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Abstract
Probabilistic systems are often modeled using factored versions of Markov decision processes (MDPs),
where the states are composed out of the local states of components and each transition involves
only a small subset of the components. Concurrency arises naturally in such systems. Our goal is to
exploit concurrency when analyzing factored MDPs (FMDPs). To do so, we first formulate FMDPs
in a way that aids this goal and port several notions from concurrency theory to the probabilistic
setting of MDPs. In particular, we provide a concurrent semantics for FMDPs based on the classical
notion of event structures, thereby cleanly separating causality, concurrency, and conflicts that arise
from stochastic choices. We further identify the subclass of causally deterministic FMDPs (CMDPs),
where non-determinism arises solely due to concurrency. Using our event structure semantics, we
show that in CMDPs, local reachability properties can be computed using a “greedy” strategy.
Finally, we implement our ideas in a prototype and apply it to four models, confirming the potential
for substantial improvements over state-of-the-art methods.
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1 Introduction

Factored versions of systems often constitute an important subclass. Two typical, well known
examples – among very many – are Petri nets (and related models of concurrency) [26] and
dynamic Bayesian networks [17]. A common key feature is that a state of the system is a
vector of local component states. Further, a transition only involves a small subset of the
components and hence can be specified succinctly; so much so, the size of the induced global
system will often be exponential in the size of the factored presentation. This allows to model
large systems without having to enumerate the set of global states and transitions explicitly.

Here, we explore this idea in the probabilistic setting of Markov decision processes
(MDPs). Our starting point is a variant of factored MDPs (FMDPs). These are made up
of several individual components, and a vector of local states constitutes the global state.
Moreover, each action is associated with a fixed set of components named its locations. The
availability of an action at a global state only depends on the local states of its locations and
the stochastic changes that take place when an action occurs only involve the states of its
locations. The resulting transition relation can be easily converted into the usual presentation
of factored MDPs in the literature [4, 14]. Notably, our version of FMDPs includes models
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6:2 Causally Deterministic Markov Decision Processes

specified in the established PRISM language [18] and JANI [5]. When handling systems with
a large number of components, a key challenge is to analyze the global behavior in terms of
the factored presentation instead of first explicitly constructing the global behavior. In the
case of factored MDPs, this is particularly difficult due to the complex interplay between
non-deterministic, stochastic and concurrent features of the dynamics.

As a first step toward addressing this challenge, we focus on the analysis of a subclass of
FMDPs, called causally deterministic FMDPs (CMDPs). The defining feature of CMDPs is
that any two actions that are available at a global state will have disjoint sets of locations.
As a result, the two actions will be causally independent: executing one of them will not
affect the availability of the other or its outcomes. Consequently, CMDPs admit a powerful
partial order based analysis technique for verifying certain “robust” probabilistic properties.
In the current paper, we focus on local reachability properties.

As a key tool to analyzing CMDPs, we identify the notion of complete strategies, which can
be explained as follows. In a CMDP, the role of a strategy is to resolve the non-determinism
that arises in the dynamics due to causally independent actions. This means a strategy
linearizes a partially ordered set of action occurrences. Hence, if an action a is enabled at a
state s, and is not chosen along a finite sequence of moves leading to the state s′, then a will
still be available at s′. Accordingly, a complete strategy is defined to be one in which the set
of trajectories along which an available action is ignored forever has probability measure 0.
Based on this notion, our main technical results for CMDPs are that (i) complete strategies
suffice to obtain the optimal (maximal) probability of a local reachability property and
(ii) all complete strategies will yield the same maximal probability value. Consequently we
can choose a greedy complete strategy which avoids visiting many “useless” states. As the
experimental results in Sec. 6 show, for CMDPs, our method vastly outperforms established,
highly optimized tools such as Storm [8].

We establish these properties by exploiting fundamental objects drawn from concurrency
theory, namely Mazurkiewicz traces [9] and prime event structures [24]. In particular, we
develop an event structure semantics for all FMDPs. Since they arise in the context of
FMDPs, the events in the event structure will have probability values assigned to them in a
natural manner. We then use these probabilistic events to show that all complete strategies
yield the same maximal probability values for local reachability properties. We view the
present work as a first step towards developing partial-order reductions for FMDPs in general.
Specifically, via the event structure semantics, based on Mazurkiewicz traces, a variety of
techniques such as finite prefixes of event structures [11], and partial order reduction notions
such as ample sets [13] and stubborn sets [15] can be brought to bear when analyzing FMDPs.

To summarize, our contributions are:
1. A novel class of factored MDPs, called CMDPs, in which the non-determinism between

actions arises solely due to their causal independence.
2. An event structure semantics for FMDPs that cleanly separates causality, concurrency,

and (stochastic) conflicts arising in the global behavior of an FMDP.
3. The identification of complete strategies for CMDPs which have the crucial properties;

(i) they suffice to attain the optimal probability values for local reachability properties
and (ii) all of them yield the same optimal value.

4. A prototypical implementation of (i) a syntactical over-approximation for checking that
the input MDP is a CMDP and (ii) a greedy complete strategy accompanied by an
experimental evaluation on four models. Comparison with existing state-of-the-art
tools, e.g., Storm [8], shows a vast performance improvement for the evaluated models,
highlighting the potential benefits of our approach.
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Structure. In the rest of this section we review related work. We then present basic material
concerning Markov chains and Markov decision processes. In Sec. 3, we introduce our class
of FMDPs and the subclass of causally deterministic FMDPs (CMDPs). In the subsequent
section we construct the event structure representation of our FMDPs which then leads
to the main results developed in Sec. 5. The greedy strategy, its implementation, and the
experimental results are presented in Sec. 6. The paper concludes with Sec. 7.

Related Work. Factored MDPs have been long studied in the literature [4, 14], where the
transition relation is usually presented using a two layer dynamic Bayesian network. With
an eye toward learning applications, a reward function is also included. Our formulation of
FMDPs is geared towards capturing the distributed dynamics of FMDPs and hence is based
on the notion of locations. Further, reward functions play no role in the present setting.

In the verification setting, several works have considered compositional methods to reason
about large MDPs that are “factorized” via compositional operations. While some approaches
use bisimulation based equivalences [12], others use abstractions [16], and yet others use
a category-theoretical view of MDPs [31]. In a sense, these represent an approach which
is orthogonal to ours, which is grounded in FMDPs and focused on solving quantitative
behavioral properties. There have also been works adapting partial-order reduction techniques
to the probabilistic setting using ample sets [13] and stubborn sets [15]. Variants of these
approaches are incorporated in state-of-the-art tools such as Storm [8] and PRISM [18].
However, these works deal with MDPs viewed as monolithic objects presented in terms of
global states and transitions. Thus, it will be difficult – if not impossible – to deal with
the large MDPs that are presented succinctly as FMDPs. Furthermore, the focus in these
works is on model checking linear time and branching time (probabilistic) properties using a
semantically defined notion of commutability of actions along an execution sequence. These
techniques do not enable one to compute optimal values of local reachability properties that
we achieve using the event structure semantics. It will however be interesting to explore
these methods in the context of CMDPs and, more generally, FMDPs.

Similarly, [7] exploit a model consisting of purely probabilistic components, however they
use these components only to obtain a compact symbolic representation of the global MDP;
in the end, they still work with the entire global MDP. In contrast, our analysis method
directly works with the factored representation of the global MDP.

Several studies start with event structures, adjoin probabilities to events and study the
resulting objects from a theoretical standpoint [1, 30]. However, in these studies probabilities
are introduced in an ad-hoc manner and no attempt is made to establish a verification
framework for an associated system model. In sharp contrast, the probabilities attached to
the events in our event structures arise naturally from the associated MDPs. Furthermore,
our use of event structures is firmly grounded in a verification framework for CMDPs.

Generalized stochastic Petri nets (GSPN) [20], despite being based on Petri nets, do
not exploit concurrency and instead focus on their interleaved global behaviors in terms of
(continuous time) Markov chains. A variant called Markov decision Petri nets is proposed
in [3] as a high level modeling formalism. Their global behaviors are captured by MDPs and
analyzed using symbolic representations. Here again concurrency essentially plays no role.

Finally, distributed Markov chains (DMCs) studied in [28,29] have a similar flavour to
CMDPs. DMCs consist of a network of probabilistic transition systems that synchronize on
common actions with a sufficiently strong syntactic restriction ensuring that if two actions
are enabled at a global state then they must involve disjoint sets of components. In addition,
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6:4 Causally Deterministic Markov Decision Processes

they focus on statistical model checking of properties specified in a variant of bounded linear
temporal logic. In contrast, CMDPs are a natural behavioral subclass of MDPs and our focus
is determining the exact maximal probability of (unbounded) local reachability properties.

