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Abstract
We introduce a DeGroot-based model for opinion dynamics in social networks. A community of
agents is represented as a weighted directed graph whose edges indicate how much agents influence
one another. The model is formalized using labeled transition systems, henceforth called opinion
transition systems (OTS), whose states represent the agents’ opinions and whose actions are the
edges of the influence graph. If a transition labeled (i, j) is performed, agent j updates their opinion
taking into account the opinion of agent i and the influence i has over j. We study (convergence
to) opinion consensus among the agents of strongly-connected graphs with influence values in the
interval (0, 1). We show that consensus cannot be guaranteed under the standard strong fairness
assumption on transition systems. We derive that consensus is guaranteed under a stronger notion
from the literature of concurrent systems; bounded fairness. We argue that bounded-fairness is
too strong of a notion for consensus as it almost surely rules out random runs and it is not a
constructive liveness property. We introduce a weaker fairness notion, called m-bounded fairness,
and show that it guarantees consensus. The new notion includes almost surely all random runs and
it is a constructive liveness property. Finally, we consider OTS with dynamic influence and show
convergence to consensus holds under m-bounded fairness if the influence changes within a fixed
interval [L, U ] with 0 < L < U < 1. We illustrate OTS with examples and simulations, offering
insights into opinion formation under fairness and dynamic influence.
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1 Introduction

Social networks have a strong impact on opinion formation, often resulting in polarization.
Broadly, the dynamics of opinion formation in social networks involve users expressing their
opinions, being exposed to the opinions of others, and potentially adapting their own views
based on these interactions. Modeling these dynamics enables us to glean insights into how
opinions form and spread within social networks.
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The models of social learning aim to capture opinion dynamics in social networks [36].
The DeGroot model [14] is one of the most prominent formalisms for social learning and
opinion formation dynamics, and it remains a continuous focus of study in social network
theory [21]. A given community is represented as a weighted directed graph, known as the
influence graph, whose edges indicate how much individuals (agents) influence one another.
Each agent has an opinion represented as a value in [0, 1], indicating the strength of their
agreement with an underlying proposition (e.g., “AI poses a threat to humanity”). Agents
repetitively revise their opinions by averaging them with those of their contacts, taking into
account the influence each contact holds. (There is empirical evidence validating the opinion
formation through averaging of the model in controlled sociological experiments, e.g., [10].) A
fundamental theoretical result of the model states that the agents will converge to consensus
if the influence graph is strongly connected and the agents have non-zero self-influence (puppet
freedom) [21]. The significance of this result lies in the fact that consensus is a central
problem in social learning. Indeed, the inability to reach consensus is a sign of a polarized
community.

Nevertheless, the DeGroot model makes at least two assumptions that could be overly
constraining within social network contexts. Firstly, it assumes that all the agents update
their opinions simultaneously (full synchrony), and secondly, it assumes that the influence of
agents remains the same throughout opinion evolution (static influence). These assumptions
may hold in some controlled scenarios and render the model tractable but in many real-world
scenarios individuals do not update their opinions simultaneously [29]. Instead, opinion
updating often occurs asynchronously, with different agents updating their opinions at
different times. Furthermore, individuals may gain or lose influence through various factors,
such as expressing contrarian or extreme opinions [20].

In this paper, we introduce an asynchronous DeGroot-based model with dynamic influence
to reason about opinion formation, building upon notions from concurrency theory. The
model is presented by means of labeled transition systems, here called opinion transition
systems (OTS). The states of an OTS represent the agents’ opinions, and the actions (labels)
are the edges of the influence graph. All actions are always enabled. If a transition labeled
with an edge (i, j) is chosen, agent j updates their opinion by averaging it with the opinion
of agent i weighted by the influence that this agent carries over j. A run of an OTS is an
infinite sequence of (chosen) transitions.

We shall focus on the problem of convergence to opinion consensus in runs of the OTS,
assuming strong connectivity of the influence graph and puppet freedom. For consensus to
make sense, all agents should have the chance to update their opinions. Therefore, we need
to make fairness assumptions about the runs. In concurrency theory, this means requiring
that some actions be performed sufficiently often.

We first show that contrary to the DeGroot model, consensus cannot be guaranteed for
runs of OTS even under the standard strong fairness assumption (i.e., that each action occurs
infinitely often in the run) [22, 27]. This highlights the impact of asynchronous behavior on
opinion formation.

We then consider the well-known notion of bounded fairness in the literature on verification
of concurrent systems [16]. This notion requires that every action must be performed not
just eventually but within some bounded period of time. We show that bounded-fairness
guarantees convergence to consensus. This also gives us insight into opinion formation
through averaging, i.e., preventing unbounded delays of actions (opinion updates) is sufficient
for convergence to consensus.
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Nevertheless, bounded fairness does not have some properties one may wish in a fairness
notion. In particular, it is not a constructive liveness property in the sense of [34, 33].
Roughly speaking, a fairness notion is a constructive liveness property if, while it may require
that a particular action is taken sufficiently often, it should not prevent any other action
from being taken sufficiently often. Indeed, we will show that preventing unbounded delays
implies preventing some actions from occurring sufficiently often.

Furthermore, bounded-fairness is not random inclusive. A fairness notion is random
inclusive if any random run (i.e., a run where each action is chosen independently with
non-zero probability) is almost surely fair under the notion. We find this property relevant
because we wish to apply our results to other asynchronous randomized models whose runs
are random and whose opinion dynamics can be captured as an OTS.

We therefore introduce a new weaker fairness notion, called m-bounded fairness, and show
that it guarantees consensus. The new notion is shown to be a constructive liveness property
and random inclusive. We also show that consensus is guaranteed under m-bounded fairness
even if we allow for dynamic influence as long as all the changes of influence are within a
fixed interval [L, U ] with 0 < L < U < 1.

