
35th International Conference on
Concurrency Theory

CONCUR 2024, September 9–13, 2024, Calgary, Canada

Edited by

Rupak Majumdar
Alexandra Silva

LIPIcs – Vo l . 311 – CONCUR 2024 www.dagstuh l .de/ l ip i c s

Editors

Rupak Majumdar
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
rupak@mpi-sws.org

Alexandra Silva
Cornell University, Ithaca, NY, USA
alexandra.silva@gmail.com

ACM Classification 2012
Theory of computation → Concurrency; Theory of computation → Categorical semantics; Theory
of computation → Process calculi; Theory of computation → Markov decision processes; Theory of
computation → Modal and temporal logics; Theory of computation → Verification by model checking;
Theory of computation → Automata over infinite objects

ISBN 978-3-95977-339-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-339-3.

Publication date
September, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CONCUR.2024.0

ISBN 978-3-95977-339-3 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-2136-0542
mailto:rupak@mpi-sws.org
https://orcid.org/0000-0001-5014-9784
mailto:alexandra.silva@gmail.com
https://www.dagstuhl.de/dagpub/978-3-95977-339-3
https://www.dagstuhl.de/dagpub/978-3-95977-339-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CONCUR.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-339-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CONCUR 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Rupak Majumdar and Alexandra Silva . 0:ix

Committees
. 0:xi

Invited Talks

Constrained Horn Clauses for Program Verification and Synthesis
Arie Gurfinkel . 1:1–1:1

Principles of Persistent Programming
Azalea Raad . 2:1–2:1

Verifying Concurrent Search Structures
Thomas Wies . 3:1–3:1

Regular Papers

Centralized vs Decentralized Monitors for Hyperproperties
Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla,
and Jana Wagemaker . 4:1–4:19

MITL Model Checking via Generalized Timed Automata and a New Liveness
Algorithm

S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan . 5:1–5:19

Causally Deterministic Markov Decision Processes
S. Akshay, Tobias Meggendorfer, and P. S. Thiagarajan . 6:1–6:22

Fairness and Consensus in an Asynchronous Opinion Model for Social Networks
Jesús Aranda, Sebastián Betancourt, Juan Fco. Díaz, and Frank Valencia 7:1–7:17

Bidding Games with Charging
Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik 8:1–8:17

Risk-Averse Optimization of Total Rewards in Markovian Models Using
Deviation Measures

Christel Baier, Jakob Piribauer, and Maximilian Starke . 9:1–9:20

Passive Learning of Regular Data Languages in Polynomial Time and Data
Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini 10:1–10:21

Left-Linear Rewriting in Adhesive Categories
Paolo Baldan, Davide Castelnovo, Andrea Corradini, and Fabio Gadducci 11:1–11:24

History-Determinism vs Fair Simulation
Udi Boker, Thomas A. Henzinger, Karoliina Lehtinen, and Aditya Prakash 12:1–12:16

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

The Power of Counting Steps in Quantitative Games
Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and
Pierre Vandenhove . 13:1–13:18

As Soon as Possible but Rationally
Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin 14:1–14:20

RobTL: Robustness Temporal Logic for CPS
Valentina Castiglioni, Michele Loreti, and Simone Tini . 15:1–15:23

Effect Semantics for Quantum Process Calculi
Lorenzo Ceragioli, Fabio Gadducci, Giuseppe Lomurno, and Gabriele Tedeschi . . . 16:1–16:22

Invariants for One-Counter Automata with Disequality Tests
Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger 17:1–17:21

Weighted Basic Parallel Processes and Combinatorial Enumeration
Lorenzo Clemente . 18:1–18:22

Computing Inductive Invariants of Regular Abstraction Frameworks
Philipp Czerner, Javier Esparza, Valentin Krasotin, and Christoph Welzel-Mohr . 19:1–19:18

Behavioural Metrics: Compositionality of the Kantorovich Lifting and an
Application to Up-To Techniques

Keri D’Angelo, Sebastian Gurke, Johanna Maria Kirss, Barbara König,
Matina Najafi, Wojciech Różowski, and Paul Wild . 20:1–20:19

Reversible Transducers over Infinite Words
Luc Dartois, Paul Gastin, Loïc Germerie Guizouarn, R. Govind, and
Shankaranarayanan Krishna . 21:1–21:22

An Automata-Based Approach for Synchronizable Mailbox Communication
Romain Delpy, Anca Muscholl, and Grégoire Sutre . 22:1–22:19

Regular Games with Imperfect Information Are Not That Regular
Laurent Doyen and Thomas Soullard . 23:1–23:19

Validity of Contextual Formulas
Javier Esparza and Rubén Rubio . 24:1–24:17

A Unifying Categorical View of Nondeterministic Iteration and Tests
Sergey Goncharov and Tarmo Uustalu . 25:1–25:22

Phase-Bounded Broadcast Networks over Topologies of Communication
Lucie Guillou, Arnaud Sangnier, and Nathalie Sznajder . 26:1–26:16

Inaproximability in Weighted Timed Games
Quentin Guilmant and Joël Ouaknine . 27:1–27:15

Faster and Smaller Solutions of Obliging Games
Daniel Hausmann and Nir Piterman . 28:1–28:19

Strategic Dominance: A New Preorder for Nondeterministic Processes
Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç . 29:1–29:20

Around Classical and Intuitionistic Linear Processes
Juan C. Jaramillo, Dan Frumin, and Jorge A. Pérez . 30:1–30:19

Contents 0:vii

Bi-Reachability in Petri Nets with Data
Łukasz Kamiński and Sławomir Lasota . 31:1–31:20

Minimising the Probabilistic Bisimilarity Distance
Stefan Kiefer and Qiyi Tang . 32:1–32:18

Automating Memory Model Metatheory with Intersections
Aristotelis Koutsouridis, Michalis Kokologiannakis, and Viktor Vafeiadis 33:1–33:16

On Continuous Pushdown VASS in One Dimension
Guillermo A. Pérez and Shrisha Rao . 34:1–34:20

Nominal Tree Automata with Name Allocation
Simon Prucker and Lutz Schröder . 35:1–35:17

Branching Bisimilarity for Processes with Time-Outs
Gaspard Reghem and Rob J. van Glabbeek . 36:1–36:22

A Spectrum of Approximate Probabilistic Bisimulations
Timm Spork, Christel Baier, Joost-Pieter Katoen, Jakob Piribauer, and
Tim Quatmann . 37:1–37:19

Progress, Justness and Fairness in Modal µ-Calculus Formulae
Myrthe S. C. Spronck, Bas Luttik, and Tim A. C. Willemse . 38:1–38:22

Coinductive Techniques for Checking Satisfiability of Generalized Nested
Conditions

Lara Stoltenow, Barbara König, Sven Schneider, Andrea Corradini, Leen Lambers,
and Fernando Orejas . 39:1–39:20

A PSPACE Algorithm for Almost-Sure Rabin Objectives in
Multi-Environment MDPs

Marnix Suilen, Marck van der Vegt, and Sebastian Junges . 40:1–40:17

CONCUR 2024

Preface

This volume contains the contributions accepted for the 35th International Conference on
Concurrency Theory (CONCUR), held in 2024. CONCUR serves as an annual scientific
forum for researchers, developers, and students working to expand the field of concurrency
theory and its applications. CONCUR 2024 was organized in Calgary, Canada between 9
and 13 September, 2024, as part of CONFEST 2024. Along with CONCUR, CONFEST also
featured the QEST+FORMATS conference, as well as several workshops.

For CONCUR 2024, we received 80 submissions and accepted 37 for presentation at the
conference. We are grateful for the hard work of our program committee as well as the many
external experts who produced 240 reviews and engaged in lively discussions. We wish to
thank the authors for submitting their work to CONCUR, and we congratulate the authors of
all accepted papers. We look forward to a scientifically interesting conference in September.

We would like to thank the CONCUR invited speakers, Arie Gurfinkel (University of
Waterloo), Azalea Raad (Imperial College London), and Thomas Wies (New York University),
as well as the CONFEST Unifying Speaker, Corina Pasareanu (NASA Ames/Carnegie Mellon
University), and the QEST+FORMATS invited speaker, Mor Harchol-Balter (Carnegie
Mellon University).

In 2020, CONCUR and the IFIP WG 1.8 on Concurrency Theory initiated the test-of-time
award to honor significant contributions to Concurrency Theory that were published at
CONCUR. This year’s award goes to Stephen D. Brookes and Peter W. O’Hearn, for their
papers “A semantics for concurrent separation logic” and “Resources, concurrency and local
reasoning,” respectively, both published in CONCUR 2004.

The proceedings of CONCUR 2024 are freely available through the LIPIcs series. We
thank Diwakar Krishnamurthy, the general chair, as well as the rest of the organizing team,
and the University of Calgary for their assistance in organizing CONFEST 2024. We look
forward to welcoming you in Calgary!

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Committees

Program committee

Alessandro Abate Oxford
Alexandra Silva (co-chair) Cornell University
Andreas Pavlogiannis Aarhus
Antonín Kucera Masaryk University
Ashutosh Trivedi UC Boulder
Barbara König University of Duisburg-Essen
Benjamin Kaminski Saarland University
Cinzia Di Giusto Univ of Nice
Colin Gordon Drexel University
Constantin Enea Ecole Polytechnique
Dan Ghica Huawei
Dana Fisman Ben-Gurion University
Daniele Gorla University of Rome La Sapienza
Davide Sangiorgi University of Bologna
Emmanuele d’Osualdo University of Konstanz
Frits Vaandrager Radboud University
Guillermo Pérez University of Antwerp
Ilaria Castellani INRIA Sophia-Antipolis
James Worrell Oxford
Jana Wagemaker Reykjavik
Kirstin Peters Augsburg University
Klaus v. Gleissenthall Vrije Uni Amsterdam
Michele Boreale University of Florence
Nadia Labai AWS
Orna Kupferman Hebrew University
Roland Meyer TU Braunschweig
Rupak Majumdar (co-chair) Max Planck Institute for Software Systems
S Akshay Indian Institute of Technology Bombay
Sadegh Soudjani Max Planck Institute for Software Systems
Sebastian Junges Radboud University & Nijmegen
Stefan Milius FAU Erlangen-Nürnberg
Subhajit Roy IIT Kanpur
Thejaswini K.S. ISTA
Umang Mathur National University of Singapore
Valeria Vignudelli ENS Lyon
Yu-Fang Chen Academica Sinica Taiwan

Steering committee

Luca Aceto Reykjavik University
Christel Baier Technical University Dresden
Pedro D’Argenio Universidad Nacional de Córdoba
Wan Fokkink (chair) Vrije University Amsterdam
Catuscia Palamidessi Ecole Polytechnique
Jiri Srba Aalborg University

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Constrained Horn Clauses for Program Verification
and Synthesis
Arie Gurfinkel # Ñ

University of Waterloo, ON, Canada

Abstract
First Order Logic (FOL) is a powerful formalism that naturally captures many interesting decision
and optimization problems. In recent years, there has been a tremendous progress in automated
logic reasoning tools, such as Boolean SATisfiability Solvers and Satisfiability Modulo Theory solvers.
This enabled the use of logic and logic solvers as a universal solution to many problems in Computer
Science, in general, and in Program Analysis, in particular. Most new program analysis techniques
formalize the desired analysis task in a fragment of FOL, and delegate the analysis to a SAT or an
SMT solver.

In this talk, we focus on a fragment of FOL called Constrained Horn Clauses (CHC) and the
CHC solver SPACER. CHCs arise in many applications of automated verification. They naturally
capture such problems as discovery and verification of inductive invariants; Model Checking of safety
properties of finite- and infinite-state systems; safety verification of push-down systems (and their
extensions); modular verification of distributed and parameterized systems; type inference, and
many others.

Using CHC separates the process of developing a proof methodology (also known as generation
of Verification Condition (VC)) from the algorithmic details of deciding whether the VC is correct.
Such a flexible design simplifies supporting multiple proof methodologies, multiple languages, and
multiple verification tasks with a single framework, without sacrificing performance and scalability.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Constrained Horn Clauses

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.1

Category Invited Talk

© Arie Gurfinkel;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arie.gurfinkel@uwaterloo.ca
https://ece.uwaterloo.ca/~agurfink
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.4230/LIPIcs.CONCUR.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Principles of Persistent Programming
Azalea Raad # Ñ

Imperial College London, UK

Abstract
Persistent programming is the art of developing programs that operate on persistent (non-volatile)
states that survive program termination, be it planned or abrupt (e.g. due to a power failure).
Persistent programming poses several important challenges: 1) persistent systems have complex –
and often unspecified – semantics in that operations do not generally persist in their execution order;
2) software bugs in persistent settings can lead to permanent data corruption; and 3) traditional
testing techniques are inapplicable in persistent settings. Can formal methods come to the rescue?

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases Persistent Programming

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.2

Category Invited Talk

Funding UKRI fellowship MR/V024299/1, EPSRC grant EP/X037029/1and VeTSS

© Azalea Raad;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azalea.raad@imperial.ac.uk
https://www.SoundAndComplete.org
https://doi.org/10.4230/LIPIcs.CONCUR.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Verifying Concurrent Search Structures
Thomas Wies #

New York University, New York, NY, US

Abstract
Search structures support the fundamental data storage primitives on key-value pairs: insert a
pair, delete by key, search by key, and update the value associated with a key. Concurrent search
structures are parallel algorithms to speed access to search structures on multicore and distributed
servers. For these data structures to be efficient, the underlying parallel algorithms need to perform
fine-grained synchronization between threads. This makes them notoriously difficult to design and
implement correctly. Indeed, bugs are routinely found both in actual implementations and in the
designs proposed by experts in peer-reviewed publications. Often, these bugs elude testing-based
quality control due to complex thread interactions that only manifest after deployment, and under
conditions that are difficult to replicate. Given the critical role that concurrent search structures
play in today’s software infrastructure, it is therefore highly desirable to verify their correctness
using formal methods, preferably in an automated fashion.

In this talk, I will present a framework for obtaining linearizability proofs for concurrent search
structures that are modular, reusable, and amenable to automation. The framework takes advantage
of recent advances in local reasoning techniques based on concurrent separation logic. I will provide
an overview of these techniques and discuss there use for verifying both lock-based and lock-free
concurrent search structures such as concurrent (skip)lists, hash structures, binary search trees,
B trees, and log-structured merge trees.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases Concurrent search structures

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.3

Category Invited Talk

Funding This work is funded in parts by the United States National Science Foundation under
grants CCF-2304758 and CCF-1815633. Further funding came from an Amazon Research Award
Fall 2021. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author and do not reflect the views of Amazon.

Acknowledgements This talk is based on joint work with many of my students and colleagues,
including Siddharth Krishna, Roland Meyer, Nisarg Patel, Dennis Shasha, Alexander Summers, and
Sebastian Wolff.

© Thomas Wies;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wies@cs.nyu.edu
https://orcid.org/0000-0003-4051-5968
https://doi.org/10.4230/LIPIcs.CONCUR.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Centralized vs Decentralized Monitors for
Hyperproperties
Luca Aceto #

Dept. of Computer Science, Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Antonis Achilleos #

Dept. of Computer Science, Reykjavik University, Iceland

Elli Anastasiadi #

Uppsala University, Sweden

Adrian Francalanza #

University of Malta, Malta

Daniele Gorla #

Dept. of Computer Science, “Sapienza” University of Rome, Italy

Jana Wagemaker #

Dept. of Computer Science, Reykjavik University, Iceland

Abstract
This paper focuses on the runtime verification of hyperproperties expressed in Hyper-recHML, an
expressive yet simple logic for describing properties of sets of traces. To this end, we consider a
simple language of monitors that observe sets of system executions and report verdicts w.r.t. a
given Hyper-recHML formula. We first employ a unique omniscient monitor that centrally observes
all system traces. Since centralised monitors are not ideal for distributed settings, we also provide
a language for decentralized monitors, where each trace has a dedicated monitor; these monitors
yield a unique verdict by communicating their observations to one another. For both the centralized
and the decentralized settings, we provide a synthesis procedure that, given a formula, yields a
monitor that is correct (i.e., sound and violation complete). A key step in proving the correctness of
the synthesis for decentralized monitors is a result showing that, for each formula, the synthesized
centralized monitor and its corresponding decentralized one are weakly bisimilar for a suitable notion
of weak bisimulation.

2012 ACM Subject Classification Theory of computation → Operational semantics; Theory of
computation → Modal and temporal logics; Theory of computation → Logic and verification

Keywords and phrases Runtime Verification, hyperlogics, decentralization

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.4

Related Version Full Version: https://arxiv.org/abs/2405.12882 [2]

Funding This work has been supported by the project “Mode(l)s of Verification and Monitorability”
(MoVeMent) (grant No 217987) of the Icelandic Research Fund.
Elli Anastasiadi: Elli Anastasiadi’s research has been supported by grant VR 2020-04430 of the
Swedish Research Council.

1 Introduction

Runtime verification (RV) [12] is a verification technique that observes system executions to
determine whether some given specification is satisfied or violated. This runtime analysis
is usually conducted by a computational entity called a monitor [33]. RV is a lightweight
verification technique that is carried out as the system under observation executes, thereby

© Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla, and
Jana Wagemaker;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 4; pp. 4:1–4:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0001-8554-6907
mailto:antonios@ru.is
https://orcid.org/0000-0002-1314-333X
mailto:elli.anastasiadi@it.uu.se
https://orcid.org/0000-0001-7526-9256
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:gorla@di.uniroma1.it
https://orcid.org/0000-0001-8859-9844
mailto:janaw@ru.is
https://orcid.org/0000-0002-8616-3905
https://doi.org/10.4230/LIPIcs.CONCUR.2024.4
https://arxiv.org/abs/2405.12882
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Centralized vs Decentralized Monitors for Hyperproperties

avoiding scalability issues caused by the state-explosion problem, as is the case for model
checking. Recently, RV has been extended to parallel set-ups [17, 24, 45], and a large body of
work in that setting aims to verify hyperproperties at runtime [1, 18,19,27,30].

Hyperproperties [27] are sets of hypertraces, i.e. sets of traces that may be seen as
describing different system executions or the contributions of different sequential processes
to a system execution. As argued in [22], many properties of concurrent and distributed
systems can be viewed as hyperproperties. When verifying hyperproperties at runtime,
several traces (i.e. several execution sequences) can be observed instead of just one, possibly
at the same time. Several extensions of temporal logics, such as HyperLTL, HyperCTL∗ [26],
Hyper2LTL [14], have been defined to express hyperproperties. Extensions of standard logics
to hyper properties also include variations of the µ-calculus, such as [1], setting the basis for
the logic used in this paper, and [36], which studies an asynchronous semantics.

Since they were proposed by Clarkson and Schneider in [27], hyperproperties have become
a fundamental, trace-based formalism for expressing security and privacy properties, verified
using static and dynamic techniques [10,14,15,18,22, 23,25,30] implemented in a variety of
tools [13,15,29]. There is a large body of work, such as [10,23,37], detailing several algorithms
for monitoring (fragments of) hyperlogics under different assumptions and providing several
correctness guarantees. However, these proposals either construct a centralized monitoring
algorithm that has access to all traces in the observed hypertrace, or verify single trace
properties, over a distributed set-up1. Having an omniscient monitor simplifies the runtime
analysis since the monitoring algorithm can compare all traces as needed by simply accessing
different parts of its local memory. But this power comes with drawbacks. For starters,
centralized monitors are unrealistic for distributed systems, where trace analysis is typically
localised to network nodes so as to minimize communication across locations. Moreover,
centralized monitors create single points of failure during verification [8]. Furthermore, it
can be problematic to store all the traces locally, especially in light of the wide availability of
multi-core systems. The goal of the decentralized monitor synthesis from logical specifications
presented in this paper is to permit distributed monitor choreographies with local trace views
whose components communicate in order to verify global properties (such as hyperproperties).
Decentralized monitors have been shown to avoid high contentions leading to vastly improved
scalability [8]. They also offer better privacy guarantees whenever they are stationed locally
at the nodes where the respective traces are generated [35,39]. To the best of our knowledge,
such a message-passing monitoring set-up has never been studied for the purpose of verifying
hyperproperties so far.

In this paper, we study procedures for the automated synthesis of centralized and de-
centralized monitors from hyperproperties described in the logic Hyper-recHML [1]. This
logic extends the linear-time [51] µ-calculus [40] (also known as Hennessy-Milner logic with
recursion [44]) with constructs to describe properties of hypertraces inspired by the work on
HyperLTL (namely variables ranging over traces, modal operators parametrized by trace
variables, matching/mismatching between trace variables, and existential and universal
quantification over them). Hyper-recHML can describe hyperproperties not expressible in
HyperLTL or HyperCTL*, such as properties that speak about consensus (see Example 2) and
periodicity (see Example 3). Furthermore, Hyper-recHML supports a general, syntax-driven
monitor synthesis that can handle both the aforementioned hyperproperties, at least in the
centralized case (see also the discussion in Section 5).

1 See e.g. [20, 21,31,35] for distributed monitoring algorithms for classic trace-based logics.

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:3

In both the centralized and decentralized set-ups, we work in the parallel model [30], where
a fixed number of system executions is processed in parallel by monitors in an online fashion.
We specify monitors using a process-algebraic formalism that builds on the one presented
in [5, 34] to define a class of monitors called regular. Such monitors are easy to describe,
resemble (alternating) automata, and have sufficient expressive power to provide standard
monitoring guarantees. Moreover, their algebraic structure supports the compositional
definition of their operational semantics and monitor synthesis procedures from formulas,
building on previous work relating algebraic process calculi with RV [6,9,16,32,33,38,42,43].

In the centralized case, for each formula in the fragment of Hyper-recHML limited to
greatest-fixed-point operators, our synthesis procedure yields a monolithic monitor that
has access to all the traces in an observed hypertrace. However, in order to synthesize
decentralized monitors for a sufficiently expressive fragment of the logic, it is necessary to
extend the monitor capabilities with communication, as shown already in [1]. For instance, to
monitor for the property “If there is a trace where event a occurs, then there exists another
trace where event b does not occur thereafter”, monitors observing different traces need to
communicate to record that event a occurred in some trace at some point and that there is
some trace where b does not occur from that point onwards. Allowing monitors to send and
receive messages significantly complicates their operational semantics (see Section 4), the
monitor synthesis procedure (see Section 4.2), and all consequent proofs. The operational
semantics for communicating monitors is one of the main contributions of the paper since its
design is crucial to obtain the correctness guarantees provided by the synthesis procedure
for decentralized monitors. In particular, the semantics of decentralized monitors and their
synthesis from formulas have to be designed carefully to ensure that monitors are reactive
(they are always ready to process any system event) and input-enabled (they can always
receive any input from other monitors in their environment), properties that are desirable in
any decentralized RV set-up.

We show that both the centralized and the decentralized monitor synthesis procedures are
correct. More precisely, the monitors synthesized from formulas are sound and violation-
complete, meaning that (1) if the monitor synthesized from a formula φ reports a positive
(resp., negative) verdict when observing a hypertrace T , then T does (resp., does not) satisfy
φ, and (2) if T does not satisfy φ, then its associated monitor will report a negative verdict
when observing T (see Theorems 7 and 8, and Corollaries 10 and 11). The proof of correctness
in the decentralized case is considerably more technical than the corresponding proof in the
centralized setting, due to the intricate communication semantics. To address the resulting
technical challenges, we develop a proof strategy where we prove the correctness of the
decentralized monitor synthesis procedure using the centralized one as a yardstick.

This methodology is one of the key contributions we offer in this study. More precisely,
in Section 4.1 we identify six properties of a decentralized monitor synthesis that make it
“principled” (see Definition 13) and we show that, when a decentralized monitor synthesis is
principled, the centralized and decentralized monitors synthesized from a formula are related
by a suitable notion of weak bisimulation (Theorem 14). Apart from supporting the definition
of decentralized monitor synthesis procedures, this result allows us to reduce the correctness
of our decentralized monitor synthesis to that of the centralized one, which can in turn drive
the definition of further synthesis procedures in future work. We also conjecture that our
methodology provides a path to proving similar results for other models of communicating
monitors independent of the monitoring strategy. In summary, our contributions are the
following:

CONCUR 2024

4:4 Centralized vs Decentralized Monitors for Hyperproperties

a framework for monitoring hyperproperties by a central monitor that has access to
all locations (Section 3) and a decentalized monitoring set-up for hyperproperties, with
monitors that communicate (Section 4);
a synthesis function that returns a correct centralized monitor for every formula without
least fixed points (Section 3);
a synthesis function that returns a correct (decentralized) choreography of communicating
monitors for every formula without least fixed points that has no location quantifier
within a fixed point operator (Section 4); and
a methodology to prove the correctness of a synthesis of communicating monitors, by
establishing a list of desirable properties and relating the behavior of the decentralized
monitors to that of the corresponding centralized monitor (Definition 13 and Theorem 14).

Omitted proofs, due to space constraints, can be found in [2].

2 The Model and the Logic

Let Act be a finite set of actions with at least two elements2, ranged over by a, b; the set
of (infinite) traces over Act is Trc = Actω, ranged over by t. Given a finite and non-empty
set of locations L ranged over by ℓ, a hypertrace T on L is a function from L to Trc; the
set of hypertraces on L is denoted by HTrcL. L and Act are fixed throughout this paper.
A hypertrace describes a (distributed) system with |L| users, and every user is located at
a unique location chosen from L. A system behavior is captured by a hypertrace T on L,
mapping every user to the trace they perform.

For t, t′ ∈ Trc, we write t a−→ t′ whenever t = at′. Let A : L → Act; for T, T ′ ∈ HTrcL, we
write T A−→ T ′ whenever T (ℓ) A(ℓ)−−−→ T ′(ℓ), for every ℓ ∈ L. Notice that, for each T , there is
a unique pair A and T ′ such that T A−→ T ′: more precisely, for every ℓ ∈ L, we have that
A(ℓ) = a and T ′(ℓ) = t′, whenever T (ℓ) = at′. We denote the A and T ′ just defined by hd(T)
and tl(T) respectively. For a partial function f : D ⇀ E (where D and E are sets ranged
over by d and e, respectively), we denote by dom(f) the set {d ∈ D | f(d) is defined} and by
rng(f) the set {e | ∃d ∈ dom(f). f(d) = e}. Notation f [d 7→ e] denotes the (partial) function
mapping d to e and behaving like f otherwise.

2.1 The Logic Hyper-recHML
We consider Hyper-recHML as the logic to specify hyperproperties. We assume two disjoint
and countably infinite sets Π and V of location variables and recursion variables, ranged over
by π and x, respectively. Formulas of Hyper-recHML are constructed as follows:

φ ::= tt | ff | φ∧φ | φ∨φ | max x.φ | min x.φ | x | ∃π.φ | ∀π.φ | π = π | π ̸= π | [aπ]φ | ⟨aπ⟩φ

Apart from the basic boolean constructs, we include the greatest and and least fixed-
point operators to describe unbounded and/or infinite behaviors in a finitary manner,3

existential/universal quantifiers and equality/inequality tests on location variables, and the
usual Hennessy-Milner modalities where [aπ] stands for “necessarily after a at the location
bound to π”, and ⟨aπ⟩ denotes “possibly after a at the location bound to π”. A formula
is said to be guarded if every recursion variable appears within the scope of a modality

2 When Act is a singleton, every property in the logic becomes equivalent to true or false.
3 In LTL, this behavior is captured by the ‘Until’ and ‘Release’ operators, but these are less expressive

than fixed-points; see [7].

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:5

Table 1 The semantics of Hyper-recHML.

JttKρ
σ = HTrcL JffKρ

σ = ∅ JxKρ
σ = ρ(x)

Jφ ∧ φ′Kρ
σ = JφKρ

σ ∩ Jφ′Kρ
σ Jφ ∨ φ′Kρ

σ = JφKρ
σ ∪ Jφ′Kρ

σ

Jmax x.ψKρ
σ =

⋃
{S | S ⊆ JψKρ[x 7→S]

σ } Jmin x.ψKρ
σ =

⋂
{S | S ⊇ JψKρ[x 7→S]

σ }

J∃π.φKρ
σ =

⋃
ℓ∈L

JφKρ
σ[π 7→ℓ] J∀π.φKρ

σ =
⋂
ℓ∈L

JφKρ
σ[π 7→ℓ]

Jπ = π′Kρ
σ =

{
HTrcL if σ(π) = σ(π′)
∅ otherwise

Jπ ̸= π′Kρ
σ =

{
HTrcL if σ(π) ̸= σ(π′)
∅ otherwise

J[aπ]φKρ
σ = {T | hd(T)(σ(π)) = a implies tl(T) ∈ JφKρ

σ}
J⟨aπ⟩φKρ

σ = {T | hd(T)(σ(π)) = a ∧ tl(T) ∈ JφKρ
σ)}

within its fixed-point binding. All formulas are assumed to be guarded (without loss of
expressiveness [41]). We write FVloc(φ) to denote the free location variables of φ, and
FVrec(φ) for the free recursion variables.

▶ Remark 1. We consider formulas where bound location variables are all pairwise distinct
(and different from the free variables); hence, the formula ∀π.[aπ]∃π.φ denotes the formula
∀π.[aπ]∃π′.(φ{π′

/π}), where φ{π′
/π} stands for the capture-avoiding substitution of π′ for π

in φ. A similar notation for other kinds of substitutions is used throughout the paper. ⌟

The semantics of a Hyper-recHML formula φ is defined over HTrcL by exploiting two
partial functions: ρ : V ⇀ 2HTrcL , which assigns a set of hypertraces on L to all free recursion
variables of φ, and σ : Π ⇀ L, which assigns a location to all free location variables of φ. In
what follows, we tacitly assume that the free recursion and location variables in a formula φ
are always included in dom(ρ) and dom(σ), respectively.

The semantics for formulas in Hyper-recHML is given through the function J−Kρ
σ as shown

in Table 1. A formula ⟨aπ⟩φ holds true at hypertrace T if the trace in T at the location
bound to π starts with an a and tl(T) satisfies φ; by contrast, a formula [aπ]φ can also hold
true if the trace in T at the location associated to π does not start with an a. Whenever φ
is closed (i.e., without any free variable), the semantics is given by JφK∅

∅, where ∅ denotes the
partial function with empty domain. Notationally, we shall simply write JφK instead of JφK∅

∅.
We say that T satisfies the closed formula φ if T ∈ JφK.

▶ Example 2. For example, consider the set of actions {a, b}; then, the hyperproperty

φa = ∀π.max x.
(
⟨bπ⟩x ∨ ∃π′.(π′ ̸= π ∧ ⟨aπ′⟩x)

)
(1)

is a consensus-type property stating that, at every position of every trace, whenever there is
an a there is another trace that also has a. Using the semantic definition of the logic, it is not
hard to see that the hypertrace T1 over the set of locations {ℓ1, ℓ2, ℓ3} that maps ℓ1 to aω,
ℓ2 to baω and ℓ3 to (ba)ω does not satisfy the property φa: what breaks the property is the
first position. On the other hand, the hypertrace T2 that maps ℓ1 to aω, ℓ2 to (ab)ω and ℓ3
to (ba)ω does satisfy φa because at each position there are two traces that exhibit an a. ⌟

CONCUR 2024

4:6 Centralized vs Decentralized Monitors for Hyperproperties

2.2 On the Expressiveness of Hyper-recHML
The logic Hyper-recHML adapts linear-time µHML [44] to express properties of hypertraces,
just as HyperLTL and HyperCTL* [26] are variations on LTL [47] and CTL* [28], respectively,
interpreted over hypertraces. It is well known that µHML is more expressive than LTL and
CTL* [52]. It is, therefore, natural to wonder whether Hyper-recHML can express properties
that cannot be described using HyperLTL and HyperCTL*.

We claim that the strictness of the inclusion of LTL in µHML is preserved for their
hyper-extensions. To justify our claim, we present two arguments to demonstrate that
Hyper-recHML is more expressive than HyperLTL, which rely on classic results on the
inexpressiveness of LTL, the embedding of LTL in µHML, and the ability of Hyper-recHML
to quantify over traces more liberally than HyperLTL.

First, we recall that Wolper showed in [52] that the property “event a occurs at all even
positions in a trace” cannot be expressed in LTL (see [52, Corollary 4.2] that is based on
Theorem 4.1 in that reference). We will refer to this property as φe, where “e” stands for
even, and adapt it to a hypertrace setting.

▶ Example 3. Let φhe
be the hyperproperty on the set of actions {a, b} that results from

adding an existential trace quantifier ∃π at the beginning of φe, and replacing all modalities
with π-indexed ones:

φhe
= ∃π.max x.

(
[aπ]⟨aπ⟩x ∧ [bπ]⟨aπ⟩x

)
(2)

This is a liveness property that describes the periodicity of events; when evaluated over
singleton hypertraces, it coincides with the evaluation of φe. ⌟

The hyperproperty φhe
defined above can be used to prove the following result.

▶ Proposition 4. Hyper-recHML is more expressive than HyperLTL.

The second witness to the fact that Hyper-recHML is more expressive than HyperLTL is
the possibility to use quantifiers in any part of a formula. For example, the hyperproperty
φa defined in (1) can potentially spawn an unbounded number of quantifiers, by unfolding
the recursion when encountering a events.

▶ Proposition 5. Hyper-recHML is more expressive than HyperCTL*.

We shall see later on that part of this additional expressiveness of Hyper-recHML is
present in the fragments for which we synthesize monitors.

3 Centralized Monitoring

The set of centralized monitors CMon is given by the following grammar:

CMon ∋ m ::= yes | no | end | aℓ.m | m+m | m⊕m | m⊗m | rec x.m | x

Notationally, we denote with ⊙ any of ⊗ and ⊕, and use v to range over the verdicts
{yes, no, end}. The operational semantics of centralized monitors is given in Table 2. Notice
that monitors that wait for an action at some location (as prescribed by writing aℓ) and do
not see that action therein (as stated by A) stop their monitoring activity, by reporting end.

Monitors can yield verdicts at any point of their computation. This is represented by
the judgement ⇛, whose intended use is to evaluate monitors and reach a verdict, whenever
possible. The rules are given in Table 3; as one may expect, verdict evaluation is non-
deterministic, due to the presence of +. Also notice that there can be multiple ways to infer

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:7

Table 2 The operational semantics for centralized monitors, where ⊙ ∈ {⊗, ⊕}.

v
A−→ v

A(ℓ) = a

aℓ.m
A−→ m

A(ℓ) ̸= a

aℓ.m
A−→ end

m{rec x.m/x} A−→ m′

rec x.m A−→ m′

m
A−→ m′

m+ n
A−→ m′

n
A−→ n′

m+ n
A−→ n′

m
A−→ m′ n

A−→ n′

m⊙ n
A−→ m′ ⊙ n′

Table 3 Verdict evaluation for centralized monitors (up to com-
mutativity of +, ⊗, and ⊕).

v ⇛ v

m⇛ end
n⇛ end

m ⊙ n⇛ end
m⇛ yes

m ⊕ n⇛ yes
m⇛ no

m ⊗ n⇛ no

m⇛ v

m + n⇛ v

m⇛ no
n⇛ v

m ⊕ n⇛ v

m⇛ yes
n⇛ v

m ⊗ n⇛ v

m{rec x.m/x}⇛ v

rec x.m⇛ v

Table 4 The instrumenta-
tion rules for centralized mon-
itors.

m
A−→ m′ T

A−→ T ′

m ▷ T ↣ m′ ▷ T ′

m⇛ v

m ▷ T ↣ v

the same verdict for the same monitor: e.g., for yes ⊕ no we can either use the third or the
(symmetric version of the) fourth rule from the first line of Table 3. However, the inferred
value is of course the same (i.e., yes, in the previous situation).

We instrument a monitor m on a hypertrace T based on the rules of Table 4. As usual,
we write ↣∗ for the reflexive-transitive closure of ↣.

From Formulas to Centralized Monitors

We derive monitors for the subset of formulas without least fixed-points, denoted with
Hyper-maxHML. More precisely, given a formula φ, we want to derive a monitor that, when
monitoring a hypertrace T , returns no if and only if T does not belong to the semantics of φ;
furthermore, if it returns yes, then T belongs to the semantics of φ. All regular properties of
infinite traces that can be monitored for violations with the aforementioned guarantees can
be expressed without using least fixed-point operators (see the maximality results presented
in [5, Proposition 4.18] and [7, Theorem 5.2] in the setting of logics interpreted over infinite
traces). Intuitively, we use least fixed-points to describe liveness properties, whose violation
does not have a finite witness in general.

The definition of the synthetized monitor is given by induction on φ. This definition is
parametrized by a partial function σ, assigning a location to all the free location variables
of φ; when φ is closed, we consider cm∅(φ). The formal definition is given in Table 5. The
interesting cases are for the quantifiers (that are treated as conjunctions and disjunctions,
respectively) and for the modal operators.

▶ Example 6. Let L = {1, 2} and Act = {a, b}, and consider the formula (2). The monitor
synthesis in Table 5 produces the following monitor m when applied to that formula:

m =
⊕

ℓ∈{1,2}

rec x.((aℓ.(aℓ.x+ bℓ.no) + bℓ.yes) ⊗ (bℓ.(aℓ.x+ bℓ.no) + aℓ.yes)).

CONCUR 2024

4:8 Centralized vs Decentralized Monitors for Hyperproperties

Table 5 Centralized monitor synthesis.

cmσ(tt) = yes cmσ(ff) = no cmσ(x) = x cmσ(max x.φ) = rec x.cmσ(φ)
cmσ(φ ∧ φ′) = cmσ(φ) ⊗ cmσ(φ′) cmσ(φ ∨ φ′) = cmσ(φ) ⊕ cmσ(φ′)
cmσ(∀π.φ) =

⊗
ℓ∈L cmσ[π 7→ℓ](φ) cmσ(∃π.φ) =

⊕
ℓ∈L cmσ[π 7→ℓ](φ)

cmσ(π = π′) =

{
yes if σ(π) = σ(π′)
no otherwise

cmσ(π ̸= π′) =

{
yes if σ(π) ̸= σ(π′)
no otherwise

cmσ([aπ]φ) = aσ(π).cmσ(φ) +
∑

b ̸=a
bσ(π).yes cmσ(⟨aπ⟩φ) = aσ(π).cmσ(φ) +

∑
b ̸=a

bσ(π).no

When monitor m is instrumented with the hypertrace T mapping location 1 to aω and
location 2 to (ab)ω, the verdict no cannot be reached: indeed, T satisfies the formula φ since
the trace at location 1 has a at all positions. On the other hand, when m is instrumented
with the hypertrace T ′ mapping location 1 to bω and location 2 to (ab)ω, the no verdict is
reached after the monitor has observed the first two actions at locations 1 and 2; this is in
line with the fact that T ′ does not satisfy φhe

. ⌟

The main results of this section are that the centralized monitors synthesized from formulas
report sound verdicts and their verdicts are complete for formula violations. We refer the
reader to [7] for a discussion on notions of correctness for monitors and the significance of
soundness and violation-completeness. The proofs can be found in [2].

▶ Theorem 7 (Soundness). Let φ ∈ Hyper-maxHML be a closed formula and T ∈ HTrcL. If
cm∅(φ) ▷ T ↣∗ no, then T ̸∈ JφK; if cm∅(φ) ▷ T ↣∗ yes, then T ∈ JφK.

▶ Theorem 8 (Violation Completeness). Let φ ∈ Hyper-maxHML be a closed formula and
T ∈ HTrcL. If T ̸∈ JφK, then cm∅(φ) ▷ T ↣∗ no.

4 Decentralized Monitoring

When verifying a distributed system, having a central authority that performs any type of
runtime verification is a strong assumption, as it reduces the appeal of distribution. Thus,
we study to what extent hyperproperties can be monitored by decentralized monitors.

We associate monitors to locations, denoted by ℓ, and monitors associated to ℓ monitor
only actions required to happen at ℓ, thus allowing the processing of events to happen locally.
This imposes some form of coordination between monitors at different locations. For this
reason, we introduce the possibility for monitors to communicate.

We define a communication alphabet Com, ranged over by c, over some finite alphabet of
communication constants Con (that contains Act), ranged over by γ, as

Com ∋ c ::= (!G, γ) | (?G, γ),

where G ⊆ L and γ ∈ Con. We have a communication action (!G, γ) for sending γ to group
G (multicast communication), and one (?G, γ) for receiving γ from any monitor from the set
G. Point-to-point communication can be represented by taking singleton sets for G.

The syntax of decentralized monitors is given by the following grammar:

DMon ∋ M ::= [m]ℓ | M ∨M | M ∧M

LMon ∋ m ::= yes | no | end | a.m | c.m | m+m | m⊕m | m⊗m | rec x.m | x

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:9

Table 6 The operational semantics for decentralized local monitors (up to commutativity of +,
⊗ and ⊕), where we let λ denote either a, (!G, γ) or (?ℓ, γ) for ℓ ∈ L, G ⊆ L.

a.m
a−→ m

ℓ ∈ G

(?G, γ).m (?ℓ,γ)−−−−→ m
(!G, γ).m (!G,γ)−−−−→ m v

a−→ v

m{rec x.m/x} λ−→ m′

rec x.m λ−→ m′

m
a−→ m′ n

a−→ n′

m⊙ n
a−→ m′ ⊙ n′

m
(?ℓ,γ)−−−−→ m′ n

(?ℓ,γ)−−−−→ n′

m⊙ n
(?ℓ,γ)−−−−→ m′ ⊙ n′

m
λ−→ m′

m+ n
λ−→ m′

m
(!G,γ)−−−−→ m′

m⊙ n
(!G,γ)−−−−→ m′ ⊙ n

m
(?ℓ,γ)−−−−→ m′ n ̸(?ℓ,γ)−−−−→

m⊙ n
(?ℓ,γ)−−−−→ m′ ⊙ n

Table 7 Operational semantics for communication
of M ∈ DMon (up to commutativity of ∧, ∨).

m
(!G,γ)−−−−→ m′

[m]ℓ
ℓ:(!G,γ)−−−−−→ [m′]ℓ

m
(?ℓ′,γ)−−−−→ m′ ℓ ∈ G

[m]ℓ
G : (?ℓ′, γ)
⇝ [m′]ℓ

m ̸(?ℓ′,γ)−−−−→

[m]ℓ
G : (?ℓ′, γ)
⇝ [m]ℓ

ℓ /∈ G

[m]ℓ
G : (?ℓ′, γ)
⇝ [m]ℓ

M
G : (?ℓ, γ)
⇝M ′ N

G : (?ℓ, γ)
⇝ N ′

M ⋄ N
G : (?ℓ, γ)
⇝M ′ ⋄ N ′

⋄ ∈ {∧, ∨}

M
ℓ:(!G,γ)−−−−−→ M ′ N

G : (?ℓ, γ)
⇝ N ′

M ⋄ N
ℓ:(!G,γ)−−−−−→ M ′ ⋄ N ′

⋄ ∈ {∧, ∨}

Table 8 Operational semantics for
actions of M ∈ DMon (up to commut-
ativity of ∧, ∨).

A(ℓ) = a m
a−→ m′

[m]ℓ
A−→ [m′]ℓ

A(ℓ) = a m ̸a−→ m ̸c−→

[m]ℓ
A−→ [end]ℓ

M
A−→ M ′ N

A−→ N ′

M ⋄ N
A−→ M ′ ⋄ N ′

⋄ ∈ {∧, ∨}

Monitor [m]ℓ denotes that m monitors the trace located at location ℓ, so, it is ‘localized’
at ℓ (this justifies the name LMon). Monitors assigned to the same trace run in parallel
and observe identical events; contrary to [1], monitors assigned to different traces are no
longer completely isolated from each other, but can now communicate, which is the main
new feature of the decentralized set-up.

The operational rules for m ∈ LMon are given in Table 6. Notice that, when we have
parallel monitors, only one of them at a time can send; by contrast, all those that can receive
from some location ℓ are forced to do so.

For M ∈ DMon, the operational semantics can be found in Table 7 (the rules concerning
communication) and Table 8 (the rules concerning action steps). The operational semantics
in Table 7 defines multicast, where a monitor located at ℓ sends a message to group G and
every monitor at a location in G that can receive from ℓ does so; every monitor that cannot,
or that is not in G, does not change its state. The first four rules capture the judgment for
inferring when all components of a monitor which are able to receive a certain γ sent from a
location do so. Intuitively, ℓ is the location from which message γ was sent to group G, and
M

G : (?ℓ, γ)
⇝ N indicates that every monitor in M located at a location in G that can receive

CONCUR 2024

4:10 Centralized vs Decentralized Monitors for Hyperproperties

Table 9 The verdict combination rules for
decentralized monitors (up to commutativity
of ∧ and ∨, ranged over by ⋄).

m⇛ v

[m]ℓ ⇛ v

M ⇛ end N ⇛ end
M ⋄ N ⇛ end

M ⇛ no
M ∧ N ⇛ no

M ⇛ yes N ⇛ v

M ∧ N ⇛ v

M ⇛ yes
M ∨ N ⇛ yes

M ⇛ no N ⇛ v

M ∨ N ⇛ v

Table 10 The evolution of a decentralized
monitor instrumented on a hypertrace.

M
A−→ M ′ T

A−→ T ′

M ▷ T ↣M ′ ▷ T ′

M
ℓ:(!G,γ)−−−−−→ M ′

M ▷ T ↣M ′ ▷ T

M ⇛ v

M ▷ T ↣ v

γ from ℓ indeed has received γ and transitioned appropriately in N . The last two rules then
actually define communication. In particular, the last rule in Table 7 implements multicast
by stipulating that the outcome of the synchronization between a send action ℓ : (!G, γ)
and a receive one of the form G : (?ℓ, γ) is the send action itself, which can be received by
other monitors at locations in G in a larger monitor of which M ⋄N is a sub-term. We note,
in passing, that monitors M ∈ DMon are “input-enabled”: for each M,G, ℓ and γ, there is
always some M ′ such that M G : (?ℓ, γ)

⇝ M ′. So the last rule in Table 7 (and its symmetric
version) can always be applied when the send transition in its premise is available.

Monitors can also locally observe an action, as prescribed by a location-to-action function
A; the rules are given in Table 8. Monitors at the same location observe the same action. If
a monitor cannot take the action prescribed by A at its location, the monitor becomes end,
as stipulated by the second rule given in Table 8. Note that it is not sufficient to trigger
that rule when m cannot exhibit action A(ℓ): we also require that m cannot communicate.
Note that the inability of m to exhibit action A(ℓ) is not sufficient to trigger that rule: we
also require that m cannot communicate. Intuitively, this is because monitors exhibit an
“alternating” behavior in which they observe the next action produced by a system hypertrace
and then embark in a sequence of communications with other monitors to inform them of
what they observed. As will be made clear in our definition of a weak bisimulation relation
presented in Definition 9, such communications are interpreted as internal actions in monitor
behavior. Therefore, the inability of some monitor [m]ℓ to perform action A(ℓ) can only be
gauged in “stable states” – that is, monitor states in which no communication is possible.
This design choice is akin to that underlying the definition of refusal testing presented in [46]
and of the stable-failures model for (Timed) CSP defined in [49,50], where the inability of
a process to perform some action can only be determined in states that afford no internal
computation steps.

Verdict evaluation for M ∈ DMon is defined in Table 9 and relies on that for m ∈ CMon
provided in Table 3. Finally, given a decentalized monitor M and a hypertrace T , the
instrumentation of the monitor on the trace is described by the rules of Table 10. As before,
we denote with ↣∗ the reflexive transitive closure of ↣.

4.1 Synthesizing Decentralized Monitors Correctly
In this section we describe how to synthesize decentralized monitors “correctly” from formulas,
i.e. such that their behavior corresponds to that of the corresponding centralized monitors.
The advantage of this approach is that it simplifies the proof that monitors synthesized via
a “correct” decentralized synthesis function are sound and violation-complete, by utilizing

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:11

the correspondence to centralized monitors. Moreover, it identifies desirable properties
of a “correct” decentralized synthesis function that can guide the development of further
automated decentralized-monitor synthesis algorithms.

We first define the correspondence between centralized and decentralized monitors and
show that this correspondence is sufficient to obtain soundness and violation-completeness in
the decentralized setting from the corresponding results in the centralized setting (Theorems 7
and 8). In the remainder of the section, given a synthesis function which takes as inputs
a formula φ and a mapping σ from location variables to locations, and outputs a monitor
Mσ(φ) ∈ DMon, we specify criteria that allow us to derive this correspondence.

We write M → M ′ to denote the existence of an integer h > 0 and of h monitors
M1, . . . ,Mh, locations ℓ1, . . . , ℓh−1 and communication actions c1, . . . , ch−1 such that M1 =
M , Mh = M ′, and Mi

ℓi:ci−−−→ Mi+1 (for every i = 1, . . . , h − 1). By definition of → on
communicating monitors, each ci is (!Gi, γi), for some Gi ⊆ L and γi ∈ Con. Similarly, at
the level of local monitors we write m → m′ to denote the existence of an integer h > 0, of
local monitors m1, . . . ,mh and of c1, · · · ch ∈ {(!G, γ), (?ℓ, γ) | G ⊆ L, ℓ ∈ L, γ ∈ Con} such
that m1 = m, mh = m′ and mi

ci−→ mi+1.
The correspondence between the centralized and the decentralized monitors is character-

ized as a weak bisimulation:

▶ Definition 9. A binary relation R over DMon × CMon is a weak bisimulation if and only
if, whenever MRm, it holds that:
1. ∃M ′ ∈ DMon such that M → M ′ and M ′ ⇛ v if and only if m⇛ v.
2. If M A−→ M ′ then ∃m′ ∈ CMon such that m A−→ m′ and M ′Rm′.
3. If M c−→ M ′ then M ′Rm, where c = ℓ : (!G, γ) for some ℓ ∈ L, G ⊆ L, γ ∈ Con.
4. If m A−→ m′ then there exist M1,M2,M

′ such that M → M1
A−→ M2 → M ′ and M ′Rm′.

One of the main features of weak bisimilarity is that, if Mσ(φ) and cmσ(φ) are weakly
bisimilar, then they report the same verdict when observing any hypetrace T ; thus, we obtain
violation-completeness and soundness for decentralized monitors from the corresponding
results for centralized monitors:

▶ Corollary 10 (Soundness). Let T ∈ HTrcL, φ ∈ Hyper-maxHML be a closed formula such
that M∅(φ) is defined, and R a weak bisimulation such that (M∅(φ),cm∅(φ)) ∈ R. If
M∅(φ) ▷ T ↣∗ no, then T ̸∈ JφK; if M∅(φ) ▷ T ↣∗ yes, then T ∈ JφK.

▶ Corollary 11 (Violation Completeness). Let T ∈ HTrcL, φ ∈ Hyper-maxHML be a closed
formula such that M∅(φ) is defined, and R a weak bisimulation such that (M∅(φ),cm∅(φ)) ∈
R. If T ̸∈ JφK, then M∅(φ) ▷ T ↣∗ no.

We now describe sufficient conditions for any decentralized synthesis function such
that there is a weak bisimulation between the centralized and the decentralized monitors
synthesized from a formula φ and a location environment σ. Whenever we write M c−→ N

for M,N ∈ DMon, we assume that c ∈ {ℓ : (!G, γ) | ℓ ∈ L, G ⊆ L, γ ∈ Con}, as per the
labeling of the communication transitions of decentralized monitors. We write [m]ℓ ∈ M , for
M ∈ DMon, if [m]ℓ is one of its constituents: formally, [m]ℓ ∈ [m]ℓ and, if [m]ℓ ∈ M , then
[m]ℓ ∈ M ⋄N and [m]ℓ ∈ N ⋄M (recall that ⋄ denotes either ∧ or ∨). We start by defining
when M ∈ DMon can(not) communicate:

▶ Definition 12. Let M ∈ DMon. We say M ∈ DMon can communicate, if there exists
[m]ℓ ∈ M such that m c−→ n for some c ∈ Com. Otherwise, we say M cannot communicate.

CONCUR 2024

4:12 Centralized vs Decentralized Monitors for Hyperproperties

▶ Definition 13. We say that a monitor synthesis M−(−) is principled when it satisfies the
following conditions, for every formula φ and environment σ such that Mσ(φ) is defined:
Verdict Agreement: for every verdict v, cmσ(φ)⇛ v if and only if Mσ(φ)⇛ v;
Verdict Irrevocability: for every verdict v and Mσ(φ) A−→ M1 → M2 → M , if M2 ⇛ v, then

M ⇛ v;
Reactivity: for every A, there exists M such that Mσ(φ) A−→ M ;
Bounded Communication: for every Mσ(φ) A−→ M → M ′, there exists M ′′ such that

M ′ → M ′′ and M ′′ cannot communicate;
Processing-Communication Alternation: for every Mσ(φ) A−→ M → M1,

1. Mσ(φ) cannot communicate, and
2. M1

c−→ M2 implies M1 ̸A−→ for every c and A;
Formula Convergence: if Mσ(φ) A−→ M → M ′, M ′ cannot communicate, and cmσ(φ) A−→

cmσ′(φ′) for some formula φ′ and environment σ′, then M ′ = Mσ′(φ′).

Let M−(−) be a decentralized synthesis function. We define relation RM as follows:

RM ≜ R1 ∪ R2

R1 ≜ {(Mσ(φ),cmσ(φ)) | FVloc(φ) ⊆ dom(σ)}

R2 ≜
{

(M ′,cmσ′(φ′)) | FVloc(φ) ⊆ dom(σ) and Mσ(φ) A−→ M → M ′ → Mσ′(φ′)
}

The crucial property of any principled synthesis function is the following:

▶ Theorem 14. For every principled synthesis M−(−), RM is a weak bisimulation.

4.2 From Formulas to Decentralized Monitors
We now describe how to synthesize decentralized monitors for a fragment of Hyper-maxHML,
and show that this synthesis function satisfies Definition 13. This allows us to apply
Theorem 14 and obtain soundness and violation-completeness of these synthesized monitors.

In what follows, we consider formulas from PHyper-recHML, the subset of Hyper-recHML
given by the following grammar (see Section 5 for a discussion on the choice of fragment):

φ ::= ∃π.φ | ∀π.φ | φ ∧ φ | φ ∨ φ | ψ

ψ ::= tt | ff | π = π | π ̸= π | ψ ∧ ψ | ψ ∨ ψ | max x.ψ | min x.ψ | x | [aπ]ψ | ⟨aπ⟩ψ

We denote the class of formulas of type ψ with Qf (quantifier free). PHyper-recHML is a
subset of Hyper-recHML and thus its semantics over HTrcL is the one given in Table 1.

We synthesize decentralized monitors for the fragment of PHyper-recHML only containing
formulas of type ψ without diamonds and least fixed-points, which we call PHyper-maxHML.
In section 4.3 we also discuss how diamonds can also be added to the picture. The synthesis
for decentralized monitors is given in Table 11. First, we derive a monitor belonging to LMon
for formulas of type ψ ∈ Qf; this synthesis function is parametrized by a location ℓ ∈ L and
a partial function σ from Π to L that is defined for every free location variable in ψ. Then
we derive monitors belonging to DMon for formulas of type φ.

Note that, in the definition of dMσ(ψ), cmσ(ψ) is the monitor resulting from the
centralized synthesis function defined in Table 5. Intuitively dMσ(ψ) synthesizes a local
monitor at each location relevant to ψ, which are the locations associated by σ to the free
location variables in ψ. If σ = ∅ (and so ψ does not have any free trace variables), there is
no need for communication between locations, and in fact a verdict can be obtained from ψ

immediately. This verdict coincides with the one reached in the centralized synthesis.

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:13

Table 11 Decentralized monitor synthesis, where ℓ0 is any fixed element of L.

dmℓ
σ(tt) = yes dmℓ

σ(ff) = no dmℓ
σ(x) = x dmℓ

σ(max x.ψ) = rec x.dmℓ
σ(ψ)

dmℓ
σ(ψ ∧ ψ′) = dmℓ

σ(ψ) ⊗ dmℓ
σ(ψ′) dmℓ

σ(ψ ∨ ψ′) = dmℓ
σ(ψ) ⊕ dmℓ

σ(ψ′)

dmℓ
σ([aπ]ψ) =

a.(!(rng(σ)\{ℓ}), a).dmℓ

σ(ψ) +
∑
b̸=a

b.(!(rng(σ)\{ℓ}), b).yes if σ(π) = ℓ

∑
b∈Act

b.
(

(?{σ(π)}, a).dmℓ
σ(ψ) +

∑
b̸=a

(?{σ(π)}, b).yes
)

otherwise

dmℓ
σ(π = π′) =

{
yes if σ(π) = σ(π′)
no otherwise

dmℓ
σ(π ̸= π′) =

{
yes if σ(π) ̸= σ(π′)
no otherwise

dMσ(ψ) =
{ ∨

ℓ∈rng(σ)[dmℓ
σ(ψ)]ℓ if σ ̸= ∅

[v]ℓ0 if σ = ∅ ∧ cmσ(ψ)⇛ v

dMσ(∀π.φ) =
∧

ℓ∈L dMσ[π 7→ℓ](φ) dMσ(∃π.φ) =
∨

ℓ∈L dMσ[π 7→ℓ](φ)
dMσ(φ ∧ φ′) = dMσ(φ) ∧ dMσ(φ′) dMσ(φ ∨ φ′) = dMσ(φ) ∨ dMσ(φ′)

We observe that the case for σ = ∅ and cmσ(ψ)⇛ v only applies when ψ is a Boolean
combination of tt and ff. Thus, every closed formula φ on which we apply our synthesis
1. is trivial, i.e. φ is logically equivalent to tt or ff, or
2. is such that every subformula ψ ∈ Qf of φ is in the scope of a quantifier.
For non-trivial formulas, the σ = ∅ case for dMσ(ψ) never applies, and we can ignore it. The
decentralized monitor for a closed formula φ is dM∅(φ).

▶ Remark 15. In the first clause of the definition of the synthesis function for box formulas,
it might seem superfluous to send a message also when the monitor observes some b ̸= a.
However, this is important to make sure monitors do not deadlock. To see this, consider a
synthesis where that definition instead looks like

dmℓ
σ([aπ]ψ) =

a.(!(rng(σ)\{ℓ}), a).dmℓ

σ(ψ) +
∑
b̸=a

b.yes if σ(π) = ℓ∑
b∈Act

b.(?{σ(π)}, a).dmℓ
σ(ψ) otherwise

Consider Act = {a, b}, L = {ℓ, ℓ′} and some hypertrace T such that T (ℓ) = b.t1 and
T (ℓ′) = b.t2 for some traces t1 and t2. Now consider m ⊗ n, where m = dmℓ

σ([aπ]ψ),
n = dmℓ

σ([aπ′]ψ′), σ(π) = ℓ and σ(π′) = ℓ′. For A(ℓ) = A(ℓ′) = b ≠ a, we then get
m

A(ℓ)−−−→ yes and n
A(ℓ′)−−−→ (?{σ(π′)}, a).dmℓ

σ(ψ′), and monitor yes ⊗ (?{σ(π′)}, a).dmℓ
σ(ψ′) is

stuck because the receive action of the monitor (?{σ(π′)}, a).dmℓ
σ(ψ′) has no matching send.

It is precisely to avoid these scenarios that we make sure that, for each sending transition,
there is a corresponding receiving transition, and a monitor always sends the last action it
read to all other locations in the range of the environment σ. ⌟

Soundness and violation completeness for the synthesis defined in Table 11 follow from
Corollary 10 and 11 by using Theorem 14, once we prove the following key result:

▶ Theorem 16. The synthesis function dM defined in Table 11 is principled.

CONCUR 2024

4:14 Centralized vs Decentralized Monitors for Hyperproperties

▶ Example 17. In order to highlight the inter-monitor communication, we consider the
following formula

φ = ∃π.∃π′.([aπ]ff ∧ [bπ′]ff)

over L = {1, 2} and Act = {a, b}, which states that either both traces start with a, or neither
does. By letting σ = [π 7→ ℓ, π′ 7→ ℓ′], the synthesis for this property gives:

dM∅(φ) =
∨

ℓ,ℓ′∈L

∨
ℓ′′∈{ℓ,ℓ′}

[
dmℓ′′

σ ([aπ]ff ∧ [bπ′]ff)
]

ℓ′′
,where

dmℓ′′

σ ([aπ]ff ∧ [bπ′]ff) =

(a.(!∅, a).no + b.(!∅, b).yes) ⊗ if ℓ = ℓ′ = ℓ′′

(b.(!∅, b).no + a.(!∅, a).yes)
(a.(!{ℓ′}, a).no + b.(!{ℓ′}, b).yes) ⊗ if ℓ ̸= ℓ′ and ℓ′′ = ℓ

(a.((?{ℓ′}, b).no + (?{ℓ′}, a).yes) +
b.((?{ℓ′}, b).no + (?{ℓ′}, a).yes))

(a.((?{ℓ}, a).no + (?{ℓ}, b).yes) + if ℓ ̸= ℓ′ and ℓ′′ = ℓ′

b.((?{ℓ}, a).no + (?{ℓ}, b).yes))
⊗ (b.(!{ℓ}, b).no + a.(!{ℓ}, a).yes)

⌟

4.3 On the Decentralized-Monitor Synthesis for Diamonds
The synthesis of decentralized monitors presented in Table 11 does not deal explicitly with
formulas of the form ⟨aπ⟩ψ. However, it can be applied to those formulas using the observation
that ⟨aπ⟩ψ is logically equivalent to

[aπ]ψ ∧
∧

b̸=a[bπ]ff. (3)

To showcase this, we present an example of the decentralized synthesis applied on Wolper’s
property (φhe) from Example 3, which makes use of diamond modalities.

▶ Example 18. Recall φhe
from (2); expressed here as ∃π.ψ, with

ψ = max x.(ψ1 ∧ ψ2) ψ1 = [aπ]⟨aπ⟩x ψ2 = [bπ]⟨aπ⟩x

Let L = {1, 2} and Act = {a, b}. The synthesis is applied thus:

dM∅(φ) =
∨

ℓ∈L

[
rec x.

(
mℓ

[π 7→ℓ](ψ1) ⊗mℓ
[π 7→ℓ](ψ2)

)]
ℓ

with

mℓ
[π 7→ℓ](ψ1) = a.(!∅, a).mℓ

[π 7→ℓ](⟨aπ⟩x) + b.(!∅, b).yes
mℓ

[π 7→ℓ](ψ2) = b.(!∅, b).mℓ
[π 7→ℓ](⟨aπ⟩x) + a.(!∅, a).yes

and

mℓ
[π 7→ℓ](⟨aπ⟩x) = (a.(!∅, a).x+ b.(!∅, b).yes) ⊗ (b.(!∅, b).no + a.(!∅, a).yes) (4)

As the monitors in Example 18 indicate, a decentralized monitor synthesis for formulas
of the form ⟨aπ⟩ψ that is based on the encoding of (3) leads to monitors with a high degree
of parallelism; for simplicity, the degree in Example 18 is reduced because we assumed

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:15

to have just two actions. However, |Act| − 1 parallel conjunctions are required in general.
Alternatively, one could define a decentralized monitor synthesis directly for formulas of the
form ⟨aπ⟩ψ as follows:

mℓ
σ(⟨aπ⟩ψ) =

a.(!(rng(σ)\{ℓ}), a).dmℓ

σ(ψ) +
∑
b̸=a

b.(!(rng(σ)\{ℓ}), b).no if σ(π) = ℓ

∑
b∈Act

b.
(

(?{σ(π)}, a).dmℓ
σ(ψ) +

∑
b̸=a

(?{σ(π)}, b).no
)

otherwise

This is essentially the synthesis for box formulas in Table 11 with no verdicts in place of yes.
With this explicit rule for diamonds, (4) simply reduces to:

mℓ
[π 7→ℓ](⟨aπ⟩x) = a.(!∅, a).x+ b.(!∅, b).no

The synthesized monitor for diamond now contains no occurrence of any parallel operator.

5 Conclusion

We provided two methods to synthesize monitors for hyperproperties expressed as fragments
of Hyper-recHML. Our first synthesis procedure constructs monitors that analyse hypertraces
in a centralized manner and are guaranteed to correctly detect all violations of the respective
formula, as long as it does not have a least fixed-point operator. Our second synthesis
algorithm constructs monitors that operate in a decentralized manner and communicate with
one another using multicast to share relevant information between them. The decentralized-
monitor synthesis provides the same correctness guarantees as the centralized one, but is only
defined for formulas with trace quantifiers that do not appear inside any fixed-point operator.
This additional restriction, which is natural and present in many monitoring set-ups for
hyperlogics, e.g. [10, 19, 23, 26, 30, 36], allows us to focus on examining the intricacies of
monitoring in a decentralized setting with monitor communication. More precisely, it allows
us to fix the σ in the synthesis function which, in turn, produces a static set of locations
with which a monitor can communicate. Despite the restriction to PHyper-recHML, our
synthesis algorithm still covers properties that were previously not even expressible, hence
not monitorable, in state-of-the-art hyperlogics.

Of course, the picture is still incomplete: we have a centralized-monitor synthesis procedure
for an expressive fragment of Hyper-recHML, whereas our decentralized-monitor synthesis
deals with a more restricted fragment of that logic. It is not clear if this restriction is
necessary; for example, a different decentralized-monitor synthesis for a larger fragment
might be obtained by utilizing a different communication paradigm other than multicast,
which was adopted in this study. In fact, we conjecture that broadcast communications
might allow us to synthesize decentralized monitors for a larger Hyper-recHML fragment,
including formulae that mix greatest fixed-points and quantifiers, like φa defined in (1);
currently, monitors only send messages to the locations in the range of the specified σ.
Another interesting direction is to allow monitors to infer information from communications
they did not receive. A good starting point to explore such a synthesis algorithm (and prove
its correctness) can be the synthesis properties in Definition 13. To fully delineate the power
of decentralized monitoring, a maximality result in the spirit of those presented in [5,7] is
needed, which we intend to establish in the future.

Although we have focused on monitors that detect violations, we can also synthesize
monitors that detect all satisfying hypertraces for the respective dual fragments of Hyper-
recHML. Another direction we intend to pursue in future is the development of tools for
monitoring Hyper-recHML specifications at runtime, based on the results of this article. We

CONCUR 2024

4:16 Centralized vs Decentralized Monitors for Hyperproperties

expect that our decentralised-monitor synthesis procedure can be implemented by generating
a dedicated monitor for every location in a way that is very similar to the synthesis of
µHML monitors presented in [3, 4, 11] and implemented in the tool detectEr available at
https://duncanatt.github.io/detecter/.

Related Work. To the best of our knowledge, Agrawal and Bonakdarpour were the first
to study RV for hyperproperties expressed in HyperLTL in [10], where they investigated
monitorability for k-safety hyperproperties expressed in HyperLTL. They also gave a semantic
characterization of monitorable k-safety hyperproperties, which is a natural extension to
hyperproperties of the “universal version” of the classic definition of monitorability presented
by Pnueli-Zaks [7,48]. In contrast to this work, we do not restrict ourselves to alternation-free
formulas (see Equation (1)) and every monitorable formula considered by Agrawal and
Bonakdarpour can be expressed in our monitorable fragment. Brett et al. [23] improve on
the work presented in [10] by presenting an algorithm for monitoring the full alternation-free
fragment of HyperLTL. They also highlight challenges that arise when monitoring arbitrary
HyperLTL formulas, namely (i) quantifier alternations, (ii) inter-trace dependencies and
(iii) relative ordering of events across traces. Our decentralized-monitor synthesis addresses
(i) by using the number of locations as an upper bound on the number of traces, and (ii)
and (iii) via synchronized multicasts.

In [30], Finkbeiner et al. investigate RV for HyperLTL [26] formulas w.r.t. three different
input classes, namely the bounded sequential, the unbounded sequential and the parallel
classes. They also develop the monitoring tool RVHyper [29] based on the sequential
algorithms developed for those input classes. The parallel class is closest to our set-up, since
it consists in a fixed number of system executions that are processed synchronously.

Beutner et al. [15] study runtime monitoring for Hyper2LTLfp, a temporal logic that is
interpreted over sets of finite traces of equal length. Unlike Hyper2LTL [14], Hyper2LTLfp
permits quantification under temporal operators, which is also allowed in our logic Hyper-
recHML. In contrast to HyperLTL, Hyper2LTLfp features second-order quantification over
sets of finite traces and can express properties like common knowledge.

In [36], Gustfeld et al. study automated analysis techniques for asynchronous hyper-
properties and propose a novel automata-theoretic framework, the so-called alternating
asynchronous parity automata, together with the fixed-point logic Hµ for expressing asyn-
chronous hyperproperties. The logic Hµ has commonalities with PHyper-recHML, but it
only allows for prenex formulas; moreover, its semantics progresses asynchronously on each
trace. Properties such as “an atomic proposition does not occur at a certain level in the tree
(of traces)” are not expressible in their logic Hµ, but can be described in Hyper-recHML.

Chalupa and Henzinger [25] explore the potential of monitoring for hyperproperties using
prefix transducers. They develop a transducer language, called prefix expressions, give it
an operational semantics over a hypertrace (reminiscent of the semantics in Section 4) and
then implement it to assess the induced overheads. They show how transducers can use
the writing capabilities as a method for monitor synchronization across traces, akin to the
monitor communication and verdict aggregation of Section 4. Since transducers are, in
principle, more powerful that passive monitors, additional guarantees are required to ensure
that they do not interfere unnecessarily with system executions.

References

1 Luca Aceto, Antonis Achilleos, Elli Anastasiadi, and Adrian Francalanza. Monitoring hy-
perproperties with circuits. In Mohammad Reza Mousavi and Anna Philippou, editors,
Formal Techniques for Distributed Objects, Components, and Systems – 42nd IFIP WG 6.1
International Conference, FORTE 2022, volume 13273 of LNCS, pages 1–10. Springer, 2022.
doi:10.1007/978-3-031-08679-3_1.

https://duncanatt.github.io/detecter/
https://doi.org/10.1007/978-3-031-08679-3_1

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:17

2 Luca Aceto, Antonis Achilleos, Elli Anastasiadi, Adrian Francalanza, Daniele Gorla, and Jana
Wagemaker. Centralized vs decentralized monitors for hyperproperties. CoRR, abs/2405.12882,
2024. doi:10.48550/arXiv.2405.12882.

3 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza, and
Anna Ingólfsdóttir. A monitoring tool for linear-time µhml. In COORDINATION, volume
13271 of LNCS, pages 200–219. Springer, 2022.

4 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza,
and Anna Ingólfsdóttir. A monitoring tool for linear-time µHML. Sci. Comput. Program.,
232:103031, 2024. doi:10.1016/j.scico.2023.103031.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. POPL, 3(52):1–29, 2019. doi:10.1145/3290365.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Testing equivalence vs. runtime monitoring. In Models, Languages, and Tools for Concurrent
and Distributed Programming, volume 11665 of LNCS, pages 28–44. Springer, 2019.

7 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An operational guide to monitorability with applications to regular properties. Softw. Syst.
Model., 20(2):335–361, 2021.

8 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. Runtime
Instrumentation for Reactive Components. In ECOOP, volume 313 of LIPIcs, pages 16:1–16:33.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.

9 Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On first-order runtime
enforcement of branching-time properties. Acta Informatica, 60(4):385–451, 2023.

10 Shreya Agrawal and Borzoo Bonakdarpour. Runtime Verification of k-Safety Hyperproperties
in HyperLTL. In IEEE 29th Computer Security Foundations Symposium, pages 239–252. IEEE
Computer Society, 2016.

11 Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir,
and Karoliina Lehtinen. Better late than never or: Verifying asynchronous components at
runtime. In FORTE, volume 12719 of LNCS, pages 207–225. Springer, 2021.

12 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification
– Introductory and Advanced Topics, volume 10457 of LNCS, pages 1–33. Springer, 2018.
doi:10.1007/978-3-319-75632-5_1.

13 Raven Beutner and Bernd Finkbeiner. Software verification of hyperproperties beyond k-
safety. In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification – 34th
International Conference, CAV 2022, volume 13371 of LNCS, pages 341–362. Springer, 2022.
doi:10.1007/978-3-031-13185-1_17.

14 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-order hyper-
properties. In CAV (2), volume 13965 of LNCS, pages 309–332. Springer, 2023.

15 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Monitoring second-
order hyperproperties. In Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and
Virginia Dignum, editors, Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2024, pages 180–188. ACM, 2024. URL: https:
//dl.acm.org/doi/10.5555/3635637.3662865.

16 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.

17 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-
contract for distributed multiparty interactions. In Paul Gastin and François Laroussinie,
editors, CONCUR 2010 – Concurrency Theory, pages 162–176, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

18 Borzoo Bonakdarpour and Bernd Finkbeiner. Runtime verification for HyperLTL. In Yliès
Falcone and César Sánchez, editors, Runtime Verification – 16th International Conference,
RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, volume 10012 of LNCS, pages
41–45. Springer, 2016. doi:10.1007/978-3-319-46982-9_4.

CONCUR 2024

https://doi.org/10.48550/arXiv.2405.12882
https://doi.org/10.1016/j.scico.2023.103031
https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-031-13185-1_17
https://dl.acm.org/doi/10.5555/3635637.3662865
https://dl.acm.org/doi/10.5555/3635637.3662865
https://doi.org/10.1007/978-3-319-46982-9_4

4:18 Centralized vs Decentralized Monitors for Hyperproperties

19 Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyperproperties.
In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018, pages 162–174. IEEE Computer Society, 2018. doi:10.1109/CSF.2018.00019.

20 Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and
Corentin Travers. Decentralized asynchronous crash-resilient runtime verification. J. ACM,
69(5):34:1–34:31, 2022. doi:10.1145/3550483.

21 Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Challenges
in fault-tolerant distributed runtime verification. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation: Discussion,
Dissemination, Applications – 7th International Symposium, ISoLA 2016,, volume 9953 of
LNCS, pages 363–370, 2016. doi:10.1007/978-3-319-47169-3_27.

22 Borzoo Bonakdarpour, César Sánchez, and Gerardo Schneider. Monitoring hyperproperties by
combining static analysis and runtime verification. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation. Verification –
8th International Symposium, ISoLA 2018, volume 11245 of LNCS, pages 8–27. Springer, 2018.
doi:10.1007/978-3-030-03421-4_2.

23 Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-based runtime verification
for alternation-free hyperltl. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 77–93, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

24 Ian Cassar, Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tuosto. Reliability
and fault-tolerance by choreographic design. In Adrian Francalanza and Gordon J. Pace,
editors, Proceedings Second International Workshop on Pre- and Post-Deployment Verification
Techniques, PrePost@iFM 2017, Torino, Italy, 19 September 2017, volume 254 of EPTCS,
pages 69–80, 2017. doi:10.4204/EPTCS.254.6.

25 Marek Chalupa and Thomas A. Henzinger. Monitoring hyperproperties with prefix transducers.
In RV, volume 14245 of LNCS, pages 168–190. Springer, 2023.

26 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust – Third International Conference, POST 2014,
volume 8414 of LNCS, pages 265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8_15.

27 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

28 E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/
4904.4999.

29 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. RVHyper: A
runtime verification tool for temporal hyperproperties. In TACAS (2), volume 10806 of LNCS,
pages 194–200. Springer, 2018.

30 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitor-
ing hyperproperties. Formal Methods Syst. Des., 54(3):336–363, 2019. doi:10.1007/
s10703-019-00334-z.

31 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. A lower bound on the number of
opinions needed for fault-tolerant decentralized run-time monitoring. J. Appl. Comput. Topol.,
4(1):141–179, 2020. doi:10.1007/s41468-019-00047-6.

32 Adrian Francalanza. Consistently-detecting monitors. In CONCUR, volume 85 of LIPIcs,
pages 8:1–8:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

33 Adrian Francalanza. A Theory of Monitors. Inf. Comput., 281:104704, 2021. doi:10.1016/j.
ic.2021.104704.

34 Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Des., 51(1):87–116, 2017. doi:10.1007/
S10703-017-0273-Z.

https://doi.org/10.1109/CSF.2018.00019
https://doi.org/10.1145/3550483
https://doi.org/10.1007/978-3-319-47169-3_27
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.4204/EPTCS.254.6
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s41468-019-00047-6
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1007/S10703-017-0273-Z
https://doi.org/10.1007/S10703-017-0273-Z

L. Aceto, A. Achilleos, E. Anastasiadi, A. Francalanza, D. Gorla, and J. Wagemaker 4:19

35 Adrian Francalanza, Andrew Gauci, and Gordon J. Pace. Distributed system contract
monitoring. J. Log. Algebraic Methods Program., 82(5-7):186–215, 2013.

36 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL), January 2021.
doi:10.1145/3434319.

37 Christopher Hahn, Marvin Stenger, and Leander Tentrup. Constraint-based monitoring of
hyperproperties. In Tomáš Vojnar and Lijun Zhang, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 115–131, Cham, 2019. Springer International
Publishing.

38 Jun Inoue and Yoriyuki Yamagata. Operational semantics of process monitors. In RV, volume
10548 of LNCS, pages 403–409. Springer, 2017.

39 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In POPL, pages 582–594. ACM, 2016.

40 Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983. doi:10.1016/0304-3975(82)90125-6.

41 Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. J. ACM, 47(2):312–360, 2000. doi:10.1145/333979.333987.

42 Ruggero Lanotte, Massimo Merro, and Andrei Munteanu. A process calculus approach to
detection and mitigation of PLC malware. Theor. Comput. Sci., 890:125–146, 2021.

43 Ruggero Lanotte, Massimo Merro, and Andrei Munteanu. Industrial control systems security
via runtime enforcement. ACM Trans. Priv. Secur., 26(1):4:1–4:41, 2023.

44 Kim G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72(2):265–288, 1990. doi:10.1016/0304-3975(90)90038-J.

45 Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible choreographies:
A monitors-as-memories approach. In Proceedings of the 19th International Symposium on
Principles and Practice of Declarative Programming, PPDP ’17, pages 127–138, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3131851.3131864.

46 Iain Phillips. Refusal testing. Theoretical Computer Science, 50:241–284, 1987. doi:10.1016/
0304-3975(87)90117-4.

47 Amir Pnueli. The temporal logic of programs. In FOCS’77, 18th IEEE Annual Symposium on
Foundations of Computer Science, Proceedings, pages 46–57. IEEE, 1977. doi:10.1109/SFCS.
1977.32.

48 Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via testers.
In FM, volume 4085 of LNCS, pages 573–586. Springer, 2006.

49 George M. Reed and A. W. Roscoe. The timed failures-stability model for CSP. heoretical
Computer Science, 211(1–2):85–127, 1999. doi:10.1016/S0304-3975(98)00214-X.

50 A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, USA, 1997.
51 Moshe Y. Vardi. A temporal fixpoint calculus. In Jeanne Ferrante and Peter Mager, editors,

Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 250–259. ACM Press, 1988. doi:10.1145/73560.73582.

52 Pierre Wolper. Temporal logic can be more expressive. Inf. Control., 56(1/2):72–99, 1983.
doi:10.1016/S0019-9958(83)80051-5.

CONCUR 2024

https://doi.org/10.1145/3434319
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1145/333979.333987
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.1145/3131851.3131864
https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1016/0304-3975(87)90117-4
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/S0304-3975(98)00214-X
https://doi.org/10.1145/73560.73582
https://doi.org/10.1016/S0019-9958(83)80051-5

MITL Model Checking via Generalized Timed
Automata and a New Liveness Algorithm
S. Akshay #

Department of CSE, Indian Institute of Technology Bombay, Mumbai, India

Paul Gastin #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

R. Govind #

Uppsala University, Sweden

B. Srivathsan #

Chennai Mathematical Institute, India
CNRS, ReLaX, IRL 2000, Siruseri, India

Abstract
The translation of Metric Interval Temporal Logic (MITL) to timed automata is a topic that
has been extensively studied. A key challenge here is the conversion of future modalities into
equivalent automata. Typical conversions equip the automata with a guess-and-check mechanism
to ascertain the truth of future modalities. Guess-and-check can be naturally implemented via
alternation. However, since timed automata tools do not handle alternation, existing methods
perform an additional step of converting the alternating timed automata into timed automata. This
“de-alternation” step proceeds by an intricate finite abstraction of the space of configurations of the
alternating automaton.

Recently, a model of generalized timed automata (GTA) has been proposed. The model comes
with several powerful additional features, and yet, the best known zone-based reachability algorithms
for timed automata have been extended to the GTA model, with the same complexity for all the
zone operations. An attractive feature of GTAs is the presence of future clocks which act like timers
that guess a time to an event and stay alive until a timeout. Future clocks seem to provide another
natural way to implement the guess-and-check: start the future clock with a guessed time to an
event and check its occurrence using a timeout. Indeed, using this feature, we provide a new concise
translation from MITL to GTA. In particular, for the timed until modality, our translation offers an
exponential improvement w.r.t. the state-of-the-art.

Thanks to this conversion, MITL model checking reduces to checking liveness for GTAs. However,
no liveness algorithm is known for GTAs. Due to the presence of future clocks, there is no finite
time-abstract bisimulation (region equivalence) for GTAs, whereas liveness algorithms for timed
automata crucially rely on the presence of the finite region equivalence. As our second contribution,
we provide a new zone-based algorithm for checking Büchi non-emptiness in GTAs, which circumvents
this fundamental challenge.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Quantitative automata; Theory of computation → Logic and verification

Keywords and phrases MITL model checking, timed automata, zones, liveness

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.5

Related Version Full Version: https://arxiv.org/abs/2407.08452 [2]

1 Introduction

The translation of Linear Temporal Logic (LTL) [32] to Büchi automata is a fundamental
problem in model checking, with a long history of theoretical advances [20, 36, 18], tool
implementations [25, 14, 18, 30, 12] and practical applications [33, 34, 26, 27]. In the real-time
setting, Metric Interval Temporal Logic (MITL) is close to LTL, with the modalities Next

© S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:govind.rajanbabu@it.uu.se
https://orcid.org/0000-0002-1634-5893
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.CONCUR.2024.5
https://arxiv.org/abs/2407.08452
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Generalized Timed Automata: Liveness and MITL Model Checking

(X) and Until (U) extended with timing intervals – for instance, X[a,b]p says that the next
event is a p and it occurs within a delay θ ∈ [a, b]. Model checking for MITL is known to be
EXPSPACE-complete [4]. This has led to the study of “efficient” conversions from MITL to
timed automata, with each new construction aiming to make the automata more succinct.
Our work is another step in this direction.

There are two ways to interpret MITL formulae: over (continuous) timed signals [4, 29, 15]
or (pointwise) timed words [6, 37, 11]. Since the current timed automata tools work with
timed words, we stick with the pointwise semantics. The state-of-the-art for MITL-to-
TA is based on an initial translation of MITL to one-clock Alternating Timed Automata
(OCATA) [31]. It has been shown that these OCATA can be converted to a network of timed
automata [9, 10]. The tool MightyL [11] implements the entire MITL-to-TA translation.
One of the difficulties in the MITL-to-TA translation is the inherent mismatch between the
logic and the automaton in the way timing constraints are enforced. A future modality
declares that a certain event takes place at a certain timing distance, in the future. In a timed
automaton, clocks measure time elapsed since some event in the past and check constraints
on these values. To implement a future modality, the automaton needs to make a prediction
about the event and verify that the prediction is indeed true. Therefore, each prediction
typically resets a clock and stores a new obligation in the state. The automaton needs to
discharge these obligations at the right times in the future.

X p ¬ X p

p | 1 ¬p | 0

p | 0

¬p | 1

X p ¬ X p

p | † ¬p | 0

p | 0

¬p | †

XI p

¬ X p

X p ∧ ¬ XI p

p π1 | 1

¬p | 0

p π2 | 0

p π1 | 0

¬p [x] | 1

p π2 | 0

¬p [x] | 0

p

π1

| 0

p

π2

| 1

Figure 1 (top left) Büchi transducer (with outputs) for LTL formula X p (right) Timed transducer
with clock x for MITL formula XI p; π1 := x ∈ I; [x], π2 := x /∈ I; [x] (bottom left) a hypothetical
transducer with a variable θ that predicts time to next action; † := θ ∈ I ? 1 : 0.

Figure 1 (top left) shows an automaton with outputs for the LTL formula X p. On an
infinite word w1w2 . . . (where each wi is a subset of atomic propositions) the automaton
outputs 1 at wi iff wi+1 contains p. While reading wi, the automaton needs to guess whether
p ∈ wi+1 or not. Depending on the guess, it stores an appropriate obligation. This is reflected
in the states and transitions: transitions with output 1 go to a state X p which can only read
p next, whereas those with output 0 go to ¬ X p which can only read ¬p. The X p and ¬ X p

can be seen as obligations that the automaton has to discharge from the state.
Now, let us consider a timed version XI p interpreted on timed words. An automaton

for XI p needs to guess whether the next letter is a p and if so, whether it appears within θ

time units for some θ ∈ I. Figure 1 (bottom left) represents a hypothetical automaton that
implements this idea: assuming it has access to a variable θ which contains the time to the
next event, the output should depend on whether θ ∈ I or not. This is exactly what the
if-then-else condition † does: if θ ∈ I output 1, else output 0. Classical timed automata do
not have direct access to θ. They implement this idea differently, by making use of extra

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:3

states. Figure 1 (right) shows a timed automaton for XI p. The state X p is split into two
different obligations: XI p where the timing constraint is satisfied, and X p ∧ ¬ XI p where it
is not. The outgoing guards discharge these obligations. This example shows the convenience
of having access to a variable that can predict time to future events.

This is precisely where the recently proposed model of Generalized Timed Automata
(GTA) [1] enters the picture. This model subsumes event-clock automata [5] and automata
with timers [13]. GTA come equipped with the additional resources to implement predictions
better. GTA have two types of clocks: history clocks and future clocks. History clocks are
similar to the usual clocks of timed automata. Future clocks are like timers, but instead of
starting them at some non-negative value and making them go down to zero, they get started
with some arbitrary negative value and go up until they hit zero. For example, in Figure 1
(bottom left), each transition can start a future clock, guessing the time to the next event.
This immediately gives us the required θ. The exact GTA for XI p is quite close to Figure 1
(bottom left) and is given in Figure 4. Apart from the use of future clocks, the syntax of
transitions in a GTA is much richer than a guard-reset pair as in timed automata. Transitions
contain an “instantaneous timed program”, which consists of a sequence of guards, resets
and releases (for future clocks). When difference constraints are present, the model becomes
powerful enough to encode counter machines and is therefore undecidable. A safe fragment,
with a careful use of diagonal constraints is known to be decidable.

GTAs are advantageous in another sense. In spite of the powerful features, the best
zone-based algorithms from the timed automata literature have been shown to suitably
adapt to the GTA setting, with the same complexity for zone operations, and have been
implemented in the tool TChecker [21]. Therefore, an MITL to GTA conversion allows us to
capitalize on the features and succinct syntax of GTA, and at the same time, lets us model
check MITL directly on richer GTA models. In summary:

We provide a translation of MITL formulae to safe GTA. The translation is compositional
and implementable, and yields an exponential improvement in the number of locations
compared to the state-of-the-art technique for pointwise semantics [11], while the number
of clocks remains the same up to a constant.
Model checking MITL against GTA requires to solve the liveness problem for (safe) GTAs,
which has been open so far. We settle the liveness question in this work. Zone based
algorithms for event-clock automata have been studied in [19]. A notion of weak regions
has been developed and this can be used for solving both reachability and liveness using
zones. The GTA model that we consider in this paper strictly subsumes event-clock
automata. In particular, the presence of diagonal constraints makes the problem more
challenging. Our solution to liveness for GTAs therefore gives an alternate liveness
procedure for event-clock automata, and also settles liveness for event-clock automata
with diagonal constraints, a model defined in [8].

We remark that the techniques used in continuous semantics do not extend to pointwise
semantics. In [15] the authors simplify general MITL formulae into formulae containing
only one-sided intervals (of the form [0, c] or [c, ∞)), for which automata are considerably
simpler to construct. However, this simplification at the formula level works only in the
continuous semantics – it does not work in the pointwise-semantics (as Lemma 4.3, 4.4 of [15]
do not extend to pointwise-semantics). The fundamental difference is that in the continuous
semantics we can assert a formula at any time point t. However, in pointwise-semantics,
we can evaluate a formula only at action points, i.e., points where there is an actual action.
For example, in continuous semantics one can rewrite F[a+c,b+c] p as F[0,c] G[0,c] F[a,b] p when
c ≤ b − a (Lemma 4.3, [15]). However, in the pointwise semantics there may be no event in
the interval [0, c] on which we can evaluate G[0,c] F[a,b] p. Therefore, we need a completely
different approach to deal with intervals in the pointwise semantics.

CONCUR 2024

5:4 Generalized Timed Automata: Liveness and MITL Model Checking

Organization of the paper. We start with preliminary definitions of Generalized Timed
Automata (Section 2) and provide our solution to the liveness problem in Section 3. We
present our MITL to GTA translation in Section 4. Missing proofs and additional explanations
can be found in the full version available at [2].

2 Preliminaries

Let X = XF ⊎ XH be a set of real-valued variables called clocks, which is further partitioned
into future clocks XF and history clocks XH . Let Φ(X) denote a set of clock constraints
generated by the grammar: φ ::= x − y ◁ c | φ ∧ φ where x, y ∈ X ∪ {0}, ◁ ∈ {<, ≤} and
c ∈ Z = Z ∪ {−∞, +∞} (the set of integers equipped with the two special values to say
that a clock is “undefined”). We also allow renamings of clocks. Let permX be the set of
permutations σ over X ∪ {0} mapping history (resp. future) clocks to history (resp. future)
clocks (σ(XF) = XF and σ(XH) = XH).

GTA syntax. A Generalized Timed Automaton (GTA) is given by (Q, Σ, X, ∆, I, Qf) where
Q is a finite set of states, Σ is a finite alphabet of actions, X = XF ⊎ XH is a set of clocks
partitioned into future clocks XF and history clocks XH . The initialization condition I is
a set of pairs (q0, g0) where a pair consists of an initial state q0 ∈ Q and an initial guard
g0 ∈ Φ(X), and the accepting condition is given by a set Qf ⊆ Q of Büchi states. The
transition relation ∆ ⊆ (Q×Σ×Programs×Q) contains transitions of the form (q, a, prog, q′),
where q is the source state, q′ is the target state, a is the action triggering the transition,
and prog is an instantaneous timed program generated by the grammar:

prog := guard | change | rename | prog; prog

where guard = g ∈ Φ(X), change = [R] for an R ⊆ X, and rename = [σ] for a σ ∈ permX .
Figure 4 with the blue parts removed illustrates a GTA. Both states ℓ1 and ℓ2 are initial,

denoted by incoming arrows to each of them, and accepting, marked by the double circle.
The initial guard is the trivial true constraint. The alphabet Σ = {0, 1} (written in black).
The constraint −x ∈ I is short form for a conjunction of constraints requiring the clock to be
in the interval I. For example, if I = (4, 5], then −x ∈ I is the constraint 4 < −x ∧ −x ≤ 5.
During our MITL to GTA translation, we extend GTAs to include outputs (a formal definition
is given in [2]). The dagger condition (−x ∈ I) ? 1 : 0 is a short form for two transitions, one
which checks −x ∈ I and outputs 1, and the other which checks −x /∈ I and outputs 0.

GTA semantics. A valuation of clocks is a function v : X ∪{0} 7→ R = R∪{−∞, +∞} which
maps the special clock 0 to 0, history clocks to R≥0 ∪{+∞} and future clocks to R≤0 ∪{−∞}.
We denote by V(X) or simply by V the set of valuations over X. For a valuation v ∈ V,
define1 v |= y − x ◁ c as v(y) − v(x) ◁ c. We say that v satisfies a constraint φ, denoted as
v |= φ, when v satisfies all the atomic constraints in φ. We denote by v + δ the valuation
obtained from valuation v by increasing by δ ∈ R≥0 the value of all clocks in X. Note that,
from a given valuation, not all time elapses result in valuations since future clocks need to
stay at most 0. We now define the change operation that combines the reset operation for
history clocks (which sets history clocks to 0) and release operation for future clocks (which

1 To allow evaluation of all the constraints in Φ(X), the addition and the unary minus operation on real
numbers is extended [1] with the following conventions (i)(+∞) + α = α + (+∞) = +∞ for all α ∈ R,
(ii) (−∞) + β = β + (−∞) = −∞, as long as β ̸= +∞, and (iii) −(+∞) = −∞ and −(−∞) = +∞.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:5

assigns a non-deterministic value to a future clock). Given a set of clocks R ⊆ X, we define
RF = R ∩ XF as the set of future clocks in R, and RH = R ∩ XH as the set of history clocks
in R. Then, [R]v := {v′ ∈ V | v′(x) = 0 ∀ x ∈ RH and v′(x) = v(x) ∀ x ̸∈ R}. Observe that
v′ has no constraints for the future clocks in R, as they can take any arbitrary value in v′.
For a valuation v ∈ V(X), and σ ∈ permX , we define [σ]v as v ◦ σ, i.e., ([σ]v)(x) = v(σ(x))
for all x ∈ X ∪ {0}.

For valuations v, v′ and a guard g ∈ Φ(X) we write v
g−→ v′ when v′ = v |= g, and

v
[R]−−→ v′ when R ⊆ X and v′ ∈ [R]v, and v

[σ]−−→ v′ when σ ∈ permX and v′ = [σ]v. When
prog = prog1; . . . ; progn, we write v

prog−−→ v′ when there are valuations v1, . . . , vn such that
v

prog1−−−→ v1
prog2−−−→ · · · progn−−−→ vn = v′. The semantics of the GTA A defined above is given by a

transition system TST whose states are configurations (q, v) of A, where q ∈ Q and v ∈ V is
a valuation. A configuration (q, v) is initial if v |= g for some (q, g) ∈ I, and it is accepting
if q ∈ Qf . Transitions of TST are of two forms: (1) delay transition: (q, v) δ−→ (q, v + δ) if
v + δ is a valuation, i.e., (v + δ) |= XF ≤ 0, and (2) discrete transition: (q, v) t−→ (q′, v′)
if t = (q, a, prog, q′) ∈ ∆ and v

prog−−→ v′. A finite (respectively infinite) run ρ of a GTA is
a finite (respectively infinite) sequence of transitions from an initial configuration of TSA:
(q0, v0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · .

For example, consider the run of GTA in Figure 4 on a timed word (1, 1)(0, 2)(1, 3)(0, 4) . . .

(1 occurs at all odd numbers, and 0 at all even numbers, starting from first timestamp 1).
The program (x = 0); [x] used in the transitions first checks if x is 0, and then releases it
to an arbitrary non-deterministic value. The run on the above word would be: (ℓ1, x =
−1) 1,t1−−→ (ℓ2, x = −1) 1,t2−−→ (ℓ1, x = −1) · · · . A transition δ,t−→ denotes a time elapse of δ

followed by application of the program associated to transition t. At each point the value of
x is released to −1, and is checked with the guard x = 0 at the next event.

An infinite run is accepting if it visits accepting configurations infinitely often. The
run is said to be Zeno if Σi≥0δi is bounded and non-Zeno otherwise. In this work, we
will be interested in strongly non-Zeno GTA: these are GTA where every accepting run
is non-Zeno. It is possible to convert every GTA into a strongly non-Zeno GTA using a
standard construction from timed automata literature [35]. In the rest of the document, we
will drop the “strongly non-Zeno” prefix and simply say GTA.

Liveness problem. The non-emptiness or liveness problem for a GTA asks whether the given
GTA has an accepting non-Zeno run. Due to our assumption about strong non-Zenoness,
the question reduces to asking if a given GTA has an accepting run. Unfortunately, the
non-emptiness problem even for finite words turns out to be undecidable for general GTA [1].
Therefore, we focus our attention on a restricted sub-class of GTA’s for which non-emptiness
in the finite words case is decidable, called safe GTA [1].

▶ Definition 1 (Safe GTA [1]). Given a GTA A, let XD ⊆ XF be the subset of future clocks
used in diagonal guards of A between future clocks, i.e., if x − y ◁ c with x, y ∈ XF occurs
in some guard of A then x, y ∈ XD. Then, a program prog is XD-safe if clocks in XD are
checked for being 0 or −∞ before being released and renamings [σ] used in prog preserve XD

clocks (σ(XD) = XD). A GTA A is safe if it only uses XD-safe programs on its transitions
and the initial guard g0 sets each history clock to either 0 or ∞.

The GTA in Figure 4 is vacuously safe, since there are no diagonal constraints at all.

▶ Remark 2. Renaming operations may be considered as syntactic sugar allowing for more
concise representations of GTAs. Indeed, we can transform a GTA A with renamings to
an equivalent GTA A′ without renamings by adding to the state the current permutation

CONCUR 2024

5:6 Generalized Timed Automata: Liveness and MITL Model Checking

of clocks (composition of the permutations applied since the initial state) and change the
programs of outgoing transitions accordingly. The number of states is multiplied by the
number of permutations that may occur as described above.

Zones, zone graph and simulations. Reachability for GTA proceeds by an enumeration of
its reachable configurations stored as constraint systems called zones. A zone over a set of
variables X ∪ {0} is a conjunction of difference constraints x − y ◁ c where x, y ∈ X ∪ {0},
◁ ∈ {<, ≤} and c ∈ Z. For a zone Z and a valuation v, we write v ∈ Z if the valuation v

satisfies every constraint in Z. Therefore, we also interpret Z as a set of valuations, which
satisfy its constraints.

A pair (q, Z) with q a control state and Z a zone represents {(q, v) | v ∈ Z}. Successors for
(q, Z) can be defined based on the outgoing transitions of q. For a transition t := (q, a, prog, q′),
we write (q, Z) t−→ (q′, Zt) if Zt = {v′ | v′ is a valuation and (q, v) t−→ δ−→ (q′, v′) for some v ∈
Z and δ ∈ R≥0}. It was shown in [1] that the successor Zt is also a zone. This observation
is used to define the notion of the Zone graph of a GTA.

▶ Definition 3 (GTA zone graph [1]). Given a GTA A, its GTA zone graph, denoted
GZG(A), is defined as follows: Nodes are of the form (q, Z) where q is a state and Z is a
GTA zone. Initial nodes are pairs (q0,

−→
Z0) where (q0, g0) ∈ I is an initial condition and Z0 is

given by g0 ∧
(
XF ≤ 0

)
∧

(
XH ≥ 0

)
(Z0 is the set of all valuations which satisfy the initial

constraint g0). For every node (q, Z) and every transition t := (q, a, prog, q′) there is an edge
(q, Z) t−→ (q′, Zt) in the GTA zone graph.

Finally, just as is the case for zone graphs for timed automata, GZG(A) is not guaranteed
to be finite. In order to use it to check Büchi non-emptiness or reachability, we need a finite
abstraction of the zone graph. The standard technique to obtain such finite abstractions is
using the notion of simulations, that we recall next.

▶ Definition 4 (Simulation). A (time-abstract) simulation relation on the semantics of a
GTA is a reflexive, transitive relation (q, v) ⪯ (q, v′) relating configurations with the same
control state and
1. for every δ ∈ R≥0 such that v + δ ∈ V is a valuation, there exists δ′ ∈ R≥0 such that

v′ + δ′ ∈ V is a valuation and (q, v + δ) ⪯ (q, v′ + δ′),
2. for every transition t, if (q, v) t−→ (q1, v1) for some valuation v1, then (q, v′) t−→ (q1, v′

1) for
some valuation v′

1 with (q1, v1) ⪯ (q1, v′
1),

3. for all future clocks x ∈ XF , if v(x) = −∞ then v′(x) = −∞.
For two GTA zones Z, Z ′, we say (q, Z) ⪯ (q, Z ′) if for every v ∈ Z there exists v′ ∈ Z ′ such
that (q, v) ⪯ (q, v′).

3 Liveness for GTA

In this section, we will discuss a zone-based procedure to check liveness for safe generalized
timed automata. We start by explaining how the standard zone based algorithm for solving
liveness in classical timed automata can be adapted to the setting of safe GTAs. The approach
for timed automata crucially depends on the existence of a finite time-abstract bisimulation
between valuations, namely the region-equivalence [3]. However, there exists no such finite
time-abstract bisimulation for GTAs (extension of a result of [19]), as illustrated in Figure 2.
The issue is that we cannot forget (abstract) the values of future clocks, unlike history clocks
where values above a maximum constant are equivalent. Therefore, our approach involves a
significant deviation from the standard one.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:7

ℓ0 ℓ1 ℓ2

b y = 1; [y]

a [x, y] c x = 0; y = 0

Figure 2 Example to illustrate no finite bisimulation in GTA; x is a future clock, y a history clock.
The initial transition releases clock x to an arbitrary value, and resets y to 0. From configuration
⟨ℓ1, x = −n, y = 0⟩ (n ∈ N), the only way to reach ℓ2 is by executing bnc, with 1 time unit between
consecutive b’s. Therefore, ⟨ℓ1, x = −n, y = 0⟩ and ⟨ℓ1, x = −m, y = 0⟩ are simulation incomparable,
when n ̸= m. Hence there is no finite bisimulation.

We fix a safe GTA A for the rest of this section. We recall that our GTA are strongly
non-Zeno, that is, every accepting run is non-Zeno. In order to focus on the main difficulties
and avoid additional technicalities, we assume that the GTA A is without renamings. We
start by noting that non-Zeno runs have a special form: future clocks which are not ultimately
−∞ should be released infinitely often. If not, there is a last point where a future clock is
released to a finite value, and the entire suffix of the run should fall under this finite time,
which contradicts non-Zenoness.

▶ Lemma 5. Let ρ := (q0, v0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · be a non-Zeno run of the GTA A.
Then, for every future clock x of A, and for every index i ≥ 0, if vi(x) ̸= −∞, there exists
j ≥ i such that x is released in tj.

Overview of our solution. In classical timed automata, the liveness problem is solved by
enumerating the zone graph, and using a simulation equivalence [23, 7, 16, 17] for termination:
exploration from (q, Z) is stopped if there exists an already visited node (q, Z ′) such that
(q, Z) ⪯ (q, Z ′) and (q, Z ′) ⪯ (q, Z) for some simulation relation ⪯. In this case a special
edge is added between (q, Z) and (q, Z ′) to indicate a simulation equivalence. There is an
(infinite) accepting run iff there is a cycle in the zone graph thus computed, containing an
accepting state. The main point is that, from a cycle in the zone graph with simulation
equivalences, we can conclude the existence of an infinite run over configurations.

At a high level the proof of this fact is as follows. Let us start by ignoring simulations
for the moment: suppose (q, Z) σ−→ (q, Z) for a sequence of transitions σ. By definition of
successor computation in the zone graph, for every v in the zone Z (on the right), there
exists a predecessor u in the zone Z (on the left). Repeatedly applying this argument gives
a valuation u ∈ Z from which σ can be iterated ℓ times, for any ℓ ≥ 1. When ℓ is greater
than the number of Alur-Dill regions [3], we get a run (q, u) σℓ

−→ (q, u′) such that u and
u′ are region equivalent. Since the region equivalence is a time-abstract bisimulation, this
shows that we can once again do σℓ from (q, u′), and so on. This leads to an infinite run
from (q, u) where σ can be iterated infinitely often. Now, when simulations are involved,
we need to consider sequences of the form (q, Z) σ−→ (q, Z ′) where (q, Z) ⪯ (q, Z ′) and
(q, Z ′) ⪯ (q, Z). An argument similar to the above can be adapted in this case too [28, 24, 22].
The critical underlying reason that makes such an argument possible is the presence of a finite
time-abstract bisimulation, which in timed automata, is given by the region equivalence.

The same idea cannot be directly applied in the GTA setting, as there is no finite time-
abstract bisimulation for GTAs, even with the safety assumption (Figure 2). However, [1]
have defined a finite equivalence v1 ∼M v2 and shown that the downward closures of the
reachable zones w.r.t. a certain simulation called the G simulation [16, 17] are unions of ∼M

equivalence classes. Therefore, applying an argument of the above style will give us a run
(q, u) σℓ

−→ (q, u′) such that u ∼M u′. But we cannot conclude an infinite run immediately as
∼M is not a bisimulation.

CONCUR 2024

5:8 Generalized Timed Automata: Liveness and MITL Model Checking

To circumvent this problem, we will define an equivalence ≈M which is in spirit like the
region equivalence in timed automata. As expected, ≈M will be a bisimulation. However, in
accordance with the no finite timed-bisimulation result, ≈M will have an infinite index. We
make a key observation: if we have a run (q, u) σ−→ (q, u′) such that u ∼M u′ and if σ releases
every future clock, then we can get a run (q, u) σ−→ (q, u′′) where u ≈M u′′ for a suitably
modified valuation u′′. Since ≈M is a bisimulation, this will then give an infinite run where
σ can be iterated infinitely often. As we have seen from Lemma 5, if we are interested in
non-Zeno runs, only such cycles where all future clocks are released (or remain −∞) are
relevant. Therefore, in order to decide liveness for safe GTAs, it suffices to construct the zone
graph with the simulation equivalence edges and look for a reachable cycle that contains
an accepting state such that for every future clock x, either x is released on the cycle, or
valuation −∞ is possible for clock x.

This section is organized as follows: we will first define the equivalence ≈M and show
that it is a bisimulation; then we recall ∼M , and prove the key observation mentioned above.
One of the main challenges is in addressing diagonal constraints, which is exactly where the
safety assumption is helpful.

A region-like equivalence for GTA. The definition of ≈M looks like the classical region
equivalence extended from [0, +∞) to R: all clocks which are lesser than M (which auto-
matically includes all future clocks) have the same integral values, and the ordering of
fractional parts among these clocks is preserved. To account for diagonal constraints in
guards, we explicitly add a condition to say that all allowed diagonal constraints are satisfied
by equivalent valuations. This new equivalence does not have a finite index, but it turns out
to be a time-abstract bisimulation, similar to the classical regions.

▶ Definition 6. Let v1, v2 ∈ V be valuations. We say v1 ≈M v2 if for all clocks x, y:
1. v1(x) ◁ c iff v2(x) ◁ c for all ◁ ∈ {<, ≤} and c ∈ {−∞, +∞} or c ∈ Z with c ≤ M ,
2. v1 |= x − y ◁ c iff v2 |= x − y ◁ c for all ◁ ∈ {<, ≤} and c ∈ {−∞, +∞} or c ∈ Z with

|c| ≤ M ,
3. if −∞ < v1(x), v1(y) ≤ M then we have {v1(x)} ≤ {v1(y)} iff {v2(x)} ≤ {v2(y)}.

Notice that when v1 ≈M v2, the first condition implies v1(x) = +∞ iff v2(x) = +∞,
v1(x) = −∞ iff v2(x) = −∞, −∞ < v1(x) ≤ M iff −∞ < v2(x) ≤ M , and in this case
⌊v1(x)⌋ = ⌊v2(x)⌋ and {v1(x)} = 0 iff {v2(x)} = 0.

▶ Lemma 7. ≈M is a time-abstract bisimulation.

The equivalence ∼M , and moving from ∼M to ≈M . The equivalence ∼M is defined on
the space of all valuations. Our goal in this part is to start from v1 ∼M v2 and generate a
valuation v′

2 by modifying some values of v2, so that we get v1 ≈M v′
2. Let us first recall the

definition of ∼M , with n be the number of clocks in the GTA.
First, we define ∼M on α, β ∈ R by α ∼M β if (α ◁ c ⇐⇒ β ◁ c) for all ◁ ∈ {<, ≤}
and c ∈ {−∞, +∞} or c ∈ Z with |c| ≤ M . In particular, α ∼M β implies α = −∞
iff β = −∞ and α = +∞ iff β = +∞. Also, if −M ≤ α ≤ M then α ∼M β implies
⌊α⌋ = ⌊β⌋ and {α} = 0 iff {β} = 0.
For valuations v1, v2 ∈ V we define v1 ∼M v2 if (i) v1(x) ∼nM v2(x) for all x ∈ X, and
(ii) v1(x) − v1(y) ∼(n+1)M v2(x) − v2(y) for all pairs of clocks x, y ∈ X.

Notice that ≈M and ∼M are incomparable, in the sense that neither of them is a refinement
of the other. The equivalence ≈M constrains values up to M , whereas ∼M looks at values
up to nM , i.e., between −nM and nM . For instance, consider v1 := ⟨x = M + 2, y = 1⟩ and

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:9

v2 := ⟨x = M + 3, y = 1⟩ for some M ≥ 2. We have v1 ≈M v2, but v1 ̸∼M v2. For the other
way around, notice that ∼M has finite index, whereas ≈M does not. So, v1 ∼M v2 does not
imply v1 ≈M v2. To see it more closely, v1 ≈M v2 enforces the same integral values for all
future clocks. For clocks less than −(n + 1)M , there is no such constraint on the actual
values in ∼M .

As mentioned above, our objective is to obtain ≈M equivalent valuations starting from
∼M equivalent ones. Lemma 8 is a first step in this direction. It essentially shows that, when
restricted to clocks within −M and +M , ∼M entails ≈M .

▶ Lemma 8. Suppose v1 ∼M v2. Let x, y be clocks such that −M ≤ v1(x), v1(y) ≤ M . Then,
⌊v1(x)⌋ = ⌊v2(x)⌋, {v1(x)} = 0 iff {v2(x)} = 0, and {v1(x)} ≤ {v1(y)} iff {v2(x)} ≤ {v2(y)}.

Lemma 8 considers clocks within −M and +M . What about clocks above M? Directly
from v1 ∼M v2, we have M < v1(x) iff M < v2(x), and moreover diagonal constraints up
to M are already preserved by ∼M . Therefore, together with Lemma 8, v1 ∼M v2 implies
v1 ≈M v2 when restricted to clocks greater than −M . We cannot say the same for clocks
lesser than −M , in particular we may have v1(x) = −nM −1 and v2(x) = −nM −2. However,
as shown in the lemma below, we can choose suitable values for clocks lesser than −M to
get a ≈M -equivalent valuation from a ∼M -equivalent one.

▶ Lemma 9. Suppose v1 ∼M v2, and let L = {x | −M ≤ v1(x)}. There is a valuation v′
2

such that v′
2↓L = v2↓L and v1 ≈M v′

2.

Finally, we show that if we have a run between ∼M equivalent valuations, we can extract
a run between ≈M equivalent valuations, simply by changing the last released values of
future clocks. Suppose there is a run ρ from configuration (q, v1) to configuration (q, vk) such
that v1 ∼M vk, and all future clocks are released in ρ. By Lemma 9, there is a v′

k satisfying
v1 ≈M v′

k that differs from vk only in the clocks that are less than −M . In order to reach
v′

k from v1 using the same sequence of transitions as in ρ, it is enough to choose a suitable
shifted value during the last release of the clocks that were modified. This gives a new run
ρ′. The non-trivial part is to show that ρ′ is indeed a run, that is: all guards are satisfied by
the new values. We depict this situation in Figure 3. The modified clocks are those that are
less than −M in vk. Clock x is one such. The black dot represents its value in vk, and the
blue dot is its value in v′

k. Its new value is still < −M . In the run ρ′, clock x is released to a
suitably shifted value at its last release point. Notice that from this last release point till
k, clock x stays below −M in both ρ and ρ′. Therefore, all non-diagonal constraints x ◁ c

that were originally satisfied in ρ continue to get satisfied in ρ′. Showing that all diagonal
constraints are still satisfied is not as easy. Here, we make use of the safety assumption. Let
us look at a diagonal constraint x − y, and a situation as in Figure 3 where the last release
of y happens after the last release of x. For simplicity, let us assume there is no release of y

in between these two points.

v1 vk, v′
k

last release of x last release of y

0
−M

y

x
x

0
−M

y

x
x

0
−M

x
x

Figure 3 An illustration for the proof of Lemma 10.

CONCUR 2024

5:10 Generalized Timed Automata: Liveness and MITL Model Checking

We divide the run into three parts: the left part is the one before the last release of x,
the middle part is the one between the two release points, and the right part is the rest of
the run, to the right of the release of y. In the left part, the values of x and y are the same
in both ρ and ρ′, and so the diagonal constraints continue to get satisfied. In the right part,
the value of x − y equals v′

k(x) − v′
k(y). Using v′

k ≈M v1 and v1 ∼M vk, we can argue that v′
k

and vk satisfy the same diagonal constraints up to constant M . This takes care of the right
part. The middle part is the trickiest. In this part, we know that x remains less than −M in
both ρ and ρ′. The value of y is the same in both ρ and ρ′. But what about the difference
x − y? Can it be, say −1 in ρ and −2 in ρ′? Here is where we use the safety assumption to
infer the value of x − y. Before y is released, its value should be 0. At that point, x is still
less than −M (in both the runs). Therefore x − y < −M just before y is last released. As
the differences do not change, we see that x − y < −M in the middle part, for both runs.
Hence the diagonal constraints continue to hold in ρ′. We formalize these observations in
Lemma 10, where we exhaustively argue about all the different cases.

▶ Lemma 10. Consider a safe GTA A. Let ρ : (q1, v1) δ1,t1−−−→ (q2, v2) δ2,t2−−−→ · · · (qk, vk) be
a run of A such that v1 ∼M vk and for every future clock x, either x is released in the
transition sequence t1 . . . tk−1 or v1(x) = −∞. Let L = {x | −M ≤ v1(x)}. Let v′

k be
a valuation such that v′

k↓L = vk↓L and v1 ≈M v′
k. Then, there exists a run of the form

ρ′ : (q1, v1) = (q1, v′
1) δ1,t1−−−→ (q2, v′

2) δ2,t2−−−→ · · · (qk, v′
k) in A, leading to (qk, v′

k) from (q1, v1).

We lift this argument to the level of zones, to obtain one of the main results of this paper.

▶ Theorem 11. Let (q, Z) = (q1, Z1) t1−→ (q2, Z2) t2−→ · · · tk−1−−−→ (qk, Zk) = (q, Z ′) be a run in
the zone graph such that (q, Z) ⪯ (q, Z ′), (q, Z ′) ⪯ (q, Z) and for every future clock x, either
x is released in the sequence t1 . . . tk−1, or there is a valuation vx ∈ Z ′ with vx(x) = −∞.
Then, there is a valuation v ∈ Z and an infinite run starting from (q, v) over the sequence of
transitions (t1 . . . tk−1)ω.

Finally, combining Theorem 11 and Lemma 5, we get an algorithm for liveness: we
construct the zone graph with simulation equivalence and check for a reachable cycle that
contains an accepting state and where every future clock x which is not released during the
cycle may take value −∞ in some valuations of the zones in the cycle.

4 Translating MITL to GTA

We first introduce the preliminaries for Metric Interval Temporal Logic. Let Prop be a finite
nonempty set of atomic propositions. The alphabet Σ that we consider is the set of subsets
of Prop. The set of MITL formulae over the set of atomic propositions Prop is defined as

φ := p | φ ∧ φ | ¬φ | XI φ | φ UI φ

where p ∈ Prop, and I is either [0, 0], or a non-singleton (open, or closed) interval whose
end-points come from N ∪ {∞}. In other words, if the end-points of the interval are a and b

respectively, then either a = b = 0, or a, b ∈ N ∪ {∞} and a < b.
We will now define the pointwise semantics of MITL formulae inductively as follows. A

timed word w = (a0, τ0)(a1, τ1)(a2, τ2) · · · is said to satisfy the MITL formula φ at position
i ≥ 0, denoted as (w, i) |= φ if (omitting the classical Boolean connectives)

(w, i) |= p if p ∈ ai

(w, i) |= XI φ if (w, i + 1) |= φ and τi+1 − τi ∈ I.
(w, i) |= φ1 UI φ2 if there exists j ≥ i s.t. (w, j) |= φ2, (w, k) |= φ1 for all i ≤ k < j, and
τj − τi ∈ I.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:11

ℓ1 ℓ2

1 x = 0; [x] | † 0 x = 0; [x] | 0

1 x = 0; [x] | 0

0 x = 0; [x] | †

Figure 4 GTT for XI using a future clock x. The output is 0 for transitions to location ℓ2 and is
the if-then-else † = (−x ∈ I) ? 1 : 0 for transitions to location ℓ1, where I is some interval.

Our goal is to construct a GTA with outputs for an MITL formula φ, which reads the
timed word and outputs 1 at position i iff (w, i) |= φ. More precisely, there is a unique run of
the GTA on w: (q0, v0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · , where the output of each transition ti equals
1 iff (w, i) |= φ. We refer to GTA with outputs as Generalized Timed Tranducers (GTT)
(discussed in detail in the full version [2]). At a high level, our construction can be viewed as
structural induction on the parse tree of the MITL formula, where we build a GTT for atomic
propositions, and then for each Boolean and temporal operator, and finally we compose
these GTT bottom up to obtain the GTT for each subformula, which by structural induction
finally gives us the GTT for the full formula. A detailed discussion of this compositional
approach can be found in the full version [2]. We describe the transducers for XI and UI in
this section.

Next operator. The transducer for XI p is given in Figure 4. It is obtained by extending
the untimed variant of the Next-transducer with a future clock x that predicts the time
to the next event. The idea is the same as explained in Figure 1 of the Introduction. The
prediction of the next event is verified, by having the guard x = 0 in every transition. Notice
the use of the program syntax in this example: a transition first checks if x = 0 (satisfying a
previous obligation), and then releases x to a non-deterministic value guessing the time to
the next event, and then asks for a guard, either −x ∈ I or −x /∈ I.

Until operator. We start by describing the transducer for the untimed U modality p U q

(in other words, p UI q with I = [0, ∞)). This is shown in Figure 5. For simplicity, we
have assumed Prop = {p, q} and the alphabet is represented as (0, 0), (1, 0), (0, 1), (1, 1)
corresponding to {}, {p}, {q} and {p, q}. On the word w, if si is the state that reads ai,
then the following invariants hold:

si = q iff q ∈ ai,
si = ¬q ∧ (p U q) iff q /∈ ai and (w, i) |= p U q,
si = ¬(p U q) iff (w, i) ̸|= p U q.

At the initial state the automaton makes a guess about position 0, and then subsequently
on reading every ai, it makes a guess about position i + 1 and moves to the corresponding
state. The transitions implement this guessing protocol. For instance, transitions out of state
q read letters with q = 1, and also output 1; transitions out of state ¬(p U q) have output 0.
A noteworthy point is that state q ∧ ¬(p U q) is non-accepting, preventing the automaton to
stay in that state forever. For every word, the transducer has a unique accepting run and
the output at position i is 1 iff (w, i) |= p U q.

Let us move on to the timed until UI . Let us forget the specific interval I for the moment.
We will come up with a generic construction, on which the outputs can be appropriately
modified for specific intervals. To start the construction, we need the following notion.

CONCUR 2024

5:12 Generalized Timed Automata: Liveness and MITL Model Checking

q ¬q ∧ (p U q)

¬(p U q)

(∗, 1) | 1 (1, 0) | 1

(∗, 0) | 0

(∗, 1) | 1

(1, 0) | 1

(∗, 1) | 1
(0, 0) | 0

(0, 0) | 0

q ¬q ∧ (p U q)

¬(p U q)

(1, 1) π1 | †1

(0, 1) π2 | †3 (1, 0) | †2

(∗, 0) | 0

(1, 1) π1 | †1

(0, 1) π2 | †3

(1, 0) | †2

(∗, 1) π2 | †3

(0, 0) | 0
(0, 0) | 0

Figure 5 (Left) Transducer for the untimed LTL operator p U q.
(Right) Transducer A tracking the earliest and last q witnesses for p U q. Program π1 is x = 0; [x]
and program π2 is x = 0; y = 0; [x, y]. The outputs †i depend on interval I in the timed until p UI q.

▶ Definition 12. Let w = (a0, t0)(a1, t1) . . . be a timed word and let i ≥ 0. The earliest
q-witness at position i is the least position j > i such that q ∈ aj , if it exists. We denote this
position j giving the earliest q-witness at i as if . The last q-witness is the least position
j > i that satisfies

α = q ∧ ¬(p ∧ X(p U q)) ≡ (q ∧ ¬p) ∨ (q ∧ X ¬(p U q))

We denote this position j giving the last q-witness at i as iℓ.

The earliest and last q-witnesses provide a convenient mechanism to check pUI q which, in
many cases, can be deduced by knowing the time to the earliest and last witnesses. Figure 6
illustrates the interpretation of x and y.

q q q q

i if

α

iℓ

¬q ¬q ¬q ¬q ¬q

¬α

x

y

Figure 6 Division of q events, and interpretation of x, y.

Our next task is to extend the U transducer of Figure 5 to include two future clocks
x and y that predict at each i, the time to if and iℓ, respectively. Figure 5 describes the
transducer A. For clock x to maintain time to if at each position i, we can do the following:
at every transition that reads q, the transducer checks for x = 0 as guard and releases x

(with the time to the next q). If there is no such q, then x needs to be released to −∞ in
order to continue the run, as our timed words are non-Zeno. Transitions satisfying ¬q do not
check for a guard on x or release x. Therefore, in any run, the value of x determines the
time to the next q event.

In Figure 6, the last witness (property α) can be identified by transitions of the form
(0, 1) (signifying q ∧ ¬p) and transitions (∗, 1) going to state ¬(p U q) (for q ∧ X ¬(p U q)).
Similar to the previous case of the earliest witness, every time we see such a transition we
check for y = 0 as a guard and release y. No other transition checks or updates y. Notice

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:13

that only the transitions with q have been changed. All transitions (0, 1) check and release
both clocks (program π2). Transitions (1, 1) that do not go to ¬(p U q) check and release
only x (program π1), whereas the (∗, 1) transition that goes to ¬(p U q) does π2.

▶ Lemma 13. For every timed word w = (a0, τ0)(a1, τ1) · · · , there is a unique run of A of
the form: (s0, v0) τ0,θ0−−−→ (s1, v1) τ1−τ0,θ1−−−−−−→ · · · such that for every position i ≥ 0: (1) si is
state q of A iff w, i |= q, (2) si is state ¬q ∧ (p U q) iff w, i |= ¬q ∧ (p U q), (3) si is state
¬(p U q) iff w, i |= ¬(p U q), (4) vi(x) = τi − τif

and vi(y) = τi − τiℓ
.

Using A we can already answer pUI q for one-sided intervals: [0, c], [0, c), [b, +∞), (b, +∞),
for natural numbers b, c.

if 0 ∈ I: †1 = †3 = 1 (current position is a witness), and †2 = (−x ∈ I ∨ −y ∈ I) ? 1 : 0,
if 0 /∈ I: †3 = 0, and †1 = †2 = (−x ∈ I ∨ −y ∈ I) ? 1 : 0.

This is because in one-sided intervals, if at all there is a witness, the earliest or the last is
one of them.

Until with a non-singular interval. We will now deal with the case of intervals I = [b, c]
with 0 < b < c < ∞. Firstly, using x and y, some easy cases of p UI q can be deduced.
Output remains 0 for transitions starting from ¬(p U q). For other transitions, here are some
extra checks:

if −x ∈ I or −y ∈ I, output 1 (one of the earliest or last witness is also a witness for
p UI q),
else, if −y < b or c < −x, output 0 (the time to the last witness is too small or the time
to the earliest witness is too large, so there is no witness within I).

If neither of the above cases hold, then we need guess a potential witness within [b, c]
and verify it. This requires substantial book-keeping which we will now explain. Assume we
are given a timed word w = (a0, t0)(a1, t1) · · · . Let us a call j ≥ 0 a difficult point if:

w, j |= p U q and tjf
< tj + b and tj + c < tjℓ

This leaves the possibility for a q-witness within [b, c]. So, for difficult points, we need to
make a prediction whether we have a q-witness within [tj + b, tj + c]: guess a time to a
witness within [tj + b, tj + c] and check it. We cannot keep making such predictions for every
difficult point as we have only finitely many clocks. Therefore, we will guess some special
witnesses. First we state a useful property.

▶ Lemma 14. Let j be a difficult point. Then, for all k such that j ≤ k ≤ jℓ, we have
w, k |= p U q.

Therefore, automaton A stays in the top two states, while reading j upto jℓ.

tj tj + c

tj′tj′ − b tj′′

tj′′ − c tj′′ − b

Figure 7 Illustration of a point j. The point j′ is the last q-witness before tj + c, and j′′ is the
first q-witness after tj + c.

We will now come back to the idea of choosing special witnesses. This is illustrated
in Figure 7. For a point j, we let j′ ≥ j be the greatest position containing q such that
tj′ ≤ tj + c. Let j′′ > j be the least position containing q such that tj + c < tj′′ . So, no

CONCUR 2024

5:14 Generalized Timed Automata: Liveness and MITL Model Checking

(0, 1) (1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

¬q ¬q ¬q

q

y1 = 0

shift

q

y1 = 0

shift

q

y1 = 0

shift

y < −c < −b < x

[x1, y1]

y1 < −c ≤ x1

−b < y1

y < −c < −b < x

[x2, y2]

y2 < −c ≤ x2

−b < y2

y < −c < −b < x

[x3, y3]

y3 < −c ≤ x3

q

x1 = 0

q

x1 = 0

q

x1 = 0

Figure 8 The automaton B for predicting q-witnesses which are not given by the earliest and
latest. For clarity, not every transition is indicated. All clocks are future clocks.

position j′ < k < j′′ contains q. While reading a difficult point j, let us make use of fresh
clocks x1 and y1 to predict these two witnesses:

x1 = tj − tj′ y1 = tj − tj′′

For the next important observation, we will once again take the help of Figure 7. Notice
that for all points i with ti ∈ [tj , tj′ − b], the point j′ is also a witness for w, i |= p U[b,c] q.
Similarly, j′′ is a witness for all i such that ti ∈ [tj′′ − c, tj′′ − c]. Therefore for all i such that
ti ∈ [tj , tj′′ − b], we have a way to determine the output: it is 1 iff while reading ai we have
−x1 ∈ I or −y1 ∈ I (recall we have predicted x1 and y1 while reading aj as explained above).
So, we do not have to make new guesses at the difficult points in [tj , tj′′ − b]. After tj′′ − b

(which can be identified with the constraint −b < y1), we need to make new such guesses,
using fresh clocks, say x2, y2. We will call the difficult points where we start new guesses
as special difficult points. Notice that the distance between two special difficult points is at
least c − b (which is ≥ 1, as we consider non-singular intervals with bounds in N). In the
figure, if j is a special point, a new special point will be opened later than tj′′ − b.

This gives a bound on the number of special points that can be open between j and j′′.
Suppose j < ℓ1 < ℓ2 < · · · < ℓi < j′′ be the sequence of special points between j and j′′.
Since ℓ1 is opened when time to j′′ is atmost b, we get the inequality: tℓi − tℓ1 < b. Since
consecutive special points are at least c − b apart, we have (i − 1)(c − b) < b. This entails
i < 1 + ⌈ b

c − b
⌉. By the time we reach j′′, we need to have opened at most k = 1 + ⌈ b

c − b
⌉

special points, and hence we can work with the extra clocks x1, y1, x2, y2, . . . , xk, yk.
All these ideas culminate in a book-keeping automaton B to handle difficult points. Its

set of states is {0, 1, . . . , N} × {1, 2} where N = 1 + ⌈ b

c − b
⌉ (state (0, 2) is not reachable).

All states are accepting. This is shown in Figure 8 for N = 3. The automaton B synchronizes
with A (via a usual cross-product synchronized on transitions). All transitions of B other
than the self loop on state (0, 1) satisfy p. Transitions which satisfy q, and ¬q are specifically
marked in the figure.

The automaton B starts in the initial state (0, 1). It moves to (1, 1) on the first difficult
point j (which will become special) and comes back to (0, 1) when there are no active
special difficult points waiting for witnesses (a special difficult point j is active at positions
j ≤ i ≤ j′′). States (i, 1) in the top indicate that there are i active special difficult points
currently. A state (i, 2) indicates that the j′ witness for the oldest active point has been
seen, and we are waiting for its j′′ witness (the space between tj′ and tj′′ in Figure 7).

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:15

The red transitions (i, ∗) → (i + 1, ∗) open new special difficult points, and contain the
program as illustrated in the figure. At (i, 1), suppose ℓ1 < ℓ2 < · · · < ℓi are the active
special difficult points where we have predicted x1, y1, . . . , xi, yi respectively. We have the
invariant:

yi < xi ≤ yi−1 < xi−1 ≤ · · · ≤ y2 < x2 ≤ y1 < x1

Notice that we may have xi = yi−1: the “first” witness of the ith special point (ℓ′
i) could

coincide with the “second” witness of the (i−1)th point (ℓ′
i−1). This leads to certain subtleties,

which we will come to later.
The blue transitions read the witness for the oldest active special point (that is, we have

reached ℓ′
1). Observe that x1 = 0 does not immediately identify ℓ′

1, since there could be
a sequence of positions at the same time, and ℓ′

1 is the last of them. Therefore, we make
a non-deterministic choice whether to take the blue transition (implying that ℓ′

1 has been
found), or we remain in the same state. The blue transitions read a q, check x1 = 0, and
then releases x1 to −∞ (not shown in Figure 7). The black (diagonal) transitions witness
ℓ′′

1 . When this happens, x1, y1 are no longer useful, and therefore all the higher clocks are
shifted using the permutation shift which maps x2, y2, . . . xk, yk, x1, y1 to x1, y1, . . . , xk, yk

and keeps the other clocks unchanged.
There are some subtleties which arise when special points coincide with witness points, or

when the second witness of a special point coincides with the first witness of the consecutive
special point.

Subtleties. The first subtlety arises when we have ℓ′′
j = ℓ′

j+1 for consecutive special points.
This will imply yj = xj+1. The reverse direction is not true, as there could be a sequence of
positions with the same time, but let us assume we have dealt with it by the non-deterministic
choice. When we actually witness these points, the clock values would have shifted to lower
indices. This situation will be manifested as y1 = x2 = 0. Suppose we are in (i, 2) and see a
point ℓ′′

j (y1 = 0). The diagonal transition takes the automaton to (i − 1, 1) and shifts x2 to
x1. Now, x1 = 0 (as ℓ′

j+1 = ℓ′′
j). Therefore, we will have to combine the black-diagonal-left

with the downward-blue to get the combined effect. This leads to these two divisions:

(i, 2) y1=0−−−→ (i − 1, 1) (i, 2) y1=0∧x2=0−−−−−−−→ (i − 1, 2)

The second subtlety is that one of either ℓ′
j or ℓ′′

j witnesses be a new special point (notice
that the red transitions are independent of the blue and black transitions). In such cases, we
can combine the two effects in any order: first discharge x1 or y1 verification, and then open
a new special point or vice-versa. This leads to some additional divisions of the form:

(i, 1) x1=0∧−b<yi−−−−−−−−→ (i + 1, 2) (i, 2) y1=0∧−b<yi−−−−−−−−→ (i, 1)

In the first transition, we have combined a blue and a red (in any order); whereas in the
second, we have combined a red and a black-diagonal, in any order.

The third subtlety is that the first and second subtleties may occur together! A point
could be ℓ′′

j , ℓ′
j+1 and also a new special point. We illustrate this on a specific state (i, 2).

We provide only the “guards”. The full program is obtained by suitably combining the effects
of the individual transitions:

(i, 2) y1=0∧yi≤−b−−−−−−−−→ (i − 1, 1) (i, 2) y1=0∧−b<yi−−−−−−−−→ (i, 1)

(i, 2) y1=0∧x2=0∧yi≤−b−−−−−−−−−−−−−→ (i − 1, 2) (i, 2) y1=0∧x2=0∧−b<yi−−−−−−−−−−−−−→ (i, 2)

CONCUR 2024

5:16 Generalized Timed Automata: Liveness and MITL Model Checking

This concludes the description of the automaton B. The product A × B gives the required
transducer for p UI q. The full construction of B, taking into account all these subtleties, is
described as Algorithm 1. In comments, we use the terminology introduced before and we
also refer to the color of transitions in Figure 8. Parsing the pseudo-code from a current state
(k, m) results in a sequence of guards and releases, an output of a Boolean value (output
value), and the next state (goto (k′, m′)). The most difficult case is for states (k, 2) with
k ≥ 2, where we could generate transitions to states (k −1, 1), (k −1, 2), (k, 1), (k, 2), (k +1, 2).

Complexity and comparison with the MightyL approach. The final automaton A × B
has at most 6k states, where k = 1 + ⌈ b

c − b
⌉ as defined above: automaton A has 3 states,

and automaton B has 2k − 1 states (see Figure 8). In terms of clocks, A has 2 future clocks
x, y, and B has 2k future clocks x1, y1, . . . , xk, yk. We have used a permutation operation
shift. As we mention in Remark 2, renamings can be eliminated by maintaining in the
current state the composition of permutations applied since the initial state. Since each
permutation does a cyclic shift, in any composition, the clocks x1, y1, . . . , xk, yk are renamed
to some xi, yi, . . . , xk, yk, x1, y1, . . . , xi−1, yi−1. Therefore, there are at most k renamings.
Maintaining them in states gives rise to atmost O(k2) states.

In contrast, the state-of-the-art approach [11] starts with a 1-clock alternating timed
automata for UI . After reading a timed word, the 1-ATA reaches a configuration containing
several state-valuation pairs (q, v). A finite abstraction of this set of configurations, called
the interval semantics, has been proposed [9, 10, 11]. This abstraction is maintained in the
states. Overall, the number of locations for p UI q is exponential in k, and the number of
clocks is 2k + 2.

Due to the presence of future clocks, we are able to make predictions, as in Figure 7 and
the GTA syntax enables concisely checking these predictions in the transitions. Therefore,
we are able to give a direct construction to the final automaton, instead of going via an
alternating automaton and then abstracting it.

5 Conclusion

In this paper, we have answered two problems: (1) liveness of GTA and (2) MITL model
checking using GTA. The solution to the first problem required to bypass the technical
difficulty of having no finite time-abstract bisimulation for GTAs. The presence of diagonal
constraints adds additional challenges. For MITL model checking using GTA, we have
described the GTA for the XI and UI modalities. Indeed, the presence of future clocks allows
to make predictions better and we see an exponential gain over the state-of-the-art, in the
number of states of the final automaton produced. Moreover, our construction is direct,
without having to go via alternation.

The next logical step would be to implement these ideas and see how they perform in
practice, and compare them with existing well-engineered tools (e.g., [11]). This will require
a considerable implementation effort, needing several optimizations and incorporating of
many practical considerations before it can become scalable. This provides tremendous scope
for future work on these lines.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:17

Algorithm 1 Automaton B (synchronized with A).

1: State (0, 1): ▷ initial state of B
2: if A at state ¬(p U q) then output 0; goto (0,1) end if
3: if −x ∈ I or −y ∈ I then output 1; goto (0,1) end if
4: if x < −c or −b < y then output 0; goto (0,1) end if
5: Release [x1, y1] ▷ Special difficult point
6: Check y1 < −c ≤ x1
7: output (x1 ≤ −b) ▷ Boolean value
8: goto (1,1) ▷ red transition
9: State (k, 1) with k > 0: ▷ waiting for the event predicted by x1

10: k′ ← k
11: if yk ≤ −b then
12: output (xk ∈ I) ∨ (yk ∈ I) ▷ Boolean value
13: else
14: if −c ≤ y then ▷ not a difficult point
15: output (y ≤ −b) ▷ Boolean value (y ∈ I)
16: else ▷ new special difficult point, red transition,
17: ▷ possibly combined with a blue transition below
18: k′ ← k + 1;
19: Release [xk, yk]; Check yk < −c ≤ xk

20: output (xk ≤ −b) ▷ Boolean value
21: end if
22: end if
23: choose non-deterministically
24: when True do goto (k′, 1) ▷ not the event predicted by x1

25: when q ∧ (x1 = 0) do Release [x1]; x1 = −∞; goto (k′, 2)
▷ blue transition

26: end choose
27: State (k, 2) with k > 0: ▷ waiting for the event predicted by y1
28: k′ ← k
29: if yk ≤ −b then
30: output (xk ∈ I) ∨ (yk ∈ I) ▷ Boolean value
31: else
32: if −c ≤ y then ▷ not a difficult point
33: output (y ≤ −b) ▷ Boolean value (y ∈ I)
34: else ▷ new special difficult point, red transition,
35: ▷ possibly combined with a black transition below
36: k′ ← k + 1;
37: Release [xk, yk]; Check yk < −c ≤ xk

38: output (xk ≤ −b) ▷ Boolean value
39: end if
40: end if
41: if ¬q then ▷ not the event predicted by y1
42: goto (k′, 2)
43: else ▷ event predicted by y1, black transition
44: ▷ possibly combined with a blue transition below
45: Check y1 = 0; Release [y1]; y1 = −∞
46: if k′ = 1 then
47: goto (0, 1)
48: else
49: Shift x2, y2, . . . , xk, yk, x1, y1 to x1, y1, . . . , xk, yk

50: end if
51: choose non-deterministically
52: when True do goto (k′ − 1, 1)

▷ not the event predicted by the new x1
53: when (x1 = 0) do Release[x1]; x1 = −∞; goto (k′ − 1, 2)

▷ blue transition
54: end choose
55: end if

CONCUR 2024

5:18 Generalized Timed Automata: Liveness and MITL Model Checking

References
1 S. Akshay, Paul Gastin, R. Govind, Aniruddha R. Joshi, and B. Srivathsan. A unified model

for real-time systems: Symbolic techniques and implementation. In CAV (1), volume 13964 of
Lecture Notes in Computer Science, pages 266–288. Springer, 2023.

2 S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan. MITL model checking via generalized
timed automata and a new liveness algorithm, 2024. arXiv:2407.08452.

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

4 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43(1):116–146, 1996.

5 Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theor. Comput. Sci., 211(1-2):253–273, 1999.

6 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness. In
LICS, pages 390–401. IEEE Computer Society, 1990.

7 Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and upper
bounds in zone-based abstractions of timed automata. International Journal on Software
Tools for Technology Transfer, 8(3):204–215, 2006.

8 Laura Bozzelli, Angelo Montanari, and Adriano Peron. Complexity issues for timeline-based
planning over dense time under future and minimal semantics. Theor. Comput. Sci., 901:87–113,
2022.

9 Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata. In FORMATS, volume 8053 of Lecture Notes in Computer Science, pages 47–61.
Springer, 2013.

10 Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata over infinite words. In FORMATS, volume 8711 of Lecture Notes in Computer
Science, pages 69–84. Springer, 2014.

11 Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. MightyL: A
compositional translation from MITL to timed automata. In CAV (1), volume 10426 of Lecture
Notes in Computer Science, pages 421–440. Springer, 2017.

12 Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NUSMV:
A new symbolic model verifier. In CAV, volume 1633 of Lecture Notes in Computer Science,
pages 495–499. Springer, 1999.

13 David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197–212. Springer, 1989.

14 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 - A framework for LTL and ω-automata manipulation. In
ATVA, volume 9938 of Lecture Notes in Computer Science, pages 122–129, 2016.

15 Thomas Ferrère, Oded Maler, Dejan Nickovic, and Amir Pnueli. From real-time logic to timed
automata. J. ACM, 66(3):19:1–19:31, 2019.

16 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in timed automata with
diagonal constraints. In CONCUR, volume 118 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018.

17 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. In CAV (1), volume 11561 of Lecture Notes in Computer
Science, pages 41–59. Springer, 2019.

18 Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In CAV, volume
2102 of Lecture Notes in Computer Science, pages 53–65. Springer, 2001.

19 Gilles Geeraerts, Jean-François Raskin, and Nathalie Sznajder. On regions and zones for
event-clock automata. Formal Methods Syst. Des., 45(3):330–380, 2014.

https://arxiv.org/abs/2407.08452

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 5:19

20 Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV, volume 38 of IFIP Conference Proceedings,
pages 3–18. Chapman & Hall, 1995.

21 F. Herbreteau and G. Point. TChecker. https://github.com/fredher/tchecker, v0.2 - April
2019.

22 Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz. Why liveness
for timed automata is hard, and what we can do about it. ACM Trans. Comput. Log.,
21(3):17:1–17:28, 2020. doi:10.1145/3372310.

23 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. In LICS, pages 375–384. IEEE Computer Society, 2012.

24 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient emptiness check for timed
büchi automata. Formal Methods Syst. Des., 40(2):122–146, 2012.

25 Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279–295,
1997.

26 Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysis of a collision
avoidance protocol using SPIN and UPPAAL. In The Spin Verification System, volume 32
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 33–49.
DIMACS/AMS, 1996.

27 Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

28 Guangyuan Li. Checking timed Büchi automata emptiness using LU-abstractions. In Joël
Ouaknine and Frits W. Vaandrager, editors, Formal Modeling and Analysis of Timed Systems,
7th International Conference, FORMATS 2009, Budapest, Hungary, September 14-16, 2009.
Proceedings, volume 5813 of Lecture Notes in Computer Science, pages 228–242. Springer,
2009. doi:10.1007/978-3-642-04368-0_18.

29 Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In FORMATS,
volume 4202 of Lecture Notes in Computer Science, pages 274–289. Springer, 2006.

30 Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit reactive synthesis
strikes back! In CAV (1), volume 10981 of Lecture Notes in Computer Science, pages 578–586.
Springer, 2018.

31 Joël Ouaknine and James Worrell. On metric temporal logic and faulty turing machines. In
FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pages 217–230. Springer, 2006.

32 Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer Society,
1977.

33 Amir Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: A survey of current trends. In Current Trends in Concurrency, volume 224 of Lecture
Notes in Computer Science, pages 510–584. Springer, 1986.

34 Amir Pnueli and Eyal Harel. Applications of temporal logic to the specification of real-time
systems. In FTRTFT, volume 331 of Lecture Notes in Computer Science, pages 84–98. Springer,
1988.

35 Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed Büchi automata
emptiness efficiently. Formal Methods Syst. Des., 26(3):267–292, 2005.

36 Moshe Y Vardi. An automata-theoretic approach to linear temporal logic. Lecture Notes in
Computer Science, 1043:238–266, 1996.

37 Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In FTRTFT, volume 863 of Lecture Notes in Computer Science, pages 694–715.
Springer, 1994.

CONCUR 2024

https://github.com/fredher/tchecker
https://doi.org/10.1145/3372310
https://doi.org/10.1007/978-3-642-04368-0_18

Causally Deterministic Markov Decision Processes
S. Akshay #

Indian Institute of Technology Bombay, Mumbai, India

Tobias Meggendorfer #

Lancaster University Leipzig, Germany

P. S. Thiagarajan #

The University of North Carolina at Chapel Hill, NC, USA
Chennai Mathematical Institute, India

Abstract
Probabilistic systems are often modeled using factored versions of Markov decision processes (MDPs),
where the states are composed out of the local states of components and each transition involves
only a small subset of the components. Concurrency arises naturally in such systems. Our goal is to
exploit concurrency when analyzing factored MDPs (FMDPs). To do so, we first formulate FMDPs
in a way that aids this goal and port several notions from concurrency theory to the probabilistic
setting of MDPs. In particular, we provide a concurrent semantics for FMDPs based on the classical
notion of event structures, thereby cleanly separating causality, concurrency, and conflicts that arise
from stochastic choices. We further identify the subclass of causally deterministic FMDPs (CMDPs),
where non-determinism arises solely due to concurrency. Using our event structure semantics, we
show that in CMDPs, local reachability properties can be computed using a “greedy” strategy.
Finally, we implement our ideas in a prototype and apply it to four models, confirming the potential
for substantial improvements over state-of-the-art methods.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases MDPs, distribution, causal determinism

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.6

Supplementary Material Software (Artifact): https://zenodo.org/records/12657579 [23]

Funding S. Akshay: Partially supported by Google India Research Award 2023 and SBI Foundation
Hub for Data and Analytics.

1 Introduction

Factored versions of systems often constitute an important subclass. Two typical, well known
examples – among very many – are Petri nets (and related models of concurrency) [26] and
dynamic Bayesian networks [17]. A common key feature is that a state of the system is a
vector of local component states. Further, a transition only involves a small subset of the
components and hence can be specified succinctly; so much so, the size of the induced global
system will often be exponential in the size of the factored presentation. This allows to model
large systems without having to enumerate the set of global states and transitions explicitly.

Here, we explore this idea in the probabilistic setting of Markov decision processes
(MDPs). Our starting point is a variant of factored MDPs (FMDPs). These are made up
of several individual components, and a vector of local states constitutes the global state.
Moreover, each action is associated with a fixed set of components named its locations. The
availability of an action at a global state only depends on the local states of its locations and
the stochastic changes that take place when an action occurs only involve the states of its
locations. The resulting transition relation can be easily converted into the usual presentation
of factored MDPs in the literature [4, 14]. Notably, our version of FMDPs includes models

© S. Akshay, Tobias Meggendorfer, and P. S. Thiagarajan;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:tobias@meggendorfer.de
https://orcid.org/0000-0002-1712-2165
mailto:thiagu@cs.unc.edu
https://doi.org/10.4230/LIPIcs.CONCUR.2024.6
https://zenodo.org/records/12657579
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Causally Deterministic Markov Decision Processes

specified in the established PRISM language [18] and JANI [5]. When handling systems with
a large number of components, a key challenge is to analyze the global behavior in terms of
the factored presentation instead of first explicitly constructing the global behavior. In the
case of factored MDPs, this is particularly difficult due to the complex interplay between
non-deterministic, stochastic and concurrent features of the dynamics.

As a first step toward addressing this challenge, we focus on the analysis of a subclass of
FMDPs, called causally deterministic FMDPs (CMDPs). The defining feature of CMDPs is
that any two actions that are available at a global state will have disjoint sets of locations.
As a result, the two actions will be causally independent: executing one of them will not
affect the availability of the other or its outcomes. Consequently, CMDPs admit a powerful
partial order based analysis technique for verifying certain “robust” probabilistic properties.
In the current paper, we focus on local reachability properties.

As a key tool to analyzing CMDPs, we identify the notion of complete strategies, which can
be explained as follows. In a CMDP, the role of a strategy is to resolve the non-determinism
that arises in the dynamics due to causally independent actions. This means a strategy
linearizes a partially ordered set of action occurrences. Hence, if an action a is enabled at a
state s, and is not chosen along a finite sequence of moves leading to the state s′, then a will
still be available at s′. Accordingly, a complete strategy is defined to be one in which the set
of trajectories along which an available action is ignored forever has probability measure 0.
Based on this notion, our main technical results for CMDPs are that (i) complete strategies
suffice to obtain the optimal (maximal) probability of a local reachability property and
(ii) all complete strategies will yield the same maximal probability value. Consequently we
can choose a greedy complete strategy which avoids visiting many “useless” states. As the
experimental results in Sec. 6 show, for CMDPs, our method vastly outperforms established,
highly optimized tools such as Storm [8].

We establish these properties by exploiting fundamental objects drawn from concurrency
theory, namely Mazurkiewicz traces [9] and prime event structures [24]. In particular, we
develop an event structure semantics for all FMDPs. Since they arise in the context of
FMDPs, the events in the event structure will have probability values assigned to them in a
natural manner. We then use these probabilistic events to show that all complete strategies
yield the same maximal probability values for local reachability properties. We view the
present work as a first step towards developing partial-order reductions for FMDPs in general.
Specifically, via the event structure semantics, based on Mazurkiewicz traces, a variety of
techniques such as finite prefixes of event structures [11], and partial order reduction notions
such as ample sets [13] and stubborn sets [15] can be brought to bear when analyzing FMDPs.

To summarize, our contributions are:
1. A novel class of factored MDPs, called CMDPs, in which the non-determinism between

actions arises solely due to their causal independence.
2. An event structure semantics for FMDPs that cleanly separates causality, concurrency,

and (stochastic) conflicts arising in the global behavior of an FMDP.
3. The identification of complete strategies for CMDPs which have the crucial properties;

(i) they suffice to attain the optimal probability values for local reachability properties
and (ii) all of them yield the same optimal value.

4. A prototypical implementation of (i) a syntactical over-approximation for checking that
the input MDP is a CMDP and (ii) a greedy complete strategy accompanied by an
experimental evaluation on four models. Comparison with existing state-of-the-art
tools, e.g., Storm [8], shows a vast performance improvement for the evaluated models,
highlighting the potential benefits of our approach.

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:3

Structure. In the rest of this section we review related work. We then present basic material
concerning Markov chains and Markov decision processes. In Sec. 3, we introduce our class
of FMDPs and the subclass of causally deterministic FMDPs (CMDPs). In the subsequent
section we construct the event structure representation of our FMDPs which then leads
to the main results developed in Sec. 5. The greedy strategy, its implementation, and the
experimental results are presented in Sec. 6. The paper concludes with Sec. 7.

Related Work. Factored MDPs have been long studied in the literature [4, 14], where the
transition relation is usually presented using a two layer dynamic Bayesian network. With
an eye toward learning applications, a reward function is also included. Our formulation of
FMDPs is geared towards capturing the distributed dynamics of FMDPs and hence is based
on the notion of locations. Further, reward functions play no role in the present setting.

In the verification setting, several works have considered compositional methods to reason
about large MDPs that are “factorized” via compositional operations. While some approaches
use bisimulation based equivalences [12], others use abstractions [16], and yet others use
a category-theoretical view of MDPs [31]. In a sense, these represent an approach which
is orthogonal to ours, which is grounded in FMDPs and focused on solving quantitative
behavioral properties. There have also been works adapting partial-order reduction techniques
to the probabilistic setting using ample sets [13] and stubborn sets [15]. Variants of these
approaches are incorporated in state-of-the-art tools such as Storm [8] and PRISM [18].
However, these works deal with MDPs viewed as monolithic objects presented in terms of
global states and transitions. Thus, it will be difficult – if not impossible – to deal with
the large MDPs that are presented succinctly as FMDPs. Furthermore, the focus in these
works is on model checking linear time and branching time (probabilistic) properties using a
semantically defined notion of commutability of actions along an execution sequence. These
techniques do not enable one to compute optimal values of local reachability properties that
we achieve using the event structure semantics. It will however be interesting to explore
these methods in the context of CMDPs and, more generally, FMDPs.

Similarly, [7] exploit a model consisting of purely probabilistic components, however they
use these components only to obtain a compact symbolic representation of the global MDP;
in the end, they still work with the entire global MDP. In contrast, our analysis method
directly works with the factored representation of the global MDP.

Several studies start with event structures, adjoin probabilities to events and study the
resulting objects from a theoretical standpoint [1, 30]. However, in these studies probabilities
are introduced in an ad-hoc manner and no attempt is made to establish a verification
framework for an associated system model. In sharp contrast, the probabilities attached to
the events in our event structures arise naturally from the associated MDPs. Furthermore,
our use of event structures is firmly grounded in a verification framework for CMDPs.

Generalized stochastic Petri nets (GSPN) [20], despite being based on Petri nets, do
not exploit concurrency and instead focus on their interleaved global behaviors in terms of
(continuous time) Markov chains. A variant called Markov decision Petri nets is proposed
in [3] as a high level modeling formalism. Their global behaviors are captured by MDPs and
analyzed using symbolic representations. Here again concurrency essentially plays no role.

Finally, distributed Markov chains (DMCs) studied in [28,29] have a similar flavour to
CMDPs. DMCs consist of a network of probabilistic transition systems that synchronize on
common actions with a sufficiently strong syntactic restriction ensuring that if two actions
are enabled at a global state then they must involve disjoint sets of components. In addition,

CONCUR 2024

6:4 Causally Deterministic Markov Decision Processes

they focus on statistical model checking of properties specified in a variant of bounded linear
temporal logic. In contrast, CMDPs are a natural behavioral subclass of MDPs and our focus
is determining the exact maximal probability of (unbounded) local reachability properties.