2 Preliminaries

A Markov chain (MC) (e.g., [2]), is a tuple M = (S, ŝ, P ), where S is a (countable) set of
states, ŝ ∈ S is the initial state, and P : S → D(S) is a transition function that for each state
s yields a probability distribution over successor states, where D(S) is the set of distributions
over S. A Markov decision process (MDP) (e.g., [25]) is a tuple M = (S, ŝ, Act, P), where S

is a (finite) set of states, ŝ ∈ S is the initial state, Act a finite set of actions, overloaded as
Act(s) ⊆ Act specifying available actions at a state s, and P : S × Act → D(S) yielding a
distribution over successors for each s ∈ S and a ∈ Act(s). For simplicity, we write P (s, s′)
instead of P (s)(s′) for a MC and P(s, a, s′) instead of P(s, a)(s′) for an MDP.

Paths. An infinite path in an MC M is an infinite sequence ϱ = s1s2 . . . where s1 = ŝ and
P (si, si+1) > 0 for all i. A finite path ρ is a finite prefix of an infinite path. A Markov
chain M = (S, ŝ, P ) naturally induces a unique probability measure PrM over the σ-algebra
generated by the cylinder sets induced by the finite paths [2, Sec. 10.1]. Similarly, for an
MDP M, an infinite path is a sequence ϱ = s1a1s2a2 . . . such that s1 = ŝ and for all i we
have ai ∈ Act(si) and P(si, ai, si+1) > 0. A finite path is a finite prefix of an infinite path
ending in a state. We write FPathsM to denote the set of finite paths in M. Moreover,
|ρ| = k denotes the length of a path (setting it to ∞ for infinite paths) and we define it to be
the number of actions (transitions) that appear in the path. For i ≤ |ρ| we write ρi to refer
to the i-th state in a path. Finally, last(ρ) = ρ|ρ| denotes the last state in a finite path.

Strategies. Intuitively, in every state s, an action a from Act(s) is chosen and the system
advances to a successor state s′ according to the probability distribution given by P(s, a).
Starting from the initial state ŝ and repeating this process indefinitely yields an infinite path.
The way actions are chosen along an infinite path is captured by strategies. Specifically, a
strategy is function mapping each finite path to one of the actions, say a, available in the last
state, say s, of the path. This leads to new states chosen according to the distribution P(s, a).
We let Π refer to the set of all strategies. To support our technical constructions arising
later, our strategies are thus deterministic but not necessarily memoryless. A strategy is
memoryless (or positional) if it only depends on the current state, i.e. π(ρ) = π(ρ′) whenever
last(ρ) = last(ρ′). As usual, a strategy π induces the Markov chain Mπ = (FPathsM, ŝ, P π),
where for ρ ∈ FPathsM with s = last(ρ) and a = π(ρ) ∈ Act(sn) we set P π(ρ, ρas′) =
P(s, a, s′). We write Prπ

M,ŝ = PrMπ,ŝ for the induced probability measure.

Reachability. Fix an MDP M = (S, ŝ, Act, P). Then, (unbounded) reachability for a set
of target states T ⊆ S is the set of all (infinite) paths which eventually visit one of the
target states, i.e. 3T = {ϱ | ∃i. ϱi ∈ T}, which is measurable [2, Sec. 10.1.1]. For a strategy
π, the probability of reaching T according to π is the probability assigned to this set of
infinite paths 3T in Mπ, i.e. Prπ

M[3T ]. However, different strategies will in general yield
different probabilities and one is often interested in the maximum of these probabilities. In
other words, the goal is to determine supπ∈ΠPrπ

M[3T ] (also called the value). For MDPs, a
well-known result states that it suffices to consider memoryless deterministic strategies for
this maximization (see, e.g., [2, Lem. 10.102]).
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3 Factored MDPs and Causal Determinacy

Often, an MDP comprises interacting components (or agents, processes). In particular, many
modelling formalisms used in practice, e.g. the PRISM language [18] or JANI [5], define
MDPs in this manner. Consequently, a state of the MDP will consist of a tuple of local
states of the component processes. Further, an action will often involve only a fixed subset
of the components leading to a stochastic transformation of the states of these components
while the states of the other components are left untouched. We propose to use factored
MDPs to study such systems.

Accordingly, let Proc denote a finite set of components. Each component p ∈ Proc has a
set of local states denoted as Sp. This gives rise to the set of global states S =

∏
p∈Proc Sp. To

capture the idea that an action involves only a fixed subset of components, we use the location
map loc : Act → 2Proc \ ∅ to specify for each action a the set of components that participate
in a. For convenience, we also identify a global state s with the map s : Proc →

⋃
p∈Proc Sp

such that s(p) ∈ Sp for p ∈ Proc. Then, for a set of components P ⊆ Proc, we let s[P ]
denote the map s restricted to P . In other words, s[P ] ∈

∏
p∈P Sp and s[P ](p) = s(p) for

p ∈ P . For a ∈ Act, we often write s[a] instead of s[loc(a)] and call it the a-state induced by
s. This leads to S[a] = {s[a] | s ∈ S}, the set of a-states. With these notations at hand, we
introduce factored MDPs (FMDPs).

▶ Definition 1. A factored MDP M is a tuple ({Sp}p∈Proc, {ŝp}p∈Proc, Act, loc, {Pa}a∈Act)
where (i) Proc is a finite, non-empty set of components, (ii) Sp is a finite, non-empty set
of states for each p ∈ Proc, (iii) ŝp ∈ Sp is the initial state of component p, inducing the
global initial state ŝ with ŝ(p) = ŝp for each p ∈ Proc, (iv) Act is a finite, non-empty set
of actions, (v) loc : Act → 2Proc \ {∅} is the locations map, and (vi) for each a ∈ Act,
Pa : S[a] → D(S[a]) is a (partial) transition function.

Similar to MDPs, we write Pa(u, v) instead of Pa(u)(v). The FMDP M induces an MDP
called its global MDP defined as follows.

▶ Definition 2. Let M be an FMDP as above. Then its global MDP is given by M̂ =
(S, ŝ, Act, P) where (i) a ∈ Act(s) iff Pa(s[a]) is defined, and (ii) for every s′ ∈ S and a ∈
Act(s), we have P(s, a, s′) = v > 0 iff Pa(s[a], s′[a]) = v and s[Proc\ loc(a)] = s′[Proc\ loc(a)].

We can immediately verify that M̂ is indeed an MDP. Moreover, M̂ has two important
properties, namely: (F1) The availability of an action a at a state s depends only on s[a].
Further, when an action a at occurs at a state s, the changes it produces involve only the
components in loc(a); the local states of components in Proc \ loc(a) remain unchanged.
(F2) When action a occurs at a global state s, the changes it produces (to the states of
participating components) depends only on the a-state s[a]. In particular, suppose s1 and s2
are global states and a ∈ Act is an action where s1[a] = s2[a]. Then, if P(s1, a, s′

1) = v > 0
there exists a unique global state s′

2 such that P(s2, a, s′
2) = v and s′

1[a] = s′
2[a].

Before presenting an illustrative example, we briefly remark on this defining way of
defining an FMDP and how it relates to established notions.

▶ Remark 3. Traditionally, FMDPs are defined using a transition relation represented by
a two-layer dynamic Bayesian network [4, 14]. We have chosen to use a slightly different
definition, aligned with concurrency theory, so that the distributed nature of the dynamics
can be clearly brought out, as we shall see below. However, our theory is neutral to how
the dynamics of the individual components are represented as long as the global transitions
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Figure 1 This figure illustrates a two-component FMDP where Proc = {p, q}, Sp = {u1, u2, u3},
Sq = {v1, v2}, and Act = {a, a′, b, c}. On the left, for each action a both loc(a) and Pa are depicted.
On the right, the induced global MDP is shown. The middle b action is greyed out solely for
readability, it is not special in any way. We omit the probability label if it is 1.

are factored in terms of the components participating in the actions. In particular, once the
properties (F1) and (F2) stated above are satisfied by the resulting global MDP, our theory
is applicable to any model which exhibits such behaviour, e.g. the DBN-based definitions.

▶ Example 4. In Fig. 1, an example of an FMDP (on the left) and its induced global
MDP (on the right) is shown. To explain the relation between FMDP and global MDP, we
write ⟨u1, u2⟩ and similar to denote global states and c-states as tuples of local states, as the
correspondence with the local states of the components is clear. The a-transition from ⟨u1⟩ to
⟨u2⟩ in the FMDP implies a is available at the global state ⟨u1, v1⟩ since ⟨u1, v1⟩[a] = ⟨u1⟩ and
Pa(⟨u1⟩) is defined in the FMDP. Further, P(⟨u1, v1⟩, a,⟨u2, v1⟩) = 0.8 as Pa(⟨u1⟩, ⟨u2⟩) = 0.8.
In particular, this transition does not modify the state of the q-component since loc(a) = {p}.
The other transitions shown in the global MDP can be inferred using similar reasoning.

