −M , in particular we may have v1(x) = −nM −1 and v2(x) = −nM −2. However,
as shown in the lemma below, we can choose suitable values for clocks lesser than −M to
get a ≈M -equivalent valuation from a ∼M -equivalent one.

▶ Lemma 9. Suppose v1 ∼M v2, and let L = {x | −M ≤ v1(x)}. There is a valuation v′
2

such that v′
2↓L = v2↓L and v1 ≈M v′

2.

Finally, we show that if we have a run between ∼M equivalent valuations, we can extract
a run between ≈M equivalent valuations, simply by changing the last released values of
future clocks. Suppose there is a run ρ from configuration (q, v1) to configuration (q, vk) such
that v1 ∼M vk, and all future clocks are released in ρ. By Lemma 9, there is a v′

k satisfying
v1 ≈M v′

k that differs from vk only in the clocks that are less than −M . In order to reach
v′

k from v1 using the same sequence of transitions as in ρ, it is enough to choose a suitable
shifted value during the last release of the clocks that were modified. This gives a new run
ρ′. The non-trivial part is to show that ρ′ is indeed a run, that is: all guards are satisfied by
the new values. We depict this situation in Figure 3. The modified clocks are those that are
less than −M in vk. Clock x is one such. The black dot represents its value in vk, and the
blue dot is its value in v′

k. Its new value is still < −M . In the run ρ′, clock x is released to a
suitably shifted value at its last release point. Notice that from this last release point till
k, clock x stays below −M in both ρ and ρ′. Therefore, all non-diagonal constraints x ◁ c

that were originally satisfied in ρ continue to get satisfied in ρ′. Showing that all diagonal
constraints are still satisfied is not as easy. Here, we make use of the safety assumption. Let
us look at a diagonal constraint x − y, and a situation as in Figure 3 where the last release
of y happens after the last release of x. For simplicity, let us assume there is no release of y

in between these two points.

v1 vk, v′
k

last release of x last release of y

0
−M

y

x
x

0
−M

y

x
x

0
−M

x
x

Figure 3 An illustration for the proof of Lemma 10.

CONCUR 2024

5:10 Generalized Timed Automata: Liveness and MITL Model Checking

We divide the run into three parts: the left part is the one before the last release of x,
the middle part is the one between the two release points, and the right part is the rest of
the run, to the right of the release of y. In the left part, the values of x and y are the same
in both ρ and ρ′, and so the diagonal constraints continue to get satisfied. In the right part,
the value of x − y equals v′

k(x) − v′
k(y). Using v′

k ≈M v1 and v1 ∼M vk, we can argue that v′
k

and vk satisfy the same diagonal constraints up to constant M . This takes care of the right
part. The middle part is the trickiest. In this part, we know that x remains less than −M in
both ρ and ρ′. The value of y is the same in both ρ and ρ′. But what about the difference
x − y? Can it be, say −1 in ρ and −2 in ρ′? Here is where we use the safety assumption to
infer the value of x − y. Before y is released, its value should be 0. At that point, x is still
less than −M (in both the runs). Therefore x − y < −M just before y is last released. As
the differences do not change, we see that x − y < −M in the middle part, for both runs.
Hence the diagonal constraints continue to hold in ρ′. We formalize these observations in
Lemma 10, where we exhaustively argue about all the different cases.

▶ Lemma 10. Consider a safe GTA A. Let ρ : (q1, v1) δ1,t1−−−→ (q2, v2) δ2,t2−−−→ · · · (qk, vk) be
a run of A such that v1 ∼M vk and for every future clock x, either x is released in the
transition sequence t1 . . . tk−1 or v1(x) = −∞. Let L = {x | −M ≤ v1(x)}. Let v′

k be
a valuation such that v′

k↓L = vk↓L and v1 ≈M v′
k. Then, there exists a run of the form

ρ′ : (q1, v1) = (q1, v′
1) δ1,t1−−−→ (q2, v′

2) δ2,t2−−−→ · · · (qk, v′
k) in A, leading to (qk, v′

k) from (q1, v1).

We lift this argument to the level of zones, to obtain one of the main results of this paper.