All in all, we believe that asynchronous opinion updates and dynamic influence provide
us with a model more faithful to reality than the original DeGroot model. The fairness
assumptions and consensus results presented in this paper show that the model is also
tractable and that it brings new insights into opinion formation in social networks. To the
best of our knowledge, this is the first work using fairness notions from concurrency theory
in the context of opinion dynamics in social networks.

Furthermore, since m-bounded fairness is random inclusive, our result extends with
dynamic influence the consensus result in [17] for distributed averaging with randomized
gossip algorithms. Distributed averaging is a central problem in other application areas, such
as decentralized computation, sensor networks and clock synchronization.

Organization. The paper is organized as follows: In Section 2, we introduce OTS and the
consensus problem. Initially, to isolate the challenges of asynchronous communication in
achieving consensus, we assume static influence. In Section 3, we identify counter-examples,
graph conditions, and fairness notions for consensus to give some insight into opinion dynamics.
In Section 4, we introduce a new notion of fairness and state our first consensus theorem.
Finally, in Section 5, we add dynamic influence and give the second consensus theorem.

The detailed proofs are included in a related technical report [7]. The Python code used to
produce OTS examples and simulations in this paper can be found in the following repository:
https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models.

2 The Model

In the standard DeGroot model [14], agents update their opinion synchronously in the
following sense: at each time unit, all the agents (individuals) update simultaneously their
current opinion by listening to the current opinion values of those who influence them. This
notion of updating may be unrealistic in some social network scenarios, as individuals may
listen to (or read) others’ opinions at different points in time.

In this section, we introduce an opinion model where individuals update their beliefs
asynchronously; one agent at a time updates their opinion by listening to the opinion of one
of their influencers.
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2.1 Opinion Transition Systems
In social learning models, a community is typically represented as a directed weighted
graph with edges between individuals (agents) representing the direction and strength of the
influence that one has over the other. This graph is referred to as the Influence Graph.

▶ Definition 1 (Influence Graph). An influence graph is a directed weighted graph G = (A, E, I)
with A = {1, . . . , n}, n > 1, the vertices, E ⊆ A2 − IdA the edges (where IdA is the identity
relation on A) and I : E → (0, 1] the weight function.

The vertices in A represent n agents of a given community or network. The set of edges
E represents the (direct) influence relation between agents; i.e., (i, j) ∈ E means that agent i

influences agent j. The value I(i, j), for simplicity written I(i,j) or Iij , denotes the strength
of the influence: a higher value means stronger influence.

Similar to the DeGroot-like models in [21], we model the evolution of agents’ opinions
about some underlying statement or proposition, such as, for example, “human activity has
little impact on climate change” or “AI poses a threat to humanity”.

The state of opinion (or belief state) of all the agents is represented as a vector in [0, 1]|A|.
If B is a state of opinion, B[i] denotes the opinion (belief, or agreement) value of agent i ∈ A

regarding the underlying proposition: the higher the value of B[i], the stronger the agreement
with such a proposition. If B[i] = 0, agent i completely disagrees with the underlying
proposition; if B[i] = 1, agent i completely agrees with the underlying proposition.

The opinion state is updated as follows: Starting from an initial state, at each time unit,
one of the agents, say j, updates their opinion taking into account the influence and the
opinion of one of their contacts, say i. Intuitively, in social network scenarios, this can be
thought of as having an agent j read or listen to the opinion of one of their influencers i and
adjusting their opinion B[j] accordingly.

The above intuition can be realized as a Labelled Transition System (LTS) whose set of
states is S = [0, 1]|A| and set of actions is E.

▶ Definition 2 (OTS). An Opinion Transition System (OTS) is a tuple M = (G, Binit, →)
where G = (A, E, I) is an influence graph, Binit ∈ S = [0, 1]|A| is the initial opinion state,
and →⊆ S × E × S is a (labelled) transition relation defined thus: (B, (i, j), B′) ∈→, written
B (i,j)−−−→ B′ , iff for every k ∈ A,

B′ [k] =
{

B[j] + (B[i] − B[j])Iij if k = j

B[k] otherwise
(1)

If B e−→ B′ we say that B evolves into B′ by performing (choosing or executing) the action e.

A labeled transition B (i,j)−−−→ B′ represents the opinion evolution from B to B′ when
choosing an action represented by the edge (i, j). As a result of this action, agent j updates
their opinion as B[j] + (B[i] − B[j])Iij , thereby moving closer to the opinion of agent i.
Alternatively, think of agent i as pulling the opinion of agent j towards B[i]. The higher the
influence of i over j, Iij , the closer it gets. Intuitively, if Iij < 1, it means that agent j is
receptive to agent i but offers certain resistance to fully adopting their opinion. If Iij = 1,
agent j may be viewed as a puppet of i who disregards (or forgets) their own opinion to
adopt that of i.
▶ Remark 3. In Def. 1, we do not allow edges of the form (j, j). In fact, allowing them
would not present us with any additional technical issues, and the results in this paper
would still hold. The reason for this design choice, however, has to do with clarity about
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the intended intuitive meaning of a transition. Suppose that B (i,j)−−−→ B′ . Since B′ [j] =
B[j] + (B[i] − B[j])Iij = B[j](1 − Iij) + B[i]Iij , agent j gives a weight of Iij to the opinion
of i and of (1 − Iij) to their own opinion. Therefore, the weight that j gives to their opinion
may change depending on the agent i. Thus, allowing also a fixed weight Ijj of agent j to
their own opinion may seem somewhat confusing to some readers. Furthermore, for any
B ∈ S we would have B (j,j)−−−→ B regardless of the value Ijj thus making the actual value
irrelevant. Notice also we do not require the sum of the influences over an agent to be 1.

