35th International Conference on
Concurrency Theory

CONCUR 2024, September 9-13, 2024, Calgary, Canada

Edited by
Rupak Majumdar
Alexandra Silva

\\v LIPICS

LIPlcs — Vol. 311 - CONCUR 2024 www.dagstuhl.de/lipics

Editors

Rupak Majumdar
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
rupak@mpi-sws.org

Alexandra Silva
Cornell University, Ithaca, NY, USA
alexandra.silva@gmail.com

ACM Classification 2012

Theory of computation — Concurrency; Theory of computation — Categorical semantics; Theory
of computation — Process calculi; Theory of computation — Markov decision processes; Theory of
computation — Modal and temporal logics; Theory of computation — Verification by model checking;
Theory of computation — Automata over infinite objects

ISBN 978-3-95977-339-3

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-339-3.

Publication date
September, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by /4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs. CONCUR.2024.0

ISBN 978-3-95977-339-3 ISSN 1868-8969 https: / /www.dagstuhl.de/lipics

https://orcid.org/0000-0003-2136-0542
mailto:rupak@mpi-sws.org
https://orcid.org/0000-0001-5014-9784
mailto:alexandra.silva@gmail.com
https://www.dagstuhl.de/dagpub/978-3-95977-339-3
https://www.dagstuhl.de/dagpub/978-3-95977-339-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CONCUR.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-339-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)

Roberto Di Cosmo (Inria and Université Paris Cité, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University, Brno, CZ)

Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (Nanyang Technological University, SG)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, Wadern, DE)

Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CONCUR 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Rupak Majumdar and Alexandra Silva i 0:ix

Committees
... 0:xi

Invited Talks

Constrained Horn Clauses for Program Verification and Synthesis
Arie Gurfinkel 1:1-1:1

Principles of Persistent Programming
Azalea Raad 2:1-2:1

Verifying Concurrent Search Structures
Thomas WIS ...t e 3:1-3:1

Regular Papers

Centralized vs Decentralized Monitors for Hyperproperties
Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla,
and Jana Wagemaker e 4:1-4:19

MITL Model Checking via Generalized Timed Automata and a New Liveness
Algorithm
S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan 5:1-5:19

Causally Deterministic Markov Decision Processes
S. Akshay, Tobias Meggendorfer, and P. S. Thiagarajan 6:1-6:22

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks
Jestis Aranda, Sebastidn Betancourt, Juan Fco. Diaz, and Frank Valencia 7:1-7:17

Bidding Games with Charging
Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik 8:1-8:17

Risk-Averse Optimization of Total Rewards in Markovian Models Using
Deviation Measures
Christel Baier, Jakob Piribauer, and Maximilian Starke 9:1-9:20

Passive Learning of Regular Data Languages in Polynomial Time and Data
Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini 10:1-10:21

Left-Linear Rewriting in Adhesive Categories
Paolo Baldan, Davide Castelnovo, Andrea Corradini, and Fabio Gadducci 11:1-11:24

History-Determinism vs Fair Simulation
Udi Boker, Thomas A. Henzinger, Karoliina Lehtinen, and Aditya Prakash 12:1-12:16

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi

Contents

The Power of Counting Steps in Quantitative Games
Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and
Pierre Vandenhove

As Soon as Possible but Rationally
Véronique Bruyere, Christophe Grandmont, and Jean-Francois Raskin

RobTL: Robustness Temporal Logic for CPS
Valentina Castiglioni, Michele Loreti, and Simone Tini

Effect Semantics for Quantum Process Calculi
Lorenzo Ceragioli, Fabio Gadducci, Giuseppe Lomurno, and Gabriele Tedeschi ...

Invariants for One-Counter Automata with Disequality Tests
Dmitry Chistikov, Jérome Lerouz, Henry Sinclair-Banks, and Nicolas Waldburger

Weighted Basic Parallel Processes and Combinatorial Enumeration
Lorenzo Clementeo.o o e

Computing Inductive Invariants of Regular Abstraction Frameworks
Philipp Czerner, Javier Esparza, Valentin Krasotin, and Christoph Welzel-Mohr .

Behavioural Metrics: Compositionality of the Kantorovich Lifting and an
Application to Up-To Techniques

Keri D’Angelo, Sebastian Gurke, Johanna Maria Kirss, Barbara Kénig,

Matina Najafi, Wojciech Rézowski, and Paul Wild

Reversible Transducers over Infinite Words
Luc Dartois, Paul Gastin, Loic Germerie Guizouarn, R. Govind, and
Shankaranarayanan KrisShna

An Automata-Based Approach for Synchronizable Mailbox Communication
Romain Delpy, Anca Muscholl, and Grégoire Sutre

Regular Games with Imperfect Information Are Not That Regular
Laurent Doyen and Thomas Soullard

Validity of Contextual Formulas
Javier Esparza and Rubén Rubioo i

A Unifying Categorical View of Nondeterministic Iteration and Tests
Sergey Goncharov and Tarmo Uustalu

Phase-Bounded Broadcast Networks over Topologies of Communication
Lucie Guillou, Arnaud Sangnier, and Nathalie Sznajder

Inaproximability in Weighted Timed Games
Quentin Guilmant and Jo€l OQuaknine,

Faster and Smaller Solutions of Obliging Games
Daniel Hausmann and Nir Piterman,

Strategic Dominance: A New Preorder for Nondeterministic Processes
Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Sara¢

Around Classical and Intuitionistic Linear Processes
Juan C. Jaramillo, Dan Frumin, and Jorge A. Pérezccciiiiuiiian..

13:1-13:18

14:1-14:20

15:1-15:23

16:1-16:22

17:1-17:21

18:1-18:22

19:1-19:18

20:1-20:19

21:1-21:22

22:1-22:19

23:1-23:19

24:1-24:17

25:1-25:22

26:1-26:16

27:1-27:15

28:1-28:19

29:1-29:20

30:1-30:19

Contents

Bi-Reachability in Petri Nets with Data
Lukasz Kamiriski and Stawomir Lasota i

Minimising the Probabilistic Bisimilarity Distance
Stefan Kiefer and Qiyi Tango e

Automating Memory Model Metatheory with Intersections
Aristotelis Koutsouridis, Michalis Kokologiannakis, and Viktor Vafeiadis

On Continuous Pushdown VASS in One Dimension
Guillermo A. Pérez and Shrisha Rao

Nominal Tree Automata with Name Allocation
Simon Prucker and Lutz Schrodero

Branching Bisimilarity for Processes with Time-Outs
Gaspard Reghem and Rob J. van Glabbeek iiiiiiiiiiiiiiiiiin.

A Spectrum of Approximate Probabilistic Bisimulations
Timm Spork, Christel Baier, Joost-Pieter Katoen, Jakob Piribauer, and
Tim QUATIMANI ..o e e

Progress, Justness and Fairness in Modal p-Calculus Formulae
Myrthe S. C. Spronck, Bas Luttik, and Tim A. C. Willemse

Coinductive Techniques for Checking Satisfiability of Generalized Nested
Conditions
Lara Stoltenow, Barbara Konig, Sven Schneider, Andrea Corradini, Leen Lambers,
and Fernando OTejaso.ou i

A PSPACE Algorithm for Almost-Sure Rabin Objectives in
Multi-Environment MDPs
Marnix Suilen, Marck van der Vegt, and Sebastian Junges

0:vii

31:1-31:20

32:1-32:18

33:1-33:16

34:1-34:20

35:1-35:17

36:1-36:22

37:1-37:19

38:1-38:22

39:1-39:20

40:1-40:17

CONCUR 2024

Preface

This volume contains the contributions accepted for the 35th International Conference on
Concurrency Theory (CONCUR), held in 2024. CONCUR serves as an annual scientific
forum for researchers, developers, and students working to expand the field of concurrency
theory and its applications. CONCUR 2024 was organized in Calgary, Canada between 9
and 13 September, 2024, as part of CONFEST 2024. Along with CONCUR, CONFEST also
featured the QEST+FORMATS conference, as well as several workshops.

For CONCUR 2024, we received 80 submissions and accepted 37 for presentation at the
conference. We are grateful for the hard work of our program committee as well as the many
external experts who produced 240 reviews and engaged in lively discussions. We wish to
thank the authors for submitting their work to CONCUR, and we congratulate the authors of
all accepted papers. We look forward to a scientifically interesting conference in September.

We would like to thank the CONCUR invited speakers, Arie Gurfinkel (University of
Waterloo), Azalea Raad (Imperial College London), and Thomas Wies (New York University),
as well as the CONFEST Unifying Speaker, Corina Pasareanu (NASA Ames/Carnegie Mellon
University), and the QEST+FORMATS invited speaker, Mor Harchol-Balter (Carnegie
Mellon University).

In 2020, CONCUR and the IFTP WG 1.8 on Concurrency Theory initiated the test-of-time
award to honor significant contributions to Concurrency Theory that were published at
CONCUR. This year’s award goes to Stephen D. Brookes and Peter W. O’Hearn, for their
papers “A semantics for concurrent separation logic” and “Resources, concurrency and local
reasoning,” respectively, both published in CONCUR 2004.

The proceedings of CONCUR 2024 are freely available through the LIPIcs series. We
thank Diwakar Krishnamurthy, the general chair, as well as the rest of the organizing team,
and the University of Calgary for their assistance in organizing CONFEST 2024. We look
forward to welcoming you in Calgary!

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Committees

Program committee

Alessandro Abate
Alexandra Silva (co-chair)
Andreas Pavlogiannis
Antonin Kucera
Ashutosh Trivedi
Barbara Konig
Benjamin Kaminski
Cinzia Di Giusto
Colin Gordon
Constantin Enea

Dan Ghica

Dana Fisman

Daniele Gorla

Davide Sangiorgi
Emmanuele d’Osualdo
Frits Vaandrager
Guillermo Pérez
Ilaria Castellani
James Worrell

Jana Wagemaker
Kirstin Peters

Klaus v. Gleissenthall
Michele Boreale
Nadia Labai

Orna Kupferman
Roland Meyer

Rupak Majumdar (co-chair)
S Akshay

Sadegh Soudjani
Sebastian Junges
Stefan Milius
Subhajit Roy
Thejaswini K.S.
Umang Mathur
Valeria Vignudelli
Yu-Fang Chen

Steering committee

Luca Aceto

Christel Baier

Pedro D’Argenio
Wan Fokkink (chair)
Catuscia Palamidessi
Jiri Srba

Oxford

Cornell University

Aarhus

Masaryk University

UC Boulder

University of Duisburg-Essen
Saarland University

Univ of Nice

Drexel University

Ecole Polytechnique

Huawei

Ben-Gurion University
University of Rome La Sapienza
University of Bologna

University of Konstanz

Radboud University

University of Antwerp

INRIA Sophia-Antipolis

Oxford

Reykjavik

Augsburg University

Vrije Uni Amsterdam

University of Florence

AWS

Hebrew University

TU Braunschweig

Max Planck Institute for Software Systems
Indian Institute of Technology Bombay
Max Planck Institute for Software Systems
Radboud University & Nijmegen
FAU Erlangen-Niirnberg

IIT Kanpur

ISTA

National University of Singapore
ENS Lyon

Academica Sinica Taiwan

Reykjavik University

Technical University Dresden
Universidad Nacional de Cérdoba
Vrije University Amsterdam
Ecole Polytechnique

Aalborg University

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Constrained Horn Clauses for Program Verification
and Synthesis

Arie Gurfinkel &8 &
University of Waterloo, ON, Canada

—— Abstract

First Order Logic (FOL) is a powerful formalism that naturally captures many interesting decision
and optimization problems. In recent years, there has been a tremendous progress in automated
logic reasoning tools, such as Boolean SATisfiability Solvers and Satisfiability Modulo Theory solvers.
This enabled the use of logic and logic solvers as a universal solution to many problems in Computer
Science, in general, and in Program Analysis, in particular. Most new program analysis techniques
formalize the desired analysis task in a fragment of FOL, and delegate the analysis to a SAT or an
SMT solver.

In this talk, we focus on a fragment of FOL called Constrained Horn Clauses (CHC) and the
CHC solver SPACER. CHCs arise in many applications of automated verification. They naturally
capture such problems as discovery and verification of inductive invariants; Model Checking of safety
properties of finite- and infinite-state systems; safety verification of push-down systems (and their
extensions); modular verification of distributed and parameterized systems; type inference, and
many others.

Using CHC separates the process of developing a proof methodology (also known as generation
of Verification Condition (VC)) from the algorithmic details of deciding whether the VC is correct.
Such a flexible design simplifies supporting multiple proof methodologies, multiple languages, and
multiple verification tasks with a single framework, without sacrificing performance and scalability.

2012 ACM Subject Classification Theory of computation — Logic and verification
Keywords and phrases Constrained Horn Clauses

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.1

Category Invited Talk

© Arie Gurfinkel;
37 licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 1; pp. 1:1-1:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:arie.gurfinkel@uwaterloo.ca
https://ece.uwaterloo.ca/~agurfink
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.4230/LIPIcs.CONCUR.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Principles of Persistent Programming

Azalea Raad 24
Imperial College London, UK

—— Abstract

Persistent programming is the art of developing programs that operate on persistent (non-volatile)
states that survive program termination, be it planned or abrupt (e.g. due to a power failure).
Persistent programming poses several important challenges: 1) persistent systems have complex —
and often unspecified — semantics in that operations do not generally persist in their execution order;
2) software bugs in persistent settings can lead to permanent data corruption; and 3) traditional
testing techniques are inapplicable in persistent settings. Can formal methods come to the rescue?

2012 ACM Subject Classification Theory of computation — Program verification
Keywords and phrases Persistent Programming
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.2

Category Invited Talk

Funding UKRI fellowship MR/V024299/1, EPSRC grant EP/X037029/1and VeTSS

© Azalea Raad;
37 licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 2; pp.2:1-2:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:azalea.raad@imperial.ac.uk
https://www.SoundAndComplete.org
https://doi.org/10.4230/LIPIcs.CONCUR.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Verifying Concurrent Search Structures

Thomas Wies &
New York University, New York, NY, US

—— Abstract

Search structures support the fundamental data storage primitives on key-value pairs: insert a
pair, delete by key, search by key, and update the value associated with a key. Concurrent search
structures are parallel algorithms to speed access to search structures on multicore and distributed
servers. For these data structures to be efficient, the underlying parallel algorithms need to perform
fine-grained synchronization between threads. This makes them notoriously difficult to design and
implement correctly. Indeed, bugs are routinely found both in actual implementations and in the
designs proposed by experts in peer-reviewed publications. Often, these bugs elude testing-based
quality control due to complex thread interactions that only manifest after deployment, and under
conditions that are difficult to replicate. Given the critical role that concurrent search structures
play in today’s software infrastructure, it is therefore highly desirable to verify their correctness
using formal methods, preferably in an automated fashion.

In this talk, I will present a framework for obtaining linearizability proofs for concurrent search
structures that are modular, reusable, and amenable to automation. The framework takes advantage
of recent advances in local reasoning techniques based on concurrent separation logic. I will provide
an overview of these techniques and discuss there use for verifying both lock-based and lock-free
concurrent search structures such as concurrent (skip)lists, hash structures, binary search trees,
B trees, and log-structured merge trees.

2012 ACM Subject Classification Theory of computation — Program verification
Keywords and phrases Concurrent search structures

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.3

Category Invited Talk

Funding This work is funded in parts by the United States National Science Foundation under
grants CCF-2304758 and CCF-1815633. Further funding came from an Amazon Research Award
Fall 2021. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author and do not reflect the views of Amazon.

Acknowledgements This talk is based on joint work with many of my students and colleagues,
including Siddharth Krishna, Roland Meyer, Nisarg Patel, Dennis Shasha, Alexander Summers, and
Sebastian Wolff.

© Thomas Wies;
37 licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:wies@cs.nyu.edu
https://orcid.org/0000-0003-4051-5968
https://doi.org/10.4230/LIPIcs.CONCUR.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Centralized vs Decentralized Monitors for
Hyperproperties

Luca Aceto =
Dept. of Computer Science, Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Antonis Achilleos =
Dept. of Computer Science, Reykjavik University, Iceland

Elli Anastasiadi &
Uppsala University, Sweden

Adrian Francalanza =
University of Malta, Malta

Daniele Gorla &

Dept. of Computer Science, “Sapienza” University of Rome, Italy

Jana Wagemaker &
Dept. of Computer Science, Reykjavik University, Iceland

—— Abstract

This paper focuses on the runtime verification of hyperproperties expressed in Hyper-recHML, an
expressive yet simple logic for describing properties of sets of traces. To this end, we consider a
simple language of monitors that observe sets of system executions and report verdicts w.r.t. a
given Hyper-recHML formula. We first employ a unique omniscient monitor that centrally observes
all system traces. Since centralised monitors are not ideal for distributed settings, we also provide
a language for decentralized monitors, where each trace has a dedicated monitor; these monitors
yield a unique verdict by communicating their observations to one another. For both the centralized
and the decentralized settings, we provide a synthesis procedure that, given a formula, yields a
monitor that is correct (i.e., sound and violation complete). A key step in proving the correctness of
the synthesis for decentralized monitors is a result showing that, for each formula, the synthesized
centralized monitor and its corresponding decentralized one are weakly bisimilar for a suitable notion
of weak bisimulation.

2012 ACM Subject Classification Theory of computation — Operational semantics; Theory of
computation — Modal and temporal logics; Theory of computation — Logic and verification

Keywords and phrases Runtime Verification, hyperlogics, decentralization
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.4

Related Version Full Version: https://arxiv.org/abs/2405.12882 [2]

”

Funding This work has been supported by the project “Mode(1)s of Verification and Monitorability
(MoVeMent) (grant No 217987) of the Icelandic Research Fund.
Elli Anastasiadi: Elli Anastasiadi’s research has been supported by grant VR 2020-04430 of the

Swedish Research Council.

1 Introduction

Runtime verification (RV) [12] is a verification technique that observes system executions to
determine whether some given specification is satisfied or violated. This runtime analysis
is usually conducted by a computational entity called a monitor [33]. RV is a lightweight
verification technique that is carried out as the system under observation executes, thereby
© Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla, and
37 Jana Wagemaker;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 4; pp.4:1-4:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0001-8554-6907
mailto:antonios@ru.is
https://orcid.org/0000-0002-1314-333X
mailto:elli.anastasiadi@it.uu.se
https://orcid.org/0000-0001-7526-9256
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:gorla@di.uniroma1.it
https://orcid.org/0000-0001-8859-9844
mailto:janaw@ru.is
https://orcid.org/0000-0002-8616-3905
https://doi.org/10.4230/LIPIcs.CONCUR.2024.4
https://arxiv.org/abs/2405.12882
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Centralized vs Decentralized Monitors for Hyperproperties

avoiding scalability issues caused by the state-explosion problem, as is the case for model
checking. Recently, RV has been extended to parallel set-ups [17,24,45], and a large body of
work in that setting aims to verify hyperproperties at runtime [1,18,19,27,30].

Hyperproperties [27] are sets of hypertraces, i.e. sets of traces that may be seen as
describing different system executions or the contributions of different sequential processes
to a system execution. As argued in [22], many properties of concurrent and distributed
systems can be viewed as hyperproperties. When verifying hyperproperties at runtime,
several traces (i.e. several execution sequences) can be observed instead of just one, possibly
at the same time. Several extensions of temporal logics, such as HyperLTL, HyperCTL* [26],
Hyper?LTL [14], have been defined to express hyperproperties. Extensions of standard logics
to hyper properties also include variations of the p-calculus, such as [1], setting the basis for
the logic used in this paper, and [36], which studies an asynchronous semantics.

Since they were proposed by Clarkson and Schneider in [27], hyperproperties have become
a fundamental, trace-based formalism for expressing security and privacy properties, verified
using static and dynamic techniques [10,14, 15, 18,22, 23, 25,30] implemented in a variety of
tools [13,15,29]. There is a large body of work, such as [10,23,37], detailing several algorithms
for monitoring (fragments of) hyperlogics under different assumptions and providing several
correctness guarantees. However, these proposals either construct a centralized monitoring
algorithm that has access to all traces in the observed hypertrace, or verify single trace
properties, over a distributed set-up!. Having an omniscient monitor simplifies the runtime
analysis since the monitoring algorithm can compare all traces as needed by simply accessing
different parts of its local memory. But this power comes with drawbacks. For starters,
centralized monitors are unrealistic for distributed systems, where trace analysis is typically
localised to network nodes so as to minimize communication across locations. Moreover,
centralized monitors create single points of failure during verification [8]. Furthermore, it
can be problematic to store all the traces locally, especially in light of the wide availability of
multi-core systems. The goal of the decentralized monitor synthesis from logical specifications
presented in this paper is to permit distributed monitor choreographies with local trace views
whose components communicate in order to verify global properties (such as hyperproperties).
Decentralized monitors have been shown to avoid high contentions leading to vastly improved
scalability [8]. They also offer better privacy guarantees whenever they are stationed locally
at the nodes where the respective traces are generated [35,39]. To the best of our knowledge,
such a message-passing monitoring set-up has never been studied for the purpose of verifying
hyperproperties so far.

In this paper, we study procedures for the automated synthesis of centralized and de-
centralized monitors from hyperproperties described in the logic Hyper-recHML [1]. This
logic extends the linear-time [51] p-calculus [40] (also known as Hennessy-Milner logic with
recursion [44]) with constructs to describe properties of hypertraces inspired by the work on
HyperLTL (namely variables ranging over traces, modal operators parametrized by trace
variables, matching/mismatching between trace variables, and existential and universal
quantification over them). Hyper-recHML can describe hyperproperties not expressible in
HyperLTL or HyperCTL*, such as properties that speak about consensus (see Example 2) and
periodicity (see Example 3). Furthermore, Hyper-recHML supports a general, syntax-driven
monitor synthesis that can handle both the aforementioned hyperproperties, at least in the
centralized case (see also the discussion in Section 5).

L See e.g. [20,21,31,35] for distributed monitoring algorithms for classic trace-based logics.

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

In both the centralized and decentralized set-ups, we work in the parallel model [30], where
a fixed number of system executions is processed in parallel by monitors in an online fashion.
We specify monitors using a process-algebraic formalism that builds on the one presented
in [5,34] to define a class of monitors called regular. Such monitors are easy to describe,
resemble (alternating) automata, and have sufficient expressive power to provide standard
monitoring guarantees. Moreover, their algebraic structure supports the compositional
definition of their operational semantics and monitor synthesis procedures from formulas,
building on previous work relating algebraic process calculi with RV [6,9,16,32,33,38,42,43].

In the centralized case, for each formula in the fragment of Hyper-recHML limited to
greatest-fixed-point operators, our synthesis procedure yields a monolithic monitor that
has access to all the traces in an observed hypertrace. However, in order to synthesize
decentralized monitors for a sufficiently expressive fragment of the logic, it is necessary to
extend the monitor capabilities with communication, as shown already in [1]. For instance, to
monitor for the property “If there is a trace where event a occurs, then there exists another
trace where event b does not occur thereafter”, monitors observing different traces need to
communicate to record that event a occurred in some trace at some point and that there is
some trace where b does not occur from that point onwards. Allowing monitors to send and
receive messages significantly complicates their operational semantics (see Section 4), the
monitor synthesis procedure (see Section 4.2), and all consequent proofs. The operational
semantics for communicating monitors is one of the main contributions of the paper since its
design is crucial to obtain the correctness guarantees provided by the synthesis procedure
for decentralized monitors. In particular, the semantics of decentralized monitors and their
synthesis from formulas have to be designed carefully to ensure that monitors are reactive
(they are always ready to process any system event) and input-enabled (they can always
receive any input from other monitors in their environment), properties that are desirable in
any decentralized RV set-up.

We show that both the centralized and the decentralized monitor synthesis procedures are
correct. More precisely, the monitors synthesized from formulas are sound and violation-
complete, meaning that (1) if the monitor synthesized from a formula ¢ reports a positive
(resp., negative) verdict when observing a hypertrace 7', then 7" does (resp., does not) satisfy
o, and (2) if T does not satisfy ¢, then its associated monitor will report a negative verdict
when observing T' (see Theorems 7 and 8, and Corollaries 10 and 11). The proof of correctness
in the decentralized case is considerably more technical than the corresponding proof in the
centralized setting, due to the intricate communication semantics. To address the resulting
technical challenges, we develop a proof strategy where we prove the correctness of the
decentralized monitor synthesis procedure using the centralized one as a yardstick.

This methodology is one of the key contributions we offer in this study. More precisely,
in Section 4.1 we identify siz properties of a decentralized monitor synthesis that make it
“principled” (see Definition 13) and we show that, when a decentralized monitor synthesis is
principled, the centralized and decentralized monitors synthesized from a formula are related
by a suitable notion of weak bisimulation (Theorem 14). Apart from supporting the definition
of decentralized monitor synthesis procedures, this result allows us to reduce the correctness
of our decentralized monitor synthesis to that of the centralized one, which can in turn drive
the definition of further synthesis procedures in future work. We also conjecture that our
methodology provides a path to proving similar results for other models of communicating
monitors independent of the monitoring strategy. In summary, our contributions are the
following:

4:3

CONCUR 2024

4:4

Centralized vs Decentralized Monitors for Hyperproperties

a framework for monitoring hyperproperties by a central monitor that has access to

all locations (Section 3) and a decentalized monitoring set-up for hyperproperties, with

monitors that communicate (Section 4);

a synthesis function that returns a correct centralized monitor for every formula without

least fixed points (Section 3);

a synthesis function that returns a correct (decentralized) choreography of communicating

monitors for every formula without least fixed points that has no location quantifier

within a fixed point operator (Section 4); and

a methodology to prove the correctness of a synthesis of communicating monitors, by

establishing a list of desirable properties and relating the behavior of the decentralized

monitors to that of the corresponding centralized monitor (Definition 13 and Theorem 14).
Omitted proofs, due to space constraints, can be found in [2].

2 The Model and the Logic

Let Act be a finite set of actions with at least two elements?, ranged over by a, b; the set
of (infinite) traces over Act is Trc = Act”, ranged over by ¢. Given a finite and non-empty
set of locations £ ranged over by ¢, a hypertrace T on L is a function from L to Trc; the
set of hypertraces on £ is denoted by HTrcy. £ and Act are fixed throughout this paper.
A hypertrace describes a (distributed) system with |£| users, and every user is located at
a unique location chosen from £. A system behavior is captured by a hypertrace T on L,
mapping every user to the trace they perform.

For t,t € Trc, we write t — t' whenever t = at’. Let A : £ — Act; for T,T" € HTrc,, we

write T - T’ whenever T(¢) A©, T'(0), for every £ € L. Notice that, for each T, there is

a unique pair A and T’ such that T A T more precisely, for every ¢ € £, we have that
A(f) = a and T'(¢) = t/, whenever T'(¢) = at’. We denote the A and T” just defined by hd(T)
and tl(T) respectively. For a partial function f: D — E (where D and E are sets ranged
over by d and e, respectively), we denote by dom(f) the set {d € D | f(d) is defined} and by
mg(f) the set {e | 3d € dom(f). f(d) = e}. Notation f[d — e] denotes the (partial) function
mapping d to e and behaving like f otherwise.

2.1 The Logic Hyper-recHML

We consider Hyper-recHML as the logic to specify hyperproperties. We assume two disjoint
and countably infinite sets IT and V' of location variables and recursion variables, ranged over
by m and =z, respectively. Formulas of Hyper-recHML are constructed as follows:

pu=tt|ff | oAp | eV | maxz.p |minz.g |z | In.eo |Vro|n=7 |7 #£ 7| [az]e | (az)e

Apart from the basic boolean constructs, we include the greatest and and least fixed-
point operators to describe unbounded and/or infinite behaviors in a finitary manner,?
existential /universal quantifiers and equality /inequality tests on location variables, and the
usual Hennessy-Milner modalities where [a,| stands for “necessarily after a at the location
bound to 7”7, and (a,) denotes “possibly after a at the location bound to 7”. A formula

is said to be guarded if every recursion variable appears within the scope of a modality

2 When Act is a singleton, every property in the logic becomes equivalent to true or false.
3 In LTL, this behavior is captured by the ‘Until’ and ‘Release’ operators, but these are less expressive
than fixed-points; see [7].

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

Table 1 The semantics of Hyper-recHML.

[tt]? = HTrc, Iff]2 =0 [#]2 = p(x)
o ATl = [el2 NPT [Vel =lelo VPl
[max 2.4 = | J{S 1S < 457} [min z.9]; = (WS | S 2 [1)
[Br.el;, = U [[‘P]]Z[ﬂHZ] [vr.el;, = m [[‘Pﬂg[wae]
teL teL
_ e HTrc, if o(m) = o(n') L HTrc, if o(m) # o(n’)
=T = { 0 otherwise I # =1, = { 0 otherwise

llaxlely = AT | hd(T)(o(7)) = a implies #(T) € [¢]g}
[{ax)ele ={T | hd(T)(o(m)) =a A t(T) € [£]7)}

within its fixed-point binding. All formulas are assumed to be guarded (without loss of
expressiveness [41]). We write FVloc(¢) to denote the free location variables of ¢, and
FVrec(y) for the free recursion variables.

» Remark 1. We consider formulas where bound location variables are all pairwise distinct
(and different from the free variables); hence, the formula Vr.[a,]3m.¢ denotes the formula
V. ax) 3. (o{" /£ }), where p{™/ .} stands for the capture-avoiding substitution of «/ for =
in . A similar notation for other kinds of substitutions is used throughout the paper. _

The semantics of a Hyper-recHML formula ¢ is defined over HTrc. by exploiting two
partial functions: p: V — 2HT2 which assigns a set of hypertraces on £ to all free recursion
variables of ¢, and o: II — £, which assigns a location to all free location variables of ¢. In
what follows, we tacitly assume that the free recursion and location variables in a formula ¢
are always included in dom(p) and dom(o), respectively.

The semantics for formulas in Hyper-recHML is given through the function H,]]Z as shown
in Table 1. A formula {(a,)p holds true at hypertrace T if the trace in 7" at the location
bound to 7 starts with an a and t/(7T) satisfies ; by contrast, a formula [a,]|e can also hold
true if the trace in 7" at the location associated to 7 does not start with an a. Whenever ¢
is closed (i.e., without any free variable), the semantics is given by [[@]]37 where () denotes the

partial function with empty domain. Notationally, we shall simply write [p] instead of [[go]]g

We say that T satisfies the closed formula ¢ if T' € [¢].
» Example 2. For example, consider the set of actions {a, b}; then, the hyperproperty
o =Vm.maxz.((bz)x V I’ (7 £ 7 A (ap)z)) (1)

is a consensus-type property stating that, at every position of every trace, whenever there is
an a there is another trace that also has a. Using the semantic definition of the logic, it is not
hard to see that the hypertrace T over the set of locations {¢1, {3, {3} that maps ¢ to a*,
Lo to ba* and £3 to (ba)® does not satisfy the property ¢,: what breaks the property is the
first position. On the other hand, the hypertrace T» that maps ¢1 to a*, £s to (ab)* and /3
to (ba)¥ does satisfy ¢, because at each position there are two traces that exhibit an a. 4

4:5

CONCUR 2024

4:6

Centralized vs Decentralized Monitors for Hyperproperties

2.2 On the Expressiveness of Hyper-recHML

The logic Hyper-recHML adapts linear-time pHML [44] to express properties of hypertraces,
just as HyperLTL and HyperCTL* [26] are variations on LTL [47] and CTL* [28], respectively,
interpreted over hypertraces. It is well known that pHML is more expressive than LTL and
CTL* [52]. Tt is, therefore, natural to wonder whether Hyper-recHML can express properties
that cannot be described using HyperLTL and HyperCTL*.

We claim that the strictness of the inclusion of LTL in pHML is preserved for their
hyper-extensions. To justify our claim, we present two arguments to demonstrate that
Hyper-recHML is more expressive than HyperLTL, which rely on classic results on the
inexpressiveness of LTL, the embedding of LTL in pHML, and the ability of Hyper-recHML
to quantify over traces more liberally than HyperLTL.

First, we recall that Wolper showed in [52] that the property “event a occurs at all even
positions in a trace” cannot be expressed in LTL (see [52, Corollary 4.2] that is based on
Theorem 4.1 in that reference). We will refer to this property as ¢, where “e¢” stands for
even, and adapt it to a hypertrace setting.

» Example 3. Let @5, be the hyperproperty on the set of actions {a,b} that results from
adding an existential trace quantifier 37 at the beginning of ¢., and replacing all modalities
with 7-indexed ones:

on, = Im.max . ([ax){az)x A [br]{ax)z) (2)

This is a liveness property that describes the periodicity of events; when evaluated over
singleton hypertraces, it coincides with the evaluation of .. 1

The hyperproperty ¢p, defined above can be used to prove the following result.
» Proposition 4. Hyper-recHML is more expressive than HyperLTL.

The second witness to the fact that Hyper-recHML is more expressive than HyperLTL is
the possibility to use quantifiers in any part of a formula. For example, the hyperproperty
o defined in (1) can potentially spawn an unbounded number of quantifiers, by unfolding
the recursion when encountering a events.

» Proposition 5. Hyper-recHML is more expressive than HyperCTL*.

We shall see later on that part of this additional expressiveness of Hyper-recHML is
present in the fragments for which we synthesize monitors.

3 Centralized Monitoring

The set of centralized monitors CMon is given by the following grammar:
CMon>m:=yes | no | end | agm | m4+m | m&m | m@m | reczm | x

Notationally, we denote with ® any of ® and @, and use v to range over the verdicts
{yes, no,end}. The operational semantics of centralized monitors is given in Table 2. Notice
that monitors that wait for an action at some location (as prescribed by writing a,) and do
not see that action therein (as stated by A) stop their monitoring activity, by reporting end.

Monitors can yield verdicts at any point of their computation. This is represented by
the judgement =, whose intended use is to evaluate monitors and reach a verdict, whenever
possible. The rules are given in Table 3; as one may expect, verdict evaluation is non-
deterministic, due to the presence of +. Also notice that there can be multiple ways to infer

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

Table 2 The operational semantics for centralized monitors, where ® € {®, ®}.

A A
A All) =a A(l) #a m{"*" /. = m/ m — m’
v — v
A A A / A !
ag.m —m ag.m — end rec t.m — m m+n-—m
A / A !/ A /
n-—n m-— m n-—n
A A
m+n-=n mon-—=m on
Table 3 Verdict evaluation for centralized monitors (up to com- Table 4 The instrumenta-
mutativity of +, ®, and ®). tion rules for centralized mon-
itors.
m = end
v oo n = end m = yes m = no mimn/ Ti>T'
m@On=end mEn=yes mRn= no moT o m o1
m = no m = yes
m=v n=wv n=v m{* "/} = m=v
m+n=v mbn=v men=uv rec x.m = v m>T — v

the same verdict for the same monitor: e.g., for yes ® no we can either use the third or the
(symmetric version of the) fourth rule from the first line of Table 3. However, the inferred
value is of course the same (i.e., yes, in the previous situation).

We instrument a monitor m on a hypertrace T" based on the rules of Table 4. As usual,
we write —* for the reflexive-transitive closure of —.

From Formulas to Centralized Monitors

We derive monitors for the subset of formulas without least fixed-points, denoted with
Hyper-maxHML. More precisely, given a formula , we want to derive a monitor that, when
monitoring a hypertrace T', returns no if and only if 7" does not belong to the semantics of ;
furthermore, if it returns yes, then T belongs to the semantics of . All regular properties of
infinite traces that can be monitored for violations with the aforementioned guarantees can
be expressed without using least fixed-point operators (see the maximality results presented
in [5, Proposition 4.18] and [7, Theorem 5.2] in the setting of logics interpreted over infinite
traces). Intuitively, we use least fixed-points to describe liveness properties, whose violation
does not have a finite witness in general.

The definition of the synthetized monitor is given by induction on ¢. This definition is
parametrized by a partial function o, assigning a location to all the free location variables
of ¢; when ¢ is closed, we consider Cmg(p). The formal definition is given in Table 5. The
interesting cases are for the quantifiers (that are treated as conjunctions and disjunctions,
respectively) and for the modal operators.

» Example 6. Let £ = {1,2} and Act = {a, b}, and consider the formula (2). The monitor
synthesis in Table 5 produces the following monitor m when applied to that formula:

m = EB rec z.((ag.(ag.x 4 bp.no) + by.yes) @ (by.(ag.x + be.no) + ag.yes)).
£e{1,2}

4:7

CONCUR 2024

4:8

Centralized vs Decentralized Monitors for Hyperproperties

Table 5 Centralized monitor synthesis.

cme(tt) = yes cme (ff) = no cme(z) =2 Cme(max z.¢) = rec .Cme (@)

emo (p A ') = 0mo () ® Cmo (¢') cmg (¢ V ') = 0mo () & Omo (')

cme (V) = ®e€£ CMg sy () cme (Im.p) = ®ee£ CMy s ()

cmy (r = ') = yes if o(m) = o(7') cmy (r £ 7) = yes if o(m) # o(n')
no otherwise no otherwise

Mo ([ar]p) = o(m)-CMa(9) + 32,2, bom)yes CMo((an)p) = ao(x)-CMa (@) + 32, ., bo(r)-n0

When monitor m is instrumented with the hypertrace T' mapping location 1 to a* and
location 2 to (ab)“, the verdict no cannot be reached: indeed, T satisfies the formula ¢ since
the trace at location 1 has a at all positions. On the other hand, when m is instrumented
with the hypertrace 7" mapping location 1 to b and location 2 to (ab)*, the no verdict is
reached after the monitor has observed the first two actions at locations 1 and 2; this is in
line with the fact that T does not satisfy ¢y, . 1

The main results of this section are that the centralized monitors synthesized from formulas
report sound verdicts and their verdicts are complete for formula violations. We refer the
reader to [7] for a discussion on notions of correctness for monitors and the significance of
soundness and violation-completeness. The proofs can be found in [2].

» Theorem 7 (Soundness). Let ¢ € Hyper-marHML be a closed formula and T € HTrce. If
cmg(p) > T —* no, then T & [¢]; if cmg(p)>T —* yes, then T € [¢].

» Theorem 8 (Violation Completeness). Let ¢ € Hyper-maxHML be a closed formula and
T € HTrce. If T &], then cmg(p)>T —* no.

4 Decentralized Monitoring

When verifying a distributed system, having a central authority that performs any type of
runtime verification is a strong assumption, as it reduces the appeal of distribution. Thus,
we study to what extent hyperproperties can be monitored by decentralized monitors.

We associate monitors to locations, denoted by ¢, and monitors associated to £ monitor
only actions required to happen at ¢, thus allowing the processing of events to happen locally.
This imposes some form of coordination between monitors at different locations. For this
reason, we introduce the possibility for monitors to communicate.

We define a communication alphabet Com, ranged over by ¢, over some finite alphabet of
communication constants Con (that contains Act), ranged over by =, as

Com>sc¢ == (IG,y) | (?G,~),

where G C £ and v € Con. We have a communication action (G,) for sending v to group
G (multicast communication), and one (?G,y) for receiving « from any monitor from the set
G. Point-to-point communication can be represented by taking singleton sets for G.

The syntax of decentralized monitors is given by the following grammar:

DMon > M ==[m], | MVM | MAM

LMon>m:=yes | no|end | am | cm | m+m | m&m | me&m | recxm | x

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

Table 6 The operational semantics for decentralized local monitors (up to commutativity of +,
® and @), where we let A denote either a, (!G,~) or (?4,~) for £ € L, G C L.

ledG G
am L m T (G, ~).m G, I
(?G,~).m —Ls m
A ¢, 20,
m{rec Im/x} 2 m/ m i> m/ n i> TL/ m (7€) m/ n (7€) TL/
A a ! I ?

rec x.m = m’ moOn—>m On an(fﬁ) m' o'
A G, 2, 20,

m 2 m/ m (!Gyy) m/ m (7¢,v) m/ n (7)

At (1G7) 0y,

mon—>m On mon—=>m' on

Table 7 Operational semantics for communication

of M € DMon (up to commutativity of A, V).
Table 8 Operational semantics for

actions of M € DMon (up to commut-

(1Gv) ’ (20) ’
m

m—— m———1m teG ativity of A, V).
2:(1G, s (2,
mle 289 1) e 82),
All) =a m S m’
0 0¢G 7
m ﬁL) [m](— [m,]l
G: (2 ,7) G: (20, 7)
[mle —— [m]e [m]e ——— [m] A)=a m%P m%
M G: (74, 7) M, N G: (7¢,7) / [m][i> [end]g
RIS o€ {A,V}
MoN ~—= M oN’ MA5 M O NAN
- °c<{nvg
M UG e GO MoN S M'oN
o€ {A,V}

0:('G,y)

MoeN —5 M oN’

Monitor [m]; denotes that m monitors the trace located at location ¢, so, it is ‘localized’
at ¢ (this justifies the name LMon). Monitors assigned to the same trace run in parallel
and observe identical events; contrary to [1], monitors assigned to different traces are no
longer completely isolated from each other, but can now communicate, which is the main
new feature of the decentralized set-up.

The operational rules for m € LMon are given in Table 6. Notice that, when we have
parallel monitors, only one of them at a time can send; by contrast, all those that can receive
from some location ¢ are forced to do so.

For M € DMon, the operational semantics can be found in Table 7 (the rules concerning
communication) and Table 8 (the rules concerning action steps). The operational semantics
in Table 7 defines multicast, where a monitor located at £ sends a message to group G and
every monitor at a location in G that can receive from ¢ does so; every monitor that cannot,
or that is not in G, does not change its state. The first four rules capture the judgment for
inferring when all components of a monitor which are able to receive a certain ~y sent from a
location do so. Intuitively, ¢ is the location from which message v was sent to group G, and

G: (7, L _ . .
M AR N indicates that every monitor in M located at a location in G that can receive

4:9

CONCUR 2024

4:10

Centralized vs Decentralized Monitors for Hyperproperties

Table 9 The verdict combination rules for Table 10 The evolution of a decentralized
decentralized monitors (up to commutativity monitor instrumented on a hypertrace.
of A and V, ranged over by o).

MA5 M TAT

m=v M = end N = end . .
Mv>T— Mb>T
[mle = Mo N = end
A EOGD
M = no M=yes N=w S
/
M AN = no MAN=v M>T—M>T
M = yes M=n N=v ﬂ
MV N = yes MVN=wv MpoT — v

v from ¢ indeed has received ~ and transitioned appropriately in V. The last two rules then
actually define communication. In particular, the last rule in Table 7 implements multicast
by stipulating that the outcome of the synchronization between a send action ¢ : (1G,~)
and a receive one of the form G : (74,~) is the send action itself, which can be received by
other monitors at locations in G in a larger monitor of which M ¢ NV is a sub-term. We note,
in passing, that monitors M € DMon are “input-enabled”: for each M, G, ¢ and ~, there is

g6y M’. So the last rule in Table 7 (and its symmetric

always some M’ such that M
version) can always be applied when the send transition in its premise is available.