By slight abuse of notation, in the following we write S to denote the set of reachable states,
defined in the obvious way. We also identify the FMDP with its induced global MDP and
freely go back and forth between the two notions and the associated notations. Finally, for
simplicity we assume that the FMDPs we deal with are free of deadlocks, i.e. if s ∈ S then
Act(s) ̸= ∅. (Since our focus is on reachability, this can be ensured by adding a new component
d with a single state sd, a new action ad with loc(ad) = {d}, and Pad

(⟨sd⟩, ad,⟨sd⟩) = 1.)

3.1 Local Reachability
Let M be an FMDP. Then, a local reachability problem is specified by T ⊆ Sp for some
component p. Let T = {s | s(p) ∈ T} the corresponding global reachability set. The goal is
to determine the probability supπ∈ΠPrπ

M[3T].
Local reachability for an FMDP can be solved by ignoring its factored nature and instead

treat it as a “global” reachability problem on the induced global MDP. In this case, classical
approaches as employed by PRISM [18] and Storm [8] can be used. This problem is in
PTIME [2, Cor. 10.107], but in the size of the global MDP, which can easily be exponential
in the size of the FMDP. Our goal is to mitigate this state-space explosion by exploiting the
partially ordered nature of the dynamics of the model.

3.2 Causal Determinacy and Complete Strategies
As a first step, we shall tackle the state explosion problem by considering the subclass of
FMDPs in which the sole source of non-determinism is from the causal independence of
actions. This idea can be captured through a natural restriction.
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a: {p}

u1

u2

b: {p, q}

u1, v1

u2, v2

dp: {p}

u2

u2

dq: {q}

v2

v2

u1, v1

u2, v1 u2, v2

a b

dp dp, dq

Figure 2 This figure illustrates an FMDP which is not CD. We have Proc = {p, q}, Sp = {u1, u2},
Sq = {v1, v2}, and Act = {a, b, dp, dq}. On the left, we depict the transition function Pa for all
a ∈ Act and to the right the induced global MDP.

▶ Definition 5. An FMDP M is causally deterministic (CD) if for every (reachable) state s
and a, b ∈ Act(s) with a ̸= b we have loc(a) ∩ loc(b) = ∅. We call such an FMDP a CMDP.

▶ Example 6. The FMDP shown in Fig. 1 is causally deterministic: In any global state,
the available set of actions is {a, b}, {a′, b} or {c}. In contrast, the FMDP of Fig. 2 is not
CD. In ⟨u1, v1⟩ both a and b are available, but loc(a) ∩ loc(b) = {p} ̸= ∅. And indeed, it is
relevant whether we choose a or b. For example, a leads to a state in which b is not enabled
anymore, and, in particular, v2 is not reachable, while b reaches v2 with probability 1.

▶ Remark 7. Causal determinacy is intrinsically a concurrency based notion. If a, b ∈ Act(s)
with a ̸= b then a and b can occur independent of each other at s. In fact, suppose
s0a1s1 · · · sn−1ansn is a finite path, b ∈ Act(s0) and ai ≠ b for 1 ≤ i ≤ n. Then loc(ai) ∩
loc(b) = ∅ for all 1 ≤ i ≤ n and b ∈ Act(sn). This follows from the fact that a CMDP is an
FMDP and hence s0[b] = sn[b]. This basic feature of a CMDP leads to a partial-order based
technique using which one can often efficiently verify many behavioral properties that are
“robust” with respect to interleavings of partially ordered behaviors, such as local reachability.
Due to space considerations, we will not pause to formalize the notion of robust properties
since it is not needed to establish our results.
▶ Remark 8. Deciding whether the global MDP induced by an FMDP (encoded in a standard
manner) is CD is in PSPACE. The idea is to convert the probabilistic transitions to non-
deterministic ones, and reduce the CD property to a reachability property of the resulting
1-safe Petri net, known to be in PSPACE [10]. However, given our main goals, establishing
this result in detail would be a digression and hence we do not do so. That said, for
practical purposes, we later discuss a simple, sufficient syntactic condition allowing us to
over-approximate CD in our case studies.
As a central tool to exploit causal determinacy, we introduce complete strategies.

▶ Definition 9. Let ρ be an infinite path in a Markov chain Mπ induced by a strategy π

on a CMDP M. Then, ρ is a complete path iff for every i ≥ 0, if a ∈ Act(ρi) then there
exists j ≥ i such that π(ρiρi+1 . . . ρj) = a. In other words, if a is available at ρi then it is
eventually chosen by the strategy along the path (where it will remain available due to CD).

Let Υ be the set of complete paths in Mπ. A strategy π is complete iff Prπ
M[Υ] = 1.

Thus, incomplete paths may be present in Mπ, but the collection of such paths has measure 0
and does not contribute to the reachability probabilities of interest. Note that Υ is measurable
as it can be written as countable intersections and unions of cylinder sets.

First, we show here that it suffices to consider only complete strategies for local reachability.
Later we will show that all complete strategies will yield the same, maximal probability value.
Consequently, we can freely choose a “greedy” strategy with which the maximal probabilities
can be computed in an efficient manner.
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6:8 Causally Deterministic Markov Decision Processes

▶ Lemma 10. There exists a deterministic, complete strategy π ∈ Π which achieves the
optimal value, i.e. Prπ

M[3T] = supπ′∈Π Prπ′

M[3T].

Proof Sketch. We delegate the (rather routine) proof to App. B. For a sketch, we show that
any (optimal, memoryless) strategy can be extended to a complete strategy without reducing
the reachability probability it achieves. Intuitively, the modified strategy waits until the
original strategy has visited all the states it will ever visit (thus any goal it might reach is
already reached), which happens with probability 1, and then switches to a “complete” mode
in which it plays all the actions that have not been played since they became available. ◀

In the next section, we develop the event structure semantics for FMDPs. Using this, we
show in Sec. 5 that any two complete strategies achieve the same value.

4 An Event Structure Semantics for FMDPs

4.1 Mazurkiewicz Trace Languages
We first associate a Mazurkiewicz trace language with an FMDP. Then, using a standard
construction, we obtain the event structure representation. We recall from [21] a Mazurkiewicz
trace alphabet is a pair (Σ, I) where Σ is a finite non-empty alphabet and I ⊆ Σ × Σ is
an irreflexive and symmetric relation called the independence relation. When describing
the executions of a distributed system, Σ is the set of actions and a I b asserts that the
actions a and b are “causally” independent. In other words, they can be executed in any
order when they are both enabled. We define D = (Σ × Σ) \ I to be the dependency relation.
The relation I induces in a natural way the equivalence relation ≈I Σ∗ × Σ∗. It is the least
equivalence satisfying σabσ′ ≈I σbaσ′ for a I b. For σ ∈ Σ∗, [σ] denotes the ≈I -equivalence
class containing σ, often called a Mazurkiewicz trace. It corresponds to the set of all possible
interleavings of a unique partially ordered set of actions. A Mazurkiewicz trace language is a
subset of {[σ] | σ ∈ Σ∗}, i.e. a set of Mazurkiewicz traces. For convenience, we abbreviate
Mazurkiewicz traces (Mazurkiewicz trace languages) as traces (trace languages).

4.2 The Mazurkiewicz Trace Language of an FMDP
To define the trace language of an FMDP we start with M-events.

▶ Definition 11. Let M = ({Sp}p∈Proc, {ŝp}p∈Proc, Act, loc, {Pa}a∈Act) be an FMDP. Then
α = (u, a, v) is an M-event if Pa(u, v) > 0. We define the probability of α as Pr(α) =
Pa(u, a, v). Furthermore, we set act(α) = a and loc(α) = loc(a).

The M-event α = (u, a, v) comprises the a-state that must hold at a state s for it to occur
(i.e. s[a] = u). It also reports the a-state that is chosen with probability Pr(α) resulting
in the global state s′ (i.e. s′[a] = v and s[Proc \ loc(a)] = s′[Proc \ loc(a)]). For instance,
α = (⟨u1⟩, a,⟨u2⟩) is an M-event in the FMDP shown in Fig. 1 with Pr(α) = 0.8.