2.2 Runs and Consensus
We are interested in properties of opinion systems, such as convergence to consensus and
fairness, which are inherent properties of infinite runs of these systems.

▶ Definition 4 (e-path, runs and words). An execution path (e-path) of an OTS M =
(G, Binit, →), where G = (A, E, I), is an infinite sequence π = B0e0B1e1 . . . (also written
B0

e0−→ B1
e1−→ . . . ) such that Bt

et−→ Bt+1 for each t ∈ N. We say that et is the action
performed at time t and that Bt is the state of opinion at time t. Furthermore, if B0 = Binit
then the e-path π is said to be a run of M .

An ω-word of M is an infinite sequence of edges (i.e, an element of Eω). The sequence
wπ = e0e1 . . . is the ω-word generated by π. Conversely, given an ω-word w = e′

0.e′
1 . . . the

(unique) run that corresponds to it is πw = Binit
e′

0−→ B1
e′

1−→ . . .

▶ Remark 5. The uniqueness of the run that corresponds to a given ω-word is derived from
the fact that an OTS is a deterministic transition system1. This gives us a one-to-one
correspondence between ω-words and runs, which allows us to abstract away from opinion
states when they are irrelevant or clear from the context. In fact, throughout the paper, we
will use the terms ω-words and runs of an OTS interchangeably when no confusion arises.
It is also worth noting that in OTS, any action (edge) can be chosen at any point in an
execution path; that is, all actions are enabled.

Consensus is a property of central interest in social learning models [21]. Indeed, failure
to reach a consensus is often an indicator of polarization in a community.

▶ Definition 6 (Consensus). Let M = (G, Binit, →) be an OTS with G = (A, E, I) and
π = Binit

e0−→ B1
e1−→ . . . be a run. We say that an agent i ∈ A converges to an opinion value

v ∈ [0, 1] in π if limt→∞ Bt[i] = v. The run π converges to consensus if all the agents in A

converge to the same opinion value in π.
Furthermore, B is said to be a consensual state if it is a constant vector; i.e., if there

exists v ∈ [0, 1] such that for every i ∈ A, B[i] = v.

▶ Example 7. Let M = (G, Binit, →) where G is the influence graph in Fig. 1a and
Binit = (0, 0.5, 1). If we perform a on Binit we obtain Binit

a−→ B1 = (0.0, 0.25, 1.0).
Consider the word w = (abcd)ω. Then πw = Binit

a−→ (0.0, 0.25, 1.0) b−→ (0.125, 0.25, 1.0) c−→
(0.125, 0.625, 1.0) d−→ (0.125, 0.625, 0.8125) a−→ . . .. Fig. 1b suggests that πw indeed converges
to consensus (to opinion value 0.5). A more complex example of the evolution of opinions
from a randomly generated graph with eleven agents is illustrated in Fig. 1c.

1 While the actions in a run can be seen as being chosen non-deterministically by a scheduler, an OTS
is a deterministic transition system in the sense that given a state B and an action e, there exists a
unique state B′ such that B e−→ B′ .

CONCUR 2024
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2

1
a

b

c

d

(a) OTS with
influence graph
with agents A =
{1, 2, 3}, edges
E = {a, b, c, d},
influence Ie = 1/2
for all e ∈ E and
Binit = (0, 0.5, 1).

(b) Opinion evolution for the run that
corresponds to (abcd)ω of the OTS in
Fig. 1a. Each plot corresponds to the
opinion evolution of the agent with the
same color.

(c) Opinion evolution of a run of an OTS
with a G = (A, E, I), A = {1, . . . , 11},
Ie = 0.5 for each e ∈ E, Binit =
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).
Each edge of G was generated with prob.
0.3. The edges of the (partial) run were
uniformly chosen from E.

Figure 1 Run examples for OTS in Fig. 1a and randomly-generated OTS in Fig. 1c.

The examples above illustrate runs that may or may not converge to consensus. In the
next section, we identify conditions on the influence and topology of graphs and on the runs
that guarantee this central property of opinion models.

3 Strong Connectivity, Puppet-Freedom and Fairness

In this section, we discuss graph properties, as well as fairness notions and criteria from the
literature on concurrent systems that give us insight into how agents converge to consensus in
an OTS. For simplicity, we assume an underlying OTS M = (G, Binit, →) with an influence
graph G = (A, E, I). We presuppose basic knowledge of graph theory and formal languages.

3.1 Strong Connectivity

As in the DeGroot model, if there are (groups of) agents in G that do not influence each other
(directly or indirectly) and their initial opinions are different, these groups may converge
to different opinion values. Consider the example in Fig. 2 where the groups of agents
G1 = {1, 2} and G2 = {5, 6} do not have external influence (directly or indirectly), but
influence the group G3 = {3, 4}. Each group is strongly connected within; their members
influence each other. The agents in G1 converge to an opinion, and so do the agents in G2,
but to a different one. Hence, the agents in both groups cannot converge to consensus. The
agents in G3 do not even converge to an opinion because they are regularly influenced by
the dissenting opinions of G1 and G2.

The above can be prevented by requiring strong connectivity, i.e., there must be a path
in G from any other to any other. Recall that a graph path from i to j of length m in G

is a sequence of edges of E of the form (i, i1)(i1, i2) . . . (im−1, j), where the agents in the
sequence are distinct. We shall refer to graph paths as g-paths to distinguish them from
e-paths in Def. 4. We say that agent i influences agent j if there is a g-path from i to j in G.
The graph G is strongly connected iff there is a g-path from any agent to any other in G.
Hence, in strongly-connected graphs, all agents influence one another.
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3 4

5 6

a1

a0

a2

a3

a4

a5
a6 a7

a8 a9

(a) Influence graph
with Ie = 1/2 for all
e ∈ E and Binit =
(0.4, 0.5, 0.45, 0.55,
0.5, 0.6).