2 Preliminaries

A Markov chain (MC) (e.g., [2]), is a tuple M = (S, ŝ, P), where S is a (countable) set of
states, ŝ ∈ S is the initial state, and P : S → D(S) is a transition function that for each state
s yields a probability distribution over successor states, where D(S) is the set of distributions
over S. A Markov decision process (MDP) (e.g., [25]) is a tuple M = (S, ŝ, Act, P), where S

is a (finite) set of states, ŝ ∈ S is the initial state, Act a finite set of actions, overloaded as
Act(s) ⊆ Act specifying available actions at a state s, and P : S × Act → D(S) yielding a
distribution over successors for each s ∈ S and a ∈ Act(s). For simplicity, we write P (s, s′)
instead of P (s)(s′) for a MC and P(s, a, s′) instead of P(s, a)(s′) for an MDP.

Paths. An infinite path in an MC M is an infinite sequence ϱ = s1s2 . . . where s1 = ŝ and
P (si, si+1) > 0 for all i. A finite path ρ is a finite prefix of an infinite path. A Markov
chain M = (S, ŝ, P) naturally induces a unique probability measure PrM over the σ-algebra
generated by the cylinder sets induced by the finite paths [2, Sec. 10.1]. Similarly, for an
MDP M, an infinite path is a sequence ϱ = s1a1s2a2 . . . such that s1 = ŝ and for all i we
have ai ∈ Act(si) and P(si, ai, si+1) > 0. A finite path is a finite prefix of an infinite path
ending in a state. We write FPathsM to denote the set of finite paths in M. Moreover,
|ρ| = k denotes the length of a path (setting it to ∞ for infinite paths) and we define it to be
the number of actions (transitions) that appear in the path. For i ≤ |ρ| we write ρi to refer
to the i-th state in a path. Finally, last(ρ) = ρ|ρ| denotes the last state in a finite path.

Strategies. Intuitively, in every state s, an action a from Act(s) is chosen and the system
advances to a successor state s′ according to the probability distribution given by P(s, a).
Starting from the initial state ŝ and repeating this process indefinitely yields an infinite path.
The way actions are chosen along an infinite path is captured by strategies. Specifically, a
strategy is function mapping each finite path to one of the actions, say a, available in the last
state, say s, of the path. This leads to new states chosen according to the distribution P(s, a).
We let Π refer to the set of all strategies. To support our technical constructions arising
later, our strategies are thus deterministic but not necessarily memoryless. A strategy is
memoryless (or positional) if it only depends on the current state, i.e. π(ρ) = π(ρ′) whenever
last(ρ) = last(ρ′). As usual, a strategy π induces the Markov chain Mπ = (FPathsM, ŝ, P π),
where for ρ ∈ FPathsM with s = last(ρ) and a = π(ρ) ∈ Act(sn) we set P π(ρ, ρas′) =
P(s, a, s′). We write Prπ

M,ŝ = PrMπ,ŝ for the induced probability measure.

Reachability. Fix an MDP M = (S, ŝ, Act, P). Then, (unbounded) reachability for a set
of target states T ⊆ S is the set of all (infinite) paths which eventually visit one of the
target states, i.e. ✸T = {ϱ | ∃i. ϱi ∈ T}, which is measurable [2, Sec. 10.1.1]. For a strategy
π, the probability of reaching T according to π is the probability assigned to this set of
infinite paths ✸T in Mπ, i.e. Prπ

M[✸T]. However, different strategies will in general yield
different probabilities and one is often interested in the maximum of these probabilities. In
other words, the goal is to determine supπ∈ΠPrπ

M[✸T] (also called the value). For MDPs, a
well-known result states that it suffices to consider memoryless deterministic strategies for
this maximization (see, e.g., [2, Lem. 10.102]).

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:5

3 Factored MDPs and Causal Determinacy

Often, an MDP comprises interacting components (or agents, processes). In particular, many
modelling formalisms used in practice, e.g. the PRISM language [18] or JANI [5], define
MDPs in this manner. Consequently, a state of the MDP will consist of a tuple of local
states of the component processes. Further, an action will often involve only a fixed subset
of the components leading to a stochastic transformation of the states of these components
while the states of the other components are left untouched. We propose to use factored
MDPs to study such systems.

Accordingly, let Proc denote a finite set of components. Each component p ∈ Proc has a
set of local states denoted as Sp. This gives rise to the set of global states S =

∏
p∈Proc Sp. To

capture the idea that an action involves only a fixed subset of components, we use the location
map loc : Act → 2Proc \ ∅ to specify for each action a the set of components that participate
in a. For convenience, we also identify a global state s with the map s : Proc →

⋃
p∈Proc Sp

such that s(p) ∈ Sp for p ∈ Proc. Then, for a set of components P ⊆ Proc, we let s[P]
denote the map s restricted to P . In other words, s[P] ∈

∏
p∈P Sp and s[P](p) = s(p) for

p ∈ P . For a ∈ Act, we often write s[a] instead of s[loc(a)] and call it the a-state induced by
s. This leads to S[a] = {s[a] | s ∈ S}, the set of a-states. With these notations at hand, we
introduce factored MDPs (FMDPs).

▶ Definition 1. A factored MDP M is a tuple ({Sp}p∈Proc, {ŝp}p∈Proc, Act, loc, {Pa}a∈Act)
where (i) Proc is a finite, non-empty set of components, (ii) Sp is a finite, non-empty set
of states for each p ∈ Proc, (iii) ŝp ∈ Sp is the initial state of component p, inducing the
global initial state ŝ with ŝ(p) = ŝp for each p ∈ Proc, (iv) Act is a finite, non-empty set
of actions, (v) loc : Act → 2Proc \ {∅} is the locations map, and (vi) for each a ∈ Act,
Pa : S[a] → D(S[a]) is a (partial) transition function.

Similar to MDPs, we write Pa(u, v) instead of Pa(u)(v). The FMDP M induces an MDP
called its global MDP defined as follows.

▶ Definition 2. Let M be an FMDP as above. Then its global MDP is given by M̂ =
(S, ŝ, Act, P) where (i) a ∈ Act(s) iff Pa(s[a]) is defined, and (ii) for every s′ ∈ S and a ∈
Act(s), we have P(s, a, s′) = v > 0 iff Pa(s[a], s′[a]) = v and s[Proc\ loc(a)] = s′[Proc\ loc(a)].

We can immediately verify that M̂ is indeed an MDP. Moreover, M̂ has two important
properties, namely: (F1) The availability of an action a at a state s depends only on s[a].
Further, when an action a at occurs at a state s, the changes it produces involve only the
components in loc(a); the local states of components in Proc \ loc(a) remain unchanged.
(F2) When action a occurs at a global state s, the changes it produces (to the states of
participating components) depends only on the a-state s[a]. In particular, suppose s1 and s2
are global states and a ∈ Act is an action where s1[a] = s2[a]. Then, if P(s1, a, s′

1) = v > 0
there exists a unique global state s′

2 such that P(s2, a, s′
2) = v and s′

1[a] = s′
2[a].

Before presenting an illustrative example, we briefly remark on this defining way of
defining an FMDP and how it relates to established notions.

▶ Remark 3. Traditionally, FMDPs are defined using a transition relation represented by
a two-layer dynamic Bayesian network [4, 14]. We have chosen to use a slightly different
definition, aligned with concurrency theory, so that the distributed nature of the dynamics
can be clearly brought out, as we shall see below. However, our theory is neutral to how
the dynamics of the individual components are represented as long as the global transitions

CONCUR 2024

6:6 Causally Deterministic Markov Decision Processes

a: {p}

u1

u2 u3

0.8 0.2

a′: {p}

u2

u1

b: {q}

v1

v2

0.3
0.7

c: {p, q}

u3, v2

u1, v1

u1, v1 u2, v1 u3, v1

u1, v2 u2, v2 u3, v2

a

a

b b b

0.8 0.2

0.8 0.2

0.3
0.7

0.3
0.7

0.3
0.7

a′

a′ c

Figure 1 This figure illustrates a two-component FMDP where Proc = {p, q}, Sp = {u1, u2, u3},
Sq = {v1, v2}, and Act = {a, a′, b, c}. On the left, for each action a both loc(a) and Pa are depicted.
On the right, the induced global MDP is shown. The middle b action is greyed out solely for
readability, it is not special in any way. We omit the probability label if it is 1.

are factored in terms of the components participating in the actions. In particular, once the
properties (F1) and (F2) stated above are satisfied by the resulting global MDP, our theory
is applicable to any model which exhibits such behaviour, e.g. the DBN-based definitions.

▶ Example 4. In Fig. 1, an example of an FMDP (on the left) and its induced global
MDP (on the right) is shown. To explain the relation between FMDP and global MDP, we
write ⟨u1, u2⟩ and similar to denote global states and c-states as tuples of local states, as the
correspondence with the local states of the components is clear. The a-transition from ⟨u1⟩ to
⟨u2⟩ in the FMDP implies a is available at the global state ⟨u1, v1⟩ since ⟨u1, v1⟩[a] = ⟨u1⟩ and
Pa(⟨u1⟩) is defined in the FMDP. Further, P(⟨u1, v1⟩, a, ⟨u2, v1⟩) = 0.8 as Pa(⟨u1⟩, ⟨u2⟩) = 0.8.
In particular, this transition does not modify the state of the q-component since loc(a) = {p}.
The other transitions shown in the global MDP can be inferred using similar reasoning.

By slight abuse of notation, in the following we write S to denote the set of reachable states,
defined in the obvious way. We also identify the FMDP with its induced global MDP and
freely go back and forth between the two notions and the associated notations. Finally, for
simplicity we assume that the FMDPs we deal with are free of deadlocks, i.e. if s ∈ S then
Act(s) ̸= ∅. (Since our focus is on reachability, this can be ensured by adding a new component
d with a single state sd, a new action ad with loc(ad) = {d}, and Pad

(⟨sd⟩, ad, ⟨sd⟩) = 1.)

3.1 Local Reachability
Let M be an FMDP. Then, a local reachability problem is specified by T ⊆ Sp for some
component p. Let T = {s | s(p) ∈ T} the corresponding global reachability set. The goal is
to determine the probability supπ∈ΠPrπ

M[✸T].
Local reachability for an FMDP can be solved by ignoring its factored nature and instead

treat it as a “global” reachability problem on the induced global MDP. In this case, classical
approaches as employed by PRISM [18] and Storm [8] can be used. This problem is in
PTIME [2, Cor. 10.107], but in the size of the global MDP, which can easily be exponential
in the size of the FMDP. Our goal is to mitigate this state-space explosion by exploiting the
partially ordered nature of the dynamics of the model.

3.2 Causal Determinacy and Complete Strategies
As a first step, we shall tackle the state explosion problem by considering the subclass of
FMDPs in which the sole source of non-determinism is from the causal independence of
actions. This idea can be captured through a natural restriction.

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:7

a: {p}

u1

u2

b: {p, q}

u1, v1

u2, v2

dp: {p}

u2

u2

dq: {q}

v2

v2

u1, v1

u2, v1 u2, v2

a b

dp dp, dq

Figure 2 This figure illustrates an FMDP which is not CD. We have Proc = {p, q}, Sp = {u1, u2},
Sq = {v1, v2}, and Act = {a, b, dp, dq}. On the left, we depict the transition function Pa for all
a ∈ Act and to the right the induced global MDP.

▶ Definition 5. An FMDP M is causally deterministic (CD) if for every (reachable) state s
and a, b ∈ Act(s) with a ̸= b we have loc(a) ∩ loc(b) = ∅. We call such an FMDP a CMDP.

▶ Example 6. The FMDP shown in Fig. 1 is causally deterministic: In any global state,
the available set of actions is {a, b}, {a′, b} or {c}. In contrast, the FMDP of Fig. 2 is not
CD. In ⟨u1, v1⟩ both a and b are available, but loc(a) ∩ loc(b) = {p} ̸= ∅. And indeed, it is
relevant whether we choose a or b. For example, a leads to a state in which b is not enabled
anymore, and, in particular, v2 is not reachable, while b reaches v2 with probability 1.

▶ Remark 7. Causal determinacy is intrinsically a concurrency based notion. If a, b ∈ Act(s)
with a ̸= b then a and b can occur independent of each other at s. In fact, suppose
s0a1s1 · · · sn−1ansn is a finite path, b ∈ Act(s0) and ai ≠ b for 1 ≤ i ≤ n. Then loc(ai) ∩
loc(b) = ∅ for all 1 ≤ i ≤ n and b ∈ Act(sn). This follows from the fact that a CMDP is an
FMDP and hence s0[b] = sn[b]. This basic feature of a CMDP leads to a partial-order based
technique using which one can often efficiently verify many behavioral properties that are
“robust” with respect to interleavings of partially ordered behaviors, such as local reachability.
Due to space considerations, we will not pause to formalize the notion of robust properties
since it is not needed to establish our results.
▶ Remark 8. Deciding whether the global MDP induced by an FMDP (encoded in a standard
manner) is CD is in PSPACE. The idea is to convert the probabilistic transitions to non-
deterministic ones, and reduce the CD property to a reachability property of the resulting
1-safe Petri net, known to be in PSPACE [10]. However, given our main goals, establishing
this result in detail would be a digression and hence we do not do so. That said, for
practical purposes, we later discuss a simple, sufficient syntactic condition allowing us to
over-approximate CD in our case studies.
As a central tool to exploit causal determinacy, we introduce complete strategies.

▶ Definition 9. Let ρ be an infinite path in a Markov chain Mπ induced by a strategy π

on a CMDP M. Then, ρ is a complete path iff for every i ≥ 0, if a ∈ Act(ρi) then there
exists j ≥ i such that π(ρiρi+1 . . . ρj) = a. In other words, if a is available at ρi then it is
eventually chosen by the strategy along the path (where it will remain available due to CD).

Let Υ be the set of complete paths in Mπ. A strategy π is complete iff Prπ
M[Υ] = 1.

Thus, incomplete paths may be present in Mπ, but the collection of such paths has measure 0
and does not contribute to the reachability probabilities of interest. Note that Υ is measurable
as it can be written as countable intersections and unions of cylinder sets.

First, we show here that it suffices to consider only complete strategies for local reachability.
Later we will show that all complete strategies will yield the same, maximal probability value.
Consequently, we can freely choose a “greedy” strategy with which the maximal probabilities
can be computed in an efficient manner.

CONCUR 2024

6:8 Causally Deterministic Markov Decision Processes

▶ Lemma 10. There exists a deterministic, complete strategy π ∈ Π which achieves the
optimal value, i.e. Prπ

M[✸T] = supπ′∈Π Prπ′

M[✸T].

Proof Sketch. We delegate the (rather routine) proof to App. B. For a sketch, we show that
any (optimal, memoryless) strategy can be extended to a complete strategy without reducing
the reachability probability it achieves. Intuitively, the modified strategy waits until the
original strategy has visited all the states it will ever visit (thus any goal it might reach is
already reached), which happens with probability 1, and then switches to a “complete” mode
in which it plays all the actions that have not been played since they became available. ◀

In the next section, we develop the event structure semantics for FMDPs. Using this, we
show in Sec. 5 that any two complete strategies achieve the same value.

4 An Event Structure Semantics for FMDPs

4.1 Mazurkiewicz Trace Languages
We first associate a Mazurkiewicz trace language with an FMDP. Then, using a standard
construction, we obtain the event structure representation. We recall from [21] a Mazurkiewicz
trace alphabet is a pair (Σ, I) where Σ is a finite non-empty alphabet and I ⊆ Σ × Σ is
an irreflexive and symmetric relation called the independence relation. When describing
the executions of a distributed system, Σ is the set of actions and a I b asserts that the
actions a and b are “causally” independent. In other words, they can be executed in any
order when they are both enabled. We define D = (Σ × Σ) \ I to be the dependency relation.
The relation I induces in a natural way the equivalence relation ≈I Σ∗ × Σ∗. It is the least
equivalence satisfying σabσ′ ≈I σbaσ′ for a I b. For σ ∈ Σ∗, [σ] denotes the ≈I -equivalence
class containing σ, often called a Mazurkiewicz trace. It corresponds to the set of all possible
interleavings of a unique partially ordered set of actions. A Mazurkiewicz trace language is a
subset of {[σ] | σ ∈ Σ∗}, i.e. a set of Mazurkiewicz traces. For convenience, we abbreviate
Mazurkiewicz traces (Mazurkiewicz trace languages) as traces (trace languages).

4.2 The Mazurkiewicz Trace Language of an FMDP
To define the trace language of an FMDP we start with M-events.

▶ Definition 11. Let M = ({Sp}p∈Proc, {ŝp}p∈Proc, Act, loc, {Pa}a∈Act) be an FMDP. Then
α = (u, a, v) is an M-event if Pa(u, v) > 0. We define the probability of α as Pr(α) =
Pa(u, a, v). Furthermore, we set act(α) = a and loc(α) = loc(a).

The M-event α = (u, a, v) comprises the a-state that must hold at a state s for it to occur
(i.e. s[a] = u). It also reports the a-state that is chosen with probability Pr(α) resulting
in the global state s′ (i.e. s′[a] = v and s[Proc \ loc(a)] = s′[Proc \ loc(a)]). For instance,
α = (⟨u1⟩, a, ⟨u2⟩) is an M-event in the FMDP shown in Fig. 1 with Pr(α) = 0.8.

M-events naturally give rise to the transition relation −→M over S, defined as follows.
Suppose α = (u, a, v), and s, s′ ∈ S. Then s α−→M s′ if s[a] = u, s′[a] = v, and s[Proc \
loc(a)] = s′[Proc \ loc(a)]. As usual, we write −→ instead of −→M. We now define an
M-path to be a sequence s0α1s1α2 · · · sn−1αnsn such that (i) s0 = ŝ and (ii) si−1

αi−→ si for
1 ≤ i ≤ n. In essence, M-paths correspond to finite paths in the global MDP. Since we only
deal with M-paths from now on, we say “path” instead of M-path henceforth.

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:9

Let ΣM denote the set of M-events. In the following, we instead write Σ, as M will be
clear from the context. Moreover, we set Σp = {α | α ∈ Σ, p ∈ loc(α)} for each component p.
We define the independence relation I ⊆ Σ × Σ as I = {(α, β) | loc(α) ∩ loc(β) = ∅}. Clearly,
I is irreflexive and symmetric, and hence (Σ, I) is a trace alphabet. Next, for Σ′ ⊆ Σ let
prjΣ′ : Σ∗ → Σ′∗ be the projection which from sequences in Σ∗ erases all appearances of
letters that are not in Σ′. We abbreviate prjΣp as prjp. This leads to the equivalence relation
≈I over Σ∗ given by σ ≈I σ′ iff for every p ∈ Proc we have prjp(σ) = prjp(σ′). Effectively,
two traces are equivalent if no single component can differentiate between them. We define
≈I in this way instead of using the usual partial commutative relation, as it extends smoothly
to infinite M-event sequences. For convenience, we write from now on ≈ instead of ≈I .

Let σ = α1α2 · · · αn ∈ Σ∗. Then σ is an M-event sequence of M if there exists states
s0, s1, . . . , sn such that s0α1s1 · · · sn−1αnsn is an M-path. We let Lseq

M denote the set of M-
event sequences of M. This leads to the trace language of M given by LM = {[σ] | σ ∈ Lseq

M }.
We next introduce some terminology to aid in the construction of the event structure

representation of M. These notions are generic to the theory of Mazurkiewicz trace languages.
However, for convenience, we introduce them in the context of LM. First, ⊑ ⊆ LM × LM
is given by [σ] ⊑ [σ′] iff prjp(σ) is a prefix of prjp(σ′) for every p ∈ Proc. Clearly, ⊑ is a
well-defined partial ordering relation. Next, suppose [σ], [σ′] ∈ LM. Then [σ] ↑ [σ′] iff there
exists [σ′′] ∈ LM such that [σ] ⊑ [σ′′] and [σ′] ⊑ [σ′′]. Finally, [σ] ∈ LM is a prime trace iff
there exists an M-event α such that last(σ′) = α for every σ′ ∈ [σ] where last(τ) is the last
letter of the non-null sequence τ .

There is a rich theory of Mazurkiewicz trace languages available, see e.g. [9]. Here we
only use basic facts of the theory which we state below. The proofs are standard and can be
assembled from [9,27] and hence we omit them.

▶ Proposition 12. It holds that (i) if σ ≈ σ′ then |σ| = |σ′|, and (ii) [σ] ↑ [σ′] iff there exist
sequences σ′′, σ1 and σ′

1 such that (a) σ ≈ σ′′σ1 and σ′ ≈ σ′′σ′
1 and (b) a I b for every letter

a that appears in σ1 and every letter b that appears in σ′
1.

4.3 The Event Structure Representation of FMDPs
We begin by recalling from [24] that a prime event structure is a tuple ES = (E, ≤, #) where
(i) E is a countable set of events, (ii) ≤ ⊆ E × E is a partial ordering relation called the
causality relation, and (iii) # ⊆ E × E is an irreflexive and symmetric relation called the
conflict relation. It is required that if e # e′ and e′ ≤ e′′ then e # e′′. Usually, a prime event
structure is accompanied by a labelling function that relates a system to its event structure
representation. In our case, there will be two such functions.

▶ Definition 13. Let M = ({Sp}p∈Proc, {ŝp}p∈Proc, Act, loc, {Pa}a∈Act) be an FMDP. Its
event structure is a tuple ESM = (E, ≤, #, λ, µ) where (E, ≤, #) is a prime event structure
where (i) E = {[σ] ∈ LM | [σ] is a prime trace}, (ii) ≤ is ⊑ restricted to E×E, (iii) [σ]#[σ′]
iff it is not the case that [σ] ↑ [σ′], (iv) λ : E → Σ is the labelling function satisfying
λ([σ]) = last(σ), and (v) µ : E → [0, 1] assigns to e = [α1α2 · · · αn] ∈ E the probability
µ(e) =

∏
1≤j≤n Pr(αj) (i.e. the probability of a prime trace is the product of the probabilities

of the M-events encountered along a sequence in the prime trace).

In what follows we often write ≤ instead of ⊑ when viewing events as elements of E and not
as traces. The “states” of an event structure are called configurations and the dynamics of
ESM is captured via a transition relation over its configurations.

CONCUR 2024

6:10 Causally Deterministic Markov Decision Processes

α1 α2 β2 β1

α3 γ β2 β1

α1 α2 α1 α2 β2 β1

e1 e2

e

e′

α1 = ({u1}, a, {u2})
α2 = ({u1}, a, {u3})
α3 = ({u2}, a′, {u1})
β1 = ({v1}, b, {v1})
β2 = ({v1}, b, {v2})
γ = ({u3, v2}, c, {u1, v1})
e = [α2β2γ] = {α2β2γ, β2α2γ}

Figure 3 This figure illustrates the initial fragment of the event structure representation for the
FMDP depicted in Fig. 1.

▶ Definition 14. For c ⊆ E, define ↓c = {y | ∃x ∈ c s.t. y ≤ x}. Then c ⊆ E is a
configuration iff c = ↓c and (c × c) ∩ # = ∅.

We define CM to be the set of finite configurations of ESM and note that ∅ is a configuration.
Let c, c′ ∈ CM and α ∈ Σ. Then c

α−→ES c′ iff there exists e ∈ E \ c such that c ∪ {e} = c′

and λ(e) = α. This basically says that an event e which is not in the configuration c can be
added to it to obtain a larger configuration provided the past of e (under <) is contained in
c. For simplicity, we write ↓e instead of ↓{e} for e ∈ E. Clearly, ↓e is a configuration for
every e in E.

In Fig. 3 we show the initial fragment of the event structure representation of the FMDP in
Fig. 1. In order to minimize clutter, we have named the M-events as α1, α2, etc. We note that
Pr(α1) = 0.8, Pr(α2) = 0.2, Pr(β1) = 0.3, and Pr(β2) = 0.7. Further, Pr(α3) = 1 = Pr(γ).
In the diagram, the directed arrow represent the immediate causality relation ⋖ where e ⋖ e′

iff e < e′ and for every e′′, e ≤ e′′ ≤ e′ implies e = e′′ or e′′ = e′. The remaining members of
the causality relation are obtained by taking the reflexive transitive closure of this relation.
Similarly, the squiggly lines represent the minimal conflict relation #̂ defined as e #̂ e′ iff
e # e′ and (↓e × ↓e′) ∩ # = {(e, e′), (e′, e)}. Using the conflict inheritance requirement of
an event structure, we can deduce all other members of the conflict relation. For example,
in the event structure shown in Fig. 3, e3 # e4 since e1 # e2 ≤ e4 implies e1 # e4 and since
e1 ≤ e3 and # is symmetric, we get e3 # e4. In addition, we have listed the members of just
one of the prime traces named e whose label is α2. For the remaining events, we have just
indicated their labels.

The behavior of M can be related to the behavior of ESM as follows.

▶ Proposition 15. Let M and ESM be defined as above. Then the following statements
hold.
1. Let c = {e1, e2, . . . , en} be a configuration such that e1e2 · · · en is a linearization of the

partial order (c, ≤) where, by abuse of notation, ≤ also denotes the restriction of ≤ to c×c.
Then there exists s0, s1, . . . , sn ∈ S such that s0 = ŝ and s0λ(e1)s1λ(e2)s2 · · · sn−1λ(en)sn

is a finite path in M, which we shall call a c-path (in M).
2. Let the function state : C → S be given by (i) state(∅) = ŝ and (ii) for a non-empty

configuration c and c-path ρ = s0α1s1 · · · sn in M, we define state(c) = sn. Then, state

is a well-defined map from C onto the set of reachable states of M.
3. Let c, c′ ∈ C and α = (u, a, v). Then c

α−→ES c′ iff P(state(c), α, state(c′)) = Pr(α) > 0.
4. Let tr : C → LM be the map given by (i) tr(∅) = {ε} and (ii) for a non-empty configuration

c and c-path s0α1s1 · · · sn in M it is the case that tr(c) = [α1α2 · · · αn]. Then, tr is well
defined and a bijection.

Most of these observations are standard [27] and directly carry over to our setting. The third
part is specific to FMDPs but follows directly from the definition of an M-event.

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:11

We close out this section with a useful result which will be needed in the next section.
Let σ = α1α2 · · · αn be an M-event sequence in M. Then dg(σ), the subsequence of σ, is
defined inductively by (i) dg(αn) = αn and (ii) dg(αi−1αi · · · αn) = αi−1dg(αiαi+1 · · · αn)
if there exists an M-event β in dg(αiαi+1 · · · αn) such that αi D β and dg(αiαi+1 · · · αn)
otherwise. Basically, dg is the so called dependency graph that captures the causal past αn

in σ. We now define ev(α1α2 · · · αn) to be the trace = [dg(α1α2 · · · αn)]. Finally, the relation
co ⊆ E × E for the event structure ESM is given by, co = E × E \ (≤ ∪ ≥ ∪ #). If e co e′

this can be interpreted as e and e′ being causally independent.

▶ Lemma 16. Let σ = α1α2 · · · αn ∈ Lseq
M a non-null M-event sequence in Lseq

M .
1. Then ev(σ) is a prime trace and hence is an event in ESM.
2. Suppose that e′ ≤ e in ESM. Then there exists a unique i ∈ {1, 2, . . . , n − 1} such that

ev(α1α2 · · · αi) = e′.
3. Suppose that e′ = ev(α1α2 · · · αi) for some 1 ≤ i < n. Then e′ ≤ e or e co e′ in ESM.
4. Suppose that αn = (u, a, v) and σ′ = α1α2 · · · αn−1α′

n such that α′
n = (u, a, v′) and

v ̸= v′. Then ev(σ) # ev(σ′) in ESM.

The proof follows from [32]. The first part says that along a path in M every M-event
corresponds to the occurrence of an event in ESM. The second part says that every event
e′ that lies in the past of the event e represented by the M-event sequence σ will appear
as the event corresponding to a unique prefix of σ. The third part says if e corresponds to
the M-event sequence σ then every event that corresponds to a strict prefix of σ will either
be causally earlier than e or will be causally independent of e in ESM. The last part says
that two different stochastic choices made at a state along an M-path will correspond to
conflicting events in ESM.

▶ Remark 17. We conclude by noting that an event e = [α1α2 . . . αn] in ESM = (E, ≤, #, λ, µ)
gets assigned a probability value via µ(e) =

∏
1≤i≤n Pr(αi). It is not difficult to provide a

measure theoretic justification for this probability value by constructing a σ-algebra generated
by the family of cylinder sets {CS(e)}e∈E where CS(e) = {c ∈ C∞

max | ↓e ⊆ c}. Here, C∞ is
the set of infinite configurations ESM and c ∈ C∞ is maximal (i.e. c ∈ C∞

max) iff c ⊆ c′ ∈ C∞

implies c = c′. In other words, c cannot be extended to a larger (infinite) configuration. This
distinction between infinite and maximal infinite configurations arises due to concurrency
and corresponds to the distinction between complete and incomplete paths. We can define
PrES(CS(e)) = µ(e) and show that PrES extends canonically to a probability measure over
the σ-algebra generated by the above family of cylinder sets. We leave this construction for
future work, since we merely need the probability values assigned to the events as common
reference points to establish the main result of the next section, namely, all complete strategies
determine the same probability values for local reachability properties.

5 The Key Result for CMDPs

Recall that we are given T ⊆ Sp for some component p and aim to determine supπ∈ΠPrπ
M[✸T],

where T = {s | s(p) ∈ T}. In Lem. 10, we argued that it suffices to consider complete
strategies to achieve this. Here, we shall show that all complete strategies compute the same
probability value for ✸T. This allows us to choose a complete strategy greedily, which in
turn enables us to efficiently compute the (optimal) probability of a local reachable set.

We first identify the set of events E✸T in the event structure ESM, corresponding to
paths in M reaching T . Let e = [α1α2 · · · αn] ∈ E with αj = (uj , aj , vj) for 1 ≤ j ≤ n. Then
e ∈ E✸T if vn(p) ∈ T and vi(p) /∈ T for 1 ≤ i < n, in other words, when its last M-event
reaches a member of T and no earlier M-event in the sequence representing e does so.

CONCUR 2024

6:12 Causally Deterministic Markov Decision Processes

To establish the main goal of this section we proceed as follows. For the complete strategy
π, we let Pathsπ

comp denote the set of complete paths of the Markov chain Mπ. We then
identify, for a given e ∈ E✸T , the set of finite paths PathReach(Mπ, e) in Mπ which are
prefixes of complete paths and “reach” e. Specifically, suppose ξ = ρ0α1ρ1α2 · · · ρn−1αnρn

is a path in Mπ. Then ξ ∈ PathReach(Mπ, e) if (i) it is a prefix of a path in Pathsπ
comp,

(ii) ev(α1α2 · · · αn) = e and (iii) no strict prefix of ξ satisfies (ii).
We first show that for each e ∈ E✸T it is the case that µ(e) = Prπ

M[
⋃

σ∈PathReach(Mπ,e) σ].
(Recall that µ(e) is the probability value assigned to e in ESM.) We then lift this result
to E✸T and show that

∑
e∈E✸T

µ(e) =
∑

e∈E✸T
Prπ

M[PathReach(Mπ, e)] = Prπ
M[✸T]. Since

these results apply to every complete strategy π, we are done.

5.1 Relating the Probability of e to the Probability of
PathReach(Mπ, e)

Through this subsection, fix e ∈ E✸T and a complete strategy π. We wish to prove that
µ(e) = Prπ

M[PathReach(Mπ, e)]. Our proof consists of three steps. First, we represent Mπ

as a transition system TSπ by labelling the transitions of the Markov chain with M-events.
Second, we represent PathReach(Mπ, e) as a finite prefix of TSπ. Third, we use this finite
prefix to establish that µ(e) = Prπ

M[PathReach(Mπ, e)].
We begin by deriving the transition system TSπ. The states of TSπ are the states of

Mπ (i.e. finite paths in M). To avoid confusion, we write ρ for these states and ξ for paths
in TSπ. Moreover, there is a transition ρ

α−→ ρ′ iff (i) Mπ(ρ, ρ′) > 0 and (ii) α = (u, a, v)
is the unique M-event that satisfies last(ρ)[a] = u and s′[a] = v where ρ′ = ρas′. In
effect, TSπ is obtained from Mπ by replacing the probability “labels” of transitions by
the M-event corresponding to that transition. In particular, note that for a state ρ of
TSπ, a ∈ Act(last(ρ)) iff there exists an M-event α = (u, a, v) such that last(ρ)[a] = u.
Based on this, we can directly transfer the definition of complete paths to TSπ. We define
the set of successor states in the obvious way, i.e. succ(ρ) = {ρ′ | ∃α. ρ

α−→ ρ′}. Observe
that if succ(ρ) = {ρ1, ρ2, . . . , ρk} and ρ

αi−→ ρi for 1 ≤ i ≤ k then there exists an a such
that Act(αi) = a for every i ∈ {1, 2, . . . , k} and

∑
1≤i≤k Pr(αi) = 1. For the rest of this

subsection, we work with this transition system.
We now turn to representing PathReach(Mπ, e) as a finite prefix of TSπ. First we

introduce some useful terminology. We set c0 = ↓e. Next, suppose ξ = ρ0α1ρ1 · · · αnρn

is a path in TSπ. Then, EV (ξ) = {ev(α1α2 · · · αi) | 1 ≤ i ≤ n} denotes the set of events
encountered along the path ξ. Naturally, EV (ξ) = ∅ if ξ = ŝ. We write Ge = (V, =⇒) to
denote the finite prefix of TSπ

comp we are after. We construct Ge inductively by starting with
ŝ ∈ V and mark it as unprocessed. We define ε to be a path in V and ŝ = last(ε). We note
that EV (ŝ) = ∅ ⊂ c0 (as usual, ⊂ denotes a strict subset).

Suppose ξ = ρ0α1ρ1 · · · ρn−1αnρn is a path in V with ρn marked as unprocessed and all
the other nodes preceding it in ξ marked as processed. Furthermore, assume that EV (ξ) ⊂ c0.
Let succ(ρn) = {ρ′

1, ρ′
2, . . . , ρ′

k} and β1, β2, . . . , βk such that ρ
βi−→ ρ′

i for 1 ≤ i ≤ k. We now
extend Ge by adding the nodes ρ′

1, ρ′
2, . . . , ρ′

k to V and the transitions (ρ, βi, ρ′
i) for 1 ≤ i ≤ k

to =⇒. We mark ρn as processed. To define the status of the new nodes that have been
added, we consider two cases after setting ei = ev(α1α2 · · · αnβi) for 1 ≤ i ≤ k.

Case 1. Suppose there exists i with ei ≤ e. Then ei ∈ c0 \ EV (ξ) and hence EV (ξβiρ
′
i) =

EV (ξ) ∪ {ei}. If EV (ξβiρ
′
i) = c0 we mark ρ′

i as a live leaf node and do not process it any
further. This is so since ev(ξβiρ

′
i) = e and e has been hence reached. We also note that

α1α2 · · · αnβi ∈ PathReach(Mπ, e). On the other hand, if EV (ξβiρ
′
i) ⊂ c0, we mark ρ′

i

as unprocessed.

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:13

In addition we mark, for each l ∈ {1, 2, . . . , k}\{i}, the node ρ′
l to be a dead leaf node and

do not process it any further. To justify this, let el = ev(ξβlρ
′
l) for l ∈ {1, 2, . . . , k} \ {i}.

Then clearly ei ≤ e and hence by the last part of Lem. 16, we must have ei # el for every
l ∈ {1, 2, . . . , k} \ {ei}. But then el # ei ≤ e implies el # e since conflict is inherited via
the causality relation in an event structure. Hence el and e can not together belong to
any configuration and we can never “reach” e by exploring ρ′

l any further.
Case 2. Suppose ei ≰ e for each i. Then, by the third part of Lem. 16, we must have

ei co e. This implies that EV (ξβiρ
′
i) = EV (ξ) for each i and we mark each node ρ′

i as
unprocessed. The idea is that the chosen action a at ρn does not contribute to uncovering
any of the events in c0 and hence all the successors of this node must be further explored.

Starting from the root node we repeatedly apply the above rules until there are no unprocessed
nodes left. It remains to be shown that Ge is a finite prefix of TSπ and consequently the
construction procedure for Ge always terminates. To this end, we require some terminology.
Let ξω = ρ0α1ρ1α2 · · · be a complete path in TSπ. For n ≥ 0, let ξn = ρ0α1ρ1 · · · ρn denote
the finite prefix of ξω of length n. We say that ρn

αn+1−→ ρn+1 is a useful transition if there
exists e′ ∈ c0 \ EV (ξn) such that π(ρn) = act(e′). Otherwise it is a useless transition.
Moreover, we set EVe(ξn) = EV (ξn) ∩ c0. Finally, we say that ξn = ρ0α1ρ1 · · · ρn is a live
path if (i) ρi is not a dead leaf node for 1 ≤ i ≤ n and (ii) EVe(ξn) ⊂ c0.

▶ Lemma 18. Suppose ξn = ρ0α1ρ1 · · · ρn is a live path.
1. If e′ ∈ min(c0) \ EV (ξn) then act(e′) ∈ Act(ρn)
2. ρi ∈ V for 0 ≤ i ≤ n + 1 and ρj

αj+1=⇒ ρj+1 for 0 ≤ j < n + 1.
3. If ρn

αn+1−→ ρn+1 is a useful transition, then ρn+1 is a dead leaf node or |EVe(ξn+1)| =
|EVe(ξn)| + 1. Further, ρn+1 is a live leaf node if EVe(ξn+1) = c0

4. If ρn
αn+1−→ ρn+1 is a useless transition then EVe(ξn+1) = EVe(ξn) and ξn+1 is a live path.

Proof. For the first part, let e′ ∈ min(c0 \ EV (ξn)). If e′′ < e′ then e′′ ∈ EV (ξn). Otherwise
e′′ ∈ c0 \ EV (ξn) which contradicts e′ ∈ min(c0 \ EV (ξn)). Thus c′ = EV (ξn) ∪ {e′} is a
configuration and EVe(ξn) e′

−→ES c′. From the first part of Prop. 15 we get act(e′) ∈ Act(ρn).
The rest follows from the construction rules for Ge and their explanations. ◀

▶ Lemma 19. The following assertions hold.
1. Let ξω ∈ Pathsπ

comp with ξn = ρ0α1ρ1 · · · ρn. Then there exists k > 0 such that ρk is a
live or dead leaf node.

2. Ge is a finite tree.

Proof. From the third part of Lem. 18, it follows that there can be at most |c0| useful
transitions along ξω before a dead or live leaf node is encountered. We now claim that there
can be only a finite number of consecutive useless moves along ξω. This follows from the first
and fourth parts of Lem. 18 and the definition of a complete path. Hence ξω will eventually
hit a dead or live node. The second part of the lemma now follows from the first part and
König’s lemma since TSπ is finitely branching. ◀

Since Ge is a finite tree it is immediate that its construction procedure always terminates. It
is also easy to see that the set of live branches, i.e. paths from the root node to the live leaf
nodes in Ge, correspond to PathReach(Mπ, e).

For the event e of Fig. 3, our construction produces the tree shown in the left of Fig. 4.
The boxes denote dead leaf nodes and the circle is the lone live leaf node. On the other hand,
for the event e′, the resulting tree can be arbitrarily large. After the γ event, the strategy

CONCUR 2024

6:14 Causally Deterministic Markov Decision Processes

β2

α1 α2

γ

β1 β2

α1 α2

γ

β2

β2

α1 α2

β1

α1 α2

β1

β2

α1 α2

β1

α1 α2

β1

Figure 4 The trees for the events e (left) and e′ (right).

can choose to execute the action b a large number of times before executing the action a.
For the case where the strategy chooses to do b twice whenever possible before choosing to
do an a or c, the resulting tree is shown on the right of Fig. 4, using the same notation.

We can now establish the main result of this subsection.

▶ Lemma 20. Suppose e ∈ E✸T . Then µ(e) = Prπ
M[PathReach(Mπ, e)].

Proof. In Ge, each edge in the tree is an M-event α, accompanied by the probability value
Pr(α). Hence the probability of a path is fixed to be the product of the probabilities of the
labels of the edges encountered on the path. Let V ′ be the set of nodes in the finite tree
consisting of nodes that are not dead leaf nodes. In what follows, ρ ranges over V ′. Clearly,
the root node ρ0 is in V ′. We now define the probability associated with a node ρ, denoted
Prρ, to be the sum of the probabilities of the paths leading from ρ to live leaf nodes. By
convention, the probability associated with a live leaf node is 1. We claim that Prρ0 = µ(e).

To prove the claim, we first associate the partial order (cρ, ≤) with each node ρ where
cρ = c0 \ EV (ξρ) with ξρ being the unique path from ρ0 to ρ in Ge. Next, for each ρ ∈ V ′,
we let htρ be the length of the longest path from ρ to a live leaf node. We now wish to show
by induction on htρ that Prρ =

∏
e′∈cρ

Pr(λ(e′)) if cρ ̸= ∅ and Prρ = 1 otherwise. If we
do so, then Prρ0 = µ(e) will follow at once. To start with, let ρ be a live leaf node. Then
htρ = 0 and Prρ = 1 by convention.

Next, suppose cρ ̸= ∅ and π(ξρ) = a. We consider two cases. First assume there
exists e′ ∈ min(cρ) such that a = act(e′). Then ρ has a unique child node ρ′ with (c′, ≤)
as the associated partial order satisfying c′ = c \ {e′}. All other successor nodes of ρ

will be dead leaf nodes. Now, every path from ρ to a live leaf node consists of the edge
(ρ, α, ρ′) followed by a path from ρ′ to a live leaf node. This implies Prρ = Pr(λ(e′)) · Prρ′ .
By the induction hypothesis, Prρ′ =

∏
e′′∈c′ Pr(λ(e′′)). However cρ′ = cρ \ {e′} implies

Prρ = Pr(λ(e′)) ·
∏

e′′∈cρ′ Pr(λ(e′′)) =
∏

e′∈cρ
Pr(λ(e′)) as required.

Next, assume there does not exist e′ ∈ min(c) such that a = act(e′). Let the set of
successors of ρ be {ρ′

1, ρ′
2, . . . , ρ′

k} and {β1, β2, . . . , βk} such that ρ
βi=⇒ ρ′

i for 1 ≤ i ≤ k. Then
every path from ρ to a live leaf node is an edge (ρ, βi, ρ′

i) followed by a path from ρ′
i to that

live leaf node for some i. This implies that Prρ =
∑

1≤i≤k Pr(βi) · Prρ′
i
. But then (cρ, ≤)

is the partial order associated with each ρi by the construction of Ge. Hence, by induction
hypothesis, Prρi =

∏
e′∈c Pr(λ(e)). Let t =

∏
e′∈c Pr(λ(e′)). Then Prρ =

∑
1≤i≤k Pr(βi) · t.

But then
∑

1≤i≤k Pr(βi) = 1. Hence Prρ = t as required. ◀

5.2 All Complete Strategies Achieve the Same Value

We now lift Lem. 20 to E✸T , i.e. show that
∑

e∈E✸T
µ(e) =

⋃
e∈E✸T

Prπ
M[PathReach(Mπ, e)].

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:15

First, we observe that TSπ naturally inherits a probability measure from Mπ. To
see this, by the definition of TSπ we are assured that ρ0ρ1 · · · ρn is a path in Mπ iff
ρ0

α1−→ ρ1 · · · ρn−1
αn−→ ρn is a path in TSπ where the sequence of M-events α1α2 · · · αn is

uniquely determined by the sequence ρ1ρ2 · · · ρn. As a result, the σ-algebra generated by the
(cylinder set of) finite paths of TSπ will be in a bijective relation with the usual σ-algebra
generated by the finite paths of Mπ. Consequently, we can transfer the probability measure
Prπ

M to a probability measure over the σ-algebra of TSπ. By abuse of notation, we shall
denote this measure too as Prπ

M in what follows.
Now consider e ∈ E✸T and Ge, the finite tree constructed in the previous subsection.

Let Pathse be the set of branches from the root node to the live leaf nodes in Ge. Fur-
ther, let CS(ξ) be the cylinder set of the finite path ξ in TSπ. Then from the proof of
Lem. 20 it follows that Prπ

M[PathReach(Mπ, e)] = Prπ
M[

⋃
ξ∈P athse

CS(ξ)]. Consequently,
Prπ

M[✸T] =
⋃

e∈E✸T

⋃
ξ∈P athse

CS(ξ). Since E is a countable set, this probability value is
well-defined. To show that this value is the same for all complete strategies, we establish
that

⋃
e∈E✸T

⋃
ξ∈P athse

CS(ξ) =
∑

e∈E✸T
µ(e). The key to doing this is the next result.

▶ Lemma 21. Let e1, e2 ∈ E✸T such that e1 ̸= e2. Then e1 # e2.

Proof. Let e1 = [α1α2 · · · αn] and e2 = [β1β2 · · · βm]. If e1 < e2, then there exists i < n such
that ev(β1β2 · · · βi) = e1. But this contradicts the requirement that αn is the first M-event
in the sequence α1α2 · · · αn with vn(p) ∈ T where αj = (uj , aj , vj) for 1 ≤ j ≤ n. Thus
e1 ≮ e2 and similarly e2 ≮ e1. Next suppose e1 co e2.

Then c12 = ↓e1 ∪ ↓e2 is a configuration. To see this, let x and y be events such that
x ∈ c12 and y ≤ x. Suppose x ∈ ↓e1. Then y ∈ ↓e1 ⊆ c12. Similarly, x ∈ ↓e2 implies that
y ∈ c12. Next, suppose that x # y. Then, it can not be the case that x, y are both in ↓e1 or
↓e2 since both ↓e1 and ↓e2 are configurations and hence conflict-free. Hence, assume that
x ∈ ↓e1 and y ∈ ↓e2. Then x ≤ e1 and y ≤ e2, which implies that e1 # e2, contradicting
e1 co e2. Thus c12 indeed is a configuration.

This implies that ↓e1 ↑ ↓e2. Hence by the last part of Prop. 12, there exist M-event
sequences γ1γ2 · · · γl, α′

1α′
2 · · · α′

n′ , and β′
1β′

2 · · · β′
m′ such that (i) γ1γ2 · · · γlα

′
1α′

2 · · · α′
n′ ≈

α1α2 · · · αn, (ii) γ1γ2 · · · γlβ
′
1β′

2 · · · β′
m′ ≈ β1β2 · · · βm, and (iii) α′

i I β′
j for 1 ≤ i ≤ n′ and

1 ≤ j ≤ m′. Since [α1α2 · · · αn] and [β1β2 · · · βm] are both prime traces we must have
α′

n′ = αn and β′
m′ = βm. This leads to αn I βm, which is a contradiction since p ∈

loc(act(αn)) ∩ loc(act(βm)) and hence αn D βm. ◀

▶ Lemma 22. Prπ
M[✸T] =

∑
e∈E✸T

µ(e).

Proof. We have Prπ
M[✸T] = Prπ

M[
⋃

e∈E✸T

⋃
ξ∈P athse

CS(ξ)] from the remarks preceding
Lem. 20, where Pathse is the set of branches from the root node to live leaf nodes in Ge,
the finite tree constructed in the proof of Lem. 20. Let e1, e2 ∈ E✸T such that e1 ̸= e2.
Then e1 # e2 by Lem. 21. Let ξ1 ∈ Pathse1 and ξ2 ∈ Pathse2 . Then from the definition
of Pathse it follows directly that CS(ξ1) ∩ CS(ξ2) = ∅. This implies that Prπ

M[✸T] =∑
e∈E✸T

Prπ
M[

⋃
ξ∈P athse

CS(ξ)]. From Lem. 20 we get Prπ
M[✸T] =

∑
e∈E✸T

µ(e). ◀

This at once leads to our main result.

▶ Theorem 23. Let π and π′ be two deterministic complete strategies for the CMDP M.
Then Prπ

M[✸T] = Prπ′

M[✸T].

Combined with Lem. 10, we have that in order to compute the optimal local reachability
value, we can confine ourselves to complete strategies and from among them, greedily choose
one.

CONCUR 2024

6:16 Causally Deterministic Markov Decision Processes

6 Implementation and Experimental Evaluation

We implemented a prototype tool and evaluated it on a few models, as we describe in
the following. The tool is written in Java and based on PET [22]. It uses PRISM [18] to
parse models. We used the pure-Java library oj! Algorithms to solve linear programs. We
empirically validated the soundness of our implementation by comparing its output on about
20 models to the results of Storm [8] in its sound, exact mode. The tool, its source code, all
used models, and further models can be obtained from [23].

6.1 Algorithm Description
Our tool (i) provides a syntactic over-approximation for checking the CD property, and
(ii) computes the maximal reachability probability of a local reachability set, assuming
that the input MDP is a CMDP. In the interest of space, we only sketch the computation
procedure here. More details and a formal description can be found in App. A. Intuitively,
the goal is to construct only the part of the system that is reached by one specific complete
strategy, chosen as follows. First, we heuristically fix a priority over the set of actions. Then,
we begin exploring the global FMDP by starting in the initial state, picking the available
action with the highest priority, and determine all its stochastic successors. We repeat this
process for the discovered successors until a fixpoint of states is reached. One must however
ensure that this greedy prioritization avoids neglecting an available action forever. To this
end, we check in each bottom maximal end component whether any available action is never
chosen. If so, we pick, for each bottom component, the constantly omitted action with
highest priority and explore as above. Eventually, this process will terminate with no bottom
MECs having any omitted action. Then, we determine the maximal reachability probability
of the target local state on the constructed subsystem. In our implementation we use the
standard linear program for reachability (see, e.g., [2, Thm. 10.105]). We note that for the
computation, CD is only required for correctness, not for termination.

Our implementation is quite simplistic and can be optimized in multiple ways. In
particular, the priority order of actions will have a large influence on the size of the resulting
subsystem, and this could be significantly improved by intelligent adaptive techniques and
learning-based approaches. However, our current heuristical ordering already provides
convincing results. Hence we did not explore this issue further.

6.2 Setup and Results
We consider four types of models, each of which was either constructed from scratch or
obtained by adapting an existing model to fit into our framework. Unfortunately, most models
of the PRISM benchmark suite [19] are not immediately CD and one needs to examine which
ones can be adapted to fit into our framework, which we leave for future work. We provide a
brief intuitive description of the models we used. The concrete specification in the PRISM
modelling language can be found in [23]. The sync model consists of 20 processes running in
parallel, each repeatedly tossing a (biased) coin and progressing when head is obtained, and
finally synchronizing on a common action with all other processes to reach their final states.
We next consider a variant of the classical dining philosophers, where philosophers alternate
between eating and thinking. In our variant, the thinking process of each philosopher has
several (probabilistic) steps with each philosopher initially “musing” and eventually becoming
“enlightened” or “bewildered”, and we seek the probability of one philosopher achieving

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:17

Table 1 Overview of results for our four models. From left to right, we list the model name,
its overall size (as reported by Storm), the runtime of Storm with sparse and symbolic engine,
respectively, the size of the reduced model constructed by our tool, and the overall runtime of our
tool. T/O denotes a runtime of over 5 minutes. We also carried out a comparison to PRISM,
however Storm was faster in all cases.

Model Size Storm-sparse Storm-symbolic Reduced Size Our Tool
sync 2.1 · 106 17s 2s 22 2s
philosophers 8.6 · 106 T/O T/O 3264 4s
production 6.6 · 107 T/O T/O 11669 8s
scheduling 2.8 · 1010 T/O T/O 111 <1s
scheduling (large) ?? T/O T/O 1021 3s

enlightenment. The production model comprises a production network where resources
are used to assemble (through several steps) a final product. Resources have a chance of
becoming exhausted every time they are mined and we are interested in the probability
of producing a given quantity of the final product. Finally, scheduling models a central
process C which proceeds in ten stages. In stage i, the process needs to synchronize with
the process pi to proceed to stage i + 1. The sub-processes are independent, but may fail to
complete. We are interested in the probability of the central process finishing the final stage.
For scalability analysis, we also consider a “large” variant where C has 20 stages and each pi

has 50 sequential steps.
We executed our tool on standard hardware and compared our results with those obtained

using the model checker Storm. We considered both the default sparse as well as symbolic
engines of Storm and otherwise let Storm run in its default configuration. Notably, we did
not require exact or sound results (i.e. Storm could decide to use classical, unsound value
iteration), while our tool computed correct, exact results using linear programming (up to
floating point precision). We summarize our findings in Table 1. One can see that our (basic,
unoptimized) approach significantly outperforms existing approaches on the chosen models.
This improvement is due to our method being able to avoid visiting a lot number of “useless”
states by not exploring every interleaving. On the “large” variant of scheduling, Storm fails
to even output a state count, which we estimate to be of the order of 5020 (≈ 1034).

7 Conclusion

We introduced a class of factored MDPs where through the notion of locations, we cleanly
separate the causality, concurrency, and conflict relations between the stochastic events in
the system. This leads to an event structure semantics for our FMDPs. We mainly used this
representation to provide the basis for a powerful partial order based quantitative analysis
technique for CMDPs, a natural subclass of FMDPs.

In the future, we plan to study the class of CMDPs from the standpoint of expressiveness.
In particular it will be interesting to separate CMDPs from FMDPs that inherently do not
have the CD property but are unavoidable in practice. Here we suspect that the property
called confusion-freeness will play an important role [30]. We also wish to emphasize that the
class of FMDPs we identify and their event structure semantics are of independent interest.
In particular, it opens up the possibility of using techniques such as finite prefixes of event
structures [11] and stubborn sets [15] to analyze FMDPs. These techniques can be applied
for model checking the FMDPs for probabilistic temporal logical specifications. To secure
the foundations for doing so, the probability measure for events structures that was alluded
to at the end of Sec. 4 will need to be fleshed out.

CONCUR 2024

6:18 Causally Deterministic Markov Decision Processes

Our experiments suggest that the presented method has significant potential for practical
applicability, especially in light of the fact that the method itself can be improved and
extended in multiple ways; for instance, by considering reachability properties for a small
number of components or by formulating weaker versions of the CD property.

References

1 Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: Branching cells
and distributed probabilities for event structures. Information and Computation, 204(2):231–
274, 2006. doi:10.1016/j.ic.2005.10.001.

2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Marco Beccuti, Giuliana Franceschinis, and Serge Haddad. Markov decision petri net and

markov decision well-formed net formalisms. In Jetty Kleijn and Alexandre Yakovlev, editors,
Petri Nets and Other Models of Concurrency – ICATPN 2007, 28th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency, ICATPN 2007,
Siedlce, Poland, June 25-29, 2007, Proceedings, volume 4546 of Lecture Notes in Computer
Science, pages 43–62. Springer, 2007. doi:10.1007/978-3-540-73094-1_6.

4 Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting structure in policy
construction. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, pages
1104–1113. Morgan Kaufmann, 1995. URL: http://ijcai.org/Proceedings/95-2/Papers/
012.pdf.

5 Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns, Sebastian Junges,
and Andrea Turrini. JANI: quantitative model and tool interaction. In Tools and Algorithms
for the Construction and Analysis of Systems – 23rd International Conference, TACAS 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II, volume 10206 of Lecture Notes
in Computer Science, pages 151–168, 2017. doi:10.1007/978-3-662-54580-5_9.

6 Luca de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,
USA, 1997. URL: https://searchworks.stanford.edu/view/3910936.

7 Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Roberto Segala.
Symbolic model checking of probabilistic processes using mtbdds and the kronecker repre-
sentation. In Susanne Graf and Michael I. Schwartzbach, editors, Tools and Algorithms for
Construction and Analysis of Systems, 6th International Conference, TACAS 2000, Held as
Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS 2000,
Berlin, Germany, March 25 – April 2, 2000, Proceedings, volume 1785 of Lecture Notes in
Computer Science, pages 395–410. Springer, 2000. doi:10.1007/3-540-46419-0_27.

8 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm
is coming: A modern probabilistic model checker. In Computer Aided Verification – 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II, volume 10427 of Lecture Notes in Computer Science, pages 592–600. Springer, 2017.
doi:10.1007/978-3-319-63390-9_31.

9 Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, 1995.
doi:10.1142/2563.

10 Javier Esparza. Decidability and complexity of Petri net problems – an introduction. In
Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, held in Dagstuhl, September 1996, volume 1491 of Lecture
Notes in Computer Science, pages 374–428. Springer, 1996. doi:10.1007/3-540-65306-6_20.

https://doi.org/10.1016/j.ic.2005.10.001
https://doi.org/10.1007/978-3-540-73094-1_6
http://ijcai.org/Proceedings/95-2/Papers/012.pdf
http://ijcai.org/Proceedings/95-2/Papers/012.pdf
https://doi.org/10.1007/978-3-662-54580-5_9
https://searchworks.stanford.edu/view/3910936
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1142/2563
https://doi.org/10.1007/3-540-65306-6_20

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:19

11 Javier Esparza and Keijo Heljanko. Unfoldings – A Partial-Order Approach to Model Checking.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2008. doi:
10.1007/978-3-540-77426-6.

12 Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model
minimization in Markov decision processes. Artif. Intell., 147(1-2):163–223, 2003. doi:
10.1016/S0004-3702(02)00376-4.

13 Marcus Größer and Christel Baier. Partial order reduction for Markov decision processes: A
survey. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, Formal Methods for Components and Objects, 4th International Symposium, FMCO
2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 408–427. Springer, 2005. doi:10.1007/11804192_19.

14 Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution
algorithms for factored MDPs. J. Artif. Intell. Res., 19:399–468, 2003. doi:10.1613/JAIR.
1000.

15 Henri Hansen, Marta Z. Kwiatkowska, and Hongyang Qu. Partial order reduction for model
checking Markov decision processes under unconditional fairness. In Eighth International
Conference on Quantitative Evaluation of Systems, QEST 2011, Aachen, Germany, 5-8
September, 2011, pages 203–212. IEEE Computer Society, 2011. doi:10.1109/QEST.2011.35.

16 Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods Syst. Des.,
36(3):246–280, 2010. doi:10.1007/S10703-010-0097-6.

17 Daphne Koller and Nir Friedman. Probabilistic Graphical Models – Principles and Techniques.
MIT Press, 2009. URL: http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&
tid=11886.

18 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Computer Aided Verification – 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes
in Computer Science, pages 585–591. Springer, 2011. doi:10.1007/978-3-642-22110-1_47.

19 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. The PRISM benchmark suite. In
Ninth International Conference on Quantitative Evaluation of Systems, QEST 2012, London,
United Kingdom, September 17-20, 2012, pages 203–204. IEEE Computer Society, 2012.
doi:10.1109/QEST.2012.14.

20 Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and Giuliana
Franceschinis. Modelling with generalized stochastic petri nets. SIGMETRICS Perform.
Evaluation Rev., 26(2):2, 1998. doi:10.1145/288197.581193.

21 Antoni W. Mazurkiewicz. Introduction to trace theory. In Volker Diekert and Grzegorz
Rozenberg, editors, The Book of Traces, pages 3–41. World Scientific, 1995. doi:10.1142/
9789814261456_0001.

22 Tobias Meggendorfer. PET – A partial exploration tool for probabilistic verification. In
Automated Technology for Verification and Analysis – 20th International Symposium, ATVA
2022, Virtual Event, October 25-28, 2022, Proceedings, volume 13505 of Lecture Notes in
Computer Science, pages 320–326. Springer, 2022. doi:10.1007/978-3-031-19992-9_20.

23 Tobias Meggendorfer. Causally deterministic markov decision processes, July 2024. Software
(visited on 2024-08-20). doi:10.5281/zenodo.12657579.

24 Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and
domains, part I. Theor. Comput. Sci., 13:85–108, 1981. doi:10.1016/0304-3975(81)90112-2.

25 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.

26 Wolfgang Reisig. Understanding Petri Nets – Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013. doi:10.1007/978-3-642-33278-4.

27 Brigitte Rozoy and P. S. Thiagarajan. Event structures and trace monoids. Theor. Comput.
Sci., 91(2):285–313, 1991. doi:10.1016/0304-3975(91)90087-I.

CONCUR 2024

https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1016/S0004-3702(02)00376-4
https://doi.org/10.1016/S0004-3702(02)00376-4
https://doi.org/10.1007/11804192_19
https://doi.org/10.1613/JAIR.1000
https://doi.org/10.1613/JAIR.1000
https://doi.org/10.1109/QEST.2011.35
https://doi.org/10.1007/S10703-010-0097-6
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1145/288197.581193
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1007/978-3-031-19992-9_20
https://doi.org/10.5281/zenodo.12657579
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1016/0304-3975(91)90087-I

6:20 Causally Deterministic Markov Decision Processes

28 Ratul Saha, Javier Esparza, Sumit Kumar Jha, Madhavan Mukund, and P. S. Thiagarajan.
Distributed Markov chains. In Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen,
editors, Verification, Model Checking, and Abstract Interpretation, pages 117–134, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-46081-8_7.

29 P. S. Thiagarajan and Shaofa Yang. A theory of distributed Markov chains. Fundam.
Informaticae, 175(1-4):301–325, 2020. doi:10.3233/FI-2020-1958.

30 Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event structures and domains.
Theoretical Computer Science, 358(2):173–199, 2006. Concurrency Theory (CONCUR 2004).
doi:10.1016/j.tcs.2006.01.015.

31 Kazuki Watanabe, Clovis Eberhart, Kazuyuki Asada, and Ichiro Hasuo. Compositional
probabilistic model checking with string diagrams of MDPs. In Computer Aided Verification
– 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part III, volume 13966 of Lecture Notes in Computer Science, pages 40–61. Springer, 2023.
doi:10.1007/978-3-031-37709-9_3.

32 Glynn Winskel and Mogens Nielsen. Models for concurrency, pages 1–148. Oxford University
Press, Inc., USA, 1995.

A Algorithm Description

In this section, we provide a more detailed description of our algorithmic approach. We
assume that we are given the description of each process in an MDP network. As mentioned
above, our tool reads models given in the PRISM language, which introduces additional
modes of synchronization. For example, guards and updates can read the value of other
processes’ states without explicitly synchronizing with them.

Checking Causal Determinacy

To syntactically check whether a given model is CD, we check for every local state of every
process and every pair of actions available for that process that the intersection of the
action guards is empty. This directly implies that the model is CD. However, this is also an
over-approximation, since a potential violation might not be reachable in the actual system.
All models except the philosophers model directly satisfy this simple syntactic property.
For the model, philosophers model we verified the CD property by manual inspection.

Constructing a Complete Strategy

As mentioned in the main body, our first goal is to heuristically fix a priority order on
the available actions. To this end we first record all “dependencies” between processes, i.e.
whenever a process reads from or synchronizes with another process, we add an edge in the
module dependency graph. Then, starting from the process for which we have the local
reachability query, we explore this dependency graph in a breadth-first fashion and order the
processes according to this search. We then derive the action priority as follows: We iterate
over the processes in the above order, and consider each action this process is involved in
which has not yet been processed (i.e. all actions a for which the current module has the
highest priority among all processes in loc(a)). These actions are then sorted according to
the process with the lowest priority among all of those involved with the action, i.e. loc(a).
This then gives us the overall priority ordering over all actions appearing in the system.

The second part then is to construct a sub-system of the global FMDP which contains
at least one complete strategy. By computing the maximal reachability probability on this
sub-system, we obtain the overall maximal reachability probability, as any complete strategy

https://doi.org/10.1007/978-3-662-46081-8_7
https://doi.org/10.3233/FI-2020-1958
https://doi.org/10.1016/j.tcs.2006.01.015
https://doi.org/10.1007/978-3-031-37709-9_3

S. Akshay, T. Meggendorfer, and P. S. Thiagarajan 6:21

is optimal under CD. To this end, we start in the global initial state and explore the graph
induced by the following rule: (i) In a state s, compute the set of available actions Act(s).
(ii) Among those actions, pick the action with the highest priority according to the determined
order. (iii) Return the set of successors under this action. We fully explore the system
induced by this transition relation using BFS. In other words, we explore the sub-system
induced by greedily following actions according to our priority order.

As already mentioned, this alone does not guarantee that we get a complete strategy:
For example, it might be the case that the highest priority action a available in some state s
simply self-loops, but another action b (with lower priority) would lead to a new successor
s′. To ensure this, we determine the set of bottom maximal end components, i.e. all regions
where the strategy we are following is “looping”. Let R be a set of states forming such an
end component in the explored sub-system and for every state s let A(s) the action we chose
according to our greedy rule. We then compute A(R) =

⋃
s∈R Act(s) \

⋃
s∈R A(s). When

A(R) = ∅, we are finished with the end component R. If not, we pick for each bottom end
component R with A(R) ̸= ∅ the action with the highest priority from A(R) according to
our priority rule and again apply the exploration rule from above.

Correctness

We argue that the subsystem explored in this way contains a complete strategy, independent
of the action priority used, by explicitly constructing one. Let B the set of states in bottom
maximal end components in the explored sub-system. Let π a strategy that (i) reaches B
with probability 1 and (ii) uses each action available in B infinitely often with probability 1
(e.g., by using round-robin memory). Such a strategy exists due to standard results on the
properties of end components [2, Chapter 10], [6]. We claim that this strategy is complete.

Assume for contradiction that it is not, i.e. the set of incomplete paths under this strategy
has non-zero measure. Since the set of state-action pairs is finite, there exists at least one
pair (s, a) which is “responsible” for the incompleteness. In other words, under the strategy
we reach (after a finite number of steps) a state s where a is available, but from that point
onward we never see a with some non-zero probability. Formally, there exists (s, a) and
index i such that P = {ϱ | s = ϱi ∧ ∀j ≥ i. A(ϱ, j) ̸= a} has non-zero measure (where A(ρ, j)
denotes the action in path ϱ at step j). Observe that by the CD condition, for the paths in
P the action a is available at all subsequent states after i.

Next, let Inf(ϱ) ⊆ S the set of states visited infinitely often by path ϱ. Consider the
(finite) partitioning of P by Inf, i.e. grouping runs that visit the same set of states infinitely
often. By additivity of Prπ

M, there exists at least one partition S∞ that has non-zero measure.
Thus, by the definition of π, S∞ is a subset of B: Almost all paths under π end up in B, so
there can be no non-zero measure set that does not.

To conclude, recall that a is available on all states of all paths in P , including all paths in
S∞. Let R a maximal bottom end component in the explored subsystem (i.e. R ⊆ B) with a
non-empty intersection with S∞. By the definition of π, almost all paths of P that end up
in R visit all states of R infinitely often. Together, a must be available in all states of R, but
is never chosen by the strategy π. However, by construction, we would have explored a, as it
is an available action in a bottom end component of the subsystem. Concretely, we have
that A(R) is not empty, hence we would explore further, contradicting that R is a bottom
end component. This concludes the proof.

CONCUR 2024

6:22 Causally Deterministic Markov Decision Processes

B Proof of Lemma 10

▶ Lemma 10. There exists a deterministic, complete strategy π ∈ Π which achieves the
optimal value, i.e. Prπ

M[✸T] = supπ′∈Π Prπ′

M[✸T].

Proof. We show this by arguing that an optimal, possibly non-complete strategy can be
modified into a complete one without losing any reachability probability. To this end, let π a
memoryless deterministic strategy that achieves the optimal value. Assume this strategy is
incomplete. We now show how to extend it to a complete strategy. Consider the bottom
strongly connected components B = {B1, . . . , Bn} in the induced Markov chain Mπ. With
probability 1, these are eventually reached (i.e. Prπ

M[✸
⋃

Bi] = 1), and, likewise, once in
a BSCC Bi, every state within it is reached with probability 1 [2, Chp. 10]. Consider the
following strategy π′: Follow π, waiting until one of the BSCCs Bi is reached. Meanwhile,
track a set of actions A. At each state s, add all actions Act(s) to A and then remove π(s).
In other words, A tracks all actions that were available but have not been played since they
became available. Then, wait until every state in Bi was seen at least once. Until now, π′

has behaved exactly as π and has only stored a bounded amount of information.
At this stage π′ switches to a different behaviour. Store the set of actions A which have

not been played to A′ and clear A. By CD, all actions in A are still available. So, π′ chooses
the actions in A′ one by one, and, in the meantime, keeps updating A as before. Once A′

is empty, again A is copied to A′, A is cleared and the whole process is repeated. (If A is
empty at this stage, π simply picks any action.)

This strategy clearly reaches every state that π reaches with at least the same probability,
since π′ only deviates from π once all states that π can see have been encountered. In
addition, this strategy is complete since every action that is available is played within a finite
number of steps with probability 1. ◀

Fairness and Consensus in an Asynchronous
Opinion Model for Social Networks
Jesús Aranda #

Universidad del Valle, Colombia

Sebastián Betancourt #

Universidad del Valle, Colombia

Juan Fco. Díaz #

Universidad del Valle, Colombia

Frank Valencia #

CNRS LIX, École Polytechnique de Paris, France
Pontificia Universidad Javeriana Cali, Colombia

Abstract
We introduce a DeGroot-based model for opinion dynamics in social networks. A community of
agents is represented as a weighted directed graph whose edges indicate how much agents influence
one another. The model is formalized using labeled transition systems, henceforth called opinion
transition systems (OTS), whose states represent the agents’ opinions and whose actions are the
edges of the influence graph. If a transition labeled (i, j) is performed, agent j updates their opinion
taking into account the opinion of agent i and the influence i has over j. We study (convergence
to) opinion consensus among the agents of strongly-connected graphs with influence values in the
interval (0, 1). We show that consensus cannot be guaranteed under the standard strong fairness
assumption on transition systems. We derive that consensus is guaranteed under a stronger notion
from the literature of concurrent systems; bounded fairness. We argue that bounded-fairness is
too strong of a notion for consensus as it almost surely rules out random runs and it is not a
constructive liveness property. We introduce a weaker fairness notion, called m-bounded fairness,
and show that it guarantees consensus. The new notion includes almost surely all random runs and
it is a constructive liveness property. Finally, we consider OTS with dynamic influence and show
convergence to consensus holds under m-bounded fairness if the influence changes within a fixed
interval [L, U] with 0 < L < U < 1. We illustrate OTS with examples and simulations, offering
insights into opinion formation under fairness and dynamic influence.

2012 ACM Subject Classification Theory of computation → Social networks

Keywords and phrases Social networks, fairness, DeGroot, consensus, asynchrony

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.7

Related Version Technical Report with proofs: https://arxiv.org/abs/2312.12251 [7]

Supplementary Material Software (Source python code for simulations): https://github.com/
promueva/Fairness-and-Consensus-in-Opinion-Models

archived at swh:1:dir:3d1d063e991e22e10ce933f8b060dcb8f1703702

Funding This work is partly supported by the Colombian Minciencias project PROMUEVA, BPIN
2021000100160.

1 Introduction

Social networks have a strong impact on opinion formation, often resulting in polarization.
Broadly, the dynamics of opinion formation in social networks involve users expressing their
opinions, being exposed to the opinions of others, and potentially adapting their own views
based on these interactions. Modeling these dynamics enables us to glean insights into how
opinions form and spread within social networks.

© Jesús Aranda, Sebastián Betancourt, Juan Fco. Díaz, and Frank Valencia;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jesus.aranda@correounivalle.edu.co
https://orcid.org/0000-0002-3391-5966
mailto:joan.betancourt@correounivalle.edu.co
https://orcid.org/0009-0003-4365-9438
mailto:juanfco.diaz@correounivalle.edu.co
https://orcid.org/0000-0002-6178-0595
mailto:frank.valencia@gmail.com
https://doi.org/10.4230/LIPIcs.CONCUR.2024.7
https://arxiv.org/abs/2312.12251
https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models
https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models
https://archive.softwareheritage.org/swh:1:dir:3d1d063e991e22e10ce933f8b060dcb8f1703702;origin=https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models;visit=swh:1:snp:337c242bcdbe18750c321a693e845e80dd1c31bb;anchor=swh:1:rev:f2fb857464167d7c94eb52c015d2268cbdeaa843
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

The models of social learning aim to capture opinion dynamics in social networks [36].
The DeGroot model [14] is one of the most prominent formalisms for social learning and
opinion formation dynamics, and it remains a continuous focus of study in social network
theory [21]. A given community is represented as a weighted directed graph, known as the
influence graph, whose edges indicate how much individuals (agents) influence one another.
Each agent has an opinion represented as a value in [0, 1], indicating the strength of their
agreement with an underlying proposition (e.g., “AI poses a threat to humanity”). Agents
repetitively revise their opinions by averaging them with those of their contacts, taking into
account the influence each contact holds. (There is empirical evidence validating the opinion
formation through averaging of the model in controlled sociological experiments, e.g., [10].) A
fundamental theoretical result of the model states that the agents will converge to consensus
if the influence graph is strongly connected and the agents have non-zero self-influence (puppet
freedom) [21]. The significance of this result lies in the fact that consensus is a central
problem in social learning. Indeed, the inability to reach consensus is a sign of a polarized
community.

Nevertheless, the DeGroot model makes at least two assumptions that could be overly
constraining within social network contexts. Firstly, it assumes that all the agents update
their opinions simultaneously (full synchrony), and secondly, it assumes that the influence of
agents remains the same throughout opinion evolution (static influence). These assumptions
may hold in some controlled scenarios and render the model tractable but in many real-world
scenarios individuals do not update their opinions simultaneously [29]. Instead, opinion
updating often occurs asynchronously, with different agents updating their opinions at
different times. Furthermore, individuals may gain or lose influence through various factors,
such as expressing contrarian or extreme opinions [20].

In this paper, we introduce an asynchronous DeGroot-based model with dynamic influence
to reason about opinion formation, building upon notions from concurrency theory. The
model is presented by means of labeled transition systems, here called opinion transition
systems (OTS). The states of an OTS represent the agents’ opinions, and the actions (labels)
are the edges of the influence graph. All actions are always enabled. If a transition labeled
with an edge (i, j) is chosen, agent j updates their opinion by averaging it with the opinion
of agent i weighted by the influence that this agent carries over j. A run of an OTS is an
infinite sequence of (chosen) transitions.

We shall focus on the problem of convergence to opinion consensus in runs of the OTS,
assuming strong connectivity of the influence graph and puppet freedom. For consensus to
make sense, all agents should have the chance to update their opinions. Therefore, we need
to make fairness assumptions about the runs. In concurrency theory, this means requiring
that some actions be performed sufficiently often.

We first show that contrary to the DeGroot model, consensus cannot be guaranteed for
runs of OTS even under the standard strong fairness assumption (i.e., that each action occurs
infinitely often in the run) [22, 27]. This highlights the impact of asynchronous behavior on
opinion formation.

We then consider the well-known notion of bounded fairness in the literature on verification
of concurrent systems [16]. This notion requires that every action must be performed not
just eventually but within some bounded period of time. We show that bounded-fairness
guarantees convergence to consensus. This also gives us insight into opinion formation
through averaging, i.e., preventing unbounded delays of actions (opinion updates) is sufficient
for convergence to consensus.

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:3

Nevertheless, bounded fairness does not have some properties one may wish in a fairness
notion. In particular, it is not a constructive liveness property in the sense of [34, 33].
Roughly speaking, a fairness notion is a constructive liveness property if, while it may require
that a particular action is taken sufficiently often, it should not prevent any other action
from being taken sufficiently often. Indeed, we will show that preventing unbounded delays
implies preventing some actions from occurring sufficiently often.

Furthermore, bounded-fairness is not random inclusive. A fairness notion is random
inclusive if any random run (i.e., a run where each action is chosen independently with
non-zero probability) is almost surely fair under the notion. We find this property relevant
because we wish to apply our results to other asynchronous randomized models whose runs
are random and whose opinion dynamics can be captured as an OTS.

We therefore introduce a new weaker fairness notion, called m-bounded fairness, and show
that it guarantees consensus. The new notion is shown to be a constructive liveness property
and random inclusive. We also show that consensus is guaranteed under m-bounded fairness
even if we allow for dynamic influence as long as all the changes of influence are within a
fixed interval [L, U] with 0 < L < U < 1.

All in all, we believe that asynchronous opinion updates and dynamic influence provide
us with a model more faithful to reality than the original DeGroot model. The fairness
assumptions and consensus results presented in this paper show that the model is also
tractable and that it brings new insights into opinion formation in social networks. To the
best of our knowledge, this is the first work using fairness notions from concurrency theory
in the context of opinion dynamics in social networks.

Furthermore, since m-bounded fairness is random inclusive, our result extends with
dynamic influence the consensus result in [17] for distributed averaging with randomized
gossip algorithms. Distributed averaging is a central problem in other application areas, such
as decentralized computation, sensor networks and clock synchronization.

Organization. The paper is organized as follows: In Section 2, we introduce OTS and the
consensus problem. Initially, to isolate the challenges of asynchronous communication in
achieving consensus, we assume static influence. In Section 3, we identify counter-examples,
graph conditions, and fairness notions for consensus to give some insight into opinion dynamics.
In Section 4, we introduce a new notion of fairness and state our first consensus theorem.
Finally, in Section 5, we add dynamic influence and give the second consensus theorem.

The detailed proofs are included in a related technical report [7]. The Python code used to
produce OTS examples and simulations in this paper can be found in the following repository:
https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models.

2 The Model

In the standard DeGroot model [14], agents update their opinion synchronously in the
following sense: at each time unit, all the agents (individuals) update simultaneously their
current opinion by listening to the current opinion values of those who influence them. This
notion of updating may be unrealistic in some social network scenarios, as individuals may
listen to (or read) others’ opinions at different points in time.

In this section, we introduce an opinion model where individuals update their beliefs
asynchronously; one agent at a time updates their opinion by listening to the opinion of one
of their influencers.

CONCUR 2024

https://github.com/promueva/Fairness-and-Consensus-in-Opinion-Models

7:4 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

2.1 Opinion Transition Systems
In social learning models, a community is typically represented as a directed weighted
graph with edges between individuals (agents) representing the direction and strength of the
influence that one has over the other. This graph is referred to as the Influence Graph.

▶ Definition 1 (Influence Graph). An influence graph is a directed weighted graph G = (A, E, I)
with A = {1, . . . , n}, n > 1, the vertices, E ⊆ A2 − IdA the edges (where IdA is the identity
relation on A) and I : E → (0, 1] the weight function.

The vertices in A represent n agents of a given community or network. The set of edges
E represents the (direct) influence relation between agents; i.e., (i, j) ∈ E means that agent i

influences agent j. The value I(i, j), for simplicity written I(i,j) or Iij , denotes the strength
of the influence: a higher value means stronger influence.

Similar to the DeGroot-like models in [21], we model the evolution of agents’ opinions
about some underlying statement or proposition, such as, for example, “human activity has
little impact on climate change” or “AI poses a threat to humanity”.

The state of opinion (or belief state) of all the agents is represented as a vector in [0, 1]|A|.
If B is a state of opinion, B[i] denotes the opinion (belief, or agreement) value of agent i ∈ A

regarding the underlying proposition: the higher the value of B[i], the stronger the agreement
with such a proposition. If B[i] = 0, agent i completely disagrees with the underlying
proposition; if B[i] = 1, agent i completely agrees with the underlying proposition.

The opinion state is updated as follows: Starting from an initial state, at each time unit,
one of the agents, say j, updates their opinion taking into account the influence and the
opinion of one of their contacts, say i. Intuitively, in social network scenarios, this can be
thought of as having an agent j read or listen to the opinion of one of their influencers i and
adjusting their opinion B[j] accordingly.

The above intuition can be realized as a Labelled Transition System (LTS) whose set of
states is S = [0, 1]|A| and set of actions is E.

▶ Definition 2 (OTS). An Opinion Transition System (OTS) is a tuple M = (G, Binit, →)
where G = (A, E, I) is an influence graph, Binit ∈ S = [0, 1]|A| is the initial opinion state,
and →⊆ S × E × S is a (labelled) transition relation defined thus: (B, (i, j), B′) ∈→, written
B (i,j)−−−→ B′ , iff for every k ∈ A,

B′ [k] =
{

B[j] + (B[i] − B[j])Iij if k = j

B[k] otherwise
(1)

If B e−→ B′ we say that B evolves into B′ by performing (choosing or executing) the action e.

A labeled transition B (i,j)−−−→ B′ represents the opinion evolution from B to B′ when
choosing an action represented by the edge (i, j). As a result of this action, agent j updates
their opinion as B[j] + (B[i] − B[j])Iij , thereby moving closer to the opinion of agent i.
Alternatively, think of agent i as pulling the opinion of agent j towards B[i]. The higher the
influence of i over j, Iij , the closer it gets. Intuitively, if Iij < 1, it means that agent j is
receptive to agent i but offers certain resistance to fully adopting their opinion. If Iij = 1,
agent j may be viewed as a puppet of i who disregards (or forgets) their own opinion to
adopt that of i.
▶ Remark 3. In Def. 1, we do not allow edges of the form (j, j). In fact, allowing them
would not present us with any additional technical issues, and the results in this paper
would still hold. The reason for this design choice, however, has to do with clarity about

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:5

the intended intuitive meaning of a transition. Suppose that B (i,j)−−−→ B′ . Since B′ [j] =
B[j] + (B[i] − B[j])Iij = B[j](1 − Iij) + B[i]Iij , agent j gives a weight of Iij to the opinion
of i and of (1 − Iij) to their own opinion. Therefore, the weight that j gives to their opinion
may change depending on the agent i. Thus, allowing also a fixed weight Ijj of agent j to
their own opinion may seem somewhat confusing to some readers. Furthermore, for any
B ∈ S we would have B (j,j)−−−→ B regardless of the value Ijj thus making the actual value
irrelevant. Notice also we do not require the sum of the influences over an agent to be 1.

2.2 Runs and Consensus
We are interested in properties of opinion systems, such as convergence to consensus and
fairness, which are inherent properties of infinite runs of these systems.

▶ Definition 4 (e-path, runs and words). An execution path (e-path) of an OTS M =
(G, Binit, →), where G = (A, E, I), is an infinite sequence π = B0e0B1e1 . . . (also written
B0

e0−→ B1
e1−→ . . .) such that Bt

et−→ Bt+1 for each t ∈ N. We say that et is the action
performed at time t and that Bt is the state of opinion at time t. Furthermore, if B0 = Binit
then the e-path π is said to be a run of M .

An ω-word of M is an infinite sequence of edges (i.e, an element of Eω). The sequence
wπ = e0e1 . . . is the ω-word generated by π. Conversely, given an ω-word w = e′

0.e′
1 . . . the

(unique) run that corresponds to it is πw = Binit
e′

0−→ B1
e′

1−→ . . .

▶ Remark 5. The uniqueness of the run that corresponds to a given ω-word is derived from
the fact that an OTS is a deterministic transition system1. This gives us a one-to-one
correspondence between ω-words and runs, which allows us to abstract away from opinion
states when they are irrelevant or clear from the context. In fact, throughout the paper, we
will use the terms ω-words and runs of an OTS interchangeably when no confusion arises.
It is also worth noting that in OTS, any action (edge) can be chosen at any point in an
execution path; that is, all actions are enabled.

Consensus is a property of central interest in social learning models [21]. Indeed, failure
to reach a consensus is often an indicator of polarization in a community.

▶ Definition 6 (Consensus). Let M = (G, Binit, →) be an OTS with G = (A, E, I) and
π = Binit

e0−→ B1
e1−→ . . . be a run. We say that an agent i ∈ A converges to an opinion value

v ∈ [0, 1] in π if limt→∞ Bt[i] = v. The run π converges to consensus if all the agents in A

converge to the same opinion value in π.
Furthermore, B is said to be a consensual state if it is a constant vector; i.e., if there

exists v ∈ [0, 1] such that for every i ∈ A, B[i] = v.

▶ Example 7. Let M = (G, Binit, →) where G is the influence graph in Fig. 1a and
Binit = (0, 0.5, 1). If we perform a on Binit we obtain Binit

a−→ B1 = (0.0, 0.25, 1.0).
Consider the word w = (abcd)ω. Then πw = Binit

a−→ (0.0, 0.25, 1.0) b−→ (0.125, 0.25, 1.0) c−→
(0.125, 0.625, 1.0) d−→ (0.125, 0.625, 0.8125) a−→ Fig. 1b suggests that πw indeed converges
to consensus (to opinion value 0.5). A more complex example of the evolution of opinions
from a randomly generated graph with eleven agents is illustrated in Fig. 1c.

1 While the actions in a run can be seen as being chosen non-deterministically by a scheduler, an OTS
is a deterministic transition system in the sense that given a state B and an action e, there exists a
unique state B′ such that B e−→ B′ .

CONCUR 2024

7:6 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

3

2

1
a

b

c

d

(a) OTS with
influence graph
with agents A =
{1, 2, 3}, edges
E = {a, b, c, d},
influence Ie = 1/2
for all e ∈ E and
Binit = (0, 0.5, 1).

(b) Opinion evolution for the run that
corresponds to (abcd)ω of the OTS in
Fig. 1a. Each plot corresponds to the
opinion evolution of the agent with the
same color.

(c) Opinion evolution of a run of an OTS
with a G = (A, E, I), A = {1, . . . , 11},
Ie = 0.5 for each e ∈ E, Binit =
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).
Each edge of G was generated with prob.
0.3. The edges of the (partial) run were
uniformly chosen from E.

Figure 1 Run examples for OTS in Fig. 1a and randomly-generated OTS in Fig. 1c.

The examples above illustrate runs that may or may not converge to consensus. In the
next section, we identify conditions on the influence and topology of graphs and on the runs
that guarantee this central property of opinion models.

3 Strong Connectivity, Puppet-Freedom and Fairness

In this section, we discuss graph properties, as well as fairness notions and criteria from the
literature on concurrent systems that give us insight into how agents converge to consensus in
an OTS. For simplicity, we assume an underlying OTS M = (G, Binit, →) with an influence
graph G = (A, E, I). We presuppose basic knowledge of graph theory and formal languages.

3.1 Strong Connectivity

As in the DeGroot model, if there are (groups of) agents in G that do not influence each other
(directly or indirectly) and their initial opinions are different, these groups may converge
to different opinion values. Consider the example in Fig. 2 where the groups of agents
G1 = {1, 2} and G2 = {5, 6} do not have external influence (directly or indirectly), but
influence the group G3 = {3, 4}. Each group is strongly connected within; their members
influence each other. The agents in G1 converge to an opinion, and so do the agents in G2,
but to a different one. Hence, the agents in both groups cannot converge to consensus. The
agents in G3 do not even converge to an opinion because they are regularly influenced by
the dissenting opinions of G1 and G2.

The above can be prevented by requiring strong connectivity, i.e., there must be a path
in G from any other to any other. Recall that a graph path from i to j of length m in G

is a sequence of edges of E of the form (i, i1)(i1, i2) . . . (im−1, j), where the agents in the
sequence are distinct. We shall refer to graph paths as g-paths to distinguish them from
e-paths in Def. 4. We say that agent i influences agent j if there is a g-path from i to j in G.
The graph G is strongly connected iff there is a g-path from any agent to any other in G.
Hence, in strongly-connected graphs, all agents influence one another.

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:7

1 2

3 4

5 6

a1

a0

a2

a3

a4

a5
a6 a7

a8 a9

(a) Influence graph
with Ie = 1/2 for all
e ∈ E and Binit =
(0.4, 0.5, 0.45, 0.55,
0.5, 0.6).

(b) Opinion evolution of the run
((a2a3)5(a4a5)5(a0a1)5(a6a7a8a9))ω.
Each plot corresponds to the opinion
evolution of the agent with the same
color in Fig. 2a.

(c) Opinion evolution of the run (abcd)ω

for an OTS with G and Binit from Fig.
1a but assuming Ie = 1 for all e ∈ E.

Figure 2 Run examples for OTS in Fig. 1a and Fig. 2a.

3.2 Puppet-Freedom

Nevertheless, too much influence may prevent consensus. If B (i,j)−−−→ B′ and Iij = 1, agent
j behaves as a puppet of i forgetting their own opinion and adopting that of j. Fig. 2c
illustrates this for the strongly-connected graph in Fig. 1a but with Iij = 1 for each (i, j) ∈ E:
Agents 1 and 3 use Agent 2 as a puppet, constantly swaying his opinion between 0 and 1.
We therefore say that the influence graph G is puppet free if for each (i, j) ∈ E, Iij < 1.

3.3 Strong Fairness
In an OTS, if G is strongly connected but a given edge is never chosen in a run (or not
chosen sufficiently often), it may amount to not having all agents influence each other in
that run, hence preventing consensus. For this reason, we make some fairness assumptions
about the runs.

In the realm of transition systems, fairness assumptions rule out some runs, typically
those where some actions are not chosen sufficiently often when they are enabled sufficiently
often. There are many notions of fairness (see [5, 19, 25] for surveys), but strong fairness
is perhaps one of the most representative. As noted above, every action e ∈ E is always
enabled in every run of an OTS. Thus, in our context, strong fairness of a given OTS run
(ω-word) amounts to requiring that every action e occurs infinitely often in the run.

▶ Definition 8 (Strong fairness). Let w be an ω-word of an OTS. We say that w is strongly
fair if every e ∈ E occurs in every suffix of w.

Notice that the graph from Ex. 7 is strongly connected and puppet free, and the ω-word
w = (abcd)ω is indeed strongly fair and converges to consensus. Nevertheless, puppet freedom,
strong fairness, and strong connectivity are not sufficient to guarantee consensus.

▶ Proposition 9. There exists (G, Binit, →), where G is strongly connected and puppet free,
with a strongly-fair run that does not converge to consensus.

The proof of the existence statement in Prop. 9 is given next.

CONCUR 2024

7:8 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

(a) Opinion evolution of the OTS from Fig. 1a for
the ω-word u = (anbcnd)n∈N+ .

(b) Opinion evolution of the OTS from Fig. 1a for
U = 0.75, L = 0.25 and the ω-word w from Cons.
10.

Figure 3 Run examples for OTS in Fig. 1a.

▶ Construction 10 (Counter-Example to Consensus). Let M = (G, Binit, →) be an OTS where
G is the strongly-connected puppet-free influence graph in Fig. 1a and Binit is any state of
opinion such that Binit[1] < Binit[2] < Binit[3]. We have A = {1, 2, 3} and E = {a, b, c, d}.
We construct an ω-word w such that πw does not converge to consensus with the following
infinite iterative process. Let U and L be such that Binit[1] < L < Binit[2] < U < Binit[3].

Process: (1) Perform a non-empty sequence of a actions with as many a’s as needed until
the opinion of Agent 2 becomes smaller than L. (2) Perform the action b. (3) Perform a
non-empty sequence of c’s with as many c’s as needed until the opinion of Agent 2 becomes
greater than U . (4) Perform the action d. The result of this iteration is a sequence of the
form a+bc+d. Repeat steps 1–4 indefinitely.

The above process produces the ω-sequence w = w1 · w2 · . . . of the form (a+bc+d)ω, where
each wi = anibcmid is the result of the i-th iteration of the process and ni > 0 and mi > 0
are the number of a’s and c’s in such interaction. (The evolution of the opinion of run πw,
with U = 0.75, L = 0.25 and Binit = (0, 0.5, 1) is illustrated in Fig. 3b)

Since each action e ∈ E appears infinitely often in w, w is strongly fair. Furthermore,
right after each execution of Step 2, the opinion of Agent 1 gets closer to L, but it is still
smaller than L since the opinion of Agent 2 at that point is smaller than L. For symmetric
reasons, the opinion of Agent 3 gets closer to U , but it is still greater than U . Consequently,
the opinion of Agent 1 is always below L, while the opinion of Agent 3 is always above U

with L < U . Therefore, they cannot converge to the same opinion.

Another ω-word for the OTS in Fig. 1a exhibiting a behavior similar to w in Cons. 10,
but whose proof of non-convergence to consensus seems more involved, is u = (anbcnd)n∈N+=
u1 · u2 · . . ., where each un = anbcnd. (see Fig. 3a). The delay in both w and u to execute d

after b grows unboundedly due to the growing number of c’s. More precisely, let #e(v) be
the number of occurrences of e ∈ E in a finite sequence v.

▶ Proposition 11. Let w = w1 · w2 · . . . be the ω-word from Cons. 10 where each wm has the
form a+bc+d. Then for every m ∈ N, there exists t ∈ N such that #c(wm+t) > #c(wm).

The above proposition states that the number of consecutive c’s in w grows unboundedly,
and hence so does the delay for executing d right after executing b. To prevent this form of
unbounded delay, we recall in the next section some notions of fairness from the literature
that require, at each position of an ω-word, every action to occur within some bounded
period of time.

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:9

3.4 Bounded Fairness
We start by introducing some notation to give a uniform presentation of some notions of
fairness from the literature. We assume |E| > 1; otherwise, all the fairness notions are trivial.

A word w is a possibly infinite sequence over E. A subword of w is either a suffix of w

or a prefix of some suffix of w. Let κ be an ordinal from the set ω + 1 = N ∪ {ω} where ω

denotes the first infinite ordinal. A κ-word is a word of length κ. Recall that each ordinal
can be represented as the set of all strictly smaller ordinals. We can then view a κ-word
w = (ei)i∈κ as a function w : κ → E such that w(i) = ei for each i ∈ κ. A κ-word w is
complete if w(κ) = E (where w(κ) denotes the image of the function w). A κ-window u of w

is a subword of w of length κ. Thus, if κ = ω then u is a suffix of w, and if κ ∈ N, u can
be thought of as a finite observation of κ consecutive edges in w. We can now introduce a
general notion of fairness parametric in κ.

▶ Definition 12 (κ-fairness, bounded-fairness). Let w be an ω-word over E and κ ∈ ω + 1: w

is κ-fair if every κ-window of w is complete. Furthermore, w is bounded fair if it is k-fair
for some k ∈ N.

Notice that the notion of strong fairness in Def. 8 is obtained by taking κ = ω; indeed, w

is ω-fair iff every e ∈ E occurs infinitely often in w. Furthermore, if κ = k for some k ∈ N+,
then we obtain the notion of k-fairness from [16]2. Intuitively, if w is k-fair, then at any
position of w, every e ∈ E will occur within a window of length k from that position.

It is not difficult to see that ω-fairness is strictly weaker than bounded-fairness, which in
turn is strictly weaker than any k-fairness with k ∈ N. Let F (κ) be the set of all ω-words
over E that are κ-fair. We have the following sequence of strict inclusions.

▶ Proposition 13. For every k ∈ N, F (k) ⊂ F (k + 1) ⊂ (
⋃

κ∈N F (κ)) ⊂ F (ω).

▶ Example 14. Let us consider the fair word w from Cons. 10, the counter-example to
consensus. From Prop. 11, the delay for executing action d immediately after executing
action b increases without bound. Thus, for every k, there must be a non-complete k-window
u of w such that d does not occur in u. Consequently, w is not bounded fair.

Not only does bounded fairness rule out the counter-example in Cons. 10, but it also
guarantees consensus, as shown later, for runs of OTS with strongly-connected, puppet-free
influence graphs. Nevertheless, it may be too strong of a requirement for consensus. We,
therefore, introduce a weaker notion that satisfies the following criteria and guarantees
consensus.

Some Fairness Criteria
Let us briefly discuss some fairness criteria and desirable properties that justify our quest for
a weaker notion of fairness that guarantees consensus. An in-depth discussion about criteria
for fairness notions, from which we drew some inspiration, can be found in [34, 33, 19, 5].

Machine Closure. Following [1, 26] one of the most important criteria that a notion of
fairness must meet is machine closure (also called feasibility [5]). Fairness properties are
properties of infinite runs; hence, a natural requirement is that any finite partial run must
have the chance to be extended to a fair run. Thus, we say that a notion of fairness is
machine closed if every finite word u can be extended to a fair ω-word u · w.

2 This notion is different from the notion of k-fairness from [9]

CONCUR 2024

7:10 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

Clearly, k-fairness with k ∈ N is not machine closed; e.g., the word ckd with E = {c, d}
cannot be extended to a k-fair ω-word. Nevertheless, bounded fairness is machine closed: Each
k-word u can be extended to a (k + m)-fair word u · (e1 . . . em)ω assuming E = {e1, . . . , em}.

Constructive Liveness. According to [34], a notion of fairness may require that a particular
action is taken sufficiently often, but it should not prevent any other actions from being
taken sufficiently often. This concept is formalized in [34, 33] in a game-theoretical scenario,
reminiscent of a Banach-Mazur game [28], involving an infinite interaction between a scheduler
and an opponent. The opponent initiates with a word w0, then the scheduler appends a finite
word w1 to w0. This pattern continues indefinitely, resulting in an ω-word w = w0 ·w1 ·w2
A given fairness notion is said to be a constructive liveness property if, regardless of what
the opponent does, the scheduler can guarantee that the resulting ω-word is fair under the
given notion.

The notion of bounded fairness is not a constructive liveness property. If an ω-word
is bounded fair, it is k-fair for some k ≥ |E| > 1. Let c ∈ E and take as the strategy of
the opponent to choose in each of their turns wn = cn. Since |E| > 1, then w2k cannot
be a complete k-window. Therefore, the resulting w = w0 · w1 · w2 . . . is not bounded fair,
regardless of the strategy of the scheduler.

It is worth noticing that the above opponent’s strategy is reminiscent of our procedure to
construct an ω-sequence in Cons. 10 using the unbounded growth of c’s to prevent consensus.

Random Words. Consider a word e0e1 . . . where each edge or action en = (i, j) is chosen
from E independently with probability p(i,j) > 0. Let us refer to such kinds of sequences
as random words. We then say that a given notion of fairness is random inclusive if every
random ω-word is almost surely (i.e., with probability one) fair under the given notion.

It follows from the Second Borel–Cantelli lemma3 that every random word is almost
surely strongly fair. Nevertheless, the notion of bounded fairness fails to be random inclusive:
If a word is bounded fair, it is k-fair for some k ≥ |E|, and thus it needs to have the form
w0 · w1 . . . where each wm is a complete k-window. Since 1 < |E|, the probability that a
random k window is complete is strictly smaller than 1. Therefore, the probability of a
random word having an infinite number of consecutive complete k-windows is 0.

Random words are important in simulations of our model (see Fig. 1c). Furthermore,
having a notion of fairness that is random inclusive and guarantees consensus will allow us
to derive and generalize consensus results for randomized opinion models, such as gossip
algorithms [17]. We elaborate on this in the related work. We now introduce our new notion
of fairness.

4 A New Notion of Bounded Fairness

A natural way to relax bounded fairness to satisfy constructive liveness and random inclusion
is to require that the complete k-windows need only appear infinitely often: i.e., an ω word
w is said to be weakly bounded fair if there exists k ∈ N such that every suffix of w has a
k-window. Nevertheless, as it will be derived later, weak bounded fairness is not sufficient to
guarantee consensus.

3 The lemma states that if the sum of the probabilities of an infinite sequence of events E0E1 . . . that are
independent is infinite, then the probability of infinitely many of those events occurring is 1 [31]. Here,
each event Ek expresses that the edge ek occurs at time k and these events are independent because
each edge (i, j) in a random word is chosen independently with probability p(i,j) > 0.

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:11

It turns out that, to guarantee consensus, it suffices to require that a large enough number
m of consecutive complete k-windows appear infinitely often. These consecutive windows are
referred to as multi-windows.

▶ Definition 15 ((m, κ) multi-window). Let w be an ω-word over E, m ∈ N+ and κ ∈ ω + 1.
We say that w has an (m, κ) multi-window if there exists a subword u of w of the form
u = w1 · w2 · . . . · wm where each wi is a κ-window of w. Furthermore, if each wn in u is
complete, we say that w has a complete (m, κ) multi-window. If it exists, the word u is called
an (m, κ) multi-window of w.

Notice that because of the concatenation of windows in Def. 15, by construction, no
ω-word has a (m, ω) multi-window with m > 1: If κ = ω then m = 1. In this case, the
multi-window is just a window of infinite length of w, i.e., a suffix of w.

▶ Definition 16 ((m, κ)-fairness). Let w be an ω-word over E, m ∈ N+ and κ ∈ ω + 1. We
say that w is (m, κ)-fair if every suffix of w has a complete (m, κ) multi-window. We say
that w is m-consecutive bounded fair, or m-bounded fair, if it is (m, k)-fair for some k ∈ N.

Clearly, w is ω-fair iff it is (1, ω)-fair, and w is weakly bounded fair iff it is 1-bounded ω-
fair. Let F (m, κ) and F (κ) be the sets of ω-words that are (m, κ)-fair and κ-fair, respectively.
We have the following sequence of strict inclusions (assume k, m ∈ N+):

▶ Proposition 17. F (k) ⊂ F (m + 1, k) ⊂ F (m, k) ⊂ (
⋃

κ∈N F (m, κ)) ⊂ F (1, ω) = F (ω).

Compliance with Fairness Criteria. Let us consider the criteria for fairness in the previous
section. The notion of m-bounded fairness is machine closed since bounded fairness is stronger
than m-bounded fairness (Prop. 13 and Prop. 17) and bounded fairness is machine closed.

It is also a constructive liveness property since (m, k) fairness, for k ≥ |E|, is stronger
than m-bounded fairness (Prop. 17), and it is also a constructive liveness property: A
winning strategy for the scheduler is to choose a complete (m, k)-window at each one of its
turns.

Similarly, m-Bounded Fairness is random inclusive since the stronger notion (m, k)-
Fairness is random inclusive for k ≥ |E|. In a random ω-word w = w0 · w1 . . . where each wn

is a (m × k)-window, the probability that wn is a complete (m, k)-multi-window is non-zero
and independent. Thus again, by the Second Borel–Cantelli lemma, almost-surely w has
infinitely many complete (m, k) multi-windows, i.e., it is almost-surely (m, k)-fair.

4.1 Consensus Theorem
We can now state one of our main theorems: m-bounded fairness guarantees consensus in
strongly-connected, puppet-free graphs.

▶ Theorem 18 (Consensus under m-bounded fairness). Let M = (G, Binit, →) be an OTS
where G is a strongly-connected, puppet-free influence graph. For every run π of M , if wπ is
m-bounded fair and m ≥ |A| − 1, then π converges to consensus.

▶ Remark 19. A noteworthy corollary of Th. 18 is that, under the same assumptions of the
theorem, if wπ is a bounded fair (a random ω-word), then π converges to consensus (π almost
surely converges to consensus). This follows from the above theorem, Prop. 13, Prop. 17 and
the fact that m-bounded fairness is random inclusive.

A proof of Th. 18 is given in the technical report [7]. Let us give the main intuitions here.

CONCUR 2024

7:12 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

1

2

3

4

a

b

d c

f

e

(a) OTS with Ie =
1/2 for every edge
e ∈ E and Binit =
(0.0, 0.2, 0.8, 1.0).

(b) Opinion evolution of the 1-bounded
fair ω-word w in Cons. 21 with U = 0.8
and L = 0.2.

(c) Opinion evolution of the 3-bounded
fair ω-word ((bfdace)3a10e10)ω.

Figure 4 Examples of an m-bounded fair runs. In Fig. 4b and 4c, each plot corresponds to the
opinion of the agent with the same color in Fig. 4a.

Proof sketch. The proof focuses on the evolution of maximum and minimum opinion val-
ues. The sequences of maximum and minimum opinion values in a run, {max Bt}t∈N and
{min Bt}t∈N, can be shown to be (bounded) monotonically non-increasing and non-decreasing,
respectively, so they must converge to some opinion values, say U and L with L ≤ U .

We must then argue that L = U (this implies convergence to consensus of π by the
Squeeze Theorem [32]). Since wπ is m-bounded fair with m ≥ |A| − 1, after performing all
the actions of an (m, k) multi-window of wπ, for some k ≥ |E|, all the agents of A would
have influenced each other. In particular, the agents holding the maximum and minimum
opinion values, say agents i and j. To see this, notice that since G is strongly connected,
there is a path from i to j, a1 . . . al with length l ≤ |A| − 1. Thus, after performing the
first complete k-window of the (m, k)-multi-window, a1 must be performed, after performing
the second complete k-window, a2 must be performed and so on. Hence, after performing
all the actions of the multi-window, i would have influenced j. It can be shown that their
mutual influence causes them to decrease their distance by a positive constant factor (here,
the puppet freedom assumption is needed). Since the wπ is m-fair, there are infinitely many
(m, k)-windows to be performed, and thus the sequences of maximum and minimum opinion
values converge to each other, i.e., U = L. ◀

It is worth pointing out that without the condition m ≥ |A| − 1 in Th. 18, we cannot
guarantee consensus. Fig. 4c illustrates an m-bounded fair run, for m = |A| − 1, of an OTS
with 4 agents that converges to consensus. Nevertheless, the following run construction
shows that for m = |A| − 3, we can construct an m-bounded fair run that fails to converge
to consensus (the run is illustrated in Fig. 4b). It also shows that weak bounded fairness,
i.e., 1-bounded fairness, is not sufficient to guarantee convergence to consensus. We do not
have a counter-example or a proof for m = |A| − 2.

▶ Proposition 20. There exists M = (G, Binit, →), where G = (A, E, I) is a strongly
connected, puppet-free graph, with an m-bounded fair ω-word w, m = |A| − 3, such that πw

does not converge to consensus.

The proof of the above proposition is given in the following construction.

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:13

2 1
a

b

(a) Binit = (0.0, 1.0) and if B[1] = B[2] then
IB

a = IB
b = 0.5, otherwise

IB
a =

[
U−B[2]

2(B[1]−B[2])

]1

0
, IB

b =
[

L−B[1]
2(B[2]−B[1])

]1

0
.

3 2 1
c

d

b

a

(b) Binit = (0.0, 0.5, 1.0), IB
d = IB

b = 0.5, if B[1] = B[2]
then IB

a = 0.5, if B[2] = B[3] then IB
c = 0.5, otherwise

IB
a =

[
1
2 (B[1]+L)−B[2]

B[1]−B[2]

]1

0
, IB

c =
[

1
2 (B[3]+U)−B[2]

B[3]−B[2]

]1

0
.

(c) Opinion and influence evolution of the ω-word
(ab)ω. Each plot corresponds to the opinion of the
agent with the same color in Fig. 5a. The influences
IB

a and IB
b are plotted in green and purple.

(d) Opinion and influence evolution of the ω-word
(a b c d)ω . Each plot corresponds to the opinion of the
agent with the same color in Fig. 5b. The influences
IB

a and IB
c are plotted in green and purple.

Figure 5 Plots for DOTS in Fig. 5a and Fig. 5b with U = 0.8 and L = 0.2.4

▶ Construction 21 (Counter-Example to Consensus for m-bounded fairness with m ≤ |A| − 3).
Suppose that M = (G, Binit, →) where G is the strongly-connected, puppet-free, influence graph
in Fig. 4a and Binit is any state of opinion such that Binit[1] < Binit[2] < Binit[3] < Binit[4].
We have A = {1, 2, 3, 4} and E = {a, b, c, d, e, f}. We construct an ω-word w such that πw

does not converge to consensus with the following infinite iterative process. Let U and L be
such that Binit[2] ≤ L < U ≤ Binit[3].

Process: (1) Perform the sequence of actions bfdace. (2) Perform a sequence of a actions
with as many a’s as needed until the opinion of Agent 2 becomes smaller than L. (3) Perform
a sequence of e’s with as many e’s as needed until the opinion of Agent 3 becomes greater
than U . The result of this iteration is a sequence of the form bfdace · a∗e∗. Repeat steps 1-3
indefinitely.

The above process produces the ω-sequence w = v ·w1 ·v ·w2 · . . . of the form (bfdace a∗e∗)ω

where v = bfdace and wi = amieni are results of the i-th iteration of the process, and ni ≥ 0
and mi ≥ 0 are the number of a’s and e’s in each wi. (The opinion evolution of run πw,
with L = 0.2, U = 0.8 and Binit = (0.0, 0.2, 0.8, 1.0) is illustrated Fig. 4b)

Since the subword v is a complete (1,6)-multi-window and appears infinitely often in w,
w is m-bounded fair for m = |A| − 3 = 1. Furthermore, right after each execution of edge
f in step 1, the opinion of Agent 1 gets closer to L, but it is still smaller than L since the
opinion of Agent 2 at that point is smaller than L. For symmetric reasons, after action b, the
opinion of Agent 4 gets closer to U , but it is still greater than U since the opinion of Agent
3 at that point is greater than U . Consequently, the opinion of Agent 1 is always below L,
while the opinion of Agent 4 is always above U with L < U . Therefore, they cannot converge
to the same opinion.

CONCUR 2024

7:14 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

5 Dynamic Influence

The static weights of the influence graph of an OTS imply that the influence that each
individual has on others remains constant throughout opinion evolution. However, in real-life
scenarios, the influence of individuals can vary depending on many factors, in particular the
state of opinion (or opinion climate). Indeed, individuals may gain or lose influence based on
the current opinion trend or for expressing dissenting and extreme opinions, among others.

To account for the above form of dynamic influence, we extend the weight function
I : E → (0, 1] of the influence graph G = (A, E, I) as a function I : E × [0, 1]|A| → [0, 1] on
edges and the state of opinion. The resulting graph is said to have dynamic influence.

▶ Definition 22 (Dynamic OTS). A Dynamic OTS (DOTS) is a tuple (G, Binit, →) where
G = (A, E, I) has dynamic influence I : E × [0, 1]|A| → [0, 1]. We write IB

ij for I((i, j), B).
The labeled transition → is defined as in Def. 2 but replacing Iij with IB

ij in Eq. 1.

The notions of runs, words, e-paths, and related notions for DOTS remain the same as
those for OTS (Def. 4). Let us consider some examples of dynamic influence.

Confirmation Bias. Under confirmation bias [8], an agent j is more influenced by those
whose opinion is closer to theirs. The function IB

ij = 1 − | B[j] − B[i] | captures a form of
confirmation bias; the closer the opinions of i and j, the stronger the influence of i over j.

Bounded Influence. Nevertheless, if we allow dynamic influence that can converge to 0 in
a given run Binit

e0−→ B1
e1−→ . . . , i.e, if limt→∞ IBt

i,j = 0, we may reduce indefinitely influence
and end up in a situation similar to non-strong connectivity of the graph, thus preventing
consensus as in Section 3.1 (Fig. 2). Analogously, if limt→∞ IBt

i,j = 1, we may end up in
puppet situations preventing consensus like in Section 3.2 (Fig. 2c). Both situations are
illustrated in the DOTS in Fig. 5. To prevent them, we bound the dynamic influences.

▶ Definition 23 (Bounded Influence). A DOTS (G, Binit, →) with G = (A, E, I) has bounded
influence if there are constants IL, IU ∈ (0, 1) such that for each B ∈ [0, 1]|A|, (i, j) ∈ E, we
have IB

i,j ∈ [IL, IU].

The previous form of confirmation bias influence IB
ij = 1 − |B[j] − B[i]| is not bounded.

Nevertheless, the linear transformation IL + (IU − IL)IB
ij can be used to scale any unbounded

influence IB
ij into a bounded one in [IL, IU] while preserving its shape.

We conclude with our other main theorem, whose proof is given in the technical report [7].

▶ Theorem 24 (Consensus with bounded influence). Let M = (G, Binit, →) be a DOTS where
G is a strongly-connected, influence graph. Suppose that M has bounded influence. For every
run π of M , if wπ is m-bounded fair with m ≥ |A| − 1, then π converges to consensus.

The result generalizes Th. 18 to dynamic bounded influence. Therefore, in strongly-
connected and dynamic bounded influence graphs, convergence to consensus is guaranteed
for all runs that are m-bounded fair, which include each random run almost surely.

4 We use a clamp function for [0, 1] defined as [r]10 = min(max(r, 0), 1) for every r ∈ R.

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:15

6 Conclusions and Related Work

We introduced a DeGroot-based model with asynchronous opinion updates and dynamic
influence using labelled transition systems. The model captures opinion dynamics in social
networks more faithfully than the original DeGroot model. The fairness notions studied and
the consensus results in this paper show that the model is also tractable and brings new
insights into opinion formation in social networks. To our knowledge, this is the first work
that uses fairness notions from concurrent systems in the context of DeGroot-based models.

There is a great deal of work on DeGroot-based models for social learning (e.g., [4, 13, 12,
38, 37, 15, 11]). We discuss work with asynchronous updates and dynamic influence, which
is the focus of this paper. The work [15] introduces a version of the DeGroot model in which
self-influence changes over time, while the influence on others remains the same. The works
[11, 12] explore convergence and stability, respectively, in models where influences change over
time. The works mentioned above do not take into account asynchronous communication,
whereas this paper demonstrates how asynchronous communication, when combined with
dynamic influence, can prevent consensus.

Recent works on gossip algorithms [17, 30, 2, 35] study consensus with asynchronous
communications for distributed averaging and opinion dynamics. The work in [30] studies
reaching consensus (in finite time) rather than converging to consensus. The works [2, 35]
consider undirected cliques rather than directed graphs as influence graphs. The closest
work is [17], which states consensus for random runs in directed strongly connected graphs
but unlike our case all edges have the same fixed weight q ∈ (0, 1) (i.e., they assume static
influence with the same influence value for all edges). The dynamics of asymmetric gossip
updates in [17] can indeed be captured as OTS, and their random runs are almost-surely
m-bounded fair. Consequently, our work generalizes the consensus result in [17] by extending
it to graphs with (bounded) dynamic influence and whose edges may have different weights.
Furthermore, the framework in [17] does not address fairness notions which are the focus
and the main novelty of our work.

The work [19] discusses probabilistic fairness as a method equally strong as strong fairness
to prove liveness properties, where a liveness property is characterized by a set of states such
that a run holds this property iff the run reaches a state of this set. However, the property
of (convergence to) consensus (Def. 6) does not correspond to this notion of liveness since
it is not about reaching a specific set of states but about converging to a consensual state.
In fact, unless there are puppets or the initial state of a run is already a consensual state,
consensus is never reached in finite time in our model.

Bounded fair ω-words can be characterized by Prompt Buchi Automata (PBW) [3].
Indeed, the set of bounded-fair words of an OTS can be characterized as the language
of PBW. Hence, the closure properties of these automata may prove valuable for future
developments of our work. It would also be interesting to see in future work whether or not
the m−bounded fair words of an OTS can be characterized as the language of a PBW (or of
an elegant variant of it).

In future work, we plan to study the actual value of consensus in a given system. This may
provide information about the most influential agents. We also plan to study how actions
can be scheduled (or manipulated), while preserving the fairness assumptions, to converge
more quickly or slowly to a consensus, or to a given consensus value. For example, giving
priority to edges whose agents have a greater opinion disagreement, while respecting fairness
assumptions. We may build on previous work on priorities in concurrent communications [6]
for this purpose.

CONCUR 2024

7:16 Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

Finally, we plan to extend our model with agents that can learn by exchanging beliefs,
lies, and information, by building upon our work in concurrent constraint programming (e.g.
[24, 23, 18]).

References

1 Martín Abadi and Leslie Lamport. An old-fashioned recipe for real time. In Real-Time: Theory
in Practice. Springer Berlin Heidelberg, 1992.

2 Emerico Aguilar and Yasumasa Fujisaki. Opinion dynamics via a gossip algorithm with
asynchronous group interactions. Proceedings of the ISCIE International Symposium on
Stochastic Systems Theory and its Applications, 2019:99–102, 2019. doi:10.5687/sss.2019.99.

3 Shaull Almagor, Yoram Hirshfeld, and Orna Kupferman. Promptness in ω-regular automata.
In Automated Technology for Verification and Analysis. Springer Berlin Heidelberg, 2010.

4 Mário S. Alvim, Bernardo Amorim, Sophia Knight, Santiago Quintero, and Frank Valencia.
A Multi-agent Model for Polarization Under Confirmation Bias in Social Networks. In 41th
International Conference on Formal Techniques for Distributed Objects, Components, and
Systems (FORTE), 2021. URL: https://inria.hal.science/hal-03740263.

5 Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in languages for
distributed programming. In 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 1987, 1987. doi:10.1145/41625.41642.

6 Jesús Aranda, Frank D. Valencia, and Cristian Versari. On the expressive power of restriction
and priorities in CCS with replication. In Foundations of Software Science and Computational
Structures, FoSSaCS 2009, volume 5504 of Lecture Notes in Computer Science, 2009. doi:
10.1007/978-3-642-00596-1_18.

7 Jesús Aranda, Sebastián Betancourt, Juan Fco. Díaz, and Frank Valencia. Fairness and
consensus in opinion models (technical report), 2024. arXiv:2312.12251.

8 Elliot Aronson, Timothy Wilson, and Robin Akert. Social Psychology. Upper Saddle River,
NJ : Prentice Hall, 7 edition, 2010.

9 Eike Best. Fairness and conspiracies. Information Processing Letters, 18(4):215–220, 1984.
doi:10.1016/0020-0190(84)90114-5.

10 Arun G Chandrasekhar, Horacio Larreguy, and Juan Pablo Xandri. Testing models of social
learning on networks: Evidence from a lab experiment in the field. Working Paper 21468,
National Bureau of Economic Research, August 2015. doi:10.3386/w21468.

11 S. Chatterjee and E. Seneta. Towards consensus: Some convergence theorems on repeated
averaging. Journal of Applied Probability, 14(1):89–97, 1977. doi:10.2307/3213262.

12 Zihan Chen, Jiahu Qin, Bo Li, Hongsheng Qi, Peter Buchhorn, and Guodong Shi. Dynamics
of opinions with social biases. Automatica, 106:374–383, 2019. doi:10.1016/j.automatica.
2019.04.035.

13 Pranav Dandekar, Ashish Goel, and David Lee. Biased assimilation, homophily and the
dynamics of polarization. Proceedings of the National Academy of Sciences of the United States
of America, 110, March 2013. doi:10.1073/pnas.1217220110.

14 Morris H. DeGroot. Reaching a consensus. Journal of the American Statistical Association,
1974. URL: http://www.jstor.org/stable/2285509.

15 Peter M. DeMarzo et al. Persuasion bias, social influence, and unidimensional opinions. The
Quarterly Journal of Economics, 118(3):909–968, 2003. URL: http://www.jstor.org/stable/
25053927.

16 Nachum Dershowitz, D. N. Jayasimha, and Seungjoon Park. Bounded Fairness, pages 304–317.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. doi:10.1007/978-3-540-39910-0_14.

17 F. Fagnani and S. Zampieri. Asymmetric randomized gossip algorithms for consensus. IFAC
Proceedings Volumes, 2008. doi:10.3182/20080706-5-KR-1001.01528.

https://doi.org/10.5687/sss.2019.99
https://inria.hal.science/hal-03740263
https://doi.org/10.1145/41625.41642
https://doi.org/10.1007/978-3-642-00596-1_18
https://doi.org/10.1007/978-3-642-00596-1_18
https://arxiv.org/abs/2312.12251
https://doi.org/10.1016/0020-0190(84)90114-5
https://doi.org/10.3386/w21468
https://doi.org/10.2307/3213262
https://doi.org/10.1016/j.automatica.2019.04.035
https://doi.org/10.1016/j.automatica.2019.04.035
https://doi.org/10.1073/pnas.1217220110
http://www.jstor.org/stable/2285509
http://www.jstor.org/stable/25053927
http://www.jstor.org/stable/25053927
https://doi.org/10.1007/978-3-540-39910-0_14
https://doi.org/10.3182/20080706-5-KR-1001.01528

J. Aranda, S. Betancourt, J. F. Díaz, and F. Valencia 7:17

18 Moreno Falaschi, Carlos Olarte, Catuscia Palamidessi, and Frank D. Valencia. Declarative
diagnosis of temporal concurrent constraint programs. In Logic Programming. ICLP 2007,
2007. doi:10.1007/978-3-540-74610-2_19.

19 Rob Van Glabbeek and Peter Höfner. Progress, justness, and fairness. ACM Computing
Surveys, 52(4):1–38, August 2019. doi:10.1145/3329125.

20 Elizabeth B. Goldsmith. Introduction to Social Influence: Why It Matters, pages 3–22. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-20738-4_1.

21 Benjamin Golub and Evan Sadler. Learning in social networks. Available at SSRN 2919146,
2017.

22 Orna Grumberg, Nissim Francez, Johann A. Makowsky, and Willem P. de Roever. A proof
rule for fair termination of guarded commands. Information and Control, 66(1):83–102, 1985.
doi:10.1016/S0019-9958(85)80014-0.

23 Michell Guzmán, Stefan Haar, Salim Perchy, Camilo Rueda, and Frank Valencia. Belief,
Knowledge, Lies and Other Utterances in an Algebra for Space and Extrusion. Journal of Logical
and Algebraic Methods in Programming, September 2016. doi:10.1016/j.jlamp.2016.09.001.

24 Stefan Haar, Salim Perchy, Camilo Rueda, and Frank Valencia. An Algebraic View of
Space/Belief and Extrusion/Utterance for Concurrency/Epistemic Logic. In 17th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2015), 2015.
doi:10.1145/2790449.2790520.

25 M.Z. Kwiatkowska. Survey of fairness notions. Information and Software Technology, 31(7):371–
386, 1989. doi:10.1016/0950-5849(89)90159-6.

26 Leslie Lamport. Fairness and hyperfairness. Distributed Computing, 13(4):239–245, November
2000. doi:10.1007/PL00008921.

27 D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of concurrent
termination. In Shimon Even and Oded Kariv, editors, Automata, Languages and Programming,
pages 264–277, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

28 R.D. Mauldin. The Scottish Book: Mathematics from the Scottish Café. Birkhäuser, 1981.
URL: https://books.google.com.co/books?id=gaqEAAAAIAAJ.

29 Hossein Noorazar. Recent advances in opinion propagation dynamics: a 2020 survey. The Euro-
pean Physical Journal Plus, 135(6):521, June 2020. doi:10.1140/epjp/s13360-020-00541-2.

30 Guodong Shi, Bo Li, Mikael Johansson, and Karl Henrik Johansson. Finite-time convergent
gossiping. IEEE/ACM Transactions on Networking, 24(5):2782–2794, 2016. doi:10.1109/
TNET.2015.2484345.

31 Albert N. Shiryaev. Probability-1: Volume 1. Springer New York, 2016. doi:10.1007/
978-0-387-72206-1.

32 Houshang H. Sohrab. Basic Real Analysis. Birkhauser Basel, 2nd edition, 2014. doi:
10.1007/0-8176-4441-5.

33 Hagen Völzer and Daniele Varacca. Defining fairness in reactive and concurrent systems. J.
ACM, 59(3), June 2012. doi:10.1145/2220357.2220360.

34 Hagen Völzer, Daniele Varacca, and Ekkart Kindler. Defining fairness. In Martín Abadi and
Luca de Alfaro, editors, CONCUR 2005 – Concurrency Theory, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

35 Xing Wang, Bingjue Jiang, and Bo Li. Opinion dynamics on social networks. Acta Mathematica
Scientia, 42(6):2459–2477, November 2022. doi:10.1007/s10473-022-0616-8.

36 Stanley Wasserman and Katherine Faust. Social network analysis in the social and behavioral
sciences. In Social Network Analysis: Methods and Applications, pages 1–27. Cambridge
University Press, 1994.

37 Chen X, Tsaparas P, Lijffijt J, and De Bie T. Opinion dynamics with backfire effect and
biased assimilation. PLoS ONE, 16(9), 2021. doi:10.1371/journal.pone.0256922.

38 Weiguo Xia, Mengbin Ye, Ji Liu, Ming Cao, and Xi-Ming Sun. Analysis of a nonlinear
opinion dynamics model with biased assimilation. Automatica, 120:109113, 2020. doi:
10.1016/j.automatica.2020.109113.

CONCUR 2024

https://doi.org/10.1007/978-3-540-74610-2_19
https://doi.org/10.1145/3329125
https://doi.org/10.1007/978-3-319-20738-4_1
https://doi.org/10.1016/S0019-9958(85)80014-0
https://doi.org/10.1016/j.jlamp.2016.09.001
https://doi.org/10.1145/2790449.2790520
https://doi.org/10.1016/0950-5849(89)90159-6
https://doi.org/10.1007/PL00008921
https://books.google.com.co/books?id=gaqEAAAAIAAJ
https://doi.org/10.1140/epjp/s13360-020-00541-2
https://doi.org/10.1109/TNET.2015.2484345
https://doi.org/10.1109/TNET.2015.2484345
https://doi.org/10.1007/978-0-387-72206-1
https://doi.org/10.1007/978-0-387-72206-1
https://doi.org/10.1007/0-8176-4441-5
https://doi.org/10.1007/0-8176-4441-5
https://doi.org/10.1145/2220357.2220360
https://doi.org/10.1007/s10473-022-0616-8
https://doi.org/10.1371/journal.pone.0256922
https://doi.org/10.1016/j.automatica.2020.109113
https://doi.org/10.1016/j.automatica.2020.109113

Bidding Games with Charging
Guy Avni # Ñ

University of Haifa, Israel

Ehsan Kafshdar Goharshady # Ñ

Institute of Science and Technology Austria (ISTA), Austria

Thomas A. Henzinger # Ñ

Institute of Science and Technology Austria (ISTA), Austria

Kaushik Mallik # Ñ

Institute of Science and Technology Austria (ISTA), Austria

Abstract
Graph games lie at the algorithmic core of many automated design problems in computer science.
These are games usually played between two players on a given graph, where the players keep moving
a token along the edges according to pre-determined rules (turn-based, concurrent, etc.), and the
winner is decided based on the infinite path (aka play) traversed by the token from a given initial
position. In bidding games, the players initially get some monetary budgets which they need to use
to bid for the privilege of moving the token at each step. Each round of bidding affects the players’
available budgets, which is the only form of update that the budgets experience. We introduce
bidding games with charging where the players can additionally improve their budgets during the
game by collecting vertex-dependent monetary rewards, aka the “charges.” Unlike traditional bidding
games (where all charges are zero), bidding games with charging allow non-trivial recurrent behaviors.
For example, a reachability objective may require multiple detours to vertices with high charges to
earn additional budget. We show that, nonetheless, the central property of traditional bidding games
generalizes to bidding games with charging: For each vertex there exists a threshold ratio, which
is the necessary and sufficient fraction of the total budget for winning the game from that vertex.
While the thresholds of traditional bidding games correspond to unique fixed points of linear systems
of equations, in games with charging, these fixed points are no longer unique. This significantly
complicates the proof of existence and the algorithmic computation of thresholds for infinite-duration
objectives. We also provide the lower complexity bounds for computing thresholds for Rabin and
Streett objectives, which are the first known lower bounds in any form of bidding games (with or
without charging), and we solve the following repair problem for safety and reachability games that
have unsatisfiable objectives: Can we distribute a given amount of charge to the players in a way
such that the objective can be satisfied?

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Bidding games on graphs, ω-regular objectives

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.8

Related Version Full Version: https://arxiv.org/abs/2407.06288 [13]

Funding This work was supported in part by the ERC projects ERC-2020-AdG 101020093 and CoG
863818 (ForM-SMArt) and by ISF grant no. 1679/21.

1 Introduction

Two-player graph games have deep connections to foundations of mathematical logic [26], and
constitute a fundamental model of computations with applications in reactive synthesis [25]
and multi-agent systems [2]. A graph game is played on a graph, called the arena, as follows.
A token is placed on an initial vertex and the two players move the token throughout the
arena to produce an infinite path, called a play. The winner is determined based on whether

© Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gavni@cs.haifa.ac.il
https://sites.google.com/view/gavni
https://orcid.org/0000-0001-5588-8287
mailto:ehsan.goharshady@ist.ac.at
https://ehsan.goharshady.com/
https://orcid.org/0000-0002-8595-0587
mailto:tah@ist.ac.at
https://pub.ista.ac.at/~tah/
https://orcid.org/0000-0002-2985-7724
mailto:kaushik.mallik@ist.ac.at
https://kmallik.github.io/
https://orcid.org/0000-0001-9864-7475
https://doi.org/10.4230/LIPIcs.CONCUR.2024.8
https://arxiv.org/abs/2407.06288
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Bidding Games with Charging

a[
2
0

]
0

b

1
4

c

1
2

d

0

e1

(a) Strategies may depend on the available
budget.

a

[
0
6

]
1

t 0

b

[
0.25

0

]
3
8

(b) Nontrivial solution for safety objective of
Player 2 when the unsafe vertex (which is t) is
reachable from every other vertex.

Figure 1 Examples to demonstrate the distinctive features of bidding games with charging,
compared to traditional bidding games (without charging). The double circled vertices are the ones
that Player 1 wants to reach (reachability objective), or, dually, the ones that Player 2 wants to
avoid (safety objective). When a vertex v has nonzero reward for at least one of the players, the

rewards are shown next to v in the vector notation
[

R1(v)
R2(v)

]
. The threshold budget of Player 1 for

each vertex is shown in blue next to the vertex.

the play fulfills a given temporal objective (or specification). Traditionally, graph games are
turn-based, where the players move the token in alternate turns. Bidding games are graph
games where who moves the token at each step is determined by an auction (a bidding).
Concretely, both players are allocated initial budgets, and in each turn, they concurrently
place bids from their available budgets, the highest bidder moves the token, and pays his bid
according to one of the following pre-determined mechanisms. In Richman bidding, the bid
is paid to the lower bidder, in poorman bidding, the bid is paid to an imaginary “bank” and
the money is lost, and in taxman bidding, a fixed fraction of the bid is paid to the bank (the
“tax”) and the rest goes to the lower bidder. The outcome of the game is an infinite play
and, as usual, the winner is determined based on whether the play fulfills a given objective.

Bidding games model strategic decision-making problems where resources need to be
invested dynamically towards the fulfillment of an objective. For example, a taxi driver
needs to decide how to “invest” his gas supply in order to collect as many passengers as
possible, internet advertisers need to invest their advertising budgets in ongoing auctions for
advertising slots with the goal of maximizing visibility [5], or a coach in an NBA tournament
needs to decide his roster for each game while “investing” his players’ limited energy with
the goal of winning the tournament [8]. While in all these scenarios the investment resources
can be “charged,” e.g., by visiting a gas station, by adding funds, or by allowing the players
to rest, respectively, charging budgets cannot be modeled in traditional bidding games.

We study, for the first time, bidding games with charging, where the players can increase
their available budgets by collecting vertex-dependent charges. Every vertex v in the arena is
labeled with a pair of non-negative rational numbers denoted R1(v) and R2(v). Suppose the
game enters a vertex v, where for i ∈ {1, 2}, Player i’s budget is Bi with B1 + B2 = 1. First,
the budgets are charged to B′

1 = B1 + R1(v) and B′
2 = B2 + R2(v). Second, we normalize

the sum of budgets to 1 by defining B′′
1 = B′

1/(B′
1 + B′

2) and B′′
2 = B′

2/(B′
1 + B′

2). Finally,
the players bid from their new available budgets B′′

1 and B′′
2 , and the bids are resolved using

any of the traditional mechanisms. Note that traditional bidding games are a special case of
bidding games with charging in which all charges are 0. The normalization step plays an
important role and will be discussed in Ex. 4.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:3

▶ Example 1. We illustrate the model and show a distinctive feature that is not present
in traditional bidding games. Consider the bidding game in Fig. 1a, where the objective
of Player 1, the reachability player, is to reach d and the objective of Player 2, the safety
player, is to prevent this. Consider Richman bidding. We show that from vertex b, Player 1
can win with a budget of B1 = 1

4 + ϵ ≤ 1 for every ϵ > 0. Player 1 bids 1
4 at b. We consider

two cases. First, Player 2 wins the bidding and proceeds to c. She pays Player 1 at least
1
4 , and Player 1’s budget at c becomes at least 1

2 + ϵ. Player 1 can now win the bidding by
bidding all of his budget (recall that the sum of budgets is 1), and can proceed to d to win
the game. Second, suppose that Player 2 loses the bidding at b. Player 1 proceeds to a with
a budget of ϵ. We charge his budget to B′

1 = 2 + ϵ and after re-normalizing his new budget
becomes B′′

1 = B′
1

3 > 2
3 . Player 1 increases his budget by forcing the game to stay in a for

three consecutive turns: He first bids 1
3 , and his budget exceeds (1

3 + 2)/3 = 7
9 , then he bids

2
9 and 4

27 in the following two turns, after which his budget exceeds 73
81 > 7

8 . Since every
budget greater than 7

8 suffices to guarantee winning three consecutive biddings, he can now
force the game to reach d, resulting in a win.

We point out a distinction from traditional bidding games (without charging). In games
without charging, it is known that if a player wins, he can win using a budget agnostic
winning strategy: For every vertex v, there is a successor u such that upon winning the
bidding at v, the strategy proceeds to u regardless of the current available budget.1 However,
it is not hard to see that there is no winning budget-agnostic strategy in the game above;
indeed, in order to win, Player 1 must eventually go right from b, but when his budget is
0.25 < B1 ≤ 0.75, he needs to go left and going right will make him lose. ⌟

Another distinctive feature of bidding games with charging is that safety games have
non-trivial solutions, while in traditional bidding games, the only way to ensure safety is by
reaching a vertex with no path to the unsafe vertices [21, 4, 7]. Therefore, charging opens
doors to new applications of bidding games for when safety objectives are involved. For
example, in auction-based scheduling [14], bidding games are used to compose two policies at
runtime such that the objectives of both policies are fulfilled. With traditional bidding games,
auction-based scheduling cannot support long-run safety due to the aforementioned reasons.
Bidding games with charging creates the possibility to extend auction-based scheduling for
richer classes of objectives than what can be supported currently.

▶ Example 2. We show that Player 2, the safety player, wins the game depicted in Fig. 1b
starting from b when Player 1’s budget is B1 < 3

8 . Fulfilling safety requires the game to
forever loop over a and b; such an outcome is not possible in traditional bidding games since
t is reachable from both a and b. After charging at b, we have B′′

1 < 1
2 . Player 2 bids 1

2 ,
trivially wins the bid and moves the token to a. Her budget is charged to at least 6

7 , meaning
that Player 1’s budget is at most 1

7 . She bids 3
16 , trivially wins the bidding and move the

token to b. When entering b her budget is at least 6
7 − 3

16 > 5
8 , meaning that Player 1’s

budget is less than 3
8 , and she can keep repeating the same strategy to win the game. ⌟

The central quantity in bidding games is the pair of thresholds on the players’ budgets
which enable them to win. Formally, for i ∈ {1, 2}, Player i’s threshold at vertex v, denoted
Thi(v), is the smallest value in [0, 1] such that for every ϵ > 0, Player i can guarantee winning
from v with an initial budget of Thi(v) + ϵ. The thresholds in the vertices in Figures 1a
and 1b are depicted beside them in blue. When Th1(v) + Th2(v) = 1, we say that a threshold

1 We refrain from calling the strategy memoryless since it might bid differently in successive visits to v.

CONCUR 2024

8:4 Bidding Games with Charging

Table 1 Upper complexity bounds for bidding games with charging (“w/ chg.”) in comparison
with traditional bidding games (“w/o chg.”).

Reachability Safety Büchi Co-Büchi
w/

chg. w/o chg. w/
chg. w/o chg. w/

chg. w/o chg. w/
chg. w/o chg.

Richman coNP NP ∩ coNP NP NP ∩ coNP ΠP
2 NP ∩ coNP ΣP

2 NP ∩ coNP

Taxman
and
poorman

PSPACE PSPACE PSPACE PSPACE 2-EXP PSPACE 2-EXP PSPACE

exists and define the threshold to be Th(v) = Th1(v). Existence of thresholds is a form
of determinacy: for every Player 1 budget B1 ≠ Th1(v), one of the players has a winning
strategy. We establish that bidding games with charging are also determined for reachability
and Büchi objectives, and, dually, for safety and co-Büchi objectives. The proofs of these
claims are however significantly more involved than the case of traditional bidding games.
For instance, for traditional bidding games, the existence of thresholds for Büchi objectives
follows from the existence of thresholds for reachability objectives, with the observation that
for every bottom strongly connected component (BSCC), every vertex has a threshold 0 or
1, so that winning the Büchi game boils down to reaching one of the BSCCs with thresholds
0 (the “winning” BSCCs). This approach fails for games with charging. First, players may
be able to trap the game within an SCC that is not part of any BSCC, and second, the
thresholds in a BSCC might not be all 0 or 1 as seen in Ex. 2. In order to show the existence
of thresholds in Büchi games, we develop a novel fixed point algorithm that is based on
repeated solutions to reachability bidding games.

We study the complexity of finding thresholds. Here too, the techniques differ and are
more involved than traditional bidding games. In Richman-bidding games without charging,
thresholds correspond to the unique solution of a system of linear equations. In games with
charging, however, thresholds correspond to the least and the greatest fixed points, and
we present a novel encoding of the problem using mixed-integer linear programming. We
summarize our complexity results in Tab. 1 along with a comparison with known results in
traditional bidding games. Finally, we show that Richman games with Rabin and Streett
objectives are NP-hard and coNP-hard, respectively. This result establishes the first lower
complexity bound in any form of bidding games (with or without charging). Upper bounds
for Rabin and Streett objectives are left open.

Finally, we introduce and study a repair problem in bidding games: Given a bidding
game, a target threshold t in a vertex v, and a repair budget C, decide if it is possible to
add charges to the vertices of G in a total sum that does not exceed C such that Th(v) ≤ t.
Repairing is relevant when the bidding game is not merely given to us as a fixed input, but
rather the design of the game is part of the solution itself. For instance, we have already
mentioned auction-based scheduling [14], where the strongest guarantees can be provided
when in two bidding games that are played on the same arena, the sum of thresholds in the
initial vertex is less than 1. When this requirement fails, repairing can be applied to lower
the thresholds. We show that the repair problem for safety objectives is in PSPACE and for
reachability objectives is in 2EXPTIME.

Related work
Bidding games (without charging) were introduced by Lazarus et al. [22, 21], and were
extended to infinite-duration objectives by Avni et al. [4, 5, 6, 9]. Many variants of bidding
games have been studied, including discrete-bidding [19, 1, 12], which restricts the granularity

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:5

of bids, all-pay bidding [8, 9], which model allocation of non-refundable resources, partial-
information games [10], which restricts the observation power of one of the players, and
non-zero-sum bidding games [23], which allow the players’ objectives to be non-complimentary.
The inspiration behind charging comes from other forms of resource-constrained games that
allow to refill depleted resources or accumulate new resources to perform certain tasks
[17, 16, 15]. The unique challenge in our case is the additional layer of bidding, which
separates resource (budget) accumulation and spending.

2 Bidding Games with Charging

A bidding game with charging is a two-player game played on an arena ⟨V, E, R1, R2⟩ between
Player 1 and Player 2,2 where V is a finite set of vertices, E ⊆ V ×V is a set of directed edges,
and R1, R2 : V → R≥0 are the charging functions of Player 1 and Player 2, respectively. We
denote the set of successors of the vertex v by S(v) = {u : ⟨v, u⟩ ∈ E}. Bidding games with
no charging will be referred to as traditional bidding games, which is a special case with
R1 ≡ R2 ≡ 0. The default ones in this paper are bidding games with charging and, to avoid
clutter, we typically refer to them simply as bidding games.

A bidding game proceeds as follows. A configuration of a bidding game is a pair
c = ⟨v, B1⟩ ∈ V × [0, 1], which indicates that the token is placed on the vertex v and
Player 1’s current budget is B1. We always normalize the sum of budgets to 1, thus,
implicitly, Player 2’s budget is B2 = 1 − B1. At configuration c, we charge and normalize the
budgets. Formally, the game proceeds to an intermediate configuration c′ = ⟨v, B′

1⟩ defined
by B′

1 = B1+R1(v)
1+R1(v)+R2(v) . Player 2’s budget becomes B′

2 = 1 − B′
1 = B2+R2(v)

1+R1(v)+R2(v) . Then, the
players simultaneously bid for the privilege of moving the token. Formally, for i ∈ {1, 2},
Player i chooses an action ⟨bi, ui⟩, where bi ∈ [0, B′

i] and ui ∈ S(v). Given both players’
actions, the next configuration is ⟨u, B′′

1 ⟩, where u = u1 when b1 ≥ b2 and u = u2 when
b2 > b1, and B′′

1 is determined based on the bidding mechanism defined below. Note that we
arbitrarily break ties in favor of Player 1, but it can be shown that all our results remain
valid no matter how ties are resolved. In the definitions below we assume that Player 1 is
the higher bidder, i.e., b1 ≥ b2, and the case where b2 > b1 is dual:
Richman bidding. The higher bidder pays his bid to the lower bidder. Formally, B′′

1 = B′
1−b1,

and B′′
2 = B′

2 + b1.
Poorman bidding. The higher bidder pays his bid to the bank and we re-normalize the

budget to sum up to 1. Formally, B′′
1 = B′

1−b1
1−b1

, and B′′
2 = B′

2
1−b1

.
Taxman bidding. For a predetermined and fixed fraction τ ∈ [0, 1], called the tax rate, the

higher bidder pays fraction τ of his bid to the bank, and the rest to the lower bidder.
Formally, B′′

1 = B′
1−b1

1−τ ·b1
, and B′′

2 = B′
2+(1−τ)·b1

1−τ ·b1
. Note that taxman bidding with τ = 0

coincides with Richman bidding and with τ = 1 coincides with poorman bidding.

In a bidding game, a history is a finite sequence ⟨v0, B0⟩, ⟨v0, B′
0⟩, . . . , ⟨vn, Bn⟩, ⟨vn, B′

n⟩
which alternates between configurations and intermediate configurations. For i ∈ {1, 2}, a
strategy for Player i is a function πi that maps a history to an action ⟨bi, ui⟩. We typically
consider memoryless strategies, which are functions from intermediate configurations to
actions. An initial configuration c0 = ⟨v0, B0⟩ and two strategies π1 and π2 give rise to an
infinite play, denoted play(c0, π1, π2), and is defined inductively, where the inductive step is
based on the definitions above. Let play(c0, π1, π2) = ⟨v0, B0⟩, ⟨v0, B′

0⟩, The path that
corresponds to play(c0, π1, π2) is v0, v1, . . . ∈ V ω.

2 We will use the pronouns “he” and “she” for Player 1 and Player 2, respectively.

CONCUR 2024

8:6 Bidding Games with Charging

v1 v2

[
0.5
0

]
t1 t2

Figure 2 Example of a poorman bidding game where without normalization thresholds are not
uniquely determined.

Each game is equipped with an objective φ ⊆ V ω. Each play has a winner. Player 1 wins
a play if its corresponding path is in φ, and Player 2 wins otherwise. For an objective φ,
a Player 1 strategy π1 is winning from a configuration c if for every Player 2 strategy π2,
the play play(c, π1, π2) is winning for Player 1, and the definition for Player 2 is dual. For
i ∈ {1, 2}, we say Player i wins from configuration c for φ if he has a winning strategy from
c. We will use x to denote the complement of x, where x can be either an objective or a set
of vertices. We consider the following objectives:
Reachability. For a set of vertices T ⊆ V , the reachability objective is defined as Reach(T) :=

{v0v1 . . . ∈ V ω | ∃i ∈ N . vi ∈ T}. Intuitively, T represents the set of target vertices, and
Reach(T) is satisfied if T is eventually visited by the given path.

Safety. For a set of vertices S ⊆ V , the safety objective is defined as Safe(S) := {v0v1 . . . ∈
V ω | ∀i ∈ N . vi ∈ S}. Intuitively, S represents the set of safe vertices, and Safe(S) is
satisfied if S is not left ever during the given path. Safety and reachability are dual to
each other, i.e., Safe(S) = Reach(S).

Büchi. For a set of vertices B ⊆ V , the Büchi objective is defined as Büchi(B) := {v0v1 . . . ∈
V ω | ∀i ∈ N . ∃j > i . vj ∈ B}. Intuitively, Büchi(B) is satisfied if B is visited infinitely
often during the given path.

Co-Büchi. For a set of vertices C ⊆ V , the co-Büchi objective is defined as Co-Büchi(C) :=
{v0v1 . . . ∈ V ω | ∃i ∈ N . ∀j > i . vj ∈ C}. Intuitively, Co-Büchi(C) is satisfied if only C

is visited from some point onward during the play. Büchi and co-Büchi objectives are
dual to each other, i.e., Co-Büchi(C) = Büchi(C).

A central concept in bidding games is the pair of thresholds for the two players. Roughly,
they are the smallest budgets needed by the respective player for winning the game from a
given vertex. We formalize this below.

▶ Definition 3 (Thresholds). Let G be a given arena and M ∈ {Richman, poorman, taxman}
be a given bidding mechanism . For an objective φ, the thresholds ThG,M,φ

1 , ThG,M,φ
2 : V →

[0, 1] are functions such that for every v ∈ V and every ϵ > 0:
ThG,M,φ

1 (v) := infB1∈[0,1]{B1 : Player 1 wins from ⟨v, B1 + ϵ⟩ for φ, for every ϵ > 0}.
ThG,M,φ

2 (v) := infB2∈[0,1]{B2 : Player 2 wins from ⟨v, 1 − B2 − ϵ⟩ for φ, for every ϵ > 0}.
When ThG,M,φ

1 (v) + ThG,M,φ
2 (v) = 1 for every vertex v, we say that the threshold exists in G,

denote it ThG,M,φ(v), and define ThG,M,φ(v) = ThG,M,φ
1 (v).

Whenever the game graph and the bidding mechanism are clear from the context, we simply
write Thφ

1 , Thφ
2 , and Thφ.

▶ Example 4 (The importance of normalization). Consider the poorman bidding game that is
depicted in Fig. 2. Intuitively, Player 1 wins from v1 iff he wins the first two consecutive
biddings. Formally, the game starts at v1 and ti is Player i’s target, for i ∈ {1, 2}. We
first analyze the game with a normalization step. We argue that Th(v2) = 1

4 ; indeed, since

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:7

1/4+1/2
3/2 = 1

2 , entering v2 with a budget greater than 1
4 allows Player 1 to secure winning.

We argue that Th(v1) = 4
7 ; indeed, Player 1 must bid above Player 2’s budget and win

the bidding, and note that 4/7−3/7
3/7 = 1

4 . Note that thresholds are in fact a ratio. Stated
differently, consider a configuration ⟨v1, B1, B2⟩ with B1 + B2 not necessarily equals 1, then
Player 1 wins iff B1

B1+B2
> 4

7 . Crucially, the ratio between B1 and B2 is fixed. We will prove
that this is a general phenomenon on which our algorithms depend.

When a normalization step is not performed, Player 1’s threshold for winning is a non-
linear function of Player 2’s initial budget. Intuitively, when no normalization is performed,
the charge is more meaningful when the budgets are smaller. Consider a configuration
⟨v1, B1, B2⟩ with B1 + B2 being not necessarily equal to 1. Note that Player 1 must win the
first bidding, thus the second configuration must be ⟨v2, B1 −B2, B2⟩. When no normalization
is performed after charging, the intermediate configuration is ⟨v2, B1 − B2 + 0.5, B2⟩. Clearly,
Player 1 wins iff B1 − B2 + 0.5 > B2. For example, when B2 = 1, then Player 1’s threshold
is 3

2 and when B2 = 2, then Player 1’s threshold is 7
2 . These amount to ratios of 3

5 and
7

11 , respectively, meaning that Player 1’s threshold is a non-linear function of Player 2’s
budget. We point out that this is also the case in poorman discrete-bidding games [11],
where thresholds can only be approximated, even in extremely simple games. ⌟

We formulate the decision problem related to the computation of thresholds. We will
write that a given objective φ is of type Reach, Safe, Büchi, or Co-Büchi if φ can be expressed
as a reachability, safety, Büchi, or co-Büchi objective (on a given arena), respectively.

▶ Definition 5 (Finding threshold budgets). Let M ∈ {Richman, poorman, taxman}, and
S ∈ {Reach, Safe, Büchi, Co-Büchi}. The problem THRESHM

S takes as input an arena G, an
initial vertex v, and an objective φ ∈ S, and accepts the input iff ThG,M,φ

1 (v) ≤ 0.5.

3 Reachability Bidding Games with Charging

In this section, we show the existence of thresholds in taxman-bidding games with charging
with reachability and, dually, with safety objectives. Throughout this section, we fix an
arena G = ⟨V, E, R1, R2⟩. For a given set of vertices T ⊆ V , the objective of Player 1, the
reachability player, is Reach(T), and, the objective of Player 2, the safety player, is Safe(T).

3.1 Bounded-Horizon Reachability and Safety
We start with the simpler case of bounded-horizon reachability objectives, and in the next
section, we will extend the technique to general games. Let t ∈ N. The bounded-horizon
reachability, denoted Reach(T, t), intuitively requires Player 1 to reach T within t steps.
Formally, Reach(T, t) := {v0v1 . . . | ∃i ≤ t . vi ∈ T}. Bounded-horizon safety is the dual
objective Safe(T , t) := {v0v1 . . . | ∀i ≤ t . vi /∈ T} = V ω \ Reach(T, t).

In the following, we characterize the thresholds for Reach(T, t) and Safe(T , t) by induction
on t. The induction step relies on the following operator on functions.

▶ Definition 6. Define the function clamp[0,1] (x) := min(1, max(0, x)); that is, given x,
clamp[0,1] (x) = x, when 0 < x < 1, and otherwise it “saturates” x at the boundaries 0 or 1.
Let τ ∈ [0, 1] be the tax rate. We define two operators on functions Av1, Av2 : [0, 1]V → [0, 1]V
as follows. For i ∈ {1, 2} and f ∈ [0, 1]V :

Avi(f)(v) := clamp[0,1]

(
(1 − τ)f(v−) + f(v+)

[f(v+) − f(v−) − 1]τ + 2 · (1 + R1(v) + R2(v)) − Ri(v)
)

where v+ and v− are the successors of v with the largest and the smallest value of f(·),
respectively, i.e., v+ = arg maxu∈S(v) f(u) and v− = arg minu∈S(v) f(u).

CONCUR 2024

8:8 Bidding Games with Charging

Note that for Richman bidding, i.e., when τ = 0, for i ∈ {1, 2}, we have

Avi(f)(v) := clamp[0,1]

(
f(v+) + f(v−)

2 ·
(
1 + R1(v) + R2(v)

)
− Ri(v)

)
In this case, the function Avi computes the average (the name “Av” stands for “average”) of
its argument f on v− and v+, and then performs an affine transformation followed by the
saturation clamp[0,1] (·) on the result. For poorman bidding, i.e., when τ = 1, we have

Avi(f)(v) := clamp[0,1]

(
f(v+)

f(v+) − f(v−) + 1 ·
(
1 + R1(v) + R2(v)

)
− Ri(v)

)
We define two functions f1 and f2 which will be shown to coincide with the thresholds.

▶ Definition 7. Define the functions f1, f2 : V × N → [0, 1] inductively on t. For every
v ∈ T and t ∈ N, define f1(v, t) := 0 and f2(v, t) := 1. For every v /∈ T , define f1(v, 0) := 1
and f2(v, 0) := 0, and for every t > 0, define f1(v, t) := Av1 (f1(·, t − 1)) (v) and f2(v, t) :=
Av2 (f2(·, t − 1)) (v).

Lem. 8 shows that f1 and f2 coincide with the thresholds of the (bounded-horizon)
reachability and safety players, respectively. Intuitively, for Reach(T, 0), Player 1 wins with
even zero budget from vertices that are already in T , and loses with even the maximum
budget from vertices that are not in T . We capture this as f1(v, 0) = 0 if v ∈ T , and
f1(v, 0) = 1 otherwise. Furthermore, if Player 1 has a budget more than f1(v, t) at v, then
we show that he has a memoryless policy such that no matter which vertex v′ the token
reaches in the next step, his budget will remain more than f1(v′, t − 1). It follows inductively
that he will reach T in t steps from v. The argument for the safety player is dual. Lem. 8
also establishes the existence of thresholds.