▶ Theorem 11. Let (q, Z) = (q1, Z1) t1−→ (q2, Z2) t2−→ · · · tk−1−−−→ (qk, Zk) = (q, Z ′) be a run in
the zone graph such that (q, Z) ⪯ (q, Z ′), (q, Z ′) ⪯ (q, Z) and for every future clock x, either
x is released in the sequence t1 . . . tk−1, or there is a valuation vx ∈ Z ′ with vx(x) = −∞.
Then, there is a valuation v ∈ Z and an infinite run starting from (q, v) over the sequence of
transitions (t1 . . . tk−1)ω.

Finally, combining Theorem 11 and Lemma 5, we get an algorithm for liveness: we
construct the zone graph with simulation equivalence and check for a reachable cycle that
contains an accepting state and where every future clock x which is not released during the
cycle may take value −∞ in some valuations of the zones in the cycle.

4 Translating MITL to GTA

We first introduce the preliminaries for Metric Interval Temporal Logic. Let Prop be a finite
nonempty set of atomic propositions. The alphabet Σ that we consider is the set of subsets
of Prop. The set of MITL formulae over the set of atomic propositions Prop is defined as

φ := p | φ ∧ φ | ¬φ | XI φ | φ UI φ

where p ∈ Prop, and I is either [0, 0], or a non-singleton (open, or closed) interval whose
end-points come from N ∪ {∞}. In other words, if the end-points of the interval are a and b

respectively, then either a = b = 0, or a, b ∈ N ∪ {∞} and a < b.
We will now define the pointwise semantics of MITL formulae inductively as follows. A

timed word w = (a0, τ0)(a1, τ1)(a2, τ2) · · · is said to satisfy the MITL formula φ at position
i ≥ 0, denoted as (w, i) |= φ if (omitting the classical Boolean connectives)

(w, i) |= p if p ∈ ai

(w, i) |= XI φ if (w, i + 1) |= φ and τi+1 − τi ∈ I.
(w, i) |= φ1 UI φ2 if there exists j ≥ i s.t. (w, j) |= φ2, (w, k) |= φ1 for all i ≤ k < j, and
τj − τi ∈ I.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:11

ℓ1 ℓ2

1 x = 0; [x] | † 0 x = 0; [x] | 0

1 x = 0; [x] | 0

0 x = 0; [x] | †

Figure 4 GTT for XI using a future clock x. The output is 0 for transitions to location ℓ2 and is
the if-then-else † = (−x ∈ I) ? 1 : 0 for transitions to location ℓ1, where I is some interval.

Our goal is to construct a GTA with outputs for an MITL formula φ, which reads the
timed word and outputs 1 at position i iff (w, i) |= φ. More precisely, there is a unique run of
the GTA on w: (q0, v0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · , where the output of each transition ti equals
1 iff (w, i) |= φ. We refer to GTA with outputs as Generalized Timed Tranducers (GTT)
(discussed in detail in the full version [2]). At a high level, our construction can be viewed as
structural induction on the parse tree of the MITL formula, where we build a GTT for atomic
propositions, and then for each Boolean and temporal operator, and finally we compose
these GTT bottom up to obtain the GTT for each subformula, which by structural induction
finally gives us the GTT for the full formula. A detailed discussion of this compositional
approach can be found in the full version [2]. We describe the transducers for XI and UI in
this section.

Next operator. The transducer for XI p is given in Figure 4. It is obtained by extending
the untimed variant of the Next-transducer with a future clock x that predicts the time
to the next event. The idea is the same as explained in Figure 1 of the Introduction. The
prediction of the next event is verified, by having the guard x = 0 in every transition. Notice
the use of the program syntax in this example: a transition first checks if x = 0 (satisfying a
previous obligation), and then releases x to a non-deterministic value guessing the time to
the next event, and then asks for a guard, either −x ∈ I or −x /∈ I.

Until operator. We start by describing the transducer for the untimed U modality p U q

(in other words, p UI q with I = [0, ∞)). This is shown in Figure 5. For simplicity, we
have assumed Prop = {p, q} and the alphabet is represented as (0, 0), (1, 0), (0, 1), (1, 1)
corresponding to {}, {p}, {q} and {p, q}. On the word w, if si is the state that reads ai,
then the following invariants hold:

si = q iff q ∈ ai,
si = ¬q ∧ (p U q) iff q /∈ ai and (w, i) |= p U q,
si = ¬(p U q) iff (w, i) ̸|= p U q.