(b) Opinion evolution of the run
((a2a3)5(a4a5)5(a0a1)5(a6a7a8a9))ω.
Each plot corresponds to the opinion
evolution of the agent with the same
color in Fig. 2a.

(c) Opinion evolution of the run (abcd)ω

for an OTS with G and Binit from Fig.
1a but assuming Ie = 1 for all e ∈ E.

Figure 2 Run examples for OTS in Fig. 1a and Fig. 2a.

3.2 Puppet-Freedom

Nevertheless, too much influence may prevent consensus. If B (i,j)−−−→ B′ and Iij = 1, agent
j behaves as a puppet of i forgetting their own opinion and adopting that of j. Fig. 2c
illustrates this for the strongly-connected graph in Fig. 1a but with Iij = 1 for each (i, j) ∈ E:
Agents 1 and 3 use Agent 2 as a puppet, constantly swaying his opinion between 0 and 1.
We therefore say that the influence graph G is puppet free if for each (i, j) ∈ E, Iij < 1.

3.3 Strong Fairness
In an OTS, if G is strongly connected but a given edge is never chosen in a run (or not
chosen sufficiently often), it may amount to not having all agents influence each other in
that run, hence preventing consensus. For this reason, we make some fairness assumptions
about the runs.

In the realm of transition systems, fairness assumptions rule out some runs, typically
those where some actions are not chosen sufficiently often when they are enabled sufficiently
often. There are many notions of fairness (see [5, 19, 25] for surveys), but strong fairness
is perhaps one of the most representative. As noted above, every action e ∈ E is always
enabled in every run of an OTS. Thus, in our context, strong fairness of a given OTS run
(ω-word) amounts to requiring that every action e occurs infinitely often in the run.

▶ Definition 8 (Strong fairness). Let w be an ω-word of an OTS. We say that w is strongly
fair if every e ∈ E occurs in every suffix of w.

Notice that the graph from Ex. 7 is strongly connected and puppet free, and the ω-word
w = (abcd)ω is indeed strongly fair and converges to consensus. Nevertheless, puppet freedom,
strong fairness, and strong connectivity are not sufficient to guarantee consensus.

▶ Proposition 9. There exists (G, Binit, →), where G is strongly connected and puppet free,
with a strongly-fair run that does not converge to consensus.

The proof of the existence statement in Prop. 9 is given next.

CONCUR 2024
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(a) Opinion evolution of the OTS from Fig. 1a for
the ω-word u = (anbcnd)n∈N+ .

(b) Opinion evolution of the OTS from Fig. 1a for
U = 0.75, L = 0.25 and the ω-word w from Cons.
10.

Figure 3 Run examples for OTS in Fig. 1a.

▶ Construction 10 (Counter-Example to Consensus). Let M = (G, Binit, →) be an OTS where
G is the strongly-connected puppet-free influence graph in Fig. 1a and Binit is any state of
opinion such that Binit[1] < Binit[2] < Binit[3]. We have A = {1, 2, 3} and E = {a, b, c, d}.
We construct an ω-word w such that πw does not converge to consensus with the following
infinite iterative process. Let U and L be such that Binit[1] < L < Binit[2] < U < Binit[3].

Process: (1) Perform a non-empty sequence of a actions with as many a’s as needed until
the opinion of Agent 2 becomes smaller than L. (2) Perform the action b. (3) Perform a
non-empty sequence of c’s with as many c’s as needed until the opinion of Agent 2 becomes
greater than U . (4) Perform the action d. The result of this iteration is a sequence of the
form a+bc+d. Repeat steps 1–4 indefinitely.

The above process produces the ω-sequence w = w1 · w2 · . . . of the form (a+bc+d)ω, where
each wi = anibcmid is the result of the i-th iteration of the process and ni > 0 and mi > 0
are the number of a’s and c’s in such interaction. (The evolution of the opinion of run πw,
with U = 0.75, L = 0.25 and Binit = (0, 0.5, 1) is illustrated in Fig. 3b)

Since each action e ∈ E appears infinitely often in w, w is strongly fair. Furthermore,
right after each execution of Step 2, the opinion of Agent 1 gets closer to L, but it is still
smaller than L since the opinion of Agent 2 at that point is smaller than L. For symmetric
reasons, the opinion of Agent 3 gets closer to U , but it is still greater than U . Consequently,
the opinion of Agent 1 is always below L, while the opinion of Agent 3 is always above U

with L < U . Therefore, they cannot converge to the same opinion.

Another ω-word for the OTS in Fig. 1a exhibiting a behavior similar to w in Cons. 10,
but whose proof of non-convergence to consensus seems more involved, is u = (anbcnd)n∈N+=
u1 · u2 · . . ., where each un = anbcnd. (see Fig. 3a). The delay in both w and u to execute d

after b grows unboundedly due to the growing number of c’s. More precisely, let #e(v) be
the number of occurrences of e ∈ E in a finite sequence v.

▶ Proposition 11. Let w = w1 · w2 · . . . be the ω-word from Cons. 10 where each wm has the
form a+bc+d. Then for every m ∈ N, there exists t ∈ N such that #c(wm+t) > #c(wm).

The above proposition states that the number of consecutive c’s in w grows unboundedly,
and hence so does the delay for executing d right after executing b. To prevent this form of
unbounded delay, we recall in the next section some notions of fairness from the literature
that require, at each position of an ω-word, every action to occur within some bounded
period of time.
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3.4 Bounded Fairness
We start by introducing some notation to give a uniform presentation of some notions of
fairness from the literature. We assume |E| > 1; otherwise, all the fairness notions are trivial.