M-events naturally give rise to the transition relation −→M over S, defined as follows.
Suppose α = (u, a, v), and s, s′ ∈ S. Then s α−→M s′ if s[a] = u, s′[a] = v, and s[Proc \
loc(a)] = s′[Proc \ loc(a)]. As usual, we write −→ instead of −→M. We now define an
M-path to be a sequence s0α1s1α2 · · · sn−1αnsn such that (i) s0 = ŝ and (ii) si−1

αi−→ si for
1 ≤ i ≤ n. In essence, M-paths correspond to finite paths in the global MDP. Since we only
deal with M-paths from now on, we say “path” instead of M-path henceforth.
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Let ΣM denote the set of M-events. In the following, we instead write Σ, as M will be
clear from the context. Moreover, we set Σp = {α | α ∈ Σ, p ∈ loc(α)} for each component p.
We define the independence relation I ⊆ Σ × Σ as I = {(α, β) | loc(α) ∩ loc(β) = ∅}. Clearly,
I is irreflexive and symmetric, and hence (Σ, I) is a trace alphabet. Next, for Σ′ ⊆ Σ let
prjΣ′ : Σ∗ → Σ′∗ be the projection which from sequences in Σ∗ erases all appearances of
letters that are not in Σ′. We abbreviate prjΣp as prjp. This leads to the equivalence relation
≈I over Σ∗ given by σ ≈I σ′ iff for every p ∈ Proc we have prjp(σ) = prjp(σ′). Effectively,
two traces are equivalent if no single component can differentiate between them. We define
≈I in this way instead of using the usual partial commutative relation, as it extends smoothly
to infinite M-event sequences. For convenience, we write from now on ≈ instead of ≈I .

Let σ = α1α2 · · · αn ∈ Σ∗. Then σ is an M-event sequence of M if there exists states
s0, s1, . . . , sn such that s0α1s1 · · · sn−1αnsn is an M-path. We let Lseq

M denote the set of M-
event sequences of M. This leads to the trace language of M given by LM = {[σ] | σ ∈ Lseq

M }.
We next introduce some terminology to aid in the construction of the event structure

representation of M. These notions are generic to the theory of Mazurkiewicz trace languages.
However, for convenience, we introduce them in the context of LM. First, ⊑ ⊆ LM × LM
is given by [σ] ⊑ [σ′] iff prjp(σ) is a prefix of prjp(σ′) for every p ∈ Proc. Clearly, ⊑ is a
well-defined partial ordering relation. Next, suppose [σ], [σ′] ∈ LM. Then [σ] ↑ [σ′] iff there
exists [σ′′] ∈ LM such that [σ] ⊑ [σ′′] and [σ′] ⊑ [σ′′]. Finally, [σ] ∈ LM is a prime trace iff
there exists an M-event α such that last(σ′) = α for every σ′ ∈ [σ] where last(τ) is the last
letter of the non-null sequence τ .

There is a rich theory of Mazurkiewicz trace languages available, see e.g. [9]. Here we
only use basic facts of the theory which we state below. The proofs are standard and can be
assembled from [9,27] and hence we omit them.

▶ Proposition 12. It holds that (i) if σ ≈ σ′ then |σ| = |σ′|, and (ii) [σ] ↑ [σ′] iff there exist
sequences σ′′, σ1 and σ′

1 such that (a) σ ≈ σ′′σ1 and σ′ ≈ σ′′σ′
1 and (b) a I b for every letter

a that appears in σ1 and every letter b that appears in σ′
1.

4.3 The Event Structure Representation of FMDPs
We begin by recalling from [24] that a prime event structure is a tuple ES = (E, ≤, #) where
(i) E is a countable set of events, (ii) ≤ ⊆ E × E is a partial ordering relation called the
causality relation, and (iii) # ⊆ E × E is an irreflexive and symmetric relation called the
conflict relation. It is required that if e # e′ and e′ ≤ e′′ then e # e′′. Usually, a prime event
structure is accompanied by a labelling function that relates a system to its event structure
representation. In our case, there will be two such functions.

▶ Definition 13. Let M = ({Sp}p∈Proc, {ŝp}p∈Proc, Act, loc, {Pa}a∈Act) be an FMDP. Its
event structure is a tuple ESM = (E, ≤, #, λ, µ) where (E, ≤, #) is a prime event structure
where (i) E = {[σ] ∈ LM | [σ] is a prime trace}, (ii) ≤ is ⊑ restricted to E×E, (iii) [σ]#[σ′]
iff it is not the case that [σ] ↑ [σ′], (iv) λ : E → Σ is the labelling function satisfying
λ([σ]) = last(σ), and (v) µ : E → [0, 1] assigns to e = [α1α2 · · · αn] ∈ E the probability
µ(e) =

∏
1≤j≤n Pr(αj) (i.e. the probability of a prime trace is the product of the probabilities

of the M-events encountered along a sequence in the prime trace).

In what follows we often write ≤ instead of ⊑ when viewing events as elements of E and not
as traces. The “states” of an event structure are called configurations and the dynamics of
ESM is captured via a transition relation over its configurations.
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α1 α2 β2 β1

α3 γ β2 β1

α1 α2 α1 α2 β2 β1

e1 e2

e

e′

α1 = ({u1}, a, {u2})
α2 = ({u1}, a, {u3})
α3 = ({u2}, a′, {u1})
β1 = ({v1}, b, {v1})
β2 = ({v1}, b, {v2})
γ = ({u3, v2}, c, {u1, v1})
e = [α2β2γ] = {α2β2γ, β2α2γ}

Figure 3 This figure illustrates the initial fragment of the event structure representation for the
FMDP depicted in Fig. 1.

▶ Definition 14. For c ⊆ E, define ↓c = {y | ∃x ∈ c s.t. y ≤ x}. Then c ⊆ E is a
configuration iff c = ↓c and (c × c) ∩ # = ∅.

We define CM to be the set of finite configurations of ESM and note that ∅ is a configuration.
Let c, c′ ∈ CM and α ∈ Σ. Then c

α−→ES c′ iff there exists e ∈ E \ c such that c ∪ {e} = c′

and λ(e) = α. This basically says that an event e which is not in the configuration c can be
added to it to obtain a larger configuration provided the past of e (under <) is contained in
c. For simplicity, we write ↓e instead of ↓{e} for e ∈ E. Clearly, ↓e is a configuration for
every e in E.

In Fig. 3 we show the initial fragment of the event structure representation of the FMDP in
Fig. 1. In order to minimize clutter, we have named the M-events as α1, α2, etc. We note that
Pr(α1) = 0.8, Pr(α2) = 0.2, Pr(β1) = 0.3, and Pr(β2) = 0.7. Further, Pr(α3) = 1 = Pr(γ).
In the diagram, the directed arrow represent the immediate causality relation ⋖ where e ⋖ e′

iff e < e′ and for every e′′, e ≤ e′′ ≤ e′ implies e = e′′ or e′′ = e′. The remaining members of
the causality relation are obtained by taking the reflexive transitive closure of this relation.
Similarly, the squiggly lines represent the minimal conflict relation #̂ defined as e #̂ e′ iff
e # e′ and (↓e × ↓e′) ∩ # = {(e, e′), (e′, e)}. Using the conflict inheritance requirement of
an event structure, we can deduce all other members of the conflict relation. For example,
in the event structure shown in Fig. 3, e3 # e4 since e1 # e2 ≤ e4 implies e1 # e4 and since
e1 ≤ e3 and # is symmetric, we get e3 # e4. In addition, we have listed the members of just
one of the prime traces named e whose label is α2. For the remaining events, we have just
indicated their labels.

The behavior of M can be related to the behavior of ESM as follows.

▶ Proposition 15. Let M and ESM be defined as above. Then the following statements
hold.
1. Let c = {e1, e2, . . . , en} be a configuration such that e1e2 · · · en is a linearization of the

partial order (c, ≤) where, by abuse of notation, ≤ also denotes the restriction of ≤ to c×c.
Then there exists s0, s1, . . . , sn ∈ S such that s0 = ŝ and s0λ(e1)s1λ(e2)s2 · · · sn−1λ(en)sn

is a finite path in M, which we shall call a c-path (in M).
2. Let the function state : C → S be given by (i) state(∅) = ŝ and (ii) for a non-empty

configuration c and c-path ρ = s0α1s1 · · · sn in M, we define state(c) = sn. Then, state

is a well-defined map from C onto the set of reachable states of M.
3. Let c, c′ ∈ C and α = (u, a, v). Then c

α−→ES c′ iff P(state(c), α, state(c′)) = Pr(α) > 0.
4. Let tr : C → LM be the map given by (i) tr(∅) = {ε} and (ii) for a non-empty configuration

c and c-path s0α1s1 · · · sn in M it is the case that tr(c) = [α1α2 · · · αn]. Then, tr is well
defined and a bijection.