▶ Lemma 8. For every vertex v ∈ V and t ≥ 0, we have ThReach(T,t)
1 (v) = f1(v, t) and

ThReach(T,t)
2 (v) = f2(v, t). Moreover, thresholds exist: ThReach(T,t)

1 (v) + ThReach(T,t)
2 (v) = 1.

Proof. We sketch the proof for Richman bidding and the full proof can be found in the
extended version of the paper [13]. We show f1(v, t) ≥ ThReach(T,t)

1 (v). It is dual to
show f2(v, t) ≥ ThReach(T,t)

2 (v), and the other directions of the inequalities follow from the
relationship f1(v, t) = 1 − f2(v, t), which is not hard to verify. The proof of f1(v, t) ≥
ThReach(T,t)

1 (v) proceeds by induction over t. The base case, t = 0, is not hard to verify.
For t ≥ 1, assume that f1(v, t − 1) ≥ ThReach(T,t−1)

1 (v), and we prove the claim for t. Let
v ∈ V and B1 > f1(v, t). We describe a Player 1 winning strategy from ⟨v, B1⟩. Player 1
bids b1 = f1(v+,t−1)−f1(v−,t−1)

2 , and proceeds to v− upon winning the bidding (recall that
v− is the successor of v that attains the minimal value of f1(·, t − 1)). If Player 1 wins the
bidding, he pays b1 to Player 2, and it can be verified that his new available budget in the
next vertex v− remains above f1(v−, t − 1). On the other hand, if Player 1 loses the bidding,
he receives at least b1 from Player 2 (because Player 2 must have bid higher than b1), and
the token is moved by Player 2 to some successor v′ of v. It can be verified that even in
this case, Player 1’s new available budget remains above f1(v+, t − 1) > f1(v′, t − 1). By
the induction hypothesis, from the new vertex Player 1 can reach T in at most t − 1 steps.
Therefore, from v Player 1 can reach T in at most t steps. ◀

The following lemma establishes monotonicity of f1 and f2 with respect to t, which will
play a key role in the proof of existence of thresholds for the unbounded counterparts of
the objectives. Intuitively, reaching T within t steps is harder than reaching T within t′ > t

turns, thus less budget is needed for the latter case. Dually, guaranteeing safety for t turns
is easier than guaranteeing safety for t′ > t turns.

▶ Lemma 9. For v ∈ V and t′ > t, it holds that f1(v, t′) ≤ f1(v, t) and f2(v, t′) ≥ f2(v, t).

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:9

a bc d

[
0
5

]

Figure 3 Non-unique fixed points of the
threshold update functions.

t

v
a b c d e

0 1 1 1 0 1
1 1 1 0.5 0 1
2 1 0.75 0.5 0 1
3 0.625 0.75 0.5 0 1
4 0.0625 0.5625 0.5 0 1
5 0 0.28125 0.5 0 1

≥ 6 0 0.25 0.5 0 1

Figure 4 Finite-Horizon reachability
thresholds for the game in Fig. 1a. The number
at row i and column v is ThReach(d,i)

1 (v).

3.2 Existence of Thresholds (for Reachability and Safety Objectives)
We define two functions f∗

1 and f∗
2 which will be shown to coincide with the thresholds for

the unbounded horizon reachability and safety objectives, respectively.

▶ Definition 10. Define the functions f∗
1 , f∗

2 : V → [0, 1], such that for every v ∈ V :

f∗
1 (v) := lim

t→∞
f1(v, t) and f∗

2 (v) := lim
t→∞

f2(v, t).

Since f1 and f2 are bounded in [0, 1] and monotonic by Lem. 9, the limits in Def. 10 are
well defined. Since f1(v, 0) and f2(v, 0) assign, respectively, the maximum (i.e., 1) and the
minimum (i.e., 0) value to every vertex v /∈ T , hence from the Kleene fixed point theorem, it
follows that f∗

1 and f∗
2 will be, respectively, the greatest and the least fixed points of the

operators Av1 and Av2 on the directed-complete partial order
〈
[0, 1]V , ≤

〉
.

▶ Proposition 11. Consider the directed-complete partial order L =
〈
[0, 1]V , ≤

〉
, where

for every x, y ∈ [0, 1]V , x ≤ y iff xi ≤ yi for every i ∈ V . The functions f∗
1 and f∗

2
are, respectively, the greatest and the least fixed points of the functions Av1 and Av2 on L,
subjected to the constraints f∗

1 (v) = 0 and f∗
2 (v) = 1 for every v ∈ T .

The following example demonstrates that, unlike traditional bidding games, the fixed
points of the functions Av1 and Av2 on L may not be unique.

▶ Example 12 (Multiple fixed-points). Consider the bidding game in Fig. 3, where the
objective of Player 1 is to reach c. It can be easily verified that both f∗

1 = {a 7→ 0.25, b 7→
0.5, c 7→ 0, d 7→ 1} and f∗

1
′ ≡ 0 are fixed points of the operator Av1 over L in this case. ⌟

The following theorem establishes the existence of thresholds.

▶ Theorem 13. For every vertex v ∈ V , it holds that ThReach(T)
1 (v) = f∗

1 (v) and
ThReach(T)

2 (v) = f∗
2 (v). Moreover, thresholds exist: ThReach(T)

1 (v) + ThReach(T)
2 (v) = 1.

Proof. We prove that f∗
1 (v) ≥ ThReach(T)

1 (v), for every v ∈ V . Let B1 > f∗
1 (v). There exists

a t ∈ N such that B1 > f1(v, t). Player 1 uses the strategy from Lem. 8, guaranteeing that T

is reached within t steps. Next, we prove that f∗
2 (v) ≥ ThReach(T)

2 (v), for every v ∈ V . Let
B2 > f∗

2 (v). We know that f∗
2 = Av2(f∗

2) (from Prop. 11), and let v+, v− be the successors
of v with the greatest and the least value of f2. Player 2 bids b2 = f2(v+)−f2(v−)

[f2(v+)−f2(v−)−1]τ+2 ,

which evaluates under Richman bidding to b2 = f∗
2 (v+)−f∗

2 (v−)
2 and under poorman bidding

CONCUR 2024

8:10 Bidding Games with Charging

to b2 = f2(v+)−f2(v−)
f2(v+)−f2(v−)+1 . Player 2 proceeds to v− upon winning. In the extended version [13],

we prove that no matter how Player 1 bids, Player 2’s strategy guarantees that in the next
vertex v′ her new budget B′

2 > f∗
2 (v′). Recall that by construction, f∗

2 (v′′) = 1, for every
v′′ ∈ T . Thus, T is never reached since Player 2’s budget can never exceed 1. Finally, the
other directions, i.e., the inequalities f∗

1 (v) ≤ ThReach(T)
1 (v) and f∗

2 (v) ≤ ThReach(T)
2 (v), and

the existence claim follows from the observation that f∗
1 (v) = 1 − f∗

2 (v), for every v ∈ V . ◀

It follows that the threshold can be computed using fixed point iterations sketched in
Prop. 11; this iterative approach is illustrated in the following example.

▶ Example 14. Consider the bidding game in Fig. 1a with Richman bidding. The finite
horizon reachability thresholds are depicted in table 4. Suppose the game starts from ⟨a, 0.1⟩
which is winning for the reachability player. In this case, t = 4 is the smallest integer for which
Player 1’s budget 0.1 at a is larger than ThReach(d,t)

1 (a), which is 0.0625. Therefore, according
to the strategy of Player 1 as described in the proof of Lem. 8, Player 1 has a strategy for
reaching d in 4 steps. First, his budget is charged to 0.1+2

3 = 0.7. His winning strategy

(described in the proof of Lem. 8) dictates that he should bid ThReach(d,3)
1 (b)−ThReach(d,3)

1 (a)
2 =

0.0625. In case of winning, he pays the bid to the safety player and keeps the token at a, with
budget 0.6375 which is then charged to 0.87916̄. This is enough for winning 3 consecutive
biddings and moving the token to d. In case of losing the first bid, his budget will increase to
at least 0.76. This amount is more than both ThReach(d,3)

1 (a) and ThReach(d,3)
1 (b), therefore

he can guarantee a win in at most 3 steps.
Now suppose the game starts from ⟨b, 0.2⟩ meaning that the safety player has 0.8 budget

and can win the game. She has a budget-agnostic strategy which dictates her to bid 0.25
in b (see the proof of Lem. 8 for a sketch of Player 2’s strategy). She definitely wins this
bidding as her opponent has only 0.2 budget. She then moves the token to c and pays 0.25
to the reachability player, leaving her with 0.55 of the total budget. She can then bid 0.5,
win the bidding and move the token to e, where the token stays indefinitely. ⌟

3.3 Complexity Bounds (for Reachability and Safety Objectives)
Since f∗

1 and f∗
2 are fixed points of the operators Av1 and Av2, respectively, hence f∗

1 =
Av1(f∗

1) and f∗
2 = Av2(f∗

2). Moreover, f∗
1 is the greatest fixed point, which means that

ThReach(T)
1 = f∗

1 can be computed by finding the element-wise maximum function h in [0, 1]V
that satisfies h(v) = 0 for v ∈ T and h(v) = Av1(h)(v) for v /∈ T . This is formalized below:

max
h

∑
v∈V

h(v)

subjected to constraints:
∀v ∈ T . h(v) = 0,

∀v /∈ T . h(v) = Av1 (h(·)) (v)

= clamp[0,1]

(
(1 − τ)h(v−) + h(v+)

[h(v+) − h(v−) − 1]τ + 2 · (1 + R1(v) + R2(v)) − R1(v)
)

,

h(v+) = max
u∈S(v)

h(u), h(v−) = max
u∈S(v)

h(u). (1)

▶ Proposition 15. The solution of the optimization problem in (1) is equivalent to the
threshold function ThReach(T)

1 of the reachability player.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:11

Due to Thm. 13, for every vertex v ∈ V , we have ThReach(T)
2 (v) = 1 − ThReach(T)

1 (v).
Consequently, we obtain the following upper complexity bounds.

▶ Theorem 16. The following hold:
(i) THRESHtaxman

Reach ∈ PSPACE and THRESHtaxman
Safe ∈ PSPACE,

(ii) THRESHRichman
Reach ∈ coNP and THRESHRichman

Safe ∈ NP.

Proof.

Proof of (i). It can be shown that we can construct a polynomially sized (w.r.t. the game)
function φ : RV → B such that for every h ∈ RV , φ(h) is true iff h is a fixed point of Av1
(details can be found in the extended version [13]). Hence, if the system has a solution
where h(v) > 0.5, the greatest fixed point ThReach(T)

1 satisfies ThReach(T)
1 (v) > 0.5. This is

an instance of existential theory of reals which is known to be in PSPACE. Therefore, it is
possible to decide ThReach(T)

1 (v) > 0.5 (equivalently ThReach(T)
2 (v) < 0.5) in PSPACE.

Proof of (ii). We provide the following reduction from the optimization problem to an
instance of MILP; a different proof with a polynomial certificate is provided in the extended
version [13]. Let O be the optimization problem as stated in the Section 3 with τ = 0.

Let M be any constant strictly greater than maxu∈V {1 + R1(u) + R2(u)}. For each node
u define two new variables h−(u), h+(u) and add the following constraints to O:

h+(w) ≥ h(w) ∀w ∈ S(u)
h+(w) ≤ h(w) + (1 − bw

u) · M ∀w ∈ S(u)∑
w∈S(u)

bw
u = 1

bw
u ∈ {0, 1} ∀w ∈ S(u)

h−(w) ≤ h(w) ∀w ∈ S(u)
h−(w) ≥ h(w) − (1 − cw

u) · M ∀w ∈ S(u)∑
w∈S(u)

cw
u = 1

cw
u ∈ {0, 1} ∀w ∈ S(u)

This guarantees that h+(u) = h(u+) and h−(u) = h(u−), so they can be replaced. Next,
replace each min(1, x) by (x−1)−|x−1|

2 + 1 and max(0, x) by x+|x|
2 . Then replace each |y| with

a fresh variable ay and add the following constraints to O:
1. −ay ≤ y ≤ ay

2. y + M · zy ≥ ay ∧ −y + M · (1 − zy) ≥ ay ∧ zy ∈ {0, 1}
The first constraint ensures that |y| ≤ ay and the second one that |y| ≥ ay. Therefore, it is
guaranteed that |y| = ay. The MILP instance O is equivalent to the optimization problem in
section 3. In order to decide whether Th1(v) ≥ 0.5 it suffices to decide satisfiability of O

with the additional constraint that h(v) ≥ 0.5 and this decision problem is known to be in
NP. ◀

4 Büchi Bidding Games with Charging

We proceed to Büchi objectives, for which the proof of existence of thresholds is shown to
be significantly more involved than for Büchi games without charging. The key distinction
is that thresholds in traditional strongly-connected Büchi games are trivial: If even one of
the vertices is a Büchi target vertex, the Büchi player’s threshold in each vertex is 0 and
otherwise is 1 [3]. This property gives us a simple reduction from traditional Büchi bidding
games to reachability bidding games. With charging, this property no longer holds. For
example, alter the game in Fig. 1b to make it strongly-connected by adding an edge from t

to b. The thresholds remain above 0, i.e., there are initial budgets with which Player 2 wins.

CONCUR 2024

8:12 Bidding Games with Charging

Our existence proof, which is inspired by an existence proof for discrete-bidding games [12],
follows a fixed-point characterization that is based on solutions to frugal-reachability games,
which are defined below. We note that the proof has a conceptual similarity with Zielonka’s
algorithm [27] in turn-based Büchi games, which characterizes the set of winning vertices
based on repeated calls to an algorithm for turn-based reachability games.

4.1 Frugal-Reachability Objectives
We introduce frugal reachability objectives. Consider a taxman-bidding game with charging
G = ⟨V, E, R1, R2⟩. Let T ⊆ V be a set of target vertices and fr : T → [0, 1] be a function that
assigns each target with a frugal budget. The frugal reachability objective FrugalReach(T, fr)
requires Player 1 to reach T such that the first time a vertex v ∈ T is reached, Player 1’s
budget must exceed fr(v), thus:

FrugalReach(T, fr) := {
〈
v0, B0

1
〉 〈

v1, B1
1
〉

. . . | ∃i . vi ∈ T ∧ Bi
1 > fr(vi) ∧ ∀j < i . vj /∈ T}

We stress that FrugalReach(T, fr) is a set of plays, whereas the other objectives we have
considered so far (reachability, Büchi, etc.) were sets of paths.

Existence of thresholds ThFrugalReach(T,fr)
1 and ThFrugalReach(T,fr)

2 for the frugal-reachability
objective and its dual are shown in the following theorem. The proof can be found in the
extended version [13] and follows similar arguments as reachability bidding games with the
following change in the base case. For v ∈ T and t ∈ N, recall that we define f1(v, t) = 0
(Def. 7), which intuitively means that Player 1 wins if he reaches v with any budget. Instead,
we now define f1(v, t) = fr(v), requiring Player 1 to reach v with a budget of fr(v). Dually,
we define f2(v, t) = 1 − fr(v).

▶ Theorem 17. The thresholds ThFrugalReach(T,fr)
1 and ThFrugalReach(T,fr)

2 exist.

4.2 Bounded-Visit Büchi and Co-Büchi
We first prove the existence of thresholds for the simpler case of bounded-visit Büchi and
co-Büchi objectives, where we impose, respectively, lower and upper bounds on the number
of visits to the Büchi target vertices B ⊆ V . Let k ∈ N be a given bound. The bounded-visit
Büchi, denoted as Büchi(B, k), intuitively requires Player 1 to visit B at least k times.
Formally, Büchi(B, k) := {v0v1 . . . | |{i ∈ N | vi ∈ B}| ≥ k}. Bounded-visit co-Büchi is the
dual objective Co-Büchi(B, k) := {v0v1 . . . | |{i ∈ N | vi ∈ B}| < k} = V ω \ Büchi(B, k).

Like before, we introduce two functions g1 and g2, which will be shown to characterize
the thresholds for Büchi(B, k) and Co-Büchi(B, k), respectively.

▶ Definition 18. Define the functions g1, g2 : V × N → [0, 1] inductively as follows. For
every v ∈ V , define g1(v, 0) = 0. For every v ∈ B, define g1(v, 1) := 0 and g1(v, k) :=
Av1(g1(·, k − 1))(v) for k > 1, and for every v /∈ B and every k > 0, define g1(v, k) :=
ThFrugalReach(B,g1(·,k))

1 (v). We proceed to define g2. For every v ∈ V , define g2(v, 0) := 1.
For every v ∈ B, define g2(v, 1) := 1 and g2(v, k) := Av2(g2(·, k − 1))(v), for k > 1, and for
every v /∈ B and every k > 0, define g2(v, k) := ThFrugalReach(B,1−g2(·,k))

2 (v).

We prove the existence of thresholds and their correspondence to g1 and g2.

▶ Lemma 19. For every v ∈ V and k ≥ 0, we have g1(v, k) = ThBüchi(B,k)
1 (v) and g2(v, k) =

ThBüchi(B,k)
2 (v). Moreover, the thresholds exist: ThBüchi(B,k)

1 (v) + ThBüchi(B,k)
2 (v) = 1.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:13

Proof. The proof proceeds by induction over k (see details in the extended version [13]). For
the base case, k = 0, clearly, Player 1 wins since no further visit to B is required and Player 2
loses, which coincides with the definitions g1(v, 0) = 0 and g2(v, 0) = 1, for all v ∈ V . We
describe the inductive step for Player 1. For v ∈ B, the proof follows from the induction
hypothesis: similar to Lem. 8, when B1 > g1(v, k), Player 1 can bid so that no matter how
Player 2 bids and moves the token (upon winning), in the next configuration ⟨v′, B′

1⟩, we
have B′

1 > g1(v′, k − 1). Finally, for v /∈ B, recall that g1(v, k) := ThFrugalReach(B,g1(·,k))
1 (v).

That is, a budget of B1 > g1(v, k) means that he can follow a winning strategy in the
frugal-reachability game, which forces the game to B and upon reaching v′ ∈ B, Player 1’s
budget exceeds g1(v′, k). The proof then follows from the induction hypothesis. ◀

We establish monotonicity of the thresholds, which confirms that Player 1 needs higher
budget for forcing larger numbers of visits to B.

▶ Lemma 20. For v ∈ V and k ∈ N, we have ThBüchi(B,k)
1 (v) ≤ ThBüchi(B,k+1)

1 (v) and
ThBüchi(B,k)

2 (v) ≥ ThBüchi(B,k+1)
2 (v). Moreover, the thresholds are bounded by 0 and 1.

4.3 Existence of Thresholds (for Büchi and Co-Büchi Objectives)
We define two functions g∗

1 and g∗
2 , which will be shown to coincide with the thresholds for

the general (unbounded) Büchi and co-Büchi objectives, respectively.

▶ Definition 21. Define the functions g∗
1 , g∗

2 : V → R as follows. For every v ∈ B, define
g∗

1(v) := limk→∞ g1(v, k) and g∗
2(v) := limk→∞ g2(v, k). For every v /∈ B, define g∗

1(v) :=
ThFrugalReach(B,fr)

1 (v) where fr : b 7→ g∗
1(b) for every b ∈ B and fr : v 7→ 0 (can be arbitrary)

for every v /∈ B. Likewise, for every v /∈ B, define g∗
2(v) := ThFrugalReach(B,fr)

2 (v) where
fr : b 7→ 1 − g∗

2(b) for every b ∈ B and fr : v 7→ 0 (can be arbitrary) for every v /∈ B.

Monotonicity (Lem. 20) and boundedness of g1 and g2 imply the well-definedness of g∗
1

and g∗
2 . We now establish the existence and the characterization of thresholds.

▶ Theorem 22. For every v ∈ V , we have ThBüchi(B)
1 (v) = g∗

1(v) and ThBüchi(B)
2 (v) = g∗

2(v).
Moreover, thresholds exist: ThBüchi(B)

1 (v) + ThBüchi(B)
2 (v) = 1.

Proof. First, we show that g∗
1(v) ≥ ThBüchi(B)

1 (v). Consider a configuration ⟨v, B1⟩. When
B1 > g∗

1(v), Player 1 wins as follows. If v /∈ B, he plays according to a winning strategy in
a frugal-reachability game to guarantee reaching some v′ ∈ B with a budget that exceeds
g∗

1(v′). For v ∈ B, he bids so that in the next configuration ⟨v′, B′
1⟩, we have B′

1 > g∗
1(v′).

Second, we show that g∗
2(v) ≥ ThBüchi(B)

2 (v). When B2 = 1 − B1 > g∗
2(v), Player 2 wins as

follows. If v ∈ B, then there exists k such that B2 > g2(v, k). Lem. 19 shows that she can
win the co-Büchi objective by preventing B to be reached more than k times. If v /∈ B, she
has a strategy to make the token either (i) not reach B, or (ii) reach v′ ∈ B with a budget
at least g∗

2(v′). In both cases, she wins by repeating the strategy. Finally, by Lem. 19, we
have g1(v, k) + g2(v, k) = 1, for all k ∈ N. Thus, in the limit, we have g∗

1(v) + g∗
2(v) = 1, for

v ∈ B. From this, the other sides of the above inequalities, i.e., g∗
1(v) ≤ ThBüchi(B)

1 (v) and
g∗

2(v) ≤ ThBüchi(B)
2 (v), and the existence claim follow in a straightforward manner. ◀

4.4 Complexity Bounds (for Büchi and Co-Büchi Objectives)

The computation of the thresholds ThBüchi(B)
1 ≡ g∗

1 and ThBüchi(B)
2 ≡ g∗

2 involves a nested
fixed point computation. For example, for g∗

1 , the outer fixed point is the smallest fixed
point of the sequence g1(·, 0), g1(·, 1), . . . for vertices in B, and for every k = 0, 1, . . ., the

CONCUR 2024

8:14 Bidding Games with Charging

inner fixed point is the usual greatest fixed point for frugal reachability thresholds required
to reach B with the leftover frugal budget g1(·, k) from outside B. The nested fixed point
can be characterized as the solution of the following bilevel optimization problem.

min
h∈RV

∑
b∈B

h(b)

subjected to constraints:

h ∈ arg max
h′∈RV

 ∑
v∈V \B

h′(v)

∣∣∣∣∣∣ ∀b ∈ B . h′(b) = h(b)

 ,

∀v ∈ V . h(v) = Av1 (h(·)) (v)

= clamp[0,1]

(
(1 − τ)h(v−) + h(v+)

[h(v+) − h(v−) − 1]τ + 2 · (1 + R1(v) + R2(v)) − R1(v)
)

,

h(v+) = max
u∈S(v)

h(u), h(v−) = min
u∈S(v)

h(u). (2)

▶ Proposition 23. The solution of the optimization problem in (2) is equivalent to the
threshold function ThBüchi(B)

1 of the Büchi player.

▶ Theorem 24. The following hold:
(i) THRESHtaxman

Büchi ∈ 2EXPTIME and THRESHtaxman
Co-Büchi ∈ 2EXPTIME, and

(ii) THRESHRichman
Büchi ∈ ΠP

2 and THRESHRichman
Co-Büchi ∈ ΣP

2

The bounds in (i) follow from a reduction to an equivalent query in the theory of reals.
For (ii), we can check if the solution of the optimization problem in (2) is larger than 0.5,
and if this is true then we conclude that 0.5 < ThBüchi(B)

1 (v) and can output a negative
answer. Since (2) is a bilevel MILP, hence the check can be done in ΣP

2 [20], and the overall
complexity is ΠP

2 . The other case is dual. Details of the proof can be found in the extended
version [13].

5 Lower Complexity Bounds

In this section we show how to simulate a turn-based game using a Richman-bidding game
with charging. Thus, solving Richman-bidding games with charging is at least as hard as
their turn-based counterparts. Specifically, we obtain that solving Rabin bidding games with
charging is NP-hard. This is a distinction from traditional Richman-bidding games, where
solving Rabin games is in NP and coNP. Since taxman-bidding games generalize Richman-
bidding games, hence it follows that Rabin taxman-bidding games are also NP-hard.

▶ Lemma 25. Given a turn-based game G, an initial vertex v, and an objective φ, there is a
bidding game with charging G′ of size linear in G, with the same objective and initial vertex
such that Player 1 can win G from v if and only if ⟨G, v, φ⟩ ∈ THRESHRichman

S .

Proof. The definitions of turn-based games and the detailed proof can be found in the
extended version [13]. Intuitively, G′ contains the same set of vertices as G with two
additional sink vertices s1 and s2, where si is losing for Player i, for i ∈ {1, 2}. For every
vertex v, if v is controlled by Player 1 in G, then in G′, we define Player 1’s charge to be
R1(v) = 2. Moreover, we add an edge from v to s1, requiring Player 1 to win the bidding
in v. Note that even if Player 1 starts with a budget of ϵ > 0, at v, after charging and

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:15

astart
[
0
2

]bc d e

f g

R′
1 Th1(a)

− 1
c, e 7→ 1 1
b 7→ 2 0.75
d 7→ 2 0.75

a, . . . , e 7→ 0.4 0.62
a 7→ 2 0.5

b, d 7→ 1 0

Figure 5 Illustrating the repair problem. LEFT: A reachability game with the objective
Reach({g}). RIGHT: With no repair (first row), Th1(a) = 1. We depict repairs (first col.)
and the changes they imply to the thresholds (second col.), for a repair budget of C = 2.

normalization, his budget exceeds 2/3. Player 2’s vertices are dual. It is not hard to verify
that Player 1 can win in G from v if and only if Thφ(v) = 0, and Player 2 can win in G from
v if and only if Thφ(v) = 1. ◀

Since turn-based Rabin games are NP-hard, we obtain the following.

▶ Theorem 26. We have THRESHRichman
Rabin ∈ NP-hard and THRESHRichman

Streett ∈ coNP-hard.

6 Repairing Bidding Games

In this section, we introduce the repair problem for bidding games. Intuitively, the goal is to
add minimal charges to the vertices of an arena so as to decrease the threshold in the initial
vertex to a target threshold. Formally, we define the following problem.

▶ Definition 27 (Repairing bidding games). Consider an arena G with a vertex v,
a bidding mechanism M ∈ {Richman, poorman, taxman}, a class of objectives S ∈
{Reach, Safe, Büchi, Co-Büchi}, and a repair budget C ∈ R≥0. The set of repaired arenas, de-
noted Repaired(G, C), are arenas obtained from G by adding Player 1 charges whose sum does
not exceed C. Formally, Repaired(G, C) := {⟨V, E, R′

1, R2⟩ is an arena | ∀v ∈ V . R′
1(v) ≥

R1(v)∧
∑

v∈V (R′
1(v)−R1(v)) ≤ C}. The problem R_THRESHM

S takes as input ⟨G, v, φ, C⟩,
where φ ∈ S, and accepts iff there exists G′ ∈ Repaired(G, C) with ⟨G′, v, φ⟩ ∈ THRESHM

S .

▶ Example 28. We illustrate the non-triviality of the repair problem in Fig. 5. Observe that
neither assigning charges uniformly nor assigning charges to a single vertex, decrease the
threshold sufficiently, whereas adding a charge of 1 to both b and d is a successful repair. ⌟

▶ Theorem 29. The following hold:
(i) R_THRESHRichman

Reach ∈ 2EXPTIME,

(ii) R_THRESHRichman
Safe ∈ PSPACE.

Proof. We introduce notation for the proof. Let G = ⟨V, E, R1, R2⟩ be a bidding game and
U be a set of vertices. Define AG

U : [0, 1]V → {0, 1} such that for every h ∈ [0, 1]V , AG
U (h) = 1

iff h(v) = Av1(h)(v) for every v /∈ U . Observe that ThReach(T)
1 is the largest h for which

AG
T (h) = 1 and moreover h(v) = 0 for every v ∈ T .

Proof of (i). Consider a bidding game G = ⟨V, E, R1, R2⟩ where the objective of Player 1
is Reach(T) for some T ⊆ V . The goal is to check if it is possible to increase R1 by a total
of C such that the reachability threshold at a ∈ V falls below 0.5. This is equivalent to:

CONCUR 2024

8:16 Bidding Games with Charging

∃R′
1 ∈ RV . (R′

1 ≥ R1) ∧ (|R′
1 − R1|1 ≤ C) ∧(

∀Th1 ∈ RV .
[(

∀v ∈ T . Th1(v) = 0
)

∧ AG′

T (Th1)
]

⇒ Th1(a) ≤ 0.5
)

where G′ = ⟨V, E, R′
1, R2⟩. The validity of the above formula can be checked by applying a

quantifier elimination method. Therefore, the decision problem is in 2EXPTIME.

Proof of (ii). Consider a bidding game G = ⟨V, E, R1, R2⟩ where the objective of Player 1
is Safe(T) for some T ⊆ V . The goal is to check if it is possible to increase R1 by a total of
C such that the safety threshold at a ∈ V falls below 0.5. This is equivalent to:

∃R′
1 ∈ RV . (R′

1 ≥ R1) ∧ (|R′
1 − R1|1 ≤ C) ∧(

∃Th1 ∈ RV s.t.
[
Th1(a) ≤ 0.5 ∧ AG′

T (Th1) ∧ ∀u ∈ T, Th1(u) = 1
])

where G′ = ⟨V, E, R′
1, R2⟩. The above formula can be seen as an input instance of existential

theory of reals which is known to be in PSPACE. ◀

7 Conclusion and Future Work

We introduce and study a generalization of bidding games in which players’ budgets are
charged throughout the game. One advantage of the model over traditional bidding games
is that long-run safety is not trivial. We show that the model maintains the key favorable
property of traditional bidding games, namely the existence of thresholds, the proof of
which is, however, significantly more challenging due to the non-uniqueness of thresholds.
We characterize thresholds in terms of greatest and least fixed points of certain monotonic
operators. Finally, we establish the first complexity lower bounds in continuous-bidding
games and study, for the first time, a repair problem in this model.

There are plenty of open questions and directions for future research. First, it is important
to extend the results to richer classes of ω-regular objectives, like parity, Rabin, and Streett,
as well as to quantitative objectives, like mean-payoff. Second, tightening the complexity
bounds is an important open question. For example, it might be the case that finding
thresholds in Richman-bidding games with charging is in NP and coNP. Third, traditional
reachability Richman-bidding games are equivalent to a class of stochastic games [18] called
random-turn games [24], and the equivalence is general and intricate in infinite-duration
games [4, 5, 7, 9]. It is unknown if such a connection exists for games with charging, and
if it does, then many of the open questions may be solved via available tools for stochastic
games. Finally, there are various possible extensions, like charges disappearing after a vertex
is visited, charges that are collectible in multiple installments, etc.

References
1 M. Aghajohari, G. Avni, and T. A. Henzinger. Determinacy in discrete-bidding infinite-duration

games. Log. Methods Comput. Sci., 17(1), 2021.
2 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,

49(5):672–713, 2002.
3 G. Avni, T. A. Henzinger, and V. Chonev. Infinite-duration bidding games. In Proc. 28th

CONCUR, volume 85 of LIPIcs, pages 21:1–21:18, 2017.
4 G. Avni, T. A. Henzinger, and V. Chonev. Infinite-duration bidding games. J. ACM, 66(4):31:1–

31:29, 2019.
5 G. Avni, T. A. Henzinger, and R. Ibsen-Jensen. Infinite-duration poorman-bidding games. In

Proc. 14th WINE, volume 11316 of LNCS, pages 21–36. Springer, 2018.

G. Avni, E. Kafshdar Goharshady, T. A. Henzinger, and K. Mallik 8:17

6 G. Avni, T. A. Henzinger, and Ð. Žikelić. Bidding mechanisms in graph games. In Proc. 44th
MFCS, volume 138 of LIPIcs, pages 11:1–11:13, 2019.

7 G. Avni, T. A. Henzinger, and D. Zikelic. Bidding mechanisms in graph games. J. Comput.
Syst. Sci., 119:133–144, 2021.

8 G. Avni, R. Ibsen-Jensen, and J. Tkadlec. All-pay bidding games on graphs. In Proc. 34th
AAAI, pages 1798–1805. AAAI Press, 2020.

9 G. Avni, I. Jecker, and Ð. Žikelić. Infinite-duration all-pay bidding games. In Proc. 32nd
SODA, pages 617–636, 2021.

10 G. Avni, I. Jecker, and D. Zikelic. Bidding graph games with partially-observable budgets. In
Proc. 37th AAAI, 2023.

11 G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, and Ð. Zikelic. Reachability poorman
discrete-bidding games. In Proc. 26th ECAI, volume 372 of Frontiers in Artificial Intelligence
and Applications, pages 141–148. IOS Press, 2023.

12 G. Avni and S. Sadhukhan. Computing threshold budgets in discrete-bidding games. In Proc.
42nd FSTTCS, volume 250 of LIPIcs, pages 30:1–30:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

13 Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik. Bidding
games with charging, 2024. arXiv:2407.06288.

14 Guy Avni, Kaushik Mallik, and Suman Sadhukhan. Auction-based scheduling. In TACAS (3),
volume 14572 of Lecture Notes in Computer Science, pages 153–172. Springer, 2024.

15 František Blahoudek, Petr Novotnỳ, Melkior Ornik, Pranay Thangeda, and Ufuk Topcu. Effi-
cient strategy synthesis for mdps with resource constraints. IEEE Transactions on Automatic
Control, 2022.

16 Patricia Bouyer, Uli Fahrenberg, Kim G Larsen, Nicolas Markey, and Jiří Srba. Infinite runs in
weighted timed automata with energy constraints. In Formal Modeling and Analysis of Timed
Systems: 6th International Conference, FORMATS 2008, Saint Malo, France, September
15-17, 2008. Proceedings 6, pages 33–47. Springer, 2008.

17 Arindam Chakrabarti, Luca De Alfaro, Thomas A Henzinger, and Mariëlle Stoelinga. Resource
interfaces. In International Workshop on Embedded Software, pages 117–133. Springer, 2003.

18 A. Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
19 M. Develin and S. Payne. Discrete bidding games. The Electronic Journal of Combinatorics,

17(1):R85, 2010.
20 Robert G Jeroslow. The polynomial hierarchy and a simple model for competitive analysis.

Mathematical programming, 32(2):146–164, 1985.
21 A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial

games under auction play. Games and Economic Behavior, 27(2):229–264, 1999.
22 A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman. Richman games. Games of No

Chance, 29:439–449, 1996.
23 R. Meir, G. Kalai, and M. Tennenholtz. Bidding games and efficient allocations. Games and

Economic Behavior, 112:166–193, 2018. doi:10.1016/j.geb.2018.08.005.
24 Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson. Tug-of-war and the infinity laplacian.

J. Amer. Math. Soc., 22:167–210, 2009.
25 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th POPL, pages

179–190, 1989.
26 M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction

of the AMS, 141:1–35, 1969.
27 W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on

infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

CONCUR 2024

https://arxiv.org/abs/2407.06288
https://doi.org/10.1016/j.geb.2018.08.005

Risk-Averse Optimization of Total Rewards in
Markovian Models Using Deviation Measures
Christel Baier #

Technische Universität Dresden, Germany

Jakob Piribauer #

Technische Universität Dresden, Germany; Universität Leipzig, Germany

Maximilian Starke
Technische Universität Dresden, Germany

Abstract
This paper addresses objectives tailored to the risk-averse optimization of accumulated rewards
in Markov decision processes (MDPs). The studied objectives require maximizing the expected
value of the accumulated rewards minus a penalty factor times a deviation measure of the resulting
distribution of rewards. Using the variance in this penalty mechanism leads to the variance-penalized
expectation (VPE) for which it is known that optimal schedulers have to minimize future expected
rewards when a high amount of rewards has been accumulated. This behavior is undesirable as
risk-averse behavior should keep the probability of particularly low outcomes low, but not discourage
the accumulation of additional rewards on already good executions.

The paper investigates the semi-variance, which only takes outcomes below the expected value
into account, the mean absolute deviation (MAD), and the semi-MAD as alternative deviation
measures. Furthermore, a penalty mechanism that penalizes outcomes below a fixed threshold
is studied. For all of these objectives, the properties of optimal schedulers are specified and in
particular the question whether these objectives overcome the problem observed for the VPE is
answered. Further, the resulting algorithmic problems on MDPs and Markov chains are investigated.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Markov decision processes, risk-aversion, deviation measures, total reward

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.9

Related Version Full Version: https://arxiv.org/abs/2407.06887 [6]

Supplementary Material Software (Source Code):
https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths

archived at swh:1:dir:eddcf497fe105ca58ea2b4f67171e814a6d35f29

Funding This work was partly funded by the DFG Grant 389792660 as part of TRR 248 (Foundations
of Perspicuous Software Systems), the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704,
as part of Germany’s Excellence Strategy), and the DFG project BA 1679/11-1.

1 Introduction

Markov decision processes (MDPs) are a prominent model for systems whose behavior is
subject to non-determinism and probabilism. Non-deterministic behavior might arise, e.g.,
if a system is employed in an unknown environment, can be controlled by a user, or works
concurrently. On the other hand, if, e.g., sufficiently much data on the failure of components
is available or randomized algorithms make use of randomization explicitly, it is reasonable
to model these aspects of the system as probabilistic.

In order to model quantitative aspects of a system, such as energy consumption, execution
time, or utility, MDPs are often equipped with a reward function that specifies how much
reward is received in each step of an execution. A typical task is then to resolve the non-
deterministic choices by specifying a scheduler, a.k.a. policy, such that the expected value of

© Christel Baier, Jakob Piribauer, and Maximilian Starke;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christel.baier@tu-dresden.de
https://orcid.org/0000-0002-5321-9343
mailto:jakob.piribauer@tu-dresden.de
https://orcid.org/0000-0003-4829-0476
https://doi.org/10.4230/LIPIcs.CONCUR.2024.9
https://arxiv.org/abs/2407.06887
https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths
https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths
https://archive.softwareheritage.org/swh:1:dir:eddcf497fe105ca58ea2b4f67171e814a6d35f29;origin=https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths;visit=swh:1:snp:3820df4cf25caa5ca53fc08b41b9682dffa0a994;anchor=swh:1:rev:020c47e5f8354bdd039deb583d6c334fbb9b6e15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Risk-Averse Optimization of Total Rewards in Markovian Models

the total accumulated reward is maximal (or minimal). In verification, such optimization
problems naturally occur when investigating the worst- or best-case expected value of
the accumulated reward where worst- and best-case range over all resolutions of the non-
deterministic choices. If additionally a target state has to be reached almost surely, this
problem is known as the stochastic shortest path problem [7, 12].

Risk-averse optimization

If the objective is the maximization of the expected value of the accumulated rewards, all
other aspects of the probability distribution of accumulated rewards are disregarded. This
might lead to undesirable behavior as the optimal scheduler might receive low rewards with
high probability as long as the expected value is optimal. In many situations, however, a
slightly lower expected reward is preferable if it is obtained by a more “stable” behavior in
which the risk of encountering low rewards is reduced. E.g., in a traffic control scenarios, it
might be important to reduce the risk of congestions while ensuring a reasonable average
throughput instead of solely optimizing the average throughput.

In order to define objectives incentivizing such risk-averse behavior, it is worth taking
a look at finance and in particular portfolio optimization. Here, Markowitz proclaimed
that a portfolio of financial positions should be chosen such that it is Pareto optimal with
respect to the expected return and the variance of the return [23]. One way extensively
studied in finance to obtain Pareto optimal portfolios is to maximize the variance-penalized
expectation (VPE), which is the expected value minus a penalty factor λ times the variance.
The parameter λ can be used to obtain different levels of risk-aversion.

Besides the variance, further deviation measures have been investigated to reduce risk in
portfolio optimization: The use of the semi-variance, which – in contrast to the variance –
only takes the deviation of outcomes below the expected value into account, as a penalty
mechanism has been introduced in this context by Markowitz [24]. Furthermore, instead
of considering quadratic deviations from the expected value as in the case of variance and
semi-variance, the mean absolute deviation (MAD) can be used to obtain the MAD-penalized
expectation (MADPE) studied for portfolio optimization in [18]. The MAD measures the
expected absolute deviation from the expected value.

In this paper, we investigate these different deviation measure based penalty mechanisms
in the context of the maximization of rewards in MDPs.

Variance-penalized expectation in MDPs (VPE)

Recently, the maximization of the VPE of accumulated rewards in MDPs was studied in [25]:
On the positive side, it is shown that optimal schedulers for the VPE can be chosen to be
deterministic finite-memory schedulers. Nevertheless, the optimization of the VPE is shown
to be computationally hard: The threshold problem whether the optimal VPE exceeds a
given threshold ϑ is EXPTIME-hard. An optimal scheduler can be computed in exponential
space.

A main drawback of the VPE, however, is of conceptual nature: In [25], it is shown that
VPE-optimal schedulers have to minimize the future expected rewards as soon as a high
amount of rewards (above a computable bound B) has been accumulated. We call such
schedulers eventually reward-minimizing schedulers (ERMin-schedulers). Intuitively, the
reason is that a further accumulation of additional rewards after a high amount of rewards
has already been accumulated has a stronger effect on the variance than on the expected
value due to the quadratic nature of the variance. Conceptually, this can be considered to be
a flaw in the use of the VPE as an objective to yield risk-averse behavior.

C. Baier, J. Piribauer, and M. Starke 9:3

Table 1 Overview of the complexity results and the types of schedulers needed for the optimization
of the studied objectives and the VPE. The entries “-” indicate that the problem was not studied
further as the scheduler needed for the optimization are the undersirable ERMin-schedulers.

hardness of threshold
problem

computation of
optimum

optimal schedulers

VPE [25] EXPTIME-hard; in P
for Markov chains

in exponential space deterministic,
finite-memory
ERMin-schedulers

SVPE – – randomized,
ERMin-schedulers
can be necessary

MADPE (λ ≤ 1/2),
SMADPE (λ ≤ 1)

PP-hard for acyclic
Markov chains

quadratic program of
exponential size

randomized,
finite-memory
ERMax-schedulers

MADPE (λ > 1/2),
SMADPE (λ > 1)

– – randomized,
ERMin-schedulers
can be necessary

TBPE PP-hard for acyclic
Markov chains

in pseudo-polynomial
time

deterministic,
finite-memory
ERMax-schedulers

The desired behaviour a suitable objective should induce is that a scheduler achieves a
high expected accumulated reward, while keeping the probability of particularly bad outcomes
low. Improving on already good outcomes should not have a negative effect. So, we want
optimal schedulers to be eventually reward-maximizing (ERMax-schedulers), i.e., that they
maximize the expected reward once the accumulated reward exceeds some bound B.

Deviation-measure-penalized expectation

Towards this goal, we investigate objectives in the spirit of the VPE, which are of the form
ES(rew) − λDEVS(rew) where a penalty factor λ times a deviation measure DEVS(rew) of
the probability distribution of accumulated rewards under a scheduler S is subtracted from
the expected accumulated reward ES(rew).

The first deviation measure we investigate is the MAD. In contrast to the variance,
the contribution of an outcome to the MAD only grows linearly with its distance to the
expected value. For the MAD and the variance, we also study one-sided variants in which
only outcomes below the expected value are considered: The semi-MAD (SMAD) and semi-
variance quantify the average absolute or squared deviation below the expected value by
assigning deviation 0 to all outcomes above the expected value. Finally, we investigate a
simpler alternative to the MADPE: Instead of measuring the deviation from the expected
value of accumulated rewards, which itself depends on the chosen scheduler, we consider a
threshold-based penalized expectation (TBPE), where outcomes below a threshold t that can
be chosen externally are penalized either linearly or according to more complicated functions.

Contributions

The main contributions, also summarized in Table 1, are as follows.
We show that optimal schedulers for the MADPE can be chosen to be ERMax-schedulers,
as desired, if the risk-aversion parameter λ is sufficiently small, i.e. if λ ≤ 1/2. This
bound on the parameter is shown to be tight. Furthermore, we show that randomized
schedulers are necessary for the optimization.

CONCUR 2024

9:4 Risk-Averse Optimization of Total Rewards in Markovian Models

We formulate the optimization problem as a quadratic program and obtain a EXPSPACE-
upper complexity bound for the threshold problem for the MADPE. On the other hand,
we show that already in acyclic Markov chains the threshold problems for the MADPE
and the MAD are PP-hard under polynomial-time Turing reductions.
As the semi-MAD is always half of the MAD, the results transfer to the semi-MADPE.

We investigate the semivariance-penalized expectation (SVPE) and show – somewhat
surprisingly – that, for any risk-aversion parameter λ, there are MDPs in which optimal
schedulers are ERMin-schedulers. Hence, the SVPE as objective does not overcome the
undesirable effects observed for the VPE. Furthermore, we show that, in contrast to the
VPE, randomization is necessary for the optimization of the SVPE.

We show that the TBPE can be optimized in pseudo-polynomial time and that deciding
if the TBPE exceeds a bound for linear penalty functions even in acylic Markov chains is
PP-hard under polynomial-time Turing reductions.

As a proof-of-concept, we analyze our algorithms for the optimization of the MADPE and
for the TBPE in a small series of experiments.

Related work

The above mentioned work on the VPE for accumulated rewards in MDPs [25] is the closest
related work to our paper. Earlier work on the VPE in MDPs addressed the finite-horizon
setting with terminal rewards [11] or applied the notion to mean payoff and discounted
rewards [13]. Further, [31] presents a policy iteration algorithm converging against local
optima for a similar measure. The computation of the variance of accumulated rewards
has been studied in Markov chains [30] and in MDPs [21, 22]. In [8], the satisfiability of
constraints on the expected mean payoff in conjunction with constraints on the variance or
related notions such as a local variability are studied for MDPs.

For MDPs, the SVPE of random variables defined in terms of the stationary distribution
has been studied via the use of reinforcement learning algorithms [20]. Conceptually and
methodologically this work is nevertheless not closely related to our work. We are not aware
of investigations of the MADPE on MDPs.

Furthermore, several approaches to formalize various other risk-averse optimization
problems for accumulated rewards in MDPs have been proposed and studied in the literature.
This includes the computation of worst- or best-case quantiles [29, 4, 16, 27], also called
values-at-risk: Given a probability p, quantiles on the accumulated rewards are the best
bound C such that the accumulated rewards stays below C with probability at most p
under all or under some scheduler. While quantiles still disregard the distribution below,
the conditional value-at-risk and the entropic value-at-risk are more involved measures that
quantify how far the probability mass of the tail of the probability distribution lies below a
given quantile. In the context of risk-averse optimization in MDPs, these measures have been
studied in [19] and [1]. A further approach, the entropic risk measure, reweighs outcomes by
an exponential utility function. Optimizing this entropic risk measure leads to schedulers
that tend to still achieve a high expected value while keeping the probability of low outcomes
small. The entropic risk measure applied to accumulated rewards have been studied in [3]
for stochastic games that extend MDPs with an adversarial player.

C. Baier, J. Piribauer, and M. Starke 9:5

2 Preliminaries

Notations for Markov decision processes

A Markov decision process (MDP) is a tuple M = (S,Act, P, sinit, rew) where S is a finite set
of states, Act a finite set of actions, P : S × Act × S → [0, 1] ∩ Q the transition probability
function, sinit ∈ S the initial state, and rew : S × Act → N the reward function. Note that we
only allow non-negative rewards and that rational rewards can be transformed to integral
rewards by multiplying all rewards with the least common multiple of all denominators
of the rational rewards. We require that

∑
t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S × Act.

We say that action α is enabled in state s iff
∑

t∈S P (s, α, t) = 1 and denote the set of
all actions that are enabled in state s by Act(s). If Act(s) = ∅, we say that s is a trap
state. The paths of M are finite or infinite sequences s0 α0 s1 α1 . . . where states and
actions alternate such that P (si, αi, si+1) > 0 for all i ≥ 0. For π = s0 α0 s1 α1 . . . αk−1 sk,
rew(π) = rew(s0, α0) + . . .+ rew(sk−1, αk−1) – and analogously for infinite paths – denotes
the accumulated reward of π, P (π) = P (s0, α0, s1) · . . . ·P (sk−1, αk−1, sk) its probability, and
last(π) = sk its last state. A path is called maximal if it is infinite or ends in the trap state
goal. The size of M is the sum of the number of states plus the total sum of the logarithmic
lengths of the non-zero probability values P (s, α, s′) as fractions of co-prime integers and the
weight values rew(s, α).

A Markov chain is an MDP in which the set of actions is a singleton. In this case, we can
drop the set of actions and consider a Markov chain as a tuple M = (S, P, sinit, rew) where P
now is a function from S × S to [0, 1] and rew a function from S to N.

An end component of M is a strongly connected sub-MDP formalized by a subset S′ ⊆ S

of states and a non-empty subset A(s) ⊆ Act(s) for each state s ∈ S′ such that for each
s ∈ S′, t ∈ S and α ∈ A(s) with P (s, α, t) > 0, we have t ∈ S′ and such that in the resulting
sub-MDP all states are reachable from each other. An end-component is a 0-end-component
if it only contains state-action-pairs with reward 0.

Scheduler

A scheduler for M is a function S that assigns to each non-maximal path π a probability
distribution over Act(last(π)). If the choice of a scheduler S depends only on the current
state, i.e., if S(π) = S(π′) for all non-maximal paths π and π′ with last(π) = last(π′), we
say that S is memoryless and also view it as functions mapping states s ∈ S to probability
distributions over Act(s). A scheduler S that satisfies S(π) = S(π′) for all pairs of finite
paths π and π′ with last(π) = last(π′) and rew(π) = rew(π′) is called reward-based and
can be viewed as a function from state-reward pairs S × N to probability distributions
over actions. If there is a finite set X of memory modes and a memory update function
U : S × Act × S ×X → X such that the choice of S only depends on the current state after
a finite path and the memory mode obtained from updating the memory mode according
to U in each step, we say that S is a finite-memory scheduler. A scheduler S is called
deterministic if S(π) is a Dirac distribution for each path π in which case we also view the
scheduler as a mapping to actions in Act(last(π)).

Probability measure

We write PrSM,s to denote the probability measure induced by a scheduler S and a state
s of an MDP M. It is defined on the σ-algebra generated by the cylinder sets Cyl(π) of
all maximal extensions of a finite path π = s0 α0 s1 α1 . . . αk−1 sk with s0 = s by assigning

CONCUR 2024

9:6 Risk-Averse Optimization of Total Rewards in Markovian Models

to Cyl(π) the probability that π is realized under S, which is S(s0)(α0) · P (s0, α0, s1) · . . . ·
S(s0α0 . . . sk−1)(αk−1) · P (sk−1, αk−1, sk). For a set of states T , we use ♢T to denote the
event that a state in T is reached. For details, see [26].

For a random variable X that is defined on (some of the) maximal paths in M, we denote
the expected value of X under the probability measure induced by a scheduler S and state s
by ES

M,s(X). We define Emin
M,s(X) = infS ES

M,s(X) and Emax
M,s(X) = supS ES

M,s(X) where S

ranges over all schedulers for M under which X is defined almost surely. The variance of
X under the probability measure determined by S and s in M is denoted by VS

M,s(X) and
defined by VS

M,s(X) def= ES
M,s((X − ES

M,s(X))2) = ES
M,s(X2) − ES

M,s(X)2. Furthermore, for
a measurable set of paths ψ with positive probability, ES

M,s(X|ψ) denotes the conditional
expectation of X under ψ. If s = sinit, we sometimes drop the subscript s.

Accumulated rewards

Given an MDP M = (S,Act, P, sinit, rew), the total accumulated reward is given by the
extension of the function rew to maximal paths. We can check whether Emax

M (rew) = ∞
by checking whether all (maximal) end components are 0-end components in polynomial
time [12]. For our purposes, only MDPs M with Emax

M (rew) < ∞ are interesting. In these
MDPs, we can collapse all end components E , which are all 0-end components, to single
states sE while adding a transition with reward 0 to a new trap state. This does not affect
the possible distributions of the random variable rew that can be realized by a scheduler [12].
Furthermore, the behavior of the MDP starting from a state s with Emax

M,s(rew) = 0, i.e., from
a state s from which no positive reward is reachable, is irrelevant. So, we can collapse all
these states s with Emax

M,s(rew) = 0 (together with the new trap state) to a single trap state
that we call goal. By these constructions, we obtain a new MDP M′ in which exactly the
same distributions of the total reward can be realized by schedulers as in M. As M′ does
not contain any end components anymore and goal is the only trap state in M′, the state
goal is now reached with probability 1 under any scheduler. In the light of the described
constructions, we work under the following assumption:

▶ Assumption 1. W.l.o.g., we assume that all MDPs have a trap state goal, which is reached
with probability 1 under all schedulers. We add this trap state to the signature and hence
denote MDPs M as tuples M = (S,Act, P, sinit, rew, goal).

All objectives studied in this paper depend only on the distribution of the random variable
rew. By the following lemma, which is folklore and follows from the formulation in [25,
Lemma 2] (see also the full version [6]), we can restrict ourselves to reward-based schedulers.

▶ Lemma 2.1. Let M = (S,Act, P, sinit, rew, goal) be an MDP satisfying Assumption 1.
Then, for any scheduler S there is a reward-based scheduler T such that the distribution of
the random variable rew is the same under the probability measures PrSM and PrTM.

3 Mean absolute deviation-penalized expectation

As described in the introduction, the VPE suffers from the drawback that optimal schedulers
are ERMin-schedulers, which is an undesirable behavior. Intuitively, the reason for this
behavior in the case of VPE lies in the fact that the variance grows quadratically with the
distance to the expected value. A natural alternative is choosing the absolute distance rather
than the quadratic distance from the expected value as the measure for the penalty. So, we
define the mean absolute deviation (MAD) of a random variable X as the probability-weighted
sum of the distance to the expected value: MAD(X) def= E(|X − E(X)|).

C. Baier, J. Piribauer, and M. Starke 9:7

goal

s1s0 s2

sinit

1/4

α : + 0

3/4 1/4

β : + 0

3/4

τ : 0 τ : +1 τ : +2

(a) The MDP M used in Example 3.1.

goal

s1sdec

sinit

1/2

τ : + 1

1/2

1 − p

τ : + 0

p

β : 0

α : +1

(b) The MDP M used in Example 3.2.

Figure 1 Two example MDPs.

We consider the MAD-penalized expectation (MADPE) of the accumulated weight in
an MDP M = (S,Act, P, sinit, rew, goal) analogously to the VPE: We define the MAD of the
accumulated reward rew under scheduler S as MADS

M(rew) def= ES
M
(∣∣rew − ES

M(rew)
∣∣). The

MAD-penalized expectation with parameter λ ∈ R is now MADPE[λ]SM(rew) def= ES
M(rew) −

λMADS
M(rew) analogously to the VPE. Our goal is to find

MADPE[λ]max
M (rew) def= sup

S
MADPE[λ]SM(rew)

as well as an optimal scheduler. In the sequel, we will prove the following results. Omitted
proofs can be found in [6].
1. In general, randomization is necessary to optimize the MADPE.
2. If λ > 1

2 , then there is an MDP M such that any optimal scheduler for the MADPE is
an ERMin-scheduler.

3. If λ ≤ 1
2 , for any MDP M, optimal schedulers can be chosen to be reward-based

ERMax-schedulers.
4. If λ ≤ 1

2 , the optimal MADPE can be computed in exponential time.
5. Even for acyclic Markov chains, deciding whether the MADPE exceeds a given threshold

ϑ is PP-hard under polynomial-time Turing reductions.

3.1 Randomization and optimality of ERMin-schedulers
We work with MDPs M = (S,Act, P, sinit, rew, goal) satisfying Assumption 1. First, we show
that randomization is necessary for the optimization of the MADPE in the following example.

▶ Example 3.1. Consider the MDP M in Figure 1a. We consider the schedulers Sα choosing
α in sinit, Sβ choosing β, and S1/2 choosing α and β with probability 1/2 each and obtain:
ESα

M (rew) = 3/4, E
S1/2
M (rew) = 1, and ESβ

M (rew) = 5/4. The MADs are MADSα

M (rew) = 3/8,
MAD

S1/2
M (rew) = 1/4 · 1 = 1/4, and MADSβ

M (rew) = 3/8. Clearly, the MADPE under Sβ is
better than under Sα for any λ > 0. For the MADPE of S1/2 and Sβ with λ = 4, we obtain

MADPE[λ]S1/2
M (rew) = 1 − 1

4λ = 0, MADPE[λ]Sβ

M (rew) = 5
4 − 3

8λ = −1
4 .

So, the randomized scheduler S1/2 is better than the deterministic schedulers Sα and Sβ .
In Figure 2, we depict the MAD in comparison to the expected value of any randomized
scheduler for M. The kink in the graph at expected value 1 can be explained by the fact

CONCUR 2024

9:8 Risk-Averse Optimization of Total Rewards in Markovian Models

0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4 α β

E − λ · MAD

E

MAD

0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

α β

µ− 1 · σ2

E

V

Figure 2 Plot of MAD and variance over the expected value for schedulers obtained by choosing
α with probability p ∈ [0, 1] in the MDP M depicted in Figure 1a.

that the MAD contains a summand for |1 − ES
M(rew)|. The dotted blue line consists of all

points in the MAD-E-plane with the same MADPE as the scheduler S1/2 illustrating that
this scheduler is in fact optimal as the MADPE increases in the direction of the arrow. For
comparison, we also depict the variances of randomized schedulers over the expectation.
Clearly, for any λ the deterministic scheduler choosing β will always be VPE-optimal.

In the next example, we will illustrate that the MADPE fails to guarantee in general that
optimal schedulers are eventually reward-maximizing.

▶ Example 3.2. Consider the MDP M depicted in Figure 1b for p ∈ (0, 1/3]. Always
choosing α in state sdec maximizes the expected value. Under this scheduler, the expected
value is 3p ≤ 1 as moving from state s1 to state sdec takes two steps in expectation. So,
under any scheduler, the expected value lies between 0 and 1. So, all paths leading via s1
yield a reward above the expected value, while only the path going directly to goal from sinit

yields a reward below the expected value. For the MAD under a scheduler S, we obtain
MADS

M(rew) = 2 · (1 − p) · ES
M(rew) (see the full version [6] for the calculations).

For a given λ > 1
2 , we can choose p ∈ (0, 1/3] such that λ > 1

2(1−p) and hence λ·2·(1−p) >
1. Now, under any scheduler S, the MADPE for parameter λ is

MADPE[λ]SM(rew) = ES
M(rew) − λ · 2 · (1 − p) · ES

M(rew) = (1 − λ · 2 · (1 − p))ES
M(rew).

As 1 − λ · 2 · (1 − p) < 0, a scheduler maximizing the MADPE has to minimize the expected
value of rew. In Mp, this means always choosing β. So, for any λ > 1

2 , there is an MDP in
which optimal schedulers have to minimize the future expected rewards no matter how large
the accumulated reward already is.

3.2 Sufficiently small parameters λ

As we have seen, the MADPE as an objective does not in general guarantee that optimal
schedulers are ERMax-schedulers. In this section, we now show that this desirable property
is guaranteed if the risk-aversion parameter λ is at most 1

2 .
By Lemma 2.1, we already know that we can restrict ourselves to reward-based schedulers

when optimizing the MADPE. For two reward-based schedulers S and T and a natural
number k, we define the reward-based scheduler S ↑k T on state-reward-pairs (s, w) ∈ S × N

by (S ↑k T)(s, w) =
{
S(s, w) if w < k,
T(s, w) if w ≥ k

where we view S and T as functions from S × N

to distributions over actions.
For risk-aversion parameters λ of at most 1/2, the following theorem implies that optimal

schedulers for the MADPE can be chosen to be ERMax-schedulers.

C. Baier, J. Piribauer, and M. Starke 9:9

▶ Theorem 3.3. Let M = (S,Act, P, sinit, rew, goal) be an MDP satisfying Assumption 1 and
let λ ∈ (0, 1

2] be a parameter for the MADPE. Further, let T be a memoryless deterministic
scheduler with ET

M,s(rew) = Emax
M,s(rew). Let k = ⌈Emax

M (rew)⌉. Then, for any reward-based
scheduler S, we have MADPE[λ]SM(rew) ≤ MADPE[λ]S↑kT

M (rew).

The theorem is shown by expressing the MADPE using conditional expectations under
the condition that the reward exceeds the bound k. Note that the theorem implies that it
does not matter which expectation optimal scheduler T is chosen after a reward of at least
Emax

M (rew) has been accumulated.

3.3 Computing the maximal MADPE
Theorem 3.3 tells us that the value MADPE[λ]max

M in an MDP M for λ ∈ (0, 1/2] is the
supremum of MADPE[λ]SM over all reward-based schedulers S that behave according to a
fixed memoryless deterministic scheduler T maximizing the expected reward as soon as
a reward of more than Emax

M (rew) has been accumulated. Let us denote the set of such
schedulers by SchedT

M.
The result shares some similarity with the results in [5] on the computation of maximal

conditional expected rewards under the condition that a set of target states is reached. In
both cases, a reward-based scheduler that has to keep track of the accumulated reward up to
some bound B has to be computed. The bound B, however, is obtained quite differently.
Here, the maximal expected accumulated reward can be used as this bound. The bound in [5]
is in general much larger (although also exponential). Similar reward-based schedulers are
also necessary for the model-checking of temporal formulas with certain reward operators [10]
and for the optimization of the variance-penalized expectation [25].

We are now in the position to provide a model transformation such that afterwards we can
restrict ourselves to memoryless schedulers. Given the MDP M = (S,Act, P, sinit, rew, goal),
let k = ⌈Emax

M (rew)⌉ and let ℓ be the largest reward of a state-weight pair in M. We now
define the MDP N = (S′,Act′, P ′, s′

init, rew′, goal ′).
The state space S′ = S × {0, . . . , k + ℓ − 1} ∪ {goal ′} and represents states together

with the reward that has been accumulated so far, as well as a new trap state goal ′. The
initial state is s′

init = (sinit, 0). The set of actions is extended by one new action τ . The
transition probability function P ′ for (s, w) ∈ S × {0, . . . , k + ℓ− 1} and α ∈ Act is given by
P ′((s, w), α, (t, v)) = P (s, α, t) if w ≤ k − 1 and v = w + rew(s, α), and is set to 0 otherwise.
So, in all states in S × {k, . . . , k + ℓ− 1} and in {goal} × {0, . . . , k − 1} none of the actions
in Act are enabled. Instead in these states the new action τ is enabled and leads to the trap
state goal ′ with probability 1. The reward function is 0 on all state-action pairs containing
an action from Act. Only the new action τ gets assigned a reward by

rew′((goal, w)) = w for all w ∈ {0, . . . , k + ℓ− 1} and
rew′((s, w)) = w + Emax

M,s(rew) for s ∈ S \ {goal} and w ∈ {k, . . . , k + ℓ− 1}.

So, in N , rewards are only received in the very last step when entering the trap state goal ′.
Now, a scheduler S ∈ SchedT

M for M can be seen as a memoryless scheduler for N and
vice versa: The scheduler S makes decision for all state-reward pairs (s, w) with s ̸= goal
and w < Emax

M (rew). For higher values of accumulated reward, it switches to the behavior
of the memoryless scheduler T. A memoryless scheduler for N has to choose a probability
distribution over Act on the same pairs (s, w). For higher values of w or for pairs (goal, w),
only action τ is enabled in N . So, with a slight abuse of notation, we interpret schedulers in
SchedT

M for M also as memoryless schedulers for N and vice versa.

CONCUR 2024

9:10 Risk-Averse Optimization of Total Rewards in Markovian Models

▶ Remark 3.4. As reward-based schedulers are sufficient to maximize the MADPE and in N
rewards are only received in the last step, we can conclude that memoryless schedulers are
sufficient to maximize the MADPE in N .

▶ Lemma 3.5. Given M and N as above, a scheduler S ∈ SchedT
M and λ ∈ (0, 1/2], we

have MADPE[λ]SM(rew) = MADPE[λ]SN (rew′).

We utilize the MDP N to compute the maximal MADPE via a quadratic program:

▶ Theorem 3.6. Let M be an MDP with non-negative rewards and λ ∈ (0, 1/2]. Then,
MADPE[λ]max

M is the optimal solution to a linearly-constrained quadratic program that can be
constructed from M and λ in exponential time.

Note that the MDP N can be constructed in exponential time from M as the numerical
value of the maximal expected value Emax

M (rew) is at most exponentially large in the size of
M. So, it is sufficient to construct a quadratic program from N in polynomial time. In the
sequel, we provide the construction of the quadratic program and prove its correctness.

We start by providing linear constraints that specify the possible combinations of expected
frequencies of state-action-pairs under some scheduler. We use variables xs,w,α for all s ∈ S,
w ∈ {0, 1, . . . , k + ℓ− 1}, and α ∈ Act′((s, w)). For these variables, we require

xs,w,α ≥ 0, and (1)∑
α∈Act(s)

xs,w,α =
∑

t∈S,β∈Act(t)

xt,w−rew(t,β),β · P (t, β, s) + 1(s,w)=(sinit ,0) (2)

where 1(s,w)=(sinit ,0) = 1 iff s = sinit and w = 0, and 1(s,w)=(sinit ,0) = 0 otherwise. In any
solution to these two constraints, the variables xs,w,α represent the expected frequency with
which action α is chosen in state (s, w) under some scheduler. This is made precise below.

Rewards are only accumulated on the final transitions from a state (s, w) to goal ′ via
action τ for s = goal or w ≥ k. As these transitions lead to the absorbing state with
probability 1, the expected frequency with which the action τ is chosen is the probability
with which the respective transition is taken. So, we can encode the expected value in an
auxiliary variable e defined via the constraint

e =
k−1∑
w=0

xgoal,w,τ · w +
k+ℓ−1∑
w=k

∑
s∈S

xs,w,τ · (w + Emax
M,s(rew)). (3)

▶ Lemma 3.7. For any solution vector to constraints (1) – (3), there is a scheduler S for
N such that PrSN (♢(s, w)) = xs,w,τ for all (s, w) with s = goal or w ≥ k and such that
ES

M(rew) = e; and vice versa.

Now, we can use these auxiliary variables to encode the MADPE as an objective function:

maximize e− λ

(
k−1∑
w=0

xgoal,w,tau · |w − e| +
k+ℓ−1∑
w=k

∑
s∈S

xs,w,τ ·
∣∣w + Emax

M,s(rew) − e
∣∣) (4)

This function still contains the absolute value operator. However, all absolute value terms
occur with a negative sign. Therefore, we can use further variables gi for i ∈ {0, . . . , k − 1}
and hs,w for (s, w) ∈ S × {k, . . . , k + ℓ − 1} to capture the absolute value. The following
constraints state that these variables are at least as big as the respective absolute value
terms. For w ∈ {0, . . . , k − 1}, we require

gw ≥ w − e and − gw ≤ w − e. (5)

C. Baier, J. Piribauer, and M. Starke 9:11

For (s, w) ∈ S × {k, . . . , k + ℓ− 1}, we require

hs,w ≥ w + Emax
M,s(rew) − e and − hs,w ≤ w + Emax

M,s(rew) − e. (6)

The new objective function can now be written as

maximize e− λ

(
k−1∑
w=0

xgoal,w,τ · gw +
k+ℓ−1∑
w=k

∑
s∈S

xs,w,τ · hs,w

)
. (7)

▶ Theorem 3.8. The optimal solution to (7) under constraints (1) - (3), (5), and (6) is the
maximal MADPE MADPE[λ]max

N .

Proof. As all variables are non-negative, the variables gw with 0 ≤ w ≤ k − 1 and hs,w with
w ≥ k in the objective function (7) occur under a negative sign. To maximize the objective
function, these variables hence have to be set to the minimal possible values given the value
of the variable e. By constraints (5) and (6), these minimal possible values are the values
|w−e| and |w+Emax

M,s(rew)−e|, respectively. So, the optimal value of this quadratic objective
function is the same as of the objective function (4), which directly encodes the MADPE. ◀

3.4 Computational hardness of the MADPE

The complexity class PP [14] is characterized as the class of languages L that have a
probabilistic polynomial-time bounded Turing machine ML such that τ ∈ L if and only if
ML accepts τ with probability at least 1/2 for all words τ . We will show PP-hardness under
polynomial-time Turing reductions. So, for the reduction, we allow querying an oracle for
the problem we reduce to. A polynomial time algorithm for a problem that is PP-hard under
polynomial Turing reductions would imply that the polynomial hierarchy collapses [28].

▶ Theorem 3.9. Deciding for an acyclic Markov chain M and a threshold ϑ ∈ Q whether
MADM(rew) ≥ ϑ is PP-hard under polynomial-time Turing reductions.

Proof sketch. We reduce from the following problem that is shown to be PP-hard in [16]:
Given an acyclic Markov chain M = (S, P, sinit, rew), and a natural number t, decide whether
PrM(rew > t) ≥ 1/2. We first show that the exact value MADM(rew) can be computed in
acyclic Markov chains via a binary search using polynomially many calls to an oracle for the
threshold problem. Then, we prove that PrM(rew > t) can be computed by comparing the
MAD in two variations of M that ensure that the expected value of rew in these variations
is t and t+ 1/2, respectively. ◀

▶ Corollary 3.10. Deciding for an acyclic Markov chain M, λ ∈ Q+ and ϑ ∈ Q if
MADPE[λ]M(rew) ≥ ϑ is PP-hard under polynomial-time Turing reductions.

4 Semi-deviation measure-penalized expectation

To overcome the restrictions on the parameter λ for the MADPE or to overcome the
undesirable behavior observed for the VPE, one might be tempted to consider the semi-MAD
(SMAD) or the semi-variance as a deviation measure that only considers outcomes below the
expected value as a measure for the penalty.

CONCUR 2024

9:12 Risk-Averse Optimization of Total Rewards in Markovian Models

goal

s1sdec

sinit

1/2

τ : + k

1/2

1/2

τ : + 0

1/2

β : 0

α : +1

(a) The MDP M used in Example 4.1.

goal

s1s0 s2

sinit

1/2

α : + 0

1/2

β : + 0

τ : 0 τ : +100 τ : +40

(b) The MDP M used in Example 4.2.

Figure 3 Two example MDPs for phenomena of the SVPE.

Semi-MAD-penalized expectation

We define SMAD(X) = E(max(0,E(X) − X)) for a random variable X. So, all outcomes
above the expected value do not contribute to the SMAD. However, the SMAD is always half
the MAD, i.e., SMAD(X) = MAD(X)/2, as one can easily compute (see [6]). So, using the
SMAD as a penalty term is the same as using the MAD besides a rescaling of the penalty
factor λ by a factor of 2.

Semi-variance-penalized expectation (SVPE)

We now define the semi-variance, to only treat outliers below the expected value with a
quadratic penalty. However we will see that SVPE-optimal schedulers might still have to be
ERMin-schedulers. We define the semi-variance by ignoring outliers above the expected value
as follows SV(X) := E

((
min

(
X−E(X), 0

))2). Applied to the accumulated reward in an MDP
M = (S,Act, P, sinit, rew, goal), we define SVS

M(rew) := ES
M
((

min
(
rew − ES

M(rew), 0
))2) for

schedulers S. Using this as a penalty, we obtain the SVPE for a parameter λ

SVPE[λ]SM(rew) = ES
M(rew) − λ · SVS

M(rew)

and define the optimal value SVPE[λ]max
M (rew) as usual. Besides the possible necessity of

ERMin-schedulers, we will see that randomization is necessary to optimize the SVPE in
contrast to the VPE, for which optimal deterministic (finite-memory) schedulers exist [25].

▶ Example 4.1 (ERMin-schedulers). Let λ > 0 be a parameter for the SVPE. Consider the
MDP M depicted in Figure 3a where the weight k is some natural number k > 1/λ. First,
observe that under any scheduler S, we have k ≤ ES

M(rew) ≤ k + 1/2. Now, let ℓ ≥ 2 be a
natural number and let Sp be a family of schedulers for p ∈ [0, 1] that behaves exactly the
same on all paths except for the path that reaches sdec with accumulated reward exactly
ℓ · k. In this state, Sp chooses α with probability p and β with probability 1 − p.

We now want to compare the SVPE of Sp for p > 0 to the SVPE of S0. So, let λ > 0 be
given. First, we define E := ES0

M (rew) and observe ESp

M (rew) = E+ p
2ℓ+1 as the path on which

Sp and S0 differ has probability 1
2ℓ+1 . Furthermore, both schedulers differ only on a path with

a reward higher than the maximal possible expected accumulated reward, which is k + 1/2.
This means that the semivariance under Sp will be larger as under S0. Note that exactly
the outcomes with reward at most k contribute to the semivariance and these outcomes have
exactly the same probability under Sp and S0. However, the expected value under Sp is

C. Baier, J. Piribauer, and M. Starke 9:13

higher. We estimate SVSp

M (rew) − SVS0
M (rew) ≥ 1

2 (E + p
2ℓ+1)2 − 1

2E
2 by only considering the

increase in the squared distance from the mean for the outcome 0 that occurs with probability
1/2 under both schedulers. So, we can conclude SVSp

M (rew)−SVS0
M (rew) ≥ 1

2 (2Ep
2ℓ+1 +(p

2ℓ+1)2) ≥
Ep

2ℓ+1 . For the SVPE, this implies SVPE[λ]Sp

M (rew) − SVPE[λ]S0
M (rew) ≤ p

2ℓ+1 − λ Ep
2ℓ+1 . As

E ≥ k and λ > 1/k, the SVPE under scheduler S0 is higher than under Sp. Note that
ℓ ≥ 2 was chosen arbitrarily. So, this argument shows that any scheduler can be improved
by always scheduling β in sdec as soon as the accumulated reward is at least 2k.

For each λ > 0, we have provided an MDP in which optimal schedulers are necessarily
ERMin-schedulers. This is exactly the undesirable behavior as for the VPE we aim to
overcome. So, the SVPE is not a suitable alternative.

▶ Example 4.2. To conclude, we show that randomization is necessary to maximize the
SVPE. Consider the MDP M depicted in Figure 3b. Let Sp be the scheduler that chooses
action α with probability p. Further, let λ = 1

100 . We compute ESp

M (rew) = 40 + 10p. Under
Sp, reward 40 is accumulated with probability 1 − p and reward 0 with probability p/2. So,
we obtain SVSp

M (rew) = (1 − p) · (10p)2 + p
2 · (40 + 10p)2 = 800p+ 500p2 − 50p3. Finally, we

compute ESp

M (rew) −λSVSp

M (rew) = 40 + 2p− 5p2 + 1
2p

3. We determine the unique maximum
of this expression on the interval [0, 1] at the zero of its derivative, which lies at p ≈ 0.206.
So, randomization is necessary in order to maximize the SVPE in this MDP.

To conclude, let us compute the variance to illustrate that randomization is not increasing
the VPE. We obtain VSp

M (rew) = SVSp

M (rew) + p
2 (60 − 10p)2 = 2600p− 100p2. For the VPE

for an arbitrary parameter λ > 0, this results in ESp

M (rew)−λVSp

M (rew) = 40+10p−2600λp+
100λp2. Due to the positive coefficient in front of p2 this is a parabola opened upwards. So,
for any λ, one of the deterministic schedulers with p = 0 or p = 1 is optimal.

5 Threshold-based penalty

The MADPE penalizes outcomes below the expected value of the accumulated reward. The
computation of the optimal MADPE via a quadratic program of exponential size, however,
might not be feasible on large models. A conceptually simpler alternative, for which we will
be able to provide a pseudo-polynomial optimization algorithm, is to externally fix a threshold
t and to penalize outcomes below this threshold t. To this end, we define a threshold-based
penalty function TBPλ

t : R → R for parameters λ, t > 0 by TBPλ
t (x) = x− λ · max(t− x, 0).

This function returns x if x is at least t and otherwise penalizes the deviation below the
value t linearly with the penalty factor λ. In an MDP M, our goal is now to maximize – by
choosing a scheduler S – the threshold-based-penalized expectation (TBPE)

ES
M(TBPλ

t (rew)) = ES
M(rew) − λES

M(max(t− rew, 0))

Note that in a Markov chain N , the TBPE agrees with the SMADPE if we set t = EN (rew).
The main theorem is the following. Omitted proofs can be found in the full version [6].

▶ Theorem 5.1. Let M = (S,Act, P, sinit, rew, goal) be an MDP satisfying Assumption 1 and
let t, λ > 0 be rationals. Then, Emax

M (TBPλ
t (rew)) and an optimal scheduler can be computed

in time polynomial in the size of M and in the numerical value of t.

The theorem follows from the following lemma:

▶ Lemma 5.2. Given M, t, and λ as in Theorem 5.1, we can construct an MDP M′ with
reward function rew′ (that takes rational rewards that may be negative) and with |S| · ⌈t⌉
many states in time polynomial in |S| · ⌈t⌉ such that Emax

M (TBPλ
t (rew)) = Emax

M′ (rew′).

CONCUR 2024

9:14 Risk-Averse Optimization of Total Rewards in Markovian Models

Proof sketch. The MDP M′ is an unfolding of the MDP M that keeps track of the ac-
cumulated reward until it exceeds t. So, states are extended with a second component
specifying the reward accumulated so far. This second component does not change anymore
once it reaches t. For a state action pair ((s, w), α), the new reward function is defined as
rew′((s, w), α) = TBPλ

t (w + rew(s, α)) − TBPλ
t (w). The initial state (sinit, 0) is reached via

one additional new transition with reward TBPλ
t (0) (which is negative). ◀

While M′ constructed in this proof has a rational reward function that may be negative,
the MDP M′ does not contain end components. Hence, the maximization of the expected
accumulated reward in M′ can be carried out in polynomial time [7] leading to Theorem 5.1.
Furthermore, memoryless deterministic schedulers for M′ are sufficient for the maximization.
These schedulers correspond to deterministic, finite-memory ERMax-schedulers for M.
▶ Remark 5.3. The proof of Lemma 5.2 (and Thm. 5.1) works analogously for any penalty
function that penalizes outcomes below t: for any function m such that m(x) = x for x ≥ t

that is computable in polynomial time on natural numbers, we can construct M′ with a
reward function rew′ with |S| · ⌈t⌉ many states in time polynomial in |S| · ⌈t⌉ such that
Emax

M (m(rew)) = Emax
M′ (rew′) (for more details, see [6]). Again, M′ has no end components

and the maximal expected reward in M′ can be computed in time polynomial in the size of
M′ [7].

Finally, we show a hardness result similar as for the MADPE.

▶ Theorem 5.4. Given an acyclic Markov chain M = (S, P, sinit, rew) and ϑ, t ∈ Q, deciding
whether EM(TBP1

t (rew)) ≥ ϑ is PP-hard under polynomial-time Turing reductions.

Note that this hardness result holds for a fixed parameter. The choice of this parameter
λ = 1 is arbitrary. The proof works analogously for any positive parameter λ > 0.

6 Prototypical implementation and first experiments

To give a prototypical proof-of-concept for the application of the MADPE and TBPE in
practice, we run experiments using the model-checker PRISM [9] and the optimization
problem solver Gurobi [15]. The source code for the experiments is available on github1. All
measurements were done on a machine running Windows 10 Pro 22H2 with an Intel Core
i9-9900K CPU and 32GB RAM. We use MDP models written in the PRISM input language
(available on the PRISM website2) for the asynchronous leader election protocol (ALEP) [17]
and, in the case of the MADPE, also for the randomized consensus protocol (RCP) [2]. For
both protocols, parameters can be chosen leading to models of different sizes and in the
models for both protocols non-negative rewards are specified.

To test our algorithm for the TBPE, for each PRISM model for the ALEP with number of
processes N = 3, . . . , 8, we added a single module which implements the reward counter until
reaching the threshold and a new reward definition as in the construction used in the proof
of Lemma 5.2. We used the penalty factor λ = 3

2 in our examples and varied the threshold t.
In Figure 4a, the sizes of the unfolded MDPs for varying values of t, which are proportional
to t, and the time needed to compute the maximal TBPE are shown. We observe that for
this example the required time grows approximately linearly with the size of the unfolded
MDP and consequently with the numerical value of t. For the model with N = 8, which

1 https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths
2 https://www.prismmodelchecker.org/

https://github.com/experiments-collection/risk-averse-stochastic-shortest-paths
https://www.prismmodelchecker.org/

C. Baier, J. Piribauer, and M. Starke 9:15

5 · 10 7
1 · 10 8

1.5 · 10 8
2 · 10 8

500

1,000

1,500

2,000

#states

total time [s] TBPE

N=3
N=4
N=5
N=6
N=7
N=8

(a) The number of states of the unfolded MDPs
and the time to compute the optimal TBPE for
different parameter choices for the ALEP.

103 104 105

10−1

100

101

102

states

to
ta

lt
im

e
[s]

MADPE

ALEP N=3,...,6
RCP N=2
RCP N=4

(b) Time to build and solve the quadratic pro-
gram for the maximization of the MADPE.

Figure 4 Experimental evaluation of the algorithms for TBPE and MADPE.

has approximately 1.8 · 107 many states, and t = 13, the unfolded MDP has approximately
2.4 · 108 many states and the computation of the optimal TBPE takes approximately 2385
seconds. More detailed plots for different values for N can be found in Appendix A.

To test our algorithm for the MADPE using quadratic programs, we use the ALEP and
the RCP models with various parameter choices. The parameter λ is set to 0.4. First we run
PRISM to obtain a model representation with all states, transitions, rewards and the maximal
expected total reward from each state. Second, we run a python script which constructs
all the constraints as described in Section 3 to obtain a linearly constrained program with
a quadratic objective. The script uses Gurobi [15] to then solve the optimization problem.
The diagram in Figure 4b shows the total time for running the toolchain over the number of
reachable states of each model according to PRISMs output. For the largest tested models
with approximately 2 · 105 many states, the maximal MADPE could be computed in less
than 200 seconds.

7 Conclusion

For various deviation measures, we investigated the deviation-measure-penalized expectation
as risk-averse objective applied to the maximization of accumulated rewards in MDPs. As
known from the literature, the VPE suffers from the fact that optimal schedulers have to be
ERMin-schedulers. Surprisingly, this can still be the case for the SVPE. For the MADPE,
a different picture arises: If the penalty factor λ is at most 1/2, optimal schedulers can be
chosen to be ERMax-schedulers. If λ > 1/2, ERMin-schedulers can be necessary. Finally,
the threshold-based penalty mechanism in the TBPE ensures that optimal schedulers are
ERMax-schedulers. For an overview of the further results regarding computational complexity
and the structure of optimal schedulers see Table 1.

Despite the PP-hardness results for acyclic Markov chains, the first experimental evalu-
ation of the two cases that ensure the existence of optimal ERMax-schedulers, namely the
TBPE in general and the MADPE for small penalty factors λ ≤ 1/2, indicates that the
optimization seems to be possible in reasonable time on models of considerable size. Further
experiments on the scalability of the algorithms, however, are left as future work. In addition,
future experiments should examine whether the optimal schedulers for the different measures
show a reasonable risk-averse behavior in case studies.

CONCUR 2024

9:16 Risk-Averse Optimization of Total Rewards in Markovian Models

We addressed the maximization of accumulated rewards here. As we work with non-
negative rewards, the case of minimization is not symmetric and is subject to future investig-
ations. Finally, the studied objectives can be transferred to other random variables such as
the mean payoff, which is a further interesting direction for future work.

References
1 Mohamadreza Ahmadi, Anushri Dixit, Joel W. Burdick, and Aaron D. Ames. Risk-averse

stochastic shortest path planning. In 2021 60th IEEE Conference on Decision and Control
(CDC), Austin, TX, USA, December 14-17, 2021, pages 5199–5204. IEEE, 2021. doi:10.
1109/CDC45484.2021.9683527.

2 James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal
of Algorithms, 11(3):441–461, 1990. doi:10.1016/0196-6774(90)90021-6.

3 Christel Baier, Krishnendu Chatterjee, Tobias Meggendorfer, and Jakob Piribauer. Entropic
risk for turn-based stochastic games. In Jérôme Leroux, Sylvain Lombardy, and David
Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume 272 of
LIPIcs, pages 15:1–15:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.MFCS.2023.15.

4 Christel Baier, Marcus Daum, Clemens Dubslaff, Joachim Klein, and Sascha Klüppelholz.
Energy-utility quantiles. In Julia M. Badger and Kristin Yvonne Rozier, editors, NASA Formal
Methods - 6th International Symposium, NFM 2014, Houston, TX, USA, April 29 - May 1,
2014. Proceedings, volume 8430 of Lecture Notes in Computer Science, pages 285–299. Springer,
2014. doi:10.1007/978-3-319-06200-6_24.

5 Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich. Maximizing
the conditional expected reward for reaching the goal. In Axel Legay and Tiziana Margaria,
editors, 23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 10206 of Lecture Notes in Computer Science, pages
269–285. Springer, 2017. doi:10.1007/978-3-662-54580-5_16.

6 Christel Baier, Jakob Piribauer, and Maximilian Starke. Risk-averse optimization of total
rewards in markovian models using deviation measures, 2024. arXiv:2407.06887.

7 Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems.
Math. Oper. Res., 16:580–595, 1991. doi:10.1287/moor.16.3.580.

8 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Trading per-
formance for stability in markov decision processes. J. Comput. Syst. Sci., 84:144–170, 2017.
doi:10.1016/j.jcss.2016.09.009.

9 T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games: A model
checker for stochastic multi-player games. In N. Piterman and S. Smolka, editors, Proc.
19th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’13), volume 7795 of LNCS, pages 185–191. Springer, 2013. doi:10.1007/
978-3-642-36742-7_13.

10 Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and Aistis Simaitis.
Automatic verification of competitive stochastic systems. Formal Methods Syst. Des., 43(1):61–
92, 2013. doi:10.1007/S10703-013-0183-7.

11 EJ Collins. Finite-horizon variance penalised Markov decision processes. Operations-Research-
Spektrum, 19(1):35–39, 1997.

12 Luca de Alfaro. Computing minimum and maximum reachability times in probabilistic systems.
In 10th International Conference on Concurrency Theory (CONCUR), volume 1664 of Lecture
Notes in Computer Science, pages 66–81, 1999. doi:10.1007/3-540-48320-9_7.

13 Jerzy A Filar, Lodewijk CM Kallenberg, and Huey-Miin Lee. Variance-penalized Markov
decision processes. Mathematics of Operations Research, 14(1):147–161, 1989. doi:10.1287/
moor.14.1.147.

14 John Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675–695, 1977. doi:10.1137/0206049.

https://doi.org/10.1109/CDC45484.2021.9683527
https://doi.org/10.1109/CDC45484.2021.9683527
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.4230/LIPIcs.MFCS.2023.15
https://doi.org/10.4230/LIPIcs.MFCS.2023.15
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1007/978-3-662-54580-5_16
https://arxiv.org/abs/2407.06887
https://doi.org/10.1287/moor.16.3.580
https://doi.org/10.1016/j.jcss.2016.09.009
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/S10703-013-0183-7
https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1287/moor.14.1.147
https://doi.org/10.1287/moor.14.1.147
https://doi.org/10.1137/0206049

C. Baier, J. Piribauer, and M. Starke 9:17

15 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

16 Christoph Haase and Stefan Kiefer. The odds of staying on budget. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 234–246.
Springer, 2015. doi:10.1007/978-3-662-47666-6_19.

17 A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information and Compu-
tation, 88(1), 1990. doi:10.1016/0890-5401(90)90004-2.

18 Hiroshi Konno and Hiroaki Yamazaki. Mean-absolute deviation portfolio optimization model
and its applications to tokyo stock market. Management Science, 37(5):519–531, 1991. URL:
http://www.jstor.org/stable/2632458.

19 Jan Kretínský and Tobias Meggendorfer. Conditional value-at-risk for reachability and mean
payoff in Markov decision processes. In 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 609–618. ACM, 2018. doi:10.1145/3209108.3209176.

20 Xiaoteng Ma, Shuai Ma, Li Xia, and Qianchuan Zhao. Mean-semivariance policy optimization
via risk-averse reinforcement learning. J. Artif. Intell. Res., 75:569–595, 2022. doi:10.1613/
jair.1.13833.

21 Petr Mandl. On the variance in controlled Markov chains. Kybernetika, 7(1):1–12, 1971. URL:
http://www.kybernetika.cz/content/1971/1/1.

22 Shie Mannor and John N. Tsitsiklis. Mean-variance optimization in Markov decision processes.
In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International Conference
on Machine Learning, ICML’11, pages 177–184, Madison, WI, USA, 2011. Omnipress. URL:
https://icml.cc/2011/papers/156_icmlpaper.pdf.

23 Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952. URL:
http://www.jstor.org/stable/2975974.

24 Harry M. Markowitz. Portfolio Selection: Efficient Diversification of Investments. Yale
University Press, 1959. URL: http://www.jstor.org/stable/j.ctt1bh4c8h.

25 Jakob Piribauer, Ocan Sankur, and Christel Baier. The variance-penalized stochastic shortest
path problem. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 129:1–129:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.129.

26 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, 1994. doi:10.1002/9780470316887.

27 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-
dimensional markov decision processes. Formal Methods Syst. Des., 50(2-3):207–248, 2017.
doi:10.1007/s10703-016-0262-7.

28 Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on
Computing, 20(5):865–877, 1991. doi:10.1137/0220053.

29 Michael Ummels and Christel Baier. Computing quantiles in Markov reward models. In
Frank Pfenning, editor, 16th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS), volume 7794 of Lecture Notes in Computer Science,
pages 353–368. Springer, 2013. doi:10.1007/978-3-642-37075-5_23.

30 Tom Verhoeff. Reward variance in Markov chains: A calculational approach. In Proceedings
of Eindhoven FASTAR Days. Technische Universiteit Eindhoven, 2004.

31 Li Xia. Risk-sensitive Markov decision processes with combined metrics of mean and variance.
Production and Operations Management, 29(12):2808–2827, 2020. doi:10.1111/poms.13252.

CONCUR 2024

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-662-47666-6_19
https://doi.org/10.1016/0890-5401(90)90004-2
http://www.jstor.org/stable/2632458
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1613/jair.1.13833
https://doi.org/10.1613/jair.1.13833
http://www.kybernetika.cz/content/1971/1/1
https://icml.cc/2011/papers/156_icmlpaper.pdf
http://www.jstor.org/stable/2975974
http://www.jstor.org/stable/j.ctt1bh4c8h
https://doi.org/10.4230/LIPIcs.ICALP.2022.129
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/s10703-016-0262-7
https://doi.org/10.1137/0220053
https://doi.org/10.1007/978-3-642-37075-5_23
https://doi.org/10.1111/poms.13252

9:18 Risk-Averse Optimization of Total Rewards in Markovian Models

A Experimental evaluation

In the sequel, the number of states of the unfolded MDPs as well as the time to compute the
maximal TBPE as described in Section 6 are depicted for the Asynchronous Leader Election
Protocol with parameter N = 3, . . . , 8 and varying values of the paramter t. The number of
states of the unfolded MDPs grows linearly in t as expected. Interestingly, also the required
times seem to grow linearly in t.

20,000

40,000

60,000

80,000

1
·10

5

1.2
·10

5

1.4
·10

5

1.6
·10

5

1.8
·10

5

2
·10

5

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

parameter t

to
ta

lt
im

e
[s]

N = 3

0

1 · 107

2 · 107

3 · 107

4 · 107

5 · 107

6 · 107

7 · 107

#
st

at
es

total time [s]
states

2,000 4,000 6,000 8,000 10,000 12,000
0

500

1,000

1,500

parameter t

to
ta

lt
im

e
[s]

N = 4

0

1 · 107

2 · 107

3 · 107

#
st

at
es

total time [s]
states

C. Baier, J. Piribauer, and M. Starke 9:19

200 400 600 800 1,000 1,200
0

200

400

600

800

1,000

parameter t

to
ta

l t
im

e
[s]

N = 5

0

5 · 106

1 · 107

1.5 · 107

2 · 107

2.5 · 107

3 · 107

3.5 · 107

#
st

at
es

total time [s]
states

50 100 150 200 250 300 350 400
0

500

1,000

1,500

2,000

parameter t

to
ta

lt
im

e
[s]

N = 6

0

2 · 107

4 · 107

6 · 107

8 · 107
#

st
at

es
total time [s]

states

CONCUR 2024

9:20 Risk-Averse Optimization of Total Rewards in Markovian Models

10 20 30 40 50 60 70
0

500

1,000

1,500

parameter t

to
ta

lt
im

e
[s]

N = 7

0

2 · 107

4 · 107

6 · 107

8 · 107

1 · 108

1.2 · 108

1.4 · 108

#
st

at
es

total time [s]
states

2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

parameter t

to
ta

lt
im

e
[s]

N = 8

0

5 · 107

1 · 108

1.5 · 108

2 · 108

#
st

at
es

total time [s]
states

Passive Learning of Regular Data Languages in
Polynomial Time and Data
Mrudula Balachander
Université libre de Bruxelles, Belgium

Emmanuel Filiot
Université libre de Bruxelles, Belgium

Raffaella Gentilini
Universitá degli Studi di Perugia, Italy

Abstract
A regular data language is a language over an infinite alphabet recognized by a deterministic register
automaton (DRA), as defined by Benedikt, Ley and Puppis. The later model, which is expressively
equivalent to the deterministic finite-memory automata introduced earlier by Francez and Kaminsky,
enjoys unique minimal automata (up to isomorphism), based on a Myhill-Nerode theorem.

In this paper, we introduce a polynomial time passive learning algorithm for regular data
languages from positive and negative samples. Following Gold’s model for learning languages, we
prove that our algorithm can identify in the limit any regular data language L, i.e. it returns a
minimal DRA recognizing L if a characteristic sample set for L is provided as input. We prove
that there exist characteristic sample sets of polynomial size with respect to the size of the minimal
DRA recognizing L. To the best of our knowledge, it is the first passive learning algorithm for data
languages, and the first learning algorithm which is fully polynomial, both with respect to time
complexity and size of the characteristic sample set.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Automata over infinite objects

Keywords and phrases Register automata, passive learning, automata over infinite alphabets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.10

Funding Mrudula Balachander : PhD funded by F.R.S.-FNRS.
Emmanuel Filiot: Senior research associate of the F.R.S.-FNRS. His contribution to this work was
partly funded by the FNRS MIS project F451019F and the FNRS PDR project T.0117.24.

Acknowledgements We thank Marie Tcheng for spotting some issue in the characterization of
completability in a preliminary version of this paper.

1 Introduction

Finite-memory automata (FMA) have been introduced by Francez and Kaminsky in the
90s [27], as an extension of finite automata to infinite alphabets of data values, which
can be stored and compared using a finite set of registers. Since the introduction of
FMA, a rich literature on automata for languages over infinite alphabets has emerged, e.g.
see [12, 6, 35, 13, 11, 31, 24]. Automata for data languages have many applications in
computer science, for instance in verification of concurrent systems [13, 14, 2, 1], of programs
with dynamic allocation [24] as well as in reactive system synthesis [28, 20, 19]. Unlike
in the finite alphabet setting, non-determinism and determinism often yield expressively
inequivalent models, such as for FMA. In this paper, we consider languages defined by
deterministic FMA (DFMA), which we call regular data languages. Regular data languages
form a robust class of languages. They are for instance captured by many variations on the

© Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8688-3550
https://orcid.org/0000-0002-2520-5630
https://orcid.org/0000-0002-4400-3137
https://doi.org/10.4230/LIPIcs.CONCUR.2024.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Passive Learning of Regular Data Languages in Polynomial Time and Data

data storage mechanism of DFMA: allowing registers to be emptied during computation, or
requiring that they must hold distinct values, or allowing their contents to be reassigned [33],
or finally requiring that they must follow a last appearance record (LAR) policy [6].

Register automata with last appearance record. The latter model of [6], which we simply
call deterministic register automata (DRA), is the chosen model in this paper for regular data
languages. As shown in [6], for any regular data language L, there exists a unique DRA for
L which is both minimal with respect to the number of states and number of registers. This
is particularly relevant for learning regular data languages. In this model, data values are
stored in a list whose length can vary during execution but is of bounded length k. Moreover,
data occurring in the list are distinct. When a new data d is read, it is compared to the list
α of stored values. The data d, if ever stored, has to be stored at the end of α, resulting
in a new list αd. Values in α can be erased, and must be if d already occurs in α (to keep
distinct values in memory), or if the list exceeds length k. E.g., consider the data language
L ̸= of words of the form (d1d2)n for all n > 0 and all integers d1 ̸= d2. A DRA recognizing
L ̸= would start with an empty memory, then store the 1st data d1, then the 2nd data d2
(after checking d1 ≠ d2). At this point its memory is the list d1d2. Then it would alternate
between (1) checking whether the next data is d1 and update the memory to d2d1, and (2)
checking whether the next data is d2 and update the memory to d1d2.

Passive learning of languages. Language inference has a long history, with applications
in (but not limited to) verification [29]. The (passive) inference of regular languages (over
a finite alphabet) from positive and negative samples has been studied since the 60s, see
e.g. [30] for a survey. Given a sample set S = (I+, I−) consisting of a finite set I+ (resp.
I−) of positive (resp. negative) samples, the goal is to infer a regular language as a DFA
consistent with S, i.e. it accepts all words in I+ and rejects those in I−. Gold proposed
identification in the limit of a regular language as a formal notion to characterize the learning
capability of inference algorithms [23, 16]. The algorithm RPNI (standing for Regular Positive
and Negative Inference) [34] is one of the reference algorithms in passive learning: given a
sample set S, it returns in polynomial-time a DFA consistent with S, and for any regular
language L, if S is characteristic enough for L, then RPNI returns AL. Moreover, there is
always a characteristic sample of polysize in the size of AL. In other words, RPNI identifies
regular languages in polynomial time and data. Since then, there have been many variants of
RPNI, for example for regular tree languages [22], regular queries in trees [15] or ω-regular
languages [8, 9]. Recently, RPNI was used in combination with reactive synthesis methods
to automatically generate reactive systems from LTL specifications and examples [5]. The
extension of [5] to the synthesis of data-processing reactive systems is our main motivation
for the present work, as the former heavily relies on passive learning.

Despite a rich literature on passive learning for regular languages over finite alphabets,
and on automata and logics for words over infinite alphabets, only few is yet known about
passive learning for regular languages over infinite alphabets, to the best of our knowledge.
Passive learning for symbolic automata has been investigated in [21]. This is an orthogonal
model to register automata: symbolic automata have complex tests over data, but no storage
mechanism, while register automata have simple data tests, but registers to store data.
Handling data that need to be memorized in a passive learning context is one of the main
difficulties of our paper. Let us also mention that they are many contributions in active
learning for regular data languages, in particular extensions of L∗ algorithm [7, 25, 26, 32].
All these extensions however run in exponential time.

M. Balachander, E. Filiot, and R. Gentilini 10:3

Contributions. We prove that any regular data language L can be identified in polynomial
time from polynomial data, in the size of the minimal DRA for L. To do so, we design
an RPNI-like algorithm, which takes as input a finite sample set S = (I+, I−) of positive
and negative data words over an infinite domain of data values, and prove that it returns,
in polynomial time, a DRA consistent with S, assuming data equality can be tested in
polynomial time. We then show that for any regular language L, there exists a characteristic
sample SL, such that for any sample S containing SL, our algorithm returns the minimal
DRA recognizing L (as defined in [31]). To the best of our knowledge, it is the first fully
polynomial passive learning algorithm for regular data languages.

Our RPNI algorithm is based on an alternative presentation of RPNI for DFA, compared
to the original formulation of [34]. This alternative presentation is similar to the one of [8]
for ω-regular languages. We believe this presentation is simpler than the original one, as it
does not involve operations such as deterministic state-merging, and is easier to analyse. The
idea is to start from a single-state automaton, and to incrementally extend it by adding new
transitions, allowing more sample prefixes to be readable by the automaton (taken in length
lexicographic order). To generalize the samples, when adding a new transition, existing states
are prioritized as a target of the new transition, over creating a fresh new state. A transition
can be added if the resulting automaton can still be completed into an automaton consistent
with S. We call this S-completability and show it can be checked in PTime. In Section 3,
we first present this alternative RPNI algorithm for DFA. It is of independent interest, but
also helpful to understand its extension to DRA, which is done in Section 4. Briefly, when
adding a transition, the algorithm now has to decide whether the incoming data must be
stored and which of the stored data can be erased from memory. To do so, and to generalize
the sample as much as possible, it tries both to reuse existing states for the target of the
new transition, and to erase as many registers as possible, while preserving S-completability.

In Section 5, we prove that this algorithm identifies any regular data language L from a
characteristic sample set of size polynomial in the size of the minimal DRA for L. To prove
that the characteristic sample is polynomial, classical automata-theoretic arguments (such as
intersection closure) do not apply because they involve exponential blow-up. Instead, we
adapt group-theoretic techniques for checking bisimulation of register automata as defined
in [33], which exploits symmetries underlying sets of configurations of register automata. As
a byproduct of our techniques, we obtain that equivalence of DRA can be checked in CoNP.

2 Preliminaries

Data Words and Languages. In this paper, a data domain is an infinite countable set D
equipped with equality, whose elements are called data. In this paper, we assume an arbitrary
well-ordering <D over D, so that every subset has a minimal element. It is also assumed
that any data has an effective representation, and that data comparison <D can be tested in
polynomial time.

A (data) word w (or sometimes just word) is a finite sequence of data from D. Given
a word w having length |w| = n, we denote by w[i] the ith data of w for 1 ≤ i ≤ |w|. We
define the length-lexicographic order over D∗: u <llex v if |u| < |v| or |u| = |v|, u = wdu′,
v = wd′v′ for some d <D d′ and w, u′, v′. For a set X ⊆ D∗, we let Prefs(X) be the set of
words u such that u is a prefix (not necessarily strict) of some word in X.

Any (total) function µ : D → D can be morphically extended to µ : D∗ → D∗, where
µ(w)[i] = µ(w[i]) for all w ∈ D∗ and 1 ≤ i ≤ n. The function µ is called a data permutation
if µ is bijective. Two data words w1, w2 ∈ D∗ are said to be data-equivalent1, written as

1 In the terminology of orbit-finite sets, w1 and w2 are said to be in the same orbit [10].

CONCUR 2024

10:4 Passive Learning of Regular Data Languages in Polynomial Time and Data

w1 ≃ w2, if w1 = µ(w2) for some data permutation µ. Note that it implies that |w1| = |w2|.
We denote by [w]≃ the ≃-class of any data word w. The following result is immediate (under
the previous assumption that data equality is in PTime):

▶ Proposition 1. For any data domain D, ≃ is decidable in PTime.

A (data) language L over D is a set of data words over D. It is equivariant if for all
w ∈ L, [w]≃ ⊆ L. For w1, w2 ∈ D∗, we write w1 =L w2 when w1 ∈ L↔ w2 ∈ L holds.

Register Automata. Register automata have first been introduced by Kaminsky and Francez
under the name finite memory automata [27]. In this paper, we use an equi-expressive model
defined in [6], which enjoys a canonical, state-minimal and register-minimal form. In this
model, the number of available registers may vary over time, but depends on the state, i.e. any
configuration in state p has the same number λ(p) of stored data. Moreover, registers follow
a fixed policy in the way they are used, called last appearance record. Thanks to this policy,
it is not necessary to give names to registers, and the set of stored data in a configuration is
just a data word (of bounded length). Before giving the formal definition, let us informally
explain how this model works. Any transition is of the form t = (p, α, E, q) where p, q are
states, α is a data word of length λ(p) + 1, E is a subset of {1, . . . , λ(p) + 1}. The word
α is seen as a test of the new data read as input against the registers, via ≃-equivalence.
There can be two types of α: disequality tests, which require all the data of α to be pairwise
different, and equality tests, which require all data to be pairwise different but the last one,
which repeats exactly once in α. E.g. over D = N, α = 1323 is an equality test, α = 2341
is a disequality test and α = 222 is not a valid test. Any configuration in state p is of the
form (p, d1 . . . dλ(p)) where d1 . . . dλ(p) ∈ D∗ is the memory content. Reading a new incoming
data d, transition t above can be triggered only if d1 . . . dλ(p)d ≃ α, and in that case the
automaton moves to state q. Some of the data in memory can be dropped, and E specifies
which one, by their positions in {1, . . . , λ(p) + 1}. The automaton maintains the following
invariant: no data is stored multiple times in memory, and the size of the memory only
depends on the state. To maintain the first invariant, if α is an equality test α1 . . . αλ(p)+1
with αj = αλ(p)+1 for some j ≤ λ(p), then j ∈ E: this implies that only the last occurence
of dj is kept. For the second invariant, we must have λ(p) + 1− |E| = λ(q).

▶ Definition 2. A (deterministic) register automaton (DRA) over D is a tuple A =
⟨Q, k, λ, T, q0, F ⟩, where:

Q is the set of states, q0 is the initial state with λ(q0) = 0 and F ⊆ Q are the final states.
k ∈ N is the maximum number of stored values, and λ : Q → {0, . . . , k} is called an
availability function;
T is a finite set of transitions of the form (p, α, E, q), where p, q ∈ Q, α ∈ Dλ(p)+1 is
either an equality or a disequality test and E ⊆ {1, . . . , λ(p) + 1}. It is required that: (i)
λ(p) + 1− |E| = λ(q), (ii) if α[i] = α[λ(p) + 1] for some i ≤ λ(p), then i ∈ E, and (iii)
T is deterministic, i.e. for all states p and ≃-equivalence class c, there exists at most
one transition (p, α, E, q) such that α ∈ c.

For all 0 ≤ i ≤ k, we let Qi = λ−1(i) be the set of states with i available registers. Given
this notation, we may freely denote a DRA as a tuple ⟨Q0, . . . , Qk, T, I, F ⟩. A configuration
is a pair τ = (q, σ), where q ∈ Q and σ ∈ Dλ(q). Given two configurations (p, σ) and (q, σ′)
and a data a ∈ D, we write (p, σ) a−→A (q, σ′) whenever there exists a transition (p, α, E, q)
such that σ.d ≃ α, and σ′ = dropE(σ.d) where dropE(.) replaces, for all i ∈ E, the ith data
of σ.d by ϵ, and for all i ∈ {1, . . . , k} \ E, keeps the ith data.

M. Balachander, E. Filiot, and R. Gentilini 10:5

A run of A over a data word w is a sequence of configurations (p1, σ1) . . . (pn, σn) such that
n = |w|+ 1, and for all 1 ≤ i < n, (pi, σi)

w[i]−−→A (pi+1, σi+1). We write (p, σ1) w−→A (pn, σn)
to denote the existence of such a run. The language recognized by the register automaton A,
denoted L(A), is the set of words w such that (q0, ϵ) w−→A (p, σ) for some p ∈ F .

▶ Example 3. Consider the language of data words L = {d1d′
1d2d′

2 . . . dnd′
n ∈ N∗ | ∀1 ≤ i ≤

n, di = d′
i}. The data language L is recognizable by the DRA A = ⟨Q, k, λ, T, q0, F ⟩, where

k = 2, Q = {q0, q1}, λ(q0) = 0, λ(q1) = 1, F = {q0} and T = {(q0, 1, ∅, q1), (q1, 11, {1, 2}, q0)}.
The language L ̸= = {(d1d2)n | n, d1, d2 ∈ N, n > 0, d1 ≠ d2} of Introduction is recogniz-

able by A′ = ⟨{p0, . . . , p3}, 2, λ′, T ′, p0, {p2}⟩ where λ′(p0) = 0, λ′(p1) = 1, λ′(p2) = λ′(p3) =
2, and T ′ = {(p0, 1,∅, p1), (p1, 12,∅, p2), (p2, 121, {1}, p3), (p3, 121, {1}, p2)}.

We say that a data language L is regular if it is recognized by a DRA A, i.e. L(A) = L.
Note that regular data languages are equivariant, i.e. stable under data renaming, because
the property of ρ to be a run on some data word w only depends on the data equalities in w.

3 Warm Up: Passive Learning of DFA

In this section, we recall how passive learning of DFA is achieved by the RPNI algorithm [34].
However we provide an alternative presentation, inspired by a similar presentation in the
context of ω-regular languages [8]. RPNI first constructs a tree-like DFA accepting exactly
the set of positive samples, and to generalize them, it merges the states of the initial DFA as
much as possible and in a specific order, while preserving the rejection of negative samples.
In contrast, our approach starts from a single-state DFA and adds transitions incrementally.
When adding a new transition, to generalize the positive samples, it tries to reuse an existing
state while rejecting negative samples, otherwise it creates a new state. This approach,
which we believe is slightly simpler than the original RPNI algorithm, and offers the same
guarantees, is easier to generalize to register automata, as it is not based on state-merging.
It is indeed not clear how to define such an operation on register automata.

Some useful notions on DFA. Before defining the algorithm, we introduce some notions for
DFA. We denote a DFA over an alphabet Σ as a tuple A = ⟨Q, q0, F, δ⟩, where Q is the set
of states with initial state q0, F ⊆ Q are the final states and δ : Q× Σ→ Q is the transition
function (which might be partial). The language accepted by A is denoted by L(A). We also
denote (if it exists) by δ∗(p, w) the state reached by A when reading a word w from a state
p. In particular, δ∗(p, ϵ) = p. Given a set S ⊆ Σ∗, a word w ∈ Σ∗, we define its residual
language w−1S = {w′ ∈ Σ∗ | w.w′ ∈ S}.

We now define a relation on DFA, which characterizes when a DFA is a subgraph of
another one. Given two DFAs Ai =

〈
Qi, qi

0, Fi, δi

〉
, i = 1, 2, we say that A2 completes A1,

written A1 ⪯ A2, if there exists an injective morphism Φ : Q1 → Q2, i.e. a mapping which
preserves the initial state, final states and the transitions: Φ(q1

0) = q2
0 , Φ(F1) ⊆ F2 and for

all transitions (p, σ, q) ∈ δ1, we have (Φ(p), σ, Φ(q)) ∈ δ2. Given a sample set S = (I+, I−)
where I+, I− ⊆ Σ∗, we say that a DFA A is S-consistent if I+ ⊆ L(A) and I− ∩ L(A) = ∅.
We say that A is S-completable if there exists A′ such that A ⪯ A′ and A′ is S-consistent.

▶ Proposition 4. A DFA A is S-completable iff I− ∩ L(A) = ∅ and there do not exist
u1, u2, z ∈ Σ∗ such that u1z ∈ I+, u2z ∈ I− and δ∗(q0, u1) = δ∗(q0, u2).

As a corollary, DFA completability can be checked in PTime, where we define the size
||A|| of a DFA A as its number of states plus number of transitions.

CONCUR 2024

10:6 Passive Learning of Regular Data Languages in Polynomial Time and Data

▶ Corollary 5. Given a DFA A and a (finite) sample set S, it can be checked in time
O(||A||.||S||) whether A is S-completable.

Algorithm description. The algorithm is given as Algorithm 1. It takes as input a finite
sample set S = (I+, I−) of consistent positive and negative samples (I+ ∩ I− = ∅), and
returns an S-consistent DFA A. It starts with a single state DFA A and keeps on extending
it with new transitions (possibly creating new states), to be able to read more and more
prefixes of words from S. To do so, it adds all the prefixes of words from I+ ∪ I− (but ϵ) to
a waiting list ToRead, processed in length-lexicographic order <llex. The invariants of the
algorithm (preserved by the while-loop at line 3) are:

(i) any word w in ToRead cannot be read fully by A, i.e. δ∗(q0, w) is undefined.
(ii) A is S-completable.
(iii) A is (I+ \ ToRead, I−)-consistent.

It is easily seen that those invariants are initially true, because the sample set is consistent.
At any iteration the algorithm picks a <llex-minimal word w = ua in ToRead, with a ∈ Σ.
Since w is length-minimal, δ∗(q0, u) = p exists. The algorithm then adds a new transition
from p on reading a. To do so, it calls a function SET_TRANSITION which first tries to reuse
an existing state q such that adding transition p

a−→ q preserves S-completability (reusing
existing states is how the algorithm generalizes the samples). If no such state exists, it creates
the fresh state pa and adds the transition p

a−→ pa. After the transition is added, all words
in ToRead which can now be read are removed from ToRead (thus preserving invariant (i)),
and if additionally they are positive, the state they reached are set to be accepting. Invariant
(ii) is preserved because SET_TRANSITION makes sure the new transition can be added
w/o breaking S-completability. If invariant (iii) is not preserved, since line 11 makes sure all
words in I+ \ ToRead are accepted (for the new set ToRead), there are some w ∈ I+ and
w′ ∈ I− which both reach the same accepting state, contradicting S-completability and (ii).

The algorithm terminates in a polynomial number of steps with respect to the size of S,
and returns an S-consistent DFA, according to invariant (iii). Note that it is not specified
in which order states are enumerated at line 15. Different orders may yield different DFA,
but this has no influence if the sample is rich enough, as explained in the next paragraph.

Completeness. A way to formalize how well RPNI generalizes the samples is given by a
completeness result: for any regular language L, the minimal (not necessarily complete)
DFA AL recognizing L is output by RPNI, if a small (polynomial size in the size of AL) but
characteristic enough sample set is provided as input. We obtain the same result for our
modified RPNI algorithm. We do not formally prove it because it is a particular case of the
same result on DRA, fully proven in Section 5, and the purpose of this section is to convey
intuitions easing the comprehension of the DRA setting. We now define a characteristic
sample set SL of polynomial size in the size of AL, such that Algo. 1, on input SL, returns
a DFA isomorphic to AL. We give the intuitions on how SL influences the execution of
Algorithm 1. For the algorithm to create as many states and transitions as AL, ToRead
needs to contain at least one word per state and transition. Then, when it tries to add a new
transition, negative samples are needed to control the target state: by an adequate choice of
negative samples, exactly one target state (either existing or fresh) will be picked.

It is convenient to view AL as the quotient DFA obtained from the Myhill-Nerode
congruence ≡L, defined by u ≡L v if for all w ∈ Σ∗, uw ∈ L ↔ vw ∈ L holds. Let [u] be
the class of any word u. For any two different classes c, c′, there exists wc,c′ ∈ Σ∗ which
distinguishes c and c′, in the sense that ucw ∈ L ̸↔ uc′w ∈ L. Then, for u, v and a ∈ Σ

M. Balachander, E. Filiot, and R. Gentilini 10:7

Algorithm 1 Alternative formulation of RPNI algorithm for DFA.

Input: A (finite) sample set S = (I+, I−) of positive and negative samples over an
alphabet Σ: I+, I− ⊆ Σ∗ such that I+ ∩ I− = ∅.

Output: An S-consistent DFA A = ⟨Q, q0, F, δ⟩
1 q0 ← ϵ; Q← {ϵ}; δ ← ∅; if ϵ ∈ I+ then F ← {q0} else F ← ∅
2 ToRead ← Prefs(I+ ∪ I−) \ {ϵ}
3 while ToRead ̸= ∅ do
4 u · a← length-lexicographic minimal word in ToRead

5 p← δ∗(q0, u) // guaranteed to exist
6 (p, a, q)← SET_TRANSITION(A, p, a, S)
7 δ ← δ ∪ {(p, a, q)}; Q← Q ∪ {q}
8 foreach w ∈ ToRead do
9 if δ∗(q0, w) exists then

10 ToRead ← ToRead \ {w}
11 if w ∈ I+ then F ← F ∪ {δ∗(q0, w)};

12 return A = ⟨Q, q0, F, δ⟩
13

14 Function SET_TRANSITION(A, p, a, S):
Input: A DFA A = ⟨Q, q0, F, δ⟩, state p ∈ Q and character a ∈ Σ such that

δ(p, a) is undefined and A is S-completable
Output: A state q (either in Q if it exists, otherwise fresh) such that

⟨Q, q0, F, δ ∪ {p a−→ q}⟩ is S-completable
15 foreach q ∈ Q do
16 if COMPLETABLE(⟨Q, q0, F, δ ∪ {p a−→ q}⟩, S) then return (p, a, q)

// check S-completability, see Cor.5
17 return (p, a, pa)

such that [ua] ̸= [v], samples are needed to forbid the learning algorithm to create the
transition [u] a−→ [v]. We use the word w[ua],[v] to do so. Formally, a sample set S = (I+, I−)
is characteristic for L if it is L-consistent and there exist St, Tr, D ⊆ Σ∗ such that:

St contains for each class c ∈ Σ∗/≡L
, a <llex-minimal representative u, i.e. [u] = c,

for all u ∈ St and a ∈ Σ, ua ∈ Tr,
for all u, v ∈ St, a ∈ Σ, if [ua] ̸= [v] then uaw[ua],[v], vw[ua],[v] ∈ D,

and such that (St ∪ Tr ∪D) ∩ L ⊆ I+ and (St ∪ Tr ∪D) ∩ L ⊆ I−.
Given a characteristic sample set SL, the invariant maintained by Algorithm 1 on the

while-loop is that AL completes the DFA A constructed so far. This is ensured by the fact
that A is constructed incrementally by adding new transitions, and by the samples in D

which prevents some wrong transitions to be created. Since ToRead initially contains at
least one representative sample per states and transitions of AL, the final automaton A
returned by Algorithm 1 has the same number of states and transitions as AL, and by the
invariant, we get that it is isomorphic to AL. Moreover, there exists a characteristic sample
set of polynomial size in the size of AL: there is a representative uc of any class c of linear
length in the number of states of AL, while the distinguishing words wc,c′ are bounded, using
classical pumping arguments, quadratically in the number of states of AL. This can even be
improved to a linear upper bound [18].

CONCUR 2024

10:8 Passive Learning of Regular Data Languages in Polynomial Time and Data

4 Learning Register Automata from Positive and Negative Samples

Let D be a data domain. A (finite) sample set is a pair S = (I+, I−) such that I+, I− ⊆ D∗

are finite sets of respectively positive and negative samples. S is consistent whenever for all
u ∈ I+, v ∈ I−, we have u ̸≃ v. In this section we introduce an RPNI-like passive learning
algorithm for DRA from consistent sample sets. We start by giving some intuition on the
key ingredients underlying the algorithmic process. It follows the same structure as the DFA
learning algorithm presented before.

The algorithm initially constructs a DRA A being able just to read the empty word ϵ

(and accept it if ϵ ∈ I+). Moreover, the non-empty samples prefixes are collected into a
set, called ToRead (just as for the DFA case of Section 3): namely, ToRead maintains the
sample prefixes not yet readable by the DRA A under construction. The algorithm keeps on
adding transitions to be able to read such samples prefixes, until ToRead is empty (iterating
over ToRead by increasing samples in <llex order). The following crucial invariants are
maintained during the overall execution:

(i) A is a DRA able to read each word in Prefs(I+ ∪ I−) \ ToRead

(ii) A accepts (resp. rejects) each sample in I+ \ ToRead (resp. I−)
(iii) It is possible to “complete” A (adding new states and transitions) into a DRA accepting

any sample of I+ and rejecting all samples of I− (the latter DRA is said to be S-
consistent).

Those invariants are clearly met by the initial single-state DRA. We now formalize
the notion of being S-completable for DRA. As for the DFA case, one needs a notion of
embedding of DRA into another. For i = 1, 2, let Ai = ⟨Qi, ki, λi, Ti, qi

0, Fi⟩ be a DRA. We
say that A2 completes A1, written A1 ⪯ A2, whenever there exists an injective mapping
Φ : Q1 → Q2 which preserves the initial state, the availability function, the final states, and
the transitions, as follows: λ1 = λ2 ◦ Φ, Φ(F1) ⊆ F2, Φ(q1

0) = q2
0 , and for all transitions

(p, α, E, q) ∈ T1, there exists β ≃ α such that (Φ(p), β, E, Φ(q)) ∈ T2. In particular, observe
that L(A1) ⊆ L(A2). We say that A1 is S-completable whenever there exists an S-consistent
DRA A2 completing A1. This notion is decidable in PTime. To prove it, we first give a
characterization of S-completability, which can be proved in the same line as the DFA case:

▶ Proposition 6. A DRA A is S-completable for a sample set S = (I+, I−), iff L(A)∩I− = ∅
and there do not exist words w ∈ I+, z ∈ I−, state q and words σ, σ′ such that: w = w1w2∧z =
z1z2 ∧ (q0, ϵ) w1−−→A (q, σ) ∧ (q0, ϵ) z1−→A (q, σ′) ∧ σw2 ≃ σ′z2.

By inspecting I+, I− and computing the states reached by their prefixes in A, it is not
difficult to decide the latter characterization in PTime:

▶ Corollary 7. It is decidable in PTime whether for a given DRA A is S-completable.

The prefixes in ToRead are considered in <llex-increasing order and used to add a
transition to A allowing their processing without violating the three invariants above. This
can be done since A is S-completable. Therefore, by the end of the algorithm A is an
S-consistent DRA (due to the first two invariants and the fact that toRead is empty).

With this intuition in mind, we go in more details introducing the pseudocode of our DRA
passive learning algorithm. A careful reader may notice a clear symmetry between the DFA
and DRA learning processes presented, and may wonder how we take care of the registers
when creating new transitions. This will be made clear in the pseudocode presentation below.

M. Balachander, E. Filiot, and R. Gentilini 10:9

Pseudocode of the DRA Passive Learning Algorithm. The pseudocode in Algorithm 2
illustrates the procedure DRA_PASSIVE_LEARN(S), which takes as input a consistent finite
sample set S = (I+, I−) and returns an S-consistent DRA A. A full execution of the
algorithm is provided as Example 8.

A while-loop follows the initialization phase in lines (1)-(2), controlled by a guard checking
whether the set of samples prefixes ToRead is not empty. In that case, the DRA under
construction is not yet capable to process all the words in S. Hence, a <llex-minimal word ua

is extracted from ToRead at line (4). Invariant (i) and the minimal length of ua ensures that
A can read u but not ua. As A is deterministic, it admits a unique run ρ : ⟨q0, ϵ⟩ u−→A ⟨q, σ⟩
processing u. The S-completability of A ensures that it is possible to add a transition from
state q such that ua is now readable, while preserving the invariants. To generalize the
samples, the choice of that transition is done in such a way that it tries to keep the least
amount of data in memory and tries to reuse existing states. Such a choice is delegated to the
procedure SET_TRANSITION at line (6), which returns a new transition t = (q, σa, E, p).
Before describing this procedure, we finish the overview of Algorithm 2. Line (7) augments A
by adding to T the new transition t. If the target state q′ is new, line (8) updates consistently
the set of states of the DRA under construction and the availability function. Finally, the
for-loop at line (9) updates ToRead by removing the prefixes that can now be read, and
updates the final states consistently based on positive samples which can now be read by A.

We now describe the procedure SET_TRANSITION whose pseudocode is given in Al-
gorithm 3. It takes as input a consistent sample set S = (I+, I−), an S-completable DRA A,
a state q, and a word σ · a ∈ Dλ(q)+1 such that A has no transition be able to read a from
configuration (q, σ). It computes a set of registers E to be erased, and a new target state p,
and returns transition (q, σa, E, p), with the guarantee that adding this new transition to A
preserves S-completability, while trying to generalize the samples. To compute E, it first
tries to determine if some stored values can be dropped, while preserving S-completability.
Then it attempts to reuse an existing state p as the target of a transition (q, σa, E, p),
otherwise creates a fresh new state. When computing E, it tries to erase as many stored
values as possible, which informally allows for more generalization of the samples. Another
fundamental reason for doing so is because it is needed to be able to prove that our algorithm
identifies regular data languages in the limit. Since the characteristic sample somehow
encodes the behaviours of the minimal automaton, which stores the least amount of data in
its configurations, the algorithm as well has to follow the same policy, to be able to output
the minimal canonical automaton for the language. We now give more details.

If a is registered in the word σ at position j (i.e. σ(j) = a) then the set of erasable
registers E is initialized to {j} otherwise to the empty set. Line (3) initializes the set R (of
registers to check for erasability) to {1, . . . , λ(q) + 1} \ E. The loop at line (4) (taken |R|
times) extracts one-by-one the registers in R and checks whether their values can be safely
erased. It relies on a function Choose(R) which picks a register from R. In each iteration
the current register h chosen from R is recognized as erasable only if the DRA obtained by
adding the transition t = (q, σa, E ∪ {h}, f) towards a fresh new state f does not compromise
S-completability. In that case h is added to E (and never removed). The task of checking if
adjoining the transition t to A leads to an S-completable DRA A′ is performed through a
call to a function COMPLETABLE(A′, I+, I−), which exists by Corollary 7.

Once the set of erasable registers E for the new transition is defined, the function
SET_TRANSITION proceeds with a a loop trough the states p ∈ Q such that λ(p) =
λ(q) + 1) − |E| at line (8), aiming at identifying the target of the new transition among
existing states. To check that p can be reused, the algorithm calls COMPLETABLE(A′, I+, I−)

CONCUR 2024

10:10 Passive Learning of Regular Data Languages in Polynomial Time and Data

to determine whether the DRA A′ obtained by adding the transition (q, σa, E, q′) to A is
S-completable. In that case the function returns the transition (q, σa, E, p). If no vertex is
identified as a safe target for the new transition within the loop at line (8), a fresh state
f /∈ Q is created and the function returns the transition (q, σa, E, f) at line (11).

▶ Example 8 (RPNI Execution for DRA). Consider the language L = {ϵ}∪{d1d′
1d2d′

2 . . . dnd′
n ∈

N∗ | ∀1 ≤ i ≤ n, di = d′
i} recognizable by the the DRA A = ⟨Q, k, λ, T, q0, F ⟩, where k = 2,

Q = {q0, p}, λ(q0) = 0, λ(p) = 1, F = {q0} and T = {(q0, 0, ∅, p), (p, 00, {1, 2}, q0)}, as
depicted below:

q0 p

0,∅

00, {1, 2}

We provide a complete example of execution of the proposed DRA learner, given the
sample-set S = (I+ = {ϵ, 00, 11}, I− = {0, 011, 01}), which eventually returns the latter DRA.
The RPNI algorithm builds an initial DRA A composed by the only initial state q0, which
is inserted in the final states since ϵ ∈ I+. Then, the set ToRead = {0, 1, 00, 01, 11, 011} of
non-empty sample-prefixes is constructed. The initial DRA is:

q0

The first execution of the main loop extracts the <llex-minimum sample ua = 0
from ToRead and calls SET_TRANSITION(A, q0, σa = 0, I+, I−) to build a transition
t out from q0 (reached by A upon reading u = ϵ) processing the value a = 0.
SET_TRANSITION(A, q0, σa = 0, I+, I−) detects that a needs to be remembered, given
that the DRA A′ obtained by adding to A the transition (q0, a, ∅, p) (toward the fresh
state p) is not completable since 00 ∈ I+, 01 ∈ I−. Therefore, the set of erasable registers
for the transition (q0, a, E, _) is set to the empty set (i.e. E = ∅). There is no state in
A with (λ(q0) + 1) − |E|) = (0 + 1) − 0 = 1 registers. Hence, the second loop at line 8
does not perform any iteration and SET_TRANSITION(A, , q0, σa = 0, I+, I−) returns the
transition t = (q0, a, ∅, p) toward the fresh state p. The DRA under construction is then
updated to A = ⟨{q0, p}, 1, λ, {t}, {q0}⟩, where λ(q0) = 0, λ(p) = 1. The final for-loop at
line 9 extracts from ToRead the sample 0 and the sample 1 that are now readable by A
and does not label p as final because there is no positive sample readable by A leading to p.
Therefore, at the beginning of the second iteration of the main loop at line 3, we have that
A = ⟨{q0, p}, 1, λ, {t}, {q0}⟩ and ToRead = {00, 01, 11, 011}.

q0 p

0,∅

The second execution of the main loop extracts the <llex-minimum sample ua = 00
from ToRead and calls SET_TRANSITION(A, p, σa = 00, I+, I−) to build a transition t

out from p (reached by A upon reading u = 0) processing the value a = 0. Line 5 of
SET_TRANSITION inserts the index 1 in E since σ(1) = a = 0 (avoiding the storage of
duplicates). The automaton A′ obtained adding to A the transition (p, 00, E = {1, 2}, s),
where s is a fresh state is completable. Therefore E is set to {1, 2} at the end of the
first (and only) iteration of the loop at line 4. Since A contains only one state with
(λ(p)+1)−|E| = (1+1)−2 = 0 registers, also the loop at line 8 iterates only once, attempting

M. Balachander, E. Filiot, and R. Gentilini 10:11

at redirecting (p, 00, E = {1, 2}, s) toward q0. Such a redirection succeeds since the DRA
A′ obtained by adding to A the transition (p, 00, E = {1, 2}, q0) is completable. Hence
SET_TRANSITION(A, p, σa = 00, I+, I−) returns t′ = (p, 00, {1, 2}, q0). The DRA under
construction is then updated to A = ⟨{q0, p}, 1, λ, {t, t′}, {q0}⟩, where λ(q0) = 0, λ(p) = 1.
Since A is able to read all the samples provided as input, accepting them if they belong to
I+, the final for-loop at line 9 extracts all the samples from ToRead and does not modify
the set of final states. The algorithm then terminates and returns a DRA recognizing L.

▶ Remark 9. In the algorithm SET_TRANSITIONS, there are several places where choices
can be made: at line 5 when a register is chosen, and later at line 8 when target states
p are enumerated. Different implementations of those choice and enumeration functions
might result in differing DRA in general. However, our learning algorithm’s guarantees are
independent of those implementations, namely: 1) the algorithm returns an S-consistent
DRA, and 2) for a regular language L, given a characteristic sample it returns a minimal
DRA for L.

Algorithm 2 Algorithm DRA_PASSIVE_LEARN(S) for learning a deterministic register
automaton from a set of positive and negative samples S = (I+, I−).

Input: A finite consistent sample set S = (I+, I−).
Output: An S-consistent DRA A = ⟨Q, k, λ, T, q0, F ⟩, i.e. I+ ⊆ L(A) and

I− ∩ L(A) = ∅.
/* define an initial S-completable DRA A */

1 Q← {ϵ}; λ(ϵ) = 0; T ← ∅; q0 ← ϵ; F ← ∅ ;if ϵ ∈ I+ then F ← {q0}
2 ToRead ← (prefs(I+ ∪ I−)) \ {ϵ}
3 while ToRead is not empty do
4 w = ua← <llex-minimal word in ToRead
5 ⟨q, σ⟩ ← configuration such that ⟨q0, ϵ⟩ u−→A ⟨q, σ⟩
6 (q, σa, E, p)← SET_TRANSITION(A, q, σa, I+, I−)
7 T ← T ∪ {(q, σa, E, p)}
8 if p /∈ Q then Q← Q ∪ {p}; λ(p)← λ(q) + 1− |E|
9 for w ∈ ToRead do

10 if ⟨q0, ϵ⟩ w−→A ⟨s, σ⟩ then
11 ToRead ← ToRead \ {w}
12 if ∃w′ ∈ I+, w′ ≃ w then F ← F ∪ {s}

13 return A = ⟨Q, k = maxq∈Qλ(q), λ, T, q0, F ⟩

We now prove the correctness of our passive DRA learning algorithm. Lemma 10 below
proves the validity of the crucial invariants briefly introduced in the previous section.

▶ Lemma 10. The following invariants hold at line (3) (entrance of the main loop) of the
algorithm DRA_PASSIVE_LEARN(S), where S = (I+, I−):

Inv1: A is a DRA accepting (resp. rejecting) all words in I+ \ ToRead (resp. in I−)
Inv2: A can read all words in Prefs(I+ ∪ I−) \ ToRead
Inv3: A is S-completable

Sketch. The invariants are clearly true before the while-loop has been entered for the first
time (for the 3rd invariant, it is because S is consistent, so we can always built an DRA
which accepts exactly I+ and its ≃-equivalent words, and rejects all words from I− and their
≃-equivalent words).

CONCUR 2024

10:12 Passive Learning of Regular Data Languages in Polynomial Time and Data

Algorithm 3 Function SET_TRANSITION(A, q, σa, I+, I−) used by DRA learner to
complete the new transition (q, σ · a, _, _) defining the erasable registers and the target node.

1 Function SET_TRANSITION(A, q, σ · a, I+, I−):
Input: S-completable DRA A = ⟨Q, k, λ, T, q0, F ⟩, state q ∈ Q, and word

σ · a ∈ Dλ(q)+1 such that T does not contain any transition (q, σ · a, _, _)
Output: New t = (q, σa, E, p) s.t. ⟨Q, k, λ, T ∪ {t}, q0, F ⟩ is S-completable

/* Compute some set E ⊆ {1, . . . , λ(q) + 1} of erasable registers */
2 E ← ∅; i← λ(q);
3 if ∃j ≤ i : σ(j) = a then E ← {j}; R← {1 . . . i + 1} \ {j} else R← {1 . . . i + 1};
4 while R ̸= ∅ do
5 h← Choose(R); R← R \ {h}; E ← E ∪ {h} ;
6 A′ ← ⟨Q ∪ {f}, k, λ ∪ {f 7→ i + 1− |E|}, T ∪ {(q, σa, E, f)}, q0, F ⟩ for f fresh ;
7 if ¬(COMPLETABLE(A′, I+, I−)) then E ← E \ {h} ;

/* Pick some p ∈ Q, if it exists, as target of the new transition */
8 foreach p ∈ Q such that λ(p) = λ(q) + 1− |E| do
9 A′ ← ⟨Q, k, λ, T ∪ {(q, σa, E, p)}, q0, F ⟩;

10 if COMPLETABLE(A′, I+, I−) then return (q, σa, E, p);
/* Otherwise create a fresh new state as target */

11 return (q, σa, E, f) for f a fresh state ;

The inductive step is rather simple. For Inv2, this is precisely the essence of our algorithm:
it picks any word ua ∈ ToRead which cannot be read fully (while u can) and completes A
with one transition allowing to read ua. Inv3 is clear because calls to COMPLETABLE in
SET_TRANSITION make sure that S-completability is preserved. For Inv1, the loop at line (9)
updates the accepting states and so it makes sure that all words of I+ which can be read are
accepted. The only possible issue is that it could now accept words from I−. It is not possible
since SET_TRANSITION ensures that adding the new transition preserves S-completability
(given an S-completable DRA, which is ensured by the induction hypothesis). If a word of
I− is now accepted, it means that some accepting state is now reachable by a positive word
and a negative word, contradicting S-completability, ensured by Inv3. ◀

On the ground of Lemma 10, we are ready to prove the correctness and complexity of
our DRA passive learning algorithm.

▶ Theorem 11. The algorithm DRA_PASSIVE_LEARN(S) returns a DRA A consistent
with S = (I+, I−) (i.e. L(A) ⊇ I+ ∧ L(A) ∩ I− = ∅) in time polynomial w.r.t. the size of S.

Proof. Correctness is trivial by Inv1 and the fact that ToRead is eventually empty when the
algorithm terminates. For complexity, note that the algorithm takes as input a consistent
sample set. Consistency can be checked in PTime by Lemma 1. Note that all the loops in
DRA_PASSIVE_LEARN and SET_TRANSITION are iterated only a polynomial number of
times in the size of their inputs. Moreover, COMPLETABLE runs in PTime by Cor. 7. ◀

▶ Remark 12. Note that correctness of SET_TRANSITION is trivial since it calls COM-
PLETABLE to make sure that the returned transition can be added while preserving S-
completability. The fact that SET_TRANSITION tries to erase some registers and to reuse
existing states is important for generalizing the samples, not for correctness, and important for
proving that our learning algorithm identifies regular data languages in the limit. Moreover,
<llex-minimality at line 4 could be replaced by just length minimality while preserving
correctness, but it is important to prove completeness.

M. Balachander, E. Filiot, and R. Gentilini 10:13

5 Identification in the Limit of the Class of Regular Data Languages

In this section we prove that the proposed RPNI algorithm for DRA identifies in the limit
the class of regular data languages, according to the definition of [23, 16, 8]. Namely, given
a regular data language L, we show that there exists a characteristic sample SL such that
DRA_PASSIVE_LEARN(S) learns a DRA recognizing L whenever SL ⊆ S. We then show
that it can be chosen of polynomial size in the size of the minimal DRA recognizing L. As
for the DFA case, we rely on the existence of a unique minimal DRA for L, as shown in [6].
We recall this notion here.

Memorable data and canonical register automata. Any regular data language L admits
a unique minimal DRA, up to DRA isomorphism2, as shown in [6]. Minimality is both
for the number of states, as well as the number of stored data, in the sense that when the
canonical automaton reads a prefix, it stores the least amount of data. The key notion
towards canonicity and minimality is based on the notion of memorable data with respect to
L. Given a word w ∈ D∗ and two data a, b ∈ D, we let w[a/b] = µa/b(w) where µa/b(a) = b

and µa/b(d) = d for all d ≠ a. Intuitively, a data a in a word w is memorable if for some
continuation u, renaming data a in u by some data b which does not occur in wu has an
influence on the membership into L.

▶ Definition 13 (Memorable Values [6]). A data a ∈ D in a word w is L-memorable for a
language L if there exist u ∈ D∗ and b ∈ D such that: wu ≃ (wu)[a/b] and wu ̸=L w(u[a/b]).

Given a word w and a language L on D, we let memL(w) denote the finite sequence of all
L-memorable data of w ordered according to the positions of their last occurrences in w:
a occurs before b in memL(w) if they are both memorable in w, and the last occurrence
of a in w is before the last occurrence of b in w. Intuitively, memL(w) represents the
data that necessarily need to be stored by any DRA recognizing L. We now define an
equivalence ≡L⊆ D∗×D∗ which is of finite index iff L is DRA-recognizable. We let w ≡L w′

if |memL(w)| = |memL(w′)| and for all words u, u′, if memL(w)u ≃ memL(w′)u′ then
wu =L w′u′. When ≡L is of finite index, it is used to define a DRA recognizing L (the
canonical DRA AL) that is minimal amongst all DRA recognizing L [6].

▶ Theorem 14 ([6]). For any DRA-recognizable language L, there exists a unique DRA AL

(up to isomorphism) recognizing L, which is both state-minimal and register-minimal (in the
sense that the number of stored values in any configuration is minimal).

We recall the construction of AL = ⟨Q, k, λ, T, q0, F ⟩. The set of states is Q = D/≡L
with

for all u ∈ D∗, λ([u]) = |memL(u)| and k = maxq∈Qλ(q). The initial state is q0 = [ϵ] and
F = {[u] | u ∈ L}. Finally, for all classes c ∈ D/≡L

, pick a representative u such that [u] = c.
For all d ∈ D, pick a word3 α such that memL(u)d ≃ α, then set ([u], α, E, [ud]) ∈ T where E

is defined such that memL(ud) = dropE(memL(u)d). The later automaton is well-defined [6].
Even though there are infinitely many minimal automata up to isomorphism, in the sequel
we refer to AL as a representative of one of them.

Characteristic samples. As for the DFA case, one needs samples to account for the states
and transitions of the minimal automaton, and to distinguish equivalence classes. In addition,
samples are also needed to witness memorable data. A sample set S = (I+, I−) is said to be
L-consistent if I+ ⊆ L and I− ∩ L = ∅.

2 Two DRA A1, A2 are isomorphic if A1 ⪯ A2 and A2 ⪯ A1, see Section 4
3 Different choices for the representative u and α yield isomorphic DRA.

CONCUR 2024

10:14 Passive Learning of Regular Data Languages in Polynomial Time and Data

▶ Definition 15 (Characteristic sample). Let L be a regular data language. A sample set
S = (I+, I−) is characteristic for L if it is L-consistent and there exist St, Tr, Mem, D ⊆ D∗

such that:
St contains, for each class c ∈ D/≡L

, a <llex-minimal representative u, i.e. [u] = c,
for all w ∈ St, a ∈ memL(w), d ̸∈ memL(w) s.t. d is <D-minimal: wa, wd ∈ Tr,
for all w ∈ Tr, all a ∈ memL(w), there exists b ∈ D and u ∈ D∗ such that wu ≃ (wu)[a/b],
wu ̸=L w(u[a/b]) and wu, w(u[a/b]) ∈Mem,
for all w ∈ St, z ∈ Tr such that |memL(w)| = |memL(z)| and w ̸≡L z, there exist w′, z′

such that memL(w)w′ ≃ memL(z)z′, ww′ ̸=L zz′ and ww′, zz′ ∈ D,
and (St ∪ Tr ∪Mem ∪D) ∩ L ⊆ I+ and (St ∪ Tr ∪Mem ∪D) ∩ L ⊆ I−.

We now establish the following theorem:

▶ Theorem 16. Let L be a regular data language and let SL be a characteristic sample for
L. Then DRA_PASSIVE_LEARN(SL) returns a DRA isomorphic to the minimal DRA AL.

Sketch. The main arguments are however rather intuitive and similar to the DFA case,
except that additional samples are needed to account for memorable data. In the definition of
characteristic sample, St and Tr allow the learner to identify the states and the transitions of
AL. Instead, the learner uses the samples in Mem within the first loop of SET_TRANSITION
to avoid dropping necessary registers. Finally, the learner uses the samples in D within the
second loop of SET_TRANSITION to set correctly the target of new transitions avoiding
wrong redirections toward old states.

The proof in Theorem 16 uses an inductive argument on the number of iterations of the
main loop in RA_Passive_Learning to establish that, whenever the guard-condition at line (3)
is checked, the DRA A under construction (given a characteristic sample for L) is isomorphic
to a portion of the minimal DRA AL. In other words AL completes A, i.e. A ⪯ AL. When
processing a new prefix w = ua in ToRead, where w leads to a configuration (q, σ) of the so
far constructed DRA, we know by IH that σ = memL(u). The call to SET_TRANSITION
adds a new transition (q, σa, E, p), and we have to prove that (q, σa, E, p) can be embedded
into a transition (q⊛, α⊛, E⊛, p⊛) of AL. By IH and the definition of AL, we know that u

leads to configuration (q⊛, σ = memL(u)) by AL. Therefore, α⊛ ≃ memL(u)a. Again by
definition of AL, E⊛ drops only unmemorable data of ua. By definition of characteristic
samples, there are samples in Mem that prevent dropping memorable data of ua, so the first
phase of SET_TRANSITIONS will keep only the necessary data, i.e. E = E⊛. Finally, the
samples in D ensures that (q, σa, E) can be directed towards a unique state p. For any other
state, calls to COMPLETABLE are failing. This state p is then embedded into state p⊛ of
AL to show that A extended with the new transition (q, σa, E, p) is completable by AL.

When DRA_PASSIVE_LEARN(SL) returns, it yields a DRA A where A ⪯ AL. Moreover,
since in S, there is at least one representative sample per state and transition of AL, A has as
many states and transitions as AL, and therefore AL ⪯ A, i.e., A and AL are isomorphic. ◀

Characteristic samples of polynomial size. We conclude this section by showing that given
a regular data language L, there exists a characteristic sample SL (see Definition 15) of
polynomial size in the size of the minimal DRA AL for L. Let us give a brief overview of
the proof. For the samples representing the states and transitions of A(L) (sets St and Tr),
it is rather easy, via pumping arguments, to show that samples of lengths polynomial in
the number of states of AL are sufficient. It relies on the next lemma, proved by similar
arguments as in the case of finite memory automata [27].

M. Balachander, E. Filiot, and R. Gentilini 10:15

▶ Lemma 17. Let A be a DRA with n states such that L(A) ̸= ∅. Then there exists w such
that w ∈ L(A) and |w| is bounded by n.

Given a data word u, we let u−1L = {v | uv ∈ L} be the residual language of L by u.
Bounding Mem is similar to bounding D. We recall that for Mem, we need two samples of
the form wu and w(u[a/b]) for any w ∈ St and a ∈ memL(w), such that wu ̸=L w(u[a/b]).
We show that wu ̸=L (w[a/b])u since b is fresh in wu. Since samples w ∈ St have been
bounded already, it remains to bound u, i.e. show that the inequality w−1L ̸= (w[a/b])−1L

is witnessed by a polysize word u. Similarly, for D, given w ∈ St and z ∈ Tr, we have
to bound w′, z′ such that memL(w)w′ ≃ memL(z)z′ and ww′ ̸=L zz′. We prove that the
latter is equivalent to the existence of a data permutation τ such that z′ = τ(w′) and
τ(w)z′ ̸=L zz′. So, we only need to bound z′ satisfying τ(w)z′ ̸=L zz′, i.e. show that the
inequality (τ(w))−1L ≠ z−1L is witnessed by a polysize word z′. In general, for a DRA A
recognizing a language K and a configuration κ, we let κ−1K be the set of words on which
A has an accepting run starting in κ. The polysize of Mem and D is then a consequence of:

▶ Theorem 18. Given a DRA A recognizing a language K and two configurations κ1, κ2, if
κ−1

1 K ̸= κ−1
2 K, then there is w ∈ D∗ of polynomial length such that w ∈ κ−1

1 K ̸↔ w ∈ κ−1
2 K.

A low-hanging consequence of the latter theorem is that DRA equivalence is solvable in coNP,
which is new for this model of DRA. Note that for DFA, proving a result like Theorem 18 is
easy by using Boolean operations on DFA and short witness for DFA non-emptiness. However
in the data setting, intersection of DRA involves an exponential blow-up, for instance to
maintain that registers should hold distinct values4. Instead, to prove Theorem 18, we show
that given two configurations of a DRA, if they are not bisimilar, then this is witnessed
by a polynomial word. We rely on group-theoretic methods as developed for fresh register
automata in [33], which we adapt to the DRA model defined in this paper. Unfortunately, it
does not seem that DRA can be transformed in PTime into any of the models of [33], thus
preventing us from directly applying those results. We reprove them with a slight adaptation
to our setting. We now give an overview of the procedure.

The space of configurations of a DRA form a labelled transition system (where the data
are labels of the transitions). Bisimulation is defined classically, see e.g. [4], and is seen as
an Attacker/Defender game: Attacker picks a data and transition, Defender replies by a
transition on the same data, etc. In the deterministic case, a strategy for Attacker is just a
data word. We prove that if Attacker has a strategy, i.e. a word, it has a small strategy (of
poly-length in the size of the DRA). To show the latter, the concrete bisimulation relation,
which is infinite, is finitely but completely abstracted, based on the observation that the
data themselves are not important, only equalities between data matter. Based on this, any
pair of configurations (q1, α1), (q2, α2) ∈ Q × Dℓ is abstracted as a triple (q1, π, q2) where
π : [1, ℓ] ↪→ [1, ℓ] is a partial permutation s.t. π(i) = j iff α1[i] = α2[j]. A relation is then
defined over such triples, called symbolic bisimulation, which reflects in an abstract way the
moves of Attacker and Defender in the concrete bisimulation game. It is then shown that two
configurations are bisimilar iff their abstraction as a triple is in the symbolic bisimulation (in
other words, the abstraction is sound and complete).

The symbolic bisimulation relation can be computed as the greatest fixpoint of a monotonic
function F , generating a decreasing chain of intermediate relations U0 ⊋ · · · ⊋ Un = Un+1
converging to the symbolic bisimulation relation in n steps. From this chain, it is possible to

4 We conjecture the exponential intersection blow-up is unavoidable.

CONCUR 2024

10:16 Passive Learning of Regular Data Languages in Polynomial Time and Data

extract for any non-bisimilar configurations, a word strategy for Attacker of length at most
n. The group-theoretic arguments come into play to bound polynomially n, as introduced
in [33]. All the sets Ui bear a lot of symmetries: for example if (q1, π, q2) ∈ Ui for some
i, then (q2, π−1, q1) ∈ Ui (closure by inverse). In fact, this is precisely where the fact that
registers hold distinct data is crucial: it implies that π is a permutation and not an arbitrary
relation, and so it can be inverted. The sets Ui enjoy other closures (such as composition)
allowing one to show that some characteristic subset of permutations of Ui form a subgroup
of the symmetric group, ordered by the subgroup relation for increasing i. The final argument
follows from [3]: chains of subgroups of the symmetric group are linearly bounded.

6 Future work

While we have shown that our learning algorithm runs in PTime, there are interesting
questions related to implementation and in particular efficient data structures, for instance to
deal with sample prefixes, and to quickly check for completability. As mentioned in Remark 9,
it is worth investigating heuristics for choosing target states of new created transitions when
there are multiple candidates, for example adaptations of evidence-based heuristics [17] to
the context of data languages. The same question arises when erasing registers: there might
be several possible sets E.

An interesting future direction, related to the implementation of our algorithm, is to
make it incremental, in the sense that it does not have to restart the whole procedure from
scratch whenever a new example is added to the set of samples, in the spirit of [18].

Finally, a natural continuation is to investigate active learning for the register automata
model of this paper. As mentioned in the introduction, all known results about active
learning for regular data languages have exponential time complexity, but this model has not
been investigated yet, to the best of our knowledge.

References
1 Parosh Aziz Abdulla, C. Aiswarya, and Mohamed Faouzi Atig. Data communicating processes

with unreliable channels. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 166–175. ACM, 2016. doi:10.1145/2933575.
2934535.

2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmet Kara, and Othmane Rezine. Verification of
dynamic register automata. In Venkatesh Raman and S. P. Suresh, editors, 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2014, December 15-17, 2014, New Delhi, India, volume 29 of LIPIcs, pages 653–665. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.653.

3 László Babai. On the length of subgroup chains in the symmetric group. Communications in
Algebra, 14(9):1729–1736, 1986. doi:10.1080/00927878608823393.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
5 Mrudula Balachander, Emmanuel Filiot, and Jean-François Raskin. LTL reactive synthesis with

a few hints. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Paris, France, April 22-27, 2023, Proceedings, Part II, volume 13994 of Lecture Notes
in Computer Science, pages 309–328. Springer, 2023. doi:10.1007/978-3-031-30820-8_20.

6 Michael Benedikt, Clemens Ley, and Gabriele Puppis. What you must remember when
processing data words. In Alberto H. F. Laender and Laks V. S. Lakshmanan, editors,
Proceedings of the 4th Alberto Mendelzon International Workshop on Foundations of Data
Management, Buenos Aires, Argentina, May 17-20, 2010, volume 619 of CEUR Workshop
Proceedings. CEUR-WS.org, 2010. URL: https://ceur-ws.org/Vol-619/paper11.pdf.

https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.1080/00927878608823393
https://doi.org/10.1007/978-3-031-30820-8_20
https://ceur-ws.org/Vol-619/paper11.pdf

M. Balachander, E. Filiot, and R. Gentilini 10:17

7 Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state machines using
domains with equality tests. In José Luiz Fiadeiro and Paola Inverardi, editors, Fundamental
Approaches to Software Engineering, 11th International Conference, FASE 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4961 of Lecture Notes in
Computer Science, pages 317–331. Springer, 2008. doi:10.1007/978-3-540-78743-3_24.

8 León Bohn and Christof Löding. Constructing deterministic ω-automata from examples by
an extension of the RPNI algorithm. In Filippo Bonchi and Simon J. Puglisi, editors, 46th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2021,
August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.20.

9 León Bohn and Christof Löding. Passive learning of deterministic büchi automata by com-
binations of dfas. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 114:1–114:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.114.

10 Mikolaj Bojanczyk. Orbit-finite sets and their algorithms (invited talk). In Ioannis Chatzigian-
nakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 1:1–1:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.1.

11 Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

12 Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.
Two-variable logic on words with data. In 21th IEEE Symposium on Logic in Computer
Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 7–16. IEEE
Computer Society, 2006. doi:10.1109/LICS.2006.51.