A word w is a possibly infinite sequence over E. A subword of w is either a suffix of w

or a prefix of some suffix of w. Let κ be an ordinal from the set ω + 1 = N ∪ {ω} where ω

denotes the first infinite ordinal. A κ-word is a word of length κ. Recall that each ordinal
can be represented as the set of all strictly smaller ordinals. We can then view a κ-word
w = (ei)i∈κ as a function w : κ → E such that w(i) = ei for each i ∈ κ. A κ-word w is
complete if w(κ) = E (where w(κ) denotes the image of the function w). A κ-window u of w

is a subword of w of length κ. Thus, if κ = ω then u is a suffix of w, and if κ ∈ N, u can
be thought of as a finite observation of κ consecutive edges in w. We can now introduce a
general notion of fairness parametric in κ.

▶ Definition 12 (κ-fairness, bounded-fairness). Let w be an ω-word over E and κ ∈ ω + 1: w

is κ-fair if every κ-window of w is complete. Furthermore, w is bounded fair if it is k-fair
for some k ∈ N.

Notice that the notion of strong fairness in Def. 8 is obtained by taking κ = ω; indeed, w

is ω-fair iff every e ∈ E occurs infinitely often in w. Furthermore, if κ = k for some k ∈ N+,
then we obtain the notion of k-fairness from [16]2. Intuitively, if w is k-fair, then at any
position of w, every e ∈ E will occur within a window of length k from that position.

It is not difficult to see that ω-fairness is strictly weaker than bounded-fairness, which in
turn is strictly weaker than any k-fairness with k ∈ N. Let F (κ) be the set of all ω-words
over E that are κ-fair. We have the following sequence of strict inclusions.

▶ Proposition 13. For every k ∈ N, F (k) ⊂ F (k + 1) ⊂ (
⋃

κ∈N F (κ)) ⊂ F (ω).

▶ Example 14. Let us consider the fair word w from Cons. 10, the counter-example to
consensus. From Prop. 11, the delay for executing action d immediately after executing
action b increases without bound. Thus, for every k, there must be a non-complete k-window
u of w such that d does not occur in u. Consequently, w is not bounded fair.

Not only does bounded fairness rule out the counter-example in Cons. 10, but it also
guarantees consensus, as shown later, for runs of OTS with strongly-connected, puppet-free
influence graphs. Nevertheless, it may be too strong of a requirement for consensus. We,
therefore, introduce a weaker notion that satisfies the following criteria and guarantees
consensus.

Some Fairness Criteria
Let us briefly discuss some fairness criteria and desirable properties that justify our quest for
a weaker notion of fairness that guarantees consensus. An in-depth discussion about criteria
for fairness notions, from which we drew some inspiration, can be found in [34, 33, 19, 5].

Machine Closure. Following [1, 26] one of the most important criteria that a notion of
fairness must meet is machine closure (also called feasibility [5]). Fairness properties are
properties of infinite runs; hence, a natural requirement is that any finite partial run must
have the chance to be extended to a fair run. Thus, we say that a notion of fairness is
machine closed if every finite word u can be extended to a fair ω-word u · w.

2 This notion is different from the notion of k-fairness from [9]
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Clearly, k-fairness with k ∈ N is not machine closed; e.g., the word ckd with E = {c, d}
cannot be extended to a k-fair ω-word. Nevertheless, bounded fairness is machine closed: Each
k-word u can be extended to a (k + m)-fair word u · (e1 . . . em)ω assuming E = {e1, . . . , em}.

Constructive Liveness. According to [34], a notion of fairness may require that a particular
action is taken sufficiently often, but it should not prevent any other actions from being
taken sufficiently often. This concept is formalized in [34, 33] in a game-theoretical scenario,
reminiscent of a Banach-Mazur game [28], involving an infinite interaction between a scheduler
and an opponent. The opponent initiates with a word w0, then the scheduler appends a finite
word w1 to w0. This pattern continues indefinitely, resulting in an ω-word w = w0 ·w1 ·w2 . . ..
A given fairness notion is said to be a constructive liveness property if, regardless of what
the opponent does, the scheduler can guarantee that the resulting ω-word is fair under the
given notion.

The notion of bounded fairness is not a constructive liveness property. If an ω-word
is bounded fair, it is k-fair for some k ≥ |E| > 1. Let c ∈ E and take as the strategy of
the opponent to choose in each of their turns wn = cn. Since |E| > 1, then w2k cannot
be a complete k-window. Therefore, the resulting w = w0 · w1 · w2 . . . is not bounded fair,
regardless of the strategy of the scheduler.

It is worth noticing that the above opponent’s strategy is reminiscent of our procedure to
construct an ω-sequence in Cons. 10 using the unbounded growth of c’s to prevent consensus.

Random Words. Consider a word e0e1 . . . where each edge or action en = (i, j) is chosen
from E independently with probability p(i,j) > 0. Let us refer to such kinds of sequences
as random words. We then say that a given notion of fairness is random inclusive if every
random ω-word is almost surely (i.e., with probability one) fair under the given notion.

It follows from the Second Borel–Cantelli lemma3 that every random word is almost
surely strongly fair. Nevertheless, the notion of bounded fairness fails to be random inclusive:
If a word is bounded fair, it is k-fair for some k ≥ |E|, and thus it needs to have the form
w0 · w1 . . . where each wm is a complete k-window. Since 1 < |E|, the probability that a
random k window is complete is strictly smaller than 1. Therefore, the probability of a
random word having an infinite number of consecutive complete k-windows is 0.