Monitors can also locally observe an action, as prescribed by a location-to-action function
A; the rules are given in Table 8. Monitors at the same location observe the same action. If
a monitor cannot take the action prescribed by A at its location, the monitor becomes end,
as stipulated by the second rule given in Table 8. Note that it is not sufficient to trigger
that rule when m cannot exhibit action A(¢): we also require that m cannot communicate.
Note that the inability of m to exhibit action A(¢) is not sufficient to trigger that rule: we
also require that m cannot communicate. Intuitively, this is because monitors exhibit an
“alternating” behavior in which they observe the next action produced by a system hypertrace
and then embark in a sequence of communications with other monitors to inform them of
what they observed. As will be made clear in our definition of a weak bisimulation relation
presented in Definition 9, such communications are interpreted as internal actions in monitor
behavior. Therefore, the inability of some monitor [m],; to perform action A(¢) can only be
gauged in “stable states” — that is, monitor states in which no communication is possible.
This design choice is akin to that underlying the definition of refusal testing presented in [46]
and of the stable-failures model for (Timed) CSP defined in [49,50], where the inability of
a process to perform some action can only be determined in states that afford no internal
computation steps.

Verdict evaluation for M € DMon is defined in Table 9 and relies on that for m € CMon
provided in Table 3. Finally, given a decentalized monitor M and a hypertrace T, the
instrumentation of the monitor on the trace is described by the rules of Table 10. As before,
we denote with »—* the reflexive transitive closure of —.

4.1 Synthesizing Decentralized Monitors Correctly

In this section we describe how to synthesize decentralized monitors “correctly” from formulas,
i.e. such that their behavior corresponds to that of the corresponding centralized monitors.
The advantage of this approach is that it simplifies the proof that monitors synthesized via
a “correct” decentralized synthesis function are sound and violation-complete, by utilizing

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

the correspondence to centralized monitors. Moreover, it identifies desirable properties
of a “correct” decentralized synthesis function that can guide the development of further
automated decentralized-monitor synthesis algorithms.

We first define the correspondence between centralized and decentralized monitors and
show that this correspondence is sufficient to obtain soundness and violation-completeness in
the decentralized setting from the corresponding results in the centralized setting (Theorems 7
and 8). In the remainder of the section, given a synthesis function which takes as inputs
a formula ¢ and a mapping o from location variables to locations, and outputs a monitor
M, () € DMon, we specify criteria that allow us to derive this correspondence.

We write M — M’ to denote the existence of an integer h > 0 and of h monitors
My, ..., My, locations ¢1,...,¢,_1 and communication actions cq,...,cp_1 such that M; =
M, My = M’', and M, L, M;yy (for every ¢ = 1,...,h — 1). By definition of — on
communicating monitors, each ¢; is (1G;,7;), for some G; C £ and 7; € Con. Similarly, at
the level of local monitors we write m — m/ to denote the existence of an integer h > 0, of
local monitors my,...,my and of ¢1,---¢p, € {(!G,7), (?4,v) | G C L,£ € L, € Con} such
that my = m, mj, = m’ and m; = mi41.

The correspondence between the centralized and the decentralized monitors is character-
ized as a weak bisimulation:

» Definition 9. A binary relation R over DMon x CMon is a weak bisimulation if and only
if, whenever MRm, it holds that:

1. 3M’ € DMon such that M = M’ and M’ = v if and only if m = v.

2. If M Ay M’ then Im’ € CMon such that m 25 m’ and M'Rm/.

3. If M S M’ then M'"Rm, where ¢ = {: (\G,~) for some £ € L, G C L, ~ € Con.

4. If m Ay then there exist My, My, M’ such that M = M, A, My = M' and M'Rm/’.

One of the main features of weak bisimilarity is that, if M, () and cm, () are weakly
bisimilar, then they report the same verdict when observing any hypetrace T'; thus, we obtain
violation-completeness and soundness for decentralized monitors from the corresponding
results for centralized monitors:

» Corollary 10 (Soundness). Let T € HTrcz, ¢ € Hyper-maxHML be a closed formula such
that Mgy(p) is defined, and R a weak bisimulation such that (My(p), cmg(p)) € R. If
My(p) > T —* no, then T & [¢]; if Mg(p)>T —* yes, then T € [¢].

» Corollary 11 (Violation Completeness). Let T € HTrce, ¢ € Hyper-marHML be a closed
formula such that Mg(p) is defined, and R a weak bisimulation such that (Mg(p), cmg(p)) €
R. If T & [¢], then My(p)>T —* no.

We now describe sufficient conditions for any decentralized synthesis function such
that there is a weak bisimulation between the centralized and the decentralized monitors
synthesized from a formula ¢ and a location environment o. Whenever we write M <> N
for M, N € DMon, we assume that ¢ € {¢ : (!G,v) | £ € L,G C L,~v € Con}, as per the
labeling of the communication transitions of decentralized monitors. We write [m], € M, for
M € DMon, if [m], is one of its constituents: formally, [m], € [m], and, if [m], € M, then
[m]e € Mo N and [m], € N o M (recall that ¢ denotes either A or V). We start by defining
when M € DMon can(not) communicate:

» Definition 12. Let M € DMon. We say M € DMon can communicate, if there exists
[m]e € M such that m % n for some ¢ € Com. Otherwise, we say M cannot communicate.

4:11

CONCUR 2024

4:12

Centralized vs Decentralized Monitors for Hyperproperties

» Definition 13. We say that a monitor synthesis M_(—) is principled when it satisfies the

following conditions, for every formula ¢ and environment o such that M, () is defined:

Verdict Agreement: for every verdict v, cmy(p) = v if and only if M,(p) = v;

Verdict Irrevocability: for every verdict v and My () 4 My = My — M, if My = v, then
M = v,

Reactivity: for every A, there exists M such that M, (p) EN M;

Bounded Communication: for every Mg (p) A Mo M’, there exists M" such that
M’ — M" and M" cannot communicate;

Processing-Communication Alternation: for every M, () A M = My,
1. M,(p) cannot communicate, and
2. My S M, implies My %44 for every ¢ and A;

Formula Convergence: if M, (p) A M = M, M’ cannot communicate, and cmg(p) 4
cmy (') for some formula ¢’ and environment o', then M’ = Mg/ (¢').

Let M_(—) be a decentralized synthesis function. We define relation R as follows:

Rm ZRIUR,
R1 2 {(M, (), cm,(p)) | FVloc(p) C dom(a)}
Ry 2 {(M’,Cm,,/(go’)) | FVloc(p) € dom(o) and M, () A Mo M > Mg (go’)}

The crucial property of any principled synthesis function is the following:

» Theorem 14. For every principled synthesis M_(—), R is a weak bisimulation.

4.2 From Formulas to Decentralized Monitors

We now describe how to synthesize decentralized monitors for a fragment of Hyper-maxHML,
and show that this synthesis function satisfies Definition 13. This allows us to apply
Theorem 14 and obtain soundness and violation-completeness of these synthesized monitors.
In what follows, we consider formulas from PHyper-recHML, the subset of Hyper-recHML
given by the following grammar (see Section 5 for a discussion on the choice of fragment):

pu=3rg | Vro | oA | oV | ¥
Ypu=tt | ff |7=m|7#nx | YA [PV | maxze) | minz) | z | [ax]Y | (ax))

We denote the class of formulas of type ¢ with Qf (quantifier free). PHyper-recHML is a
subset of Hyper-recHML and thus its semantics over HTrc, is the one given in Table 1.

We synthesize decentralized monitors for the fragment of PHyper-recHML only containing
formulas of type v without diamonds and least fixed-points, which we call PHyper-maxHML.
In section 4.3 we also discuss how diamonds can also be added to the picture. The synthesis
for decentralized monitors is given in Table 11. First, we derive a monitor belonging to LMon
for formulas of type ¥ € Qf; this synthesis function is parametrized by a location ¢ € £ and
a partial function o from IT to £ that is defined for every free location variable in 1. Then
we derive monitors belonging to DMon for formulas of type .

Note that, in the definition of DM, (), cm, (1) is the monitor resulting from the
centralized synthesis function defined in Table 5. Intuitively DM, (v) synthesizes a local
monitor at each location relevant to v, which are the locations associated by o to the free
location variables in 1. If ¢ = @ (and so 1) does not have any free trace variables), there is
no need for communication between locations, and in fact a verdict can be obtained from 1)
immediately. This verdict coincides with the one reached in the centralized synthesis.

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:13

Table 11 Decentralized monitor synthesis, where £y is any fixed element of L.

pm (tt) = yes pm’ (ff) = no Dmf,(x) =z pm’ (max 2.1)) = rec z.Dm? (1)

pmy (¢ A ') = DmE (¥) © pm, (1//) m; (w V') = pmi (¢) & pmi (¥)
a.(((mg(o)\{}),a)+ > b.((rmg(o)\{£}),b).yes if o(m) =¢
b (fax) = -
Z b. (?{o(m)},a).omé () + Z 2 o(m)},b) yes) otherwise
beAct b#a

Dmy,) .
no otherwise no otherwise

Clr =)= { yes if o(m) = o(7’) pml (1 £ 1) = {yes if o(7) # o(n')

Mo (¢) = { V temg(o) PG ()]e if o # 0

[v]e, ifo=0Acm,(¢) = v
MU(VW'@) = /\Zeﬁ DMa[m—M] (50) DMG(HW-@) = \/Zeﬁ DMU[m—%] (90)
DM, (¢ A ¢') = DMs () A DM, (¢') DM, (¢ V ¢') = DM, () V DM (¢')

We observe that the case for o = () and cm, (¢)) = v only applies when v is a Boolean
combination of tt and ff. Thus, every closed formula ¢ on which we apply our synthesis
1. is trivial, 7.e. ¢ is logically equivalent to tt or ff, or
2. is such that every subformula 1 € Qf of ¢ is in the scope of a quantifier.
For non-trivial formulas, the o =) case for DM, (¢) never applies, and we can ignore it. The
decentralized monitor for a closed formula ¢ is DMg(¢p).

» Remark 15. In the first clause of the definition of the synthesis function for box formulas,
it might seem superfluous to send a message also when the monitor observes some b # a.
However, this is important to make sure monitors do not deadlock. To see this, consider a
synthesis where that definition instead looks like

a.(!(rg(0)\{£}),a).om’ (¥) + Zb.yes if o(m) =1¢

m ([a = i
pm, ([ax]1) Z b.(?2{o(m)},a).om: (1) otherwise

beAct

Consider Act = {a,b}, L = {¢,¢'} and some hypertrace T such that T'(¢) = b.t; and
T(¢") = b.ty for some traces t; and ty. Now consider m ® n, where m = pm’ ([az]1)),
n = pmi(lan]'), o(x) = ¢ and o(n') = ¢'. For A({) = A({') = b # a, we then get
m 2, yes and n A, (2{o(7")},a).pmt (1), and monitor yes ® (?{a(7’)}, a).Dmé (¢') is
stuck because the receive action of the monitor (?{c(7’)},a).pm¢ (¢') has no matching send.
It is precisely to avoid these scenarios that we make sure that, for each sending transition,
there is a corresponding receiving transition, and a monitor always sends the last action it
read to all other locations in the range of the environment o. J

Soundness and violation completeness for the synthesis defined in Table 11 follow from
Corollary 10 and 11 by using Theorem 14, once we prove the following key result:

» Theorem 16. The synthesis function DM defined in Table 11 is principled.

CONCUR 2024

4:14

Centralized vs Decentralized Monitors for Hyperproperties

» Example 17. In order to highlight the inter-monitor communication, we consider the
following formula

¢ = 3r.3n" ([ax]ff A [br]FF)

over £ = {1,2} and Act = {a, b}, which states that either both traces start with a, or neither
does. By letting o = [— £, 7' + ¢'], the synthesis for this property gives:

DMy (¢ \/ \/ [Dmg/([aﬂ]ff A [bﬂ/]ff)} , where
LeL prefee} ¢

(a.(10,a).no + b.(10, b).yes) ® ife=0=0
(0.(10,0).no + a.(10, a).yes)
(@.({€'}, a).no + b.({0'},b)yes) ® if £# ¢ and £ = ¢
" a.((?{'},b).no+ (7{l'}, a).yes) +
o ([axlff A o) = (b.EE?EZ%, bi.no + E?%Z’; a%.yesg)
(a.((?{£},a).no+ (?{L},b).yes) + ifl#¢ and " =0
b.((?{¢},a).no+ (?{¢},b).yes))
® (b.(1{¢},b).no+ a.(!{¢},a).yes)

4.3 On the Decentralized-Monitor Synthesis for Diamonds

The synthesis of decentralized monitors presented in Table 11 does not deal explicitly with
formulas of the form (a,). However, it can be applied to those formulas using the observation
that {(a,)4 is logically equivalent to

[ax]t A Nposalbr]fF. 3)

To showcase this, we present an example of the decentralized synthesis applied on Wolper’s
property (¢p,) from Example 3, which makes use of diamond modalities.

» Example 18. Recall ¢}, from (2); expressed here as Im.¢), with
Y =maxz.(P1 Ap2) 1 =ax{axr)z 2 = [ba(ar)z

Let £ ={1,2} and Act = {a,b}. The synthesis is applied thus:

DMo() = Ve [rec @ (mf () @ mi(6))]

14

with
mfm—w](wl) = ((Z) a).m [m—>£]<<)T)+b.(!®,b),yes
() = 5000yl ((an)2) + 0.0, a) yes
and
mfﬁHg]«an)@ = (a.(!0,a).x + b.(10,b).yes) @ (b.(10,0).no + a.(!0,a).yes) (4)

As the monitors in Example 18 indicate, a decentralized monitor synthesis for formulas
of the form (a,)v that is based on the encoding of (3) leads to monitors with a high degree
of parallelism; for simplicity, the degree in Example 18 is reduced because we assumed

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

to have just two actions. However, |Act| — 1 parallel conjunctions are required in general.
Alternatively, one could define a decentralized monitor synthesis directly for formulas of the
form (a,)1 as follows:

a.(M(rmg(o)\{¢}),a)+ Z b.({(rg(o)\{¢}),b).no if o(mw) =4

b#a
me ((ax)) =
Z b. (?{o(n)},a).om’ (¥) + Z {o(m)},b) no) otherwise
beAct b#a

This is essentially the synthesis for box formulas in Table 11 with no verdicts in place of yes.
With this explicit rule for diamonds, (4) simply reduces to:

mfﬂHe] ({az)z) = a.(10,a).2 + b.(10,0).no

The synthesized monitor for diamond now contains no occurrence of any parallel operator.

5 Conclusion

We provided two methods to synthesize monitors for hyperproperties expressed as fragments
of Hyper-recHML. Our first synthesis procedure constructs monitors that analyse hypertraces
in a centralized manner and are guaranteed to correctly detect all violations of the respective
formula, as long as it does not have a least fixed-point operator. Our second synthesis
algorithm constructs monitors that operate in a decentralized manner and communicate with
one another using multicast to share relevant information between them. The decentralized-
monitor synthesis provides the same correctness guarantees as the centralized one, but is only
defined for formulas with trace quantifiers that do not appear inside any fixed-point operator.
This additional restriction, which is natural and present in many monitoring set-ups for
hyperlogics, e.g. [10,19, 23,26, 30, 36], allows us to focus on examining the intricacies of
monitoring in a decentralized setting with monitor communication. More precisely, it allows
us to fix the ¢ in the synthesis function which, in turn, produces a static set of locations
with which a monitor can communicate. Despite the restriction to PHyper-recHML, our
synthesis algorithm still covers properties that were previously not even expressible, hence
not monitorable, in state-of-the-art hyperlogics.

Of course, the picture is still incomplete: we have a centralized-monitor synthesis procedure
for an expressive fragment of Hyper-recHML, whereas our decentralized-monitor synthesis
deals with a more restricted fragment of that logic. It is not clear if this restriction is
necessary; for example, a different decentralized-monitor synthesis for a larger fragment
might be obtained by utilizing a different communication paradigm other than multicast,
which was adopted in this study. In fact, we conjecture that broadcast communications
might allow us to synthesize decentralized monitors for a larger Hyper-recHML fragment,
including formulae that mix greatest fixed-points and quantifiers, like ¢, defined in (1);
currently, monitors only send messages to the locations in the range of the specified o.
Another interesting direction is to allow monitors to infer information from communications
they did not receive. A good starting point to explore such a synthesis algorithm (and prove
its correctness) can be the synthesis properties in Definition 13. To fully delineate the power
of decentralized monitoring, a maximality result in the spirit of those presented in [5,7] is
needed, which we intend to establish in the future.

Although we have focused on monitors that detect violations, we can also synthesize
monitors that detect all satisfying hypertraces for the respective dual fragments of Hyper-
recHML. Another direction we intend to pursue in future is the development of tools for
monitoring Hyper-recHML specifications at runtime, based on the results of this article. We

4:15

CONCUR 2024

4:16

Centralized vs Decentralized Monitors for Hyperproperties

expect that our decentralised-monitor synthesis procedure can be implemented by generating
a dedicated monitor for every location in a way that is very similar to the synthesis of
pHML monitors presented in [3,4,11] and implemented in the tool detectEr available at
https://duncanatt.github.io/detecter/.

Related Work. To the best of our knowledge, Agrawal and Bonakdarpour were the first
to study RV for hyperproperties expressed in HyperLTL in [10], where they investigated
monitorability for k-safety hyperproperties expressed in HyperLTL. They also gave a semantic
characterization of monitorable k-safety hyperproperties, which is a natural extension to
hyperproperties of the “universal version” of the classic definition of monitorability presented
by Pnueli-Zaks [7,48]. In contrast to this work, we do not restrict ourselves to alternation-free
formulas (see Equation (1)) and every monitorable formula considered by Agrawal and
Bonakdarpour can be expressed in our monitorable fragment. Brett et al. [23] improve on
the work presented in [10] by presenting an algorithm for monitoring the full alternation-free
fragment of HyperLTL. They also highlight challenges that arise when monitoring arbitrary
HyperLTL formulas, namely (i) quantifier alternations, (i7) inter-trace dependencies and
(#i1) relative ordering of events across traces. Our decentralized-monitor synthesis addresses
(7) by using the number of locations as an upper bound on the number of traces, and (i7)
and (44i) via synchronized multicasts.

In [30], Finkbeiner et al. investigate RV for HyperLTL [26] formulas w.r.t. three different
input classes, namely the bounded sequential, the unbounded sequential and the parallel
classes. They also develop the monitoring tool RVHyper [29] based on the sequential
algorithms developed for those input classes. The parallel class is closest to our set-up, since
it consists in a fized number of system executions that are processed synchronously.

Beutner et al. [15] study runtime monitoring for HYPER*LTLy,, a temporal logic that is
interpreted over sets of finite traces of equal length. Unlike HYPER?*LTL [14], HYPERQLTpr
permits quantification under temporal operators, which is also allowed in our logic Hyper-
recHML. In contrast to HyperLTL, HYPERZLTpr features second-order quantification over
sets of finite traces and can express properties like common knowledge.

n [36], Gustfeld et al. study automated analysis techniques for asynchronous hyper-
properties and propose a novel automata-theoretic framework, the so-called alternating
asynchronous parity automata, together with the fixed-point logic H,, for expressing asyn-
chronous hyperproperties. The logic H,, has commonalities with PHyper-recHML, but it
only allows for prenex formulas; moreover, its semantics progresses asynchronously on each
trace. Properties such as “an atomic proposition does not occur at a certain level in the tree
(of traces)” are not expressible in their logic H,,, but can be described in Hyper-recHML.

Chalupa and Henzinger [25] explore the potential of monitoring for hyperproperties using
prefix transducers. They develop a transducer language, called prefix expressions, give it
an operational semantics over a hypertrace (reminiscent of the semantics in Section 4) and
then implement it to assess the induced overheads. They show how transducers can use
the writing capabilities as a method for monitor synchronization across traces, akin to the
monitor communication and verdict aggregation of Section 4. Since transducers are, in
principle, more powerful that passive monitors, additional guarantees are required to ensure
that they do not interfere unnecessarily with system executions.

—— References

1 Luca Aceto, Antonis Achilleos, Elli Anastasiadi, and Adrian Francalanza. Monitoring hy-
perproperties with circuits. In Mohammad Reza Mousavi and Anna Philippou, editors,
Formal Techniques for Distributed Objects, Components, and Systems — 42nd IFIP WG 6.1
International Conference, FORTE 2022, volume 13273 of LNCS, pages 1-10. Springer, 2022.
doi:10.1007/978-3-031-08679-3_1.

https://duncanatt.github.io/detecter/
https://doi.org/10.1007/978-3-031-08679-3_1

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

10

11

12

13

14

15

16

17

18

Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla, and Jana
Wagemaker. Centralized vs decentralized monitors for hyperproperties. CoRR, abs/2405.12882,
2024. doi:10.48550/arXiv.2405.12882.

Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza, and
Anna Ing6lfsdéttir. A monitoring tool for linear-time phml. In COORDINATION, volume
13271 of LNCS, pages 200-219. Springer, 2022.

Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza,
and Anna Ingdlfsdéttir. A monitoring tool for linear-time yHML. Sci. Comput. Program.,
232:103031, 2024. doi:10.1016/j.scico.2023.103031.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ing6lfsdéttir, and Karoliina Lehtinen.
Adventures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. POPL, 3(52):1-29, 2019. doi:10.1145/3290365.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ing6lfsdéttir, and Karoliina Lehtinen.
Testing equivalence vs. runtime monitoring. In Models, Languages, and Tools for Concurrent
and Distributed Programming, volume 11665 of LNCS, pages 28—44. Springer, 2019.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ing6lfsdéttir, and Karoliina Lehtinen.
An operational guide to monitorability with applications to regular properties. Softw. Syst.
Model., 20(2):335-361, 2021.

Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingdlfsdéttir. Runtime
Instrumentation for Reactive Components. In ECOOP, volume 313 of LIPIcs, pages 16:1-16:33.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024.

Luca Aceto, lan Cassar, Adrian Francalanza, and Anna Ingélfsdéttir. On first-order runtime
enforcement of branching-time properties. Acta Informatica, 60(4):385-451, 2023.

Shreya Agrawal and Borzoo Bonakdarpour. Runtime Verification of k-Safety Hyperproperties
in HyperLTL. In IEEE 29th Computer Security Foundations Symposium, pages 239-252. IEEE
Computer Society, 2016.

Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingdlfsdéttir,
and Karoliina Lehtinen. Better late than never or: Verifying asynchronous components at
runtime. In FORTE, volume 12719 of LNCS, pages 207-225. Springer, 2021.

Ezio Bartocci, Ylies Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Ezio Bartocci and Yliés Falcone, editors, Lectures on Runtime Verification
— Introductory and Advanced Topics, volume 10457 of LNCS, pages 1-33. Springer, 2018.
doi:10.1007/978-3-319-75632-5_1.

Raven Beutner and Bernd Finkbeiner. Software verification of hyperproperties beyond k-
safety. In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification — 34th
International Conference, CAV 2022, volume 13371 of LNCS, pages 341-362. Springer, 2022.
doi:10.1007/978-3-031-13185-1_17.

Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-order hyper-
properties. In CAV (2), volume 13965 of LNCS, pages 309-332. Springer, 2023.

Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Monitoring second-
order hyperproperties. In Mehdi Dastani, Jaime Sim&o Sichman, Natasha Alechina, and
Virginia Dignum, editors, Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2024, pages 180-188. ACM, 2024. URL: https:
//dl.acm.org/doi/10.5555/3635637.3662865.

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33-58, 2017.
Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-
contract for distributed multiparty interactions. In Paul Gastin and Francois Laroussinie,
editors, CONCUR 2010 — Concurrency Theory, pages 162—-176, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

Borzoo Bonakdarpour and Bernd Finkbeiner. Runtime verification for HyperLTL. In Yliés
Falcone and César Sanchez, editors, Runtime Verification — 16th International Conference,
RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, volume 10012 of LNCS, pages
41-45. Springer, 2016. doi:10.1007/978-3-319-46982-9_4.

4:17

CONCUR 2024

https://doi.org/10.48550/arXiv.2405.12882
https://doi.org/10.1016/j.scico.2023.103031
https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-031-13185-1_17
https://dl.acm.org/doi/10.5555/3635637.3662865
https://dl.acm.org/doi/10.5555/3635637.3662865
https://doi.org/10.1007/978-3-319-46982-9_4

4:18

Centralized vs Decentralized Monitors for Hyperproperties

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyperproperties.
In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Ozford, United Kingdom,
July 9-12, 2018, pages 162-174. IEEE Computer Society, 2018. doi:10.1109/CSF.2018.00019.
Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and
Corentin Travers. Decentralized asynchronous crash-resilient runtime verification. J. ACM,
69(5):34:1-34:31, 2022. doi:10.1145/3550483.

Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Challenges
in fault-tolerant distributed runtime verification. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation: Discussion,
Dissemination, Applications — Tth International Symposium, ISoLA 2016,, volume 9953 of
LNCS, pages 363-370, 2016. doi:10.1007/978-3-319-47169-3_27.

Borzoo Bonakdarpour, César Sdnchez, and Gerardo Schneider. Monitoring hyperproperties by
combining static analysis and runtime verification. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation. Verification —
8th International Symposium, ISoLA 2018, volume 11245 of LNCS, pages 8-27. Springer, 2018.
doi:10.1007/978-3-030-03421-4_2.

Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-based runtime verification
for alternation-free hyperltl. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 77-93, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

Tan Cassar, Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tuosto. Reliability
and fault-tolerance by choreographic design. In Adrian Francalanza and Gordon J. Pace,
editors, Proceedings Second International Workshop on Pre- and Post-Deployment Verification
Techniques, PrePost@iFM 2017, Torino, Italy, 19 September 2017, volume 254 of EPTCS,
pages 69-80, 2017. doi:10.4204/EPTCS.254.6.

Marek Chalupa and Thomas A. Henzinger. Monitoring hyperproperties with prefix transducers.
In RV, volume 14245 of LNCS, pages 168-190. Springer, 2023.

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sanchez. Temporal logics for hyperproperties. In Martin Abadi and Steve
Kremer, editors, Principles of Security and Trust — Third International Conference, POST 2014,
volume 8414 of LNCS, pages 265—284. Springer, 2014. doi:10.1007/978-3-642-54792-8_15.
Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157—
1210, 2010. doi:10.3233/JCS-2009-0393.

E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151-178, 1986. doi:10.1145/
4904 .4999.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. RVHyper: A
runtime verification tool for temporal hyperproperties. In TACAS (2), volume 10806 of LNCS,
pages 194-200. Springer, 2018.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitor-
ing hyperproperties. Formal Methods Syst. Des., 54(3):336-363, 2019. doi:10.1007/
s10703-019-00334-z.

Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. A lower bound on the number of
opinions needed for fault-tolerant decentralized run-time monitoring. J. Appl. Comput. Topol.,
4(1):141-179, 2020. doi:10.1007/s41468-019-00047-6.

Adrian Francalanza. Consistently-detecting monitors. In CONCUR, volume 85 of LIPIcs,
pages 8:1-8:19. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2017.

Adrian Francalanza. A Theory of Monitors. Inf. Comput., 281:104704, 2021. doi:10.1016/j.
ic.2021.104704.

Adrian Francalanza, Luca Aceto, and Anna Ingélfsdéttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Des., 51(1):87-116, 2017. doi:10.1007/
S10703-017-0273-Z.

https://doi.org/10.1109/CSF.2018.00019
https://doi.org/10.1145/3550483
https://doi.org/10.1007/978-3-319-47169-3_27
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.4204/EPTCS.254.6
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s41468-019-00047-6
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/S10703-017-0273-Z
https://doi.org/10.1007/S10703-017-0273-Z

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker

35

36

37

38

39

40

41

42

43

44

45

46

47

48
49
50

51

52

Adrian Francalanza, Andrew Gauci, and Gordon J. Pace. Distributed system contract
monitoring. J. Log. Algebraic Methods Program., 82(5-7):186-215, 2013.

Jens Oliver Gutsfeld, Markus Miiller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL), January 2021.
doi:10.1145/3434319.

Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-based monitoring of
hyperproperties. In Tomas Vojnar and Lijun Zhang, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 115-131, Cham, 2019. Springer International
Publishing.

Jun Inoue and Yoriyuki Yamagata. Operational semantics of process monitors. In RV, volume
10548 of LNCS, pages 403-409. Springer, 2017.

Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In POPL, pages 582-594. ACM, 2016.

Dexter Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27(3):333-354, 1983. doi:10.1016/0304-3975(82)90125-6.

Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. J. ACM, 47(2):312-360, 2000. doi:10.1145/333979.333987.
Ruggero Lanotte, Massimo Merro, and Andrei Munteanu. A process calculus approach to
detection and mitigation of PL.C malware. Theor. Comput. Sci., 890:125-146, 2021.
Ruggero Lanotte, Massimo Merro, and Andrei Munteanu. Industrial control systems security
via runtime enforcement. ACM Trans. Priv. Secur., 26(1):4:1-4:41, 2023.

Kim G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72(2):265-288, 1990. doi:10.1016/0304-3975(90)90038-J.
Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible choreographies:
A monitors-as-memories approach. In Proceedings of the 19th International Symposium on
Principles and Practice of Declarative Programming, PPDP 17, pages 127-138, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3131851.3131864.
Tain Phillips. Refusal testing. Theoretical Computer Science, 50:241-284, 1987. doi:10.1016/
0304-3975(87)90117-4.

Amir Pnueli. The temporal logic of programs. In FOCS’77, 18th IEEE Annual Symposium on

Foundations of Computer Science, Proceedings, pages 46-57. IEEE, 1977. doi:10.1109/SFCS.

1977 .32.

Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via testers.
In FM, volume 4085 of LNCS, pages 573-586. Springer, 2006.

George M. Reed and A. W. Roscoe. The timed failures-stability model for CSP. heoretical
Computer Science, 211(1-2):85-127, 1999. doi:10.1016/50304-3975(98)00214-X.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, USA, 1997.
Moshe Y. Vardi. A temporal fixpoint calculus. In Jeanne Ferrante and Peter Mager, editors,
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 250-259. ACM Press, 1988. doi:10.1145/73560.73582.

Pierre Wolper. Temporal logic can be more expressive. Inf. Control., 56(1/2):72-99, 1983.
do0i:10.1016/50019-9958(83)80051-5.

4:19

CONCUR 2024

https://doi.org/10.1145/3434319
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1145/333979.333987
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1145/3131851.3131864
https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/S0304-3975(98)00214-X
https://doi.org/10.1145/73560.73582
https://doi.org/10.1016/S0019-9958(83)80051-5

MITL Model Checking via Generalized Timed
Automata and a New Liveness Algorithm

S. Akshay =&
Department of CSE, Indian Institute of Technology Bombay, Mumbai, India

Paul Gastin &
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

R. Govind &
Uppsala University, Sweden

B. Srivathsan &
Chennai Mathematical Institute, India
CNRS, ReLaX, IRL 2000, Siruseri, India

—— Abstract

The translation of Metric Interval Temporal Logic (MITL) to timed automata is a topic that
has been extensively studied. A key challenge here is the conversion of future modalities into
equivalent automata. Typical conversions equip the automata with a guess-and-check mechanism
to ascertain the truth of future modalities. Guess-and-check can be naturally implemented via
alternation. However, since timed automata tools do not handle alternation, existing methods
perform an additional step of converting the alternating timed automata into timed automata. This
“de-alternation” step proceeds by an intricate finite abstraction of the space of configurations of the
alternating automaton.

Recently, a model of generalized timed automata (GTA) has been proposed. The model comes
with several powerful additional features, and yet, the best known zone-based reachability algorithms
for timed automata have been extended to the GTA model, with the same complexity for all the
zone operations. An attractive feature of GTAs is the presence of future clocks which act like timers
that guess a time to an event and stay alive until a timeout. Future clocks seem to provide another
natural way to implement the guess-and-check: start the future clock with a guessed time to an
event and check its occurrence using a timeout. Indeed, using this feature, we provide a new concise
translation from MITL to GTA. In particular, for the timed until modality, our translation offers an
exponential improvement w.r.t. the state-of-the-art.

Thanks to this conversion, MITL model checking reduces to checking liveness for GTAs. However,
no liveness algorithm is known for GTAs. Due to the presence of future clocks, there is no finite
time-abstract bisimulation (region equivalence) for GTAs, whereas liveness algorithms for timed
automata crucially rely on the presence of the finite region equivalence. As our second contribution,
we provide a new zone-based algorithm for checking Biichi non-emptiness in GTAs, which circumvents
this fundamental challenge.

2012 ACM Subject Classification Theory of computation — Timed and hybrid models; Theory of
computation — Quantitative automata; Theory of computation — Logic and verification

Keywords and phrases MITL model checking, timed automata, zones, liveness
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.5

Related Version Full Version: https://arxiv.org/abs/2407.08452 [2]

1 Introduction

The translation of Linear Temporal Logic (LTL) [32] to Biichi automata is a fundamental
problem in model checking, with a long history of theoretical advances [20, 36, 18], tool
implementations [25, 14, 18, 30, 12] and practical applications [33, 34, 26, 27]. In the real-time
setting, Metric Interval Temporal Logic (MITL) is close to LTL, with the modalities Next
© S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan;

oY licensed under Creative Commons License CC-BY 4.0
35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 5; pp. 5:1-5:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:govind.rajanbabu@it.uu.se
https://orcid.org/0000-0002-1634-5893
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.CONCUR.2024.5
https://arxiv.org/abs/2407.08452
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Generalized Timed Automata: Liveness and MITL Model Checking

(X) and Until (U) extended with timing intervals — for instance, X, p)p says that the next
event is a p and it occurs within a delay 0 € [a, b]. Model checking for MITL is known to be
EXPSPACE-complete [4]. This has led to the study of “efficient” conversions from MITL to
timed automata, with each new construction aiming to make the automata more succinct.
Our work is another step in this direction.

There are two ways to interpret MITL formulae: over (continuous) timed signals [4, 29, 15]
or (pointwise) timed words [6, 37, 11]. Since the current timed automata tools work with
timed words, we stick with the pointwise semantics. The state-of-the-art for MITL-to-
TA is based on an initial translation of MITL to one-clock Alternating Timed Automata
(OCATA) [31]. It has been shown that these OCATA can be converted to a network of timed
automata [9, 10]. The tool MightyL [11] implements the entire MITL-to-TA translation.
One of the difficulties in the MITL-to-TA translation is the inherent mismatch between the
logic and the automaton in the way timing constraints are enforced. A future modality
declares that a certain event takes place at a certain timing distance, in the future. In a timed
automaton, clocks measure time elapsed since some event in the past and check constraints
on these values. To implement a future modality, the automaton needs to make a prediction
about the event and verify that the prediction is indeed true. Therefore, each prediction
typically resets a clock and stores a new obligation in the state. The automaton needs to
discharge these obligations at the right times in the future.

-p|0

Figure 1 (top left) Biichi transducer (with outputs) for LTL formula X p (right) Timed transducer
with clock = for MITL formula X;p; m1 := x € I;[z], m2 := x ¢ I; [z] (bottom left) a hypothetical
transducer with a variable 0 that predicts time to next action; f:=0 € 171 :0.

Figure 1 (top left) shows an automaton with outputs for the LTL formula Xp. On an
infinite word wjws ... (where each w; is a subset of atomic propositions) the automaton
outputs 1 at w; iff w; 41 contains p. While reading w;, the automaton needs to guess whether
p € w;y1 or not. Depending on the guess, it stores an appropriate obligation. This is reflected
in the states and transitions: transitions with output 1 go to a state X p which can only read
p next, whereas those with output 0 go to =X p which can only read —p. The Xp and = Xp
can be seen as obligations that the automaton has to discharge from the state.

Now, let us consider a timed version X; p interpreted on timed words. An automaton
for X; p needs to guess whether the next letter is a p and if so, whether it appears within 6
time units for some 6 € I. Figure 1 (bottom left) represents a hypothetical automaton that
implements this idea: assuming it has access to a variable 6 which contains the time to the
next event, the output should depend on whether 6 € I or not. This is exactly what the
if-then-else condition { does: if 8 € I output 1, else output 0. Classical timed automata do
not have direct access to §. They implement this idea differently, by making use of extra

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

states. Figure 1 (right) shows a timed automaton for Xy p. The state X p is split into two
different obligations: X; p where the timing constraint is satisfied, and Xp A = X; p where it
is not. The outgoing guards discharge these obligations. This example shows the convenience
of having access to a variable that can predict time to future events.

This is precisely where the recently proposed model of Generalized Timed Automata
(GTA) [1] enters the picture. This model subsumes event-clock automata [5] and automata
with timers [13]. GTA come equipped with the additional resources to implement predictions
better. GTA have two types of clocks: history clocks and future clocks. History clocks are
similar to the usual clocks of timed automata. Future clocks are like timers, but instead of
starting them at some non-negative value and making them go down to zero, they get started
with some arbitrary negative value and go up until they hit zero. For example, in Figure 1
(bottom left), each transition can start a future clock, guessing the time to the next event.
This immediately gives us the required 6. The exact GTA for X; p is quite close to Figure 1
(bottom left) and is given in Figure 4. Apart from the use of future clocks, the syntax of
transitions in a GTA is much richer than a guard-reset pair as in timed automata. Transitions
contain an “instantaneous timed program”, which consists of a sequence of guards, resets
and releases (for future clocks). When difference constraints are present, the model becomes
powerful enough to encode counter machines and is therefore undecidable. A safe fragment,
with a careful use of diagonal constraints is known to be decidable.

GTAs are advantageous in another sense. In spite of the powerful features, the best
zone-based algorithms from the timed automata literature have been shown to suitably
adapt to the GTA setting, with the same complexity for zone operations, and have been
implemented in the tool TChecker [21]. Therefore, an MITL to GTA conversion allows us to
capitalize on the features and succinct syntax of GTA, and at the same time, lets us model
check MITL directly on richer GTA models. In summary:

We provide a translation of MITL formulae to safe GTA. The translation is compositional

and implementable, and yields an exponential improvement in the number of locations

compared to the state-of-the-art technique for pointwise semantics [11], while the number
of clocks remains the same up to a constant.

Model checking MITL against GTA requires to solve the liveness problem for (safe) GTAs,

which has been open so far. We settle the liveness question in this work. Zone based

algorithms for event-clock automata have been studied in [19]. A notion of weak regions
has been developed and this can be used for solving both reachability and liveness using
zones. The GTA model that we consider in this paper strictly subsumes event-clock
automata. In particular, the presence of diagonal constraints makes the problem more
challenging. Our solution to liveness for GTAs therefore gives an alternate liveness
procedure for event-clock automata, and also settles liveness for event-clock automata
with diagonal constraints, a model defined in [8].

We remark that the techniques used in continuous semantics do not extend to pointwise
semantics. In [15] the authors simplify general MITL formulae into formulae containing
only one-sided intervals (of the form [0, ¢] or [¢, 00)), for which automata are considerably
simpler to construct. However, this simplification at the formula level works only in the
continuous semantics — it does not work in the pointwise-semantics (as Lemma 4.3, 4.4 of [15]
do not extend to pointwise-semantics). The fundamental difference is that in the continuous
semantics we can assert a formula at any time point ¢t. However, in pointwise-semantics,
we can evaluate a formula only at action points, i.e., points where there is an actual action.
For example, in continuous semantics one can rewrite Fiq ¢ p1.) P as Fo,o) Gjo,¢ Fla,p) P When
¢ <b—a (Lemma 4.3, [15]). However, in the pointwise semantics there may be no event in
the interval [0, c] on which we can evaluate Gyg) Fjq,5) p- Therefore, we need a completely
different approach to deal with intervals in the pointwise semantics.

5:3

CONCUR 2024

5:4

Generalized Timed Automata: Liveness and MITL Model Checking

Organization of the paper. We start with preliminary definitions of Generalized Timed
Automata (Section 2) and provide our solution to the liveness problem in Section 3. We
present our MITL to GTA translation in Section 4. Missing proofs and additional explanations
can be found in the full version available at [2].

2 Preliminaries

Let X = Xp W Xy be a set of real-valued variables called clocks, which is further partitioned
into future clocks Xp and history clocks Xp. Let ®(X) denote a set of clock constraints
generated by the grammar: ¢ =2z —y <c| ¢ Ay where z,y € X U{0}, < € {<,<} and
c €7 =17ZU{—00,+00} (the set of integers equipped with the two special values to say
that a clock is “undefined”). We also allow renamings of clocks. Let permy be the set of
permutations o over X U {0} mapping history (resp. future) clocks to history (resp. future)
clocks (0(XFp) = Xp and 0(Xpy) = Xp).

GTA syntax. A Generalized Timed Automaton (GTA) is given by (Q, %X, X, A,Z, Q) where
Q@ is a finite set of states, X is a finite alphabet of actions, X = Xp W X is a set of clocks
partitioned into future clocks Xz and history clocks Xpg. The initialization condition Z is
a set of pairs (qo, go) where a pair consists of an initial state ¢o € @ and an initial guard
go € ®(X), and the accepting condition is given by a set Q5 C @ of Biichi states. The
transition relation A C (Q x X x Programs x @)) contains transitions of the form (g, a, prog, ¢'),
where ¢ is the source state, ¢’ is the target state, a is the action triggering the transition,
and prog is an instantaneous timed program generated by the grammar:

prog := guard | change | rename | prog; prog

where guard = g € ®(X), change = [R] for an R C X, and rename = [o] for a ¢ € permy.
Figure 4 with the blue parts removed illustrates a GTA. Both states ¢; and {5 are initial,
denoted by incoming arrows to each of them, and accepting, marked by the double circle.
The initial guard is the trivial ¢rue constraint. The alphabet ¥ = {0,1} (written in black).
The constraint —x € [is short form for a conjunction of constraints requiring the clock to be
in the interval I. For example, if I = (4, 5], then —x € I is the constraint 4 < —z A —z < 5.
During our MITL to GTA translation, we extend GTAs to include outputs (a formal definition
is given in [2]). The dagger condition (—z € I)?1: 0 is a short form for two transitions, one
which checks —z € I and outputs 1, and the other which checks —z ¢ I and outputs 0.