13 Benedikt Bollig. An automaton over data words that captures EMSO logic. In Joost-Pieter
Katoen and Barbara König, editors, CONCUR 2011 - Concurrency Theory - 22nd International
Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings, volume
6901 of Lecture Notes in Computer Science, pages 171–186. Springer, 2011. doi:10.1007/
978-3-642-23217-6_12.

14 Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. Model checking
languages of data words. In Lars Birkedal, editor, Foundations of Software Science and
Computational Structures - 15th International Conference, FOSSACS 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer
Science, pages 391–405. Springer, 2012. doi:10.1007/978-3-642-28729-9_26.

15 Julien Carme, Rémi Gilleron, Aurélien Lemay, and Joachim Niehren. Interactive learn-
ing of node selecting tree transducer. Mach. Learn., 66(1):33–67, 2007. doi:10.1007/
s10994-006-9613-8.

16 Colin de la Higuera. Characteristic sets for polynomial grammatical inference. Mach. Learn.,
27(2):125–138, 1997. doi:10.1023/A:1007353007695.

17 Colin de la Higuera, José Oncina, and Enrique Vidal. Identification of DFA: data-dependent
vs data-independent algorithms. In Laurent Miclet and Colin de la Higuera, editors, Gram-
matical Inference: Learning Syntax from Sentences, 3rd International Colloquium, ICGI-96,
Montpellier, France, September 25-27, 1996, Proceedings, volume 1147 of Lecture Notes in
Computer Science, pages 313–325. Springer, 1996. doi:10.1007/BFb0033365.

18 Pierre Dupont. Incremental regular inference. In Laurent Miclet and Colin de la Higuera,
editors, Grammatical Interference: Learning Syntax from Sentences, pages 222–237, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg. doi:10.1007/BFb0033357.

CONCUR 2024

https://doi.org/10.1007/978-3-540-78743-3_24
https://doi.org/10.4230/LIPIcs.MFCS.2021.20
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/10.4230/LIPIcs.ICALP.2017.1
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1109/LICS.2006.51
https://doi.org/10.1007/978-3-642-23217-6_12
https://doi.org/10.1007/978-3-642-23217-6_12
https://doi.org/10.1007/978-3-642-28729-9_26
https://doi.org/10.1007/s10994-006-9613-8
https://doi.org/10.1007/s10994-006-9613-8
https://doi.org/10.1023/A:1007353007695
https://doi.org/10.1007/BFb0033365
https://doi.org/10.1007/BFb0033357

10:18 Passive Learning of Regular Data Languages in Polynomial Time and Data

19 Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. Church synthesis on register automata
over linearly ordered data domains. Formal Methods Syst. Des., 61(2):290–337, 2022. doi:
10.1007/s10703-023-00435-w.

20 Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. Synthesis of data word transducers.
Log. Methods Comput. Sci., 17(1), 2021. URL: https://lmcs.episciences.org/7279.

21 Dana Fisman, Hadar Frenkel, and Sandra Zilles. Inferring symbolic automata. Log. Methods
Comput. Sci., 19(2), 2023. doi:10.46298/lmcs-19(2:5)2023.

22 Pedro García and Jose Oncina. Inference of recognizable tree sets. Tech. rep., Departamento
de Sistemas Informáticos y Computación, Universidad de Alicante. DSIC-II/47/93, 1993.

23 E. Mark Gold. Language identification in the limit. Inf. Control., 10(5):447–474, 1967.
doi:10.1016/S0019-9958(67)91165-5.

24 Radu Grigore and Nikos Tzevelekos. History-register automata. Log. Methods Comput. Sci.,
12(1), 2016. doi:10.2168/LMCS-12(1:7)2016.

25 Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring canonical register
automata. In Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model Checking,
and Abstract Interpretation - 13th International Conference, VMCAI 2012, Philadelphia, PA,
USA, January 22-24, 2012. Proceedings, volume 7148 of Lecture Notes in Computer Science,
pages 251–266. Springer, 2012. doi:10.1007/978-3-642-27940-9_17.

26 Malte Isberner, Falk Howar, and Bernhard Steffen. Learning register automata: from languages
to program structures. Mach. Learn., 96(1-2):65–98, 2014. doi:10.1007/s10994-013-5419-7.

27 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

28 Ayrat Khalimov and Orna Kupferman. Register-bounded synthesis. In Wan J. Fokkink and
Rob van Glabbeek, editors, 30th International Conference on Concurrency Theory, CONCUR
2019, August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 25:1–25:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.
25.

29 Martin Leucker. Learning meets verification. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, Formal Methods for Components and Objects,
5th International Symposium, FMCO 2006, Amsterdam, The Netherlands, November 7-10,
2006, Revised Lectures, volume 4709 of Lecture Notes in Computer Science, pages 127–151.
Springer, 2006. doi:10.1007/978-3-540-74792-5_6.

30 Damián López and Pedro García. On the inference of finite state automata from positive and
negative data. Topics in Grammatical Inference, pages 73–112, 2016.

31 Amaldev Manuel, Anca Muscholl, and Gabriele Puppis. Walking on data words. Theory
Comput. Syst., 59(2):180–208, 2016. doi:10.1007/s00224-014-9603-3.

32 Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal Szynwelski.
Learning nominal automata. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 613–625. ACM, 2017. doi:10.1145/3009837.
3009879.

33 Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. Bisimilarity in fresh-register
automata. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), LICS ’15, pages 156–167, USA, 2015. IEEE Computer Society.
doi:10.1109/LICS.2015.24.

34 Jose Oncina and Pedro García. Inferring regular languages in polynomial update time. World
Scientific, January 1992. doi:10.1142/9789812797902_0004.

35 Nikos Tzevelekos. Fresh-register automata. In Thomas Ball and Mooly Sagiv, editors,
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 295–306. ACM, 2011.
doi:10.1145/1926385.1926420.

https://doi.org/10.1007/s10703-023-00435-w
https://doi.org/10.1007/s10703-023-00435-w
https://lmcs.episciences.org/7279
https://doi.org/10.46298/lmcs-19(2:5)2023
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.2168/LMCS-12(1:7)2016
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://doi.org/10.4230/LIPIcs.CONCUR.2019.25
https://doi.org/10.1007/978-3-540-74792-5_6
https://doi.org/10.1007/s00224-014-9603-3
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1109/LICS.2015.24
https://doi.org/10.1142/9789812797902_0004
https://doi.org/10.1145/1926385.1926420

M. Balachander, E. Filiot, and R. Gentilini 10:19

A Completability of DFA

Before proving Proposition 4, we define the notion of prefix-tree acceptor of a finite set S,
as a tree-shaped DFA accepting exactly S. For any finite set S ⊆ Σ∗, PTA(S) = (Q =
Prefs(S), q0 = ε, δ, F = S), where ∀wa ∈ Prefs(S) : δ(w, a) = wa. Clearly, L(PTA(S)) = S.

▶ Proposition 4. A DFA A is S-completable iff I− ∩ L(A) = ∅ and there do not exist
u1, u2, z ∈ Σ∗ such that u1z ∈ I+, u2z ∈ I− and δ∗(q0, u1) = δ∗(q0, u2).

Proof. (=⇒) Clearly, if I− ∩ L(A) ̸= ∅, then A is not completable, since by definition of
completability, final states have to be preserved.

Now, let w1 = u1z ∈ I+ and w2 = u2z ∈ I− such that δ∗
A(q0, u1) = δ∗

A(q0, u2), then any
S-consistent extension Aext of A have the following property: δ∗

A∗(q0, w1) = δ∗
A∗(q0, w2) and

therefore, w1 ∈ L(Aext) iff w2 ∈ Aext, hence Aext is not S-consistent. Contradiction.
(⇐=) We construct an S-consistent extension Aext of A. For every state q of A, let Lq

be the set of words w such that q0
w−→A q. For all letter a ∈ Σ such that δ(q, a) is undefined,

let I+
q,a = (Lqa)−1I+ be the set of words v such that uav ∈ I+ for some u ∈ Lq. We construct

Tq,a = PTA(I+
q,a) with root node tε and add a transition from q to the initial state of Tq,a on

reading a. The set of accepting states is set to be the accepting states of A plus the states
reached by words from I+. We make such construction for any pair (q, a) such that δ(q, a) is
undefined. This results in an extension Aext of A, which is now able to read any word of I+.

We now show Aext is S-consistent. The inclusion I+ ⊆ Aext is immediate by construction.
Let us show I− ∩ L(Aext) = ∅. Suppose, for the sake of contradiction, that there is some
w′ ∈ I− ∩ L(Aext). Let p = δ∗

ext(q0, w′). We consider two cases:
1. p ̸∈ QA, i.e. p is a state of some added PTA Tq,a. Hence there is some w ∈ I+ such that

δ∗
Aext(q0, w) = p. By construction of Aext (an in particular because Tq,a is tree-shaped), it

implies that w and w′ can be factorized as w = u1z and w′ = u2z for some u1, u2 ∈ Σ∗,
such that δ∗

A(q0, u1) = δ∗
A(q0, u2) = q exists and in Aext, there exists a transition from q

to the initial state of Tq,a where a is the first letter of z. This contradicts our assumption,
since w = u1z ∈ I+ while w′ = u2z ∈ I−.

2. p ∈ QA: since I− ∩L(A) = ∅, then p was not accepting in A. Hence there must be some
positive example w ∈ I+ such that q0

w−→A p. We then immediately get a contradiction,
by taking u1 = w, u2 = w′ and z = ϵ. ◀

▶ Corollary 5. Given a DFA A and a (finite) sample set S, it can be checked in time
O(||A||.||S||) whether A is S-completable.

Proof. We check the characterization given by Proposition 4. Checking I− ∩ L(A) = ∅ is
done in O(||I−||.||A||). For the second condition, we check the non-existence of u1, u2, z as
in Proposition 4. Let Suff(S) be the set of suffixes of words of S. For any word z ∈ Suff(S),
the objective is to compute two sets P +

z , P −
z , where for s ∈ {+,−}, P s

z = {δ∗(q0, u) | u ∈
Σ∗ ∧ uz ∈ Is} (this set can be empty). Then, it suffices to check that no node z ∈ Suff(S)
satisfies P +

z ∩ P −
z ̸= ∅.

To compute the sets P +
z and P −

z for all z ∈ Suff(S) in O(||A||.||S||), the algorithm first
builds a suffix tree based on S, whose set of nodes is Suff(S). The root is ϵ, and if u ∈ Σ∗

and σu ∈ Σ∗ are two nodes of the tree, there is an edge from u to σu. Therefore, if a node
z is a common ancestor of two nodes u1 and u2, then z is a common suffix of u1 and u2.
Constructing the tree is done in time O(||S||).

The tree is then processed bottom-up, exploiting the following claim:

CONCUR 2024

10:20 Passive Learning of Regular Data Languages in Polynomial Time and Data

▷ Claim. For all z ∈ Suff(S), all s ∈ {+,−}, P s
z = {δ(q, σ) | σz ∈ Suff(S) ∧ q ∈ P s

σz} ∪X

where X = {q0} if z ∈ Is, otherwise X = ∅.

Proof of the claim. Let denote by Qs
z the rhs of the above equality. We show that P s

z = Qs
z.

Let p ∈ P s
z . Then p = δ∗(q0, u) for some uz ∈ Is. If u = ϵ, then p = q0 and z ∈ Is, so p ∈ X

and p ∈ Qs
z. If u = u′σ for some u′, then u′σz ∈ Is and σz ∈ Suff(S). Let q = δ∗(q0, u′).

Then p = δ(q, σ) and we can conclude since q ∈ P s
σz by definition of P s

σz.
Conversely, let p ∈ Qs

z. There are two cases: either p = q0 and z ∈ Is, we get immediately
that p ∈ P s

z , or p ∈ {δ(q, σ) | σz ∈ Suff(S) ∧ q ∈ P s
σz}. Since q ∈ P s

σz, q = δ∗(q0, u) for some
u such that uσz ∈ Is. As p = δ(q, σ), we get that p = δ∗(q0, uσ) and since uσz ∈ Is, we can
conclude that p ∈ P s

z . ◁

The algorithm is then immediate by processing the tree bottom-up, applying δ on the
sets computed for the children of any node currently processed. The overall computation is
in time O(||A||.||S||). ◀

B Completability for DRA

▶ Proposition 6. A DRA A is S-completable for a sample set S = (I+, I−), iff L(A)∩I− = ∅
and there do not exist words w ∈ I+, z ∈ I−, state q and words σ, σ′ such that: w = w1w2∧z =
z1z2 ∧ (q0, ϵ) w1−−→A (q, σ) ∧ (q0, ϵ) z1−→A (q, σ′) ∧ σw2 ≃ σ′z2.

Proof. (⇐) Let W = {s1, . . . , sn} = I+ ∪ I− and for all 0 ≤ i ≤ n, let Wi = {s1, . . . , si},
I+

i = I+ ∩Wi, I−
i = I− ∩Wi and Si = (I+

i , I−
i). Note that S0 = (∅, I−) and Sn = S. We

show by induction on i how to build a sequence of DRA A0 = A ⪯ A1 ⪯ · · · ⪯ An such for
each 0 ≤ i ≤ n, Ai is Si-consistent and there does not exists w ∈ I+, z ∈ I− and state q and
words σ, σ′ such that:

w = w1w2 ∧ z = z1z2 ∧ (q0, ϵ) w1−−→Ai (q, σ) ∧ (q0, ϵ) z1−→Ai (q, σ′) ∧ σw2 ≃ σ′z2 (1)

The base case i = 0 is clear by hypothesis, since A0 = A. Let i > 1 and assume by
IH that Ai−1 is Si−1-consistent. The DRA Ai = ⟨Qi, ki, λi, Ti, qi

0, Fi⟩ is obtained from
Ai−1 = ⟨Qi−1, ki−1, λi−1, Ti−1, qi−1

0 , Fi−1⟩ as follows. We consider two cases:
(1) If Ai−1 reads si reaching a configuration (q, σ) then let q be a final state iff si ∈ I+. By

contradiction suppose that Ai is not Si-consistent. Then, there exists sj<i such that
both reading si and reading sj , Ai−1 gets to a configuration where the first component is
q, say (q, σ), (q, δ), however only one between si, sj is a positive sample. This contradicts
the fact that Ai−1 respects condition (1), since σ ≃ δ (by definition of DRA).

(2) Otherwise, let decompose si into si = s1
i s2

i where s1
i is the longest prefix of si which

can be read by Ai−1, and let (q, σ) be the configuration reached by Ai−1 upon reading
s1

i . To obtain Ai, we complete Ai−1 with new transitions from state q, so that Ai can
only read s2

i from q (and all ≃-equivalent words). Let a1 . . . am = s2
i , σ0 = σ, and for

all 1 ≤ k ≤ m, σk = dropEk
(σk−1ak) where Ek = {x} such that ak = σk−1[x] if it exists,

otherwise Ek = ∅. We now construct Ai. Let p1, . . . , pm ̸∈ Qi be fresh new states. Let
Qi = Qi−1∪{p1 . . . pm} and p0 = q, Ti = Ti−1∪{(pk, σk ·ak+1, Ek+1, pk+1) | 0 ≤ j < m},
qi

0 = qi−1
0 , Fi = Fi−1 ∪ {pm} if si ∈ I+, otherwise Fi = Fi−1.

We first show that Ai meets Condition (1). If it is not the case, then, there exists a
positive sample u1 = w1z1 and a negative sample u2 = w2z2 and runs (qi

0, ϵ) w1−−→Ai
(t, λ1) and

(qi
0, ϵ) w2−−→Ai (t, λ2) such that λ1z1 ≃ λ2z2. SInce Ai−1 satisfies Condition (1), necessarily,

state t is a newly added state, so one of {p1, . . . , pm}, say t = pj for some j. So, w1 and w2
can be further decomposed into w′

1w′′
1 and w′

2w′′
2 with |w′′

1 | = |w′′
2 |, and the runs into:

M. Balachander, E. Filiot, and R. Gentilini 10:21

(qi
0, ϵ) w′

1−−→Ai−1 (q, λ′
1) w′′

1−−→Ai (pj , λ1)

(qi
0, ϵ) w′

2−−→Ai−1 (q, λ′
2) w′′

2−−→Ai (pj , λ2)

By definition of Ai, σa1 . . . aj ≃ λ′
1w′′

1 and σa1 . . . aj ≃ λ′
2w′′

2 (where σ, a1, . . . , am have
been used before to define Ai), hence λ′

1w′′
1 ≃ λ′

2w′′
2 . Now, again by definition of Ai, λ1

(resp. λ2) is made of exactly one occurrence of each data appearing in λ′
1w′′

1 (resp. λ′
2w′′

2).
From this fact, the fact that λ1z1 ≃ λ2z2 and λ′

1w′′
1 ≃ λ′

2w′′
2 , we get that λ′

1w′′
1 z1 ≃ λ′

2w′′
2 z2,

contradicting the fact that Ai−1 respects Condition (1).
It remains to show that Ai is Si-consistent. By construction, Ai accepts all words in I+

i ,
because Ai accepts all words in I+

i−1, by IH, and we have not removed accepting states, only
added potentially one accepting state to accept si. We show that Ai rejects all words in
I−

i . If it were not the case, then let s ∈ I−
i accepted by Ai. As Ai−1 is Si−1-consistent, it is

necessarily the case that s has an accepting run towards a new accepting state, and this new
accepting state can only be pm, and si ∈ I+. From this we immediately get that Condition
(1) is not satisfied, which is a contradiction.
(⇒) Let A′ = (Q′, k′, λ′, T ′, q′

0, F ′) be the S-consistent DRA that completes A and let
Φ : Q → Q′ the injective function witnessing it. If L(A) ∩ I− ̸= ∅, since Φ must preserve
accepting states, then L(A′) ∩ I− ≠ ∅, which contradicts that A′ is S-consistent. On
the other hand, suppose that there exist w = w1w2 ∈ I+, z = z1z2 ∈ I− such that
(q0, ϵ) w1−−→A (q, σ) ∧ (q0, ϵ) z1−→A (q, σ′) ∧ σw2 ≃ σ′z2. Then, A′ admits runs (Φ(q0), ϵ) w1−−→A′

(Φ(q), σ) w2−−→A′ (p, δ) ∧ (Φ(q0), ϵ) z1−→A′ (Φ(q), σ′) z2−→A′ (p, δ′). If p ∈ F ′, then A′ accepts
both w and z, otherwise it rejects them, contradicting its S-consistency. ◀

CONCUR 2024

Left-Linear Rewriting in Adhesive Categories
Paolo Baldan #

Department of Mathematics, University of Padua, Italy

Davide Castelnovo #

Department of Mathematics, University of Padua, Italy

Andrea Corradini #

Department of Computer Science, University of Pisa, Italy

Fabio Gadducci #

Department of Computer Science, University of Pisa, Italy

Abstract
When can two sequential steps performed by a computing device be considered (causally) independent?
This is a relevant question for concurrent and distributed systems, since independence means that
they could be executed in any order, and potentially in parallel. Equivalences identifying rewriting
sequences which differ only for independent steps are at the core of the theory of concurrency of many
formalisms. We investigate the issue in the context of the double pushout approach to rewriting
in the general setting of adhesive categories. While a consolidated theory exists for linear rules,
which can consume, preserve and generate entities, this paper focuses on left-linear rules which may
also “merge” parts of the state. This is an apparently minimal, yet technically hard enhancement,
since a standard characterisation of independence that – in the linear case – allows one to derive a
number of properties, essential in the development of a theory of concurrency, no longer holds. The
paper performs an in-depth study of the notion of independence for left-linear rules: it introduces a
novel characterisation of independence, identifies well-behaved classes of left-linear rewriting systems,
and provides some fundamental results including a Church-Rosser property and the existence of
canonical equivalence proofs for concurrent computations. These results properly extends the class
of formalisms that can be modelled in the adhesive framework.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Semantics and reasoning

Keywords and phrases Adhesive categories, double-pushout rewriting, left-linear rules, switch
equivalence, local Church-Rosser property

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.11

Related Version Full Version: https://arxiv.org/abs/2407.06181

Funding The research has been partially supported by the EuropeanUnion – NextGenerationEU
under the National Recovery and Resilience Plan (NRRP) – Call PRIN 2022 PNRR – Project
P2022HXNSC “Resource Awareness in Programming: Algebra, Rewriting, and Analysis”, by the
Italian MUR – Call PRIN 2022 – Project 20228KXFN2 “Spatio-Temporal Enhancement of Neural
nets for Deeply Hierarchical Automatised Logic” and by the University of Pisa – Call PRA 2022 –
Project 2022_99 “Formal Methods for the Healthcare Domain based on Spatial Information”.

1 Introduction

One of the key pay-off of concurrency theory is the idea that the behaviour of a computational
device can be modelled by abstracting its sequences of steps via a suitable equivalence.
Intuitively, the equivalence captures when steps are causally unrelated and thus could be
executed in any order, and possibly in parallel. Two seminal contributions to this line of
research have been Mazurkiewicz’s traces [37] and Winskel’s event structures [39]. Concerning

© Paolo Baldan, Davide Castelnovo, Andrea Corradini, and Fabio Gadducci;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 11; pp. 11:1–11:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baldan@math.unipd.it
https://orcid.org/0000-0001-9357-5599
mailto:davide.castelnovo@math.unipd.it
https://orcid.org/0000-0002-5926-5615
mailto:andrea.corradini@unipi.it
https://orcid.org/0000-0001-6123-4175
mailto:fabio.gadducci@unipi.it
https://orcid.org/0000-0003-0690-3051
https://doi.org/10.4230/LIPIcs.CONCUR.2024.11
https://arxiv.org/abs/2407.06181
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Left-Linear Rewriting in Adhesive Categories

1

w

2
s 12

s

ρw

1

b

2
s

12

s

ρb

1

c

s

1

r

s

ρr

Figure 1 Rewriting rules for the coffee example.

formalisms based on the rewriting paradigm, concurrency often boils down to having a notion
of independence between two consecutive steps. Noteworthy examples are the interchange
law [38] in term rewriting and permutation equivalence [35] in λ-calculi.

Among rewriting-based formalisms, those manipulating graph-like structures proved
useful in many settings for representing the dynamics of distributed systems: the graph
is used to represent the entities and their relations within states, while rewriting steps,
modifying the graph, model computation steps that result in changes to the system state.
The DPO (double-pushout) approach [25] is nowadays considered a standard one for these
structures, thanks to its locality (rule application has a local effect on a state, differently
from more recent approaches like SqPO [17] or PBPO+ [40]) and to its flexibility: the rules
allow to specify that, in a rewriting step, some entities in the current state are removed,
some others are needed for the rewriting step to occur but remain unaltered, and some
new entities can be generated. Concerning concurrency, the chosen notion is switch (also
referred to as shift) equivalence, and independence is formally captured by what is called the
Church-Rosser theorem of DPO rewriting [16, Chapter 3, Section 3.4].

A noteworthy advantage of DPO rewriting is that it can be formulated over adhesive
categories and their variants [26,32], which include, among others, toposes [31] and string
diagrams [9]. Operating within the framework of adhesive categories allows one to devise the
foundations of a rewriting theory that can be then instantiated to the context of interest,
thus avoiding the need of repeatedly proving similar ad-hoc results for each specific setting.

So far, most of the theoretical results focused on linear rules: intuitively, a step is required
only to consume, preserve and generate entities. However, in some situations it is also
necessary to “merge” parts of the state. This happens in the context of string diagrams
mentioned above, but also in graphical implementations of nominal calculi where, as a result
of name passing, the received name is identified with a local one at the receiver [18,27], or in
the visual modelling of bonding in biological/chemical processes [41]. A similar mechanism is
at the core of e-graphs (equality graphs), used for rewrite-driven compiler optimisations [42]:
rather than merging nodes corresponding to equal expressions, the idea – conceptually and,
as we will see, also mathematically similar – is to maintain an equivalence over the nodes.

Technically, to acquire the expressiveness needed for capturing fusions, i.e. the merge of
some elements in the state, requires to move from linear to left-linear rewriting rules. While
left-linear rules have been considered in various instances (mainly in categories of graphs) and
some results concerning the corresponding rewriting theory have been put forward [6, 23, 24],
the phenomena arising when devising a theory of independence and concurrency for rewriting
with left-linear rules in the general setting of adhesive and quasi-adhesive categories have not
been systematically explored, even if an investigation in the setting of quasi-topoi, considering
non-linear rules yet restricting their applicability, has been presented in [7, 8].

Just to get some basic intuition about left-linear rewriting systems, their capabilities and
the problems that can arise, assume we want to model a situation in which a coffee comes
with a bag of white sugar and a bag of brown sugar. The situation is represented by the
graph G0 in Fig. 2: the loop c is the coffee, the two loops b and w represent the white and

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:3

1

w

b

2

c
s

G0

12

b

c

s

G1

12

c

s

G2

12

r

s

G3

ρw ρb ρr

Figure 2 A sequence of rewriting steps.

brown sugar. The corresponding nodes are connected to the coffee node by an s-labelled
edge to indicate that they can be possibly added to the coffee. The available rules are in
Fig. 1. Rules ρw and ρb model the addition of white and brown sugar, respectively, to the
coffee. Note that adding one kind of sugar, say x, to the coffee is realised by deleting loop x

and merging the corresponding node with the coffee node so that a self-loop s is created.
Once some sugar has been added, the coffee is ready for drinking. This is represented by
rule ρr, which checks for the presence of sugar, represented by the loop s, in the coffee, and
brings it to the r state, ready for drinking.

A rewriting sequence is depicted in Fig. 2, applying ρw, ρb, and ρr in sequence, thus
producing a coffee with both white and brown sugar, ready for drinking. A first interesting
observation is that after applying rule ρw to G0, thus producing graph G1, we can still apply
rule ρb, with a non-injective match. Intuitively, once the coffee is ready for drinking because
some sugar has been added, adding more sugar will not change its state. Indeed, the rules
could also be applied in reverse order. Should they be considered independent? Moreover,
since rule ρr just requires the presence of sugar, it could be applied immediately after ρw.
This might lead to think that ρb and ρr are independent. However, this is not completely
clear, since in absence of ρw, the application of ρb would be essential to enable ρr.

In this paper we perform a systematic exploration of these phenomena at the level of
M-adhesive categories, which encompass a large family of DPO-based formalisms.

As an initial step, we observe that for left-linear rules some fundamental properties that
play a role in the concurrency theory of linear rewriting need to be deeply revised, or plainly
do not hold. Firstly, the notion of sequential independence and the Church-Rosser theorem,
ensuring that sequential independent steps can be performed in reverse order, does not hold
out of the box. Even worse, given two independent steps it might be possible to switch them
in several different ways. As we will observe, this prevents the development of a sensible
theory of concurrency, since switches are used as a basis for equating sequences of rewriting
steps that differ only in the order of independent steps.

We single out a class of left-linear rewriting systems, referred to as well-switching rewriting
systems, where sequential independence ensures existence and uniqueness of the switch, and
argue that this is the right setting for dealing with left-linear rewriting systems.

On the one hand, they capture most categories of interest for rewriting. Indeed, we
identify general classes of left-linear rewriting systems on graph-like structures that are
well-switching. As a sanity check, we prove that linear rewriting systems are well-switching.

On the other hand, we argue that a concurrency theory of rewriting can be developed for
well-switching rewriting systems, recovering, sometimes in weakened form, most of the results
that hold in the linear case. The development faces a main technical obstacle. In the literature
on linear rewriting systems, a central result is the characterisation of switch equivalence of
sequences of steps based on what are called processes or consistent permutations [2, 4, 15, 30].
In turn this is the key to derive some fundamental properties for linear rewriting, namely

CONCUR 2024

11:4 Left-Linear Rewriting in Adhesive Categories

1. globality of independence: if two independent steps are moved forward or backward due
to the application of switchings to a sequence, they remain independent;

2. consistency of switching: when transforming sequences of rewriting steps into equivalent
ones by switching independent steps, the result does not depend on the order in which
switchings are applied, but only on the associated permutation.

Properties (1) and (2) allow one to deduce a canonical form for equivalence proofs between
sequences of rewriting steps seen as concurrent computations.

The fact that for left-linear rewriting systems the characterisation of switch equivalence
via consistent permutations fails, and thus cannot be used for proving (1) and (2), leads to
asking if these properties hold. We show that much of the theory can be retained: globality
of independence holds in a weaker form, conceptually linked to the fact that fusions introduce
a form of disjunctive causality, while consistency of switching holds unchanged. Finally, we
prove that a canonical form for switching sequences can also be recovered. These results
represent a solid basis for developing a satisfactory theory of concurrency for left-linear rules.

Synopsis. In §2 we recall the basic definitions of DPO rewriting for M-adhesive categories.
In §3 we present the key novelties of our proposal, introducing the standard notion of
independence and a novel axiomatic notion of switchability, showing that the former fails to
imply the latter for left-linear rewriting systems. We then define well-switching rewriting
systems, a subclass of left-linear rewriting systems, and we prove that the classical results for
linear rewriting systems are recovered for such a class. Finally, in §4 we outline directions
for future work. Appendix A recalls basic results on adhesive categories and Appendix B
presents strong enforcing rewriting systems, a class of systems where the local Church-Rosser
Theorem holds. Appendix C of the extended version provides the proofs of our results.

2 M-adhesive categories and rewriting systems

This section recalls the basic theory of M-adhesive categories [1, 20, 21, 30, 32]. Given a
category X we will not distinguish notationally between X and its class of objects, so “X ∈ X”
means that X is an object of X. We let Mor(X), Mono(X) and Reg(X) denote the class
of all arrows, monos and regular monos of X, respectively. Given an integer n ∈ Z, [0, n]
denotes the set of natural numbers less than or equal to n; in particular, [0, n] = ∅ if n < 0.

2.1 M-adhesivity
The key property of M-adhesive categories is the Van Kampen condition [10, 31, 32]. Let X
be a category. A subclass A of Mor(X) is called

stable under pushouts (pullbacks) if for every pushout (pullback) square as the one below,
if m ∈ A (n ∈ A) then n ∈ A (m ∈ A);
closed under composition if h, k ∈ A implies h ◦ k ∈ A whenever h and k are composable.

A
f

//

m

��

B

n

��

C
g

// D

▶ Definition 2.1 (Van Kampen property). Let X be a category and consider the diagram
below. Given a class of arrows A ⊆ Mor(X), we say that the bottom square is an A-Van
Kampen square if
1. it is a pushout square;
2. whenever the cube above has pullbacks as back and left faces and the vertical arrows belong

to A, then its top face is a pushout if and only if the front and right faces are pullbacks.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:5

Pushout squares that enjoy only the “if” half of item (2) above are called A-stable.
A Mor(X)-Van Kampen square is called Van Kampen and a Mor(X)-stable square stable.

A′

a
��

f ′
//

m′

{{

B′

b

��

n′

{{

C ′

c

��

g′
// D′

d

��

A
f

//

mzz

B

nzz
C

g
// D

We can now define M-adhesive categories.

▶ Definition 2.2 (M-adhesive category). Let X be a category and M a subclass of Mono(X)
including all isomorphisms, closed under composition, and stable under pullbacks and pushouts.
The category X is said to be M-adhesive if
1. it has M-pullbacks, i.e. pullbacks along arrows of M;
2. it has M-pushouts, i.e. pushouts along arrows of M;
3. M-pushouts are M-Van Kampen squares.

A category X is said to be strictly M-adhesive if M-pushouts are Van Kampen squares.

We write m : X↣Y to denote that an arrow m : X → Y belongs to M.

▶ Remark 2.3. Adhesivity and quasiadhesivity [28,32] coincide with strict Mono(X)-adhesivity
and strict Reg(X)-adhesivity, respectively.

▶ Example 2.4. Every category X is I(X)-adhesive, where I(X) is the class of isomorphisms.

M-adhesivity is well-behaved with respect to the construction of slice and functor
categories [36], as shown by the following theorems [19,32].

▶ Theorem 2.5. Let X be an M-adhesive category. Given an object X the category X/X

is M/X-adhesive with M/X := {m ∈ Mor(X/X) | m ∈ M}. Similarly, X/X is X/M-
adhesive with X/M := {m ∈ Mor(X/X) | m ∈ M}.

Moreover for every small category Y, the category XY of functors Y → X is MY-
adhesive, where MY := {η ∈ Mor(XY) | ηY ∈ M for every Y ∈ Y}.

We can list various examples of M-adhesive categories (see [12,13,33]).

▶ Example 2.6. Set is adhesive, and, more generally, every topos is adhesive [33]. By the
closure properties above, every presheaf [X, Set] is adhesive, thus the category Graph =
[E ⇒ V, Set] is adhesive where E ⇒ V is the two objects category with two morphisms
s, t : E → V . Similarly, various categories of hypergraphs can be shown to be adhesive, such as
term graphs and hierarchical graphs [14]. Note that the category sGraphs of simple graphs,
i.e. graphs without parallel edges, is Reg(sGraphs)-adhesive [8] but not quasiadhesive.

A number of properties of adhesive categories that play a role in the theory of rewriting
generalise to M-adhesive categories. These include M-pushout-pullback decomposition and
uniqueness of pushouts complements (details and proofs are in Appendix A).

CONCUR 2024

11:6 Left-Linear Rewriting in Adhesive Categories

2.2 DPO rewriting systems derivations
M-adhesive categories are the right context in which to perform abstract rewriting using
what is called the Double-Pushout (DPO) approach.

▶ Definition 2.7 ([29,30]). Let X be an M-adhesive category. A left M-linear rule ρ is a
pair of arrows ρ = (l : K → L, r : K → R) such that l belongs to M. The rule ρ is M-linear
if r ∈ M too. The object L is the left-hand side, R the right-hand side, and K the interface.

A left-linear rewriting system is a pair (X, R) where X is an M-adhesive category and R
a set of left M-linear rules. It is called M-linear if every rule in R is M-linear.

Given two objects G and H and a rule ρ = (l, r) in R, a direct derivation D from G to
H applying rule ρ is a diagram as the one below, in which both squares are pushouts. The
arrow m is called the match of the derivation, while h is its co-match. We denote a direct
derivation D from G to H as D : G Z⇒ H.

L

m

��

K

k
��

ooloo r // R

h
��

G Doo
f

oo
g

// H

A derivation can now be defined simply as a sequence of direct derivations.

▶ Definition 2.8 (Derivation). Let X be an M-adhesive category and (X, R) a left-linear
rewriting system. Given G, H ∈ X, a derivation D with source G and target H, written
D : G Z⇒ H, is defined as a sequence {Di}n

i=0 of direct derivations such that Di : Gi Z⇒ Gi+1
is a direct derivation for every index i and G0 = G, Gn+1 = H. Moreover, we have an empty
derivation G : G Z⇒ G for each G ∈ X. We denote by lg(D) the length of a derivation D .

Given a derivation D = {Di}n
i=0, we define r(D) = {ρi}n

i=0 as the sequence of rules such
that every Di applies rule ρi ∈ R.

Derivations naturally compose: given D : G Z⇒ H and E : H Z⇒ F , we can consider their
composition D · E : G → F , defined in the obvious way.

Often, we are interested in derivations only up to some notion of coherent isomorphism
between them. This leads us to the following definition.

▶ Definition 2.9 (Abstraction equivalence). Let X be an M-adhesive category and (X, R) a
left-linear rewriting system. An abstraction equivalence between derivations D and D ′ with
the same length and r(D) = r(D ′) is a family of isomorphisms {ϕX}X∈{Gi,Di} such that the
diagram below commutes for i ∈ [0, min(0, lg(D) − 1)]. We say that D are D ′ are abstraction
equivalent, written D ≡a D ′, if there exists an abstraction equivalence between them.

G′
i D′

i

g′
i //oo

f ′
ioo G′

i+1

Li

m′
i

OO

mi

��

Ki

k′
i

OO

ki

��

ri //oo
lioo Ri

h′
i

OO

hi

��

Gi

ϕGi

WW

Di
oo

fi

oo

ϕDi

WW

gi

// Gi+1

ϕGi+1

WW

M-adhesivity ensures the uniqueness of the result of applying a rule to an object: two
direct derivations using the same match are abstraction equivalent (see Proposition C.1 of
the extended version).

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:7

3 Independence in rewriting

In this section we discuss the notion of independence between two consecutive rewriting
steps, a fundamental ingredient of the rewriting theory, which comes into play when viewing
a sequence of steps as a concurrent computation. We observe that moving from linear to
left-linear rules leads to the failure of various basic properties of the classical notion of
independence used in the linear setting and we single out a framework in which these can be
re-established, possibly in a weakened form.

3.1 Sequentially independent and switchable derivations
Sequential independence is the canonical notion of independence in the DPO approach.

▶ Definition 3.1 (Sequential independence). Let X be an M-adhesive category and (X, R) a
left-linear rewriting system. Let also D = {Di}1

i=0 be a derivation of length 2, with Di using
rule ρi = (li, ri). We say that D0 and D1 are sequentially independent if there is a pair of
arrows i0 : R0 → D1 and i1 : L1 → D0 such that the following diagram commutes. In this
case (i0, i1) is called an independence pair.

L0

m0
��

K0

k0
��

oo
l0oo

r0 // R0
i0

$$h0

L1
i1

zz m1~~

K1

k1
��

oo
l1oo

r1 // R1

h1
��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1

// G2

Intuitively, the existence of the independence pair captures the possibility of switching the
application of the two rules: f0 ◦ i1 is a match for ρ1 in G0 and the existence of i0 : R0 → D1
means that ρ1 does not delete items in the image of K0, thus ρ0 can be applied after ρ1.
▶ Remark 3.2. It is worth mentioning that if (X, R) is a linear rewriting system then two
derivations D0 and D1 can have at most one independence pair. Indeed if (i0, i1) and (i′

0, i′
1)

are independence pairs, then

g0 ◦ i1 = g0 ◦ i′
1 f1 ◦ i0 = f1 ◦ i′

0

But in linear systems g0 and f1 are both monos, entailing i0 = i′
0 and i1 = i′

1.
We next formalise what it means for a derivation being the switch of another.

▶ Definition 3.3 (Switch). Let X be an M-adhesive category and (X, R) a left-linear re-
writing system. Let also D = {Di}1

i=0 be a derivation made of two sequentially independent
derivations D0, D1 with independence pair (i0, i1), as in the diagram on the left below. A
switch of D along (i0, i1) is a derivation E = {Ei}1

i=0, between the same objects and using
the same rules in reverse order, as in the diagram on the right below

L0

m0

��

K0oo
l0oo

r0 //

k0
��

R0

h0 ��

i0

%%

L1

m1��

i1

zz

K1oo
l1oo

r1 //

k1
��

R1

h1
��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1

// G2

L1

m′
0
��

K1oo
l1oo

r1 //

k′
0
��

R1

h′
0 ��

i′
0

$$

L0

m′
1��

i′
1

zz

K0oo
l0oo

r0 //

k′
1

��

R0

h′
1

��

G0 D′
0

oo

f ′
0

oo

g′
0

// G′
1 D′

1
oo

f ′
1

oo

g′
1

// G2

such that there is an independence pair (i′
0, i′

1) between E0 and E1 and

m0 = f ′
0 ◦ i′

1 h1 = g′
1 ◦ i′

0 m′
0 = f0 ◦ i1 h′

1 = g1 ◦ i0.

If a switch of D0 and D1 exists we say that they are switchable.

CONCUR 2024

11:8 Left-Linear Rewriting in Adhesive Categories

1

L0

1

K0

ρ0

1 2

R0

1

L1

1

K1

ρ1

1

R1

1 2

L2

1 2

K2

ρ2

12

R2

Figure 3 A rewriting system in Graph.

1 1

ρ0

1 2 2 2

ρ1

2 1 2 1 2

ρ2

12

1 1 1 2 1 2 1 2 1 2 12

G0 D0 G1 D1 G2 D2 G3

Figure 4 The derivation D .

It can be shown that switches along the same independence pair are unique up to
abstraction equivalence (see Proposition C.3 of the extended version).

▶ Example 3.4. Consider a rewriting system in Graph, the category of directed graphs and
graph morphisms, which is adhesive. The set of rules R = {ρ0, ρ1, ρ2} is in Fig. 3, where
numbers are used to represent the morphisms from the interface to the left- and right-hand
sides. Rules ρ0 and ρ1 are linear: ρ0 generates a new node and a new edge, while ρ1 creates
a self-loop edge. Instead, ρ2 is left-linear but not linear, as it “merges” two nodes.

A derivation D consisting of three steps D0, D1, and D2, each applying the corresponding
rule ρi, is depicted in Fig. 4. Note that the numbers in ρ1 were changed consistently to
represent the vertical morphisms. Steps D1 and D2 are clearly sequential independent via
the independence pair (R1 → D2, L2 → D1), mapping nodes according to their numbering.
A switch of D along such independence pair is the derivation E in Fig. 5. Instead, in D the
first two steps applying ρ0 and ρ1 are not sequential independent, intuitively because ρ1 uses
the node produced by ρ0 for attaching a self-loop.

1 1

ρ0

1 2 1 2 1 2

ρ2

12 12 12

ρ1

12

1 1 1 2 1 2 12 12 12

G0 D0 G1 D′
1 G′

2 D′
2

G3

Figure 5 The derivation E .

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:9

0

1

2

b c

a

(a) Poset (P, ⊑).

a

⊑
��

a

⊑
��

oo
idaoo

⊑
// 0 ..

id0

!!

��

id0
��

a

⊑

}}
⊑

��

a

⊑
��

oo
idaoo

⊑
// b

⊑
��

c coo
idc

oo
⊑

// 0 0oo
id0

oo //
id0

// 0

(b) Two rewriting steps.

a

⊑
��

a

⊑
��

oo
idaoo

⊑
// b

c coo
idc

oo

(c) No rewriting step.

Figure 6 Sequential independence does not imply switchability.

As we mentioned, for linear rewriting systems it is canonical to identify derivations that
are equal “up to switching”, i.e. that differ only in the order of independent steps. The same
notion can be given for left-linear rewriting systems by relying on the notion of switch.

We recall some notations on permutations. A permutation on [0, n] is a bijection σ :
[0, n] → [0, n]. It is a transposition ν if there are i, j ∈ [1, n], i ̸= j such that σ(i) = j,
σ(j) = i, and σ(k) = k otherwise; it is denoted as (i, j). Given a permutation σ, an inversion
for σ is a pair (i, j) such that i < j and σ(j) < σ(i); inv(σ) denotes the set of inversions of σ.

Switch equivalence is now defined as the equivalence relating derivations that can be
obtained one from another by a sequence of switches. Moreover, intermediate graphs can be
taken up to isomorphism according to abstraction equivalence.

▶ Definition 3.5 (Switch equivalence). Let (X, R) be a left-linear rewriting system. Let also
D , E : G Z⇒ H be derivations with the same length, D = {Di}n

i=0 and E = {Ei}n
i=0. If

Di · Di+1 is a switch of Ei · Ei+1 for some i ∈ [0, n − 1] and Dj = Ej for each j ̸∈ {i, i + 1}
then we write D ↭(i,i+1) E . A switching sequence is a sequence {Dk}m

k=0 of derivations
such that D0 ↭ν1 D1 ↭ν2 . . . ↭νm Dm with νk = (ik, ik + 1).

Let us denote by νk,h the composition νh ◦νh−1 ◦ . . . νk. We say that the switching sequence
consists of inversions if for all k ∈ [0, m] the transposition νk is an inversion for ν1,m.

Two derivations D , E : G Z⇒ H are switch equivalent, written D ≡sh E , if there is a
switching sequence {Dk}m

k=0 such that D ≡a D0 ↭ν1 D1 ↭ν2 . . . ↭νm
Dm ≡a E . To

point out a chosen permutation of rewriting steps, we will also write D ≡sh
σ E , where σ is

the composition of the transposition appearing in a chosen switching sequence.

▶ Remark 3.6. The possibility of an empty switching sequence assures that two abstraction
equivalent derivations are switch equivalent.

3.2 Church-Rosser: Sequential independence and switchability
The fact that sequential independence implies switchability always holds for linear rules (see
Proposition C.8 of the extended version). The result is so indispensable that typically, in the
literature, it is not even stated, in the sense that switchability is not introduced axiomatically
as in Definition 3.3, but it is based on the explicit construction of a switch.

For left-linear rewriting systems sequential independence does not imply switchability
(while the converse implication clearly holds), as shown by the next example.

▶ Example 3.7. Consider the poset (P, ⊑) in Fig. 6a where P = N∪{a, b, c} and ⊑ is defined
by m ⊑ n if m ≥ n, a ⊑ x for all x ∈ P and b, c ⊑ n for all n ∈ N. Let X be the category
associated with this order, which by Example 2.4 is I(X)-adhesive. Consider a rewriting
system whose set of rules contains the following

a a
⊑

//oo
idaoo 0 a a

⊑
//oo

idaoo b

CONCUR 2024

11:10 Left-Linear Rewriting in Adhesive Categories

We can then consider the derivation D = {Di}1
i=0 in Fig. 6b. Note that the two direct

derivations are sequential independent. However there is no switch since the rule applied by
D1 cannot be applied to c. In fact, there is a unique morphism a → c, yielding the diagram
in Fig. 6c. But b and c do not have a supremum in the poset underlying X, thus the arrows
a → b and a → c do not have a pushout. Hence we do not get a direct derivation from c.

The conditions guaranteeing switchability are inspired by the notion of canonical filler [30].

▶ Definition 3.8 (strong independence pair). Let X be an M-adhesive category and (X, R)
a left-linear rewriting system. Let also (i0, i1) be an independence pair between two direct
derivations D0, D1 as in the solid part of the diagram below

L0

m0
��

K0

k0
��

oo
l0oo

r0 //

u0
��

R0
i0

%%h0 !!

L1
i1

yy m1}}

K1

k1
��

oo
l1oo

r1 //

u1
��

R1

h1
��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1

// G2

Pnnp0

aa

p1

==

Consider the pullback of g0 and f1, which yields pi : P → Di for i ∈ {0, 1} and the
mediating arrows ui : Ki → P for i ∈ {0, 1} into the pullback object (see Proposition C.4
of the extended version for details). We say that (i0, i1) is a strong independence pair if
the first two squares depicted below are pushouts and if the pushout of r1 : K1 → R1 and
u1 : K1 → P exists

K0
r0 //

u0
��

R0

i0
��

K1 //
l1 //

u1
��

L1

i1
��

K1
r1 //

u1
��

R1

j0
��

P
p1

// D1 P
p0

// D0 P
q1

// Q1

We can now prove a Local Church-Rosser Theorem for strong independence pairs.

▶ Proposition 3.9 (Local Church-Rosser Theorem). Let (i0, i1) be a strong independence pair
between D0 and D1. Then D0 and D1 are switchable.

The correspondence between sequential independence and switchability is fundamental.
We name the class of rewriting systems where this property holds.

▶ Definition 3.10 (Strong enforcing rewriting systems). A left-linear rewriting system is strong
enforcing if every independence pair between two direct derivations is strong.

We can identify a large class of adhesive categories such that all left-linear rewriting
systems over such categories are strong enforcing. This class includes Set and it is closed
under comma and functor category constructions. As such, it includes essentially all categories
(e.g., presheaves over set) that are typically considered for modelling purposes. Notably,
it contains the category Graph of directed graphs. This is a natural generalisation from
adhesive to M-adhesive categories of a class studied in [6] (see Appendix B for details).

Still, there are M-adhesive rewriting systems that are not strong enforcing.

▶ Example 3.11 (Non-strong enforcing left-linear rewriting system). In light of Proposition 3.9,
Example 3.7 provides an example of an independence pair that is not strong. This gives an
example of a left-linear rewriting system in a M-adhesive category that is quite pathological
since M = I(X). However, this is expected, since all natural examples seem to belong to the
well-behaved class mentioned above.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:11

1 1

ρ0

1 2 1 1

ρ1

1 1 2 1 2

ρ2

12

1 1 1 2 1 2 1 2 1 2 12

G0 D0 G1 D′′
1 G′′

2 D′′
2 G3

Figure 7 The derivation D ′.

▶ Remark 3.12. By Proposition 3.9 the existence of a strong independence pair entails
switchability, which in turn entails sequential independence by construction. Strong enforcing
rewriting systems are exactly those rewriting systems in which these three notions coincide.

Consistency with the theory of linear rewriting systems is ensured by the fact that all
linear rewriting systems are strong enforcing (see Proposition C.8 of the extended version).

3.3 Well-switching rewriting systems
Even if we work in strong enforcing rewriting systems where sequential independence ensures
switchability, when dealing with left-linear rules there is a further, possibly more serious issue,
namely that there can be more than one independence pair between the same derivations
(cfr. Remark 3.2). This hinders the very idea of using sequential independence as a basis
of a theory of concurrency for rewriting systems, since exchanges performed using different
independence pairs may lead to derivations that are not abstraction equivalent, thus equating
computations that should definitively be taken apart, as shown in the example below.

▶ Example 3.13. Consider the derivation E from Example 3.4 (see Fig. 5). The last two
steps are sequential independent, but one easily sees that there are two distinct independence
pairs, as the left-hand side of ρ1 can be mapped either to node 1 or to node 2 in D′

1.
Correspondingly, there are two switches of E : one is the derivation D in Fig. 4 we started
from, the other is the derivation D ′ in Fig. 7.

As a consequence, D and D ′ would be switch equivalent, but this is not acceptable when
viewing equivalence classes of derivations as concurrent computations: in D the first two
steps are not sequential independent, while in D ′ they are, intuitively because in D rule ρ1
uses the node generated by ρ0 (adding a self-loop to it), while in D ′ rule ρ1 uses the node that
was in the initial graph. Also observe that the graphs G2 and G′

2 produced after two steps
in D and D ′ are not isomorphic. From the technical point of view, the property of being
switch equivalent is not closed by prefix, and this prevents deriving a sensible concurrent
semantics: In fact D = D0 · D1 · D2 and D ′ = D ′

0 · D ′
1 · D ′

2 are switch equivalent, while if we
consider the first two steps, derivations D0 · D1 and D ′

0 · D ′
1 are not switch equivalent.

For these reasons we believe a theory of rewriting for left-linear rules in adhesive categories
should be developed for systems where the uniqueness of the independence pair is ensured.

▶ Definition 3.14 (Well-switching rewriting systems). A left-linear rewriting system (X, R) is
well-switching if it is strong enforcing and, for every derivation D := {Di}1

i=0, there is at
most one independence pair between D0 and D1.

CONCUR 2024

11:12 Left-Linear Rewriting in Adhesive Categories

Clearly, linear rewriting systems are well-switching (see Proposition C.10 of the extended
version). Moreover, we next observe that various classes of rewriting systems, comprising all
the ones used in modelling the applications to the encoding of process calculi or of bio and
chemical systems mentioned in the introduction, are actually well-switching.

A first class consists of those rewriting systems over possibly hierarchical graphical
structures obtained as algebras of suitable signatures where rules are constrained not to
merge elements of top level sorts in the hierarchy (for graphs, nodes can be merged while
edges cannot). The idea here is to consider graph structures as presheaves on categories in
which there are objects that play the role of roots, i.e. objects that are not the codomain of
any arrow besides the identity.

▶ Definition 3.15 (Root-preserving graphical rewriting systems). Let X be a category, an
object X ∈ X is a root if the only arrow with codomain X is idX . The category X-Graph of
X-graphs is the category SetX. A root-preserving graphical rewriting system is a left-linear
rewriting system (X-Graph, R) such that for each rule (l : K → L, r : K → R) in R it holds
1. for every X ∈ X and x ∈ L(X), there exists a root Y and an arrow f : Y → X such that

x belongs to the image of L(f) : L(Y) → L(X);
2. r : K → R is mono on the roots, i.e. for every root X ∈ X the component rX : K(X) →

R(X) is injective.

For instance, the category Graph can be obtained by taking as X the category generated
by E ⇒ V . In this case E is the only root, hence, condition 1 asks that in the left-hand side
of each rule there are no isolated nodes, while condition 2 asks that the morphism r : K → R

is injective on edges, i.e. it can only merge nodes.

▶ Lemma 3.16. All root-preserving graphical rewriting systems are well-switching.

Another interesting class of well-switching rewriting systems is given by e-graphs.

▶ Example 3.17 (E-graphs). Consider the category EGraphs, where objects are (directed)
graphs endowed with an equivalence over nodes, and arrows are graph morphisms that
preserve the equivalence, as considered in [5], closely related to e-graphs [42]. Formally,
EGraphs can be seen as the subcategory of the presheaf [E ⇒ V → Q, Set] where objects
are constrained to have the component V → Q surjective.

Explicitly, an e-graph G is a triple ⟨sG, tG, qG⟩ where sG, tG : EG ⇒ VG provides the
graphical structure, while the surjective function qG : VG → QG maps each node to the
corresponding equivalence class. Notice that the inclusion functor into [E ⇒ V → Q, Set]
creates pullbacks and pushouts [36], so that they are computed component-wise.

A morphism in EGraph is mono if the components over E and V are mono, i.e. if it is
mono as a morphism in Graph. It is regular mono if also the component on Q is mono,
i.e. if it reflects equivalence classes besides preserving them. This characterisation of regular
monos and the fact that pullbacks and pushouts are computed component-wise allows us to
prove quasi-adhesivity of EGraphs at once. Moreover, one can deduce that every rewriting
system (X, R) that is left-linear with respect to Reg(EGraphs) is strong enforcing: this is
done exploiting again the inclusion functor into [E ⇒ V → Q, Set].

Left-linear rewriting systems with respect to Reg(EGraphs) are well-switching. They
have been used in [5] for the graphical implementation of nominal calculi, where, differently
from [27], as a result of name passing the received name is not merged with a local one, but
put in the same equivalence class, better tracing the causal dependencies among reductions.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:13

3.4 A canonical form for switch equivalences
As discussed in the introduction, in the linear case a number of basic properties of switch
equivalence, i.e. the globality of independence, the consistency of switching, and the existence
of a canonical form for equivalence proofs, can be derived from a characterisation of switch
equivalence in terms of consistent permutations or processes.

When dealing with left-linear rules, such a characterisation fails. Leaving aside the formal
details (the interested reader can refer to Definition C.12 of the extended version), the
intuition is quite simple. In the linear case one proves that two derivations using the same
rules in different orders are switch equivalent when the colimits of the two derivations, seen
as diagrams, are isomorphic and the isomorphism properly commutes with the embeddings
of the rules. When considering left-linear derivations, this is no longer true. Intuitively this
is due to the fact that a rewriting step can merge parts of an object thus making the colimit
little informative. This effect can be seen for derivations D in Fig. 4 and D ′ in Fig. 7. They
are not abstraction equivalent but the colimit of both derivations is a single node with two
self-loops, in a way that all commutativity requirements are trivially satisfied.

In this section we show that, despite the failure of such characterisation, actually much of
the theory can be retained, taking a different and sensibly more complex route for the proofs:
globality of independence holds in a weak form, conceptually linked to the fact that fusions
introduce a form of disjunctive causality, while consistency of switching holds unchanged.
Finally, a canonical form for switching sequences can also be recovered.

We start by proving two lemmas dealing with derivations of length 3. Despite being
technical, these lemmas are fundamental building blocks for obtaining our results.

The first lemma is at the core of globality for independence. It shows that if we have
a derivation consisting of three rewriting steps, say D0 · D1 · D2 where D0 and D1 are
independent, then if we switch D2 to the first position, obtaining a derivation D ′′

2 · D ′
0 · D ′

1,
as in the diagram below where vertical lines represent permutations, the steps D ′

0 and D ′
1

are still independent.

D0 D1 D2

D0 D ′
2 D ′

1

D ′′
2 D ′

0 D ′
1

If instead D1 and D2 are independent in D0 ·D1 ·D2 and we switch D0 to the last position,
obtaining a derivation D ′

1 · D ′
2 · D ′′

0 , as in the diagram below, the steps D ′
1 and D ′

2 could
be no longer independent. Intuitively, this is due to the fact that dealing with left-linear
rewriting systems introduces disjunctive forms of causality. Hence, if in D0 · D1 · D2 we have
that D0 and D1 are disjunctive causes of D2, at least one of the two is needed to enable the
application of D2 and this explain why in D ′

1 · D ′
2 · D ′′

0 we have that D ′
1 and D ′

2 are no longer
independent. This is exemplified below.

D0 D1 D2

D ′
1 D ′

0 D2

D ′
1 D ′

2 D ′′
0

▶ Example 3.18. Consider the rewriting system in Graph consisting of the rules λ0, λ1, and
λ2 in Fig. 8. Consider the derivation F in Fig. 9. Note that rule λ2 needs the black self-loop
on node 12 to be applied. This can be generated either by λ0 or by λ1 merging nodes 1 and 2,

CONCUR 2024

11:14 Left-Linear Rewriting in Adhesive Categories

1 2

L0

1 2

K0

λ0

12

R0

1 2

L1

1 2

K1

λ1

12

R1

1

L2

1

K2

λ2

1

R2

Figure 8 A new rewriting system in Graph.

1 2 1 2

λ0

12 12 12 12 12

λ1

12 12 12

λ2

12

1 2 1 2 12 12 12 12 12

G0 D0 G1 D1 G2 D2 G3

Figure 9 The derivation F .

hence at least one of them must precede the application of λ2. Indeed, in F it is easily seen
that the second and the third step applying λ1 and λ2 are independent. However, we could
switch twice the application of λ0, bringing it in the last position, obtaining a derivation F ′

as depicted in Fig. 10, where the applications of λ1 and λ2 are no longer independent.

▶ Lemma 3.19 (Globality of independence). Let X be an M-adhesive category and (X, R) a
well-switching rewriting system. Let D0 · D1 · D2 be a three-steps derivation.
1. If D0 and D1 are switchable and there is a switching sequence D0 · D1 · D2 ↭(1,2)

D0 · D ′
2 · D ′

1 ↭(0,1) D ′′
2 · D ′

0 · D ′
1 then in the last derivation D ′

0 and D ′
1 are switchable;

2. Suppose that D1 and D2 are switchable, hence D0 ·D1 ·D2 ↭(1,2) D0 ·D ′
2 ·D ′

1 and D0 and
D ′

2 are switchable. If there is a switching sequence D0 · D1 · D2 ↭(0,1) D ′
1 · D ′

0 · D2 ↭(1,2)
D ′

1 · D ′
2 · D ′′

0 then in the last derivation D ′
1 and D ′

2 are switchable.

The second lemma captures the essence of the consistency of switchings. If in a derivation
of three rewriting steps, say D0 · D1 · D2, we invert them leading to a sequence reordered as
D2 · D1 · D0, we obtain the same derivation, independently from the order of switchings.

▶ Lemma 3.20 (Consistency of switchings). Let X be an M-adhesive category and (X, R) a
well-switching rewriting system. Consider a derivation D = {Di}2

i=0 and suppose that we
have the following two switching sequences

D ↭(0,1) D ′ ↭(1,2) D ′′ ↭(0,1) D ′′′ D ↭(1,2) E ′ ↭(0,1) E ′′ ↭(1,2) E ′′′

Then D ′′′ and E ′′′ are abstraction equivalent.

The lemmas above open the way to the key result of this section, which establishes a
canonical form for switching derivations.

The first result shows that when equating two derivation sequences by performing a series
of switchings, we can limit ourselves to switchings that invert the order of steps that in the
target derivation has to be reversed, i.e. we can limit ourselves to applying inversions.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:15

12 12 12 12

λ1

12 12 12

λ2

12 12 12 12 12

λ0

12

1 2 1 2 12 12 12 12 12

G0 D′
0 G′

1 D′
1 G′

2 D′
2 G3

Figure 10 The derivation F ′.

▶ Theorem 3.21 (No need of useless switches). Let D and D ′ be derivation sequences. If
D ≡sh D ′ then there is a switching sequence D ≡a D0 ↭ν1 D1 ↭ν2 . . . ↭νn

Dn ≡a D ′

consisting only of inversions.

While inversions can be performed in any order in the case of linear rewriting systems,
this is no longer true for left-linear rewriting systems due to the fact that, as already observed,
globality of independence holds in a weak form. For instance, if we get back to Example 3.18
and consider derivation F in Fig. 9, the last two steps applying rules λ1 and λ2 can be
switched, thus leading to a derivation, call it F ′′, applying λ0, λ2, λ1. This F ′′ is switch
equivalent to F ′ in Fig. 10, hence starting from F ′′ we can obtain F ′ via a switching
sequence, but we cannot start by switching λ0 and λ2, even if this is an inversion.

Still, we can identify a canonical form for switching derivations: at each step one can
apply a switch to the inversion with largest index.

▶ Corollary 3.22 (Canonical form). Let D and D ′ be derivation sequences. If D ≡sh
σ D ′ then

there is a switching sequence

D ≡a D0 ↭ν1 D1 ↭ν2 . . . ↭νn
Dn ≡a D ′

where for i ∈ [1, n] we have νi = (k, k + 1) with k = max{j | (j, j + 1) ∈ inv(νi,n)}.

4 Conclusions and further work

We performed an in-depth investigation of the notion of independence between rewriting steps
in the setting of left-linear rewriting systems over M-adhesive categories, which encompasses
most of the structures commonly used in analysing and modelling applications.

We showed that the canonical notion of independence adopted for linear systems does
not enjoy some properties that are essential for developing a sensible theory of concurrency,
notably a Church-Rosser theorem, and we identified a subclass of left-linear rewriting
systems, which we call well-switching, as an appropriate setting where many key results can
be re-established. Specifically, a Church-Rosser theorem, i.e. the possibility of performing
independent steps in any order, is fully recovered. Moreover, the switch construction and
correspondingly the switch equivalence, at the core of a theory of concurrency for rewriting
systems, enjoy a number of fundamental properties: a weak form of globality of independence,
consistency of switching and the existence of a canonical form for switch equivalence proofs.

The class of well-switching M-adhesive rewriting systems is large. Generalising a result
in [6], we showed that one of its defining properties (the fact that sequential independence
implies switchability) holds for a general class of M-adhesive categories that include all

CONCUR 2024

11:16 Left-Linear Rewriting in Adhesive Categories

presheaves over Set. Moreover, the second property, uniqueness of switching, is ensured when
rewriting possibly hierarchical graphical structures, as long as elements belonging to the sorts
of the roots are not merged (e.g., one can consider rewriting systems over directed graphs
where only nodes are merged, as it happens in most of the approaches to the modelling of
calculi and biological systems that we cited in the introduction, as well as in string diagrams).

In the DPO approach to rewriting, the notion of sequential independence, identifying
consecutive rewriting steps that can be performed in reverse order is typically closely linked to
that of parallel independence [21]. Parallel independence relates two rewriting steps starting
from the same object, which can be applied in any order producing, up to isomorphism,
the same resulting object. Parallel independent steps, when applied in sequence, lead to
sequential independent steps and, conversely, from two sequential independent steps, as a
byproduct of the switch construction, one can get two parallel independent steps.

Under mild additional conditions, one can have a notion of parallel rule in a way that
two parallel independent steps can be also combined in a single rewriting step. Even if this is
not discussed explicitly in the paper, our theory can be easily accommodated to encompass a
notion of parallel independence and parallel rule application, enjoying the properties outlined
above. To ensure this, however, one must require that the underlying category X has binary
coproducts and that the class M is closed under them.

The results in this paper open the way to the development of a concurrent semantics for
left-linear rewriting systems over M-adhesive categories. In [3] the authors argue that for
computational systems that allow one to express merging or fusions, the right semantical
models are weak prime domains, a generalisation of prime domains, a staple in concurrency
theory, and connected event structures, their event-based counterpart. The mentioned paper
discusses only the case of graph rewriting and does not focus into the problems induced
by the occurring of “merges” to the theory of rewriting (the systems considered there are
implicitly assumed to be well-switching). We plan to consolidate the statement that weak
prime domains are “the” model for systems with fusions by showing that they allow to
provide a semantics for left-linear rewriting systems in M-adhesive categories.

On the practical side, the present paper just surveyed the possibility of modelling e-graphs.
This appears to be quite interesting as concurrent rewriting on such structures is an active
area of research [34]. We plan to make the correspondence precise and investigate how the
analysis techniques enabled by a concurrent semantics of rewriting can impact on e-graphs.

References
1 G. G. Azzi, A. Corradini, and L. Ribeiro. On the essence and initiality of conflicts in M-

adhesive transformation systems. Journal of Logical and Algebraic Methods in Programming,
109:100482, 2019.

2 P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Concurrent
semantics of algebraic graph transformation systems. In G. Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transformation. Volume 3: Concurrency, pages
107–187. World Scientific, 1999.

3 Paolo Baldan, Andrea Corradini, and Fabio Gadducci. Domains and event structures for
fusions. In LICS 2017, pages 1–12. IEEE Computer Society, 2017.

4 Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and Pawel Sobocinski.
Processes for adhesive rewriting systems. In Luca Aceto and Anna Ingólfsdóttir, editors,
FOSSACS 2006, volume 3921 of LNCS, pages 202–216. Springer, 2006.

5 Paolo Baldan, Fabio Gadducci, and Ugo Montanari. Concurrent rewriting for graphs with
equivalences. In Christel Baier and Holger Hermanns, editors, CONCUR 2006, volume 4137
of LNCS, pages 279–294. Springer, 2006.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:17

6 Paolo Baldan, Fabio Gadducci, and Pawel Sobocinski. Adhesivity is not enough: Local
Church-Rosser revisited. In Filip Murlak and Piotr Sankowski, editors, MFCS 2011, volume
6907 of LNCS, pages 48–59. Springer, 2011.

7 Nicolas Behr, Russ Harmer, and Jean Krivine. Concurrency theorems for non-linear rewriting
theories. In Fabio Gadducci and Timo Kehrer, editors, ICGT 2021, volume 12741 of LNCS,
pages 3–21. Springer, 2021.

8 Nicolas Behr, Russ Harmer, and Jean Krivine. Fundamentals of compositional rewriting theory.
Journal of Logical and Algebraic Methods in Programming, 135:100893, 2023.

9 F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. String diagram rewrite
theory I: rewriting with Frobenius structure. Journal of the Association for Computing
Machinery, 69(2):1–58, 2022.

10 R. Brown and G. Janelidze. Van Kampen theorems for categories of covering morphisms in
lextensive categories. Journal of Pure and Applied Algebra, 119(3):255–263, 1997.

11 Aurelio Carboni, Stephen Lack, and Robert FC Walters. Introduction to extensive and
distributive categories. Journal of Pure and Applied Algebra, 84(2):145–158, 1993.

12 D. Castelnovo. Fuzzy algebraic theories and M, N -adhesive categories. PhD thesis, University
of Udine, 2023.

13 D. Castelnovo, F. Gadducci, and M. Miculan. A new criterion for M, N -adhesivity, with an
application to hierarchical graphs. In P. Bouyer and L. Schröder, editors, FOSSACS 2022,
volume 13242 of LNCS, pages 205–224. Springer, 2022.

14 Davide Castelnovo, Fabio Gadducci, and Marino Miculan. A simple criterion for M, N -
adhesivity. Theoretical Computer Science, 982:114280, 2024.

15 A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae,
26:241–265, 1996.

16 A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches
to graph transformation - Part I: Basic concepts and double pushout approach. In G. Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transformations. Volume 1:
Foundations, pages 163–246. World Scientific, 1997.

17 Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara König. Sesqui-pushout
rewriting. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz
Rozenberg, editors, ICGT 2006, volume 4178 of LNCS, pages 30–45. Springer, 2006.

18 S. Crafa, D. Varacca, and N. Yoshida. Event structure semantics of parallel extrusion in the
π-calculus. In L. Birkedal, editor, FOSSACS 2012, volume 7213 of LNCS, pages 225–239.
Springer, 2012.

19 H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transform-
ation. Springer, 2006.

20 H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. M-adhesive transformation systems
with nested application conditions. Part 2: Embedding, critical pairs and local confluence.
Fundamenta Informaticae, 118(1-2):35–63, 2012.

21 H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. M-adhesive transformation systems
with nested application conditions. Part 1: Parallelism, concurrency and amalgamation.
Mathematical Structures in Computer Science, 24(4):240406, 2014.

22 H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement categories
and systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G Rozenberg, editors, ICGT
2004, LNCS, pages 144–160. Springe, 2004.

23 Hartmut Ehrig, Annegret Habel, and Francesco Parisi-Presicce. Basic results for two types of
high-level replacement systems. In Michel Bauderon and Andrea Corradini, editors, GET-
GRATS Closing Workshop 2001, volume 51 of ENTCS, pages 127–138. Elsevier, 2001.

24 Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of manipulations in multidimensional
information structures. In Antoni W. Mazurkiewicz, editor, MFCS 1976, volume 45 of LNCS,
pages 284–293. Springer, 1976.

CONCUR 2024

11:18 Left-Linear Rewriting in Adhesive Categories

25 Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-grammars: An algebraic
approach. In SWAT 1973, pages 167–180. IEEE Computer Society, 1973.

26 Hartmut Ehrig and Ulrike Prange. Weak adhesive high-level replacement categories and
systems: A unifying framework for graph and Petri net transformations. In Kokichi Futatsugi,
Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning, and Computation,
Essays Dedicated to Joseph A. Goguen, volume 4060 of LNCS, pages 235–251. Springer, 2006.

27 F. Gadducci. Graph rewriting and the π-calculus. Mathematical Structures in Computer
Science, 17(3):1–31, 2007.

28 R. Garner and S. Lack. On the axioms for adhesive and quasiadhesive categories. Theory and
Applications of Categories, 27(3):27–46, 2012.

29 A. Habel and D. Plump. M, N -adhesive transformation systems. In H. Ehrig, G. Engels,
H.-J. Kreowski, and G. Rozenberg, editors, ICGT 2012, volume 7562 of LNCS, pages 218–233.
Springer, 2012.

30 T. Heindel. A category theoretical approach to the concurrent semantics of rewriting. PhD
thesis, Universität Duisburg–Essen, 2009.

31 P.T. Johnstone, S. Lack, and P. Sobociński. Quasitoposes, quasiadhesive categories and Artin
glueing. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors, CALCO 2007, volume
4624 of LNCS, pages 312–326. Springer, 2007.

32 S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO-Theoretical
Informatics and Applications, 39(3):511–545, 2005.

33 S. Lack and P. Sobociński. Toposes are adhesive. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, editors, ICGT 2006, volume 4178 of LNCS, pages 184–198.
Springer, 2006.

34 Henrich Lauko, Lukás Korencik, and Peter Goodman. On the optimization of equivalent
concurrent computations. CoRR, abs/2208.06295, 2022.

35 J.J. Lévy. Optimal reductions in the lambda-calculus. In J.P. Seldin and J.R. Hindley, editors,
To H.B. Curry, Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 159–191.
Academic Press, 1980.

36 S. MacLane. Categories for the working mathematician. Springer, 2013.
37 Antoni W. Mazurkiewicz. Trace theory. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz

Rozenberg, editors, Advances in Petri Nets 1986, volume 255 of LNCS, pages 279–324. Springer,
1986.

38 J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

39 M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains, Part 1.
Theoretical Computer Science, 13:85–108, 1981.

40 Roy Overbeek, Jörg Endrullis, and Aloïs Rosset. Graph rewriting and relabeling with PBPO+:
A unifying theory for quasitoposes. Journal of Logical and Algebraic Methods in Programming,
133:100873, 2023.

41 I. Phillips, I. Ulidowski, and S. Yuen. Modelling of bonding with processes and events. In
Gerhard W. Dueck and D. Michael Miller, editors, RC 2013, volume 7948 of LNCS, pages
141–154. Springer, 2013.

42 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and
Pavel Panchekha. egg: Fast and extensible equality saturation. Proceedings of the ACM on
Programming Languages, 5(POPL):1–29, 2021.

A Properties of M-adhesive categories

This first appendix is devoted to the proofs of a few well-known results about M-adhesive
categories. Observe that our notion of M-adhesivity follows [20, 21] and is different from
the one of [1]. What is called M-adhesivity in the latter paper corresponds to our strict
M-adhesivity. Moreover, in [1] the class M is assumed to be only stable under pullbacks.
However, if M contains all split monos, then stability under pushouts can be deduced from
the other axioms [12, Prop. 5.1.21].

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:19

A.1 Some results on A-stable and A-Van Kampen squares
We start proving some general results regarding A-Van Kampen and A-stable squares. Let
us begin recalling some classical results about about pullbacks and pushouts [36].

▶ Lemma A.1. Let X be a category, and consider the diagram below, then the following hold
1. if the right square is a pullback, then the whole rectangle is a pullback if and only if the

left square is one;
2. if the left square is a pushout, then the whole rectangle is a pushout if and only if the

right square is one.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h

// B
k

// C

The following proposition establishes a key property of A-Van Kampen squares with a
mono as a side: they are not only pushouts, but also pullbacks [8, 22,32].

▶ Proposition A.2. Let A be a class of arrows stable under pushouts and containing all the
isomorphisms. If the square below is A-Van Kampen and m : A → C is mono and belongs to
A, then the square is a pullback and n is a monomorphism.

A
g

//

m

��

B

n

��

C
f

// D

The previous proposition allows us to establish the following result.

▶ Lemma A.3. Let A be a class of arrows stable under pullbacks, pushouts and containing
all isomorphisms. Suppose that the left square below is A-Van Kampen, while the vertical
faces in the right cube are pullbacks. Suppose moreover that m : A → C and d : D′ → D are
mono and that d belongs to A. Then d ≤ n if and only if c ≤ m.

A′

a
��

g′
//

m′

}}

B′

b

��

n′

}}

A

m

��

g
// B

n

��

C ′

c

��

f ′
// D′

d

��

A
g

//

m}}

B

n||

C
f

// D C
f

// D

▶ Remark A.4. Recall that, given two monos m : M → X and n : N → X with the
same codomain, m ≤ n means that there exists a, necessarily unique and necessarily mono,
k : M → N fitting in the triangle below.

Notice, moreover, that if m ≤ n and n ≤ m, then the arrow k : M → N is an isomorphism.

M
k //

m
��

N

n
��

X

CONCUR 2024

11:20 Left-Linear Rewriting in Adhesive Categories

Finally, we show that A-stable pushouts enjoy a pullback-pushout decomposition property.

▶ Proposition A.5. Let X be a category and A a class of arrows stable under pullbacks.
Suppose that, in the diagram below, the whole rectangle is an A-stable pushout and the right
square a pullback. If the arrow k is in A and it is a monomorphism, then both squares are
pushouts.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h

// B
k

// C

A.2 Useful properties of M-adhesive categories
We are now going to apply the results of the previous section to M-adhesive categories in
order to establish some high-level replacement properties [19, 21, 22]. A first important result
that can be immediately established, with the aid of Proposition A.2, is the following one.

▶ Proposition A.6. Let X be an M-adhesive category. Then M-pushouts are pullbacks.

From Proposition A.6, in turn, we can derive the following corollaries.

▶ Corollary A.7. In a M-adhesive category X, every m ∈ M is a regular mono.

The following result now follows at once noticing that a regular monomorphism which is
also epic is automatically an isomorphism.

▶ Corollary A.8. If X is an M-adhesive categories, then every epimorphism in M is an
isomorphism. In particular, every adhesive category X is balanced: if a morphism is monic
and epic, then it is an isomorphism.

▶ Lemma A.9 (M-pushout-pullback decomposition). Let X be an M-adhesive category and
suppose that, in the diagram below, the whole rectangle is a pushout and the right square a
pullback. Then the following statements hold
1. if a belongs to M and k is a mono, then both squares are pushouts and pullbacks;
2. if f and k are in M, then both squares are pushouts and pullbacks.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h

// B
k

// C

Let us turn our attention to pushout complements.

▶ Definition A.10 (Pushout complement). Let f : X → Y and g : Y → Z be two composable
arrows in a category X. A pushout complement for the pair (f, g) is a pair (h, k) with
h : X → W and k : W → Z such that the square below is a pushout.

X
f

//

h
��

Y

g

��

W
k

// Z

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:21

Working in an M-adhesive category guarantees that pushout complements are unique.

▶ Lemma A.11. Let f : X → Y be an arrow in an M-adhesive category X and suppose that
the left square below is a pushout while the right one is a pullback, with m : M ↣ X and
n : N ↣ Y in M. Then n ≤ k if and only if p2 ≤ m.

M��

m

��

h // Q
��

k

��

P
p1 //

��

p2

��

N��

n

��

X
f

// Y X
f

// Y

▶ Corollary A.12 (Uniqueness of pushout complements). Let X be a M-adhesive category.
Given m : X↣Y in M and f : Y → Z, let (h1, k1) and (h2, k2) be pushout complements of
m and f depicted below. Then there exists a unique isomorphism ϕ : W1 → W2 making the
diagram below commutative.

X // m //

h1
��

h2

��

Y

f

��

W2))

k2

66W1
ϕ

oo //
k1 // Z

B M-adhesivity is not enough

In Section 3 we introduced the notion of strong enforcing left-linear rewriting system, a class
that contains all the linear rewriting systems. This result can be further refined: in [6] a class
B of (quasi-)adhesive category is defined for which the local Church-Rosser Theorem holds
for left-linear rewriting system. In our language, this means that every left-linear rewriting
system based on a category in B is strong enforcing. This section is devoted to repropose,
and slightly generalise, the results of [6] to our context.

▶ Definition B.1. Let M be a class of monos in a category X, closed under composition,
containing all isomorphisms and stable under pullbacks and pushouts. Suppose that the
diagram below is given and the whole rectangle is a pushout. We say that X satisfies

the M-mixed decomposition property if, whenever k belongs to M and the right half of
the diagram below is a pullback, then the left one is a pushout;
the M-pushout decomposition property if whenever a, b and c belongs to M and the right
half of the diagram below is a pushout, then its left half is a pushout too.

X

a

��

f
// Y

g
//

b
��

Z

c

��

A
h

// B
k

// C

The class of categories of type B is closed under the same constructions of Theorem 2.5.
This can be deduced at once from the fact that in such categories pullbacks and pushouts
are computed component-wise.

▶ Lemma B.2. Let X be a category satisfying the M-mixed and M-pushout decomposition
properties, then the following hold
1. for every object X, X/X satisfies the M/X-mixed and the M/X-pushout decomposition

properties, while X/M-adhesive satisfies their X/M variants, where

M/X := {m ∈ A(X/X) | m ∈ M} X/M := {m ∈ A(X/X) | m ∈ M}

CONCUR 2024

11:22 Left-Linear Rewriting in Adhesive Categories

2. for every small category Y, the category XY satisfies the MY-mixed and the MY-pushout
decomposition properties, where

MY := {η ∈ A(XY) | ηY ∈ M for every Y ∈ Y}

The following result shows that the mixed and pushout decomposition properties guarantee
that every independence pair is strong.

▶ Theorem B.3. Let X be an M-adhesive category with all pushouts and satisfying the
M-mixed and the M-pushout decomposition properties. Then every left-linear rewriting
system on X is strong enforcing.

Proof. Let D = {Di}1
i=0 be the derivation made by two sequentially independent derivations

L0

m0

��

K0

k0

��

oo
l0oo

r0 // R0
i0

##
h0

��

L1
i1

{{
m1

��

K1

k1

��

oo
l1oo

r1 // R1

h1

��

G0 D0oo
f0

oo
g0

// G1 D1oo
f1

oo
g1

// G2

We have to show that (i0, i1) is a strong independence pair. Now, by hypothesis X has
all pushouts, thus the only thing to show is that the squares below are pushouts (the third
one is the usual pullback of f1 : D1↣G0 along g0 : D0 → G1)

K0
r0 //

u0

��

R0

i0

��

K1 //
l1 //

u1

��

L1

i1

��

P //
p0 //

p1

��

D0

g0

��

P
p1

// D1 P
p0

// D0 D1 //
f1

// G1

To see this, consider the following two diagrams

K0

k0

((

r0

��

u0
// P //

p0
//

p1

��

D0

g0

��

K1

k1

((

��

l1

��

u1
// P

p1
//

��

p0

��

D1��

f1

��

R0

h0

66
i0 // D1 //

f1 // G1 L1

m1

66
i1 // D0

g0 // G1

The thesis now follows from the M-mixed and the M-pushout decomposition property. ◀

Our next step is to identify sufficient conditions for a category X to satisfy the mixed
and M-pushout decomposition properties.

▶ Definition B.4. Let X be an M-adhesive category, the pair (X, M) is of type B if
1. every arrow in M is a coproduct coprojection;
2. X has all pushouts;
3. X has strict initial objects and for every X the unique arrow ?X : 0 → X belongs to M;
4. all pushouts are M-stable.

▶ Remark B.5. It is worth to examine more closely conditions 1 and 3 of the above definition.
Let m0 : X0 ↣ Y be in M, the first condition means that there exists m1 : X1 → Y

such that (Y, {mi}1
i=0) is a coproduct. This, together with property 3, entails that every

coprojection in a coproduct is in M. This follows since any coproduct (X1 +X2, {ιXi}1
i=0)

fits in a pushout diagram as the one below.

P. Baldan, D. Castelnovo, A. Corradini, and F. Gadducci 11:23

X has strict initial objects if it has initial objects and every arrow f : X → 0 is an
isomorphism. Notice that if initial objects are strict, then ?X : 0 → X is mono for every
X: indeed for every pair f, g : Y ⇒ 0 then, by strictness, Y is initial and so f = g.

0 //
?X1 //

��

?X2
��

X1��

ιX1

��

X2 //
ιX2

// X1 + X2

▶ Example B.6. The category Set of sets and functions is of type B. Similarly, the category
Inj of sets and injective functions is quasiadhesive and, with regular monos, of type B.

Categories of type B satisfy a property resembling extensivity [11].

▶ Proposition B.7. Let (X, M) be a pair of type B. Then for every diagram as the one
below, in which the bottom row is a coproduct cocone and the vertical arrows are in M, the
top row is a coproduct if and only if the two squares are pullbacks.

A
f

//
��

r

��

C��

s

��

B��

t

��

g
oo

X
ιX

// X + Y Y
ιY

oo

Proof. Consider the cube below, in which the back faces are pullbacks. The bottom faces is
an M-Van Kampen pushout, thus the top face is a pushout if and only if the front faces are
pullbacks. By strictness of 0, a : I → 0 is an isomorphism, so that I is initial, therefore the
M-Van Kampen condition reduces to the request that (C, {f, g}) is a coproduct cocone if
and only if the front faces are pullbacks, as claimed.

I��

a
��

k //
h
��

B��

t

��

g

zz
A��

r

��

f
// C��
s

��

0 //
?Y //

��

?X
��

Yzz

ιY
zz

X //
ιX

// X + Y

◀

The previous result entails the following one, needed to show that in any pair (X, M) of
type B, the category X satisfies the M-mixed and M-pushout decomposition properties.

▶ Proposition B.8. Let (X, M) be a pair of type B, and suppose that the square below is
an M-pullback. Then there exists E ∈ X, e : E↣C in M, ϕ : E → B1 such that (C, {m, e})
is a coproduct and g = f + ϕ. Moreover, such a square is a pushout if and only if ϕ is an
isomorphism.

A
f

//
��

m

��

B0��

ιB0

��

C
g

// B0 + B1

CONCUR 2024

11:24 Left-Linear Rewriting in Adhesive Categories

▶ Lemma B.9. Let (X, M) be a pair of type B, then X satisfies the M-mixed and M-pushout
decomposition properties.

Proof. M-mixed decomposition property. This follows at once from Proposition A.5.
M-pushout-decomposition property. Using Propositions B.7 and B.8 and the fact that

arrows in M are coproduct coprojections, we can reduce to prove the property for diagrams
as the one below. By hypothesis and Proposition B.8, φ and φ ◦ ϕ are both isomorphisms,
therefore ϕ is an isomorphism too and we can conclude again using Proposition B.8.

X
f

//
��

ιX

��

Y
g

//
��

ιY

��

Z��

ιZ

��

X + A

(g◦f)+(φ◦ϕ)

33

f+ϕ
// Y + B

g+φ
// Z + C

◀

▶ Definition B.10. Let X be an M-adhesive category, we say that the pair (X, M) is of
type B+ if (at least) one of the following holds
1. (X, M) is of type B;
2. X is Y/Y and M = N /Y for some (Y, N) of type B+ and Y ∈ Y;
3. X is Y/Y and M = Y/N for some (Y, N) of type B+ and Y ∈ Y:
4. X is YA and M = N A for some category category A and (Y, N) of type B+.

▶ Example B.11. The pair (Graph, Mono(Graph)) of graphs and their monos is of type B+

but not of type B. Indeed, not every monomorphism of graphs is a coproduct coprojection.

From Lemmas B.2 and B.9 we can now deduce at once the following.

▶ Corollary B.12. For every (X, M) of type B+, the category X has the M-mixed and
M-pushout decomposition properties.

Using Theorem B.3 we finally get the main result of our appendix.

▶ Corollary B.13. Let (X, M) be a pair of type B+, then every left-linear rewriting system
is strong enforcing.

History-Determinism vs Fair Simulation
Udi Boker # Ñ

Reichman University, Herzliya, Israel

Thomas A. Henzinger # Ñ

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Karoliina Lehtinen # Ñ

CNRS, LIS, Aix-Marseille Univ., France

Aditya Prakash # Ñ

University of Warwick, Coventry, UK

Abstract
An automaton A is history-deterministic if its nondeterminism can be resolved on the fly, only
using the prefix of the word read so far. This mild form of nondeterminism has attracted particular
attention for its applications in synthesis problems. An automaton A is guidable with respect to a
class C of automata if it can fairly simulate every automaton in C, whose language is contained in
that of A. In other words, guidable automata are those for which inclusion and simulation coincide,
making them particularly interesting for model-checking.

We study the connection between these two notions, and specifically the question of when they
coincide. For classes of automata on which they do, deciding guidability, an otherwise challenging
decision problem, reduces to deciding history-determinism, a problem that is starting to be well-
understood for many classes.

We provide a selection of sufficient criteria for a class of automata to guarantee the coincidence
of the notions, and use them to show that the notions coincide for the most common automata
classes, among which are ω-regular automata and many infinite-state automata with safety and
reachability acceptance conditions, including vector addition systems with states, one-counter nets,
pushdown-, Parikh-, and timed-automata.

We also demonstrate that history-determinism and guidability do not always coincide, for
example, for the classes of timed automata with a fixed number of clocks.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases History-Determinism

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.12

Related Version Full Version: https://arxiv.org/abs/2407.08620 [3]

Funding Udi Boker : Israel Science Foundation grant 2410/22
Thomas A. Henzinger : ERC-2020-AdG 101020093 (VAMOS)
Karoliina Lehtinen: ANR QUASY 23-CE48-0008-01
Aditya Prakash: Chancellors’ International Scholarship from the University of Warwick and Centre
for Discrete Mathematics and Its Applications (DIMAP)

1 Introduction

Language inclusion between automata is a key problem in verification: given an automaton
representing a program and another representing a specification, language inclusion of the
former in the latter captures precisely whether all executions of the program satisfy the
specification. Unfortunately, in the presence of nondeterminism, inclusion is algorithmically
hard. For instance, for regular automata it is PSpace-hard on both finite and infinite words.

© Udi Boker, Thomas A. Henzinger, Karoliina Lehtinen, and Aditya Prakash;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:udiboker@runi.ac.il
https://faculty.runi.ac.il/udiboker/
https://orcid.org/0000-0003-4322-8892
mailto:tah@ista.ac.at
https://pub.ista.ac.at/~tah/
https://orcid.org/0000-0002-2985-7724
mailto:lehtinen@lis-lab.fr
https://lehtinenkaroliina.wordpress.com/
https://orcid.org/0000-0003-1171-8790
mailto:aditya.prakash@warwick.ac.uk
https://apitya.github.io/
https://orcid.org/0000-0002-2404-0707
https://doi.org/10.4230/LIPIcs.CONCUR.2024.12
https://arxiv.org/abs/2407.08620
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 History-Determinism vs Fair Simulation

Fair simulation is a more syntactic approximation of inclusion, defined by the simulation
game [12]. In this game, one player, in the role of the spoiler, builds, transition by transition,
a run in one of the automata, say A, while the other, in the role of the duplicator, chooses at
each turn a matching transition in the other automaton, say B. The second player’s task
is to build a run that is accepting if the first player’s run is accepting. If the duplicator
has a winning strategy, then B is said to simulate A, which, in particular, implies that A’s
language is included in B’s language. Simulation, due to its local and syntactic nature, is
generally easier to check than inclusion: for instance it is in PTime for nondeterministic
Büchi automata. As a result, automata for which language inclusion and simulation coincide
are particularly well-suited for model-checking. We call such automata guidable, after a
similar notion used previously as an alternative to determinism for tree automata [9]. Despite
their clear usefulness for model checking, guidable automata have so far been mostly used as
a tool, but not studied much in their own right, with the notable exception of [17].

Guidability is not easy to decide: it is contingent on an automaton simulating a potentially
infinite number of language-included automata. We would like to have, whenever possible, a
characterisation that is more amenable to algorithmic detection.

Deterministic automata are of course always guidable, and so are history-deterministic
automata. These are mildly nondeterministic automata, in which nondeterministic choices
are permitted, but can only depend on the word read so far, rather than the future of the
word. These automata have received a fair bit of attention recently due, in particular, to
their applications in synthesis problems [6]. In general, they offer an interesting compromise
between the power of nondeterministic automata and the better algorithmic properties of
deterministic ones. In particular, they can simulate all equivalent, or language-contained,
automata as they only need the history to resolve nondeterministic choice in the best possible
way – in other words, they are guidable. In fact, at first it might appear that history-
determinism and guidability should coincide; indeed, this is the case if we consider guidability
with respect to all labelled transition systems [13, Theorem 4]. However, there are also
classes of automata for which this is not the case.

Guidability and history-determinism coinciding on a class C of automata is equivalent to
the description “for every automaton A ∈ C that is not history-deterministic, there is some
A′ ∈ C that is language-included in A but that A does not simulate” (D). Then it is easy
enough to hand-pick automata to build classes where guidability and history-determinism
do not coincide (for example, a class of inclusion-incomparable automata that are not
all history-deterministic). However, as we will see, there are also more natural classes of
automata, such as timed automata with a bounded number of clocks, for which guidability
and history-determinism differ.

The characterisation (D) is too abstract to be much use for analysing the usual automata
classes we are interested in. We therefore prove that several more concrete criteria (The-
orem 1) imply that guidability and history-determinism coincide, and use each of these in a
comprehensive analysis of standard automata classes. Roughly, each of the criteria describes
some sufficient closure properties which guarantee the existence of A′ from description (D).
If some automaton can simulate another automaton that is sufficiently difficult to simulate
(for example a deterministic one, since they simulate all equivalent automaton), then it must
be history-deterministic; as a result, a class of automata having sufficient closure properties
(such as closure under determinisation), implies that guidability and history-determinism
coincide. The challenge is to identify, for a variety of different classes of automata C, an
automaton that is sufficiently difficult to simulate, while remaining in C.

U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:3

In order to discuss our sufficient criteria in more detail, we need to start with a couple of
key notions, the first of which is the 1-token game and the second is the 1-token ghost.

History-determinism of an automaton is tricky and expensive to decide directly [11]; As
an alternative, Bagnol and Kuperberg used k-token games as potential characterisations for
history-determinism [2]. Roughly, they resemble a (fair) simulation-like game, played on a
single automaton, where one player, Eve (in the role of Duplicator), must build transition-
by-transition a run on a word dictated letter-by-letter by Adam, who, after each of Eve’s
choices, also builds k runs transition-by-transition. Eve then wins if her run is accepting
whenever Adam’s run is accepting. Bagnol and Kuperberg showed that for Büchi automata,
the 2-token game indeed characterises history-determinism, which means that deciding
history-determinism for Büchi automata is in PTime [2]. Since then, the 1- or 2-token games
have been shown to characterise history-determinism for various automata classes, including
coBüchi [4], DSum, LimInf, and LimSup automata [5]. These games contrast with the letter
game, a game which always characterises history-determinism, but which is often challenging
to solve directly [11].

In this work, we make heavy use of token-games, this time to understand the connection
between history-determinism and guidability. In particular, we extend token games to be
played over two automata (Definition 3), separating between Eve’s and Adam’s automata,
and define, given an automaton A, that an automaton A′ is a 1-token ghost of A if A′ is
language-equivalent to A and Eve wins the 1-token game between A′ and A. For some
classes of automata such a ghost is easy to construct, while for other classes it might not
exist due to lacking closure properties.

With these notions, we can now state our criteria.

▶ Theorem 1. The notions of history-determinism and guidability coincide for a class C of
labelled transitions systems (LTSs) if at least one of the following holds:
1. Determinisation. C is closed under history-determinism, i.e., for each nondeterministic

LTS in C, there is a language-equivalent history-deterministic (or deterministic) LTS in
C as well. (Lemma 4)

2. 1-token ghost. 1-token games characterise history-determinism in C, and C is closed
under 1-token ghost. (Lemma 8)

3. Strategy ghost. For every A ∈ C that is not history-deterministic, there is a deterministic
LTS B over the alphabet of transitions of A, such that B recognises the plays of a winning
strategy of Adam in the letter game on A, and B, projected onto the alphabet of A, has a
1-token ghost in C. (Lemma 9)

We prove the criteria of Theorem 1 in Section 4, and use them in Section 5 to show that
the notions of history-determinism and guidability coincide for numerous classes of automata,
listed in Table 1. We also provide counter-examples of classes for which history-determinism
and guidability do not coincide, as listed in Table 1, and elaborated on in Section 6. We
restrict our analysis to automata over infinite words, which are better behaved in this context,
and discuss how to adapt our techniques for finite words in Section 7.

A practical corollary of our result is that guidability is decidable, with the complexity
of deciding history-determinism, for ω-regular automata (ExpTime for parity automata,
PTime for Büchi and coBüchi), safety and reachability timed automata (ExpTime) and
visibly pushdown automata (ExpTime). For details on the complexity of these procedures,
we refer the reader to a recent survey [6].

CONCUR 2024

12:4 History-Determinism vs Fair Simulation

Table 1 History-determinism vs guidability.

Automata Class HD = Guidability by

ω-regular Determinisation
or Strategy ghost

Fixed-index parity (e.g., Büchi), Weak Strategy ghost Corollary 10

Linear Strategy ghost Theorem 19.
(Not ghost-closed Theorem 18)

Safety & Reachability
pushdown automata, VASS, timed, one-counter

automata, one-counter net, Parikh

1-token ghost
Theorem 17 and Corollary 15

VPA with any ω-regular acceptance condition Strategy ghost Theorem 16

Classes for which HD ̸= guidability:

– Büchi automata with a bounded number of states. Theorem 20

– Timed automata with a bounded number of clocks. Theorem 21

Notable classes for which we leave the question HD =? guidability open:

– PDA/OCA/OCN/Timed automata with general ω-regular acceptance

2 Preliminaries

We use N and N+ to denote the set of non-negative and positive integers respectively. We
use [i..j] to denote the set {i, . . . , j} of integers, and [i] for the set [1..i]. An alphabet Σ is a
non-empty set of letters. A finite or infinite word is a finite or infinite sequence of letters
from Σ respectively. We let ε be the empty word, and Σε the set Σ ∪ {ε}. The set of all
finite (resp. infinite) words is denoted by Σ∗ (resp. Σω). A language is a set of words.

2.1 Labelled transition systems
A labelled transition system (LTS) A = (Σ, Q, ι, ∆, α) consists of a potentially infinite
alphabet Σ, a potentially infinite state-space Q, an initial state ι ∈ Q, a labelled transition
relation ∆ ⊆ Q × Σε × Q, and a set of accepting runs α, where a run ρ is a (finite or
infinite) sequence of transitions starting in ι and following ∆. We may write q

σ−→ q′ instead
of (q, σ, q′) ∈ ∆ for σ ∈ Σε. Given a finite run ρ = q0

σ1−→ q1
σ2−→ · · · σk−→ qk on the word

v = σ0 · σ1 · σ2 · · · σk ∈ Σk+1
ε , we write q0

v,ρ==⇒ qk to denote that ρ is a transition sequence
on the word v that starts at q0 and ends at qk. An LTS is deterministic if for every state q

and letter σ ∈ Σ, there is at most one transition q
σ−→ q′ from q on the σ, and there are no

transitions on ε.
A word w ∈ Σω is accepted by an LTS A if there is an accepting run of A on w. The

language L(A) of A is the set of words that it accepts. An LTS A is contained in an LTS
B, denoted by A ≤ B, if L(A) ⊆ L(B), while A and B are equivalent, denoted by A ≡ B if
L(A) = L(B).

A transducer is like an LTS without acceptance condition and ε-transitions but with
an output labelling: it is given by a tuple (ΣI , ΣO, Q, ι, ∆, γ), where ΣI and ΣO are the
input and output alphabets, respectively, ∆ ⊆ Q × ΣI × Q is the transition relation, and
γ : ∆ → ΣO is the output function. A strategy in general is a deterministic transducer. It is
finite memory if the transducer has a finite state space.

U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:5

2.2 Automata
We briefly recall the automata types considered here, which we assume to operate on infinite
words unless stated otherwise, and leave the formal definitions to the appendix.

LTSs are represented concisely by various automata. An automaton A induces an LTS
B, whose states are the configurations of A, and whose runs are the same as A’s runs. If
A’s states and configurations are the same, as is the case with ω-regular automata which we
define below, then B is identical to A, but with the acceptance condition given by a set of
runs (as opposed to an ω-regular conditions). If the configurations of A contain additional
data, as is the case for example with pushdown automata, then B and A have different states.
Notice that A is deterministic iff B is. The acceptance condition of A induces the acceptance
condition on B.

In a parity condition, α assigns priorities in N to either states or transitions, and a run is
accepting if the highest priority that occurs infinitely often along it is even. An [i, j]-parity
automaton, for i < j two natural numbers is a parity automaton whose priorities are in [i, j].
A parity automaton is said to be a weak automaton if there is no cycle in the automaton
containing both an even and odd priority. In a reachability condition, some states are labelled
final; a run accepts if it reaches a final state. In a safety automaton, some states are labelled
safe; a run accepts if it remains within the safe region.

In a nondeterministic ω-regular automaton (Σ, Q, ι, δ, α), Σ and Q are finite, and the
acceptance condition α is based on the set of states (or transitions) visited infinitely often
along a run. A timed automaton (TWA) (Σ, Q, ι, C, δ, α) has a set of clocks C and its
transitions are guarded by inequalities between the clock values and can reset clocks. It
reads timed words, which consist of letters of a finite alphabet Σ paired with delays from R.
A timed automaton recognises a timed language, for example “at some point an event occurs
twice exactly one time-unit apart.”

We also handle pushdown automata, one-counter automata, vector addition systems
with states, one-counter nets and Parikh automata with reachability and safety acceptance.
We define these classes of infinite state systems uniformly in Section 5.2 as classes of finite
state automata with transitions that modify an infinite content space. A visibly pushdown
automaton (VPA) is a pushdown automaton without ε-transitions, in which the input
alphabet is partitioned into pop, push and noop letters that induce only transitions that
pop, push and have no effect on the stack respectively.

3 History-determinism, simulation and related games

Different simulation-like games that capture either a relationship between automata or prop-
erties of a single automaton are at the heart of our technical developments. In this section we
go over the various games – both known and newly defined – that will be played throughout
this article, and which allow us to connect guidability and history-determinism. These games
are all based on Adam (the spoiler) building a word letter by letter, and potentially a run in
an automaton over that word, while his opponent Eve (the duplicator) tries to build a single
accepting run transition by transition. The differences between these games are based on
whether they are played on one or two automata, whether Adam picks transitions, and if
so, whether he does it before Eve. The winning condition is similar in all cases: Eve’s run
must be accepting whenever Adam’s run is accepting, or if Adam does not have a run, then
whenever the word built by Adam’s moves is in the language of a specified automaton. This
results in three styles of games: (i) simulation games, played on two automata, in which
Adam plays before Eve, and each builds a run in their respective automaton; (ii) token-games,

CONCUR 2024

12:6 History-Determinism vs Fair Simulation

which can be played on one or two automata, in which Adam first declares the letter, and
then Eve plays her transition before Adam plays his; and (iii) the letter game, played on a
single automaton, in which Adam only chooses letters and does not build a run at all.

Fair simulation between two LTSs (or automata) is captured by the simulation game
defined below:

▶ Definition 2 (Simulation game). Consider LTSs A = (Σ, QA, ιA, ∆A, αA) and B =
(Σ, Q, ιB , ∆B , αB). The simulation game Sim(B, A) between B and A is a two player-
game played between Adam and Eve with positions in QA × QB which starts at the position
(p0, q0) = (ιA, ιB). At round i of the play, for i ≥ 0, when the position is (pi, qi):

Adam picks σi ∈ Σ and a transition (or transition sequence, in the presence of ε-
transitions) pi

σi,ρi===⇒ pi+1 in A;

Eve picks a transition (or transition sequence, in the presence of ε-transitions) qi
σi,ρ′

i===⇒
qi+1 in B; they proceed from (pi+1, qi+1).

An infinite play produces a run ρA in A consisting of transitions chosen by Adam and a run
ρE in B of transitions chosen by Eve, both on σ0σ1σ2 · · · . We say that Eve wins the play if
ρE is accepting or ρA is rejecting.

If Eve has a winning strategy in this game, we say that B simulates A, denoted by Sim(B, A).
It is easy to observe that if B simulates A, then L(A) ⊆ L(B). An LTS A is guidable with
respect to a class C of LTSs if A simulates every LTS A′ in C that satisfies L(A′) ⊆ L(A).

The following letter game based definition of history-determinism, was introduced by Hen-
zinger and Piterman [11], and coincides with Colcombet’s notion of translation strategies [8].

Given an LTS A, the letter game on A, denoted by HD(A) is similar to the simulation
game except that instead of playing transitions in an automaton, Adam just chooses letters
and builds a word w, letter by letter, which should be in the language of A, while Eve tries
to build a run of A over w. More precisely, the letter game starts with Eve’s token at the
initial state ι, and proceeds in rounds. At round i, where Eve’s token is at qi:

Adam chooses a letter σi in the alphabet Σ of A;
Eve chooses a transition qi

σi−→ qi+1 (or a transition sequence qi
σi,ρi===⇒ qi+1 in the presence

of ε-transitions) of A over σi; Eve’s token moves to qi+1.
In the limit, a play consists of the word w = σ0σ1 · · · and the run ρ = ρ0 · ρ1 · ρ2 · · · . Eve
wins the play if w /∈ L(A) or ρ is accepting. We say that A is history-deterministic (HD) if
Eve has a winning strategy in the letter game over A.

Token games are known to characterise history-determinism on various classes of auto-
mata [2, 5, 6]. We generalise token games to be played on two LTSs below, which makes
them more akin to a variation of simulation. This will help us relate simulation and
history-determinism in Section 4. We only use the 1-token version here.

▶ Definition 3 (1-token games over two LTSs (or automata)). Consider LTSs A′ and A with
initial states p0 and q0 respectively. In the 1-token game on A′ and A denoted by G1(A′, A),
Eve has a token with which she constructs a run in A′, and Adam has a token with which he
constructs a run in A. The game proceeds in rounds, and at round i of the play with token
positions (pi, qi), for each i ≥ 0:

Adam chooses a letter σi in Σ;
Eve chooses a transition (or a transition sequence, in the presence of ε-transitions)
pi

σi,ρ′
i===⇒ pi+1 in A′;

Adam chooses a transition (or transition sequence, in the presence of ε-transitions)
qi

σi,ρi===⇒ qi+1; the game proceeds from (pi+1, qi+1).

U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:7

An infinite play produces a word w = σ0 . . . , a sequence of transitions ρE of A′ chosen by
Eve, and a sequence of transitions ρA in A chosen by Adam. Eve wins if ρE is accepting or
if ρA is rejecting.

A strategy for Eve here is a function s : (∆+)∗ × Σ → (∆′)∗, where Σ is the alphabet of
A and A′, and ∆ and ∆′ are the sets of transitions of A and A′, respectively. When clear
from context, G1(A′, A) also denotes the claim that Eve has a winning strategy in the game
G1(A′, A). As an automaton and its induced LTS have the same runs, G1(A′, A) holds for
automata A and A′ iff it holds for their induced LTSs. We also write G1(A) for G1(A, A).

Note that the 1-token game and the simulation game differ in one key aspect: in the
simulation game, Adam plays first, and Eve can use the information of the transition to
inform her choice, while in the 1-token game, Eve must choose her transition based only on
the letter chosen by Adam, who plays his transition after Eve.

4 Criteria for when History-Determinism = Guidability

We now provide criteria which guarantee that history-determinism and guidability coincide
for a class of LTSs. In Section 5, we use these to show the coincidence of the two notions for
many standard automata classes.

4.1 Closure under (history-)determinism
A first observation is that if every LTS A can be determinised within the class C, or even if
there exists an equivalent HD LTS A′ within C then A is HD if and only if it is guidable.

▶ Lemma 4. History-determinism and guidability coincide for any class C of LTSs in which
the languages expressed by history-deterministic (or deterministic) LTSs are the same as
languages expressed by nondeterministic LTSs.

The proof is simple: one direction is trivial (HD always implies guidability) and conversely,
if an automaton A is not HD, then it cannot simulate any equivalent HD automaton, implying
that A is not guidable.

Various examples of such classes are provided in Section 5.1, as summarised in Table 1.
In particular, the general class of all labelled-transition systems [13], safety/reachability
visibly pushdown automata [1], as well as finite-state automata on finite words (NFAs), and
co-Büchi, Parity, Rabin, Streett, and Muller automata on infinite words. Yet, this is not the
case for Büchi automata or parity automata with a fixed parity index. History-determinism is
also strictly less expressive than nondeterminism for pushdown automata, Parikh automata,
timed automata and one-counter nets.

4.2 Via token games
For classes that are not closed under determinisation, we have to find some other type of
automaton that is difficult to simulate. To do so, we revisit token games, previously used to
help decide history-determinism, to relate history-determinism and guidability. Recall that
we extended the definition of 1-token games, so that they are played on two automata, rather
than one. In the next definition, we use this extended notion of 1-token game to identify, for
each automaton A, an automaton A′ such that Eve wins the the 1-token game on A if and
only if A simulates A′.

▶ Definition 5 (1-token ghost). An LTS (or an automaton) A′ is a 1-token ghost of an LTS
A, denoted by 1-TokenGhost(A′, A), if A′ ≡ A and G1(A′, A).

CONCUR 2024

12:8 History-Determinism vs Fair Simulation

To show that the ghost automaton has the property that Sim(A, A′) if and only if Eve
wins G1(A, A), we compose the strategies in Sim(A, A′) and G1(A′, A).

▶ Lemma 6. Consider LTSs A and A′, such that A simulates A′ and 1-TokenGhost(A′, A).
Then Eve wins G1(A).

Proof. Let ssim be a winning strategy of Eve in the simulation game between A and A′,
and s′ her winning strategy in G1(A′, A). Eve then has a winning strategy s in G1(A): she
plays the strategy ssim in Sim(A, A′) against her imaginary friend Berta, who plays the
strategy s′ in G1(A′, A) against Adam. In more detail: In each round i of the game G1(A),
Adam chooses a transition sequence ρi−1 in A on σi−1 (except for the first round) on his
token and a letter σi, then Berta chooses the transition sequence ρB

i = s′ (ρ0 . . . ρi−1, σi) over
the letter σi in A′ on her token in G1(A′, A), and then Eve chooses the transition sequence
ρi = ssim(ρB

0 . . . ρB
i−1) in A.

The run built by Eve with the strategy s is accepting if the run built by Berta is, which
is in turn accepting if Adam’s run is. Hence, s is a winning strategy for Eve in G1(A). ◀

Then, for classes in which token games characterise history-determinism and which are
closed under the ghost relation, guidability and history-determinism coincide.

▶ Definition 7. A class C of LTSs is closed under 1-token ghost if for every A ∈ C there
exists A′ ∈ C such that 1-TokenGhost(A′, A).

▶ Lemma 8. Given a class C of LTSs closed under 1-token ghost for which G1 characterises
history-determinism, history-determinism and guidability coincide for C.

Proof. Being HD always implies guidability, so one direction is easy. For the other direction,
if A simulates every LTS A′ ∈ C, such that A′ ≤ A, then in particular it simulates an LTS
A′ ∈ C, such that 1-TokenGhost(A′, A), as C is closed under the 1-token ghost. By Lemma 6,
Eve wins G1(A), implying that A is HD, as G1 characterises history-determinism in C. ◀

A 1-token ghost is often easy to build, by delaying nondeterministic choices by one letter
(Definition 12), as shown in Section 5.2 for pushdown automata, one-counter automata,
vector addition system with states, one-counter nets and Parikh automata.

For some automata classes, however, showing closure under 1-token ghosts is trickier: for
VPA the stack action must occur as the letter is read, and for timed automata configuration
updates are sensitive to the current timestamp. We handle these complications in Section 5.3.
We can also only use Lemma 8 with respect to automata classes for which 1-token games
characterise history-determinism, which is not the case for parity automata or ω-VPA [2].

4.3 Via Adam’s strategy in the letter game
As we will see in detail in Section 5.4, some classes, such as linear automata, are neither
closed under 1-token ghost nor determinisation, so there is no hope for the above criteria to
apply. Our final criterion is an alternative which, instead of requiring all automata to admit a
1-ghost, builds a difficult-to-simulate automaton from Adam’s winning strategy in the letter
game. The intuition is that Adam’s winning strategy in the letter game on an automaton A
captures behaviour that is difficult for A to simulate, so if we can turn Adam’s strategy into
an automaton (which will be language-contained in A since Adam must play a word in the
language of A), then this automaton will not be simulated by A. To build this automaton,
we first project an automaton B recognising Adam’s winning plays from his strategy onto
the alphabet of A, to obtain an automaton BΣ that recognises the words played by Adam’s
strategy. Then, by taking the 1-token ghost of BΣ, we obtain an automaton B′ against which
the simulation game is essentially the letter game against Adam’s strategy. If the resulting
automaton is always still in the class C, guidability and history-determinism coincide.

U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:9

▶ Lemma 9. History-determinism and guidability coincide for classes C of LTSs in which,
for each A ∈ C that is not history-deterministic, there is a deterministic LTS B over the
alphabet of transitions of A that recognises the plays of a winning strategy of Adam in the
letter game on A, and B, projected onto the alphabet of A, has a 1-token ghost in C.

Proof. Consider a winning strategy τ of Adam in the letter game on A, and let B be a
deterministic LTS that recognises the plays of τ , seen as runs of A. Let BΣ be the projection
of B onto Σ: it is otherwise like B, except that its alphabet is Σ instead of the transitions
∆A of A and as a result it has additional nondeterminism. Crucially, every transition in B is
still a transition in BΣ. Given a sequence of transitions t0t1 . . . ti ∈ ∆∗

A, we call t′′
0 t′′

1 . . . t′′
i

its run in B, which is uniquely defined since B is deterministic. Note that this sequence
of transitions is also a run over the word of t0t1 . . . ti in BΣ. This also extends to infinite
sequences. Since every run accepted by B is a play winning for Adam in the letter game over
A, their projection onto Σ must be in L(A), so L(BΣ) ⊆ L(A).

Now, let B′ be the 1-token ghost of BΣ, witnessed by a strategy s1 of Eve in the game
G1(B′, BΣ). Assume, towards contradiction, that Sim(A, B′) via some strategy ssim. We
construct a strategy s of Eve in the letter game on A that is winning against τ , in which
Eve plays ssim against her imaginary friend Berta in Sim(A, B′), who in turn is playing s1
against Adam in G1(B′, BΣ).

In more detail, Adam begins by playing σ0 according to τ in the letter game on A;
Berta responds with a transition (or sequence of transitions in the presence of ε-transitions)
ρ′

0 = s1(σ0); and then Eve responds with s(σ0) = ρ0 = ssim(ρ′
0). On the ith round, when

Adam chooses the letter σi, after the sequence ρ0 . . . ρi−1 of Eve’s moves in the letter game,
and the sequence ρ′′

0 , . . . , ρ′′
i−1 of transitions in BΣ, which is the Σ-projection of the unique run

of B on ρ0 . . . ρi−1, viewed as a word over ∆A, Berta makes the move ρ′
i = s1(ρ′′

0 , . . . , ρ′′
i−1, σi)

in G1(B′, BΣ), and then Eve the move s(σ0, ρ0, . . . , ρi−1, σi) = ρi = ssim(ρ′
0, . . . , ρ′

i−1) in
Sim(A, B′) and in the letter game.

We argue that s is winning against τ . Indeed, the run ρ′′
0ρ′′

1 . . . in BΣ must be accepting
since the sequence of transitions ρ0ρ1 . . . that Eve plays agrees with τ . Then, since Berta is
playing a winning strategy in G1(B′, BΣ), the sequence ρ′

0ρ′
1 . . . is also an accepting run over

the same word. Since Eve is playing a winning strategy in Sim(A, B′), the sequence ρ0ρ1 . . .

is also an accepting run over the same word. This contradicts τ being a winning strategy for
Adam. We conclude that A does not simulate B′ and is therefore not guidable. ◀

Lemma 9 can be applied to various automata classes, as summarised in Table 1, including
ω-regular automata with an [i, j]-parity acceptance condition (Section 5.1), linear automata
(Section 5.4), and visibly pushdown automata (Section 5.3).

This concludes our criteria. Concerning the necessity of each criterion, notice that:
The first criterion (Theorem 1.1) is not subsumed by the others, as demonstrated with
the class of all LTSs – it is closed under determinization [7, Theorem 3.4], but G1 does
not characterise history-determinism, which is required for the second criterion, and the
letter game need not always be determined, which is required for the third.
The second criterion (Theorem 1.2) does not imply the first one, as demonstrated by, for
instance, safety pushdown automata [10, Theorem 4.1]. The implication from the second
criterion to third criterion is unclear, however, and connects to the case of PDA, where
the strategies for the players in letter game are not yet understood [10, Section 6].
Finally, the third criterion (Theorem 1.3) is not subsumed by the other two, as evident
from the case of linear automata (Section 5.4).

CONCUR 2024

12:10 History-Determinism vs Fair Simulation

5 Automata Classes for which History-Determinism = Guidability

5.1 Straightforward cases
By Theorem 1.1, history-determinism and guidability coincide for all automata classes closed
under determinisation, including: regular automata (NFAs); VPAs on finite words; ω-regular
automata [15]; co-Büchi [16]; and subclasses of ω-regular automata whose deterministic
fragment is ω-regular-complete, such as parity, Rabin, Streett, Muller, and Emerson-Lei.
Some subclasses of ω-regular automata are not closed under determinisation, e.g., Büchi
automata, but as long as they subsume safety automata, we can build on the fact that
Adam’s letter-game strategies are recognised by deterministic safety automata, and apply
Theorem 1.3: since safety automata are determinisable they are closed under 1-token ghost.

▶ Corollary 10. History-determinism and guidability coincide for classes of ω-regular auto-
mata with an [i, j]-parity acceptance condition, as well as for the class of weak automata.

5.2 Uniform infinite state systems
In this section, we show that the notions of history-determinism and guidability coincide on
the following classes with safety and reachability acceptance conditions: pushdown automata,
one-counter automata, vector addition system with states, one-counter nets and Parikh
automata. We take a unified approach by defining all of these classes as cases of “uniform
automata classes”, and showing that the two notions coincide for such classes (Theorem 14).

These uniform automata classes are specified by a content space C (e.g., stack contents)
and a set K of partial functions f : C ⇀ C that contains the identity function fid that maps
each element in C to itself (e.g., stack updates). The class specified by C and K contains all
the automata A = (Σ, Q, ι, c0, ∆, FA, FC) that have a finite alphabet Σ, a finite state space
Q, and finitely many transitions (q, σ, f, q′) ∈ ∆, labelled by a letter σ ∈ Σε = Σ ∪ {ε} and
a function f ∈ K. The automaton A induces an LTS that has states (q, c) ∈ Q × C, with
transitions (q, c) σ−→ (q′, c′), such that (q, σ, f, q′) is a transition in A and f(c) = c′.

The acceptance semantics of an automaton in such a class is specified by a set of accepting
states FA ⊆ Q and a set of accepting contents FC ⊆ C. We will often desire some structure
on FC , so we impose the restriction that FC belongs to a set S ⊆ P(C) of subsets of C. We
call “(C, K, S)-automata” the class of all automata A = (Σ, Q, ι, c0, ∆, FA, FC) as above with
FC ∈ S. Safety automata require an accepting run to have all states in FA and all content in
FC . We distinguish between synchronous reachability that requires an accepting run to reach
an accepting state and an accepting content at the same time, and asynchronous reachability
that requires an accepting run to just reach an accepting state and an accepting content, not
necessarily at the same time.

▶ Definition 11. A class of automata is uniform if it can be specified as (C, K, S)-automata
with either safety, synchronous reachability, or asynchronous reachability acceptance semantic.

We show that uniform automata classes are closed under 1-token ghost by explicitly
constructing for each automaton A in the class a 1-token ghost, called Delay(A), inspired by
Prakash and Thejaswini [18, Lemma 11]. For each run in A, we will have a run in Delay(A)
that lags one transition behind. This one-step lag is implemented by storing the previous
letter in the state space of A, in addition to the state of A; transitions are then taken based
on the previous letter, while reading the current letter, which is now stored.

U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:11

▶ Definition 12 (Delay). Let A = (Σ, Q, ι, c0, ∆, FQ, FC) be an automaton in a uniform class
(C, K, S). The automaton Delay(A) = (Σ, Q′, ι′, c0, ∆′, F ′

Q, FC) is the Delay of A, where
1. The set of states Q′ is (Q × Σ) ∪ {ι′}
2. The set of transitions ∆′ is given by the union of:

{(ι′, σ, fid, (ι, σ)) | σ ∈ Σ}
{((q, σ), σ′, f, (q′, σ′)) | σ, σ′ ∈ Σ, and (q, σ, f, q′) ∈ ∆}
{(q, σ), ε, f, (q′, σ) | σ ∈ Σ, and (q, ε, f, q′) ∈ ∆}

3. The set F ′
Q consists of state of the form (q, σ) such that q ∈ FQ, and ι′ if ι ∈ FQ.

The automaton Delay(A) has the same acceptance semantics as A (safety, synchronous
reachability or asynchronous reachability).

▶ Lemma 13. Given an automaton A in a uniform automata class C, the automaton
Delay(A) is in C and is a 1-token ghost of A.

We show that G1 characterises history-determinism on all uniform automata classes in the
full version [3][Lemma 22], by reducing to safety and reachability LTSs [7]. With Lemma 13
and Theorem 1.2, we get that history-determinism and guidability coincide on all uniform
automata classes.

▶ Theorem 14. History-determinism and guidability coincide for uniform automata classes.

It now suffices to represent various automata classes as uniform ones to show that
guidability and history-determinism coincide on them. For pushdown and one-counter
automata, vector addition systems and one-counter nets, as well as for Parikh automata, the
contents are the counter or stack contents, while the update functions are their increments,
decrements, pops and pushes. The update partial functions also implement which parts of
the contents can be used to enable transitions: for example, for pushdown automata, the
partial functions are either defined for all contents where the stack is empty, or undefined
for all such contents; for Parikh automata, the contents do not influence which transitions
are enabled, so the functions are fully defined. (Formal definitions can be found in the full
version [3][Section C.1].)

▶ Corollary 15. History-determinism and guidability coincide for the classes of pushdown
automata, one-counter automata, vector addition systems with states, one-counter nets
with safety and reachability acceptance conditions, and for Parikh automata with safety,
synchronous reachability and asynchronous reachability acceptance conditions.

Non-uniform classes

The class of visibly pushdown automata is not uniform, as there are additional constraints
on transitions, namely the kind of function that changes content depends on the letter
seen. Timed automata also do not constitute a uniform class, since the alphabet is infinite
as it consists of all timed letters, and the clock valuations are updated according to both
the transition (resets) and the delay of the input letter. In Section 5.4, we consider linear
automata: these are Büchi automata that have no cycles apart from self-loops. Linear
automata also does not form a uniform class, since they restrict the state-space. In what
follows, we give alternative constructions of 1-token-ghosts for these classes. The case of
linear automata is trickier, as we show that it is not closed under 1-token ghost. We therefore
use, in Section 5.4, a more involved argument that allows us to use Theorem 1.3.

CONCUR 2024

12:12 History-Determinism vs Fair Simulation

5.3 Visibly pushdown and timed automata
Visibly pushdown automata over infinite words (ω-VPAs) are neither (history-) determinisable,
nor does G1 characterise history-determinism on them. Nevertheless, we can use Theorem 1.3
to show that history-determinism and guidability coincide for this class.

▶ Theorem 16. History-determinism and guidability coincide for the class of visibly pushdown
automata with any ω-regular acceptance condition.

Proof sketch. First we show that the class is closed under 1-token ghost. Like in the previous
cases, we build an automaton that executes the same transitions, but one step later. The
technical challenge is executing transitions with a delay, as an ω-VPA must respect the stack
discipline of the input alphabet. We overcome this by maintaining a “semantic stack” that
consists of the actual stack and one additional letter that is embedded in the state space and
stores, when necessary, the letter that should have been in the top of the stack.

Then, we describe the letter-game for an ω-VPA as a game on a visibly pushdown arena
with a “stair parity” acceptance condition, to show that Adam’s winning strategies can be
implemented by ω-VPA transducers. We then turn this transducer into a deterministic
ω-VPA recognising the plays that agree with Adam’s strategy, and apply Theorem 1.3. ◀

We turn to safety and reachability timed automata, for which we apply Theorem 1.2, yet
with a specially tailored Delay construction.

▶ Theorem 17. For the class of timed automata with safety or reachability acceptance
conditions, the notions of history-determinism and guidability coincide.

Proof sketch. The goal is to simulate such an automaton A with a delay, as in Definition 12.
Yet, the difficulty is that delaying a clock-reset by a step will affect the value of the clock
for future comparisons, and there is no delaying of the passage of time. Hence a naive
construction would end up recognising the timed language of words in which timestamps are
shifted by one. We overcome the difficulty by duplicating in the 1-token ghost construction
each clock of A, using one copy for comparisons in guards and the other to simulate retroactive
resets. In addition, the state-space stores the effect of the previous delay, by remembering the
corresponding region, that is, how the timestamp compares to existing clocks and constants.
With this construction, and the G1-characterisation of history-determinism for safety and
reachability automata, we complete the proof. ◀

5.4 Linear automata
A linear (also called very weak) automaton is a Büchi automaton in which all cycles are self
loops. (In linear automata, the acceptance condition does not really matter, since over an
automaton with only self loops, all the standard ω-regular acceptance conditions coincide.)

First, observe that linear automata are not closed under (history-)determinisation. (The
standard Büchi automaton over the alphabet Σ = {a, b} recognizing the language of finitely
many a’s is linear.) We show that they are also not closed under 1-token ghost, by proving
that the linear automaton depicted in Figure 1 admits no 1-token ghost in the class.

▶ Theorem 18. The class of linear automata is not closed under 1-token ghost.

Proof. Let A be the linear automaton depicted in Figure 1, and assume toward contradiction
that there is a linear automaton A′, satisfying 1-TokenGhost(A′, A), witnesses by a winning
strategy s of Eve in G1(A′, A).

U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:13

q0

q1

q2

q3

a, b
a

b

c

d

a, b

Figure 1 A linear automaton which admits no linear automaton that is a 1-token ghost of it.

In a play π1 of G1(A′, A) in which Eve plays along s and Adam plays (ab)∗ while staying
in q0, at some points of time 2k−1 and 2k, Eve must remain in the same state q′ of A′ after
Adam chose the letters a and b, respectively, since A′ is linear.

In a play π2 of G1(A′, A) in which Eve plays along s and Adam starts with (ab)k−1a

while staying in q0, Eve reaches, as per the previous claim, the state q′ of A′. Then, if Adam
continues with the word caω, while moving from q0 to q1 (over the previous a) and then to
q3 (over c), Eve has some accepting continuation run ρ from the state q′ over the suffix caω,
since s is winning for Eve in G1(A′, A) and Adam’s run is accepting.

Thus, there is an accepting run of A′ on the word w = (ab)kcaω, following in the first 2k

steps the run of Eve in the play π1, reaching the state q′, and then in the next steps following
her accepting continuation in π2. Yet, A does not have an accepting run on w, contradicting
the equivalence of A and A′, and thus the assumption that 1-TokenGhost(A′, A). ◀

Yet, history-determinism and guidability do coincide for the class of linear automata. The
underlying reason is that when a linear automaton A is not history-deterministic, Adam’s
winning strategy in the letter game can be adapted to a linear automaton that does have a
1-token ghost within the class of linear automata, thus satisfying Theorem 1.3.

▶ Theorem 19. History-determinism and guidability coincide for the class of linear automata.

Proof sketch. History-determinism implies guidability with respect to all classes. For the
other direction, consider a linear automaton A = (Σ, Q, ι, ∆, α) that is not HD, and let
M = (∆, Σ, M, m0, ∆M : M × ∆ → M, γ : M → Σ) be a deterministic finite-state transducer
representing a finite-memory winning strategy sM of Adam in the letter game.

We then build, by taking a product of M and A, a deterministic safety automaton P , that
recognises the set of plays that can occur in the letter game on A if Adam plays according
to sM . From P, we take its projection N onto the alphabet Σ of A. N need not be linear,
but we adapt it into a linear N ′ that will still correspond to a winning strategy of Adam in
the letter game. N ′ will thus constitute a projection of a deterministic automaton P ′ onto
the alphabet Σ, where P ′ is over the alphabet of transitions of A and recognises the plays of
a winning strategy of Adam in the letter game. Once achieving that, we can apply the Delay
construction on N ′ – it will not introduce, in this case, non-self cycles, since the states of
N ′ (as the projection of the states of P ′), have outgoing transitions only on a single letter.
Hence, we satisfy Theorem 1.3, proving the stated claim. ◀

6 Automata Classes for which History-Determinism ̸= Guidability

In this section we study classes which admit guidable automata that are not history-
deterministic. They offer insight into how, in practice, the criteria can fail to hold, and
witness that even on arguably natural automata classes, guidability and history determinism
do not necessarily coincide. The main reason for the equivalence between the notions to fail
for these classes is a bound on the allowed resources – the number of states in the first class
and the number of clocks in the second.

CONCUR 2024

12:14 History-Determinism vs Fair Simulation

Our first example of when history-determinism and guidability differ are Büchi automata
with a bounded number of states, witnessed by the automaton in Figure 2.

▶ Theorem 20. For every n ∈ N+, history-determinism and guidability are distinct notions
for the class of Büchi automata with up to 2n states.

q1 q2 q3 q4 ... q2n−1 q2n
a, b

a, b b

a, b a, b

a, b b
a, b

a, b

b

Figure 2 A Büchi automaton that accepts words with a finite number of a’s. To simulate any
equivalent small enough Büchi automaton B, Eve moves to the next accepting state once the other
automaton is in a maximally strongly connected component with an accepting state. The size
constraint on B, and the observation that a such a component can not both have a transition on a

and an accepting state guarantees that this strategy wins in the simulation game. However, B is not
history-deterministic.

This counter-example is simple, but quite artificial. We proceed with a class which is,
arguably, more natural: timed automata with a bounded number of clocks.

▶ Theorem 21. History-determinism and guidability are distinct notions for the class Tk of
timed-automata over finite words with at most k clocks, for each k ∈ N.

Proof sketch. We consider the language of infinite words in which there are k event pairs
that occur exactly one time-unit apart both before and after the first occurence of a $
letter. Then, the guidable automaton for this language can freely reset its clocks until the
$-separator, which allows it to ensure it tracks all delays tracked by a smaller automaton
with up to k clocks. Crucially, any automaton that only accepts words in this language must
keep track of k clock values when the separator occurs, as otherwise, it will also accept some
word in which the second of matching pair of event is shifted a little. ◀

7 Conclusions

We have presented sufficient conditions for a class of automata to guarantee the coincidence
of history-determinism and guidability, and used them to show that this is the case for
many standard automata classes on infinite words. As a result, we get algorithms to decide
guidability for many of these classes. Guidable automata allow for simple model-checking
procedures, and once guidability check is simple, one can take advantage of it whenever
applicable. For example, consider a specification modelled by a Büchi or coBüchi automaton
A. Model-checking whether a system S satisfies A is PSpace-hard. Using our results, one can
check first in PTime whether A is guidable, and in the fortunate cases that it is, conclude the
model checking in PTime, by checking whether A simulates S. We have also demonstrated
automata classes for which guidability and history-determinism do not coincide.

We believe that our positive results extend to additional automata classes, such as register
automata [14], which behave quite similarly to timed automata. Furthermore, we believe
them to extend to additional families of automata classes:

Finite words. We have focused on automata over infinite words, which in this context, are
better behaved. Ends of words bring additional complications to our constructions, but
overall we believe our approach to be amenable to the analysis of finite word automata.

U. Boker, T. A. Henzinger, K. Lehtinen, and A. Prakash 12:15

Quantitative automata. In quantitative automata, transitions carry additional information
in the form of weights. As a result, there is an additional difference between the letter
game and simulation game, which makes extending our analysis to the quantitative setting
particularly relevant. We believe that many of our techniques adapt to that setting.

One could argue that for model-checking, the more interesting property is whether a (not
necessarily safety) automaton is guidable by just safety automata, since we typically represent
specifications by safety automata. Interestingly, this property often coincides with guidability
w.r.t. the full class of automata, as demonstrated in by our third criterion (Theorem 1.3): if
Adam’s strategies in the letter game can be translated into automata, these automata are
safety ones, and therefore guidability w.r.t. safety automata is just as hard as guidability
w.r.t. the full class of automata with the more complex acceptance conditions.

References
1 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,

Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 202–211. ACM, 2004. doi:10.1145/1007352.1007390.

2 Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.
In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2018), page 16, 2018.

3 Udi Boker, Thomas A. Henzinger, Karoliina Lehtinen, and Aditya Prakash. History-
determinism vs fair simulation, 2024. arXiv:2407.08620.

4 Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On succinctness
and recognisability of alternating good-for-games automata. arXiv preprint, 2020. arXiv:
2002.07278.

5 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative
automata. In FoSSaCS, pages 120–139, 2022. A submitted journal version is available at
arXiv:2110.14308.

6 Udi Boker and Karoliina Lehtinen. When a little nondeterminism goes a long way: An
introduction to history-determinism. ACM SIGLOG News, 10(1):24–51, 2023. doi:10.1145/
3584676.3584682.

7 Sougata Bose, Thomas A. Henzinger, Karoliina Lehtinen, Sven Schewe, and Patrick Totzke.
History-deterministic timed automata, 2023. arXiv:2304.03183.

8 Thomas Colcombet. Fonctions régulières de coût. Habilitation à diriger les recherches, École
Doctorale de Sciences Mathématiques de Paris Centre, 2013.

9 Thomas Colcombet and Christof Löding. The non-deterministic mostowski hierarchy and
distance-parity automata. In Proc. of ICALP, volume 5126, pages 398–409, 2008. doi:
10.1007/978-3-540-70583-3_33.

10 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A bit of
nondeterminism makes pushdown automata expressive and succinct. Log. Methods Comput.
Sci., 20(1), 2024. doi:10.46298/LMCS-20(1:3)2024.

11 Thomas Henzinger and Nir Piterman. Solving games without determinization. In Proceedings
of CSL, pages 395–410, 2006.

12 Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. Fair simulation. Inf.
Comput., 173(1):64–81, 2002. doi:10.1006/inco.2001.3085.

13 Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke. History-deterministic timed
automata. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International
Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland,
volume 243 of LIPIcs, pages 14:1–14:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

CONCUR 2024

https://doi.org/10.1145/1007352.1007390
https://arxiv.org/abs/2407.08620
https://arxiv.org/abs/2002.07278
https://arxiv.org/abs/2002.07278
https://arxiv.org/abs/2110.14308
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://arxiv.org/abs/2304.03183
https://doi.org/10.1007/978-3-540-70583-3_33
https://doi.org/10.1007/978-3-540-70583-3_33
https://doi.org/10.46298/LMCS-20(1:3)2024
https://doi.org/10.1006/inco.2001.3085

12:16 History-Determinism vs Fair Simulation

14 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

15 Robert McNaughton. Testing and generating infinite sequences by a finite automaton. In-
formation and Control, 9:521–530, 1966.

16 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

17 Damian Niwiński and Michał Skrzypczak. On Guidable Index of Tree Automata. In Fil-
ippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2021), volume 202 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 81:1–81:14, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2021.81.

18 Aditya Prakash and K. S. Thejaswini. On history-deterministic one-counter nets. In Orna
Kupferman and Pawel Sobocinski, editors, Foundations of Software Science and Computation
Structures - 26th International Conference, FoSSaCS 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April
22-27, 2023, Proceedings, volume 13992 of Lecture Notes in Computer Science, pages 218–239.
Springer, 2023. doi:10.1007/978-3-031-30829-1_11.

https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.MFCS.2021.81
https://doi.org/10.1007/978-3-031-30829-1_11

The Power of Counting Steps in Quantitative
Games
Sougata Bose #

University of Liverpool, UK

Rasmus Ibsen-Jensen #

University of Liverpool, UK

David Purser #

University of Liverpool, UK

Patrick Totzke #

University of Liverpool, UK

Pierre Vandenhove #

LaBRI, Université de Bordeaux, France

Abstract
We study deterministic games of infinite duration played on graphs and focus on the strategy
complexity of quantitative objectives. Such games are known to admit optimal memoryless strategies
over finite graphs, but require infinite-memory strategies in general over infinite graphs.

We provide new lower and upper bounds for the strategy complexity of mean-payoff and total-
payoff objectives over infinite graphs, focusing on whether step-counter strategies (sometimes called
Markov strategies) suffice to implement winning strategies. In particular, we show that over finitely
branching arenas, three variants of lim sup mean-payoff and total-payoff objectives admit winning
strategies that are based either on a step counter or on a step counter and an additional bit of
memory. Conversely, we show that for certain lim inf total-payoff objectives, strategies resorting to
a step counter and finite memory are not sufficient. For step-counter strategies, this settles the case
of all classical quantitative objectives up to the second level of the Borel hierarchy.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Games on graphs, Markov strategies, quantitative objectives, infinite-state
systems

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.13

Related Version Full Version: https://arxiv.org/abs/2406.17482 [3]

Funding P. Vandenhove is funded by ANR project G4S (ANR-21-CE48-0010-01). S. Bose and
P. Totzke acknowledge support from the EPSRC (EP/V025848/1, EP/X042596/1). Collaboration
initiated via Royal Society International Exchanges grant (IES\R1\201211).

1 Introduction

Two-player (zero-sum, turn-based, perfect-information) games on graphs are an established
formalism in formal verification, especially for reactive synthesis [1, 13]. They are used
to model the interaction between a system, trying to satisfy a given specification, against
an uncontrollable environment, assumed to act antagonistically as a worst case. We can
model the system and its environment as two opposing players, called Player 1 and Player 2
respectively, who move a token through the graph of possible system configurations (called
the arena). The specification is modelled as a winning condition (called objective henceforth),
which is a set of all those interactions that the system player deems acceptable. The main
algorithmic task when using this approach for formal verification is solving such games:

© Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sougata.bose@liverpool.ac.uk
https://orcid.org/0000-0003-3662-3915
mailto:R.Ibsen-Jensen@liverpool.ac.uk
https://orcid.org/0000-0003-4783-0389
mailto:D.Purser@liverpool.ac.uk
https://orcid.org/0000-0003-0394-1634
mailto:totzke@liverpool.ac.uk
https://orcid.org/0000-0001-5274-8190
mailto:pierre.vandenhove@u-bordeaux.fr
https://orcid.org/0000-0001-5834-1068
https://doi.org/10.4230/LIPIcs.CONCUR.2024.13
https://arxiv.org/abs/2406.17482
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 The Power of Counting Steps in Quantitative Games

s t q
−N N 0

(a) The arena A1.

s t

−N

N

(b) The arena A′
1.

Figure 1 Arenas implementing the “match the number” game. Circles designate vertices controlled
by Player 1 and squares designate Player 2. The edge labels indicate that for every i ∈ N there is a
distinct edge with weight −i from s to t, and +i from t to q or from t to s. For A1, consider the
objective “sum of weights exceeds 0”. Player 1 can always match and thus win, but needs unbounded
memory. The arena A′

1 shows a repeated version for the lim sup mean-payoff objective.

given an arena, an objective, and an initial vertex, decide whether the system player has
a winning strategy, which corresponds to a controller for the system that guarantees that
the specification holds no matter the behaviour of the environment. Additionally, reactive
synthesis aims to synthesise (compute a representation of) a winning strategy if one exists.

Strategy complexity. To synthesise winning strategies, it is useful to know what kind
of resources “suffice”, i.e., are needed to implement a winning strategy, should one exist.
This naturally depends on the model used for the interaction (the size and topology of the
arena) and on the specification (the type of objective and whether probabilistic or absolute
guarantees are required). We assume that strategies make decisions based on some internal
memory, that stores and updates an abstraction of the past play.

The simplest strategies are those that are memoryless, meaning they base their decisions
solely on the current arena vertex. Games on finite arenas where memoryless strategies are
sufficient to win can usually be solved in NP ∩ coNP [28] and winning strategies effectively
synthesised. This is true for parity, discounted-payoff [31], mean-payoff [11], and total-
payoff [8, 16] objectives. Even beyond finite graphs, memoryless strategies may suffice in more
general contexts, such as for parity objectives over arenas of arbitrary cardinality [12, 33], or
discounted-payoff objectives over finitely branching arenas [26, Corollary 2.1].1 For concurrent
(stochastic) reachability games on finite arenas, memoryless strategies also suffice [2, 21].

Generally more powerful than memoryless strategies are finite-memory strategies, which
refer to strategies that can be implemented with a finite-state (Mealy) machine. A canonical
class of languages over infinite words, and standard for defining objectives in games, are the
ω-regular languages [30, 17]. One of the celebrated related results about reactive synthesis is
the finite-memory determinacy of ω-regular games [6, 30, 18], which means that if there is a
winning strategy in a game on a finite arena and with an ω-regular objective, there is one
that can be implemented with a simple finite-state machine (whose size can be bounded).
This implies that games with ω-regular objectives can be solved and that strategies can
be synthesised, since it bounds the search space for winning strategies. Remarkably, the
existence of winning finite-memory strategies for ω-regular games even holds over arbitrary
infinite arenas [33]. When finite-memory strategies are sufficient, one of the main questions
is usually to minimise their size, i.e., to find winning strategies with as few memory states as
possible [10, 7, 9, 5, 4].

1 Thus we consider the strategy complexity in discounted-payoff games as settled for the setting we
consider. On infinitely branching arenas, step-counter strategies are insufficient (see Figure 1a).

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:3

Already very simple games require infinite memory to win. This especially holds for
quantitative objectives, which ask that the aggregate of individual edge weights along a
play exceeds some threshold. For instance, consider a game where the environment picks a
number and then the controller has to pick a larger one (see Figure 1a). In order to win,
Player 1 has to remember the (per se unbounded) initial challenge and no finite memory
structure would be sufficient to do so. This objective is not ω-regular since it is built upon
an infinite alphabet. We seek to understand for different classes of games, what kind of
infinite-memory structures are sufficient for winning strategies.

A natural, arguably the simplest, type of infinite memory structure is a step counter : it
only remembers how many steps have elapsed since the start of the game. The availability of
such a counter is a reasonable assumption for practical applications, as most embedded devices
have access to the current time, which suffices when each step takes a fixed amount of time.
A step-counter strategy is one that, in addition to the current arena vertex, has access to the
number of steps elapsed. Notice that in the game in Figure 1a, a step counter does not provide
any relevant information (every path to vertex t has length one). Therefore, step-counter
strategies do not suffice for Player 1. An important ingredient for these counterexamples
is that the underlying arena is infinitely branching (and uses arbitrary weights). For many
classes of games on finitely branching arenas, strategies based on a step counter and additional
finite memory are close to being the simplest kinds of strategies sufficient to win. Examples
are especially prevalent in stochastic games. For instance, in the “Big Match” (a concurrent
mean-payoff game on a finite arena), neither a step counter nor finite memory is sufficient to
play ε-optimally, yet a step counter together with one bit is [19]. The same is true for the
“Bad Match”, which can be presented as a Büchi (repeated reachability) game [23, 32, 22].
This upper bound holds generally for concurrent Büchi games on finite arenas [22].

Quantitative objectives. Objectives based on numerical weights are commonly called
quantitative objectives. These are defined using quantitative payoff functions, which combine
any finite sequence of weights into an aggregate number. The three more common ones are
the discounted-payoff [31], mean-payoff [15, 11], and total-payoff functions [14, 8]. Every
payoff function induces four variants of objectives, depending on whether we consider the
lim sup or lim inf, and on whether we ask that the limit is larger or strictly larger than a
threshold. For total payoff, it is also relevant to distinguish the use of real values or ∞ as a
threshold. We give an example to describe informally how we denote such objectives: MP≥0
refers to the set of infinite sequences of rational numbers that achieve a value ≥ 0 for the
lim sup variant (the line is above MP) of the mean-payoff function (specified by letters MP).
Over infinite arenas, the four variants are not equivalent and infinite-memory strategies are
needed for at least one of the players (see [29, Example 8.10.2] and [27]).

To study the strategy complexity for different quantitative objectives, we classify them
according to which level of the Borel hierarchy they belong to (which also ensures that
the games we consider are determined [24]). In the first level of the hierarchy lie the open
and closed objectives (i.e., the sets respectively in Σ0

1 and Π0
1), for which there exist recent

characterisations of the sufficient memory structures over finite or infinite arenas [9, 5].
We build on this to establish upper bounds for more complex objectives. All variants of
mean-payoff and total-payoff objectives are on the second or third level of the Borel hierarchy.
Ohlmann and Skrzypczak [27] study objectives through their topological properties and
provide a characterisation of the prefix-independent Σ0

2 objectives for which memoryless
strategies suffice for Player 1 over arbitrary arenas. They show in particular that memoryless
strategies suffice for Player 1 for the quantitative objectives MP>0 and TP>−∞, even over

CONCUR 2024

13:4 The Power of Counting Steps in Quantitative Games

infinitely branching arenas. Over stochastic games, quantitative (in particular lim inf mean-
payoff) objectives on infinite arenas generally do not have (ε-)optimal strategies based on a
step counter, even for finitely branching Markov decision processes [25].

Our contributions. We settle the strategy complexity over infinite, deterministic games for
the mean-payoff and total-payoff objectives up to the second level of the Borel hierarchy. In
particular, we show for which of these, step-counter strategies are sufficient for Player 1. Our
upper bounds all allow for arenas with arbitrary weights, while our strongest lower bounds
only use weights −1, 0, and 1. Our results are as follows and summarised in Table 1.

For TP>0 and TP≥0, strategies using a step counter and an arbitrary amount of finite
memory do not suffice, even over acyclic finitely branching arenas (Theorem 10, Section 3).
The proof rules out finite-memory structures using an application of the infinite Ramsey
theorem to allow Player 2 to stay winning in a particular infinite arena regardless of the
finite-memory structure of Player 1.
In Section 5, we provide a sufficient condition for when step-counter strategies suffice
over finitely branching arenas for prefix-independent objectives in Π0

2, i.e, countable
intersections of open sub-objectives (Theorem 16). This implies in particular that step-
counter strategies do suffice for MP≥0 and TP=+∞ (Corollary 17), which is tight in the
sense that finite-memory strategies do not suffice for these objectives, even over acyclic
finitely branching arenas (Lemma 4). The proof uses carefully constructed expanding
“bubbles”, so that within each consecutive bubble, Player 1 can satisfy the next open
sub-objective. The step counter is used to determine the current bubble.
In Section 6, we show that for TP≥0, which is not prefix-independent, strategies using
a step-counter and one additional bit of memory suffice (Theorem 20). This is tight in
that neither finite-memory strategies nor step-counter strategies suffice, even over acyclic
finitely branching arenas (Lemmas 4 and 5). The proof similarly employs bubbles, but
an additional bit is needed to keep track of whether a “sub-objective” has been achieved
in the current bubble and then switches to stay in the winning region.

Structure. We define the various notions used throughout the paper in Section 2. Section 3 is
dedicated to all lower bounds on the strategy complexity of the various objectives, culminating
in a lower bound for TP≥0. Section 4 is devoted to recalling useful results on open and closed
objectives, upon which the following sections build. Section 5 proves a sufficient condition
for the sufficiency of step-counter strategies for prefix-independent Π0

2 objectives. Section 6
proves an upper bound on the strategy complexity of TP≥0.

Due to space constraints, some proofs are omitted from this conference version. Complete
details for all proofs can be found in the extended version [3].

2 Preliminaries

Given a set X, we write X∗ for the set of finite words on X, X+ for the set of non-empty
finite words on X, and Xω for the set of infinite words on X. For w ∈ X∗, we write |w| for
the length of w. For w ∈ Xω and j ∈ N, we write w≤j for the finite prefix of length j of w.

Games. We study two-player zero-sum games, each given by an arena and an objective, as
defined below. We refer to the two opposing players as Player 1 and Player 2.

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:5

Table 1 Results for quantitative objectives up to the second level of the Borel hierarchy for
finitely branching arenas. SC refers to step counter, and FM refers to finite memory.

Obj. Description Class Strategy complexity

MP>0
⋃

m≥1

⋃
i≥1

⋂
j≥i

{w | MP(w≤j) ≥ 1
m

} Σ0
2 Memoryless (even over infinitely

branching arenas) [27]TP>−∞
⋃

m≥1

⋃
i≥1

⋂
j≥i

{w | TP(w≤j) ≥ −m} Σ0
2

TP>0
⋃

m≥1

⋃
i≥1

⋂
j≥i

{w | TP(w≤j) ≥ 1
m

} Σ0
2 SC + FM insufficient (Theorem 10)

MP≥0
⋂

m≥1

⋂
i≥1

⋃
j≥i

{w | MP(w≤j) ≥ −1
m

} Π0
2 SC sufficient (Corollary 17)

FM insufficient (Lemma 4)TP=+∞
⋂

m≥1

⋂
i≥1

⋃
j≥i

{w | TP(w≤j) ≥ m} Π0
2

TP≥0
⋂

m≥1

⋂
i≥1

⋃
j≥i

{w | TP(w≤j) ≥ −1
m

} Π0
2

SC + 1-bit sufficient (Theorem 20)
FM insufficient (Lemma 4)
SC insufficient (Lemma 5)

An arena is a directed graph with two kinds of vertices where edges are labelled by an
element of C, a non-empty set of colours. Formally, an arena is a tuple A = (V, V1, V2, E)
where V = V1 ∪ V2 is a non-empty set of vertices, V1 and V2 are disjoint, and E ⊆ V × C × V

is a set of labelled edges. Vertices in V1 and V2 are respectively controlled by Player 1 and
Player 2, which will appear clearly when we define strategies below. We require that for every
vertex v ∈ V , there is an edge (v, c, v′) ∈ E (arenas are “non-blocking”). For e = (v, c, v′),
we write from(e) for v, col(e) for c, and to(e) for v′. An arena is finite if V is finite, and
finitely branching if for every v ∈ V , the set {e ∈ E | from(e) = v} is finite.

A history is a finite sequence h = e1 . . . en ∈ E∗ of edges such that for i ∈ {1, . . . , n − 1},
to(ei) = from(ei+1). We write from(h) for from(e1), to(h) for to(en), and col(h) for the
sequence col(e1) . . . col(en) ∈ C∗. For convenience, we assume that for every vertex v, there
is a distinct empty history λv such that from(λv) = to(λv) = v. The set of histories of A is
denoted as hists(A). For p ∈ {1, 2}, we write histsp(A) for the set of histories h such that
to(h) ∈ Vp. A play is an infinite sequence of edges ρ = e1e2 . . . ∈ Eω such that for i ≥ 1,
to(ei) = from(ei+1). We write from(ρ) for from(e1) and col(ρ) for col(e1)col(e2) . . . ∈ Cω.
A history h (resp. a play ρ) is said to be from v if v = from(h) (resp. v = from(ρ)).

An objective (sometimes called a winning condition in the literature) is a set O ⊆ Cω. An
objective O is prefix-independent if for all w ∈ C∗, w′ ∈ Cω, ww′ ∈ O if and only if w′ ∈ O.

Strategies. A strategy of Player p on A is a function σ : histsp(A) → E such that for
all h ∈ histsp(A), from(σ(h)) = to(h). A play ρ = e1e2 . . . is consistent with a strategy σ of
Player p if for all finite prefixes h of ρ such that to(h) ∈ Vp, σ(h) = e|h|+1. A strategy σ

of Player 1 is winning for objective O from a vertex v if all plays from v consistent with σ

induce a sequence of colours in O. For a fixed objective, the set of vertices of an arena A
from which a winning strategy for Player 1 exists is called the winning region of Player 1 on
A and is denoted WA,1. A strategy σ of Player 1 is uniformly winning for objective O in A
if σ is winning from every vertex of the winning region of A.

A memory structure for an arena A = (V, V1, V2, E) is a tuple M = (M, m0, δ) where M

is a set of memory states, m0 ∈ M is an initial state, and δ : M × E → M is a memory
update function. We extend δ to a function δ∗ : M × E∗ → M in a natural way. A memory
structure M is finite if M is finite. A strategy σ of Player p on A is based on M if there
exists a function f : Vp × M → E such that, for all h ∈ histsp(A), σ(h) = f(to(h), δ∗(m0, h)).
We will abusively assume that a strategy based on a memory structure is this function f .

CONCUR 2024

13:6 The Power of Counting Steps in Quantitative Games

A memoryless strategy is a strategy based on a memory structure with a single memory
state. A 1-bit strategy is a strategy based on a memory structure with two memory states. A
step counter is a memory structure S = (N, 0, (s, e) 7→ s + 1) that simply counts the number
of steps already elapsed in a game. A strategy σ of Player p on A is a step-counter strategy if
σ is based on a step counter; in other words, if there is a function f : Vp × N → E such that
σ(h) = f(to(h), |h|). This means that σ only considers the current vertex and the number of
steps elapsed to make its decisions. Step-counter strategies are sometimes called “Markov
strategies” [32, 20].

A step-counter and finite-memory structure is a memory structure with state space
M = N×{0, . . . , K −1}, initial state (0, 0), and a transition function δ such that δ((s, m), e) =
(s+1, δ′((s, m), e)) for some function δ′ : M ×E → {0, . . . , K −1}. Notice that a step counter
corresponds to the special case of a step-counter and finite-memory structure with K = 1.
A step-counter + 1-bit strategy is a strategy based on a step-counter and finite-memory
structure with K = 2.

We say that a kind of strategies suffices for objective O over a class of arenas if, for all
arenas in this class, from all vertices of her winning region, Player 1 has a winning strategy of
this kind. We say that a kind of strategies suffices uniformly for objective O over a class of
arenas if, for all arenas in this class, Player 1 has a uniformly winning strategy of this kind.

For an arena A = (V, V1, V2, E) and a memory structure M = (M, m0, δ), we write A⊗M
for the product between A and M. It is the arena (V ′, V ′

1 , V ′
2 , E′) such that V ′ = V × M ,

V ′
1 = V1 × M , V ′

2 = V2 × M , and E′ = {((v, m), c, (v′, δ(m, e))) | e = (v, c, v′) ∈ E, m ∈ M}.
Observe that Player 1 has a winning strategy based on M from a vertex v in an arena A if
and only if Player 1 has a winning memoryless strategy from vertex (v, m0) in A ⊗ M.