Random words are important in simulations of our model (see Fig. 1c). Furthermore,
having a notion of fairness that is random inclusive and guarantees consensus will allow us
to derive and generalize consensus results for randomized opinion models, such as gossip
algorithms [17]. We elaborate on this in the related work. We now introduce our new notion
of fairness.

4 A New Notion of Bounded Fairness

A natural way to relax bounded fairness to satisfy constructive liveness and random inclusion
is to require that the complete k-windows need only appear infinitely often: i.e., an ω word
w is said to be weakly bounded fair if there exists k ∈ N such that every suffix of w has a
k-window. Nevertheless, as it will be derived later, weak bounded fairness is not sufficient to
guarantee consensus.

3 The lemma states that if the sum of the probabilities of an infinite sequence of events E0E1 . . . that are
independent is infinite, then the probability of infinitely many of those events occurring is 1 [31]. Here,
each event Ek expresses that the edge ek occurs at time k and these events are independent because
each edge (i, j) in a random word is chosen independently with probability p(i,j) > 0.
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It turns out that, to guarantee consensus, it suffices to require that a large enough number
m of consecutive complete k-windows appear infinitely often. These consecutive windows are
referred to as multi-windows.

▶ Definition 15 ((m, κ) multi-window). Let w be an ω-word over E, m ∈ N+ and κ ∈ ω + 1.
We say that w has an (m, κ) multi-window if there exists a subword u of w of the form
u = w1 · w2 · . . . · wm where each wi is a κ-window of w. Furthermore, if each wn in u is
complete, we say that w has a complete (m, κ) multi-window. If it exists, the word u is called
an (m, κ) multi-window of w.

Notice that because of the concatenation of windows in Def. 15, by construction, no
ω-word has a (m, ω) multi-window with m > 1: If κ = ω then m = 1. In this case, the
multi-window is just a window of infinite length of w, i.e., a suffix of w.

▶ Definition 16 ((m, κ)-fairness). Let w be an ω-word over E, m ∈ N+ and κ ∈ ω + 1. We
say that w is (m, κ)-fair if every suffix of w has a complete (m, κ) multi-window. We say
that w is m-consecutive bounded fair, or m-bounded fair, if it is (m, k)-fair for some k ∈ N.

Clearly, w is ω-fair iff it is (1, ω)-fair, and w is weakly bounded fair iff it is 1-bounded ω-
fair. Let F (m, κ) and F (κ) be the sets of ω-words that are (m, κ)-fair and κ-fair, respectively.
We have the following sequence of strict inclusions (assume k, m ∈ N+):

▶ Proposition 17. F (k) ⊂ F (m + 1, k) ⊂ F (m, k) ⊂ (
⋃

κ∈N F (m, κ)) ⊂ F (1, ω) = F (ω).

Compliance with Fairness Criteria. Let us consider the criteria for fairness in the previous
section. The notion of m-bounded fairness is machine closed since bounded fairness is stronger
than m-bounded fairness (Prop. 13 and Prop. 17) and bounded fairness is machine closed.

It is also a constructive liveness property since (m, k) fairness, for k ≥ |E|, is stronger
than m-bounded fairness (Prop. 17), and it is also a constructive liveness property: A
winning strategy for the scheduler is to choose a complete (m, k)-window at each one of its
turns.

Similarly, m-Bounded Fairness is random inclusive since the stronger notion (m, k)-
Fairness is random inclusive for k ≥ |E|. In a random ω-word w = w0 · w1 . . . where each wn

is a (m × k)-window, the probability that wn is a complete (m, k)-multi-window is non-zero
and independent. Thus again, by the Second Borel–Cantelli lemma, almost-surely w has
infinitely many complete (m, k) multi-windows, i.e., it is almost-surely (m, k)-fair.

4.1 Consensus Theorem
We can now state one of our main theorems: m-bounded fairness guarantees consensus in
strongly-connected, puppet-free graphs.

▶ Theorem 18 (Consensus under m-bounded fairness). Let M = (G, Binit, →) be an OTS
where G is a strongly-connected, puppet-free influence graph. For every run π of M , if wπ is
m-bounded fair and m ≥ |A| − 1, then π converges to consensus.

▶ Remark 19. A noteworthy corollary of Th. 18 is that, under the same assumptions of the
theorem, if wπ is a bounded fair (a random ω-word), then π converges to consensus (π almost
surely converges to consensus). This follows from the above theorem, Prop. 13, Prop. 17 and
the fact that m-bounded fairness is random inclusive.

A proof of Th. 18 is given in the technical report [7]. Let us give the main intuitions here.
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3

4
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b

d c
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e

(a) OTS with Ie =
1/2 for every edge
e ∈ E and Binit =
(0.0, 0.2, 0.8, 1.0).

(b) Opinion evolution of the 1-bounded
fair ω-word w in Cons. 21 with U = 0.8
and L = 0.2.

(c) Opinion evolution of the 3-bounded
fair ω-word ((bfdace)3a10e10)ω.

Figure 4 Examples of an m-bounded fair runs. In Fig. 4b and 4c, each plot corresponds to the
opinion of the agent with the same color in Fig. 4a.

Proof sketch. The proof focuses on the evolution of maximum and minimum opinion val-
ues. The sequences of maximum and minimum opinion values in a run, {max Bt}t∈N and
{min Bt}t∈N, can be shown to be (bounded) monotonically non-increasing and non-decreasing,
respectively, so they must converge to some opinion values, say U and L with L ≤ U .