GTA semantics. A valuation of clocks is a function v: XU{0} — R = RU{—o00, +0o0} which
maps the special clock 0 to 0, history clocks to R>qU{+o00} and future clocks to R<oU{—o0}.
We denote by V(X) or simply by V the set of valuations over X. For a valuation v € V,
define! v =y —x <cas v(y) —v(x) <c. We say that v satisfies a constraint ¢, denoted as
v = ¢, when v satisfies all the atomic constraints in ¢. We denote by v + § the valuation
obtained from valuation v by increasing by é € R>(the value of all clocks in X. Note that,
from a given valuation, not all time elapses result in valuations since future clocks need to
stay at most 0. We now define the change operation that combines the reset operation for
history clocks (which sets history clocks to 0) and release operation for future clocks (which

L To allow evaluation of all the constraints in ®(X), the addition and the unary minus operation on real

numbers is extended [1] with the following conventions (i)(+00) + a = a + (4+00) = +oo for all a € R,
(ii) (—o0) + B8 = B+ (—0o0) = —o0, as long as § # +o00, and (iii) —(4+00) = —o0 and —(—o0) = +o0.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

assigns a non-deterministic value to a future clock). Given a set of clocks R C X, we define
Rr = RN X as the set of future clocks in R, and Ry = RN Xy as the set of history clocks
in R. Then, [Rlv:={v' €V |v/'(2) =0V z € Ry and v'(z) = v(z) V¥ 2 &€ R}. Observe that

v’ has no constraints for the future clocks in R, as they can take any arbitrary value in v'.

For a valuation v € V(X), and o € permy, we define [o]v as v o g, i.e., ([o]v)(z) = v(o(z))
for all z € X U{0}.

For valuations v,v” and a guard g € ®(X) we write v % v/ when v/ = v = g, and

v B, o when R C X and v’ € [R]v, and v 19, when o € permy and v’ = [o]v. When

prog = progi;...;prog,, we write v P8, o' when there are valuations vy, ...,v, such that
prog prog prog,, . . .
v L vy IO v, = v’. The semantics of the GTA A defined above is given by a

transition system TSt whose states are configurations (q,v) of A, where ¢ € @ and v € V is
a valuation. A configuration (g, v) is initial if v |= g for some (¢, g) € Z, and it is accepting
if ¢ € Q. Transitions of TSy are of two forms: (1) delay transition: (q,v) LN (q,v+0) if
v+ 4 is a valuation, i.e., (v+6) | Xp < 0, and (2) discrete transition: (q,v) - (¢',v")
if t = (q,a,prog,¢') € A and v 25 /. A finite (respectively infinite) run p of a GTA is
a finite (respectively infinite) sequence of transitions from an initial configuration of TS 4:

d1,t1

So,t
(40, v0) = (qu,v1) == -
For example, consider the run of GTA in Figure 4 on a timed word (1,1)(0,2)(1, 3)(0,4) ...

(1 occurs at all odd numbers, and 0 at all even numbers, starting from first timestamp 1).

The program (z = 0); [x] used in the transitions first checks if z is 0, and then releases it
to an arbitrary non-deterministic value. The run on the above word would be: (41,2 =
-1) h, (bo,x = —1) Llz, (61,2 = —1)---. A transition 2% denotes a time elapse of ¢
followed by application of the program associated to transition t. At each point the value of
x is released to —1, and is checked with the guard x = 0 at the next event.

An infinite run is accepting if it visits accepting configurations infinitely often. The
run is said to be Zeno if ¥;>¢d; is bounded and non-Zeno otherwise. In this work, we
will be interested in strongly non-Zeno GTA: these are GTA where every accepting run
is non-Zeno. It is possible to convert every GTA into a strongly non-Zeno GTA using a
standard construction from timed automata literature [35]. In the rest of the document, we
will drop the “strongly non-Zeno” prefix and simply say GTA.

Liveness problem. The non-emptiness or liveness problem for a GTA asks whether the given
GTA has an accepting non-Zeno run. Due to our assumption about strong non-Zenoness,
the question reduces to asking if a given GTA has an accepting run. Unfortunately, the

non-emptiness problem even for finite words turns out to be undecidable for general GTA [1].

Therefore, we focus our attention on a restricted sub-class of GTA’s for which non-emptiness
in the finite words case is decidable, called safe GTA [1].

» Definition 1 (Safe GTA [1]). Given a GTA A, let Xp C Xp be the subset of future clocks
used in diagonal guards of A between future clocks, i.e., if t —y < c with x,y € Xp occurs
in some guard of A then x,y € Xp. Then, a program prog is Xp-safe if clocks in Xp are
checked for being 0 or —oo before being released and renamings [o] used in prog preserve Xp
clocks (0(Xp) = Xp). A GTA A is safe if it only uses X p-safe programs on its transitions
and the initial guard gy sets each history clock to either 0 or co.

The GTA in Figure 4 is vacuously safe, since there are no diagonal constraints at all.

» Remark 2. Renaming operations may be considered as syntactic sugar allowing for more
concise representations of GTAs. Indeed, we can transform a GTA A with renamings to
an equivalent GTA A’ without renamings by adding to the state the current permutation

5:5

CONCUR 2024

5:6

Generalized Timed Automata: Liveness and MITL Model Checking

of clocks (composition of the permutations applied since the initial state) and change the
programs of outgoing transitions accordingly. The number of states is multiplied by the
number of permutations that may occur as described above.

Zones, zone graph and simulations. Reachability for GTA proceeds by an enumeration of
its reachable configurations stored as constraint systems called zones. A zone over a set of
variables X U {0} is a conjunction of difference constraints z — y < ¢ where z,y € X U {0},
1€ {<,<} and ¢ € Z. For a zone Z and a valuation v, we write v € Z if the valuation v
satisfies every constraint in Z. Therefore, we also interpret Z as a set of valuations, which
satisfy its constraints.

A pair (¢, Z) with g a control state and Z a zone represents {(g,v) | v € Z}. Successors for
(g, Z) can be defined based on the outgoing transitions of ¢q. For a transition ¢ := (g, a, prog, ¢'),
we write (¢, Z) % (¢, Z) if Zy = {v/ | v/ is a valuation and (g, v) 52 (¢',v") for some v €
Z and 0 € R>¢}. It was shown in [1] that the successor Z; is also a zone. This observation
is used to define the notion of the Zone graph of a GTA.

» Definition 3 (GTA zone graph [1]). Given a GTA A, its GTA zone graph, denoted
GZG(A), is defined as follows: Nodes are of the form (q,Z) where q is a state and Z is a
GTA zone. Initial nodes are pairs (qo, Zo) where (qo, go) € L is an initial condition and Zy is
given by go A (XF < O) A (XH > O) (Zy is the set of all valuations which satisfy the initial
constraint gg). For every node (q,Z) and every transition t := (g, a, prog,q’) there is an edge
(¢,2) 5N (¢', Z;) in the GTA zone graph.

Finally, just as is the case for zone graphs for timed automata, GZG(.A) is not guaranteed
to be finite. In order to use it to check Biichi non-emptiness or reachability, we need a finite
abstraction of the zone graph. The standard technique to obtain such finite abstractions is
using the notion of simulations, that we recall next.

» Definition 4 (Simulation). A (time-abstract) simulation relation on the semantics of a

GTA is a reflexive, transitive relation (q,v) = (q,v') relating configurations with the same

control state and

1. for every § € R>g such that v+ 3§ € V is a valuation, there exists 6’ € R>q such that
v+ 8 €V is a valuation and (q,v + 0) = (¢,v" + '),

2. for every transition t, if (¢, v) SN (q1,v1) for some valuation vy, then (q,v") 5 (q1,v}) for
some valuation vy with (q1,v1) =< (q1,v}),

3. for all future clocks x € Xp, if v(x) = —oco then v'(z) = —o0.

For two GTA zones Z,7', we say (q,Z) = (q,Z") if for every v € Z there exists v' € Z' such

that (q,v) < (g,v").

3 Liveness for GTA

In this section, we will discuss a zone-based procedure to check liveness for safe generalized
timed automata. We start by explaining how the standard zone based algorithm for solving
liveness in classical timed automata can be adapted to the setting of safe GTAs. The approach
for timed automata crucially depends on the existence of a finite time-abstract bisimulation
between valuations, namely the region-equivalence [3]. However, there exists no such finite
time-abstract bisimulation for GTAs (extension of a result of [19]), as illustrated in Figure 2.
The issue is that we cannot forget (abstract) the values of future clocks, unlike history clocks
where values above a maximum constant are equivalent. Therefore, our approach involves a
significant deviation from the standard one.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

by=1;[y]
a[mry] cx=0;y=0
o)) (%)

Figure 2 Example to illustrate no finite bisimulation in GTA; x is a future clock, y a history clock.
The initial transition releases clock x to an arbitrary value, and resets y to 0. From configuration
(b1, = —n,y = 0) (n € N), the only way to reach ¢> is by executing b"c, with 1 time unit between
consecutive b’s. Therefore, (/1,2 = —n,y = 0) and ({1, = —m,y = 0) are simulation incomparable,
when n # m. Hence there is no finite bisimulation.

We fix a safe GTA A for the rest of this section. We recall that our GTA are strongly
non-Zeno, that is, every accepting run is non-Zeno. In order to focus on the main difficulties
and avoid additional technicalities, we assume that the GTA A is without renamings. We
start by noting that non-Zeno runs have a special form: future clocks which are not ultimately
—oo should be released infinitely often. If not, there is a last point where a future clock is
released to a finite value, and the entire suffix of the run should fall under this finite time,
which contradicts non-Zenoness.

01,t1

» Lemma 5. Let p := (qo,v0) Soto, (q1,v1) —— -+ be a non-Zeno run of the GTA A.
Then, for every future clock x of A, and for every index i > 0, if v;(x) # —o0, there exists
j > such that x is released in t;.

Overview of our solution. In classical timed automata, the liveness problem is solved by
enumerating the zone graph, and using a simulation equivalence [23, 7, 16, 17] for termination:
exploration from (g, Z) is stopped if there exists an already visited node (g, Z’) such that
(¢, Z2) < (¢, Z") and (¢, Z") = (q, Z) for some simulation relation <. In this case a special
edge is added between (¢, Z) and (g, Z’) to indicate a simulation equivalence. There is an
(infinite) accepting run iff there is a cycle in the zone graph thus computed, containing an
accepting state. The main point is that, from a cycle in the zone graph with simulation
equivalences, we can conclude the existence of an infinite run over configurations.

At a high level the proof of this fact is as follows. Let us start by ignoring simulations
for the moment: suppose (¢, Z) % (¢, Z) for a sequence of transitions o. By definition of
successor computation in the zone graph, for every v in the zone Z (on the right), there
exists a predecessor v in the zone Z (on the left). Repeatedly applying this argument gives
a valuation v € Z from which o can be iterated ¢ times, for any £ > 1. When ¢ is greater

than the number of Alur-Dill regions [3], we get a run (g, u) <, (¢,u’) such that u and
u’ are region equivalent. Since the region equivalence is a time-abstract bisimulation, this
shows that we can once again do ¢ from (¢,), and so on. This leads to an infinite run
from (g, u) where o can be iterated infinitely often. Now, when simulations are involved,
we need to consider sequences of the form (¢,2) % (q,2') where (¢,Z) < (¢, Z') and
(q,Z") = (¢, Z). An argument similar to the above can be adapted in this case too [28, 24, 22].
The critical underlying reason that makes such an argument possible is the presence of a finite
time-abstract bisimulation, which in timed automata, is given by the region equivalence.
The same idea cannot be directly applied in the GTA setting, as there is no finite time-
abstract bisimulation for GTAs, even with the safety assumption (Figure 2). However, [1]
have defined a finite equivalence v; ~j; v9 and shown that the downward closures of the
reachable zones w.r.t. a certain simulation called the G simulation [16, 17] are unions of ~ s
equivalence classes. Therefore, applying an argument of the above style will give us a run

'l
(q,u) Z= (¢,') such that u ~; v/. But we cannot conclude an infinite run immediately as
~ s is not a bisimulation.

5:7

CONCUR 2024

5:8

Generalized Timed Automata: Liveness and MITL Model Checking

To circumvent this problem, we will define an equivalence = ,; which is in spirit like the
region equivalence in timed automata. As expected, =), will be a bisimulation. However, in
accordance with the no finite timed-bisimulation result, =;; will have an infinite index. We
make a key observation: if we have a run (¢, u) % (g,u’) such that u ~y; v’ and if o releases
every future clock, then we can get a run (g,u) = (q,u”) where u ~); u” for a suitably
modified valuation u”. Since aj; is a bisimulation, this will then give an infinite run where
o can be iterated infinitely often. As we have seen from Lemma 5, if we are interested in
non-Zeno runs, only such cycles where all future clocks are released (or remain —oo) are
relevant. Therefore, in order to decide liveness for safe GTAs, it suffices to construct the zone
graph with the simulation equivalence edges and look for a reachable cycle that contains
an accepting state such that for every future clock x, either z is released on the cycle, or
valuation —oo is possible for clock z.

This section is organized as follows: we will first define the equivalence ~j; and show
that it is a bisimulation; then we recall ~,;, and prove the key observation mentioned above.
One of the main challenges is in addressing diagonal constraints, which is exactly where the
safety assumption is helpful.

A region-like equivalence for GTA. The definition of = ,; looks like the classical region
equivalence extended from [0, +00) to R: all clocks which are lesser than M (which auto-
matically includes all future clocks) have the same integral values, and the ordering of
fractional parts among these clocks is preserved. To account for diagonal constraints in
guards, we explicitly add a condition to say that all allowed diagonal constraints are satisfied
by equivalent valuations. This new equivalence does not have a finite index, but it turns out
to be a time-abstract bisimulation, similar to the classical regions.

» Definition 6. Let vi,v2 € V be valuations. We say vy ~p v if for all clocks x,y:

1. vi(x) <ciff va(x) <c for all < € {<, <} and ¢ € {—o0,+00} or ¢ € Z with ¢ < M,

2.niEz—y<ciffvulEr—y<c forall<e {<,<} and c € {—00, 400} or ¢ € Z with
el < M,

3. if —oo < wvi(x),v1(y) < M then we have {v1(x)} < {vi(y)} iff {ve(x)} < {v2(y)}.

Notice that when vy A vg, the first condition implies vi(x) = +oo iff vo(z) = 400,
v1(z) = —o0 iff ve(x) = —00, —c0 < v1(x) < M iff —oo < va(x) < M, and in this case
Lvi(2)] = [v2(2)] and {vi ()} = 0 iff {va(x)} = 0.

» Lemma 7. =, is a time-abstract bisimulation.

The equivalence ~ s, and moving from ~j; to =p;. The equivalence ~j; is defined on
the space of all valuations. Our goal in this part is to start from v; ~ps vo and generate a
valuation v5 by modifying some values of vq, so that we get vy s v5. Let us first recall the
definition of ~j;, with n be the number of clocks in the GTA.
First, we define ~3; on a,3 € R by a ~y; B if (a 9 c <= B <¢) for all <« € {<,<}
and ¢ € {—o0, 400} or ¢ € Z with |¢|] < M. In particular, a ~p; 5 implies @« = —o0
iff § = —0c0 and @ = +0 iff § = +00. Also, if —M < a < M then a ~j; 8 implies
la) = [B] and {a} = 0iff {3} = 0.
For valuations vy,vy € V we define vq ~pr v if (i) v1(x) ~par vo(x) for all z € X, and
(i1) v1(x) = v1(Y) ~me1)m v2(x) — v2(y) for all pairs of clocks x,y € X.

Notice that ~); and ~,; are incomparable, in the sense that neither of them is a refinement
of the other. The equivalence ~); constrains values up to M, whereas ~,; looks at values
up to nM, i.e., between —nM and nM. For instance, consider vy := (x = M +2,y = 1) and

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

vy = {(x =M+ 3,y =1) for some M > 2. We have v; =) va, but vy s vs. For the other
way around, notice that ~j; has finite index, whereas a; does not. So, v; ~p; vo does not
imply v1 &; vo. To see it more closely, v = j; vo enforces the same integral values for all
future clocks. For clocks less than —(n + 1)M, there is no such constraint on the actual
values in ~ .

As mentioned above, our objective is to obtain ~j; equivalent valuations starting from
~ s equivalent ones. Lemma 8 is a first step in this direction. It essentially shows that, when
restricted to clocks within —M and +M, ~j; entails ~),.

» Lemma 8. Suppose vy ~pr vy. Let x,y be clocks such that —M < vi(x),v1(y) < M. Then,

[o1(2)] = [va(2)], {va(2)} = 0 iff {va(2)} = 0, and {vi(2)} < {vi(y)} iff {v2(2)} < {v2(y)}-

Lemma 8 considers clocks within —M and +M. What about clocks above M? Directly
from vy ~ps v9, we have M < vy(x) iff M < ve(x), and moreover diagonal constraints up
to M are already preserved by ~j;. Therefore, together with Lemma 8, v; ~j; vo implies
v1 /) ve when restricted to clocks greater than —M. We cannot say the same for clocks
lesser than — M, in particular we may have vy (x) = —nM —1 and va(x) = —nM —2. However,
as shown in the lemma below, we can choose suitable values for clocks lesser than —M to
get a ~)s-equivalent valuation from a ~js-equivalent one.

» Lemma 9. Suppose vy ~pr ve, and let L = {x | =M < wvi(x)}. There is a valuation v}
such that vh|; = val, and vy = vh.

Finally, we show that if we have a run between ~,; equivalent valuations, we can extract
a run between =2); equivalent valuations, simply by changing the last released values of
future clocks. Suppose there is a run p from configuration (g, v;) to configuration (g, vx) such
that v1 ~as vy, and all future clocks are released in p. By Lemma 9, there is a vj, satisfying
v1 R vy, that differs from vy, only in the clocks that are less than —M. In order to reach
v}, from vy using the same sequence of transitions as in p, it is enough to choose a suitable
shifted value during the last release of the clocks that were modified. This gives a new run
p’. The non-trivial part is to show that p’ is indeed a run, that is: all guards are satisfied by
the new values. We depict this situation in Figure 3. The modified clocks are those that are
less than —M in vy. Clock x is one such. The black dot represents its value in v, and the
blue dot is its value in vj,. Its new value is still < —M. In the run p’, clock is released to a
suitably shifted value at its last release point. Notice that from this last release point till
k, clock x stays below —M in both p and p’. Therefore, all non-diagonal constraints x < ¢
that were originally satisfied in p continue to get satisfied in p’. Showing that all diagonal
constraints are still satisfied is not as easy. Here, we make use of the safety assumption. Let
us look at a diagonal constraint « — y, and a situation as in Figure 3 where the last release
of y happens after the last release of x. For simplicity, let us assume there is no release of y
in between these two points.

last release of x last release of y
v1 1 1 Vg, V),
0 0:+Y 0
-M v -M -M
x
x x
x x
x

Figure 3 An illustration for the proof of Lemma 10.

5:9

CONCUR 2024

5:10

Generalized Timed Automata: Liveness and MITL Model Checking

We divide the run into three parts: the left part is the one before the last release of =,
the middle part is the one between the two release points, and the right part is the rest of
the run, to the right of the release of y. In the left part, the values of z and y are the same
in both p and p’, and so the diagonal constraints continue to get satisfied. In the right part,
the value of z — y equals v} (x) — v}, (y). Using v}, ~p v1 and vy~ vy, we can argue that vj,
and vy satisfy the same diagonal constraints up to constant M. This takes care of the right
part. The middle part is the trickiest. In this part, we know that x remains less than —M in
both p and p’. The value of y is the same in both p and p’. But what about the difference
z —y? Can it be, say —1 in p and —2 in p’? Here is where we use the safety assumption to
infer the value of x — y. Before y is released, its value should be 0. At that point, x is still
less than —M (in both the runs). Therefore x — y < —M just before y is last released. As
the differences do not change, we see that © — y < —M in the middle part, for both runs.
Hence the diagonal constraints continue to hold in p’. We formalize these observations in
Lemma 10, where we exhaustively argue about all the different cases.

d2,t2

» Lemma 10. Consider a safe GTA A. Let p : (q1,v1) LN (q2,v2) —= -+ (qx,vk) be
a run of A such that vy ~p v and for every future clock x, either x is released in the
transition sequence ti ...tx_q1 or vi(x) = —oo. Let L = {x | —M < vi(z)}. Let v} be

a valuation such that vil; = vely and vi =y vy,. Then, there exists a run of the form
d2,to
/ 3

S1,t))
p/ : (q17'l/'1) = (Q]_,’Ull) é (QQ7U2) — (qk}D,U]/g) m -A; leadmg to (Qkﬂv;c) f’I"O'I’n (qlavl>-
We lift this argument to the level of zones, to obtain one of the main results of this paper.

» Theorem 11. Let (q,Z) = (q1, Z1) 4, (g2, Z2) LENNLLEN (qr, Zx) = (¢, Z") be a run in
the zone graph such that (q,2) 2 (q,2), (¢, Z') 2 (q,Z) and for every future clock x, either
x is released in the sequence ti ...tg_1, or there is a valuation v, € Z' with v,(xr) = —o0.
Then, there is a valuation v € Z and an infinite run starting from (q,v) over the sequence of
transitions (t1 ... tk—1)%.

Finally, combining Theorem 11 and Lemma 5, we get an algorithm for liveness: we
construct the zone graph with simulation equivalence and check for a reachable cycle that
contains an accepting state and where every future clock & which is not released during the
cycle may take value —oo in some valuations of the zones in the cycle.

4 Translating MITL to GTA

We first introduce the preliminaries for Metric Interval Temporal Logic. Let Prop be a finite
nonempty set of atomic propositions. The alphabet 3 that we consider is the set of subsets
of Prop. The set of MITL formulae over the set of atomic propositions Prop is defined as

pi=plenp| o[XreleUrp

where p € Prop, and T is either [0,0], or a non-singleton (open, or closed) interval whose
end-points come from NU {oco}. In other words, if the end-points of the interval are a and b
respectively, then either a = b =0, or a,b € NU {oc} and a < b.

We will now define the pointwise semantics of MITL formulae inductively as follows. A
timed word w = (ag, 70)(a1,71)(az, 72) - - is said to satisfy the MITL formula ¢ at position
i > 0, denoted as (w,i) = ¢ if (omitting the classical Boolean connectives)

(w,i) Epifp€a;

(w,i) EXroif (w,i+1)Epand 741 —7 € 1.

(w,1) = @1 Us g if there exists j > i s.t. (w,7) E @2, (w, k) E @1 for all i <k < j, and

Tj— T € 1.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

1lo=0;[z]|f 0z=0;[z]|0
12=0;[z]|0

Figure 4 GTT for X; using a future clock z. The output is 0 for transitions to location ¢2 and is
the if-then-else 1 = (—x € I) 71 : 0 for transitions to location ¢;, where I is some interval.

Our goal is to construct a GTA with outputs for an MITL formula ¢, which reads the
timed word and outputs 1 at position 7 iff (w,) = ¢. More precisely, there is a unique run of

01,t1

the GTA on w: (qo,vo) Soto, (g1,v1) —— - -+, where the output of each transition ¢; equals
1iff (w,i) = . We refer to GTA with outputs as Generalized Timed Tranducers (GTT)
(discussed in detail in the full version [2]). At a high level, our construction can be viewed as
structural induction on the parse tree of the MITL formula, where we build a GTT for atomic
propositions, and then for each Boolean and temporal operator, and finally we compose
these GTT bottom up to obtain the GTT for each subformula, which by structural induction
finally gives us the GT'T for the full formula. A detailed discussion of this compositional
approach can be found in the full version [2]. We describe the transducers for X; and U; in
this section.

Next operator. The transducer for X;p is given in Figure 4. It is obtained by extending
the untimed variant of the Next-transducer with a future clock = that predicts the time
to the next event. The idea is the same as explained in Figure 1 of the Introduction. The
prediction of the next event is verified, by having the guard = = 0 in every transition. Notice
the use of the program syntax in this example: a transition first checks if x = 0 (satisfying a
previous obligation), and then releases x to a non-deterministic value guessing the time to
the next event, and then asks for a guard, either —x € I or —z ¢ I.

Until operator. We start by describing the transducer for the untimed U modality p U ¢
(in other words, p Uy ¢ with I = [0,00)). This is shown in Figure 5. For simplicity, we
have assumed Prop = {p,q} and the alphabet is represented as (0,0),(1,0),(0,1),(1,1)
corresponding to {}, {p}, {¢} and {p,q}. On the word w, if s; is the state that reads a,
then the following invariants hold:

si=qiff g € a;,

si=—-gA(pUgq)iff ¢ ¢ a; and (w,i) EpUq,
~(pUq) iff (w,i) FpUgq.

Si

At the initial state the automaton makes a guess about position 0, and then subsequently
on reading every a;, it makes a guess about position ¢ + 1 and moves to the corresponding
state. The transitions implement this guessing protocol. For instance, transitions out of state

g read letters with ¢ = 1, and also output 1; transitions out of state =(p U ¢) have output 0.

A noteworthy point is that state ¢ A —=(p U q) is non-accepting, preventing the automaton to
stay in that state forever. For every word, the transducer has a unique accepting run and
the output at position ¢ is 1 iff (w,i) EpUgq.

Let us move on to the timed until U;. Let us forget the specific interval I for the moment.

We will come up with a generic construction, on which the outputs can be appropriately
modified for specific intervals. To start the construction, we need the following notion.

5:11

CONCUR 2024

5:12

Generalized Timed Automata: Liveness and MITL Model Checking

(L) m | h
0,1) m [s (1,1) my [11 (1,0) | T2

() (0,1) 72 | 13 ()
B st—{T)

(*,1) WW (0,0) 10

U

(%,0)] 0

Figure 5 (Left) Transducer for the untimed LTL operator p U q.
(Right) Transducer A tracking the earliest and last ¢ witnesses for p U g. Program 7 is = 0; [z]
and program 72 is © = 0;y = 0; [, y]. The outputs {; depend on interval I in the timed until p Uy q.

» Definition 12. Let w = (ag,to)(a1,t1) ... be a timed word and let i > 0. The earliest
q-witness at position i is the least position j > i such that q € a;, if it exists. We denote this
position j giving the earliest q-witness at i as iy. The last g-witness is the least position
j > 1 that satisfies

a=qA=(pAX(pUq))=(gA-p)V(gAX=(pUqg))
We denote this position j giving the last q-witness at i as ig.

The earliest and last g-witnesses provide a convenient mechanism to check pU; ¢ which, in
many cases, can be deduced by knowing the time to the earliest and last witnesses. Figure 6
illustrates the interpretation of = and y.

e
-q -q -q -q -q
| 11 f 9
i if g
x
Yy

Figure 6 Division of ¢ events, and interpretation of x,y.

Our next task is to extend the U transducer of Figure 5 to include two future clocks
2 and y that predict at each ¢, the time to iy and iy, respectively. Figure 5 describes the
transducer A. For clock = to maintain time to is at each position 4, we can do the following:
at every transition that reads g, the transducer checks for x = 0 as guard and releases x
(with the time to the next ¢). If there is no such ¢, then x needs to be released to —oo in
order to continue the run, as our timed words are non-Zeno. Transitions satisfying —¢ do not
check for a guard on = or release x. Therefore, in any run, the value of x determines the
time to the next ¢ event.

In Figure 6, the last witness (property «) can be identified by transitions of the form
(0,1) (signifying g A —p) and transitions (x,1) going to state =(p U q) (for ¢ A X=(p U q)).
Similar to the previous case of the earliest witness, every time we see such a transition we
check for y = 0 as a guard and release y. No other transition checks or updates y. Notice

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

that only the transitions with ¢ have been changed. All transitions (0, 1) check and release
both clocks (program 7). Transitions (1,1) that do not go to =(p U ¢q) check and release
only « (program 1), whereas the (x,1) transition that goes to =(p U q) does 7.

» Lemma 13. For every timed word w = (ag,70)(a1,71) -, there is a unique run of A of
the form: (so,v0) Tobo, (s1,v1) Do L such that for every position i > 0: (1) s; is

state g of A iff w,i = q, (2) s; is state ~q¢ A (pU q) iff w,i =g A (pUq), (3) s; is state
~(pUq) iff wyil=—(pUq), (4) vi(z) =7 —7; and vi(y) =7 — 7.

Using A we can already answer pU; g for one-sided intervals: [0, ¢], [0, ¢), [b, +00), (b, +00),
for natural numbers b, c.

if 0 e I: {1 = t3 = 1 (current position is a witness), and fo = (—z € IV -y e 1)?1:0,

if0¢I: 13=0,and t; =fa=(—2x€IV—-yecl)?1:0.
This is because in one-sided intervals, if at all there is a witness, the earliest or the last is
one of them.

Until with a non-singular interval. We will now deal with the case of intervals I = [b,]
with 0 < b < ¢ < oo. Firstly, using x and y, some easy cases of p Uy ¢ can be deduced.
Output remains 0 for transitions starting from —(p U q). For other transitions, here are some
extra checks:
if —x € I or —y € I, output 1 (one of the earliest or last witness is also a witness for
pUrq),
else, if —y < b or ¢ < —z, output 0 (the time to the last witness is too small or the time
to the earliest witness is too large, so there is no witness within I).

If neither of the above cases hold, then we need guess a potential witness within [b, c]
and verify it. This requires substantial book-keeping which we will now explain. Assume we
are given a timed word w = (ag, tp)(a1,t1)---. Let us a call j > 0 a difficult point if:

w,jFEpUqgandt;, <tj+bandt;+c<ty

This leaves the possibility for a g-witness within [, ¢]. So, for difficult points, we need to
make a prediction whether we have a ¢-witness within [t; + b,¢; + ¢]: guess a time to a
witness within [¢; +b,t; + ¢] and check it. We cannot keep making such predictions for every
difficult point as we have only finitely many clocks. Therefore, we will guess some special
witnesses. First we state a useful property.

» Lemma 14. Let j be a difficult point. Then, for all k such that j < k < j,, we have
w,k EpUgq.

Therefore, automaton A stays in the top two states, while reading j upto j.

tlj tj// —C tj// -b tj TC
P . .
— T T
tir—b 7% tn

Figure 7 Tllustration of a point j. The point j' is the last g-witness before t; + ¢, and ;" is the
first g-witness after ¢; + c.

We will now come back to the idea of choosing special witnesses. This is illustrated
in Figure 7. For a point j, we let 7/ > j be the greatest position containing g such that
tjy < t;+c Let j” > j be the least position containing ¢ such that ¢t; + ¢ < t;». So, no

5:13

CONCUR 2024

5:14

Generalized Timed Automata: Liveness and MITL Model Checking

—-b<wy —b <y
y< —c< -b<uzx y<-—c< -b<zx y<-—c<-b<ux
[z1,91] (Q\ [z2,y2] (Q\ [3,s]
y1 < —c< a1 Y2 < —c < T2 ys < —c < x3
@y

q -q -q

Figure 8 The automaton B for predicting ¢-witnesses which are not given by the earliest and
latest. For clarity, not every transition is indicated. All clocks are future clocks.

position j' < k < j” contains g. While reading a difficult point j, let us make use of fresh
clocks x1 and y; to predict these two witnesses:

T = tj - lfj/ Y1 = tj - tj//

For the next important observation, we will once again take the help of Figure 7. Notice
that for all points ¢ with ¢; € [t;,t; — b], the point j" is also a witness for w,i = p Up, ¢ q.
Similarly, j” is a witness for all ¢ such that ¢; € [t;» — ¢, t;» — ¢|. Therefore for all ¢ such that
t; € [t;,t;» — b], we have a way to determine the output: it is 1 iff while reading a; we have
—x1 € I or —y; € I (recall we have predicted x;1 and y; while reading a; as explained above).
So, we do not have to make new guesses at the difficult points in [t;,t;» — b]. After t;» —b
(which can be identified with the constraint —b < y;), we need to make new such guesses,
using fresh clocks, say zo,y2. We will call the difficult points where we start new guesses
as spectal difficult points. Notice that the distance between two special difficult points is at
least ¢ — b (which is > 1, as we consider non-singular intervals with bounds in N). In the
figure, if j is a special point, a new special point will be opened later than ¢;» — b.

This gives a bound on the number of special points that can be open between j and j”.
Suppose j < f1 < £y < --- < {; < j"” be the sequence of special points between j and j”.
Since ¢; is opened when time to j” is atmost b, we get the inequality: tp, — ty, < b. Since

consecutive special points are at least ¢ — b apart, we have (i — 1)(¢ — b) < b. This entails

b b
<1+ [—b] By the time we reach j”, we need to have opened at most k =1+ [—b]
c— c—
special points, and hence we can work with the extra clocks x1,y1, 22,92, ..., Tk, Y.

All these ideas culminate in a book-keeping automaton 5 to handle difficult points. Its
set of states is {0,1,..., N} x {1,2} where N =1+ [c%bb] (state (0,2) is not reachable).
All states are accepting. This is shown in Figure 8 for NV = 3. The automaton B synchronizes
with A (via a usual cross-product synchronized on transitions). All transitions of B other
than the self loop on state (0,1) satisfy p. Transitions which satisfy g, and —q are specifically
marked in the figure.

The automaton B starts in the initial state (0,1). It moves to (1,1) on the first difficult
point j (which will become special) and comes back to (0,1) when there are no active
special difficult points waiting for witnesses (a special difficult point j is active at positions
j <1i<j"). States (i,1) in the top indicate that there are i active special difficult points
currently. A state (i,2) indicates that the j' witness for the oldest active point has been
seen, and we are waiting for its j” witness (the space between ¢; and t¢; in Figure 7).

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

The red transitions (¢,%) — (i + 1, *) open new special difficult points, and contain the
program as illustrated in the figure. At (i,1), suppose ¢; < fy < --- < {; are the active
special difficult points where we have predicted x1, ¥, ..., Z;,y; respectively. We have the
invariant:

Y <X SYio1 <Tim1 <o Syp<wp <y <1

Notice that we may have x; = y;_1: the “first” witness of the i*" special point (¢}) could

3
coincide with the “second” witness of the (i —1)** point (¢,_,). This leads to certain subtleties,
which we will come to later.

The blue transitions read the witness for the oldest active special point (that is, we have
reached ¢}). Observe that 1 = 0 does not immediately identify ¢{, since there could be
a sequence of positions at the same time, and ¢} is the last of them. Therefore, we make
a non-deterministic choice whether to take the blue transition (implying that ¢} has been
found), or we remain in the same state. The blue transitions read a g, check z; = 0, and
then releases x1 to —oo (not shown in Figure 7). The black (diagonal) transitions witness
¢]. When this happens, z1,y; are no longer useful, and therefore all the higher clocks are
shifted using the permutation shift which maps zs,ys, ... Tk, Yk, €1,¥1 t0 T1,Y1,--., Tk, Yk
and keeps the other clocks unchanged.

There are some subtleties which arise when special points coincide with witness points, or
when the second witness of a special point coincides with the first witness of the consecutive
special point.

Subtleties. The first subtlety arises when we have ¢ = £, for consecutive special points.
This will imply y; = x;41. The reverse direction is not true, as there could be a sequence of
positions with the same time, but let us assume we have dealt with it by the non-deterministic
choice. When we actually witness these points, the clock values would have shifted to lower
indices. This situation will be manifested as y; = x5 = 0. Suppose we are in (i,2) and see a
point £] (y1 = 0). The diagonal transition takes the automaton to (i —1,1) and shifts 2 to
z1. Now, 71 =0 (as £} = 7). Therefore, we will have to combine the black-diagonal-left
with the downward-blue to get the combined effect. This leads to these two divisions:

(1,2) 2= (i —1,1) (i,2) L2200, (5 1, 2)

The second subtlety is that one of either E; or 6’; witnesses be a new special point (notice
that the red transitions are independent of the blue and black transitions). In such cases, we
can combine the two effects in any order: first discharge x; or y; verification, and then open
a new special point or vice-versa. This leads to some additional divisions of the form:

(,1)

In the first transition, we have combined a blue and a red (in any order); whereas in the
second, we have combined a red and a black-diagonal, in any order.
The third subtlety is that the first and second subtleties may occur together! A point

r1=0A—b<y; (Z+ 172) (1’2) y1=0N—b<y; (Z,].)

could be ¢7, £’ ; and also a new special point. We illustrate this on a specific state (i,2).

We provide only the “guards”. The full program is obtained by suitably combining the effects
of the individual transitions:

(i,2)
(,2)

BEED, (i -1,1) (i, 2) L2 (1)

y1=0A22=0Ay; <—b (2_1 2) (Z 2) y1=0Az2=0N—b<y;
))

(,2)

5:15

CONCUR 2024

5:16

Generalized Timed Automata: Liveness and MITL Model Checking

This concludes the description of the automaton B. The product A x B gives the required
transducer for p Uy g. The full construction of B, taking into account all these subtleties, is
described as Algorithm 1. In comments, we use the terminology introduced before and we
also refer to the color of transitions in Figure 8. Parsing the pseudo-code from a current state
(k,m) results in a sequence of guards and releases, an output of a Boolean value (output
value), and the next state (goto (k’,m’)). The most difficult case is for states (k,2) with
k > 2, where we could generate transitions to states (k—1,1), (k—1,2), (k, 1), (k,2), (k+1,2).

Complexity and comparison with the MightyL approach. The final automaton A x B
has at most 6k states, where k =1 + [—b] as defined above: automaton A has 3 states,
c—

and automaton B has 2k — 1 states (see Figure 8). In terms of clocks, .4 has 2 future clocks
x,y, and B has 2k future clocks z1,y1,..., 2Tk, yx- We have used a permutation operation
shift. As we mention in Remark 2, renamings can be eliminated by maintaining in the
current state the composition of permutations applied since the initial state. Since each
permutation does a cyclic shift, in any composition, the clocks x1,¥y1,...,zk, yr are renamed
to some T, Yi, ... Thy Yks 1, Y15 - - - s Ti—1,Yi—1- Lherefore, there are at most k renamings.
Maintaining them in states gives rise to atmost O(k?) states.

In contrast, the state-of-the-art approach [11] starts with a 1-clock alternating timed
automata for Uy. After reading a timed word, the 1-ATA reaches a configuration containing
several state-valuation pairs (¢,v). A finite abstraction of this set of configurations, called
the interval semantics, has been proposed [9, 10, 11]. This abstraction is maintained in the
states. Overall, the number of locations for p Uy ¢ is exponential in k£, and the number of
clocks is 2k + 2.

Due to the presence of future clocks, we are able to make predictions, as in Figure 7 and
the GTA syntax enables concisely checking these predictions in the transitions. Therefore,
we are able to give a direct construction to the final automaton, instead of going via an
alternating automaton and then abstracting it.

5 Conclusion

In this paper, we have answered two problems: (1) liveness of GTA and (2) MITL model
checking using GTA. The solution to the first problem required to bypass the technical
difficulty of having no finite time-abstract bisimulation for GTAs. The presence of diagonal
constraints adds additional challenges. For MITL model checking using GTA, we have
described the GTA for the X; and U; modalities. Indeed, the presence of future clocks allows
to make predictions better and we see an exponential gain over the state-of-the-art, in the
number of states of the final automaton produced. Moreover, our construction is direct,
without having to go via alternation.

The next logical step would be to implement these ideas and see how they perform in
practice, and compare them with existing well-engineered tools (e.g., [11]). This will require
a considerable implementation effort, needing several optimizations and incorporating of
many practical considerations before it can become scalable. This provides tremendous scope
for future work on these lines.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

Algorithm 1 Automaton B (synchronized with A).

1: State (0,1):

2: if A at state =(p U ¢) then output 0; goto (0,1) end if
3 if —x € I or —y € I then output 1; goto (0,1) end if
4: if © < —c or —b < y then output 0; goto (0,1) end if
5: Release [z1,y1]

6: Check y1 < —c <z

7 output (z1 < —b)

8

> initial state of B

> Special difficult point

> Boolean value

: goto (1,1) > red transition
9: State (k,1) with k& > 0: > waiting for the event predicted by 1
10: K~k
11: if yr < —b then
12: output (zx € I) V (yx € I) > Boolean value
13: else
14: if —c¢ <y then > not a difficult point
15: output (y < —b) > Boolean value (y € I)
16: else > new special difficult point, red transition,
17: > possibly combined with a blue transition below
18: E —k+1;
19: Release [z, yx]; Check yi, < —c < xi,
20: output (zx < —b) > Boolean value
21: end if
22: end if
23: choose non-deterministically
24: when True do goto (k',1) > not the event predicted by z1
25: when g A (z1 = 0) do Release [z1]; 1 = —o0; goto (k',2)
> blue transition
26: end choose
27: State (k,2) with k > 0: > waiting for the event predicted by y1
28: K «—k
29: if yi < —b then
30: output (z € I) V (yx € I) > Boolean value
31: else
32: if —c <y then > not a difficult point
33: output (y < —b) > Boolean value (y € I)
34: else > new special difficult point, red transition,
35: > possibly combined with a black transition below
36: kK« k+1;
37: Release [z, yx]; Check yi < —c < xi,
38: output (z < —b) > Boolean value
39: end if
40: end if
41: if —q then > not the event predicted by y1
42: goto (K',2)
43: else > event predicted by y1, black transition
44: > possibly combined with a blue transition below
45: Check y1 = 0; Release [y1]; y1 = —o0
46: if ¥ =1 then
47: goto (0,1)
48: else
49: Shift x2,y2,..., Tk, Yk, T1,Y1 10 T1,Y1, ..., Tk, Yk
50: end if
51: choose non-deterministically
52: when True do goto (k' — 1,1)
> not the event predicted by the new z1
53: when (71 = 0) do Release[x1]; z1 = —o0; goto (k' — 1,2)
> blue transition
54: end choose
55: end if

5:17

CONCUR 2024

5:18

Generalized Timed Automata: Liveness and MITL Model Checking

—— References

1

10

11

12

13

14

15

16

17

18

19

S. Akshay, Paul Gastin, R. Govind, Aniruddha R. Joshi, and B. Srivathsan. A unified model
for real-time systems: Symbolic techniques and implementation. In CAV (1), volume 13964 of
Lecture Notes in Computer Science, pages 266—288. Springer, 2023.

S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan. MITL model checking via generalized
timed automata and a new liveness algorithm, 2024. arXiv:2407.08452.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43(1):116-146, 1996.

Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theor. Comput. Sci., 211(1-2):253-273, 1999.

Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness. In
LICS, pages 390-401. IEEE Computer Society, 1990.

Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Peldnek. Lower and upper
bounds in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer, 8(3):204-215, 2006.

Laura Bozzelli, Angelo Montanari, and Adriano Peron. Complexity issues for timeline-based
planning over dense time under future and minimal semantics. Theor. Comput. Sci., 901:87-113,
2022.

Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata. In FORMATS, volume 8053 of Lecture Notes in Computer Science, pages 47—61.
Springer, 2013.

Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata over infinite words. In FORMATS, volume 8711 of Lecture Notes in Computer
Science, pages 69-84. Springer, 2014.

Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. MightyL: A
compositional translation from MITL to timed automata. In CAV (1), volume 10426 of Lecture
Notes in Computer Science, pages 421-440. Springer, 2017.

Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NUSMV:
A new symbolic model verifier. In CAV, volume 1633 of Lecture Notes in Computer Science,
pages 495-499. Springer, 1999.