At the initial state the automaton makes a guess about position 0, and then subsequently
on reading every ai, it makes a guess about position i + 1 and moves to the corresponding
state. The transitions implement this guessing protocol. For instance, transitions out of state
q read letters with q = 1, and also output 1; transitions out of state ¬(p U q) have output 0.
A noteworthy point is that state q ∧ ¬(p U q) is non-accepting, preventing the automaton to
stay in that state forever. For every word, the transducer has a unique accepting run and
the output at position i is 1 iff (w, i) |= p U q.

Let us move on to the timed until UI . Let us forget the specific interval I for the moment.
We will come up with a generic construction, on which the outputs can be appropriately
modified for specific intervals. To start the construction, we need the following notion.

CONCUR 2024

5:12 Generalized Timed Automata: Liveness and MITL Model Checking

q ¬q ∧ (p U q)

¬(p U q)

(∗, 1) | 1 (1, 0) | 1

(∗, 0) | 0

(∗, 1) | 1

(1, 0) | 1

(∗, 1) | 1
(0, 0) | 0

(0, 0) | 0

q ¬q ∧ (p U q)

¬(p U q)

(1, 1) π1 | †1

(0, 1) π2 | †3 (1, 0) | †2

(∗, 0) | 0

(1, 1) π1 | †1

(0, 1) π2 | †3

(1, 0) | †2

(∗, 1) π2 | †3

(0, 0) | 0
(0, 0) | 0

Figure 5 (Left) Transducer for the untimed LTL operator p U q.
(Right) Transducer A tracking the earliest and last q witnesses for p U q. Program π1 is x = 0; [x]
and program π2 is x = 0; y = 0; [x, y]. The outputs †i depend on interval I in the timed until p UI q.

▶ Definition 12. Let w = (a0, t0)(a1, t1) . . . be a timed word and let i ≥ 0. The earliest
q-witness at position i is the least position j > i such that q ∈ aj , if it exists. We denote this
position j giving the earliest q-witness at i as if . The last q-witness is the least position
j > i that satisfies

α = q ∧ ¬(p ∧ X(p U q)) ≡ (q ∧ ¬p) ∨ (q ∧ X ¬(p U q))

We denote this position j giving the last q-witness at i as iℓ.

The earliest and last q-witnesses provide a convenient mechanism to check pUI q which, in
many cases, can be deduced by knowing the time to the earliest and last witnesses. Figure 6
illustrates the interpretation of x and y.

q q q q

i if

α

iℓ

¬q ¬q ¬q ¬q ¬q

¬α

x

y

Figure 6 Division of q events, and interpretation of x, y.

Our next task is to extend the U transducer of Figure 5 to include two future clocks
x and y that predict at each i, the time to if and iℓ, respectively. Figure 5 describes the
transducer A. For clock x to maintain time to if at each position i, we can do the following:
at every transition that reads q, the transducer checks for x = 0 as guard and releases x

(with the time to the next q). If there is no such q, then x needs to be released to −∞ in
order to continue the run, as our timed words are non-Zeno. Transitions satisfying ¬q do not
check for a guard on x or release x. Therefore, in any run, the value of x determines the
time to the next q event.

In Figure 6, the last witness (property α) can be identified by transitions of the form
(0, 1) (signifying q ∧ ¬p) and transitions (∗, 1) going to state ¬(p U q) (for q ∧ X ¬(p U q)).
Similar to the previous case of the earliest witness, every time we see such a transition we
check for y = 0 as a guard and release y. No other transition checks or updates y. Notice

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:13

that only the transitions with q have been changed. All transitions (0, 1) check and release
both clocks (program π2). Transitions (1, 1) that do not go to ¬(p U q) check and release
only x (program π1), whereas the (∗, 1) transition that goes to ¬(p U q) does π2.

▶ Lemma 13. For every timed word w = (a0, τ0)(a1, τ1) · · · , there is a unique run of A of
the form: (s0, v0) τ0,θ0−−−→ (s1, v1) τ1−τ0,θ1−−−−−−→ · · · such that for every position i ≥ 0: (1) si is
state q of A iff w, i |= q, (2) si is state ¬q ∧ (p U q) iff w, i |= ¬q ∧ (p U q), (3) si is state
¬(p U q) iff w, i |= ¬(p U q), (4) vi(x) = τi − τif

and vi(y) = τi − τiℓ
.