Most of these observations are standard [27] and directly carry over to our setting. The third
part is specific to FMDPs but follows directly from the definition of an M-event.
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We close out this section with a useful result which will be needed in the next section.
Let σ = α1α2 · · · αn be an M-event sequence in M. Then dg(σ), the subsequence of σ, is
defined inductively by (i) dg(αn) = αn and (ii) dg(αi−1αi · · · αn) = αi−1dg(αiαi+1 · · · αn)
if there exists an M-event β in dg(αiαi+1 · · · αn) such that αi D β and dg(αiαi+1 · · · αn)
otherwise. Basically, dg is the so called dependency graph that captures the causal past αn

in σ. We now define ev(α1α2 · · · αn) to be the trace = [dg(α1α2 · · · αn)]. Finally, the relation
co ⊆ E × E for the event structure ESM is given by, co = E × E \ (≤ ∪ ≥ ∪ #). If e co e′

this can be interpreted as e and e′ being causally independent.

▶ Lemma 16. Let σ = α1α2 · · · αn ∈ Lseq
M a non-null M-event sequence in Lseq

M .
1. Then ev(σ) is a prime trace and hence is an event in ESM.
2. Suppose that e′ ≤ e in ESM. Then there exists a unique i ∈ {1, 2, . . . , n − 1} such that

ev(α1α2 · · · αi) = e′.
3. Suppose that e′ = ev(α1α2 · · · αi) for some 1 ≤ i < n. Then e′ ≤ e or e co e′ in ESM.
4. Suppose that αn = (u, a, v) and σ′ = α1α2 · · · αn−1α′

n such that α′
n = (u, a, v′) and

v ̸= v′. Then ev(σ) # ev(σ′) in ESM.

The proof follows from [32]. The first part says that along a path in M every M-event
corresponds to the occurrence of an event in ESM. The second part says that every event
e′ that lies in the past of the event e represented by the M-event sequence σ will appear
as the event corresponding to a unique prefix of σ. The third part says if e corresponds to
the M-event sequence σ then every event that corresponds to a strict prefix of σ will either
be causally earlier than e or will be causally independent of e in ESM. The last part says
that two different stochastic choices made at a state along an M-path will correspond to
conflicting events in ESM.

▶ Remark 17. We conclude by noting that an event e = [α1α2 . . . αn] in ESM = (E, ≤, #, λ, µ)
gets assigned a probability value via µ(e) =

∏
1≤i≤n Pr(αi). It is not difficult to provide a

measure theoretic justification for this probability value by constructing a σ-algebra generated
by the family of cylinder sets {CS(e)}e∈E where CS(e) = {c ∈ C∞

max | ↓e ⊆ c}. Here, C∞ is
the set of infinite configurations ESM and c ∈ C∞ is maximal (i.e. c ∈ C∞

max) iff c ⊆ c′ ∈ C∞

implies c = c′. In other words, c cannot be extended to a larger (infinite) configuration. This
distinction between infinite and maximal infinite configurations arises due to concurrency
and corresponds to the distinction between complete and incomplete paths. We can define
PrES(CS(e)) = µ(e) and show that PrES extends canonically to a probability measure over
the σ-algebra generated by the above family of cylinder sets. We leave this construction for
future work, since we merely need the probability values assigned to the events as common
reference points to establish the main result of the next section, namely, all complete strategies
determine the same probability values for local reachability properties.

5 The Key Result for CMDPs

Recall that we are given T ⊆ Sp for some component p and aim to determine supπ∈ΠPrπ
M[3T],

where T = {s | s(p) ∈ T}. In Lem. 10, we argued that it suffices to consider complete
strategies to achieve this. Here, we shall show that all complete strategies compute the same
probability value for 3T. This allows us to choose a complete strategy greedily, which in
turn enables us to efficiently compute the (optimal) probability of a local reachable set.

We first identify the set of events E3T in the event structure ESM, corresponding to
paths in M reaching T . Let e = [α1α2 · · · αn] ∈ E with αj = (uj , aj , vj) for 1 ≤ j ≤ n. Then
e ∈ E3T if vn(p) ∈ T and vi(p) /∈ T for 1 ≤ i < n, in other words, when its last M-event
reaches a member of T and no earlier M-event in the sequence representing e does so.
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To establish the main goal of this section we proceed as follows. For the complete strategy
π, we let Pathsπ

comp denote the set of complete paths of the Markov chain Mπ. We then
identify, for a given e ∈ E3T , the set of finite paths PathReach(Mπ, e) in Mπ which are
prefixes of complete paths and “reach” e. Specifically, suppose ξ = ρ0α1ρ1α2 · · · ρn−1αnρn

is a path in Mπ. Then ξ ∈ PathReach(Mπ, e) if (i) it is a prefix of a path in Pathsπ
comp,

(ii) ev(α1α2 · · · αn) = e and (iii) no strict prefix of ξ satisfies (ii).
We first show that for each e ∈ E3T it is the case that µ(e) = Prπ

M[
⋃

σ∈PathReach(Mπ,e) σ].
(Recall that µ(e) is the probability value assigned to e in ESM.) We then lift this result
to E3T and show that

∑
e∈E3T

µ(e) =
∑

e∈E3T
Prπ

M[PathReach(Mπ, e)] = Prπ
M[3T]. Since

these results apply to every complete strategy π, we are done.

5.1 Relating the Probability of e to the Probability of
PathReach(Mπ, e)

Through this subsection, fix e ∈ E3T and a complete strategy π. We wish to prove that
µ(e) = Prπ

M[PathReach(Mπ, e)]. Our proof consists of three steps. First, we represent Mπ

as a transition system TSπ by labelling the transitions of the Markov chain with M-events.
Second, we represent PathReach(Mπ, e) as a finite prefix of TSπ. Third, we use this finite
prefix to establish that µ(e) = Prπ

M[PathReach(Mπ, e)].
We begin by deriving the transition system TSπ. The states of TSπ are the states of

Mπ (i.e. finite paths in M). To avoid confusion, we write ρ for these states and ξ for paths
in TSπ. Moreover, there is a transition ρ

α−→ ρ′ iff (i) Mπ(ρ, ρ′) > 0 and (ii) α = (u, a, v)
is the unique M-event that satisfies last(ρ)[a] = u and s′[a] = v where ρ′ = ρas′. In
effect, TSπ is obtained from Mπ by replacing the probability “labels” of transitions by
the M-event corresponding to that transition. In particular, note that for a state ρ of
TSπ, a ∈ Act(last(ρ)) iff there exists an M-event α = (u, a, v) such that last(ρ)[a] = u.
Based on this, we can directly transfer the definition of complete paths to TSπ. We define
the set of successor states in the obvious way, i.e. succ(ρ) = {ρ′ | ∃α. ρ

α−→ ρ′}. Observe
that if succ(ρ) = {ρ1, ρ2, . . . , ρk} and ρ

αi−→ ρi for 1 ≤ i ≤ k then there exists an a such
that Act(αi) = a for every i ∈ {1, 2, . . . , k} and

∑
1≤i≤k Pr(αi) = 1. For the rest of this

subsection, we work with this transition system.
We now turn to representing PathReach(Mπ, e) as a finite prefix of TSπ. First we

introduce some useful terminology. We set c0 = ↓e. Next, suppose ξ = ρ0α1ρ1 · · · αnρn

is a path in TSπ. Then, EV (ξ) = {ev(α1α2 · · · αi) | 1 ≤ i ≤ n} denotes the set of events
encountered along the path ξ. Naturally, EV (ξ) = ∅ if ξ = ŝ. We write Ge = (V, =⇒) to
denote the finite prefix of TSπ

comp we are after. We construct Ge inductively by starting with
ŝ ∈ V and mark it as unprocessed. We define ε to be a path in V and ŝ = last(ε). We note
that EV (ŝ) = ∅ ⊂ c0 (as usual, ⊂ denotes a strict subset).

Suppose ξ = ρ0α1ρ1 · · · ρn−1αnρn is a path in V with ρn marked as unprocessed and all
the other nodes preceding it in ξ marked as processed. Furthermore, assume that EV (ξ) ⊂ c0.
Let succ(ρn) = {ρ′

1, ρ′
2, . . . , ρ′

k} and β1, β2, . . . , βk such that ρ
βi−→ ρ′

i for 1 ≤ i ≤ k. We now
extend Ge by adding the nodes ρ′

1, ρ′
2, . . . , ρ′

k to V and the transitions (ρ, βi, ρ′
i) for 1 ≤ i ≤ k

to =⇒. We mark ρn as processed. To define the status of the new nodes that have been
added, we consider two cases after setting ei = ev(α1α2 · · · αnβi) for 1 ≤ i ≤ k.

Case 1. Suppose there exists i with ei ≤ e. Then ei ∈ c0 \ EV (ξ) and hence EV (ξβiρ
′
i) =

EV (ξ) ∪ {ei}. If EV (ξβiρ
′
i) = c0 we mark ρ′

i as a live leaf node and do not process it any
further. This is so since ev(ξβiρ

′
i) = e and e has been hence reached. We also note that

α1α2 · · · αnβi ∈ PathReach(Mπ, e). On the other hand, if EV (ξβiρ
′
i) ⊂ c0, we mark ρ′

i

as unprocessed.
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In addition we mark, for each l ∈ {1, 2, . . . , k}\{i}, the node ρ′
l to be a dead leaf node and

do not process it any further. To justify this, let el = ev(ξβlρ
′
l) for l ∈ {1, 2, . . . , k} \ {i}.