David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197-212. Springer, 1989.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 - A framework for LTL and w-automata manipulation. In
ATVA, volume 9938 of Lecture Notes in Computer Science, pages 122—129, 2016.

Thomas Ferreére, Oded Maler, Dejan Nickovic, and Amir Pnueli. From real-time logic to timed
automata. J. ACM, 66(3):19:1-19:31, 2019.

Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in timed automata with
diagonal constraints. In CONCUR, volume 118 of LIPIcs, pages 28:1-28:17. Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2018.

Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. In CAV (1), volume 11561 of Lecture Notes in Computer
Science, pages 41-59. Springer, 2019.

Paul Gastin and Denis Oddoux. Fast LTL to Biichi automata translation. In CAV, volume
2102 of Lecture Notes in Computer Science, pages 53—65. Springer, 2001.

Gilles Geeraerts, Jean-Frangois Raskin, and Nathalie Sznajder. On regions and zones for
event-clock automata. Formal Methods Syst. Des., 45(3):330-380, 2014.

https://arxiv.org/abs/2407.08452

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV, volume 38 of IFIP Conference Proceedings,
pages 3-18. Chapman & Hall, 1995.

F. Herbreteau and G. Point. TChecker. https://github.com/fredher/tchecker, v0.2 - April
2019.

Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz. Why liveness
for timed automata is hard, and what we can do about it. ACM Trans. Comput. Log.,
21(3):17:1-17:28, 2020. doi:10.1145/3372310.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. In LICS, pages 375-384. IEEE Computer Society, 2012.

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient emptiness check for timed
biichi automata. Formal Methods Syst. Des., 40(2):122-146, 2012.

Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279-295,
1997.

Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysis of a collision
avoidance protocol using SPIN and UPPAAL. In The Spin Verification System, volume 32
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 33—49.
DIMACS/AMS, 1996.

Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

Guangyuan Li. Checking timed Biichi automata emptiness using LU-abstractions. In Joél
Ouaknine and Frits W. Vaandrager, editors, Formal Modeling and Analysis of Timed Systems,
7th International Conference, FORMATS 2009, Budapest, Hungary, September 14-16, 2009.
Proceedings, volume 5813 of Lecture Notes in Computer Science, pages 228-242. Springer,
2009. doi:10.1007/978-3-642-04368-0_18.

Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In FORMATS,
volume 4202 of Lecture Notes in Computer Science, pages 274—289. Springer, 2006.

Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit reactive synthesis
strikes back! In CAV (1), volume 10981 of Lecture Notes in Computer Science, pages 578-586.
Springer, 2018.

Joél Ouaknine and James Worrell. On metric temporal logic and faulty turing machines. In
FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pages 217-230. Springer, 2006.
Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE Computer Society,
1977.

Amir Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: A survey of current trends. In Current Trends in Concurrency, volume 224 of Lecture
Notes in Computer Science, pages 510-584. Springer, 1986.

Amir Pnueli and Eyal Harel. Applications of temporal logic to the specification of real-time
systems. In FTRTFT, volume 331 of Lecture Notes in Computer Science, pages 84—98. Springer,
1988.

Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed Biichi automata
emptiness efficiently. Formal Methods Syst. Des., 26(3):267-292, 2005.

Moshe Y Vardi. An automata-theoretic approach to linear temporal logic. Lecture Notes in
Computer Science, 1043:238-266, 1996.

Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In FTRTFT, volume 863 of Lecture Notes in Computer Science, pages 694-715.
Springer, 1994.

5:19

CONCUR 2024

https://github.com/fredher/tchecker
https://doi.org/10.1145/3372310
https://doi.org/10.1007/978-3-642-04368-0_18

Causally Deterministic Markov Decision Processes

S. Akshay =
Indian Institute of Technology Bombay, Mumbai, India

Tobias Meggendorfer &

Lancaster University Leipzig, Germany

P. S. Thiagarajan &
The University of North Carolina at Chapel Hill, NC, USA
Chennai Mathematical Institute, India

—— Abstract

Probabilistic systems are often modeled using factored versions of Markov decision processes (MDPs),
where the states are composed out of the local states of components and each transition involves
only a small subset of the components. Concurrency arises naturally in such systems. Our goal is to
exploit concurrency when analyzing factored MDPs (FMDPs). To do so, we first formulate FMDPs
in a way that aids this goal and port several notions from concurrency theory to the probabilistic
setting of MDPs. In particular, we provide a concurrent semantics for FMDPs based on the classical
notion of event structures, thereby cleanly separating causality, concurrency, and conflicts that arise
from stochastic choices. We further identify the subclass of causally deterministic FMDPs (CMDPs),
where non-determinism arises solely due to concurrency. Using our event structure semantics, we
show that in CMDPs, local reachability properties can be computed using a “greedy” strategy.
Finally, we implement our ideas in a prototype and apply it to four models, confirming the potential
for substantial improvements over state-of-the-art methods.

2012 ACM Subject Classification Theory of computation — Concurrency

Keywords and phrases MDPs, distribution, causal determinism

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.6

Supplementary Material Software (Artifact): https://zenodo.org/records/12657579 [23]

Funding S. Akshay: Partially supported by Google India Research Award 2023 and SBI Foundation
Hub for Data and Analytics.

1 Introduction

Factored versions of systems often constitute an important subclass. Two typical, well known
examples — among very many — are Petri nets (and related models of concurrency) [26] and
dynamic Bayesian networks [17]. A common key feature is that a state of the system is a
vector of local component states. Further, a transition only involves a small subset of the
components and hence can be specified succinctly; so much so, the size of the induced global
system will often be exponential in the size of the factored presentation. This allows to model
large systems without having to enumerate the set of global states and transitions explicitly.

Here, we explore this idea in the probabilistic setting of Markov decision processes
(MDPs). Our starting point is a variant of factored MDPs (FMDPs). These are made up
of several individual components, and a vector of local states constitutes the global state.
Moreover, each action is associated with a fixed set of components named its locations. The
availability of an action at a global state only depends on the local states of its locations and
the stochastic changes that take place when an action occurs only involve the states of its
locations. The resulting transition relation can be easily converted into the usual presentation
of factored MDPs in the literature [4,14]. Notably, our version of FMDPs includes models

© S. Akshay, Tobias Meggendorfer, and P. S. Thiagarajan;

oY licensed under Creative Commons License CC-BY 4.0
35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 6; pp. 6:1-6:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:tobias@meggendorfer.de
https://orcid.org/0000-0002-1712-2165
mailto:thiagu@cs.unc.edu
https://doi.org/10.4230/LIPIcs.CONCUR.2024.6
https://zenodo.org/records/12657579
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Causally Deterministic Markov Decision Processes

specified in the established PRISM language [18] and JANI [5]. When handling systems with
a large number of components, a key challenge is to analyze the global behavior in terms of
the factored presentation instead of first explicitly constructing the global behavior. In the
case of factored MDPs, this is particularly difficult due to the complex interplay between
non-deterministic, stochastic and concurrent features of the dynamics.

As a first step toward addressing this challenge, we focus on the analysis of a subclass of
FMDPs, called causally deterministic FMDPs (CMDPs). The defining feature of CMDPs is
that any two actions that are available at a global state will have disjoint sets of locations.
As a result, the two actions will be causally independent: executing one of them will not
affect the availability of the other or its outcomes. Consequently, CMDPs admit a powerful
partial order based analysis technique for verifying certain “robust” probabilistic properties.
In the current paper, we focus on local reachability properties.

As a key tool to analyzing CMDPs, we identify the notion of complete strategies, which can
be explained as follows. In a CMDP, the role of a strategy is to resolve the non-determinism
that arises in the dynamics due to causally independent actions. This means a strategy
linearizes a partially ordered set of action occurrences. Hence, if an action a is enabled at a
state s, and is not chosen along a finite sequence of moves leading to the state s’, then a will
still be available at s’. Accordingly, a complete strategy is defined to be one in which the set
of trajectories along which an available action is ignored forever has probability measure 0.
Based on this notion, our main technical results for CMDPs are that (i) complete strategies
suffice to obtain the optimal (maximal) probability of a local reachability property and
(ii) all complete strategies will yield the same maximal probability value. Consequently we
can choose a greedy complete strategy which avoids visiting many “useless” states. As the
experimental results in Sec. 6 show, for CMDPs, our method vastly outperforms established,
highly optimized tools such as Storm [8].

We establish these properties by exploiting fundamental objects drawn from concurrency
theory, namely Mazurkiewicz traces [9] and prime event structures [24]. In particular, we
develop an event structure semantics for all FMDPs. Since they arise in the context of
FMDPs, the events in the event structure will have probability values assigned to them in a
natural manner. We then use these probabilistic events to show that all complete strategies
yield the same maximal probability values for local reachability properties. We view the
present work as a first step towards developing partial-order reductions for FMDPs in general.
Specifically, via the event structure semantics, based on Mazurkiewicz traces, a variety of
techniques such as finite prefixes of event structures [11], and partial order reduction notions
such as ample sets [13] and stubborn sets [15] can be brought to bear when analyzing FMDPs.

To summarize, our contributions are:

1. A novel class of factored MDPs, called CMDPs, in which the non-determinism between
actions arises solely due to their causal independence.

2. An event structure semantics for FMDPs that cleanly separates causality, concurrency,
and (stochastic) conflicts arising in the global behavior of an FMDP.

3. The identification of complete strategies for CMDPs which have the crucial properties;
(i) they suffice to attain the optimal probability values for local reachability properties
and (ii) all of them yield the same optimal value.

4. A prototypical implementation of (i) a syntactical over-approximation for checking that
the input MDP is a CMDP and (ii) a greedy complete strategy accompanied by an
experimental evaluation on four models. Comparison with existing state-of-the-art
tools, e.g., Storm [8], shows a vast performance improvement for the evaluated models,
highlighting the potential benefits of our approach.

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

Structure. In the rest of this section we review related work. We then present basic material
concerning Markov chains and Markov decision processes. In Sec. 3, we introduce our class
of FMDPs and the subclass of causally deterministic FMDPs (CMDPs). In the subsequent
section we construct the event structure representation of our FMDPs which then leads
to the main results developed in Sec. 5. The greedy strategy, its implementation, and the
experimental results are presented in Sec. 6. The paper concludes with Sec. 7.

Related Work. Factored MDPs have been long studied in the literature [4,14], where the
transition relation is usually presented using a two layer dynamic Bayesian network. With
an eye toward learning applications, a reward function is also included. Our formulation of
FMDPs is geared towards capturing the distributed dynamics of FMDPs and hence is based
on the notion of locations. Further, reward functions play no role in the present setting.

In the verification setting, several works have considered compositional methods to reason
about large MDPs that are “factorized” via compositional operations. While some approaches
use bisimulation based equivalences [12], others use abstractions [16], and yet others use
a category-theoretical view of MDPs [31]. In a sense, these represent an approach which
is orthogonal to ours, which is grounded in FMDPs and focused on solving quantitative
behavioral properties. There have also been works adapting partial-order reduction techniques
to the probabilistic setting using ample sets [13] and stubborn sets [15]. Variants of these

approaches are incorporated in state-of-the-art tools such as Storm [8] and PRISM [18].

However, these works deal with MDPs viewed as monolithic objects presented in terms of
global states and transitions. Thus, it will be difficult — if not impossible — to deal with
the large MDPs that are presented succinctly as FMDPs. Furthermore, the focus in these
works is on model checking linear time and branching time (probabilistic) properties using a
semantically defined notion of commutability of actions along an execution sequence. These
techniques do not enable one to compute optimal values of local reachability properties that
we achieve using the event structure semantics. It will however be interesting to explore
these methods in the context of CMDPs and, more generally, FMDPs.

Similarly, [7] exploit a model consisting of purely probabilistic components, however they
use these components only to obtain a compact symbolic representation of the global MDP;
in the end, they still work with the entire global MDP. In contrast, our analysis method
directly works with the factored representation of the global MDP.

Several studies start with event structures, adjoin probabilities to events and study the
resulting objects from a theoretical standpoint [1,30]. However, in these studies probabilities
are introduced in an ad-hoc manner and no attempt is made to establish a verification
framework for an associated system model. In sharp contrast, the probabilities attached to
the events in our event structures arise naturally from the associated MDPs. Furthermore,
our use of event structures is firmly grounded in a verification framework for CMDPs.

Generalized stochastic Petri nets (GSPN) [20], despite being based on Petri nets, do
not exploit concurrency and instead focus on their interleaved global behaviors in terms of
(continuous time) Markov chains. A variant called Markov decision Petri nets is proposed
in [3] as a high level modeling formalism. Their global behaviors are captured by MDPs and
analyzed using symbolic representations. Here again concurrency essentially plays no role.

Finally, distributed Markov chains (DMCs) studied in [28,29] have a similar flavour to
CMDPs. DMCs consist of a network of probabilistic transition systems that synchronize on
common actions with a sufficiently strong syntactic restriction ensuring that if two actions
are enabled at a global state then they must involve disjoint sets of components. In addition,

6:3

CONCUR 2024

6:4

Causally Deterministic Markov Decision Processes

they focus on statistical model checking of properties specified in a variant of bounded linear
temporal logic. In contrast, CMDPs are a natural behavioral subclass of MDPs and our focus
is determining the ezact maximal probability of (unbounded) local reachability properties.

2 Preliminaries

A Markov chain (MC) (e.g., [2]), is a tuple M = (S, 3, P), where S is a (countable) set of
states, § € S is the initial state, and P : S — D(S) is a transition function that for each state
s yields a probability distribution over successor states, where D(S) is the set of distributions
over S. A Markov decision process (MDP) (e.g., [25]) is a tuple M = (S, §, Act, P), where S
is a (finite) set of states, § € S is the initial state, Act a finite set of actions, overloaded as
Act(s) C Act specifying available actions at a state s, and P : S x Act — D(S) yielding a
distribution over successors for each s € S and a € Act(s). For simplicity, we write P(s,s’)
instead of P(s)(s’) for a MC and P(s, a,s’) instead of P(s,a)(s’) for an MDP.

Paths. An infinite path in an MC M is an infinite sequence ¢ = s183 ... where s; = § and
P(si,8:41) > 0 for all i. A finite path p is a finite prefix of an infinite path. A Markov
chain M = (5, §, P) naturally induces a unique probability measure Pry over the o-algebra
generated by the cylinder sets induced by the finite paths [2, Sec. 10.1]. Similarly, for an
MDP M, an infinite path is a sequence ¢ = siaiS2as ... such that s; = § and for all 7 we
have a; € Act(s;) and P(s;,a;, s;+1) > 0. A finite path is a finite prefix of an infinite path
ending in a state. We write FPathsp to denote the set of finite paths in M. Moreover,
|p| = k denotes the length of a path (setting it to oo for infinite paths) and we define it to be
the number of actions (transitions) that appear in the path. For i < |p| we write p; to refer
to the i-th state in a path. Finally, last(p) = p|,| denotes the last state in a finite path.

Strategies. Intuitively, in every state s, an action a from Act(s) is chosen and the system
advances to a successor state s’ according to the probability distribution given by P(s,a).
Starting from the initial state § and repeating this process indefinitely yields an infinite path.
The way actions are chosen along an infinite path is captured by strategies. Specifically, a
strategy is function mapping each finite path to one of the actions, say a, available in the last
state, say s, of the path. This leads to new states chosen according to the distribution P(s, a).
We let II refer to the set of all strategies. To support our technical constructions arising
later, our strategies are thus deterministic but not necessarily memoryless. A strategy is
memoryless (or positional) if it only depends on the current state, i.e. w(p) = 7(p’) whenever
last(p) = last(p’). As usual, a strategy 7 induces the Markov chain M™ = (FPaths, §, P™),
where for p € FPathsyy with s = last(p) and a = 7(p) € Act(s,) we set P™(p,pas’) =
P(s,a,s’). We write Pri ; = Pry= s for the induced probability measure.

Reachability. Fix an MDP M = (S, 3, Act,P). Then, (unbounded) reachability for a set
of target states T C S is the set of all (infinite) paths which eventually visit one of the
target states, i.e. OT = {p | Ji. ¢o; € T}, which is measurable [2, Sec. 10.1.1]. For a strategy
7, the probability of reaching T according to m is the probability assigned to this set of
infinite paths ¢T in M7, i.e. Pr([CT]. However, different strategies will in general yield
different probabilities and one is often interested in the mazimum of these probabilities. In
other words, the goal is to determine sup,cPriy,[OT] (also called the value). For MDPs, a
well-known result states that it suffices to consider memoryless deterministic strategies for
this maximization (see, e.g., [2, Lem. 10.102]).

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

3 Factored MDPs and Causal Determinacy

Often, an MDP comprises interacting components (or agents, processes). In particular, many
modelling formalisms used in practice, e.g. the PRISM language [18] or JANI [5], define
MDPs in this manner. Consequently, a state of the MDP will consist of a tuple of local
states of the component processes. Further, an action will often involve only a fixed subset
of the components leading to a stochastic transformation of the states of these components
while the states of the other components are left untouched. We propose to use factored
MDPs to study such systems.

Accordingly, let Proc denote a finite set of components. Each component p € Proc has a
set of local states denoted as Sj,. This gives rise to the set of global states S =[] ¢ p . Sp- To
capture the idea that an action involves only a fixed subset of components, we use the location
map loc : Act — 2F7°¢\) to specify for each action a the set of components that participate
in a. For convenience, we also identify a global state s with the map s : Proc — Upe Proc Op
such that s(p) € S, for p € Proc. Then, for a set of components P C Proc, we let s[P]
denote the map s restricted to P. In other words, s[P] € [[,cp Sp and s[P](p) = s(p) for
p € P. For a € Act, we often write s[a] instead of s[loc(a)] and call it the a-state induced by
s. This leads to S[a] = {s[a] | s € S}, the set of a-states. With these notations at hand, we
introduce factored MDPs (FMDPs).

» Definition 1. A factored MDP M is a tuple ({Sp}pe Procs {8p }pe Proc, Act,1oc, {Pq}tacact)
where (i) Proc is a finite, non-empty set of components, (i) Sy, is a finite, non-empty set
of states for each p € Proc, (iii) 3, € S, is the initial state of component p, inducing the
global initial state 8 with §(p) = §, for each p € Proc, (iv) Act is a finite, non-empty set
of actions, (v) loc : Act — 2Fm¢\ {}} is the locations map, and (vi) for each a € Act,
Po : Sla] — D(S[a]) is a (partial) transition function.

Similar to MDPs, we write P,(u, v) instead of P,(u)(v). The FMDP M induces an MDP
called its global MDP defined as follows.

» Definition 2. Let M be an FMDP as above. Then its global MDP is given by M =
(S, 8, Act,P) where (i) a € Act(s) iff Pu(s[a]) is defined, and (ii) for every s’ € S and a €
Act(s), we have P(s,a,s") = v > 0 iff P,(s[a],s'[a]) = v and s[Proc\loc(a)] = s'[Proc\loc(a)].

We can immediately verify that M is indeed an MDP. Moreover, M has two important

properties, namely: (F1) The availability of an action a at a state s depends only on s[a].

Further, when an action a at occurs at a state s, the changes it produces involve only the

components in loc(a); the local states of components in Proc \ loc(a) remain unchanged.

(F2) When action a occurs at a global state s, the changes it produces (to the states of
participating components) depends only on the a-state s[a]. In particular, suppose s; and s9
are global states and a € Act is an action where s1[a] = sz[a]. Then, if P(sq,a,8]) =v >0
there exists a unique global state s/, such that P(sq, a,s) = v and s} [a] = s}[a].

Before presenting an illustrative example, we briefly remark on this defining way of
defining an FMDP and how it relates to established notions.

» Remark 3. Traditionally, FMDPs are defined using a transition relation represented by
a two-layer dynamic Bayesian network [4,14]. We have chosen to use a slightly different
definition, aligned with concurrency theory, so that the distributed nature of the dynamics
can be clearly brought out, as we shall see below. However, our theory is neutral to how
the dynamics of the individual components are represented as long as the global transitions

6:5

CONCUR 2024

6:6

Causally Deterministic Markov Decision Processes

a: {p} a’: {p} b: {q} e {p, q} a 0.8 0.2
o

0.8/\0.2 0.7

Figure 1 This figure illustrates a two-component FMDP where Proc = {p, q}, Sp = {u1,u2,us},
Sq = {v1,v2}, and Act = {a,a’,b,c}. On the left, for each action a both loc(a) and P, are depicted.
On the right, the induced global MDP is shown. The middle b action is greyed out solely for
readability, it is not special in any way. We omit the probability label if it is 1.

are factored in terms of the components participating in the actions. In particular, once the
properties (F1) and (F2) stated above are satisfied by the resulting global MDP, our theory
is applicable to any model which exhibits such behaviour, e.g. the DBN-based definitions.

» Example 4. In Fig. 1, an example of an FMDP (on the left) and its induced global
MDP (on the right) is shown. To explain the relation between FMDP and global MDP, we
write (u1, us) and similar to denote global states and c-states as tuples of local states, as the
correspondence with the local states of the components is clear. The a-transition from (u) to
(ug) in the FMDP implies a is available at the global state (u1,v1) since (u1, v1)[a] = (u1) and
P,({u1)) is defined in the FMDP. Further, P((u1,v1), a, (uz,v1)) = 0.8 as P, ((u1), (ug)) = 0.8.
In particular, this transition does not modify the state of the g-component since loc(a) = {p}.
The other transitions shown in the global MDP can be inferred using similar reasoning.

By slight abuse of notation, in the following we write S to denote the set of reachable states,
defined in the obvious way. We also identify the FMDP with its induced global MDP and
freely go back and forth between the two notions and the associated notations. Finally, for
simplicity we assume that the FMDPs we deal with are free of deadlocks, i.e. if s € S then
Act(s) # 0. (Since our focus is on reachability, this can be ensured by adding a new component
d with a single state sq, a new action ag with loc(aq) = {d}, and P, ((sa), a4, (sa)) = 1.)

3.1 Local Reachability

Let M be an FMDP. Then, a local reachability problem is specified by 7" C .S}, for some
component p. Let T = {s | s(p) € T} the corresponding global reachability set. The goal is
to determine the probability sup,.c;Pri,[¢T].

Local reachability for an FMDP can be solved by ignoring its factored nature and instead
treat it as a “global” reachability problem on the induced global MDP. In this case, classical
approaches as employed by PRISM [18] and Storm [8] can be used. This problem is in
PTIME [2, Cor. 10.107], but in the size of the global MDP, which can easily be exponential
in the size of the FMDP. Our goal is to mitigate this state-space explosion by exploiting the
partially ordered nature of the dynamics of the model.

3.2 Causal Determinacy and Complete Strategies

As a first step, we shall tackle the state explosion problem by considering the subclass of
FMDPs in which the sole source of non-determinism is from the causal independence of
actions. This idea can be captured through a natural restriction.

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

a b
Lt dp L it dp’ dq

Figure 2 This figure illustrates an FMDP which is not CD. We have Proc = {p, ¢}, Sp = {u1,u2},
Sq = {v1,v2}, and Act = {a,b,dp,dy}. On the left, we depict the transition function P, for all
a € Act and to the right the induced global MDP.

» Definition 5. An FMDP M is causally deterministic (CD) if for every (reachable) state s
and a,b € Act(s) with a # b we have loc(a) Nloc(b) = 0. We call such an FMDP a CMDP.

» Example 6. The FMDP shown in Fig. 1 is causally deterministic: In any global state,
the available set of actions is {a,b}, {a’,b} or {c}. In contrast, the FMDP of Fig. 2 is not
CD. In (u1,v;) both a and b are available, but loc(a) Nloc(b) = {p} # 0. And indeed, it is
relevant whether we choose a or b. For example, a leads to a state in which b is not enabled
anymore, and, in particular, v is not reachable, while b reaches v, with probability 1.

» Remark 7. Causal determinacy is intrinsically a concurrency based notion. If a,b € Act(s)
with @ # b then @ and b can occur independent of each other at s. In fact, suppose
S0@18] -+ - Sp—1G,Sy 18 a finite path, b € Act(sg) and a; # b for 1 < i < n. Then loc(a;) N
loc(b) =0 for all 1 < <n and b € Act(s,). This follows from the fact that a CMDP is an
FMDP and hence sg[b] = s,,[b]. This basic feature of a CMDP leads to a partial-order based
technique using which one can often efficiently verify many behavioral properties that are
“robust” with respect to interleavings of partially ordered behaviors, such as local reachability.
Due to space considerations, we will not pause to formalize the notion of robust properties
since it is not needed to establish our results.

» Remark 8. Deciding whether the global MDP induced by an FMDP (encoded in a standard
manner) is CD is in PSPACE. The idea is to convert the probabilistic transitions to non-
deterministic ones, and reduce the CD property to a reachability property of the resulting
1-safe Petri net, known to be in PSPACE [10]. However, given our main goals, establishing
this result in detail would be a digression and hence we do not do so. That said, for
practical purposes, we later discuss a simple, sufficient syntactic condition allowing us to
over-approximate CD in our case studies.

As a central tool to exploit causal determinacy, we introduce complete strategies.

» Definition 9. Let p be an infinite path in a Markov chain M™ induced by a strategy m
on a CMDP M. Then, p is a complete path iff for every i > 0, if a € Act(p;) then there
exists j > 1 such that w(pipit1-..p;) = a. In other words, if a is available at p; then it is
eventually chosen by the strategy along the path (where it will remain available due to CD).
Let Y be the set of complete paths in M™. A strategy w is complete iff Priy,[Y] = 1.

Thus, incomplete paths may be present in M7, but the collection of such paths has measure 0
and does not contribute to the reachability probabilities of interest. Note that T is measurable
as it can be written as countable intersections and unions of cylinder sets.

First, we show here that it suffices to consider only complete strategies for local reachability.

Later we will show that all complete strategies will yield the same, maximal probability value.

Consequently, we can freely choose a “greedy” strategy with which the maximal probabilities
can be computed in an efficient manner.

6:7

CONCUR 2024

6:8

Causally Deterministic Markov Decision Processes

» Lemma 10. There exists a deterministic, complete strateqgy m € I which achieves the
optimal value, i.e. Pri[OT] = sup, e Priy[OT].

Proof Sketch. We delegate the (rather routine) proof to App. B. For a sketch, we show that
any (optimal, memoryless) strategy can be extended to a complete strategy without reducing
the reachability probability it achieves. Intuitively, the modified strategy waits until the
original strategy has visited all the states it will ever visit (thus any goal it might reach is
already reached), which happens with probability 1, and then switches to a “complete” mode
in which it plays all the actions that have not been played since they became available. <«

In the next section, we develop the event structure semantics for FMDPs. Using this, we
show in Sec. 5 that any two complete strategies achieve the same value.

4 An Event Structure Semantics for FMDPs

4.1 Mazurkiewicz Trace Languages

We first associate a Mazurkiewicz trace language with an FMDP. Then, using a standard
construction, we obtain the event structure representation. We recall from [21] a Mazurkiewicz
trace alphabet is a pair (3,) where ¥ is a finite non-empty alphabet and I C ¥ x ¥ is
an irreflexive and symmetric relation called the independence relation. When describing
the executions of a distributed system, 3 is the set of actions and a I b asserts that the
actions a and b are “causally” independent. In other words, they can be executed in any
order when they are both enabled. We define D = (X x X) \ I to be the dependency relation.
The relation I induces in a natural way the equivalence relation ~; ¥* x ¥*. It is the least
equivalence satisfying cabo’ 1 obao’ for a I b. For o € ¥*, [0] denotes the ~-equivalence
class containing o, often called a Mazurkiewicz trace. It corresponds to the set of all possible
interleavings of a unique partially ordered set of actions. A Mazurkiewicz trace language is a
subset of {[o] | o € £*}, i.e. a set of Mazurkiewicz traces. For convenience, we abbreviate
Mazurkiewicz traces (Mazurkiewicz trace languages) as traces (trace languages).

4.2 The Mazurkiewicz Trace Language of an FMDP

To define the trace language of an FMDP we start with M-events.

» Definition 11. Let M = ({S,}pe Procs {3p } pe Proc, Act,loc, {Pq }ac act) be an FMDP. Then
a = (u,a,v) is an M-event if Po(u,v) > 0. We define the probability of a as Pr(a) =
Po(u,a,v). Furthermore, we set act(a)) = a and loc(a) = loc(a).

The M-event @ = (u, a,v) comprises the a-state that must hold at a state s for it to occur
(i.e. s[a] = u). It also reports the a-state that is chosen with probability Pr(a) resulting
in the global state s’ (i.e. s'[a] = v and s[Proc \ loc(a)] = s'[Proc \ loc(a)]). For instance,
a = ((uy), a, (ug)) is an M-event in the FMDP shown in Fig. 1 with Pr(a) =0.8.

M-events naturally give rise to the transition relation — over S, defined as follows.
Suppose a = (u,a,v), and s,s’ € S. Then s 5 s’ if s[a] = u, s’[a] = v, and s[Proc \
loc(a)] = s'[Proc \ loc(a)]. As usual, we write — instead of —q. We now define an
M-path to be a sequence spayS1s - -+ Sp_10, 8, such that (i) so =8 and (ii) s;_1 2y s, for
1 <4 < n. In essence, M-paths correspond to finite paths in the global MDP. Since we only
deal with M-paths from now on, we say “path” instead of M-path henceforth.

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

Let Y ¢ denote the set of M-events. In the following, we instead write X, as M will be
clear from the context. Moreover, we set £, = {a | @ € &, p € loc(a)} for each component p.
We define the independence relation I C ¥ x ¥ as I = {(a,) | loc(a) Nloc(B) = 0}. Clearly,
I is irreflexive and symmetric, and hence (3, 7]) is a trace alphabet. Next, for ¥/ C ¥ let
prisy : 3* — X' be the projection which from sequences in ¥* erases all appearances of
letters that are not in X'. We abbreviate prjs, as prj,. This leads to the equivalence relation
~ over ¥* given by o ~; o’ iff for every p € Proc we have prj,(o) = prj,(c’). Effectively,
two traces are equivalent if no single component can differentiate between them. We define
~ 7 in this way instead of using the usual partial commutative relation, as it extends smoothly
to infinite M-event sequences. For convenience, we write from now on = instead of ~;.

Let 0 = ajas -+, € ¥*. Then o is an M-event sequence of M if there exists states
0,81, - -,Sp such that soa18; - - - 8,108y, is an M-path. We let L denote the set of M-
event sequences of M. This leads to the trace language of M given by Ly = {[o] | o € L}

We next introduce some terminology to aid in the construction of the event structure
representation of M. These notions are generic to the theory of Mazurkiewicz trace languages.
However, for convenience, we introduce them in the context of L. First, © C L X L g
is given by [o] C [¢'] iff prj, (o) is a prefix of prj,(¢’) for every p € Proc. Clearly, C is a
well-defined partial ordering relation. Next, suppose [0], [0'] € Lag. Then [o] 1 [0”] iff there
exists [0”] € L such that [o] C [0”'] and [¢0'] C [0”]. Finally, [o] € L is a prime trace iff
there exists an M-event a such that last(c’) = « for every o’ € [o] where last(7) is the last
letter of the non-null sequence 7.

There is a rich theory of Mazurkiewicz trace languages available, see e.g. [9]. Here we
only use basic facts of the theory which we state below. The proofs are standard and can be
assembled from [9,27] and hence we omit them.

» Proposition 12. 1t holds that (i) if o ~ ¢’ then |o| = |0'|, and (i) [o] 1 [0'] iff there exist
sequences o”, o1 and o} such that (a) o ~ c"01 and o' ~ "0 and (b) aIb for every letter
a that appears in o1 and every letter b that appears in of.

4.3 The Event Structure Representation of FMDPs

We begin by recalling from [24] that a prime event structure is a tuple ES = (E, <, #) where
(i) F is a countable set of events, (ii) < C E x F is a partial ordering relation called the
causality relation, and (iii) # C F x E is an irreflexive and symmetric relation called the
conflict relation. It is required that if e # ¢’ and e’ < e then e # ¢”. Usually, a prime event
structure is accompanied by a labelling function that relates a system to its event structure
representation. In our case, there will be two such functions.

» Definition 13. Let M = ({S,}peProc: {3p } pe Proc, Act,loc, {Py}acact) be an FMDP. Its
event structure is a tuple ESy = (E, <,#, A\, 1) where (E,<,#) is a prime event structure
where (i) E = {[o] € Lam | [o] is a prime trace}, (ii) < is C restricted to Ex E, (iii) [o]#][0”]
iff it is not the case that [o] 1 [¢'], (iv) A : E — X is the labelling function satisfying
Mo]) = last(o), and (v) p: E — [0,1] assigns to e = [a1ae -~ ay] € E the probability
ule) = ngjgn Pr(a;) (i.e. the probability of a prime trace is the product of the probabilities
of the M-events encountered along a sequence in the prime trace).

In what follows we often write < instead of C when viewing events as elements of £ and not
as traces. The “states” of an event structure are called configurations and the dynamics of
ES) is captured via a transition relation over its configurations.

6:9

CONCUR 2024

6:10

Causally Deterministic Markov Decision Processes

a1 = ({ui}, a,{u2})
az = ({u1},a,{us})
a3 = ({u2}, d,{u1})
Br = ({vi},b,{v1})

B2 = ({’U1}, b, {UQ})
Y= ({U3, U2}v C, {'U‘lv Ul})
e = [a2827] = {@2827, f2027}

Figure 3 This figure illustrates the initial fragment of the event structure representation for the
FMDP depicted in Fig. 1.

» Definition 14. For ¢ C E, define Jc = {y | Iz € ¢ s.t.y < z}. Thenc C E is a
configuration iff ¢ = ¢ and (¢ x ¢) N # = 0.

We define Crq to be the set of finite configurations of ES s and note that) is a configuration.
Let ¢,/ € Cpq and a € ¥. Then ¢ —pg ¢ iff there exists e € E\ ¢ such that cU {e} = ¢/
and A(e) = a. This basically says that an event e which is not in the configuration ¢ can be
added to it to obtain a larger configuration provided the past of e (under <) is contained in
c¢. For simplicity, we write Je instead of [{e} for e € E. Clearly, le is a configuration for
every e in F.

In Fig. 3 we show the initial fragment of the event structure representation of the FMDP in
Fig. 1. In order to minimize clutter, we have named the M-events as a1, asg, etc. We note that
Pr(ay) = 0.8, Pr(ag) = 0.2, Pr(f1) = 0.3, and Pr(82) = 0.7. Further, Pr(ag) =1 = Pr(y).
In the diagram, the directed arrow represent the immediate causality relation < where e < ¢’
iff e < ¢’ and for every ¢/, ¢ < €” < ¢’ implies e = ¢’ or ¢ = ¢/. The remaining members of
the causality relation are obtained by taking the reflexive transitive closure of this relation.
Similarly, the squiggly lines represent the minimal conflict relation %Z defined as e %ﬁ e’ iff
e# e and (Je x le/)N# = {(e,e'),(¢,e)}. Using the conflict inheritance requirement of
an event structure, we can deduce all other members of the conflict relation. For example,
in the event structure shown in Fig. 3, es # e4 since e; # e2 < e4 implies e; # e4 and since
e1 < eg and # is symmetric, we get eg # e4. In addition, we have listed the members of just
one of the prime traces named e whose label is as. For the remaining events, we have just
indicated their labels.

The behavior of M can be related to the behavior of ESy, as follows.

» Proposition 15. Let M and ESa be defined as above. Then the following statements

hold.

1. Let ¢ = {e1,ea,...,en} be a configuration such that eies---e, is a linearization of the
partial order (c, <) where, by abuse of notation, < also denotes the restriction of < to c¢xc.
Then there exists sg,S1,-..,8, € S such that so = § and soA(e1)s1A(e2)s2 -+ - sp_1A(en)sn

is a finite path in M, which we shall call a c-path (in M).

2. Let the function state : C — S be given by (i) state(0) = § and (i) for a non-empty
configuration ¢ and c-path p = sga181 - - - sy, in M, we define state(c) = s,,. Then, state
is a well-defined map from C onto the set of reachable states of M.

3. Let ¢, € C and o = (u,a,v). Then ¢ ~*>pg ¢ iff P(state(c), a, state(c')) = Pr(a) > 0.

4. Lettr : C — Ly be the map given by (i) tr(0) = {e} and (i) for a non-empty configuration
¢ and c-path spa18y « -+ sy, in M it is the case that tr(c) = [aiae -+ - ay]. Then, tr is well
defined and a bijection.

Most of these observations are standard [27] and directly carry over to our setting. The third
part is specific to FMDPs but follows directly from the definition of an M-event.

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

We close out this section with a useful result which will be needed in the next section.
Let 0 = ajas - - -, be an M-event sequence in M. Then dg(o), the subsequence of o, is
defined inductively by (i) dg(ay,) = a, and (ii) dg(a;—10; - - an) = a;—1dg(aicrg - - ay)
if there exists an M-event 8 in dg(a;;y1 -+ ap) such that a; D 8 and dg(ajotq - - o)
otherwise. Basically, dg is the so called dependency graph that captures the causal past «a,,
in 0. We now define ev(ajas - - - o) to be the trace = [dg(ajas - - - a,)]. Finally, the relation
co C E x E for the event structure ESuq is given by, co=E x E\ (SU>U#). If eco €’
this can be interpreted as e and e’ being causally independent.

Lemma 16. Let 0 = aqan -+ € Lf&q a non-null M-event sequence in Lf&q.

-V

Then ev(c) is a prime trace and hence is an event in ESy.

2. Suppose that ¢’ < e in ESxn. Then there exists a unique i € {1,2,...,n — 1} such that
ev(agag -+) =¢€.

3. Suppose that ¢’ = ev(ayag -+ «y) for some 1 <i<n. Thene' <e orecoe’ in ESy.

4. Suppose that o, = (u,a,v) and ¢/ = g - ap_10), such that o), = (u,a,v') and

v # V. Then ev(o) # ev(c’) in ESpm.

The proof follows from [32]. The first part says that along a path in M every M-event
corresponds to the occurrence of an event in FSy. The second part says that every event
e’ that lies in the past of the event e represented by the M-event sequence o will appear
as the event corresponding to a unique prefix of . The third part says if e corresponds to
the M-event sequence o then every event that corresponds to a strict prefix of o will either
be causally earlier than e or will be causally independent of e in ESx¢. The last part says
that two different stochastic choices made at a state along an M-path will correspond to
conflicting events in FS .

» Remark 17. We conclude by noting that an event e = [s ...] in ESy = (B, <, #, A\, 1)
gets assigned a probability value via u(e) =[], <,;<,, Pr(a;). It is not difficult to provide a
measure theoretic justification for this probability value by constructing a o-algebra generated
by the family of cylinder sets {C'S(e)}eer where CS(e) = {c € C, | Le C c¢}. Here, C* is
the set of infinite configurations ESx and ¢ € C* is maximal (i.e. c€ C,) iff c C ¢/ € C
implies ¢ = ¢. In other words, ¢ cannot be extended to a larger (infinite) configuration. This
distinction between infinite and maximal infinite configurations arises due to concurrency
and corresponds to the distinction between complete and incomplete paths. We can define
Prrs(CS(e)) = p(e) and show that Prgg extends canonically to a probability measure over
the o-algebra generated by the above family of cylinder sets. We leave this construction for
future work, since we merely need the probability values assigned to the events as common
reference points to establish the main result of the next section, namely, all complete strategies
determine the same probability values for local reachability properties.

5 The Key Result for CMDPs

Recall that we are given T' C S, for some component p and aim to determine sup,. i Pri, [T,
where T = {s | s(p) € T}. In Lem. 10, we argued that it suffices to consider complete
strategies to achieve this. Here, we shall show that all complete strategies compute the same
probability value for GT. This allows us to choose a complete strategy greedily, which in
turn enables us to efficiently compute the (optimal) probability of a local reachable set.
We first identify the set of events Eop in the event structure ESy, corresponding to
paths in M reaching T'. Let e = [aag - - - o] € E with o = (uj,a;4,v;) for 1 < j <n. Then
e € Eor if vi,(p) € T and vi(p) ¢ T for 1 < i < n, in other words, when its last M-event
reaches a member of T" and no earlier M-event in the sequence representing e does so.

6:11

CONCUR 2024

6:12

Causally Deterministic Markov Decision Processes

To establish the main goal of this section we proceed as follows. For the complete strategy
m, we let Pathsg,,, , denote the set of complete paths of the Markov chain M™. We then
identify, for a given e € Eor, the set of finite paths PathReach(M™,e) in M™ which are
prefixes of complete paths and “reach” e. Specifically, suppose & = pgaip1as -+ Pr—1QnpPn
is a path in M™. Then ¢ € PathReach(MT™,e) if (i) it is a prefix of a path in Paths7,,,,,
(ii) ev(ayag -+ - o) = e and (iii) no strict prefix of & satisfies (ii).

We first show that for each e € Eor it is the case that p(e) = Priy (U, epathreach(rr,e) OJ-
(Recall that p(e) is the probability value assigned to e in ESy.) We then lift this result
to Eor and show that > . p p(e) = > . cp . Pris[PathReach(M™, e)] = Pri,[OT]. Since

these results apply to every complete strategy 7, we are done.

5.1 Relating the Probability of e to the Probability of
PathReach(MT™, e)

Through this subsection, fix e € Eopr and a complete strategy m. We wish to prove that
w(e) = Pri [PathReach(MT™, e)]. Our proof consists of three steps. First, we represent M7™
as a transition system T'S™ by labelling the transitions of the Markov chain with M-events.
Second, we represent PathReach(MT7,e) as a finite prefix of T'S™. Third, we use this finite
prefix to establish that u(e) = Pr}[PathReach(M7,e)].

We begin by deriving the transition system T'S™. The states of T'S™ are the states of
M7 (i.e. finite paths in M). To avoid confusion, we write p for these states and & for paths
in T'S™. Moreover, there is a transition p — p iff (i) M™(p,p’) > 0 and (ii) o = (u,a,v)
is the unique M-event that satisfies last(p)[a] = u and s’[a] = v where p’ = pas’. In
effect, T'S™ is obtained from M™ by replacing the probability “labels” of transitions by
the M-event corresponding to that transition. In particular, note that for a state p of
TS™, a € Act(last(p)) iff there exists an M-event a = (u,a,v) such that last(p)[a] = u.
Based on this, we can directly transfer the definition of complete paths to T'S™. We define
the set of successor states in the obvious way, i.e. succ(p) = {p’ | Ja. p =+ p'}. Observe
that if succ(p) = {p1,p2,...,px} and p =% p; for 1 < i < k then there exists an a such
that Act(oy) = a for every ¢ € {1,2,...,k} and >, ., Pr(a;) = 1. For the rest of this
subsection, we work with this transition system. S

We now turn to representing PathReach(MT7,e) as a finite prefix of T'S™. First we
introduce some useful terminology. We set ¢y = |e. Next, suppose £ = poaip1 - Qnpn
is a path in TS™. Then, EV(§) = {ev(agaz--- ;) | 1 < i < n} denotes the set of events
encountered along the path £. Naturally, EV(£) = 0 if £ = 8. We write G, = (V,=) to
denote the finite prefix of T'S7,,,,, we are after. We construct G, inductively by starting with
§ € V and mark it as unprocessed. We define € to be a path in V' and § = last(¢). We note
that EV(8) =0 C ¢o (as usual, C denotes a strict subset).