Using A we can already answer pUI q for one-sided intervals: [0, c], [0, c), [b, +∞), (b, +∞),
for natural numbers b, c.

if 0 ∈ I: †1 = †3 = 1 (current position is a witness), and †2 = (−x ∈ I ∨ −y ∈ I) ? 1 : 0,
if 0 /∈ I: †3 = 0, and †1 = †2 = (−x ∈ I ∨ −y ∈ I) ? 1 : 0.

This is because in one-sided intervals, if at all there is a witness, the earliest or the last is
one of them.

Until with a non-singular interval. We will now deal with the case of intervals I = [b, c]
with 0 < b < c < ∞. Firstly, using x and y, some easy cases of p UI q can be deduced.
Output remains 0 for transitions starting from ¬(p U q). For other transitions, here are some
extra checks:

if −x ∈ I or −y ∈ I, output 1 (one of the earliest or last witness is also a witness for
p UI q),
else, if −y < b or c < −x, output 0 (the time to the last witness is too small or the time
to the earliest witness is too large, so there is no witness within I).

If neither of the above cases hold, then we need guess a potential witness within [b, c]
and verify it. This requires substantial book-keeping which we will now explain. Assume we
are given a timed word w = (a0, t0)(a1, t1) · · · . Let us a call j ≥ 0 a difficult point if:

w, j |= p U q and tjf
< tj + b and tj + c < tjℓ

This leaves the possibility for a q-witness within [b, c]. So, for difficult points, we need to
make a prediction whether we have a q-witness within [tj + b, tj + c]: guess a time to a
witness within [tj + b, tj + c] and check it. We cannot keep making such predictions for every
difficult point as we have only finitely many clocks. Therefore, we will guess some special
witnesses. First we state a useful property.

▶ Lemma 14. Let j be a difficult point. Then, for all k such that j ≤ k ≤ jℓ, we have
w, k |= p U q.

Therefore, automaton A stays in the top two states, while reading j upto jℓ.

tj tj + c

tj′tj′ − b tj′′

tj′′ − c tj′′ − b

Figure 7 Illustration of a point j. The point j′ is the last q-witness before tj + c, and j′′ is the
first q-witness after tj + c.

We will now come back to the idea of choosing special witnesses. This is illustrated
in Figure 7. For a point j, we let j′ ≥ j be the greatest position containing q such that
tj′ ≤ tj + c. Let j′′ > j be the least position containing q such that tj + c < tj′′ . So, no

CONCUR 2024

5:14 Generalized Timed Automata: Liveness and MITL Model Checking

(0, 1) (1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

¬q ¬q ¬q

q

y1 = 0

shift

q

y1 = 0

shift

q

y1 = 0

shift

y < −c < −b < x

[x1, y1]

y1 < −c ≤ x1

−b < y1

y < −c < −b < x

[x2, y2]

y2 < −c ≤ x2

−b < y2

y < −c < −b < x

[x3, y3]

y3 < −c ≤ x3

q

x1 = 0

q

x1 = 0

q

x1 = 0

Figure 8 The automaton B for predicting q-witnesses which are not given by the earliest and
latest. For clarity, not every transition is indicated. All clocks are future clocks.

position j′ < k < j′′ contains q. While reading a difficult point j, let us make use of fresh
clocks x1 and y1 to predict these two witnesses:

x1 = tj − tj′ y1 = tj − tj′′

For the next important observation, we will once again take the help of Figure 7. Notice
that for all points i with ti ∈ [tj , tj′ − b], the point j′ is also a witness for w, i |= p U[b,c] q.
Similarly, j′′ is a witness for all i such that ti ∈ [tj′′ − c, tj′′ − c]. Therefore for all i such that
ti ∈ [tj , tj′′ − b], we have a way to determine the output: it is 1 iff while reading ai we have
−x1 ∈ I or −y1 ∈ I (recall we have predicted x1 and y1 while reading aj as explained above).
So, we do not have to make new guesses at the difficult points in [tj , tj′′ − b]. After tj′′ − b

(which can be identified with the constraint −b < y1), we need to make new such guesses,
using fresh clocks, say x2, y2. We will call the difficult points where we start new guesses
as special difficult points. Notice that the distance between two special difficult points is at
least c − b (which is ≥ 1, as we consider non-singular intervals with bounds in N). In the
figure, if j is a special point, a new special point will be opened later than tj′′ − b.