Then clearly ei ≤ e and hence by the last part of Lem. 16, we must have ei # el for every
l ∈ {1, 2, . . . , k} \ {ei}. But then el # ei ≤ e implies el # e since conflict is inherited via
the causality relation in an event structure. Hence el and e can not together belong to
any configuration and we can never “reach” e by exploring ρ′

l any further.
Case 2. Suppose ei ≰ e for each i. Then, by the third part of Lem. 16, we must have

ei co e. This implies that EV (ξβiρ
′
i) = EV (ξ) for each i and we mark each node ρ′

i as
unprocessed. The idea is that the chosen action a at ρn does not contribute to uncovering
any of the events in c0 and hence all the successors of this node must be further explored.

Starting from the root node we repeatedly apply the above rules until there are no unprocessed
nodes left. It remains to be shown that Ge is a finite prefix of TSπ and consequently the
construction procedure for Ge always terminates. To this end, we require some terminology.
Let ξω = ρ0α1ρ1α2 · · · be a complete path in TSπ. For n ≥ 0, let ξn = ρ0α1ρ1 · · · ρn denote
the finite prefix of ξω of length n. We say that ρn

αn+1−→ ρn+1 is a useful transition if there
exists e′ ∈ c0 \ EV (ξn) such that π(ρn) = act(e′). Otherwise it is a useless transition.
Moreover, we set EVe(ξn) = EV (ξn) ∩ c0. Finally, we say that ξn = ρ0α1ρ1 · · · ρn is a live
path if (i) ρi is not a dead leaf node for 1 ≤ i ≤ n and (ii) EVe(ξn) ⊂ c0.

▶ Lemma 18. Suppose ξn = ρ0α1ρ1 · · · ρn is a live path.
1. If e′ ∈ min(c0) \ EV (ξn) then act(e′) ∈ Act(ρn)
2. ρi ∈ V for 0 ≤ i ≤ n + 1 and ρj

αj+1=⇒ ρj+1 for 0 ≤ j < n + 1.
3. If ρn

αn+1−→ ρn+1 is a useful transition, then ρn+1 is a dead leaf node or |EVe(ξn+1)| =
|EVe(ξn)| + 1. Further, ρn+1 is a live leaf node if EVe(ξn+1) = c0

4. If ρn
αn+1−→ ρn+1 is a useless transition then EVe(ξn+1) = EVe(ξn) and ξn+1 is a live path.

Proof. For the first part, let e′ ∈ min(c0 \ EV (ξn)). If e′′ < e′ then e′′ ∈ EV (ξn). Otherwise
e′′ ∈ c0 \ EV (ξn) which contradicts e′ ∈ min(c0 \ EV (ξn)). Thus c′ = EV (ξn) ∪ {e′} is a
configuration and EVe(ξn) e′

−→ES c′. From the first part of Prop. 15 we get act(e′) ∈ Act(ρn).
The rest follows from the construction rules for Ge and their explanations. ◀

▶ Lemma 19. The following assertions hold.
1. Let ξω ∈ Pathsπ

comp with ξn = ρ0α1ρ1 · · · ρn. Then there exists k > 0 such that ρk is a
live or dead leaf node.

2. Ge is a finite tree.

Proof. From the third part of Lem. 18, it follows that there can be at most |c0| useful
transitions along ξω before a dead or live leaf node is encountered. We now claim that there
can be only a finite number of consecutive useless moves along ξω. This follows from the first
and fourth parts of Lem. 18 and the definition of a complete path. Hence ξω will eventually
hit a dead or live node. The second part of the lemma now follows from the first part and
König’s lemma since TSπ is finitely branching. ◀

Since Ge is a finite tree it is immediate that its construction procedure always terminates. It
is also easy to see that the set of live branches, i.e. paths from the root node to the live leaf
nodes in Ge, correspond to PathReach(Mπ, e).

For the event e of Fig. 3, our construction produces the tree shown in the left of Fig. 4.
The boxes denote dead leaf nodes and the circle is the lone live leaf node. On the other hand,
for the event e′, the resulting tree can be arbitrarily large. After the γ event, the strategy
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Figure 4 The trees for the events e (left) and e′ (right).

can choose to execute the action b a large number of times before executing the action a.
For the case where the strategy chooses to do b twice whenever possible before choosing to
do an a or c, the resulting tree is shown on the right of Fig. 4, using the same notation.

We can now establish the main result of this subsection.

▶ Lemma 20. Suppose e ∈ E3T . Then µ(e) = Prπ
M[PathReach(Mπ, e)].

Proof. In Ge, each edge in the tree is an M-event α, accompanied by the probability value
Pr(α). Hence the probability of a path is fixed to be the product of the probabilities of the
labels of the edges encountered on the path. Let V ′ be the set of nodes in the finite tree
consisting of nodes that are not dead leaf nodes. In what follows, ρ ranges over V ′. Clearly,
the root node ρ0 is in V ′. We now define the probability associated with a node ρ, denoted
Prρ, to be the sum of the probabilities of the paths leading from ρ to live leaf nodes. By
convention, the probability associated with a live leaf node is 1. We claim that Prρ0 = µ(e).

To prove the claim, we first associate the partial order (cρ, ≤) with each node ρ where
cρ = c0 \ EV (ξρ) with ξρ being the unique path from ρ0 to ρ in Ge. Next, for each ρ ∈ V ′,
we let htρ be the length of the longest path from ρ to a live leaf node. We now wish to show
by induction on htρ that Prρ =

∏
e′∈cρ

Pr(λ(e′)) if cρ ̸= ∅ and Prρ = 1 otherwise. If we
do so, then Prρ0 = µ(e) will follow at once. To start with, let ρ be a live leaf node. Then
htρ = 0 and Prρ = 1 by convention.

Next, suppose cρ ̸= ∅ and π(ξρ) = a. We consider two cases. First assume there
exists e′ ∈ min(cρ) such that a = act(e′). Then ρ has a unique child node ρ′ with (c′, ≤)
as the associated partial order satisfying c′ = c \ {e′}. All other successor nodes of ρ

will be dead leaf nodes. Now, every path from ρ to a live leaf node consists of the edge
(ρ, α, ρ′) followed by a path from ρ′ to a live leaf node. This implies Prρ = Pr(λ(e′)) · Prρ′ .
By the induction hypothesis, Prρ′ =

∏
e′′∈c′ Pr(λ(e′′)). However cρ′ = cρ \ {e′} implies

Prρ = Pr(λ(e′)) ·
∏

e′′∈cρ′ Pr(λ(e′′)) =
∏

e′∈cρ
Pr(λ(e′)) as required.

Next, assume there does not exist e′ ∈ min(c) such that a = act(e′). Let the set of
successors of ρ be {ρ′

1, ρ′
2, . . . , ρ′

k} and {β1, β2, . . . , βk} such that ρ
βi=⇒ ρ′

i for 1 ≤ i ≤ k. Then
every path from ρ to a live leaf node is an edge (ρ, βi, ρ′

i) followed by a path from ρ′
i to that

live leaf node for some i. This implies that Prρ =
∑

1≤i≤k Pr(βi) · Prρ′
i
. But then (cρ, ≤)

is the partial order associated with each ρi by the construction of Ge. Hence, by induction
hypothesis, Prρi =

∏
e′∈c Pr(λ(e)). Let t =

∏
e′∈c Pr(λ(e′)). Then Prρ =

∑
1≤i≤k Pr(βi) · t.

But then
∑

1≤i≤k Pr(βi) = 1. Hence Prρ = t as required. ◀

5.2 All Complete Strategies Achieve the Same Value

We now lift Lem. 20 to E3T , i.e. show that
∑

e∈E3T
µ(e) =

⋃
e∈E3T

Prπ
M[PathReach(Mπ, e)].
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First, we observe that TSπ naturally inherits a probability measure from Mπ. To
see this, by the definition of TSπ we are assured that ρ0ρ1 · · · ρn is a path in Mπ iff
ρ0

α1−→ ρ1 · · · ρn−1
αn−→ ρn is a path in TSπ where the sequence of M-events α1α2 · · · αn is

uniquely determined by the sequence ρ1ρ2 · · · ρn. As a result, the σ-algebra generated by the
(cylinder set of) finite paths of TSπ will be in a bijective relation with the usual σ-algebra
generated by the finite paths of Mπ. Consequently, we can transfer the probability measure
Prπ

M to a probability measure over the σ-algebra of TSπ. By abuse of notation, we shall
denote this measure too as Prπ

M in what follows.
Now consider e ∈ E3T and Ge, the finite tree constructed in the previous subsection.