Suppose & = poa1p1 -+ Prn—1QnpPrn is a path in V with p, marked as unprocessed and all
the other nodes preceding it in £ marked as processed. Furthermore, assume that EV(£) C co.
Let succ(pn) = {p, ph, - -, pk} and B1, Be, ..., Bk such that p LN p; for 1 <i < k. We now
extend G, by adding the nodes pf, p5, . .., pj, to V and the transitions (p, 3;, p;) for 1 <i <k
to =. We mark p,, as processed. To define the status of the new nodes that have been
added, we consider two cases after setting e; = ev(ajas -+ - @, 8;) for 1 <i < k.

Case 1. Suppose there exists ¢ with e; < e. Then e; € ¢g \ EV(£) and hence EV (£8;p}) =
EV(§)U{ei}. If EV(EBip,) = co we mark pl as a live leaf node and do not process it any
further. This is so since ev({f;p}) = e and e has been hence reached. We also note that
a1ag - -+ anfB; € PathReach(M7™, e). On the other hand, if EV (£8;p}) C ¢o, we mark p}
as unprocessed.

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

In addition we mark, for each [€ {1,2,...,k}\{¢}, the node p; to be a dead leaf node and

do not process it any further. To justify this, let e; = ev({Bip)) for 1 € {1,2,...,k}\ {i}.

Then clearly e; < e and hence by the last part of Lem. 16, we must have e; # ¢; for every
1e{1,2,...,k}\ {e;}. But then e; # e; < e implies e; # e since conflict is inherited via
the causality relation in an event structure. Hence e; and e can not together belong to
any configuration and we can never “reach” e by exploring pj any further.

Case 2. Suppose e; % e for each i. Then, by the third part of Lem. 16, we must have
e; co e. This implies that EV (£6;p;) = EV (&) for each i and we mark each node p, as
unprocessed. The idea is that the chosen action a at p,, does not contribute to uncovering

any of the events in ¢y and hence all the successors of this node must be further explored.

Starting from the root node we repeatedly apply the above rules until there are no unprocessed
nodes left. It remains to be shown that G, is a finite prefix of T'S™ and consequently the

construction procedure for G, always terminates. To this end, we require some terminology.

Let €Y = pgaipias - -+ be a complete path in T'S™. For n > 0, let " = ppa1p1 - - - pn, denote
the finite prefix of ¢“ of length n. We say that p, iars Prn+1 18 a useful transition if there

exists ¢/ € ¢y \ EV(£™) such that w(p,) = act(e’). Otherwise it is a useless transition.

Moreover, we set EV, (™) = EV(£") N¢y. Finally, we say that £ = poaip1 - pn is a live
path if (i) p; is not a dead leaf node for 1 < ¢ < n and (ii) EV,(£") C co.

Lemma 18. Suppose £ = poaip1 -« pn 1S a live path.

If ¢ € min(co) \ EV (™) then act(e’) € Act(pn)

pi €V for0<i<n+1 andpja%lpjﬂ for0<j<n+1.

If pn 5 poy1 is a useful transition, then ppiq is a dead leaf node or |EV. (&M =
|EV.(£™)| + 1. Further, pni1 is a live leaf node if EV.(£") = g

4. If p, dnty Pni1 18 a useless transition then EV,(£"Y) = EV.(£") and £€"FY is a live path.

w N =Yy

Proof. For the first part, let ¢’ € min(co\ EV(§™)). If €” < €’ then ¢’ € EV(£"). Otherwise
e’ € ¢\ EV(€™) which contradicts ¢’ € min(cy \ EV(€")). Thus ¢/ = EV(") U {e'} is a

configuration and EV,(£") ims ¢’. From the first part of Prop. 15 we get act(e’) € Act(py).

The rest follows from the construction rules for G, and their explanations. <

» Lemma 19. The following assertions hold.
1. Let £ € Pathsg,,,, with §" = poaip1---pn. Then there exists k > 0 such that py is a
live or dead leaf node.

2. G, is a finite tree.

Proof. From the third part of Lem. 18, it follows that there can be at most |cg| useful
transitions along £“ before a dead or live leaf node is encountered. We now claim that there
can be only a finite number of consecutive useless moves along £. This follows from the first
and fourth parts of Lem. 18 and the definition of a complete path. Hence £“ will eventually
hit a dead or live node. The second part of the lemma now follows from the first part and
Koénig’s lemma since T'S™ is finitely branching. <

Since G, is a finite tree it is immediate that its construction procedure always terminates. It
is also easy to see that the set of live branches, i.e. paths from the root node to the live leaf
nodes in G, correspond to PathReach(MT7,e).

For the event e of Fig. 3, our construction produces the tree shown in the left of Fig. 4.
The boxes denote dead leaf nodes and the circle is the lone live leaf node. On the other hand,
for the event €', the resulting tree can be arbitrarily large. After the v event, the strategy

6:13

CONCUR 2024

6:14

Causally Deterministic Markov Decision Processes

B2 B1

aq Q2

Figure 4 The trees for the events e (left) and e’ (right).

can choose to execute the action b a large number of times before executing the action a.

For the case where the strategy chooses to do b twice whenever possible before choosing to

do an a or ¢, the resulting tree is shown on the right of Fig. 4, using the same notation.
We can now establish the main result of this subsection.

» Lemma 20. Suppose e € Eor. Then u(e) = Pri[PathReach(M™, e)].

Proof. In G, each edge in the tree is an M-event «, accompanied by the probability value
Pr(a). Hence the probability of a path is fixed to be the product of the probabilities of the
labels of the edges encountered on the path. Let V' be the set of nodes in the finite tree
consisting of nodes that are not dead leaf nodes. In what follows, p ranges over V’. Clearly,
the root node pg is in V’. We now define the probability associated with a node p, denoted
Pr,, to be the sum of the probabilities of the paths leading from p to live leaf nodes. By
convention, the probability associated with a live leaf node is 1. We claim that Pr,, = u(e).

To prove the claim, we first associate the partial order (c,, <) with each node p where
¢, = ¢o \ EV(&,) with £, being the unique path from py to p in G.. Next, for each p € V’,
we let ht, be the length of the longest path from p to a live leaf node. We now wish to show
by induction on ht, that Pr, = He,ecp Pr(X(€")) if ¢, # 0 and Pr, = 1 otherwise. If we
do so, then Pr,, = u(e) will follow at once. To start with, let p be a live leaf node. Then
ht, = 0 and Pr, = 1 by convention.

Next, suppose ¢, # 0 and m(§,) = a. We consider two cases. First assume there
exists ¢/ € min(c,) such that a = act(e’). Then p has a unique child node p’ with (¢, <)
as the associated partial order satisfying ¢ = ¢\ {e’}. All other successor nodes of p
will be dead leaf nodes. Now, every path from p to a live leaf node consists of the edge
(p,, p') followed by a path from p’ to a live leaf node. This implies Pr, = Pr(A(e')) - Pr,.
By the induction hypothesis, Pr, = [[,.c., Pr(A(e”)). However ¢, = ¢, \ {€’} implies
Pr,=Pr(A€)) - 1] Pr(A(e") = He,e% Pr(A(e')) as required.

Next, assume there does not exist ¢/ € min(c) such that a = act(e’). Let the set of

" -
e’'ecy

successors of p be {p/, ph, ..., p,} and {B1, B2, ..., B} such that p =N p; for 1 <4 < k. Then
every path from p to a live leaf node is an edge (p, 8, p;) followed by a path from p} to that
live leaf node for some 4. This implies that Pr, = >, ,; Pr(8;) - Pry. But then (c,, <)
is the partial order associated with each p; by the construction of Ge. Hence, by induction
hypothesis, Pr,, =[], c. Pr(A(e)). Let t = [[..c. Pr(A(€')). Then Pr, =3, _, . Pr(B:)-t.
But then)", ., Pr(58;) = 1. Hence Pr, =t as required. <

5.2 All Complete Strategies Achieve the Same Value

We now lift Lem. 20 to Eor, i.e. show that > . u(e) = U, cp,, Pris[PathReach(M™, e)].

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

First, we observe that T'S™ naturally inherits a probability measure from M7™. To
see this, by the definition of T'S™ we are assured that pgp;---p, is a path in M™ iff
0~ p1- - P1 —2 py is a path in T'S™ where the sequence of M-events ajas - - - v, is
uniquely determined by the sequence p1ps - - - pn. As a result, the o-algebra generated by the
(cylinder set of) finite paths of T'S™ will be in a bijective relation with the usual o-algebra
generated by the finite paths of M™. Consequently, we can transfer the probability measure
Prii; to a probability measure over the o-algebra of T'S™. By abuse of notation, we shall
denote this measure too as Pri, in what follows.

Now consider ¢ € For and G, the finite tree constructed in the previous subsection.
Let Paths, be the set of branches from the root node to the live leaf nodes in G.. Fur-
ther, let CS(€) be the cylinder set of the finite path £ in T'S™. Then from the proof of
Lem. 20 it follows that Prj,[PathReach(M™, e)] = Priy[Uccpaims, CS(§)]. Consequently,
PrilOT] = Ueeror Uscpatns, CS(€). Since E is a countable set, this probability value is
well-defined. To show that this value is the same for all complete strategies, we establish
that U.c g, Usepatns, CS(6) =2 ccp. . #(€). The key to doing this is the next result.

» Lemma 21. Let e1,e5 € Eor such that e; # eo. Then ey # es.

Proof. Let e; = [a1ag -+ ay] and ea = [B102 -+ Bm]- If e1 < ea, then there exists i < n such
that ev(B1082 - - ;) = e1. But this contradicts the requirement that c, is the first M-event
in the sequence ajas - - o, with v, (p) € T where o; = (u;,a;,v;) for 1 < j < n. Thus
e1 £ eo and similarly e £ e;. Next suppose e; co es.

Then c¢12 = Je; U les is a configuration. To see this, let and y be events such that
x € ¢12 and y < x. Suppose x € le;. Then y € ey C c15. Similarly, z € Jes implies that
y € c12. Next, suppose that # y. Then, it can not be the case that x,y are both in Je; or
Jes since both Je; and |e; are configurations and hence conflict-free. Hence, assume that
x € leg and y € les. Then x < e; and y < e, which implies that e; # es, contradicting
e1 co es. Thus c;15 indeed is a configuration.

This implies that Je; 1 lea. Hence by the last part of Prop. 12, there exist M-event
sequences y1vz - -y, @jah---al,, and 8155 - B, such that (i) y1y2---nojay o, ~
rag -, (1) y1v2 - MBLIBy - By & PPz Bm, and (iii) o) I B} for 1 < i < n' and
1 <j <m'. Since [aqas---a,] and [152 -+ Bm] are both prime traces we must have
al, = a, and B, = B,,. This leads to a, I (,,, which is a contradiction since p €
loc(act(ar,)) Nloc(act(Bm)) and hence ay, D By, <

> Lemma 22. Priy[OT] =3 p pule).

Proof. We have Pri[OT] = Pri (U.cg,, Uscpatns, CS(€)] from the remarks preceding
Lem. 20, where Paths, is the set of branches from the root node to live leaf nodes in G,
the finite tree constructed in the proof of Lem. 20. Let e1,es € FEop such that e; # es.
Then e; # e2 by Lem. 21. Let & € Paths., and & € Pathse,. Then from the definition
of Paths. it follows directly that C'S(&1) N CS(&) = . This implies that Pri,[OT] =

ZeGEoT Priv [UgePathse CS(€)]. From Lem. 20 we get Pri[OT] = ZeeEQT uie). <

This at once leads to our main result.

» Theorem 23. Let m and @' be two deterministic complete strategies for the CMDP M.
Then Pri (O T] = Priy, [¢ 1.

Combined with Lem. 10, we have that in order to compute the optimal local reachability
value, we can confine ourselves to complete strategies and from among them, greedily choose
one.

6:15

CONCUR 2024

6:16

Causally Deterministic Markov Decision Processes

6 Implementation and Experimental Evaluation

We implemented a prototype tool and evaluated it on a few models, as we describe in
the following. The tool is written in Java and based on PET [22]. It uses PRISM [18] to
parse models. We used the pure-Java library oj! Algorithms to solve linear programs. We
empirically validated the soundness of our implementation by comparing its output on about
20 models to the results of Storm [8] in its sound, exact mode. The tool, its source code, all
used models, and further models can be obtained from [23].

6.1 Algorithm Description

Our tool (i) provides a syntactic over-approximation for checking the CD property, and
(ii) computes the maximal reachability probability of a local reachability set, assuming
that the input MDP is a CMDP. In the interest of space, we only sketch the computation
procedure here. More details and a formal description can be found in App. A. Intuitively,
the goal is to construct only the part of the system that is reached by one specific complete
strategy, chosen as follows. First, we heuristically fix a priority over the set of actions. Then,
we begin exploring the global FMDP by starting in the initial state, picking the available
action with the highest priority, and determine all its stochastic successors. We repeat this
process for the discovered successors until a fixpoint of states is reached. One must however
ensure that this greedy prioritization avoids neglecting an available action forever. To this
end, we check in each bottom maximal end component whether any available action is never
chosen. If so, we pick, for each bottom component, the constantly omitted action with
highest priority and explore as above. Eventually, this process will terminate with no bottom
MECs having any omitted action. Then, we determine the maximal reachability probability
of the target local state on the constructed subsystem. In our implementation we use the
standard linear program for reachability (see, e.g., [2, Thm. 10.105]). We note that for the
computation, CD is only required for correctness, not for termination.

Our implementation is quite simplistic and can be optimized in multiple ways. In
particular, the priority order of actions will have a large influence on the size of the resulting
subsystem, and this could be significantly improved by intelligent adaptive techniques and
learning-based approaches. However, our current heuristical ordering already provides
convincing results. Hence we did not explore this issue further.

6.2 Setup and Results

We consider four types of models, each of which was either constructed from scratch or
obtained by adapting an existing model to fit into our framework. Unfortunately, most models
of the PRISM benchmark suite [19] are not immediately CD and one needs to examine which
ones can be adapted to fit into our framework, which we leave for future work. We provide a
brief intuitive description of the models we used. The concrete specification in the PRISM
modelling language can be found in [23]. The sync model consists of 20 processes running in
parallel, each repeatedly tossing a (biased) coin and progressing when head is obtained, and
finally synchronizing on a common action with all other processes to reach their final states.
We next consider a variant of the classical dining philosophers, where philosophers alternate
between eating and thinking. In our variant, the thinking process of each philosopher has
several (probabilistic) steps with each philosopher initially “musing” and eventually becoming
“enlightened” or “bewildered”, and we seek the probability of one philosopher achieving

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

Table 1 Overview of results for our four models. From left to right, we list the model name,
its overall size (as reported by Storm), the runtime of Storm with sparse and symbolic engine,
respectively, the size of the reduced model constructed by our tool, and the overall runtime of our
tool. T/O denotes a runtime of over 5 minutes. We also carried out a comparison to PRISM,
however Storm was faster in all cases.

Model Size Storm-sparse Storm-symbolic Reduced Size Our Tool
sync 2.1-10 17s 2s 22 2s
philosophers 8.6-10° T/O T/O 3264 4s
production 6.6-107 T/0O T/O 11669 8s
scheduling 2.8-10%° T/O T/O 111 <1s
scheduling (large) 77 T/O T/O 1021 3s

enlightenment. The production model comprises a production network where resources
are used to assemble (through several steps) a final product. Resources have a chance of
becoming exhausted every time they are mined and we are interested in the probability
of producing a given quantity of the final product. Finally, scheduling models a central
process C' which proceeds in ten stages. In stage 7, the process needs to synchronize with
the process p; to proceed to stage i + 1. The sub-processes are independent, but may fail to
complete. We are interested in the probability of the central process finishing the final stage.
For scalability analysis, we also consider a “large” variant where C has 20 stages and each p;
has 50 sequential steps.

We executed our tool on standard hardware and compared our results with those obtained
using the model checker Storm. We considered both the default sparse as well as symbolic
engines of Storm and otherwise let Storm run in its default configuration. Notably, we did
not require exact or sound results (i.e. Storm could decide to use classical, unsound value
iteration), while our tool computed correct, exact results using linear programming (up to
floating point precision). We summarize our findings in Table 1. One can see that our (basic,
unoptimized) approach significantly outperforms existing approaches on the chosen models.
This improvement is due to our method being able to avoid visiting a lot number of “useless”
states by not exploring every interleaving. On the “large” variant of scheduling, Storm fails
to even output a state count, which we estimate to be of the order of 502" (~ 103%).

7 Conclusion

We introduced a class of factored MDPs where through the notion of locations, we cleanly
separate the causality, concurrency, and conflict relations between the stochastic events in
the system. This leads to an event structure semantics for our FMDPs. We mainly used this
representation to provide the basis for a powerful partial order based quantitative analysis
technique for CMDPs, a natural subclass of FMDPs.

In the future, we plan to study the class of CMDPs from the standpoint of expressiveness.
In particular it will be interesting to separate CMDPs from FMDPs that inherently do not
have the CD property but are unavoidable in practice. Here we suspect that the property
called confusion-freeness will play an important role [30]. We also wish to emphasize that the
class of FMDPs we identify and their event structure semantics are of independent interest.
In particular, it opens up the possibility of using techniques such as finite prefixes of event
structures [11] and stubborn sets [15] to analyze FMDPs. These techniques can be applied
for model checking the FMDPs for probabilistic temporal logical specifications. To secure
the foundations for doing so, the probability measure for events structures that was alluded
to at the end of Sec. 4 will need to be fleshed out.

6:17

CONCUR 2024

6:18

Causally Deterministic Markov Decision Processes

Our experiments suggest that the presented method has significant potential for practical

applicability, especially in light of the fact that the method itself can be improved and
extended in multiple ways; for instance, by considering reachability properties for a small
number of components or by formulating weaker versions of the CD property.

—— References

1

10

Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: Branching cells
and distributed probabilities for event structures. Information and Computation, 204(2):231—
274, 2006. doi:10.1016/j.ic.2005.10.001.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

Marco Beccuti, Giuliana Franceschinis, and Serge Haddad. Markov decision petri net and
markov decision well-formed net formalisms. In Jetty Kleijn and Alexandre Yakovlev, editors,
Petri Nets and Other Models of Concurrency — ICATPN 2007, 28th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency, ICATPN 2007,
Siedlce, Poland, June 25-29, 2007, Proceedings, volume 4546 of Lecture Notes in Computer
Science, pages 43—62. Springer, 2007. doi:10.1007/978-3-540-73094-1_6.

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting structure in policy
construction. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, pages
1104-1113. Morgan Kaufmann, 1995. URL: http://ijcai.org/Proceedings/95-2/Papers/
012.pdf.

Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges,
and Andrea Turrini. JANI: quantitative model and tool interaction. In Tools and Algorithms
for the Construction and Analysis of Systems — 23rd International Conference, TACAS 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II, volume 10206 of Lecture Notes
in Computer Science, pages 151-168, 2017. doi:10.1007/978-3-662-54580-5_9.

Luca de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,
USA, 1997. URL: https://searchworks.stanford.edu/view/3910936.

Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Roberto Segala.
Symbolic model checking of probabilistic processes using mtbdds and the kronecker repre-
sentation. In Susanne Graf and Michael I. Schwartzbach, editors, Tools and Algorithms for
Construction and Analysis of Systems, 6th International Conference, TACAS 2000, Held as
Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS 2000,
Berlin, Germany, March 25 — April 2, 2000, Proceedings, volume 1785 of Lecture Notes in
Computer Science, pages 395-410. Springer, 2000. doi:10.1007/3-540-46419-0_27.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm
is coming: A modern probabilistic model checker. In Computer Aided Verification — 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II, volume 10427 of Lecture Notes in Computer Science, pages 592—600. Springer, 2017.
doi:10.1007/978-3-319-63390-9_31.

Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, 1995.
doi:10.1142/2563.

Javier Esparza. Decidability and complexity of Petri net problems — an introduction. In
Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, held in Dagstuhl, September 1996, volume 1491 of Lecture
Notes in Computer Science, pages 374—428. Springer, 1996. doi:10.1007/3-540-65306-6_20.

https://doi.org/10.1016/j.ic.2005.10.001
https://doi.org/10.1007/978-3-540-73094-1_6
http://ijcai.org/Proceedings/95-2/Papers/012.pdf
http://ijcai.org/Proceedings/95-2/Papers/012.pdf
https://doi.org/10.1007/978-3-662-54580-5_9
https://searchworks.stanford.edu/view/3910936
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1142/2563
https://doi.org/10.1007/3-540-65306-6_20

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Javier Esparza and Keijo Heljanko. Unfoldings — A Partial-Order Approach to Model Checking.

Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2008. doi:
10.1007/978-3-540-77426-6.

Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model
minimization in Markov decision processes. Artif. Intell., 147(1-2):163-223, 2003. doi:
10.1016/S0004-3702(02)00376-4.

Marcus Grofler and Christel Baier. Partial order reduction for Markov decision processes: A
survey. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, Formal Methods for Components and Objects, 4th International Symposium, FMCO
2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111 of

Lecture Notes in Computer Science, pages 408-427. Springer, 2005. doi:10.1007/11804192_19.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution

algorithms for factored MDPs. J. Artif. Intell. Res., 19:399-468, 2003. doi:10.1613/JAIR.

1000.

Henri Hansen, Marta Z. Kwiatkowska, and Hongyang Qu. Partial order reduction for model
checking Markov decision processes under unconditional fairness. In Eighth International
Conference on Quantitative Fvaluation of Systems, QEST 2011, Aachen, Germany, 5-8
September, 2011, pages 203—212. IEEE Computer Society, 2011. doi:10.1109/QEST.2011.35.
Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods Syst. Des.,
36(3):246—280, 2010. doi:10.1007/S10703-010-0097-6.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models — Principles and Techniques.

MIT Press, 2009. URL: http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&
tid=11886.

Marta 7. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Computer Aided Verification — 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes
in Computer Science, pages 585-591. Springer, 2011. doi:10.1007/978-3-642-22110-1_47.
Marta 7. Kwiatkowska, Gethin Norman, and David Parker. The PRISM benchmark suite. In
Ninth International Conference on Quantitative Fvaluation of Systems, QEST 2012, London,
United Kingdom, September 17-20, 2012, pages 203-204. IEEE Computer Society, 2012.
doi:10.1109/QEST.2012.14.

Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and Giuliana
Franceschinis. Modelling with generalized stochastic petri nets. SIGMETRICS Perform.
Evaluation Rev., 26(2):2, 1998. doi:10.1145/288197.581193.

Antoni W. Mazurkiewicz. Introduction to trace theory. In Volker Diekert and Grzegorz
Rozenberg, editors, The Book of Traces, pages 3—41. World Scientific, 1995. doi:10.1142/
9789814261456_0001.

Tobias Meggendorfer. PET — A partial exploration tool for probabilistic verification. In
Automated Technology for Verification and Analysis — 20th International Symposium, ATVA
2022, Virtual Event, October 25-28, 2022, Proceedings, volume 13505 of Lecture Notes in
Computer Science, pages 320-326. Springer, 2022. doi:10.1007/978-3-031-19992-9_20.
Tobias Meggendorfer. Causally deterministic markov decision processes, July 2024. Software
(visited on 2024-08-20). doi:10.5281/zenodo.12657579.

Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and

domains, part I. Theor. Comput. Sci., 13:85-108, 1981. doi:10.1016/0304-3975(81)90112-2.
Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.
Wolfgang Reisig. Understanding Petri Nets — Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013. doi:10.1007/978-3-642-33278-4.

Brigitte Rozoy and P. S. Thiagarajan. Event structures and trace monoids. Theor. Comput.
Sci., 91(2):285-313, 1991. doi:10.1016/0304-3975(91)90087-1I.

6:19

CONCUR 2024

https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1016/S0004-3702(02)00376-4
https://doi.org/10.1016/S0004-3702(02)00376-4
https://doi.org/10.1007/11804192_19
https://doi.org/10.1613/JAIR.1000
https://doi.org/10.1613/JAIR.1000
https://doi.org/10.1109/QEST.2011.35
https://doi.org/10.1007/S10703-010-0097-6
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1145/288197.581193
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1007/978-3-031-19992-9_20
https://doi.org/10.5281/zenodo.12657579
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1016/0304-3975(91)90087-I

6:20

Causally Deterministic Markov Decision Processes

28 Ratul Saha, Javier Esparza, Sumit Kumar Jha, Madhavan Mukund, and P. S. Thiagarajan.
Distributed Markov chains. In Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen,
editors, Verification, Model Checking, and Abstract Interpretation, pages 117-134, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-46081-8_7.

29 P. S. Thiagarajan and Shaofa Yang. A theory of distributed Markov chains. Fundam.
Informaticae, 175(1-4):301-325, 2020. doi:10.3233/FI-2020-1958.

30 Daniele Varacca, Hagen Volzer, and Glynn Winskel. Probabilistic event structures and domains.
Theoretical Computer Science, 358(2):173-199, 2006. Concurrency Theory (CONCUR 2004).
doi:10.1016/j.tcs.2006.01.015.

31 Kazuki Watanabe, Clovis Eberhart, Kazuyuki Asada, and Ichiro Hasuo. Compositional
probabilistic model checking with string diagrams of MDPs. In Computer Aided Verification
— 85th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part I11, volume 13966 of Lecture Notes in Computer Science, pages 40—-61. Springer, 2023.
doi:10.1007/978-3-031-37709-9_3.

32 Glynn Winskel and Mogens Nielsen. Models for concurrency, pages 1-148. Oxford University
Press, Inc., USA, 1995.

A Algorithm Description

In this section, we provide a more detailed description of our algorithmic approach. We
assume that we are given the description of each process in an MDP network. As mentioned
above, our tool reads models given in the PRISM language, which introduces additional
modes of synchronization. For example, guards and updates can read the value of other
processes’ states without explicitly synchronizing with them.

Checking Causal Determinacy

To syntactically check whether a given model is CD, we check for every local state of every
process and every pair of actions available for that process that the intersection of the
action guards is empty. This directly implies that the model is CD. However, this is also an
over-approximation, since a potential violation might not be reachable in the actual system.
All models except the philosophers model directly satisfy this simple syntactic property.
For the model, philosophers model we verified the CD property by manual inspection.

Constructing a Complete Strategy

As mentioned in the main body, our first goal is to heuristically fix a priority order on
the available actions. To this end we first record all “dependencies” between processes, i.e.
whenever a process reads from or synchronizes with another process, we add an edge in the
module dependency graph. Then, starting from the process for which we have the local
reachability query, we explore this dependency graph in a breadth-first fashion and order the
processes according to this search. We then derive the action priority as follows: We iterate
over the processes in the above order, and consider each action this process is involved in
which has not yet been processed (i.e. all actions a for which the current module has the
highest priority among all processes in loc(a)). These actions are then sorted according to
the process with the lowest priority among all of those involved with the action, i.e. loc(a).
This then gives us the overall priority ordering over all actions appearing in the system.
The second part then is to construct a sub-system of the global FMDP which contains
at least one complete strategy. By computing the maximal reachability probability on this
sub-system, we obtain the overall maximal reachability probability, as any complete strategy

https://doi.org/10.1007/978-3-662-46081-8_7
https://doi.org/10.3233/FI-2020-1958
https://doi.org/10.1016/j.tcs.2006.01.015
https://doi.org/10.1007/978-3-031-37709-9_3

S. Akshay, T. Meggendorfer, and P.S. Thiagarajan

is optimal under CD. To this end, we start in the global initial state and explore the graph

induced by the following rule: (i) In a state s, compute the set of available actions Act(s).

(ii) Among those actions, pick the action with the highest priority according to the determined
order. (iii) Return the set of successors under this action. We fully explore the system
induced by this transition relation using BFS. In other words, we explore the sub-system
induced by greedily following actions according to our priority order.

As already mentioned, this alone does not guarantee that we get a complete strategy:
For example, it might be the case that the highest priority action a available in some state s
simply self-loops, but another action b (with lower priority) would lead to a new successor
s’. To ensure this, we determine the set of bottom maximal end components, i.e. all regions
where the strategy we are following is “looping”. Let R be a set of states forming such an
end component in the explored sub-system and for every state s let A(s) the action we chose
according to our greedy rule. We then compute A(R) = Jgcp Act(s) \ Uger A(s). When
A(R) = (), we are finished with the end component R. If not, we pick for each bottom end
component R with A(R) # @ the action with the highest priority from A(R) according to
our priority rule and again apply the exploration rule from above.

Correctness

We argue that the subsystem explored in this way contains a complete strategy, independent
of the action priority used, by explicitly constructing one. Let B the set of states in bottom
maximal end components in the explored sub-system. Let 7 a strategy that (i) reaches B
with probability 1 and (ii) uses each action available in B infinitely often with probability 1
(e.g., by using round-robin memory). Such a strategy exists due to standard results on the
properties of end components [2, Chapter 10], [6]. We claim that this strategy is complete.

Assume for contradiction that it is not, i.e. the set of incomplete paths under this strategy
has non-zero measure. Since the set of state-action pairs is finite, there exists at least one
pair (s, a) which is “responsible” for the incompleteness. In other words, under the strategy
we reach (after a finite number of steps) a state s where a is available, but from that point
onward we never see a with some non-zero probability. Formally, there exists (s,a) and
index i such that P = {o |s = 0; AVj >i. A(p, j) # a} has non-zero measure (where A(p, j)
denotes the action in path p at step j). Observe that by the CD condition, for the paths in
‘P the action a is available at all subsequent states after i.

Next, let Inf(p) C S the set of states visited infinitely often by path p. Consider the
(finite) partitioning of P by Inf, i.e. grouping runs that visit the same set of states infinitely

often. By additivity of Prl,, there exists at least one partition S, that has non-zero measure.

Thus, by the definition of 7, S is a subset of B: Almost all paths under 7 end up in B, so
there can be no non-zero measure set that does not.

To conclude, recall that a is available on all states of all paths in P, including all paths in
Soo- Let R a maximal bottom end component in the explored subsystem (i.e. R C B) with a
non-empty intersection with S... By the definition of 7, almost all paths of P that end up
in R visit all states of R infinitely often. Together, a must be available in all states of R, but
is never chosen by the strategy m. However, by construction, we would have explored a, as it
is an available action in a bottom end component of the subsystem. Concretely, we have
that A(R) is not empty, hence we would explore further, contradicting that R is a bottom
end component. This concludes the proof.

6:21

CONCUR 2024

6:22

Causally Deterministic Markov Decision Processes

B Proof of Lemma 10

» Lemma 10. There exists a deterministic, complete strategy m € Il which achieves the
optimal value, i.e. Pri[OT] = sup,.cp Pri,[OT].

Proof. We show this by arguing that an optimal, possibly non-complete strategy can be
modified into a complete one without losing any reachability probability. To this end, let 7 a
memoryless deterministic strategy that achieves the optimal value. Assume this strategy is
incomplete. We now show how to extend it to a complete strategy. Consider the bottom
strongly connected components B = {Bjy,..., By} in the induced Markov chain M™. With
probability 1, these are eventually reached (i.e. Pri,[CJ B;] = 1), and, likewise, once in
a BSCC B;, every state within it is reached with probability 1 [2, Chp. 10]. Consider the
following strategy 7’: Follow 7, waiting until one of the BSCCs B; is reached. Meanwhile,
track a set of actions A. At each state s, add all actions Act(s) to A and then remove 7 (s).
In other words, A tracks all actions that were available but have not been played since they
became available. Then, wait until every state in B; was seen at least once. Until now, 7’
has behaved exactly as m and has only stored a bounded amount of information.

At this stage 7’ switches to a different behaviour. Store the set of actions A which have
not been played to A’ and clear A. By CD, all actions in A are still available. So, 7’ chooses
the actions in A’ one by one, and, in the meantime, keeps updating A as before. Once A’
is empty, again A is copied to A’, A is cleared and the whole process is repeated. (If A is
empty at this stage, 7 simply picks any action.)

This strategy clearly reaches every state that 7 reaches with at least the same probability,
since ' only deviates from 7 once all states that m can see have been encountered. In
addition, this strategy is complete since every action that is available is played within a finite
number of steps with probability 1. |

Fairness and Consensus in an Asynchronous
Opinion Model for Social Networks

Jestis Aranda &
Universidad del Valle, Colombia

Sebastian Betancourt &
Universidad del Valle, Colombia

Juan Fco. Diaz =
Universidad del Valle, Colombia

Frank Valencia =

CNRS LIX, Ecole Polytechnique de Paris, France
Pontificia Universidad Javeriana Cali, Colombia
—— Abstract

We introduce a DeGroot-based model for opinion dynamics in social networks. A community of

agents is represented as a weighted directed graph whose edges indicate how much agents influence
one another. The model is formalized using labeled transition systems, henceforth called opinion
transition systems (OTS), whose states represent the agents’ opinions and whose actions are the
edges of the influence graph. If a transition labeled (¢, j) is performed, agent j updates their opinion
taking into account the opinion of agent 7 and the influence ¢ has over j. We study (convergence
to) opinion consensus among the agents of strongly-connected graphs with influence values in the
interval (0,1). We show that consensus cannot be guaranteed under the standard strong fairness
assumption on transition systems. We derive that consensus is guaranteed under a stronger notion
from the literature of concurrent systems; bounded fairness. We argue that bounded-fairness is
too strong of a notion for consensus as it almost surely rules out random runs and it is not a
constructive liveness property. We introduce a weaker fairness notion, called m-bounded fairness,
and show that it guarantees consensus. The new notion includes almost surely all random runs and
it is a constructive liveness property. Finally, we consider OTS with dynamic influence and show
convergence to consensus holds under m-bounded fairness if the influence changes within a fixed
interval [L,U] with 0 < L < U < 1. We illustrate OTS with examples and simulations, offering
insights into opinion formation under fairness and dynamic influence.

2012 ACM Subject Classification Theory of computation — Social networks
Keywords and phrases Social networks, fairness, DeGroot, consensus, asynchrony
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.7

Related Version Technical Report with proofs: https://arxiv.org/abs/2312.12251 [7]

Supplementary Material Software (Source python code for simulations): https://github.com/
promueva/Fairness-and-Consensus-in-Opinion-Models
archived at swh:1:dir:3d1d063e991e22e10ce933£f8b060dcb8f1703702

Funding This work is partly supported by the Colombian Minciencias project PROMUEVA, BPIN
2021000100160.

1 Introduction

Social networks have a strong impact on opinion formation, often resulting in polarization.
Broadly, the dynamics of opinion formation in social networks involve users expressing their
opinions, being exposed to the opinions of others, and potentially adapting their own views
based on these interactions. Modeling these dynamics enables us to glean insights into how
opinions form and spread within social networks.
? Jestis Aranda, Sebz.a‘stié‘n Betancou'rt, Juan Fco. Diaz, and Frank Valencia;

5v icensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 7; pp. 7:1-7:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jesus.aranda@correounivalle.edu.co
https://orcid.org/0000-0002-3391-5966
mailto:joan.betancourt@correounivalle.edu.co
https://orcid.org/0009-0003-4365-9438
mailto:juanfco.diaz@correounivalle.edu.co
https://orcid.org/0000-0002-6178-0595
mailto:frank.valencia@gmail.com
https://doi.org/10.4230/LIPIcs.CONCUR.2024.7
https://arxiv.org/abs/2312.12251
https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models
https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models
https://archive.softwareheritage.org/swh:1:dir:3d1d063e991e22e10ce933f8b060dcb8f1703702;origin=https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models;visit=swh:1:snp:337c242bcdbe18750c321a693e845e80dd1c31bb;anchor=swh:1:rev:f2fb857464167d7c94eb52c015d2268cbdeaa843
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

The models of social learning aim to capture opinion dynamics in social networks [36].
The DeGroot model [14] is one of the most prominent formalisms for social learning and
opinion formation dynamics, and it remains a continuous focus of study in social network
theory [21]. A given community is represented as a weighted directed graph, known as the
influence graph, whose edges indicate how much individuals (agents) influence one another.
Each agent has an opinion represented as a value in [0, 1], indicating the strength of their
agreement with an underlying proposition (e.g., “ AT poses a threat to humanity”). Agents
repetitively revise their opinions by averaging them with those of their contacts, taking into
account the influence each contact holds. (There is empirical evidence validating the opinion
formation through averaging of the model in controlled sociological experiments, e.g., [10].) A
fundamental theoretical result of the model states that the agents will converge to consensus
if the influence graph is strongly connected and the agents have non-zero self-influence (puppet
freedom) [21]. The significance of this result lies in the fact that consensus is a central
problem in social learning. Indeed, the inability to reach consensus is a sign of a polarized
community.

Nevertheless, the DeGroot model makes at least two assumptions that could be overly
constraining within social network contexts. Firstly, it assumes that all the agents update
their opinions simultaneously (full synchrony), and secondly, it assumes that the influence of
agents remains the same throughout opinion evolution (static influence). These assumptions
may hold in some controlled scenarios and render the model tractable but in many real-world
scenarios individuals do not update their opinions simultaneously [29]. Instead, opinion
updating often occurs asynchronously, with different agents updating their opinions at
different times. Furthermore, individuals may gain or lose influence through various factors,
such as expressing contrarian or extreme opinions [20].

In this paper, we introduce an asynchronous DeGroot-based model with dynamic influence
to reason about opinion formation, building upon notions from concurrency theory. The
model is presented by means of labeled transition systems, here called opinion transition
systems (OTS). The states of an OTS represent the agents’ opinions, and the actions (labels)
are the edges of the influence graph. All actions are always enabled. If a transition labeled
with an edge (i, j) is chosen, agent j updates their opinion by averaging it with the opinion
of agent i weighted by the influence that this agent carries over j. A run of an OTS is an
infinite sequence of (chosen) transitions.

We shall focus on the problem of convergence to opinion consensus in runs of the OTS,
assuming strong connectivity of the influence graph and puppet freedom. For consensus to
make sense, all agents should have the chance to update their opinions. Therefore, we need
to make fairness assumptions about the runs. In concurrency theory, this means requiring
that some actions be performed sufficiently often.

We first show that contrary to the DeGroot model, consensus cannot be guaranteed for
runs of OTS even under the standard strong fairness assumption (i.e., that each action occurs
infinitely often in the run) [22, 27]. This highlights the impact of asynchronous behavior on
opinion formation.

We then consider the well-known notion of bounded fairness in the literature on verification
of concurrent systems [16]. This notion requires that every action must be performed not
just eventually but within some bounded period of time. We show that bounded-fairness
guarantees convergence to consensus. This also gives us insight into opinion formation
through averaging, i.e., preventing unbounded delays of actions (opinion updates) is sufficient
for convergence to consensus.

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

Nevertheless, bounded fairness does not have some properties one may wish in a fairness

notion. In particular, it is not a constructive liveness property in the sense of [34, 33].

Roughly speaking, a fairness notion is a constructive liveness property if, while it may require
that a particular action is taken sufficiently often, it should not prevent any other action
from being taken sufficiently often. Indeed, we will show that preventing unbounded delays
implies preventing some actions from occurring sufficiently often.

Furthermore, bounded-fairness is not random inclusive. A fairness notion is random
inclusive if any random run (i.e., a run where each action is chosen independently with
non-zero probability) is almost surely fair under the notion. We find this property relevant
because we wish to apply our results to other asynchronous randomized models whose runs
are random and whose opinion dynamics can be captured as an OTS.

We therefore introduce a new weaker fairness notion, called m-bounded fairness, and show
that it guarantees consensus. The new notion is shown to be a constructive liveness property
and random inclusive. We also show that consensus is guaranteed under m-bounded fairness
even if we allow for dynamic influence as long as all the changes of influence are within a
fixed interval [L,U] with 0 < L < U < 1.

All in all, we believe that asynchronous opinion updates and dynamic influence provide
us with a model more faithful to reality than the original DeGroot model. The fairness
assumptions and consensus results presented in this paper show that the model is also
tractable and that it brings new insights into opinion formation in social networks. To the
best of our knowledge, this is the first work using fairness notions from concurrency theory
in the context of opinion dynamics in social networks.

Furthermore, since m-bounded fairness is random inclusive, our result extends with
dynamic influence the consensus result in [17] for distributed averaging with randomized
gossip algorithms. Distributed averaging is a central problem in other application areas, such
as decentralized computation, sensor networks and clock synchronization.

Organization. The paper is organized as follows: In Section 2, we introduce OTS and the
consensus problem. Initially, to isolate the challenges of asynchronous communication in
achieving consensus, we assume static influence. In Section 3, we identify counter-examples,
graph conditions, and fairness notions for consensus to give some insight into opinion dynamics.
In Section 4, we introduce a new notion of fairness and state our first consensus theorem.
Finally, in Section 5, we add dynamic influence and give the second consensus theorem.

The detailed proofs are included in a related technical report [7]. The Python code used to
produce OTS examples and simulations in this paper can be found in the following repository:
https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models.

2 The Model

In the standard DeGroot model [14], agents update their opinion synchronously in the
following sense: at each time unit, all the agents (individuals) update simultaneously their
current opinion by listening to the current opinion values of those who influence them. This
notion of updating may be unrealistic in some social network scenarios, as individuals may
listen to (or read) others’ opinions at different points in time.

In this section, we introduce an opinion model where individuals update their beliefs

asynchronously; one agent at a time updates their opinion by listening to the opinion of one
of their influencers.

7:3

CONCUR 2024

https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models

7:4

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

2.1 Opinion Transition Systems

In social learning models, a community is typically represented as a directed weighted
graph with edges between individuals (agents) representing the direction and strength of the
influence that one has over the other. This graph is referred to as the Influence Graph.

» Definition 1 (Influence Graph). An influence graph is a directed weighted graph G = (A, E, I)
with A = {1,...,n}, n > 1, the vertices, E C A% — Ida the edges (where Ida is the identity
relation on A) and I : E — (0, 1] the weight function.

The vertices in A represent n agents of a given community or network. The set of edges
E represents the (direct) influence relation between agents; i.e., (i,j) € E means that agent ¢
influences agent j. The value (3, j), for simplicity written I(; ;) or I;; , denotes the strength
of the influence: a higher value means stronger influence.

Similar to the DeGroot-like models in [21], we model the evolution of agents’ opinions
about some underlying statement or proposition, such as, for example, “human activity has
little impact on climate change” or “Al poses a threat to humanity”.