This gives a bound on the number of special points that can be open between j and j′′.
Suppose j < ℓ1 < ℓ2 < · · · < ℓi < j′′ be the sequence of special points between j and j′′.
Since ℓ1 is opened when time to j′′ is atmost b, we get the inequality: tℓi − tℓ1 < b. Since
consecutive special points are at least c − b apart, we have (i − 1)(c − b) < b. This entails
i < 1 + ⌈ b

c − b
⌉. By the time we reach j′′, we need to have opened at most k = 1 + ⌈ b

c − b
⌉

special points, and hence we can work with the extra clocks x1, y1, x2, y2, . . . , xk, yk.
All these ideas culminate in a book-keeping automaton B to handle difficult points. Its

set of states is {0, 1, . . . , N} × {1, 2} where N = 1 + ⌈ b

c − b
⌉ (state (0, 2) is not reachable).

All states are accepting. This is shown in Figure 8 for N = 3. The automaton B synchronizes
with A (via a usual cross-product synchronized on transitions). All transitions of B other
than the self loop on state (0, 1) satisfy p. Transitions which satisfy q, and ¬q are specifically
marked in the figure.

The automaton B starts in the initial state (0, 1). It moves to (1, 1) on the first difficult
point j (which will become special) and comes back to (0, 1) when there are no active
special difficult points waiting for witnesses (a special difficult point j is active at positions
j ≤ i ≤ j′′). States (i, 1) in the top indicate that there are i active special difficult points
currently. A state (i, 2) indicates that the j′ witness for the oldest active point has been
seen, and we are waiting for its j′′ witness (the space between tj′ and tj′′ in Figure 7).

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:15

The red transitions (i, ∗) → (i + 1, ∗) open new special difficult points, and contain the
program as illustrated in the figure. At (i, 1), suppose ℓ1 < ℓ2 < · · · < ℓi are the active
special difficult points where we have predicted x1, y1, . . . , xi, yi respectively. We have the
invariant:

yi < xi ≤ yi−1 < xi−1 ≤ · · · ≤ y2 < x2 ≤ y1 < x1

Notice that we may have xi = yi−1: the “first” witness of the ith special point (ℓ′
i) could

coincide with the “second” witness of the (i−1)th point (ℓ′
i−1). This leads to certain subtleties,

which we will come to later.
The blue transitions read the witness for the oldest active special point (that is, we have

reached ℓ′
1). Observe that x1 = 0 does not immediately identify ℓ′

1, since there could be
a sequence of positions at the same time, and ℓ′

1 is the last of them. Therefore, we make
a non-deterministic choice whether to take the blue transition (implying that ℓ′

1 has been
found), or we remain in the same state. The blue transitions read a q, check x1 = 0, and
then releases x1 to −∞ (not shown in Figure 7). The black (diagonal) transitions witness
ℓ′′

1 . When this happens, x1, y1 are no longer useful, and therefore all the higher clocks are
shifted using the permutation shift which maps x2, y2, . . . xk, yk, x1, y1 to x1, y1, . . . , xk, yk

and keeps the other clocks unchanged.
There are some subtleties which arise when special points coincide with witness points, or

when the second witness of a special point coincides with the first witness of the consecutive
special point.