To simplify reasonings over specific arenas, we show that step counters do not have any
use when the arena already encodes the step count.

▶ Lemma 1. Let A = (V, V1, V2, E) be an arena, and v0 ∈ V be an initial vertex. Assume
that for each pair of histories h1, h2 from v0 to some v ∈ V , we have |h1| = |h2| (i.e., the
arena already “encodes the step count from v0”). Then, a step-counter and finite-memory
strategy with K states of finite memory can be simulated from v0 by a strategy with only K

states of finite memory.

Proof. By hypothesis on A, there exists nv ∈ N the length of any history from v0 to v. Let
σ′ : V1 ×N× M → E be a step-counter and finite-memory strategy with M = {0, . . . , K − 1},
with finite-memory update function δ′ : M × E → {0, . . . , K − 1}. Let M = (M, 0, δ) be
the memory structure with δ(m, e) = δ′((nfrom(e), m), e). By construction, the strategy
σ : V1 × M → E such that σ(v, m) = σ′(v, nv, m) behaves exactly like σ′ from v0. ◀

Quantitative objectives. We consider classical quantitative objectives: mean-payoff and
total-payoff objectives, as defined below. Let C ⊆ Q (when colours are rational numbers, we
often refer to them as weights). For a finite word w = c1 . . . c|w| ∈ C∗, define TP(w) =

∑|w|
i=1 ci

for the total payoff of the word, i.e., the sum of the weights it contains. Further, when
|w| ≥ 1, let MP(w) = TP(w)/|w| denote the mean payoff of the word w, i.e., the mean of the
weights it contains. We extend any such aggregate function X : C∗ → R to infinite words by
taking limits: for w ∈ Cω, we define X(w) = lim supj X(w≤j) and X(w) = lim infj X(w≤j).
Fixing a binary relation ▷ ⊆ R2 and threshold r ∈ Q ∪ {−∞, ∞}, this naturally defines
objectives X▷r = {w ∈ Cω | X(w) ▷ r} and X▷r = {w ∈ Cω | X(w) ▷ r}.

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:7

In particular, we are interested in the limit infimum/supremum objectives for total
and mean payoff.2 We consider the mean-payoff variants with threshold r ∈ Q, and the
total-payoff variants with r ∈ Q ∪ {−∞, +∞}. Note that all four mean-payoff objectives
and all four total-payoff objectives with ∞ threshold are prefix-independent, but the four
total-payoff objectives with threshold in Q are not prefix-independent.
▶ Remark 2. Our results are generally stated for threshold r = 0. This is without loss of
generality since the results deal with large classes of arenas, and little modifications to the
arenas allow to reduce from an arbitrary rational threshold to threshold 0. ⌟

Topology of objectives. For w ∈ C∗, we write wCω = {ww′ | w′ ∈ Cω} for the objective
containing all infinite words that start with w (it is sometimes called the cylinder or cone
of w). An objective O is open if there is a set A ⊆ C∗ such that O =

⋃
w∈A wCω. For an

open objective O, we say that a finite word w ∈ C∗ already satisfies O if wCω ⊆ O. If an
objective is open, then by definition, any infinite word it contains has a finite prefix that
already satisfies it. An objective is closed if it is the complement of an open set.

Open and closed objectives are at the first level of the Borel hierarchy; the set of open
(resp. closed) objectives is denoted Σ0

1 (resp. Π0
1). For i > 1, we can define Σ0

i as all the
countable unions of sets in Π0

i−1, and Π0
i as all the countable intersections of sets in Σ0

i−1.
All the objectives considered in this paper lie in the first three levels of this hierarchy, and
we focus on those on the second level.

3 Lower bounds

We provide lower bounds on the size/structure of the memory to build winning strategies,
focusing on objectives MP≥0, TP=+∞, TP≥0, and TP>0, which are the four objectives on
the second level of Borel hierarchy for which we want to establish whether step-counters
strategies suffice. We mention where our constructions directly work for further objectives.

All lower bounds are based on the simple idea that one player chooses some number and
the other must match it. We first observe that on infinitely branching arenas with arbitrary
weights, neither finite memory nor a step counter, nor both together, is sufficient. The proof
uses the arenas from Figure 1, discussed informally in Section 1 (the missing proofs in this
section are available in [3, Appendix A]).

▶ Lemma 3. Over infinitely branching arenas with arbitrary weights, step-counter and
finite-memory strategies are not sufficient for Player 1 for objectives MP>0, MP≥0, TP=+∞,
TP>0, TP≥0, TP>0 and TP≥0.

We now establish lower bounds over finitely branching arenas. Firstly, the example A′
1

can be made finitely branching and acyclic, as depicted in Figure 2. The resulting arena, A2,
simply unfolds A′

1 so that any edge (s, −j, t) is replaced by a finite path si
0 → · · · → si

j → ti
0,

and similarly for the responses. This construction works as long as one can discourage (i.e.,
make losing) the choice to stay on the infinite intermediate chain of vertices and not moving
on to a vertex controlled by the opponent. Here, this is achieved by using weights 1 on the
chains of Player 2 and weights −1 on the chains of Player 1, which are then compensated
by weights twice as large. In practice, edges with weights i ∈ N (resp. −i ∈ −N) can be

2 We only consider objectives where the threshold is a lower bound (▷ ∈ {>, ≥}); each variant with upper
bound behaves like a variant with lower bound when we replace each weight c in arenas with its additive
inverse −c and switch the sup/inf (for instance, MP<r behaves like MP>r when we invert the weights).

CONCUR 2024

13:8 The Power of Counting Steps in Quantitative Games

si
0 si

1 si
2 si

j · · ·

· · ·

ti
0 ti

1 ti
2 ti

j · · ·

· · ·

si+1
0

1 1 1

0 −2 −4 −2j
000

0
−1 −1 −1

0 2 4 2j
000

0

Figure 2 The arena A2 is acyclic and every
vertex has finite in- and out-degree. We re-
call that circles are controlled by Player 1 and
squares by Player 2.

s0 s1 s2 si · · ·

t0 t1 t2 ti · · ·

r0

1 1 1

−1 −3 −5 −2i − 1

0 0 0

0 1 2 i

0

Figure 3 The arena A3. Arrows si ti
−2i − 1

are shorthand for paths of length 2i+1 with edge
weights −1, and ti ti+1

0 are shorthand for
paths of length 3 with edge weights 0.

replaced by chains of i weights 1 (resp. i weights −1). This allows to obtain lower bounds on
the lim sup objectives. The fact that finite-memory strategies are insufficient for variants
of the mean-payoff objectives over finitely branching arenas was already discussed in [29,
Example 8.10.2] and [27]; we rephrase it here for completeness.

▶ Lemma 4. Over finitely branching arenas, finite-memory strategies are not sufficient for
Player 1 for objectives MP>0, MP≥0, TP=+∞, TP>0, and TP≥0.

Notice that although finite memory is insufficient for Player 1 in A2, a step counter allows
her to deduce an upper bound on the previous choice of Player 2 and is therefore sufficient.
Indeed, since A2 is finitely branching and every round starts in a unique initial vertex for
that round, Player 1 can (over) estimate that all steps of the history so far were spent by her
opponent’s choice (steps between si

0 up to some si
j and then leading directly to ti+1

0).
In order to construct an arena in which no step-counter strategy is sufficient, we obfuscate

possible histories leading to Player 1’s choices by making them the same length (see Figure 3).

▶ Lemma 5. Consider the arena A3 depicted in Figure 3. Player 1 has a winning strategy,
but no winning step-counter strategy for objectives TP>0, TP≥0, TP>0, and TP≥0. Hence,
over finitely branching arenas, step-counter strategies are not sufficient for Player 1 for
objectives TP>0, TP≥0, TP>0, and TP≥0.

Proof. Player 1 only makes relevant choices at vertices ti, and the choice is whether to delay
(move to ti+1) or exit (move to r0). A winning (finite-memory) strategy for all mentioned
objectives is to delay twice and then exit. Indeed, any history leading to ti has total payoff
of at least −i − 1. By delaying twice and then exiting, Player 1 guarantees that the sink
vertex r0 is reached and the total payoff collected on the way is at least 1.

Conversely, any strategy σ of Player 1 that is based solely on a step counter cannot
distinguish histories leading to the same vertex ti. Let us assume that σ does not choose to
avoid r0 indefinitely, as doing so would result in a negative total payoff, which is losing for
her. Then there is at least one vertex ti from which the strategy exits. Player 2 can exploit
this by going there via si. The resulting play has a negative total payoff. ◀

We now extend the previous examples to show that even access to both a step counter
and finite memory is not sufficient for Player 1. The construction below is stated for the
total-payoff objective TP≥0, and also works for TP>0. The main idea is to require Player 1
to delay going to r0 more than a constant number of times, as dictated by Player 2’s initial
move.

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:9

s0 s1 s2 si · · ·

t0

· · ·
t1

· · ·
t2

· · ·
ti · · ·

r0

0 0 0

−2 −4 −6 −2(i + 1)

1 2 3 i + 1

0

Figure 4 The arena A4. Arrows si ti
−2(i+1)

are shorthand for paths of length 2i+3 with total
payoff −2(i+1). From a vertex ti, Player 1 either
exits to r0 or moves to the gadget in Figure 5.

ti ti+1

t1
i

ti+2

t2
i

ti+j

tj
i

· · ·

· · ·

r0

i + 1

1
−1 −3 −2j + 1

1 1

Figure 5 The delay gadget from vertex ti

in arena A4. The arrows from tj
i to ti+j are

shorthand for paths of length 2j and payoff −2j+
1.

▶ Definition 6. Let A4 be the arena from Figure 4. It has a similar high-level structure to
A3 with different weights, and with more complex gadgets (Figure 5) between vertices ti. At
each vertex ti, Player 1 decides between two actions:
1. to exit to r0 and gain payoff i + 1 by doing so, or
2. to delay to some vertex ti+j where j > 0 is chosen by Player 2, and gain payoff −j + 1.

Notice that, after Player 2 moved down from vertex sk, Player 1 can (only) win by
delaying at least k + 1 times (which we show in Lemma 8). We will show that the gadgets
allow Player 2 to confuse any strategy of Player 1 that is only based on a step counter and
finite memory. Without them, the current vertex ti together with finite extra memory would
allow Player 1 to approximate how many delays she has chosen so far and therefore allow
her to win with a finite-memory strategy.3

A simple counting argument shows that all paths from s0 to a vertex tk have the same
length (proof in [3, Appendix A]). By Lemma 1, it implies that a step counter is useless
in A4.

▶ Lemma 7. For every tk in arena A4, all paths from s0 to tk have the same length.

The following lemma will be used to argue that Player 1 wins, albeit with infinite memory.

▶ Lemma 8. From a vertex ti, if Player 2 does not stay forever in a gadget, the strategy σk

of Player 1 that enters the delay gadget exactly k ∈ N times achieves a total payoff of exactly
i + k + 1 in r0.

Proof. Assume that Player 2 never stays forever in a gadget (which would be winning for
Player 1 for all quantitative objectives considered). The total payoff on the path from ti to the
next vertex ti+j is −j + 1. Suppose Player 1 delays k times and let j(1), j(2), . . . , j(k) be the
lengths of the intermediate paths through gadgets, as chosen by Player 2. That is, the play
ends up in vertex ti+l for l =

∑k
c=1 j(c) and has gained payoff

∑k
c=1 ((−j(c) + 1)) = −l + k.

After k delays, exiting to r0 from vertex ti+l gives an immediate payoff of i + l + 1. The total
payoff from ti to r0 is thus (−l + k) + (i + l + 1) = i + k + 1. ◀

3 The idea would be to partition ti’s into (growing) intervals, so that each interval is picked so large that it
is safe to exit from any vertex after the interval if the play entered a vertex before or at the start of that
interval. A winning strategy is then to keep on delaying to ti’s until vertices in three different intervals
have been seen, and then exit. This requires 3 memory states to remember the interval changes.

CONCUR 2024

13:10 The Power of Counting Steps in Quantitative Games

▶ Lemma 9. Consider the game played on A4. Then, from vertex s0,
1. Player 1 wins for objective TP≥0;
2. every step-counter and finite-memory strategy of Player 1 is losing for TP≥0.

Proof. For point (1), let σ be the Player 1 strategy that, upon observing history s0
∗−→ sk →

tk, switches to the finite-memory strategy σk+1 from the previous lemma (delay k + 1 times
and then exit). Consider any play consistent with this strategy σ. Either Player 2 never
moves to a vertex tk, and then the total payoff is 0, which is winning for Player 1 for TP≥0.
Otherwise, a vertex tk is reached (and accordingly, the payoff until reaching it is −2(k + 1)).
Using σk+1, Player 1 guarantees a lim inf total payoff of at least 0 on any continuation: either
Player 2 never leaves some gadget and the total payoff is +∞, or Player 1 exits to r0 after
k + 1 delays, which adds k + (k + 1) + 1 = 2(k + 1) to the total payoff by Lemma 8. In this
second case, the total payoff is therefore −2(k + 1) + 2(k + 1) = 0.

For point (2), by Lemmas 1 and 7, it suffices to show that every finite-memory strategy of
Player 1 is losing. Consider now any such strategy σ1 of Player 1 with memory of size K ∈ N
and memory update function δ. We will show that there exists a strategy σ2 for Player 2
that is winning against σ1. Player 2’s strategy is determined by 1) the initial choice of tj it
visits and 2) which vertex ti+j to select in the gadgets (Figure 5) when Player 1 delays from
vertex ti. We show the existence of suitable choices by employing an argument based on the
infinite Ramsey theorem, as follows.

First, δ defines naturally, for any history h ∈ E∗, a function δh : M → M that specifies how
the memory is updated when observing this history (formally, δh(m) = δ∗(m, h)). Further,
for every i ≥ 0 there is a function fi : M → {0, 1} that describes for which memory states the
strategy σ1 chooses to delay or exit from ti (formally, fi(m) equals 1 if σ1(ti, m) = (ti, i+1, r0),
and 0 otherwise). Since |M | = K ∈ N, there are only finitely many distinct such functions
fi and δh. Consider now the edge-labelled graph G consisting of all vertices ti, i ≥ 0, and
where for any two i, j ∈ N, the edge between ti and ti+j is labelled by the pair (fi, δh) where
h = ti → t1

i → · · · → tj
i → ti+j is the history through the delay gadget in A4.

Recall the infinite Ramsey theorem: If one labels all edges of the complete (undirected
and countably infinite) graph with finitely many colours, then there exists an infinite
monochromatic subgraph. Applying this to our graph G yields an infinite subgraph, say
with vertices tℓ(i) identified by ℓ : N → N, where all edges have the same label. W.l.o.g.,
assume that ℓ(0) ≥ K and ℓ(i + 1) > ℓ(i) + 1 for all i ≥ 0. Based on this, the strategy σ2
of Player 2 will 1) initially move to tℓ(0) and 2) whenever Player 1 chooses to delay from
tℓ(i) then Player 2 moves to vertex tℓ(i+1). Now consider the play ρ consistent with both
strategies σ1 and σ2. There are two cases. Either along this play Player 1 chooses to exit
from some vertex tℓ(j), j < K, or not. If she exits too early (after delaying only j < K times),
then the total payoff after exiting is exactly −2(ℓ(0) + 1) + (ℓ(0) + j + 1) = −ℓ(0) + j − 1 by
Lemma 8, which is < 0 as ℓ(0) ≥ K > j. Hence, the play is won by Player 2. Alternatively,
if along the play, Player 1 delays at least K times then, by the pigeonhole principle, there is
at least one memory mode that she revisits. More precisely, the play visits vertices tℓ(i) and
tℓ(j), i < j ≤ K in the same memory mode. Recall that the functions fℓ(i) are all identical
for i ≥ 0. It follows that the play will continue visiting vertices tℓ(k), k ≥ 0 only and never
exit to r0. Finally, observe that in any delay gadget from a vertex tℓ(i), the path to vertex
tℓ(i+1) has total payoff of 1 − (ℓ(i + 1) − ℓ(i)). Consequently, the infinite play ρ that visits all
tℓ(i) will be such that TP(ρ) = −∞ and is losing for Player 1 for TP≥0. ◀

▶ Theorem 10. Strategies based on a step counter and finite memory are not sufficient for
Player 1 in games with finitely branching arenas and objectives TP≥0 or TP>0.

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:11

Proof. For TP≥0 this follows directly from Lemma 9. For TP>0, just extend the arena by a
new initial vertex s−1 with sole outgoing edge s−1

1−→ s0 to ensure that the play in which
Player 2 never moves to a vertex ti is won by Player 1. ◀

4 Open objectives

The quantitative objectives defined in Section 2 all belong to the second or third level of the
Borel hierarchy, and the strategy complexity of such objectives is not yet well understood.
However, they use as building blocks objectives from the first level of the Borel hierarchy
(i.e., open and closed objectives), for which there already exist characterisations of memory
requirements. We recall some of these results for the memory structures that we study.

Step-monotonicity. Let O ⊆ Cω be an objective. For two finite words w1, w2 ∈ C∗, we
write w1 ⪯O w2 if for all w ∈ Cω, w1w ∈ O implies w2w ∈ O (meaning that the winning
continuations of w1 are included in those of w2). The relation ⪯O is a preorder and satisfies
that for w1, w2 ∈ C∗ and c ∈ C, w1 ⪯O w2 implies w1c ⪯O w2c (i.e., it is a “congruence”).
We write w1 ≺O w2 if w1 ⪯O w2 but w2 ̸⪯O w1. We say that two finite words w1, w2 ∈ C∗

are comparable for ⪯O if w1 ⪯O w2 or w2 ⪯O w1. We extend preorder ⪯O to histories: we
write h1 ⪯O h2 if col(h1) ⪯O col(h2).

We say that an objective O is step-monotonic if for any two finite words w1, w2 ∈ C∗

such that |w1| = |w2|, w1 and w2 are comparable for ⪯O. In other words, for any two
finite words that are read up to the same state of a step counter, one of the words must
include at least the winning continuations of the other word. This is a specialisation of the
M-strong-monotony property [5] for the step-counter memory structure M = S.

▶ Example 11. Let C = {a, b}. The open objective O = aaCω ∪ bbCω is not step-monotonic,
since for w1 = a and w2 = b, we have that |w1| = |w2|, but w1 and w2 are not comparable for
⪯O. Indeed, aω (resp. bω) is a winning continuation of w1 but not w2 (resp. w2 but not w1).

Now, let C = Q and s ∈ N. The open objective Os = {w ∈ Cω | ∃j ≥ s, TP(w≤j) ≥ 0}
(containing all infinite words whose total payoff goes over 0 at some point after s steps) is
step-monotonic. Indeed, consider two finite words w1, w2 ∈ C∗ such that |w1| = |w2|. If w2
already satisfies Os (i.e., w2Cω ⊆ Os), then necessarily, w1 ⪯Os

w2. Similarly, if w1 already
satisfies Os, then w2 ⪯Os w1. When neither w1 nor w2 already satisfies Os, they can be
compared by their current total payoff: if TP(w1) ≤ TP(w2), then w1 ⪯Os

w2. ⌟

▶ Remark 12. Variations of objective Os are used as building blocks to define quantitative
objectives (as can be seen in the descriptions in Table 1), and will be considered again
later. An important remark is that ⪯Os

is not completely determined by the current total
payoff of words. For instance, if w1 = −1, 0 and w2 = 0, −100, we have w1 ≺O1 w2 even
though TP(w1) > TP(w2). The reason is that w2 already satisfies O1 after 1 step, and any
continuation is therefore winning, despite the current total payoff being lower. ⌟

Step-counter strategies for open objectives. In general, the step-monotonicity property is
necessary for the uniform sufficiency of step-counter strategies over finitely branching arenas
(this is a specialisation of [5, Lemma 5.2] to the step-counter memory structure S). However,
the results of [5] do not yield a characterisation for open objectives in full generality. For
the special case of the step-counter memory structure, we can actually show a converse: for
open objectives, step-monotonicity implies that step-counter strategies suffice over finitely
branching arenas. This is what we show over the next three lemmas (the missing proofs in
this section are available in [3, Appendix B]).

CONCUR 2024

13:12 The Power of Counting Steps in Quantitative Games

First, a handy result about open objectives is that in a finitely branching arena, any
winning strategy already satisfies the objective within a bounded number of steps.

▶ Lemma 13. Let O ⊆ Cω be an open objective, A be a finitely branching arena, and v0 be
an initial vertex in A. If a strategy σ is winning from v0 for O, then there is s ∈ N such that
all histories h of length ≥ s consistent with σ already satisfy O, i.e., col(h)Cω ⊆ O.

Second, the following lemma shows that for step-monotonic objectives, step-counter
strategies can be “locally not worse” than arbitrary strategies.

▶ Lemma 14. Let O ⊆ Cω be a step-monotonic objective. Let A = (V, V1, V2, E) be a finitely
branching arena, v0 ∈ V be an initial vertex, and σ′ be any strategy of Player 1 on A. There
is a step-counter strategy σ such that, for every history h from v0 consistent with σ, there is
a history h′ from v0 consistent with σ′ such that |h′| = |h|, to(h′) = to(h), and h′ ⪯O h.

The previous two lemmas imply that step-counter strategies suffice to win for open,
step-monotonic objectives.

▶ Corollary 15. Let O ⊆ Cω be an open, step-monotonic objective. Step-counter strategies
suffice for O over finitely branching arenas.

Proof. Let A be a finitely branching arena. Let v0 be a vertex from the winning region and
σ′ be an arbitrary winning strategy from v0. By Lemma 13, using that O is open and A is
finitely branching, for all histories h of length ≥ s consistent with σ′, we have col(h)Cω ⊆ O.

As O is step-monotonic, let σ be the step-counter strategy provided by Lemma 14. Every
history h of length s from v0 consistent with σ is at least as good (for ⪯O) as a history h′

of length s from v0 consistent with σ′. Since h′ only has winning continuations, so does h.
Therefore, strategy σ is winning from v0. ◀

5 Prefix-independent Π0
2 objectives

In this section, we show that step-counter strategies suffice for Player 1 for objectives MP≥0
and TP=+∞. In fact, we give a sufficient condition for when step-counter strategies suffice for
Player 1 in finitely branching games where the objectives are prefix-independent and in Π0

2.
Recall that an objective is in Π0

2 if it can be written as
⋂

m∈N Om for some open
objectives Om.

▶ Theorem 16. Let O =
⋂

m∈N Om ⊆ Cω be a prefix-independent Π0
2 objective such that the

objectives Om are open and step-monotonic. Then, step-counter strategies suffice uniformly
for O over finitely branching arenas.

Proof. Let A = (V, V1, V2, E) be a finitely branching arena, and let v0 ∈ V be an initial
vertex. Let WA,1 ⊆ V be the winning region of A for O. We assume that v0 is in the winning
region WA,1, and build a winning step-counter strategy from v0.

We build a winning step-counter strategy σ : V1 × N → E from v0 by induction on
parameter m used in the definition of O =

⋂
m∈N Om. We consider the product arena A ⊗ S,

and fix a strategy for increasingly high step values. The inductive scheme is as follows: for
every m ∈ N, we fix σ on V1 × {0, . . . , km − 1} for some step bound km ∈ N. We ensure that

along all histories from v0 consistent with σ of length at most km, the history does not
leave WA,1 (i.e., for all reachable (v, s), we have v ∈ WA,1), and
the open objectives Om′ for m′ ≤ m are already satisfied within km steps (i.e., any history
of length km consistent with σ only has winning continuations for Om′).

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:13

For the base case, we may assume that we start the induction at m = −1 with k−1 = 0 and
O−1 = Cω. We indeed have that from (v0, 0), the winning region is not left within k−1 = 0
step and that the open objective O−1 is already satisfied.

Now, assume that for some m ≥ 0, the above properties hold, so we have already fixed
the moves of σ in A ⊗ S on V1 × {0, . . . , km − 1}, yielding arena (A ⊗ S)m. We first show that
in arena (A ⊗ S)m the vertex (v0, 0) still belongs to the winning region. We have assumed
by induction that the winning region WA,1 is not left within km steps. This means that
for all (v, km) reachable from (v0, 0) in (A ⊗ S)m, v is in WA,1. As O is prefix-independent,
no matter the history from (v0, 0) to (v, km), there is still a winning strategy from (v, km)
(recall that no choice for Player 1 has been fixed beyond step km). Hence, no matter how
Player 2 plays in the first km steps, there is still a way to win for O from (v0, 0).

We therefore take an (arbitrary) winning strategy σ′
m+1 of Player 1 from (v0, 0) in (A⊗S)m.

As σ′
m+1 is winning for O =

⋂
m∈N Om, σ′

m+1 wins in particular for the open Om+1. Since
the arena is finitely branching and Om+1 is open, applying Lemma 13, there is k′

m+1 ∈ N
such that for all histories h′ of length ≥ k′

m+1 consistent with σ′
m+1, h′ already satisfies

Om+1 (i.e., col(h′)Cω ⊆ Om+1). As Om+1 is step-monotonic, by Lemma 14, there is a
step-counter strategy σm+1 such that for every history h from (v0, 0) consistent with σm+1,
there is a history h′ from (v0, 0) consistent with σ′

m+1 such that |h′| = |h|, to(h′) = to(h),
and h′ ⪯Om+1 h.

To ensure that we fix at least one extra step of the strategy in the inductive step, let
km+1 = max{k′

m+1, km + 1}. We extend the definition of σ to play the same moves as σm+1
on V1 × {km, . . . , km+1 − 1}, which also defines (A ⊗ S)m+1. We prove the two items of the
inductive scheme.

First, σ still does not leave WA,1 up to step km+1: indeed, for every history consistent
with σm+1, there is a history consistent with σ′

m+1 reaching the same vertex. Since σ′
m+1 is

winning and O is prefix-independent, no such vertex can be outside of the winning region.
Second, strategy σ then guarantees Om+1 within km+1 steps: after km+1 steps, every

history consistent with σm+1 is at least as good for ⪯Om+1 as a history of length km+1 of σ′
m+1.

But every history h′ of length km+1 consistent with σ′ is such that col(h′)Cω ⊆ Om+1, and
therefore has only winning continuations.

This concludes the induction argument and shows the existence of a winning step-counter
strategy from v0 as we iterate this process for m → ∞.

We now know that for any vertex from the winning region, there is a winning step-
counter strategy. The existence of a uniformly winning step-counter strategy can be shown
using prefix-independence of O; this part of the proof is standard and is detailed in [3,
Appendix C]. ◀

This theorem applies to MP≥0 and TP=+∞ (see [3, Appendix D] for a full proof).

▶ Corollary 17. Step-counter strategies suffice uniformly for MP≥0 and TP=+∞.

To illustrate Theorem 16 further, we apply it to a non-quantitative objective.

▶ Example 18. Let C be at most countable and O ⊆ Cω be the objective requiring that
all colours are seen infinitely often (it is an intersection of Büchi conditions). Formally,
O =

⋂
c∈C

⋂
i≥1

⋃
j≥i {w = c1c2 . . . ∈ Cω | cj = c}. This objective is prefix-independent and

in Π0
2: it is the countable intersection of the open, step-monotonic objectives Oc,i =⋃

j≥i {w = c1c2 . . . ∈ Cω | cj = c}. By Theorem 16, step-counter strategies suffice over finitely
branching arenas for O. This result is relatively tight: finite-memory strategies do not suffice
over finitely branching arenas when C is infinite, and step-counter strategies do not suffice
over infinitely branching arenas when |C| = 2 (see [3, Appendix D] for details). ⌟

CONCUR 2024

13:14 The Power of Counting Steps in Quantitative Games

v0 v1 u1u1 v2 · · · vi ui vi+1
−1

0

1 −2

0

1 −2

0

i −i − 1

0

i −i − 1

Figure 6 Arena A used in Example 19. Player 1 has a winning 1-bit strategy for TP≥0, but no
winning step-counter strategy.

6 A non-prefix-independent Π0
2 objective

In this section, we consider objective TP≥0 =
⋂

m≥1
⋂

i≥1
⋃

j≥i

{
w ∈ Cω | TP(w≤j) ≥ −1

m

}
(in Π0

2). Its definition is very close to the one of MP≥0 from the previous section, but
one important difference is that it is not prefix-independent (for instance, 0ω ∈ TP≥0, but
−1, 0ω /∈ TP≥0). Hence, Theorem 16 does not apply.

As argued in Lemma 5, it turns out that step-counter strategies do not suffice for TP≥0,
even over finitely branching arenas. We show a second example, only suited for this particular
objective, illustrating more clearly the trade-off to consider to build simple winning strategies.

▶ Example 19. Consider the arena A in Figure 6. We assume that a play starts in v0, hence
reaching sum of weights −1 in v1. We assume that a play is decomposed into rounds, where
round i corresponds to the choice of Player 2 and Player 1 in vi and ui respectively. At each
round i, Player 2 and then Player 1 choose either 0, or i followed by −i − 1. As previously,
we can assume that this arena only uses weights in C = {−1, 0, 1}, and that all histories
from v0 reaching the same vertex have the same length.

Player 1 has a winning strategy, consisting of playing “the opposite” of what Player 2
just played: if Player 2 played the sequence of 0 (resp. i, −i − 1), then Player 1 replies with
i, −i − 1 (resp. the sequence of 0). This ensures that (i) the current sum of weights in vi is
exactly −i (it starts at −1 in v1 and decreases by 1 at each round), and (ii) the current sum
of weights reaches exactly 0 once during each round, after i is played. This shows that this
strategy is winning for TP≥0. Such a strategy can be implemented with two memory states
that simply remember the choice of Player 2 at each round.

As all histories leading to vertices ui have the same length, a step-counter strategy cannot
distinguish the choices of Player 2 (Lemma 1). Any step-counter strategy is losing:

either Player 1 only plays 0, in which case Player 2 wins by only playing 0, thereby
ensuring that the current sum of weights is −1 from v1 onwards;
or Player 1 plays i, −i − 1 at some ui. In this case, Player 2 wins by only playing i, −i − 1.
This means that the sum of weights decreases by at least 1 at every round, but decreases
by 2 in round i. Hence, for j ≥ i, the sum of weights at round j is at most −j − 1. Such
a sum can never go above 0 again when a player plays j, −j − 1. ⌟

This example shows that in general, there is a trade-off between “obtaining a high value
for a short time, to go above 0 temporarily” and “playing safe in order not to decrease the
value too much”. Two memory states sufficed: if the opponent just saw a high sum of weights
(≥ 0), then we can play it safe temporarily; if the opponent played it safe, we may need to
aim for a high value, even if the overall sum decreases. This reasoning generalises to all
finitely branching arenas: in general, step-counter + 1-bit strategies suffice for TP≥0.

▶ Theorem 20. Step-counter + 1-bit strategies suffice for TP≥0 over finitely branching arenas.

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:15

We provide a proof sketch here (full proof in [3, Appendix E]). It follows the same
scheme as the proof of Theorem 16, where we inductively fix choices for ever longer histories.
However, we need to be more careful not to leave the winning region. As the objective is not
prefix-independent, the winning region W ′

A,1 is described not just by a set of vertices, but by
pairs of a vertex and current total payoff (i.e., the current sum of weights), i.e, W ′

A,1 ⊆ V ×Q.
We start with a lemma about the sufficiency of memoryless strategies to stay in this

winning region. Staying in W ′
A,1 is necessary but not sufficient to win for TP≥0.

▶ Lemma 21. Let A = (V, V1, V2, E) be a finitely branching arena. There exists a memoryless
strategy σsafe of Player 1 in A such that, for every (v0, r) ∈ W ′

A,1, σsafe never leaves W ′
A,1

from v0 with initial weight value r.

The following lemma is an analogue of Lemma 14, but ensures a stronger property with a
more complex memory structure (using an extra bit). It says that locally, with a step-counter
+ 1-bit strategy, we can guarantee a high value temporarily while staying in the winning
region W ′

A,1, generalising the phenomenon of Example 19. The bit is used to aim for a high
value (bit value 0) or stay in the winning region (bit value 1) by playing σsafe from Lemma 21.

We use a rewriting of TP≥0: observe that

TP≥0 =
⋂

m≥1

⋃
j≥m

{
w ∈ Cω | TP(w≤j) ≥ −1

m

}
, (1)

where the variable m is used both for the − 1
m lower bound and for the m lower bound on the

step count. Indeed, this also enforces that, for arbitrarily long prefixes, the current total payoff
goes above values arbitrarily close to 0. For m ≥ 1, let Om =

⋃
j≥m{w | TP(w≤j) ≥ −1

m } be
the open set used in the definition of TP≥0 in (1).

▶ Lemma 22. Let A = (V, V1, V2, E) be an arena and v0 ∈ V be an initial vertex in the
winning region of Player 1 for TP≥0. For all m ≥ 1, there exists a step-counter + 1-bit
strategy σm such that σm is winning for Om from v0 and never leaves W ′

A,1 (i.e., for all
histories h from v0 consistent with σm, (to(h), TP(h)) ∈ W ′

A,1).

The inductive scheme used in the proof of Theorem 20 is similar to that of Theorem 16,
building a step-counter + 1-bit strategy σ : V1 × N × {0, 1} → E.

For M a step-counter and 1-bit memory structure, consider the product arena A′ = A⊗M
(in which the bit updates are not fixed yet, and will be fixed inductively). We have that
(v0, (0, 0)) is in the winning region of A′. The inductive scheme is as follows: for infinitely
many m ∈ N, for some step bound km ∈ N, we fix σ on V1 × {0, . . . , km − 1} × {0, 1}, yielding
arena A′

m. Using Lemma 22, we ensure that
along all histories h from v0 consistent with σ of length at most km, W ′

A,1 is not left, and
the open objective Om is already satisfied within km steps (i.e., any history of length km

consistent with σ only has winning continuations for Om).
Iterating this procedure defines a step-counter + 1-bit strategy σ that satisfies Om for
infinitely many m ≥ 1. Since the sequence (Om)m≥1 is decreasing (O1 ⊇ O2 ⊇ . . .), we have
that σ is winning for Om for all m ≥ 1. Hence, σ is winning for TP≥0.
▶ Remark 23. Unlike for Theorem 16, the upper bound in this section does not apply
uniformly in general (an arena illustrating this is in [3, Appendix E]). ⌟

▶ Remark 24. Over integer weights (C ⊆ Z), TP>0 = TP≥1 ∈ Π0
2. As TP≥1 behaves like

TP≥0 (Remark 2), the results from this section apply to TP>0 over integer weights. Up
to some scaling factor, this also applies to rational weights with bounded denominators.
However, for general rational weights, TP>0 can only be shown to be in Σ0

3, so the above
does not apply. ⌟

CONCUR 2024

13:16 The Power of Counting Steps in Quantitative Games

7 Conclusion

We established whether step-counter strategies (possibly with finite memory) suffice for
the objectives MP≥0, TP>0, TP≥0, TP=+∞, and TP≥0. We used the structure of these
objectives as sets in the Borel hierarchy, and pinpointed the strategy complexity for all
classical quantitative objectives on the second level of Borel hierarchy. This leaves open the
cases of MP>0, MP≥0, TP>0 (over Q), and TP=+∞, all on the third level. The sufficiency of
other less common infinite memory structures, such as reward counters [25], could also be
investigated.

References
1 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and

reactive synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 921–962. Springer, 2018.
doi:10.1007/978-3-319-10575-8_27.

2 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Optimal strategies in concurrent
reachability games. In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Con-
ference on Computer Science Logic, CSL 2022, February 14–19, 2022, Göttingen, Germany
(Virtual Conference), volume 216 of LIPIcs, pages 7:1–7:17, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2022.7.

3 Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove.
The power of counting steps in quantitative games. CoRR, abs/2406.17482, 2024. doi:
10.48550/arXiv.2406.17482.

4 Sougata Bose, Rasmus Ibsen-Jensen, and Patrick Totzke. Bounded-memory strategies in partial-
information games. In ACM/IEEE Symposium on Logic in Computer Science, LICS ’24, New
York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3661814.3662096.

5 Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove. How to play
optimally for regular objectives? In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors,
50th International Colloquium on Automata, Languages, and Programming, ICALP 2023,
July 10–14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 118:1–118:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.118.

6 J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic second-order
theory of successor. Journal of Symbolic Logic, 34(2):166–170, 1969. doi:10.2307/2271090.

7 Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In Florin Manea and Alex Simpson, editors, 30th
EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14–19, 2022,
Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages 12:1–12:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CSL.2022.12.

8 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Resource
interfaces. In Rajeev Alur and Insup Lee, editors, Proceedings of the 3rd International
Conference on Embedded Software, EMSOFT 2003, Philadelphia, PA, USA, October 13–15,
2003, volume 2855 of Lecture Notes in Computer Science, pages 117–133. Springer, 2003.
doi:10.1007/978-3-540-45212-6_9.

9 Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. Playing safe, ten years later.
Logical Methods in Computer Science, 20(1), 2024. doi:10.46298/LMCS-20(1:10)2024.

10 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, LICS 1997, Warsaw, Poland, June 29 – July 2, 1997, pages 99–110, 1997.
doi:10.1109/.1997.614939.

11 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Interna-
tional Journal of Game Theory, 8(2):109–113, 1979. doi:10.1007/BF01768705.

https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.4230/LIPIcs.CSL.2022.7
https://doi.org/10.48550/arXiv.2406.17482
https://doi.org/10.48550/arXiv.2406.17482
https://doi.org/10.1145/3661814.3662096
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://doi.org/10.2307/2271090
https://doi.org/10.4230/LIPICS.CSL.2022.12
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.46298/LMCS-20(1:10)2024
https://doi.org/10.1109/.1997.614939
https://doi.org/10.1007/BF01768705

S. Bose, R. Ibsen-Jensen, D. Purser, P. Totzke, and P. Vandenhove 13:17

12 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In Proceedings of the 32nd Annual Symposium on Foundations of
Computer Science, FOCS 1991, San Juan, Puerto Rico, October, 1991, pages 368–377. IEEE
Computer Society, 1991. doi:10.1109/SFCS.1991.185392.

13 Nathanaël Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud
Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey,
Benjamin Monmege, Petr Novotný, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier
Serre, and Mateusz Skomra. Games on graphs, 2023. arXiv:2305.10546.

14 Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer New York,
1996. URL: https://books.google.fr/books?id=21lcbnzDNwsC.

15 Dean Gillette. Stochastic Games with Zero Stop Probabilities, pages 179–188. Princeton
University Press, Princeton, 1957. doi:10.1515/9781400882151-011.

16 Hugo Gimbert and Wiesław Zielonka. When can you play positionally? In Jiří Fiala, Václav
Koubek, and Jan Kratochvíl, editors, Proceedings of the 29th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2004, Prague, Czech Republic, August
22–27, 2004, volume 3153 of Lecture Notes in Computer Science, pages 686–697. Springer,
2004. doi:10.1007/978-3-540-28629-5_53.

17 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

18 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis, Barbara B.
Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, STOC 1982, San Francisco, CA, USA,
May 5–7, 1982, pages 60–65. ACM, 1982. doi:10.1145/800070.802177.

19 Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and Abraham Neyman. The big match
with a clock and a bit of memory. Mathematics of Operations Research, 48(1):419–432, 2023.
doi:10.1287/moor.2022.1267.

20 Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Patrick Totzke. Strategy complexity
of parity objectives in countable MDPs. In Igor Konnov and Laura Kovács, editors, Proceedings
of the 31st International Conference on Concurrency Theory, CONCUR 2020, September 1–4,
2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 39:1–39:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.39.

21 Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Patrick Totzke. Memoryless
strategies in stochastic reachability games, 2024. To appear in Lecture Notes in Computer
Science.

22 Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Patrick Totzke. Strategy complexity
of Büchi objectives in concurrent stochastic games, 2024. arXiv:2404.15483.

23 Ashok P. Maitra and William D. Sudderth. Discrete Gambling and Stochastic Games. Springer-
Verlag, 1996.

24 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975. URL:
http://www.jstor.org/stable/1971035.

25 Richard Mayr and Eric Munday. Strategy complexity of point payoff, mean payoff and total
payoff objectives in countable MDPs. Logical Methods in Computer Science, 19(1), 2023.
doi:10.46298/LMCS-19(1:16)2023.

26 Pierre Ohlmann. Monotonic graphs for parity and mean-payoff games. PhD thesis, IRIF –
Research Institute on the Foundations of Computer Science, 2021.

27 Pierre Ohlmann and Michał Skrzypczak. Positionality in Σ0
2 and a completeness result. In

Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov,
editors, Proceedings of the 41st International Symposium on Theoretical Aspects of Computer
Science, STACS 2024, March 12–14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs,
pages 54:1–54:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/
LIPICS.STACS.2024.54.

CONCUR 2024

https://doi.org/10.1109/SFCS.1991.185392
https://arxiv.org/abs/2305.10546
https://books.google.fr/books?id=21lcbnzDNwsC
https://doi.org/10.1515/9781400882151-011
https://doi.org/10.1007/978-3-540-28629-5_53
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/800070.802177
https://doi.org/10.1287/moor.2022.1267
https://doi.org/10.4230/LIPIcs.CONCUR.2020.39
https://arxiv.org/abs/2404.15483
http://www.jstor.org/stable/1971035
https://doi.org/10.46298/LMCS-19(1:16)2023
https://doi.org/10.4230/LIPICS.STACS.2024.54
https://doi.org/10.4230/LIPICS.STACS.2024.54

13:18 The Power of Counting Steps in Quantitative Games

28 Anuj Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, EECS
Department, University of California, Berkeley, December 1995. URL: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/1995/2950.html.

29 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.

30 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969. doi:10.2307/1995086.

31 Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953. doi:10.1073/pnas.39.10.1095.

32 Frank Thuijsman. Optimality and Equilibria in Stochastic Games. Number no. 82 in CWI
Tract – Centrum voor Wiskunde en Informatica. Centrum voor Wiskunde en Informatica,
1992. URL: https://books.google.co.uk/books?id=sfzuAAAAMAAJ.

33 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1995/2950.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1995/2950.html
https://doi.org/10.1002/9780470316887
https://doi.org/10.2307/1995086
https://doi.org/10.1073/pnas.39.10.1095
https://books.google.co.uk/books?id=sfzuAAAAMAAJ
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

As Soon as Possible but Rationally
Véronique Bruyère # Ñ

Université de Mons (UMONS), Belgium

Christophe Grandmont # Ñ

Université de Mons (UMONS), Belgium
Université Libre de Bruxelles (ULB), Belgium

Jean-François Raskin # Ñ

Université Libre de Bruxelles (ULB), Belgium

Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player
games played on weighted graphs, where the objective of each player is to minimize the cost of
reaching a specific set of target vertices. In these games, one player, referred to as the system,
declares his strategy upfront. The other players, composing the environment, then rationally make
their moves according to their objectives. The rational behavior of these responding players is
captured through two models: they opt for strategies that either represent a Nash equilibrium or
lead to a play with a Pareto-optimal cost tuple.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Solution concepts in game theory; Theory of computation → Logic and verification

Keywords and phrases Games played on graphs, rational verification, rational synthesis, Nash
equilibrium, Pareto-optimality, quantitative reachability objectives

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.14

Related Version Full Version: https://arxiv.org/abs/2403.00399 [17]

Funding This work has been supported by the Fonds de la Recherche Scientifique – FNRS under
Grant n° T.0023.22 (PDR Rational).
Jean-François Raskin: Supported by Fondation ULB (https://www.fondationulb.be/en/).

1 Introduction

Nowadays, formal methods play a crucial role in ensuring the reliability of critical computer
systems. Still, the application of formal methods on a large scale remains elusive in certain
areas, notably in multi-agent systems. Those systems pose a significant challenge for formal
verification and automatic synthesis because of their heterogeneous nature, encompassing
everything from conventional reactive code segments to fully autonomous robots and even
human operators. Crafting formal models that accurately represent the varied components
within these systems is often a too complex task.

Although constructing detailed operational models for humans or sophisticated au-
tonomous robots might be problematic, it is often more feasible to identify the overarching
goals that those agents pursue. Incorporating these goals is crucial in the design and validation
process of systems that interact with such entities. Typically, a system is not expected to
function flawlessly under all conditions but rather in scenarios where the agents it interacts
with act in alignment with their objectives, i.e., they behave rationally. Rational synthesis
focuses on creating a system that meets its specifications against any behavior of environ-
mental agents that is guided by their goals (and not against any of their behaviors). Rational
verification studies the problem of ensuring that a system enforces certain correctness proper-
ties, not in all conceivable scenarios, but specifically in scenarios where environmental agents
behave in accordance with their objectives.

© Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 14; pp. 14:1–14:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veronique.bruyere@umons.ac.be
https://informatique-umons.be/bruyere-veronique/
https://orcid.org/0000-0002-9680-9140
mailto:christophe.grandmont@umons.ac.be
https://chrisgdt.github.io/
https://orcid.org/0009-0009-4573-0123
mailto:jean-francois.raskin@ulb.be
https://verif.ulb.ac.be/jfr/
https://orcid.org/0000-0002-3673-1097
https://doi.org/10.4230/LIPIcs.CONCUR.2024.14
https://arxiv.org/abs/2403.00399
https://www.fondationulb.be/en/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 As Soon as Possible but Rationally

Table 1 Summary of complexity results.

Non-coop. verif. Universal non-coop. verif. Coop. synthesis Non-coop. synthesis
PO, weights ΠP

2-complete PSPACE-complete PSPACE-complete NEXPTIME-complete [11]
PO, qualitative ΠP

2-complete PSPACE-complete PSPACE-complete NEXPTIME-complete [18]
NE, weights coNP-complete coNP-complete NP-complete Unknown, EXPTIME-hard1)

NE, qualitative coNP-complete [27] coNP-complete [27] NP-complete [21] PSPACE-complete [21]
1) For the important special case of one-player environments, we provide an algorithm that runs in EXPTIME and we can prove

PSPACE-hardness. The EXPTIME-hardness of the general case already holds for two-player environments.

Rationality can be modeled in various ways. In this paper, we focus on two general
approaches. The first approach comes from game theory where rationality is modeled by the
concept of equilibrium, such as Nash equilibria (NE) [35] or subgame perfect equilibria (SPE),
a refinement of NEs [36]. The second approach treats the environment as a single agent but
with multiple, sometimes conflicting, goals, aiming for behaviors that achieve a Pareto-optimal
balance among these objectives. The concept of Pareto-optimality (PO) and its application
in multi-objective analysis have been explored primarily in the field of optimization [37], but
also in formal methods [2, 4]. These two notions of rationality are different in nature: in
the first setting, each component of the environment playing an equilibrium is considered to
be an independent selfish individual, excluding cooperation scenarios, while in the second
setting, several components of the environment can collaborate and agree on trade-offs.
The challenge lies in adapting these concepts to reactive systems characterized by ongoing,
non-terminating interactions with their environment. This necessitates the transition from
two-player zero-sum games on graphs, the classical approach used to model a fully adversarial
environment (see e.g. [38]), to the more complex setting of multi-player non zero-sum games
on graphs used to model environments composed of various rational agents.

Rational synthesis and rational verification have attracted large attention recently, see
e.g. [7, 19, 21, 26, 28, 29, 33, 34]. But the results obtained so far, with a few exceptions
that we detail below, are limited to the qualitative setting formalized as Boolean outcomes
associated with ω-regular objectives. Those objectives are either specified using linear
temporal specifications or automata over infinite words (like parity automata). The complexity
of those problems is now well understood (with only a few complexity gaps remaining, see
e.g. [21, 34]). The methods to solve those problems and get completeness results for worst-
case complexity are either based on automata theory (using mainly automata over infinite
trees) or by reduction to zero-sum games. Quantitative objectives are less studied and
revealed to be much more challenging. For instance, it is only very recently that the
rational verification problem was studied, for SPEs in non zero-sum games with mean-payoff,
energy, and discounted-sum objectives in [7], for an LTL specification in multi-agent systems
that behave according to an NE with mean-payoff objectives in [29] or with quantitative
probabilistic LTL objectives in [30]. In [1], the rational synthesis problem was studied for
the quantitative extension LTL[F] of LTL where the Boolean operators are replaced with
arbitrary functions mapping binary tuples into the interval [0, 1].

In this paper, we consider quantitative reachability objectives. Our choice for studying
these objectives was guided by their fundamental nature and also by their relative simplicity.
Nevertheless, as we will see, they are challenging for both rational synthesis and rational
verification. Indeed, to obtain worst-case optimal algorithms and establish completeness
results, we had to resort to the use of innovative theoretical tools, more advanced than those
necessary for the qualitative framework. In our endeavor, we have established the exact
complexity of most studied decision problems in rational synthesis and rational verification.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:3

Technical Contributions. In this work, we explore both verification and synthesis problems
through the lens of rationality, defined by Pareto-optimality and Nash equilibria, for quanti-
tative reachability objectives. For the synthesis problem, we also consider the cooperative
variant where the environment cooperates with the system: we want to decide whether
the system has a strategy and the environment a rational response to this strategy such
that the objective of the system is enforced. Our results are presented in Table 1, noting
that all results lacking explicit references are, to our knowledge, novel contributions. For
completeness, the table includes (new and known) results for the qualitative scenario.

The results for PO rationality are as follows. (1) For the verification problems, we
assume that the behavior of the system is formalized by a nondeterministic Mealy machine,
used to represent a (usually infinite) set of its possible implementations. For each of those
implementations, we verify that the quantitative reachability objective of the system is met
against any rational behavior of the environment. We establish that this problem is PSPACE-
complete. To obtain the upper bound, we rely on a genuine combination of techniques based
on Parikh automata and a recursive PSPACE algorithm (for positive Boolean combinations of
bounded safety objectives, a problem of independent interest). Parikh automata are used to
guess a compact representation of certificates which are paths of possibly exponential length
in the size of the problem input. When the Mealy machine is deterministic, we show that the
complexity goes down to ΠP

2 -completeness, as the previous PSPACE algorithm is replaced
by a coNP oracle. (2) For the synthesis problems, we only consider the cooperative version
which we prove to be PSPACE-complete, as the non-cooperative version was established to
be NEXPTIME-complete in [11].

The results for NE rationality are as follows. (1) We establish that, surprisingly, the
verification problems are coNP-complete both for the general case of a nondeterministic
Mealy machine and for the special case where it is deterministic. The upper bounds for
those problems are again based on Parikh automata certificates but here there is no need to
use a coNP oracle. (2) For the synthesis problems, the landscape is more challenging. For
the cooperative case, we were able to establish that the problem is NP-complete. For the
non-cooperative case, we have partially solved the problem and established the following
results. When the environment is composed of a single rational player, the problem is in
EXPTIME and PSPACE-hard. For an environment with at least two players, we show that
the problem is EXPTIME-hard but we leave its decidability open. The lower bounds are
obtained using an elegant reduction from countdown games [31]. We give indications in the
paper why the problem is difficult to solve and why classical automata-theoretic methods
may not be sufficient (if the problem is decidable).

In this paper, we focus on nonnegative weights as we show that considering arbitrary
weights leads to undecidability of the synthesis problems. We also focus on NEs instead of
SPEs, even if the latter are a better concept to model rational behavior in games played on
graphs. Indeed, it is well-known that SPEs pose greater challenges than NEs. So, starting
with NEs offers a better initial step for the algorithmic treatment of rational verification and
synthesis in quantitative scenarios, an area that remains largely unexplored.

Related Work. The survey [15] presents several results about different game models and
different kinds of objectives related to reachability. Quantitative objectives in two-player
zero-sum games were largely studied, see e.g. [13, 20, 22], even if exact complexity results
are often elusive due to the intricate nature of the problems (e.g. the exact complexity of
solving mean-payoff games is still an open problem). In multi-player non zero-sum games,
the (constrained) existence of equilibria is also well studied. The existence of simple NEs

CONCUR 2024

14:4 As Soon as Possible but Rationally

was established in [12] for mean-payoff and discounted-sum objectives. No decision problem
is considered in that paper. The constrained existence of SPEs in quantitative reachability
games was proved PSPACE-complete in [8]. We prove here that the complexity is lower when
we use NEs to model rationality, as we obtain NP-completeness for the related cooperative
synthesis problem. Deciding the constrained existence of SPEs was recently solved for
quantitative reachability games in [9] and for mean-payoff games in [5, 6]. The cooperative
and non-cooperative rational synthesis problems were studied in [25] for games with mean-
payoff and discounted-sum objectives when the environment is composed of a single player.
The mean-payoff case was proved to be NP-complete and the discounted-sum case was linked
to the open target discounted sum problem, which explains the difficulty of solving the
problem in this case.

Structure of the Paper. The background is given in Section 2. The formal definitions of
the studied problems and our main complexity results are stated in Section 3. The proofs of
our results are given for PO rationality in Section 4, and for NE rationality in Section 5. We
give a conclusion and future work in Section 6.

2 Background

Arenas and Plays. A (finite) arena A is a tuple (V, E, P, (Vi)i∈P) where V is a finite set of
vertices, E ⊆ V × V is a set of edges, P is a finite set of players, and (Vi)i∈P is a partition of
V , where Vi is the set of vertices owned by player i. We assume that v ∈ V has at least one
successor, i.e., the set succ(v) = {v′ ∈ V | (v, v′) ∈ E} is nonempty.

We define a play π ∈ V ω (resp. a history h ∈ V ∗) as an infinite (resp. finite) sequence of
vertices π0π1 . . . such that (πi, πi+1) ∈ E for any two consecutive vertices πi, πi+1. The length
|h| of a history h is the number of its vertices. The empty history is denoted ε. Given a play
π and two indexes k < k′, we write π≤k the prefix π0 . . . πk of π, π≥k the suffix πkπk+1 . . . of
π, and π[k,k′[for πk . . . πk′−1. We denote the first vertex of π by first(π). These notations are
naturally adapted to histories. We also write last(h) for the last vertex of a history h ̸= ε. The
set of all plays (resp. histories) of an arena A is denoted PlaysA ⊆ V ω (resp. HistA ⊆ V ∗), and
we write Plays (resp. Hist) when the context is clear. For i ∈ P , the set Histi ⊆ V ∗Vi represents
all histories ending in a vertex v ∈ Vi. That is, Histi = {h ∈ Hist | h ̸= ε and last(h) ∈ Vi}.

We can concatenate two nonempty histories h1 and h2 into a single one, denoted h1 · h2
or h1h2 if (last(h1), first(h2)) ∈ E. When a history can be concatenated to itself, we call it a
cycle. Furthermore, a play π = µνν · · · = µ(ν)ω where µν ∈ Hist with ν a cycle, is called a
lasso. The length of π is then the length of µν.2 Given a play π, a cycle along π refers to a
sequence π[m,n[with πm = πn. We denote Occ(π) = {v ∈ V | ∃n ∈ N, v = πn} the set of all
vertices occurring along π, and we say that π visits or reaches a vertex v ∈ Occ(π) or a set
T such that T ∩ Occ(π) ̸= ∅. The previous notions extend to histories.

Given an arena A, if we fix an initial vertex v0 ∈ V , we say that A is initialized and we
denote by Plays(v0) (resp. Hist(v0)) all its plays (resp. nonempty histories) starting with v0.
An arena is called weighted if it is augmented with a non-negative weight function wi : E → N
for each player i. We denote by W the greatest weight, i.e., W = max{wi(e) | e ∈ E, i ∈ P}.
We extend wi to any history h = π0 . . . πn such that wi(h) =

∑n
j=1 wi((πj−1, πj)).

2 To have a well-defined length for a lasso π, we assume that π = µ(ν)ω with µν of minimal length.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:5

Reachability Games. A reachability game is a tuple G = (A, (Ti)i∈P) where A is a weighted
arena and Ti ⊆ V is a target set for each i ∈ P . We define a cost function costi : Plays → N∪
{+∞} for each player i, such that for all plays π = π0π1 · · · ∈ Plays, costi(π) = wi(π0 . . . πn)
with n the smallest index such that πn ∈ Ti, if it exists and costi(π) = +∞ otherwise.

The reachability objective of player i is to minimize this cost as much as possible, i.e.,
given two plays π, π′ such that costi(π) < costi(π′), player i prefers π to π′. We extend < to
tuples of costs as follows: (costi(π))i∈P < (costi(π′))i∈P if costi(π) ≤ costi(π′) for all i ∈ P
and there exists some j ∈ P such that costj(π) < costj(π′). Given a play π, we denote by
Visit(π) the set of players i such that π visits Ti, i.e., Visit(π) = {i ∈ P | costi(π) < +∞}.
When for all i ∈ P and e ∈ E, wi(e) = 0, we speak of qualitative reachability games, since
costi(π) = 0 if Occ(π) ∩ Ti ̸= ∅ and +∞ otherwise.

Strategies and Mealy Machines. Let A = (V, E, P, (Vi)i∈P) be an arena. A strategy
σi : Histi → V for player i maps any history h ∈ Histi to a vertex v ∈ succ(last(h)), which
is the next vertex that player i chooses to move to after reaching the last vertex in h. The
set of all strategies of player i is denoted Σi. A play π = π0π1 . . . is consistent with σi if
πk+1 = σi(π0 . . . πk) for all k ∈ N such that πk ∈ Vi. Consistency is naturally extended to
histories. A tuple of strategies σ = (σi)i∈P with σi ∈ Σi, is called a strategy profile. In
an arena initialized at v0, we limit the domain of each strategy σi to Histi(v0); the play π

starting from v0 and consistent with each σi is denoted ⟨σ⟩v0 and called outcome.
Given an initialized arena A, we can encode a strategy or a set of strategies by a (finite)

nondeterministic Mealy machine [7, 19] M = (M, m0, δ, τ) on A, where M is a finite set of
memory states, m0 ∈ M is the initial state, δ : M × V → 2M is the update function, and
τ : M × Vi → 2V is the next-move function. Such a machine embeds a (possibly infinite) set
of strategies σi for player i, called compatible strategies. Formally, σi is compatible with M
if there exists a mapping h 7→ mh such that mhv ∈ δ(mh, v) for every hv ∈ Hist(v0) (with
mh = m0 when h is empty), and when v ∈ Vi, σi(hv) ∈ τ(mh, v). An example of such a
machine M is given in Appendix A. We denote by JMK the set of all strategies compatible
with M. The memory size of M is equal to |M |. We say that M is deterministic when the
image of both functions δ and τ is a singleton. Thus when M is deterministic, JMK = {σi}
and σi is called finite-memory, and when additionally |M | = 1, σi is called memoryless.

3 Studied Problems

In this section, within the context of rational synthesis and verification, we consider a reacha-
bility game G = (A, (Ti)i∈P) with A an initialized weighted arena and P = {0, 1, . . . , t} such
that player 0 is a specific player, often called system or leader, and the other players 1, . . . , t

compose the environment and are called followers. Player 0 announces his strategy σ0 at the
beginning of the game and is not allowed to change it according to the behavior of the other
players. The response of those players to σ0 is supposed to be rational, where the rationality
can be described as the outcome of a Nash equilibrium [35] or as a Pareto-optimal play [18].

Nash Equilibria. A strategy profile for the environment is a Nash equilibrium if no player has
an incentive to unilaterally deviate from this profile. In other words, no player can improve his
cost by switching to a different strategy, assuming that the other players stick to their current
strategies. Formally, given the initial vertex v0 and a strategy σ0 announced by player 0,
a strategy profile σ = (σi)i∈P is called a 0-fixed Nash equilibrium (0-fixed NE) if for every
player i ∈ P \{0} and every strategy τi ∈ Σi, it holds that costi(⟨σ⟩v0) ≤ costi(⟨τi, σ−i⟩v0),
where σ−i denotes (σj)j∈P\{i}, i.e., τi is not a profitable deviation. We also say that σ is a
σ0-fixed NE to emphasize the strategy σ0 of player 0.

CONCUR 2024

14:6 As Soon as Possible but Rationally

Pareto-Optimality. When all players collaborate to obtain a best cost for everyone, we
need another concept of rationality. In that case, we suppose that the players in P \{0}
form a single player, player 1, that has a tuple of targets sets (Ti)i∈{1,...,t}. For each
play π ∈ Plays(v0), player 1 gets a cost tuple costenv(π) = (costi(π))i∈{1,...,t}, and prefers π

to π′ if costenv(π) < costenv(π′) for the componentwise partial order < over (N ∪ {+∞})t.
Given such a modified game and a strategy σ0 announced by player 0, we consider the set Cσ0

of cost tuples of plays consistent with σ0 that are Pareto-optimal for player 1, i.e., minimal
with respect to <. Hence, Cσ0 = min{costenv(π) | π ∈ Plays(v0) consistent with σ0}. Notice
that Cσ0 is an antichain. A cost tuple p (called cost in the sequel) is said to be σ0-fixed
Pareto-optimal (σ0-fixed PO or simply 0-fixed PO) if p ∈ Cσ0 . Similarly, a play is said to be
σ0-fixed PO if its cost is σ0-fixed PO.

In some problems studied in this paper, we will have to consider games such that all
vertices owned by player 0 have only one successor, which means that player 0 has no choice
but to choose this successor. In this case, we say that player 1 is the only one to play.

Rational Verification. We now present the studied decision problems related to the concept
of rational verification. Given some threshold c ∈ N, the goal is to verify that a strategy σ0
announced by player 0 guarantees him a cost cost0(π) ≤ c whatever the rational response
π of the environment. By rational response, we mean either a σ0-fixed NE outcome π, or
a σ0-fixed PO play π. The strategy σ0 is usually given as a deterministic Mealy machine.
We can go further: with a nondeterministic Mealy machine, we want to verify whether all
strategies σ0 ∈ JMK are solutions. In the latter case, we speak about universal verification.

▶ Problem 1. Given a reachability game G with an initialized arena, a nondeterministic
Mealy machine M0 for player 0, and a threshold c ∈ N,

If JM0K = {σ0}, the Non-Cooperative Nash Verification problem (NCNV) asks whether
for all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
The Universal Non-Cooperative Nash Verification problem (UNCNV) asks whether for all
σ0 ∈ JM0K and all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
If JM0K = {σ0}, the Non-Cooperative Pareto Verification problem (NCPV) asks whether
for all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.
The Universal Non-Cooperative Pareto Verification problem (UNCPV) asks whether for
all σ0 ∈ JM0K and all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.

Rational Synthesis. We consider the more challenging problem of rational synthesis. Given
a threshold c ∈ N, the goal is to synthesize a strategy σ0 for player 0 (instead of verifying
some σ0) that guarantees him a cost cost0(π) ≤ c whatever the rational response π of the
environment. We also consider the simpler problem where the environment cooperates with
the leader by proposing some rational response π that guarantees him a cost cost0(π) ≤ c.

▶ Problem 2. Given a reachability game G with an initialized arena and a threshold c ∈ N,
The Cooperative Nash Synthesis (CNS) problem asks whether there exists σ0 ∈ Σ0 and a
σ0-fixed NE σ such that cost0(⟨σ⟩v0) ≤ c.
The Non-Cooperative Nash Synthesis (NCNS) problem asks whether there exists σ0 ∈ Σ0
such that for all σ0-fixed NEs σ, it holds that cost0(⟨σ⟩v0) ≤ c.
The Cooperative Pareto Synthesis (CPS) problem asks whether there exists σ0 ∈ Σ0 and
a σ0-fixed PO play π such that cost0(π) ≤ c.
The Non-Cooperative Pareto Synthesis (NCPS) problem asks whether there exists σ0 ∈ Σ0
such that for all σ0-fixed PO plays π, it holds that cost0(π) ≤ c.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:7

v0

v1

⋄
v2

v3

0, □

v4

0, ⋄

v5

□

Figure 1 An example illustrating the
two concepts of rational response.

v0 v1
(1, 0)

(1, 0) (1, 0)

Figure 2 An example showing that PO lasso plays in
the coNCPV problem may have an exponential length.

▶ Example 3. To illustrate these problems, let us study a simple example depicted in Figure 1
with three players: the system, player 0, and two players in the environment, players □ and ⋄.
Player 0 owns the circle vertices, player □ owns the square initial vertex v0, and player ⋄
owns the diamond vertex v2. Each player i has a target set, T0 = {v3, v4}, T□ = {v3, v5} and
T⋄ = {v1, v4}, and a constant weight wi(e) = 1 for all e ∈ E. When a vertex v is in Ti, we
depict the symbol of player i nearby v. As the graph is acyclic, the possible player strategies
are all memoryless. In the sequel, we thus only indicate the successor chosen by the player.

Let us show that σ0 defined by σ0(v1) = v2 is a solution to the NCNS problem with the
threshold c = 3. Given σ0, there exist four distinct strategy profiles σ = (σ0, σ□, σ⋄). When,
for example, σ□(v0) = v2 and σ⋄(v2) = v5, we abusively denote σ as {v0 → v2, v2 → v5}:

{v0 → v2, v2 → v5} is not a σ0-fixed NE because its outcome π1 = v0v2(v5)ω has a infinite
cost for player ⋄ who will deviate from v2 to v4 to get a cost of 2;
similarly, {v0 → v1, v2 → v5} with outcome π2 = v0v1v2(v5)ω is not a σ0-fixed NE;
the profile {v0 → v1, v2 → v4} is a σ0-fixed NE, its outcome is π3 = v0v1v2(v4)ω with
cost□(π3) = +∞, cost⋄(π3) = 1 and cost0(π3) = 3 ≤ c, so if player □ deviates from v1 to
v2, his cost is still +∞, and player ⋄ has no incentive to deviate since cost⋄(π3) is already
the smallest available;
the profile {v0 → v2, v2 → v4} with the outcome π4 = v0v2(v4)ω is also a σ0-fixed NE
and cost0(π4) = 2 ≤ c.

So, σ0 is a solution to the NCNS problem with c = 3, but not with c = 2. It is also a
solution for the CNS problem. One can verify that σ′

0 such that σ′
0(v1) = v3 is a solution to

the NCNS problem with c = 2, since the only σ′
0-fixed NE outcome is π5 = v0v1(v3)ω.

We now show that σ0 is not a solution to the CPS problem with c = 2. Let us consider
the same four outcomes as before. Their cost for the environment are: costenv(π1) = (2, +∞),
costenv(π2) = (3, 1), costenv(π3) = (+∞, 1), and costenv(π4) = (+∞, 2), meaning that
Cσ0 = {(2, +∞), (3, 1)}. Consequently, the only σ0-fixed PO plays are π1 and π2, both giving
a cost of +∞ to player 0. However, the strategy σ′

0 is a solution, as there is only one σ′
0-fixed

PO play, π5 = v0v1(v3)ω, with costenv(π5) = (2, 1) and cost0(π5) = 2.

Main Results. Our main results for Problems 1-2 are the following ones when the rational
responses of the environment are 0-fixed PO plays. One problem was already solved in [11].

▶ Theorem 4.
(a) The Non-Cooperative Pareto Verification problem is ΠP

2 -complete.
(b) The Universal Non-Cooperative Pareto Verification problem is PSPACE-complete.
(c) The Cooperative Pareto Synthesis problem is PSPACE-complete.
(d) The Non-Cooperative Pareto Synthesis problem is NEXPTIME-complete [11].

For 0-fixed NE responses of the environment, we obtain the next main results.

CONCUR 2024

14:8 As Soon as Possible but Rationally

▶ Theorem 5.
(a) The Non-Cooperative Nash Verification problem is coNP-complete.
(b) The Universal Non-Cooperative Nash Verification problem is coNP-complete.
(c) The Cooperative Nash Synthesis problem is NP-complete.
(d) The Non-Cooperative Nash Synthesis problem is EXPTIME-hard, already with a two-player

environment. With a one-player environment, it is in EXPTIME and PSPACE-hard.

These complexity results depend on the size |V | of the arena, the number t of players i

(resp. target sets Ti) in case of 0-fixed NE responses (resp. 0-fixed PO responses), the maximal
weight W encoded in binary appearing in the functions wi, the threshold c encoded in binary,
and the size |M | of the Mealy machine M0 (for the verification problems). Note that for all
problems except the NCNS problem, the complexity classes are the same for both qualitative
and quantitative frameworks (see Table 1). Hence, in the case of a unary encoding of the
weights and the threshold c, we get the same complexity classes. Due to space constraints,
only the most challenging proofs are provided in the paper, while the other proofs or results
derived from the literature are deferred in the long version of this paper [17].

In this paper, we focus on zero or positive weights, because with negative weights, there
are simple examples of one-player games with no NE or no PO plays (thus with no rational
responses). Furthermore, considering any weights leads to the undecidability of the NCNS
and NCPS problems. Those results are obtained by reduction from the undecidability of
zero-sum multidimensional shortest path games [40, 41]. See details in the long version of
this paper [17].

▶ Theorem 6. With integer weight functions, the Non-Cooperative Nash Synthesis problem
and the Non-Cooperative Pareto Synthesis problem are undecidable.

4 Pareto-Optimality

In this section, we provide the proofs of the upper bounds in Theorem 4. Recall that the
environment is here composed of the sole player 1 having t target sets Ti, and his rational
responses to a strategy σ0 announced by player 0 are σ0-fixed PO plays. The lower bounds
are proved in the long version [17] with reductions from QBF or some of its variants [42]. All
those reductions already hold for qualitative reachability games. We thus obtain the same
complexity classes as in Theorem 4 for this class of games, as indicated in Table 1.

To solve the two verification problems (NCPV and UNCPV), we first construct the product
game3 G × M0 of size polynomial in G and M0, and we assume to directly work with this
game, again denoted G. Note that in the product game, when M0 is nondeterministic,
player 0 is able to play any strategy σ0 compatible with M0, and when M0 is deterministic,
the verification problems are simplified as there is a single compatible strategy σ0. The
complement of the (U)NCPV problem has many similarities with the CPS problem:

▶ Problem 7. The complement of the (U)NCPV problem (co(U)NCPV) asks whether there
exists σ0 ∈ Σ0 and a σ0-fixed PO play π such that cost0(π) > c.

Indeed, the statement is the same except that the inequality cost0(π) ≤ c in the CPS problem
is here replaced by cost0(π) > c. To prove the upper bounds of Theorem 4, we thus have
to solve the decision problem “do there exist σ0 ∈ Σ0 and a σ0-fixed PO play π such that
cost0(π) ∼ c ?” with ∼ ∈ {≤, >}. In short, the algorithm to solve the CPS problem and the
complement of the (U)NCPV problem proceeds through the following steps:

3 The product of a game with a Mealy machine is recalled in Appendix A.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:9

1. Guess a play π in the form π = µ(ν)ω in polynomial time. The length of the lasso is
polynomial or exponential, depending on the studied problem. In the latter case, we will
guess a succinct representation of the lasso by using Parikh automata [23, 32].

2. Compute in polynomial time costenv(π) and verify in polynomial time that cost0(π) ∼ c.
3. Verify that player 0 has a strategy σ0, with π consistent with σ0, that guarantees that

costenv(π) is σ0-fixed PO. This last step will be done in coNP or in PSPACE, depending
on the studied problem.

Therefore, if a strategy σ0 exists as in Step 3, the σ0-fixed PO play π such that cost0(π) ∼ c

is the lasso of Step 1. Let us now provide detailed proofs for these three steps.

4.1 Existence of Lassos
The goal is this section is to prove the next lemma stating that one can always suppose
that π is a lasso. For that purpose, we use a classical approach consisting of removing
cycles [10, 14, 21].

▶ Lemma 8. Let σ0 ∈ Σ0 and π be a σ0-fixed PO play π such that cost0(π) ∼ c. Then
there exist σ′

0 ∈ Σ0 and a σ′
0-fixed PO play π′ = µ(ν)ω such that cost0(π′) ∼ c. Moreover,

Visit(µ) = Visit(µν) and
if cost0(π) ≤ c, then |µ| ≤ (t + 1)|V |, |ν| ≤ |V |, costenv(π′) ∈ {0, 1, . . . , B, +∞}t, with
B = (t + 2)|V |W ,
if cost0(π) > c, then |µ| ≤ c + (t + 1)|V |, |ν| ≤ |V |, costenv(π′) ∈ {0, 1, . . . , B, +∞}t, with
B = (c + (t + 2)|V |)W .

Proof. Let π = π0π1 . . . be a σ0-fixed PO play such that cost0(π) ∼ c.
Suppose that cost0(π) ≤ c. Consider, along π, any two consecutive first visits to two

target sets, say Ti and Tj . If there exists m < n such that πn = πm between these two
visits, we remove the cycle π[m,n[from π. We repeat this process until there are less than
|V | vertices between the two visits, for any such pair Ti, Tj , but also between π0 and the
first visit to a target set. Let us denote π′ the resulting play. Consider now along π′ the last
first visit to a target set, say at index k. We then seek for the first repeated vertex π′

ℓ1
= π′

ℓ2

with k ≤ ℓ1 < ℓ2 after k. In this way, we obtain ν = π′
[ℓ1,ℓ2[with |ν| ≤ |V | and µ = π′

[0,ℓ1[
with |µ| ≤ (t + 1)|V |. So, we get the required lasso µ(ν)ω such that Visit(µ) = Visit(µν),
cost0(µ(ν)ω) ≤ cost0(π) ≤ c, and costenv(µ(ν)ω) ∈ {0, 1, . . . , B, +∞}t, with B = (t+2)|V |W .

The case cost0(π) > c is treated similarly, except that we cannot remove cycles along
the longest prefix h of π such that cost0(h) ≤ c, as this operation might decrease the cost
of player 0. We thus get |µ| ≤ c + (t + 1)|V |, cost0(µ(ν)ω) > c, and costenv(µ(ν)ω) ∈
{0, 1, . . . , B, +∞}t, with B = (c + (t + 2)|V |)W .

It remains to explain how to construct a strategy σ′
0 from σ0 such that π′ = µ(ν)ω is

σ′
0-fixed PO. First, σ′

0 is built in a way to produce π′. Second, we have to define σ′
0 outside π′,

i.e., from any h′v, with v ∈ V , such that h′ is prefix of π′ but not h′v. Let h be such that the
elimination of cycles done in π, restricted to h, leads to h′. We then define σ′

0(h′g) = σ0(hg)
for all histories g ∈ Hist(v). Notice that σ′

0 is the required strategy as the elimination of
cycles in a history or a play decreases the costs. ◀

▶ Example 9. When cost0(π) > c, Lemma 8 provides a bound on |µν| that is exponential in
the binary encoding of c. In Figure 2, we present a small example of a reachability game
showing that this is unavoidable. The initial vertex v0 is owned by player 1, v1 is owned by
player 0, and there are two weight functions w0 and w1 (thus t = 1). Both players have the
same target set: T0 = T1 = {v1}. Notice that player 1 is the only one to play, and a play

CONCUR 2024

14:10 As Soon as Possible but Rationally

π ∈ Plays(v0) is PO if and only if visits T1 (and has costenv(π) = 0). Hence, given a threshold
c, any PO play π with cost0(π) > c is equal to vk

0 (v1)ω with k > c. The length |vk
0 v1| is thus

greater than c. Therefore, Step 1 of our decision algorithm for the co(U)NCPV cannot guess
an explicit representation µ(ν)ω if we want to stick to a polynomial time algorithm.

4.2 Particular Zero-sum Games
Now that we know we can limit our study to lassos π, Step 3 requires to verify that
player 0 has a strategy σ0 ensuring that costenv(π) is σ0-fixed PO. Before going deeper
into this step, we need to study some particular two-player zero-sum games.4 Let A =
(V, E, P, (Vi)i∈P , (wi)i∈{1,...,t}) be an arena with P = {Eve, Adam} and equipped with t

weight functions wi : E → N. We suppose that A is initialized with v0 ∈ V . We fix t target
sets Ti ⊆ V and t constants di ∈ N>0 ∪ {+∞}. We denote by G = (A, Ω) a zero-sum game
whose objective Ω is a Boolean combination of the following objectives:

Reach<di
(Ti) = {π ∈ Plays(v0) | costi(π) < di} called bounded reachability objective, and

Safe≥di
(Ti) = Plays(v0) \ Reach<di

(Ti) called bounded safety objective.
Solving such a game G means to decide whether Eve has a strategy σ such that all plays
π ∈ Plays(v0) consistent with σ belong to the objective Ω. If such a strategy σ exists, we say
that σ is winning for Ω and that the initial vertex v0 is winning for Eve for Ω.

For the PO-check required for Step 3, will see in Section 4.3 that we need to solve the
zero-sum games stated in the next two propositions, where the constants di are encoded in
binary. The second proposition will be used in the general case of nondeterministic Mealy
machines M0 while the first one will be used in the deterministic case. Proposition 10 is a
quantitative extension of a result in [24] about (qualitative) generalized reachability games.

▶ Proposition 10. Let G = (A, Ω) be a zero-sum game with Ω =
⋂

1≤i≤t Reach<di
(Ti) and

Eve is the only one to play. Deciding whether v0 is winning for Eve is an NP-complete
problem.

Proof. We first notice that if Eve has a winning strategy from v0, i.e., there exists a play
π ∈ Ω, then we can eliminate cycles as in the proof of Lemma 8. Therefore, there exists a
lasso π′ = µ(ν)ω ∈ Ω where |µν| ≤ (t + 2)|V |. Thus, to get an algorithm in NP, we guess
such a lasso π′ and verify that costi(π′) < di for each i ∈ {1, . . . , t}. This is possible in
polynomial time with the costs encoded in binary. It is proved in [24] that solving (qualitative)
generalized reachability games with VAdam = ∅ is NP-complete. Our problem is thus NP-hard
by a reduction from the previous problem with the same arena, the weight functions assigning
a null weight to all edges, and by setting (d1, . . . , dt) = (+∞, . . . , +∞). ◀

The next proposition, of potential independent interest, is easily extended to any positive
Boolean combinations of bounded safety objectives.

▶ Proposition 11. Let G = (A, Ω) be a zero-sum game where Ω = Ω(1) ∪ Ω(2), with Ω(1) =(⋂
1≤i≤t Safe≥di(Ti)

)
and Ω(2) =

(⋃
1≤i≤t Safe≥di+1(Ti)

)
, and such that +∞ + 1 = +∞.

Then, deciding whether v0 is winning for Eve is in PSPACE.

Proof. We solve the game (A, Ω) by using a recursive algorithm. To know whether v0
is winning for Eve, we run a depth-first search over a finite tree rooted at v0 that is the
(truncated) unraveling of A, and we keep track of the accumulated weights along the explored

4 We suppose that the reader is familiar with this concept.

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:11

branch as a tuple (ci)1≤i≤t, where each ci is encoded in binary. Each explored branch h will
have its leaf decorated by a boolean f(h) = ⊥ (Eve is losing) or f(h) = ⊤ (Eve is winning)
according to some rules that we describe below. Then the depth-first search algorithm
backwardly assigns a boolean to the internal nodes of the tree according to the following rule:
for any hv ∈ V ∗VEve, we have f(hv) = ⊤ if there exists v′ ∈ succ(v) such that f(hvv′) = ⊤,
otherwise f(hv) = ⊥, while for any hv ∈ V ∗VAdam , we have f(hv) = ⊤ if for all v′ ∈ succ(v),
f(hvv′) = ⊤, otherwise f(hv) = ⊥. To have an algorithm executing in polynomial space, the
depth of the tree must be polynomial.

Along a branch, the rules are the following to stop the exploration (the objective Ω may
be modified during the exploration):

If for some i, the current weight ci is such that ci ≥ di + 1 and Ti was not visited, then
we can stop the branch h and set f(h) = ⊤. Indeed, Ω(2) is satisfied, and thus also Ω.
If for some i, we have ci < di while visiting Ti, then Ω(1) is not satisfiable anymore,
and we continue the exploration with the sole objective Ω(2) where the i-th objective
Safe≥di+1(Ti) being ignored (as it is not satisfied).
If for some i, we have ci = di while visiting Ti, then we continue the exploration with
Ω such that Safe≥di(Ti) is removed from Ω(1) (as it is satisfied) and Safe≥di+1(Ti) is
removed from Ω(2) (as it is not satisfied).
If Ω(1) becomes an empty intersection, then we stop the branch h and set f(h) = ⊤.
If Ω(1) has been removed from Ω (because it was not satisfiable anymore) and Ω(2)

becomes an empty union, then we stop the branch h and set f(h) = ⊥.
There is one more case to stop the branch h: when some vertex v is visited twice, i.e.,
h = gvg′v for some g, g′ ∈ V ∗. Then we stop the branch and set f(h) = ⊤. Indeed, we
stand in a better situation in gvg′v than in gv concerning the accumulated weights, as
we consider bounded safety objectives.

The last case happens as soon as the explored branch has length |V | + 1 and the other
cases do not occur. Therefore, as there are t bounded safety objectives in both Ω(1) and Ω(2),
any branch has a length polynomially bounded by t|V |. Moreover, the accumulated weights
ci are all bounded by t|V |W , thus stored in a polynomial space when encoded in binary. We
can thus decide in polynomial space whether v0 is winning for Eve for Ω. ◀

4.3 Pareto-Optimality Check
Let us come back to our reachability games. We can now solve Step 3 where given a lasso π

with costenv(π) ∈ {0, 1, . . . , B, +∞}t (by Lemma 8), we want to verify whether player 0 has
a strategy σ0 guaranteeing that costenv(π) is σ0-fixed PO. If player 1 is the only one to play
in the game, it reduces to verify that costenv(π) is PO. The latter problem is in coNP as
stated in the next lemma, while the former is in PSPACE as stated in Lemma 13.

▶ Lemma 12. Suppose that player 1 is the only one to play. Deciding whether a given cost
p ∈ {0, 1, . . . , B, +∞}t is PO is in coNP.

Proof. The cost p is not PO if there exists a play π′ ∈ Plays(v0) such that costi(π′) ≤ pi

for all i ∈ {1, . . . , t} and costj(π′) < pj for some j ∈ {1, . . . , t}. That is, if for some j, there
exists a play π′ ∈ Ω(j) =

⋂
i̸=j Reach<pi+1(Ti) ∩ Reach<pj

(Tj). Solving the zero-sum game
(A, Ω) is in NP by Proposition 10. This concludes the proof. ◀

▶ Lemma 13. Given p = costenv(π) ∈ {0, 1, . . . , B, +∞}t being the cost of a play π, deciding
whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO is in PSPACE.

CONCUR 2024

14:12 As Soon as Possible but Rationally

Proof. To prove the lemma, we first fix a prefix h of π, with v ∈ V , such that hv is
not a prefix of π (hv is called a deviation), and we study the zero-sum game (A, Ω(hv))
with the objective Ω(hv) equal to {π′ ∈ Plays(v) | ¬(costenv(hπ′) < p)}. Let us show that
deciding whether v is winning for player 0 for Ω(hv) is in PSPACE. Notice that for each
i ∈ {1, . . . , t} such that h does not visit Ti, we have, with qi = wi(hv) and +∞ − qi = +∞:
costi(hπ′) < pi if and only if costi(π′) < pi − qi. Let us rewrite the condition ¬(p′ < p) with
p, p′ ∈ Nt as follows: (∀i ∈ {1, . . . , t} p′

i ≥ pi) ∨ (∃i ∈ {1, . . . , t} p′
i > pi). Hence, the objective

Ω(hv) can be rewritten as
(⋂

1≤i≤t
Occ(h)∩Ti=∅

Safe≥pi−qi
(Ti)

)
∪

(⋃
1≤i≤t

Occ(h)∩Ti=∅
Safe≥pi−qi+1(Ti)

)
.

By Proposition 11, given the constants pi and qi, we can check whether v is winning for
player 0 in polynomial space. Notice that each qi can be computed in polynomial space by
accumulating the weights, with respect to wi, as long as Ti is not visited (as qi ≤ pi).

Second, given two deviations hv, h′v ending with the same vertex v and such that h is
prefix of h′, if Visit(h′) = Visit(h) and v is winning for Ω(hv), then v is also winning for Ω(h′v)

(with the same strategy). Indeed, the constants q′
i for h′v are greater than the constants

qi for hv. We are thus in a “better situation” than in Ω(h′v). So, it suffices to consider
polynomially many deviations hv, as π can visit at most t target sets and there are at most
|V | vertices v.

Finally, deciding whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO
amounts to solving the zero-sum games (A, Ω(hv)) for polynomially many deviations hv. If
player 0 has a winning strategy σhv for all those games, the required strategy σ0 is defined
as σ0(g) = σhv(vg′) for all histories g such that g = hvg′ with the longest prefix h of π. ◀

4.4 Upper Bounds
We are now ready to prove the upper bounds in Theorem 4 by providing the announced
algorithms for Steps 1-3. The proof is divided according to the considered problem. We need
to recall [23] that a Parikh automaton is a nondeterministic finite automaton (NFA) over an
alphabet Σ and whose transitions are weighted by tuples in Nk, together with a semilinear
set C ⊆ Nk. It accepts a word w ∈ Σ∗ if there exists a run on w ending on an accepting
state such that the sum of all encountered weight tuples belongs to C. The non-emptiness
problem for Parikh automata is NP-complete for numbers encoded in binary [23].

Proof of the upper bounds in Theorem 4. We begin with the CPS problem (Theorem 4.c).
Let us give an algorithm in PSPACE that decides whether there exist σ0 ∈ Σ0 and a σ0-
fixed PO play π such that cost0(π) ≤ c. By Lemma 8, we guess a lasso π = µ(ν)ω with
|µν| ≤ (t + 2)|V |, in time polynomial in |V | and t. Then, we compute p = costenv(π) and
cost0(π) and check whether cost0(π) ≤ c. This can be done in time polynomial in t, |V |, and
the binary encoding of W and c by Lemma 8. Finally, by Lemma 13, we verify in polynomial
space whether player 0 has a strategy σ0 ensuring that p is σ0-fixed PO.

For the NCPV problem (Theorem 4.a), recall that we consider its complementary coNCPV
problem (see Problem 7), and that player 1 is the only one to play. We begin by giving an
algorithm in NP for Step 1 and 2. Lemma 8 does not provide a polynomial bound on the
length of the lasso π = µ(ν)ω due to the threshold c given in binary. However, we will guess
a succinct representation of π by using Parikh automata.

The idea is the following one. Along the prefix µ of the lasso π, some target sets
Tk1 , . . . , Tkn

are visited, with n ≤ t, such that the first visits are in vertices πℓ1 , . . . , πℓn
with

ℓ1 < · · · < ℓn. And after µ, no more target sets are visited along µν (see Lemma 8). We
start by guessing a sequence v0, v1, . . . , vn, vn+1 of vertices, called markers, with the aim
that v0 is the initial vertex, vi = πℓi , 1 ≤ i ≤ n, and vn+1 = first(ν). By Lemma 8, we

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:13

know that costenv(π) ∈ {0, 1, . . . , B, +∞}t, where B = (c + (t + 2)|V |)W . We thus guess
a tuple (p0, p1, . . . , pt) ∈ {0, 1, . . . , B, +∞}t with the aim that (p1, . . . , pt) = costenv(µ) and
p0 = w0(µ). We also guess for each portion π[ℓi,ℓi+1], i ≤ n,

a weight q
(i)
0 ∈ {0, 1, . . . , B} for player 0 with the aim that q

(i)
0 = w0(π[ℓi,ℓi+1]) and

w0(µ) = p0 = Σiq
(i)
0 ,

a “useful” environment weight tuple, i.e., for all j ∈ {1, . . . , t}, a weight q
(i)
j ∈ {0, 1, . . . , B}

such that π[0,ℓi] does not visit Tj , with the aim that q
(i)
j = wj(π[ℓi,ℓi+1]) and costj(µ) =

pj = Σiq
(i)
j .5

We can guess in polynomial time the sequence v0, v1, . . . , vn, vn+1 and the constants pj , q
(i)
j

encoded in binary, as n ≤ t and B = (c + (t + 2)|V |)W . We then check in polynomial time
that v0 is the initial state, that each vi belongs to a distinct target set Tki

, 1 ≤ i ≤ n, that
pj = Σiq

(i)
j for each j, and that p0 > c for the given threshold c.6

It remains to check the existence of polynomially many paths:
For each i ≤ n, the existence of a path ρ(i) from vi to vi+1 on a subgraph of A restricted
to some sets V (i) and E(i) of vertices and edges respectively, and to some weight functions,
such that wj(ρ(i)) = q

(i)
j for all j.

The existence of a path from vn+1 to itself (the cycle ν) that visits no new target set
with respect to Tki

, 1 ≤ i ≤ n.
The first check can be done thanks to Parikh automata : one can decide in NP the existence
of a path in a subgraph of A between two given vertices and with a given weight tuple q̄ (the
subgraph is seen as a Parikh automaton with Σ = {#} and C = {q̄}).7 The set V (i) is defined
as V \

(⋃
j>i+1 Tkj

∪
⋃

pj=+∞ Tj

)
, and the set E(i) as (E ∩ V (i) × V (i))\{(v, v′) | v ∈ Tki+1}.

Indeed, for the portion π[ℓi,ℓi+1], we do not allow to prematurely visit a target set Tkj
,

j ≥ i + 1, except vi+1 ∈ Tki+1 , and there are target sets that we do not want to visit at all.
We also remove the weight function wkj

with j ∈ {1, . . . , i}. The second check can be done
thanks to classical automata, by restricting the set of vertices to V \

(⋃
pj=+∞ Tj

)
. To show

that the coNCPV problem is in ΣP
2 , in the previous algorithm in NP that guesses a lasso

π with costenv(π) = p, we add an oracle in coNP to check whether p is a PO cost thanks
to Lemma 12. As NPcoNP= ΣP

2 , we get that the NCPV problem is in ΠP
2 .

It remains to show that the coUNCPV problem is in PSPACE to get the upper bound of
Theorem 4.b). The approach is to guess a cost p ∈ {0, . . . , B, +∞}t and a length ℓ for the
exponential lasso π of Lemma 8, whose both encodings in binary use a polynomial space. We
guess π vertex by vertex, by only storing the current edge (u, u′), the current accumulated
weight (c0, c1, . . . , ct) on each dimension, and which target sets Ti have already been visited.
At any time, the stored information uses a polynomial space. At each guess, we apply the
reasoning of Lemma 13 to check in polynomial space whether player 0 can ensure that p is a
PO cost from each vertex v ̸= u′ successor of u (i.e., from any deviation of π). We also check
that for each first visit to a target set Ti, we have ci = pi if i ∈ {1, . . . , t}, and ci > c if i = 0.
At each guess, a counter is incremented until reaching the length ℓ, where we stop guessing
π and finally check whether pi = +∞ for each Ti that has not been visited.

This completes the proof as Theorem 4.d is established in [11]. ◀

5 If π[0,ℓi] visits Tj , then costj(π) is already known as costj(π) = costj(π[0,ℓi]).
6 To keep the proof readable, we assume that each vi belongs to one target set Tki

. In general, it could
belong to several target sets. The proof is easily adapted by considering the union of target sets.

7 We do not need to use an oracle here. It suffices to plug the NP algorithm for Parikh automata in ours
as if the required path exists, our algorithm will find it in polynomial time.

CONCUR 2024

14:14 As Soon as Possible but Rationally

5 Nash Equilibria

We now discuss the proofs of Theorem 5. The environment is here composed of t players
whose rational responses to a strategy σ0 of player 0 are σ0-fixed NE outcomes.

The upper bounds for (U)NCNV and CNS problems given in Theorem 5.a-c are proved
with the same approach as for Pareto optimality, limited to Steps 1-2. There is no need for
Step 3, thanks to a well-known characterization of NE outcomes (based on the values of
some two-player zero-sum games, see e.g. [10, 16] or the long version of this paper [17]) that
is directly checked on the lasso guessed in Step 1. We need again Parikh automata to guess
a succinct representation of the lasso. The lower bounds for those problems were already
known for qualitative reachability games [27]. See the long version [17].

We thus focus on the NCNS problem (Theorem 5.d). We prove below that this problem
is EXPTIME-hard, already for two-player environments. The decidability is left open. This
decision problem is a real challenge that cannot be solved by known approaches. Indeed,
the technique of tree automata, as used in [21] to show the decidability of several ω-regular
objectives, is not applicable in the context of quantitative reachability. This is because,
while in the scenario of qualitative reachability, the costs are Boolean and can be encoded
within the finite state space of a tree automaton, for quantitative reachability, these costs
are now integers that are not bounded and vary according to the strategy σ0 that is being
synthesized. Consequently, it is not feasible to directly encode constraints within the
states of the automaton in this latter case. Additionally, there is a necessity to enforce
constraints related to subtrees, such as comparing (unbounded) costs between two subtrees.
Generally, incorporating the capability to enforce subtree constraints in tree automata results
in undecidability, with only certain subclasses having a decidable emptiness problem, see
e.g. [3]. Therefore, addressing the general case would necessitate either advancements in the
field of automata theory or an entirely new methodological approach.

However, we are able to solve the practically relevant case of one-player environments
for which we prove that the NCNS problem is PSPACE-hard and in EXPTIME in the long
version of this paper [17]. The PSPACE-hardness is given by a classical reduction from the
subset-sum game problem [43]. The intuition for the EXPTIME-membership is the following:
it consists in finding a play π where cost0(π) ≤ c such that when the only component of the
environment deviates from π, either the system inflicts to the deviating play π′ a cost for the
environment such that cost1(π′) > cost1(π′) meaning that deviating is not profitable, or it
ensures a cost for himself such that cost0(π′) ≤ c. Note that this approach only works for
one-player environments.

We are also able to solve the NCNS problem for any number of players in the environment,
for the variant where the rational NE responses of the environment aim to ensure costs
bounded by a given threshold rather than minimizing these costs (this is also arguably an
interesting model of rationality in practice). This is a perspective studied in [39] in the case
of NEs for discounted-sum objectives. We show in the long version [17] that this variant is
EXPTIME-complete.

▶ Theorem 14. The Non-Cooperative Nash Synthesis problem where the objective of each
player i ∈ {1, . . . , t} is a bounded reachability objective Reach<di

(Ti) is EXPTIME-complete,
and hardness holds even with a one-player environment.

Reduction for Two-Player Environments. We finally prove that the NCNS problem is
EXPTIME-hard, already for a two-player environment (lower bound of Theorem 5.d). The
reduction is given from the countdown game problem, known to be EXPTIME-complete [31].

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:15

v0

D

CG

s . . .

(s, 2d1)

(s, 2d2)

. . .

s′

. . .

s′′

E

(2d1, 0, 2d1)

(2d2, 0, 2d2)

(0, 0, 0)
(0, 0, 0)

(2d1, 0, 1)
(2d2, 0, 1)

(0, 0, 0)

(0, 0, 0)

(2
c
, 0

, 2
c)

(0, 0, 0)

(2d1, 0, 2d1)

(2d2 , 0, 2d2)

Figure 3 Reduction from the countdown game problem to the NCNS problem (two-player env.).

Given a threshold c ∈ N, a countdown game CG is a two-player zero-sum game played on
a directed graph (V, E) where E ⊆ V × N>0 × V . A configuration is a pair (s, k) ∈ V × N,
initially (s0, 0) with s0 an initial vertex, from where player 0 chooses d ∈ N>0 such that there
exists (s, d, s′) ∈ E (we assume that such a d always exists). Player 1 then chooses such
an s′ ∈ V to reach the configuration (s′, k + d). When reaching a configuration (s, k) with
k ≥ c, the game stops and player 0 wins if and only if k = c.8 Player 0 wins the game CG if
he has a strategy σ0 from s0 that allows him to reach some configuration (s, c), whatever the
strategy of player 1.

▶ Theorem 15. The Non-Cooperative Nash Synthesis problem with a two-player environment
is EXPTIME-hard.

Proof. Given a countdown game CG and a threshold c, we build a reachability game G as
depicted in Figure 3 with three players, player 0 (owning the circle vertices of CG), player 1
(owning the square vertices of CG), and player 2 (owning the initial vertex v0 and vertices
D, E). The three weight functions are indicated on the edges, with a null weight on all
edges for player 1. The initial vertex v0 has two outgoing edges, one towards vertex D and
the other one to the initial vertex s0 of CG. Inside CG, players 0 and 1 are simulating the
countdown game. The target sets are T0 = T2 = {D, E} and T1 = V . Thus, for any play,
player 1 gets a cost of 0 and will never have the incentive to deviate from his strategy. The
CG part of the figure contains a slight modification of the given countdown: players 0 and 1
act as in CG, player 1 can exit it by taking the edge to vertex E, the weights d are multiplied
by 2. More precisely, player 0 first selects a transition from a vertex s to some vertex (s, 2d),
with d ∈ N>0, then player 1 responds with a successor s′ such that (s, d, s′) is an edge in
the initial countdown game. At any point (s, 2d), player 1 can exit the CG by going to E,
adding 2d to the cost of player 0 and 1 to the cost of player 2, i.e., it gives the cost tuple
(2k + 2d, 0, 2k + 1) where 2k is the accumulated weight inside CG before exiting it.

Let us show that a strategy σ0 ∈ Σ0 is a solution to the NCNS problem with the threshold
2c if and only if it is winning in the given countdown game and threshold c. We first suppose
that σ0 is a winning strategy for player 0 in the countdown game. We consider this strategy
in G and enumerate all possible plays consistent with σ0:

The play v0(D)ω gives the cost 2c to player 0, thus satisfying the threshold 2c,
No play staying infinitely often in CG is the outcome of a σ0-fixed NE, as it gives an
infinite cost to player 2 while player 2 could deviate in v0 to get a cost of 2c < +∞,
Any play π ultimately reaching E has cost0(π) = 2k + 2d and cost2(π) = 2k + 1, for
some k ∈ N. If 2k + 2d ≤ 2c, then cost0(π) satisfies the threshold constraint. Otherwise,
2k + 2d > 2c, but as σ0 is winning in the initial countdown game, this means that there
was a previous configuration where the costs of both players 0 and 2 were exactly 2c.
This means that cost2(π) = 2k + 1 ≥ 2c + 1, i.e., π is again not a σ0-fixed NE outcome.

8 Classically, the initial configuration is (s0, c) and the accumulated weight k decreases until being ≤ 0.

CONCUR 2024

14:16 As Soon as Possible but Rationally

Assume now that σ0 is not winning in the countdown game. Hence, there exists a losing
play consistent with σ0 in this game, that leads to a play π in the grey part of Figure 3 such
that in none of its vertices, the accumulated weight is exactly 2c, i.e., there are two consecutive
steps where the accumulated weight is 2k < 2c and then 2k + 2d > 2c. So, player 1 can exit
between these two steps to reach E. The resulting play π′ has cost0(π′) = 2k + 2d > 2c and
cost2(π′) = 2k + 1 < 2c + 1, thus cost2(π′) < 2c. Consequently, π′ is a σ0-fixed NE outcome
but cost0(π) > 2c. It follows that σ0 is not a solution to the NCNS problem. ◀

6 Conclusion

In this paper, we have determined the exact complexity class for several rational verification
and synthesis problems in quantitative reachability games, considering both NE and PO
rational behaviors of the environment. However, for the NCNS problem, while we have solved
the important one-player environment case, we have left open the multi-player environment
case. We believe this latter case poses a significant challenge that may require new advances
in automata techniques to be solved.

There are several interesting future works to investigate. (1) We intend to study the
FPT complexity of the studied problems. Notice that some of our lower bounds results
already hold for one-player environments (see the CNS and UNCNV problems in Section 5).
(2) Instead of one reachability objective, player 0 could have several ones and a threshold
on these objectives that he wants to see satisfied. (3) The concept of NE could be replaced
by SPE or by strong NE (that allows collaborations between the players during deviations).
Still, it is important to note that strategies σ0 that are solutions to the non-cooperative
synthesis problems under NE rationality are also solutions under SPE (resp. strong NE)
rationality, as SPEs (resp. strong NEs) constitute a subset of NEs.

References
1 Shaull Almagor, Orna Kupferman, and Giuseppe Perelli. Synthesis of controllable nash

equilibria in quantitative objective game. In Jérôme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden, pages 35–41. ijcai.org, 2018. doi:10.24963/IJCAI.2018/5.

2 Rajeev Alur, Aldric Degorre, Oded Maler, and Gera Weiss. On Omega-Languages Defined
by Mean-Payoff Conditions. In Luca de Alfaro, editor, Foundations of Software Science and
Computational Structures, 12th International Conference, FOSSACS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5504 of Lecture Notes in Computer Science, pages
333–347. Springer, 2009. doi:10.1007/978-3-642-00596-1_24.

3 Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille Vacher.
The Emptiness Problem for Tree Automata with Global Constraints. In Proceedings of
the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July
2010, Edinburgh, United Kingdom, pages 263–272. IEEE Computer Society, 2010. doi:
10.1109/LICS.2010.28.

4 Romain Brenguier and Jean-François Raskin. Pareto Curves of Multidimensional Mean-Payoff
Games. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification
– 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, volume 9207 of Lecture Notes in Computer Science, pages 251–267.
Springer, 2015. doi:10.1007/978-3-319-21668-3_15.

5 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. Subgame-Perfect Equilibria
in Mean-Payoff Games. In Serge Haddad and Daniele Varacca, editors, 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference,
volume 203 of LIPIcs, pages 8:1–8:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.CONCUR.2021.8.

https://doi.org/10.24963/IJCAI.2018/5
https://doi.org/10.1007/978-3-642-00596-1_24
https://doi.org/10.1109/LICS.2010.28
https://doi.org/10.1109/LICS.2010.28
https://doi.org/10.1007/978-3-319-21668-3_15
https://doi.org/10.4230/LIPICS.CONCUR.2021.8

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:17

6 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. The Complexity of SPEs in
Mean-Payoff Games. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 116:1–116:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.116.

7 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. Rational Verification for
Nash and Subgame-Perfect Equilibria in Graph Games. In Jérôme Leroux, Sylvain Lombardy,
and David Peleg, editors, 48th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume
272 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.MFCS.2023.26.

8 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin. Constrained
existence problem for weak subgame perfect equilibria with ω-regular Boolean objectives. Inf.
Comput., 278:104594, 2021. doi:10.1016/J.IC.2020.104594.

9 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie
van den Bogaard. The Complexity of Subgame Perfect Equilibria in Quantitative Reachability
Games. In Wan J. Fokkink and Rob van Glabbeek, editors, 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands,
volume 140 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.CONCUR.2019.13.

10 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Nathan Thomasset. On relevant
equilibria in reachability games. J. Comput. Syst. Sci., 119:211–230, 2021. doi:10.1016/J.
JCSS.2021.02.009.

11 Thomas Brihaye, Véronique Bruyère, and Gaspard Reghem. Quantitative Reachability
Stackelberg-Pareto Synthesis is NEXPTIME-Complete. In Olivier Bournez, Enrico Formenti,
and Igor Potapov, editors, Reachability Problems – 17th International Conference, RP 2023,
Nice, France, October 11-13, 2023, Proceedings, volume 14235 of Lecture Notes in Computer
Science, pages 70–84. Springer, 2023. doi:10.1007/978-3-031-45286-4_6.

12 Thomas Brihaye, Julie De Pril, and Sven Schewe. Multiplayer Cost Games with Simple Nash
Equilibria. In Sergei N. Artëmov and Anil Nerode, editors, Logical Foundations of Computer
Science, International Symposium, LFCS 2013, San Diego, CA, USA, January 6-8, 2013.
Proceedings, volume 7734 of Lecture Notes in Computer Science, pages 59–73. Springer, 2013.
doi:10.1007/978-3-642-35722-0_5.

13 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To Reach or
not to Reach? Efficient Algorithms for Total-Payoff Games. In Luca Aceto and David
de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory, CONCUR
2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 297–310. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.CONCUR.2015.297.

14 Thomas Brihaye and Aline Goeminne. Multi-weighted Reachability Games. In Olivier Bournez,
Enrico Formenti, and Igor Potapov, editors, Reachability Problems – 17th International
Conference, RP 2023, Nice, France, October 11-13, 2023, Proceedings, volume 14235 of
Lecture Notes in Computer Science, pages 85–97, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-45286-4_7.

15 Thomas Brihaye, Aline Goeminne, James C. A. Main, and Mickael Randour. Reachability
Games and Friends: A Journey Through the Lens of Memory and Complexity (Invited
Talk). In Patricia Bouyer and Srikanth Srinivasan, editors, 43rd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2023,
December 18-20, 2023, IIIT Hyderabad, Telangana, India, volume 284 of LIPIcs, pages 1:1–1:26.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.FSTTCS.2023.
1.

16 Véronique Bruyère. Synthesis of Equilibria in Infinite-Duration Games on Graphs. ACM
SIGLOG News, 8(2):4–29, May 2021. doi:10.1145/3467001.3467003.

17 Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As soon as possible
but rationally. CoRR, abs/2403.00399, 2024. doi:10.48550/arXiv.2403.00399.

CONCUR 2024

https://doi.org/10.4230/LIPICS.ICALP.2022.116
https://doi.org/10.4230/LIPICS.MFCS.2023.26
https://doi.org/10.1016/J.IC.2020.104594
https://doi.org/10.4230/LIPICS.CONCUR.2019.13
https://doi.org/10.1016/J.JCSS.2021.02.009
https://doi.org/10.1016/J.JCSS.2021.02.009
https://doi.org/10.1007/978-3-031-45286-4_6
https://doi.org/10.1007/978-3-642-35722-0_5
https://doi.org/10.4230/LIPICS.CONCUR.2015.297
https://doi.org/10.1007/978-3-031-45286-4_7
https://doi.org/10.4230/LIPICS.FSTTCS.2023.1
https://doi.org/10.4230/LIPICS.FSTTCS.2023.1
https://doi.org/10.1145/3467001.3467003
https://doi.org/10.48550/arXiv.2403.00399

14:18 As Soon as Possible but Rationally

18 Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Stackelberg-Pareto Synthesis.
In Serge Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency
Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages
27:1–27:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
CONCUR.2021.27.

19 Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Pareto-Rational Verification.
In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International Conference
on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland, volume
243 of LIPIcs, pages 33:1–33:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CONCUR.2022.33.

20 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Generalized Mean-payoff and Energy Games. In Kamal Lodaya and Meena Mahajan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages
505–516. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2010. doi:10.4230/LIPICS.
FSTTCS.2010.505.

21 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
Complexity of Rational Synthesis. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
121:1–121:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.121.

22 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8(2):109–113, June 1979. doi:10.1007/BF01768705.

23 Diego Figueira and Leonid Libkin. Path Logics for Querying Graphs: Combining Expressiveness
and Efficiency. In Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
Kyoto, Japan, July 2015. IEEE. doi:10.1109/LICS.2015.39.

24 Nathanaël Fijalkow and Florian Horn. Les jeux d’accessibilité généralisée. Tech. Sci. Informa-
tiques, 32(9-10):931–949, 2013. doi:10.3166/TSI.32.931-949.

25 Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The Adversarial Stackelberg
Value in Quantitative Games. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020),
volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 127:1–127:18,
Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ICALP.2020.127.

26 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational Synthesis. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 190–204. Springer,
2010. doi:10.1007/978-3-642-12002-2_16.

27 Christophe Grandmont. Rational Synthesis and Verification in Multiplayer Reachability Games
Played on Graphs. Master’s thesis, UMONS, June 2023.

28 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge. Automated
temporal equilibrium analysis: Verification and synthesis of multi-player games. Artif. Intell.,
287:103353, 2020. doi:10.1016/J.ARTINT.2020.103353.

29 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge. On the
complexity of rational verification. Ann. Math. Artif. Intell., 91(4):409–430, 2023. doi:
10.1007/S10472-022-09804-3.

30 David Hyland, Julian Gutierrez, Shankaranarayanan Krishna, and Michael J. Wooldridge.
Rational verification with quantitative probabilistic goals. In Mehdi Dastani, Jaime Simão
Sichman, Natasha Alechina, and Virginia Dignum, editors, Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024, Auckland, New
Zealand, May 6-10, 2024, pages 871–879. ACM, 2024. doi:10.5555/3635637.3662941.

https://doi.org/10.4230/LIPICS.CONCUR.2021.27
https://doi.org/10.4230/LIPICS.CONCUR.2021.27
https://doi.org/10.4230/LIPIcs.CONCUR.2022.33
https://doi.org/10.4230/LIPICS.FSTTCS.2010.505
https://doi.org/10.4230/LIPICS.FSTTCS.2010.505
https://doi.org/10.4230/LIPIcs.ICALP.2016.121
https://doi.org/10.4230/LIPIcs.ICALP.2016.121
https://doi.org/10.1007/BF01768705
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.3166/TSI.32.931-949
https://doi.org/10.4230/LIPIcs.ICALP.2020.127
https://doi.org/10.4230/LIPIcs.ICALP.2020.127
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1016/J.ARTINT.2020.103353
https://doi.org/10.1007/S10472-022-09804-3
https://doi.org/10.1007/S10472-022-09804-3
https://doi.org/10.5555/3635637.3662941

V. Bruyère, C. Grandmont, and J.-F. Raskin 14:19

31 Marcin Jurdzinski, Francois Laroussinie, and Jeremy Sproston. Model Checking Probabilistic
Timed Automata with One or Two Clocks. Logical Methods in Computer Science, Volume 4,
Issue 3, September 2008. doi:10.2168/LMCS-4(3:12)2008.

32 Felix Klaedtke and Harald Rueß. Monadic Second-Order Logics with Cardinalities. In Jos
C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors,
Automata, Languages and Programming, pages 681–696, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

33 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with Rational Environments.
In Nils Bulling, editor, Multi-Agent Systems – 12th European Conference, EUMAS 2014,
Prague, Czech Republic, December 18-19, 2014, Revised Selected Papers, volume 8953 of Lecture
Notes in Computer Science, pages 219–235. Springer, 2014. doi:10.1007/978-3-319-17130-2_
15.

34 Orna Kupferman and Noam Shenwald. The Complexity of LTL Rational Synthesis. In Dana
Fisman and Grigore Rosu, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 25–45, Cham, 2022. Springer International Publishing.

35 John F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36:48–49, 1950. doi:10.1073/pnas.36.1.48.

36 Martin J. Osborne. An introduction to game theory. Oxford Univ. Press, 2004.
37 Christos H. Papadimitriou and Mihalis Yannakakis. On the Approximability of Trade-offs

and Optimal Access of Web Sources. In 41st Annual Symposium on Foundations of Computer
Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 86–92.
IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892068.

38 Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, pages 179–190. ACM Press, 1989. doi:10.1145/75277.75293.

39 Senthil Rajasekaran, Suguman Bansal, and Moshe Y. Vardi. Multi-Agent Systems with
Quantitative Satisficing Goals. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR,
China, pages 280–288. ijcai.org, 2023. doi:10.24963/IJCAI.2023/32.

40 Mickael Randour. Games with multiple objectives. In Nathanaël Fijalkow, editor, Games on
Graphs. Online, 2023. doi:10.48550/arxiv.2305.10546.

41 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-
dimensional Markov decision processes. Formal Methods Syst. Des., 50(2-3):207–248, 2017.
doi:10.1007/S10703-016-0262-7.

42 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976. doi:10.1016/0304-3975(76)90061-X.

43 Stephen Travers. The complexity of membership problems for circuits over sets of integers.
Theoretical Computer Science, 369(1):211–229, 2006. doi:10.1016/j.tcs.2006.08.017.

A Example of a Nondeterministic Mealy Machine and Product Game

We first provide an example of a nondeterministic Mealy machine and the way it encodes
strategies.

▶ Example 16. Consider the arena in Figure 4 and the nondeterministic Mealy machine
M0 of player 0 illustrated in Figure 5, formally defined as M0 = (M, m0, δ, τ) such that

M = {m0, m1},
δ(m0, v3) = {m0, m1} and δ(m, v) = {m} for every (m, v) ̸= (m0, v3),

τ(m0, v) =
{

{v1, v3} if v = v1

{v3} if v = v2
, and τ(m1, v) = {v2} if v = v1 or v = v2.

CONCUR 2024

https://doi.org/10.2168/LMCS-4(3:12)2008
https://doi.org/10.1007/978-3-319-17130-2_15
https://doi.org/10.1007/978-3-319-17130-2_15
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1145/75277.75293
https://doi.org/10.24963/IJCAI.2023/32
https://doi.org/10.48550/arxiv.2305.10546
https://doi.org/10.1007/S10703-016-0262-7
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/j.tcs.2006.08.017

14:20 As Soon as Possible but Rationally

v0 v1 v2

v3

Figure 4 An arena with player 0, player □,
and player ⋄, with no weight displayed.

m0 m1

v0 | ∗
v3 | ∗
v1 | v1
v1 | v3
v2 | v3

v3 | ∗
v0 | ∗
v3 | ∗
v1 | v2
v2 | v2

Figure 5 A nondeterministic Mealy machine
of player 0. The notation v | v′ on the transitions
(m, m′) indicates that m′ ∈ δ(m, v), and if v ∈
V0, that v′ ∈ τ(m, v), otherwise v′ = ∗.

The idea is to start and stay in the memory state m0 and then, once v3 has been visited,
to nondeterministically switch to the memory state m1, or continue staying in the memory
state m0. The memory state defines which edge player 0 is able to choose from v1: either a
nondeterministic choice between v1 and v3 in m0, or v2 in m1.

We now formally define the notion of product arena. Let A = (V, E, P, (Vi)i∈P , (wi)i∈P)
be a weighted arena and Mj = (M, m0, δ, τ) be a (nondeterministic) Mealy machine
for player j ∈ P. Then, the product arena A × Mj is the weighted arena A × Mj =
(V ′, E′, P, (V ′

i)i∈P , (w′
i)i∈P) where

V ′ = (V × M) ∪ (V × V × M),
V ′

i = Vi × M for all i ∈ P\{j}, and V ′
j = (Vj × M) ∪ (V × V × M),

E′ is the set of edges defined as
(v, m) → (v, v′, m) if (v, v′) ∈ E, and when v ∈ Vj , it must hold that v′ ∈ τ(m, v),
(v, v′, m) → (v′, m′) if m′ ∈ δ(m, v),

For the edges e′ ∈ E′ of the form (v, m) → (v, v′, m), w′
i(e′) = wi((v, v′)), while for the

edges e′ of the form (v, v′, m) → (v′, m′), w′
i(e′) = 0, for all players i ∈ P .

Intuitively, in vertices (v, v′, m), it is player j who decides how to update the memory state
m according to δ.

When A is initialized with v0 as initial vertex, then the product arena is also initialized
with (v0, m0) as initial vertex. Given a reachability game G = (A, (Ti)i∈P), we also define
the product game G × Mj as the reachability game (A × Mj , (T ′

i)i∈P) such that T ′
i = Ti × M

for all i ∈ P .
Back to Example 16, the product arena A′ = A × M0 is depicted in Figure 6. We can

see that player 0 has several strategies σ0 ∈ JM0K whose behavior changes according to the
memory state m0 or m1.

v0, m0 v0, v1, m0 v1, m0

v0, v3, m0

v1, v1, m0

v1, v2, m0

v1, v3, m0

v2, m0

v3, m0

v2, v2, m0

v2, v3, m0v3, v1, m0

v0, m1 v0, v1, m1 v1, m1

v0, v3, m1

v1, v1, m1

v1, v2, m1

v1, v3, m1

v2, m1

v3, m1

v2, v2, m1

v2, v3, m1v3, v1, m1

Figure 6 The product arena of the arena in Figure 4 and the Mealy machine in Figure 5.

RobTL: Robustness Temporal Logic for CPS
Valentina Castiglioni #

Eindhoven University of Technology, The Netherlands

Michele Loreti #

University of Camerino, Italy

Simone Tini #

University of Insubria, Italy

Abstract
We propose Robustness Temporal Logic (RobTL), a novel temporal logic for the specification and
analysis of distances between the behaviours of Cyber-Physical Systems (CPS) over a finite time
horizon. RobTL specifications allow us to measure the differences in the behaviours of systems with
respect to various objectives and temporal constraints, and to study how those differences evolve in
time. Specifically, the unique features of RobTL allow us to specify robustness properties of CPS
against uncertainty and perturbations. As an example, we use RobTL to analyse the robustness of
an engine system that is subject to attacks aimed at inflicting overstress of equipment.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Modal and temporal logics

Keywords and phrases Cyber-physical systems, robustness, temporal logic, uncertainty

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.15

Supplementary Material Software: https://github.com/quasylab/jspear/tree/working [9]
archived at swh:1:dir:ddfb418d5a080b8e83323a1b2c38d9f7065e2554

Funding Simone Tini: This study received funding from the European Union – Next-GenerationEU
– National Recovery and Resilience Plan (NRRP) – MISSION 4 COMPONENT 2, INVESTMENT
N. 1.1, CALL PRIN 2022 D.D. 104 02-02-2022 – MEDICA Project, CUP N. J53D23007180006.
This publication is part of the project NODES which has received funding from the MUR – M4C2
1.5 of PNRR with grant agreement no. ECS00000036.

1 Introduction

When systems are subject to uncertainty and perturbations, like Cyber-Physical Systems
(CPS) [35] in which software components, or agents, must interact with an unpredictable
environment, it is crucial to provide some guarantees on their robustness. This is the ability
of a system to function correctly even in presence of uncontrollable events affecting its
behaviour, as, e.g., unexpected physical phenomena, failures, or cyber-physical attacks.

In the literature, we can find a wealth of proposals of robustness properties, that differ
in the underlying model (including how uncertainty is modelled), in the formalisation, or
in whether they are designed to analyse a specific feature of the behaviour of systems. We
refer to [24, 38, 40, 43] for an overview of these notions. Although it seems natural to us that
different application contexts call for different formalisations of robustness, the downside of
this variety is the lack of a general tool for the verification of robustness properties.

In this paper we provide a formal framework for the verification of robustness properties
of CPS. In this setting, robustness is usually formalised as a measure of the capability of
agents to tolerate perturbations in the environmental conditions and still fulfil their tasks.
This boils down to quantifying the differences between the behaviour of the system with its
behaviour under the effect of perturbations, possibly at different moments in time. Intuitively,
the system is robust if whenever the two behaviours are initially at a bounded distance, then

© Valentina Castiglioni, Michele Loreti, and Simone Tini;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:v.castiglioni@tue.nl
https://orcid.org/0000-0002-8112-6523
mailto:michele.loreti@unicam.it
https://orcid.org/0000-0003-3061-863X
mailto:simone.tini@uninsubria.it
https://orcid.org/0000-0002-3991-5123
https://doi.org/10.4230/LIPIcs.CONCUR.2024.15
https://github.com/quasylab/jspear/tree/working
https://archive.softwareheritage.org/swh:1:dir:ddfb418d5a080b8e83323a1b2c38d9f7065e2554;origin=https://github.com/quasylab/jspear;visit=swh:1:snp:8132c5d3ed79097d14de6b333de38b74741c7f2f;anchor=swh:1:rev:c6b2386d36b72ab790999d2963203b7d5aa03ce7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 RobTL: Robustness Temporal Logic for CPS

their distance after a given amount of time should always be smaller than a given threshold.
This means that whenever we require a CPS to be robust against perturbations, we are
actually specifying a property on the evolution in time of distances between behaviours.

Hence, a formal framework for the specification of similar properties should include:
A model for the specification of the behaviour of CPS.
A mechanism for the specification of the effects of perturbations on their behaviour.
A mechanism to define distances between the behaviours of CPS.
A temporal logic for the specification of properties on the evolution of those distances.

We adopt the model from the literature: the evolution sequence model introduced in [10,11].
The two mechanisms and the logic are introduced in this paper.

The evolution sequence model. The evolution sequence model follows a discrete-time,
data-driven approach: the behaviour of the system is modelled in terms of the modifications
that the interaction of the agents with the environment induces on a set of application-
relevant data, called data state. Due to the unpredictability of the environment and potential
approximations in the specification of agents, those modifications are modelled as continuous
distributions on the attainable data states. The evolution sequence of a system is then defined
as the sequence of the distributions over data states that are obtained at each time step.

The reason why we chose this model over classical and more established ones, like
Labelled Markov Chains and Stochastic Hybrid Systems [7, 27], is purely technical. The
most prominent consequence of the design choices in this model is that the behaviour of the
system is not given by a set of traces/trajectories, but by the combination of their effects. In
other words, an evolution sequence is the discrete-time version of the cylinder of all possible
trajectories of the system. This means that a property of an evolution sequence takes into
account the outcomes of all possible observations, at a given time step, on the system. This
is fundamental in the verification of robustness, since even the slightest modification induced
by uncertainty on behaviour is taken into account.

Robustness Temporal Logic. We introduce Robustness Temporal Logic (RobTL) that allows
us to compare distances between nominal and perturbed evolution sequences over a finite
time horizon, by also providing the means to specify the perturbations and the distances.
Specifically, RobTL offers:

A class of distance expressions for the definition of arbitrary distances between evolution
sequences. This freedom allows us to compare systems with respect to different aspects
of behaviour in time, as well as to combine distances having different formulations.
A class of perturbations for the definition of the effects of unpredictable events on the
behaviour of the system.
Atomic propositions ∆(exp, p) ▷◁ η to evaluate, at a given time step, the distance, specified
by a distance expression exp, between a given evolution sequence and its perturbed version,
obtained by some perturbation p, and to compare it with the threshold η.
Classical Boolean and temporal operators for the analysis of the evolution of the specified
distances over a finite time horizon.

We provide a statistical model checking algorithm for the verification of RobTL specifications.
As our algorithms are based on statistical inference, we need to account for the statistical
error when checking formulae. Hence, we also propose a three-valued semantics for RobTL,
in which the truth value unknown suggests that the parameters in the property need some
tuning, or that a larger number of samples is needed to obtain a precise evaluation of the

V. Castiglioni, M. Loreti, and S. Tini 15:3

distances. To showcase its features, we apply our framework to the analysis of a case-study
from Industrial Control Systems: an engine system that is subject to cyber-physical attacks
aimed at inflicting overstress of equipment [25].

All the algorithms and examples have been implemented in the tool Stark [12, 14].

Why a new logic? RobTL is the only existing temporal logic expressing properties of
distances between systems behaviours. Usually, even in logic equipped with a real-valued
semantics, the behaviour of a single given system is compared to the desired property.
Conversely, in RobTL the behaviours of two systems are taken into account. More precisely,
we distinguish three approaches to the specification of properties in the quantitative setting:

Specification of properties over a single trajectory of the system. This is the classic
approach of PCTL, probabilistic LTL, and their variants [4, 30,39].
Specification of properties across the trajectories of the system. This is the hyper-
property [15] approach of, e.g., HyperPCTL [2] or HPSTL [3], where one can express
quantitative dependencies, in the form of bounds on probabilistic weights, between
different independent trajectories of the system.
Specification of properties based on the comparison of all possible trajectories of two
different systems. This is the approach of RobTL, where one system is the perturbed
version of the other. This feature also distinguishes our approach to robustness from
classical ones, like those in [18,22]. Our properties are based on the comparison of the
evolution sequences of two different systems, whereas [18, 22] compare a single trajectory
of a single system with the set of the behaviours that satisfy a given property, which is
specified by means of a formula expressed in a suitable temporal logic, like, e.g., STL.

2 The Evolution Sequence Model

We recall the main elements of the evolution sequence model [11]. Systems consist of a
set of agents and an environment, whose interaction produces changes on a data space D,
containing the values assumed by variables, from a finite set Var, representing:

(i) physical quantities,
(ii) sensors,
(iii) actuators, and
(iv) internal variables of agents.
For each x ∈ Var, the domain Dx ⊆ R is either finite, or a compact subset of R (and thus
Polish), and equipped with the Borel σ-algebra Bx. Then D =×x∈VarDx and we equip it
with the product σ-algebra BD =

⊗
x∈Var Bx [6]. Let Π(D,BD) be the set of distributions

over (D,BD).
We call data state the current state of the data space, and represent it by a mapping

d : Var→ R, with d(x) ∈ Dx for all x ∈ Var. At each step, the agents and the environment
induce some changes on the data state, providing a new data state at the next step. Those
modifications are also subject to the presence of uncertainties, meaning that it is not always
possible to determine exactly the values assumed by the data at the next step. Hence, we
model the changes induced at each step as a distribution on the attainable data states. The
behaviour of the system is then expressed by its evolution sequence, i.e., the sequence of
distributions over the data states obtained at each step.

In this paper we do not focus on how evolution sequences are generated. In [11, Prop. 3.15]
it was proved that the function defining the combined behaviour of the agents and the
environment, specified according to the framework, is a Markov kernel. Hence, we simply
assume a Markov kernel step : D → Π(D,BD) governing the evolution of the system, and define
the evolution sequence as the Markov process generated by step (Definition 1): step(d)(D)

CONCUR 2024

15:4 RobTL: Robustness Temporal Logic for CPS

expresses the probability to reach a data state in D from d in one computation step. Indeed,
each system is characterised by a particular function step starting from an initial distribution
over D. For instance, for the engine system of our case study (presented below), the initial
distribution is a Dirac distribution over a chosen data state, and function step is obtained by
combining the effects of the agents in Figure 1c and the environment in Figure 1d.

▶ Definition 1. Let step : D → Π(D,BD) be the Markov kernel generating the behaviour of a
system s having µ as initial distribution. The evolution sequence of s is a countable sequence
Sµ = S0

µ,S1
µ, . . . of distributions in Π(D,BD) such that, for all D ∈ BD:

S0
µ(D) = µ(D) and Si+1

µ (D) =
∫

D
step(d)(D) dSi

µ(d).

▶ Remark 2. We shall write S,S1 in place of, respectively, Sµ,Sµ1 , whenever the formalisation
of the initial distributions µ, µ1 does not play a direct role in the discussion.

Case study: the engine system. As a running example, we consider a refrigerated engine
system [31], sketched in Figure 1. There is one agent with three tasks:

(i) regulate the speed,
(ii) maintain the temperature within a specific range by means of a cooling system, and
(iii) detect anomalies.
The first two tasks are on charge of a controller, the other is took over by an intrusion
detection system, henceforth IDS. Figure 1a shows that these two components use channels
to exchange information and to communicate with other agents. The variables used in the
system, and their role, are listed in Figure 1b. Variable stress quantifies the level of equipment
stress, which increases when the temperature stays too often above the threshold 100: the
higher the stress, the higher the probability of a wreckage. The agent and the environment
acting on these data have been specified in Stark, and are reported in Figure 1c and 1d,
respectively. At each scan cycle the controller sets internal variables and actuators according
to the values received from sensors, the IDS raises a warning if the status of sensors and
actuators is unexpected, and the environment models the probabilistic evolution of the
temperature. Notice that the controller must use channel ch_temp to receive data from
sensor temp. Even though the use of channels is a common feature in CPS, it exposes them
to attacks, as we will discuss in Example 11. We assume that the engine can cooperate
with other engines (e.g., in an aircraft with a left and a right engine), by receiving values on
channel ch_in and sending values on ch_out. If the engine is required to work at slow speed,
it asks to other engines to proceed at full speed to compensate the lack of performance.

3 Robustness Temporal Logic

Robustness Temporal Logic (RobTL) allows us to express temporal properties of distances
over systems behaviour, and, thus, to specify and verify robustness properties of CPS against
uncertainty and perturbations. RobTL uses atomic propositions of the form ∆(exp, p) ▷◁ η

to evaluate, at a given time step, the distance, specified by an expression exp, between a
given evolution sequence and its perturbed version, obtained by some perturbation p, and
to compare it with the threshold η. Atomic propositions are then combined with classic
Boolean and temporal operators, in order to extend and compare these evaluations over the
chosen time horizon. Hence, RobTL formulae are defined over three main components:
1. A language DistExp to specify distances.
2. A language Pert to specify perturbations.
3. Classic Boolean and temporal operators to specify requirements on the evolution of

distances in time.

V. Castiglioni, M. Loreti, and S. Tini 15:5

Ctrl

speed cool

ch_in ⇐

IDS

stress
p1, . . . , p6

temp

ch_temp

ch_out⇒

ch_wrn⇒

ch_speed

(a) Schema of the engine.

Name Domain Role
temp [0, 150] sensor detecting the temperature, accessed

directly by IDS, and via ch_temp by Ctrl
speed {slow, half, full} actuator regulating the speed
cool {on, off} actuator regulating the cooling
ch_temp [0, 150] insecure channel
ch_speed {slow, half} channel used by IDS to order Ctrl to set speed
ch_wrn {ok, hot} channel used by IDS to raise warnings
ch_out {half, full} channel used to send requests to other engines
ch_in {half, full} channel symmetric to ch_in
p1 , .., p6 [0, 150] internal variables storing last 6 values of temp
stress [0, 1] internal variable storing stress level

(b) The variables.

Eng = Ctrl ∥ IDS // Symbol “∥” denotes the classical parallel composition over processes
Ctrl = if [ch_temp ≥ 99.8] (on → cool).Cooling else Check

// If temperature is too high, cooling is activated by assigning on to actuator cool.
// As prefixing “.” consumes one time unit, process Cooling will start at next instant.

Cooling =
√

.
√

.
√

.
√

.Check // cooling is kept on for 4 more instants (
√

consumes one time unit).
Check = if [ch_speed = slow] ((slow → speed), (off → cool)).Ctrl

// If a slow down order comes from IDS through ch_speed, then speed is set to slow
else ((ch_in → speed), (off → cool)).Ctrl
// Otherwise, any speed regulation request from other engines via ch_in is satisfied.

IDS = if [temp > 101 ∧ cool = off] ((hot → ch_wrn), (slow → ch_speed), (full → ch_out)).IDS
// If there is an anomaly, a warning is raised on ch_wrn, slow down order is sent to
// Ctrl through ch_speed and a speed up request is sent to other engines via ch_out.
else ((ok → ch_wrn), (half → ch_speed), (half → ch_out)).IDS

(c) The agent Eng.

pk(τ + 1) =
{

temp(τ) if k = 1
pk−1 (τ) if k = 2, . . . , 6

stress(τ + 1) =
{

max(1, stress(τ) + stressincr) if |{k | pk(τ) ≥ 100}| > 3
stress(τ) otherwise

// stress grows iff temp was too high for > 3 instants over 6

temp(τ + 1) = temp(τ) + v
ch_temp(τ + 1) = temp(τ) + v

v ∼

U [−1.2, −0.8] if cool(τ) = on// v is negative if cooling is on

U [0.1, 0.3] if cool(τ) = off and speed(τ) = slow // otherwise
U [0.3, 0.7] if cool(τ) = off and speed(τ) = half // v is positive and
U [0.7, 1.2] if cool(τ) = off and speed(τ) = full. // depends on speed

// temp detects a value that varies by a value v uniformly distributed in an interval that
// depends on the actuators’ state. In the no-attack case, ch_temp takes the same value

(d) The environment.

Figure 1 The engine system.

3.1 Distance Expressions

We use expressions in DistExp, henceforth called distance expressions, to specify distances
over evolution sequences. As those are sequences of distributions over data states, firstly we
follow [11] and introduce a ground distance over such distributions allowing us to measure
the differences, with respect to a particular task, between two evolution sequences at a given
time step.

CONCUR 2024

15:6 RobTL: Robustness Temporal Logic for CPS

Then, we introduce the language DistExp whose operators allow us to combine various
instances of this ground distance and define more complex distances over evolution sequences,
while possibly taking into account different objectives of the system and temporal constraints.

Ground distance on distributions. In our setting, as in most application contexts, the
objectives of the system can be expressed in a purely data-driven fashion: at any step, any
difference between the desired value of some parameters of interest and the data actually
obtained can be interpreted as a flaw in the behaviour of the system. Hence, following [10],
to capture a particular objective, we use penalty functions ρ : D×N→ [0, 1] assigning to each
pair d, τ a penalty in [0, 1], expressing how far the values of the parameters related to the
considered task in d are from their desired ones at step τ . Hence, ρ(d, τ) = 0 if d respects
all the parameters at step τ . For brevity, we let ρτ (d) = ρ(d, τ). We remark that since we
are in a the discrete-time setting, we can safely identify time steps with natural numbers.

▶ Example 3. Consider the engine system from our case study. We define the penalty
functions ρw, ρt , and ρs, for all time steps τ , by:

ρw
τ (d) =

{
1 if d(ch_wrn) = hot, ρt

τ (d) = |d(ch_temp) − d(temp)|/150

0 if d(ch_wrn) = ok ρs
τ (d) = d(stress)

They express, respectively, how far the level of alert raised by the IDS, the value carried by
channel ch_temp, and the level of stress are from their desired value. These coincide with
the value ok, the value of sensor temp, and zero, respectively.

Penalty functions can be used also to express false negatives and false positives, repres-
enting, respectively, the average effectiveness, and the average precision of the IDS to signal
through channel ch_wrn that the engine system is under stress. We use two new variables
fn and fp to quantify false negatives and false positives depending on stress and ch_wrn.
Both variables are initialised to 0 and updated as follows:

fn(τ +1) = τ ∗ fn(τ) + max(0, stress(τ)− γ)
τ + 1 fp(τ +1) = τ ∗ fp(τ) + max(0, γ − stress(τ))

τ + 1

where γ is 0 if ch_wrn(τ) is ok, and γ is 1 if ch_wrn(τ) is hot. Then, penalties ρfn
τ (d) = d(fn)

and ρfp
τ (d) = d(fp) express how far fn and fp are from their ideal value 0.

We can then make use of penalty functions to define a distance on data states:

▶ Definition 4. Let ρ be a penalty function, and τ ∈ N. The metric on data states in D,
mρ

τ : D×D → [0, 1], is defined, for all d1, d2 ∈ D, by mρ
τ (d1, d2) = max{ρτ (d2)− ρτ (d1), 0}.

Note that mρ
τ (d1, d2) is a hemimetric, i.e., a pseudometric that is not required to be

symmetric, expressing how much d2 is worse than d1 according to ρτ .
Finally, we need to lift the hemimetric mρ

τ to a hemimetric over Π(D,BD). In the literature,
we can find a wealth of notions of function lifting doing so (see [34] for a survey). Among
those, the Wasserstein lifting [47] has the following advantages:

(i) it preserves the properties of the ground metric, and
(ii) one can apply statistical inference to obtain good approximations of it, whose exact

computation is tractable [11,44,46].

V. Castiglioni, M. Loreti, and S. Tini 15:7

▶ Definition 5. Let ρ be a penalty function, and τ ∈ N. For any µ, ν ∈ Π(D,BD), the
Wasserstein lifting of mρ

τ to a distance between µ and ν is defined by:

W(mρ
τ)(µ, ν) = inf

w∈W(µ,ν)

∫
D×D

mρ
τ (d, d′) dw(d, d′)

where W(µ, ν) is the set of the couplings of µ and ν, namely the set of joint distributions w

over the product space (D×D,BD×D) having µ and ν as left and right marginal, respectively,
i.e., w(D×D) = µ(D) and w(D × D) = ν(D), for all D ∈ BD. (See [11,23] and Appendix A
for an in depth discussion on the definition of the Wasserstein lifting over hemimetrics.)

▶ Proposition 6 ([11]). For each penalty function ρ, and time step τ ∈ N, function W(mρ
τ)

is a 1-bounded hemimetric on Π(D,BD).

The language DistExp. We can now proceed to define distances that take into account
several time steps in the evolution of systems.

▶ Definition 7. Expressions in DistExp are defined as follows:

exp ::= <ρ | >ρ | FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk | σ(exp, ▷◁ ζ)

where ρ ranges over penalty functions, I is an interval, K is a finite set of indexes, wk ∈ (0, 1]
for each k ∈ K,

∑
k∈K wk = 1, ▷◁ ∈ {<,≤,≥, >} and ζ ∈ [0, 1].

Atomic expressions <ρ and >ρ are used to evaluate the ground distance with respect
to the penalty function ρ. We have two distinct atomic expressions because the ground
distance is a hemimetric: the direction of the arrowhead in <ρ and >ρ identifies which
argument is considered as the first one in the evaluation (cf. Definition 8 below). Moreover,
having penalty functions as parameters allows us to study the differences in the behaviour
of systems with respect to different data and objectives in time. Then, we provide three
temporal expression operators, namely FI , GI and UI , allowing for the evaluation of minimal
and maximal distances over a given time interval I. The comparison operator σ(exp, ▷◁ ζ)
returns a value in {0, 1} used to establish whether the evaluation of exp is in relation ▷◁ with
the threshold ζ.

Distance expressions are evaluated over two evolution sequences and a time τ , representing
the time step at which (or starting from which) the differences are computed.

▶ Definition 8. Let S1,S2 be to evolution sequences, and τ be a time step. The evaluation of
distance expressions in the triple S1,S2, τ is the function J·Kτ

S1,S2
: DistExp→ [0, 1] defined

inductively on the structure of expressions as follows:
J<ρKτ

S1,S2
= W(mρ

τ)(Sτ
1 ,Sτ

2);
J>ρKτ

S1,S2
= W(mρ

τ)(Sτ
2 ,Sτ

1);
JFI expKτ

S1,S2
= mint∈I+τ JexpKt

S1,S2
;

JGI expKτ
S1,S2

= maxt∈I+τ JexpKt
S1,S2

;
Jexp1 UI exp2K

τ
S1,S2

= min
t∈I+τ

max
{

Jexp2K
t
S1,S2

, max
t′∈I+τ,t′<t

Jexp1K
t′

S1,S2

}
;

J min (exp1, exp2)Kτ
S1,S2

= min{Jexp1K
τ
S1,S2

, Jexp2K
τ
S1,S2

};
J max (exp1, exp2)Kτ

S1,S2
= max{Jexp1K

τ
S1,S2

, Jexp2K
τ
S1,S2

};
J
∑

k∈K wkexpkKτ
S1,S2

=
∑

k∈K wk · JexpkKτ
S1,S2

;

Jσ(exp, ▷◁ ζ)Kτ
S1,S2

=
{

0 if JexpKτ
S1,S2

▷◁ ζ,

1 otherwise.

CONCUR 2024

15:8 RobTL: Robustness Temporal Logic for CPS

The evaluation bases on the two atomic expressions. We use <ρ to measure the distance
between the distributions reached by S1 and S2 at time τ (S1

τ and S2
τ) with respect to the pen-

alty function ρ, i.e., W(mρ
τ)(Sτ

1 ,Sτ
2). Conversely, >ρ measures the distance W(mρ

τ)(Sτ
2 ,Sτ

1).
Operators FI , GI , and UI can be thought of as the quantitative versions of the corresponding
bounded temporal operators, respectively, eventually, always, and until. Their semantics
follows by associating existential quantification with minima, and universal quantification
with maxima. Hence, the evaluation of FI exp is obtained as the minimum value of the
distance exp over the time interval I. Dually, GI exp gives us the maximum value of exp over
I. Then, the evaluation of exp1 UI exp2 follows from that of bounded until (see Definition 14),
accordingly. The expression σ(exp, ▷◁ ζ) evaluates to 0 if the evaluation of exp is ▷◁ ζ;
otherwise it evaluates to 1. Informally, the comparison operator σ can be combined with
temporal expression operators to check if several constraints of the form ▷◁ ζi are satisfied
over a time interval under a single application of a perturbation function (see Example 16
below).

3.2 Perturbations
A perturbation is the effect of unpredictable events on the current state of the system. Hence,
we model it as a function that maps a data state into a distribution over data states. To
account for possibly repeated, or different effects in time of a single perturbation, we make
the definition of perturbation function also time-dependent: a perturbation function p is a
list of mappings in which the i-th element describes the effects of p at time i.

▶ Definition 9. A perturbation function is a mapping p : D × N→ Π(D,BD) such that, for
each τ ∈ N, the mapping d 7→ p(d, τ)(D) is BD-measurable for all D ∈ BD.

To describe the perturbed behaviour of a system, we need to account for the effects of a
function p on the evolution sequence. Hence, we combine p with the Markov kernel step:

▶ Definition 10. Given an evolution sequence Sµ generated by kernel step, and a perturbation
function p, the perturbation of Sµ via p is the evolution sequence Spµ obtained by:

Sp,0
µ (D) =

∫
D
p(d, 0)(D) dµ(d), Sp,i+1

µ (D) =
∫

D

∫
D
p(d′, i+1)(D) dstep(d)(d′) dSp,i

µ (d).

Specifying perturbations. We specify a perturbation function p via a (syntactic) perturba-
tion p in the language Pert:

p ::= nil | f@τ | p1 ; p2 | pn

where p ranges over Pert, n and τ are finite natural numbers, and:
nil is the perturbation with no effects, i.e., at each time step it behaves like the identity
function id : D → Π(D,BD) such that id(d) = δd for all d ∈ D;
f@τ is an atomic perturbation, i.e., a function f : D → Π(D,BD) such that the mapping
d 7→ f(d)(D) is BD-measurable for all D ∈ BD, and that is applied precisely after τ time
steps from the current instant;
p1 ; p2 is a sequential perturbation, i.e., perturbation p2 is applied at the time step
subsequent to the (final) application of p1;
pn is an iterated perturbation, i.e., perturbation p is applied for a total of n times.

Despite its simplicity, this language allows us to define some non-trivial perturbation functions
that we can use to test systems behaviour. (Unspecified perturbations behave like id.)

V. Castiglioni, M. Loreti, and S. Tini 15:9

▶ Example 11. In [31] several cyber-physical attacks tampering with sensors or actuators
of the engine system aiming to inflict overstress of equipment [25] were described. Here we
show how those attacks can be modelled by employing our perturbations.

Consider sensor temp. There is an attack that aims at delaying the cooling phase, forcing
the system to work for several instants at high temperatures and accumulate stress. It tricks
the controller by adding a negative offset o ∈ R≤0 to the value carried by the insecure channel
ch_temp. If [100, 200] is the attack window, the attack is modelled by perturbation ptemp,o =
(id@0)100; (ftemp,o@0)100, where ftemp,o(d) = δd′ with d′(ch_temp) = d(ch_temp)+rnd∗o,
with rnd uniformly distributed in [0, 1], and d′(x) = d(x) for all other variables in Figure 1b.

Consider now actuator cool. There is an attack aims at forcing the system to reach quickly
high temperatures after the start of a cooling phase. It switches off the cooling system as
soon as the temperatures goes below 99.8 − t degrees, for some t ∈ R≥0. This attack, is
stealth, meaning that the IDS does not detect it. If [0, 100] is the attack window, the attack
is modelled by perturbation pcool,t defined by pcool,t = (fcool,t@0)100, where fcool,t(d) = δd,
if d(temp) ≥ 99.8− t, and fcool,t(d) = δd′′ , otherwise, with d′′(cool) = off, and d′′(x) = d(x)
for all other variables in Figure 1b.

Each p ∈ Pert denotes a perturbation function as in Definition 9. To obtain it, we
exploit function effect(p), describing the effects of p at the current step, and function next(p),
identifying the perturbation to be applied at next step. Both functions are defined inductively
on the structure of perturbations.

effect(nil) = id effect(f@τ) =
{

id if τ > 0,

f if τ = 0

effect(pn) = effect(p) effect(p1; p2) = effect(p1)

next(nil) = nil next(f@τ) =
{

f@(τ − 1) if τ > 0,

nil otherwise

next(pn) =
{

next(p); pn−1 if n > 0,

nil otherwise
next(p1; p2) =

{
next(p1); p2 if next(p1) ̸= nil,
p2 otherwise.

We define the semantics of perturbations as the mapping ⟨⟨·⟩⟩ : Pert→ (D × N→ Π(D,BD))
such that, for all d ∈ D and i ∈ N, ⟨⟨p⟩⟩(d, i) = effect(nexti(p))(d), where next0(p) = p and
nexti(p) = next(nexti−1(p)), for all i > 0.

▶ Proposition 12. For each p ∈ Pert, ⟨⟨p⟩⟩ is a well defined perturbation function.

Proof. Since, by definition, each f occurring in atomic perturbations is such that d 7→ f(d)(D)
is BD-measurable for all D ∈ BD, and the same property trivially holds for the identity
function id, it is immediate to conclude that ⟨⟨p⟩⟩ satisfies Definition 9 for each p ∈ Pert. ◀

3.3 RobTL Formulae
We use RobTL formulae to specify and analyse distances between nominal and perturbed
evolution sequences over a finite time horizon h. By combining atomic propositions with
temporal operators, we can apply (possibly) different distance expressions and perturbations
at different steps, thus allowing for an analysis of behaviour in complex scenarios.

CONCUR 2024

15:10 RobTL: Robustness Temporal Logic for CPS

▶ Definition 13. RobTL consists in the set of formulae L defined by:

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ UI φ

where φ ranges over L, exp ranges over distance expressions in DistExp, p ranges over
perturbations in Pert, ▷◁ ∈ {<,≤,≥, >}, η ∈ [0, 1], and I ⊆ [0, h] is a bounded time interval.

Formulae are evaluated in an evolution sequence and a time step.

▶ Definition 14. Let S be an evolution sequence, and τ a time step. The satisfaction relation
|= is defined inductively on the structure of formulae as:
S, τ |= ⊤ for all S, τ ;
S, τ |= ∆(exp, p) ▷◁ η iff JexpKτ

S,S|⟨⟨p⟩⟩,τ
▷◁ η, with evolution sequence S|⟨⟨p⟩⟩,τ

defined as:

(S|⟨⟨p⟩⟩,τ
)t =

{
St if t < τ,

S⟨⟨p⟩⟩,t−τ
Sτ if t ≥ τ ;

S, τ |= ¬φ iff S, τ ̸|= φ;
S, τ |= φ1 ∧ φ2 iff S, τ |= φ1 and S, τ |= φ2;
S, τ |= φ1 UI φ2 iff there is a τ ′ ∈ I+τ such that S, τ ′ |= φ2 and for all τ ′′ ∈ I+τ, τ ′′ < τ ′

it holds that S, τ ′′ |= φ1, where, for I = [a, b], we let I + τ = [min{a + τ, h}, min{b + τ, h}].

Let us focus on atomic propositions. The evolution sequence S at time τ satisfies the
formula ∆(exp, p) ▷◁ η if the distance defined by exp between S and S|⟨⟨p⟩⟩,τ

is ▷◁ η, where
S|⟨⟨p⟩⟩,τ

is the evolution sequence obtained by applying the perturbation p to S at time τ .
For the first τ − 1 steps S|⟨⟨p⟩⟩,τ

is identical to S. At time τ the perturbation p is applied,
and the distributions in S|⟨⟨p⟩⟩,τ

are thus given by the perturbation via ⟨⟨p⟩⟩ of the evolution
sequence having Sτ as initial distribution (Definition 10). It is worth noticing that by
combining atomic propositions with temporal operators we can apply (possibly) different
perturbations at different time steps, thus allowing for the analysis of systems behaviour in
complex scenarios.

Naturally, other operators can be defined as macros in our logic:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) φ1 =⇒ φ2 ≡ ¬φ1 ∨ φ2 ♢Iφ ≡ ⊤ UI φ □Iφ ≡ ¬♢I¬φ.

We now provide some examples of robustness properties that can be expressed in RobTL.

▶ Example 15. By using the penalty functions in Example 3 and the perturbations from
Example 11, we can build a formula φ1 expressing that the attack on the insecure channel
ch_temp is successful. This happens if, whenever the difference observed along the attack
window I = [100, 200] between the physical value of temperature and that read by the
controller is in the interval [η1, η2], for suitable η1 and η2, then the level of the alarm raised
by the IDS remains below a given stealthiness threshold η3, and the level of system stress
overcomes a danger threshold η4 within the time interval J = [100, 210]:

φ1 = ♢[0,h](φ′
1 =⇒ φ′′

1)

φ′
1 = ∆(FI <ρt

, ptemp,o) ≥ η1 ∧∆(GI <ρt
, ptemp,o) ≤ η2

φ′′
1 = ∆(GJ <ρw

, ptemp,o) ≤ η3 ∧∆(GJ <ρs
, ptemp,o) ≥ η4.

V. Castiglioni, M. Loreti, and S. Tini 15:11

▶ Example 16. Consider the attack on actuator cool described in Example 11. We give a
formula φ2 expressing that such an attack fails within 210 units of time. This happens if
the level of the alarm raised by the IDS goes above a given threshold ζ2 at some instant
τ ′ ∈ [0, 210], i.e., the attack is detected, while the level of stress remains below an acceptable
threshold ζ1:

φ2 = ∆
(

σ(<ρs
, < ζ1) U[0,210] σ(<ρw

, > ζ2) , pcool,t
)

< 1.

Notice that in the formula φ2 the perturbation pcool,t is applied only once, at time 0, and by
means of the comparison and until operators on expressions we can evaluate all the distances
along the considered interval between the original evolution sequence and its perturbation
via pcool,t. Conversely, in the formula φ3 below, the time step at which a perturbation is
applied is determined by the bounded until operator:

φ3 = φ2 U [τ1,τ2] ∆(<ρfn
, pcool,t) ≤ η3.

This formula is satisfied if there is a τ̃ ∈ [τ1, τ2] s.t.:
1. the attack on actuator cool is detected regardless of the time step in [τ1, τ̃) at which

pcool,t is applied, and
2. the IDS is effective, up to tolerance η3, against an application of pcool,t at time τ̃ .
The effectiveness is measured in terms of the penalty function ρfn on false negatives presented
in Example 3.

4 RobTL model checker

A RobTL model checker has been implemented as part of the Software Tool for the Analysis
of Robustness in the unKnown environment (Stark) [12,14], available at https://github.
com/quasylab/jspear/tree/working, and the related, detailed, documentation can be
found at https://github.com/quasylab/jspear/wiki.

It consists of the following four procedures, based on statistical techniques and simulation:
(i) Simulation of the evolution sequence of system, assuming an initial distribution µ.
(ii) Simulation of the effects of a perturbation on a given evolution sequence.
(iii) Syntax driven estimation of the evaluation of distance expressions.
(iv) Satisfaction of a given RobTL formula by a given evolution sequence.

These four procedures are presented with more details below. Due to space constraints,
since all the algorithms are implemented in Stark, we only report them in Appendix B.
We also remark that the simulation procedure in (i) and that for the estimation of the
Wasserstein distance that is part of (iii) were already discussed at length in [11]. We briefly
report them here for the sake of readability. We discuss the time complexity of the model
checking algorithm in Section 4.1. Since the procedures outlined above are based on statistical
inference, we need to take into account the statistical error when checking the satisfaction
of formulae. Hence, in Section 4.2 we discuss a classical algorithm for the evaluation of
confidence intervals in the evaluation of distances. Then, we propose a three-valued semantics
for RobTL specifications, in which the truth value unknown is added to true and false.

Throughout the section, we also provide some examples of an application of the algorithms
to the analysis of the engine system. The interested reader can find the script used to generate
the plots and results as the Main.java file at https://github.com/quasylab/jspear/blob/
working/examples/engine/.

CONCUR 2024

https://github.com/quasylab/jspear/tree/working
https://github.com/quasylab/jspear/tree/working
https://github.com/quasylab/jspear/wiki
https://github.com/quasylab/jspear/blob/working/examples/engine/
https://github.com/quasylab/jspear/blob/working/examples/engine/

15:12 RobTL: Robustness Temporal Logic for CPS

Simulation of evolution sequences. Given a distribution µ and N, k ∈ N, we use function
Sim (Algorithm 1) to obtain an empirical evolution sequence of the form E0, . . . , Ek of size
N and length k, starting from µ. Each Ei is a tuple d1

i , . . . , dN
i of data states that are used

to estimate the probability distribution reached at step i. E0 is a sample of size N of µ

obtained by means of a function SampleDistr. Then, Ei+1 is obtained by simulating one
computation step from each element in Ei via a function SimStep that mimics the behaviour
of step (Section 2): for any d and D ∈ BD it holds that Pr{SimStep(d) ∈ D} = step(d)(D).
For any i ∈ [0, k], we let Ŝi,N

E0
be the distribution such that Ŝi,N

E0
(D) = |Ei ∩ D|/N for

any D ∈ BD. By applying the weak law of large numbers to the i.i.d. samples, we get
lim

N→∞
Ŝi,N

E0
= Si

µ. Henceforth, we identify ŜN
E0

with the estimated evolution sequence of size

N , E = E0, . . . , Ek.