The state of opinion (or belief state) of all the agents is represented as a vector in [0, 1]‘A|.
If B is a state of opinion, B[i] denotes the opinion (belief, or agreement) value of agent i € A
regarding the underlying proposition: the higher the value of B[], the stronger the agreement
with such a proposition. If B[i{] = 0, agent ¢ completely disagrees with the underlying
proposition; if B[i] = 1, agent ¢ completely agrees with the underlying proposition.

The opinion state is updated as follows: Starting from an initial state, at each time unit,
one of the agents, say j, updates their opinion taking into account the influence and the
opinion of one of their contacts, say i. Intuitively, in social network scenarios, this can be
thought of as having an agent j read or listen to the opinion of one of their influencers ¢ and
adjusting their opinion B[j] accordingly.

The above intuition can be realized as a Labelled Transition System (LTS) whose set of
states is S = [0, 1]l4] and set of actions is E.

» Definition 2 (OTS). An Opinion Transition System (OTS) is a tuple M = (G, Binit, —)
where G = (A, E, I) is an influence graph, Bini; € S = [0,1]14] is the initial opinion state,
and -C S x E xS is a (labelled) transition relation defined thus: (B, (i,j),B’) €—, written

B M) B’, iff for every k € A,
B'[k] = {EUH(BM ~BUDL; k=i .
4] otherwise

If B 5 B’ we say that B evolves into B’ by performing (choosing or executing) the action e.

A labeled transition B % B’ represents the opinion evolution from B to B’ when
choosing an action represented by the edge (7,j). As a result of this action, agent j updates
their opinion as B[j] + (B[i] — B[j])I;;, thereby moving closer to the opinion of agent i.
Alternatively, think of agent ¢ as pulling the opinion of agent j towards B[i]. The higher the
4, the closer it gets. Intuitively, if I;; < 1, it means that agent j is
receptive to agent i but offers certain resistance to fully adopting their opinion. If I;; = 1,

influence of i over j, I;

agent j may be viewed as a puppet of i who disregards (or forgets) their own opinion to
adopt that of 4.

» Remark 3. In Def. 1, we do not allow edges of the form (j,7). In fact, allowing them
would not present us with any additional technical issues, and the results in this paper
would still hold. The reason for this design choice, however, has to do with clarity about

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

the intended intuitive meaning of a transition. Suppose that B U9 B/ Since B 7] =

B[j] + (B[i] — B[j])I;; = Bj](1 — I;) + B[i]I;;, agent j gives a weight of I;; to the opinion
of ¢ and of (1 — I;;) to their own opinion. Therefore, the weight that j gives to their opinion
may change depending on the agent i. Thus, allowing also a fixed weight I;; of agent j to
their own opinion may seem somewhat confusing to some readers. Furthermore, for any

B € S we would have B M B regardless of the value I;; thus making the actual value
irrelevant. Notice also we do not require the sum of the influences over an agent to be 1.

2.2 Runs and Consensus

We are interested in properties of opinion systems, such as convergence to consensus and
fairness, which are inherent properties of infinite runs of these systems.

» Definition 4 (e-path, runs and words). An execution path (e-path) of an OTS M =
(G, Binit, =), where G = (A, E,I), is an infinite sequence 1 = BoegBiey ... (also written
By, =% B, & ...) such that By Lty Bii1 for each t € N. We say that e; is the action
performed at time t and that By is the state of opinion at time t. Furthermore, if Bg = Binit
then the e-path w is said to be a run of M.

An w-word of M is an infinite sequence of edges (i.e, an element of E*). The sequence
Wy = epeq ... is the w-word generated by w. Conversely, given an w-word w = ej.€} ... the

. . . € €
(unique) run that corresponds to it is m, = Binit — B1 — ...

» Remark 5. The uniqueness of the run that corresponds to a given w-word is derived from
the fact that an OTS is a deterministic transition system!. This gives us a one-to-one
correspondence between w-words and runs, which allows us to abstract away from opinion
states when they are irrelevant or clear from the context. In fact, throughout the paper, we

will use the terms w-words and runs of an OTS interchangeably when no confusion arises.

It is also worth noting that in OTS, any action (edge) can be chosen at any point in an
execution path; that is, all actions are enabled.

Consensus is a property of central interest in social learning models [21]. Indeed, failure
to reach a consensus is often an indicator of polarization in a community.

» Definition 6 (Consensus). Let M = (G, Binit, =) be an OTS with G = (A, E,I) and
7 = Binit - B; =% ... be a run. We say that an agent i € A converges to an opinion value
v € 1[0,1] in m if limy_, o, B¢[i] = v. The run m converges to consensus if all the agents in A
converge to the same opinion value in 7.

Furthermore, B is said to be a consensual state if it is a constant vector; i.e., if there
exists v € [0,1] such that for everyi € A, Bli] = v.

» Example 7. Let M = (G,Binit, —) where G is the influence graph in Fig. la and
Binis = (0,0.5,1). If we perform a on By, we obtain By — B1 = (0.0,0.25,1.0).

Consider the word w = (abed)®. Then 7, = Bini < (0.0,0.25,1.0) % (0.125,0.25,1.0) <
(0.125,0.625, 1.0) 4, (0.125,0.625,0.8125) =% Fig. 1b suggests that 7, indeed converges
to consensus (to opinion value 0.5). A more complex example of the evolution of opinions
from a randomly generated graph with eleven agents is illustrated in Fig. 1c.

1 While the actions in a run can be seen as being chosen non-deterministically by a scheduler, an OTS
is a deterministic transition system in the sense that given a state B and an action e, there exists a

unique state B’ such that B 5B

7:5

CONCUR 2024

7:6

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

Opinion value
° o
= o

Opinion value

@\c

d

0.0
a 00
o 5 10 15 20 25 30 35 40 0 20 40 60 80 100
Time Time

(@) OTS with (b) Opinion evolution for the run that (c) Opinion evolution of a run of an OTS
influence graph corresponds to (abed)® of the OTS in with a G = (A, E,I), A = {1,...,11},
with agents A = Fig. la. Each plot corresponds to the I. = 0.5 for each e € FE, Binit =
{1,2,3}, edges opinion evolution of the agent with the (0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0).
E = {a,b,c,d}, same color. Each edge of G was generated with prob.
influence I, = 1/2 0.3. The edges of the (partial) run were
for all e € E and uniformly chosen from FE.

Binit = (0,0.5,1).

Figure 1 Run examples for OTS in Fig. 1la and randomly-generated OTS in Fig. lc.

The examples above illustrate runs that may or may not converge to consensus. In the
next section, we identify conditions on the influence and topology of graphs and on the runs
that guarantee this central property of opinion models.

3 Strong Connectivity, Puppet-Freedom and Fairness

In this section, we discuss graph properties, as well as fairness notions and criteria from the
literature on concurrent systems that give us insight into how agents converge to consensus in
an OTS. For simplicity, we assume an underlying OTS M = (G, Bipit, —) with an influence
graph G = (A, E,I). We presuppose basic knowledge of graph theory and formal languages.

3.1 Strong Connectivity

As in the DeGroot model, if there are (groups of) agents in G that do not influence each other
(directly or indirectly) and their initial opinions are different, these groups may converge
to different opinion values. Consider the example in Fig. 2 where the groups of agents
G1 = {1,2} and G2 = {5,6} do not have external influence (directly or indirectly), but
influence the group Gs = {3,4}. Each group is strongly connected within; their members
influence each other. The agents in (G; converge to an opinion, and so do the agents in G,
but to a different one. Hence, the agents in both groups cannot converge to consensus. The
agents in G3 do not even converge to an opinion because they are regularly influenced by
the dissenting opinions of GG; and Gs.

The above can be prevented by requiring strong connectivity, i.e., there must be a path
in G from any other to any other. Recall that a graph path from i to j of length m in G
is a sequence of edges of E of the form (i,71)(i1,42) ... (im—1,7), where the agents in the
sequence are distinct. We shall refer to graph paths as g-paths to distinguish them from
e-paths in Def. 4. We say that agent ¢ influences agent j if there is a g-path from i to j in G.
The graph G is strongly connected iff there is a g-path from any agent to any other in G.
Hence, in strongly-connected graphs, all agents influence one another.

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

o
o

)
=N
S
3
°
5
°
5

S Q
w [V]
Opinion value
° °
S &
L /J
Opinion value
° °
S b

o
o

=4
°
°
°

a 0 T 20 30 40 50 60 70 00 25 50 75 100 125 150 175 200
1 Time Time

(a) Influence graph (b) Opinion evolution of the run (c) Opinion evolution of the run (abed)®
with Ie = 1/2 fOI‘ all ((a2a3)5(a4a5)5(a0a1)5(a6a7a8a9))w, fOI‘ an OTS with G and Binit fI‘OIIl Flg
e € F and Binit = Each plot corresponds to the opinion la but assuming Io =1 for all e € E.
(0.4,0.5,0.45,0.55, evolution of the agent with the same

0.5,0.6). color in Fig. 2a.

Figure 2 Run examples for OTS in Fig. la and Fig. 2a.

3.2 Puppet-Freedom

Nevertheless, too much influence may prevent consensus. If B M B’ and I;; = 1, agent
j behaves as a puppet of i forgetting their own opinion and adopting that of j. Fig. 2c
illustrates this for the strongly-connected graph in Fig. la but with I;; = 1 for each (¢,j) € E:
Agents 1 and 3 use Agent 2 as a puppet, constantly swaying his opinion between 0 and 1.
We therefore say that the influence graph G is puppet free if for each (i,5) € E, I;; < 1.

3.3 Strong Fairness

In an OTS, if G is strongly connected but a given edge is never chosen in a run (or not
chosen sufficiently often), it may amount to not having all agents influence each other in
that run, hence preventing consensus. For this reason, we make some fairness assumptions
about the runs.

In the realm of transition systems, fairness assumptions rule out some runs, typically
those where some actions are not chosen sufficiently often when they are enabled sufficiently
often. There are many notions of fairness (see [5, 19, 25] for surveys), but strong fairness
is perhaps one of the most representative. As noted above, every action e € E is always
enabled in every run of an OTS. Thus, in our context, strong fairness of a given OTS run
(w-word) amounts to requiring that every action e occurs infinitely often in the run.

» Definition 8 (Strong fairness). Let w be an w-word of an OTS. We say that w is strongly
fair if every e € E occurs in every suffix of w.

Notice that the graph from Ex. 7 is strongly connected and puppet free, and the w-word
w = (abed)¥ is indeed strongly fair and converges to consensus. Nevertheless, puppet freedom,
strong fairness, and strong connectivity are not sufficient to guarantee consensus.

» Proposition 9. There exists (G, Binit, =), where G is strongly connected and puppet free,
with a strongly-fair run that does not converge to consensus.

The proof of the existence statement in Prop. 9 is given next.

77

CONCUR 2024

7:8

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

%06 E]

B B

H 505

s s

Sos B
j_,_/f L

0 20 40 60 80 100 0 20 40 60 80 100
Time Time

(a) Opinion evolution of the OTS from Fig. 1a for (b) Opinion evolution of the OTS from Fig. la for
the w-word u = (a"bc"d) e+ U = 0.75, L = 0.25 and the w-word w from Cons.
10.

Figure 3 Run examples for OTS in Fig. la.

» Construction 10 (Counter-Example to Consensus). Let M = (G, Binit, =) be an OTS where
G is the strongly-connected puppet-free influence graph in Fig. 1a and Bin s any state of
opinion such that Bipnit[1] < Binit[2] < Binit[3]. We have A ={1,2,3} and E = {a,b,c,d}.
We construct an w-word w such that m,, does not converge to consensus with the following
infinite iterative process. Let U and L be such that Binit[1] < L < Binit[2] < U < Bipit[3].

Process: (1) Perform a non-empty sequence of a actions with as many a’s as needed until
the opinion of Agent 2 becomes smaller than L. (2) Perform the action b. (3) Perform a
non-empty sequence of ¢’s with as many c’s as needed until the opinion of Agent 2 becomes
greater than U. (4) Perform the action d. The result of this iteration is a sequence of the
form aTbctd. Repeat steps 1-4 indefinitely.

The above process produces the w-sequence w = wy - ws - ... of the form (a*bctd)®, where
each w; = a™bc™d is the result of the i-th iteration of the process and n; > 0 and m; > 0
are the number of a’s and ¢’s in such interaction. (The evolution of the opinion of run m,,
with U = 0.75, L = 0.25 and Binit = (0,0.5, 1) is dllustrated in Fig. 3b)

Since each action e € E appears infinitely often in w, w is strongly fair. Furthermore,
right after each execution of Step 2, the opinion of Agent 1 gets closer to L, but it is still
smaller than L since the opinion of Agent 2 at that point is smaller than L. For symmetric
reasons, the opinion of Agent 3 gets closer to U, but it is still greater than U. Consequently,
the opinion of Agent 1 is always below L, while the opinion of Agent 3 is always above U
with L < U. Therefore, they cannot converge to the same opinion.

Another w-word for the OTS in Fig. 1a exhibiting a behavior similar to w in Cons. 10,
but whose proof of non-convergence to consensus seems more involved, is u = (a"bc"d)en+ =
up - ug - ..., where each u,, = a™bc"d. (see Fig. 3a). The delay in both w and u to execute d
after b grows unboundedly due to the growing number of ¢’s. More precisely, let #e(v) be
the number of occurrences of e € E in a finite sequence v.

» Proposition 11. Let w = wy - ws - ... be the w-word from Cons. 10 where each w,, has the
form aTbctd. Then for every m € N, there exists t € N such that #c(wpit) > #c(Wp).

The above proposition states that the number of consecutive ¢’s in w grows unboundedly,
and hence so does the delay for executing d right after executing b. To prevent this form of
unbounded delay, we recall in the next section some notions of fairness from the literature
that require, at each position of an w-word, every action to occur within some bounded
period of time.

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

3.4 Bounded Fairness

We start by introducing some notation to give a uniform presentation of some notions of
fairness from the literature. We assume |E| > 1; otherwise, all the fairness notions are trivial.

A word w is a possibly infinite sequence over E. A subword of w is either a suffix of w
or a prefix of some suffix of w. Let x be an ordinal from the set w + 1 = NU {w} where w
denotes the first infinite ordinal. A k-word is a word of length k. Recall that each ordinal
can be represented as the set of all strictly smaller ordinals. We can then view a k-word
w = (€;)ier as a function w : k — E such that w(i) = e; for each i € k. A k-word w is
complete if w(k) = E (where w(k) denotes the image of the function w). A k-window u of w
is a subword of w of length . Thus, if kK = w then w is a suffix of w, and if kK € N, u can
be thought of as a finite observation of k consecutive edges in w. We can now introduce a
general notion of fairness parametric in .

» Definition 12 (x-fairness, bounded-fairness). Let w be an w-word over E and k € w+1: w
is k-fair if every k-window of w is complete. Furthermore, w is bounded fair if it is k-fair
for some k € N.

Notice that the notion of strong fairness in Def. 8 is obtained by taking x = wj; indeed, w
is w-fair iff every e € E occurs infinitely often in w. Furthermore, if x = k for some k € NT,
then we obtain the notion of k-fairness from [16]2. Intuitively, if w is k-fair, then at any
position of w, every e € E will occur within a window of length k from that position.

It is not difficult to see that w-fairness is strictly weaker than bounded-fairness, which in
turn is strictly weaker than any k-fairness with k& € N. Let F (k) be the set of all w-words
over E that are k-fair. We have the following sequence of strict inclusions.

» Proposition 13. For every k € N, F(k) C F(k+1) C (U,.cn F(K)) C F(w).

rEN

» Example 14. Let us consider the fair word w from Cons. 10, the counter-example to
consensus. From Prop. 11, the delay for executing action d immediately after executing
action b increases without bound. Thus, for every k, there must be a non-complete k-window
u of w such that d does not occur in u. Consequently, w is not bounded fair.

Not only does bounded fairness rule out the counter-example in Cons. 10, but it also
guarantees consensus, as shown later, for runs of OTS with strongly-connected, puppet-free
influence graphs. Nevertheless, it may be too strong of a requirement for consensus. We,
therefore, introduce a weaker notion that satisfies the following criteria and guarantees
consensus.

Some Fairness Criteria

Let us briefly discuss some fairness criteria and desirable properties that justify our quest for
a weaker notion of fairness that guarantees consensus. An in-depth discussion about criteria
for fairness notions, from which we drew some inspiration, can be found in [34, 33, 19, 5].

Machine Closure. Following [1, 26] one of the most important criteria that a notion of
fairness must meet is machine closure (also called feasibility [5]). Fairness properties are
properties of infinite runs; hence, a natural requirement is that any finite partial run must
have the chance to be extended to a fair run. Thus, we say that a notion of fairness is
machine closed if every finite word u can be extended to a fair w-word u - w.

2 This notion is different from the notion of k-fairness from [9]

7:9

CONCUR 2024

7:10

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

Clearly, k-fairness with k& € N is not machine closed; e.g., the word ¢*d with E = {c,d}
cannot be extended to a k-fair w-word. Nevertheless, bounded fairness is machine closed: Each
k-word u can be extended to a (k + m)-fair word u - (e; ...en)* assuming E = {e1,...,en}.

Constructive Liveness. According to [34], a notion of fairness may require that a particular
action is taken sufficiently often, but it should not prevent any other actions from being
taken sufficiently often. This concept is formalized in [34, 33] in a game-theoretical scenario,
reminiscent of a Banach-Mazur game [28], involving an infinite interaction between a scheduler
and an opponent. The opponent initiates with a word w, then the scheduler appends a finite
word wy to wp. This pattern continues indefinitely, resulting in an w-word w = wg-wy - ws
A given fairness notion is said to be a constructive liveness property if, regardless of what
the opponent does, the scheduler can guarantee that the resulting w-word is fair under the
given notion.

The notion of bounded fairness is not a constructive liveness property. If an w-word
is bounded fair, it is k-fair for some k > |E| > 1. Let ¢ € E and take as the strategy of
the opponent to choose in each of their turns w, = ¢". Since |E| > 1, then wsy cannot
be a complete k-window. Therefore, the resulting w = wq - wy - wa . .. is not bounded fair,
regardless of the strategy of the scheduler.

It is worth noticing that the above opponent’s strategy is reminiscent of our procedure to
construct an w-sequence in Cons. 10 using the unbounded growth of ¢’s to prevent consensus.

Random Words. Consider a word epe; ... where each edge or action e,, = (4,) is chosen
from E independently with probability p(; ;) > 0. Let us refer to such kinds of sequences
as random words. We then say that a given notion of fairness is random inclusive if every
random w-word is almost surely (i.e., with probability one) fair under the given notion.

It follows from the Second Borel-Cantelli lemma? that every random word is almost
surely strongly fair. Nevertheless, the notion of bounded fairness fails to be random inclusive:
If a word is bounded fair, it is k-fair for some k > |E|, and thus it needs to have the form
wp - wy ... where each wy, is a complete k-window. Since 1 < |E|, the probability that a
random k window is complete is strictly smaller than 1. Therefore, the probability of a
random word having an infinite number of consecutive complete k-windows is 0.

Random words are important in simulations of our model (see Fig. 1c). Furthermore,
having a notion of fairness that is random inclusive and guarantees consensus will allow us
to derive and generalize consensus results for randomized opinion models, such as gossip
algorithms [17]. We elaborate on this in the related work. We now introduce our new notion
of fairness.

4 A New Notion of Bounded Fairness

A natural way to relax bounded fairness to satisfy constructive liveness and random inclusion
is to require that the complete k-windows need only appear infinitely often: i.e., an w word
w is said to be weakly bounded fair if there exists k € N such that every suffix of w has a
k-window. Nevertheless, as it will be derived later, weak bounded fairness is not sufficient to
guarantee consensus.

3 The lemma states that if the sum of the probabilities of an infinite sequence of events FoFEj ... that are
independent is infinite, then the probability of infinitely many of those events occurring is 1 [31]. Here,
each event Fj, expresses that the edge e occurs at time k& and these events are independent because
each edge (4,7) in a random word is chosen independently with probability p; ;) > 0.

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

It turns out that, to guarantee consensus, it suffices to require that a large enough number
m of consecutive complete k-windows appear infinitely often. These consecutive windows are
referred to as multi-windows.

» Definition 15 ((m, <) multi-window). Let w be an w-word over E, m € Nt and k € w + 1.
We say that w has an (m, k) multi-window if there exists a subword u of w of the form
U= Wi wWs-... Wy where each w; is a k-window of w. Furthermore, if each w, in u is
complete, we say that w has a complete (m, k) multi-window. If it exists, the word u is called
an (m, k) multi-window of w.

Notice that because of the concatenation of windows in Def. 15, by construction, no
w-word has a (m,w) multi-window with m > 1: If K = w then m = 1. In this case, the
multi-window is just a window of infinite length of w, i.e., a suffix of w.

» Definition 16 ((m, x)-fairness). Let w be an w-word over E, m € Nt and x € w+ 1. We
say that w is (m, k)-fair if every suffix of w has a complete (m, k) multi-window. We say
that w is m~consecutive bounded fair, or m-bounded fair, if it is (m, k)-fair for some k € N.

Clearly, w is w-fair iff it is (1, w)-fair, and w is weakly bounded fair iff it is 1-bounded w-
fair. Let F(m, k) and F(x) be the sets of w-words that are (m, k)-fair and x-fair, respectively.
We have the following sequence of strict inclusions (assume k, m € NT):

» Proposition 17. F(k) C F(m + 1,k) C F(m,k) C (U,..ny F(m,k)) C F(l,w) = F(w).

KEN
Compliance with Fairness Criteria. Let us consider the criteria for fairness in the previous
section. The notion of m-bounded fairness is machine closed since bounded fairness is stronger
than m-bounded fairness (Prop. 13 and Prop. 17) and bounded fairness is machine closed.

Tt is also a constructive liveness property since (m, k) fairness, for k > |E|, is stronger
than m-bounded fairness (Prop. 17), and it is also a constructive liveness property: A
winning strategy for the scheduler is to choose a complete (m, k)-window at each one of its

turns.
Similarly, m-Bounded Fairness is random inclusive since the stronger notion (m,k)-
Fairness is random inclusive for k£ > |E|. In a random w-word w = wq - wy ... where each w,

is a (m x k)-window, the probability that w, is a complete (m, k)-multi-window is non-zero
and independent. Thus again, by the Second Borel-Cantelli lemma, almost-surely w has
infinitely many complete (m, k) multi-windows, i.e., it is almost-surely (m, k)-fair.

4.1 Consensus Theorem

We can now state one of our main theorems: m-bounded fairness guarantees consensus in
strongly-connected, puppet-free graphs.

» Theorem 18 (Consensus under m-bounded fairness). Let M = (G, Binit, —) be an OTS
where G is a strongly-connected, puppet-free influence graph. For every run w of M, if w, is
m-bounded fair and m > |A| — 1, then m converges to consensus.

» Remark 19. A noteworthy corollary of Th. 18 is that, under the same assumptions of the
theorem, if w, is a bounded fair (a random w-word), then 7 converges to consensus (7 almost
surely converges to consensus). This follows from the above theorem, Prop. 13, Prop. 17 and
the fact that m-bounded fairness is random inclusive.

A proof of Th. 18 is given in the technical report [7]. Let us give the main intuitions here.

7:11

CONCUR 2024

7:12

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

°
>
valu
°
S

°

=
pinior

o

=

a
b 0 0.0
0 20 40 60 80 0 25 50 75 100 125 150
Time Time

(a) OTS with I. = (b) Opinion evolution of the 1-bounded (c) Opinion evolution of the 3-bounded
1/2 for every edge fair w-word w in Cons. 21 with U = 0.8 fair w-word ((bfdace)®a'®el®)~.

e € F and Binit = and L =0.2.

(0.0,0.2,0.8, 1.0).

Figure 4 Examples of an m-bounded fair runs. In Fig. 4b and 4c, each plot corresponds to the
opinion of the agent with the same color in Fig. 4a.

Proof sketch. The proof focuses on the evolution of maximum and minimum opinion val-
ues. The sequences of maximum and minimum opinion values in a run, {max B, };cy and
{min B, };en, can be shown to be (bounded) monotonically non-increasing and non-decreasing,
respectively, so they must converge to some opinion values, say U and L with L < U.

We must then argue that L = U (this implies convergence to consensus of 7 by the
Squeeze Theorem [32]). Since w, is m-bounded fair with m > |A| — 1, after performing all
the actions of an (m, k) multi-window of w,, for some k > |E|, all the agents of A would
have influenced each other. In particular, the agents holding the maximum and minimum
opinion values, say agents i and j. To see this, notice that since G is strongly connected,
there is a path from 4 to j, a;...a; with length [< |A| — 1. Thus, after performing the
first complete k-window of the (m, k)-multi-window, a; must be performed, after performing
the second complete k-window, as must be performed and so on. Hence, after performing
all the actions of the multi-window, ¢ would have influenced j. It can be shown that their
mutual influence causes them to decrease their distance by a positive constant factor (here,
the puppet freedom assumption is needed). Since the w, is m-fair, there are infinitely many
(m, k)-windows to be performed, and thus the sequences of maximum and minimum opinion
values converge to each other, i.e., U = L. <

It is worth pointing out that without the condition m > |A| — 1 in Th. 18, we cannot
guarantee consensus. Fig. 4c illustrates an m-bounded fair run, for m = |A| — 1, of an OTS
with 4 agents that converges to consensus. Nevertheless, the following run construction
shows that for m = |A| — 3, we can construct an m-bounded fair run that fails to converge
to consensus (the run is illustrated in Fig. 4b). It also shows that weak bounded fairness,
i.e., 1-bounded fairness, is not sufficient to guarantee convergence to consensus. We do not
have a counter-example or a proof for m = |A| — 2.

» Proposition 20. There exists M = (G, Binit, —), where G = (A, E,I) is a strongly
connected, puppet-free graph, with an m-bounded fair w-word w, m = |A| — 3, such that 7,
does not converge to consensus.

The proof of the above proposition is given in the following construction.

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

a c b
O——@ O——@——0
(a) Binit = (0.0,1.0) and if B[1] = B[2] then (b) Bini = (0.0,0.5,1.0), I} = I = 0.5, if B[1] = B[2]
13 = I? = 0.5, otherwise then I2 = 0.5, if B[2] = B[3] then IB = 0.5, otherwise
e LRl s [%<B[1J+L>—B[2}}17 B [%(B[SHU)—BMT
0

B _ 1 .B_
fa"= [2<B[1]‘B[2])]0’Ib N [Q(B[Q]‘B[”) Bl-B[2] BBI-B[2] :
0

1 L 1
u u

Influence

[} 20 40 60 80 100 0 20 40 60 80 100

(c) Opinion and influence evolution of the w-word (d) Opinion and influence evolution of the w-word
(ab)“. Each plot corresponds to the opinion of the (abcd)”. Each plot corresponds to the opinion of the
agent with the same color in Fig. 5a. The influences agent with the same color in Fig. 5b. The influences

IB and 123 are plotted in green and purple. IB and IB are plotted in green and purple.

Figure 5 Plots for DOTS in Fig. 5a and Fig. 5b with U = 0.8 and L = 0.2.*

» Construction 21 (Counter-Example to Consensus for m-bounded fairness with m < |A| — 3).
Suppose that M = (G, Binit, —) where G is the strongly-connected, puppet-free, influence graph
in Fig. 4a and Byt is any state of opinion such that Binit[1] < Binit[2] < Binit[3] < Binit[4]-
We have A ={1,2,3,4} and E = {a,b,c,d,e, f}. We construct an w-word w such that
does mot converge to consensus with the following infinite iterative process. Let U and L be
such that Binit[2] < L < U < Binit[3].

Process: (1) Perform the sequence of actions bfdace. (2) Perform a sequence of a actions
with as many a’s as needed until the opinion of Agent 2 becomes smaller than L. (3) Perform
a sequence of e’s with as many e’s as needed until the opinion of Agent 8 becomes greater
than U. The result of this iteration is a sequence of the form bfdace - a*e*. Repeat steps 1-3
indefinitely.

The above process produces the w-sequence w = v-wy -v-wa-. .. of the form (bfdace a*e*)*
where v = bfdace and w; = a™ie™ are results of the i-th iteration of the process, and n; > 0
and m; > 0 are the number of a’s and e’s in each w;. (The opinion evolution of run m,,
with L =0.2, U = 0.8 and Bipnis = (0.0,0.2,0.8,1.0) is illustrated Fig. 4b)

Since the subword v is a complete (1,6)-multi-window and appears infinitely often in w,
w s m-bounded fair for m = |A| — 3 = 1. Furthermore, right after each execution of edge
f in step 1, the opinion of Agent 1 gets closer to L, but it is still smaller than L since the
opinion of Agent 2 at that point is smaller than L. For symmetric reasons, after action b, the
opinion of Agent 4 gets closer to U, but it is still greater than U since the opinion of Agent
3 at that point is greater than U. Consequently, the opinion of Agent 1 is always below L,
while the opinion of Agent 4 is always above U with L < U. Therefore, they cannot converge
to the same opinion.

7:13

CONCUR 2024

7:14

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

5 Dynamic Influence

The static weights of the influence graph of an OTS imply that the influence that each
individual has on others remains constant throughout opinion evolution. However, in real-life
scenarios, the influence of individuals can vary depending on many factors, in particular the
state of opinion (or opinion climate). Indeed, individuals may gain or lose influence based on
the current opinion trend or for expressing dissenting and extreme opinions, among others.
To account for the above form of dynamic influence, we extend the weight function
I: E — (0,1] of the influence graph G = (A, E, I) as a function I : E x [0,1]I4] — [0,1] on
edges and the state of opinion. The resulting graph is said to have dynamic influence.

» Definition 22 (Dynamic OTS). A Dynamic OTS (DOTS) is a tuple (G, Binit, —) where
G = (A, E,I) has dynamic influence I : E x [0,1]/41 = [0,1]. We write Ig for 1((i,5),B).
The labeled transition — is defined as in Def. 2 but replacing I;; with Ig in Eq. 1.

The notions of runs, words, e-paths, and related notions for DOTS remain the same as
those for OTS (Def. 4). Let us consider some examples of dynamic influence.

Confirmation Bias. Under confirmation bias [8], an agent j is more influenced by those
whose opinion is closer to theirs. The function Ii]? =1—| B[j] — B[] | captures a form of
confirmation bias; the closer the opinions of ¢ and j, the stronger the influence of i over j.

Bounded Influence. Nevertheless, if we allow dynamic influence that can converge to 0 in
a given run Bipit 9B DL de, if limyyoo Ifjt = (0, we may reduce indefinitely influence
and end up in a situation similar to non-strong connectivity of the graph, thus preventing
consensus as in Section 3.1 (Fig. 2). Analogously, if lim; Ifj? = 1, we may end up in
puppet situations preventing consensus like in Section 3.2 (Fig. 2¢). Both situations are
illustrated in the DOTS in Fig. 5. To prevent them, we bound the dynamic influences.

» Definition 23 (Bounded Influence). A DOTS (G, Bipnit, —) with G = (A, E, I) has bounded
influence if there are constants Ir,, Iy € (0,1) such that for each B € [0,1)14, (i,5) € E, we
have I, € I, Iy].

The previous form of confirmation bias influence Ii]? =1 —|BJ[j] — BJ[]| is not bounded.
Nevertheless, the linear transformation Iy, + (Iy — I)I 5—' can be used to scale any unbounded
influence Ig into a bounded one in [I,, Iy] while preserving its shape.

We conclude with our other main theorem, whose proof is given in the technical report [7].

» Theorem 24 (Consensus with bounded influence). Let M = (G, Biynit, —) be a DOTS where
G is a strongly-connected, influence graph. Suppose that M has bounded influence. For every
run m of M, if wy is m-bounded fair with m > |A| — 1, then m converges to consensus.

The result generalizes Th. 18 to dynamic bounded influence. Therefore, in strongly-

connected and dynamic bounded influence graphs, convergence to consensus is guaranteed
for all runs that are m-bounded fair, which include each random run almost surely.

4 We use a clamp function for [0, 1] defined as [r]§ = min(max(r,0),1) for every r € R.

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

6 Conclusions and Related Work

We introduced a DeGroot-based model with asynchronous opinion updates and dynamic
influence using labelled transition systems. The model captures opinion dynamics in social
networks more faithfully than the original DeGroot model. The fairness notions studied and
the consensus results in this paper show that the model is also tractable and brings new
insights into opinion formation in social networks. To our knowledge, this is the first work
that uses fairness notions from concurrent systems in the context of DeGroot-based models.

There is a great deal of work on DeGroot-based models for social learning (e.g., [4, 13, 12,
38, 37, 15, 11]). We discuss work with asynchronous updates and dynamic influence, which
is the focus of this paper. The work [15] introduces a version of the DeGroot model in which
self-influence changes over time, while the influence on others remains the same. The works
[11, 12] explore convergence and stability, respectively, in models where influences change over
time. The works mentioned above do not take into account asynchronous communication,
whereas this paper demonstrates how asynchronous communication, when combined with
dynamic influence, can prevent consensus.

Recent works on gossip algorithms [17, 30, 2, 35] study consensus with asynchronous
communications for distributed averaging and opinion dynamics. The work in [30] studies
reaching consensus (in finite time) rather than converging to consensus. The works [2, 35]
consider undirected cliques rather than directed graphs as influence graphs. The closest
work is [17], which states consensus for random runs in directed strongly connected graphs
but unlike our case all edges have the same fixed weight ¢ € (0,1) (i.e., they assume static
influence with the same influence value for all edges). The dynamics of asymmetric gossip
updates in [17] can indeed be captured as OTS, and their random runs are almost-surely
m-bounded fair. Consequently, our work generalizes the consensus result in [17] by extending
it to graphs with (bounded) dynamic influence and whose edges may have different weights.
Furthermore, the framework in [17] does not address fairness notions which are the focus
and the main novelty of our work.

The work [19] discusses probabilistic fairness as a method equally strong as strong fairness
to prove liveness properties, where a liveness property is characterized by a set of states such
that a run holds this property iff the run reaches a state of this set. However, the property
of (convergence to) consensus (Def. 6) does not correspond to this notion of liveness since

it is not about reaching a specific set of states but about converging to a consensual state.

In fact, unless there are puppets or the initial state of a run is already a consensual state,
consensus is never reached in finite time in our model.

Bounded fair w-words can be characterized by Prompt Buchi Automata (PBW) [3].

Indeed, the set of bounded-fair words of an OTS can be characterized as the language
of PBW. Hence, the closure properties of these automata may prove valuable for future
developments of our work. It would also be interesting to see in future work whether or not
the m—bounded fair words of an OTS can be characterized as the language of a PBW (or of
an elegant variant of it).

In future work, we plan to study the actual value of consensus in a given system. This may
provide information about the most influential agents. We also plan to study how actions
can be scheduled (or manipulated), while preserving the fairness assumptions, to converge
more quickly or slowly to a consensus, or to a given consensus value. For example, giving
priority to edges whose agents have a greater opinion disagreement, while respecting fairness
assumptions. We may build on previous work on priorities in concurrent communications [6]
for this purpose.

7:15

CONCUR 2024

7:16

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

Finally, we plan to extend our model with agents that can learn by exchanging beliefs,

lies, and information, by building upon our work in concurrent constraint programming (e.g.
[24, 23, 18]).

—— References

1

10

11

12

13

14

15

16

17

Martin Abadi and Leslie Lamport. An old-fashioned recipe for real time. In Real-Time: Theory
in Practice. Springer Berlin Heidelberg, 1992.

Emerico Aguilar and Yasumasa Fujisaki. Opinion dynamics via a gossip algorithm with
asynchronous group interactions. Proceedings of the ISCIE International Symposium on
Stochastic Systems Theory and its Applications, 2019:99-102, 2019. doi:10.5687/sss.2019.99.
Shaull Almagor, Yoram Hirshfeld, and Orna Kupferman. Promptness in w-regular automata.
In Automated Technology for Verification and Analysis. Springer Berlin Heidelberg, 2010.
Mario S. Alvim, Bernardo Amorim, Sophia Knight, Santiago Quintero, and Frank Valencia.
A Multi-agent Model for Polarization Under Confirmation Bias in Social Networks. In 41th
International Conference on Formal Techniques for Distributed Objects, Components, and
Systems (FORTE), 2021. URL: https://inria.hal.science/hal-03740263.

Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in languages for
distributed programming. In 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 1987, 1987. doi:10.1145/41625.41642.

Jesis Aranda, Frank D. Valencia, and Cristian Versari. On the expressive power of restriction
and priorities in CCS with replication. In Foundations of Software Science and Computational
Structures, FoSSaCS 2009, volume 5504 of Lecture Notes in Computer Science, 2009. doi:
10.1007/978-3-642-00596-1_18.

Jestis Aranda, Sebastian Betancourt, Juan Fco. Diaz, and Frank Valencia. Fairness and
consensus in opinion models (technical report), 2024. arXiv:2312.12251.

Elliot Aronson, Timothy Wilson, and Robin Akert. Social Psychology. Upper Saddle River,
NJ : Prentice Hall, 7 edition, 2010.

Eike Best. Fairness and conspiracies. Information Processing Letters, 18(4):215-220, 1984.
doi:10.1016/0020-0190(84)90114-5.

Arun G Chandrasekhar, Horacio Larreguy, and Juan Pablo Xandri. Testing models of social
learning on networks: Evidence from a lab experiment in the field. Working Paper 21468,
National Bureau of Economic Research, August 2015. doi:10.3386/w21468.

S. Chatterjee and E. Seneta. Towards consensus: Some convergence theorems on repeated
averaging. Journal of Applied Probability, 14(1):89-97, 1977. doi:10.2307/3213262.

Zihan Chen, Jiahu Qin, Bo Li, Hongsheng Qi, Peter Buchhorn, and Guodong Shi. Dynamics
of opinions with social biases. Automatica, 106:374-383, 2019. doi:10.1016/j.automatica.
2019.04.035.

Pranav Dandekar, Ashish Goel, and David Lee. Biased assimilation, homophily and the
dynamics of polarization. Proceedings of the National Academy of Sciences of the United States
of America, 110, March 2013. doi:10.1073/pnas.1217220110.

Morris H. DeGroot. Reaching a consensus. Journal of the American Statistical Association,
1974. URL: http://www. jstor.org/stable/2285509.

Peter M. DeMarzo et al. Persuasion bias, social influence, and unidimensional opinions. The
Quarterly Journal of Economics, 118(3):909-968, 2003. URL: http://www. jstor.org/stable/
25053927.

Nachum Dershowitz, D. N. Jayasimha, and Seungjoon Park. Bounded Fairness, pages 304—317.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. doi:10.1007/978-3-540-39910-0_14.
F. Fagnani and S. Zampieri. Asymmetric randomized gossip algorithms for consensus. IFAC
Proceedings Volumes, 2008. doi:10.3182/20080706-5-KR-1001.01528.

https://doi.org/10.5687/sss.2019.99
https://inria.hal.science/hal-03740263
https://doi.org/10.1145/41625.41642
https://doi.org/10.1007/978-3-642-00596-1_18
https://doi.org/10.1007/978-3-642-00596-1_18
https://arxiv.org/abs/2312.12251
https://doi.org/10.1016/0020-0190(84)90114-5
https://doi.org/10.3386/w21468
https://doi.org/10.2307/3213262
https://doi.org/10.1016/j.automatica.2019.04.035
https://doi.org/10.1016/j.automatica.2019.04.035
https://doi.org/10.1073/pnas.1217220110
http://www.jstor.org/stable/2285509
http://www.jstor.org/stable/25053927
http://www.jstor.org/stable/25053927
https://doi.org/10.1007/978-3-540-39910-0_14
https://doi.org/10.3182/20080706-5-KR-1001.01528

J. Aranda, S. Betancourt, J. F. Diaz, and F. Valencia

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Moreno Falaschi, Carlos Olarte, Catuscia Palamidessi, and Frank D. Valencia. Declarative
diagnosis of temporal concurrent constraint programs. In Logic Programming. ICLP 2007,
2007. doi:10.1007/978-3-540-74610-2_19.

Rob Van Glabbeek and Peter Hofner. Progress, justness, and fairness. ACM Computing
Surveys, 52(4):1-38, August 2019. doi:10.1145/3329125.

Elizabeth B. Goldsmith. Introduction to Social Influence: Why It Matters, pages 3—22. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-20738-4_1.

Benjamin Golub and Evan Sadler. Learning in social networks. Awvailable at SSRN 2919146,
2017.

Orna Grumberg, Nissim Francez, Johann A. Makowsky, and Willem P. de Roever. A proof
rule for fair termination of guarded commands. Information and Control, 66(1):83-102, 1985.
do0i:10.1016/50019-9958(85)80014-0.

Michell Guzman, Stefan Haar, Salim Perchy, Camilo Rueda, and Frank Valencia. Belief,
Knowledge, Lies and Other Utterances in an Algebra for Space and Extrusion. Journal of Logical
and Algebraic Methods in Programming, September 2016. doi:10.1016/j.jlamp.2016.09.001.
Stefan Haar, Salim Perchy, Camilo Rueda, and Frank Valencia. An Algebraic View of
Space/Belief and Extrusion/Utterance for Concurrency/Epistemic Logic. In 17th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2015), 2015.
doi:10.1145/2790449.2790520.

M.Z. Kwiatkowska. Survey of fairness notions. Information and Software Technology, 31(7):371—
386, 1989. doi:10.1016/0950-5849(89)90159-6.

Leslie Lamport. Fairness and hyperfairness. Distributed Computing, 13(4):239-245, November
2000. doi:10.1007/PL0O0008921.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of concurrent
termination. In Shimon Even and Oded Kariv, editors, Automata, Languages and Programming,
pages 264-277, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

R.D. Mauldin. The Scottish Book: Mathematics from the Scottish Café. Birkhauser, 1981.
URL: https://books.google.com.co/books?id=gaqEAAAATAAJ.

Hossein Noorazar. Recent advances in opinion propagation dynamics: a 2020 survey. The Euro-
pean Physical Journal Plus, 135(6):521, June 2020. doi:10.1140/epjp/s13360-020-00541-2.
Guodong Shi, Bo Li, Mikael Johansson, and Karl Henrik Johansson. Finite-time convergent
gossiping. IEEE/ACM Transactions on Networking, 24(5):2782-2794, 2016. doi:10.1109/
TNET.2015.2484345.

Albert N. Shiryaev. Probability-1: Volume 1. Springer New York, 2016. doi:10.1007/
978-0-387-72206-1.

Houshang H. Sohrab. Basic Real Analysis. Birkhauser Basel, 2nd edition, 2014. doi:
10.1007/0-8176-4441-5.

Hagen Volzer and Daniele Varacca. Defining fairness in reactive and concurrent systems. J.
ACM, 59(3), June 2012. doi:10.1145/2220357.2220360.