Subtleties. The first subtlety arises when we have ℓ′′
j = ℓ′

j+1 for consecutive special points.
This will imply yj = xj+1. The reverse direction is not true, as there could be a sequence of
positions with the same time, but let us assume we have dealt with it by the non-deterministic
choice. When we actually witness these points, the clock values would have shifted to lower
indices. This situation will be manifested as y1 = x2 = 0. Suppose we are in (i, 2) and see a
point ℓ′′

j (y1 = 0). The diagonal transition takes the automaton to (i − 1, 1) and shifts x2 to
x1. Now, x1 = 0 (as ℓ′

j+1 = ℓ′′
j). Therefore, we will have to combine the black-diagonal-left

with the downward-blue to get the combined effect. This leads to these two divisions:

(i, 2) y1=0−−−→ (i − 1, 1) (i, 2) y1=0∧x2=0−−−−−−−→ (i − 1, 2)

The second subtlety is that one of either ℓ′
j or ℓ′′

j witnesses be a new special point (notice
that the red transitions are independent of the blue and black transitions). In such cases, we
can combine the two effects in any order: first discharge x1 or y1 verification, and then open
a new special point or vice-versa. This leads to some additional divisions of the form:

(i, 1) x1=0∧−b<yi−−−−−−−−→ (i + 1, 2) (i, 2) y1=0∧−b<yi−−−−−−−−→ (i, 1)

In the first transition, we have combined a blue and a red (in any order); whereas in the
second, we have combined a red and a black-diagonal, in any order.

The third subtlety is that the first and second subtleties may occur together! A point
could be ℓ′′

j , ℓ′
j+1 and also a new special point. We illustrate this on a specific state (i, 2).

We provide only the “guards”. The full program is obtained by suitably combining the effects
of the individual transitions:

(i, 2) y1=0∧yi≤−b−−−−−−−−→ (i − 1, 1) (i, 2) y1=0∧−b<yi−−−−−−−−→ (i, 1)

(i, 2) y1=0∧x2=0∧yi≤−b−−−−−−−−−−−−−→ (i − 1, 2) (i, 2) y1=0∧x2=0∧−b<yi−−−−−−−−−−−−−→ (i, 2)

CONCUR 2024

5:16 Generalized Timed Automata: Liveness and MITL Model Checking

This concludes the description of the automaton B. The product A × B gives the required
transducer for p UI q. The full construction of B, taking into account all these subtleties, is
described as Algorithm 1. In comments, we use the terminology introduced before and we
also refer to the color of transitions in Figure 8. Parsing the pseudo-code from a current state
(k, m) results in a sequence of guards and releases, an output of a Boolean value (output
value), and the next state (goto (k′, m′)). The most difficult case is for states (k, 2) with
k ≥ 2, where we could generate transitions to states (k −1, 1), (k −1, 2), (k, 1), (k, 2), (k +1, 2).

Complexity and comparison with the MightyL approach. The final automaton A × B
has at most 6k states, where k = 1 + ⌈ b

c − b
⌉ as defined above: automaton A has 3 states,

and automaton B has 2k − 1 states (see Figure 8). In terms of clocks, A has 2 future clocks
x, y, and B has 2k future clocks x1, y1, . . . , xk, yk. We have used a permutation operation
shift. As we mention in Remark 2, renamings can be eliminated by maintaining in the
current state the composition of permutations applied since the initial state. Since each
permutation does a cyclic shift, in any composition, the clocks x1, y1, . . . , xk, yk are renamed
to some xi, yi, . . . , xk, yk, x1, y1, . . . , xi−1, yi−1. Therefore, there are at most k renamings.
Maintaining them in states gives rise to atmost O(k2) states.

In contrast, the state-of-the-art approach [11] starts with a 1-clock alternating timed
automata for UI . After reading a timed word, the 1-ATA reaches a configuration containing
several state-valuation pairs (q, v). A finite abstraction of this set of configurations, called
the interval semantics, has been proposed [9, 10, 11]. This abstraction is maintained in the
states. Overall, the number of locations for p UI q is exponential in k, and the number of
clocks is 2k + 2.

Due to the presence of future clocks, we are able to make predictions, as in Figure 7 and
the GTA syntax enables concisely checking these predictions in the transitions. Therefore,
we are able to give a direct construction to the final automaton, instead of going via an
alternating automaton and then abstracting it.

5 Conclusion

In this paper, we have answered two problems: (1) liveness of GTA and (2) MITL model
checking using GTA. The solution to the first problem required to bypass the technical
difficulty of having no finite time-abstract bisimulation for GTAs. The presence of diagonal
constraints adds additional challenges. For MITL model checking using GTA, we have
described the GTA for the XI and UI modalities. Indeed, the presence of future clocks allows
to make predictions better and we see an exponential gain over the state-of-the-art, in the
number of states of the final automaton produced. Moreover, our construction is direct,
without having to go via alternation.