Let Pathse be the set of branches from the root node to the live leaf nodes in Ge. Fur-
ther, let CS(ξ) be the cylinder set of the finite path ξ in TSπ. Then from the proof of
Lem. 20 it follows that Prπ

M[PathReach(Mπ, e)] = Prπ
M[

⋃
ξ∈P athse

CS(ξ)]. Consequently,
Prπ

M[3T] =
⋃

e∈E3T

⋃
ξ∈P athse

CS(ξ). Since E is a countable set, this probability value is
well-defined. To show that this value is the same for all complete strategies, we establish
that

⋃
e∈E3T

⋃
ξ∈P athse

CS(ξ) =
∑

e∈E3T
µ(e). The key to doing this is the next result.

▶ Lemma 21. Let e1, e2 ∈ E3T such that e1 ̸= e2. Then e1 # e2.

Proof. Let e1 = [α1α2 · · · αn] and e2 = [β1β2 · · · βm]. If e1 < e2, then there exists i < n such
that ev(β1β2 · · · βi) = e1. But this contradicts the requirement that αn is the first M-event
in the sequence α1α2 · · · αn with vn(p) ∈ T where αj = (uj , aj , vj) for 1 ≤ j ≤ n. Thus
e1 ≮ e2 and similarly e2 ≮ e1. Next suppose e1 co e2.

Then c12 = ↓e1 ∪ ↓e2 is a configuration. To see this, let x and y be events such that
x ∈ c12 and y ≤ x. Suppose x ∈ ↓e1. Then y ∈ ↓e1 ⊆ c12. Similarly, x ∈ ↓e2 implies that
y ∈ c12. Next, suppose that x # y. Then, it can not be the case that x, y are both in ↓e1 or
↓e2 since both ↓e1 and ↓e2 are configurations and hence conflict-free. Hence, assume that
x ∈ ↓e1 and y ∈ ↓e2. Then x ≤ e1 and y ≤ e2, which implies that e1 # e2, contradicting
e1 co e2. Thus c12 indeed is a configuration.

This implies that ↓e1 ↑ ↓e2. Hence by the last part of Prop. 12, there exist M-event
sequences γ1γ2 · · · γl, α′

1α′
2 · · · α′

n′ , and β′
1β′

2 · · · β′
m′ such that (i) γ1γ2 · · · γlα

′
1α′

2 · · · α′
n′ ≈

α1α2 · · · αn, (ii) γ1γ2 · · · γlβ
′
1β′

2 · · · β′
m′ ≈ β1β2 · · · βm, and (iii) α′

i I β′
j for 1 ≤ i ≤ n′ and

1 ≤ j ≤ m′. Since [α1α2 · · · αn] and [β1β2 · · · βm] are both prime traces we must have
α′

n′ = αn and β′
m′ = βm. This leads to αn I βm, which is a contradiction since p ∈

loc(act(αn)) ∩ loc(act(βm)) and hence αn D βm. ◀

▶ Lemma 22. Prπ
M[3T] =

∑
e∈E3T

µ(e).

Proof. We have Prπ
M[3T] = Prπ

M[
⋃

e∈E3T

⋃
ξ∈P athse

CS(ξ)] from the remarks preceding
Lem. 20, where Pathse is the set of branches from the root node to live leaf nodes in Ge,
the finite tree constructed in the proof of Lem. 20. Let e1, e2 ∈ E3T such that e1 ̸= e2.
Then e1 # e2 by Lem. 21. Let ξ1 ∈ Pathse1 and ξ2 ∈ Pathse2 . Then from the definition
of Pathse it follows directly that CS(ξ1) ∩ CS(ξ2) = ∅. This implies that Prπ

M[3T] =∑
e∈E3T

Prπ
M[

⋃
ξ∈P athse

CS(ξ)]. From Lem. 20 we get Prπ
M[3T] =

∑
e∈E3T

µ(e). ◀

This at once leads to our main result.

▶ Theorem 23. Let π and π′ be two deterministic complete strategies for the CMDP M.
Then Prπ

M[3T] = Prπ′

M[3T].

Combined with Lem. 10, we have that in order to compute the optimal local reachability
value, we can confine ourselves to complete strategies and from among them, greedily choose
one.
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6 Implementation and Experimental Evaluation

We implemented a prototype tool and evaluated it on a few models, as we describe in
the following. The tool is written in Java and based on PET [22]. It uses PRISM [18] to
parse models. We used the pure-Java library oj! Algorithms to solve linear programs. We
empirically validated the soundness of our implementation by comparing its output on about
20 models to the results of Storm [8] in its sound, exact mode. The tool, its source code, all
used models, and further models can be obtained from [23].

6.1 Algorithm Description
Our tool (i) provides a syntactic over-approximation for checking the CD property, and
(ii) computes the maximal reachability probability of a local reachability set, assuming
that the input MDP is a CMDP. In the interest of space, we only sketch the computation
procedure here. More details and a formal description can be found in App. A. Intuitively,
the goal is to construct only the part of the system that is reached by one specific complete
strategy, chosen as follows. First, we heuristically fix a priority over the set of actions. Then,
we begin exploring the global FMDP by starting in the initial state, picking the available
action with the highest priority, and determine all its stochastic successors. We repeat this
process for the discovered successors until a fixpoint of states is reached. One must however
ensure that this greedy prioritization avoids neglecting an available action forever. To this
end, we check in each bottom maximal end component whether any available action is never
chosen. If so, we pick, for each bottom component, the constantly omitted action with
highest priority and explore as above. Eventually, this process will terminate with no bottom
MECs having any omitted action. Then, we determine the maximal reachability probability
of the target local state on the constructed subsystem. In our implementation we use the
standard linear program for reachability (see, e.g., [2, Thm. 10.105]). We note that for the
computation, CD is only required for correctness, not for termination.

Our implementation is quite simplistic and can be optimized in multiple ways. In
particular, the priority order of actions will have a large influence on the size of the resulting
subsystem, and this could be significantly improved by intelligent adaptive techniques and
learning-based approaches. However, our current heuristical ordering already provides
convincing results. Hence we did not explore this issue further.

6.2 Setup and Results
We consider four types of models, each of which was either constructed from scratch or
obtained by adapting an existing model to fit into our framework. Unfortunately, most models
of the PRISM benchmark suite [19] are not immediately CD and one needs to examine which
ones can be adapted to fit into our framework, which we leave for future work. We provide a
brief intuitive description of the models we used. The concrete specification in the PRISM
modelling language can be found in [23]. The sync model consists of 20 processes running in
parallel, each repeatedly tossing a (biased) coin and progressing when head is obtained, and
finally synchronizing on a common action with all other processes to reach their final states.
We next consider a variant of the classical dining philosophers, where philosophers alternate
between eating and thinking. In our variant, the thinking process of each philosopher has
several (probabilistic) steps with each philosopher initially “musing” and eventually becoming
“enlightened” or “bewildered”, and we seek the probability of one philosopher achieving
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Table 1 Overview of results for our four models. From left to right, we list the model name,
its overall size (as reported by Storm), the runtime of Storm with sparse and symbolic engine,
respectively, the size of the reduced model constructed by our tool, and the overall runtime of our
tool. T/O denotes a runtime of over 5 minutes. We also carried out a comparison to PRISM,
however Storm was faster in all cases.

Model Size Storm-sparse Storm-symbolic Reduced Size Our Tool
sync 2.1 · 106 17s 2s 22 2s
philosophers 8.6 · 106 T/O T/O 3264 4s
production 6.6 · 107 T/O T/O 11669 8s
scheduling 2.8 · 1010 T/O T/O 111 <1s
scheduling (large) ?? T/O T/O 1021 3s

enlightenment. The production model comprises a production network where resources
are used to assemble (through several steps) a final product. Resources have a chance of
becoming exhausted every time they are mined and we are interested in the probability
of producing a given quantity of the final product. Finally, scheduling models a central
process C which proceeds in ten stages. In stage i, the process needs to synchronize with
the process pi to proceed to stage i + 1. The sub-processes are independent, but may fail to
complete. We are interested in the probability of the central process finishing the final stage.
For scalability analysis, we also consider a “large” variant where C has 20 stages and each pi

has 50 sequential steps.
We executed our tool on standard hardware and compared our results with those obtained

using the model checker Storm. We considered both the default sparse as well as symbolic
engines of Storm and otherwise let Storm run in its default configuration. Notably, we did
not require exact or sound results (i.e. Storm could decide to use classical, unsound value
iteration), while our tool computed correct, exact results using linear programming (up to
floating point precision). We summarize our findings in Table 1. One can see that our (basic,
unoptimized) approach significantly outperforms existing approaches on the chosen models.
This improvement is due to our method being able to avoid visiting a lot number of “useless”
states by not exploring every interleaving. On the “large” variant of scheduling, Storm fails
to even output a state count, which we estimate to be of the order of 5020 (≈ 1034).