Hagen Volzer, Daniele Varacca, and Ekkart Kindler. Defining fairness. In Martin Abadi and
Luca de Alfaro, editors, CONCUR 2005 — Concurrency Theory, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

Xing Wang, Bingjue Jiang, and Bo Li. Opinion dynamics on social networks. Acta Mathematica
Scientia, 42(6):2459-2477, November 2022. doi:10.1007/s10473-022-0616-8.

Stanley Wasserman and Katherine Faust. Social network analysis in the social and behavioral
sciences. In Social Network Analysis: Methods and Applications, pages 1-27. Cambridge
University Press, 1994.

Chen X, Tsaparas P, Lijffijt J, and De Bie T. Opinion dynamics with backfire effect and
biased assimilation. PLoS ONE, 16(9), 2021. doi:10.1371/journal.pone.0256922.

Weiguo Xia, Mengbin Ye, Ji Liu, Ming Cao, and Xi-Ming Sun. Analysis of a nonlinear
opinion dynamics model with biased assimilation. Automatica, 120:109113, 2020. doi:
10.1016/j.automatica.2020.109113.

7:17

CONCUR 2024

https://doi.org/10.1007/978-3-540-74610-2_19
https://doi.org/10.1145/3329125
https://doi.org/10.1007/978-3-319-20738-4_1
https://doi.org/10.1016/S0019-9958(85)80014-0
https://doi.org/10.1016/j.jlamp.2016.09.001
https://doi.org/10.1145/2790449.2790520
https://doi.org/10.1016/0950-5849(89)90159-6
https://doi.org/10.1007/PL00008921
https://books.google.com.co/books?id=gaqEAAAAIAAJ
https://doi.org/10.1140/epjp/s13360-020-00541-2
https://doi.org/10.1109/TNET.2015.2484345
https://doi.org/10.1109/TNET.2015.2484345
https://doi.org/10.1007/978-0-387-72206-1
https://doi.org/10.1007/978-0-387-72206-1
https://doi.org/10.1007/0-8176-4441-5
https://doi.org/10.1007/0-8176-4441-5
https://doi.org/10.1145/2220357.2220360
https://doi.org/10.1007/s10473-022-0616-8
https://doi.org/10.1371/journal.pone.0256922
https://doi.org/10.1016/j.automatica.2020.109113
https://doi.org/10.1016/j.automatica.2020.109113

Bidding Games with Charging

Guy Avni @4
University of Haifa, Israel

Ehsan Kafshdar Goharshady &
Institute of Science and Technology Austria (ISTA), Austria

Thomas A. Henzinger &4
Institute of Science and Technology Austria (ISTA), Austria

Kaushik Mallik &4
Institute of Science and Technology Austria (ISTA), Austria

—— Abstract

Graph games lie at the algorithmic core of many automated design problems in computer science.
These are games usually played between two players on a given graph, where the players keep moving
a token along the edges according to pre-determined rules (turn-based, concurrent, etc.), and the
winner is decided based on the infinite path (aka play) traversed by the token from a given initial
position. In bidding games, the players initially get some monetary budgets which they need to use
to bid for the privilege of moving the token at each step. Each round of bidding affects the players’
available budgets, which is the only form of update that the budgets experience. We introduce
bidding games with charging where the players can additionally improve their budgets during the
game by collecting vertex-dependent monetary rewards, aka the “charges.” Unlike traditional bidding
games (where all charges are zero), bidding games with charging allow non-trivial recurrent behaviors.
For example, a reachability objective may require multiple detours to vertices with high charges to
earn additional budget. We show that, nonetheless, the central property of traditional bidding games
generalizes to bidding games with charging: For each vertex there exists a threshold ratio, which
is the necessary and sufficient fraction of the total budget for winning the game from that vertex.
While the thresholds of traditional bidding games correspond to unique fixed points of linear systems
of equations, in games with charging, these fixed points are no longer unique. This significantly
complicates the proof of existence and the algorithmic computation of thresholds for infinite-duration
objectives. We also provide the lower complexity bounds for computing thresholds for Rabin and
Streett objectives, which are the first known lower bounds in any form of bidding games (with or
without charging), and we solve the following repair problem for safety and reachability games that
have unsatisfiable objectives: Can we distribute a given amount of charge to the players in a way
such that the objective can be satisfied?

2012 ACM Subject Classification Theory of computation — Algorithmic game theory
Keywords and phrases Bidding games on graphs, w-regular objectives

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.8

Related Version Full Version: https://arxiv.org/abs/2407.06288 [13]

Funding This work was supported in part by the ERC projects ERC-2020-AdG 101020093 and CoG
863818 (ForM-SMArt) and by ISF grant no. 1679/21.

1 Introduction

Two-player graph games have deep connections to foundations of mathematical logic [26], and
constitute a fundamental model of computations with applications in reactive synthesis [25]
and multi-agent systems [2]. A graph game is played on a graph, called the arena, as follows.
A token is placed on an initial vertex and the two players move the token throughout the
arena to produce an infinite path, called a play. The winner is determined based on whether

© Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik;
37 licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).

Editors: Rupak Majumdar and Alexandra Silva; Article No. 8; pp. 8:1-8:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:gavni@cs.haifa.ac.il
https://sites.google.com/view/gavni
https://orcid.org/0000-0001-5588-8287
mailto:ehsan.goharshady@ist.ac.at
https://ehsan.goharshady.com/
https://orcid.org/0000-0002-8595-0587
mailto:tah@ist.ac.at
https://pub.ista.ac.at/~tah/
https://orcid.org/0000-0002-2985-7724
mailto:kaushik.mallik@ist.ac.at
https://kmallik.github.io/
https://orcid.org/0000-0001-9864-7475
https://doi.org/10.4230/LIPIcs.CONCUR.2024.8
https://arxiv.org/abs/2407.06288
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Bidding Games with Charging

(a) Strategies may depend on the available (b) Nontrivial solution for safety objective of
budget. Player 2 when the unsafe vertex (which is t) is
reachable from every other vertex.

Figure 1 Examples to demonstrate the distinctive features of bidding games with charging,
compared to traditional bidding games (without charging). The double circled vertices are the ones
that Player 1 wants to reach (reachability objective), or, dually, the ones that Player 2 wants to
avoid (safety objective). When a vertex v has nonzero reward for at least one of the players, the

rewards are shown next to v in the vector notation {gl EZ;:| . The threshold budget of Player 1 for
2

each vertex is shown in blue next to the vertex.

the play fulfills a given temporal objective (or specification). Traditionally, graph games are
turn-based, where the players move the token in alternate turns. Bidding games are graph
games where who moves the token at each step is determined by an auction (a bidding).
Concretely, both players are allocated initial budgets, and in each turn, they concurrently
place bids from their available budgets, the highest bidder moves the token, and pays his bid
according to one of the following pre-determined mechanisms. In Richman bidding, the bid
is paid to the lower bidder, in poorman bidding, the bid is paid to an imaginary “bank” and
the money is lost, and in taxman bidding, a fixed fraction of the bid is paid to the bank (the
“tax”) and the rest goes to the lower bidder. The outcome of the game is an infinite play
and, as usual, the winner is determined based on whether the play fulfills a given objective.

Bidding games model strategic decision-making problems where resources need to be
invested dynamically towards the fulfillment of an objective. For example, a taxi driver
needs to decide how to “invest” his gas supply in order to collect as many passengers as
possible, internet advertisers need to invest their advertising budgets in ongoing auctions for
advertising slots with the goal of maximizing visibility [5], or a coach in an NBA tournament
needs to decide his roster for each game while “investing” his players’ limited energy with
the goal of winning the tournament [8]. While in all these scenarios the investment resources
can be “charged,” e.g., by visiting a gas station, by adding funds, or by allowing the players
to rest, respectively, charging budgets cannot be modeled in traditional bidding games.

We study, for the first time, bidding games with charging, where the players can increase
their available budgets by collecting vertex-dependent charges. Every vertex v in the arena is
labeled with a pair of non-negative rational numbers denoted R;(v) and Rz (v). Suppose the
game enters a vertex v, where for ¢ € {1,2}, Player i’s budget is B; with By + By = 1. First,
the budgets are charged to B} = By + R1(v) and Bj = Bs + R3(v). Second, we normalize
the sum of budgets to 1 by defining By = B1/(B} + BS) and By = B /(B] + B}). Finally,
the players bid from their new available budgets By and Bj, and the bids are resolved using
any of the traditional mechanisms. Note that traditional bidding games are a special case of
bidding games with charging in which all charges are 0. The normalization step plays an
important role and will be discussed in Ex. 4.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

» Example 1. We illustrate the model and show a distinctive feature that is not present
in traditional bidding games. Consider the bidding game in Fig. 1la, where the objective
of Player 1, the reachability player, is to reach d and the objective of Player 2, the safety
player, is to prevent this. Consider Richman bidding. We show that from vertex b, Player 1
can win with a budget of By = % + e < 1 for every € > 0. Player 1 bids % at b. We consider
two cases. First, Player 2 wins the bidding and proceeds to c. She pays Player 1 at least
%, and Player 1’s budget at ¢ becomes at least % + €. Player 1 can now win the bidding by
bidding all of his budget (recall that the sum of budgets is 1), and can proceed to d to win
the game. Second, suppose that Player 2 loses the bidding at b. Player 1 proceeds to a with
a budget of e. We charge his budget to B} = 2 + € and after re-normalizing his new budget
Bi

becomes B = =t > % Player 1 increases his budget by forcing the game to stay in a for

three consecutive turns: He first bids %, and his budget exceeds (3 +2)/3 = I, then he bids
% and % in the following two turns, after which his budget exceeds g > %. Since every
budget greater than % suffices to guarantee winning three consecutive biddings, he can now
force the game to reach d, resulting in a win.

We point out a distinction from traditional bidding games (without charging). In games
without charging, it is known that if a player wins, he can win using a budget agnostic
winning strategy: For every vertex v, there is a successor w such that upon winning the
bidding at v, the strategy proceeds to u regardless of the current available budget.! However,
it is not hard to see that there is no winning budget-agnostic strategy in the game above;
indeed, in order to win, Player 1 must eventually go right from b, but when his budget is

0.25 < By < 0.75, he needs to go left and going right will make him lose. 1

Another distinctive feature of bidding games with charging is that safety games have
non-trivial solutions, while in traditional bidding games, the only way to ensure safety is by
reaching a vertex with no path to the unsafe vertices [21, 4, 7]. Therefore, charging opens
doors to new applications of bidding games for when safety objectives are involved. For
example, in auction-based scheduling [14], bidding games are used to compose two policies at
runtime such that the objectives of both policies are fulfilled. With traditional bidding games,
auction-based scheduling cannot support long-run safety due to the aforementioned reasons.
Bidding games with charging creates the possibility to extend auction-based scheduling for
richer classes of objectives than what can be supported currently.

» Example 2. We show that Player 2, the safety player, wins the game depicted in Fig. 1b
starting from b when Player 1’s budget is By < %. Fulfilling safety requires the game to
forever loop over a and b; such an outcome is not possible in traditional bidding games since
t is reachable from both a and b. After charging at b, we have By < 3. Player 2 bids 3,
trivially wins the bid and moves the token to a. Her budget is charged to at least g, meaning
that Player 1’s budget is at most % She bids 1%, trivially wins the bidding and move the
token to b. When entering b her budget is at least g — % > %, meaning that Player 1’s

budget is less than %, and she can keep repeating the same strategy to win the game. J

The central quantity in bidding games is the pair of thresholds on the players’ budgets
which enable them to win. Formally, for ¢ € {1,2}, Player 4’s threshold at vertex v, denoted
Th;(v), is the smallest value in [0, 1] such that for every € > 0, Player ¢ can guarantee winning
from v with an initial budget of Th;(v) 4+ e¢. The thresholds in the vertices in Figures la
and 1b are depicted beside them in blue. When Thy(v) + The(v) = 1, we say that a threshold

1 We refrain from calling the strategy memoryless since it might bid differently in successive visits to v.

8:3

CONCUR 2024

8:4

Bidding Games with Charging

Table 1 Upper complexity bounds for bidding games with charging (“w/ chg.”) in comparison
with traditional bidding games (“w/o chg).

Reachability Safety Biichi Co-Biichi
w/ w/o chg. w/ w/o chg. w/ w/o chg. w/ w/o chg.
chg. chg. chg. chg.
Richman coNP NP N coNP NP NP N coNP nf NP N coNP =P NP N coNP
Taxman
and PSPACE PSPACE PSPACE PSPACE 2-EXP PSPACE 2-EXP PSPACE
poorman

exists and define the threshold to be Th(v) = Thy(v). Existence of thresholds is a form
of determinacy: for every Player 1 budget By # Thi(v), one of the players has a winning
strategy. We establish that bidding games with charging are also determined for reachability
and Biichi objectives, and, dually, for safety and co-Biichi objectives. The proofs of these
claims are however significantly more involved than the case of traditional bidding games.
For instance, for traditional bidding games, the existence of thresholds for Biichi objectives
follows from the existence of thresholds for reachability objectives, with the observation that
for every bottom strongly connected component (BSCC), every vertex has a threshold 0 or
1, so that winning the Biichi game boils down to reaching one of the BSCCs with thresholds
0 (the “winning” BSCCs). This approach fails for games with charging. First, players may
be able to trap the game within an SCC that is not part of any BSCC, and second, the
thresholds in a BSCC might not be all 0 or 1 as seen in Ex. 2. In order to show the existence
of thresholds in Biichi games, we develop a novel fixed point algorithm that is based on
repeated solutions to reachability bidding games.

We study the complexity of finding thresholds. Here too, the techniques differ and are
more involved than traditional bidding games. In Richman-bidding games without charging,
thresholds correspond to the unique solution of a system of linear equations. In games with
charging, however, thresholds correspond to the least and the greatest fixed points, and
we present a novel encoding of the problem using mixed-integer linear programming. We
summarize our complexity results in Tab. 1 along with a comparison with known results in
traditional bidding games. Finally, we show that Richman games with Rabin and Streett
objectives are NP-hard and coNP-hard, respectively. This result establishes the first lower
complexity bound in any form of bidding games (with or without charging). Upper bounds
for Rabin and Streett objectives are left open.

Finally, we introduce and study a repair problem in bidding games: Given a bidding
game, a target threshold ¢ in a vertex v, and a repair budget C', decide if it is possible to
add charges to the vertices of G in a total sum that does not exceed C such that Th(v) < t.
Repairing is relevant when the bidding game is not merely given to us as a fixed input, but
rather the design of the game is part of the solution itself. For instance, we have already
mentioned auction-based scheduling [14], where the strongest guarantees can be provided
when in two bidding games that are played on the same arena, the sum of thresholds in the
initial vertex is less than 1. When this requirement fails, repairing can be applied to lower
the thresholds. We show that the repair problem for safety objectives is in PSPACE and for
reachability objectives is in 2EXPTIME.

Related work

Bidding games (without charging) were introduced by Lazarus et al. [22, 21], and were
extended to infinite-duration objectives by Avni et al. [4, 5, 6, 9]. Many variants of bidding
games have been studied, including discrete-bidding [19, 1, 12], which restricts the granularity

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

of bids, all-pay bidding [8, 9], which model allocation of non-refundable resources, partial-
information games [10], which restricts the observation power of one of the players, and
non-zero-sum bidding games [23], which allow the players’ objectives to be non-complimentary.
The inspiration behind charging comes from other forms of resource-constrained games that
allow to refill depleted resources or accumulate new resources to perform certain tasks
[17, 16, 15]. The unique challenge in our case is the additional layer of bidding, which
separates resource (budget) accumulation and spending.

2 Bidding Games with Charging

A bidding game with charging is a two-player game played on an arena (V, E, Ry, R2) between
Player 1 and Player 2,2 where V is a finite set of vertices, E C V x V is a set of directed edges,
and Ry, Ry : V — Ry>q are the charging functions of Player 1 and Player 2, respectively. We
denote the set of successors of the vertex v by S(v) = {u: (v,u) € E}. Bidding games with
no charging will be referred to as traditional bidding games, which is a special case with
Ry = Ry = 0. The default ones in this paper are bidding games with charging and, to avoid
clutter, we typically refer to them simply as bidding games.

A bidding game proceeds as follows. A configuration of a bidding game is a pair
¢ = (v,B1) € V x [0,1], which indicates that the token is placed on the vertex v and
Player 1’s current budget is B;. We always normalize the sum of budgets to 1, thus,
implicitly, Player 2’s budget is By = 1 — B;. At configuration ¢, we charge and normalize the
budgets. Formally, the game proceeds to an intermediate configuration ¢’ = (v, B}) defined
by B} = 1—5—%(271)2(12(11)' Player 2’s budget becomes B, =1 — B} = H%(t)i%' Then, the
players simultaneously bid for the privilege of moving the token. Formally, for i € {1,2},
Player i chooses an action (b;,u;), where b; € [0, B}] and u; € S(v). Given both players’
actions, the next configuration is (u, B{'), where u = w; when by > b and u = uy when
by > b1, and By is determined based on the bidding mechanism defined below. Note that we
arbitrarily break ties in favor of Player 1, but it can be shown that all our results remain
valid no matter how ties are resolved. In the definitions below we assume that Player 1 is
the higher bidder, i.e., by > bs, and the case where by > b; is dual:

Richman bidding. The higher bidder pays his bid to the lower bidder. Formally, By = Bj—by,

and BY = B} + b;.

Poorman bidding. The higher bidder pays }}is bid to the banlli and we re-normalize the

budget to sum up to 1. Formally, B} = Bll:blil, and BY = 113?:1'
Taxman bidding. For a predetermined and fixed fraction 7 € [0, 1], called the taz rate, the

higher bidder pays flgaction 7 of his bid to the bank, and the rest to the lower bidder.

Formally, B} = E%bl, and BY = Bé'{(i%;)'bl. Note that taxman bidding with 7 = 0

coincides with Richman bidding and with 7 = 1 coincides with poorman bidding.

In a bidding game, a history is a finite sequence (vo, Bo), (vo, Bj), - - - (Un, Bn),s (Un, BL)
which alternates between configurations and intermediate configurations. For ¢ € {1,2}, a
strategy for Player 4 is a function 7; that maps a history to an action (b;, u;). We typically
consider memoryless strategies, which are functions from intermediate configurations to
actions. An initial configuration ¢y = (vg, By) and two strategies w1 and 7o give rise to an
infinite play, denoted play(cg, 71, 72), and is defined inductively, where the inductive step is
based on the definitions above. Let play(co, 71, m2) = (vo, Bo), (v, BY), ... The path that
corresponds to play(cg, 71, m2) is vo,v1,... € VY.

2 We will use the pronouns “he” and “she” for Player 1 and Player 2, respectively.

8:5

CONCUR 2024

8:6

Bidding Games with Charging

]
OSSOSO

Figure 2 Example of a poorman bidding game where without normalization thresholds are not
uniquely determined.

Each game is equipped with an objective ¢ C V. Each play has a winner. Player 1 wins

a play if its corresponding path is in ¢, and Player 2 wins otherwise. For an objective ¢,

a Player 1 strategy my is winning from a configuration c if for every Player 2 strategy o,

the play play(c, m1,m2) is winning for Player 1, and the definition for Player 2 is dual. For

i € {1,2}, we say Player ¢ wins from configuration ¢ for ¢ if he has a winning strategy from

c. We will use T to denote the complement of x, where x can be either an objective or a set

of vertices. We consider the following objectives:

Reachability. For a set of vertices T' C V, the reachability objective is defined as Reach(T) :=
{vov1 ... € V¥ | Ji € N.v; € T}. Intuitively, T represents the set of target vertices, and
Reach(T) is satisfied if T is eventually visited by the given path.

Safety. For a set of vertices S C V, the safety objective is defined as Safe(S) = {vov1 ... €
V¢ |Vie N.v; € S}. Intuitively, S represents the set of safe vertices, and Safe(S) is
satisfied if S is not left ever during the given path. Safety and reachability are dual to
each other, i.e., Safe(S) = Reach(S).

Biichi. For a set of vertices B C V, the Biichi objective is defined as Biichi(B) := {vgvy ... €
V¢ |¥ie N.3j>i.v; € B}. Intuitively, Biichi(B) is satisfied if B is visited infinitely
often during the given path.

Co-Biichi. For a set of vertices C' C V, the co-Biichi objective is defined as Co-Biichi(C) =
{vov1... € V¥ | Fi € N.Vj > i.v; € C}. Intuitively, Co-Biichi(C) is satisfied if only C
is visited from some point onward during the play. Biichi and co-Biichi objectives are

dual to each other, i.e., Co-Biichi(C) = Biichi(C).

A central concept in bidding games is the pair of thresholds for the two players. Roughly,
they are the smallest budgets needed by the respective player for winning the game from a
given vertex. We formalize this below.

» Definition 3 (Thresholds). Let G be a given arena and M € {Richman, poorman, taxman}
be a given bidding mechanism . For an objective ¢, the thresholds Thf’M’“", Thg’M’(’D: V —
[0,1] are functions such that for every v € V and every e > 0:

ThY M (v) == infp, c0,11{B1 : Player 1 wins from (v, By + €) for o, for every e > 0}.
ThS M (v) = infp,ep0,11{ B2 : Player 2 wins from (v,1 — By —¢€) for , for every ¢ > 0}.

When Th§ "™ (v) + Th§ ™ ¥ (v) = 1 for every vertex v, we say that the threshold exists in G,
denote it ThO™%(v), and define Th9 M (v) = Th%’M""(U),

Whenever the game graph and the bidding mechanism are clear from the context, we simply
write ThY, Th¥, and Th¥.

» Example 4 (The importance of normalization). Consider the poorman bidding game that is
depicted in Fig. 2. Intuitively, Player 1 wins from v iff he wins the first two consecutive

biddings. Formally, the game starts at v; and ¢; is Player i’s target, for ¢ € {1,2}. We
1

first analyze the game with a normalization step. We argue that Th(vz) = 7; indeed, since

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

1/ ?;21 2 — %, entering vo with a budget greater than % allows Player 1 to secure winning.
We argue that Th(vi) = %; indeed, Player 1 must bid above Player 2’s budget and win

the bidding, and note that 4/2;/?/7 = i. Note that thresholds are in fact a ratio. Stated
differently, consider a configuration (vq, By, Bs) with By 4+ By not necessarily equals 1, then
Player 1 wins iff BfilBQ > %. Crucially, the ratio between By and By is fixed. We will prove
that this is a general phenomenon on which our algorithms depend.

When a normalization step is not performed, Player 1’s threshold for winning is a non-

linear function of Player 2’s initial budget. Intuitively, when no normalization is performed,

the charge is more meaningful when the budgets are smaller. Consider a configuration

(v1, By, B2) with By + Bs being not necessarily equal to 1. Note that Player 1 must win the

first bidding, thus the second configuration must be (vy, By — Ba, By). When no normalization

is performed after charging, the intermediate configuration is (ve, By — By 4 0.5, Bs). Clearly,

Player 1 wins iff By — By + 0.5 > By. For example, when By = 1, then Player 1’s threshold
7

is % and when By = 2, then Player 1’s threshold is §. These amount to ratios of g and

1—71, respectively, meaning that Player 1’s threshold is a non-linear function of Player 2’s
budget. We point out that this is also the case in poorman discrete-bidding games [11],
where thresholds can only be approximated, even in extremely simple games. _|

We formulate the decision problem related to the computation of thresholds. We will
write that a given objective ¢ is of type Reach, Safe, Biichi, or Co-Biichi if ¢ can be expressed
as a reachability, safety, Biichi, or co-Biichi objective (on a given arena), respectively.

» Definition 5 (Finding threshold budgets). Let M € {Richman, poorman, tazman}, and
S € {Reach, Safe, Biichi, Co-Biichi}. The problem THRESH% takes as input an arena G, an
initial verter v, and an objective ¢ € S, and accepts the input iff Thf’M"p(v) <0.5.

3 Reachability Bidding Games with Charging

In this section, we show the existence of thresholds in taxman-bidding games with charging
with reachability and, dually, with safety objectives. Throughout this section, we fix an
arena G = (V, E, Ry, Ry). For a given set of vertices T C V, the objective of Player 1, the
reachability player, is Reach(7), and, the objective of Player 2, the safety player, is Safe(T).

3.1 Bounded-Horizon Reachability and Safety

We start with the simpler case of bounded-horizon reachability objectives, and in the next
section, we will extend the technique to general games. Let t € N. The bounded-horizon
reachability, denoted Reach(T,t), intuitively requires Player 1 to reach T within ¢ steps.
Formally, Reach(T,t) == {vov1... | 3i <t .v; € T}. Bounded-horizon safety is the dual
objective Safe(T,t) :== {vovy ... | Vi <t.v; ¢ T} = V¥ \ Reach(T),t).

In the following, we characterize the thresholds for Reach(T,t) and Safe(T', t) by induction
on t. The induction step relies on the following operator on functions.

» Definition 6. Define the function clampyy,;(x) = min(l, max(0,)); that is, given z,
clampyq y) (x) =, when 0 < x < 1, and otherwise it “saturates” x at the boundaries 0 or 1.
Let T € [0, 1] be the tax rate. We define two operators on functions Avy, Avy: [0,1]V — [0,1]V
as follows. Fori € {1,2} and f € [0,1]V:

(A-7)f(w")+ f(0F)
[f(0F) = flo7) =17 +2

where vt and v~ are the successors of v with the largest and the smallest value of f(-),
respectively, i.e., vT = argmax,es(y) f(u) and v~ = argmin,eg() f(u).

Avi(f)(v) = clampyg ((Lt Ra) + Ra(w)) — Rz—(v))

8:7

CONCUR 2024

8:8

Bidding Games with Charging

Note that for Richman bidding, i.e., when 7 = 0, for ¢ € {1,2}, we have

COESICN (14 Ri(v) + Ra(v)) — Ri(v))

Avi(f)(v) = clampy, (5

In this case, the function Av; computes the average (the name “Av” stands for “average”) of
its argument f on v~ and v™, and then performs an affine transformation followed by the
saturation clampy j () on the result. For poorman bidding, i.e., when 7 = 1, we have

vt
a(1)(0) = vampyy (7 Lo - (1 Ra) + Rate) — i)

We define two functions f; and fs which will be shown to coincide with the thresholds.

» Definition 7. Define the functions f1, fo: V. x N — [0,1] inductively on t. For every
veT andt €N, define f1(v,t) =0 and fo(v,t) :=1. For every v ¢ T, define f1(v,0) =1
and fa2(v,0) == 0, and for every t > 0, define fi(v,t) = Avy (f1(-,t — 1)) (v) and fa(v,t) =
vy (fo(t — 1)) (v).

Lem. 8 shows that f; and fo coincide with the thresholds of the (bounded-horizon)
reachability and safety players, respectively. Intuitively, for Reach(T,0), Player 1 wins with
even zero budget from vertices that are already in 7', and loses with even the maximum
budget from vertices that are not in 7. We capture this as f1(v,0) = 0 if v € T, and
f1(v,0) =1 otherwise. Furthermore, if Player 1 has a budget more than fi(v,t) at v, then
we show that he has a memoryless policy such that no matter which vertex v’ the token
reaches in the next step, his budget will remain more than fi(v',t —1). It follows inductively
that he will reach T in ¢ steps from v. The argument for the safety player is dual. Lem. 8
also establishes the existence of thresholds.

» Lemma 8. For every vertez v € V and t > 0, we have ThReaCh Tt)() = fi(v,t) and
ThZReaCh(T t)() = fa(v,t). Moreover, thresholds exist: ThReaCh(T t)()+ ThReaCh(T t)()=1.

Proof. We sketch the proof for Richman bidding and the full proof can be found in the
extended version of the paper [13]. We show fi(v,t) > Thll)”caCh(T’t) (v). It is dual to
show fo(v,t) > T hReaCh (T, t)(), and the other directions of the inequalities follow from the
relationship fi(v,t) = 1 — fo(v,t), which is not hard to verify. The proof of fi(v,t) >
ThReaCh(T’t)() proceeds by induction over t. The base case, t = 0, is not hard to verify.
For t > 1, assume that fi(v,t —1) > ThReaCh(Tt 1)(1))

v €V and By > f1(v,t). We describe a Player 1 winning strategy from (v, By). Player 1
bids b; = fl(”+7t_1);f1(v7,t—l)

, and we prove the claim for ¢. Let

, and proceeds to v~ upon winning the bidding (recall that
v~ is the successor of v that attains the minimal value of fi(-,¢t — 1)). If Player 1 wins the
bidding, he pays b; to Player 2, and it can be verified that his new available budget in the
next vertex v~ remains above f1(v™,t—1). On the other hand, if Player 1 loses the bidding,
he receives at least b; from Player 2 (because Player 2 must have bid higher than b;), and
the token is moved by Player 2 to some successor v’ of v. It can be verified that even in
this case, Player 1’s new available budget remains above f1(v*,t —1) > fi(v/,t —1). By
the induction hypothesis, from the new vertex Player 1 can reach T in at most ¢ — 1 steps.
Therefore, from v Player 1 can reach T in at most ¢ steps. <

The following lemma establishes monotonicity of f; and fs with respect to ¢, which will
play a key role in the proof of existence of thresholds for the unbounded counterparts of
the objectives. Intuitively, reaching 7' within ¢ steps is harder than reaching 7' within ¢’ > ¢
turns, thus less budget is needed for the latter case. Dually, guaranteeing safety for ¢ turns
is easier than guaranteeing safety for ¢’ > t turns.

» Lemma 9. Forv €V and t' > t, it holds that f1(v,t') < fi(v,t) and fa(v,t') > fa(v,t).

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

v a b c d e
t

0 1 1 1 0 1

osozosol NEENF T

4 5 2 1 0.75 05 0 1

3 0.625 0.75 05 0 1

4 0.0625 05625 05 0 1

5 0 0.28125 05 0 1

>6 0 0.25 05 0 1
Figure 3 Non-unique fixed points of the Figure 4 Finite-Horizon reachability
threshold update functions. thresholds for the game in Fig. la. The number

at row i and column v is Thie*™(®D (y).

3.2 Existence of Thresholds (for Reachability and Safety Objectives)

We define two functions f; and f5 which will be shown to coincide with the thresholds for
the unbounded horizon reachability and safety objectives, respectively.

» Definition 10. Define the functions f1, f5: V — [0, 1], such that for every v € V:
F©) = lim A0t and [(0) = lim fo(v,).

Since f1 and fo are bounded in [0, 1] and monotonic by Lem. 9, the limits in Def. 10 are
well defined. Since f1(v,0) and fa(v,0) assign, respectively, the maximum (i.e., 1) and the
minimum (i.e., 0) value to every vertex v ¢ T, hence from the Kleene fixed point theorem, it
follows that f{ and f5 will be, respectively, the greatest and the least fixed points of the
operators Av; and Avs on the directed-complete partial order <[07 1]V, §>.

» Proposition 11. Consider the directed-complete partial order L = <[0, 1]V,§>, where
for every z,y € [0,1]V, 2 < y iff x; < y; for every i € V. The functions f; and f
are, respectively, the greatest and the least fixed points of the functions Avy and Ave on L,
subjected to the constraints fy(v) =0 and f5(v) =1 for everyv € T.

The following example demonstrates that, unlike traditional bidding games, the fixed
points of the functions Av; and Avs on L may not be unique.

» Example 12 (Multiple fixed-points). Consider the bidding game in Fig. 3, where the
objective of Player 1 is to reach c. It can be easily verified that both f; = {a — 0.25,b —
0.5,c+ 0,d — 1} and f;’ = 0 are fixed points of the operator Av; over L in this case. |

The following theorem establishes the existence of thresholds.

» Theorem 13. For every vertex v € V, it holds that ThlicaCh(T) (v) = ff(v) and

Th?eaCh(T)(v) = f5(v). Moreover, thresholds exist: Th?eaCh(T)(v) + ThgeaCh(T) (v) =1.

Proof. We prove that f;(v) > Th?eaCh(T)(v), for every v € V. Let By > f{(v). There exists

a t € N such that By > fi(v,t). Player 1 uses the strategy from Lem. 8, guaranteeing that T

is reached within ¢ steps. Next, we prove that f(v) > TtheaCh(T) (v), for every v € V. Let

By > f5(v). We know that f5 = Avs(f3) (from Prop. 11), and let v, v~ be the successors

fo(w)—f2(v7)
fa(ot)—fo(v™)—1]r+2°

and under poorman bidding

of v with the greatest and the least value of f;. Player 2 bids by = [
fg*(v*);fS(v’)

which evaluates under Richman bidding to by =

8:9

CONCUR 2024

8:10

Bidding Games with Charging

to by = % Player 2 proceeds to v~ upon winning. In the extended version [13],
we prove that no matter how Player 1 bids, Player 2’s strategy guarantees that in the next
vertex v’ her new budget B} > f5(v'). Recall that by construction, f5(v”) = 1, for every

" € T. Thus, T is never reached since Player 2’s budget can never exceed 1. Finally, the
other directions, i.e., the inequalities f;(v) < ThReaCh()() and f3(v) < ThReaCh()(’U), and
the existence claim follows from the observation that f(v) =1— f5(v), foreveryv e V. =

It follows that the threshold can be computed using fixed point iterations sketched in
Prop. 11; this iterative approach is illustrated in the following example.

» Example 14. Consider the bidding game in Fig. la with Richman bidding. The finite
horizon reachability thresholds are depicted in table 4. Suppose the game starts from (a,0.1)
which is winning for the reachability player. In this case, ¢ = 4 is the smallest integer for which
Player 1’s budget 0.1 at a is larger than ThReaCh(d t)(), which is 0.0625. Therefore, according
to the strategy of Player 1 as described in the proof of Lem. 8, Player 1 has a strategy for
reaching d in 4 steps. First, his budget is charged to M

(described in the proof of Lem. 8) dictates that he should bid
0.0625. In case of winning, he pays the bid to the safety player and keeps the token at a, with
budget 0.6375 which is then charged to 0.87916. This is enough for winning 3 consecutive
biddings and moving the token to d. In case of losing the first bid, his budget will increase to
at least 0.76. This amount is more than both TthaCh(d 3)() and Thll)”caCh(d’S)(b)7 therefore
he can guarantee a win in at most 3 steps.

= 0.7. His winning strategy
Tthach(d 3)(b) Tthach(d ,3) (a)

Now suppose the game starts from (b, 0.2) meaning that the safety player has 0.8 budget
and can win the game. She has a budget-agnostic strategy which dictates her to bid 0.25
in b (see the proof of Lem. 8 for a sketch of Player 2’s strategy). She definitely wins this
bidding as her opponent has only 0.2 budget. She then moves the token to ¢ and pays 0.25
to the reachability player, leaving her with 0.55 of the total budget. She can then bid 0.5,
win the bidding and move the token to e, where the token stays indefinitely. 1

3.3 Complexity Bounds (for Reachability and Safety Objectives)

Since f; and f5 are fixed points of the operators Av; and Avq, respectively, hence f; =
Avi(ff) and f5 = Ava(fs). Moreover, ff is the greatest fixed point, which means that
ThileaLCh - f can be computed by finding the element-wise maximum function h in [0, 1]V
that satisfies h(v) = 0 for v € T and h(v) = Avy(h)(v) for v ¢ T. This is formalized below:

max Z h(v)

veV
subjected to constraints:
YoeT . h(v)=0
Yo ¢ T . h(v) = Avy (h(")) (v)
T)h(v™ vt
~ ctampyy) (e 2R IR (1 o)+ o) - Ra)).

h(v") = Jnax h(u), h(v7) = max h(u). (1)

» Proposition 15. The solution of the optimization problem in (1) is equivalent to the
threshold function ThRe&Ch(T) of the reachability player.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

Due to Thm. 13, for every vertex v € V, we have Tha®™)(y) = 1 — Tple*nT) 4y,

Consequently, we obtain the following upper complexity bounds.

» Theorem 16. The following hold:
(i) THRESHEX™ ¢ PSPACE and THRESHE ™™ € PSPACE,

(i) THRESHRIhman ¢ .oNP gnd THRESHE ™" ¢ NP.

Proof.

Proof of (i). It can be shown that we can construct a polynomially sized (w.r.t. the game)
function ¢: RV — B such that for every h € RV, o(h) is true iff h is a fixed point of Av;
(details can be found in the extended version [13]). Hence, if the system has a solution
where h(v) > 0.5, the greatest fixed point Thll)”eaCh(T) satisfies ThlfeaCh(T) (v) > 0.5. This is
an instance of existential theory of reals which is known to be in PSPACE. Therefore, it is

possible to decide Thlf"eaCh(T)(v) > 0.5 (equivalently ThQReaCh(T) (v) < 0.5) in PSPACE.

Proof of (ii). We provide the following reduction from the optimization problem to an
instance of MILP; a different proof with a polynomial certificate is provided in the extended
version [13]. Let O be the optimization problem as stated in the Section 3 with 7 = 0.

Let M be any constant strictly greater than max,cv {1+ Ri(u) + Ra2(u)}. For each node
u define two new variables h~(u), h* (u) and add the following constraints to O:

Rt (w) > h(w) Vw € S(u) h™(w) < h(w) Yw € S(u)
h(w) < h(w) + (1 —bY) - M Yw € S(u) h™(w) > h(w) — (1 —c)) - M Yw € S(u)
> b= door=1
weES(u) weS (u)
by € {0,1} Yw € S(u) cy €40,1} Yw € S(u)
This guarantees that h*(u) = h(u™) and h~(u) = h(u™), so they can be replaced. Next,
replace each min(1, z) by % +1 and max(0, z) by %‘wl Then replace each |y| with

a fresh variable a, and add the following constraints to O:

1. —ay, <y <ay

2. y+M-zy>ayAN—y+M-(1—2y) >a, Az {01}

The first constraint ensures that |y| < a, and the second one that |y| > a,. Therefore, it is
guaranteed that |y| = a,. The MILP instance O is equivalent to the optimization problem in
section 3. In order to decide whether Thy(v) > 0.5 it suffices to decide satisfiability of O
with the additional constraint that h(v) > 0.5 and this decision problem is known to be in
NP. <

4 Biichi Bidding Games with Charging

We proceed to Biichi objectives, for which the proof of existence of thresholds is shown to
be significantly more involved than for Biichi games without charging. The key distinction
is that thresholds in traditional strongly-connected Biichi games are trivial: If even one of
the vertices is a Biichi target vertex, the Biichi player’s threshold in each vertex is 0 and
otherwise is 1 [3]. This property gives us a simple reduction from traditional Biichi bidding
games to reachability bidding games. With charging, this property no longer holds. For
example, alter the game in Fig. 1b to make it strongly-connected by adding an edge from ¢
to b. The thresholds remain above 0, i.e., there are initial budgets with which Player 2 wins.

8:11

CONCUR 2024

8:12

Bidding Games with Charging

Our existence proof, which is inspired by an existence proof for discrete-bidding games [12],
follows a fixed-point characterization that is based on solutions to frugal-reachability games,
which are defined below. We note that the proof has a conceptual similarity with Zielonka’s
algorithm [27] in turn-based Biichi games, which characterizes the set of winning vertices
based on repeated calls to an algorithm for turn-based reachability games.

4.1 Frugal-Reachability Objectives

We introduce frugal reachability objectives. Consider a taxman-bidding game with charging
G =(V,E, Ry, Ry). Let T C V be a set of target vertices and fr : T'— [0, 1] be a function that
assigns each target with a frugal budget. The frugal reachability objective FrugalReach(T, fr)
requires Player 1 to reach T such that the first time a vertex v € T is reached, Player 1’s
budget must exceed fr(v), thus:

FrugalReach(T, fr) := {(vo, BY) {v1,B{) ... | Ji.v; € T A B} > fr(v;) AVj <i.v; ¢ T}

We stress that FrugalReach(T, fr) is a set of plays, whereas the other objectives we have
considered so far (reachability, Biichi, etc.) were sets of paths.

Existence of thresholds ThlfrugalReaCh(T’ﬂ) and ThgrugalReaCh(T’ﬁ) for the frugal-reachability
objective and its dual are shown in the following theorem. The proof can be found in the
extended version [13] and follows similar arguments as reachability bidding games with the
following change in the base case. For v € T and ¢ € N, recall that we define fi(v,t) =0
(Def. 7), which intuitively means that Player 1 wins if he reaches v with any budget. Instead,
we now define f1(v,t) = fr(v), requiring Player 1 to reach v with a budget of fr(v). Dually,
we define fo(v,t) =1 — fr(v).

» Theorem 17. The thresholds ThE™ & Reach(Tf) g q pptruealReach(Tf) oy

4.2 Bounded-Visit Biichi and Co-Biichi

We first prove the existence of thresholds for the simpler case of bounded-visit Biichi and
co-Biichi objectives, where we impose, respectively, lower and upper bounds on the number
of visits to the Biichi target vertices B C V. Let k € N be a given bound. The bounded-visit
Biichi, denoted as Biichi(B, k), intuitively requires Player 1 to visit B at least k times.
Formally, Biichi(B, k) := {vovy ... | |{i € N|v; € B}| > k}. Bounded-visit co-Biichi is the
dual objective Co-Biichi(B, k) :== {vov; ... | [{i € N|v; € B}| < k} = V¥ \ Biichi(B, k).

Like before, we introduce two functions g; and gs, which will be shown to characterize
the thresholds for Biichi(B, k) and Co-Biichi(B, k), respectively.

» Definition 18. Define the functions g1,92: V x N — [0, 1] inductively as follows. For
every v € V, define g1(v,0) = 0. For every v € B, define g1(v,1) := 0 and g1(v,k) =
Avi(g1(, k — 1)) (v) for k > 1, and for every v ¢ B and every k > 0, define g1(v, k) =
ThfrugalReaCh(B’gl("k))(v). We proceed to define go. For every v € V, define g2(v,0) == 1.
For every v € B, define ga(v,1) =1 and g2(v, k) = Ava(g2(-, k — 1))(v), for k > 1, and for
every v ¢ B and every k > 0, define ga(v, k) = ThgrugalReaCh(B’l_”("k))(v).

We prove the existence of thresholds and their correspondence to ¢g; and go.

» Lemma 19. For everyv € V and k > 0, we have g1 (v, k) = Th]fﬁChi(B’k)(v) and ga(v, k) =
Th?ucm(B’k)(v). Moreover, the thresholds exist: Th]fUChl(B’k)(v) + Th?uChl(B’k) (v) = 1.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

Proof. The proof proceeds by induction over k (see details in the extended version [13]). For
the base case, k = 0, clearly, Player 1 wins since no further visit to B is required and Player 2
loses, which coincides with the definitions g;(v,0) = 0 and g2(v,0) =1, for all v € V. We
describe the inductive step for Player 1. For v € B, the proof follows from the induction
hypothesis: similar to Lem. 8, when By > g1(v, k), Player 1 can bid so that no matter how
Player 2 bids and moves the token (upon winning), in the next configuration (v', B} > we
have Bf > g1(v',k — 1). Finally, for v ¢ B, recall that g;(v, k) == ThFrugalReaCh(1)

That is, a budget of By > ¢1(v, k) means that he can follow a winning strategy in the
frugal-reachability game, which forces the game to B and upon reaching v’ € B, Player 1’s
budget exceeds g1 (v, k). The proof then follows from the induction hypothesis. <

We establish monotonicity of the thresholds, which confirms that Player 1 needs higher
budget for forcing larger numbers of visits to B.