The next logical step would be to implement these ideas and see how they perform in
practice, and compare them with existing well-engineered tools (e.g., [11]). This will require
a considerable implementation effort, needing several optimizations and incorporating of
many practical considerations before it can become scalable. This provides tremendous scope
for future work on these lines.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:17

Algorithm 1 Automaton B (synchronized with A).

1: State (0, 1): ▷ initial state of B
2: if A at state ¬(p U q) then output 0; goto (0,1) end if
3: if −x ∈ I or −y ∈ I then output 1; goto (0,1) end if
4: if x < −c or −b < y then output 0; goto (0,1) end if
5: Release [x1, y1] ▷ Special difficult point
6: Check y1 < −c ≤ x1
7: output (x1 ≤ −b) ▷ Boolean value
8: goto (1,1) ▷ red transition
9: State (k, 1) with k > 0: ▷ waiting for the event predicted by x1

10: k′ ← k
11: if yk ≤ −b then
12: output (xk ∈ I) ∨ (yk ∈ I) ▷ Boolean value
13: else
14: if −c ≤ y then ▷ not a difficult point
15: output (y ≤ −b) ▷ Boolean value (y ∈ I)
16: else ▷ new special difficult point, red transition,
17: ▷ possibly combined with a blue transition below
18: k′ ← k + 1;
19: Release [xk, yk]; Check yk < −c ≤ xk

20: output (xk ≤ −b) ▷ Boolean value
21: end if
22: end if
23: choose non-deterministically
24: when True do goto (k′, 1) ▷ not the event predicted by x1

25: when q ∧ (x1 = 0) do Release [x1]; x1 = −∞; goto (k′, 2)
▷ blue transition

26: end choose
27: State (k, 2) with k > 0: ▷ waiting for the event predicted by y1
28: k′ ← k
29: if yk ≤ −b then
30: output (xk ∈ I) ∨ (yk ∈ I) ▷ Boolean value
31: else
32: if −c ≤ y then ▷ not a difficult point
33: output (y ≤ −b) ▷ Boolean value (y ∈ I)
34: else ▷ new special difficult point, red transition,
35: ▷ possibly combined with a black transition below
36: k′ ← k + 1;
37: Release [xk, yk]; Check yk < −c ≤ xk

38: output (xk ≤ −b) ▷ Boolean value
39: end if
40: end if
41: if ¬q then ▷ not the event predicted by y1
42: goto (k′, 2)
43: else ▷ event predicted by y1, black transition
44: ▷ possibly combined with a blue transition below
45: Check y1 = 0; Release [y1]; y1 = −∞
46: if k′ = 1 then
47: goto (0, 1)
48: else
49: Shift x2, y2, . . . , xk, yk, x1, y1 to x1, y1, . . . , xk, yk

50: end if
51: choose non-deterministically
52: when True do goto (k′ − 1, 1)

▷ not the event predicted by the new x1
53: when (x1 = 0) do Release[x1]; x1 = −∞; goto (k′ − 1, 2)

▷ blue transition
54: end choose
55: end if

CONCUR 2024

5:18 Generalized Timed Automata: Liveness and MITL Model Checking

References
1 S. Akshay, Paul Gastin, R. Govind, Aniruddha R. Joshi, and B. Srivathsan. A unified model

for real-time systems: Symbolic techniques and implementation. In CAV (1), volume 13964 of
Lecture Notes in Computer Science, pages 266–288. Springer, 2023.

2 S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan. MITL model checking via generalized
timed automata and a new liveness algorithm, 2024. arXiv:2407.08452.

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

4 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43(1):116–146, 1996.

5 Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theor. Comput. Sci., 211(1-2):253–273, 1999.

6 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness. In
LICS, pages 390–401. IEEE Computer Society, 1990.

7 Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and upper
bounds in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer, 8(3):204–215, 2006.

8 Laura Bozzelli, Angelo Montanari, and Adriano Peron. Complexity issues for timeline-based
planning over dense time under future and minimal semantics. Theor. Comput. Sci., 901:87–113,
2022.

9 Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata. In FORMATS, volume 8053 of Lecture Notes in Computer Science, pages 47–61.
Springer, 2013.