We must then argue that L = U (this implies convergence to consensus of π by the
Squeeze Theorem [32]). Since wπ is m-bounded fair with m ≥ |A| − 1, after performing all
the actions of an (m, k) multi-window of wπ, for some k ≥ |E|, all the agents of A would
have influenced each other. In particular, the agents holding the maximum and minimum
opinion values, say agents i and j. To see this, notice that since G is strongly connected,
there is a path from i to j, a1 . . . al with length l ≤ |A| − 1. Thus, after performing the
first complete k-window of the (m, k)-multi-window, a1 must be performed, after performing
the second complete k-window, a2 must be performed and so on. Hence, after performing
all the actions of the multi-window, i would have influenced j. It can be shown that their
mutual influence causes them to decrease their distance by a positive constant factor (here,
the puppet freedom assumption is needed). Since the wπ is m-fair, there are infinitely many
(m, k)-windows to be performed, and thus the sequences of maximum and minimum opinion
values converge to each other, i.e., U = L. ◀

It is worth pointing out that without the condition m ≥ |A| − 1 in Th. 18, we cannot
guarantee consensus. Fig. 4c illustrates an m-bounded fair run, for m = |A| − 1, of an OTS
with 4 agents that converges to consensus. Nevertheless, the following run construction
shows that for m = |A| − 3, we can construct an m-bounded fair run that fails to converge
to consensus (the run is illustrated in Fig. 4b). It also shows that weak bounded fairness,
i.e., 1-bounded fairness, is not sufficient to guarantee convergence to consensus. We do not
have a counter-example or a proof for m = |A| − 2.

▶ Proposition 20. There exists M = (G, Binit, →), where G = (A, E, I) is a strongly
connected, puppet-free graph, with an m-bounded fair ω-word w, m = |A| − 3, such that πw

does not converge to consensus.

The proof of the above proposition is given in the following construction.
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2 1
a

b

(a) Binit = (0.0, 1.0) and if B[1] = B[2] then
IB

a = IB
b = 0.5, otherwise

IB
a =

[
U−B[2]

2(B[1]−B[2])

]1

0
, IB

b =
[

L−B[1]
2(B[2]−B[1])

]1

0
.

3 2 1
c

d

b

a

(b) Binit = (0.0, 0.5, 1.0), IB
d = IB

b = 0.5, if B[1] = B[2]
then IB

a = 0.5, if B[2] = B[3] then IB
c = 0.5, otherwise

IB
a =

[
1
2 (B[1]+L)−B[2]

B[1]−B[2]

]1

0
, IB

c =
[

1
2 (B[3]+U)−B[2]

B[3]−B[2]

]1

0
.

(c) Opinion and influence evolution of the ω-word
(ab)ω. Each plot corresponds to the opinion of the
agent with the same color in Fig. 5a. The influences
IB

a and IB
b are plotted in green and purple.

(d) Opinion and influence evolution of the ω-word
(a b c d)ω . Each plot corresponds to the opinion of the
agent with the same color in Fig. 5b. The influences
IB

a and IB
c are plotted in green and purple.

Figure 5 Plots for DOTS in Fig. 5a and Fig. 5b with U = 0.8 and L = 0.2.4

▶ Construction 21 (Counter-Example to Consensus for m-bounded fairness with m ≤ |A| − 3).
Suppose that M = (G, Binit, →) where G is the strongly-connected, puppet-free, influence graph
in Fig. 4a and Binit is any state of opinion such that Binit[1] < Binit[2] < Binit[3] < Binit[4].
We have A = {1, 2, 3, 4} and E = {a, b, c, d, e, f}. We construct an ω-word w such that πw

does not converge to consensus with the following infinite iterative process. Let U and L be
such that Binit[2] ≤ L < U ≤ Binit[3].

Process: (1) Perform the sequence of actions bfdace. (2) Perform a sequence of a actions
with as many a’s as needed until the opinion of Agent 2 becomes smaller than L. (3) Perform
a sequence of e’s with as many e’s as needed until the opinion of Agent 3 becomes greater
than U . The result of this iteration is a sequence of the form bfdace · a∗e∗. Repeat steps 1-3
indefinitely.

The above process produces the ω-sequence w = v ·w1 ·v ·w2 · . . . of the form (bfdace a∗e∗)ω

where v = bfdace and wi = amieni are results of the i-th iteration of the process, and ni ≥ 0
and mi ≥ 0 are the number of a’s and e’s in each wi. (The opinion evolution of run πw,
with L = 0.2, U = 0.8 and Binit = (0.0, 0.2, 0.8, 1.0) is illustrated Fig. 4b)

Since the subword v is a complete (1,6)-multi-window and appears infinitely often in w,
w is m-bounded fair for m = |A| − 3 = 1. Furthermore, right after each execution of edge
f in step 1, the opinion of Agent 1 gets closer to L, but it is still smaller than L since the
opinion of Agent 2 at that point is smaller than L. For symmetric reasons, after action b, the
opinion of Agent 4 gets closer to U , but it is still greater than U since the opinion of Agent
3 at that point is greater than U . Consequently, the opinion of Agent 1 is always below L,
while the opinion of Agent 4 is always above U with L < U . Therefore, they cannot converge
to the same opinion.
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5 Dynamic Influence

The static weights of the influence graph of an OTS imply that the influence that each
individual has on others remains constant throughout opinion evolution. However, in real-life
scenarios, the influence of individuals can vary depending on many factors, in particular the
state of opinion (or opinion climate). Indeed, individuals may gain or lose influence based on
the current opinion trend or for expressing dissenting and extreme opinions, among others.

To account for the above form of dynamic influence, we extend the weight function
I : E → (0, 1] of the influence graph G = (A, E, I) as a function I : E × [0, 1]|A| → [0, 1] on
edges and the state of opinion. The resulting graph is said to have dynamic influence.

▶ Definition 22 (Dynamic OTS). A Dynamic OTS (DOTS) is a tuple (G, Binit, →) where
G = (A, E, I) has dynamic influence I : E × [0, 1]|A| → [0, 1]. We write IB

ij for I((i, j), B).
The labeled transition → is defined as in Def. 2 but replacing Iij with IB

ij in Eq. 1.