7 Conclusion

We introduced a class of factored MDPs where through the notion of locations, we cleanly
separate the causality, concurrency, and conflict relations between the stochastic events in
the system. This leads to an event structure semantics for our FMDPs. We mainly used this
representation to provide the basis for a powerful partial order based quantitative analysis
technique for CMDPs, a natural subclass of FMDPs.

In the future, we plan to study the class of CMDPs from the standpoint of expressiveness.
In particular it will be interesting to separate CMDPs from FMDPs that inherently do not
have the CD property but are unavoidable in practice. Here we suspect that the property
called confusion-freeness will play an important role [30]. We also wish to emphasize that the
class of FMDPs we identify and their event structure semantics are of independent interest.
In particular, it opens up the possibility of using techniques such as finite prefixes of event
structures [11] and stubborn sets [15] to analyze FMDPs. These techniques can be applied
for model checking the FMDPs for probabilistic temporal logical specifications. To secure
the foundations for doing so, the probability measure for events structures that was alluded
to at the end of Sec. 4 will need to be fleshed out.
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Our experiments suggest that the presented method has significant potential for practical
applicability, especially in light of the fact that the method itself can be improved and
extended in multiple ways; for instance, by considering reachability properties for a small
number of components or by formulating weaker versions of the CD property.
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A Algorithm Description

In this section, we provide a more detailed description of our algorithmic approach. We
assume that we are given the description of each process in an MDP network. As mentioned
above, our tool reads models given in the PRISM language, which introduces additional
modes of synchronization. For example, guards and updates can read the value of other
processes’ states without explicitly synchronizing with them.

Checking Causal Determinacy

To syntactically check whether a given model is CD, we check for every local state of every
process and every pair of actions available for that process that the intersection of the
action guards is empty. This directly implies that the model is CD. However, this is also an
over-approximation, since a potential violation might not be reachable in the actual system.
All models except the philosophers model directly satisfy this simple syntactic property.
For the model, philosophers model we verified the CD property by manual inspection.

Constructing a Complete Strategy

As mentioned in the main body, our first goal is to heuristically fix a priority order on
the available actions. To this end we first record all “dependencies” between processes, i.e.
whenever a process reads from or synchronizes with another process, we add an edge in the
module dependency graph. Then, starting from the process for which we have the local
reachability query, we explore this dependency graph in a breadth-first fashion and order the
processes according to this search. We then derive the action priority as follows: We iterate
over the processes in the above order, and consider each action this process is involved in
which has not yet been processed (i.e. all actions a for which the current module has the
highest priority among all processes in loc(a)). These actions are then sorted according to
the process with the lowest priority among all of those involved with the action, i.e. loc(a).
This then gives us the overall priority ordering over all actions appearing in the system.

The second part then is to construct a sub-system of the global FMDP which contains
at least one complete strategy. By computing the maximal reachability probability on this
sub-system, we obtain the overall maximal reachability probability, as any complete strategy
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is optimal under CD. To this end, we start in the global initial state and explore the graph
induced by the following rule: (i) In a state s, compute the set of available actions Act(s).
(ii) Among those actions, pick the action with the highest priority according to the determined
order. (iii) Return the set of successors under this action. We fully explore the system
induced by this transition relation using BFS. In other words, we explore the sub-system
induced by greedily following actions according to our priority order.

As already mentioned, this alone does not guarantee that we get a complete strategy:
For example, it might be the case that the highest priority action a available in some state s
simply self-loops, but another action b (with lower priority) would lead to a new successor
s′. To ensure this, we determine the set of bottom maximal end components, i.e. all regions
where the strategy we are following is “looping”. Let R be a set of states forming such an
end component in the explored sub-system and for every state s let A(s) the action we chose
according to our greedy rule. We then compute A(R) =

⋃
s∈R Act(s) \

⋃
s∈R A(s). When

A(R) = ∅, we are finished with the end component R. If not, we pick for each bottom end
component R with A(R) ̸= ∅ the action with the highest priority from A(R) according to
our priority rule and again apply the exploration rule from above.

Correctness

We argue that the subsystem explored in this way contains a complete strategy, independent
of the action priority used, by explicitly constructing one. Let B the set of states in bottom
maximal end components in the explored sub-system. Let π a strategy that (i) reaches B
with probability 1 and (ii) uses each action available in B infinitely often with probability 1
(e.g., by using round-robin memory). Such a strategy exists due to standard results on the
properties of end components [2, Chapter 10], [6]. We claim that this strategy is complete.

Assume for contradiction that it is not, i.e. the set of incomplete paths under this strategy
has non-zero measure. Since the set of state-action pairs is finite, there exists at least one
pair (s, a) which is “responsible” for the incompleteness. In other words, under the strategy
we reach (after a finite number of steps) a state s where a is available, but from that point
onward we never see a with some non-zero probability. Formally, there exists (s, a) and
index i such that P = {ϱ | s = ϱi ∧ ∀j ≥ i. A(ϱ, j) ̸= a} has non-zero measure (where A(ρ, j)
denotes the action in path ϱ at step j). Observe that by the CD condition, for the paths in
P the action a is available at all subsequent states after i.

Next, let Inf(ϱ) ⊆ S the set of states visited infinitely often by path ϱ. Consider the
(finite) partitioning of P by Inf, i.e. grouping runs that visit the same set of states infinitely
often. By additivity of Prπ

M, there exists at least one partition S∞ that has non-zero measure.
Thus, by the definition of π, S∞ is a subset of B: Almost all paths under π end up in B, so
there can be no non-zero measure set that does not.

To conclude, recall that a is available on all states of all paths in P , including all paths in
S∞. Let R a maximal bottom end component in the explored subsystem (i.e. R ⊆ B) with a
non-empty intersection with S∞. By the definition of π, almost all paths of P that end up
in R visit all states of R infinitely often. Together, a must be available in all states of R, but
is never chosen by the strategy π. However, by construction, we would have explored a, as it
is an available action in a bottom end component of the subsystem. Concretely, we have
that A(R) is not empty, hence we would explore further, contradicting that R is a bottom
end component. This concludes the proof.
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B Proof of Lemma 10

▶ Lemma 10. There exists a deterministic, complete strategy π ∈ Π which achieves the
optimal value, i.e. Prπ

M[3T] = supπ′∈Π Prπ′

M[3T].

Proof. We show this by arguing that an optimal, possibly non-complete strategy can be
modified into a complete one without losing any reachability probability. To this end, let π a
memoryless deterministic strategy that achieves the optimal value. Assume this strategy is
incomplete. We now show how to extend it to a complete strategy. Consider the bottom
strongly connected components B = {B1, . . . , Bn} in the induced Markov chain Mπ. With
probability 1, these are eventually reached (i.e. Prπ

M[3
⋃

Bi] = 1), and, likewise, once in
a BSCC Bi, every state within it is reached with probability 1 [2, Chp. 10]. Consider the
following strategy π′: Follow π, waiting until one of the BSCCs Bi is reached. Meanwhile,
track a set of actions A. At each state s, add all actions Act(s) to A and then remove π(s).
In other words, A tracks all actions that were available but have not been played since they
became available. Then, wait until every state in Bi was seen at least once. Until now, π′

has behaved exactly as π and has only stored a bounded amount of information.
At this stage π′ switches to a different behaviour. Store the set of actions A which have

not been played to A′ and clear A. By CD, all actions in A are still available. So, π′ chooses
the actions in A′ one by one, and, in the meantime, keeps updating A as before. Once A′

is empty, again A is copied to A′, A is cleared and the whole process is repeated. (If A is
empty at this stage, π simply picks any action.)

This strategy clearly reaches every state that π reaches with at least the same probability,
since π′ only deviates from π once all states that π can see have been encountered. In
addition, this strategy is complete since every action that is available is played within a finite
number of steps with probability 1. ◀


	1 Introduction
	2 Preliminaries
	3 Factored MDPs and Causal Determinacy
	3.1 Local Reachability
	3.2 Causal Determinacy and Complete Strategies

	4 An Event Structure Semantics for FMDPs
	4.1 Mazurkiewicz Trace Languages
	4.2 The Mazurkiewicz Trace Language of an FMDP
	4.3 The Event Structure Representation of FMDPs

	5 The Key Result for CMDPs
	5.1 Relating the Probability of e to the Probability of FPathReach
	5.2 All Complete Strategies Achieve the Same Value

	6 Implementation and Experimental Evaluation
	6.1 Algorithm Description
	6.2 Setup and Results

	7 Conclusion
	A Algorithm Description
	B Proof of Lemma 10