10 Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata over infinite words. In FORMATS, volume 8711 of Lecture Notes in Computer
Science, pages 69–84. Springer, 2014.

11 Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. MightyL: A
compositional translation from MITL to timed automata. In CAV (1), volume 10426 of Lecture
Notes in Computer Science, pages 421–440. Springer, 2017.

12 Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NUSMV:
A new symbolic model verifier. In CAV, volume 1633 of Lecture Notes in Computer Science,
pages 495–499. Springer, 1999.

13 David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197–212. Springer, 1989.

14 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 - A framework for LTL and ω-automata manipulation. In
ATVA, volume 9938 of Lecture Notes in Computer Science, pages 122–129, 2016.

15 Thomas Ferrère, Oded Maler, Dejan Nickovic, and Amir Pnueli. From real-time logic to timed
automata. J. ACM, 66(3):19:1–19:31, 2019.

16 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in timed automata with
diagonal constraints. In CONCUR, volume 118 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018.

17 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. In CAV (1), volume 11561 of Lecture Notes in Computer
Science, pages 41–59. Springer, 2019.

18 Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In CAV, volume
2102 of Lecture Notes in Computer Science, pages 53–65. Springer, 2001.

19 Gilles Geeraerts, Jean-François Raskin, and Nathalie Sznajder. On regions and zones for
event-clock automata. Formal Methods Syst. Des., 45(3):330–380, 2014.

https://arxiv.org/abs/2407.08452

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:19

20 Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV, volume 38 of IFIP Conference Proceedings,
pages 3–18. Chapman & Hall, 1995.

21 F. Herbreteau and G. Point. TChecker. https://github.com/fredher/tchecker, v0.2 - April
2019.

22 Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz. Why liveness
for timed automata is hard, and what we can do about it. ACM Trans. Comput. Log.,
21(3):17:1–17:28, 2020. doi:10.1145/3372310.

23 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. In LICS, pages 375–384. IEEE Computer Society, 2012.

24 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient emptiness check for timed
büchi automata. Formal Methods Syst. Des., 40(2):122–146, 2012.

25 Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279–295,
1997.

26 Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysis of a collision
avoidance protocol using SPIN and UPPAAL. In The Spin Verification System, volume 32
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 33–49.
DIMACS/AMS, 1996.

27 Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

28 Guangyuan Li. Checking timed Büchi automata emptiness using LU-abstractions. In Joël
Ouaknine and Frits W. Vaandrager, editors, Formal Modeling and Analysis of Timed Systems,
7th International Conference, FORMATS 2009, Budapest, Hungary, September 14-16, 2009.
Proceedings, volume 5813 of Lecture Notes in Computer Science, pages 228–242. Springer,
2009. doi:10.1007/978-3-642-04368-0_18.

29 Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In FORMATS,
volume 4202 of Lecture Notes in Computer Science, pages 274–289. Springer, 2006.

30 Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit reactive synthesis
strikes back! In CAV (1), volume 10981 of Lecture Notes in Computer Science, pages 578–586.
Springer, 2018.

31 Joël Ouaknine and James Worrell. On metric temporal logic and faulty turing machines. In
FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pages 217–230. Springer, 2006.

32 Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer Society,
1977.

33 Amir Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: A survey of current trends. In Current Trends in Concurrency, volume 224 of Lecture
Notes in Computer Science, pages 510–584. Springer, 1986.

34 Amir Pnueli and Eyal Harel. Applications of temporal logic to the specification of real-time
systems. In FTRTFT, volume 331 of Lecture Notes in Computer Science, pages 84–98. Springer,
1988.

35 Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed Büchi automata
emptiness efficiently. Formal Methods Syst. Des., 26(3):267–292, 2005.

36 Moshe Y Vardi. An automata-theoretic approach to linear temporal logic. Lecture Notes in
Computer Science, 1043:238–266, 1996.

37 Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In FTRTFT, volume 863 of Lecture Notes in Computer Science, pages 694–715.
Springer, 1994.

CONCUR 2024

https://github.com/fredher/tchecker
https://doi.org/10.1145/3372310
https://doi.org/10.1007/978-3-642-04368-0_18

	1 Introduction
	2 Preliminaries
	3 Liveness for GTA
	4 Translating MITL to GTA
	5 Conclusion