Applying perturbations to evolution sequences. We use function SimPer (Algorithm 2)
to simulate the effect of a perturbation p on an estimated evolution sequence E of size N .
This function takes two integers as parameters: τ and ℓ. τ is the time step at which p is
applied. ℓ is the number of additional samples that we generate to evaluate the effect of p on
each data state, to guarantee statistical relevance of the collected data. Given E, we denote
by ℓ ·E the sample set obtained from E by replicating each of its elements ℓ times. Function
SimPer is similar to Sim. They differ in constructing the tuple Ei+1, as in SimPer we need
first to sample the effect of p. This is done by function Sample(f(d)) whose definition is
standard and therefore omitted. According to Section 3.2, function f in Sample(f(d)) is
effect(p), and the perturbation used at next time step is next(p).

Evaluation of distance expressions. Distance expressions are estimated following a syntax
driven algorithm (Algorithm 4). To deal with atomic expressions <ρ and >ρ, we rely on
an existing approach [46] to estimate the Wasserstein distance between two distributions
µ, ν ∈ Π(D,BD). We consider N independent samples {d1

1, . . . , dN
1 } taken from µ, and

ℓN independent samples {d1
2, . . . , dℓN

2 } taken from ν, for some integers N, ℓ. Then, we
exploit the penalty function ρi to map each sampled data state onto R, so that, to capture
the minimisation over the couplings, it is enough to consider the reordered sequences of
values {ωj = ρi(dj

1) | ωj ≤ ωj+1} and {νh = ρi(dh
2) | νh ≤ νh+1}. Then W(mρ,i)(ν, µ) =

1
ℓN

∑ℓN
h=1 max{νh − ω⌈ h

M ⌉, 0} [10, 11].
Function Wass (Algorithm 3) implements the procedure outlined above. Parameter

op ∈ {<, >} of Wass allows us to choose which between <ρ and >ρ we want to approximate:
if op is <, we approximate W(mρ,i)(µ, ν); if op is >, we approximate W(mρ,i)(ν, µ). Since
penalty functions allow us to evaluate W on R, rather than on Rn, the complexity of the
outlined procedure is O(ℓN log(ℓN)) [46], due to the sorting of {νh | h ∈ [1, . . . , ℓN]}. We
refer to [44, Corollary 3.5, Equation (3.10)] for an estimation of the approximation error on
the evaluation of the Wasserstein distance over N, ℓN samples.

Using the estimation of the atomic expressions as base case, we define function EvalExpr
(Algorithm 4) recursively on the syntax of exp, following Definition 8.

Checking formulae satisfaction. Function Sat (Algorithm 5) allows us to verify whether a
given evolution sequence satisfies a given RobTL formula at a given time step. It takes five
parameters: the initial distribution µ, the time step τ , the formula φ, the two integers N

and ℓ identifying the number of samples. Function Sat consists of three steps. Firstly, we
compute, using structural induction, the time horizon k of φ to identify the number of steps
needed to evaluate it. Then, function Sim is used to simulate the evolution sequence from µ.
Finally, φ is evaluated over E and τ by calling function Eval (Algorithm 6), that yields the
Boolean evaluation of φ computed recursively on its structure following Definition 14.

V. Castiglioni, M. Loreti, and S. Tini 15:13

(a) Difference with respect to temp. (b) Difference with respect to stress.

Figure 2 Differences with respect to the values of temp and stress, under ptemp,o for o ∈
{−2, −1.5, −1}.

(a) exp1. (b) exp2.

Figure 3 Evaluation of exp1 and exp2 over the time interval [0, 50].

▶ Example 17. Consider the attack on the sensor temp, modelled by perturbation p = ptemp,o

(Example 11), and let 0 be the current step. To give an idea of the impact of p on the
behaviour S of the engine, in Figure 2a we report the pointwise evaluation of the distance
<ρ, where ρ(d) = d(temp)/150 for all d ∈ D, over the time window [90, 300], between the
temperature in S and that in three perturbations of it, obtained by three variations of p with
o ∈ {−2,−1.5,−1}. In all cases, the difference is greater in [100, 200], i.e., while ftemp,o is
active, and the smaller differences detected after 200 steps are due to the delays induced by
the perturbations in the regular behaviour. Clearly, the larger the offset interval, the greater
the difference. This is even more evident in Figure 2b, depicting the pointwise evaluations of
the distances <ρs between S and its three perturbed versions, for the penalty function ρs

defined as ρs
τ (d) = d(stress) in Example 3.

Let us now fix o = −1.5. Consider expressions exp1 = GJ <ρw and exp2 = GJ <ρs , where
J = [100, 210] and both penalty functions ρw and ρs are defined in Example 3. In Figure 3 we
report the variation of the evaluation of the two expressions over S and its 51 perturbations
via p, each obtained by applying p at a different τ ′ ∈ [0, 50]. We associate the coordinate
x = τ ′ with Jexp1K

τ ′

S,S|⟨⟨p⟩⟩,τ′
in Figure 3a, and with Jexp2K

τ ′

S,S|⟨⟨p⟩⟩,τ′
in Figure 3b. The two

plots show that by applying p at different time steps, we get different effects on system
behaviour, with variations of the order of 10−3. We run several experiments to infer for which
stealthiness threshold η3 and danger threshold η4, the formula φ1 in Example 15 is satisfied.
We concluded that for η3 ≥ 0.06 and η4 ≤ 0.45 the attack is successful (Example 20).

4.1 Complexity
We can assume that the evaluation of SimStep(d) needs a number of steps that is linear
with the number of variables in d. The same applies for the application of a perturbation
or penalty function to a data state d. Under these assumptions it is not hard to see that

CONCUR 2024

15:14 RobTL: Robustness Temporal Logic for CPS

to evaluate Sim(µ, N, k) we need O(kN · |Var|) steps, while O(kℓN · |Var|) steps are needed
to evaluate SimPer({E1, . . . , Ek}, p, τ, ℓ). Moreover, O(|E2| log |E2|) steps are needed for
Wass(E1, E2, op, ρ). This is dominated by the number of steps needed to order the sequences
ωi and νh (lines 4 and 5). For the sake of simplicity, the algorithms in Algorithm 4 and
Algorithm 6 are presented following a forward approach where to compute the value at time
i, all the values in an interval [i + a, i + b] could be considered. This means that to compute
Eval(E, τ, φ, ℓ) (resp. EvalExpr(E, E′, τ, exp)), we need a number of steps that, in the
worst case, are linear with the length of E and exponential with the size of φ (resp. exp).
However, if a backward approach is used as in [17], the same functions can be computed with
a number of steps that is linear with both the length of E and the size of φ (resp. exp).

4.2 Statistical error
We provide an algorithm for the evaluation of a confidence interval CI on the estimation
of the value of a distance expression exp. This means that, given exp, a nominal evolution
sequence S, a perturbation p, two time steps τ and τ ′, and a coverage probability α, the
probability that the real value JexpKτ ′

S,S|⟨⟨p⟩⟩,τ
of the distance is in CI is at least α.

We start by evaluating the confidence intervals on W(mρ
τ)(µ, ν), obtained by applying

the empirical bootstrap method [19,20]:
1. Generate m bootstrap samples for µ and ν: these are obtained by drawing with replace-

ment a sample of size N from the elements of the original sampling of µ, and one of size
ℓN from those for ν. Let µ1, . . . , µm and ν1, . . . , νm the resulting bootstrap distributions.

2. Apply the procedure Wass m-times to evaluate the Wasserstein distances between the
bootstrap distributions. Let W1, . . . , Wm be the resulting bootstrap distances.

3. Evaluate the mean of the bootstrap distances W =
∑m

i=1 Wi/m.
4. Evaluate the standard error SE =

(∑m
i=1(Wi −W)2/(m− 1)

)1/2.
5. Let CI = W ±z1− α

2
SE, with z1− α

2
the 1− α

2 quantile of the standard normal distribution.

▶ Remark 18. In [45] the bias-corrected, accelerated percentile intervals (BCa) is used.
We chose to use the empirical bootstrap method to find a balance between accuracy and
computational complexity. Empirical bootstrap can be subject to bias in the samples,
and more accurate techniques, like BCa, were proposed [16]. However, to reach the desired
accuracy with the BCa method, it is necessary to use m ≥ O(1000) bootstrap samples. Given
the cost O(ℓN log(ℓN)) of a single evaluation of W, and considering that in our formulae this
distance is evaluated thousands of times, this approach would be computationally unfeasible.
In our examples, m ≤ 100 is sufficient to obtain reasonable confidence intervals (Example 19).

The evaluation of the confidence interval for the Wasserstein distance is then extended
to distance expressions: once we have determined the bounds of the confidence intervals
of the sub-expressions occurring in exp, the interval of exp is obtained by applying the
function defining the evaluation of exp to them. For instance, if exp = max (exp1, exp2),
CIexp1

= (l1, r1), and CIexp2
= (l2, r2), then CIexp = (max{l1, l2}, max{r1, r2}).

▶ Example 19. In Figure 4 we report the 95% confidence intervals for Jexp1K
τ ′

S,S|⟨⟨p⟩⟩,0
, where

τ ′ ∈ [0, 50], with exp1 and p as in Example 17. The intervals in Figure 4a have been obtained
by means of m = 50 bootstrap samplings, whereas for those in Figure 4b we used m = 100.
In the former case, the maximal width of the interval is 9.39 · 10−3, with an average width of
8.07 · 10−3; in the latter case, those number become, respectively, 9.03 · 10−3 and 7.93 · 10−3.

V. Castiglioni, M. Loreti, and S. Tini 15:15

(a) m = 50, α = 0.05. (b) m = 100, α = 0.05. (c) η3 = 0.03, 0.04, 0.05, 0.06.

Figure 4 Confidence intervals of exp1, and three-valued evaluation of φη3 , over [0, 50].

A three-valued semantics for RobTL. Given the presence of errors in the evaluation of
expressions we extend our model checking algorithm with the possibility to assign a three-
valued semantics to formulae. Alongside the classical Boolean evaluations true (⊤) and false
(⊥), a RobTL formula can assume the value unknown (⋓). Intuitively, unknown is generated
by the comparison between the distance and the chosen threshold in atomic propositions: if
the threshold η does not lie in the confidence interval of the evaluation of the distance, then
the formula will evaluate to ⊤ or ⊥ according to the validity of the relation ▷◁ η. Conversely,
if η belongs to the confidence interval, then the atomic proposition evaluates to ⋓, since the
validity of the relation ▷◁ η may depend on the particular samples obtained in the simulation.

Starting from atomic propositions, the three-valued semantics is extended to the Boolean
operators via truth tables in the standard way [29, 48]. Then, we assign a three-valued
semantics to RobTL formulae via the satisfaction function ΩS : L× [0, h]→ {⊤,⋓,⊥}, defined
inductively on the structure of RobTL formulae, starting from atomic propositions as follows:

ΩS(⊤, τ) = ⊤

ΩS(∆(exp, p) ▷◁ η, τ) =
{
⋓ if η ∈ CIexp

S, τ |= ∆(exp, p) ▷◁ η otherwise.

ΩS(¬φ, τ) = ¬ΩS(φ, τ)
ΩS(φ1 ∧ φ2, τ) = ΩS(φ1, τ) ∧ ΩS(φ2, τ)

ΩS(φ1 UI φ2, τ) =
∨

τ ′∈I

(
ΩS(φ2, τ ′) ∧

∧
τ ′′∈I,τ ′′<τ ′

ΩS(φ1, τ ′′)
)

.

The algorithm for the evaluation of function ΩS is obtained in a straightforward manner
from the Boolean evaluation (Algorithm 6).

▶ Example 20. Consider the formula φη3 = ∆(exp1, p) ≤ η3 for exp1 and p as in Example 17.
In Figure 4c we report the variation of the evaluation of ΩS(φη3 , τ ′) with respect to τ ′ ∈ [0, 50]
and η3 ∈ {0.03, 0.04, 0.05, 0.06}, where we let ⊤ 7→ 1, ⋓ 7→ 0, and ⊥ 7→ −1. The plot confirms
the validity of the empirical tuning of parameter η3 that we carried out in Example 17.

5 Concluding remarks

The term robustness is used in several contexts, from control theory [50] to biology [28], and
not always with the same meaning. Since our objective was to provide a formal tool for the
verification of general robustness properties, we limit ourselves to recall that, in the context
of CPS, we can distinguish five categories of robustness [24]:

CONCUR 2024

15:16 RobTL: Robustness Temporal Logic for CPS

(i) input/output robustness;
(ii) robustness with respect to system parameters;
(iii) robustness in real-time system implementation;
(iv) robustness due to unpredictable environment;
(v) robustness to faults.

Our framework is designed for properties of type (iv), and we plan to extend it to the others.
[49] presents a PCTL statistical model checker based on stratified sampling. This allows

for the generation of negatively correlated samples, thus considerably reducing the number of
samples needed to obtain confident verdicts, provided the PCTL formulae are of a particular
form. While direct comparison of the two algorithms would not be meaningful given the
disparity in the logics, we will study the use of stratified sampling in our model checker.

In [1] the model of discrete time stochastic hybrid systems is introduced and used to
formalise finite-horizon probabilistic reachability problems. Specifically, maximal probabilities
of reaching (and maintaining) a safe set of states are considered. There are two main differences
in between this model and the evolution sequence model that we would like to highlight:

The purely data-driven characterisation of systems behaviour of the evolution sequence
model has two crucial consequences. The first consequence is that the specification of
the behaviour of the agent and that of the environment are independent, and there is no
need to specify a system’s state space, as opposed to what happens with the model in
the proposed paper. The second consequence is that the behaviour of the system is not
given by a set of traces/trajectories, but by the combination of their effects.
The paper [1] only presents the analysis of probabilistic reachability properties, based
on the evaluation of the desired safety property on each single trace of the system and
the consequent computation of the total probability of executing those traces. In this
paper, we introduce a logic that allows us to specify robustness properties based on the
evaluation of distances between the behaviour of two different systems, the nominal and
the perturbed one.

We plan to apply our framework to the analysis of biological systems. Some quantitative
temporal logics have already been proposed in that setting [21,36,37] to capture some notions
of robustness in system biology [5, 28, 32, 41, 42]. We are confident that the use of RobTL
and evolution sequences can lead to new results, as shown in the preliminary work [13].
Moreover, we will apply our work to Medical CPS. In this context, statistical inference and
learning methods have been combined in the synthesis of controllers, in order to deal with
uncertainties [33]. The idea is then to use our tool to test the obtained controllers and verify
their robustness against uncertainties.

Finally, we plan to apply our work to the evaluation of the effectiveness of digital twins [26].
To this end, we will enrich Stark with a special construct, similar to perturbations, that
will allow us to model the communications, and their effects, between the digital and the
real-world (perturbed) twin in a concise, clean, fashion. A preliminary result in this direction
can be found in [8].

References
1 Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic reachability

and safety for controlled discrete time stochastic hybrid systems. Autom., 44(11):2724–2734,
2008. doi:10.1016/J.AUTOMATICA.2008.03.027.

2 Erika Ábrahám and Borzoo Bonakdarpour. HyperPCTL: A temporal logic for probabilistic
hyperproperties. In Proceedings of QEST 2018, volume 11024 of Lecture Notes in Computer
Science, pages 20–35. Springer, 2018. doi:10.1007/978-3-319-99154-2_2.

https://doi.org/10.1016/J.AUTOMATICA.2008.03.027
https://doi.org/10.1007/978-3-319-99154-2_2

V. Castiglioni, M. Loreti, and S. Tini 15:17

3 Shiraj Arora, René Rydhof Hansen, Kim Guldstrand Larsen, Axel Legay, and Danny Bøgsted
Poulsen. Statistical model checking for probabilistic hyperproperties of real-valued signals. In
Proceedings of SPIN 2022, volume 13255 of Lecture Notes in Computer Science, pages 61–78.
Springer, 2022. doi:10.1007/978-3-031-15077-7_4.

4 Christel Baier. Probabilistic model checking. In Javier Esparza, Orna Grumberg, and Salomon
Sickert, editors, Dependable Software Systems Engineering, volume 45 of NATO Science for
Peace and Security Series - D: Information and Communication Security, pages 1–23. IOS
Press, 2016. doi:10.3233/978-1-61499-627-9-1.

5 Naama Barkai and Stanislas Leibler. Robustness in simple biochemical networks. Nature,
387:913–917, 1997. doi:10.1038/43199.

6 Vladimir I. Bogachev. Measure Theory, vol. 2,. Measure Theory. Springer-Verlag, Ber-
lin/Heidelberg, 2007. doi:10.1007/978-3-540-34514-5.

7 Christos G. Cassandras, John Lygeros, and (eds.). Stochastic Hybrid Systems. Number 24 in
Control Engineering. CRC Press, Boca Raton, 1st edition, 2007. doi:10.1201/9781315221625.

8 Valentina Castiglioni, Ruggero Lanotte, Michele Loreti, and Simone Tini. Evaluating the
effectiveness of digital twins through statistical model checking with feedback and perturbations.
In Proceedings of FMICS 2024, Lecture Notes in Computer Science. Springer, 2024.

9 Valentina Castiglioni, Michele Loreti, and Simone Tini. STARK: A Software Tool
for the Analysis of Robusness in the unKnown environment. Software, swhId:
swh:1:dir:ddfb418d5a080b8e83323a1b2c38d9f7065e2554 (visited on 2024-08-21). URL:
https://github.com/quasylab/jspear/tree/working.

10 Valentina Castiglioni, Michele Loreti, and Simone Tini. How adaptive and reliable is your
program? In Proceedings of FORTE 2021, volume 12719 of LNCS, pages 60–79. Springer,
2021. doi:10.1007/978-3-030-78089-0_4.

11 Valentina Castiglioni, Michele Loreti, and Simone Tini. A framework to measure the robustness
of programs in the unpredictable environment. Log. Methods Comput. Sci., 19(3), 2023.
doi:10.46298/LMCS-19(3:2)2023.

12 Valentina Castiglioni, Michele Loreti, and Simone Tini. Stark: A Software Tool for the
Analysis of Robustness in the unKnown environment. In Proceedings of COORDINATION
2023, volume 13908 of Lecture Notes in Computer Science, pages 115–132. Springer, 2023.
doi:10.1007/978-3-031-35361-1_6.

13 Valentina Castiglioni, Michele Loreti, and Simone Tini. Bio-Stark: A tool for the time-point
robustness analysis of biological systems. In Proceedings of CMSB 2024, Lecture Notes in
Computer Science. Springer, 2024. To appear.

14 Valentina Castiglioni, Michele Loreti, and Simone Tini. STARK: A tool for the analysis
of CPSs robustness. Science of Computer Programming, 236:103134, 2024. doi:10.1016/j.
scico.2024.103134.

15 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

16 Thomas J. DiCiccio and Bradley Efron. Bootstrap confidence intervals. Statistical Science,
11(3):189–228, 1996. doi:10.1214/ss/1032280214.

17 Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust monitoring for STL. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, pages 264–279,
Berlin, Heidelberg, 2013. Springer.

18 Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over real-valued
signals. In Proceedings of FORMATS 2010, volume 6246 of LNCS, pages 92–106. Springer,
2010. doi:10.1007/978-3-642-15297-9_9.

19 Bradley Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics,
7(1):1–26, 1979. doi:10.1214/aos/1176344552.

20 Bradley Efron. Nonparametric standard errors and confidence intervals. Canadian Journal of
Statistics, 9(2):139–158, 1981. doi:10.2307/3314608.

CONCUR 2024

https://doi.org/10.1007/978-3-031-15077-7_4
https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.1038/43199
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1201/9781315221625
https://archive.softwareheritage.org/swh:1:dir:ddfb418d5a080b8e83323a1b2c38d9f7065e2554;origin=https://github.com/quasylab/jspear;visit=swh:1:snp:8132c5d3ed79097d14de6b333de38b74741c7f2f;anchor=swh:1:rev:c6b2386d36b72ab790999d2963203b7d5aa03ce7
https://github.com/quasylab/jspear/tree/working
https://doi.org/10.1007/978-3-030-78089-0_4
https://doi.org/10.46298/LMCS-19(3:2)2023
https://doi.org/10.1007/978-3-031-35361-1_6
https://doi.org/10.1016/j.scico.2024.103134
https://doi.org/10.1016/j.scico.2024.103134
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1214/ss/1032280214
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.2307/3314608

15:18 RobTL: Robustness Temporal Logic for CPS

21 François Fages and Aurélien Rizk. On temporal logic constraint solving for analyzing numerical
data time series. Theor. Comput. Sci., 408(1):55–65, 2008. doi:10.1016/j.tcs.2008.07.004.

22 Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci., 410(42):4262–4291, 2009. doi:10.1016/j.tcs.
2009.06.021.

23 Olivier P. Faugeras and Ludeger Rüschendorf. Risk excess measures induced by hemi-metrics.
Probability, Uncertainty and Quantitative Risk, 3:6, 2018. doi:10.1186/s41546-018-0032-0.

24 Martin Fränzle, James Kapinski, and Pavithra Prabhakar. Robustness in cyber-physical
systems. Dagstuhl Reports, 6(9):29–45, 2016.

25 Dieter Gollmann, Pavel Gurikov, Alexander Isakov, Marina Krotofil, Jason Larsen, and
Alexander Winnicki. Cyber-Physical Systems Security: Experimental Analysis of a Vinyl
Acetate Monomer Plant. In Proceedings of CPSS 2015, pages 1–12. ACM, 2015.

26 Michael Grieves and John Vickers. Digital Twin: Mitigating Unpredictable, Undesirable
Emergent Behavior in Complex Systems, pages 85–113. Springer, 2017. doi:10.1007/
978-3-319-38756-7_4.

27 Jianghai Hu, John Lygeros, and Shankar Sastry. Towars a theory of stochastic hybrid
systems. In Proceedings of HSCC 2000, volume 1790 of LNCS, pages 160–173, 2000. doi:
10.1007/3-540-46430-1_16.

28 Hiroaki Kitano. Towards a theory of biological robustness. Molecular Systems Biology, 3(1):137,
2007. doi:10.1038/msb4100179.

29 Stephen Cole Kleene. Introduction to Metamathematics. Princeton, NJ, USA: North Holland,
1952. doi:10.2307/2268620.

30 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Stochastic model checking.
In Proceedings of SFM 2007, volume 4486 of LNCS, pages 220–270. Springer, 2007. doi:
10.1007/978-3-540-72522-0_6.

31 Ruggero Lanotte, Massimo Merro, Andrei Munteanu, and Simone Tini. Formal impact
metrics for cyber-physical attacks. In Proceedings of CSF 2021, pages 1–16. IEEE, 2021.
doi:10.1109/CSF51468.2021.00040.

32 Lucia Nasti, Roberta Gori, and Paolo Milazzo. Formalizing a notion of concentration robustness
for biochemical networks. In Proceedings of STAF 2018, volume 11176 of LNCS, pages 81–97.
Springer, 2018. doi:10.1007/978-3-030-04771-9_8.

33 Nicola Paoletti, Kin Sum Liu, Hongkai Chen, Scott A. Smolka, and Shan Lin. Data-driven
robust control for a closed-loop artificial pancreas. IEEE ACM Trans. Comput. Biol. Bioinform.,
17(6):1981–1993, 2020. doi:10.1109/TCBB.2019.2912609.

34 Svetlozar T. Rachev, Lev B. Klebanov, Stoyan V. Stoyanov, and Frank J. Fabozzi. The
Methods of Distances in the Theory of Probability and Statistics. Springer, 2013.

35 Ragunathan Rajkumar, Insup Lee, Lui Sha, and John A. Stankovic. Cyber-physical systems:
the next computing revolution. In Proceedings of DAC 2010, pages 731–736. ACM, 2010.
doi:10.1145/1837274.1837461.

36 Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. A general computational
method for robustness analysis with applications to synthetic gene networks. Bioinform.,
25(12), 2009. doi:10.1093/bioinformatics/btp200.

37 Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. Continuous valuations
of temporal logic specifications with applications to parameter optimization and robustness
measures. Theor. Comput. Sci., 412(26):2827–2839, 2011. doi:10.1016/j.tcs.2010.05.008.

38 Matthias Rungger and Paulo Tabuada. A notion of robustness for cyber-physical systems.
IEEE Trans. Autom. Control., 61(8):2108–2123, 2016.

39 Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of stochastic
systems. In Proceedings of CAV 2005, volume 3576 of LNCS, pages 266–280. Springer, 2005.
doi:10.1007/11513988_26.

40 Ali Shahrokni and Robert Feldt. A systematic review of software robustness. Information and
Software Technology, 55(1):1–17, 2013. doi:10.1016/j.infsof.2012.06.002.

https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1186/s41546-018-0032-0
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/3-540-46430-1_16
https://doi.org/10.1007/3-540-46430-1_16
https://doi.org/10.1038/msb4100179
https://doi.org/10.2307/2268620
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1109/CSF51468.2021.00040
https://doi.org/10.1007/978-3-030-04771-9_8
https://doi.org/10.1109/TCBB.2019.2912609
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1093/bioinformatics/btp200
https://doi.org/10.1016/j.tcs.2010.05.008
https://doi.org/10.1007/11513988_26
https://doi.org/10.1016/j.infsof.2012.06.002

V. Castiglioni, M. Loreti, and S. Tini 15:19

41 Guy Shinar and Martin Feinberg. Structural sources of robustness in biochemical reaction
networks. Science, 327(5971):1389–1391, 2010. doi:10.1126/science.1183372.

42 Guy Shinar and Martin Feinberg. Design principles for robust biochemical reaction networks:
what works, what cannot work, and what might almost work. Mathe. Biosci, 231(1):39–48,
2011. doi:10.1016/j.mbs.

43 Eduardo D. Sontag. Input to State Stability: Basic Concepts and Results, pages 163–220.
Springer, 2008. doi:10.1007/978-3-540-77653-6_3.

44 Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernard Schölkopf, and Gert
R. G. Lanckriet. On the empirical estimation of integral probability metrics. Electronic
Journal of Statistics, 6:1550–1599, 2021. doi:10.1214/12-EJS722.

45 David Thorsley and Eric Klavins. Model reduction of stochastic processes using Wasserstein
pseudometrics. In 2008 American Control Conference, pages 1374–1381. IEEE, 2008. doi:
10.1109/ACC.2008.4586684.

46 David Thorsley and Eric Klavins. Approximating stochastic biochemical processes with
Wasserstein pseudometrics. IET Syst. Biol., 4(3):193–211, 2010. doi:10.1049/iet-syb.2009.
0039.

47 Leonid N. Vaserstein. Markovian processes on countable space product describing large systems
of automata. Probl. Peredachi Inf., 5(3):64–72, 1969.

48 Ludovica Luisa Vissat, Michele Loreti, Laura Nenzi, Jane Hillston, and Glenn Marion. Analysis
of spatio-temporal properties of stochastic systems using TSTL. ACM Trans. Model. Comput.
Simul., 29(4):20:1–20:24, 2019. doi:10.1145/3326168.

49 Yu Wang, Nima Roohi, Matthew West, Mahesh Viswanathan, and Geir E. Dullerud. Statistical
verification of PCTL using antithetic and stratified samples. Formal Methods Syst. Des.,
54(2):145–163, 2019. doi:10.1007/s10703-019-00339-8.

50 Kemin Zhou and John C. Doyle. Essentials of Robust Control. Prentice-Hall, 1997.

A The Wasserstein hemimetric

Given a (pseudo-, hemi-)metric space (Ω, m), the (pseudo-, hemi-)metric m induces a
natural topology over Ω, namely the topology generated by the open ε-balls, for ε > 0,
Bm(ω, ε) = {ω′ ∈ Ω | m(ω, ω′) < ε}. We can then naturally obtain the Borel σ-algebra over
Ω from this topology.

In this paper we are interested in defining a hemimetric on distributions. To this end
we will make use of the Wasserstein lifting [47] whose definition is based on the following
notions and results. Given a set Ω and a topology T on Ω, the topological space (Ω, T) is
said to be completely metrisable if there exists at least one metric m on Ω such that (Ω, m)
is a complete metric space and m induces the topology T . A Polish space is a separable
completely metrisable topological space. In particular, we recall that:

(i) R is a Polish space; and
(ii) every closed subset of a Polish space is in turn a Polish space.

Moreover, for any n ∈ N , if Ω1, . . . , Ωn are Polish spaces, then the Borel σ-algebra on their
product coincides with the product σ-algebra generated by their Borel σ-algebras, namely

B(
n×

i=1
Ωi) =

n⊗
i=1
B(Ωi).

(This is proved, e.g., in [6] as Lemma 6.4.2 whose hypothesis are satisfied by Polish spaces
since they are second countable.) These properties of Polish spaces are interesting for us
since they guarantee that all the distributions we consider in this paper are Radon measures

CONCUR 2024

https://doi.org/10.1126/science.1183372
https://doi.org/10.1016/j.mbs
https://doi.org/10.1007/978-3-540-77653-6_3
https://doi.org/10.1214/12-EJS722
https://doi.org/10.1109/ACC.2008.4586684
https://doi.org/10.1109/ACC.2008.4586684
https://doi.org/10.1049/iet-syb.2009.0039
https://doi.org/10.1049/iet-syb.2009.0039
https://doi.org/10.1145/3326168
https://doi.org/10.1007/s10703-019-00339-8

15:20 RobTL: Robustness Temporal Logic for CPS

and, thus, the Wasserstein lifting is well-defined on them. For this reason, we also directly
present the Wasserstein hemimetric by considering only distributions on Borel sets.

▶ Definition 21 (Wasserstein hemimetric). Consider a Polish space Ω and let m be a hemi-
metric on Ω. For any two distributions µ and ν on (Ω,B(Ω)), the Wasserstein lifting of m

to a distance between µ and ν is defined by

W(m)(µ, ν) = inf
w∈W(µ,ν)

∫
Ω×Ω

m(ω, ω′) dw(ω, ω′)

where W(µ, ν) is the set of the couplings of µ and ν, namely the set of joint distributions
w over the product space (Ω × Ω,B(Ω × Ω)) having µ and ν as left and right marginal,
respectively, namely w(A× Ω) = µ(A) and w(Ω× A) = ν(A), for all A ∈ B(Ω).

Despite the original version of the Wasserstein distance being defined on a metric on Ω,
the Wasserstein hemimetric given above is well-defined. We refer the interested reader to [23]
and the references therein for a formal proof of this fact. In particular, the Wasserstein
hemimetric is given in [23] as Definition 7 (considering the compound risk excess metric
defined in Equation (31) of that paper), and Proposition 4 in [23] guarantees that it is indeed
a well-defined hemimetric on Π(Ω,B(Ω)). Moreover, Proposition 6 in [23] guarantees that
the same result holds for the hemimetric m(x, y) = max{y − x, 0}.

B The algorithms

In this section we report the algorithms described in Section 4.

Algorithm 1 Simulation of a evolution sequence.
1: function Sim(µ, N, k)
2: i← 0
3: E0 ← SampleDistr(µ, N)
4: while i < k do
5: Ei+1 ← ∅
6: for d ∈ Ei do
7: Ei+1 ← SimStep(d), Ei+1
8: end for
9: i← i + 1

10: end while
11: return E0, . . . , Ek

12: end function

V. Castiglioni, M. Loreti, and S. Tini 15:21

Algorithm 2 Computation of the effect of a perturbation.

1: function SimPer(E, p, τ, ℓ)
2: ∀i < τ. E′

i ← Ei

3: E′
τ ← ℓ · Eτ

4: i← τ

5: while i < k do
6: f ← effect(p)
7: p← next(p)
8: for d ∈ E′

i do
9: d′ ← Sample(f(d))

10: E′
i+1 ← E′

i+1, SimStep(d′)
11: end for
12: i← i + 1
13: end while
14: return E′

0, . . . , E′
k

15: end function

Algorithm 3 Evaluation of the Wasserstein distance.
1: function Wass(E1, E2, op, ρ)
2: (d1

1, . . . , dN
1)← E1

3: (d1
2, . . . , dℓN

2)← E2
4: ∀j : (1 ≤ j ≤ N) : ωj ← ρ(dj

1)
5: ∀h : (1 ≤ h ≤ ℓN) : νh ← ρ(dh

2)
6: re index {ωj} s.t. ωj ≤ ωj+1
7: re index {νh} s.t. νh ≤ νh+1
8: if op =< then
9: return 1

ℓN

∑ℓN
h=1 max{νh − ω⌈ h

ℓ ⌉, 0}
10: else
11: return 1

ℓN

∑ℓN
h=1 max{ω⌈ h

ℓ ⌉ − νh, 0}
12: end if
13: end function

CONCUR 2024

15:22 RobTL: Robustness Temporal Logic for CPS

Algorithm 4 Evaluation of distance expressions.

1: function EvalExpr(E, E′, τ, exp)
2: match exp
3: with <ρ :
4: return Wass(Eτ , E′

τ , <, ρ)
5: with >ρ :
6: return Wass(Eτ , E′

τ , >, ρ)
7: with FI exp :
8: return mini∈τ+I{EvalExpr(E, E′, i, exp)}
9: with GI exp :

10: return maxi∈τ+I{EvalExpr(E, E′, i, exp)}
11: with exp1 U[τ1,τ2] exp2 :
12: ∀i ∈ [τ + τ1, τ + τ2] d2

i ← EvalExpr(E, E′, i, exp2)
13: ∀j ∈ [τ + τ1, τ + τ2] d1

j ← EvalExpr(E, E′, j, exp1)
14: return minτ+τ1≤i≤τ+τ2{max{d2

i , max 0≤j<i{d1
j}}

15: with min (exp1, exp2) :
16: v1 ← EvalExpr(E, E′, τ, exp1)
17: v2 ← EvalExpr(E, E′, τ, exp2)
18: return min{v1, v2}
19: with max (exp1, exp2) :
20: v1 ← EvalExpr(E, E′, τ, exp1)
21: v2 ← EvalExpr(E, E′, τ, exp2)
22: return max {v1, v2}
23: with

∑
i∈K wi · expi :

24: vi ← EvalExpr(E, E′, τ, expi)
25: return

∑
i∈K wi · vi

26: with σ(exp, ▷◁ ζ) :
27: v ← EvalExpr(E, E′, τ, exp)
28: if v ▷◁ ζ then
29: return 0
30: else
31: return 1
32: end if
33: end function

Algorithm 5 Checking the satisfaction of a formula.
1: function Sat(µ, τ, φ, N, ℓ)
2: k ← Horizon(φ)
3: E ← Sim(µ, N, k)
4: return Eval(E, τ, φ, ℓ)
5: end function

V. Castiglioni, M. Loreti, and S. Tini 15:23

Algorithm 6 Evaluation of RobTL formulae.

1: function Eval(E, τ, φ, ℓ)
2: match φ

3: with φ = ⊤ :
4: return true

5: with φ = ∆(exp, p) ▷◁ η :
6: E′ ← SimPer(E, p, τ, ℓ)
7: v ← EvalExpr(E, E′, τ, exp)
8: return v ▷◁ η

9: with φ = ¬φ1 :
10: return ¬Eval(E, τ, φ1, ℓ)
11: with φ1 ∧ φ2 :
12: return Eval(E, τ, φ1, ℓ) ∧ Eval(E, τ, φ2, ℓ)
13: with φ1 U [τ1,τ2] φ2 :
14: j ← τ + τ1
15: i← j − 1
16: res← false

17: res′ ← true

18: while j ≤ τ + τ2 ∧ ¬res ∧ res′ do
19: res← Eval(E, j, φ2, ℓ)
20: i← i + 1
21: res′ ← Eval(E, i, φ1, ℓ)
22: j ← j + 1
23: end while
24: return res
25: end function

CONCUR 2024

Effect Semantics for Quantum Process Calculi
Lorenzo Ceragioli #

IMT School for Advanced Studies Lucca, Italy

Fabio Gadducci #

University of Pisa, Italy

Giuseppe Lomurno #

University of Pisa, Italy

Gabriele Tedeschi #

University of Pisa, Italy

Abstract
The development of quantum communication protocols sparked the interest in quantum extensions of
process calculi and behavioural equivalences, but defining a bisimilarity that matches the observational
properties of a quantum-capable system is a surprisingly difficult task. The two proposals explicitly
addressing this issue, qCCS and lqCCS, do not define an algorithmic verification scheme: the
bisimilarity of two processes is proven by comparing their behaviour under all input states. We
introduce a new semantic model based on effects, i.e. probabilistic predicates on quantum states that
represent their observable properties. We define and investigate the properties of effect distributions
and effect labelled transition systems (eLTSs), generalizing probability distributions and probabilistic
labelled transition systems (pLTSs), respectively. As a proof of concept, we provide an eLTS-based
semantics for a minimal quantum process algebra, which we prove sound and complete with respect
to the observable probabilistic behaviour of quantum processes. To the best of our knowledge, ours
is the first algorithmically verifiable proposal that abides to the properties of quantum theory.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Process calculi; Theory of computation → Operational semantics

Keywords and phrases Quantum process calculi, probabilistic LTSs, effect LTSs

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.16

Funding This study was carried out within the National Centre on HPC, Big Data and Quantum
Computing - SPOKE 10 (Quantum Computing) and received funding from the European Union
Next-GenerationEU - National Recovery and Resilience Plan (NRRP) – MISSION 4 COMPONENT
2, INVESTMENT N. 1.4 – CUP N. I53C22000690001.

1 Introduction

Recent years have seen a flourishing development of quantum technologies for computer
science, in the form of quantum computation and quantum communication. Both of them
exploit quantum phenomena like superposition and entanglement: the former is interested in
harvesting the (supposedly) higher computational power of quantum computers, while the
latter strives to achieve secure and reliable communication, featuring solutions for key distri-
bution [31], cryptographic coin tossing [2], direct communication [28], and private information
retrieval [14]. Protocols like BB84 QKD [2] are unconditionally secure [29], meaning that
they are protected against all physically possible attackers. Quantum communication also
promises to allow linking multiple computers via the Quantum Internet [5, 35], therefore
providing quantum algorithms with large enough memories for practical applications.

Despite the rich theory and the potential applications, there is no accepted standard to
model and verify quantum concurrent systems and protocols. Numerous works [25, 15, 12,
34, 7] rely on process calculi, an algebraic formalism that has been successfully applied to

© Lorenzo Ceragioli, Fabio Gadducci, Giuseppe Lomurno, and Gabriele Tedeschi;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lorenzo.ceragioli@imtlucca.it
https://orcid.org/0000-0002-1288-9623
mailto:fabio.gadducci@unipi.it
https://orcid.org/0000-0003-0690-3051
mailto:giuseppe.lomurno@phd.unipi.it
https://orcid.org/0009-0000-0573-7974
mailto:gabriele.tedeschi@phd.unipi.it
https://orcid.org/0009-0002-5345-9141
https://doi.org/10.4230/LIPIcs.CONCUR.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Effect Semantics for Quantum Process Calculi

classical protocols and concurrent systems. The semantics of a calculus is given by means
of a labelled transition system (LTS), i.e. a triple (S,Act,→) with S a set of states, Act a
set of actions, and → a transition relation that specifies how states evolve. The standard
equivalence for LTSs is bisimilarity, the largest relation on states that is “stable” for →,
meaning that bisimilar states evolve with the same action in bisimilar states.

There have been several attempts [24, 8, 10, 9, 7] to adapt known techniques to the
quantum setting, mainly in terms of probabilistic LTSs (pLTSs) (Conf ,Act,→), where
Conf = H ×S is a set of configurations ⟨ρ, P ⟩ composed by a quantum state ρ (an element of
a Hilbert space H) and a process P , and → ⊆ Conf ×Act×D(Conf) with D(Conf) probability
distributions of configurations. This approach led to a plethora of different bisimilarities, most
of them unsatisfactory since they distinguish processes that are deemed indistinguishable by
the prescriptions of quantum theory [8, 23, 13]. Moreover, only configuration bisimilarity
is directly considered in these works. Two processes P and Q are instead deemed bisimilar
if and only if for any quantum state ρ the configurations ⟨ρ, P ⟩ and ⟨ρ,Q⟩ are bisimilar.
Assessing bisimilarity of processes thus requires comparing infinitely many pLTSs (one
for each quantum state), and algorithmic verification is still missing. In [7], the root of
these problems is identified in the peculiarities of the semantic model described above, a
non-deterministic pLTS made of quantum states and processes.

We propose effect labelled transition systems (eLTSs) as a new semantic model for
quantum systems, generalizing pLTSs. In physics, effects represent the observable behaviour
of quantum states, as they model atomic experiments that you can perform on a quantum
system. Building on them allows us to express the correct observable properties of quantum
processes. Effect distributions generalize probability distributions by using effects as weights,
and the transition relation of an eLTS associates states with effect distributions. We study
effect distributions and eLTSs, either generalizing the known results on probabilistic systems
when possible, or proving they do not hold otherwise. We explore different notions of
bisimilarity, namely Aczel-Mendler and Larsen-Skou, and show that they disagree on which
quantum processes should be bisimilar, even if they coincide in the probabilistic case. Then,
we consider two correctness criteria for quantum bisimilarity, through which we show that a
Larsen-Skou-style bisimilarity is adequate for comparing quantum systems, as it is correct
and complete with respect to the observable probabilistic behaviour of quantum protocols.

To assess our proposal, we define a minimal quantum process algebra (mQPA) featuring
actions, restriction, synchronization, non-determinism, parallel composition, destructive
measurements, and unitary transformations, and we equip it with two different semantics: a
stateful Schrödinger-style semantics that given a quantum state returns a pLTS representing
the observable behaviour of the system; and a Heisenberg-style semantics in the form of
an eLTS that is independent of the quantum input, in the style of [20, 11]. We show that
the Heisenberg eLTS is indeed the “symbolic” version of the Schrödinger pLTSs of the
same system, thus proving bisimilarity just once for the Heisenberg-style semantics makes it
automatically verified for all “ground” systems obtained by instantiating the quantum input.
Notably, our notion of bisimilarity can be efficiently verified with standard techniques [22].

Synopsis. Section 2 provides some background on probability distributions and quantum
theory. Section 3 introduces effect distributions and eLTSs, investigating their properties and
comparing eLTS bisimilarities. Section 4 presents our minimal process algebra with both a
stateful and a stateless semantics, which are proved to coincide. Finally, Section 5 compares
related works and Section 6 draws our conclusions. The full proofs are in the Appendix.

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:3

2 Background

We recall some background on probability distributions, quantum computing, and effects,
referring the reader to [18, 30] for further information.

2.1 Probability Distributions
A probability (sub)distribution over a set S is a function ∆:S → [0, 1] such that

∑
s∈S ∆(s) ≤ 1.

We write DS for the set of finitely supported distributions over S, i.e. with ∆(s) = 0 for all
but a finite set of elements. We let s be the point distribution s(s) = 1.

Probability distributions form a convex set [4]: for any two distributions ∆,Θ and real
p ∈ [0, 1] there is a distribution ∆ ⊕p Θ defined as p · ∆ + (1 − p) · Θ. A function f between
convex sets is convex if it preserves the ⊕p operator, i.e. if f(x1 ⊕p x2) = f(x1) ⊕p f(x2).
We denote as Conv(X,Y) the set of convex functions between X and Y .

2.2 Quantum Computing
We assume a denumerable set of indexed qubits Q = {q0, q1, . . . }, the quantum mechanical
analogues of classical bits. The states of a qubit q are unit vectors |ψ⟩ in the Hilbert space
Hq, i.e. column vectors in C2 such that ⟨ψ|ψ⟩ = 1, with ⟨ψ| the conjugate transpose of
|ψ⟩, and ⟨ · | · ⟩ the usual inner product. The vectors |0⟩ = (1, 0)T and |1⟩ = (0, 1)T form
an orthonormal basis of C2, called the computational basis. Other important states are
|+⟩ = 1√

2 (|0⟩ + |1⟩) and |−⟩ = 1√
2 (|0⟩ − |1⟩), which form the Hadamard basis.

The Kronecker product ⊗ is defined as follows (we often write |ψϕ⟩ for |ψ⟩ ⊗ |ϕ⟩)x1,1 · · · x1,n

...
. . .

...
xm,1 · · · xm,n

 ⊗ L =

x1,1L · · · x1,nL
...

. . .
...

xm,1L · · · xm,nL

Note that ⊗ is not commutative. Given Hq with {|ψi⟩}i∈I one of its bases, and Hq′ with
{|ϕj⟩}j∈I one of its bases, we let Hq⊗Hq′ be the Hilbert space with bases {|ψi⟩⊗|ϕj⟩}(i,j)∈I×J .
A quantum register is a finite set of n qubits Q ⊆ Q, representing composite physical systems.
Its states are in HQ =

⊗∞
i=1,qi∈Q Hqi

= C2n . Note that the Kronecker product is applied in
an ordered manner, according to the indexing of Q. The state of a quantum register H{q,q′}
is separable when it can be expressed as the tensor of two vectors of Hq and Hq′ . Otherwise,
it is entangled, like the Bell state |Φ+⟩ = 1√

2 (|00⟩ + |11⟩).
For each linear operator A on HQ, its adjoint A† is the unique linear operator such that

⟨ψ|A|ϕ⟩ =
〈
A†ψ

∣∣ϕ〉
. A linear operator U is unitary when UU † = U†U = I. In quantum

physics, the evolution of a closed system is described by a unitary transformation: the state
|ψ⟩ at time t0 is related to |ψ′⟩ at time t1 by a unitary operator U , which only depends
on t0 and t1, i.e. |ψ′⟩ = U |ψ⟩. Accordingly, quantum computers allow the programmer to
manipulate registers via unitaries like H, X, Z and CNOT , satisfying: H |0⟩ = |+⟩ and
H |1⟩ = |−⟩; X |0⟩ = |1⟩ and X |1⟩ = |0⟩; Z |+⟩ = |−⟩ and Z |−⟩ = |+⟩; CNOT |10⟩ = |11⟩,
CNOT |11⟩ = |10⟩ and CNOT |0ψ⟩ = |0ψ⟩ (all the other cases are defined by linearity).

Let Q and Q′ be sets of qubits, we write Q ⊎ Q′ for Q ∪ Q′ when Q ∩ Q′ = ∅, and we
allow composing a pair of states in HQ and HQ′ to obtain a state in HQ⊎Q′ . To preserve the
ordering induced by the indices, we build on top of ⊗ to define a partial commutative tensor
product ⊠. We let ⊠ be the operation that applies ⊗ and then sorts the qubits according to
their indices: |ψ⟩ ⊠ |ϕ⟩ = Sort(|ψ⟩ ⊗ |ϕ⟩) ∈ HQ⊎Q′ , with Sort a unitary operator.

CONCUR 2024

16:4 Effect Semantics for Quantum Process Calculi

The density operator formalism puts together quantum systems and probability by con-
sidering mixed states, i.e. probability sub-distributions of quantum states. A point distribution
|ψ⟩ (called a pure state) is represented by the matrix |ψ⟩⟨ψ|. In general, a probability
distribution ∆ is represented as the matrix ρ =

∑
i ∆(ψi) |ψi⟩⟨ψi|, known as its (partial)

density operator. Recall that a complex matrix N is called positive semi-definite, shortly
positive, when ⟨ψ|N |ψ⟩ ≥ 0 for any |ψ⟩. The Löwner order is the partial order defined by
L ⊑ L′ whenever L′ − L is positive. Given HQ of dimension d, the density operators over
HQ coincide with the positive matrices in Cd×d of trace smaller of equal to one, and we
denote them as DMQ =

{
ρ ∈ Cd×d | ρ ⊒ 0Q, tr(ρ) ≤ 1

}
, where 0Q is the d × d all-zero

operator on HQ. Density operators form a convex set, meaning that for any real p ∈ [0, 1]
and any ρ, σ ∈ DMQ, there is a convex combination ρ ⊕p σ ∈ DMQ defined as pρ+ (1 − p)σ.
A function between convex sets is called convex if it preserves the ⊕p operator.

Given HQ and HQ′ of dimensions n and m respectively, a trace non-increasing su-
peroperator E : DMQ → DMQ′ is defined as E(ρ) =

∑
i KiρK

†
i for a set of operators

{Ki ∈ Cm×n}i=1,...,n×m (called Kraus operators), such that
∑

i K
†
iKi ⊑ IQ. Superoperators

model the evolution of mixed quantum states, and are closed with respect to composition.
Any unitary transformation U is represented as the superoperator with Kraus decomposition
{U}. The Kronecker product also defines composition of mixed states and superoperators on
different quantum registers. We lift our commutative tensor product ⊠ to density operators
and to superoperators by reordering the qubits when needed.

Density operators can be used to describe the state of a subsystem of a composite
quantum system. Given a ρ ∈ DMQ⊎Q′ , the reduced density operator of Q, ρQ = trQ′(ρ) ∈
DMQ, describes the state of Q, with trQ′ the partial trace over Q′, defined as the linear
transformation such that trQ′(|ψ⟩⟨ψ′| ⊠ |ϕ⟩⟨ϕ′|) = |ψ⟩⟨ψ′| tr(|ϕ⟩⟨ϕ′|) for each |ψ⟩⟨ψ′| ∈ DMQ

and |ϕ⟩⟨ϕ′| ∈ DMQ′ .

2.3 Quantum Effects
Quantum measurements allow describing systems that exchange information with the envir-
onment. Performing a measurement on a quantum register returns a probabilistic result and
it either destroys or changes the qubits. We focus on destructive measurements.

The simplest kind of measurements are quantum effects (simply called effects in quantum
textbooks [18]), i.e. yes-no tests over quantum systems. Each effect can be represented as a
positive matrix smaller than the identity in the Löwner order. We denote the set of effects
on the d-dimensional HQ as EfQ =

{
E ∈ Cd×d | 0Q ⊑ E ⊑ IQ

}
, where IQ is the d × d

identity operator over the Hilbert space HQ. The probability of getting a “yes” outcome
when measuring an effect E on a state ρ is tr(Eρ), as given by the Born rule.

Density operators and effects are dual, as effects are isomorphic (via the Born rule) to
the convex functions from the set of density operators to the probability interval.

▶ Theorem 1 ([18]). EfQ
∼= Conv(DMQ, [0, 1]) through the isomorphism E 7→ λρ. tr(Eρ).

Effects can thus be seen as probabilities parameterized on an unknown quantum state.
Following this duality, to each superoperator E : DMQ → DMQ′ with Kraus operators

{Ki} corresponds a dual superoperator E: EfQ′ → EfQ (note the inversion), whose Kraus op-
erators are {K†

i }. The defining property of such superoperators is tr(E · E(ρ)) = tr(E(E) · ρ).
In general, a measurement with n different outcomes is a set {E1, . . . , En} of effects

satisfying the completeness equation
∑n

i=1 Ei = I. The probability of the i outcome occurring
is again given by the Born rule pi = tr(Eiρ).

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:5

As examples of measurements, consider M01 and M± that project a qubit state into
the elements of the computational and Hadamard basis, respectively, with M01 defined as
{|0⟩⟨0| , |1⟩⟨1|} and M± as {|+⟩⟨+| , |−⟩⟨−|}. Applying the measurement M01 on |0⟩ returns
the outcome associated with |0⟩⟨0| with probability 1. When measuring instead |+⟩ the same
result occurs with probability 1

2 . For measurements over registers, we allow composing effects
via the ⊠ tensor product. Note that a measurement may measure only some of the qubits of
a register, e.g. {|0⟩⟨0| ⊠ I, |1⟩⟨1| ⊠ I} measures (in the computational basis) the first qubit.

3 Effect-Based Models

We generalize probability distributions and pLTSs to effect distributions and eLTSs, and
we investigate which properties of probability distributions can be lifted to the quantum
case. We adapt the two most used definitions of bisimilarity for pLTS to eLTS, namely, the
Aczel-Mendler and Larsen-Skou bisimilarities. Even if the two coincide in the probabilistic
case, this is not the same for eLTSs, and we argue that the latter is adequate for comparing
the behaviour of quantum systems.

3.1 Effect Distribution
Given a set of qubits Q, we introduce effect distributions, i.e. functions associating each
element of a given set X with some effect in EfQ.

▶ Definition 2. Let Q ⊆ Q. The set of finite EfQ-(sub)distributions over a set X is

QQX =

D ∈ EfQ
X

∣∣∣∣∣∣ supp(D) is finite and
∑

x∈supp(D)

D(x) ⊑ IQ

where supp(D) is the support of D, i.e. the set {x ∈ X | D(x) ̸= 0Q }. We say that a
distribution D is full when

∑
x∈supp(D) D(x) = IQ.

Effect distributions are a conservative generalization of probability distributions. More in
detail, 1 × 1 positive matrices are isomorphic to real numbers, hence Q∅X coincides with the
usual set of probability distributions DX.

We represent effect distributions as sets of pairs D = {x1 ▷ E1, x2 ▷ E2, . . . , xn ▷ En}
with possibly repeated xi, meaning D(x) =

∑
xi=x Ei. For example, {x▷E1, x▷E2, y▷E3}

and {x▷ E1 + E2, y ▷ E3} denote the same distribution.

▶ Example 3. Let X = {x, y}. The distribution D = {x▷ 1
2 , y▷

1
2 } is indeed just a uniform

probability distribution, i.e. an effect distribution in the 1-dimensional Hilbert space H∅.
Two more interesting effect distributions, in the two-dimensional Hilbert space H{q1},

are G = {x ▷ 1
2 I, y ▷

1
2 I} and T = {x ▷ |0⟩⟨0| , y ▷ |1⟩⟨1|}. Both represent a measurement

performed on q1: G returns the outcomes x and y with the same probability, regardless of
the state of q1; while T returns x when it observes |0⟩⟨0| and y when it observes |1⟩⟨1|.

Since effects can be regarded as functions from states to probabilities, an effect distribution
D ∈ QQX denotes a function D↓_∈ (DX)DMQ associating a ρ ∈ DMQ with the probability
distribution D↓ρ such that D↓ρ (x) = tr(D(x) · ρ) for any x ∈ X. Hence, an effect distribution
corresponds to the parameterized probabilistic outcome of performing a finite destructive
measurement on some unknown input quantum state.

In particular, we have the following isomorphism (formally, a convex set isomorphism).

CONCUR 2024

16:6 Effect Semantics for Quantum Process Calculi

▶ Theorem 4. Effect distributions correspond to all and only the parameterized sub-probability
distributions that are convex and have an “overall” finite support.

QQ
∼=

D↓_∈ (DX)DMQ

∣∣∣∣∣∣ D↓ρ ⊕p σ = (D↓ρ) ⊕p (D↓σ) and
⋃

ρ∈DMQ

supp(D↓ρ) is finite

This isomorphism tells us that we can see effect distributions as measurements.

▶ Example 5. Consider T of Example 3 and the quantum input ρ = 1
2 |0⟩⟨0| + 1

2 |+⟩⟨+|. The
probability distribution T↓ρ maps x to 3

4 and y to 1
4 . Intuitively, T↓ρ corresponds to the

probabilistic outcome of performing the measurement T over a system in state ρ.

As for probabilities, we compose effect distributions via an effect-weighted sum, provided
that they are defined over different qubits. This is a partial operation, being E ⊠ F defined
only when E and F uses disjoint sets of qubits.

▶ Definition 6. Given a family of EfQ-distributions {Di}i∈I and effects {Ei}i∈I in EfQ′

where Q ∩ Q′ = ∅ and such that
∑

i∈I Ei ⊑ I, the weighted sum
∑

i∈I Ei ⊠ Di is the
EfQ⊎Q′-distribution defined as (

∑
i∈I Ei ⊠Di)(x) =

∑
i∈I Ei ⊠Di(x).

This composition coincides with the usual weighted sum of probability distributions
if Q = Q′ = ∅. Intuitively, D measures some qubits to choose between the distributions
Di (which in turn behave accordingly to the remaining qubits). We will sometimes write
E1 ⊠D1 + · · · + En ⊠Dn for

∑
i Ei ⊠Di.

▶ Example 7. Take G,T of Example 3. The Ef{q1,q2}-distribution (|+⟩⟨+|⊠G)+(|−⟩⟨−|⊠T)
can be rewritten as {x▷I⊗ 1

2 |+⟩⟨+| , y▷I⊗ 1
2 |+⟩⟨+| , x▷ |0−⟩⟨0−| , y▷ |1−⟩⟨1−|}. Intuitively,

this represents the following cascade of two measurements: first measure the qubit q2 over the
Hadamard basis, if it is in |+⟩ then return either x or y with the same probability, otherwise
measure the qubit q1 in the computational basis and return x or y accordingly.

In the probabilistic case, it is usual to consider just the binary composition ∆ ⊕p Θ. This
is a safe simplification as any finite probability distribution can be obtained by repeatedly
applying ⊕p over point distributions. Unfortunately, this is not the case for effect distributions
in general, as we show in the following.

▶ Definition 8. Let D ⊞E T be the weighted sum E ⊠D + (I − E) ⊠ T.

Some effect distributions with support bigger than two can be defined by a nesting of
⊞E expressions over point distributions.

▶ Example 9. The distribution {x1 ▷ |0+⟩⟨0+| , x2 ▷ |0−⟩⟨0−| , x3 ▷ |1+⟩⟨1+| , x4 ▷ |1−⟩⟨1−|}
over S = {x1, x2, x3, x4} can be obtained as (x1 ⊞|+⟩⟨+| x2) ⊞|0⟩⟨0| (x3 ⊞|+⟩⟨+| x4).

We define now the set of distributions that can be obtained starting from point distribu-
tions and applying (an arbitrary number of times) the binary operator ⊞.

▶ Definition 10. Given a set X, let Q⊞X be the least family of sets Q⊞
QX ⊆ QQX such that

x ∈ Q⊞
∅ X for any x ∈ X, and if D,T ∈ Q⊞

QX then D ⊞E T ∈ Q⊞
Q⊎Q′X for any E ∈ EfQ′ .

Despite having finite support, some effect distributions cannot be defined using ⊞, roughly
because of entangled pairs. Hence, we will use the general n-ary composition.

▶ Theorem 11. If |X| ≥ 4 and |Q| ≥ 2, with | · | the cardinality, then Q⊞
QX ̸= QQX.

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:7

s1

s4 s5

α

|0⟩⟨0| |1⟩⟨1|

s2

s4

α

I

s3

s4 s5

α

|+⟩⟨+| |−⟩⟨−|

(a) The eLTS of Example 16.

s1 s2

D T

s4s3

RG

s5 s6

.

α α

ββ

γδ

|1⟩⟨1|

|0⟩⟨0| |0⟩⟨0|

|1⟩⟨1|

|+⟩⟨+|

|−⟩⟨−|

|+⟩⟨+|

|−⟩⟨−|

(b) An eLTS where s1 ̸∼lpp s2.

Figure 1 Examples of eLTSs.

As it is common for the probabilistic case, it is sometimes useful to see a relation between
elements of a given set X as a relation over effect distributions over X. In particular, we lift
a relation on states to one on effect distributions of states by taking the smallest relation that
pairs the point distributions of related states and that is closed for weighted composition.

▶ Definition 12. Given R ⊆ X × X, we let the effect liftings of R ⊆ X × X be the least
family of relations R̂Q ⊆ QQX × QQX such that s R̂∅ t if sR t, and for each Ei ∈ EfQ,
Di R̂Q′ Ti implies (

∑
i∈I Ei ⊠Di) R̂Q⊎Q′ (

∑
i∈I Ei ⊠ Ti).

Note that R̂∅ is the usual probabilistic lifting of [19], and we denote it as
◦

R. In the
following we often omit Q when clear from the context. We recover the following property,
known as decomposability, roughly stating that two distributions are paired by the lifting of
a relation when they can be decomposed in such a way that they associate related states
with the same effects.

▶ Lemma 13. For all R, D R̂Q T iff there exist a set of indices I and a set of effects
{Ei ∈ EfQ}i∈I such that D = {xi ▷ Ei}i∈I , T = {yi ▷ Ei}i∈I , and xi R yi for any i ∈ I.

3.2 Effect Transition Systems and their Bisimilarity
To model quantum systems and protocols we introduce effect labelled transition systems
(eLTSs). Then we investigate different notions of bisimilarity.

▶ Definition 14. An eLTS over EfQ is a triple (S,Act,→) where S is a set of states, Act is
a set of labels, and → ⊆ S × Act × QQS is a transition relation.

Hereafter, we assume a set of qubits Q and an eLTS (S,Act,→) over EfQ, and we write
s

µ−→ D for (s, µ,D) ∈ →.
We instantiate two distinct definitions of semantic equivalence on quantum systems:

Aczel-Mendler and Larsen-Skou bisimilarities [33]. They are known to coincide on classical
probabilistic processes [19]. Notably, they do not in the quantum case.

▶ Definition 15. A symmetric relation R ⊆ S × S is an AM-bisimulation if for any sR t

if s µ−→ D then t
µ−→ T for some T such that D R̂Q T

Let AM-bisimilarity ∼am be the largest AM-bisimulation.

CONCUR 2024

16:8 Effect Semantics for Quantum Process Calculi

▶ Example 16. Consider the eLTS in Figure 1a with states {s1, s2, s3, s4, s5} and transitions
s1

α−→ D = {s4 ▷ |0⟩⟨0| , s5 ▷ |1⟩⟨1|}, s2
α−→ G = {s4 ▷ I}, s3

α−→ T = {s4 ▷ |+⟩⟨+| , s5 ▷ |−⟩⟨−|}.
Note that s4 and s5 are deadlock states, hence s4 ∼am s5. Moreover, s1 ∼am s2 ∼am s3,
because |0⟩⟨0| + |1⟩⟨1| = I = |+⟩⟨+| + |−⟩⟨−|, and hence

D ∼̂am {s4 ▷ |0⟩⟨0| , s4 ▷ |1⟩⟨1|} = G = {s4 ▷ |+⟩⟨+| , s4 ▷ |−⟩⟨−|} ∼̂am T.

Still, s1 ̸∼am s3, as we cannot write D and T with the same effects as required by Lemma 13.

This example, inspired by [32], proves that ∼am is not transitive. We thus generalize
Larsen-Skou bisimilarity [26] (named kernel bisimilarity in [33]) to the quantum case.

▶ Definition 17. An equivalence relation R ⊆ S × S is an LS-bisimulation if for any sR t

if s µ−→ D then t
µ−→ T for some T such that ∀C ∈ S/R

∑
x∈C

D(x) =
∑
x∈C

T(x)

with S/R the equivalence classes of S. Let LS-bisimilarity ∼ls be the largest LS-bisimulation.

We show that ∼ls behaves differently from ∼am, and indeed it is strictly coarser.

▶ Example 18. Consider Example 16. We can see that s1 ∼ls s3 as both D and T associate
the equivalence class {s4, s5} with the effect I.

▶ Theorem 19. For any eLTS over EfQ with states S, ∼am ⊆ ∼ls. Moreover, ∼am = ∼ls

if Q = ∅, and ∼am ⊊ ∼ls if Q is of dimension at least 2 and S of cardinality at least 4.

LS-bisimilarity is also trivially an equivalence relation. In the following we discuss its
adequacy as quantum semantic equivalence.

Our ground truth is that bisimilar processes must exhibit the same probabilistic be-
haviour, as it is the only observable property of quantum systems. We therefore define a
parameterized version of probabilistic bisimilarity for eLTSs, stating that equivalent states
should express the same probabilistic behaviour when instantiated with any possible quantum
state. More precisely, for each ρ, we define a ρ-bisimilarity equating states that are probabil-
istically bisimilar when each effect distribution is instantiated with ρ to obtain a probability
distribution.

▶ Definition 20. Given ρ ∈ DMQ, a symmetric relation R ⊆ S × S is a ρ-bisimulation if
for any sR t

if s µ−→ D then t
µ−→ T for some T such that D↓ρ

◦

R T↓ρ

Let ρ-bisimilarity ∼ρ be the largest ρ-bisimulation. We define probabilistic behavioural
equivalence ≃pbe as the relation pairing states that are indistinguishable when every possible
quantum state is considered, i.e. ≃pbe =

⋂
ρ∈DMQ

∼ρ.

In other words, an adversary trying to disprove s ≃pbe t can test their probabilistic
behaviour on any arbitrary input state ρ, looking for one such that s ̸∼ρ t. One could
hypothesize an even stronger adversary, with the faculty of choosing a different input state at
each step of the computation, not just once at the beginning as for ≃pbe. We formalize this
notion as locally-parameterized probabilistic bisimilarity, and we investigate how ∼ls relates
with both these behavioural equivalences.

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:9

▶ Definition 21. A symmetric relation R ⊆ S × S is a lpp-bisimulation if for any sR t

if s µ−→ D then t
µ−→ T for some T such that D↓ρ

◦

R T↓ρ for any ρ ∈ DMQ

Let lpp-bisimilarity ∼lpp be the largest lpp-bisimulation.

We exemplify the difference between ≃pbe and ∼lpp below.

▶ Example 22. Consider the eLTS in Figure 1b, where s5 and s6 are immediately distinguish-
able as they perform different visible actions. To show that s1 ̸∼lpp s2 it suffices to choose
|0⟩⟨0| for their first reduction and |+⟩⟨+| for the second one. Formally, since D↓|0⟩⟨0|= s3
and T↓|0⟩⟨0|= s4, we must have that s3 ∼lpp s4. But G↓|+⟩⟨+|= s5 and R↓|+⟩⟨+|= s6. Thus,
s3 ∼lpp s4 requires s5 ∼lpp s6, which does not hold.

Finally, note that neither ∼|0⟩⟨0| nor ∼|+⟩⟨+| are capable of distinguishing s1 and s2, as
indeed G↓|0⟩⟨0|= R↓|0⟩⟨0| and D↓|+⟩⟨+|= T↓|+⟩⟨+|.

Using Theorem 4, we prove that ∼ls is adequate for characterizing ∼lpp.

▶ Theorem 23. For any s, t ∈ S, s ∼ls t if and only if s ∼lpp t.

Quite surprisingly, for finite eLTSs the two relations ∼lpp and ≃pbe coincide.

▶ Theorem 24. For any s, t ∈ S, s ∼ls t implies s ≃pbe t. Moreover, if S is finitely
dimensional, then s ≃pbe t implies s ∼ls t.

The interesting case is for ≃pbe⊆∼ls, where we consider the (finite) set of effects E that
may appear in the eLTS, and we build a density operator ρE that distinguishes all the effects
in E. Roughly, ∼ρ requires associating the same probability to all the equivalence classes of
states, but this can only be the case when the associated effects are the same for ρ = ρE.
Indeed, a single quantum state is sufficient for distinguishing s1 and s2 of Example 22.

▶ Example 25. Consider Example 22, and let ρ = 1
2 |0⟩⟨0| + 1

2 |+⟩⟨+|. Then s1 ̸∼ρ s2 (and
hence s1 ̸≃pbe s2). Note that D↓ρ= s3 ⊕3

4
s4 and T↓ρ= s3 ⊕1

4
s4. For s1 to be ρ-bisimilar to

s2, it must be that s3 ∼ρ s4, which is false since G↓ρ= s5 ⊕3
4

s6 and R↓ρ= s5 ⊕1
4

s6.

We thus have shown that two bisimilar processes behave the same under any possible
quantum input. Nonetheless, LS-bisimilarity is still decidable in an efficient way, thanks
to the finite representation of effects. The partition refinement algorithm proposed in [22],
for example, could promptly be adapted to our eLTSs. More in detail, that algorithm is
parametric with respect to the functor used to specify the visible labels and the weights of a
generic transition system, which in the case of eLTSs are Act and the effects in Cd×d.

We conclude the section by introducing a partial evaluation operator relating eLTSs over
different sets of qubits, namely instantiating some of the expected input qubits of the former
to some specific state.

▶ Definition 26. Given an eLTS S = (S,Act,→1) over EfQ and ρ ∈ DMQ′ , with Q′ ⊆ Q,
the partial evaluation of S with ρ is the eLTS over EfQ\Q′ defined as (S′,Act,→), where
S′ = {s|ρ | s ∈ S} and → is the smallest relation satisfying the following rule.

s
µ−→1 {si ▷ Ei}i∈I

s|ρ
µ−→ {si|ρ ▷ trQ′(Ei(ρ⊠ IQ\Q′))}i∈I

PEval

▶ Example 27. Figure 2 shows an eLTS over two qubits and its partial evaluation (of the
first qubit) with ρ = 1

3 |0⟩⟨0| + 2
3 |1⟩⟨1|.

CONCUR 2024

16:10 Effect Semantics for Quantum Process Calculi

s

α

βγ

|1⟩⟨1| ⊗ I|0⟩⟨0| ⊗ I

|1−⟩⟨1−||1+⟩⟨1+||0+⟩⟨0+| |0−⟩⟨0−|

s|ρ
α

βγ

2
3 I

1
3 I

2
3 |+⟩⟨+|2

3 |−⟩⟨−|1
3 |+⟩⟨+| 1

3 |−⟩⟨−|

Figure 2 Partial evaluation of the first qubit of the eLTS on the left with ρ = 1
3 |0⟩⟨0| + 2

3 |1⟩⟨1|.

LS-bisimilarity is preserved by partial evaluation.

▶ Theorem 28. If s ∼ls t then s|ρ ∼ls t|ρ.

For ρ large enough, the partial evaluation returns a pLTS obtained by applying the same
quantum input to each effect distribution of the eLTS. Hence, s|ρ ∼ls t|ρ corresponds to
verifying s ∼ρ t, and the following is a corollary of Theorem 24.

▶ Corollary 29. Given a finite eLTS (S,Act,→) over EfQ and s, t ∈ S, if for any ρ ∈ DMQ

we have s|ρ ∼ls t|ρ, then s ∼ls t.

Having found that ∼ls satisfies all our desiderata for a quantum behavioural equivalence,
we will denote it simply as ∼ for the rest of the paper.

4 Modelling a Minimal Process Algebra with eLTSs

We explore how eLTSs can model concurrent communicating quantum systems by considering
a minimal Quantum Process Algebra (mQPA) featuring non-deterministic and parallel
composition of processes, synchronization, restriction, measurements and application of
unitaries. For synchronization, we assume that the set of actions Act contains a distinguished
element τ , and that every other label α ∈ Act has in inverse α that is involutive, i.e. such that
α = α. We equip our algebra with two distinct semantics: a standard Schrödinger stateful
pLTS semantics that depends on the quantum input, and a Heisenberg eLTS semantics that
does not. Both are based on configurations, pairing the processes with superoperators in
the latter, and density operators in the former, as it is common in the literature [8, 9, 7].
We prove that the two coincide: we can use bisimilarity in the Heisenberg eLTS to prove
probabilistic bisimilarity in all the Schrödinger pLTSs.

▶ Definition 30. An mQPA process P is defined below, with µ ∈ Act an action and
∑

i Ei = I.

P ::= 0 | P + P | P ∥ P | P \ α | µ.([Ei]Pi)i∈I | U ;P

As usual, 0 stands for a deadlock process, and the meaning of parallel, non-deterministic
sum and restriction is as expected. A prefix µ.([Ei]Pi)i∈I represents an action µ followed by
a destructive measurement over the qubits of Ei, whose outcome controls the evolution of the
process. Finally, U ;P behaves as P would over a state that has been modified by U . Recall
that unitaries and effects symbols come with the set of qubits they act on. Moreover, we
assume such sets disjoint when needed (enforced e.g. by a type system [7]). More in detail,
the sets of qubits used in (unitaries and measurements of) the parallel processes P and R of
P ∥ R must be disjoint, and the qubits measured by Ei in µ.([Ei]Pi) cannot be used by Pi.
On the same line, we let QP be the smallest set containing the qubits used in the effects and
unitaries of P . Finally, we often write µ.P in place of µ.([1]P), and µ for the process µ.0.

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:11

ρi = MEi(ρ)
⟨ρ, µ.([Ei]si)i∈I⟩ µ−→ {⟨ρi, si⟩ ▷ tr(ρi)}i∈I

SPre
⟨U(ρ), s⟩ µ−→ D

⟨ρ, U ; s⟩ µ−→ D
SU

⟨ρ, s⟩ µ−→ {⟨ρi, si⟩ ▷ pi}i∈I µ ̸= α µ ̸= α

⟨ρ, s \ α⟩ µ−→ {⟨ρi, si \ α⟩ ▷ pi}i∈I

SRes

⟨ρ, s⟩ µ−→ D

⟨ρ, s+ t⟩ µ−→ D
SSumL

⟨ρ, s⟩ µ−→ {⟨ρi, si⟩ ▷ pi}i∈I

⟨ρ, s∥ t⟩ µ−→ {⟨ρi, si ∥ t⟩ ▷ pi}i∈I

SParL

⟨ρ, t⟩ µ−→ D

⟨ρ, s+ t⟩ µ−→ D
SSumR

⟨ρ, t⟩ µ−→ {⟨ρj , tj⟩ ▷ pj}j∈J

⟨ρ, s ∥ t⟩ µ−→ {⟨ρj , s ∥ tj⟩ ▷ pj}j∈J

SParR

⟨ρ, s⟩ µ−→ {⟨ρi, si⟩ ▷ pi}i∈I ⟨ρi, t⟩
µ−→ {⟨ρj , tj⟩ ▷ pj}j∈Ji

⟨ρ, s∥ t⟩ τ−→ {⟨ρj , si ∥ tj⟩ ▷ pj}(i,j)∈I×Ji

SSynL

⟨ρ, t⟩ µ−→ {⟨ρi, ti⟩ ▷ pi}i∈I ⟨ρi, s⟩
µ−→ {⟨ρij , sj⟩ ▷ pij}j∈J

⟨ρ, s ∥ t⟩ τ−→ {⟨ρij , si ∥ tj⟩ ▷ pij}(i,j)∈I×J

SSyncR

(a) Rules for Schrödinger stateful semantics.

⟨E , µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi
◦ E , si⟩ ▷

E(Ei ⊠ I)}i∈I

HPre
⟨U ◦ E , s⟩ µ−→ D

⟨E , U ; s⟩ µ−→ D
HU

⟨E , s⟩ µ−→ {⟨Ei, si⟩ ▷ Ei}i∈I µ ̸= α µ ̸= α

⟨E , s \ α⟩ µ−→ {⟨Ei, si \ α⟩ ▷ Ei}i∈I

HRes

⟨E , s⟩ µ−→ D

⟨E , s+ t⟩ µ−→ D
HSumL

⟨E , s⟩ µ−→ {⟨Ei, si⟩ ▷ Ei}i∈I

⟨E , s ∥ t⟩ µ−→ {⟨Ei, si ∥ t⟩ ▷ Ei}i∈I

HParL

⟨E , t⟩ µ−→ D

⟨E , s+ t⟩ µ−→ D
HSumR

⟨E , t⟩ µ−→ {⟨Ej , sj⟩ ▷ Ej}j∈J

⟨E , s ∥ t⟩ µ−→ {⟨Ej , s ∥ tj⟩ ▷ Ej}j∈J

HParR

⟨E , s⟩ µ−→ {⟨Ei, si⟩ ▷ Ei)}i∈I ⟨Ei, t⟩
µ−→ {⟨Ej , tj⟩ ▷ Ej}j∈Ji

⟨E , s ∥ t⟩ τ−→ {⟨Ej , si ∥ tj⟩ ▷ Ej}(i,j)∈I×Ji

HSyncL

⟨E , t⟩ µ−→ {⟨Ej , tj⟩ ▷ EJ)}j∈J ⟨Ej , s⟩
µ−→ {⟨Ei, si⟩ ▷ Ei}i∈Ij

⟨E , s ∥ t⟩ τ−→ {⟨Ei, si ∥ tj⟩ ▷ Ei}(j,i)∈J×Ij

HSyncR

(b) Rules for Heisenberg stateless semantics.

Figure 3 Rules for stateful and stateless semantics of mQPA.

CONCUR 2024

16:12 Effect Semantics for Quantum Process Calculi

⟨|Φ+⟩⟨Φ+|, P ⟩

1
2 ⟨|1⟩⟨1| , S⟩1

2 ⟨|0⟩⟨0| , R⟩

⟨ 1
2 , α⟩ ⟨0, β⟩ ⟨ 1

4 , γ⟩ ⟨ 1
4 , δ⟩

· · · · · · · · ·

τ 1
2

1
2

τ τ
1
2 0

1
4

1
4

α γ δ

(a) Schrödinger semantics of P .

⟨I, P ⟩

⟨M|1⟩⟨1|, S⟩⟨M|0⟩⟨0|, R⟩

⟨M|00⟩⟨00|, α⟩ ⟨M|01⟩⟨01|, β⟩ ⟨M|1+⟩⟨1+|, γ⟩ ⟨M|1−⟩⟨1−|, δ⟩

· · · · · · · · · · · ·

τ |1⟩⟨1| ⊗ I|0⟩⟨0| ⊗ I

τ τ

|00⟩⟨00| |01⟩⟨01| |1+⟩⟨1+| |1−⟩⟨1−|

α β γ δ

(b) Heisenberg semantics of P .

Figure 4 Our two semantics for the process P of Example 32.

We consider an operational, stateful semantics in the style of [7, 9, 12] for mQPA given in
terms of a pLTS, where each state is the pairing of a density operator and a process. Being
state-based, we name this Schrödinger semantics.

▶ Definition 31. The Schrödinger semantics of mQPA is given by a pLTS whose states are
pairs ⟨ρ, P ⟩ for P mQPA process and ρ ∈ DMQ′ density operator with Q′ ⊇ QP , and where
the transition is the smallest relation satisfying the rules in Figure 3a.

The SPre rule updates the quantum state through the destructive measurement op-
erator MEi

: DMQ → DMQ′ associated to the effect Ei ∈ EfQ\Q′ defined by MEi
(ρ) =

trQ\Q′((
√
Ei ⊠ IQ′)ρ(

√
Ei ⊠ IQ′)). Given the unitary U acting on qubits QU , the SU

rule updates the state with the superoperator U : DMQ → DMQ, defined as U(ρ) =
(U ⊠ IQ\QU

)ρ(U† ⊠ IQ\QU
).

Note that the resulting effect distribution is always a probability distribution, obtained
by tracing the resulting density operator. We remark that SSyncL and SSyncR only differ
in the order of the application of measurements between the two branches of the parallel
operator, as both the orderings are possible.

▶ Example 32. Consider a process P = τ.([|0⟩⟨0|]R, [|1⟩⟨1|]S) with R = τ.([|0⟩⟨0|]α, [|1⟩⟨1|]β)
and S = H; τ.([|0⟩⟨0|]γ, [|1⟩⟨1|]δ). First, P measures a qubit q1 in the computational basis
and then measures a qubit q2 either in the computational or in the Hadamard basis. The
stateful semantics of ⟨|Φ+⟩⟨Φ+| , P ⟩ is given in Figure 4a. Notice that measurements are
destructive and are always prefixed by an action (which is not necessarily a τ as in [9, 7]).

For any process P , the stateful semantics results in infinitely many pLTSs according to
the input quantum state ρ. We seek an alternative stateless characterization, hence adequate
for algorithmic verification. We therefore give a new semantics for mQPA processes in terms
of eLTSs. We name this Heisenberg semantics, because its focus is on the effects used as
weights, rather than on the quantum state. Moreover, it is a symbolic semantics, as it is
independent of the input state.

▶ Definition 33. The Heisenberg semantics of mQPA with respect to a chosen set Q of
qubits is given by an eLTS over EfQ whose states are pairs ⟨E , P ⟩ for P mQPA process
and E ∈ DMQ → DMQ′ superoperator with Q ⊇ Q′ ⊇ QP , and where the transition is the
smallest relation satisfying the rules in Figure 3b.

The Heisenberg semantics of a process P is the eLTS over EfQP
rooted in ⟨I, P ⟩. The

superoperator E in the Heisenberg configuration ⟨E , P ⟩ records the performed measurements
and unitaries. According to that, the weights of the subsequent effect distributions must be

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:13

updated through the corresponding dual superoperator E. In the HPre rule, the superop-
erator E : DMQ → DMQ′ is updated by composition with the measurement superoperator
associated to the effect Ei ∈ EfQm

, MEi
: DMQ′ → DMQ′\Qm

, where Qm ⊆ Q′ are the
measured qubits. The weight resulting from the measurement is Ei ⊠ I with I ∈ EfQ′\Qm

meaning that the qubits that are not measured are left unchanged. Finally, the effect is
updated via the dual superoperator Erepresenting the previously applied transformations.
All the other rules mirror the Schrödinger semantics.

▶ Example 34. Consider the process P of Example 32. Figure 4b shows its Heisenberg
semantics. Inside the lowest configurations, we have M|00⟩⟨00|, obtained by composing
M|0⟩⟨0| over the first qubit with M|0⟩⟨0| over the second qubit, and similarly M|1+⟩⟨1+| =
M|0⟩⟨0| ◦ H ◦ M|1⟩⟨1|.

In order to fix an input state ρ ∈ DMQP
, and thus instantiate the semantics of the

process P , we can use the partial evaluation · |ρ in Definition 26. Since ρ defines a value for
all the qubits used by P , this is a full evaluation: the resulting eLTS is indeed a pLTS.

▶ Example 35. Consider the process P of Example 32 and ρ = |Φ+⟩⟨Φ+|. Notice that
⟨I, P ⟩|ρ, with ⟨I, P ⟩ as in Figure 4b, is a pLTS isomorphic to the Schrödinger semantics
⟨ρ, P ⟩ in Figure 4a. The labels coincide since they are syntax-driven. Furthermore, the
weights are identical, since the probabilities of the Schrödinger semantics are exactly the
result of applying ρ to the effects in the Heisenberg eLTS.

This example hints at a connection between the two semantics, which is to be expected
given the duality between effects and states in quantum theory. Indeed, the eLTSs produced
by instantiating the Heisenberg semantics have exactly the same transitions of the Schrödinger
semantics, thus the following holds.

▶ Theorem 36. For any process P and ρ ∈ DMQP
, ⟨I, P ⟩|ρ ∼ ⟨ρ, P ⟩.

It follows that we can verify whether two processes are bisimilar for any input just by
looking at their Heisenberg semantics.

▶ Corollary 37. Given two processes P and R, ⟨I, P ⟩ ∼ ⟨I, R⟩ if and only if ⟨ρ, P ⟩ ∼ ⟨ρ,R⟩
for any ρ ∈ DMQP

.

We conclude with a real-world example: the well-known teleportation protocol [3].

▶ Example 38. Alice (A) and Bob (B) each have a qubit of q2, q3, and A wants to send its
additional qubit q1 to B without a quantum channel. The agents just apply unitaries and
measurements on their qubits locally, and synchronize over labels that represent the result of
measurements. The protocol is encoded as the following mQPA process Tel.

Tel := (A ∥ B) \ α, β, γ, δ
A := CNOT q1q2 ; Hq1 ⊠ Iq2 ; τ.([|00⟩⟨00|]α, [|01⟩⟨01|]β, [|10⟩⟨10|]γ, [|11⟩⟨11|]δ)
B := α.B′ + β.X ; B′ + γ.Z ; B′ + δ.Z ; X ; B′

where B′ is the unspecified continuation of B with q3.
Then, if q2 and q3 are in state |Φ+⟩⟨Φ+|, as prescribed by the protocol, Tel is indistin-

guishable to B′ acting on q1 instead of q3: ⟨I,Tel⟩||Φ+⟩⟨Φ+| ∼ ⟨I, τ.τ.B′[q3/q1]⟩.

CONCUR 2024

16:14 Effect Semantics for Quantum Process Calculi

5 Related Works

In our work we follow a foundational approach to quantum bisimilarity. We employ effect dis-
tributions (a finite non-normalized version of positive operator-valued measures, POVMs [30])
as a generalization of sub-probability distributions, finding them well-suited to model the
observable behaviour of quantum systems. Our notion generalizes the quantum monad
of [1], which is based on projectors, and it instantiates the abstract “effect algebra monad”
of [21]. More in depth, the author in [21] proposes effects monoids, i.e. effect algebras with
multiplication, and use them as weights of distributions. Our effects do have tensoring as
a multiplication operator, but it does not form a proper effect monoid since it changes the
effects dimensions. These works come from the fields of quantum complexity and quantum
logic. We apply similar concepts to quantum protocol semantics, introducing eLTSs and
studying their composition and their behavioural equivalences.

Our eLTSs can be seen as a labelled, non-deterministic version of the effect-valued
Quantum Markov chains of [16], where tensor product is used instead of sequential effect
composition. The most general model of “quantum transition system” is the one of [32, 27],
where the weights are superoperators instead of effects, to capture also non-destructive
measurements and qubit initialization. The author of [32] introduces two different notions of
bisimilarity, which we recover in our minimal, effect-based setting as AM and LS bisimilarity.
However, none of these works feature non-determinism, nor do they apply the proposed
coalgebraic model to process calculi suitable for expressing quantum protocols.

In the literature the semantics of quantum processes is usually described via pLTSs and
probabilistic bisimilarity [24, 10, 8, 9, 7]. Despite their differences, these works all define a
pLTS made of configurations, i.e. pairs of quantum values and syntactic processes, and they
require bisimilar systems to exhibit the same probabilistic behaviour and observable quantum
values. Many of the existing works have to tweak the natural definition of probabilistic bisim-
ilarity in an ad hoc manner, in order to capture the peculiar observable properties of quantum
values. We instead introduce purely quantum LTSs, and we manipulate quantum values
only through effects, which represent their observable probabilistic behaviour. Moreover,
in the previous proposals, verifying the equivalence of two processes requires instantiating
them with each possible quantum input, impeding algorithmic verification. Using effects, we
describe the “symbolic” semantics of protocols, abstracting away from the input.

Most similar to our work is [11], which introduces superoperator-valued quantum distri-
butions, analogous to the ones in [17, 32, 27]. This allows modelling the more expressive
non-destructive measurements and quantum communication, but their bisimilarity does
not respect the observational properties prescribed by quantum theory [23, 7, 13]. For the
operational semantics of their language, they employ configurations of superoperators and
processes (as in our Heisenberg semantics), and they build a superoperator-weighted LTS.
The bisimilarity that they propose is equivalent to the one in [10], and requires bisimilar
configurations with the same weights, leading to a form of AM-bisimilarity finer than of our
LS-bisimilarity. For example, it discriminates the following precesses (in mQPA syntax).

▶ Example 39. Let P = τ.([|0⟩⟨0|]R, [|1⟩⟨1|]R′) and Q = τ.([|+⟩⟨+|]R, [|−⟩⟨−|]R′) with R and
R′ two deadlock processes that maintain the ownership of the measured qubit (recall that [11]
considers non-destructive measurements), thus making it unobservable. In other words, P and
Q perform some local measurement on their qubit, without leaking any classical information
to an external observer. Nonetheless, P and Q are not bisimilar for the symbolic/open
bisimilarity of [11, 10], as can be seen studying the ground behaviour of ⟨Φ+, P ⟩ and ⟨Φ+, Q⟩.
These processes are bisimilar in our proposal, as well as in other recent works [23, 9, 7].

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:15

The bisimilarity of [10] has been relaxed in [13, 9] to match the prescriptions of quantum
theory, but no symbolic version of this coarser bisimilarity has been proposed.

6 Conclusions and future works

We proposed effect labelled transition systems (eLTSs), a new operational model that
generalizes the probabilistic ones and is suitable for modeling quantum concurrent systems.
We investigated bisimilarity, adapting two equivalent definitions of probabilistic bisimilarity
to the quantum case, namely Aczel-Mendler and Larsen-Skou bisimilarity. Despite coinciding
for classical systems, they disagree on quantum processes, and only the latter is guaranteed
to be an equivalence relation. Then, we proved the adequacy of the Larsen-Skou bisimilarity,
showing it correct and complete with respect to the observable probabilistic behaviour
prescribed by quantum theory.

This model allows for a purely quantum-based semantics of quantum protocols, with
the advantage of providing an algorithmically verifiable equivalence over processes. Indeed,
eLTSs can be easily defined in a coalgebraic fashion, allowing e.g. to resort to the general
algorithm for partition refinement of [22] for proving Larsen-Skou bisimilarity.

We assessed our approach in a process calculus with minimal features, like destructive
measurements, unitaries, synchronization and non-determinism. In the standard probabilistic
approach to quantum process calculi [24, 7, 8, 10, 9, 6], processes must be compared with
respect to every possible input quantum state, thus considering a continuously infinite set of
cases. We instead equipped our calculus with a stateless eLTS semantics, and proved that it
is consistent with the natural stateful semantics: two processes are bisimilar in the eLTS if
they are indistinguishable on every input quantum state.

As a future work, we plan to investigate quantum extensions of Hennessy-Milner logic for
characterizing Larsen-Skou bisimilarity. Moreover, we aim to enrich our process calculus with
quantum value passing, and to study its stateless semantics using superoperator-weighted
models, like the one of [11].

References

1 Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata. The quantum
monad on relational structures. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François
Raskin, editors, MFCS 2017, volume 83 of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.MFCS.2017.35.

2 Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. Theoretical Computer Science, 560:7–11, 2014. doi:10.1016/j.tcs.2014.05.025.

3 Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K. Wootters. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Physical Review Letters, 70:1895–1899, 1993. doi:
10.1103/PhysRevLett.70.1895.

4 Filippo Bonchi, Alexandra Silva, and Ana Sokolova. The power of convex algebras. In
Roland Meyer, Uwe Nestmann, and Marc Herbstritt, editors, CONCUR 2017, volume 85
of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPICS.CONCUR.2017.23.

5 Marcello Caleffi, Angela Sara Cacciapuoti, and Giuseppe Bianchi. Quantum internet: from
communication to distributed computing! In Jón Atli Benediktsson and Falko Dressler, editors,
NANOCOM 2018, pages 3:1–3:4. ACM, 2018. doi:10.1145/3233188.3233224.

CONCUR 2024

https://doi.org/10.4230/LIPICS.MFCS.2017.35
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.4230/LIPICS.CONCUR.2017.23
https://doi.org/10.4230/LIPICS.CONCUR.2017.23
https://doi.org/10.1145/3233188.3233224

16:16 Effect Semantics for Quantum Process Calculi

6 Lorenzo Ceragioli, Fabio Gadducci, Giuseppe Lomurno, and Gabriele Tedeschi. Quantum
bisimilarity via barbs and contexts: Curbing the power of non-deterministic observers (extended
version). CoRR, abs/2311.06116, 2023. doi:10.48550/arXiv.2311.06116.

7 Lorenzo Ceragioli, Fabio Gadducci, Giuseppe Lomurno, and Gabriele Tedeschi. Quantum bisim-
ilarity via barbs and contexts: Curbing the power of non-deterministic observers. Proceedings of
the ACM on Programming Languages, 8(POPL):43:1269–43:1297, 2024. doi:10.1145/3632885.

8 Timothy A. S. Davidson. Formal Verification Techniques Using Quantum Process Calculus.
PhD thesis, University of Warwick, 2012.

9 Yuxin Deng. Bisimulations for probabilistic and quantum processes. In Sven Schewe and
Lijun Zhang, editors, CONCUR 2018, volume 118 of LIPIcs, pages 2:1–2:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.2.

10 Yuxin Deng and Yuan Feng. Open bisimulation for quantum processes. In Jos C. M. Baeten,
Thomas Ball, and Frank S. de Boer, editors, TCS 2012, volume 7604 of LNCS, pages 119–133.
Springer, 2012. doi:10.1007/978-3-642-33475-7_9.

11 Yuan Feng, Yuxin Deng, and Mingsheng Ying. Symbolic bisimulation for quantum processes.
ACM Transactions on Computational Logic, 15(2):14:1–14:32, 2014. doi:10.1145/2579818.

12 Yuan Feng, Runyao Duan, and Mingsheng Ying. Bisimulation for quantum processes. ACM
Transactions on Programming Languages and Systems, 34(4):17:1–17:43, 2012. doi:10.1145/
2400676.2400680.

13 Yuan Feng and Mingsheng Ying. Toward automatic verification of quantum cryptographic
protocols. In Luca Aceto and David de Frutos-Escrig, editors, CONCUR 2015, volume 42
of LIPIcs, pages 441–455. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPIcs.CONCUR.2015.441.

14 Fei Gao, SuJuan Qin, Wei Huang, and QiaoYan Wen. Quantum private query: A new kind of
practical quantum cryptographic protocol. Science China Physics, Mechanics & Astronomy,
62(7):70301, 2019. doi:10.1007/s11433-018-9324-6.

15 Simon J. Gay and Rajagopal Nagarajan. Communicating quantum processes. In Jens Palsberg
and Martín Abadi, editors, POPL 2005, pages 145–157. ACM, 2005. doi:10.1145/1040305.
1040318.

16 Stanley Gudder. Quantum Markov chains. Journal of Mathematical Physics, 49(7):072105,
2008. doi:10.1063/1.2953952.

17 Ichiro Hasuo and Naohiko Hoshino. Semantics of higher-order quantum computation via
geometry of interaction. In LICS 2011, pages 237–246. IEEE Computer Society, 2011. doi:
10.1109/LICS.2011.26.

18 Teiko Heinosaari and Mário Ziman. The Mathematical Language of Quantum Theory: From
Uncertainty to Entanglement. Cambridge University Press, 2011.

19 Matthew Hennessy. Exploring probabilistic bisimulations, part I. Formal Aspects of Computing,
24(4-6):749–768, 2012. doi:10.1007/s00165-012-0242-7.

20 Matthew Hennessy and Huimin Lin. Symbolic bisimulations. Theoretical Computer Science,
138(2):353–389, 1995. doi:10.1016/0304-3975(94)00172-F.

21 Bart Jacobs. Probabilities, distribution monads, and convex categories. Theoretical Computer
Science, 412(28):3323–3336, June 2011. doi:10.1016/j.tcs.2011.04.005.

22 Jules Jacobs and Thorsten Wißmann. Fast coalgebraic bisimilarity minimization. Proceedings of
the ACM on Programming Languages, 7(POPL):52:1514–52:1541, 2023. doi:10.1145/3571245.

23 Takahiro Kubota, Yoshihiko Kakutani, Go Kato, Yasuhito Kawano, and Hideki Sakurada.
Application of a process calculus to security proofs of quantum protocols. In Hamid R. Arabnia,
George A. Gravvanis, and Ashu M. G. Solo, editors, FCS 2012, pages 141–147. CSREA Press,
2012.

24 Marie Lalire. Relations among quantum processes: Bisimilarity and congruence. Mathematical
Structures in Computer Science, 16(3):407–428, 2006. doi:10.1017/S096012950600524X.

https://doi.org/10.48550/arXiv.2311.06116
https://doi.org/10.1145/3632885
https://doi.org/10.4230/LIPIcs.CONCUR.2018.2
https://doi.org/10.1007/978-3-642-33475-7_9
https://doi.org/10.1145/2579818
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.4230/LIPIcs.CONCUR.2015.441
https://doi.org/10.4230/LIPIcs.CONCUR.2015.441
https://doi.org/10.1007/s11433-018-9324-6
https://doi.org/10.1145/1040305.1040318
https://doi.org/10.1145/1040305.1040318
https://doi.org/10.1063/1.2953952
https://doi.org/10.1109/LICS.2011.26
https://doi.org/10.1109/LICS.2011.26
https://doi.org/10.1007/s00165-012-0242-7
https://doi.org/10.1016/0304-3975(94)00172-F
https://doi.org/10.1016/j.tcs.2011.04.005
https://doi.org/10.1145/3571245
https://doi.org/10.1017/S096012950600524X

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:17

25 Marie Lalire and Philippe Jorrand. A process algebraic approach to concurrent and distributed
quantum computation: Operational semantics. CoRR, quant-ph/0407005, 2004. arXiv:
quant-ph/0407005.

26 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

27 Ai Liu and Meng Sun. A coalgebraic semantics framework for quantum systems. In Yamine Aït
Ameur and Shengchao Qin, editors, ICFEM 2019, volume 11852 of LNCS, pages 387–402.
Springer, 2019. doi:10.1007/978-3-030-32409-4_24.

28 Gui-lu Long, Fu-guo Deng, Chuan Wang, Xi-Han Li, Kai Wen, and Wan-Ying Wang. Quantum
secure direct communication and deterministic secure quantum communication. Frontiers of
Physics in China, 2(3):251–272, 2007. doi:10.1007/s11467-007-0050-3.

29 Dominic Mayers. Unconditional security in quantum cryptography. Journal of the ACM,
48(3):351–406, 2001. doi:10.1145/382780.382781.

30 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010.

31 Ali Ibnun Nurhadi and Nana Rachmana Syambas. Quantum key distribution (QKD) protocols:
A survey. In ICWT 2018, pages 1–5. IEEE, 2018. doi:10.1109/ICWT.2018.8527822.

32 Hiroshi Ogawa. Coalgebraic approach to equivalences of quantum systems. Master’s thesis,
University of Tokyo, 2014.

33 Sam Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer
Science, 7(1), 2011. doi:10.2168/LMCS-7(1:13)2011.

34 Yong Wang. Probabilistic process algebra to unifying quantum and classical computing
in closed systems. International Journal of Theoretical Physics, 58(10):3436–3509, 2019.
doi:10.1007/s10773-019-04216-2.

35 Peiying Zhang, Ning Chen, Shigen Shen, Shui Yu, Sheng Wu, and Neeraj Kumar. Future
quantum communications and networking: A review and vision. IEEE Wireless Communica-
tions, 31(1):141–148, 2024. doi:10.1109/MWC.012.2200295.

A Proofs of Section 3

▶ Proposition 40. Let E1 and E2 be two effects. If E1 +E2 = |ψ⟩⟨ψ| then Ei = pi |ψ⟩⟨ψ| for
some pi, i = 1, 2. If E1 ⊕p E2 = |ψ⟩⟨ψ| then Ei = |ψ⟩⟨ψ| for i = 1, 2.

▶ Theorem 4. Effect distributions correspond to all and only the parameterized sub-probability
distributions that are convex and have an “overall” finite support.

QQ
∼=

D↓_∈ (DX)DMQ

∣∣∣∣∣∣ D↓ρ ⊕p σ = (D↓ρ) ⊕p (D↓σ) and
⋃

ρ∈DMQ

supp(D↓ρ) is finite

Proof. Let d be the dimension of HQ. Recall that (Efd, 0d,+) is a Partial Commutative
Monoid (PCM) [21]. Each PCM has a partial order, defined as a ⪯ b if and only if ∃c.a+c = b.
In the case of Efd, ⪯ is the Löwner order ⊑. We employ a known result in quantum theory [18]:
Efd is isomorphic to Conv(DMd, [0, 1]). Moreover, Conv(DMd, [0, 1]) forms a PCM, where
the monoid identity is λρ.0 and the summation of functions is defined pointwise. Since the
isomorphism between Efd and Conv(DMd, [0, 1]) is a PCM isomorphism, it follows that

Qd
∼=

{
D : X → DMd → [0, 1]

∣∣∣∣∣ ∀x D(x) is convex, supp(D) is finite∑
x∈supp(D) D(x) ⪯ λρ.1

}

CONCUR 2024

https://arxiv.org/abs/quant-ph/0407005
https://arxiv.org/abs/quant-ph/0407005
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/978-3-030-32409-4_24
https://doi.org/10.1007/s11467-007-0050-3
https://doi.org/10.1145/382780.382781
https://doi.org/10.1109/ICWT.2018.8527822
https://doi.org/10.2168/LMCS-7(1:13)2011
https://doi.org/10.1007/s10773-019-04216-2
https://doi.org/10.1109/MWC.012.2200295

16:18 Effect Semantics for Quantum Process Calculi

where supp(D) is defined as {x ∈ X | D(x) ̸= λρ.0} and ⪯ is the pointwise ordering between
functions. The theorem follows by proving that the set above is isomorphic to{

D↓_: DMd → X → [0, 1]

∣∣∣∣∣ D↓_ is convex,
⋃

ρ supp(D↓ρ) is finite
∀ρ

∑
x∈supp(D↓ρ) D↓ρ (x) ≤ 1

}
To prove this isomorphism, we provide an invertible function f(D) = λρ.λx.D(x)(ρ) that
preserves and reflects the three properties we are interested in. For convexity, we have that

∀x D(x) is convex ⇔ ∀x D(x)(ρ ⊕p σ) = (D(x)(ρ)) ⊕p (D(x)(σ))
⇔ ∀x f(D)(ρ ⊕p σ)(x) = (f(D)(ρ)(x)) ⊕p (f(D)(σ)(x))
⇔ f(D)(ρ ⊕p σ) = f(D)(ρ) ⊕p f(D)(σ) ⇔ f(D) is convex

For the finite support, we have that

supp(D) = {x ∈ X | D(x) ̸= λρ.0} = {x ∈ X | ∃ρ.D(x)(ρ) ̸= 0}

=
⋃

ρ
{x ∈ X | D(x)(ρ) ̸= 0} =

⋃
ρ

supp(f(D))

For the sum over the support, we have that∑
x∈supp(D)

D(x) ⪯ λρ.1 ⇔ ∀ρ.
∑

x∈supp(D)

D(x)(ρ) ≤ 1 ⇔ ∀ρ.
∑

x∈supp(D)
D(x)(ρ)̸=0

D(x)(ρ) ≤ 1

⇔ ∀ρ.
∑

supp(f(D)ρ)

D(x)(ρ) ≤ 1 ⇔ ∀ρ.
∑

supp(f(D)ρ)

f(D)(ρ)(x) ≤ 1 ◀

▶ Lemma 41. Let {sα, sβ , sγ , sδ} ⊆ X, and let D ∈ QQX be defined as D = {sα ▷
|Φ+⟩⟨Φ+| , sβ ▷ |Φ−⟩⟨Φ−| , sγ ▷ |Ψ+⟩⟨Ψ+| , sδ ▷ |Ψ−⟩⟨Ψ−|}, where |Φ+⟩ = 1√

2 (|00⟩ + |11⟩) and
|Φ−⟩ = 1√

2 (|00⟩ − |11⟩). There is no T ∈ Q⊞
QX and subsets Xα, Xβ , Xγ , Xδ of X such that∑

x∈Xy
T(x) = D(sy) for y ∈ {α, β, γ, δ}.

Proof. We proceed by induction on the number of application of ⊞. No point distribution
can verify this, hence the base case is trivial. Assume T1 and T2 can be defined by using ⊞
n times starting from point distributions, and let T = T1 ⊞E T2. We proceed by cases on
the dimension d of the Hilbert space of the effect E. If d = 1, then E = p for some p and∑

x∈Xy

p · T1(x) + (1 − p) · T2(x) = p ·
∑

x∈Xy

T1(x) + (1 − p) ·
∑

x∈Xy

T2(x) = D(sy).

If p is 0 or 1, then T = T1 or T2, and the result directly follows from induction hypothesis.
Otherwise, since D(sy) is of the form |ψ⟩⟨ψ| for each y, by Proposition 40 both

∑
x∈Xy

T1(x)
and

∑
x∈Xy

T2(x) are equal to D(sy).
Consider now the case d = 2, then T1, T2 must be of dimension 2, and it must be that∑
x∈Xα

E ⊠ T1(x) + (I − E) ⊠ T2(x) = E ⊠
∑

x∈Xy

T1(x) + (I − E) ⊠
∑

x∈Xy

T2(x) =
∣∣Φ+〉〈

Φ+∣∣ .

By Proposition 40, E ⊠
∑

x∈Xy
T1(x) must be equal to p · |Φ+⟩⟨Φ+| for some p. But then,

1
pE ⊠

∑
x∈Xy

T1(x) = |Φ+⟩⟨Φ+| contradicting the inseparability of |Φ+⟩⟨Φ+|.
The dimension d cannot be 3 since D is of dimension 4.
If d = 4, then T1 and T2 can only be of dimension 1, and the effects in D must be all

expressible as pE or p(I − E) for some probability p, but this is not the case.
Finally, note that d cannot be greater than 4, because HQ is of dimension 4. ◀

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:19

▶ Theorem 11. If |X| ≥ 4 and |Q| ≥ 2, with | · | the cardinality, then Q⊞
QX ̸= QQX.

Proof. For |Q| = 2, i.e. HQ of dimension 4, it is sufficient to note that this equivalence would
contradict Lemma 41. This trivially generalizes to higher dimensional Hilbert spaces. ◀

▶ Lemma 13. For all R, D R̂Q T iff there exist a set of indices I and a set of effects
{Ei ∈ EfQ}i∈I such that D = {xi ▷ Ei}i∈I , T = {yi ▷ Ei}i∈I , and xi R yi for any i ∈ I.

Proof. (⇐) Suppose there is a finite index set I such that (1) D = {si ▷ Ei}i∈I , (2)
T = {ti ▷ Ei}i∈I and (3) si R ti for each i ∈ I. By (3) and by definition, it follows that
si R̂∅ ti for each i ∈ I. Then, by Definition 12, D = (

∑
i∈I Ei ⊠ si)R̂Q(

∑
i∈I Ei ⊠ ti) = T.

(⇒) By induction on the rules for R̂Q. For the first rule, assume s R t and s R̂∅ t, then
s = {s ▷ 1} and t = {t ▷ 1}. For the second rule, assume Di R̂Q Ti. Then by induction
hypothesis, for any i ∈ I, it holds that Di = {si,j ▷Ei,j}j∈ii

and Ti = {ti,j ▷Ei,j}j∈ii
, with

si,j R ti,j . Hence it is true that
∑

i∈I Ei ⊠Di = {si,j ▷Ei ⊠Ei,j}i∈I,j∈ii and
∑

i∈I Ei ⊠Ti =
{ti,j ▷ Ei ⊠ Ei,j}i∈I,j∈ii

, thus the result follows by definition. ◀

▶ Theorem 19. For any eLTS over EfQ with states S, ∼am ⊆ ∼ls. Moreover, ∼am = ∼ls

if Q = ∅, and ∼am ⊊ ∼ls if Q is of dimension at least 2 and S of cardinality at least 4.

Proof. For ⊆ it is sufficient to show that D R̂ T requires D and T to assign the same effect
to each class in S/R, by Lemma 13. The equality ∼am = ∼ls in eLTSs of dimension one is a
classical for pLTSs [19]. Then it suffices to consider Example 18. ◀

▶ Theorem 23. For any s, t ∈ S, s ∼ls t if and only if s ∼lpp t.

Proof. It is easy to show that ∼ls is a lpp-bisimulation and that ∼lpp is a ls-bisimulation.
For the first direction, take s ∼ls t and suppose that s µ−→ D, then there exists t µ−→ T such
that ∀C ∈ S/∼ls

D(C) = T(C), where D(C) =
∑

x∈C D(x), and similarly for T. In other
words, we know that D and T are identical when considered as effect distributions on the set
of equivalence classes. Thus, applying Theorem 4, we know that D↓_= T↓_, i.e. that for
any ρ they give the same probability distribution on equivalence classes, as required by the
definition of lpp-bisimulation.

The other direction is identical, employing the isomorphism of Theorem 4 ◀

▶ Lemma 42. Given a set of effects E of a fixed dimension, there exists a state ρ such that
∀i, j ∈ E. tr(EiρE) = tr(EjρE) iff i = j.

Proof. Note that for any pair of distinct effects Ei, Ej there is a state ρi,j such that
tr(Eiρi,j) ̸= tr(Ejρi,j). Let pk

i,j = tr(Ekρi,j). Note also that {pk
i,j}i,j,k is in the algebraic

closure of Q ∪ T with T a finite set of transcendental numbers.
Let qi,j be transcendental numbers not in T such that for each i, j, qi,j is not in the

algebraic closure of Q∪ T ∪ {qa,b | a ̸= i or b ̸= j} (there are enough transcendental numbers,
otherwise we could prove R to be denumerable). We let q′ be defined as (1 −

∑
i,j qi,j), and

we use it to scale the qi,j to the weights of a full probability distribution, letting xi,j = qi,jq
′.

We let ρE =
∑

i,j xi,jρi,j and prove by refutation that it distinguishes all the effects in E.
Assume that tr(EaρE) = tr(EbρE) for some indices a ̸= b. We observe that for k ∈ {a, b}

tr(EkρE) =
∑

i,j
xi,jtr(Ekρi,j) =

∑
i,j
xi,jp

k
i,j = q′

∑
i,j
qi,jp

k
i,j .

Hence, we can rewrite our assumption as
∑

i,j qi,jp
a
i,j =

∑
i,j qi,jp

b
i,j . Note that for each pair

of indices c and d we can rewrite the formula above as

qc,d(pa
c,d − pb

c,d) =
∑

i,j ̸=c,d
qi,jp

b
i,j −

∑
i,j ̸=c,d

qi,jp
a
i,j

CONCUR 2024

16:20 Effect Semantics for Quantum Process Calculi

If for some c or d, pa
c,d − pb

c,d is not zero, then we can divide both sides for pa
c,d − pb

c,d, proving
that qc,d is indeed in the algebraic closure of Q ∪ T ∪ {qe,f | e ̸= c or f ̸= d}. Since this
would contradict our hypothesis, we must assume that pa

c,d − pb
c,d = 0 for any choice of c and

d, but this is a contradiction with the definition of pk
i,j , since pa

a,b ̸= pb
a,b by construction. ◀

▶ Theorem 24. For any s, t ∈ S, s ∼ls t implies s ≃pbe t. Moreover, if S is finitely
dimensional, then s ≃pbe t implies s ∼ls t.

Proof. By Theorem 23, for proving ∼ls⊆≃pbe it suffices to show that ∼lpp⊆≃pbe, which
holds by definition.

For ≃pbe⊆∼ls, let n be the cardinality of S, and consider the set of effects that appears
in the eLTS E0 = {E | ∃s, s′ ∈ S, µ ∈ Act.s

µ−→ D and D(s′) = E}. We let E be the set
of the effects obtained by summing up to n effects in E0, i.e. effects that are possibly
associated with some equivalence class. By Lemma 42, there is a quantum state ρE such that
∀Ei, Ej ∈ E.tr(EiρE) = tr(EjρE) iff Ei = Ej . Note that ≃pbe⊆∼ρE by definition of ≃pbe.
Note also that by proving ∼ρE⊆∼ls we would get the thesis by transitivity.

We will prove that ∼ρE is a LS-bisimulation. Assume s ∼ρE t, and that s µ−→ D, then t µ−→ T

with D↓ρE ∼̂ρE1 T↓ρE . Note that, since LS and AM-bisimilarity coincides in the probabilistic
case, the relation above implies that ∀C ∈ S/∼ρE

.
∑

x∈C D↓ρE (x) =
∑

x∈C T↓ρE (x).
We now have to prove that ∀C ∈ S/∼ρE

.
∑

x∈C D(x) =
∑

x∈C T(x). Assume by refutation
that there is a C such that the condition does not hold. Then it suffices to note that∑

x∈C
D↓ρE (x) =

∑
x∈C

tr(D(x)ρE) = tr
((∑

x∈C
D(x)

)
ρE

)
∑

x∈C
T↓ρE (x) =

∑
x∈C

tr(T(x)ρE) = tr
((∑

x∈C
T(x)

)
ρE

)
Since

∑
x∈C D(x) and

∑
x∈C T(x) are both effects in E, we have that tr((

∑
x∈C D(x))ρE) =

tr((
∑

x∈C T(x))ρE) implies
∑

x∈C D(x) =
∑

x∈C T(x) contradicting our assumption. ◀

In the following we write D|ρ for {si|ρ ▷ trQ′(Ei(ρ⊠ IQ\Q′))}i∈I with D = {si ▷ Ei}i∈I .

▶ Theorem 28. If s ∼ls t then s|ρ ∼ls t|ρ.

Proof. We prove R = {(s|ρ, t|ρ) | s ∼ls t} to be a ls-bisimulation. Take (s|ρ, t|ρ) ∈ R, and
assume s|ρ performs a reduction, then, by PEval it must be that s µ−→ D. Since s ∼ls t, there
exists T such that t µ−→ T and ∀C ∈ S/∼ls

∑
x∈C D(x) =

∑
x∈C T(x). Moreover, t|ρ

µ−→ T|ρ
by PEval. We are left with proving that ∀C ∈ S/R

∑
x∈C D(x)|ρ =

∑
x∈C T(x)|ρ. Note that,

by definition of R C ∈ S/∼ls
if and only if

{
x|ρ | x ∈ C

}
∈ S/R. Therefore, we can rewrite

our condition as ∀C ∈ S/∼ls

∑
x∈C D(x|ρ)

∣∣
ρ

=
∑

x∈C T(x|ρ)
∣∣
ρ
, which clearly derives from

∀C ∈ S/∼ls

∑
x∈C D(x) =

∑
x∈C T(x), by definition of D|ρ. ◀

▶ Lemma 43. For any eLTS (S,Act,→) over EfQ and state ρ ∈ DMQ, given a relation
R ⊆ S × S we have that R is a ρ-bisimulation if and only if R|ρ is a bisimulation, where
R|ρ is defined as s|ρ R|ρ t|ρ if and only if sR t.

Proof. Note that for any two distribution D,T, it holds D↓ρ

◦

R T↓ρ iff D|ρ
◦

R|ρ T|ρ since
D↓ρ and D|ρ assign the same probability to same elements, modulo the |ρ renaming.

We must now prove that R|ρ is a bisimulation. Suppose s|ρ R|ρ t|ρ, then if s|ρ
µ−→ D|ρ it

must be s µ−→ D. As t is ρ-bisimilar, we know that t µ−→ T and D↓ρ

◦

R T↓ρ, because, since they
are probability distributions, the equivalence class condition of ρ bisimilarity is equivalent to
the relational lifting. Thus we get D|ρ R̂|ρ T|ρ, showing that R|ρ is a bisimulation. ◀

L. Ceragioli, F. Gadducci, G. Lomurno, and G. Tedeschi 16:21

▶ Corollary 29. Given a finite eLTS (S,Act,→) over EfQ and s, t ∈ S, if for any ρ ∈ DMQ

we have s|ρ ∼ls t|ρ, then s ∼ls t.

Proof. Take R = {(x, y) | x|ρ ∼ls y|ρ}. The relation R|ρ is a bisimulation since if x|ρ
µ−→ D|ρ

we have y|ρ
µ−→ T|ρ, and D|ρ,T|ρ are not only in ◦∼ls , but also in

◦

R|ρ . By Lemma 43 R is a
ρ-bisimulation, and s, t are ρ-bisimilar for any ρ. Thus by Theorem 24 they are bisimilar. ◀

B Proofs of Section 4

Recall that we write ∼ for the LS-bisimilarity ∼ls.

▶ Lemma 44. Consider a EfQ eLTS and E : DMQ → DMQ′ with Q′ ⊆ Q. For any
s, if ⟨E , s⟩ µ−−→ D, then there are states si and superoperators Ei : DMQ → DMQ′′ with
Q′′ ⊆ Q′ such that D = {⟨Ei, si⟩ ▷

E

i(IQ′′)}. Moreover, for all ρ ∈ DMQ, ⟨E(ρ), s⟩ µ−−→
{⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}.

Proof. By induction on the rules of the Heisenberg semantics.
(case HPre) Consider the transition ⟨E , µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi ◦ E , si⟩ ▷

E(Ei ⊠ IQ\Q′)}i∈I .
Let Ei = MEi

◦ E . The first point follows from duality, Ei is E

i(F) = E

◦ (Ei ⊠ F).
For the second point, take any ρ, and apply the SPre rule: ⟨E(ρ), µ.([Ei]si)i∈I⟩ µ−→
{⟨MEi(E(ρ)), si⟩▷ tr(MEi

(E(ρ)))}i∈I . The result holds by definition since Ei = MEi
◦ E .

(case HU) Consider the transition ⟨E , U ; s⟩ µ−→ D. By induction hypothesis, ⟨U ◦ E , s⟩ µ−→ D

and D = {⟨Ei, si⟩▷

E

i(IQ′′)}, trivially proving the first point. By induction hypothesis, it
also holds that for any ρ, ⟨(U ◦ E)(ρ), s⟩ µ−→ T = {⟨Ei(ρ), si⟩▷ tr(Ei(ρ))}. Then, the result
holds by considering the rule SU: ⟨E(ρ), U ; s⟩ µ−→ T.

(case HSyncL) Consider the transition ⟨E , r ∥ t⟩ τ−→ {⟨Ej , rk ∥ tj⟩ ▷ Ej}(k,j)∈K×Jk
. By

induction hypothesis, we know that

⟨E , r⟩ µ−→ {⟨Ek, rk⟩ ▷

E

k(I)}k∈K ⇒ ∀ρ.⟨E(ρ), r⟩ µ−→ {⟨Ek(ρ), rk⟩ ▷ pk}k∈K

⟨Ek, t⟩
µ−→ {⟨Ej , tj⟩ ▷

E

j(I)}j∈Jk
⇒ ∀ρ.⟨Ek(ρ), t⟩ µ−→ {⟨Ej(ρ), tj⟩ ▷ tr(Ej(ρ))}j∈Jk

since Ej = E

j(I), I = K × Jk, si = rk ∥ tj , Ei = Ej , the first point holds by definition.
Take any ρ, and apply SSyncL. Then ⟨E(ρ), r∥ t⟩ τ−→ {⟨Ej(ρ), rk ∥ tj⟩▷ tr(Ej(ρ))}(k,j)∈K×Jk

,
thus proving the second point. All the other cases follow by induction. ◀

▶ Lemma 45. Let E : DMQ → DMQ′ with Q′ ⊆ Q. For any s and any ρ ∈ DMQ,
if ⟨E(ρ), s⟩ µ−−→ D, then there exists states si and superoperators Ei : DMQ → DMQ′′

with Q′′ ⊆ Q′ such that D = {⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}. Moreover, there exists a transition
⟨E , s⟩ µ−−→ {⟨Ei, si⟩ ▷

E

i(IQ′′)}.

Proof. We proceed by induction on the rules of the Schrödinger semantics.
(case SPre) Consider ⟨E(ρ), µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi

(E(ρ)), si⟩ ▷ tr(MEi
(E(ρ)))}i∈I . Then

Ei = MEi ◦ E . Furthermore, by rule HPre ⟨E , µ.([Ei]si)i∈I⟩ µ−→ {⟨MEi ◦ E , si⟩ ▷

E(Ei ⊠
IQ\Q′)}i∈I , with E

i(F) = E

◦ (Ei ⊠ F) being the dual of Ei.
(case SU) Consider the transition ⟨E(ρ), U ; s⟩ µ−→ T. Then, by induction hypothesis,

⟨U(E(ρ)), s⟩ µ−→ T = {⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}, and ⟨U ◦ E , s⟩ µ−→ D = {⟨Ei, si⟩ ▷

E

i(IQ′′)}.
Then, the result holds by considering the rule HU, granting that ⟨E , U ; s⟩ µ−→ D.

CONCUR 2024

16:22 Effect Semantics for Quantum Process Calculi

(case SSyncL) Consider the transition ⟨E(ρ), r ∥ t⟩ τ−→ {⟨ρj , rk ∥ tj⟩ ▷ pj}(k,j)∈K×Jk
. By

induction hypothesis, the required premises hold, and they have the following form and
that

⟨E(ρ), r⟩ µ−→ {⟨Ek(ρ), rk⟩ ▷ pk}k∈K ⇒ ⟨E , r⟩ µ−→ {⟨Ek, rk⟩ ▷

E

k(I)}k∈K

⟨Ek(ρ), t⟩ µ−→ {⟨Ej(ρ), tj⟩ ▷ tr(Ej(ρ))}j∈Jk
⇒ ⟨Ek, t⟩

µ−→ {⟨Ej , tj⟩ ▷

E

j(I)}j∈Jk

where ρj = Ej(ρ) and pj = tr(Ej(ρ)). The first point holds by definition. Take HSyncL.
Then ⟨E , r ∥ t⟩ τ−→ {⟨Ej , rk ∥ tj⟩ ▷

E

j(I)}(k,j)∈K×Jk
, thus proving the second point. All

the other cases follows by induction. ◀

▶ Theorem 36. For any process P and ρ ∈ DMQP
, ⟨I, P ⟩|ρ ∼ ⟨ρ, P ⟩.

Proof. Take R = {(⟨E , R⟩|ρ, ⟨E(ρ), R⟩) | Q is a process, and E : EfQP
→ EfQ, Q ⊇ QR}

Take a pair (⟨E , R⟩|ρ, ⟨E(ρ), R⟩) and assume that ⟨E , R⟩|ρ
µ−→ D. Then, by definition of · |ρ

and Lemma 44, we have ⟨E , R⟩ µ−→ {⟨Ei, si⟩▷

E

i(I)}i∈I and D = {⟨Ei, si⟩|ρ ▷ tr((E

i(I))ρ)}i∈I .
Moreover, by Lemma 44, ⟨E(ρ), R⟩ µ−→ T = {⟨Ei(ρ), si⟩ ▷ tr(Ei(ρ))}i∈I . Note that D

◦

R T

since ⟨Ei, si⟩|ρR⟨Ei(ρ), si⟩ and tr((E

i(I))ρ) = tr(I(Ei(ρ))) = tr(Ei(ρ)). The other direction is
symmetric thanks to Lemma 45. ◀

▶ Corollary 37. Given two processes P and R, ⟨I, P ⟩ ∼ ⟨I, R⟩ if and only if ⟨ρ, P ⟩ ∼ ⟨ρ,R⟩
for any ρ ∈ DMQP

.

Proof. By Corollary 29 and Theorem 36. ◀

Invariants for One-Counter Automata with
Disequality Tests
Dmitry Chistikov1 #

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Jérôme Leroux #

LaBRI, CNRS, Univ. Bordeaux, France

Henry Sinclair-Banks # Ñ

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Nicolas Waldburger #

IRISA, Université de Rennes, France

Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality
tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem
has been known to be NP-hard and in PSPACE, and characterising its computational complexity has
been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell [1].
We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy,
namely into the class coNPNP. In the presence of both equality and disequality tests, our upper
bound is at the third level, PNPNP

.
To prove this result, we show that non-reachability can be witnessed by a pair of invariants

(forward and backward). These invariants are almost inductive. They aim to over-approximate
only a “core” of the reachability set instead of the entire set. The invariants are also leaky: it is
possible to escape the set. We complement this with separate checks as the leaks can only occur in
a controlled way.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Inductive invariant, Vector addition system, One-counter automaton

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.17

Related Version Full Version: https://arxiv.org/abs/2408.11908

Funding Dmitry Chistikov: Supported in part by the Engineering and Physical Sciences Research
Council [EP/X03027X/1].
Henry Sinclair-Banks: Supported by EPSRC Standard Research Studentship (DTP), grant number
EP/T51794X/1. Also supported in part by the International Emerging Actions grant (IEA’22) and
by the ANR grant VeSyAM (ANR-22-CE48-0005).
Nicolas Waldburger : Supported in part by the International Emerging Actions grant (IEA’22) and
by the ANR grant VeSyAM (ANR-22-CE48-0005).

Acknowledgements We would like to thank Mahsa Shirmohammadi, without whom this work
would not have been possible, for many ideas and encouragement. We are also grateful to Thomas
Colcombet, Rayna Dimitrova, and James Worrell for useful discussions.

1 During the work on this paper, DC was a visitor to the Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern and Saarbrücken, Germany, a visiting fellow at St Catherine’s College and
a visitor to the Department of Computer Science at the University of Oxford, United Kingdom.

© Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.chistikov@warwick.ac.uk
https://orcid.org/0000-0001-9055-918X
mailto:jerome.leroux@labri.fr
mailto:h.sinclair-banks@warwick.ac.uk
http://henry.sinclair-banks.com
https://orcid.org/0000-0003-1653-4069
mailto:nicolas.waldburger@irisa.fr
https://orcid.org/0009-0002-7664-5828
https://doi.org/10.4230/LIPIcs.CONCUR.2024.17
https://arxiv.org/abs/2408.11908
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Invariants for OCA with Disequality Tests

1 Introduction

It is well known that the computational complexity of problems is often sensitive to seemingly
minor adjustments in the problem setting. Consider, for example, vector addition systems
with states (VASS). Perhaps more commonly presented as Petri nets, VASS are a very
simple yet powerful model of concurrency. Many important computational problems in logic,
language theory, and formal verification reduce to or are even equivalent to the reachability
problem in VASS (see, e.g., [29,45]). However, a classical result due to Minsky shows that
adding the capability to test counters for zero makes the problem undecidable [42].

At the same time, while reachability in VASS is known to be decidable [41], its computa-
tional complexity was recently shown to be extremely high, namely Ackermann-complete
(see [39] for the upper bound and [19,20,38] for the lower bound), so from the practical point
of view one might question the significance of the complexity jump arising from zero tests.

More recent, “down-to-earth”, and perhaps more striking is the following result on 1-
dimensional VASS, which can be thought of as finite-state automata equipped with one
counter (capable of storing a nonnegative integer). Reachability in these systems can be
decided in NP [28] and is in fact NP-complete. It is not difficult to show, using the standard
hill-cutting technique [48], that reachability can also always be witnessed by executions
in which all values assumed by the counter are bounded from above by an exponential
function in the size of the system and the bit length of counter values of the source and target
configurations. Because of this, one might expect that placing an exponential bound on
the counter values upfront does not change the problem much. But, in fact, the complexity
jumps: the problem – which is equivalent to reachability in two-clock timed automata [15] –
becomes PSPACE-complete [23]. One may say that, in this case, formal verification toolkit
available for the reachability problem is not robust to this change in the problem setting.

In this paper we study a different seemingly benign variation of the standard reachability
question. Consider one-counter automata in which transitions may test the value of the
counter for disequality against a given integer (which depends on the transition). In other
words, executions of the system can be blocked by disequality guards, which prevent the
transition from being fired if the counter value is equal to a specified number. The initial
motivation for studying this question comes from a model checking problem for flat Freeze
LTL; see Demri and Sangnier [21] and Lechner, Mayr, Ouaknine, Pouly, and Worrell [35].
Additionally, recall that automata can be used for the modeling of imperative code; see,
e.g., Hague and Lin [30,31], as well as discussion in Section 2. Classical Minsky machines
encode if –then conditionals with equality comparisons to constants, x = k. Simulating an
if –then–else conditional of this type on a Minsky machine seems to require additional O(k)
states. If k is large, this growth in size may be exponential, even though then branches as
well as increments x += k and decrements x -= k can be encoded directly. (If the machine
model is extended with x ≤ k comparisons, then the asymmetry between then and else
disappears, but reachability becomes PSPACE-complete [23].)

One might expect that, since only a small number of configurations are forbidden (by
the disequality guards) in the infinitely large configuration space, the complexity of the
problem should not change significantly and existing techniques should be applicable. This
conclusion, however, has remained elusive. For the problem of reachability in one-counter
automata with disequality tests, the exponential upper bound on counter values necessary
for witnessing reachability carries over. But, despite progress on related problems [9, 11]
(including the settling of the complexity of the above-mentioned flat Freeze LTL model
checking problem [11]), it has not been possible to pin down the complexity of this problem,

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:3

which has been known to be NP-hard (even without disequality tests) and to belong to
PSPACE (thanks to the exponential bound on the counter) [35]. The apparent simplicity of
the problem contrasts with the lack of robustness of the available toolbox. It was recently
shown by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell [1] that the coverability (or
state reachability) problem can be solved in polynomial time for this model, similarly to the
standard 1-dimensional VASS without tests. The algorithm and its analysis, however, become
sophisticated, and the complexity of reachability was left as a challenging open problem.

In the present paper, we make progress on this problem. Existing techniques need to
be extended and developed significantly to handle seemingly benign disequality tests. We
have been unable to find an easily verifiable witness for reachability, and instead show
that non-reachability is witnessed by a form of invariants (or, more precisely, separators).
The existence of counterexamples that violate such invariants can be checked in NP, thus
placing the reachability problem for OCA with disequality tests into the second level of the
polynomial hierarchy, namely in coNPNP. This complexity class captures the complement of
synthesis-type questions, which ask to find a single object (say, a circuit) that works correctly
for all (exponentially many) inputs. In our problem, one configuration can reach another if
and only if every potential invariant (of a form we describe) violates one of the invariance
conditions; moreover, this violation can be checked in NP. In the presence of both equality
and disequality tests, we need a slightly larger class PNPNP , at the third level of the hierarchy.

Our contributions. Traditionally, an invariant is an overapproximation of the set of reachable
configurations which is inductive, i.e., closed under the transition relation. Our invariants
are different in several ways:
1. We capture only some configurations within the reachability set, which form its core.

Accordingly, we require a tailored notion of closure, namely closure under a restricted
form of reachability relation.

2. Our invariants are leaky (almost inductive): an execution may escape the set. Allowing
leaks is complemented by a separate controlling mechanism (check) that all leaks – which
may occur at the interface between strongly connected components of the automaton –
are safe.

3. To compose our local inductive invariants, i.e., those restricted to a single strongly
connected component, the controlling mechanism for leaks relies on relaxed integer
semantics for the execution. More precisely, we extend (to automata with disequality
tests) a known technique [28] for lifting Z-executions to actual executions.

Our notion of local invariants requires that we place a certain technical assumption at
the interface (entry and exit points) of strongly connected components. To discharge this
assumption, we use a combination of two invariants, one for the main (forward) VASS and
another for the reverse VASS. Together, these two sets form a separator – a witness for
non-reachability.

2 Related Work

Invariants. In formal verification, a forward exploration of countably infinite configuration
spaces from the initial configuration, or a symmetrical backward exploration from the target,
is a standard approach to reachability problems and targets bug finding. General heuristics
can be used to improve such an exploration (see, for instance, the recent directed reachability
algorithm [8]). However, in order to prove non-reachability, thus certifying the absence of
bugs, an invariant-based approach is more popular.

CONCUR 2024

17:4 Invariants for OCA with Disequality Tests

Many techniques have been developed in the past for computing inductive invariants,
depending on the structure of the underlying system based on counterexample-guided
abstraction refinement [17], automata [32], property-directed reachability [3,13,14], and more
generally in the abstract interpretation framework [18].

In vector addition systems, semilinear invariants [25] are sufficient for the general reach-
ability problem [36]. Even if those invariants are intractable in general, for some instances,
namely the control-state reachability problem, the implementation of efficient tools com-
puting invariants (downward-closed sets in that case) is an active research area [7,22] with
implementation of tools [6, 24,33].

In this paper we focus on 1-dimensional VASS in the presence of equality and disequality
tests; we call them one-counter automata (OCA) with tests. The notion of local inductive
invariants with leaks, which we propose, provides a way to reduce the search space of inductive
invariants, by specifying the shape of the “core” of the invariant (a union of arithmetic
progressions within “bounded chains”), as well as restricting the problem to each strongly
connected component one by one. We view this as a compositional approach for computing
inductive invariants. As a theoretical application, we prove that the reachability problem
for one-counter automata with tests is between NP and PNPNP , and in fact in coNPNP if only
disequality tests are present.

The previous work on OCA with disequality tests by Almagor et al. [1] enables us to
focus (subject to a technical assumption) on configurations in a small number of bounded
chains (see Section 4). The structure of the set of reachable configurations in these chains
admits a short description. At the core of our invariants are exactly such sets, and we need
an appropriate notion of “inductiveness”, a condition to control “leaks” that violate the
assumption above, and a verification mechanism for all these conditions.

One-counter automata. OCA can be seen as an abstraction of pushdown automata, a
widely used model of recursive systems. Conceptually very simple, OCA are at the heart of a
number of results in formal verification; see, e.g., [2, 4, 34]. Multi-counter automata are used
to model imperative code with numerical data types [30,31]; roughly speaking, a reachability
query is expressed in logic, as a formula in existential linear integer arithmetic. In these
two references an additional pushdown stack is available, capturing recursive function calls.
We refer the reader to [16] for a retrospective on underlying “pumping” results for OCA,
crucial for many of the recent results. There is also a rich history of research on behavioural
equivalences and model checking for a variety of one-counter processes and systems; see,
e.g., [10, 27,47,48].

The above-mentioned result that reachability in OCA is NP-complete, by Haase, Kreutzer,
Ouaknine, and Worrell [28], has recently been built upon to give a representation of the entire
reachability relation in existential linear integer arithmetic, with an implementation available
online, by Li, Chen, Wu, and Xia [40]. The idea of “lifting” candidate runs to actual runs,
which is shown in [28] and which we develop further by adding support for disequality tests,
has been used in other settings as well [5, 37, 41]. For example, a construction similar to our
Lemma 7.1 is an element of the proof of a tight upper bound on the length of shortest runs
in OCA without disequality tests [16]. In comparison to the latter paper, our construction
need not consider divisibility properties of run lengths, but at the same time applies in a
more general scenario: the updates of our OCA are specified in binary notation (that is,
succinctly); and, naturally, our OCA may have disequality tests.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:5

We already mentioned above that, despite appearing atypical at first glance, the disequality
tests do in fact contribute to the modeling power: namely, when modeling code, these tests
enable the simulation of the else branch in conditional statements comparing an integer
variable for equality with some constant. The framework of Hague and Lin [30,31] assumes
that each counter variable can undergo at most k reversals (i.e., changes between “increasing”
and “decreasing”), where k is fixed. This assumption is strong; without it, a reachability
instance would require a logical formula of exponential size. Results of Haase et al. [28] and
Li et al. [40] avoid this assumption, but, for the standard syntax of one-counter automata,
if –then–else conditionals remain out of reach – or rather require an exponential expansion of
the automaton. Our leaky invariants technique allows us to handle such conditionals with
equality tests on counters, without assuming any bound on the number of reversals.

3 OCA with Equality and Disequality Tests

We denote by Z and N the set of all integers and all nonnegative integers, respectively.
A constraint is either an equality test of the form x = k with k ∈ N, a disequality test

of the form x ̸= k with k ∈ N, or simply true; x denotes here our counter, which is a
nonnegative integer variable. Let C denote the set of all possible constraints. A one-counter
automaton (OCA) with equality and disequality tests is a triplet A = (Q, ∆, τ), where Q is a
finite set of states, ∆ ⊆ Q ×Z× Q is a finite set of transitions and τ : Q → C is the constraint
function. The automaton A is an OCA with disequality tests if the constraint function τ

does not have any equality tests. We sometimes refer to the constraints as guards.2
Syntactically, A can be seen as an integer-weighted graph with directed edges between

states. Viewed this way, A can be decomposed into a set of strongly connected components
(SCCs). The automaton A is strongly connected when it has one strongly connected component
only. A path π in A is a sequence π = (t1, t2, . . . , tn) of transitions, where ti = (qi−1, ai, qi)
for each i and n ≥ 0. We may refer to π as a q0–qn path. The length of such a path is
len(π) def= n. The effect of π is eff(π) def=

∑n
i=1 ai. A cycle is a path starting and ending at

the same state; for q ∈ Q, a q-cycle is a q–q path. A path or cycle is simple if it contains
no repetition of states, except that a simple cycle has the same starting and ending state.
Every simple cycle has length less than or equal to |Q|.

The size of an OCA A is the bit size of its encoding, where all numbers are written in
binary. We write ∥∆∥ and ∥τ∥ to refer to the maximum absolute value of a transition update
and test, respectively.

Configurations and runs. The semantics of A is defined based on the set of valid configura-
tions and the reachability relation, as follows.

A configuration is a pair (q, z) comprising a state q ∈ Q and a nonnegative integer z ∈ N;
we may refer to z as the counter value. We say that (q, z) is a valid configuration if
it respects the constraint τ(q). Write Conf def= Q × N for the set of all configurations.
Given two configurations (q, z), (q′, z′) and t ∈ ∆, we write (q, z) t−→ (q′, z′) when t =
(q, z′ − z, q′); we denote by (q, z) −→ (q′, z′) the existence of such a transition. A run of A is
a sequence (q0, z0), . . . , (qn, zn) of valid configurations, for n ≥ 0, such that there exists a
path (t1, . . . , tn) with (qi−1, zi−1) ti−→ (qi, zi). We say that (qn, zn) is reachable from (q0, z0)

2 We use automata with constraints on states. Automata with constraints on transitions are, for our
purposes, equivalent.

CONCUR 2024

17:6 Invariants for OCA with Disequality Tests

if there exists a run from (q0, z0) to (qn, zn). We write (q0, z0) ∗−→ (qn, zn) to denote the
existence of such a run. Given a path π, we write (q0, z0) π−→ (qn, zn) if π yields a run from
(q0, z0) to (qn, zn).

A path π has no hope to yield a run from (q, z) if z + eff(π′) < 0 for some prefix π′ of π.
We denote by drop(π) the maximum of −eff(π′) over all prefixes π′ of π, and call it the drop
of π. Intuitively, drop(π) is the smallest counter value z ∈ N such that π, when applied from
(q, z), remains nonnegative; note that hitting a guard is not a consideration here.

We use the following standard operators: Post(c) def= {c′ ∈ Conf | c −→ c′} and Pre(c) def=
{c′ ∈ Conf | c′ −→ c}. For X ⊆ Conf , we write Post(X) def=

⋃
c∈X Post(c) and Pre(X) def=⋃

c∈X Pre(c). Also, Post∗(X) def= {d | ∃c ∈ X : c
∗−→ d} and Pre∗(X) def= {c | ∃d ∈ X : c

∗−→ d}.
For an OCA A = (Q, ∆, τ), we define the reverse of A as AR def= (Q, ∆R, τ) where

(q, a, q′) ∈ ∆R if and only if (q′, −a, q) ∈ ∆. Given configurations c and d and a path π in A,
we have c

∗−→ d in A if and only if d
∗−→ c in AR.

The reachability problem. We consider the following decision problem.
Reachability
Input: An OCA A with equality and disequality tests, a valid initial configuration src, and a

valid target configuration trg.
Output: Does src ∗−→ trg hold?

The model of OCA with disequality tests has been studied in [35] and [1]. The latter
paper provides polynomial-time algorithms for the coverability problem: “given src and a
state q, does there exist z such that src ∗−→ (q, z) ?” and the related unboundedness problem:
“is the set of configurations reachable from src infinite?”. The reachability problem, however,
is NP-hard even without tests, see Figure 1 (Left).

Equality tests. In the reachability problem in OCA with equality and disequality tests, the
main technical challenge stems from disequality tests. Indeed, a state with an equality test
only has one valid configuration hence need not be visited more than once.

We now work with OCA with disequality tests only. We will discuss in Section 7.5 how
our techniques are affected by the addition of equality tests.

4 Getting Familiar with Disequality Tests

In this section, we fix an OCA A = (Q, ∆, τ) with disequality tests and two valid configura-
tions src and trg.

A configuration c is bounded when Post∗(c) is finite, and unbounded otherwise. It is
known, although far from trivial, that one can decide boundedness in polynomial time.

▶ Lemma 4.1 (see [1, Theorem 19]). Given an OCA with disequality tests and a configuration c,
it is decidable in polynomial time whether c is bounded or unbounded.

A candidate run is a run except that neither the nonnegativity condition nor the dis-
equality tests are necessarily respected. Formally, a candidate run is simply a sequence
(q0, z0), . . . , (qn, zn) where all (qi, zi) ∈ Q × Z, n ≥ 0, and such that there exist transitions
(qi−1, ai, qi) ∈ ∆ with zi+1 = zi + ai for all i ∈ {1, . . . , n}. We write (q0, z0) ∗−→

Z
(qn, zn).

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:7

s
+a1

· · ·

· · ·
r

+an

· · ·

· · ·
t

−v q ̸= 5

̸= 30

̸= 15

+2

+1

+2

Figure 1 Left. This OCA without tests is constructed from an instance of the subset sum
problem (a1, . . . , an, v); this is in fact how the reachability problem in OCA without tests is proved
to be NP-hard in [28]. Configuration (t, 0) can be reached from configuration (s, 0) whenever there
exists a subset of {a1, . . . , an} whose elements sum up to v. Note that all unlabelled transitions
have update zero. The set of configurations reachable from (s, 0) can have size exponential in n, and
its structure is unwieldy.
Right. (For Section 4.) The named state q belongs to Q+ since there is a simple q-cycle
with positive effect. There are six bounded chains of configurations at q. The disequality test
̸= 5 bounds the counter values with residue 0 modulo 5, so {(q, 0)} and {(q, 5)} are bounded
chains. The disequality test ̸= 30 bounds the counter values with residue 3 modulo 5, so
{(q, 3), (q, 8), (q, 13), (q, 18), (q, 23), (q, 28)} is a bounded chain. The disequality test ̸= 15 bounds
the counter values with residue 2 modulo 5, so {(q, 2), (q, 7), (q, 12)} is a bounded chain.

An ingredient of the NP upper bound for reachability in OCA without disequality tests [28]
is establishing conditions under which a candidate run can be lifted to a run. We adapt the
argument to OCA with disequality tests.

▶ Lemma 4.2. Let A be a strongly connected OCA with disequality tests. If src is unbounded
in A and trg is unbounded in AR, then there is a run from src to trg in A (src ∗−→ trg) if and
only if there is a candidate run from src to trg in A (src ∗−→

Z
trg).

The hypothesis that A is strongly connected is crucial. Indeed, if A is strongly connected
and src = (s, v) is unbounded in A, then there is a cycle of positive effect that, from src,
can be applied infinitely often to reach (s, z) with z arbitrarily large. If A is not strongly
connected, it could be that the positive cycles that make src unbounded are in another SCC
and that the set {z | (s, v) ∗−→ (s, z)} is finite.

Let Q+ ⊆ Q be the set of states q ∈ Q such that there exists a q-cycle γ with len(γ) ≤ |Q|
and with eff(γ) > 0. For each q ∈ Q+, let γq be such a q-cycle with minimal drop. We fix
this choice for the remainder of the paper. We define

Conf+
def= {(q, z) : q ∈ Q+ and z ≥ drop(γq)}.

▶ Lemma 4.3. There is a polynomial-time algorithm to identify Q+ and to choose cycles γq

for all q ∈ Q+. Moreover, membership in Conf+ can be decided in polynomial time.

The proof of Lemma 4.3 can be found in Appendix A.

▶ Remark 4.4. Our choice of Q+ differs slightly from the definition found in [1]: we use short
cycles (len(γ) ≤ |Q|) rather than simple cycles. For simple cycles, the ability to compute,
in polynomial time, the minimal drop of a positive-effect simple q-cycle (for each q ∈ Q)
is not justified in [1]. In fact, in Appendix B, we prove that deciding, for a given OCA
without tests A and a given state q, whether there exists a positive-effect simple q-cycle in
A is an NP-complete problem. However, all constructions and arguments of [1] appear to
be insensitive to the replacement of “simple cycles” by “short cycles”. As a result, we can
still use polynomial-time algorithms for coverability and for unboundedness in OCA with
disequality tests (1-VASS with disequality tests).

CONCUR 2024

17:8 Invariants for OCA with Disequality Tests

The set of all (q, z) ∈ Conf+ can be partitioned into q-chains. For each q ∈ Q+, let
Conf+(q) = ({q} × N) ∩ Conf+. A q-chain C is a maximal non-empty subset C ⊆ Conf+(q)
such that, for every two distinct c, c′ ∈ C, either c is reachable from c′ by iterating γq, or
vice versa. In other words, C is a non-empty minimal subset of Conf+(q) (with respect to
set inclusion) such that, for all c ∈ C and all c′ ∈ Conf , if c

γq−→ c′ or c′ γq−→ c then c′ ∈ C.
A q-chain is bounded if it is a finite set, otherwise it is unbounded. Note that configurations

in unbounded chains are all themselves unbounded, but configurations in bounded chains
need not be bounded (they may be unbounded). Because the number of disequality guards
that a cycle γq may encounter is small, so is the total number of bounded chains.

▶ Lemma 4.5 (see [1, Remark 6]). There are at most 2|Q|2 bounded chains.

Given a chain C, the counter values z of every (q, z) ∈ C have the same remainder
modulo eff(γq). Henceforth, a bounded q-chain can be described as [ℓ, u] ∩ (r + eff(γq) · N)
where [ℓ, u] is an interval of nonnegative integers and r+eff(γq)·N is an arithmetic progression
with initial term r and difference eff(γq). Since the OCA A is encoded in binary, the values
of l, u, r, and |γq| may be exponential in the size of A. See Figure 1 (Left) for an example.

5 Pessimistic Reachability

In this section, we exhibit a family run of runs, namely pessimistic runs, that are guaranteed
to admit an NP certificate. This will already enable us to prove, in Section 6, that the
reachability problem is in coNPNP in the special case where the OCA is strongly connected.

Let A be an OCA with disequality tests. We call a run of A pessimistic if none of its
configurations are in Conf+, except possibly the first one. Of course, some pessimistic runs
may be exponentially long relative to the size of A; however, we provide a way to handle
them. For S ⊆ Conf+, we write Post∗

−(S) for the set of configurations reachable from S using
only pessimistic runs. In particular, S ⊆ Post∗

−(S).
Consider the following decision problem:

Pessimistic Reachability
Input: An OCA A with disequality tests, and two configurations src and trg.
Output: Is there a pessimistic run from src to trg in A?

Pessimistic runs turn out to be very handy, not least because we can adapt an existing
“flow” technique [28] to decide pessimistic reachability.

▶ Lemma 5.1. The pessimistic reachability problem is in NP.

In a nutshell, the idea [28] is to guess how many times the run traverses each transition.
The guessed numbers are subject to polynomial-time checkable balance and connectivity
conditions, akin to, e.g., [46]. However, we cannot check whether the (possibly very long)
run constructed from the flow violates disequality constraints, so the technique cannot be
applied directly.

Our solution uses the pessimism of the run. Let x ̸= g be a guard on state q. We split
the run in two: in the first part, all visits to q are above g; then the run jumps the guard so
that, in the second part, all visits are below g. This way, with at most |Q| splits, we can
reduce the problem to the case in which the run does not jump any disequality guard (always
staying above or below each of them).

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:9

6 Reachability in Strongly Connected OCA

In this section, for pedagogical purposes, we study the particular case where the OCA is
strongly connected. The case with multiple SCCs presented in Section 7 is more technical
but relies on the same key idea.

▶ Theorem 6.1. The reachability problem for strongly connected OCA with disequality tests
belongs to the complexity class coNPNP.

We sketch the proof of Theorem 6.1 below. Throughout the section, we fix a strongly
connected OCA with disequality tests A and two configurations src and trg, and we are
interested in whether src ∗−→ trg.

6.1 Ruling Out the Unbounded Case
By Lemma 4.1, given an instance of reachability, we can check in polynomial time whether
src is unbounded in A and trg is unbounded in AR. If both are true, then, by Lemma 4.2,
it suffices to determine whether there exists a candidate run from src to trg. The existence
of a candidate run can be decided in NP (e.g., using integer linear programming, see [12]).
This case will not affect our complexity result because NP ⊆ coNPNP. Thus, without loss of
generality, we may assume that src is bounded in A or trg is bounded in AR. Moreover, if
trg is bounded in AR, we symmetrically work with AR instead of A.

In the remainder of this section, we assume that src is bounded in A.

6.2 Inductive Invariants in the Bounded Case
We will show that src /

∗−→ trg if and only if there exists a certificate of a particular shape
witnessing this non-reachability. This certificate takes the form of an inductive invariant
separating src and trg. The exact set of configurations comprising this inductive invariant
is unwieldy, so we concentrate on its core instead. This set of core configurations admits a
short representation, as follows.

We call an arithmetic progression on state q ∈ Q a set of configurations {(q, v) | ℓ ≤ v ≤
L ∧ ∃k ∈ N, v = kp + s} with p, s, ℓ, L ∈ N. An arithmetic progression can be specified by
writing q and the numbers p, s, ℓ, L. A set of configurations has a concise description if it is
a union of at most 2|Q|2 + 1 arithmetic progressions whose configurations have counter value
bounded by 2|Q| · ∥∆∥ · ∥τ∥. Such a set can be described in polynomial space.

The set of all configurations in bounded chains has a concise description. This also holds
for the set R of all reachable configurations in bounded chains: indeed, if a configuration
of a chain can be reached, the same is true for all configurations above in the same chain.
Because src is bounded, unbounded chains cannot be reached, and this R is in fact the set of
reachable configurations in all chains. (Observe that runs that reach configurations from R

may well visit the complement of Conf+.)

▶ Lemma 6.2. The set R of reachable configurations in Conf+ has a concise description.

Intuitively, R is our desired “core invariant”, and the desired invariant is the set Post∗
−(R).

However, when given a set I, it is not easy to check whether I is actually equal to R. Instead,
the following theorem defines possible invariant cores by 3 conditions.

CONCUR 2024

17:10 Invariants for OCA with Disequality Tests

Conditions involving src and trg are self-explanatory. Set inclusion Post(Post∗
−(I)) ⊆

Post∗
−(I) would express inductiveness (closure of the set under Post(·)). However, verifying

this condition is computationally expensive, and we replace it with a version that “focuses”
on the core only, and thus has I rather than Post∗

−(I) on the right-hand side.

▶ Theorem 6.3. Suppose src is bounded in A. Then src /
∗−→ trg if and only if there exists a

set I ⊆ Conf+ ∪ {src} with concise description such that:
(Cond1) src ∈ I,
(Cond2) trg /∈ Post∗

−(I), and
(Cond3) Post(Post∗

−(I)) ∩ Conf+ ⊆ I.

Proof. First, assume that there is such a set I. Because trg /∈ Post∗
−(I) by (Cond2), it

suffices to prove that Post∗(src) ⊆ Post∗
−(I). We proceed by induction on the length of

the run from src to c ∈ Post∗(src). The base of induction is (Cond1). Assume that we
have d ∈ Post∗

−(I) and d −→ c. If c /∈ Conf+ then we have a pessimistic run from I to c,
so c ∈ Post∗

−(I). If c ∈ Conf+ then c ∈ Post(Post∗
−(I)) ∩ Conf+, hence c ∈ I by (Cond3).

For the other direction, assume that trg is not reachable from src. Let I
def= R ∪ {src};

by Lemma 6.2, I has a concise description. (Cond1) and (Cond2) are trivially satisfied.
Moreover, Post(Post∗

−(I)) ∩ Conf+ ⊆ Post∗(src) ∩ Conf+ ⊆ I, hence (Cond3) is satisfied. ◀

6.3 The Complexity of Reachability in Strongly Connected OCA
We now prove that reachability is in coNPNP by, equivalently, proving that non-reachability
is in NPNP. Roughly speaking, a problem is in NPNP whenever this problem is solvable in
non-deterministic polynomial time by a Turing machine which has access to an oracle for
some NP-complete problem. The oracle is a black box that may provide the answer to any
problem in NP (and therefore to any problem in coNP).

As argued in Section 6.1, we assume with no loss of generality that src is bounded. By
Theorem 6.3, we have src /

∗−→ trg if and only if there exists I satisfying the three conditions
(Cond1), (Cond2), and (Cond3). Moreover, by the same theorem, I can be assumed to have
a concise description. Thus, we can guess such a set I in non-deterministic polynomial time.
It remains to prove that the verification that a set I satisfies the three conditions can be
performed using an NP oracle. To this end, we prove that this verification is a coNP problem.
Indeed, I does not satisfy the three conditions when:

either src ̸∈ I (which can be checked efficiently),
or trg ∈ Post∗

−(I) (this is when there is a small configuration c such that c ∈ I and
trg ∈ Post∗

−(c)),
or there are some small configurations c and d such that c ∈ I, d ∈ Post∗

−(c), and some
successor of d belongs to Conf+ but not to I.