» Lemma 20. For v € V and k € N, we have ThBuChl(B *) (v) < ThllgﬁChi(B’kH)(v) and
ThQBUChl(B k)() > ThBuChl(B k+1)(). Moreover, the thresholds are bounded by 0 and 1.

4.3 Existence of Thresholds (for Biichi and Co-Biichi Objectives)

We define two functions g; and g3, which will be shown to coincide with the thresholds for
the general (unbounded) Biichi and co-Biichi objectives, respectively.

» Definition 21. Define the functions g7,95: V — R as follows. For every v € B, define
g7 (v) = limg_y00 g1(v, k) and g5(v) = limg_, 00 g2(v, k). For every v ¢ B, define gi(v) ==
ThlfrugalReaCh(B’fr)(v) where fr: b — g7 (b) for every b € B and fr: v — 0 (can be arbitrary)

Thg‘rugachach(B Jfr) (’U)

for every v ¢ B. Likewise, for every v ¢ B, define gi(v) = where

fr:b—1—g3(b) for every b € B and fr: v +— 0 (can be arbitrary) for every v ¢ B.

Monotonicity (Lem. 20) and boundedness of g; and g imply the well-definedness of g}
and ¢g5. We now establish the existence and the characterization of thresholds.

» Theorem 22. For every v € V, we have ThBUChl(B)() = g7 (v) and ThBuChl (v) = g5(v).

Moreover, thresholds exist: ThBuChl(B)()+ ThBuChl(B)()=1.

Proof. First, we show that g% (v) > ThP""®) (1) Consider a configuration (v, By). When

B; > g7 (v), Player 1 wins as follows. If v ¢ B, he plays according to a winning strategy in
a frugal-reachability game to guarantee reaching some v’ € B with a budget that exceeds

g1 (v"). For v € B, he bids so that in the next configuration (v’, B}), we have B} > g (v').

Second, we show that g3 (v) > ThBuChl(B)(). When By =1 — By > g3 (v), Player 2 wins as
follows. If v € B, then there exists k such that By > g2(v, k). Lem. 19 shows that she can
win the co-Biichi objective by preventing B to be reached more than k times. If v ¢ B, she
has a strategy to make the token either (i) not reach B, or (ii) reach v’ € B with a budget
at least g5 (v'). In both cases, she wins by repeating the strategy. Finally, by Lem. 19, we
have g1 (v, k) + g2(v, k) =1, for all k € N. Thus, in the limit, we have gj(v) + ¢g5(v) = 1, for
v € B. From this, the other sides of the above inequalities, i.e., g (v) < Th]fﬁChi(B)(v) and
g3(v) < ThBuChl(B)(), and the existence claim follow in a straightforward manner. <

4.4 Complexity Bounds (for Biichi and Co-Biichi Objectives)

The computation of the thresholds ThY™™®) = g and ThE"MP) = gx involves a nested

fixed point computation. For example, for g7, the outer fixed point is the smallest fixed
point of the sequence ¢1(+,0),91(-,1),... for vertices in B, and for every k = 0,1,..., the

().

8:13

CONCUR 2024

8:14

Bidding Games with Charging

inner fixed point is the usual greatest fixed point for frugal reachability thresholds required
to reach B with the leftover frugal budget g;(-, k) from outside B. The nested fixed point
can be characterized as the solution of the following bilevel optimization problem.

min h(b)
heRV £~

subjected to constraints:

h € arg max ; B (v) |Vbe B . h'(b) =h(b) y,
veV\B
Yo €V . h(v) = Avy (h(-)) (v)
—7)h(v™ vt
~ ctampyy) (e A IR (1)+ el - Ra)).

h(vt) = h h(v™) = min h(u). 2
(v) Jnax (u), h(v7) i (u) (2)

» Proposition 23. The solution of the optimization problem in (2) is equivalent to the

threshold function Thll?’ﬁChi(B) of the Biichi player.

» Theorem 24. The following hold:
(i) THRESHEX T € 2EXPTIME and THRESHE 520, € 2EXPTIME, and

(i) THRESHEichman ¢ 11P 4nd THRESHE Siman. ¢ »2P

The bounds in (i) follow from a reduction to an equivalent query in the theory of reals.
For (ii), we can check if the solution of the optimization problem in (2) is larger than 0.5,
and if this is true then we conclude that 0.5 < ThllgﬁChi(B)(v) and can output a negative
answer. Since (2) is a bilevel MILP, hence the check can be done in %' [20], and the overall
complexity is II5. The other case is dual. Details of the proof can be found in the extended

version [13].

5 Lower Complexity Bounds

In this section we show how to simulate a turn-based game using a Richman-bidding game
with charging. Thus, solving Richman-bidding games with charging is at least as hard as
their turn-based counterparts. Specifically, we obtain that solving Rabin bidding games with
charging is NP-hard. This is a distinction from traditional Richman-bidding games, where
solving Rabin games is in NP and coNP. Since taxman-bidding games generalize Richman-
bidding games, hence it follows that Rabin taxman-bidding games are also NP-hard.

» Lemma 25. Given a turn-based game G, an initial vertex v, and an objective v, there is a
bidding game with charging G' of size linear in G, with the same objective and initial vertex
such that Player 1 can win G from v if and only if (G, v,) € THRESHYhman,

Proof. The definitions of turn-based games and the detailed proof can be found in the
extended version [13]. Intuitively, G’ contains the same set of vertices as G with two
additional sink vertices s; and sq, where s; is losing for Player 4, for ¢ € {1,2}. For every
vertex v, if v is controlled by Player 1 in G, then in G’, we define Player 1’s charge to be
R;(v) = 2. Moreover, we add an edge from v to s1, requiring Player 1 to win the bidding
in v. Note that even if Player 1 starts with a budget of ¢ > 0, at v, after charging and

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

R Thy(a)
— 1
c,e— 1 1
b— 2 0.75
dw—2 0.75
a,...,e— 04 0.62
a— 2 0.5
b,d—1 0

Figure 5 Illustrating the repair problem. LEFT: A reachability game with the objective
Reach({g}). RIGHT: With no repair (first row), Thi(a) = 1. We depict repairs (first col.)
and the changes they imply to the thresholds (second col.), for a repair budget of C' = 2.

normalization, his budget exceeds 2/3. Player 2’s vertices are dual. It is not hard to verify
that Player 1 can win in G from v if and only if Th¥(v) = 0, and Player 2 can win in G from
v if and only if Th¥(v) = 1. <

Since turn-based Rabin games are NP-hard, we obtain the following.

» Theorem 26. We have THRESHRSE™® ¢ NP-hard and THRESHS.M2" ¢ coNP-hard.

6 Repairing Bidding Games

In this section, we introduce the repair problem for bidding games. Intuitively, the goal is to
add minimal charges to the vertices of an arena so as to decrease the threshold in the initial
vertex to a target threshold. Formally, we define the following problem.

» Definition 27 (Repairing bidding games). Consider an arena G with a vertex v,
a bidding mechanism M € {Richman,poorman, taxman}, a class of objectives S €
{Reach, Safe, Biichi, Co-Biichi}, and a repair budget C' € R>o. The set of repaired arenas, de-
noted Repaired(G,C), are arenas obtained from G by adding Player 1 charges whose sum does
not exceed C. Formally, Repaired(G,C) = {(V,E, R|, Ry) is an arena | Yv € V . R} (v) >
Ri(v)AY ey (Ri(v) — Ri(v)) < C}. The problem R_THRESHY takes as input (G,v,¢,C),
where p € S, and accepts iff there exists G' € Repaired(G,C) with (G',v,p) € THRESHg/[.

» Example 28. We illustrate the non-triviality of the repair problem in Fig. 5. Observe that
neither assigning charges uniformly nor assigning charges to a single vertex, decrease the
threshold sufficiently, whereas adding a charge of 1 to both b and d is a successful repair. _

» Theorem 29. The following hold:
(i) R_THRESHE"man ¢ 9EXPTIME,
(i) R_THRESHS"™ ¢ PSPACE.

Proof. We introduce notation for the proof. Let G = (V, E, Ry, Rs) be a bidding game and
U be a set of vertices. Define AG: [0,1]YV — {0, 1} such that for every h € [0,1]V, AG(h) =1
iff h(v) = Avi(h)(v) for every v ¢ U. Observe that Th?eaCh(T) is the largest h for which
A% (h) = 1 and moreover h(v) = 0 for every v € T.

Proof of (i). Consider a bidding game G = (V, E, Ry, Ry) where the objective of Player 1
is Reach(T') for some T'C V. The goal is to check if it is possible to increase Ry by a total
of C' such that the reachability threshold at a € V' falls below 0.5. This is equivalent to:

8:15

CONCUR 2024

8:16

Bidding Games with Charging

3R} € RV . (R} > Ri) A (IR} — Rih < O) A
(vm eRV . [(vu €T . Thy(v) =0) A A%(Thl)} = Thi(a) < 0.5)

where G’ = (V| E, R}, Ry). The validity of the above formula can be checked by applying a
quantifier elimination method. Therefore, the decision problem is in 2EXPTIME.

Proof of (ii). Consider a bidding game G = (V| E, Ry, R2) where the objective of Player 1
is Safe(T) for some T'C V. The goal is to check if it is possible to increase R; by a total of
C such that the safety threshold at a € V falls below 0.5. This is equivalent to:

IR, e RY . (R, > RI)A(|R} — Ri1 <CO)A
(aTh1 €RY s.t. [Th(a) < 0.5 A AY (Thy) AVu € T, Thy (u) = 1])

where G’ = (V, E, R}, R2). The above formula can be seen as an input instance of existential
theory of reals which is known to be in PSPACE. |

7 Conclusion and Future Work

We introduce and study a generalization of bidding games in which players’ budgets are
charged throughout the game. One advantage of the model over traditional bidding games
is that long-run safety is not trivial. We show that the model maintains the key favorable
property of traditional bidding games, namely the existence of thresholds, the proof of
which is, however, significantly more challenging due to the non-uniqueness of thresholds.
We characterize thresholds in terms of greatest and least fixed points of certain monotonic
operators. Finally, we establish the first complexity lower bounds in continuous-bidding
games and study, for the first time, a repair problem in this model.

There are plenty of open questions and directions for future research. First, it is important
to extend the results to richer classes of w-regular objectives, like parity, Rabin, and Streett,
as well as to quantitative objectives, like mean-payoff. Second, tightening the complexity
bounds is an important open question. For example, it might be the case that finding
thresholds in Richman-bidding games with charging is in NP and coNP. Third, traditional
reachability Richman-bidding games are equivalent to a class of stochastic games [18] called
random-turn games [24], and the equivalence is general and intricate in infinite-duration
games [4, 5, 7, 9]. It is unknown if such a connection exists for games with charging, and
if it does, then many of the open questions may be solved via available tools for stochastic
games. Finally, there are various possible extensions, like charges disappearing after a vertex
is visited, charges that are collectible in multiple installments, etc.

—— References

1 M. Aghajohari, G. Avni, and T. A. Henzinger. Determinacy in discrete-bidding infinite-duration
games. Log. Methods Comput. Sci., 17(1), 2021.

2 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672-713, 2002.

3 G. Avni, T. A. Henzinger, and V. Chonev. Infinite-duration bidding games. In Proc. 28th
CONCUR, volume 85 of LIPIcs, pages 21:1-21:18, 2017.

4 G. Avni, T. A. Henzinger, and V. Chonev. Infinite-duration bidding games. J. ACM, 66(4):31:1—-
31:29, 2019.

5 G. Avni, T. A. Henzinger, and R. Ibsen-Jensen. Infinite-duration poorman-bidding games. In
Proc. 14th WINE, volume 11316 of LNCS, pages 21-36. Springer, 2018.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

G. Avni, T. A. Henzinger, and D. Zikeli¢. Bidding mechanisms in graph games. In Proc. 44th
MFCS, volume 138 of LIPIcs, pages 11:1-11:13, 2019.

G. Avni, T. A. Henzinger, and D. Zikelic. Bidding mechanisms in graph games. J. Comput.
Syst. Sci., 119:133-144, 2021.

G. Avni, R. Ibsen-Jensen, and J. Tkadlec. All-pay bidding games on graphs. In Proc. 34th
AAAI pages 1798-1805. AAAI Press, 2020.

G. Avni, I. Jecker, and D. Zikeli¢. Infinite-duration all-pay bidding games. In Proc. 32nd
SODA, pages 617-636, 2021.

G. Avni, I. Jecker, and D. Zikelic. Bidding graph games with partially-observable budgets. In
Proc. 87th AAAI 2023.

G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, and D. Zikelic. Reachability poorman
discrete-bidding games. In Proc. 26th ECAI, volume 372 of Frontiers in Artificial Intelligence
and Applications, pages 141-148. IOS Press, 2023.

G. Avni and S. Sadhukhan. Computing threshold budgets in discrete-bidding games. In Proc.
42nd FSTTCS, volume 250 of LIPIcs, pages 30:1-30:18. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 2022.

Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik. Bidding
games with charging, 2024. arXiv:2407.06288.

Guy Avni, Kaushik Mallik, and Suman Sadhukhan. Auction-based scheduling. In TACAS (3),
volume 14572 of Lecture Notes in Computer Science, pages 153-172. Springer, 2024.
Frantisek Blahoudek, Petr Novotny, Melkior Ornik, Pranay Thangeda, and Ufuk Topcu. Effi-
cient strategy synthesis for mdps with resource constraints. IEEE Transactions on Automatic
Control, 2022.

Patricia Bouyer, Uli Fahrenberg, Kim G Larsen, Nicolas Markey, and Jif{ Srba. Infinite runs in
weighted timed automata with energy constraints. In Formal Modeling and Analysis of Timed
Systems: 6th International Conference, FORMATS 2008, Saint Malo, France, September
15-17, 2008. Proceedings 6, pages 33—47. Springer, 2008.

Arindam Chakrabarti, Luca De Alfaro, Thomas A Henzinger, and Mariélle Stoelinga. Resource
interfaces. In International Workshop on Embedded Software, pages 117-133. Springer, 2003.
A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203-224, 1992.

M. Develin and S. Payne. Discrete bidding games. The Electronic Journal of Combinatorics,
17(1):R85, 2010.

Robert G Jeroslow. The polynomial hierarchy and a simple model for competitive analysis.
Mathematical programming, 32(2):146-164, 1985.

A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial
games under auction play. Games and Economic Behavior, 27(2):229-264, 1999.

A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman. Richman games. Games of No
Chance, 29:439-449, 1996.

R. Meir, G. Kalai, and M. Tennenholtz. Bidding games and efficient allocations. Games and
Economic Behavior, 112:166-193, 2018. doi:10.1016/j.geb.2018.08.005.

Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson. Tug-of-war and the infinity laplacian.
J. Amer. Math. Soc., 22:167-210, 2009.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL, pages
179-190, 1989.

M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction
of the AMS, 141:1-35, 1969.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998.

8:17

CONCUR 2024

https://arxiv.org/abs/2407.06288
https://doi.org/10.1016/j.geb.2018.08.005

Risk-Averse Optimization of Total Rewards in
Markovian Models Using Deviation Measures

Christel Baier &=

Technische Universitdt Dresden, Germany

Jakob Piribauer &=

Technische Universitat Dresden, Germany; Universitdt Leipzig, Germany
Maximilian Starke

Technische Universitdt Dresden, Germany

—— Abstract

This paper addresses objectives tailored to the risk-averse optimization of accumulated rewards
in Markov decision processes (MDPs). The studied objectives require maximizing the expected

value of the accumulated rewards minus a penalty factor times a deviation measure of the resulting
distribution of rewards. Using the variance in this penalty mechanism leads to the variance-penalized
expectation (VPE) for which it is known that optimal schedulers have to minimize future expected
rewards when a high amount of rewards has been accumulated. This behavior is undesirable as
risk-averse behavior should keep the probability of particularly low outcomes low, but not discourage
the accumulation of additional rewards on already good executions.

The paper investigates the semi-variance, which only takes outcomes below the expected value
into account, the mean absolute deviation (MAD), and the semi-MAD as alternative deviation
measures. Furthermore, a penalty mechanism that penalizes outcomes below a fixed threshold
is studied. For all of these objectives, the properties of optimal schedulers are specified and in
particular the question whether these objectives overcome the problem observed for the VPE is
answered. Further, the resulting algorithmic problems on MDPs and Markov chains are investigated.

2012 ACM Subject Classification Theory of computation — Logic and verification

Keywords and phrases Markov decision processes, risk-aversion, deviation measures, total reward
Digital Object Identifier 10.4230/LIPIcs. CONCUR.2024.9

Related Version Full Version: https://arxiv.org/abs/2407.06887 [6]

Supplementary Material Software (Source Code):
https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths
archived at swh:1:dir:eddcf497fe105cab8ea2b4f67171e814a6d35£29

Funding This work was partly funded by the DFG Grant 389792660 as part of TRR 248 (Foundations
of Perspicuous Software Systems), the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704,
as part of Germany’s Excellence Strategy), and the DFG project BA 1679/11-1.

1 Introduction

Markov decision processes (MDPs) are a prominent model for systems whose behavior is
subject to non-determinism and probabilism. Non-deterministic behavior might arise, e.g.,
if a system is employed in an unknown environment, can be controlled by a user, or works
concurrently. On the other hand, if, e.g., sufficiently much data on the failure of components
is available or randomized algorithms make use of randomization explicitly, it is reasonable
to model these aspects of the system as probabilistic.

In order to model quantitative aspects of a system, such as energy consumption, execution
time, or utility, MDPs are often equipped with a reward function that specifies how much
reward is received in each step of an execution. A typical task is then to resolve the non-
deterministic choices by specifying a scheduler, a.k.a. policy, such that the expected value of
? Christel Baier, Jakpb Piribauer, aI'ld Maximilian Starke;

5v icensed under Creative Commons License CC-BY 4.0
35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 9; pp. 9:1-9:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:christel.baier@tu-dresden.de
https://orcid.org/0000-0002-5321-9343
mailto:jakob.piribauer@tu-dresden.de
https://orcid.org/0000-0003-4829-0476
https://doi.org/10.4230/LIPIcs.CONCUR.2024.9
https://arxiv.org/abs/2407.06887
https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths
https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths
https://archive.softwareheritage.org/swh:1:dir:eddcf497fe105ca58ea2b4f67171e814a6d35f29;origin=https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths;visit=swh:1:snp:3820df4cf25caa5ca53fc08b41b9682dffa0a994;anchor=swh:1:rev:020c47e5f8354bdd039deb583d6c334fbb9b6e15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Risk-Averse Optimization of Total Rewards in Markovian Models

the total accumulated reward is maximal (or minimal). In verification, such optimization
problems naturally occur when investigating the worst- or best-case expected value of
the accumulated reward where worst- and best-case range over all resolutions of the non-
deterministic choices. If additionally a target state has to be reached almost surely, this
problem is known as the stochastic shortest path problem [7, 12].

Risk-averse optimization

If the objective is the maximization of the expected value of the accumulated rewards, all
other aspects of the probability distribution of accumulated rewards are disregarded. This
might lead to undesirable behavior as the optimal scheduler might receive low rewards with
high probability as long as the expected value is optimal. In many situations, however, a
slightly lower expected reward is preferable if it is obtained by a more “stable” behavior in
which the risk of encountering low rewards is reduced. E.g., in a traffic control scenarios, it
might be important to reduce the risk of congestions while ensuring a reasonable average
throughput instead of solely optimizing the average throughput.

In order to define objectives incentivizing such risk-averse behavior, it is worth taking
a look at finance and in particular portfolio optimization. Here, Markowitz proclaimed
that a portfolio of financial positions should be chosen such that it is Pareto optimal with
respect to the expected return and the variance of the return [23]. One way extensively
studied in finance to obtain Pareto optimal portfolios is to maximize the variance-penalized
expectation (VPE), which is the expected value minus a penalty factor A times the variance.
The parameter A can be used to obtain different levels of risk-aversion.

Besides the variance, further deviation measures have been investigated to reduce risk in
portfolio optimization: The use of the semi-variance, which — in contrast to the variance —
only takes the deviation of outcomes below the expected value into account, as a penalty
mechanism has been introduced in this context by Markowitz [24]. Furthermore, instead
of considering quadratic deviations from the expected value as in the case of variance and
semi-variance, the mean absolute deviation (MAD) can be used to obtain the MAD-penalized
expectation (MADPE) studied for portfolio optimization in [18]. The MAD measures the
expected absolute deviation from the expected value.

In this paper, we investigate these different deviation measure based penalty mechanisms
in the context of the maximization of rewards in MDPs.

Variance-penalized expectation in MDPs (VPE)

Recently, the maximization of the VPE of accumulated rewards in MDPs was studied in [25]:
On the positive side, it is shown that optimal schedulers for the VPE can be chosen to be
deterministic finite-memory schedulers. Nevertheless, the optimization of the VPE is shown
to be computationally hard: The threshold problem whether the optimal VPE exceeds a
given threshold ¥ is EXPTIME-hard. An optimal scheduler can be computed in exponential
space.

A main drawback of the VPE, however, is of conceptual nature: In [25], it is shown that
VPE-optimal schedulers have to minimize the future expected rewards as soon as a high
amount of rewards (above a computable bound B) has been accumulated. We call such
schedulers eventually reward-minimizing schedulers (ERMin-schedulers). Intuitively, the
reason is that a further accumulation of additional rewards after a high amount of rewards
has already been accumulated has a stronger effect on the variance than on the expected
value due to the quadratic nature of the variance. Conceptually, this can be considered to be
a flaw in the use of the VPE as an objective to yield risk-averse behavior.

C. Baier, J. Piribauer, and M. Starke

Table 1 Overview of the complexity results and the types of schedulers needed for the optimization
of the studied objectives and the VPE. The entries “-” indicate that the problem was not studied
further as the scheduler needed for the optimization are the undersirable ERMin-schedulers.
hardness of threshold

computation of optimal schedulers

problem optimum
VPE [25] EXPTIME-hard; in P | in exponential space deterministic,
for Markov chains finite-memory
ERMin-schedulers
SVPE - - randomized,

ERMin-schedulers
can be necessary

MADPE (A < 1/2),
SMADPE (A < 1)

randomized,
finite-memory
ERMax-schedulers
randomized,
ERMin-schedulers
can be necessary

PP-hard for acyclic quadratic program of

Markov chains exponential size

MADPE (A > 1/2), | - -
SMADPE (A > 1)

TBPE PP-hard for acyclic

Markov chains

deterministic,
finite-memory
ERMax-schedulers

in pseudo-polynomial
time

The desired behaviour a suitable objective should induce is that a scheduler achieves a
high expected accumulated reward, while keeping the probability of particularly bad outcomes
low. Improving on already good outcomes should not have a negative effect. So, we want
optimal schedulers to be eventually reward-mazimizing (ERMax-schedulers), i.e., that they
maximize the expected reward once the accumulated reward exceeds some bound B.

Deviation-measure-penalized expectation

Towards this goal, we investigate objectives in the spirit of the VPE, which are of the form
ES (rew) — ADEV® (rew) where a penalty factor A times a deviation measure DEV® (rew) of
the probability distribution of accumulated rewards under a scheduler & is subtracted from
the expected accumulated reward E® (rew).

The first deviation measure we investigate is the MAD. In contrast to the variance,
the contribution of an outcome to the MAD only grows linearly with its distance to the
expected value. For the MAD and the variance, we also study one-sided variants in which
only outcomes below the expected value are considered: The semi-MAD (SMAD) and semi-
variance quantify the average absolute or squared deviation below the expected value by
assigning deviation 0 to all outcomes above the expected value. Finally, we investigate a
simpler alternative to the MADPE: Instead of measuring the deviation from the expected
value of accumulated rewards, which itself depends on the chosen scheduler, we consider a
threshold-based penalized expectation (TBPE), where outcomes below a threshold ¢ that can
be chosen externally are penalized either linearly or according to more complicated functions.

Contributions

The main contributions, also summarized in Table 1, are as follows.
We show that optimal schedulers for the MADPE can be chosen to be ERMax-schedulers,
as desired, if the risk-aversion parameter A is sufficiently small, i.e. if A < 1/2. This
bound on the parameter is shown to be tight. Furthermore, we show that randomized
schedulers are necessary for the optimization.

9:3

CONCUR 2024

9:4

Risk-Averse Optimization of Total Rewards in Markovian Models

We formulate the optimization problem as a quadratic program and obtain a EXPSPACE-
upper complexity bound for the threshold problem for the MADPE. On the other hand,
we show that already in acyclic Markov chains the threshold problems for the MADPE
and the MAD are PP-hard under polynomial-time Turing reductions.

As the semi-MAD is always half of the MAD, the results transfer to the semi-MADPE.

We investigate the semivariance-penalized expectation (SVPE) and show — somewhat
surprisingly — that, for any risk-aversion parameter A\, there are MDPs in which optimal
schedulers are ERMin-schedulers. Hence, the SVPE as objective does not overcome the
undesirable effects observed for the VPE. Furthermore, we show that, in contrast to the
VPE, randomization is necessary for the optimization of the SVPE.

We show that the TBPE can be optimized in pseudo-polynomial time and that deciding
if the TBPE exceeds a bound for linear penalty functions even in acylic Markov chains is
PP-hard under polynomial-time Turing reductions.

As a proof-of-concept, we analyze our algorithms for the optimization of the MADPE and
for the TBPE in a small series of experiments.

Related work

The above mentioned work on the VPE for accumulated rewards in MDPs [25] is the closest
related work to our paper. Earlier work on the VPE in MDPs addressed the finite-horizon
setting with terminal rewards [11] or applied the notion to mean payoff and discounted
rewards [13]. Further, [31] presents a policy iteration algorithm converging against local
optima for a similar measure. The computation of the variance of accumulated rewards
has been studied in Markov chains [30] and in MDPs [21, 22]. In [8], the satisfiability of
constraints on the expected mean payoff in conjunction with constraints on the variance or
related notions such as a local variability are studied for MDPs.

For MDPs, the SVPE of random variables defined in terms of the stationary distribution
has been studied via the use of reinforcement learning algorithms [20]. Conceptually and
methodologically this work is nevertheless not closely related to our work. We are not aware
of investigations of the MADPE on MDPs.

Furthermore, several approaches to formalize various other risk-averse optimization
problems for accumulated rewards in MDPs have been proposed and studied in the literature.
This includes the computation of worst- or best-case quantiles [29, 4, 16, 27], also called
values-at-risk: Given a probability p, quantiles on the accumulated rewards are the best
bound C' such that the accumulated rewards stays below C with probability at most p
under all or under some scheduler. While quantiles still disregard the distribution below,
the conditional value-at-risk and the entropic value-at-risk are more involved measures that
quantify how far the probability mass of the tail of the probability distribution lies below a
given quantile. In the context of risk-averse optimization in MDPs, these measures have been
studied in [19] and [1]. A further approach, the entropic risk measure, reweighs outcomes by
an exponential utility function. Optimizing this entropic risk measure leads to schedulers
that tend to still achieve a high expected value while keeping the probability of low outcomes
small. The entropic risk measure applied to accumulated rewards have been studied in [3]
for stochastic games that extend MDPs with an adversarial player.

C. Baier, J. Piribauer, and M. Starke

2 Preliminaries

Notations for Markov decision processes

A Markov decision process (MDP) is a tuple M = (S, Act, P, s,,4, rew) where S is a finite set
of states, Act a finite set of actions, P: S x Act x S — [0,1] N Q the transition probability
function, s,,, € S the initial state, and rew: S x Act — N the reward function. Note that we
only allow non-negative rewards and that rational rewards can be transformed to integral
rewards by multiplying all rewards with the least common multiple of all denominators

of the rational rewards. We require that), ¢ P(s,a,t) € {0,1} for all (s,a) € S x Act.

We say that action « is enabled in state s iff), g P(s,a,t) = 1 and denote the set of
all actions that are enabled in state s by Act(s). If Act(s) = (), we say that s is a trap
state. The paths of M are finite or infinite sequences spag s; oy ... where states and
actions alternate such that P(s;, «;,s;41) > 0 for all i > 0. For m = spap $1 1 ... p—1 Sk,
rew(m) = rew(sg, &) + ... + rew(sg—1, ax—1) — and analogously for infinite paths — denotes
the accumulated reward of m, P(7) = P(so, a,51) ... P(sk—1,ak_1, Sg) its probability, and
last(m) = sy, its last state. A path is called mazimal if it is infinite or ends in the trap state
goal. The size of M is the sum of the number of states plus the total sum of the logarithmic
lengths of the non-zero probability values P(s, «,s’) as fractions of co-prime integers and the
weight values rew(s, a).

A Markov chain is an MDP in which the set of actions is a singleton. In this case, we can
drop the set of actions and consider a Markov chain as a tuple M = (S, P, s,,.,, rew) where P
now is a function from S x S to [0,1] and rew a function from S to N.

An end component of M is a strongly connected sub-MDP formalized by a subset S’ C S
of states and a non-empty subset 20(s) C Act(s) for each state s € S’ such that for each
se S te Sand aeAs) with P(s,a,t) > 0, we have t € S” and such that in the resulting
sub-MDP all states are reachable from each other. An end-component is a 0-end-component
if it only contains state-action-pairs with reward 0.

Scheduler

A scheduler for M is a function & that assigns to each non-maximal path 7 a probability
distribution over Act(last(m)). If the choice of a scheduler & depends only on the current
state, i.e., if &(m) = &(x’) for all non-maximal paths 7 and 7’ with last(n) = last(n’), we
say that & is memoryless and also view it as functions mapping states s € S to probability
distributions over Act(s). A scheduler & that satisfies &(n) = &(n’) for all pairs of finite
paths 7 and 7" with last(w) = last(n’) and rew(w) = rew(n’) is called reward-based and
can be viewed as a function from state-reward pairs S x N to probability distributions
over actions. If there is a finite set X of memory modes and a memory update function
U:SxAct xS x X — X such that the choice of & only depends on the current state after
a finite path and the memory mode obtained from updating the memory mode according
to U in each step, we say that & is a finite-memory scheduler. A scheduler & is called
deterministic if &() is a Dirac distribution for each path 7 in which case we also view the
scheduler as a mapping to actions in Act(last(m)).

Probability measure

We write Pr%,s to denote the probability measure induced by a scheduler & and a state
s of an MDP M. Tt is defined on the o-algebra generated by the cylinder sets Cyl(w) of
all maximal extensions of a finite path m = sgag sy @1 ... ag—1 Sk with sg = s by assigning

9:5

CONCUR 2024

9:6

Risk-Averse Optimization of Total Rewards in Markovian Models

to Cyl(m) the probability that 7 is realized under &, which is &(so)(ao) - P(s0, 0, 51) - - .- -
S(soaq - .- Sp—1)(ak—1) - P(sg—1, k1, Sk). For a set of states T, we use OT to denote the
event that a state in T is reached. For details, see [26].

For a random variable X that is defined on (some of the) maximal paths in M, we denote
the expected value of X under the probability measure induced by a scheduler & and state s
by [E}“’:A7S(X). We define EX;% (X) = infg [ES?/LS(X) and ER%5(X) = supg [E%,S(X) where &
ranges over all schedulers for M under which X is defined almost surely. The variance of
X under the probability measure determined by & and s in M is denoted by \/%VS(X) and
defined by V§; [(X) = ES, (X — E5,,(X))?) = £}, (X?) — ES, ,(X)?. Furthermore, for
a measurable set of paths v with positive probability, [E%I,S (Xv) denotes the conditional
expectation of X under . If s = s,,,, we sometimes drop the subscript s.

Accumulated rewards

Given an MDP M = (S, Act, P, s,,,, rew), the total accumulated reward is given by the
extension of the function rew to maximal paths. We can check whether ER{*(rew) = oo
by checking whether all (maximal) end components are 0-end components in polynomial
time [12]. For our purposes, only MDPs M with E0{*(rew) < oo are interesting. In these
MDPs, we can collapse all end components £, which are all 0-end components, to single
states s¢ while adding a transition with reward 0 to a new trap state. This does not affect
the possible distributions of the random variable rew that can be realized by a scheduler [12].
Furthermore, the behavior of the MDP starting from a state s with [E“Al,ﬁ’g(rew) =0, i.e., from
a state s from which no positive reward is reachable, is irrelevant. So, we can collapse all
these states s with E0{*(rew) = 0 (together with the new trap state) to a single trap state
that we call goal. By these constructions, we obtain a new MDP M’ in which exactly the
same distributions of the total reward can be realized by schedulers as in M. As M’ does
not contain any end components anymore and goal is the only trap state in M’, the state
goal is now reached with probability 1 under any scheduler. In the light of the described
constructions, we work under the following assumption:

» Assumption 1. W.l.o.g., we assume that all MDPs have a trap state goal, which is reached
with probability 1 under all schedulers. We add this trap state to the signature and hence
denote MDPs M as tuples M = (S, Act, P, $,,,, rew, goal).

All objectives studied in this paper depend only on the distribution of the random variable
rew. By the following lemma, which is folklore and follows from the formulation in [25,
Lemma 2] (see also the full version [6]), we can restrict ourselves to reward-based schedulers.

» Lemma 2.1. Let M = (S, Act, P, 8,4, rew, goal) be an MDP satisfying Assumption 1.
Then, for any scheduler & there is a reward-based scheduler T such that the distribution of
the random variable rew is the same under the probability measures Pr/%t and Pr%.

3 Mean absolute deviation-penalized expectation

As described in the introduction, the VPE suffers from the drawback that optimal schedulers
are ERMin-schedulers, which is an undesirable behavior. Intuitively, the reason for this
behavior in the case of VPE lies in the fact that the variance grows quadratically with the
distance to the expected value. A natural alternative is choosing the absolute distance rather
than the quadratic distance from the expected value as the measure for the penalty. So, we
define the mean absolute deviation (MAD) of a random variable X as the probability-weighted

def

sum of the distance to the expected value: MAD(X) = E(|X — E(X)|).

C. Baier, J. Piribauer, and M. Starke

(a) The MDP M used in Example 3.1. (b) The MDP M used in Example 3.2.

Figure 1 Two example MDPs.

We consider the MAD-penalized expectation (MADPE) of the accumulated weight in
an MDP M = (S, Act, P, s, rew, goal) analogously to the VPE: We define the MAD of the

accumulated reward rew under scheduler & as MADS, (rew) = ES, (|rew — ES(rew)|). The

MAD-penalized expectation with parameter A € R is now MADPE[N| G, (rew) = S, (rew) —
AMADS, (rew) analogously to the VPE. Our goal is to find

MADPE[N R (rew) 2 sup MADPEA]S, (rew)
S

as well as an optimal scheduler. In the sequel, we will prove the following results. Omitted

proofs can be found in [6].

1. In general, randomization is necessary to optimize the MADPE.

2. If A > %, then there is an MDP M such that any optimal scheduler for the MADPE is
an ERMin-scheduler.

3.1 A < %, for any MDP M, optimal schedulers can be chosen to be reward-based
ERMax-schedulers.

4. It A < %, the optimal MADPE can be computed in exponential time.

5. Even for acyclic Markov chains, deciding whether the MADPE exceeds a given threshold
¥ is PP-hard under polynomial-time Turing reductions.

3.1 Randomization and optimality of ERMin-schedulers

We work with MDPs M = (5, Act, P, 8., rew, goal) satisfying Assumption 1. First, we show
that randomization is necessary for the optimization of the MADPE in the following example.

» Example 3.1. Consider the MDP M in Figure 1la. We consider the schedulers &, choosing
o in s, 64 choosing 3, and &, /2 choosing o and 8 with probability 1/2 each and obtain:
ESe (Grew) = 3/4, E\/* (rew) = 1, and ESf (rew) = 5/4. The MADs are MAD S (rew) = 3/8,
MAD " (rew) = 1/4-1 = 1/4, and l}’IAIDf/f(rew) = 3/8. Clearly, the MADPE under &g is
better than under &,, for any A > 0. For the MADPE of &, /5 and &4 with A = 4, we obtain

1 5 3 1

MADPE[] o/ (rew) = 1 — =0 MADPE[A] S/ (rew) = S Lt
So, the randomized scheduler &, is better than the deterministic schedulers &, and &g.
In Figure 2, we depict the MAD in comparison to the expected value of any randomized
scheduler for M. The kink in the graph at expected value 1 can be explained by the fact

9:7

CONCUR 2024

9:8 Risk-Averse Optimization of Total Rewards in Markovian Models

0.4 4 5 . 0.4 5

' MAD & v
03| \ 03|
02 £\ D 02| m
0.1 ¢ 011
| | | | E | | | | E
06 08 1 12 14 06 08 1 12 14

Figure 2 Plot of MAD and variance over the expected value for schedulers obtained by choosing
« with probability p € [0, 1] in the MDP M depicted in Figure 1a.

that the MAD contains a summand for |1 — E§;(rew)|. The dotted blue line consists of all
points in the MAD-E-plane with the same MADPE as the scheduler &/, illustrating that
this scheduler is in fact optimal as the MADPE increases in the direction of the arrow. For
comparison, we also depict the variances of randomized schedulers over the expectation.
Clearly, for any A the deterministic scheduler choosing 3 will always be VPE-optimal.

In the next example, we will illustrate that the MADPE fails to guarantee in general that
optimal schedulers are eventually reward-maximizing.

» Example 3.2. Consider the MDP M depicted in Figure 1b for p € (0,1/3]. Always
choosing « in state sg.. maximizes the expected value. Under this scheduler, the expected
value is 3p < 1 as moving from state s; to state sg4.. takes two steps in expectation. So,
under any scheduler, the expected value lies between 0 and 1. So, all paths leading via s;
yield a reward above the expected value, while only the path going directly to goal from s,
yields a reward below the expected value. For the MAD under a scheduler &, we obtain
MADS(rew) = 2 - (1 — p) - EG(rew) (see the full version [6] for the calculations).

For a given A > 1, we can choose p € (0,1/3] such that A > ﬁ and hence A-2-(1—p) >

—p
1. Now, under any scheduler &, the MADPE for parameter \ is

MADPE[N S (rew) = ESy(rew) — A2+ (1 —p) - E}y(rew) = (1 = X-2- (1 — p))ES, (rew).

As1—-X-2-(1—-p) <0, a scheduler maximizing the MADPE has to minimize the expected
value of rew. In M,, this means always choosing /. So, for any A > %, there is an MDP in
which optimal schedulers have to minimize the future expected rewards no matter how large
the accumulated reward already is.

3.2 Sufficiently small parameters A

As we have seen, the MADPE as an objective does not in general guarantee that optimal
schedulers are ERMax-schedulers. In this section, we now show that this desirable property
is guaranteed if the risk-aversion parameter)\ is at most %

By Lemma 2.1, we already know that we can restrict ourselves to reward-based schedulers
when optimizing the MADPE. For two reward-based schedulers & and ¥ and a natural
number k, we define the reward-based scheduler & 14 T on state-reward-pairs (s,w) € S x N

6 R f ka
by (& 1% T)(s,w) = {r:(:((: z:)) if: i k

to distributions over actions.
For risk-aversion parameters A of at most 1/2, the following theorem implies that optimal
schedulers for the MADPE can be chosen to be ERMax-schedulers.

where we view © and ¥ as functions from S x N

C. Baier, J. Piribauer, and M. Starke

» Theorem 3.3. Let M = (S, Act, P, 8,4, rew, goal) be an MDP satisfying Assumption 1 and
let X € (0, %} be a parameter for the MADPE. Further, let T be a memoryless deterministic
scheduler with £} (rew) = EReX (rew). Let k = [E35*(rew)]. Then, for any reward-based

scheduler &, we have MADPE[N S, (rew) < II’IAD[P[E[)\]?:AT’CK(Tew).

The theorem is shown by expressing the MADPE using conditional expectations under
the condition that the reward exceeds the bound k. Note that the theorem implies that it
does not matter which expectation optimal scheduler ¥ is chosen after a reward of at least
ER*(rew) has been accumulated.

3.3 Computing the maximal MADPE

Theorem 3.3 tells us that the value MADPE[AR?* in an MDP M for A € (0,1/2] is the
supremum of MADPE[A]S, over all reward-based schedulers & that behave according to a
fixed memoryless deterministic scheduler ¥ maximizing the expected reward as soon as
a reward of more than E}/*(rew) has been accumulated. Let us denote the set of such
schedulers by Schedy.

The result shares some similarity with the results in [5] on the computation of maximal
conditional expected rewards under the condition that a set of target states is reached. In
both cases, a reward-based scheduler that has to keep track of the accumulated reward up to
some bound B has to be computed. The bound B, however, is obtained quite differently.
Here, the maximal expected accumulated reward can be used as this bound. The bound in [5]
is in general much larger (although also exponential). Similar reward-based schedulers are
also necessary for the model-checking of temporal formulas with certain reward operators [10]
and for the optimization of the variance-penalized expectation [25].

We are now in the position to provide a model transformation such that afterwards we can
restrict ourselves to memoryless schedulers. Given the MDP M = (S, Act, P, $,,.,, rew, goal),
let k = [EX{*(rew)] and let £ be the largest reward of a state-weight pair in M. We now
define the MDP N = (S’ Act', P, s, rew’, goal’).

The state space S’ = S x {0,...,k + ¢ — 1} U {goal'} and represents states together
with the reward that has been accumulated so far, as well as a new trap state goal’. The
initial state is s, , = (S, 0). The set of actions is extended by one new action 7. The
transition probability function P’ for (s,w) € S x {0,...,k+ ¢ — 1} and « € Act is given by

P'((s,w),a, (t,v)) = P(s,a,t) if w <k —1and v =w+ rew(s, a), and is set to 0 otherwise.

So, in all states in S x {k,...,k+£¢— 1} and in {goal} x {0,...,k — 1} none of the actions
in Act are enabled. Instead in these states the new action 7 is enabled and leads to the trap
state goal’ with probability 1. The reward function is 0 on all state-action pairs containing
an action from Act. Only the new action 7 gets assigned a reward by

rew’ ((goal,w)) = w forall w e {0,...,k+£—1} and
rew'((s,w)) = w + Ex (rew) for s € S\ {goal} and w € {k,..., k+¢—1}.

So, in NV, rewards are only received in the very last step when entering th