The notions of runs, words, e-paths, and related notions for DOTS remain the same as
those for OTS (Def. 4). Let us consider some examples of dynamic influence.

Confirmation Bias. Under confirmation bias [8], an agent j is more influenced by those
whose opinion is closer to theirs. The function IB

ij = 1 − | B[j] − B[i] | captures a form of
confirmation bias; the closer the opinions of i and j, the stronger the influence of i over j.

Bounded Influence. Nevertheless, if we allow dynamic influence that can converge to 0 in
a given run Binit

e0−→ B1
e1−→ . . . , i.e, if limt→∞ IBt

i,j = 0, we may reduce indefinitely influence
and end up in a situation similar to non-strong connectivity of the graph, thus preventing
consensus as in Section 3.1 (Fig. 2). Analogously, if limt→∞ IBt

i,j = 1, we may end up in
puppet situations preventing consensus like in Section 3.2 (Fig. 2c). Both situations are
illustrated in the DOTS in Fig. 5. To prevent them, we bound the dynamic influences.

▶ Definition 23 (Bounded Influence). A DOTS (G, Binit, →) with G = (A, E, I) has bounded
influence if there are constants IL, IU ∈ (0, 1) such that for each B ∈ [0, 1]|A|, (i, j) ∈ E, we
have IB

i,j ∈ [IL, IU ].

The previous form of confirmation bias influence IB
ij = 1 − |B[j] − B[i]| is not bounded.

Nevertheless, the linear transformation IL + (IU − IL)IB
ij can be used to scale any unbounded

influence IB
ij into a bounded one in [IL, IU ] while preserving its shape.

We conclude with our other main theorem, whose proof is given in the technical report [7].

▶ Theorem 24 (Consensus with bounded influence). Let M = (G, Binit, →) be a DOTS where
G is a strongly-connected, influence graph. Suppose that M has bounded influence. For every
run π of M , if wπ is m-bounded fair with m ≥ |A| − 1, then π converges to consensus.

The result generalizes Th. 18 to dynamic bounded influence. Therefore, in strongly-
connected and dynamic bounded influence graphs, convergence to consensus is guaranteed
for all runs that are m-bounded fair, which include each random run almost surely.

4 We use a clamp function for [0, 1] defined as [r]10 = min(max(r, 0), 1) for every r ∈ R.
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6 Conclusions and Related Work

We introduced a DeGroot-based model with asynchronous opinion updates and dynamic
influence using labelled transition systems. The model captures opinion dynamics in social
networks more faithfully than the original DeGroot model. The fairness notions studied and
the consensus results in this paper show that the model is also tractable and brings new
insights into opinion formation in social networks. To our knowledge, this is the first work
that uses fairness notions from concurrent systems in the context of DeGroot-based models.

There is a great deal of work on DeGroot-based models for social learning (e.g., [4, 13, 12,
38, 37, 15, 11]). We discuss work with asynchronous updates and dynamic influence, which
is the focus of this paper. The work [15] introduces a version of the DeGroot model in which
self-influence changes over time, while the influence on others remains the same. The works
[11, 12] explore convergence and stability, respectively, in models where influences change over
time. The works mentioned above do not take into account asynchronous communication,
whereas this paper demonstrates how asynchronous communication, when combined with
dynamic influence, can prevent consensus.

Recent works on gossip algorithms [17, 30, 2, 35] study consensus with asynchronous
communications for distributed averaging and opinion dynamics. The work in [30] studies
reaching consensus (in finite time) rather than converging to consensus. The works [2, 35]
consider undirected cliques rather than directed graphs as influence graphs. The closest
work is [17], which states consensus for random runs in directed strongly connected graphs
but unlike our case all edges have the same fixed weight q ∈ (0, 1) (i.e., they assume static
influence with the same influence value for all edges). The dynamics of asymmetric gossip
updates in [17] can indeed be captured as OTS, and their random runs are almost-surely
m-bounded fair. Consequently, our work generalizes the consensus result in [17] by extending
it to graphs with (bounded) dynamic influence and whose edges may have different weights.
Furthermore, the framework in [17] does not address fairness notions which are the focus
and the main novelty of our work.

The work [19] discusses probabilistic fairness as a method equally strong as strong fairness
to prove liveness properties, where a liveness property is characterized by a set of states such
that a run holds this property iff the run reaches a state of this set. However, the property
of (convergence to) consensus (Def. 6) does not correspond to this notion of liveness since
it is not about reaching a specific set of states but about converging to a consensual state.
In fact, unless there are puppets or the initial state of a run is already a consensual state,
consensus is never reached in finite time in our model.

Bounded fair ω-words can be characterized by Prompt Buchi Automata (PBW) [3].
Indeed, the set of bounded-fair words of an OTS can be characterized as the language
of PBW. Hence, the closure properties of these automata may prove valuable for future
developments of our work. It would also be interesting to see in future work whether or not
the m−bounded fair words of an OTS can be characterized as the language of a PBW (or of
an elegant variant of it).

In future work, we plan to study the actual value of consensus in a given system. This may
provide information about the most influential agents. We also plan to study how actions
can be scheduled (or manipulated), while preserving the fairness assumptions, to converge
more quickly or slowly to a consensus, or to a given consensus value. For example, giving
priority to edges whose agents have a greater opinion disagreement, while respecting fairness
assumptions. We may build on previous work on priorities in concurrent communications [6]
for this purpose.
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Finally, we plan to extend our model with agents that can learn by exchanging beliefs,
lies, and information, by building upon our work in concurrent constraint programming (e.g.
[24, 23, 18]).
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