The adjective small should here be understood as “bounded by an exponential in the size of
A, src, and trg”. In fact, it is fairly easy to obtain an exponential bound on configurations
to consider. Thanks to Lemma 5.1, verification of both whether there is a c ∈ I such that
trg ∈ Post∗

−(c) and whether there exist c ∈ I, d ∈ Post∗
−(c), and e ∈ Post(d) such that e /∈ I

are in NP. Since membership in Conf+ can be checked in polynomial time by Lemma 4.3,
the entire third condition is also an NP condition. This completes the proof of Theorem 6.1.

7 Combining Strongly Connected Components

In this section, we extend the techniques from Section 6 to the general case in which the
OCA is not assumed to be strongly connected. We fix an OCA A with disequality tests and
two configurations src and trg.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:11

We first highlight why the techniques developed above do not apply to this general case.
In Section 6, the hypothesis that A is strongly connected was necessary for the application of
Lemma 4.2. When A is not strongly connected, knowing that src is unbounded is no longer
satisfactory. Indeed, it no longer implies the existence of a positive cycle involving its state,
as the positive cycle allowing us to pump up could be in another SCC. We need to be able
to specify whether a configuration is unbounded within its own SCC or not.

7.1 Locally Bounded Configurations and Runs
Locally bounded configurations. Given a SCC S of A, we denote by AS the automaton
obtained when restricting A to states and transitions within S. A configuration c is locally
bounded if c is bounded in AS where S is the SCC of c. We denote by L the set of all locally
bounded configurations (and by LR in AR). Configurations that are not locally bounded are
referred to as locally unbounded. We generalise the lifting technique from Lemma 4.2.

▶ Lemma 7.1 (Lifting). For all c /∈ L and d /∈ LR, we have c
∗−→ d if and only if c

∗−→
Z

d.

Locally bounded runs. A run c
π−→ d is said to be locally bounded if all configurations visited

by the run are locally bounded. We denote such a run by c
π−→
L

d, and denote its existence by

c
∗−→
L

d. Notice that a locally bounded run may go through several SCCs. Moreover, a run
starting from a locally bounded configuration is not always locally bounded: once it goes to
a new SCC, it may visit configurations that are not locally bounded. We define the locally
bounded counterpart LPost∗

− of the pessimistic post-star operator: d ∈ LPost∗
−(c) if there

is a pessimistic and locally bounded run from c to d. We extend this definition to sets of
configurations X in the usual way. Dually, we also define, for every set of configurations X,
the set LPre∗

+(X) as the same notion but in the reverse OCA AR. We extend Lemma 5.1 to
these new operators.

▶ Lemma 7.2. Given c, d ∈ Conf , deciding whether d ∈ LPost∗
−(c) is in NP.

Proof sketch. We split the run on its transitions between SCCs. We apply Lemma 5.1 on
the portions remaining in one SCC. Since the run is pessimistic, we can bound all the counter
values in it. The run is locally bounded when the first configuration visited in each SCC is
locally bounded, which is checked using Lemma 4.1. ◀

7.2 Leaky Invariants
Unlike in the strongly-connected case, a single invariant construction is not sufficient for our
needs. Indeed, if src is locally bounded but unbounded, then one could imagine the invariant
technique from Theorem 6.3 applied to the SCC S of src, but then this invariant would not
apply to other SCCs. For example, there could be runs that are locally bounded in the
SCC Ssrc of src but not in the SCC Strg of trg, making the invariant inapplicable. Instead,
assuming that trg is locally bounded in AR, one may consider in the SCC of trg an invariant
constructed in the reverse automaton AR. We therefore employ a pair of invariants, one
for A (the forward invariant) and another one for its reverse AR (the backward invariant).
The two invariants will induce two sets of configurations that, in a negative instance of the
reachability problem, separate the source and target.

The following lemma will allow us to avoid treating src and trg separately. The set Conf R
+

is defined as the counterpart of Conf+ in AR.

CONCUR 2024

17:12 Invariants for OCA with Disequality Tests

▶ Lemma 7.3. We may assume that src ∈ Conf+ ∩ L and trg ∈ Conf R
+ ∩ LR.

We now define our notion of a leaky invariant. As in Section 6, we represent the invariants
using core sets of configurations that can be succinctly described, denoted by I and J . Our
invariants must be inductive in the following weak sense:

▶ Condition 7.4. Let I ⊆ Conf+ ∩ L and J ⊆ Conf R
+ ∩ LR be sets of configurations.

The pair (I, J) is inductive if

(Ind) Post(LPost∗
−(I)) ∩ Conf+ ∩ L ⊆ I and

Pre(LPre∗
+(J)) ∩ Conf R

+ ∩ LR ⊆ J .

Notice that I and J play symmetric roles in A and AR. We now provide some intuition
for the (forward) inductive condition for I. The set I only contains configurations from
Conf+ ∩ L, because the set Conf+ ∩ L has a regular structure thanks to bounded chains.
The set I is, again, only the core of the invariant. The full invariant3 is Post∗

−(I) ∪
Post(Post∗

−(I)), but this set is not easily described (see Remark 7.8). This explains why we
use the composition Post(LPost∗

−(·)) instead of the single-step Post(·) operator traditionally
used to define inductiveness.
▶ Remark 7.5. We refer to our invariants as leaky, because they are not inductive in the
traditional sense. Indeed, our invariants are “focused” on locally bounded configurations, and
can be escaped by transitions to locally unbounded configurations. This leak may, however,
only happen with transitions going from one SCC to another.

▶ Condition 7.6. Let I, J ⊆ Conf be sets of configurations.
The pair (I, J) is a separator if, for all c ∈ I and d ∈ J ,
(Sep1) c ̸→ d; and
(Sep2) if c /∈ L and d /∈ LR, then c /

∗−→
Z

d.

Firstly, (Sep1) will forbid I and J from being connected by a single step. Secondly,
(Sep2) will forbid connection between I and J using the lifting technique of Lemma 7.1.
This does not, in general, prevent the existence of runs from I to J ; it will do so, however,
for our leaky invariants that combine Conditions 7.4 and 7.6.

▶ Definition 7.7. Let I ⊆ Conf+ ∩ L and J ⊆ Conf R
+ ∩ LR. Consider the sets

I := Post∗
−(I) ∪ Post(Post∗

−(I)) and
J := Pre∗

+(J) ∪ Pre(Pre∗
+(J)).

We call the pair (I, J) a non-reachability witness for src and trg if (I, J) is inductive, (I, J)
is a separator, src ∈ I, and trg ∈ J .

The pair of sets (I, J) forms the core of the invariant, namely I represents the forward
leaky invariant and J represents the backward leaky invariant. In this case we also say
that (I, J) induces the separator (I, J). A visualisation of a pair (I, J) and its induced
separator (I, J) can be seen in Figure 2. A helpful intuition is that I is approximately
Post∗

−(I) (and similarly J is approximately Pre∗
+(J)). One additional step of Post(·) (and

Pre(·), respectively) ensures that the “outer boundary” of this closure should also be included
in the set.

3 Our invariant is Post∗
−(I) ∪ Post(Post∗

−(I)) but the operator that appears in Condition 7.4 is LPost∗
−(·).

In Appendix C, we discuss the issues encountered if Post∗
−(·) ∪ Post(Post∗

−(·)) was used in Condition 7.4.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:13

I

J
S1 S2 S3 S4

J4
J3

J2
J1

I1
I2

I3
I4

src

trg

c

d

c′

d′

Figure 2 Core inductive sets and the separator they induce. The core of the forward leaky
invariant is I = I1 ∪ I2 ∪ I3 ∪ I4 (the blue circular sets) and the core of the backward leaky invariant
is J = J1 ∪ J2 ∪ J3 ∪ J4 (the red circular sets). The induced separator (I, J) is shown as blue and
red rounded quadrilaterals containing the core sets. Notice that src ∈ I and trg ∈ J . The upwards
coiled arrow from c′ represents that c′ is locally unbounded in the SCC S2 and the downwards
coiled arrow from d′ represents that d′ is locally unbounded in the SCC SR

3 . Note also the separator
conditions: Condition 7.6 (Sep1) means that configurations c ∈ I and d ∈ J cannot reach one
another by one transition, so c ̸→ d; Condition 7.6 (Sep2) means that unbounded configurations
c′ ∈ I and d′ ∈ J cannot reach one another via a candidate run, so c /

∗−→
Z

d.

▶ Remark 7.8. As in Section 6, our representation of invariants refers to their core only, i.e., the
pair (I, J). The example in Fig. 1 (left) demonstrates that the set Post∗

−(I) ∪ Post(Post∗
−(I))

does not always have a tractable description. The set of all possible sums of subsets has no
convenient description, therefore we want it to be captured by Post∗

−(I) ∪ Post(Post∗
−(I))

only and not by I itself.

▶ Theorem 7.9. In an OCA A with disequality tests, trg is not reachable from src if and
only if there exists a non-reachability witness. Moreover, in this case, there is always a
non-reachability witness with a concise description.

In Section 7.3, we define “perfect cores”, which we use in Section 7.4 to sketch a proof
of Theorem 7.9 (details can be found in the full version).

7.3 Perfect Cores
Condition (Ind) on the core of leaky invariants captures a weak inductiveness property, which
is central to our approach. We will now discuss two features of this condition that are used
in the proof of Theorem 7.9.

Our conditions capture a specific invariant, which we now define. Consider the set

B
def= {c ∈ Conf : src ∗−→

L
c}

In words, B contains all configurations reachable from src using locally bounded runs. In
line with ideas from Section 6, we do not want to store B entirely, so we will restrict the core
to configurations in bounded chains. We call perfect core the set B ∩ Conf+; the term perfect
is motivated by the fact that Definition 7.7 aims to capture this set exactly. Similarly, let
BR := {c ∈ Conf : c

∗−−→
LR

trg}. The perfect core in the reverse automaton is BR ∩ Conf R
+.

CONCUR 2024

17:14 Invariants for OCA with Disequality Tests

The two features of (Ind) are summarised in the following two lemmas. We use the
words “sound” and “complete” to characterise the relationship between Condition 7.4 (as
part of Definition 7.7) and the perfect cores defined above. Completeness expresses that in
every instance of non-reachability, the perfect cores defined above induce a non-reachability
invariant. Conversely, soundness states that every invariant must contain all configurations
from the perfect cores. (Thus, the perfect core are the smallest possible invariants.)

▶ Lemma 7.10 (Soundness). For all I ⊆ Conf+ ∩ L and J ⊆ Conf R
+ ∩ LR such that src ∈ I

and trg ∈ J , if (I, J) is inductive (Condition 7.4), then B ∩ Conf+ ⊆ I and BR ∩ Conf R
+ ⊆ J .

Proof sketch. Condition 7.4 for I gives Post(LPost∗
−(I)) ∩ Conf+ ∩ L ⊆ I. Let c ∈ B ∩ Conf+

be a configuration of the perfect core. Thus, src reaches c by a locally bounded run. It is not
always true that c ∈ Post(LPost∗

−(src)) because this run does not have to be pessimistic: it
may observe configurations in Conf+. We prove by induction that all configurations in Conf+
along the run are in I, using the property that Post(LPost∗

−(I)) ∩ Conf+ ∩ L ⊆ I once for
each such configuration; this eventually proves that c ∈ I. The proof is analogous for J . ◀

▶ Lemma 7.11 (Completeness). If I = B ∩ Conf+ and J = BR ∩ Conf R
+, then (I, J) is

inductive (Condition 7.4).

Proof sketch. We prove that Post(LPost∗
−(B ∩ Conf+)) ∩ Conf+ ∩ L ⊆ B ∩ Conf+. Let

c ∈ Conf+ be locally bounded and belong to Post(LPost∗
−(B ∩ Conf+)). All configurations in

LPost∗
−(B ∩ Conf+) are in B by the definition of B, so c can be reached in one step from a

configuration d ∈ B. By definition, d is reachable from src with a locally bounded run; since
c is itself locally bounded, this is also true for c, and so c ∈ B. The case of J is similar. ◀

7.4 Non-reachability Witnesses and Their Complexity
▶ Theorem 7.9. In an OCA A with disequality tests, trg is not reachable from src if and
only if there exists a non-reachability witness. Moreover, in this case, there is always a
non-reachability witness with a concise description.

Proof sketch. First, if src /
∗−→ trg then the perfect cores I = B ∩ Conf+ and J = BR ∩ Conf R

+
form a non-reachability witness. Indeed, by Lemma 7.11, (I, J) is inductive. Moreover, the
induced I = Post∗

−(I) ∪ Post(Post∗
−(I)) and J = Pre∗

+(J) ∪ Pre(Pre∗
+(J)) form a separator.

We have I ⊆ Post∗(src) and J ⊆ Pre∗(trg), proving Condition 7.6 (Sep1). If Condition 7.6
(Sep2) fails, Lemma 7.1 yields a contradiction. Moreover, I and J have a concise description
thanks to bounded chains.

Conversely, suppose there is a non-reachability witness (I, J). Assume for the sake of
contradiction that src ∗−→ trg. By Lemma 7.10, since (I, J) is inductive, B ∩ Conf+ ⊆ I and
BR ∩Conf R

+ ⊆ J . Consider a run from src to trg. It must leave I = Post∗
−(I)∪Post(Post∗

−(I))
therefore it visits locally unbounded configurations. Let c be the first such configuration
visited. Similarly, let d be the last visited configuration that is locally unbounded in AR.
First, if c occurs before d, then Condition 7.6 (Sep2) is violated. Second, if c occurs after d,
then there is an overlap in the runs from src to c and from d to trg. The overlap must be in
I ∩ J , leading to a violation of Condition 7.6 (Sep1). ◀

▶ Theorem 7.12. The reachability problem for OCA with disequality tests belongs to the
complexity class coNPNP.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:15

Proof sketch. We use Theorem 7.9, deciding the existence of a non-reachability witness in
NPNP. Recall that NPNP is introduced in Section 6.3. Let a pair (I, J) be given; we show
that a violation of the conditions for being a non-reachability witness can be checked in NP.

One can check in polynomial time whether src ∈ I and trg ∈ J .
Violation of Condition 7.4 (Ind) is an NP property. Indeed, this follows because mem-
bership in LPost∗

−(·) is in NP (by Lemma 7.2) and membership in Conf+ and L is
polynomial-time checkable (by Lemma 4.3 and Lemma 4.1, respectively).
Violation of Condition 7.6 (Sep1) is in NP, because I := Post∗

−(I) ∪ Post(Post∗
−(I)),

J := Pre∗
+(J) ∪ Pre(Pre∗

+(J)), and membership of given configurations in the pessimistic
post-star (optimistic pre-star, respectively) is in NP by Lemma 5.1. This assumes that
we have an exponential bound on relevant configurations.
To check violation of Condition 7.6 (Sep2) in NP, we again use Lemma 4.1 for L, as well
as the fact that the existence of a candidate run is in NP (by integer programming). ◀

7.5 Adding Equality Tests
The previous techniques have been developed for OCA with disequality tests only. In
particular, the lifting argument of Lemma 7.1 does not hold in the presence of equality tests:
candidate runs that visit a state with an equality test cannot be lifted to greater counter
values. However, at the cost of increasing the complexity, one can handle equality tests.

Complexity class PNPNP consists of decision problems solvable in polynomial time with
access to an NPNP oracle (which can solve NPNP problems in one step).

▶ Corollary 7.13. The reachability problem for OCA with equality and disequality tests
belongs to the complexity class PNPNP .

Proof. Let A be such an OCA with tests, and src and trg two configurations. Denote by
Conf = the set of valid configurations at states with equality tests; |Conf =| does not exceed
the number of states in A. Consider the OCA with disequality tests A′ that is obtained by
deleting all states with equality tests (and incident transitions) from A. By Theorem 7.12,
with an NPNP oracle we can build a graph with vertex set Conf = ∪ {src, trg} and edge set
{(c, d) | c

∗−→ d in A′}. Depth-first search in this graph for a path from src to trg takes
polynomial time. ◀

8 Conclusions

We have looked at the reachability problem for one-counter automata with equality and
disequality tests. We have proposed the idea of local inductive invariants and combined them
with the notion of unboundedness within an SCC. Our construction circumvents the lack
of computationally tractable descriptions: indeed, in the subset sum example (Fig. 1 (left)
and Remark 7.8) the reachability set has exponential size, depending on a1, . . . , an. There is
no obvious means of compression available, and guessing/storing a traditional invariant is
prohibitively expensive even for moderate n.

An outstanding theoretical question is characterisation of complexity of reachability in
OCA with disequality tests. We have placed the problem in coNPNP and, in the presence of
equality tests, in PNPNP . Both problems have already been known to be NP-hard. Are they
NP-complete or coNP-hard too? We also leave it open whether our technique can be extended
to other systems and settings, e.g., to parameter synthesis questions (see, e.g., [26, 35,43]).

CONCUR 2024

17:16 Invariants for OCA with Disequality Tests

In a more practical direction, while the general invariant-based effective procedure for
(non-)reachability in vector addition systems [36] has not, to the best of our knowledge, been
implemented, our work identifies these potentially practical ways to reduce the search space
for invariants in VASS. The idea of restricting invariant sets to just a small “core” (in our
case: a union of arithmetic progressions), combined with the compositionality of invariants,
can help to direct an exploration of the search space, or assist a learning algorithm.

References
1 Shaull Almagor, Nathann Cohen, Guillermo A. Pérez, Mahsa Shirmohammadi, and James

Worrell. Coverability in 1-VASS with disequality tests. In Igor Konnov and Laura Kovács,
editors, 31st International Conference on Concurrency Theory, CONCUR 2020, September
1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 38:1–38:20.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

2 Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of single-pass
list-processing programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 599–610, 2011.

3 Nicolas Amat, Silvano Dal-Zilio, and Thomas Hujsa. Property directed reachability for
generalized Petri nets. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes in
Computer Science, pages 505–523. Springer, 2022.

4 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Context-bounded verification of context-free specifications. Proc. ACM Program.
Lang., 7(POPL):2141–2170, 2023.

5 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazic,
Pierre McKenzie, and Patrick Totzke. The reachability problem for two-dimensional vector
addition systems with states. J. ACM, 68(5):34:1–34:43, 2021.

6 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the
coverability problem continuously. In Marsha Chechik and Jean-François Raskin, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume
9636 of Lecture Notes in Computer Science, pages 480–496. Springer, 2016.

7 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. The logical view on
continuous Petri nets. ACM Trans. Comput. Log., 18(3):24:1–24:28, 2017.

8 Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed reachability for infinite-
state systems. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, volume
12652 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021.

9 Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, and Guillermo A. Pérez.
Continuous one-counter automata. ACM Trans. Comput. Log., 24(1):3:1–3:31, 2023.

10 Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-counter
automata is NL-complete. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 131–140. ACM, 2013.

11 Benedikt Bollig, Karin Quaas, and Arnaud Sangnier. The complexity of flat freeze LTL. Log.
Methods Comput. Sci., 15(3), 2019.

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:17

12 Itshak Borosh and Leon Bruce Treybig. Bounds on positive integral solutions of linear
Diophantine equations. Proceedings of the American Mathematical Society, 55(2):299–304,
1976.

13 Aaron R. Bradley. SAT-based model checking without unrolling. In Ranjit Jhala and David A.
Schmidt, editors, Verification, Model Checking, and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings, volume 6538
of Lecture Notes in Computer Science, pages 70–87. Springer, 2011.

14 Aaron R. Bradley. Understanding IC3. In Alessandro Cimatti and Roberto Sebastiani, editors,
Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International Conference,
Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2012.

15 Daniel Bundala and Joël Ouaknine. On parametric timed automata and one-counter machines.
Inf. Comput., 253:272–303, 2017.

16 Dmitry Chistikov, Wojciech Czerwinski, Piotr Hofman, Michal Pilipczuk, and Michael Wehar.
Shortest paths in one-counter systems. Log. Methods Comput. Sci., 15(1), 2019.

17 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and A. Prasad Sis-
tla, editors, Computer Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Science,
pages 154–169. Springer, 2000.

18 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977.

19 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. J. ACM, 68(1):7:1–7:28, 2021.

20 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021.

21 Stéphane Demri and Arnaud Sangnier. When model-checking freeze LTL over counter
machines becomes decidable. In C.-H. Luke Ong, editor, Foundations of Software Science and
Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings, volume 6014 of Lecture Notes in Computer Science,
pages 176–190. Springer, 2010.

22 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip Niksic.
An SMT-based approach to coverability analysis. In Armin Biere and Roderick Bloem, editors,
Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume
8559 of Lecture Notes in Computer Science, pages 603–619. Springer, 2014.

23 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-
complete. Inf. Comput., 243:26–36, 2015.

24 Alain Finkel, Serge Haddad, and Igor Khmelnitsky. Minimal coverability tree construction made
complete and efficient. In Jean Goubault-Larrecq and Barbara König, editors, Foundations
of Software Science and Computation Structures - 23rd International Conference, FOSSACS
2020, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, volume 12077 of Lecture Notes
in Computer Science, pages 237–256. Springer, 2020.

25 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966. doi:10.2140/pjm.1966.16.285.

CONCUR 2024

https://doi.org/10.2140/pjm.1966.16.285

17:18 Invariants for OCA with Disequality Tests

26 Stefan Göller, Christoph Haase, Joël Ouaknine, and James Worrell. Model checking succinct
and parametric one-counter automata. In Samson Abramsky, Cyril Gavoille, Claude Kirchner,
Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and
Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10,
2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 575–586.
Springer, 2010.

27 Stefan Göller and Markus Lohrey. Branching-time model checking of one-counter processes
and timed automata. SIAM J. Comput., 42(3):884–923, 2013.

28 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in
Computer Science, pages 369–383. Springer, 2009.

29 Michel Hack. Decidability questions for Petri nets. PhD thesis, MIT, 1975. URL: http:
//publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf.

30 Matthew Hague and Anthony Widjaja Lin. Model checking recursive programs with numeric
data types. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
volume 6806 of Lecture Notes in Computer Science, pages 743–759. Springer, 2011.

31 Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded analysis
of multithreaded programs with counters. In P. Madhusudan and Sanjit A. Seshia, editors,
Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA,
July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer Science, pages 260–276.
Springer, 2012.

32 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model checking for
people who love automata. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 36–52. Springer,
2013. doi:10.1007/978-3-642-39799-8_2.

33 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Efficient coverability analysis by proof
minimization. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 - Concurrency
Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September
4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science, pages 500–515.
Springer, 2012.

34 Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for AC -like equational
theories with homomorphisms. In Jürgen Giesl, editor, Term Rewriting and Applications, 16th
International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings, volume
3467 of Lecture Notes in Computer Science, pages 308–322. Springer, 2005.

35 Antonia Lechner, Richard Mayr, Joël Ouaknine, Amaury Pouly, and James Worrell. Model
checking flat freeze LTL on one-counter automata. Log. Methods Comput. Sci., 14(4), 2018.

36 Jérôme Leroux. The general vector addition system reachability problem by Presburger
inductive invariants. Log. Methods Comput. Sci., 6(3), 2010.

37 Jérôme Leroux. Distance between mutually reachable Petri net configurations. In Arkadev
Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2019, December 11-13, 2019,
Bombay, India, volume 150 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019.

38 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 1241–1252. IEEE, 2021.

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf
https://doi.org/10.1007/978-3-642-39799-8_2

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:19

39 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.

40 Xie Li, Taolue Chen, Zhilin Wu, and Mingji Xia. Computing linear arithmetic representation
of reachability relation of one-counter automata. In Jun Pang and Lijun Zhang, editors,
Dependable Software Engineering. Theories, Tools, and Applications - 6th International Sym-
posium, SETTA 2020, Guangzhou, China, November 24-27, 2020, Proceedings, volume 12153
of Lecture Notes in Computer Science, pages 89–107. Springer, 2020.

41 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput.,
13(3):441–460, 1984.

42 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA,
1967.

43 Guillermo A. Pérez and Ritam Raha. Revisiting parameter synthesis for one-counter automata.
In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer
Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference),
volume 216 of LIPIcs, pages 33:1–33:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

44 Louis E. Rosier and Hsu-Chun Yen. A multiparameter analysis of the boundedness problem
for vector addition systems. J. Comput. Syst. Sci., 32(1):105–135, 1986. doi:10.1016/
0022-0000(86)90006-1.

45 Sylvain Schmitz. The complexity of reachability in vector addition systems. SIGLOG News,
3(1):4–21, 2016.

46 Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting in trees for
free. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,
Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,
July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science, pages
1136–1149. Springer, 2004.

47 Alistair Stewart, Kousha Etessami, and Mihalis Yannakakis. Upper bounds for Newton’s
method on monotone polynomial systems, and P-time model checking of probabilistic one-
counter automata. J. ACM, 62(4):30:1–30:33, 2015.

48 Leslie G. Valiant and Mike Paterson. Deterministic one-counter automata. J. Comput. Syst.
Sci., 10(3):340–350, 1975.

A Proof of Lemma 4.3

The proof will use 1-dimensional vector addition systems with states (1-VASS). These are
one-counter automata (as defined in this paper) without any tests:

Syntactically, a 1-VASS is a pair (Q, T), where Q is the set of states and T ⊆ Q × Z × Q

is the set of transitions.
The semantics is the same as that of an OCA with tests (Q, T, true), where the map
true assigns true to all states in Q.

We will consider an auxiliary problem which takes as input a 1-VASS (Q, T), a state q ∈ Q,
and a natural number d (encoded in binary); the problem asks whether there is a positive-
effect q-cycle γ of length at most |Q| such that drop(γ) ≤ d. We show that this problem can
be solved in polynomial time, given that coverability in 1-VASS can be decided in polynomial
time. Coverability is placed in P by a standard reduction from coverability to unboundedness
(see, e.g., [1, Lemma 1]) and a polynomial-time algorithm for unboundedness by Rosier and
Yen [44, Theorem 3.4]. A stronger result from [1] is that coverability in 1-VASS is in fact in
NC2 ⊆ P.

CONCUR 2024

https://doi.org/10.1016/0022-0000(86)90006-1
https://doi.org/10.1016/0022-0000(86)90006-1

17:20 Invariants for OCA with Disequality Tests

Reduction of the auxiliary problem to coverability. Let n = |Q|. We can construct an
instance of coverability as follows. Consider the unfolding (Q′, T ′) where Q′ = {q(i) : q ∈
Q and i ∈ [0, n]} and T ′ = {(p(i−1), a, q(i)) : (p, a, q) ∈ T and i ∈ [1, n]}. Observe that there
exists a positive-effect q-cycle whose length is at most |Q| and with a drop bounded by d in
(Q, T) if and only if (q(i), d + 1) can be covered from (q(i), d) in (Q′, T ′) for some i ∈ [1, n].
Moreover, in that case, such a cycle is obtained directly from a path in the unfolded 1-VASS
that witnesses coverability.

Polynomial-time algorithms for minimum drop and membership in Conf+. We complete
the proof of Lemma 4.3:

First, observe that the minimum drop can be computed by a binary search for d. Let
m = max{|a| : (p, a, q) ∈ T}. By starting from an upper bound of n(m + 1), d can be
computed using a polynomial number (at most ⌈log(n(m + 1))⌉) of coverability queries.
Second, to decide membership of a configuration (q, v) in Conf+, it suffices to check that
q ∈ Q+, to compute drop(γq), and to check that v ≥ drop(γq). ◀

B Finding Positive-Effect Simple Cycles is NP-hard

▶ Proposition B.1. Deciding, for a given OCA without tests A and a given state q, whether
there exists a positive-effect simple q-cycle in A is an NP-complete problem.

Proof. Membership in NP is obtained by using the q-cycle itself as a certificate. To prove
NP-hardness, we provide a reduction from the Hamiltonian path problem. Let G = (V, E) be
a directed graph and let s, t ∈ V be two distinct vertices. A path from s to t is Hamiltonian
if it is simple and visits every vertex in the graph. The Hamiltonian path problem takes
as input a directed graph G = (V, E) and two vertices s, t ∈ V and asks whether there is a
Hamiltonian path from s to t in G.

For the remainder of this proof, we fix an instance of this problem formed by G = (V, E)
and s, t ∈ V . Let n = |V |. We will now construct an OCA without tests (a 1-VASS)
A = (Q, ∆). Define Q := V ∪ {q}, where q ̸∈ V is a new state, and

∆ := {(u, 1, v) : (u, v) ∈ E} ∪ {(q, 0, s), (t, −(n − 2), q)}.

The construction of A takes polynomial time. We claim that there exists a Hamiltonian path
from s to t in G if and only if there exists a positive-effect simple q-cycle in A.

Suppose there exists a Hamiltonian path π from s to t in G. Since π visits every vertex
in G, we have len(π) = n − 1. Consider the path σ in A that is obtained from π by replacing
each edge (u, v) ∈ E with the corresponding transition (u, 1, v) ∈ ∆ as well as prepending
the transition (q, 0, s) and appending the transition (t, −(n − 2), q). Given that π is a simple
path in G, we know that σ is a simple q-cycle in A. Furthermore, given that len(π) = n − 1,
we know that eff(σ) = 0 + n − 1 − (n − 2) = 1, so σ has positive effect.

Conversely, suppose there exists a positive-effect simple q-cycle σ in A. This σ must
begin with (q, 0, s), the only outgoing transition from q, and end with (t, −(n − 2), q), the
only transition leading back to q. Let σ = (q, 0, s) σ′ (t, −(n − 2), q) for some σ′. Given that
eff(σ) ≥ 1 and all other transitions in A have effect 1, we know that len(σ′) ≥ n − 1. Since
the cycle σ is simple and |Q \ {q, s, t}| = n − 2, we conclude that σ′ visits each of these n − 2
states exactly once. So the path π obtained from σ′ by replacing each transition (u, 1, v) ∈ ∆
with the corresponding edge (u, v) ∈ E is a Hamiltonian path from s to t in G. ◀

D. Chistikov, J. Leroux, H. Sinclair-Banks, and N. Waldburger 17:21

C Discussion of the Choice of Operators

In Condition 7.4, we made the choice of using operator LPost∗
−(·), and not Post∗

−(·) ∪
Post(Post∗

−(·)) as in Section 6. Indeed, if we had used Post∗
−(·) ∪ Post(Post∗

−(·)) instead, then
in order to obtain completeness (Lemma 7.11), one would have to change the perfect core. We
want the perfect core to be contained in L ∩ Conf+ so that it has a short representation; the
natural candidate would be to take Post∗(src) ∩ L ∩ Conf+ (and symmetrically in AR). This
perfect core would satisfy the inductive property; however, this choice would break soundness
(Lemma 7.10). Indeed, this invariant could contain a locally bounded configuration c that is
reached from src using a run that visits many locally unbounded configurations in Conf \Conf+
before coming back to L. In this case, it could be that c is not captured by the inductive
property, so one could find an inductive invariant I that does not contain c.

CONCUR 2024

Weighted Basic Parallel Processes
and Combinatorial Enumeration
Lorenzo Clemente # Ñ

Department of Mathematics, Mechanics, and Computer Science, University of Warsaw, Poland

Abstract

We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted
finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm
of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language
equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and
language equivalence of unambiguous BPP, with the same complexity. These are long-standing open
problems for the related model of weighted context-free grammars.

Our second contribution is a connection between WBPP, power series solutions of systems
of polynomial differential equations, and combinatorial enumeration. To this end we consider
constructible differentially finite power series (CDF), a class of multivariate differentially algebraic
series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation
to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite
(holonomic) series, for which no complexity upper bound for equivalence was known. We show
that CDF series correspond to commutative WBPP series. As a consequence of our result on
WBPP and commutativity, we show that equivalence of CDF power series can be decided with
2-EXPTIME complexity.

In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally
arise from combinatorial enumeration, namely as the exponential generating series of constructible
species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley
trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection,
we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of
which was not known before.

The complexity analysis is based on effective bounds from algebraic geometry, namely on the
length of chains of polynomial ideals constructed by repeated application of finitely many, not
necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising
a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since
generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the
theory of WBPP series and CDF power series, exposing several of their appealing properties.

2012 ACM Subject Classification Theory of computation → Quantitative automata; Theory of
computation → Concurrency; Mathematics of computing → Combinatorics

Keywords and phrases weighted automata, combinatorial enumeration, shuffle, algebraic differential
equations, process algebra, basic parallel processes, species of structures

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.18

Related Version Full Version: https://arxiv.org/abs/2407.03638 [24]

Funding Supported by the ERC grant INFSYS, agreement no. 950398.

Acknowledgements We warmly thank Mikołaj Bojańczyk, Arka Ghosh, Filip Mazowiecki, and Paweł
Parys for their comments and support at the various stages of this work.

© Lorenzo Clemente;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clementelorenzo@gmail.com
https://sites.google.com/view/lorenzoclemente/
https://orcid.org/0000-0003-0578-9103
https://doi.org/10.4230/LIPIcs.CONCUR.2024.18
https://arxiv.org/abs/2407.03638
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Weighted Basic Parallel Processes and Combinatorial Enumeration

1 Introduction

We study the equivalence problem for a class of finitely presented seriesoriginating in weighted
automata, process algebra, and combinatorics. We begin with some background.

1.1 Motivation and context
Weighted automata. Classical models of computation arising in the seminal work of Turing
from the 1930’s [75] have a Boolean-valued semantics (“is an input accepted?”) and naturally
recognise languages of finite words L ⊆ Σ∗. In the 1950’s a finite-memory restriction was
imposed on Turing machines, leading to an elegant and robust theory of finite automata [64],
with fruitful connections with logic [18, 28, 74] and regular expressions [47]. Weighted finite
automata over a field F (WFA) [68] were introduced in the 1960’s by Schützenberger as a
generalisation of finite automata to a quantitative series semantics Σ∗ → F (“in how many
ways can an input be accepted?”). This has been followed by the development of a rich
theory of weighted automata and logics [27]. While the general theory can be developed over
arbitrary semirings, the methods that we develop in this work are specific to fields, and in
particular for effectiveness we assume the field of rational numbers F = Q.

The central algorithmic question that we study is the equivalence problem: Given two
(finitely presented) series f, g : Σ∗ → Q, is it the case that f = g? (In algorithmic group theory
this is known as the word problem.) A mathematical characterisation of equivalence yields a
deeper understanding of the interplay between syntax and semantics, and a decidability result
means that this understanding is even encoded as an algorithm. Equivalence of weighted
models generalises multiplicity equivalence of their unweighted counterparts (“do two models
accept each input in the same number of ways?”), in turn generalising language equivalence
of unambiguous models (each input is accepted with multiplicity 0 or 1). Since equivalence
f = g reduces to zeroness f − g = 0, from now on we will focus on the latter problem.

While nonemptiness of WFA is undecidable [58, Theorem 21] (later reported in Paz’
book [60, Theorem 6.17]), zeroness is decidable, even in polynomial time [68] – a fact often
rediscovered, e.g., [73, 76]. This has motivated the search for generalisations of WFA with
decidable zeroness. However, many of them are either known to be undecidable (e.g., weighted
Petri nets [42, Theorem 3]), or beyond the reach of current techniques (e.g., weighted one
counter automata, weighted context-free grammars, and weighted Parikh automata). One
notable exception is polynomial weighted automata, although zeroness has very high complexity
(Ackermann-complete) [3]. In the restricted case of a unary input alphabet, decidability and
complexity results can be obtained with algebraic [1] and D-finite techniques [15].

Process algebra. On a parallel line of research, the process algebra community has developed
a variety of formalisms modelling different aspects of concurrency and nondeterminism. We
focus on basic parallel processes (BPP) [21], a subset of the calculus of communicating
systems without sequential composition [55]. BPP are also known as communication-free
Petri nets (every transition consumes exactly one token) and commutative context-free
grammars (nonterminals in sentential forms are allowed to commute with each other). While
language equality for BPP is undecidable [40, 41], bisimulation equivalence is decidable [22]
(even PSPACE-complete [70, 43]). Multiplicity equivalence, finer than language equality and
incomparable with bisimulation, does not seem to have been studied for BPP.

Combinatorial enumeration and power series. We shall make a connection between BPP,
power series, and combinatorial enumeration. For this purpose, let us recall that the study
of multivariate power series in commuting variables has a long tradition at the border

L. Clemente 18:3

of combinatorics, algebra, and analysis of algorithms [72, 30]. We focus on constructible
differentially finite power series (CDF) [6, 7], a class of differentially algebraic power series
arising in combinatorial enumeration [49, 4]. Their study was initiated in the univariate
context in [6], later extended to multivariate [7]. They generalise rational and algebraic
power series, and are incomparable with D-finite power series [71, 51]. For instance, the
exponential generating series

∑
n∈N n

n−1 · xn/n! of Cayley trees is CDF, but it is neither
algebraic/D-finite [16, Theorem 1], nor polynomial recursive [20, Theorem 5.3].

The theory of combinatorial species [45, 5] is a formalism describing families of finite
structures. It arises as a categorification of power series, by noticing how primitives used
to build structures – sum, combinatorial product, composition, differentiation, resolution of
implicit equations – are in a one-to-one correspondence with corresponding primitives on
series. Using these primitives, a rich class of constructible species can be defined [61]. For
instance the species C[X] of Cayley trees (rooted unordered trees) is constructible since it
satisfies C[X] = X · SET[C[X]]. Two species are multiplicity equivalent (equipotent [61]) if for
every n ∈ N they have the same number of structures of size n. Multiplicity equivalence of
species has not been studied from an algorithmic point of view.

1.2 Contributions
We study weighted basic parallel processes over the field of rational numbers (WBPP), a
weighted extension of BPP generalising WFA. The following is our main contribution.

▶ Theorem 1. The zeroness problem for WBPP is in 2-EXPSPACE.

This elementary complexity should be contrasted with Ackermann-hardness of zeroness of
polynomial automata [3], another incomparable extension of WFA. Since WBPP can model
the multiplicity semantics of BPP, as an application we get the following corollary.

▶ Corollary 2. Multiplicity equivalence of BPP and language equivalence of unambiguous
BPP are decidable in 2-EXPSPACE.

On a technical level, Theorem 1 is obtained by extending an ideal construction and complexity
analysis from [59] from the case of a single polynomial derivation to the case of a finite
set of not necessarily commuting polynomial derivations. It is remarkable that such ideal
chains have elementary length, since generic bounds without further structural restrictions
are only general recursive [69]. This shows that the BPP semantics is adequately captured by
differential algebra. These results are presented in § 2. In § 3 we observe that commutative
WBPP series coincide with CDF power series, thus establishing a novel connection between
automata theory, polynomial differential equations, and combinatorics. This allows us to
obtain a zeroness algorithm for CDF, which is our second main contribution.

▶ Theorem 3. The zeroness problem for multivariate CDF power series is in 2-EXPTIME.

The complexity improvement from 2-EXPSPACE to 2-EXPTIME is due to commutativity.
In the special univariate case, decidability was observed in [6] with no complexity analysis,
while [7] did not discuss decidability in the multivariate case. In § 4 we apply Theorem 3 to
multiplicity equivalence of a class of constructible species. This follows from the observation
that their exponential generating series (EGS) are effectively CDF, proved by an inductive
argument based on the closure properties of CDF series. For instance, the EGS of Cayley
trees satisfies C = x · eC ; by introducing auxiliary series D := eC , E := (1 − C)−1 and by
differentiating we obtain CDF equations ∂xC = D · E, ∂xD = D2 · E, ∂xE = D · E3.

▶ Theorem 4. Multiplicity equivalence of strongly constructible species is decidable.

CONCUR 2024

18:4 Weighted Basic Parallel Processes and Combinatorial Enumeration

1.3 Related works
There have recently been many decidability results for models incomparable with WBPP,
such as multiplicity equivalence of boundedly-ambiguous Petri nets [26, Theorem 3]; zeroness
for weighted one-counter automata with deterministic counter updates [52]; zeroness of
P-finite automata, a model intermediate between WFA and polynomial automata (even in
PTIME [19]); and zeroness of orbit-finite weighted automata in sets with atoms [9].

Regarding power series, there is a rich literature on dynamical systems satisfying dif-
ferential equations in the CDF format, that is polynomial ordinary differential equations
(ODE; cf. [62] and references therein). While many algorithms have been proposed for their
analysis (e.g., invariant checking [63]), the complexity of the zeroness problem has not been
addressed before. A decision procedure for zeroness of multivariate CDF can be obtained
from first principles as a consequence of Hilbert’s finite basis theorem [25, Theorem 4, §5,
Ch. 2]. For instance, decidability follows from the algorithm of [12] computing pre- and
post-conditions for restricted systems of partial differential equations (covering CDF), and
also from the Rosenfeld–Gröbner algorithm [17], which can be used to test membership
in the radical differential ideal generated by the system of CDF equations. In both cases,
no complexity-theoretic analysis is provided and only decidability can be deduced. In the
univariate CDF case, decidability can also be deduced from [10, 11]. Univariate CDF also
arise in the coalgebraic treatment of stream equations with the shuffle product [14, 13], where
an equivalence algorithm based on Hilbert’s theorem is provided.

The work [34] studies Noetherian functions, which are analytic functions satisfying
CDF equations. In fact, Noetherian functions which are analytic around the origin coincide
with multivariate CDF power series. The work [77] discusses a subclass of Noetherian functions
obtained by iteratively applying certain extensions to the ring of multivariate polynomials
and presents a zeroness algorithm running in doubly exponential time. Theorem 3 is more
general since it applies to all Noetherian power series.

In the context of the realisability problem in control theory, Fliess has introduced the
class of differentially producible series [32] (cf. also the exposition of Reutenauer [66]), a
generalisation of WBPP series where the state and transitions are given by arbitrary power
series (instead of polynomials). Such series are characterised by a notion of finite Lie rank
and it is shown that differentially producible series of minimal Lie rank exist and are unique.
Such series are not finitely presented and thus algorithmic problems, such as equivalence,
cannot even be formulated.

Full proofs can be found in the technical report [24].

Preliminaries. Let Σ = {a1, . . . , ad} be a finite alphabet. We denote by Σ∗ the set of finite
words over Σ, a monoid under the operation of concatenation, with neutral element the
empty word ε. The Parikh image of a word w ∈ Σ∗ is #(w) := (#(w)a1 , . . . ,#(w)ad

) ∈ Nd,
where #(w)aj is the number of occurrences of aj in w. Let Q be the field of rational numbers.
Most results in the paper hold for any field, however for computability considerations we
restrict our presentation to Q. For a tuple of commuting indeterminates x = (x1, . . . , xk),
denote by Q[x] the ring of multivariate polynomials (Q[k] when the name of variables does
not matter) and by Q(x) its fraction field of rational functions (that is, ratios of polynomials
p(x)/q(x)). The one norm |z|1 of a vector z = (z1, . . . , zk) ∈ Qk is |z1| + · · · + |zk|, and the
infinity norm is |z|∞ = max1≤i≤k |zk|. Similarly, the infinity norm (also called height) of a
polynomial p ∈ Q[k], written |p|∞, is the maximal absolute value of any of its coefficients.

A derivation of a ring R is a linear function δ : R → R satisfying

δ(a · b) = δ(a) · b+ δ(b). (Leibniz rule)

L. Clemente 18:5

A derivation δ of a polynomial ring R[x] is uniquely defined once we fix δ(x) ∈ R[x]. For
instance, ∂x : R[x] → R[x] is the unique derivation δ of the polynomial ring s.t. δ(x) = 1.
Other technical notions will be recalled when necessary. For a general introduction to
algebraic geometry we refer to [25].

2 Weighted extension of basic parallel processes

2.1 Basic parallel processes
In this section we recall the notion of basic parallel process (BPP) together with its language
semantics. Let {X1, X2, . . . } be a countable set of nonterminals (process variables) and let
Σ be a finite alphabet of terminals (actions). A BPP expression is generated by the following
abstract grammar (cf. [29, Sec. 5]): E,F ::= ⊥ | Xi | a.E | E + F | E ∥F . Intuitively, ⊥
is a constant representing the terminated process, a.E (action prefix), is the process that
performs action a and becomes E, E + F (choice) is the process that behaves like E or F ,
and E ∥F (merge) is the parallel execution of E and F . We say that an expression E is
guarded if every occurrence of a nonterminal Xi is under the scope of an action prefix. A
BPP consists of a distinguished starting nonterminal X1 and rules

X1 → E1 · · · Xk → Ek, (1)

where the r.h.s. expressions E1, . . . , Ek are guarded and contain only nonterminals X1, . . . , Xk.

a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

F
a−→ F ′

E + F
a−→ F ′

Ei
a−→ E′

Xi
a−→ E′

E
a−→ E′

E ∥F a−→ E′ ∥F
F

a−→ F ′

E ∥F a−→ E ∥F ′

Figure 1 BPP transition rules.

A BPP induces an infinite labelled transition system where states are expressions and the
labelled transition relations a−→ are the least family of relations closed under the rules from
Fig. 1. The transition relation is extended naturally to words w−→, w ∈ Σ∗. An expression E

is final if there are no a,E′ s.t. E a−→ E′ (e.g., ⊥ ∥ ⊥); it accepts a word w ∈ Σ∗ if there is a
final expression F s.t. E w−→ F . The language L (E) recognised by an expression E is the set
of words it accepts, and the language of a BPP is L (X1).

An expression E is in (full) standard form if it is a sum of products a1.α1 + · · · + an.αn,
where each αi is a merge of nonterminals; a BPP (1) is in standard form if every E1, . . . , Ek

is in standard form. The standard form for BPP is analogous to the Greibach normal form
for context-free grammars [35]. Every BPP can be effectively transformed to one in standard
form preserving bisimilarity [21, Proposition 2.31], and thus the language it recognises.

▶ Example 5. Consider two input symbols Σ = {a, b} and two nonterminals N = {S,X}.
The following is a BPP in standard form: S → a.X,X → a.(X ∥X) + b.⊥. An example
execution is S a−→ X

a−→ X ∥X b−→ ⊥ ∥X b−→ ⊥ ∥ ⊥, and thus a2b2 ∈ L (S).

While language equivalence is undecidable for BPP [36, Sec. 5], the finer bisimulation equi-
valence is decidable [22], and in fact PSPACE-complete [70, 43]. These initial results have
motivated a rich line of research investigating decidability and complexity for variants of
bisimulation equivalence. We consider another classical variation on language equivalence,

CONCUR 2024

18:6 Weighted Basic Parallel Processes and Combinatorial Enumeration

namely multiplicity equivalence, and apply it to decide language equivalence of unambigu-
ous BPP. We show in Corollary 2 that both problems are decidable and in 2-EXPSPACE.
This is obtained by considering a more general model, introduced next.

2.2 Weighted basic parallel processes
Preliminaries. Let Σ∗ → Q be the set of (non-commutative) series with coefficients in Q,
also known as weighted languages. An alternative notation is Q⟨⟨Σ⟩⟩. We write a series as
f =

∑
w∈Σ∗ fw ·w, where the value of f at w is fw ∈ Q. Thus, 3aba− 5

2bc and 1+a+a2 + · · ·
are series. The set of series carries the structure of a vector space over Q, with element-wise
scalar product c · f (c ∈ Q) and sum f + g. The support of a series f is the subset of its
domain supp(f) ⊆ Σ∗ where it evaluates to a nonzero value. Polynomials Q⟨Σ⟩ are series
with finite support. The characteristic series of a language L ⊆ Σ∗ is the series that maps
words in L to 1 and all the other words to 0.

For two words u ∈ Σm and v ∈ Σn, let u� v be the multiset of all words w = a1 · · · am+n

s.t. the set of indices {1, . . . ,m+ n} can be partitioned into two subsequences i1 < · · · < im
and j1 < · · · < jn s.t. u = ai1 · · · aim

and v = aj1 · · · ajm
. The multiset semantics preserves

multiplicities, e.g., ab� a = {{aab, aab, aba}}. The shuffle of two series f, g is the series f � g

defined as (f � g)w :=
∑

w∈u� v fu · gv, for every w ∈ Σ∗, where the sum is taken with
multiplicities. Shuffle product (called Hurwitz product in [31]) leads to the commutative ring
of shuffle series (Q⟨⟨Σ⟩⟩; +,�, 0, 1), whose shuffle identity 1 is the series mapping ε to 1 and
all other words to 0. A series f has a shuffle inverse g, i.e., f � g = 1, iff fε ̸= 0. The n-th
shuffle power f�n of a series f is inductively defined by f�0 := 1 and f�(n+1) := f � f�n.

Consider the mapping δ : Σ∗ → Q⟨⟨Σ⟩⟩ → Q⟨⟨Σ⟩⟩ s.t. for every u ∈ Σ∗ and f ∈ Q⟨⟨Σ⟩⟩,
δuf ∈ Q⟨⟨Σ⟩⟩ is the series defined as (δuf)w = fuw, for every w ∈ Σ∗. We call δuf the
u-derivative of f (a.k.a. shift or left-quotient). For example, δa(ab+ c) = b. The derivative
operation δu is linear, for every u ∈ Σ∗. The one-letter derivatives δa’s are (noncommuting)
derivations of the shuffle ring since they satisfy (Leibniz rule),

δa(f � g) = δaf � g + f � δag, for all a ∈ Σ, f, g ∈ Q⟨⟨Σ⟩⟩, (2)

Syntax and semantics. A weighted basic parallel process (WBPP) is a tuple P =
(Σ, N, S, F,∆) where Σ is a finite input alphabet of terminal symbols/actions, N is a finite set
of nonterminal symbols/processes, S ∈ N is the initial nonterminal, F : N → Q assigns a final
weight FX ∈ Q to each nonterminal X ∈ N , and ∆ : Σ ×N → Q[N] is a transition function
mapping a nonterminal X ∈ N and an input symbol a ∈ Σ to a polynomial ∆aX ∈ Q[N].

▶ Example 6. A BPP in standard form is readily converted to a WBPP with 0, 1 weights: The
BPP from Example 5 yields the WBPP with output function FS = FX = 0 and transitions
∆aS = X,∆aX = X2,∆bS = 0,∆bX = 1. Configurations reachable from S,X are of the
form cXn (c ∈ N). Action “a” acts as an increment Xn a−→ nXn+1 and “b” as a decrement
Xn b−→ nXn−1. The constant coefficient c ∈ N in a reachable configuration cXn keeps track
of the “multiplicity” of reaching this configuration, i.e., the number of distinct runs leading
to it. For instance, JSKa2b2 = 2 since S a−→ X

a−→ X2 b−→ 2X b−→ 2. In the underlying BPP,

S X
a

X ∥Xa
⊥ ∥Xb ⊥ ∥ ⊥b

X ∥ ⊥b ⊥ ∥ ⊥b

where the branching upon reading the first symbol “b” depends on whether the first or second
occurrence of X reads this symbol.

L. Clemente 18:7

A configuration of a WBPP is a polynomial α ∈ Q[N]. The transition function extends
uniquely to a derivation of the polynomial ring Q[N] via linearity and (Leibniz rule):

∆ : Σ × Q[N] → Q[N]
∆a(c · α) = c · ∆a(α), ∀a ∈ Σ, c ∈ Q,
∆a(α+ β) = ∆a(α) + ∆a(β), ∀a ∈ Σ, α, β ∈ Q[N],
∆a(α · β) = ∆a(α) · β + α · ∆a(β), ∀a ∈ Σ, α, β ∈ Q[N]. (3)

For example, from configuration X · Y we can read a and go to ∆a(X · Y) = ∆a(X) · Y +
X · ∆a(Y); this is models the fact that either X reads a and Y is unchanged, or vice versa.
The transition function is then extended homomorphically to words:

∆ : Σ∗ × Q[N] → Q[N]
∆εα := α, ∆a·wα := ∆w(∆aα), ∀(a · w) ∈ Σ∗, α ∈ Q[N]. (4)

Sometimes we write α w−→ β when β = ∆w(α). For instance, from configuration α we can
read ab ∈ Σ∗ visiting configurations α a−→ ∆a(α) b−→ ∆b(∆a(α)). The order of reading symbols
matters: For the transition function ∆a(X) = 0, ∆b(X) = Y , and ∆a(Y) = ∆b(Y) = 1, we
have X a−→ 0 b−→ 0 but X b−→ Y

a−→ 1. The semantics of a WBPP is the mapping

J_K : Q[N] → Q⟨⟨Σ⟩⟩
JαKw := F (∆wα), ∀α ∈ Q[N], w ∈ Σ∗. (5)

Here F is extended homomorphically from nonterminals to configurations: F (α + β) =
F (α) + F (β) and F (α · β) = F (α) · F (β). We say that configuration α recognises the series
JαK. The series recognised by a WBPP is the series recognised by its initial nonterminal. A
WBPP series is a series which is recognised by some WBPP.

▶ Example 7. We show a WBPP series which is not a WFA series. In particular, its support
is nonregular support since WFA supports include the regular languages. Consider the
WBPP from Example 6. The language L := supp(JSK) ∩ a∗b∗ is the set of words of the
form anbn, which is not regular, and thus supp(JSK) is not regular either. Moreover, JSK is
not a WFA series: 1) the set M of words of the form ambn with m ̸= n is a WFA support,
2) if a language and its complement are WFA supports, then they are regular by a result
of Restivo and Reutenauer [65, Theorem 3.1], and 3) since M is not regular, it follows that
its complement is not a WFA support, and thus L = (Σ∗ \M) ∩ a∗b∗ is not a WFA support
either.

2.3 Basic properties
We present some basic properties of the semantics of WBPP. First of all, applying the
derivative δw to the semantics corresponds to applying ∆w to the configuration.

▶ Lemma 8 (Exchange). For every α ∈ Q[N] and w ∈ Σ∗, δw JαK = J∆wαK.

As a consequence, the semantics is a homomorphism from configurations to series.

▶ Lemma 9 (Homomorphism). The semantics function J_K is a homomorphism from the
polynomial to the shuffle series ring:

J_K : (Q[N]; +, ·) → (Q⟨⟨N⟩⟩; +,�)
Jc · αK = c · JαK , Jα+ βK = JαK + JβK , Jα · βK = JαK� JβK .

CONCUR 2024

18:8 Weighted Basic Parallel Processes and Combinatorial Enumeration

Lemmas 8 and 9 illustrate the interplay between the syntax and semantics of WBPP, and
they can be applied to obtain some basic closure properties for the class of WBPP series.

▶ Lemma 10 (Closure properties). Let f, g ∈ Q⟨⟨Σ⟩⟩ be WBPP series. The following series
are also WBPP: c · f , f + g, f � g, δaf , the shuffle inverse of f (when defined).

WBPP series generalise the rational series (i.e., recognised by finite weighted automata [8]),
which in fact correspond to WBPP with a linear transition relation.

▶ Example 11. The shuffle of two WBPP series with context-free support can yield a
WBPP series with non-context-free support. Consider the WBPP from Example 6 over
Σ = {a, b}. Make a copy of this WBPP over a disjoint alphabet Γ = {c, d} with nonterminals
{T, Y }. Now consider the shuffle f := JSK� JT K ∈ Q⟨⟨Σ ∪ Γ⟩⟩. It is WBPP recognisable by
Lemma 10. (For instance we can add a new initial nonterminal U with rules ∆aU = X · T ,
∆cU = S · Y , and ∆bU = ∆dU = 0.) supp(f) is not context free, since intersecting it with
the regular language a∗c∗b∗d∗ yields {amcnbmdn | m,n ∈ N}, which is not context-free by
the pumping lemma for context-free languages [37, Theorem 7.18] (cf. [57, Problem 101]).

2.4 Differential algebra of shuffle-finite series

Differential algebra allows us to provide an elegant characterisation of WBPP series. An
algebra (over Q) is a vector space equipped with a bilinear product. Shuffle series are
a commutative algebra, called shuffle series algebra. A subset of Q⟨⟨Σ⟩⟩ is a subalgebra
if it contains Q and is closed under scalar product, addition, and shuffle product. It is
differential if it is closed under derivations δa (a ∈ Σ). By Lemma 10, WBPP series are a
differential subalgebra. Let Q[f (1), . . . , f (k)] ⊆ Q⟨⟨Σ⟩⟩ be the smallest subalgebra containing
f (1), . . . , f (k) ∈ Q⟨⟨Σ⟩⟩. Algebras of this form are called finitely generated. A series is shuffle
finite if it belongs to a finitely generated differential subalgebra of shuffle series.

▶ Theorem 12. A series is shuffle finite iff it is WBPP.

The characterisation above provides an insight into the algebraic structure of WBPP series.
Other classes of series can be characterised in a similar style. For instance, a series is accepted
by a WFA iff it belongs to a finitely generated differential vector space over Q [8, Proposition
5.1]; by a weighted context-free grammar iff it belongs to a δa-closed, finitely generated
subalgebra of the algebra of series with (noncommutative) Cauchy product ((f ∗ g)w :=∑

w=u·v fu · fv); and by a polynomial automaton [3] iff its reversal (fR
a1...an

:= fan···a1)
belongs to a δa-closed, finitely generated subalgebra of the algebra of series with Hadamard
product ((f ⊙ g)w := fw · gw). Considering other products yields novel classes of series, too.
For instance, the infiltration product [2] yields the class of series that belong to a δa-closed,
finitely generated subalgebra of the algebra of series with infiltration product.

2.5 Equivalence and zeroness problems

The WBPP equivalence problem takes in input two WBPP P,Q and amounts to determine
whether JP K = JQK. In the special case where JQK = 0, we have an instance of the zeroness
problem. Since WBPP series form an effective vector space, equivalence reduces to zeroness,
and thus we concentrate on the latter.

L. Clemente 18:9

Evaluation and word-zeroness problems. We first discuss a simpler problem, which will
be a building block in our zeroness algorithm. The evaluation problem takes in input a
WBPP with initial configuration α and a word w ∈ Σ∗, and it amounts to compute JαKw. The
word-zeroness problem takes the same input, and it amounts to decide whether JαKw = 0.

▶ Theorem 13. The evaluation and word-zeroness problems for WBPP are in PSPACE.

The proof follows from the following three ingredients: The construction of an algebraic
circuit of exponential size computing the polynomial ∆wα (Lemma 14), the fact that
this polynomial has polynomial degree (Lemma 15), and the fact that circuits computing
multivariate polynomials of polynomial degree can be evaluated in NC [44, Theorem 2.4.5].

▶ Lemma 14. Fix a word w ∈ Σ and an initial configuration α ∈ Q[N] of a WBPP, where
α,∆aXi ∈ Q[N] are the outputs of an algebraic circuit of size n. We can construct an
algebraic circuit computing ∆wα of size ≤ 4|w| · n. The construction can be done in space
polynomial in |w| and logarithmic in n.

▶ Lemma 15. Let D ∈ N be the maximum of the degree of the transition relation ∆ and the
initial configuration α. The configuration ∆wα ∈ Q[N] reached by reading a word w ∈ Σn of
length n has total degree O (n ·D).

Decidability of the zeroness problem. Fix a WBPP and a configuration α ∈ Q[N]. Suppose
we want to decide whether JαK is zero. An algorithm for this problem follows from first
principles. Recall that an ideal I ⊆ Q[N] is a subset closed under addition, and multiplication
by arbitrary polynomials [25, §4, Ch. 1]. Let ⟨S⟩ be the smallest ideal including S ⊆ Q[N].
Intuitively, this is the set of “logical consequences” of the vanishing of polynomials in S.
Build a chain of polynomial ideals

I0 ⊆ I1 ⊆ · · · ⊆ Q[N], with In := ⟨∆wα | w ∈ Σ≤n⟩, n ∈ N. (6)

Intuitively, In is the set of polynomials that vanish as a consequence of the vanishing of ∆wα

for all words w of length ≤ n. The chain above has some important structural properties,
essentially relying on the fact that the ∆a’s are derivations of the polynomial ring.

▶ Lemma 16. 1. ∆aIn ⊆ In+1. 2. In+1 = In + ⟨
⋃

a∈Σ ∆aIn⟩. 3. In = In+1 implies
In = In+1 = In+2 = · · · .

By Hilbert’s finite basis theorem [25, Theorem 4, §5, Ch. 2], there is M ∈ N s.t. IM = IM+1 =
· · · . By Lemma 16 (3) and decidability of ideal inclusion [53], M can be computed. This
suffices to decide WBPP zeroness. Indeed, let ∆w1α, . . . ,∆wmα be the generators of IM . For
every input word w ∈ Σ∗ there are β1, . . . , βm ∈ Q[N] s.t. ∆wα = β1 · ∆w1α+ · · ·βm · ∆wm

α.
By applying the output function F on both sides, we have JαKw = F (∆wα) = Fβ1 · JαKw1

+
· · · + Fβm · JαKwm

. It follows that if JαKw = 0 for all words of length ≤ M , then JαK = 0.
One can thus enumerate all words w of length ≤ M and check JαKw = 0 with Theorem 13.
So far we only know that M is computable. In the next section we show that in fact M is
an elementary function of the input WBPP.

Elementary upper bound for the zeroness problem. We present an elementary upper bound
on the length of the chain of polynomial ideals (6). This is obtained by generalising the case
of a single derivation from Novikov and Yakovenko [59, Theorem 4] to the situation of several,
not necessarily commuting derivations ∆a, a ∈ Σ. The two main ingredients in the proof of [59,

CONCUR 2024

18:10 Weighted Basic Parallel Processes and Combinatorial Enumeration

Theorem 4] are 1) a structural property of the chain (6) called convexity, and 2) a degree bound
on the generators of the n-th ideal In (which we have already established in Lemma 15). For
two sets I, J ⊆ Q[N] consider the colon set I : J := {f ∈ Q[N] | ∀g ∈ J, f · g ∈ I} [25, Def. 5,
§4, Ch. 4]. If I, J are ideals of Q[N] then I : J is also an ideal. An ideal chain I0 ⊆ I1 ⊆ · · ·
is convex if the colon ideals In : In+1 form themselves a chain I0 : I1 ⊆ I1 : I2 ⊆ · · · . Chain
of ideals obtained by iterated application of a single derivation are convex by [59, Lemma 7].
We extend this observation to a finite set of derivations.

▶ Lemma 17 (generalisation of [59, Lemma 7]). The ideal chain (6) is convex.

Proof. We extend the argument from [59] to the case of many derivations. Assume f ∈
In−1 : In and let h ∈ In+1 be arbitrary. We have to show f · h ∈ In.

▷ Claim. f · ∆ag ∈ In, for all a ∈ Σ and g ∈ In.

Proof of the claim. Since ∆a is a derivation (4), ∆a(f · g) = ∆af · g+ f · ∆ag, and by solving

for f · ∆ag we can write f · ∆ag = ∆a(
(a) In−1︷︸︸︷
f · g)︸ ︷︷ ︸

(b) In

− ∆af · g︸ ︷︷ ︸
(c) In

. Condition (a) follows from the

definition of colon ideal, (b) from point (1) of Lemma 16, and (c) from In being an ideal.
◁

Since h ∈ In+1, by point (2) of Lemma 16, we can write h = h0 + h1 with h0 ∈ In

and h1 ∈ ⟨
⋃

a∈Σ ∆aIn⟩. In particular, h1 =
∑

i pi · ∆ai
gi with gi ∈ In, By the claim,

f · h1 =
∑

i pi · f · ∆ai
gi ∈ In. Consequently, f · h = f · h0 + f · h1 ∈ In as well. ◀

Thanks to Lemma 17 we can generalise the whole proof of [59, Theorem 4], eventually arriving
at the following elementary bound. The order of a WBPP is the number of nonterminals and
its degree is the maximal degree of the polynomials ∆aX (a ∈ Σ, X ∈ N).

▶ Theorem 18. Consider a WBPP of order ≤ k and degree ≤ D. The length of the ideal

chain (6) is at most Dk
O(k2) .

The elementary bound above may be of independent interest. Already in the case of a single
derivation, it is not known whether the bound from [59] is tight, albeit it is expected not to
be so. We provide a proof sketch of Theorem 18 in order to illustrate the main notions from
algebraic geometry which are required.

Proof sketch. We recall some basic facts from algebraic geometry. The radical
√
I of an

ideal I is the set of elements r s.t. rm ∈ I for some m ∈ N; note that
√
I is itself an ideal.

An ideal I is primary if p · q ∈ I and p ̸∈ I implies q ∈
√
I. A primary decomposition

of an ideal I is a collection of primary ideals {Q1, . . . , Qs}, called primary components,
s.t. I = Q1 ∩ · · · ∩Qs. The dimension dim I of a polynomial ideal I ⊆ Q[k] is the dimension
of its associated variety V (I) =

{
x ∈ Ck

∣∣ ∀p ∈ I.p(x) = 0
}

. Since the operation of taking
the variety of an ideal is inclusion-reversing, ideal inclusion is dimension-reversing: I ⊆ J

implies dim I ≥ dim J . Consider a convex chain of polynomial ideals as in (6). By convexity,
the colon ideals also form a chain I0 : I1 ⊆ I1 : I2 ⊆ · · · ⊆ Q[k]. The colon dimensions are at
most k and non-increasing, k ≥ dim (I0 : I1) ≥ dim (I1 : I2) ≥ · · · . Divide the original ideal
chain (6) into segments, where in the i-th segment the colon dimension is a constant mi:

I0 ⊆ · · · ⊆ In0−1︸ ︷︷ ︸
dim (In : In+1)=m0

⊆ In0 ⊆ · · · ⊆ In1−1︸ ︷︷ ︸
dim (In : In+1)=m1

⊆ · · · ⊆ Ini
⊆ · · · ⊆ Ini+1−1︸ ︷︷ ︸

dim (In : In+1)=mi

⊆ · · · . (7)

L. Clemente 18:11

Since the colon dimension can strictly decrease at most k times, there are at most k segments.
In the following claim we show that the length of a convex ideal chain with equidimensional
colon ideal chain can be bounded by the number of primary components of the initial ideal.

▷ Claim 19 ([59, Lemmas 8+9]). Consider a strictly ascending convex chain of ideals
I0 ⊊ I1 ⊊ · · · ⊊ Iℓ of length ℓ where the colon ratios have the same dimension m :=
dim (I0 : I1) = · · · = dim (Iℓ−1 : Iℓ). Then ℓ is at most the number of primary components
of any primary ideal decomposition of the initial ideal I0 (counted with multiplicities1).

We apply Claim 19 to the i-th segment (7) and obtain that its length ℓi := ni+1 − ni is at
most the number of primary components in any primary ideal decomposition of its starting
ideal Ini

. We now use a result from effective commutative algebra showing that we can
compute primary ideal decompositions of size bounded by the degree of the generators.

▷ Claim 20 (variant of [59, Corollary 2]). An ideal I ⊆ C[k] generated by polynomials of
degree ≤ D admits a primary ideal decomposition of size DkO(k) (counted with multiplicities).

By Claim 20, Ini
admits some primary decomposition of size dkO(k)

i , where di is the maximal
degree of the generators of Ini . By Lemma 15, di is at most O (D · ni). All in all, the i-th
segment has length ℓi = ni+1 − ni ≤ (D · ni)kO(k) . We have ni ≤ O (fi) where fi satisfies
fi+1 ≤ a · f b

i with a = Db and b = kO(k). Thus fk ≤ a · ab · · · abk−1 ≤ abO(k) , yielding the

required upper bound on the length of the ideal chain nk ≤ Dk
O(k2) . ◀

Thanks to the bound from Theorem 18, we obtain the main contribution of the paper, which
was announced in the introduction.

▶ Theorem 1. The zeroness problem for WBPP is in 2-EXPSPACE.

Proof. The bound on the length of the ideal chain (6) from Theorem 18 implies that if
the WBPP is not zero, then there exists a witnessing input word of length at most doubly
exponential. We can guess this word and verify its correctness in 2-EXPSPACE by Theorem 13.
This is a nondeterministic algorithm, but by courtesy of Savitch’s theorem [67] we obtain a
bona fide deterministic 2-EXPSPACE algorithm. ◀

Application to BPP. The multiplicity semantics of a BPP is its series semantics as an
N-WBPP. Intuitively, one counts all possible ways in which an input is accepted by the model.
The BPP multiplicity equivalence problem takes as input two BPP P,Q and returns “yes”
iff P,Q have the same multiplicity semantics. Decidability of BPP multiplicity equivalence
readily follows from Theorem 1. We say that a BPP is unambiguous if its multiplicity
semantics is {0, 1}-valued. While BPP language equivalence is undecidable [36, Sec. 5],
we obtain decidability for unambiguous BPP. We have thus proved Corollary 2. This
generalises decidability for deterministic BPP, which follows from decidability of bisimulation
equivalence [22]. Language equivalence of unambiguous context-free grammars, the sequential
counterpart of BPP (sometimes called BPA in process algebra), is a long-standing open
problem, as well as the more general multiplicity equivalence problem (cf. [33, 23, 1]).

1 We refer to [59, Sec. 4.1] for the notion of multiplicity of a primary component.

CONCUR 2024

18:12 Weighted Basic Parallel Processes and Combinatorial Enumeration

3 Constructible differentially finite power series

In this section we study a class of multivariate power series in commuting variables called
constructible differentially finite (CDF) [6, 7]. We show that CDF power series arise naturally
as the commutative variant of WBPP series from § 2. Stated differently, the novel WBPP can
be seen as the noncommutative variant of CDF, showing a connection between the theory
of weighted automata and differential equations. As a consequence, by specialising to the
commutative context the 2-EXPSPACE WBPP zeroness procedure, we obtain an algorithm to
decide zeroness for CDF power series in 2-EXPTIME. This is the main result of the section,
which was announced in the introduction (Theorem 3).

On the way, we recall and further develop the theory of CDF power series. In particular,
we provide a novel closure under regular support restrictions (Lemma 24). In § 4 we illustrate
a connection between CDF power series and combinatorics, by showing that the generating
series of a class of constructible species of structures are CDF, which will broaden the
applicability of the CDF zeroness algorithm to multiplicity equivalence of species.

Preliminaries. In the rest of the section, we consider commuting variables x = (x1, . . . , xd),
y = (y1, . . . , yk). We denote by Q[[x]] the set of multivariate power series in x, endowed with
the structure of a commutative ring (Q[[x]]; +, ·, 0, 1) with pointwise addition and (Cauchy)
product. The partial derivatives ∂xj

’s satisfy (Leibniz rule), and thus form a family of
commuting derivations of this ring. To keep notations compact, we use vector notation: For
a tuple of naturals n = (n1, . . . , nd) ∈ Nd, define n! := n1! · · ·nd!, xn := xn1

1 · · ·xnd

d , and
∂n

x := ∂n1
x1

· · · ∂nd
xd

. We write a power series as f =
∑

n∈Nd fn · xn

n! ∈ Q[[x]], and define the
(exponential) coefficient extraction operation [xn]f := fn, for every n ∈ Nd. This is designed
in order to have the following simple commuting rule with partial derivative:

[xm](∂n
x f) = [xm+n]f, for all m,n ∈ Nd. (8)

Coefficient extraction is linear, and constant term extraction [x0] is even a homomorphism
since [x0](f · g) = [x0]f · [x0]g. The Jacobian matrix of a tuple of power series f =
(f (1), . . . , f (k)) ∈ Q[[x]]k is the matrix ∂xf ∈ Q[[x]]k×d where entry (i, j) is ∂xjf

(i). Consider
commuting variables y = (y1, . . . , yk). For a set of indices I ⊆ {1, . . . , k}, by yI we denote
the tuple of variables yi s.t. i ∈ I and by y\I we denote the tuple of variables yi s.t. i ̸∈ I. A
power series f ∈ Q[[y]] is locally polynomial w.r.t. yI if f ∈ Q[yI][[y\I]] (f is a power series in
y\I with coefficients polynomial in yI), and that it is polynomial w.r.t. yI if f ∈ Q[[y\I]][yI]
(f is a polynomial in yI with coefficients which are power series in y\I). For instance

1
1−y1·y2

= 1 + y1y2 + (y1y2)2 + · · · is not polynomial, but it is locally polynomial in y{1} (and
y{2}). A power series f ∈ Q[[x, y]] and a tuple g = (g(1), . . . , g(k)) ∈ Q[[x]]k are y-composable
if f is locally polynomial w.r.t. yI , where I is the set of indices i s.t. g(i)(0) ̸= 0; strongly
y-composable is obtained by replacing “locally polynomial” with “polynomial”. As a corner
case often arising in practice, f, g are always strongly y-composable when g(0) = 0. When
f, g are y-composable, their composition f ◦y g ∈ Q[[x]] obtained by replacing yi in f with g(i),
for every 1 ≤ i ≤ k, exists. Composition extends component-wise to vectors and matrices.

3.1 Multivariate CDF power series
A power series f (1) ∈ Q[[x]] is CDF [6, 7] if it is the first component of a solution f =
(f (1), . . . , f (k)) ∈ Q[[x]]k of a system of polynomial partial differential equations

∂xf = P ◦y f, where P ∈ Q[x, y]k×d. (9)

L. Clemente 18:13

We call k the order of the system and d its dimension; in the univariate case d = 1, (9) is a
system of ordinary differential equations. The matrix P is called the kernel of the system.
The degree the system is the maximum degree of polynomials in the kernel, and so it is
its height. When the kernel does not contain x the system is called autonomous, otherwise
non-autonomous. There is no loss of expressive power in considering only autonomous systems.
Many analytic functions give rise to univariate CDF power series, such as polynomials, the
exponential series f := ex = 1 + x+ x2/2! + · · · (since ∂xf = f), the trigonometric series
sin x, cosx, secx := 1/ cosx, arcsin, arccos, arctan their hyperbolic variants sinh, cosh, tanh,
sech = 1/ cosh, arsinh, artanh, the non-elementary error function erf(x) :=

∫ x

0 e−t2
dt (since

∂xerf = e−x2 and ∂x(e−x2) = −2x ·e−x2). Multivariate CDF power series include polynomials,
rational power series, constructible algebraic series (in the sense of [31, Sec. 2]; [6, Theorem
4],[7, Corollary 13]), and a large class of D-finite series ([7, Lemma 6]; but not all of them).
Moreover, we demonstrate in Theorem 31 that the generating series of strongly constructible
species are CDF. We recall some basic closure properties for the class of CDF power series.

▶ Lemma 21 (Closure properties; [6, Theorem 2], [7, Theorem 11]). (1) If f, g ∈ Q[[x]] are
CDF, then are also CDF: c · f for c ∈ Q, f + g, f · g, ∂xj

f for 1 ≤ j ≤ d, 1/f (when
defined). (2) If ∂x1f, . . . , ∂xd

f are CDF, then so is f . (3) Closure under strong composition:
If f ∈ Q[[x, y]], g ∈ Q[[x]]k are strongly y-composable and CDF, then f ◦y g is CDF.

▶ Remark 22. In the univariate case d = 1, [6, Theorem 2] proves closure under composition
under the stronger assumption g(0) = 0. In the multivariate case, [7, Theorem 11] claims
without proof closure under composition (when defined). We leave it open whether CDF power
series are closed under composition.

Of the many pleasant closure properties above, especially composition is remarkable, since this
does not hold for other important classes of power series, such as the algebraic and the D-finite
power series. For instance, ex and ex−1 are D-finite, but eex−1 is not [46, Problem 7.8]. On the
other hand, CDF power series are not closed under Hadamard product, already in the univariate
case [6, Sec. 4]. (The Hadamard product of f =

∑
n∈Nd fn · xn, g =

∑
n∈Nd gn · xn ∈ Q[[x]]

is f ⊙ g =
∑

n∈Nd(fn · gn) · xn.) Another paramount closure property regards resolution of
systems of power series equations. A system of equations of the constructible form y = f

with f ∈ Q[[x, y]]k is well posed if f(0, 0) = 0 and the Jacobian matrix evaluated at the
origin ∂yf(0, 0) is nilpotent. A canonical solution is a series g ∈ Q[[x]]k solving the system
for y := g(x) s.t. g(0) = 0. The following is a slight generalisation of [7, Corollary 13].

▶ Lemma 23 (Constructible power series theorem). A well-posed system of equations y = f(x, y)
has a unique canonical solution y := g(x). Moreover, if f is CDF, then g is CDF.

For example, the unique canonical solution of the well-posed equation y = f := x · ey is CDF.

3.2 Support restrictions
We discuss a novel closure property for CDF power series, which will be useful later in
the context of combinatorial enumeration (§ 4). The restriction of f ∈ Q[[x]] by a support
constraint S ⊆ Nd is the series f |S ∈ Q[[x]] which agrees with f on the coefficient of xn for
every n ∈ S, and is zero otherwise. We introduce a small constraint language in order to
express a class of support constraints. The set of constraint expressions of dimension d ∈ N
is generated by the following abstract grammar,

φ,ψ ::= zj = n | zj ≡ n (mod m) | φ ∨ ψ | φ ∧ ψ | ¬φ, (10)

CONCUR 2024

18:14 Weighted Basic Parallel Processes and Combinatorial Enumeration

where 1 ≤ j ≤ d and m,n ∈ N with m ≥ 1. Expressions zj ≤ n and zj ≥ n can be
derived. The semantics of a constraint expressions φ of dimension d, written JφK ⊆ Nd,
is defined by structural induction in the expected way. For instance, the semantics of
z1 ≥ 2 ∧ z2 ≡ 1 (mod 2) is the set of pairs (a, b) ∈ N2 where a ≥ 2 and b is odd. Call a set
S ⊆ Nd regular if it is denoted by a constraint expression.

▶ Lemma 24. CDF power series are closed under regular support restrictions.

For instance, since ex is CDF also sinh x = ex|Jz1≡1 (mod 2)K is CDF. CDF are not closed
under more general semilinear support restrictions. E.g., restricting to the semilinear set{

(m, . . . ,m) ∈ Nd
∣∣ m ∈ N

}
amounts to taking the diagonal, which in turn can be used to

express the Hadamard product of power series [50, remark (2) on pg. 377], and CDF are
closed under none of these operations.

3.3 CDF = Commutative WBPP series
We demonstrate that CDF power series correspond to WBPP series satisfying a commutativity
condition. In particular, they coincide in the univariate case x = (x1) and Σ = {a1}. A
series f ∈ Q⟨⟨Σ⟩⟩ over a finite alphabet Σ = {a1, . . . , ad} is commutative if fu = fv whenever
#(u) = #(v); in this case we associate to it a power series s2p (f) ∈ Q[[x]] in commuting
variables x = (x1, . . . , xd) by s2p (f) :=

∑
n∈Nd fn · xn

n! where fn := fw for any w ∈ Σ∗

s.t. #(w) = n. Conversely, to any power series f ∈ Q[[x]] we associate a commutative series
p2s (f) ∈ Q⟨⟨Σ⟩⟩ by p2s (f) :=

∑
w∈Σ∗ [x#(w)]f · w. These two mappings are mutual inverses

and by the following lemma we can identify CDF power series with commutative WBPP series,
thus providing a bridge between the theory of weighted automata and differential equations.

▶ Lemma 25. If f ∈ Q⟨⟨Σ⟩⟩ is a commutative WBPP series, then s2p (f) ∈ Q[[x]] is a
CDF power series. Conversely, if f ∈ Q[[x]] is a CDF power series, then p2s (f) ∈ Q⟨⟨Σ⟩⟩ is a
commutative WBPP series.

3.4 Zeroness of CDF power series
Coefficient computation. We provide an algorithm to compute CDF power series coefficients.
While a PSPACE algorithm follows from Theorem 13, we are interested here in the precise
complexity w.r.t. degree, height, and order. This will allow us obtain the improved 2-
EXPTIME complexity for zeroness (Theorem 3).

▶ Lemma 26. Given a tuple of d-variate CDF power series f ∈ Z[[x]]k satisfying an integer
system of CDF equations (9) of degree D, order k, height H, and a bound N , we can
compute all coefficients [xn]f ∈ Zk with total degree |n|1 ≤ N in deterministic time ≤
(N + d ·D + k)O(d·D+k) · (logH)O(1).

The lemma is proved by a dynamic programming algorithm storing all required coefficients
in a table, which is feasible since numerators and denominators are not too big. This rough
estimation shows that the complexity is exponential in d,D, k and polynomial in N .

Zeroness. The zeroness problem for CDF power series takes as input a polynomial p ∈ Q[y]
and a system of equations (9) with an initial condition c ∈ Qk extending to a (unique) power
series series solution f s.t. f(0) = c, and asks whether p ◦y f = 0.

L. Clemente 18:15

▶ Remark 27. This is a promise problem: We do not decide solvability in power series. In
our application in § 4 this is not an issue since power series solutions exist by construction.
In the univariate case d = 1 the promise is always satisfied. We leave it as future work to
investigate the problem of solvability in power series of CDF equations.

The following lemma gives short nonzeroness witnesses. It follows immediately from the
WBPP ideal construction (6). Together with Lemma 26 it yields the announced Theorem 3.

▶ Lemma 28. Consider a CDF f ∈ Q[[x]]k and p ∈ Q[y], both of degree ≤ D. The power

series g := p ◦y f is zero iff [xn]g = 0 for all monomials xn of total degree |n|1 ≤ Dk
O(k2) .

4 Constructible species of structures

The purpose of this section is to show how a rich combinatorial framework for building
classes of finite structures (called species) gives rise in a principled way to a large class
of CDF power series. The main result of this section is that multiplicity equivalence is
decidable for a large class of species (Theorem 4). Combinatorial species of structures [45]
are a formalisation of combinatorics based on category theory, designed in such a way
as to expose a bridge between combinatorial operations on species and corresponding
algebraic operations on power series. Formally, a d-sorted species is a d-ary endofunctor
F in the category of finite sets and bijections. In particular, F defines a mapping from
d-tuples of finite sets U = (U1, . . . , Ud) to a finite set F [U], satisfying certain naturality
conditions which ensure that F is independent of the names of the elements of U . In
particular, the cardinality of the output |F [U1, . . . , Ud]| depends only on the cardinality of
the inputs |U1| , . . . , |Ud|, which allows one to associate to F the exponential generating series
(EGS) EGS[F] :=

∑
n∈Nd Fn · xn

n! , where Fn1,...,nd
:= |F [U1, . . . , Ud]| for some (equivalently,

all) finite sets of cardinalities |U1| = n1, . . . , |Ud| = nd. We refer to [61, Sec. 1] for an
introduction to species tailored towards combinatorial enumeration (cf. also the book [5]).
Below we present the main ingredients relevant for our purposes by means of examples.

Species can be built from basic species by applying species operations and solving species
equations. Examples of basic species are the zero species 0 with EGS 0, the one species
1 with EGS 1, the singleton species Xj of sort j with EGS xj , the sets species SET with
EGS ex = 1 + x+ x2/2! + · · · (since there is only one set of size n for each n), and the cycles
species CYC with EGS − log(1 − x). New species can be obtained by the operations of sum
(disjoint union) F + G, combinatorial product F · G (generalising the Cauchy product for
words), derivative ∂Xj

F (cf. [61, Sec. 1.2 and 1.4] for formal definitions), and cardinality
restriction F|S (for a cardinality constraint S ⊆ Nd). Regarding the latter, F|S equals F on
inputs (U1, . . . , Ud) satisfying (|U1| , . . . , |Ud|) ∈ S, and is ∅ otherwise; we use the notation
F∼n for the constraint |U1| + · · · + |Ud| ∼ n, for ∼ a comparison operator such as = or ≥.

Another important operation is that of composition of species [61, Sec. 1.5]. Consider
sorts X = (X1, . . . ,Xd) and Y = (Y1, . . . ,Yk). Let F be a (X ,Y)-sorted species and let
G = (G1, . . . ,Gk) be a k-tuple of X -sorted species. For a set of indices I ⊆ {1, . . . , k}, we
write YI for the tuple of those Yi’s s.t. i ∈ I. We say that F is polynomial w.r.t. YI if
EGS[F] is polynomial w.r.t. yI , and similarly for locally polynomial. We say that F ,G are
Y-composable if F is locally polynomial w.r.t. YI , where I is the set of indices i s.t. Gi[∅] ̸= ∅.
The notion of strongly Y-composable is obtained by replacing “locally polynomial” with
“polynomial”. For two Y-composable species F ,G their composition F ◦Y G is a well-defined
X -sorted species. Informally, it is obtained by replacing each Yi in F by Gi.

CONCUR 2024

18:16 Weighted Basic Parallel Processes and Combinatorial Enumeration

We will not need the formal definitions of these operations, but we will use the fact
that each of these has a corresponding operation on power series [5, Ch. 1]: EGS[F + G] =
EGS[F] + EGS[G], EGS[F · G] = EGS[F] · EGS[G], EGS[∂Xj

F] = ∂xj
EGS[F], EGS[F ◦Y G] =

EGS[F] ◦y EGS[G], and EGS[F|S] = EGS[F]|S . For instance, SET[X]≥1 is the species of
nonempty sets, with EGS ex − 1; SET[X] · SET[X] is the species of subsets with EGS ex · ex =∑

n∈N 2n · xn/n! since subsets correspond to partitions of a set into two parts and there are
2n ways to do this for a set of size n; X · X is the species of pairs with EGS 2! · x2/2! since
there are two ways to organise a set of size 2 into a pair; SEQ[X] = 1 + X + X · X + · · · is
the species of lists with EGS (1 − x)−1 = 1 + x+ x2 + · · · since there are n! ways to organise
a set of size n into a tuple of n elements; SET[Y] ◦Y SET[X]≥1 is the species of set partitions
with EGS eex−1 since a set partition is a collection of nonempty sets which are pairwise
disjoint and whose union is the whole set.

Finally, species can be defined as unique solutions of systems of species equations. E.g.,
the species of sequences SEQ[X] is the unique species satisfying Y = 1 + X · Y since a
nonempty sequence decomposes uniquely into a first element together with the sequence
of the remaining elements; binary trees is the unique species solution of Y = 1 + X · Y2;
ordered trees is the unique species solution of Y = 1 + X · SEQ[Y]; Cayley trees (rooted
unordered trees) is the unique species satisfying Y = X · SET[Y] since a Cayley tree uniquely
decomposes into a root together with a set of Cayley subtrees. For a more elaborate
example, the species of series-parallel graphs is the unique solution for Y1 of the following
system [61, Sec. 0]:

Y1 = X + Y2 + Y3, (sp graphs)
Y2 = SEQ[X + Y3]≥2, (series graphs)
Y3 = SET[X + Y2]≥2. (parallel graphs)

(11)

Joyal’s implicit species theorem [45] (cf. [61, Theorem 2.1], [5, Theorem 2 of Sec. 3.2]), which
we now recall, provides conditions guaranteeing existence and uniqueness of solutions to
species equations. Let a system of species equations Y = F(X ,Y) (with F a k-tuple of
species) be well posed if F(0,0) = 0 and the Jacobian matrix ∂YF (defined as for power
series [61, Sec. 1.6]) is nilpotent at (0,0). A canonical solution is a solution Y := G(X)
s.t. G(0) = 0.

▶ Theorem 29 (Implicit species theorem [45]). A well-posed system of species equations
Y = F(X ,Y) admits a unique canonical solution Y := G(X).

The implicit species theorem is a direct analogue of the implicit function theorem for power
series. Furthermore, if Y = F(X ,Y) is a well-posed system of species equations then
y = EGS[F](x, y) is a well-posed system of power series equations; moreover the EGS of the
canonical species solution of the former is the canonical power series solution of the latter.
We now have enough ingredients to define a large class of combinatorial species. Strongly
constructible species are the smallest class of species (1) containing the basic species
0,1,Xj (j ∈ N), SET,CYC; (2) closed under sum, product, strong composition, regular
cardinality restrictions; and (3) closed under canonical resolution of well-posed systems
Y = F(X ,Y) with F a tuple of strongly constructible species. Note that the equation
Y = 1 + X · Y for sequences is not well posed, nonetheless sequences are strongly construct-
ible: Nonempty sequences SEQ[X]≥1 are the unique canonical solution of the well-posed
species equation Z = X + X · Z and SEQ[X] = 1 + SEQ[X]≥1. Similar manipulations show
that all the examples mentioned are strongly constructible.

L. Clemente 18:17

▶ Remark 30. The class of strongly constructible species is incomparable with the class
from [61, Definition 7.1]. On the one hand, [61] considers as cardinality restrictions only
finite unions of intervals, while we allow general regular restrictions, e.g. periodic constraints
such as “even size”; moreover, constraints in [61] are applied only to basic species, while we
allow arbitrary strongly constructible species. On the other hand, we consider well-posed
systems, while [61] considers more general well-founded systems. Finally, we consider strong
composition, while [61] considers composition.

Since CDF power series include the the basic species EGS 0, 1, xj (j ∈ N), (1 − x)−1, ex,
and − log(1 − x), from the CDF closure properties Lemmas 21, 23, and 24 and the discussion
above, we have:

▶ Theorem 31. The EGS of a strongly constructible species is effectively CDF.

▶ Remark 32. Constructible species are obtained by considering composition instead of strong
composition. We conjecture that even the EGS of constructible species are CDF, which would
follow by generalising Lemma 21(3) from “strongly composable” to “composable”.

For instance, the well-posed species equation Y = X · SET[Y] for Cayley trees translates to
the well-posed power series equation y = x · ey for its EGS. The well-posed species equations
for series-parallel graphs (11) translate to the following well-posed power series equations for
their EGS:

y1 = x+ y2 + y3,

y2 = 1
1−(x+y3) − 1 − (x+ y3),

y3 = ex+y2 − 1 − (x+ y2).
(12)

We conclude this section by deciding multiplicity equivalence of species. Two d-sorted
species F ,G are multiplicity equivalent (equipotent [61]) if Fn = Gn for every n ∈ Nd.
Decidability of multiplicity equivalence of strongly constructible species, announced in
Theorem 4, follows from Theorems 3 and 31.

5 Conclusions

We have presented two related computation models, WBPP series and CDF power series.
We have provided decision procedures of elementary complexity for their zeroness problems
(Theorems 1 and 3), which are based on a novel analysis on the length of chains of polynomial
ideals obtained by iterating a finite set of possibly noncommuting derivations (Theorem 18).
On the way, we have developed the theory of WBPP and CDF, showing in particular that the
latter arises as the commutative variant of the former. Finally, we have applied WBPP to
the multiplicity equivalence of BPP (Corollary 2), and CDF to the multiplicity equivalence
of constructible species (Theorem 4). Many directions are left for further work. Some were
already mentioned in the previous sections. We highlight here some more.

Invariant ideal. Fix a WBPP (or CDF). Consider the invariant ideal of all configurations
evaluating to zero Z := {α ∈ Q[N] | JαK = 0}. Zeroness is just membership in Z. Since Z is
a polynomial ideal, it has a finite basis. The most pressing open problem is whether we can
compute one such finite basis, perhaps leveraging on differential algebra [48]. Z is computable
in the special case of WFA [38, 39], however for polynomial automata it is not [56].

CONCUR 2024

18:18 Weighted Basic Parallel Processes and Combinatorial Enumeration

Regular support restrictions. BPP languages are not closed under intersection with regular
languages [21, proof of Proposition 3.11], and thus it is not clear for instance whether we
can decide BPP multiplicity equivalence within a given regular language. We do not know
whether WBPP series are closed under regular support restriction, and thus also zeroness of
WBPP series within a regular language is an open problem.

WBPP with edge multiplicities. One can consider a slightly more expressive BPP model
where one transition can remove more than one token from the same place [54]. It is
conceivable that zeroness stays decidable, however a new complexity analysis is required
since the corresponding ideal chains may fail to be convex.

References
1 Nikhil Balaji, Lorenzo Clemente, Klara Nosan, Mahsa Shirmohammadi, and James Worrell.

Multiplicity problems on algebraic series and context-free grammars. In Proc. of LICS’23,
pages 1–12, 2023. doi:10.1109/LICS56636.2023.10175707.

2 Henning Basold, Helle Hvid Hansen, Jean-Éric Pin, and Jan Rutten. Newton series, coinduct-
ively: a comparative study of composition. Mathematical Structures in Computer Science,
29(1):38–66, June 2017. doi:10.1017/s0960129517000159.

3 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In Proc. of LICS’17, pages 1–12, June 2017. doi:10.1109/LICS.
2017.8005101.

4 François Bergeron, Philippe Flajolet, and Bruno Salvy. Varieties of increasing trees. In J. C.
Raoult, editor, CAAP’92, pages 24–48, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

5 François Bergeron, Gilbert Labelle, Pierre Leroux, and Margaret Readdy. Combinatorial
Species and Tree-like Structures. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1998.

6 François Bergeron and Christophe Reutenauer. Combinatorial resolution of systems of dif-
ferential equations iii: A special class of differentially algebraic series. European Journal of
Combinatorics, 11(6):501–512, 1990.

7 François Bergeron and Ulrike Sattler. Constructible differentially finite algebraic series in
several variables. Theoretical Computer Science, 144(1):59–65, 1995.

8 J. Berstel and C. Reutenauer. Noncommutative rational series with applications. CUP, 2010.
9 Mikołaj Bojańczyk, Bartek Klin, and Joshua Moerman. Orbit-finite-dimensional vector spaces

and weighted register automata. In Proceedings of the 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’21. IEEE Press, 2021. doi:10.1109/LICS52264.2021.
9470634.

10 Michele Boreale. Algebra, coalgebra, and minimization in polynomial differential equations.
Logical Methods in Computer Science, Volume 15, Issue 1, February 2019.

11 Michele Boreale. Complete algorithms for algebraic strongest postconditions and weakest
preconditions in polynomial odes. Science of Computer Programming, 193:102441, 2020.

12 Michele Boreale. Automatic pre- and postconditions for partial differential equations. Inform-
ation and Computation, 285:104860, 2022.

13 Michele Boreale, Luisa Collodi, and Daniele Gorla. Products, polynomials and differential
equations in the stream calculus. ACM Trans. Comput. Logic, 25(1), January 2024. doi:
10.1145/3632747.

14 Michele Boreale and Daniele Gorla. Algebra and Coalgebra of Stream Products. In Serge
Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency Theory
(CONCUR 2021), volume 203 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 19:1–19:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CONCUR.2021.19.

https://doi.org/10.1109/LICS56636.2023.10175707
https://doi.org/10.1017/s0960129517000159
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS52264.2021.9470634
https://doi.org/10.1109/LICS52264.2021.9470634
https://doi.org/10.1145/3632747
https://doi.org/10.1145/3632747
https://doi.org/10.4230/LIPIcs.CONCUR.2021.19

L. Clemente 18:19

15 Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. Weakly-Unambiguous
Parikh Automata and Their Link to Holonomic Series. In Artur Czumaj, Anuj Dawar,
and Emanuela Merelli, editors, Proc. of ICALP’20, volume 168 of LIPIcs, pages 114:1–
114:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ICALP.2020.114.

16 Alin Bostan and Antonio Jiménez-Pastor. On the exponential generating function of labelled
trees. Comptes Rendus. Mathématique, 358(9-10):1005–1009, 2020. doi:10.5802/crmath.108.

17 François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot. Computing representa-
tions for radicals of finitely generated differential ideals. Applicable Algebra in Engineering,
Communication and Computing, 20(1):73, 2009. doi:10.1007/s00200-009-0091-7.

18 Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik und grundl.
Math., 6:66–92, 1960. doi:10.1002/malq.19600060105.

19 Alex Buna-Marginean, Vincent Cheval, Mahsa Shirmohammadi, and James Worrell. On
learning polynomial recursive programs. Proceedings of the ACM on Programming Languages,
8(POPL):1001–1027, January 2024. doi:10.1145/3632876.

20 Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, and Géraud
Sénizergues. On polynomial recursive sequences. Theory of Computing Systems, 2021.
doi:10.1007/s00224-021-10046-9.

21 Søren Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, Depart-
ment of Computer Science, University of Edinburgh, 1993.

22 Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation equivalence is decidable
for basic parallel processes. In CONCUR'93, pages 143–157. Springer Berlin Heidelberg, 1993.
doi:10.1007/3-540-57208-2_11.

23 Lorenzo Clemente. On the complexity of the universality and inclusion problems for unambigu-
ous context-free grammars. In Laurent Fribourg and Matthias Heizmann, editors, Proceedings
8th International Workshop on Verification and Program Transformation and 7th Workshop
on Horn Clauses for Verification and Synthesis, Dublin, Ireland, 25-26th April 2020, volume
320 of EPTCS, pages 29–43. Open Publishing Association, 2020. doi:10.4204/EPTCS.320.2.

24 Lorenzo Clemente. Weighted basic parallel processes and combinatorial enumeration. arXiv
e-prints, page arXiv:2407.03638, July 2024. doi:10.48550/arXiv.2407.03638.

25 David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer International Publishing, 4 edition, 2015.

26 Wojciech Czerwiński and Piotr Hofman. Language Inclusion for Boundedly-Ambiguous Vector
Addition Systems Is Decidable. In Bartek Klin, Sławomir Lasota, and Anca Muscholl, editors,
33rd International Conference on Concurrency Theory (CONCUR 2022), volume 243 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 16:1–16:22, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CONCUR.2022.16.

27 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Monographs in Theoretical Computer Science. Springer, 2009.

28 Calvin C. Elgot. Decision problems of finite automata design and related arithmet-
ics. Transactions of the American Mathematical Society, 98(1):21–51, 1961. doi:doi:
10.1090/S0002-9947-1961-0139530-9.

29 Javier Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.
Fundamenta Informaticae, 31(1):13–25, 1997. doi:10.3233/fi-1997-3112.

30 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

31 Michel Fliess. Sur divers produits de séries formelles. Bulletin de la Société Mathématique de
France, 102:181–191, 1974. doi:10.24033/bsmf.1777.

32 Michel Fliess. Réalisation locale des systèmes non linéaires, algèbres de lie filtrées transitives
et séries génératrices non commutatives. Inventiones Mathematicae, 71(3):521–537, March
1983. doi:10.1007/bf02095991.

CONCUR 2024

https://doi.org/10.4230/LIPIcs.ICALP.2020.114
https://doi.org/10.4230/LIPIcs.ICALP.2020.114
https://doi.org/10.5802/crmath.108
https://doi.org/10.1007/s00200-009-0091-7
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1145/3632876
https://doi.org/10.1007/s00224-021-10046-9
https://doi.org/10.1007/3-540-57208-2_11
https://doi.org/10.4204/EPTCS.320.2
https://doi.org/10.48550/arXiv.2407.03638
https://doi.org/10.4230/LIPIcs.CONCUR.2022.16
https://doi.org/doi:10.1090/S0002-9947-1961-0139530-9
https://doi.org/doi:10.1090/S0002-9947-1961-0139530-9
https://doi.org/10.3233/fi-1997-3112
https://doi.org/10.24033/bsmf.1777
https://doi.org/10.1007/bf02095991

18:20 Weighted Basic Parallel Processes and Combinatorial Enumeration

33 Vojtěch Forejt, Petr Jančar, Stefan Kiefer, and James Worrell. Language equivalence of
probabilistic pushdown automata. Information and Computation, 237:1–11, 2014. doi:
10.1016/j.ic.2014.04.003.

34 Andrei Gabrielov and Nicolai Vorobjov. Complexity of computations with pfaffian and
noetherian functions. In Y Ilyashenko and C Rousseau, editors, Normal Forms, Bifurcations
and Finiteness Problems in Differential Equations, NATO Science Series II, page 211. Springer,
January 2004.

35 Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars.
Journal of the ACM, 12(1):42–52, January 1965. doi:10.1145/321250.321254.

36 Yoram Hirshfeld. Petri nets and the equivalence problem. In Egon Börger, Yuri Gurevich,
and Karl Meinke, editors, Computer Science Logic, pages 165–174, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

37 John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2000.

38 Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial invariants
for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’18, pages 530–539, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3209108.3209142.

39 Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. On strongest algebraic
program invariants. J. ACM, August 2023. Just Accepted. doi:10.1145/3614319.

40 Hans Hüttel. Undecidable equivalences for basic parallel processes. In Theoretical Aspects
of Computer Software. TACS 1994, pages 454–464. Springer Berlin Heidelberg, 1994. doi:
10.1007/3-540-57887-0_110.

41 Hans Hüttel, Naoki Kobayashi, and Takashi Suto. Undecidable equivalences for basic parallel
processes. Information and Computation, 207(7):812–829, July 2009. doi:10.1016/j.ic.
2008.12.011.

42 Petr Jančar. Nonprimitive recursive complexity and undecidability for petri net equival-
ences. Theoretical Computer Science, 256(1):23–30, 2001. ISS. doi:10.1016/S0304-3975(00)
00100-6.

43 Petr Jančar. Strong bisimilarity on basic parallel processes in PSPACE-complete. In Proc. of
LICS’03, pages 218–227, 2003. doi:10.1109/LICS.2003.1210061.

44 Johannes Mittmann. Independence in Algebraic Complexity Theory. PhD thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn, December 2013. URL: https://hdl.handle.net/20.
500.11811/5810.

45 André Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics,
42(1):1–82, 1981.

46 Manuel Kauers and Peter Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence
Equations, Generating Functions, Asymptotic Estimates. Texts and Monographs in Symbolic
Computation. Springer-Verlag Wien, 1 edition, 2011.

47 S. C. Kleene. Representation of events in nerve nets and finite automata. In Shannon
and Mccarthy, editors, Automata Studies, pages 3–41. Princeton Univ. Press, 1956. URL:
http://www.rand.org/pubs/research_memoranda/RM704.html.

48 E. R. Kolchin. Differential Algebra and Algebraic Groups. Pure and Applied Mathematics 54.
Academic Press, Elsevier, 1973.

49 Pierre Leroux and Gérard X. Viennot. Combinatorial resolution of systems of differential
equations, i. ordinary differential equations. In Gilbert Labelle and Pierre Leroux, editors,
Combinatoire énumérative, pages 210–245, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.
doi:10.1007/BFb0072518.

50 L Lipshitz. The diagonal of a d-finite power series is d-finite. Journal of Algebra, 113(2):373–378,
1988. doi:10.1016/0021-8693(88)90166-4.

51 Leonard Lipshitz. D-finite power series. Journal of Algebra, 122(2):353–373, 1989. doi:
10.1016/0021-8693(89)90222-6.

https://doi.org/10.1016/j.ic.2014.04.003
https://doi.org/10.1016/j.ic.2014.04.003
https://doi.org/10.1145/321250.321254
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3614319
https://doi.org/10.1007/3-540-57887-0_110
https://doi.org/10.1007/3-540-57887-0_110
https://doi.org/10.1016/j.ic.2008.12.011
https://doi.org/10.1016/j.ic.2008.12.011
https://doi.org/10.1016/S0304-3975(00)00100-6
https://doi.org/10.1016/S0304-3975(00)00100-6
https://doi.org/10.1109/LICS.2003.1210061
https://hdl.handle.net/20.500.11811/5810
https://hdl.handle.net/20.500.11811/5810
http://www.rand.org/pubs/research_memoranda/RM704.html
https://doi.org/10.1007/BFb0072518
https://doi.org/10.1016/0021-8693(88)90166-4
https://doi.org/10.1016/0021-8693(89)90222-6
https://doi.org/10.1016/0021-8693(89)90222-6

L. Clemente 18:21

52 Prince Mathew, Vincent Penelle, Prakash Saivasan, and A.V. Sreejith. Weighted One-
Deterministic-Counter Automata. In Patricia Bouyer and Srikanth Srinivasan, editors, Proc. of
FSTTCS’23, volume 284 of Leibniz International Proceedings in Informatics (LIPIcs), pages
39:1–39:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSTTCS.2023.39.

53 Ernst Mayr. Membership in polynomial ideals over q is exponential space complete. In
B. Monien and R. Cori, editors, In Proc. of STACS’89, pages 400–406, Berlin, Heidelberg,
1989. Springer Berlin Heidelberg. doi:10.1007/BFb0029002.

54 Ernst W. Mayr and Jeremias Weihmann. Completeness Results for Generalized Communication-
Free Petri Nets with Arbitrary Edge Multiplicities, pages 209–221. Springer Berlin Heidelberg,
2013. doi:10.1007/978-3-642-41036-9_19.

55 Robin Milner. A calculus of communicating systems. Lecture Notes in Computer Science 92.
Springer-Verlag Berlin Heidelberg, 1 edition, 1980.

56 Julian Müllner, Marcel Moosbrugger, and Laura Kovács. Strong Invariants Are Hard: On
the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs. arXiv e-prints,
page arXiv:2307.10902, July 2023. doi:10.48550/arXiv.2307.10902.

57 Filip Murlak, Damian Niwiński, and Wojciech Rytter, editors. 200 Problems on Lan-
guages, Automata, and Computation. Cambridge University Press, March 2023. doi:
10.1017/9781009072632.

58 Masakazu Nasu and Namio Honda. Mappings induced by pgsm-mappings and some recursively
unsolvable problems of finite probabilistic automata. Information and Control, 15(3):250–273,
September 1969. doi:10.1016/s0019-9958(69)90449-5.

59 Dmitri Novikov and Sergei Yakovenko. Trajectories of polynomial vector fields and ascending
chains of polynomial ideals. Annales de l’Institut Fourier, 49(2):563–609, 1999.

60 Azaria Paz. Introduction to Probabilistic Automata. Computer Science and Applied Mathem-
atics. Elsevier Inc, Academic Press Inc, 1971.

61 Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinatorial structures:
Well-founded systems and Newton iterations. Journal of Combinatorial Theory, Series A,
119(8):1711–1773, 2012.

62 André Platzer. Logical Foundations of Cyber-Physical Systems. Springer International Pub-
lishing, 1st ed. edition, 2018.

63 André Platzer and Yong Kiam Tan. Differential equation invariance axiomatization. J. ACM,
67(1), April 2020.

64 Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM J. Res.
Dev., 3(2):114–125, April 1959. doi:10.1147/rd.32.0114.

65 Antonio Restivo and Christophe Reutenauer. On cancellation properties of languages which
are supports of rational power series. J. Comput. Syst. Sci., 29(2):153–159, October 1984.
doi:10.1016/0022-0000(84)90026-6.

66 Christophe Reutenauer. The Local Realization of Generating Series of Finite Lie Rank, pages
33–43. Springer Netherlands, 1986. doi:10.1007/978-94-009-4706-1_2.

67 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

68 Marcel Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4(2–3):245–270, September 1961. doi:10.1016/s0019-9958(61)80020-x.

69 A. Seidenberg. Constructions in algebra. Transactions of the American Mathematical Society,
197:273–313, 1974. doi:10.2307/1996938.

70 Jiří Srba. Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In
STACS 2002, pages 535–546. Springer Berlin Heidelberg, 2002. doi:10.1007/3-540-45841-7_
44.

71 R. P. Stanley. Differentiably finite power series. European Journal of Combinatorics, 1(2):175–
188, 1980. doi:10.1016/S0195-6698(80)80051-5.

CONCUR 2024

https://doi.org/10.4230/LIPIcs.FSTTCS.2023.39
https://doi.org/10.1007/BFb0029002
https://doi.org/10.1007/978-3-642-41036-9_19
https://doi.org/10.48550/arXiv.2307.10902
https://doi.org/10.1017/9781009072632
https://doi.org/10.1017/9781009072632
https://doi.org/10.1016/s0019-9958(69)90449-5
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1016/0022-0000(84)90026-6
https://doi.org/10.1007/978-94-009-4706-1_2
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/s0019-9958(61)80020-x
https://doi.org/10.2307/1996938
https://doi.org/10.1007/3-540-45841-7_44
https://doi.org/10.1007/3-540-45841-7_44
https://doi.org/10.1016/S0195-6698(80)80051-5

18:22 Weighted Basic Parallel Processes and Combinatorial Enumeration

72 Richard Stanley. Enumerative combinatorics, volume 1 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2ed edition, 2011.

73 R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems for unambigu-
ous regular expressions, regular grammars and finite automata. SIAM Journal on Computing,
14(3):598–611, August 1985. doi:10.1137/0214044.

74 B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberian Math. J.,
1962.

75 A. M. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230–265, 1937. doi:10.1112/plms/
s2-42.1.230.

76 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM J. Comput., 21(2):216–227, April 1992. doi:10.1137/0221017.

77 Joris van der Hoeven and John Shackell. Complexity bounds for zero-test algorithms. Journal
of Symbolic Computation, 41(9):1004–1020, 2006.

https://doi.org/10.1137/0214044
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1137/0221017

Computing Inductive Invariants of Regular
Abstraction Frameworks
Philipp Czerner
Technical University of Munich, Germany

Javier Esparza
Technical University of Munich, Germany

Valentin Krasotin
Technical University of Munich, Germany

Christoph Welzel-Mohr
Technical University of Munich, Germany

Abstract
Regular transition systems (RTS) are a popular formalism for modeling infinite-state systems in
general, and parameterised systems in particular. In a CONCUR 22 paper, Esparza et al. introduce a
novel approach to the verification of RTS, based on inductive invariants. The approach computes the
intersection of all inductive invariants of a given RTS that can be expressed as CNF formulas with a
bounded number of clauses, and uses it to construct an automaton recognising an overapproximation
of the reachable configurations. The paper shows that the problem of deciding if the language of this
automaton intersects a given regular set of unsafe configurations is in EXPSPACE and PSPACE-hard.

We introduce regular abstraction frameworks, a generalisation of the approach of Esparza et
al., very similar to the regular abstractions of Hong and Lin. A framework consists of a regular
language of constraints, and a transducer, called the interpretation, that assigns to each constraint
the set of configurations of the RTS satisfying it. Examples of regular abstraction frameworks
include the formulas of Esparza et al., octagons, bounded difference matrices, and views. We show
that the generalisation of the decision problem above to regular abstraction frameworks remains in
EXPSPACE, and prove a matching (non-trivial) EXPSPACE-hardness bound.

EXPSPACE-hardness implies that, in the worst case, the automaton recognising the overapprox-
imation of the reachable configurations has a double-exponential number of states. We introduce a
learning algorithm that computes this automaton in a lazy manner, stopping whenever the current
hypothesis is already strong enough to prove safety. We report on an implementation and show that
our experimental results improve on those of Esparza et al.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Problems, reductions and completeness; Theory of computation → Verification by model
checking

Keywords and phrases Regular model checking, abstraction, inductive invariants

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.19

Related Version Full Version: https://arxiv.org/abs/2404.10752 [16]

Supplementary Material Software: https://doi.org/10.5281/zenodo.12734991 [33]
archived at swh:1:snp:9789ae3f53de50f43367d1c0f108665ea96b619e

1 Introduction

Regular transition systems (RTS) are a popular formalism for modelling infinite-state systems
satisfying the following conditions: configurations can be encoded as words, the set of initial
configurations is recognised by a finite automaton, and the transition relation is recognised
by a transducer. Model checking RTS has been intensely studied under the name of regular

© Philipp Czerner, Javier Esparza, Valentin Krasotin, and Christoph Welzel-Mohr;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1786-9592
https://orcid.org/0000-0001-9862-4919
https://orcid.org/0009-0002-2129-2754
https://orcid.org/0000-0001-5583-0640
https://doi.org/10.4230/LIPIcs.CONCUR.2024.19
https://arxiv.org/abs/2404.10752
https://doi.org/10.5281/zenodo.12734991
https://archive.softwareheritage.org/swh:1:snp:9789ae3f53de50f43367d1c0f108665ea96b619e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Computing Inductive Invariants of Regular Abstraction Frameworks

model checking (see [23, 13, 24, 10] and the surveys [5, 1, 6, 2]). Most regular model checking
algorithms address the safety problem: given a regular set of unsafe configurations, decide if its
intersection with the set of reachable configurations is empty or not. They combine algorithms
for the computation of increasingly larger regular subsets of the reachable configurations
with acceleration, abstraction, and widening techniques [13, 23, 17, 4, 10, 12, 14, 11, 26, 15].

Recently, Esparza et al. have introduced a novel approach that, starting with the set of
all configurations of the RTS, computes increasingly smaller inductive invariants, that is,
inductive supersets of the reachable configurations. More precisely, [19] considers invariants
given by Boolean formulas in conjunctive normal form with at most b clauses. The paper
proves that, for every bound b ≥ 0, the intersection of all inductive b-invariants of the system
is recognised by a DFA of double exponential size in the RTS. As a corollary, they obtain
that, for every b ≥ 0, deciding if this intersection contains some unsafe configuration is in
EXPSPACE. They also show that the problem is PSPACE-hard, and leave the question of
closing the gap open.

In [20] (a revised version of [19]), the EXPSPACE proof is conducted in a more general
setting than in [19]. Inspired by this, in our first contribution we show that the approach
of [19] can be vastly generalised to arbitrary regular abstraction frameworks, consisting
of a regular language of constraints, and an interpretation. Interpretations are functions,
represented by transducers, that assign to each constraint a set of configurations, viewed
as the set of configurations that satisfy the constraint. Examples of regular abstraction
frameworks include the formulas of [19] for every b ≥ 0, views [3], and families of Presburger
arithmetic formulas like octagons [27] or bounded difference matrices [25, 8]. A framework
induces an abstract interpretation, in which, loosely speaking, the word encoding a constraint
is the abstraction of the set of configurations satisfying the constraint. Just as regular model
checking started with the observation that different classes of systems could be uniformly
modeled as RTSs [5, 1, 6, 2], we add the observation, also made in [21], that different classes
of abstractions can be uniformly modeled as regular abstraction frameworks. We show that
the generalisation of the verification problem of [19, 20] to arbitrary regular abstraction
frameworks remains in EXPSPACE.

In our second contribution we show that our problem is also EXPSPACE-hard. The
reduction (from the acceptance problem for exponentially bounded Turing machines) is
surprisingly involved. Loosely speaking, it requires to characterise the set of prefixes of the
run of a Turing machine on a given word as an intersection of inductive invariants of a very
restrictive kind. We think that this construction can be of independent interest.

Our third and final contribution is motivated by the EXPSPACE-hardness result. A
consequence of this lower bound is that the automaton recognising the overapproximation of
the reachable configurations must necessarily have a double-exponential number of states
in the worst case. We present an approach, based on automata learning, that constructs
increasingly larger automata that recognise increasingly smaller overapproximations, and
checks whether they are precise enough to prove safety. A key to the approach is solving the
separability problem: given a pair (c, c′) of configurations, is there an inductive constraint
that separates c and c′, i.e. is satisfied by c but not by c′? We show that the problem
is PSPACE-complete and NP-complete for interpretations captured by length-preserving
transducers. We provide an implementation on top of a SAT solver for the latter case (this is
the only case considered in [19, 20]). An experimental comparison shows that this approach
beats the one of [19, 20].

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:3

Related work. As mentioned above, our first contribution is a reformulation of results
of [20] into a more ambitious formalism; it is a conceptual but not a technical novelty. The
second and third contributions are new technical results.

Our regular abstraction frameworks are in the same spirit as the regular abstractions
of Hong and Lin [21], which use regular languages as abstract objects. In this paper we
concentrate on the inductive invariant approach of [19], and in particular on its complexity.
This is unlike the approach of [21], which on the one hand is more general, since it also
considers liveness properties, but on the other hand does not contain complexity results.

Automata learning has been explored for the verification of regular transition systems
multiple times [28, 31, 15, 32, 29]. Roughly speaking, all these approaches formulate a learning
process to obtain a regular inductive invariant of the system that proves a safety property.
Since it is impossible to algorithmically identify the cases where such regular inductive
invariant exists, timeouts [15] and resource limits [28] are used as heuristics. In contrast,
our approach is designed to always terminate. In particular, we either provide a regular set
of constraints that suffices to establish the safety property or a pair of configurations that
cannot be separated by inductive constraints of the considered framework. This information
can be used to design a more precise framework by adding a new type of constraints.

2 Preliminaries and regular transition systems

Automata. Let Σ be an alphabet. A nondeterministic finite automaton (NFA) over Σ
is a tuple A = (Q, Σ, δ, Q0, F) where Q is a finite set of states, δ : Q × Σ → P(Q) is the
transition function, Q0 ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. A
run of A on a word w = w1 · · · wl ∈ Σl is a sequence q0q1 · · · ql of states where q0 ∈ Q0 and
∀i ∈ [l] : qi ∈ δ(qi−1, wi). A run on w is accepting if ql ∈ F , and A accepts w if there exists
an accepting run of A on w. The language recognised by A, denoted L(A) or LA, is the set
of words accepted by A. If |Q0| = 1 and |δ(q, a)| = 1 for every q ∈ Q, a ∈ Σ |Q0| = 1, then
A is a deterministic finite automaton (DFA). In this case, we write δ(q, a) = q′ instead of
δ(q, a) = {q′} and have a single initial state q0 instead of a set Q0.

Relations. Let R ⊆ X ×Y be a relation. The complement of R is the relation R := {(x, y) ∈
X × Y | (u, w) /∈ R}. The inverse of R is the relation R−1 := {(y, x) ∈ Y × X | (x, y) ∈ R}.
The projections of R onto its first and second components are the sets R|1 := {x ∈ X | ∃y ∈
Y : (x, y) ∈ R} and R|2 := {y ∈ Y | ∃x ∈ X : (x, y) ∈ R}. The join of two relations R ⊆ X×Y

and S ⊆ Y × Z is the relation R ◦ S := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R, (y, z) ∈ S}.
The post-image of a set X ′ ⊆ X under a relation R ⊆ X × Y , denoted X ′ ◦ R or R(X ′),
is the set {y ∈ Y | ∃x ∈ X ′ : (x, y) ∈ R}; the pre-image, denoted R ◦ Y or R−1(Y), is
defined analogously. Throughout this paper, we only consider relations where X = Σ∗ and
Y = Γ∗ for some alphabets Σ, Γ. We just call them relations. A relation R ⊆ Σ∗ × Γ∗ is
length-preserving if (u, w) ∈ R implies |u| = |w|.

Convolutions and transducers. Let Σ, Γ be alphabets, let # /∈ Σ ∪ Γ be a padding symbol,
and let Σ# := Σ ∪ {#} and Γ# := Γ ∪ {#}. The convolution of two words u = a1 . . . ak ∈ Σ∗

and w = b1 . . . bl ∈ Γ∗, denoted
[

u
w

]
, is the word over the alphabet Σ# ×Γ# defined as follows.

Intuitively,
[

u
w

]
is the result of putting u on top of w, aligned left, and padding the shorter

of u and w with #. Formally, if k ≤ l, then
[

u
w

]
=

[
a1
b1

]
· · ·

[
ak

bk

][#
bk+1

]
· · ·

[#
bl

]
, and otherwise[

u
w

]
=

[
a1
b1

]
· · ·

[
al

bl

][
al+1

#
]

· · ·
[

ak

#
]
. The convolution of a tuple of words u1 ∈ Σ∗

1, . . . , uk ∈ Σ∗
k

is defined analogously, putting all k words on top of each other, aligned left, and padding
the shorter words with #.

CONCUR 2024

19:4 Computing Inductive Invariants of Regular Abstraction Frameworks

A transducer over Σ × Γ is an NFA over Σ# × Γ#. The binary relation recognised by
a transducer T over Σ × Γ, denoted R(T), is the set of pairs (u, w) ∈ Σ∗ × Γ∗ such that T

accepts
[

u
w

]
. The definition is generalised to relations of higher arity in the obvious way.

In the paper transducers recognise binary relations unless mentioned otherwise. A relation
is regular if it is recognised by some transducer. A transducer is length-preserving if it
recognises a length-preserving relation.

Complexity of operations on automata and transducers. Given NFAs A1, A2 over Σ with
n1 and n2 states, DFAs B1, B2 over Σ with m1 and m2 states, and transducers T1 over
Σ × Γ and T2 over Γ × Σ with l1 and l2 states, the following facts are well known (see e.g.
chapters 3 and 5 of [18]):

there exist NFAs for L(A1) ∪ L(A2), L(A1) ∩ L(A2), and L(A1) with at most n1 + n2, n1n2,
and 2n1 states, respectively;
there exist DFAs for L(B1)∪L(B2), L(B1)∩L(B2), and L(B1) with at most m1m2, m1m2,
and m1 states, respectively;
there exist NFAs for R(T1)|1 and R(T1)|2 and a transducer for R(T1)−1 with at most l1
states;
there exists a transducer for R(T1) ◦ R(T2) with at most l1l2 states; and
there exist NFAs for L(A1) ◦ R(T1) and R(T1) ◦ L(A2) with at most n1l1 and l1n2 states,
respectively.

Regular transition systems

We recall standard notions about regular transition systems and fix some notations. A
transition system is a pair S = (C, ∆) where C is the set of all possible configurations of
the system, and ∆ ⊆ C × C is a transition relation. The reachability relation Reach is the
reflexive and transitive closure of ∆. Observe that, by our definition of post-set, ∆(C) and
Reach(C) are the sets of configurations reachable in one step and in arbitrarily many steps
from C, respectively.

Regular transition systems are transition systems where ∆ can be finitely represented by
a transducer. Formally:

▶ Definition 1. A transition system S = (C, ∆) is regular if C is a regular language over
some alphabet Σ, and ∆ is a regular relation. We abbreviate regular transition system to
RTS.

RTSs are often used to model parameterised systems [5, 1, 6, 2]. In this case, Σ is the set
of possible states of a process, the set of configurations is C = Σ∗ \ {ε}, and a configuration
a1 · · · an ∈ Σ∗ describes the global state of an array consisting of n identical copies of the
process, with the i-th process in state ai for every 1 ≤ i ≤ n. The transition relation ∆
describes the possible transitions of all arrays, of any length.

▶ Example 2 (Token passing [5]). We use a version of the well-known token passing algorithm
as running example. We have an array of processes of arbitrary length. At each moment
in time, a process either has a token (t) or not (n). Initially, only the first process has a
token. A process that has a token can pass it to the process to the right if that process does
not have one. We set Σ = {t, n}, and so C = {t, n}∗ \ {ε}. We have c2 ∈ ∆(c1) iff the word[

c1
c2

]
belongs to the regular expression

([
n
n

]
+

[
t
t

])∗ ([
t
n

][
n
t

]) ([
n
n

]
+

[
t
t

])∗. For the set of
initial configurations CI := tn∗ where only the first process has a token, the set of reachable
configurations is Reach(CI) = n∗ t n∗.

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:5

3 Regular abstraction frameworks

In the same way that RTSs can model multiple classes of systems (e.g. parameterised sys-
tems with synchronous/asynchronous, binary/multiway/broadcast communication), regular
abstraction frameworks are a formalism to model a wide range of abstractions.

▶ Definition 3. An abstraction framework is a triple F = (C, A, V), where C is a set of
configurations, A is a set of constraints, and V ⊆ A × C is an interpretation. F is regular
if C and A are regular languages over alphabets Σ and Γ, respectively, and the interpretation
V is a regular relation over A × C.

Intuitively, the constraints of an abstraction framework are the abstract objects of the
abstraction, and V(A) is the set of configurations abstracted by A. The following remark
formalises this.
▶ Remark 4. An abstraction framework F = (C, A, V) induces an abstract interpretation as
follows. The concrete and abstract domains are (2C , ≤C) and (2A, ≤A), respectively, where
≤C :=⊆ and ≤A:=⊇. Both are complete lattices. The concretisation function γ : 2A → 2C

and the abstraction function α : 2C → 2A are given by:
γ(A′) :=

⋂
A∈A′ V(A). Intuitively, γ(A′) is the set of configurations that satisfy all

constraints of A′. In particular, γ(∅) = C.
α(C′) := {A ∈ A | C′ ⊆ V(A)}. Intuitively, α(C′) is the set of constraints satisfied by all
configurations in C′. In particular, α(∅) = A.

It is easy to see that the functions α and γ form a Galois connection, that is, for all C ⊆ C
and A ⊆ A, we have B ⊆ α(C) ⇔ C ⊆ γ(B).

Regular abstractions can be combined to yield more precise ones. Given abstraction
frameworks F1 = (C, A1, V1) and F2 = (C, A2, V2), we can define new frameworks (C, A, V)
by means of the following operations:

Union: A := A1 ∪ A2, V(A) := V1(A) if A ∈ A1, else V2(A).
A constraint of the union framework is either a constraint of the first framework, or a
constraint of the second.
Convolution: A = A1 × A2, V(A1, A2) := V1(A1) ∩ V2(A2).
A constraint of the convolution framework is the conjunction of two constraints, one of
each framework. This operation is implicitly used in [19]: the constraint for a Boolean
formula with b clauses is the convolution, applied b times, of the constraints for formulas
with one clause.

The proof of the following lemma is in the full version of the paper [16].

▶ Lemma 5. Regular abstraction frameworks are closed under union and convolution. If the
interpretations of the frameworks are recognised by transducers with n1 and n2 states, then
the interpretations of the union and convolution frameworks are recognised by transducers
with O(n1 + n2) and O(n1n2) states, respectively.

Many abstractions used in the literature can be modeled as regular abstraction frameworks.
We give some examples.

▶ Example 6. Consider a transition system where C = Nd for some d, and ∆ is given by
a formula of Presburger arithmetic δ(x, x′), that is, (n, n′) ∈ ∆ iff δ(n, n′) holds. It is
well-known that for any Presburger formula there is a transducer recognising the set of
its solutions when numbers are encoded in binary, and so with this encoding (C, ∆) is an
RTS. Any Presburger formula φ(x, y), where x has dimension d and y has some arbitrary

CONCUR 2024

19:6 Computing Inductive Invariants of Regular Abstraction Frameworks

dimension e, induces a regular abstraction framework as follows. The set of constraints is the
set of all tuples m ∈ Ne; the interpretation assigns to m all tuples n such that φ(n, m) holds.
Intuitively, the constraints are the formulas φm(x) := φ(x, m), but using m as encoding
of φm.

Special cases of this setting are used in many different areas. For example, bounded
difference matrices (see e.g. [25, 8]) and octagons [27] correspond to abstraction frameworks
with constraints φ(x1, x2, y) of the form x1 ± x2 ≤ y.

▶ Example 7. The approach to regular model checking of [19] is another instance of a
regular abstraction framework. The paper encodes sets of configurations as positive Boolean
formulas in conjunctive normal form with a bounded number b of clauses. We explain this by
means of an example. Consider an RTS with Σ = {a, b, c} and C = Σ∗. Consider the formula
φ = (a1:5 ∨ b1:5 ∨ a3:5) ∧ b4:5. We interpret φ on configurations. The intended meaning of
a literal, say a1:5, is “if the configuration has length 5, then its first letter is an a.” So the
set of configurations satisfying the formula is Σ≤4 + Σ6Σ∗ + (a + b)Σ2bΣ + Σ2abΣ. In the
formulas of [19] all literals have the same length, where the length of a literal xi:j is j.

Formulas with at most b clauses can be encoded as words over the alphabet Γ = (2Σ)b.
Each clause is encoded as a word over 2Σ. For example, the encodings of the clauses
(a1:5 ∨ b1:5 ∨ a3:5) and b4:5 are {a, b}∅{a}∅∅ and ∅∅∅{b}∅, and the encoding of φ is the
convolution of the encodings of the clauses. It is easy to see that the interpretation of [19]
that assigns to a formula the set of configurations satisfying it is a regular relation recognised
by a transducer with 2b states [19]. In particular, for the case b = 1 we get the two-state
transducer on the left of Figure 1.

▶ Example 8. In [3] Abdulla et al. introduce view abstraction for the verification of para-
meterised systems. Given a number k ≥ 1, a view of a word w ∈ Σ∗ is a scattered subword
of w. Loosely speaking, Abdulla et al. abstract a word by its set of views of length up to k.
In our setting, a constraint is a set F ⊆ Σ≤k of “forbidden views”, and V(V) is the set of all
words that do not contain any view of F . Since k is fixed, this interpretation is regular.

3.1 The abstract safety problem
We apply regular abstraction frameworks to the problem of deciding whether an RTS avoids
some regular set of unsafe configurations. For simplicity, we assume w.l.o.g. that the set of
configurations of the RTS is Σ∗1. Let us first formalise the Safety problem:

Given: a nondeterministic transducer recognising a regular relation ∆ ⊆ Σ∗ × Σ∗, and
two NFAs recognising regular sets CI , CU ⊆ Σ∗ of initial and unsafe configurations,
respectively.

Decide: does Reach(CI) ∩ CU = ∅ hold?

It is a folklore result that Safety is undecidable. Let us sketch the argument. The
configurations of a given Turing machine can be encoded as words of the form wl q wr, where
wl, wr encode the contents of the tape to the left and to the right of the head, and q encodes
the current state. With this encoding, the successor relation between configurations of the
Turing machine is regular, and so is the set of accepting configurations. Taking the latter as
set of unsafe configurations, the Turing machine accepts a given initial configuration iff the
RTS started at the initial configuration is unsafe.

1 By interpreting ∆ as a relation over Σ × Σ, any RTS can be transformed into an equivalent one with
the same transitions where the set of configurations is Σ∗.

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:7

{[
γ
σ

]
| σ ∈ γ

}
[

⋆
#

]
,
[#

⋆

]

{[
γ
σ

]
| σ /∈ γ

}
Γ# × Σ# {[

γ
σ

]
| σ ∈ γ

}
{[

γ
σ

]
| σ /∈ γ

} {[
γ
σ

]
| σ /∈ γ

}

[
⋆
#

]
,
[#

⋆

] [
⋆
#

]
,
[#

⋆

]
Γ# × Σ#

Figure 1 Transducers for the interpretations of Example 7 and 10. We have Γ = 2Σ, and so the
alphabet of the transducer is (2Σ)# × Σ#. The symbols

[
⋆
#

]
and

[#
⋆

]
stand for the sets of all letters

of the form
[

γ
#

]
and

[#
σ

]
, respectively.

AbstractSafety. We show that regular abstraction framework induces an “abstract” version
of the safety problem, in which we replace the reachability relation by an overapproximation
derived from the abstraction framework. Fix an RTS S = (C, ∆) and a regular abstraction
framework F = (C, A, V). We introduce some definitions:

▶ Definition 9. A set C ⊆ C of configurations is inductive if ∆(C) ⊆ C. A constraint A is
inductive if V(A) is inductive. We let Ind ⊆ A denote the set of all inductive constraints of
A. Given two configurations c, c′ and A ∈ Ind, we say that A separates c from c′ if c ∈ V(A)
and c′ /∈ V(A).

It is a folklore result that Reach(C) is the smallest inductive set containing C, and that if
some A ∈ Ind separates c and c′, then (c, c′) /∈ Reach. Hence, an abstraction framework
(C, A, V) induces a potential reachability relation PReach ⊆ C × C, defined as the set of all
pairs of configurations that are not separated by any inductive constraint. Formally:

PReach := {(c, c′) ∈ C × C | ∀A ∈ Ind : c ∈ V(A) → c′ ∈ V(A)}

We have Reach(C) ⊆ PReach(C) for every set of configurations C. In particular, given sets
CI , CU ⊆ C of initial and unsafe configurations, if PReach(CI) ∩ CU = ∅, then the RTS is
safe.

▶ Example 10. Consider the RTS of the token passing system of Example 2, where Σ = {t, n}.
We give two examples of abstraction frameworks. The first one is the abstraction framework
of [19], already presented in Example 7, with b = 1. We have Γ = 2Σ = {∅, {t}, {n}, Σ}. A
constraint like φ =

∨5
i=3 ti:5 is encoded by the word ∅∅{t}{t}{t} ∈ Γ∗, and interpreted as the

set of all configurations of length 5 that have a token at positions 3, 4, or 5, plus the set of
all configurations of length different from 5. The two-state transducer for this interpretation
is on the left of Figure 1. For example, the left state has transitions leading to itself for
the letters

[∅
n

]
,
[∅

t

]
,
[{t}

n

]
,
[{n}

t

]
. The constraint φ is inductive. In fact, the language of all

non-trivial inductive constraints (a constraint is trivial if it is satisfied by all configurations
or by none) is {n}+∅∗{t}∗ + {n}∗∅∗{t}+. The set of configurations potentially reachable
from CI = tn∗ is PReach(CI) = (tn + nn∗t)(t + n)∗. In particular, PReach(CI) ∩ n∗ = ∅,
but tnt ∈ PReach(CI). So this abstraction framework is strong enough to prove that every
reachable configuration has at least one token, but not to prove that it has exactly one.

Consider now the framework in which, instead of a disjunction of literals, a constraint
is an exclusive disjunction of literals, that is, a configuration satisfies the constraint if it
satisfies exactly one of its literals. So, in particular, the interpretation of ∅∅{t}{t}{t} is
now that exactly one of the positions 3, 4, and 5 has a token. The interpretation is also

CONCUR 2024

19:8 Computing Inductive Invariants of Regular Abstraction Frameworks

{t}∅

{n}
{t, n}

{t}

{t, n}

∅

{n}
{t, n}

{t}

{n}

∅

{n}

{t, n}

{n}

∅

{t}

∅

∅

{n}

∅

{t}

{t}

Figure 2 On the left, DFA recognising all non-trivial inductive constraints of Example 17. On
the right, fragment with the same interpretation as the DFA on the left.

regular; it is given by the three-state transducer on the right of Figure 1. Examples of
inductive constraints are {t}∅{t, n}{n} and all words of {t}∗. The language of non-trivial
inductive constraints is given by the DFA on the left of Figure 2. Observe that the set
of words satisfying all constraints of {t}∗ is the language n∗tn∗. In particular, we have
PReach(CI) ⊆ n∗tn∗ = Reach(CI), and so PReach(CI) = Reach(CI).

The AbstractSafety problem is defined exactly as Safety, just replacing the reach-
ability set Reach(CI) by the potential reachability set PReach(CI) implicitly defined by the
regular abstraction framework:

Given: a nondeterministic transducer recognising a regular relation ∆ ⊆ Σ∗ × Σ∗; two NFAs
recognising regular sets CI , CU ⊆ Σ∗ of initial and unsafe configurations, respectively;
and a deterministic transducer recognising a regular interpretation V over Γ × Σ.

Decide: does PReach(CI) ∩ CU = ∅ hold?

Recall that Safety is undecidable. In the rest of this section and in the next one we show
that AbstractSafety is EXPSPACE-complete. Membership in EXPSPACE was essentially
proved in [20], while EXPSPACE-hardness was left open. We briefly summarise the proof of
membership in EXPSPACE presented in [20], for future reference in our paper.

▶ Remark 11. The result we prove in Section 3.2 is slightly more general. In [20], membership
in EXPSPACE is only proved for RTSs whose transducers are length-preserving, while we
prove it in general. General transducers allow one to model parameterised systems with
process creation. For example, we can model a token passing algorithm in which the size of the
array can dynamically grow and shrink by adding the transitions

([
n
n

]
+

[
t
t

])+ ([
n
#

]
+

[#
n

])
to the transition relation of Example 2.

3.2 AbstractSafety is in EXPSPACE

We first show that the set of all inductive constraints of a regular abstraction framework is a
regular language. Fix a regular abstraction framework F = (C, A, V) over an RTS (C, ∆).
Let n∆, nV , nI , nU be the number of states of the transducers and NFAs of a given instance
of AbstractSafety.

▶ Lemma 12 ([20]). The set Ind is regular. Further, one can compute an NFA with at most
n∆ · n2

V states recognising Ind, and a DFA with at most 2n∆·n2
V states recognising Ind.

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:9

Proof. By definition, we have

Ind = {A ∈ Γ∗ | ∃c, c′ ∈ C : c ∈ V(A), c′ ∈ ∆(c), and c′ /∈ V(A)}

= {A ∈ Γ∗ | ∃c, c′ ∈ C : (A, c) ∈ V , (c, c′) ∈ ∆ and (c′, A) ∈ V−1}

Let IdΓ = {(A, A) | A ∈ Γ∗}. We obtain Ind =
((

V ◦ ∆ ◦ V−1
)

∩ IdΓ
)

|1. By the results at
the end of Section 2, Ind is recognised by a NFA with nV · n∆ · nV = n∆n2

V states, and so
Ind is recognised by a DFA with 2n∆·n2

V states. ◀

▶ Lemma 13 ([20]). The potential reachability relation PReach is regular. Further, one
can compute a nondeterministic transducer with at most K := n2

V · 2n∆·n2
V states recognising

PReach, and a deterministic transducer with at most 2K states recognising PReach.

Proof. By definition, we have

PReach = {(c, c′) ∈ C × C | ∃A ∈ Ind : c ∈ V(A) and c′ /∈ V(A)}
=

{
(c, c′) ∈ C × C | ∃A ∈ Ind : (c, A) ∈ V−1 and (A, c′) ∈ V

}
Let IdΓ = {(A, A) | A ∈ Γ∗}. We obtain PReach =

(
V−1 ◦ (IdΓ ∩ Ind2) ◦ V

)
. Apply now the

results at the end of Section 2 and Lemma 12. ◀

▶ Theorem 14 ([20]). AbstractSafety is in EXPSPACE.

Proof. Immediate consequence of Lemma 13, see the full version of the paper [16]. ◀

4 AbstractSafety is EXPSPACE-hard

In [19] it was shown that AbstractSafety was PSPACE-hard, and the paper left the
question of closing the gap between the upper and lower bounds open. We first recall and
slightly alter the PSPACE-hardness proof of [19], and then present our techniques to extend
it to EXPSPACE-hardness.

The proof is by reduction from the problem of deciding whether a Turing machine M of
size n does not accept when started on the empty tape of size n. (For technical reasons, we
actually assume that the tape has n − 2 cells.) Given M, we construct in polynomial time
an RTS S and a set of initial configurations CI that, loosely speaking, satisfy the following
two properties: the execution of S on an initial configuration simulates the run of M on the
empty tape, and PReach(CI) = Reach(CI). We choose CU as the set of configurations of S
in which M ends up in the accepting state. Then S is safe iff M does not accept.

Turing machine preliminaries. We assume that M is a deterministic Turing machine with
states Q, tape alphabet Γ′, initial state q0 and accepting state qf .

We represent a configuration of M as a word # β q η of length n, where M is in state
q, the content of the tape is β η ∈ Γ′∗, and the head of M is positioned at the first letter
of η. The symbol # serves as a separator between different configurations. The initial
configuration is α0 := #q0Bn−2, where B denotes the blank symbol of M; so the tape is
initially empty.

We assume w.l.o.g. that the successor of a configuration in state qf is the configuration
itself, so the run of M can be encoded as an infinite word α := α0α1 · · · where αi represents
the i-th configuration of M. For convenience, we write Λ := Q ∪ Γ′ ∪ {#} for the set of
symbols in α. It is easy to see that the symbol at position i+n of α is completely determined

CONCUR 2024

19:10 Computing Inductive Invariants of Regular Abstraction Frameworks

by the symbols at positions i−1 to i+2 and the transition relation of M. We let δ(x1x2x3x4)
denote the symbol which “should” appear at position i + n when the symbols at positions
i − 1 to i + 2 are x1x2x3x4; in particular, δ(x1#x2x4) = #.

Configurations of S. We choose the set of configurations as C := α0#(Λ ∪ {□})∗, and the
initial configurations as CI := α0#□∗. Intuitively, the RTS starts with the representation
of the initial configuration of M, followed by some number of blank cells □. During its
execution, the RTS will “write” the run of M into these blanks.

A configuration is unsafe if it contains some occurrence of qf , the accepting state of M,
so CU := (Λ ∪ {□})∗{qf }(Λ ∪ {□})∗.

Transitions. For convenience, we will denote the i-th position of a word w as w(i) instead
of wi. Given a configuration c, the set ∆(c) contains one single configuration c′, defined as
follows. Let i be some position of c such that ci+n = □. Then c′ coincides with c everywhere
except at position i + n, where instead c′(i + n) := δ(c(i − 1)c(i)c(i + 1)c(i + 2)). It is easy
to see that ∆ is a regular relation: The transducer nondeterministically guesses the position
i − 1, reads the next four symbols, say x1...x4, stores δ(x1...x4) in its state, moves to position
i + n, checks if c(i + n) = □ and writes c′(i + n) := δ(x1...x4). The transducer has O(n2)
states.

It follows from the definitions above that M accepts the empty word iff S can reach CU

from CI , i.e. Reach(CI) ∩ CU ̸= ∅.

Regular abstraction framework. We define a regular abstraction framework F = (C, A, V)
of polynomial size such that PReach(CI) = Reach(CI). Hence, for every configuration
c /∈ Reach(CI), we must find an inductive constraint A ∈ A which separates CI and c. (Note
that CI contains exactly one configuration of length |c|.)

As the reachable configurations are precisely the prefixes of α with some symbols replaced
by □, there is a position i s.t. c(i) /∈ {□, α(i)}. Let us fix the smallest such i. As we noted
above, α(i) is determined entirely by α(i − n − 1)...α(i − n + 2) via the mapping δ. So the
constraint “if c(i − n − 1)...c(i − n + 2) = x1...x4, then c(i) ∈ {□, δ(x1...x4)}” is inductive
and separates CI and c.

Therefore, it is sufficient to define an abstraction framework in which every constraint of
the above form can be expressed. This is relatively straightforward. We set A := □∗Λ4□∗Λ□∗.
Given a constraint A = □ix1...x4□jx□k, define V(A) as the set of all configurations c s.t.
c(i + 1)...c(i + 4) = x1...x4 implies c(i + j + 5) ∈ {□, x}. Clearly, V is a regular relation which
can be recognised by a transducer with 3 states.

▶ Theorem 15 ([19]). The abstract safety problem is PSPACE-hard, even for regular ab-
straction frameworks where the transducer for the interpretation has a constant number of
states.

From PSPACE-hardness to EXPSPACE-hardness

In order to prove EXPSPACE-hardness, we start with a machine M of size n and run it on
a tape with 2n cells. However, if we proceed exactly as in the PSPACE-hardness proof, we
encounter two obstacles: (1) The length of α0 is 2n, so our definitions of C and CI require
automata of exponential size. (2) The transducer for the transition relation ∆ needs to
“count” to 2n, as this is the distance between the corresponding symbols of αi and αi+1.
Again, this requires an exponential number of states.

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:11

00 000 #0 q0
0 □0 □0 □0 □0 □0 □0 □0 □0

mark(2,1)−−−−−−→ 01 000 #1 q0
0 □1 □0 □1 □0 □1 □0 □1 □0

mark(3,0)−−−−−−→ 01 100 #1 q1
0 □1 □0 □1 □1 □1 □1 □1 □0

init−−→ 00 000 #0 q0
0 □0 B0 □0 □0 □0 □0 □0 □0

mark(2,0)−−−−−−→ 10 000 #0 q1
0 □0 B1 □0 □1 □0 □1 □0 □1

mark(3,0)−−−−−−→ 10 100 #0 q1
0 □1 B1 □1 □1 □0 □1 □1 □1

init−−→ 00 000 #0 q0
0 □0 B0 □0 □0 #0 □0 □0 □0

···−→ 00 000 #0 q0
0 B0 B0 B0 B0 #0 □0 □0 □0

···−→ 10 001 #1 q1
0 B0 B1 B1 B1 #1 □1 □0 □1

write−−−→ 00 000 #0 q0
0 B0 B0 B0 B0 #0 □0 q1

1 □0

···−→ 01 010 #1 q0
0 B1 B1 B1 B1 #1 □0 q1

1 □1

write−−−→ 00 000 #0 q0
0 B0 B0 B0 B0 #0 x0 q0

1 □0

Figure 3 A sample run of the regular transition system described in Example 16. Here, mark(x, y)
means that the y-th bit of the prime number x is changed to 1, and thus every position not equivalent
to y (mod x) is unmarked. Note that the first position of the TM part (the one with #) is position
0. We write xy instead of [y

x
]. We highlight bits and symbols that were written to in pink (bits

which are unmarked by the mark transition, but were already unmarked, are drawn in darker pink).

Obstacle (1) will be easy to overcome. Essentially, instead of starting the RTS with the
entire initial configuration α0 of M already in place, we set CI := # q0 □∗ and modify the
transitions of S to also write out α0.

However, obstacle (2) poses a more fundamental problem. On its face, it is easy to
construct an RTS that can count to 2n by executing multiple transitions in sequence, e.g.
by implementing a binary counter. However, we need to balance this with the needs of the
abstraction framework: if the RTS is too sophisticated, our constraints can no longer capture
its behaviour using only regular languages.

We now sketch an RTS S ′ which extends the RTS S from the PSPACE-hardness proof.

A two-phase system. In order to write the run of M, the RTS S ′ uses a “mark and write”
approach. In a first phase, it executes n transitions to mark positions with distance m, where
m ≥ 2n is some fixed constant. Then, it nondeterministically guesses a marked position,
reads and stores 4 symbols from that position, and moves to the next marker to write the
symbol according to δ.

Let p1, . . . , pn be the first n prime numbers (i.e. p1 = 2, p2 = 3, etc.). Define m :=
∏n

j=1 pj

and s :=
∑n

j=1 pi. We have m ≥ 2n and, by the Prime Number Theorem, s ∈ O(n2 log n).
The configurations of S ′ are of the form w [m

c], where w ∈ {0, 1}s stores the current state
of the mark phase, m ∈ {0, 1}∗ are the markers (0 means marked), and c ∈ (Λ ∪ {□})∗ is as
for S, with the reachable configurations being the prefixes of α with some symbols replaced
by □. We refer to [m

c] as the TM part.
The RTS has three kinds of transitions: ∆′ := ∆mark ∪ ∆write ∪ ∆init .

CONCUR 2024

19:12 Computing Inductive Invariants of Regular Abstraction Frameworks

u = 00 000 #0 q0
0 □0 □0 □0 □0 □0 □0 □0 □0

v = 00 000 #0 q0
0 B0 B0 B0 B0 #0 x0 q0

1 q0
f

(1)

A1 = □ ... □ □ □ B B B B □ □ □ B (2)

A2 = 01 100 0 1 0 2 0 1 0 1 0 2 (3)

Figure 4 Constraints in Example 16. (1) Two configurations u, v, where u ∈ CI , v ∈ CU . (2) The
(not necessarily inductive) constraint A1, separating u, v. (3) The matching inductive constraint A2.

In the mark phase, S ′ executes a transition of ∆mark for each j ∈ [n]. When executing
such a transition, S ′ chooses a remainder r ∈ [0, pj − 1] and sets the corresponding bit in w.
It then unmarks every position in the TM part which is not equivalent to r modulo pj (by
replacing the 0 with a 1). Hence, after executing n transitions in ∆mark, the positions of
all 0’s in the TM part are equivalent modulo every pj . By the Chinese remainder theorem,
these positions must also be equivalent modulo m.

Afterwards, S ′ executes either a transition in ∆write or ∆init . To execute ∆write, the RTS
nondeterministically guesses a marked position i, reads x := c(i − 1)...c(i + 2), moves to the
next marked position i′, and writes δ(x).

As mentioned in obstacle (1) above, the RTS must write out the initial configuration of
M. This is done by ∆init . If the first position of the TM part is not marked, the transducer
moves to the first marked position and writes B, otherwise it moves to the second marked
position and writes #. By executing this transition multiple times, eventually a configuration
w [m

c] with c = #q0Bm−2#□i can be reached.
While executing either ∆write or ∆init , the transducer resets the mark phase state and

marks all positions, i.e. the resulting configurations have w = 0s and m ∈ 0∗.

▶ Example 16. Take n = 2. Here, we have p1 = 2, p2 = 3, m = 6 and s = 5. The set
of initial and unsafe configurations is thus CI := L(05[0

][0
q0

][0
□]∗) and CU := {0}5({0} ×

Λ)∗{[0
qf

]}({0} × Λ)∗, respectively. In Figure 3, we give a possible run of the RTS for a TM
with states {q0, q1, qf } (q0 is initial, qf is final), and one transition from q0, which reads B,
moves the head to the right and goes to state q1.

The abstraction framework. If M accepts, no constraint proving safety can exist, as an
unsafe configuration is reachable. Consequently, when constructing the abstraction framework
we only need to ensure that – provided M does not accept – for every pair (u, v) ∈ CI × CU

there is an inductive constraint separating u and v.
The abstraction framework (C, A, V) is the convolution of two independent parts, i.e.

A := A1 × A2 and V([A1
A2

]) := V1(A1) ∩ V2(A2).
For every pair (u, v) ∈ CI × CU there will be a constraint A1 ∈ A1 separating u and v.

This is similar to before: v must contain an “error” somewhere, so our constraint will state “if
c(i − 1)...c(i + 2) = x, then c(i + m) ∈ {δ(x),□}”, for some i, x. (Depending on v we instead
may need A1 stating just “c(i) ∈ {α(i),□}”.) Concretely, we set A1 := □s□∗(Λ4□∗Λ+Λ)□∗,
so the constraint is represented by a word in □∗x□∗δ(x)□∗ (or a word in □∗α(i)□∗). An
example is shown in Figure 4.

This is enough to separate u and v, as v must contain an “error” somewhere (i.e. a
deviation from α). But it is not inductive: We can take any configuration which has
c(i + m) = □, but where the cells have not been marked correctly, s.t. executing ∆write would
write to position i + m after reading symbols c(j − 1)...c(j + 2) with j ̸= i. So the resulting
configuration may have c(i + m) ̸= δ(x), which no longer fulfils A1.

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:13

We solve this issue via V2. For the constraint A1 above there is going to be a constraint
A2 ∈ A2 s.t. the combination V1(A1) ∩ V2(A2) is inductive. Essentially, A2 will ensure that
it is impossible to write to position i + m without reading from position i. (Note that for a
particular constraint the value of i is fixed.)

Let A2 := {0, 1}s[0, n]∗. Intuitively, a constraint x y ∈ A2 (where |x| = s) states: “if
remainders for the first j primes have been chosen according to x, then exactly the positions
k with y(k) ≥ j are marked, otherwise positions k with y(k) = n are unmarked”, where j is
the number of primes that have been chosen.

Again, the constraint A1 is only concerned with one position i. Moreover, there is only
one sequence of remainders r1, ..., rn to choose for the ∆mark transitions, s.t. position i is
marked (i.e. rj ≡ i (mod pj)). So for each position k we can determine the index in the
sequence of ∆mark transitions at which position k will first become unmarked. Concretely,
we have y(k) := min{j | k ̸≡ i (mod pj)} − 1.

This constraint is inductive and, crucially, the intersection of A1 and A2 is inductive as
well. Essentially, every ∆mark transition either continues the sequence r1, ..., rn, and then
the positions must be marked precisely according to y, or at some point a different remainder
has been chosen, and the position i is unmarked and cannot be written to.

To summarise, constraint A1 is sufficient to exclude any unsafe configuration and, in
combination with A2, does so inductively. Therefore, if M does not accept, then the RTS
can be proven safe using the abstraction framework.

For the full proof, see the full version of the paper [16].

5 Learning regular sets of inductive constraints

Recall the algorithm for AbstractSafety underlying Theorem 14. It computes an auto-
maton recognising the set Ind of inductive constraints (Lemma 12); uses this automaton to
compute a transducer recognising the potential reachability relation PReach (Lemma 13);
uses this transducer to compute an automaton recognising PReach(CI) ∩ CU ; and finally uses
this automaton to check if PReach(CI) ∩ CU is empty (Theorem 14). The main practical
problem of this approach is that, while the automaton for Ind has polynomial size in the
input, the automaton for Ind can be exponential, and, while the automaton for PReach has
polynomial size in Ind, the size of the automaton for PReach can be exponential.

In practice one typically does not need all inductive constraints to prove safety. This can
be illustrated even on the tiny RTS of Example 2.

▶ Example 17. Consider the RTS of the token passing system of Example 2, where Σ = {t, n},
and the second abstraction framework of Example 10, where Γ = 2Σ = {∅, {t}, {n}, {t, n}}.
Recall that in this abstraction framework a constraint is an exclusive disjunction of literals,
that is, a configuration satisfies the constraint if it satisfies exactly one of its literals. The
minimal DFA recognising all non-trivial inductive constraints was shown on the left of
Figure 2. The set of inductive constraints {t}{t}∗ is satisfied by the configurations n∗tn∗,
and so the DFA on the right is already strong enough to prove any safety property.

We present a learning algorithm that computes automata recognising increasingly large
sets H ⊆ Ind of inductive constraints until either H is large enough to prove safety, or it
becomes clear that even the whole set Ind is not large enough. More precisely, recall that, by
definition, we have PReach := {(c, c′) ∈ C × C | ∀A ∈ Ind : c ∈ V(A) → c′ ∈ V(A)}. Given a
set H ⊆ Ind, define the relation PReachH exactly as PReach, just replacing Ind by H. Clearly,
we have PReachH ⊇ PReach and PReachInd = PReach.

CONCUR 2024

19:14 Computing Inductive Invariants of Regular Abstraction Frameworks

5.1 The learning algorithm
Let S = (C, ∆) and F = (C, A, V) be a regular transition system and a regular abstraction
framework, respectively. Further, let CI and CU be regular sets of initial and unsafe
configurations. The algorithm refines Angluin’s algorithm L∗ for learning a DFA for the full
set Ind [7, 30]. Recall that Angluin’s algorithm involves two agents, usually called Learner
and Teacher. Learner sends Teacher membership and equivalence queries, which are answered
by Teacher according to the following specification:

Membership Query:
Input: a constraint A ∈ A
Output: ✓ if A ∈ Ind, and × otherwise.

Equivalence Query:
Input: a DFA recognising a set H ⊆ A.
Output: ✓ if H = Ind, otherwise a constraint A ∈ (H \ Ind) ∪ (Ind \ H).

Angluin’s algorithm describes a strategy for Learner guaranteeing that Learner eventually
learns the minimal DFA recognising Ind. The number of equivalence queries asked by Learner
is at most the number of states of the DFA.

Answering the queries. We describe the algorithms used by Teacher to answer queries. For
membership queries, Teacher constructs an NFA for Ind ∩ {A} with O(|A| · n∆ · n2

V) states
(see Lemma 12), and checks it for emptiness.

For equivalence queries, Teacher proceeds as follows :
1. Teacher first checks whether H \ Ind ̸= ∅ holds by computing an NFA recognising H ∩ Ind

with O(nH · n∆ · n2
V) states (see Lemma 12), and checking it for emptiness. If H \ Ind is

nonempty, then Teacher returns one of its elements.
2. Otherwise, Teacher constructs an automaton for PReachH(CI) ∩ CU of size O(2n2

V ·nH)
and checks it for emptiness. There are two cases:
a. If PReachH(CI) ∩ CU = ∅, then the system is safe; Teacher reports it and terminates.

In this case, the learning algorithm is aborted without having learned a DFA for Ind,
because it is no longer necessary.

b. Otherwise, Teacher chooses an element (c, c′) ∈ PReachH ∩ (CI × CU), and searches
for an inductive constraint A such that c ∈ V(A) and c′ /∈ V(A). We call this problem
the separability problem, and analyze it further in Section 5.2.

5.2 The separability problem
The Separability problem is formally defined as follows:

Given: a nondeterministic transducer recognising a regular relation ∆ ⊆ Σ∗ ×Σ∗; a determin-
istic transducer recognising a regular interpretation V over Γ × Σ; and two configurations
c, c′ ∈ C

Decide: is c′ separable from c, i.e. does there exist A ∈ Ind s.t. c ∈ V(A) and c′ /∈ V(A)?

Contrary to AbstractSafety, the complexity of Separability is different for arbitrary
transducers, and for length-preserving ones.

▶ Theorem 18. Separability is PSPACE-complete, even if ∆ is length-preserving. If V is
length-preserving, then Separability is NP-complete.

Proof. See the full version of the paper [16]. ◀

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:15

Table 1 Comparison of the sizes of the automata computed by the lazy and direct approaches.
In each table, the first three columns contain the name of the RTS and the sizes of the automata for
CI and ∆. The fourth column (Pr.) indicates the checked property, where D, M, and O stand for
“deadlock freedom”, “mutex” (at most one process in a given state), and “other” (custom properties
of the particular RTS). The next two columns give the results for the lazy approach: sizes of the
DFAs for H and PReachH (abbreviated as PRH), and the next two the same results for the direct
approach. The last column (Re.) indicates the result of the check: the property could be proved
(✓), could not (×), or, in the case of multiple properties, how many of the properties were proved.

Lazy Direct
System |CI | |∆| Pr. |H| |PRH| |Ind| |PR| Re.

Bakery 3 5 D 1 1 9 8 ✓

M 4 3 ✓

Burns 1 6 D 1 1 10 6 ✓

M 5 3 ✓

Dijkstra 2 17 D 4 4 218 22 ✓

M 11 8 ✓

Dijkstra 2 12 D 9 9 47 17 ✓

(ring) M 9 7 ×
Dining 2 8 D 23 18 86 19 2/2
crypto.

Herman 2 11 D 3 2 8 7 ✓

O 1 2 ✓

Herman 2 3 D 1 2 7 7 ×
(linear) O 1 2 ✓

Israeli-Jafon 3 10 D 1 4 21 7 ✓

O 1 4 ✓

Token passing 2 3 O 4 4 9 7 ✓

Lehmann-Rabin 1 7 D 5 6 29 13 ✓

LR phils. 1 1 11 D 13 14 29 15 ×
LR phils. 2 1 11 D 25 11 29 9 ✓

Atomic phils. 1 8 D 13 9 22 20 ✓

Mux array 2 4 D 1 2 7 8 ✓

M 3 5 ×

Res. alloc. 1 5 D 5 5 9 8 ✓

M 3 3 ×

Lazy Direct
System |CI | |∆| Pr. |H| |PRH| |Ind| |PR| Re.

Berkeley 1 9 D 1 1 12 9 ✓

O 4 4 2/3

Dragon 1 23 D 1 1 37 11 ✓

O 15 7 6/7

Firefly 1 16 D 1 1 12 7 ✓

O 4 3 0/4

Illinois 1 16 D 1 1 18 14 ✓

O 4 3 0/2

MESI 1 7 D 1 1 8 7 ✓

O 4 4 2/2

MOESI 1 7 D 1 1 15 10 ✓

O 4 4 7/7

Synapse 1 5 D 1 1 8 7 ✓

O 2 3 2/2

Lazy Direct
System |CI | |∆| Pr. |H| |PRH| |Ind| |PR| Re.
Dijkstra 2 12 M 9 7 ✓
(ring)
LR phils. 1 1 11 D 34 11 ✓

Mux array 2 4 M 5 3 ✓

Res. alloc. 1 5 M 5 5 ✓

Most applications of regular model checking to the verification of parameterised systems,
and in particular all the examples studied in [19, 20], have length-preserving transition
functions and length-preserving interpretations. For this reason, in our implementation we
only consider this case, and leave an extension for future research. Since Separability is
NP-complete in the length-preserving case, it is natural to solve it by reduction to SAT. A
brief description of the reduction is given in the full version of the paper [16].

5.3 Some experimental results
We have implemented the learning algorithm in a tool prototype, built on top of the libraries
automatalib and learnlib [22] and the SAT solver sat4j [9]. We compare our learning
approach with the one of [19], which constructs automata for Ind and PReach using the
regular abstraction framework of Example 7. In the rest of this section we call these two
approaches the lazy and the direct approach, respectively. We use the same case studies
as [19]. We compare the sizes of the DFA for the final hypothesis H and PReachH with the
sizes of the DFA for Ind and PReach. The results are available at [33] and are shown in
Table 1.

The left table in Table 1 shows results on RTSs modeling mutex and leader election
algorithms, and academic examples, like various versions of the dining philosophers. The
right top table shows results on models of cache-coherence protocols. Observe that Ind and

CONCUR 2024

19:16 Computing Inductive Invariants of Regular Abstraction Frameworks

PReach do not depend on the property, but H and PReachH do, because the algorithm can
finish early. In this case, the sizes given in columns H and PReachH are the largest ones
computed over all properties checked.

The main result is that the automata computed by our tool are significantly smaller than
those for [19]. (Note that in all cases we compute minimal DFAs, and so the differences
are not due to algorithms for the computation of automata.) Observe that in five cases the
deadlock-freedom and the mutex properties could not be proved. In one case (deadlock-
freedom of Herman (linear)) this is because the property does not hold. In the other four
cases, the problem is that [19] uses only a specific regular abstraction framework, namely
the one of Example 7. We can prove the property by refining the abstraction: we take the
union of the “disjunctive” and the “exclusive disjunctive” abstractions of Example 10. The
bottom-right table gives the results of these four cases.

Both tools take less than three seconds in 54 out of the 59 case studies in the left and top
right tables. We do not report the exact times; the implementation of [19] uses MONA, while
the experiments of this paper use automatalib and learnlib, and so small time differences
may have any number of reasons. In the other five cases, the implementation of [19] still
needs less than one second, while our implementation takes minutes (more than ten minutes
in two cases). In these five cases the time performance is dominated by the SAT solver sat4j.
We have not yet identified a pattern explaining why sat4j takes so much time, in particular
the number and size of the formulas passed to it is similar to the other cases.

6 Conclusions

We have generalised the technique of [19, 20] for checking safety properties of RTS to
arbitrary regular abstraction frameworks. We have shown that the abstract safety problem is
EXPSPACE-complete, solving an open problem of [19, 20], by means of a complex reduction
of independent interest. For particular abstraction frameworks the complexity can be better.

We have used automata learning to design a lazy algorithm that stops when the inductive
constraints computed so far are enough to prove safety. Its combination with other learning
techniques, as those proposed in [28, 31, 15, 32, 29], is a question for future research.

References
1 Parosh Aziz Abdulla. Regular model checking. Int. J. Softw. Tools Technol. Transf., 14(2):109–

118, 2012.
2 Parosh Aziz Abdulla. Regular model checking: Evolution and perspectives. In Model Checking,

Synthesis, and Learning, volume 13030 of Lecture Notes in Computer Science, pages 78–96.
Springer, 2021.

3 Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holík. Parameterized verification through
view abstraction. Int. J. Softw. Tools Technol. Transf., 18(5):495–516, 2016.

4 Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso. Regular model
checking made simple and efficient. In CONCUR, volume 2421 of Lecture Notes in Computer
Science, pages 116–130. Springer, 2002.

5 Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank Saksena. A survey of
regular model checking. In CONCUR, volume 3170 of Lecture Notes in Computer Science,
pages 35–48. Springer, 2004.

6 Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur. Model checking parameterized
systems. In Handbook of Model Checking, pages 685–725. Springer, 2018.

7 Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

P. Czerner, J. Esparza, V. Krasotin, and C. Welzel-Mohr 19:17

8 Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018.

9 Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput., 7(2-3):59–6, 2010.

10 Bernard Boigelot, Axel Legay, and Pierre Wolper. Iterating transducers in the large (extended
abstract). In CAV, volume 2725 of Lecture Notes in Computer Science, pages 223–235. Springer,
2003.

11 Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomás Vojnar. Abstract regular
(tree) model checking. Int. J. Softw. Tools Technol. Transf., 14(2):167–191, 2012.

12 Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Abstract regular model checking. In
CAV, volume 3114 of Lecture Notes in Computer Science, pages 372–386. Springer, 2004.

13 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model checking.
In CAV, volume 1855 of Lecture Notes in Computer Science, pages 403–418. Springer, 2000.

14 Ahmed Bouajjani and Tayssir Touili. Widening techniques for regular tree model checking.
Int. J. Softw. Tools Technol. Transf., 14(2):145–165, 2012.

15 Yu-Fang Chen, Chih-Duo Hong, Anthony W. Lin, and Philipp Rümmer. Learning to prove
safety over parameterised concurrent systems. In FMCAD, pages 76–83. IEEE, 2017.

16 Philipp Czerner, Javier Esparza, Valentin Krasotin, and Christoph Welzel-Mohr. Computing
inductive invariants of regular abstraction frameworks. CoRR, abs/2404.10752, 2024. doi:
10.48550/arXiv.2404.10752.

17 Dennis Dams, Yassine Lakhnech, and Martin Steffen. Iterating transducers. In CAV, volume
2102 of Lecture Notes in Computer Science, pages 286–297. Springer, 2001.

18 Javier Esparza and Michael Blondin. Automata Theory – An Algorithmic Approach. MIT
Press, 2023.

19 Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. Regular model checking upside-down:
An invariant-based approach. In CONCUR, volume 243 of LIPIcs, pages 23:1–23:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

20 Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. Regular model checking upside-down:
An invariant-based approach. CoRR, abs/2205.03060, version 2, 2022.

21 Chih-Duo Hong and Anthony W. Lin. Regular abstractions for array systems. Proc. ACM
Program. Lang., 8(POPL):638–666, 2024.

22 Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learnlib - A framework
for active automata learning. In CAV (1), volume 9206 of Lecture Notes in Computer Science,
pages 487–495. Springer, 2015.

23 Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. In TACAS, volume 1785 of Lecture Notes in Computer Science, pages
220–234. Springer, 2000.

24 Yonit Kesten, Oded Maler, Monica Marcus, Amir Pnueli, and Elad Shahar. Symbolic model
checking with rich assertional languages. Theor. Comput. Sci., 256(1-2):93–112, 2001.

25 Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point of View,
Second Edition. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

26 Axel Legay. Extrapolating (omega-)regular model checking. Int. J. Softw. Tools Technol.
Transf., 14(2):119–143, 2012.

27 Antoine Miné. The octagon abstract domain. High. Order Symb. Comput., 19(1):31–100, 2006.
28 Daniel Neider. Applications of automata learning in verification and synthesis. PhD thesis,

RWTH Aachen University, 2014.
29 Daniel Neider and Nils Jansen. Regular model checking using solver technologies and automata

learning. In NASA Formal Methods, volume 7871 of Lecture Notes in Computer Science, pages
16–31. Springer, 2013.

30 Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active automata learning
from a practical perspective. In SFM, volume 6659 of Lecture Notes in Computer Science,
pages 256–296. Springer, 2011.

CONCUR 2024

https://doi.org/10.48550/arXiv.2404.10752
https://doi.org/10.48550/arXiv.2404.10752

19:18 Computing Inductive Invariants of Regular Abstraction Frameworks

31 Abhay Vardhan. Learning To Verify Systems. PhD thesis, University of Illinois, 2006.
32 Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and Gul Agha. Learning to verify safety

properties. In ICFEM, volume 3308 of Lecture Notes in Computer Science, pages 274–289.
Springer, 2004.

33 Christoph Welzel-Mohr, Valentin Krasotin, Philipp Czerner, and Javier Esparza. dodo,
February 2024. doi:10.5281/zenodo.12734991.

https://doi.org/10.5281/zenodo.12734991

Behavioural Metrics: Compositionality of the
Kantorovich Lifting and an Application to Up-To
Techniques
Keri D’Angelo #

Cornell University, USA
Sebastian Gurke #

Universität Duisburg-Essen, Germany

Johanna Maria Kirss #

University of Copenhagen, Denmark
Barbara König #

Universität Duisburg-Essen, Germany

Matina Najafi #

Amirkabir University of Technology, Iran
Wojciech Różowski #

University College London, UK

Paul Wild #

FAU Erlangen-Nürnberg, Germany

Abstract
Behavioural distances of transition systems modelled via coalgebras for endofunctors generalize
traditional notions of behavioural equivalence to a quantitative setting, in which states are equipped
with a measure of how (dis)similar they are. Endowing transition systems with such distances
essentially relies on the ability to lift functors describing the one-step behavior of the transition
systems to the category of pseudometric spaces. We consider the category theoretic generalization of
the Kantorovich lifting from transportation theory to the case of lifting functors to quantale-valued
relations, which subsumes equivalences, preorders and (directed) metrics. We use tools from fibred
category theory, which allow one to see the Kantorovich lifting as arising from an appropriate
fibred adjunction. Our main contributions are compositionality results for the Kantorovich lifting,
where we show that that the lifting of a composed functor coincides with the composition of the
liftings. In addition, we describe how to lift distributive laws in the case where one of the two
functors is polynomial (with finite coproducts). These results are essential ingredients for adapting
up-to-techniques to the case of quantale-valued behavioural distances. Up-to techniques are a
well-known coinductive technique for efficiently showing lower bounds for behavioural distances. We
illustrate the results of our paper in two case studies.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases behavioural metrics, coalgebra, Galois connections, quantales, Kantorovich
lifting, up-to techniques

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.20

Related Version Proofs and extra material can be found in the full version.
Full Version: https://arxiv.org/abs/2404.19632 [10]

Funding Sebastian Gurke, Barbara König and Paul Wild: were supported by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation) – project number 434050016 (SpeQt).
Johanna Maria Kirss: was supported by NSF grant DMS-2216871.
Wojciech Różowski: partially supported by ERC grant Autoprobe (no. 101002697).

Acknowledgements We would like to thank Avi Craimer for helpful discussions and the organizers
of the ACT Adjoint School for enabling us to meet and write this paper together!

© Keri D’Angelo, Sebastian Gurke, Johanna Maria Kirss, Barbara König, Matina Najafi,
Wojciech Różowski, and Paul Wild;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kd349@cornell.edu
https://orcid.org/0000-0002-8812-9612
mailto:sebastian.gurke@uni-due.de
https://orcid.org/0009-0008-4343-1384
mailto:rmg215@alumni.ku.dk
mailto:barbara_koenig@uni-due.de
https://orcid.org/0000-0002-4193-2889
mailto:matn@aut.ac.ir
mailto:w.rozowski@cs.ucl.ac.uk
https://orcid.org/0000-0002-8241-7277
mailto:paul.wild@fau.de
https://orcid.org/0000-0001-9796-9675
https://doi.org/10.4230/LIPIcs.CONCUR.2024.20
https://arxiv.org/abs/2404.19632
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Behavioural Metrics: Compositionality of the Kantorovich Lifting

1 Introduction

In concurrency theory, behavioural equivalences are a fundamental concept: they explain
whether two states exhibit the same behaviour and there are efficient techniques for checking
behavioural equivalence [25]. More recently, this idea has been generalized to behavioural
metrics that measure the behavioural distance of two states [28, 11, 12]. This is in particular
interesting for quantitative systems where the behaviour of two states might be similar but
not identical.

There are two dimensions along which notions of behavioural distances for (quantitative)
transition systems can be generalized: first, instead of only considering metrics that return
a real-valued distance, one can use an arbitrary quantale, yielding the notion of quantale-
valued relations or conformances that subsume equivalences, preorders and (directed) metrics.
Second, one can abstract from the branching type of the transition system under consideration,
using a functor specifying various forms of branching (non-deterministic, probabilistic,
weighted, etc.). This leads us to a coalgebraic framework [24] that provides several techniques
for studying and analyzing systems and has also been adapted to behavioural metrics [2]. A
coalgebra is a function c : X → FX where X is a set of states and F is a (set) functor.

For defining (and computing) behavioural conformances in coalgebraic generality, a
fundamental notion is the lifting of a functor F to F , acting on conformances. In the case
when F is a distribution functor and the conformances are metrics, there is a well-known
way of obtaining F through results from transportation theory using either Kantorovich
or Wasserstein liftings, which are known to coincide through the so-called Kantorovich-
Rubinstein duality [29]. Recent work [2] generalized these two approaches to lifting functors to
the category of pseudometric spaces, as well as to more general quantale-valued relations [3, 5].
It turns out that at this level of generality, the analogue of the Kantorovich-Rubinstein duality
does not hold in general anymore. In both the Kantorovich and Wasserstein approaches,
given a set X and a conformance d (preorder, equivalence, metric, . . .) on X, the lifted
functor F canonically determines a conformance on FX, based on (a set of) evaluation
maps. Intuitively, these maps provide a way of testing the one-step behaviour of the system
and generalize the calculation of the expected value taking place in the definitions of the
Kantorovich/Wasserstein liftings. Combining the lifting with a subsequent reindexing with
the coalgebra c results in a function whose (greatest) fixpoint is the desired behavioural
conformance. In this paper we focus on directed conformances such as preorders or directed
metrics (also called hemimetrics).

The aim of this paper is twofold: we consider the so-called Kantorovich lifting of functors [2]
that – as opposed to the Wasserstein lifting [5] – offers some extra flexibility, since it allows
the use of a set of evaluation maps and places fewer restrictions on both the functor and these
predicate liftings. We study compositionality results for the Kantorovich lifting, answering
the question under which conditions the lifting is compositional in the sense that FG = F G.
This compositionality result is then an essential ingredient in adapting up-to techniques to
the setting of behavioural metrics based on the Kantorovich lifting, inspired by the results
of [5], which were developed for the Wasserstein lifting. Up-to techniques are coinductive
techniques that allow small witnesses for lower bounds of behavioural distances by exploiting
an algebraic structure on the state space.

We first set up a framework based on Galois connections and fibred adjunctions, ex-
tending [4]. This sets the stage for the definition of the Kantorovich lifting based on this
adjunction. We next answer the question of compositionality positively for the case where F

is polynomial with finite coproducts, and show several negative results for combinations of
powerset and distribution functor.

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:3

The positive compositionality result for the case where F is polynomial with finite cop-
roducts opens the door to developing up-to techniques for trace-like behavioural conformances
that are computed on determinized transition systems, or – more generally – determinized
coalgebras. More concretely, we consider coalgebras of type c : X → FTX where F is a finite
coproduct polynomial functor, providing the explicit branching type of the coalgebra, and T

is a monad, describing the implicit branching. For instance, in the case of a non-deterministic
automaton we would use FX = 2×XA and T = P (powerset functor). There is a well-known
determinization construction [17, 26] that transforms such a coalgebra into c# : TX → FTX

via a distributive law ζ : TF ⇒ FT . This yields a determinized system c# acting on the
state space TX, which has an algebraic structure given by the multiplication of the monad.
A behavioural conformance is then computed on TX and passed back to X using the unit of
the monad.

As TX might be very large (e.g., in the case of T = P) or even infinite (e.g., in the case
of T = D, distribution functor), it can be hard to compute conformances for c#. However,
the algebraic structure on TX can be fruitfully employed using up-to techniques [23, 6]
that allow to consider post-fixpoints up to the algebraic structure, making it much easier to
display a witness proving a (lower) bound on the distance of two states. The validity of the
up-to technique rests on a compatibility property that is ensured whenever the distributive
law ζ can be lifted, i.e., if it is non-expansive wrt. the lifted conformances. We show that
this holds, where an essential step in the proof relies on the compositionality results.

In this sense, we complement the up-to techniques in [5] that provide a similar result for
the Wasserstein lifting. This enables us to use the up-to technique for Kantorovich liftings,
which are more versatile and allow more control over the distance values, in particular in the
presence of products and coproducts. Indeed, as Wasserstein liftings are based on couplings,
which in general need not exist [2], they often produce trivial distance values. We will see
later in the paper that several of our case studies can only be treated appropriately in the
Kantorovich case. Furthermore, we can show the lifting of the distributive law for an entire
class of functors (polynomial functors with finite coproducts), while [5] contained generic
results for a different class of canonical liftings. In the non-canonical case it was necessary to
prove a complex condition ensuring compositionality in [5].

We apply our technique to several examples, such as trace metrics for probabilistic
automata and trace semantics for systems with exceptions. We give concrete instances where
up-to techniques help and show how witnesses yielding upper bounds can be reduced in size
or even become finite (as opposed to infinite).

2 Preliminaries

We begin by recalling some relevant definitions and fix some notation.
As outlined in the introduction, we use quantales as the domain for behavioural con-

formances. A quantale is a complete lattice (V, ⊑) that is equipped with a commutative
monoid structure (V, ⊗, k) (where k is the unit of ⊗) such that ⊗ is join-continuous, that
is, a ⊗

⊔
bi =

⊔
a ⊗ bi for each a ∈ V and each family bi in V , where

⊔
denotes least upper

bounds. Join-continuity of ⊗ implies that the operation a ⊗ − has a right adjoint, which we
denote by dV(a, −). This means that we have a ⊗ b ⊑ c ⇐⇒ b ⊑ dV(a, c) for all a, b, c ∈ V .
The operation dV is called the residuation or internal hom of the quantale.

We work with three main examples of quantales. The first is the Boolean quantale 2⊓,
consisting of two elements ⊥ ⊑ ⊤ and with binary meet ⊓ as the monoid structure. In this
quantale, the unit k is ⊤, and residuation is Boolean implication: dV(a, b) = a → b = ¬a ⊔ b.

CONCUR 2024

20:4 Behavioural Metrics: Compositionality of the Kantorovich Lifting

The second main example is the unit interval quantale [0, 1]⊕, where the underlying lattice
is the unit interval [0, 1] under the reversed order (that is, ⊑ = ≥), and with truncated
addition a ⊕ b = min(a + b, 1) as the monoid structure. In this case, the unit of ⊕ is 0, and
its residuation is truncated subtraction, which is given by dV(a, b) = b ⊖ a = max(b − a, 0).
The third main example is the quantale [0, ∞]+ of extended positive reals, with structure
analogous to [0, 1]⊕, i.e. with reversed lattice order and using the extended addition (with ∞)
as the monoid operation.

▶ Remark 1. As many of our examples use the real-valued quantales [0, 1]⊕ and [0, ∞]+,
where the order is reversed, we reserve the use of the symbols ≥ and ≤ for the usual order in
the reals, and instead use ⊑ and ⊒ when working with general quantales. Similarly, we use⊔

and
d

for joins and meets in the quantalic order, but switch to inf and sup when working
in [0, 1]⊕ or [0, ∞]+.

We consider several types of conformances based on a quantale V. First, given a set X, we
may consider V-valued endorelations on X, that is, maps of type d : X × X → V. We call
these structures V-graphs [20], and write V-GraphX for the set of V-graphs with underlying
set X. Each set V-GraphX is a complete lattice where both the order and joins are pointwise,
that is d ⊑ d′ if d(x, y) ⊑ d′(x, y) for all x, y ∈ X. Given two V-graphs dX ∈ V-GraphX

and dY ∈ V-GraphY we say that a map f : X → Y is non-expansive or a V-functor if
dX ⊑ dY ◦ (f × f) in V-GraphX and in this case we write f : (X, dX) → (Y, dY). V-graphs
and non-expansive maps form a category V-Graph.

▶ Remark 2. In some parts of the literature, the category V-Graph is denoted by V-Rel
instead [5]. We opt for V-Graph as in [20], as V-Rel more often denotes the category with
sets as objects and V-valued relations between them as morphisms [13].

Second, within V-Graph we consider the subcategory consisting of those V-graphs that satisfy
additional axioms, corresponding to a generalized notion of a metric space, or, equivalently,
(small) categories enriched over V [20]. A V-category is an object of V-GraphX for some set
X where we additionally have k ⊑ d(x, x) and d(x, y) ⊗ d(y, z) ⊑ d(x, z) for all x, y, z ∈ X.
Instantiated to the quantales 2⊓ and [0, 1]⊕, V-categories correspond precisely to preorders
and 1-bounded hemimetric spaces, respectively. The quantale V itself becomes a V-category
when equipped with the residuation dV . The class of all V-categories is denoted by V-Cat,
and the set of V-categories based on a set X is denoted by V-CatX .

In this paper, we use a coalgebraic framework. Recall that a coalgebra is a pair (X, c),
where X is the state space and c : X → FX is the transition structure parametric on an
endofunctor F : Set → Set. We also utilize two specific functors for (counter)examples
below. The powerset functor is defined as P(X) = {U | U ⊆ X} on sets and P(f)(U) =
{f(x) | x ∈ U} on functions. The countably supported distribution functor is defined as
D(X) =

{
p : X → [0, 1] |

∑
x∈X p(x) = 1, supp(p) is countable

}
on sets, where supp(p) =

{x | p(x) ̸= 0}, and as D(f)(p)(y) =
∑

{p(x) | x ∈ X, f(x) = y} on functions.
Given fi : X → Yi, i ∈ {1, 2}, we denote by ⟨g1, g2⟩ : X → Y1 × Y2 the mediating

morphism of the product, namely ⟨g1, g2⟩(x) = (g1(x), g2(x)). Given gi : Xi → Y , i ∈ {1, 2},
[g1, g2] : X1 +X2 → Y is the mediating morphism of the coproduct, namely [g1, g2](x) = gi(x)
if x ∈ Xi.

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:5

3 Motivation from Transportation Theory

In this section, we give a brief description of the original Kantorovich distance on probability
distributions, before we introduce its category theoretic generalization. Motivated by the
transportation problem [29], the Kantorovich distance on probability distributions aims to
maximize the transport by finding the optimal flow of commodities that satisfies demand from
supplies and minimizes the flow cost. In fact, it is based on the dual version of this problem
that asks for the optimal price function. For the sake of the example, consider a metric space
defined on a three element set X = {A, B, C} with a distance function d : X × X → [0, ∞],
such that d(A, A) = d(B, B) = d(C, C) = 0, d(A, B) = d(B, A) = 3, d(A, C) = d(C, A) = 5
and d(B, C) = d(C, B) = 4. Based on this distance we now want to define a distance on
probability distributions on the set X, which is a function d↑ : D(X) × D(X) → [0, ∞]. As a
concrete example, let us take the distributions P and Q, such that P (A) = 0.7, P (B) = 0.1
and P (C) = 0.2, while Q(A) = 0.2, Q(B) = 0.3 and Q(C) = 0.5.

A

0.7

0.2

B

0.1

0.3

C

0.2

0.5

3

5 4

In order to define their distance, we can interpret the three elements A, B, C as places
where a certain product is produced and consumed (imagine the places are maple syrup
farms, each with an adjacent café where one can eat the pancakes with the aforementioned
syrup). The geographical distance between the maple syrup farms is given by the distance
function d, while the above distributions model the supply (Q) and demand (P) of the
product in proportion to the total supply or demand. We assume that the total value
of supply is the same as the total value of demand. As the owners of the farms, we are
interested in transporting the product in a way to avoid excess supply and meet all demands.
We can deal with this issue in two ways: do the transport on our own or find a logistics
firm which will do it for us. The Kantorovich lifting relies on the latter perspective. We
assume that for each place it sets up a price for the logistics company at which it will
buy a unit of our product (at farms with overproduction) or sell it (at cafés with excess
demand). This is equivalent to giving a function f : X → [0, ∞]. We require that prices
are competitive, that is for all x, y ∈ X, we have that |f(x) − f(y)| ≤ d(x, y), which is
equivalent to saying that f is a non-expansive function from d into the Euclidean distance
de on [0, ∞]. Given a pricing f , the profit made by the transportation company is given
by cf =

∑
x∈X f(x)P (x) −

∑
x∈X f(x)Q(X) =

∑
x∈X f(x) (P (x) − Q(x)). Because the

transportation company wants to make the most profit, it is aiming to pick a pricing f

maximizing the formula given above. Combining all the moving parts together we are
left with formula d↑(P, Q) = max{

∑
x∈X f(x) (P (X) − Q(X)) | f : (X, dX) → ([0, ∞], de)}

defining the Kantorovich distance between probability distributions P and Q.
It is not straightforward to see, but in this example an optimal pricing function is

f(A) = 0, f(B) = 3, f(C) = 5, which can be easily seen to be non-expansive and yields a
distance of 2.1.

CONCUR 2024

20:6 Behavioural Metrics: Compositionality of the Kantorovich Lifting

More abstractly, the formula above can be dissected into three pieces:
1. Taking all pricing plans f , which are non-expansive with respect to the Euclidean distance

on [0, ∞].
2. Evaluating each of the pricing plans, by calculating the expected value of f given a

distribution on the set X.
3. Picking a pricing plan which maximizes the difference between the expected values.

In the following, we will concentrate on the directed case, where distance functions can
be asymmetric and de is the directed Euclidean distance, that is, de(x, y) = y ⊖ x.

In the category-theoretic generalization [2, 3] the calculation of the expected value (step 2)
is replaced with (the set of) evaluation functions, intuitively scoring or testing the observable
behaviour. At the same time, the steps of taking all non-expansive plans for a given metric
and of generating a metric that maximizes the difference between expected values (steps 1
and 3) generalize to the setting of quantales and their residuation. In the next section, we
show that the generalizations of those two steps form a fibred adjunction.

4 Setting Up a Fibred Adjunction

One of the key aspects of this paper is equipping sets of states of coalgebras with an extra
structure of conformances (in particular preorders or hemimetrics). The very idea of “extra
structure” can be phrased formally through the lenses of fibrations and fibred category theory,
extending the ideas of [4]. In particular, we show that those results can be strengthened to
the setting of fibred adjunctions.

The category V-SPred. The adjunction-based framework from [4], besides working with
V-graphs, makes use of sets of V-valued predicates, i.e., maps of the form p : X → V. We
will use V-SPredX to denote the collection of sets of V-valued predicates over some set
X. A morphism between sets S ⊆ VX and T ⊆ VY is a function f : X → Y satisfying
f•(T) := {q ◦ f | q ∈ T} ⊆ S, where f• describes reindexing. We obtain a category V-SPred
with objects being pairs (X, S ⊆ VX) and arrows are defined as above.

Grothendieck completion. It turns out that both V-Graph/V-Cat and V-SPred can be
viewed as fibred categories [20, 5]. We here only consider fibred categories arising from
the Grothendieck construction, which can be viewed equivalently as a special kind of split
indexed categories, that in our case are functors A : Setop → Pos. Intuitively, such functors
assign to each set a poset of “extra structure” and take functions f : X → Y to monotone
maps canonically reindexing the “extra structure” on set Y by f .

The Grothendieck completion [14] of a functor A : Setop → Pos is a category denoted
∫

A,
whose objects are pairs (X, i) where X ∈ Set and i ∈ A(X). The arrows (X, i) → (Y, j)
are maps f : X → Y such that i ⊑ A(f)(j), where ⊑ is the partial order on A(X). The
corresponding fibration is given by the forgetful functor U :

∫
A → Set taking each pair (X, i)

to its underlying set X. The fibre of each set X corresponds to the poset A(X).

V-Graph/V-Cat and V-SPred as Grothendieck completions. The category V-Graph arises
as the Grothendieck completion of the functor Φ : Setop → Pos that takes each set X to
Φ(X) = (V-GraphX , ⊑), the lattice of V-valued relations equipped with the pointwise order ⊑.
Given a function f : X → Y , we define Φ(f) = f∗ by reindexing, where f∗(dY) = dY ◦ (f ×f).
Analogously for V-Cat.

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:7

Similarly, to obtain V-SPred, we define a functor Ψ : Setop → Pos that maps each set X

to Ψ(X) = (V-SPredX , ⊇), the lattice of collections of V-valued predicates on X ordered by
reverse inclusion. Furthermore Ψ(f) = f•.

Galois connection on the fibres. In the adjunction-based framework from [4], the Kantoro-
vich lifting of a functor is phrased through the means of a contravariant Galois connection
between the fibres of V-Cat and V-SPred and we here generalize from V-Cat to V-Graph. For
each set X, we define a map αX : V-SPredX → V-GraphX given by:

αX(S)(x1, x2) =
l

f∈S
dV(f(x1), f(x2)) (S ⊆ VX)

Intuitively, αX takes a collection S of V-valued predicates on X and generates the greatest
conformance on X that turns all predicates into non-expansive maps. For the other part of
the Galois connection, we have a map γX : V-GraphX → V-SPredX defined by the following:

γX(dX) = {f : X → V | dV ◦ (f × f) ⊒ dX}

Given a conformance dX : X × X → V , γX generates a set of V-valued predicates on X which
are non-expansive maps from dX to the residuation distance. As mentioned before, we can
instantiate the previous result [4, Theorem 7] and obtain the following:

▶ Theorem 3 ([4]). Let X be an arbitrary set, dX : X × X → V a V-graph and S ⊆ VX a
collection of V-valued predicates. Then αX and γX are both antitone (in ⊆, ⊑) and form a
contravariant Galois connection:

dX ⊑ αX(S) ⇐⇒ S ⊆ γX(dX).

▶ Example 4. In the setting of Section 3, γ corresponds to Step 1 and α to Step 3.

Fibred Adjunction. Theorem 3 is a “local” property that only holds fiberwise. However, it
turns out that we can argue something stronger, namely that we have a fibred adjunction
situation. This is a “global” property, as fibred functors additionally preserve the notion of
reindexing. Note that every natural transformation between functors of type Setop → Pos (a
so-called morphism of split indexed categories) [14, Definition 1.10.5] induces a fibred functor
between the corresponding Grothendieck completions.

One can quite easily verify that α is natural on V-Graph, while γ is only laxly natural on
V-Graph and natural on V-Cat. For the latter result, we rely on a quantalic version of the
McShane-Whitney extension theorem [22, 30], mentioned also in [20] for the real-valued case.

▶ Theorem 5. Let dX ∈ V-CatX and dY ∈ V-CatY be elements of V-Cat. If i : (Y, dY) →
(X, dX) is an isometry, then for any non-expansive map f : (Y, dY) → (V, dV) there exists a
non-expansive map g : (X, dX) → (V, dV) such that f = g ◦ i.

▶ Proposition 6. We have that α : Ψ ⇒ Φ is natural and γ : Φ ⇒ Ψ is laxly natural, that
is for all functions f : X → Y and all V-valued relations dY on the set Y we have that
(f• ◦ γY)(dY) ⊆ (γX ◦ f∗)(dY). When restricted to V-Cat, γ : Φ ⇒ Ψ is natural.

Note that we can safely make this restriction, while still keeping α to be well-defined, as
its image always lies within V-Cat.

▶ Proposition 7. For all sets X and S ⊆ VX , αX(S) is a V-category, i.e., an object of
V-Cat. The co-closure αX ◦ γX is the identity when restricted to V-Cat. Combined, this
implies that for d ∈ V-GraphX , αX(γX(d)) is the metric closure of d, i.e. the least element
of V-CatX above d.

CONCUR 2024

20:8 Behavioural Metrics: Compositionality of the Kantorovich Lifting

Because of the Grothendieck construction ([14, Theorem 1.10.7]), α and γ respectively
correspond to fibred functors α : V-SPred → V-Cat and γ : V-Cat → V-SPred. Both functors
keep morphisms unchanged and act on objects by respectively applying the appropriate
components of α and γ. Now, we can state the strengthened version of Theorem 3, by
showing that α and γ form a fibred adjunction. Note that due to the choice of the orderings,
γ becomes the left and α the right adjoint (cf. [19]).

▶ Theorem 8. There is an adjunction γ ⊣ α.

5 The Coalgebraic Kantorovich Lifting

5.1 Definition of the Coalgebraic Kantorovich Lifting
The coalgebraic Kantorovich lifting [2] (originally defined for the real-valued case and for
a single evaluation map) – extended to codensity liftings in [18] – is parametric in a set of
evaluation functions for a set functor F . Evaluation functions are maps of type FV → V
(generalizing the expected value computation in the traditional Kantorovich lifting) and as
such can be used to lift V-valued predicates on a set X to V-valued predicates on the set
FX. More precisely, given an evaluation function ev : FV → V and a predicate f : X → V
we obtain the predicate ev ◦ Ff : FX → V. This operation extends to sets of evaluation
functions and sets of V-valued predicates, where a set ΛF of evaluation functions for F

induces the fibred functor ΛF : V-SPred → V-SPred, defined on S ⊆ VX as follows:

ΛF
X(S) = {ev ◦ Ff | ev ∈ ΛF , f ∈ S} ⊆ VF X .

The Kantorovich lifting can now be restated via the fibred adjunction introduced previously.
Given F and ΛF as above, we can define its Kantorovich lifting KΛF as follows:

KΛF = αF ◦ ΛF ◦ γ

or more concretely, for an object dX of V-Graph and s, t ∈ FX:

KΛF (dX)(s, t) =
l

ev∈ΛF

l
f∈γX (dX)

dV(ev(Ff(s)), ev(Ff(t))).

If the set ΛF is clear from the context we sometimes write F instead of KΛF .

▶ Lemma 9. The Kantorovich lifting of a functor F : Set → Set is a functor F =
KΛF : V-Graph → V-Graph, and fibred when restricted to V-Cat.

▶ Remark 10. Instantiating the construction above with the distribution functor D and a
single evaluation function E taking the expected values yields the usual Kantorovich lifting,
while in the case of powerset functor P and a single evaluation function sup, one obtains the
(directed) Hausdorff metric. Despite those two instantiations corresponding to well-known
constructions, there is no well-defined notion of canonical lifting and there are often different
possibilities for a given functor. For example, the usual symmetric Hausdorff distance arises
by additionally considering the dual evaluation function inf [32]. We will later also see that
constant factors admit more than one choice of evaluation functions.

5.2 Compositionality of the Kantorovich Lifting
When an endofunctor is given as the composition of two or more individual set functors,
it is natural to ask under which conditions its Kantorovich lifting is also the composition
of Kantorovich liftings of the respective functors. Specifically, our aim in this section is to

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:9

identify situations where this composition happens already at the level of the underlying sets
of evaluation maps. If evF is an evaluation function for F and evG is an evaluation function
for G, then an evaluation function for FG is given by evF ∗ evG := evF ◦ F evG. Extending
this to sets of evaluation functions, we put ΛF ∗ ΛG = {evF ∗ evG | evF ∈ ΛF , evG ∈ ΛG} for
sets ΛF and ΛG of evaluation functions for functors F and G, respectively.

▶ Definition 11 (Compositionality). Given two functors F and G and sets ΛF and ΛG of
evaluation functions, we say that we have compositionality if KΛF ◦ KΛG = KΛF ∗ΛG .

Expanding definitions, compositionality amounts to showing that

KΛF ◦ KΛG = αFG ◦ ΛF ◦ γG ◦ αG ◦ ΛG ◦ γ = αFG ◦ ΛF ◦ ΛG ◦ γ = KΛF ∗ΛG . (1)

One inequality (“⊑”) always holds: As α and γ form a Galois connection [4], we have
idV-SPredX

⊆ γGX ◦ αGX , and thus we may use antitonicity of α to deduce “⊑” in (1). Baldan
et al. [2, Lemma 7.5] prove this for the special case of pseudometric liftings.

The other inequality, “⊒”, does not hold in general, and requires more work. Still, one
notices that a sufficient condition is that ΛF ◦ γ ◦ α ⊆ γF ◦ αF ◦ ΛF :

KΛF ◦ KΛG = αFG ◦ ΛF ◦ γG ◦ αG ◦ ΛG ◦ γ

⊒ αFG ◦ γFG ◦ αFG ◦ ΛF ◦ ΛG ◦ γ = αFG ◦ ΛF G ◦ γ = KΛF ∗ΛG ,

using that α ◦ γ ◦ α = α for every Galois connection. Note that it is enough to prove the
sufficient condition on non-empty sets, since γ always yields a non-empty set.

Before discussing the problem of systematically constructing sets of evaluation functions
such that the sufficient condition (lax commutativity of ΛF with the closure induced by the
Galois connection) holds, we consider a few examples where compositionality fails:

▶ Example 12. Consider the powerset functor P with the predicate lifting sup (ΛP = {sup}),
and the discrete distribution functor D with the predicate lifting E that takes expected values
(ΛD = {E}). With just these predicate liftings, compositionality fails for all four combinations
PP , PD, DP , DD. We show this for the case of PD and discuss the others in [10]. Let X be
the two-element set {x, y}, equipped with the discrete metric d (that is, d(x, y) = d(y, x) = 1),
so that in particular all maps g : X → [0, 1] are non-expansive. We also consider the non-
expansive function fD : (DX, K{E}d) → ([0, 1], d[0,1]⊕) given by fD(p · x + (1 − p) · y) =
min(p, 1 − p). Put U = {1 · x, 1 · y} and V = {1 · x, 1/2 · x + 1/2 · y, 1 · y}. Then sup fD[U] =
max(0, 0) = 0 and sup fD[V] = max(0, 1/2, 0) = 1/2, so that K{sup}(K{E}d)(U, V) ≥ 1/2. For
every g : X → [0, 1] one finds that

(sup ∗E)(g)(U) = max(g(x), g(y)) = max(g(x), g(x)+g(y)/2, g(y)) = (sup ∗E)(g)(V),

implying that K{sup ∗E}d(U, V) = 0.

5.3 Finite Coproduct Polynomial Functors
We now assume that the first functor (F with the lifting F = KΛF

) is in fact a polynomial
functor (with finite coproducts) and we show that in this case compositionality holds
automatically for certain sets of predefined evaluation maps. This will later allow us to use
compositionality to define up-to techniques for large classes of coalgebras that are based on
such functors.

Consider the set of polynomial functors (with finite coproducts) given by

F ::= CB | Id |
∏

i∈I Fi | F1 + F2

CONCUR 2024

20:10 Behavioural Metrics: Compositionality of the Kantorovich Lifting

where CB is the constant functor mapping to some set B and Id is the identity functor.
We support products over arbitrary index sets, but we restrict to finitary coproducts for
simplicity.

For such polynomial functors we can obtain compositionality in a structured manner, by
constructing suitable sets of predicate liftings alongside with the functors themselves. We
recursively define a set ΛF of evaluation functions for each polynomial functor F as follows:
constant functors: F = CB . Here we choose ΛF to be any set of maps of type B → V . (For

instance, when B = V we can put ΛF = {idV}.)
identity functor: F = Id. We put ΛF = {idV}.
product functors: F =

∏
i∈I Fi. Put ΛF = {evi ◦ π′

i | i ∈ I, evi ∈ ΛFi} where
π′

i :
∏

i∈I FiV → FiV are the projections.
coproduct functors: F = F1 + F2. We put ΛF = {[ev1, ⊤] | ev1 ∈ ΛF1} ∪ {[⊥, ev2] | ev2 ∈

ΛF2} ∪ {[⊥, ⊤]}, where ⊤ and ⊥ denote constant maps into V.

▶ Remark 13. We note that the construction for coproduct functors is associative, that is,
for functors F1, F2 and F3 the sets Λ(F1+F2)+F3 and ΛF1+(F2+F3) coincide up to isomorphism.

Note also that the exponentiation F AX = (FX)A is special case of the product where
I = A and Fi = F for all i ∈ I.

▶ Remark 14. Throughout the paper, we restrict our attention to finite coproducts for the
sake of simplicity, but we would like to note that our construction could be generalized to
infinite sets. In general, since our lifting for the coproduct will be based on prioritization,
we need to compare the sets in order of preference, i.e. have the additional structure of a
well-order. This immediately works for countable sets.

The choice of evaluation maps above induces the following liftings, leading to the natural
expected distances in the directed case.

▶ Proposition 15. Given a polynomial functor F and a set of evaluation maps ΛF as
defined above, the corresponding lifting F = KΛF is defined as follows on objects of V-Graph:
F (dX) = dF

X : FX × FX → V where
constant functors: dF

X : B × B → V, dF
X(b, c) =

d
ev∈ΛF dV(ev(b), ev(c)).

identity functor: dF
X : X × X → V with dF

X = αX(γX(d)).
product functors: dF

X :
∏

i∈I FiX ×
∏

i∈I FiX → V, dF
X(s, t) =

d
i∈I dFi

X (πi(s), πi(t)) where
πi :

∏
i∈I FiX → FiX are the projections.

coproduct functors: dF
X : (F1X + F2X) × (F1X + F2X) → V, where

dF
X(s, t) =

dFi(s, t) if s, t ∈ FiX for i ∈ {1, 2}
⊤ if s ∈ F1X, t ∈ F2X

⊥ if s ∈ F2X, t ∈ F1X

Under this choice of evaluation functions we can show the following, which implies
compositionality (cf. Section 5.2):

▶ Proposition 16. For every polynomial functor F and the corresponding set ΛF of evaluation
maps (as above) we have ΛF ◦ γ ◦ α ⊆ γF ◦ αF ◦ ΛF on non-empty sets of predicates.

Using the arguments of Section 5.2, we infer:

▶ Corollary 17. Let F and G be functors, and ΛF and ΛG be sets of predicate liftings for
them. If F and λF are as in Proposition 16, then KΛF ◦ KΛG = KΛF ∗ΛG .

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:11

▶ Example 18. We consider a running example specifying standard directed trace metrics for
probabilistic automata as introduced in [17]. We take the polynomial functor F = [0, 1] × _A

(“machine functor”), monad T = D and quantale V = [0, 1]⊕. Furthermore we use expectation
(E) as evaluation map for T and as evaluation maps for the functor F we take ev∗ mapping
to the first component and eva (for each a ∈ A) with eva(r, g) = g(a). These evaluation
maps are of the type described in this section and hence we have compositionality.

Note that this example is not directly realizable in the Wasserstein approach [5]: the
issue with the Wasserstein lifting is that whenever no coupling of two elements exists, the
distance is automatically the bottom element in the quantale. This can be seen for the
functor F where (r1, x), (r2, x) ∈ FX have no coupling whenever r1 ̸= r2. Hence it is harder
to parameterize and would not work here.

Using a set of evaluation maps ΛF as opposed to a single evaluation map gives us
additional flexibility.

6 Application: Up-To Techniques

We now adapt results from [5] on up-to techniques from Wasserstein to Kantorovich liftings.
In particular, we instantiate the fibrational approach to coinductive proof techniques from [6]
that allows to prove lower bounds for greatest fixpoints, using post-fixpoints up-to as witnesses.
As shown in the running example and in Section 7 this can greatly help to reduce the size of
such witnesses, even allowing finitary witnesses which would be infinite otherwise.

6.1 Introduction to Up-To Techniques
We first recall the notion of a bialgebra [15], a coalgebra with a compatible algebra structure.

▶ Definition 19. Consider two functors F, T and a natural transformation ζ : TF ⇒ FT . An
F -T -bialgebra for ζ is a tuple (Y, a, c) such that a : TY → Y is a T -algebra and c : Y → FY

is an F -coalgebra so that the diagram below commutes.

TY Y FY

TFY FTY

a

T c

c

ζY

F a

In order to construct such bialgebras, distributive laws exchanging functors and monads
are helpful.

▶ Definition 20. A distributive law or EM-law of a monad T : C → C with unit η : Id ⇒ T

and multiplication µ : TT ⇒ T over a functor F : C → C is a natural transformation
ζ : TF ⇒ FT such that the following diagrams commute:

FX T 2FX TFTX FT 2X

TFX FTX TFX FTX

ηF X

ζX

F ηX
µF X F µX

T ζX ζT X

ζX

Whenever T is a monad and ζ is an EM-law, then an F -T -bialgebra can be obtained by
determinizing a coalgebra c : X → FTX. More concretely, we obtain c# : Y → FY where
Y = TX and c# = FµX ◦ ζT X ◦ Tc. The algebra map is a = µX : TY → Y .

CONCUR 2024

20:12 Behavioural Metrics: Compositionality of the Kantorovich Lifting

We now assume a bialgebra (Y, a, c) and Kantorovich liftings T = KΛT , F = KΛF of T, F .
Based on this we can define a behaviour function beh via

V-GraphY
F−→ V-GraphF Y

c∗

−→ V-GraphY

Remember that c∗ denotes reindexing via c. The greatest fixpoint of beh corresponds to a
behavioural conformance (e.g., behavioural equivalence or bisimulation metric).

▶ Example 21. We continue with Example 18. We use the standard distributive law
ζ : TF ⇒ FT given by the following components where Eµπ1 = E(Dπ1(µ)):

ζX : D([0, 1] × XA) → [0, 1] × DXA

ζX(µ) = (Eµπ1, a 7→ D(evala ◦ π2)(µ))

where evala(f) = f(a). Given an Eilenberg-Moore coalgebra c : X → FTX (more concretely:
c : X → [0, 1] × DXA) and its determinization c# : TX → FTX, the behavioural distance
on TX arises as the greatest fixpoint (in the quantale order) of the map beh = (c#)∗ ◦ F̄

defined above.
By unravelling the fixpoint equation one can see that it coincides with the directed

trace metric on probability distributions that is defined as follows: for each state x ∈ X let
trx : A∗ → [0, 1] be a map that assigns to each word (trace) w ∈ A∗ the expected payoff for
this word when read from x, where the payoff of a state x′ is π1(c(x′)). Then

νbeh(p, q) = sup
w∈A∗

(∑
x∈X

trx(w) · q(x) ⊖
∑

x∈X
trx(w) · p(x)

)
If p, q are Dirac distributions δx, δy, we have: νbeh(δx, δy) = supw∈A∗(try(w) ⊖ trx(w)).

One can typically avoid computing the full fixpoint νbeh when checking the behavioural
distance of two states; this is facilitated through the use of an up-to function u defined via

V-GraphY
T−→ V-GraphT Y

Σa−→ V-GraphY

where Σf : V-GraphX → V-GraphY is defined as Σf (d)(y1, y2) =
⊔

f(xi)=yi
d(x1, x2) for

f : X → Y (direct image).
Both functions (beh, u) are monotone functions on a complete lattice. Hence we can use

the Knaster-Tarski theorem [27] and the theory of up-to techniques [23]. In particular, given
a monotone function f : L → L over a complete lattice (L, ⊑), we have the guarantee that
ℓ ⊑ f(ℓ) for ℓ ∈ L guarantees ℓ ⊑ νf , i.e., a post-fixpoint of f is always a lower bound for
the greatest fixpoint νf , an essential proof rule in coinductive reasoning. Even more widely
applicable are proof rules based on up-to functions. An up-to function is a monotone function
u : L → L that is f -compatible (i.e., u ◦ f ⊑ f ◦ u). Then we can infer that ℓ ⊑ f(u(ℓ)) (i.e.,
ℓ is a post-fixpoint up-to u) implies ℓ ⊑ νf (ℓ is a lower bound for the greatest fixpoint).
Typically u is extensive (ℓ ⊑ u(ℓ)) and hence it is “easier” to find a post-fixpoint up-to rather
than a post-fixpoint.

From [6] we obtain the following result that ensures compatibility:

▶ Proposition 22 ([6]). Whenever the EM-law ζ : TF ⇒ FT lifts to ζ : T F ⇒ F T , we have
that u ◦ beh ⊑ beh ◦ u (for u, beh as defined above), i.e., u is beh-compatible.

Hence, we can deduce that every post-fixpoint up-to witnesses a lower bound of the greatest
fixpoint. More concretely: dY ⊑ beh(u(dY)) implies dY ⊑ ν beh (where dY ∈ V-GraphY)
(coinduction up-to proof principle).

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:13

6.2 Lifting Distributive Laws

To use the proof technique laid out in the previous section, we have to show that ζ lifts
accordingly. We start by defining distributive laws and lifting them to V-Graph.

Let F be a polynomial functor (cf. Section 5.3) and (T, µ, η) a monad over Set. Following
[16, Exercise 5.4.4], EM-laws ζ : TF ⇒ FT can then be constructed inductively over the
structure of F , i.e., for F being an identity, constant, product and coproduct functor. In the
coproduct case we extend [16] by weakening the requirement that T preserves coproducts.

In the following, we inductively construct an EM-law ζ : TF ⇒ FT and first lift it to
ζ : TF ⇒ FT (and then to ζ : T F ⇒ F T). For the evaluation maps we assume that ΛF is
defined as in Section 5.3 and that ΛT = {evT }, where evT : TV → V is a T -algebra.
constant functors: For F = CB we have that TFX = TB and FTX = B, and so define the

EM-law as ζ : TCB ⇒ CB , where the (unique) component ζX : TB → B is an arbitrary
T -algebra on B. (From now on, we assume that evaluation maps ev : B → V for constant
functors are T -algebra homomorphisms between ζ : TB → B and evT : TV → V .)

identity functor: For F = Id, we let the EM-law be the identity map id : T ⇒ T .
product functors: For F =

∏
i∈I Fi, assuming we have distributive laws ζi : TFi ⇒ FiT ,

the EM-law is

⟨ζi ◦ Tπi⟩ : T
∏

i∈I Fi ⇒
∏

i∈I FiT.

coproduct functors: For F = F1 +F2, assume that we have distributive laws ζi : TFi ⇒ FiT

and a natural transformation g : T ((−) + (−)) ⇒ T + T between bifunctors. The EM-law
is given by

(ζ1 + ζ2) ◦ gF1,F2 : T (F1 + F2) ⇒ TF1 + TF2 ⇒ F1T + F2T

▶ Definition 23. Let T be a monad and let g : T ((−) + (−)) ⇒ T + T be a natural
transformation as above. We say that g is compatible with the unit η of the monad if for
all sets Y1, Y2 the left diagram below commutes. Analogously, g is compatible with the
multiplication µ of the monad if the right diagram commutes for all sets Y1, Y2.

Y1 + Y2

T (Y1 + Y2) T Y1 + T Y2
gY1,Y2

ηY1+Y2 ηY1 +ηY2

T T (Y1 + Y2) T (Y1 + Y2)

T (T Y1 + T Y2) T T Y1 + T T Y2 T Y1 + T Y2

T gY1,Y2

gT Y1,T Y2 µY1 +µY2

gY1,Y2

µY1+Y2

▶ Proposition 24. Assume that the natural transformation g is compatible with unit and
multiplication of T . Then the transformation ζ as defined above is an EM-law of T over F .

In order to lift natural transformations (respectively distributive laws), we will use the
following result:

▶ Proposition 25. Let F, G be functors on Set and let the sets of evaluation maps of F and
G be denoted by ΛF and ΛG. Let ζ : F ⇒ G be a natural transformation. If

ΛG ◦ ζV := {evG ◦ ζV | evG ∈ ΛG} ⊆ ΛF , (2)

then ζ lifts to ζ : F ⇒ G in V-Graph, where F = KΛF , G = KΛG .

We can show that the inclusion (2) (even equality) holds under some conditions.

CONCUR 2024

20:14 Behavioural Metrics: Compositionality of the Kantorovich Lifting

▶ Definition 26. Let g : T ((−) + (−)) ⇒ T + T be a natural transformation as introduced
above and let evT : TV → V be the evaluation map of the monad. We say that g is well-
behaved wrt. evT if the following diagrams commute for fi : Xi → V , where ⊥, ⊤ are constant
maps of the appropriate type.

T (X1 + X2) T V

T X1 + T X2 V

gX1,X2 evT

T [f1,⊤X2]

[evT ◦T f1,⊤T X2]

T (X1 + X2) T V

T X1 + T X2 V

gX1,X2 evT

T [⊥X1 ,f2]

[⊥T X1 ,evT ◦T f2]

T (X1 + X2) T V

T X1 + T X2 V

gX1,X2 evT

T [⊥X1 ,⊤X2]

[⊥T X1 ,⊤T X2]

▶ Lemma 27. Let F be a polynomial functor and T a monad with ΛT = {evT }.
For distributive laws ζ as described above where the component g is well-behaved wrt. evT

and evaluation maps as defined in Section 5.3, we have that

(ΛF ∗ ΛT) ◦ ζV = ΛT ∗ ΛF .

Then, when we have a coalgebra of the form Y → FTY for F polynomial and T a monad
as above, and we determinize it to get a coalgebra X → FX for X = TY , we obtain a
bialgebra with the algebra structure given by the monad multiplication µY : TX → X. The
EM-law obtained then also forms a distributive law for the bialgebra. By Proposition 25 and
Lemma 27 we know that the distributive law ζ lifts to V-Graph, i.e., ζ : FT ⇒ TF where
FT = KΛF ∗ΛT and TF = KΛT ∗ΛF .

We now show that natural transformations g as required above do exist for the powerset
and subdistribution monad for suitable quantales. Note that they are “asymmetric” and
prioritize one of the two sets over the other.

▶ Proposition 28. Let T = P be the powerset monad with evaluation map evT = sup for
V = [0, 1]⊕. Then gX1,X2 below is a natural transformation that is compatible with unit and
multiplication of T and is well-behaved.

gX1,X2 : P(X1 + X2) → PX1 + PX2 gX1,X2(X ′) =
{

X ′ ∩ X1 if X ′ ∩ X1 ̸= ∅
X ′ otherwise

▶ Proposition 29. Let T = S be the subdistribution monad where S(X) = {p : X → [0, 1] |∑
x∈X p(x) ≤ 1}. Assume that its evaluation map is evT = E for the quantale V = [0, ∞]+

(where we assume that p · ∞ = ∞ if p > 0 and 0 otherwise). Then gX1,X2 below is a natural
transformation that is compatible with unit and multiplication of T and is well-behaved.

gX1,X2 : S(X1 + X2) → SX1 + SX2 gX1,X2(p) =
{

p|X1 if supp(p) ∩ X1 ̸= ∅
p|X2 otherwise

It is left to show that the EM-law ζ : FT ⇒ TF lifts to ζ : F T ⇒ T F , where F = KΛF ,
T = KΛT where ΛT = {evT }, and where the evaluation maps for F are obtained as described
earlier. We namely prove that its components are all non-expansive, i.e., V-Graph-morphisms,
commutativity is already known. Using the previous results we obtain:

F T
(1)
⊑ TF

(2)⇒ FT
(3)= F T

(1) follows from the inequality in Section 5.2. This implies that the identity idT F X : T FX →
TFX is non-expansive (a V-Graph-morphism), resulting in the natural transformation
T F

id⇒ TF .

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:15

(2) is implied by the results of this section (Lemma 27, Proposition 25)
(3) is guaranteed by the fact that FT = F T if F is polynomial (and we have suitable

evaluation maps), hence compositionality holds (Proposition 16)

▶ Example 30. We continue Example 21 and first observe that the distributive law given
there is obtained by the inductive construction given above.

For this concrete example fix the label set as a singleton: A = {a}. Consider the coalgebra
with states X = {x, x′, y} drawn below on the left. The payoff is written next to each state.

y
1/2

•

x

1/2

• x′

1
•

a 1a 1/2

1/2

a

1

ϵ a aa aaa . . .
x 1/2 3/4 7/8 15/16 . . .
y 1/2 1/2 1/2 1/2 . . .

Here, the trace map has the values for states x, y given in the table above on the right,
leading to the behavioural distance νbeh(δx, δy) = 1/2 (the supremum of all differences).

Determinizing the probabilistic automaton above leads to an automaton with infinite
state space, even if we only consider the reachable states (which are probability distributions):

1 · y

1/2

a 1 · x

1/2

1/2 · x + 1/2 · x′

3/4

1/4 · x + 3/4 · x′

7/8

. . .a a a

Our aim is now to define a witness distance of type d : TX×TX → [0, 1] that is a post-fixpoint
up-to in the quantale order and a pre-fixpoint for the order on the reals (d ≥ beh(u(d))).
From this we can infer that νbeh ≤ d, obtaining an upper bound. We set d(1 · x, 1 · y) = 1/2,
d(1 · x′, 1 · y) = 1/2 and d(p, q) = 1 for all other pairs of probability distributions p, q. We
now show that d is a pre-fixpoint of beh in the order on the reals, i.e., our aim is to prove for
all p, q that d(p, q) ≥ beh(u(d))(p, q). This is obvious for the cases where d(p, q) = 1, hence
only two cases remain:

If p = 1 · x, q = 1 · y, we have:

beh(u(d))(1 · x, 1 · y) = max{u(d)(1/2 · x + 1/2 · x′, y), |1/2 − 1/2|}
= u(d)(1/2 · x + 1/2 · x′, y)
≤ 1/2 · d(1 · x, 1 · y) + 1/2 · d(1 · x′, 1 · y)
= 1/2 · 1/2 + 1/2 · 1/2 = 1/2 = d(1 · x, 1 · y)

The case p = 1 · x′, q = 1 · y can be shown analogously.
We are using the following inequalities: (i) u(d)(p, q) ≤ d(p, q) (follows from the definition
of u); (ii) u(d)(r1 ·p1 + r2 ·p2, r1 · q1 + r2 · q2) ≤ r1 ·d(p1, q1) + r2 ·d(p2, q2) (metric congruence,
see [10] for more details.). This concludes the argument.

Note that here up-to techniques in fact allow us to consider finitary witnesses for bounds
for behavioural distances, even when the determinized coalgebra has an infinite state space.

7 Case Study: Transition Systems with Exceptions

In addition to the running example treated in the paper we now consider a second case study
on transition systems with exceptions that helps to concretely show upper bounds (lower
bounds in the quantalic order) for behavioural distances via appropriate witnesses.

CONCUR 2024

20:16 Behavioural Metrics: Compositionality of the Kantorovich Lifting

We consider a case study involving the coproduct, in particular the polynomial functor
F = [0, 1] + (−)A and the monad T = P with evaluation map sup. In a coalgebra of type
c : X → FTX, a state can either perform transitions or terminate with some output value
taken from the interval [0, 1]; in applications this value could for example be considered as
the severity of the error encountered upon terminating a computation. Hence the (directed)
distance of two states x, y can intuitively be interpreted as measuring how much worse the
errors reached from a state y are compared to the errors from x.

Note that a state can also terminate without an exception by transitioning to the empty
set. Due to the asymmetry in the distributive law for the coproduct, a state X0 ∈ P(X)
in the determinized automaton c# will throw an exception as long as one of the elements
x ∈ X0 throws an exception (c[X0] ∩ [0, 1] ̸= ∅). In this case, c#(X0) = sup(c[X0] ∩ [0, 1])
and X0 performs a transition if all states in X0 do so in the original coalgebra.

The behavioural distance on TX obtained as the greatest fixpoint (in the quantale order)
of beh can be characterized as follows: for a set of states X0 ⊆ X and a word w ∈ A∗ let
ec(X0, w) be the length of the least prefix which causes an exception when starting in X0
(undefined if there are no exceptions) and let E(X0, w) ⊆ [0, 1] be the set of exception values
reached by that prefix. We define a distance dE

w : PX × PX → [0, 1] as dE
w(X1, X2) = 0

if ec(X2, w) is undefined, dE
w(X1, X2) = 1 if ec(X1, w) is undefined and ec(X2, w) defined.

In the case where both are defined we set dE
w(X1, X2) = sup E(X2, w) ⊖ sup E(X1, w) if

ec(X1, w) = ec(X2, w), dE
w(X1, X2) = 1 if ec(X1, w) > ec(X2, w) and dE

w(X1, X2) = 0 if
ec(X1, w) < ec(X2, w). Then it can be shown that for X1, X2 ⊆ X:

νbeh(X1, X2) = supw∈A∗ dE
w(X1, X2)

As a concrete example we take the label set A = {a, b} and the coalgebra c given below,
which is inspired by a similar example in [7]:

x0 x1 x2 . . .

y0 y1 y2 . . .

z0 z1 z2 . . .

xn 1/4

yn 1/3

zn 1/2

a a, b a, b a, b

b a, b a, b a, b

a, b a, b a, b a, b

a, b

a, b

a, b

Here, the outputs of the final states are c(xn) = 1/4, c(yn) = 1/3 and c(zn) = 1/2, as
indicated. It holds that νbeh({x0, y0}, {z0}) = 1/4. Intuitively this is true, since the largest
distance is achieved if we follow a path from x0 where a is the n-last letter, yielding exception
value 1/4, while the same path results in the value 1/2 from z0, hence we obtain distance
1/2 ⊖ 1/4 = 1/4.

Note that the determinization of the transition system above is of exponential size and
the same holds for a representation of a post-fixpoint for witnessing an upper bound for
behavioural distance. We construct a V-valued relation d of linear size witnessing that
νbeh({x0, y0}, {z0}) ≤ 1/4 via up-to techniques. To this end let d be defined by

d({x0, y0}, {z0}) = 1/4 d({xi}, {zi}) = 1/4 d({yi}, {zi}) = 1/6

and distance 1 for all other arguments.

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:17

It suffices to show that d is a pre-fixed point of beh up-to u (wrt. ≤). We can use
the property that u(d)(X1 ∪ X2, Y1 ∪ Y2) ≤ max{d(X1, Y1), d(X2, Y2)} (see [10] for more
details). Now the claim follows from unfolding the fixpoint equation by considering a- and
b-transitions:

beh(u(d))({x0, y0}, {z0}) = max{u(d)({x0, x1, y0}, {z0, z1}), u(d)({x0, y0, y1}, {z0, z1})}
≤ max{d({x0, y0}, {z0}), d({x1}, {z1}), d({y1}, {z1})} = 1/4

The arguments for d({xi}, {zi}), d({yi}, {zi}) are similar, concluding the proof.

8 Conclusion

Related work. While the notion of Kantorovich distance on probability distributions is
much older, Kantorovich liftings in a categorical framework have first been introduced in [2]
and have since been generalized, for instance to codensity liftings [19] or to lifting fuzzy lax
extensions [31].

A coalgebraic theory of up-to techniques was presented in [6] and has been instantiated
to the setting of coalgebraic behavioural metrics in [5]. The latter paper concentrated on
Wasserstein liftings, which leads to a significantly different underlying theory. Furthermore,
Wasserstein liftings are somewhat restricted, since they rely only on a single evaluation
map and on couplings (which sometimes do not exist, making it difficult to define more
fine-grained metrics). We are not aware of a way to handle the two case studies directly in
the Wasserstein approach.

Setting up the fibred adjunction (Section 4) and the definition of the Kantorovich lifting
(Section 5.1) has some overlap to [4] and the recent [19]. Our focus is primarily on showing
fibredness (naturality) via a quantalic version of the extension theorem.

The aim of [19] is on combining behavioural conformance via algebraic operations, which
is different than our notion of compositionality via functor liftings. There is some similarity
in the aims of both papers, namely the lifting of distributive laws and the motivation to study
up-to techniques. From our point of view, the obtained results are largely orthogonal: while
the focus of [19] is on providing n-ary operations for composing conformances and games
and it provides a more general high-level account, we focus concretely on compositionality
of functor liftings (studying counterexamples and treating the special case of polynomial
functors), giving concrete recipes for lifting distributive laws and applying the results to
proving upper bounds via up-to techniques.

Our up-to techniques are a form of up-to convex contextual closure: here they arise as
specific instances of a general construction, but they have already been investigated in the
Wasserstein setting [5] and earlier in [9]. Similar constructions are studied in [21].

Future work. Our aim is to better understand the metric congruence results employed in
the case studies, comparing them with the similar proof rules in [21]. Compositionality of
functor liftings fails in important cases (cf. Example 12), which could be fixed by using
different sets of evaluation maps such as the Moss liftings in [31]. We also plan to study
case studies involving the convex powerset functor [8]. Finally, we want to develop witness
generation methods, by constructing suitable post-fixpoints up-to on-the-fly, similar to [1].

CONCUR 2024

20:18 Behavioural Metrics: Compositionality of the Kantorovich Lifting

References
1 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-fly exact compu-

tation of bisimilarity distances. Logical Methods in Computer Science, 13(2:13):1–25, 2017.
doi:10.23638/LMCS-13(2:13)2017.

2 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic behavioral
metrics. Logical Methods in Computer Science, 14(3), 2018. Selected Papers of the 6th
Conference on Algebra and Coalgebra in Computer Science (CALCO 2015). doi:10.23638/
LMCS-14(3:20)2018.

3 Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing. Hennessy-Milner theorems
via Galois connections. In Proc. of CSL ’23, volume 252 of LIPIcs, pages 12:1–12:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.CSL.2023.12.

4 Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder,
and Paul Wild. Expressive quantale-valued logics for coalgebras: an adjunction-based approach.
In Proc. of STACS ’24, volume 289 of LIPIcs, pages 10:1–10:19. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.STACS.2024.10.

5 Filippo Bonchi, Barbara König, and Daniela Petrişan. Up-to techniques for behavioural
metrics via fibrations. Mathematical Structures in Computer Science, 33(4–5):182–221, 2023.
doi:10.1017/s0960129523000166.

6 Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A general account of
coinduction up-to. Acta Informatica, 54(2):127–190, 2017. doi:10.1007/s00236-016-0271-4.

7 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In Proc. of POPL ’13, pages 457–468. ACM, 2013. doi:10.1145/2429069.
2429124.

8 Filippo Bonchi, Alexandra Silva, and Ana Sokolova. The power of convex algebras. In Proc.
of CONCUR ’17, volume 85 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.CONCUR.2017.23.

9 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Generalized
bisimulation metrics. In Proc. of CONCUR ’14. Springer, 2014. LNCS/ARCoSS 8704.
doi:10.1007/978-3-662-44584-6_4.

10 Keri D’Angelo, Sebastian Gurke, Johanna Maria Kirss, Barbara König, Matina Najafi, Wojciech
Różowski, and Paul Wild. Behavioural metrics: Compositionality of the Kantorovich lifting and
an application to up-to techniques, 2024. arXiv:2404.19632. doi:10.48550/arXiv.2404.19632.

11 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching system metrics.
IEEE Transactions on Software Engineering, 35(2):258–273, 2009. doi:10.1109/TSE.2008.
106.

12 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labelled Markov processes. Theoretical Computer Science, 318:323–354, 2004. doi:
10.1016/j.tcs.2003.09.013.

13 Dirk Hofmann. Topological theories and closed objects. Adv. Math., 215(2):789–824, 2007.
doi:10.1016/j.aim.2007.04.013.

14 Bart Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the
Foundation of Mathematics. Elsevier, 1999.

15 Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.
In Essays Dedicated to Joseph A. Goguen, pages 375–404. Springer, 2006. LNCS 4060.
doi:10.1007/11780274_20.

16 Bart Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observations.
Cambridge University Press, December 2016. doi:10.1017/CBO9781316823187.

17 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. Journal
of Computer and System Sciences, 81(5):859–879, 2015. doi:10.1016/j.jcss.2014.12.005.

18 Shin-ya Katsumata and Tetsuya Sato. Codensity liftings of monads. In Proc. of CALCO ’15,
volume 35 of LIPIcs, pages 156–170. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.CALCO.2015.156.

https://doi.org/10.23638/LMCS-13(2:13)2017
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.4230/LIPIcs.CSL.2023.12
https://doi.org/10.4230/LIPIcs.STACS.2024.10
https://doi.org/10.1017/s0960129523000166
https://doi.org/10.1007/s00236-016-0271-4
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.4230/LIPIcs.CONCUR.2017.23
https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.48550/arXiv.2404.19632
https://doi.org/10.1109/TSE.2008.106
https://doi.org/10.1109/TSE.2008.106
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.aim.2007.04.013
https://doi.org/10.1007/11780274_20
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/j.jcss.2014.12.005
https://doi.org/10.4230/LIPIcs.CALCO.2015.156

K. D’Angelo, S. Gurke, J. M. Kirss, B. König, M. Najafi, W. Różowski, and P. Wild 20:19

19 Mayuko Kori, Kazuki Watanabe, Jurriaan Rot, and Shin ya Katsumata. Composing codensity
bisimulations. In Proc. of LICS ’24, pages 52:1–52:13. ACM, 2024. doi:10.1145/3661814.
3662139.

20 Francis William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti
del seminario matématico e fisico di Milano, 43(1):135–166, 1973. doi:10.1007/BF02924844.

21 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic reasoning.
In Proc. of LICS ’16, pages 700–709. ACM, 2016. doi:10.1145/2933575.2934518.

22 E. J. McShane. Extension of range of functions. Bull. Amer. Math. Soc., 40(12):837–842, 1934.
23 Damien Pous. Complete lattices and up-to techniques. In Proc. of APLAS ’07, pages 351–366.

Springer, 2007. LNCS 4807. doi:10.1007/978-3-540-76637-7_24.
24 J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,

249:3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.
25 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,

2011.
26 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gener-

alizing determinization from automata to coalgebras. Logical Methods in Computer Science,
9(1:09), 2013. doi:10.2168/LMCS-9(1:9)2013.

27 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–309, 1955.

28 Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic transition
systems. Theoretical Computer Science, 331:115–142, 2005. doi:10.1016/j.tcs.2004.09.035.

29 Cédric Villani. Optimal Transport – Old and New, volume 338 of A Series of Comprehensive
Studies in Mathematics. Springer, 2009.

30 Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans-
actions of the American Mathematical Society, 36(1):63–89, 1934.

31 Paul Wild and Lutz Schröder. Characteristic logics for behavioural metrics via fuzzy lax
extensions. In Proc. of CONCUR ’20, volume 171 of LIPIcs, pages 27:1–27:23. Schloss Dagstuhl,
2020. doi:10.4230/LIPIcs.CONCUR.2020.27.

32 Paul Wild and Lutz Schröder. Characteristic logics for behavioural hemimetrics via fuzzy lax
extensions. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/lmcs-18(2:19)2022.

CONCUR 2024

https://doi.org/10.1145/3661814.3662139
https://doi.org/10.1145/3661814.3662139
https://doi.org/10.1007/BF02924844
https://doi.org/10.1145/2933575.2934518
https://doi.org/10.1007/978-3-540-76637-7_24
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.2168/LMCS-9(1:9)2013
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.4230/LIPIcs.CONCUR.2020.27
https://doi.org/10.46298/lmcs-18(2:19)2022

Reversible Transducers over Infinite Words
Luc Dartois #

Université Paris Est Creteil, LACL, F-94010 Créteil, France

Paul Gastin #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

Loïc Germerie Guizouarn #

Université Paris Est Creteil, LACL, F-94010 Créteil, France

R. Govind #

Uppsala University, Sweden

Shankaranarayanan Krishna #

Indian Institute of Technology Bombay, Mumbai, India

Abstract
Deterministic two-way transducers capture the class of regular functions. The efficiency of composing
two-way transducers has a direct implication in algorithmic problems related to synthesis, where
transformation specifications are converted into equivalent transducers. These specifications are
presented in a modular way, and composing the resultant machines simulates the full specification.
An important result by Dartois et al. [10] shows that composition of two-way transducers enjoy
a polynomial composition when the underlying transducer is reversible, that is, if they are both
deterministic and co-deterministic. This is a major improvement over general deterministic two-way
transducers, for which composition causes a doubly exponential blow-up in the size of the inputs
in general. Moreover, they show that reversible two-way transducers have the same expressiveness
as deterministic two-way transducers. However, the notion of reversible two-way transducers over
infinite words as well as the question of their expressiveness were not studied yet.

In this article, we introduce the class of reversible two-way transducers over infinite words and
show that they enjoy the same expressive power as deterministic two-way transducers over infinite
words. This is done through a non-trivial, effective construction inducing a single exponential blow-up
in the set of states. Further, we also prove that composing two reversible two-way transducers over
infinite words incurs only a polynomial complexity, thereby providing an efficient procedure for
composition of transducers over infinite words.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases Transducers, Regular functions, Reversibility, Composition, SSTs

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.21

Related Version Full Version: https://arxiv.org/abs/2406.11488 [12]

1 Introduction

Transducers extend finite state automata with outputs. While finite state automata are
computational models for regular languages, transducers are computational models for
transformations between languages. Finite state automata remain robust in their express-
iveness accepting regular languages across various descriptions like allowing two-way-ness,
non-determinism and otherwise. However, this is not the case with transducers: first of all,
non-deterministic transducers realize relations while deterministic transducers realize func-
tions. Further, two-way transducers are strictly more expressive than one-way transducers:
for instance, the function reverse which computes the reverse of all input words in its domain
is realizable by deterministic two-way transducers, but not by one-way transducers.

© Luc Dartois, Paul Gastin, Loïc Germerie Guizouarn, R. Govind, and Shankaranarayanan Krishna;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 21; pp. 21:1–21:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luc.dartois@u-pec.fr
https://orcid.org/0000-0001-9974-1922
mailto:paul.gastin@lmf.cnrs.fr
https://orcid.org/0000-0002-1313-7722
mailto:loic.germerie-guizouarn@u-pec.fr
https://orcid.org/0000-0002-3843-5427
mailto:govind.rajanbabu@it.uu.se
https://orcid.org/0000-0002-1634-5893
mailto:krishnas@cse.iitb.ac.in
https://orcid.org/0000-0003-0925-398X
https://doi.org/10.4230/LIPIcs.CONCUR.2024.21
https://arxiv.org/abs/2406.11488
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Reversible Transducers over Infinite Words

One of the cornerstone results of formal language theory is the beautiful connection
which establishes that the class of regular languages corresponds to those recognized by
finite state automata, to the class of languages definable in MSO logic, and to the class
of languages whose syntactic monoid is finite. Engelfriet and Hoogeboom [17] generalized
this correspondence between machines, logics and algebra in the case of regular languages
to regular transformations. They showed that regular transformations are those which are
captured by two-way transducers and by Monadic second-order (MSO) transductions a la
Courcelle [9]. Inspired by this seminal work of Engelfriet and Hoogeboom, there has been
an increasing interest over recent years in characterizing the class of functions defined by
deterministic two-way transducers [2, 3, 16].

One such characterization is that of reversible two-way transducers [10] over finite words.
Reversible transducers are those which are deterministic and also co-deterministic. While
determinism says that any given state, on any given input symbol, does not transition to
two distinct states, co-determinism says that no two distinct states can transition to the
same state on any input symbol. Reversibility makes the composition operation in two-way
transducers very efficient : the composition of reversible transducers has polynomial state
complexity. [10] showed that reversible two-way transducers capture the class of regular
transformations. However, reversible transducers over infinite words have not been studied.

In another line of work, [1] initiated the study of transformations on infinite words. They
considered functional, copy-less streaming string transducers (SST) with a Müller acceptance
condition. An SST is a one-way automaton with registers; the outputs of each transition
are stored in registers as words over the register names and the output alphabet. In a run,
the contents of the registers are composed. The Müller acceptance condition is defined as
follows: in any accepting run which settles down in a Müller set, the output is defined as
a concatenation x1, x2, . . . xn of registers where only xn is updated by appending words to
xn. [1] proved the equivalence of this class of SST to deterministic two-way transducers
with Müller acceptance and having an ω-regular look-ahead. They also showed that these
are equivalent to MSO transductions over infinite words. The ω-regular look-aheads were
necessary to obtain the expressiveness of MSO transductions on infinite words.

In this paper, we continue the study of two-way transducers over infinite words. We
introduce two-way deterministic transducers with generalized parity acceptance condition
(gp2DT). Our main result is a non-trivial generalization of [10], where we show that gp2DT’s
can be made reversible, obtaining gp2RT (two-way reversible transducers with generalized
parity acceptance). Our conversion of gp2DT to gp2RT incurs a single exponential blow-up,
and goes via a new kind of SSTs that we introduce, namely, copyless SST with a generalized
parity acceptance condition (gpSST). The parity condition used in both machines employs a
finite set χ of coloring functions, where each c ∈ χ assigns to the transitions of the underlying
machine, a natural number. An infinite run ρ is accepting if for each coloring function
c ∈ χ, the minimum number which appears infinitely often is even. This conjunction of
parity conditions is one of the generalized parity accepting conditions introduced in [8]. We
summarize our main contributions below.
1. We first show that starting from a gp2DT, we can obtain an equivalent gpSST where the

number of states of the gpSST is exponential in the number of states and coloring functions
of the gp2DT. This is a fairly non-trivial generalization of the classical Shepherdson
construction [19] which goes from two-way automata to one-way automata.

2. Then we show that, starting from a gpSST A, we can obtain an equivalent gp2RT B
which is polynomial in the number of states and registers of A. This construction is a
bit technical: we show that B is obtained as the composition of a deterministic one-way

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:3

generalized parity transducer D and an gp2RT F . To complete the proof, we show that
(i) D can be converted to an equivalent gp2RT with polynomial blow-up, and (ii) gp2RTs
are closed under composition with a polynomial complexity.
Thus, our results extend [10] to the setting of infinite words, retaining the expressivity of

deterministic machines and a polynomial complexity for composition. The main challenges
when going to the infinite word setting is in dealing with the acceptance conditions. Unlike
the finite word setting where acceptance is something to take care of at the end, here we
need to deal with it throughout the run. The difficulty in doing this comes from the fact
that we cannot compute the set of co-accessible states at a given input position. It must
be noted that in the proof [10] for finite words, the equivalent reversible transducer was
constructed by computing the set of accessible and co-accessible states at each position of
the input word. Indeed, computing the co-accessible states at each input position requires an
infinite computation or an oracle, and hence, the proof of [10] fails for infinite words. Instead,
we introduce the intermediate model of gpSST where we employ a dedicated “out” register
that serves as the output tape.

Our result of extending [10] can be seen as a positive contribution to synthesis, especially
in settings where one requires more expressive specifications that cannot be implemented
by sequential machines. These include instances where we have access to an unbounded
input-buffer, or where the past is reproducible. For these, two-way transducers are an
attractive model. In these settings, thanks to the polynomial composition result for reversible
transducers, they are a natural modeling choice. Using reversible transducers allows for a
modular approach for specification transformation and can give rise to efficient solutions
to algorithmic problems on transformation of specifications. To the best of our knowledge,
there is no such translation for infinite words; the closest result in this direction, but for
finite words, is [11], which gives an efficient procedure for converting specifications given as
RTE (regular transducer expressions) to reversible transducers.

Continuing with transformations on infinite words, [15] investigated a practical question on
functions over infinite words, namely, “given a function over infinite words, is it computable?”.
They established that the decidability of this question boils down to checking the continuity
of these functions. Further, they conjectured that any continuous regular function can
be computed by a deterministic two-way transducer over infinite words without ω-regular
look-ahead. [5] took up this conjecture and showed that any continuous rational function over
infinite words can be extended to a function which is computable by deterministic two-way
transducers over infinite words without ω-regular look-ahead. Most recently, [6] conjectured
that deterministic two-way transducers with the Büchi acceptance condition capture the
class of continuous, regular functions.

Apart from its application to synthesis, gp2RT also realize continuous functions. This
implies that the conjecture of [6] fails, since gp2RT are more expressive than the class of
deterministic two-way transducers with Büchi acceptance. A simple example illustrating
this is the function f : {a, b}ω → {a, b}ω such that f(u) = u if the number of a’s in u is
finite, and is undefined otherwise. f is continuous since it is continuous on its domain;
f cannot be realized by a deterministic transducer with Büchi acceptance, but it can be
realized by a gp2RT. Note however that the extension is only able to refine the domain,
and not the production. In particular, by simply dropping the accepting condition of a
gp2RT, we obtain a function realized by a deterministic two-way transducer with a Büchi
condition. Moreover, our constructions (going from deterministic two-way to reversible) for
this class become simpler. And conversely, we show that two-way reversible transducers with
no acceptance condition have the same expressiveness as those with the Büchi acceptance
condition, which in turn have the same expressiveness as two-way deterministic transducers
with Büchi acceptance.

CONCUR 2024

21:4 Reversible Transducers over Infinite Words

The choice of a generalized parity acceptance condition, more specifically a conjunction
of parity conditions, was motivated by the need for an efficient procedure for the intersection
of automata. This intersection is necessary for the composition of transducers. It is well
known [4] that the intersection of standard parity, Müller, or Rabin automata induce an
exponential blowup in the number of states, while Streett or conjunction of parity incur only
a polynomial blowup.

Organization of the Paper. Section 2 defines the two models we introduce in the paper,
namely, gpSST and gp2DT. Section 3 states our main result : starting from a gp2DT, we can
obtain an equivalent gp2RT. Most of the remaining sections are devoted to the proof of this
result. In sections 4 and 5 respectively, we prove the closure under composition of gp2RTs
with a polynomial complexity and the polynomial conversion from one-way generalized parity
transducers to gp2RT. Section 6 uses both these results, where we describe the conversion
from gpSST to gp2RT with a polynomial complexity. Section 7 contains one of the most
non-trivial constructions of the paper, namely, going from gp2DT to gpSST with a single
exponential blow-up. Finally, Section 8 wraps up by discussing the connection between
continuity and the topological closure of gp2DTs. Omitted proofs can be found in the full
version [12].

2 Preliminaries

Let A be an alphabet, i.e., a finite set of letters. A finite or infinite word w over A is a
(possibly empty) sequence w = a0a1a2 · · · of letters ai ∈ A. The set of all finite (resp. infinite)
words is denoted by A∗ (resp. Aω), with ε denoting the empty word. We let A∞ = A∗ ∪ Aω.
A language is a subset of the set of all words.

Two-way Parity Automata and Transducers
Let A be a finite alphabet and let ⊢ /∈ A be a left delimiter symbol. We write A⊢ = A ∪ {⊢}.

A two-way generalized parity automaton (gp2A) is a tuple A = (Q, A, ∆, q0, χ), where
the finite set of states Q is partitioned into a set of forward states Q+ and a set of backward
states Q−. The initial states is q0 ∈ Q+, ∆ ⊆ Q × A⊢ × Q is the transition relation and χ is
a finite set of coloring functions c : ∆ → N which are used to define the acceptance condition.
We assume that if (p, ⊢, q) ∈ ∆, then p ∈ Q− and q ∈ Q+: on reading ⊢, the reading head
does not move.

A configuration of a gp2A over an input word w ∈ Aω is some ⊢ u p v where p ∈ Q is the
current state and u ∈ A∗, v ∈ Aω with w = uv. The configuration admits several successor
configurations as defined below.
1. If p ∈ Q+, then the input head reads the first symbol a ∈ A of the suffix v = av′ ∈ Aω.

Let (p, a, q) ∈ ∆ be a transition. If q ∈ Q+, then the successor configuration is ⊢ ua q v′.
Likewise, if q ∈ Q−, then the successor configuration is ⊢ u q av′. Thus, if the current
and target states are both in Q+, then the reading head moves right. If the current state
is forward and the target state is backward, then the reading head does not move.

2. If p ∈ Q−, then the input head reads the last symbol a ∈ A⊢ of the prefix ⊢u. Let
(p, a, q) ∈ ∆ be a transition. If q ∈ Q+, the successor configuration is ⊢ u q v. If q ∈ Q−

then a ̸= ⊢, we write u = u′a with u′ ∈ A∗ and the successor configuration is ⊢ u′ q av.
Thus, if the current state is backward and the target state is forward, the reading head
does not move. If both states are backward, then the reading head moves left.

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:5

+ − +

a|a : 0 a|a : 1 a|ε : 1
#|# : 1 #, ⊢ |ε : 1

#|# : 0

a

{
out = out a

X = aX
#

{
out = out#X#
X = ε

Figure 1 An example of gp2RT (left) and gpSST (right) defining the function map-copy-reverse
(mcr) defined on (A ⊎ {#})ω → (A ⊎ {#})ω by: mcr(u1#u2#...) = u1#ũ1#u2#ũ2#... for words
with an infinite number of letter #, and mcr(u1# . . . #un#u) = u1#ũ1# . . . un#ũn#u if u ∈ Aω,
where ṽ denotes the mirror image of v. There is only one coloring function, denoted on the transitions
after the colon. The color of all transitions of the gpSST is 0.

A run ρ of A is a finite or infinite sequence of configurations starting from an initial
configuration ⊢ ε q0 w where w ∈ Aω is the input word:

⊢q0w = ⊢u0q0v0 −→ ⊢u1q1v1 −→ ⊢u2q2v2 −→ ⊢u3q3v3 −→ ⊢u4q4v4 · · ·

We say that ρ reads the whole word w ∈ Aω if sup{|un| | n > 0} = ∞. The set of
transitions used by ρ infinitely often is denoted inf(ρ) ⊆ ∆. The word w is accepted by A,
i.e., w ∈ dom(A) if ρ reads the whole word w and min(c(inf(ρ))) is even for all c ∈ χ.

The generalized parity automaton A is called
one-way if Q− = ∅,
deterministic if for all pairs (p, a) ∈ Q × A⊢, there is at most one state q = δ(p, a) such
that (p, a, q) ∈ ∆, in this case we identify the transition relation ∆ with the partial
function δ : Q × A → Q,
co-deterministic if for all pairs (q, a) ∈ Q × A⊢, there is at most one state p such that
(p, a, q) ∈ ∆,
reversible if it is both deterministic and co-deterministic.

A two-way generalized parity transducer gp2T is a tuple T = (Q, A, ∆, q0, χ, B, λ) where
A = (Q, A, ∆, q0, χ) is a deterministic gp2A, called the underlying automaton of T , B is a
finite output alphabet, and λ : ∆ → B∗ is the output function. As in the case of gp2A, a gp2T
is one-way/co-deterministic/reversible if so is the underlying generalized parity automaton.
Let gp2DT (resp. gp2RT) denote two-way deterministic (resp. reversible) generalized parity
transducers. The notion of run and accepting run is inherited from the underlying gp2A. For
w ∈ Aω such that w ∈ dom(A), let the accepting run ρ of w be

⊢q0w = ⊢u0q0v0
t1−→ ⊢u1q1v1

t2−→ ⊢u2q2v2
t3−→ ⊢u3q3v3

t4−→ ⊢u4q4v4 · · ·

where ti ∈ ∆ is the i-th transition taken during the run, i.e., from ⊢ui−1qi−1vi−1 to
⊢uiqivi. For i > 0, let γi = λ(ti) be the output produced by the i-th transition of ρ. If
γ1γ2γ3γ4 · · · ∈ Bω, then w ∈ dom(T) and we let [[T]](w) = γ1γ2γ3γ4 · · · be the output word
computed by T . Hence, the semantics of a gp2T is a partial function [[T]] : Aω → Bω with
dom(T) ⊆ dom(A).

Parity Streaming String Transducers
Let R be a finite set of variables called registers. A substitution of R into an alphabet B is a
mapping σ : R → (R ⊎ B)∗. It is called copyless if for all r ∈ R, r appears at most once in the
concatenation of all the σ(r′) for r′ ∈ R. We denote by ΛB

R the set of all copyless substitutions

CONCUR 2024

21:6 Reversible Transducers over Infinite Words

of R into B. A copyless generalized parity Streaming String Transducer (gpSST) is given
by a tuple T = (Q, A, ∆, q0, χ, B, R, out, λ) where A = (Q, A, ∆, q0, χ) is a deterministic
one-way generalized parity automaton called the underlying automaton of T , R is a finite set
of registers, out ∈ R is a distinguished register, called the output register, λ : ∆ → ΛB

R is the
update function satisfying additionally λ(t)(out) ∈ out · (R ⊎ B)∗ for all t ∈ ∆.

A configuration of a copyless generalized parity SST T is a tuple (q, ν) where q ∈ Q

and ν : R → B∗ is an assignment. The initial configuration is (q0, ν0) where ν0(r) = ε for
all r ∈ R. Since the automaton A is deterministic, we simply describe a run on an input
word w = a0a1a2 · · · as a sequence a sequence of transitions applying the corresponding
substitutions to the assignments:

(q0, ν0) a0−→ (q1, ν1) a1−→ (q2, ν2) a2−→ (q3, ν3) · · ·

where (q0, ν0) is the initial configuration and for all i ≥ 0 we have ti = (qi, ai, qi+1) ∈ ∆ and
νi+1 = νi ◦ λ(ti)1. Notice that, from the restriction of the update function, we deduce that
ν0(out), ν1(out), ν2(out), . . . is a (weakly) increasing sequence of output words in B∗. If this
sequence is unbounded then w ∈ dom(T) and we let [[T]](w) =

⊔
i≥0 νi(out) ∈ Bω be the

limit (least upper-bound) of this sequence. Hence, the semantics of a gpSST is a partial
function [[T]] : Aω → Bω with dom(T) ⊆ dom(A).

3 Main Result

We are now ready to state our main result, which is an effective procedure to construct a
reversible two-way transducer for a deterministic machine.

The proof relies on constructions that go through gpSST, and are presented in the
subsequent sections.

▶ Theorem 1. Given a deterministic gp2DT T with n states, k color conditions and ℓ colors,
we can construct a gp2RT S with O(ℓ2kn(2n)4n+1)) states, k color conditions and ℓ colors
such that [[T]] = [[S]].

Proof. Let T be a gp2DT with n states, k color conditions and ℓ colors. Using Theorem 6,
we can construct an equivalent gpSST T ′ with O(n(ℓk)n(2n + 1)2n−1) states, 2n variables, k

color conditions and ℓ colors. Then by Theorem 4, we can construct a gp2RT S equivalent to
T ′ whose size is quadratic in the number of states and linear in the number of variables. More
precisely, S has O((n(ℓk)n(2n + 1)2n−1)2(2n)) = O(ℓ2kn(2n)4n+1)) states, k color conditions
and ℓ colors, concluding the proof. ◀

4 Composition of gp2RT

The main reason to use reversible two-way machines is that they are easily composable.
Given two composable reversible transducers, we can construct one whose size is linear in
both machines, and whose transition function is rather straight-forward. It is made explicit
in the following theorem and proof.

1 An assignment ν : R → B∗ is extended to a morphism ν : (R ⊎ B)∗ → B∗ by ν(b) = b for all b ∈ B.
Hence, if σ ∈ ΛB

R is a substitution then ν′ = ν ◦ σ is an assignment defined by ν′(r) = ν(σ(r)) for all
r ∈ R. For instance, if σ(r) = br′cbr then ν′(r) = bν(r′)cbν(r).

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:7

▶ Theorem 2. Given two gp2RT S and T , of size n and m respectively, and such that the
output alphabet of S is the input alphabet of T , we can construct a gp2RT U , also denoted by
T ◦ S, of size O(nm) such that [[U]] = [[T]] ◦ [[S]].

Sketch of proof. The set of states of the machine U is the cartesian product of the sets of
states of S and T . Given an input word u of S, U simulates S. At each step, instead of
producing a possibly empty word v ∈ B+, it simulates the run ρT of T over v. If ρT exits
v on the right, then U continues the simulation of S up to the next transition producing
a nonempty word. Otherwise, it rewinds the run of S to get its previous production, and
simulates T on it, starting from the right.

The conjunction of parity conditions allows to an easy construction for intersection, which
is similar to what is expected here. A word u should be accepted if u belongs to the domain
of S and [[S]](u) belongs to the domain of T . By doing the conjunction of both acceptance,
we are able to recognize the domain of U = T ◦ S. ◀

Proof. Let S = (Q, A, δ, q0, χ, B, λ) and T = (P, B, α, p0, χ′, C, β). We define the composi-
tion U = T ◦ S = (R, A, µ, r0, χ′′, C, ν) where R = Q × P is split as

R+ = Q+ × P + ∪ Q− × P − R− = Q− × P + ∪ Q+ × P − .

The initial state is r0 = (q0, p0) and µ, ν and χ′′ are defined below.
To properly define µ and ν, we extend α and β to finite words, and more precisely to the

productions of S. Given a word v = λ(q, a) ∈ B∗ for some (q, a) ∈ Q × A, and a state p of T ,
we define ρp(v) to be the maximal run of T over v starting in state p on the left (resp. right)
of v if p ∈ P + (resp. p ∈ P −). Then we define α∗(p, v) as the state reached by ρp(v) when
exiting v. It is undefined if ρp(v) loops within v. Note that if α∗(p, v) belongs to P + (resp.
P −), then T exits v on the right (resp. on the left). We define β∗(p, v) as the concatenation
of the productions of ρp(v). If α∗(p, v) is defined, then β∗(p, v) is finite. Note that ρp(ε) is
an empty run, so we have α∗(p, ε) = p and β∗(p, ε) = ε.

For the generalized parity conditions, we let χ′′ = {c | c ∈ χ ∪ χ′} and we extend the
functions c ∈ χ′ to finite runs ρp(v). More precisely, we let c∗(p, v) be the minimum c-value
taken by the transitions of ρp(v). When v = ε then ρp(v) is an empty run and we set c∗(p, v)
to the largest odd value in all values taken by c on transitions of T . Then, given a state
(q, p) of U ,

If p ∈ P + then we let v = λ(q, a). We set ν((q, p), a) = β∗(p, v) and, with q′ = δ(q, a)
and p′ = α∗(p, v) we define

µ((q, p), a) =
{

(q′, p′) if p′ ∈ P +,

(q, p′) if p′ ∈ P −
and c((q, p), a) =

{
c(q, a) if c ∈ χ,

c∗(p, v) if c ∈ χ′.

If p ∈ P − then we let q′ be such that q = δ(q′, a) and v = λ(q′, a). Note that q′ is unique
by co-determinism of S. We set ν((q, p), a) = β∗(p, v) and, with p′ = α∗(p, v) we define

µ((q, p), a) =
{

(q, p′) if p′ ∈ P +,

(q′, p′) if p′ ∈ P −.
and c((q, p), a) =

{
c(q′, a) if c ∈ χ,

c∗(p, v) if c ∈ χ′.

The intuition behind the transition function is that U simulates S to feed a simulation of T .
If T moves forward on its input, then U simulates S forward. If T moves backward on its
input, then U backtracks the computation of S. During a switch of direction, S stays put.

CONCUR 2024

21:8 Reversible Transducers over Infinite Words

The acceptance condition of conjunctive parity was chosen specifically to allow for smooth
composition. By using both sets of parities, the transducer U ensures that the input word is
accepted by S, and that its production is accepted by T . It is worth noting that since U can
rewind the run of S, it can take a transition (and consequently its colors) multiple times
on a given input position. This increases the multiplicity of the transitions taken during a
non-looping run by a constant factor since a deterministic transducer never visits twice a
given position in the same state. Hence, the set of colors of S that U sees infinitely often on
a non-looping run is the same as the ones seen by S. ◀

5 gpDT to gp2RT

Similar to finite words, given a deterministic one-way generalized parity transducer, one can
construct a reversible one realizing the same function.

▶ Theorem 3. Let T be a gpDT, we can construct a gp2RT T ′ of size O(n2) such that
[[T]] = [[T ′]].

Sketch of proof. The construction is reminiscent of the tree-outline construction for co-
deterministic transducers of [10]. The difference is that here, we begin with a deterministic
transducer with an infinite input word, so instead of starting from the root of the tree, which
is at the end of a finite input word, our outline has to start from a leaf at the beginning of the
input word, corresponding to the initial configuration. We also generalize the construction
by allowing any degree of non (co-)determinism: while in [10], at most two branches could
merge on any vertex, here we allow any number.

We begin with the underlying automaton: from a one-way deterministic generalized parity
automaton (gpDA) A, we build a two-way reversible generalized parity automaton (gp2RA)
A′ simulating the behavior of A. For any accepted input word w, we consider the infinite
acyclic graph (simply called a tree) representing all the partial runs of A merging with the
accepting run of A on w (note that because A is deterministic, there is only one accepting
run for a given word). Automaton A′ will simulate two synchronized reading heads going
along the outline of this tree, as illustrated in Figure 2.

The two heads are required to make A′ equivalent to A: we need to be able to discriminate
configurations of a run of A′ occurring in the accepting run of A from the ones added to
account for the non-initial runs. One reading head follows the outline of the run tree from
above, and the other one from below. The configurations where the two reading heads point
to the same state of A correspond to those occurring in the accepting run of this automaton.

The reading heads are placed above and below the initial state, and they move together
to the right, until one of them encounters a branching in the tree. When this happens, the
gp2RA moves backwards to go around the branch. When the branch dies (which necessarily
happens because from each position, the prefix of a word is finite), the exploration continues
to the right.

As the two heads are synchronized, and because branches may not all be of the same
length, when one head needs going left the other one may impose right moves in order to
reach another branch, on which it will be able to go left far enough to follow the first head.

A run of A′ can be seen as a straightforward journey along the flattened outline of the
tree, hence the reversibility.

Once A′ is defined, we define T ′: it is the gp2RT having A′ as underlying automaton,
and whose output function is that of T from states where the two reading heads point to the
same state, and ε otherwise. ◀

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:9

⊢ b a a b · · ·

1 2 3 3 3

3 3

1 2

1

(a) A run tree of automaton A.

1

2

3

b : 1

a : 1

a : 1
a : 0, b : 0

(b) Automaton A.

Figure 2 The automaton A depicted in Figure 2b recognizes all infinite words over alphabet
{a, b} having an a in first or second position (it has only one coloring function, represented after the
colons in the transitions). Figure 2a is the part of the tree corresponding to the run of A on the
prefix baab of an accepted word. Each node of the tree is a configuration of A, represented here by
a control state. Its horizontal position allows to deduce the position in the input word, depicted
above the tree. The horizontal straight path represents the accepting run. Notice that when the
top reading head needs to go backward to go around a branch, the bottom ones follows and goes
backward on the accepting run.

6 From gpSST to gp2RT

We extend another result from [10] about constructing a reversible two-way transducer from
a Streaming String Transducer. The procedure and the complexity are similar. The main
difference is that the procedure only work thanks to the distinguished register out of gpSST.
Without it, production could depend on an infinite property of the input word, which is not
realizable by a deterministic (and hence reversible) machine.

▶ Theorem 4. Let T be a gpSST with n states and m registers. Then we can construct a
gp2RT S with O(n2m) states such that [[T]] = [[S]].

Sketch of proof. We prove that [[T]] = [[F]] ◦ [[D]] where D is a gpDT and F is a gp2RT. The
transducer D has the same underlying automaton as T , but instead of applying a substitution
σ to the registers, D enriches the input letter with σ. Then, the transducer F uses the flow of
registers output by D to output the contents of the relevant registers in a reversible fashion.
Finally, we construct a gp2RT D′ equivalent to D by Theorem 3 and we obtain the desired
gp2RT S = F ◦ D′ by Theorem 2.

Formal Construction. Let T = (Q, A, δ, q0, χ, B, R, out, λ) be a gpSST. We give the con-
structions of D and F , and dedicate the proofs of the reversibility of F and the correctness
of the construction to the Appendix.

We define the gpDT by D = (Q, A, δ, q0, χ, ΛB
R , γ) where γ(q, a) = λ(q, a).

The reversible transducer is F = (Q′, ΛB
R , α, q′

0, ∅, B, β) where:
Q′ = R × {i, o} with Q+ = R × {o} and Q− = R × {i}. We will denote by ri (resp. ro)
the state (r, i) (resp. (r, o)). Informally, being in state ri means that we need to compute
the content of r, while state ro means we have just finished computing it.
The initial state is q′

0 = outo.
There is no accepting condition;
α and β both read a state in Q′ and a substitution σ ∈ ΛB

R , or the leftmarker ⊢, which is
treated as a substitution σ⊢ associating ε to every register. We define α and β as follow:

If the state is ri for some r ∈ R.
∗ If σ(r) = v ∈ B∗ contains no register, then α(ri, σ) = ro and β(ri, σ) = v.
∗ If σ(r) = vsγ with v ∈ B∗ and s ∈ R is the first register appearing in σ(r), then

α(ri, σ) = si and β(ri, σ) = v.

CONCUR 2024

21:10 Reversible Transducers over Infinite Words

If the state is ro for some r ∈ R. Recall that from the definition of copyless SSTs, for
any register r, there exists at most one register t, such that r occurs in σ(t), and in
this case r occurs exactly once in σ(t).
∗ Suppose that for some register s we have σ(s) = γrv with v ∈ B∗. Then α(ro, σ) = so

and β(ro, σ) = v.
∗ Suppose that for some register t we have σ(t) = γrvsγ′ with v ∈ B∗ and s ∈ R.

Then α(ro, σ) = si and β(ro, σ) = v.
∗ If r does not appear in any σ(s), then the computation stops and rejects. This

somehow means that we are computing the contents of a register that is dropped in
the original SST. This will not happen if what is fed to F is produced by D.

Correctness of the construction. First, let us remark that the domain of D is the set of
input words u such that T has an infinite accepting run over u since they share the same
underlying automaton. So the domain of T is the set of words in the domain of D on which
T produces an infinite word.

Let (q0, ν0) a0−→ (q1, ν1) a1−→ (q2, ν2) a2−→ (q3, ν3) · · · be the accepting run of some input
word u = a0a1a2 · · · ∈ Aω in the domain of the gpSST T . For j ≥ 0, let σj = λ(qj , aj) so
that [[D]](u) = σ0σ1σ2 · · · .

We prove by induction that for every position j ≥ 0 of u, the run of the transducer F on
[[D]](u) reaches the state outo in position j having produced the content νj(out) of the run of
T on u up to position j. For j = 0, there is nothing to prove as the registers are initially
empty and outo is the initial state of F .

Now suppose that the run of F on [[D]](u) reaches some position j in state outo, having
produced νj(out). Recall that, by definition of λ, the substitution σj = λ(qj , aj) used by
T at position j is such that σj(out) = out · γ. Then if there is no other register, i.e., if
γ = v ∈ B∗, by definition of α, F moves to j + 1 in state outo and produces v, so that its
cumulated production is νj(out) · v = νj+1(out).

The interesting case is of course when some registers are flown to out. Let r be the second
register of σj(out), i.e., σj(out) starts with out · vr with v ∈ B∗. Then, by definition of α

and β, F stays at position j switching to state ri and producing v. Then, using Claim 5, F
reaches ro at position j producing the content of νj(r). We repeat this process to exhaust all
registers appearing in σ(out), reaching finally state outo at position j + 1 with cumulated
production νj(σj(out)) = νj+1(out), proving the induction.

▷ Claim 5. For all positions j ≥ 0 and registers r ∈ R, there exists a right-to-right run
(ri, ro) of F starting and ending at position j and which produces the content of νj(r).

Proof. The proof is by induction on j. If j = 0 then ν0(r) = ε and the run of F starting at
position 0 in state ri reads σ⊢. By definition of α and β the run produces σ⊢(r) = ε and
switches from ri to ro, proving the claim for j = 0.

Now assume that the claim is true for j. Consider the run ρ of F starting in state ri at
position j + 1. The run ρ starts by reading σj . If σj(r) = v ∈ B∗ then the run produces
v = νj+1(r) and switches from ri to ro, proving the claim. The second case is when σj(r)
starts with some vs with v ∈ B∗ and s ∈ R. Then, the first transition of ρ produces v and
moves to position j in state sj . By induction hypothesis, there is a right-right (si, so)-run
starting at j and producing νj(s). Then, the run reads σj in state so and, either goes ro in
position j + 1 producing v′ ∈ B∗ if σj(r) ends with sv′ (s is the last register flown to r),
or goes to ti in position j producing v′ ∈ B∗ if σj(r) contains the factor sv′t (t is the next

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:11

register flown to r). By iterating this process again, we exhaust the registers flown to r,
produces their content meanwhile. Finally, the run ρ ends in position j + 1 with state ro and
has produced νj+1(r) = νj(σj)(r), proving the claim. ◁

Coming back to the proof of correctness, we have shown that for all positions j ≥ 0, F has
an initial run on [[D]](u) reaching position j in state outo and producing νj(out). This proves
that [[D]](u) is in the domain of F (the maximal initial run of F on [[D]](u) reads the whole word
and F accepts only if T produces infinitely often) and [[F]]([[D]](u)) =

⊔
j≥0 νj(out) = [[T]](u).

Therefore, [[T]] = [[F]] ◦ [[D]].
Finally, we construct a gp2RT D′ equivalent to D by Theorem 3 and we obtain the desired

gp2RT S = F ◦ D′ by Theorem 2. ◀

7 From gp2DT to gpSST

The construction presented in this section is the most involved of the paper. It is adapted
from [14]. Given a deterministic two-way transducer, we construct a gpSST that realizes the
same function. Here again, the main complications from infinite words are dealing with the
acceptance condition and the impossibility to get the final configuration of the run.

▶ Theorem 6. Given a gp2DT T with n > 0 states and k coloring functions over ℓ colors, we
can construct a gpSST S with O(ℓkn(2n)2n) states, 2n − 1 registers and k coloring functions
over ℓ colors such that [[T]] = [[S]].

Sketch of proof. We improve on the classical Shepherdson construction [19] from two-way
machines to one-way. In this construction, the one-way machine computes information about
the runs of the two-way machine on the prefix read up to the current position. More precisely,
it stores the state reached on reading the prefix starting at the initial state, as well as a
succinct representation of the information about all possibles partial runs occurring on the
prefix later on. In the following we call these partial runs right-right runs, as they both enter
and exit the word from the right of the word. Further, by associating a register to each run
in this representation, we can construct an SST equivalent to the two-way machine.

Upon reading some letter a ∈ A, the prefix w we are interested in grows to wa, and
consequently, we have to update the information about the right-right runs. While some
right-right runs on the prefix w may be extended to right-right runs on wa, some runs
(which cannot be extended) may die, and hence needs to be removed. A third possibility
is that, upon reading a letter a, some right-right runs may merge. This implies that the
construction would not be copyless, as if two right-right runs over ua are the extension of a
same right-right run over u, the register storing the production of the run over u needs to be
copied in both runs over ua.

In order to compute a copyless SST, we improve this construction by refining the
information stored by the one-way machine: it stores not only the set of right-right runs,
but also whether they merge and the respective order of the merges. Essentially, the latter
representation keeps track of the structure of the right-right runs on the prefix read up to the
current position, as well as the output generated by these runs. The resulting information
can be represented as a forest, which is a (possibly empty) set of trees. Then we associate a
register to each edge of the forest, so that the update function can be made copyless. The
number of registers required is still linear in the number of states. ◀

Formally, we call the structure used to model the right-right runs merging forests, which
we define as follow:

CONCUR 2024

21:12 Reversible Transducers over Infinite Words

Figure 3 Example of a merging forest (on the left) corresponding to right-right runs (on the
right) of a two-way machine for some prefix u of an input word.

▶ Definition 7. Given a set of states Q = Q+ ⊎ Q−, a set of coloring functions χ and an
integer ℓ > 0, we define the merging forests on (Q, χ, ℓ), denoted MF , as the set of forests
F such that:

the leaves of all trees of F are labeled by distinct elements of Q−,
the roots of all trees of F are labeled by distinct elements of Q+,
all unary nodes (exactly one child) are roots.

Abusing notations, the leaves are also labeled by a χ-tuple of integers less than ℓ, i.e. a color
for each coloring function.

Informally, an element F ∈ MF describes a set of right-right runs, such that if q is the
root of a tree and p is one of its leaves, then (p, q) is a right-right run. Notice that, if two
leaves x and y belong to the same tree, then the right-right runs starting in x and y will
merge. The structure of the tree reflects the order in which the runs sharing the same root
merge. The integer labels of leaves serve as coloring for the conjunction of parity acceptance
condition. An example of a merging forest is depicted in Figure 3.

Note that in Figure 3, the states in Q− are depicted in purple, while the states in Q+

are depicted in green. The forest comprises of 3 trees - one with root q1 and leaves q0, q2
and q3, the second with root q5 and leaf q4, and the third with root q8 and leaves q6 and q7.
For each tree, there are right-right runs from its leaves to the root. For instance, from the
merging forest in Figure 3, we can infer that there are three right-right runs entering u on
the right in states q0, q2 and q3 respectively, and emerging out of u in state q1, moreover
the run starting from q0 first merges with the run starting from q2 and these two runs then
merge with the one starting from q3. The figure also depicts the register corresponding to
the edges of the forest. Further, the output generated by the part of the run highlighted in
yellow is stored in the register r1, the output for the part highlighted in green is stored in r2,
blue in r3 and red in r5.

We are now ready to give the formal construction of Theorem 6. We defer the proof of
correctness to Appendix.

Proof of Theorem 6. Given a gp2DT T = (Q, A, δ, q0, χ, B, λ), we construct a gpSST S =
(Q′, A, α, q′

0, χ′, B, R, out, β) such that:
Q′ = Q × MF ,
q′

0 = (q0, F0) where F0 is the forest having no internal nodes, and edges from a leaf u

labeled p ∈ Q− to a root v labeled q ∈ Q+ if δ(p, ⊢) = q.

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:13

R is a set of registers of size 2|Q| − 1 with a distinguished register out.
the coloring functions χ′ = {c′ | c ∈ χ} are described below.
the definitions of α and β are more involved and given below.

For each merging forest F ∈ MF , we fix a map ξF associating distinct registers from
R \ {out} to edges of F . This is possible since the number of edges in F is at most 2|Q| − 2
(see Lemma 11).

For simplicity sake, we assume that for each edge (u, v) of F0 corresponding to transition
δ(p, ⊢) = q, the register ξF0(u, v) is initialized with the production λ(p, ⊢). Note that
considering initialized registers does not add expressiveness, as it could be simulated using a
new unreachable initial state. Other registers are initially empty.

The definitions of the transition function α and the update function β are intertwined.
Let (q, F) ∈ Q × MF be a state of S and a a letter of A. We describe the state (p, F ′) =
α((q, F), a). First we construct an intermediate graph G that does not satisfy the criteria
of the merging forests, then explain how G is transformed into a merging forest F ′ ∈ MF .
The steps of the construction are depicted in Figure 4.

Construction of G. The graph G is built from F as follows. First, we add new isolated
nodes Qc = {qc | q ∈ Q} to the forest F . These nodes will serve as the roots and leaves of F ′.
For each transition δ(p, a) = q, we will add an edge connecting these new nodes and the roots
and leaves of F . We also extend the labelling ξF to a labelling ξG by adding productions
λ(p, a) to the new edges of G.

Let p ∈ Q and let q = δ(p, a). If p ∈ Q+ is the label of the root u of some tree in F , we
add an edge from u to either qc if q ∈ Q+, or to v if q ∈ Q− and there exists a leaf v labeled
q in F . If p ∈ Q−, we add an edge from pc to either qc if q ∈ Q+, or to v if q ∈ Q− and there
exists a leaf v labeled q in F . The added edge is labeled λ(p, a) by ξG. The construction is
illustrated in the first two steps of Figure 4. Note that G may now have cycles.

The new state p. To compute the first component of the new state of S, let r = δ(q, a). If r

belongs to Q+, then p = r and λ(q, a) is appended to the output register: β((q, F), a)(out) =
out · λ(q, a). Moreover, the colors are directly inherited: c̄((q, F), a) = c(q, a) for all c ∈ χ.
Otherwise, assume that there is a leaf u in F labeled r ∈ Q− (if not, the transition is
undefined). We consider the maximal path in G starting from u. If this path is looping or if
it ends in a root of F then the transition is undefined. Otherwise, it ends in a new node v of
G. Let p ∈ Q+ be the state such that v = pc. We append to the out register first λ(q, a) and
then the ξG labels of the edges of the path from u to v in G, in the order of the path. These
ξG labels are either registers given by ξF for edges of F , or local outputs of the form λ(x, a)
for the new edges, i.e., those in G \ F . Moreover, for each c ∈ χ, we let c′((q, F), a) be the
minimum of (1) the c-values of the labels of leaves of F appearing in the path from u to v in
G, and (2) the c-values of the transitions used to create the new edges of G in this path.

The third figure of Figure 4 illustrates the case where δ(q, a) = q4 ∈ Q−. We then look
at the path starting in q4, which leads to the state (q8)c after reading a.

Construction of F ′ and the update of registers other than out. This is illustrated by the
third and fourth figures of Figure 4. We erase all nodes (and adjacent edges) that are on a
cycle of G since such cycles cannot be part of an accepting run of T (see the part of G boxed
in blue). The resulting graph is now a acyclic. We also erase all nodes and edges which are
not on a path from a leaf in Q−

c to a root in Q+
c since they cannot be part of a right-right

run on ua (see the parts boxed in yellow). Finally, we erase the tree with root v = pc in the

CONCUR 2024

21:14 Reversible Transducers over Infinite Words

Figure 4 Illustration of the procedure to calculate F ′ from F and a letter a.
The first figure is F , the second is the graph G built from F and the transition occurring at a. The
third figure illustrates the trimming done from G to obtain a forest depicted in the fourth figure.
Finally, we merge unary internal nodes to obtain the merging forest of the last figure.

second case of the definition of p above. Indeed, should any right-right run simulated by this
tree appear later, the resulting run would loop on a finite prefix of the input (see the part
boxed in green).

The resulting forest has leaves in Q−
c and roots in Q+

c . Each remaining new leaf or root
qc ∈ Qc is labeled q, i.e., by dropping the c index. A new leaf qc ∈ Q− is labeled by a χ-tuple
(mc)c∈χ of integers less than ℓ where mc is the minimum of (1) the c-component of the labels
of leaves of F appearing in the branch in G from qc to its root, and (2) the values c(p, a)
of the transitions used to create the new edges of G in this branch. We forget the initial
labeling of leaves and roots of F .

To obtain a merging forest, it remains to remove unary internal nodes. This is shown
between the fourth and fifth figures of Figure 4. We replace each maximal path π =
u0, u1, u2, · · · , un−1, un (n ≥ 1) with u1, . . . , un−1 unary nodes by a single edge e = (u0, un).
We obtain the merging forest F ′. The update function is simultaneously defined by

β((q, F), a)(ξF ′(e)) = ξG(u0, u1)ξG(u1, u2) · · · ξG(un−1, un) .

Notice that for each remaining edge f of G we have either f ∈ F and β((q, F), a)(ξF ′(f)) =
ξG(f) = ξF (f) or f is a new edge and β((q, F), a)(ξF ′(f)) is set to some λ(s, a). Since each
edge f of F contributes to at most one edge e of F ′, or to the path from u to v = pc which
flows into the out register (but not both), it implies that the substitution β((q, F), a) is
copyless. ◀

8 Continuity and topological closure of a gp2DT

The classical topology on infinite words (see e.g. [18]) defines the distance between two
infinite words u and v as d(u, v) = 2−|u∧v|, where u ∧ v is the longest common prefix of u

and v. Then a function f : Aω → Bω is continuous at x ∈ dom(f) if

∀i ≥ 0, ∃j ≥ 0∀y ∈ dom(f), |x ∧ y| ≥ j =⇒ |f(x) ∧ f(y)| ≥ i

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:15

A function f is continuous if it is continuous at every x ∈ dom(f). We refer to [15] for
more details.

Since a gp2DT is in particular deterministic, it realizes a continuous function. Indeed,
the longer two input words share a common prefix, the longer their output will also do.

By comparison, a non-deterministic transducer can make choices depending on an infinite
property of the input, e.g. whether there is an infinite number of as, and thus realize a
noncontinuous function.

The question of characterizing the continuous functions realizable by transducers was
studied in [5, 6]. In [5], it was proved that for any continuous function realized by a non-
deterministic one-way transducer T , there exists a deterministic two-way transducer S such
that for any u ∈ dom(T), [[T]] = [[S]]. This means that if a non-deterministic one-way
transducer realizes a continuous function, although it can uses the non-determinism to refine
its domain, the continuity property forbids it from producing non-deterministically.

In [6], it was conjectured that the class of deterministic regular functions, i.e. functions
defined by deterministic two-way transducers with a Büchi acceptance condition, corresponds
to the class of functions realized by a non-deterministic two-way transducer, called regular
functions, that are continuous.

Since the class of gp2DT is strictly more expressive than the class of deterministic regular
functions of [6], but still realize continuous functions, the conjecture of [6] fails. One can
for example consider the function f such that f(u) = u if u has a finite number of as and is
undefined otherwise. Then f is continuous, as it is continuous on its domain, but it cannot
be realized by a deterministic two-way transducer with a Büchi condition.

However, the refinement here only acts on the domain of the function, and not the
production. Indeed, let T be a gp2DT which realizes a function f . We can define the
topological closure of dom(T), which we denote ̂dom(T) as the words u such that there exists
a sequence (ui)i≥1 where for all i, ui ∈ dom(T) and ∀n, ∃i∀j ≥ i, |u ∧ uj | ≥ n

We say that the sequence (ui)i≥1 converges to u. Note that if two sequences (ui)i≥1 and
(vj)j≥1 belong to dom(T) and converge to the same word w, then the elements will share
longer and longer prefixes. Since T is deterministic, both sequences will then also produce
words that share longer and longer prefixes. Thus we can define f̂ , whose domain is ̂dom(T),
where f̂(u) is the limit of the images of any sequence (ui)i≥1 that belong to dom(T) and
which converges to u. The function f̂ is in fact realized by the transducer T where the
accepting condition is dropped. The domain of its underlying automaton is then a closed
set in the classical topology over infinite words, as it is recognized by a deterministic Büchi
automaton where all transitions are final (see [18, Proposition 3.7, p. 147]). Note however
that since the semantics of our transducers requires an input to produce an infinite word to
be in the domain of the transducer, the domain of f̂ might not be a closed set.

Reversible two-way transducers with no accepting condition

Following this, let us consider the class of reversible transducers with no accepting condition
(2RT), which is equivalent to saying all transitions are final within a Büchi condition.

The constructions presented in this article get simpler, with a better complexity:
▶ Theorem 8. Given a deterministic two-way transducer T with n states and no accepting
condition, we can construct a 2RT S with O(n4n+1) states such that [[T]] = [[S]].
Proof. Let T be a deterministic two-way transducer with n states. Since there is no accepting
condition, the construction from the proof of Theorem 6 drops the arrays of integers from the
merging forest. Then the number of merging forests is in O(n2n), and applying Theorem 6
results in an SST T ′ with O(n2n) states and 2n variables. Hence, by applying Theorem 4 to
T ′, we get an equivalent 2RT S with O(n4n+1) states. ◀

CONCUR 2024

21:16 Reversible Transducers over Infinite Words

Surprisingly, the class of 2RT has the expressive power of deterministic Büchi two-way
transducers. This is due to the fact that for an input to be accepted, it requires the
corresponding output to be infinite. We can hide the Büchi acceptance condition in this
restriction. The following theorem proves that starting from a reversible Büchi transducer,
we can construct one which does not use any acceptance condition. To notice that reversible
and deterministic Büchi transducers have the same expressive power, one can rely on our
main theorem, specializing it to a Büchi condition. Indeed, a Büchi acceptance condition
corresponds to a unique coloring function associating 0 to accepting transitions and 1
otherwise. Then if we are given a deterministic Büchi two-way transducer, we are able to
produce a reversible one using a coloring function on the same domain, hence a reversible
Büchi two-way transducer.

▶ Theorem 9. Let T be a reversible Büchi two-way transducer with n states. We can
construct an equivalent 2RT S with 3n states such that [[T]] = [[S]].

Proof. Let T be a reversible Büchi two-way transducer with n states. We define the 2RT S

similarly to T , but with three modes of operation (and hence thrice the states): simulation,
rewind and production. The transducer S starts by simulating T without producing anything.
Upon reaching an accepting transition t, it switches to rewind mode to and unfolds the run
of T back to the previous accepting transition (or the start of the run). It finally follows the
run of T and produces the corresponding output up to seeing the accepting transition t, at
which point it restarts the simulation.

Then for a given word u, if u belongs to the domain of T , the run of T over u will see
accepting transitions infinitely often, and hence S will go to production mode infinitely often
too. Conversely, if u does not belong to the domain of T , it means that either the run of T

over u only sees a finite number of accepting transitions, or does not produce an infinite word.
In the latter case, S will also produce a non finite word. In the former case, S will remain in
simulation mode and never produce anything, and thus u will not be in the domain of S.

We can remark that S is reversible if T is since first within modes, transitions of S are
transitions of T , and secondly, the transitions from one mode to another happen on every
accepting transition. Hence transitions that come to a given mode from another are exactly
the ones that exit it, so two transitions cannot go to a same state upon reading the same
letter. ◀

9 Conclusion

The main contribution of this paper is the result which shows that deterministic two-
way transducers over infinite words with a generalized parity acceptance condition are
reversible. We also show that reversible two-way transducers over infinite words are closed
under composition. Our results can help in an efficient construction of two-way reversible
transducers from specifications presented as RTE [16] or SDRTE [13] over infinite words.
Earlier work [11] in this direction on finite words relied on an efficient translation from
non-deterministic transducers used in parsing specifications to reversible ones; our results
can hopefully help extend these to infinite words.

References
1 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite

strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 65–74. IEEE Computer Society, 2012.
doi:10.1109/LICS.2012.18.

https://doi.org/10.1109/LICS.2012.18

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:17

2 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the 23rd
EACSL Annual Conference on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 -
18, 2014, pages 9:1–9:10. ACM, 2014.

3 Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function
expressions. In Mizuho Hoshi and Shinnosuke Seki, editors, 22nd International Conference on
Developments in Language Theory, DLT 2018, volume 11088 of Lecture Notes in Computer
Science, pages 96–108. Springer, 2018.

4 Udi Boker. Why These Automata Types? In Gilles Barthe, Geoff Sutcliffe, and Margus
Veanes, editors, LPAR-22. 22nd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, volume 57 of EPiC
Series in Computing, pages 143–163. EasyChair, 2018. doi:10.29007/C3BJ.

5 Olivier Carton and Gaëtan Douéneau-Tabot. Continuous rational functions are deterministic
regular. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26,
2022, Vienna, Austria, volume 241 of LIPIcs, pages 28:1–28:13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.MFCS.2022.28.

6 Olivier Carton, Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Sarah Winter. Deterministic
regular functions of infinite words. In Kousha Etessami, Uriel Feige, and Gabriele Puppis,
editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP
2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 121:1–121:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ICALP.2023.121.

7 Arthur Cayley. A theorem of trees. Quarterly Journal of Mathematics, 23:376–378, 1889.
URL: https://books.google.fr/books?id=M7c4AAAAIAAJ.

8 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized Parity Games.
In Helmut Seidl, editor, Foundations of Software Science and Computational Structures, pages
153–167, Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-71389-0_12.

9 Bruno Courcelle. Monadic second-order definable graph transductions: A survey. Theor.
Comput. Sci., 126(1):53–75, 1994.

10 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On reversible transducers.
In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 113:1–113:12. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.113.

11 Luc Dartois, Paul Gastin, R. Govind, and Shankara Narayanan Krishna. Efficient construction
of reversible transducers from regular transducer expressions. In Christel Baier and Dana
Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, Haifa, Israel, August 2 - 5, 2022, pages 50:1–50:13. ACM, 2022. doi:10.1145/
3531130.3533364.

12 Luc Dartois, Paul Gastin, Loïc Germerie Guizouarn, R. Govind, and Shankaranarayanan
Krishna. Reversible transducers over infinite words, 2024. arXiv:2406.11488.

13 Luc Dartois, Paul Gastin, and Shankara Narayanan Krishna. Sd-regular transducer expressions
for aperiodic transformations. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:
10.1109/LICS52264.2021.9470738.

14 Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. Aperiodic string transducers. In Devel-
opments in Language Theory - 20th International Conference, DLT 2016, Montréal, Canada,
July 25-28, 2016, Proceedings, pages 125–137, 2016. doi:10.1007/978-3-662-53132-7_11.

15 Vrunda Dave, Emmanuel Filiot, Shankara Narayanan Krishna, and Nathan Lhote. Synthesis
of computable regular functions of infinite words. Log. Methods Comput. Sci., 18(2), 2022.
doi:10.46298/LMCS-18(2:23)2022.

CONCUR 2024

https://doi.org/10.29007/C3BJ
https://doi.org/10.4230/LIPICS.MFCS.2022.28
https://doi.org/10.4230/LIPICS.ICALP.2023.121
https://books.google.fr/books?id=M7c4AAAAIAAJ
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.4230/LIPIcs.ICALP.2017.113
https://doi.org/10.1145/3531130.3533364
https://doi.org/10.1145/3531130.3533364
https://arxiv.org/abs/2406.11488
https://doi.org/10.1109/LICS52264.2021.9470738
https://doi.org/10.1109/LICS52264.2021.9470738
https://doi.org/10.1007/978-3-662-53132-7_11
https://doi.org/10.46298/LMCS-18(2:23)2022

21:18 Reversible Transducers over Infinite Words

16 Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular Transducer Expressions
for Regular Transformations. In Martin Hofmann, Anuj Dawar, and Erich Grädel, editors, Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic In Computer Science (LICS’18),
pages 315–324, Oxford, UK, July 2018. ACM Press.

17 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational Logic, 2(2):216–254,
2001. doi:10.1145/371316.371512.

18 Dominique Perrin and Jean-Eric Pin. Infinite Words: Automata, Semigroups, Logic and
Games, volume 141. Elsevier, 2004.

19 John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM J. Res.
Dev., 3(2):198–200, 1959.

A Appendix for Section 5

We give here the formal construction as well as the proof of correctness for Theorem 3:

Proof of Theorem 3. Let T = (Q, A, δ, q0, χ, B, λ) be a gpDT. We begin by showing show
how to construct a gp2RA A′ accepting the same ω-language as A.

Fix an arbitrary total order ⪯ over Q. For q ∈ Q and a ∈ A we let δ−1
a (q) = {p ∈

Q | δ(p, a) = q}, and we also set δ−1
⊢ (q) = ∅, except if q ̸= q0 (it is undefined otherwise).

Let Sa (q, q′) be a predicate, true if q′ is minimal with respect to ≺ such that q ≺ q′ and
δ(q, a) = δ(q′, a). Let Q = {q | q ∈ Q} and Q = {q | q ∈ Q} be two copies of Q. Define
A′ = (Q′, A, δ, q′

0, χ′) by
Q′ = Q′+ ⊎ Q′− = ((Q ∪ Q) × (Q ∪ Q)) \ {(q, q), (q, q) | q ∈ Q} with q′

0 = (q0, q0) and
Q′+ =

(
Q × Q

)
∪

(
Q × Q

)
,

Q′− =
((

Q × Q
)

∪
(
Q × Q

))
\

{
(q, q) ,

(
q, q

)
| q ∈ Q

}
.

In a state (r, s) ∈ Q′, the first (resp. second) component is for the head which is ‘above’
(orange line) (resp. ‘below’ (blue line)) the accepting run (black straight line) in Figure 2a.
In both cases, a state q ∈ Q (resp. q ∈ Q) means that the corresponding head (colored
line) is above (resp. below) the state.
Transitions: first two cases for Q′+ states and then for Q′− states

1. δ′((p, q), a) =

(p′, q) if Sa (p, p′) for some p′ ∈ Q

(p, q′) elseif Sa (q′, q) for some q′ ∈ Q

(δ(p, a), δ(q, a)) otherwise.

2. δ′((p, q), a) =

(p′, q) if Sa (p′, p) for some p′ ∈ Q

(p, q′) elseif Sa (q, q′) for some q′ ∈ Q

(δ(p, a), δ(q, a)) otherwise.

3. δ′((p, q), a) =

(p, q) if δ−1

a (p) = ∅
(p, q) elseif δ−1

a (q) = ∅
(min δ−1

a (p), min δ−1
a (q)) otherwise.

4. δ′((p, q), a) =

(p, q) if δ−1

a (p) = ∅
(p, q) elseif δ−1

a (q) = ∅
(max δ−1

a (p), max δ−1
a (q)) otherwise.

χ′ = {c′ | c ∈ χ} with c′((r, s), a) =
{

c(q, a) if (r, s) = (q, q)
max{c(p, a) | p ∈ Q, a ∈ A} otherwise.

https://doi.org/10.1145/371316.371512

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:19

We claim that A′ is reversible. From the definition of δ′, A′ is clearly deterministic. We
show that A′ is also co-deterministic. There are three potential transitions leading to a given
state in Q′ by reading a given letter, only one of which can be part of δ′.

The following case analysis shows this:

δ′−1
a ((p, q)) =

(p, q) if δ−1

a (p) = ∅(
p, q

)
elseif δ−1

a (q) = ∅(
max δ−1

a (p), min δ−1
a (q)

)
otherwise

δ′−1
a ((p, q)) =

(
p, q

)
if δ−1

a (p) = ∅ (so p ̸= q0)
(p, q) elseif δ−1

a (q) = ∅(
min δ−1

a (p′), max δ−1
a (q′)

)
otherwise

δ′−1
a ((p′, q′)) =

(p, q′) if Sa (p, p′) for some p ∈ Q

(p′, q) elseif Sa (q, q′) for some q ∈ Q

(δ(p′, a), δ(q′, a)) otherwise.

δ′−1
a ((p′, q′)) =

(
p, q′) if Sa (p′, p) for some p ∈ Q(
p′, q

)
elseif Sa (q′, q)(

δ(p′, a), δ(q′, a)
)

otherwise.

We conclude that A′ is co-deterministic, and therefore reversible.
Intuitively, automaton A′ will follow the run of A, adding extra steps to deal with the

states that are co-reachable from states of this run. States of A′ of the form
(
q, q

)
correspond

to states q in the run of A. The key idea behind the construction of A′ is that in a run of
this automaton, configurations of the form ⊢u

(
q, q

)
v will occur in the same order as the

configurations ⊢uqv in the run of A. This is the point of the following claim.

▷ Claim 10. Let ρ = ⊢u0q0v0 −→ ⊢u1q1v1 −→ ⊢u2q2v2 −→ · · · be an accepting run of A on
w ∈ Aω (we have w = uivi for all i ≥ 0 where ui is the prefix of length i of w). There is an
accepting run ρ′ of A′ on w such that the projection of ρ′ on the configurations with states
of the form

(
p, p

)
is ⊢(q0, q0)w +−→ ⊢u1(q1, q1)v1

+−→ ⊢u2(q2, q2)v2
+−→ · · · .

Proof. Let G be the configuration graph of A on the input word w ∈ Aω. The vertices of G

are all configurations ⊢uqv with w = uv, u ∈ A∗ and q ∈ Q. Edges correspond to transitions:
we have an edge ⊢upav → ⊢uaqv if δ(p, a) = q. Since A is deterministic, there is at most one
outgoing edge from each configuration and since A is one-way, thus the graph G is acyclic.

Let T be the connected component of G that contains the initial configuration ⊢q0w.
Note that the run ρ corresponds to the only infinite path in G starting from ⊢q0w. Any
configuration ⊢uipivi of T which is not on ρ (pi ̸= qi) will eventually merge with ρ: ⊢uipivi

∗−→
⊢uj−1pj−1vj−1 → ⊢ujqjvj with i < j and pj−1 ≠ qj−1. We say that ⊢uipivi is below (resp.
above) ρ if pj−1 ≺ qj−1 (resp. qj−1 ≺ pj−1).

Let us consider the run ρ′ of A′ on w. Due to the definition of the transition function
of A′, the run ρ′ only moves along T . Indeed a configuration ⊢u(r, s)v of ρ′ encodes the
position of two tokens, each placed either above or below a configuration of T . Moreover,
the first token is always above the branch ρ while the second token is always below. This
can be shown by case analysis of δ′. The two transitions where the upper token goes from
above a branch to below are the following:

CONCUR 2024

21:20 Reversible Transducers over Infinite Words

δ′ ((
p, q

)
, a

)
=

((
p′, q

))
if (Sa (p, p′)) : there, we know that p ≺ p′, so the token ends up

on a branch that is above where it was;
δ′ ((

p, q
)

, a
)

= (p, q) if δ−1
a (p) = ∅ and a ̸= ⊢, so p must have reached the end of the

branch it was placed on, and we know it was not placed on ρ, because when this branch
ends, a = ⊢.

A similar observation can be made for transitions where the lower token goes from below a
branch to above.

We denote by Ti the subtree of T containing all configurations having a path to ⊢uiqivi.
We aim to prove that ρ′ reaches the position i, and the first time it does is in state (qi, qi).

We remark that for every cases 1 to 4 of the transition function, as long as the transition
function is defined the run ρ′ can continue. As we only visit configurations of T , as long as ρ

is infinite, as assumed by Claim 10, so is ρ′.
Next, as A′ is reversible, it cannot loop, as it would require two different configuration

to go to the same one to enter the loop, which would break co-determinism. So ρ′ starts in
Ti, does not stop nor loops, so since Ti is finite, ρ′ has to end up leaving Ti. So ρ′ reaches
position i, while only moving along Ti. As (qi, qi) is the only possible state where ρ′ follows
Ti while having its first token above ρ and the second below ρ, ρ′ first reaches i in state
(qi, qi).

As this is true for any position i, and since Ti contains Ti−1, we can conclude the proof
of Claim 10. ◁

Based on this claim, we show that L(A) = L(A′). Let w be an infinite word accepted by A,
and ρ be the accepting run of A on w. We showed that the configurations ⊢uqv happen in the
same order in ρ as configurations of the form ⊢u

(
q, q

)
v in ρ′, the run on w of A′. Moreover

c′ ((
p, p

)
, a

)
< c′ (s, a) for all a ∈ A and for all s of another form, and as |inf (ρ)| > 0 (because

w is infinite and A has a finite number of states), min {t|t ∈ inf (ρ)} = min {t|t ∈ inf (ρ′)}.
So L(A′) = L(A).

Let T ′ =
(
Q′, A, δ′,

(
q0, q0

)
, (ci)k

1 , B, λ′) be the gp2RT having A′ as underlying automaton,
with

λ′(s, a) =
{

λ(q, a) if s =
(
q, q

)
ε if s is of another form.

Because we showed that states of the form
(
q, q

)
are met in the run of A′ on a given word in

the same order as states q in the run of A on the same word, the output of T ′ is the same as
the output of T . So we have that [[T]] = [[T ′]].

Finally, |Q′| = 4 |Q|2, justifying the complexity. ◀

B Appendix for Section 6

In this section, we prove the reversibility of the transducer F and the correctness of the
construction given in the proof of Theorem 4.

Proof of Theorem 4. We begin by showing that F is reversible, before showing that the
formal construction from the earlier sketch of proof is correct.

Reversibility of F . The transducer F is clearly deterministic by construction. Let us prove
that it is co-deterministic. To this end, let si be a state and σ a substitution. Looking at the
transition function, its antecedent α−1(si, σ) is either ri if σ(r) starts with vs for some word
v ∈ B∗, or ro if there is some register t that contains rvs for some word v ∈ B∗. Since we

L. Dartois, P. Gastin, L. Germerie Guizouarn, R. Govind, and S. Krishna 21:21

only consider copyless substitutions, there is at most one register that contains s. The two
options are then mutually exclusive, as one requires that s be the first register to appear,
and the second requires that there is a register before s.

The proof for a state so is similar. The antecedent α−1(so, σ) is either si if σ(s) contains
no register, or ro if r is the last register appearing in σ(s). Since these two are mutually
exclusive, we get that F is reversible. ◀

C Appendix for Section 7

The following lemma relies on Cayley’s Formula to count the number of merging forests.

▶ Lemma 11. Let Q = Q+ ⊎ Q− be of size n > 0 with Q+ ̸= ∅, χ of size k ≥ 0 and ℓ > 0.
Then each element F of MF has at most 2n − 2 nodes, 2n − 2 edges; and MF itself is of
size at most ℓk(n−1)(2n − 1)2n−3.

Proof. We first compute the maximal number of nodes and edges in a nonempty forest
F of MF . Note that, since F is nonempty, both Q+ and Q− must be nonempty. Let
nbe(t) and nbl(t) be the number of edges and leaves of the tree t. If t has no unary nodes,
then nbe(t) ≤ 2nbl(t) − 2. Since in a forest F ∈ MF , all unary nodes are roots, it follows
that nbe(t) ≤ 2nbl(t) − 1 for all trees t ∈ F . Also, the number of nodes of a tree is
nbn(t) = 1 + nbe(t). We deduce that

nbe(F) =
∑
t∈F

nbe(t) ≤
∑
t∈F

2nbl(t) − 1 ≤ 2|Q−| − 1 ≤ 2n − 3

nbn(F) =
∑
t∈F

nbn(t) ≤
∑
t∈F

2nbl(t) ≤ 2|Q−| ≤ 2n − 2 .

Now we compute the size of the set MF . Cayley’s formula [7] states that the number
of non oriented trees with m differently labeled nodes is mm−2. The difference here is that
first we deal with forests with at most 2n − 2 nodes, and secondly only the leaves and roots
are labeled. The first point can be dealt with by adding a new node as the root of all trees
of the forest,and new nodes if needed to get exactly m = 2n − 1 nodes in the tree. For the
second point, we can label arbitrarily the remaining nodes. Finally, as each leaf is labeled by
a χ-tuple of integers less than ℓ, each tree can appear in MF up to (ℓk)|Q−| many times.
The size of MF is then smaller than ℓk(n−1)(2n − 1)2n−3. ◀

Proofs for Theorem 4. We can now prove Theorem 4, beginning with the complexity.

Size of S. Using Lemma 11, we get that |Q′| ≤ n(ℓk(n−1)(2n − 1)2n−3 = O(ℓkn(2n)2n).
Using carefully the registers, we only ever need at most 2n − 1 registers.

Proof of correctness. First given a finite word w, we say that a right-right run (x, y) ∈
Q− × Q+ of the gp2DT T on w is useful if there exists an infinite word w′ such that the run
of T on ww′ is accepting and reaches x on position |w|.

We first prove that the state of the gpSST contains all the needed information, then
prove that the registers can be used to produce the output. We prove by induction on the
size of a word w that the state (q, F) of the constructed gpSST reached after reading w is
such that (q0, q) is a left-right run on w and F contains information about all useful runs
on w. Moreover, the out register contains the production of the left-right run (q0, q) on w

and, given a path π = u0, . . . , un in F from a leaf u0 labeled by x to a root un labeled by
y, the production of the right-right run (x, y) is given by the concatenation of the registers
ξF ((u0, u1)) . . . ξF ((un−1, un)).

CONCUR 2024

21:22 Reversible Transducers over Infinite Words

First, if w is empty, then the initial state is (q0, F0) where F0 describes the set of all
right-right runs on ⊢. The register out is empty and each tree in the forest F0 is reduced to
a single edge containing the associated production, hence proving the initial case.

Now suppose that the statement holds for some word w and some state (q, F) and let a ∈ A

be a letter. We prove the statement for wa. Let (p, F ′) = α((q, F), a). If p = δ(q, a) ∈ Q+,
then (q0, p) is a left-right run on wa and β((q, F), a)(out) = out · λ(q, a), corresponding to the
claim for the left-right run. Otherwise, let r = δ(q, a) ∈ Q−. The state p is then described in
G as the state reached by the maximal path in G from the leaf u of F labeled by r, to the
new node pc. Using the induction hypothesis, F describes the useful right-right runs on w.
Then, following the maximal path from u in G, we see the sequence of right-right runs on w

and left-left runs on a, up to the last left-right transition on a leading to state p. This means
that we have computed p such that (q0, p) is the left-right run on wa. We also append to the
register out all ξG(e) for edges e in the path. By induction hypothesis, the registers contain
the production of the useful right-right runs on w, and the added edges contains the local
production, proving the claim for the left-right run.

We now prove that all useful runs of wa are in F ′. Let (x, y) ∈ Q− × Q+ be such a run.
Then either δ(x, a) = y and this edge is added in G and remains in F ′, or (x, y) is a sequence
starting with a right-left transition over a, then useful right-right runs over w and left-left
transitions over a, and finally a left-right transition over a. In the first case, the register
ξF ′((x, y)) takes the label of G, i.e. the local production λ(x, a), satisfying the claim as the
path is reduced to a single edge. In the second case, let u0, . . . , un be the path from x to y

in G. Each edge (ui, ui+1) is either a new edge whose label is a local production, or a single
edge of F . The associated sequence of registers contains then all the output information of
the (x, y) run. When reducing G to F ′, as only non branching paths of G can be reduced to
a single edge, there is no loss of information. Finally, notice that the edges deleted from G

to obtain F ′ are the ones that are not part of a useful right-right run on wa, or are merging
with the left-right run. These latter right-right runs are not useful for wa: they cannot occur
anymore in an accepting run of T since they would induce a loop on a finite prefix of the
input. Hence all edges required for the path from x to y appear in F ′. Consequently, there is
no loss of run nor information, the path from x to y in F ′ exists and the associated sequence
of registers contains the production of the run.

Finally, to prove that both transducers have the same domain, we remark that given
the previous induction, if (q, F) is the state reached by S after reading an input w, then
upon reading a letter a, the color of the transition α((q, F), a) = (p, F ′) is the minimum of
the color of all transitions used when extending the left-right run (q0, q) of T on w to the
left-right run (q0, p) on wa. Then given an infinite word u, S has an infinite run on u if and
only if T does, and the minimum of all colors appearing infinitely often is the same on both
runs. ◀

An Automata-Based Approach for Synchronizable
Mailbox Communication
Romain Delpy Ñ

LaBRI, Univ. Bordeaux, CNRS, Bordeaux INP, Talence, France

Anca Muscholl
LaBRI, Univ. Bordeaux, CNRS, Bordeaux INP, Talence, France

Grégoire Sutre Ñ

LaBRI, Univ. Bordeaux, CNRS, Bordeaux INP, Talence, France

Abstract
We revisit finite-state communicating systems with round-based communication under mailbox
semantics. Mailboxes correspond to one FIFO buffer per process (instead of one buffer per pair of
processes in peer-to-peer systems). Round-based communication corresponds to sequences of rounds
in which processes can first send messages, then only receive (and receives must be in the same
round as their sends). A system is called synchronizable if every execution can be re-scheduled into
an equivalent execution that is a sequence of rounds. Previous work mostly considered the setting
where rounds have fixed size. Our main contribution shows that the problem whether a mailbox
communication system complies with the round-based policy, with no size limitation on rounds, is
Pspace-complete. For this we use a novel automata-based approach, that also allows to determine
the precise complexity (Pspace) of several questions considered in previous literature.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Concurrent programming, Mailbox communication, Verification

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.22

Related Version Full Version: https://arxiv.org/abs/2407.06968 [6]

Funding This work was (partially) supported by the grant ANR-23-CE48-0005 of the French National
Research Agency ANR (project PaVeDyS).

1 Introduction

Message-passing is a key synchronization feature for concurrent programming and distributed
systems. In this model, processes running asynchronously synchronize by exchanging messages
over unbounded channels. The usual semantics is based on peer-to-peer communication,
which is very popular for reasoning about telecommunication protocols. More recently,
mailbox communication received increased attention because of its usage in multi-thread
programming, as provided by languages like Rust or Erlang. Mailbox communication means
that every process has a single incoming communication buffer on which incoming messages
from other processes are multiplexed (a mailbox).

Message-passing programs are well-known to be challenging for formal verification since
they can easily simulate Turing machines with unbounded channels. Some approximation
techniques can help to recover decidability. Among the best known approaches are lossy
channel systems [1, 9] and partial-order methods [14]. The latter tightly relate to (high-level)
message sequence charts (HMSC), a communication formalism capturing multi-party session
types [18, 16, 17]. An HMSC protocol is a graph with nodes labelled by communication
scenarios, a.k.a. message sequence charts. Processes still evolve asynchronously, so that
the division into nodes cannot be enforced by global synchronization. Such round-based
communication is actually quite frequent in distributed computing, for example as building

© Romain Delpy, Anca Muscholl, and Grégoire Sutre;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.labri.fr/perso/rdelpy/index.html
https://orcid.org/0009-0006-0716-3787
https://orcid.org/0000-0002-8214-204X
https://www.labri.fr/perso/sutre/
https://doi.org/10.4230/LIPIcs.CONCUR.2024.22
https://arxiv.org/abs/2407.06968
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Synchronizable Mailbox Communication

block in the Heard-Of model [5]. Often a distributed protocol consists of several rounds,
where each round first has a phase where processes only send messages, then a phase where
they only receive. We refer to such rounds as sr-rounds.

Recently sr-round-based communication and mailbox communication were considered
together in [3]. It turned out that this combination is very attractive for formal verification.
The paper [3] proposed a model where sr-rounds have fixed size, and showed that control-
state reachability in this model becomes decidable (in Pspace). The question whether a
system complies with the sr-round model with given round size was shown to be decidable
in [7]. It is also known how to decide if a system complies with the sr-round model when
the round size is not known in advance [12]. All these properties motivate a genuine interest
in the sr-round model on top of mailbox communication. A bit surprisingly, apart from
control-state reachability, similar questions were shown to be undecidable for peer-to-peer
communication [10].

In this paper we revisit the framework of [3] and propose an automata-based approach to
deal with systems complying with the sr-round mailbox model (we refer to this property as
mb-synchronizability). Importantly, we do not impose any size restriction on the rounds, as
in previous works. This makes sense, because even when we can infer an upper bound on the
size as in [12], this upper bound is exponential in the number of processes, so its practical
use is somewhat limited. We establish that the complexity of all problems listed below is
Pspace-complete for mb-synchronizable systems:

Global-state reachability (Theorem 3.6).
Model-checking against a reasonable class of regular properties (Theorem 4.3).
Check if a peer-to-peer system can be simulated as a mailbox system (modulo rescheduling
executions, Theorem 4.8).

Our main result is that one can check in Pspace if a system is mb-synchronizable (The-
orem 5.16), the complexity being tight. An interesting byproduct of our results is that when
we fix the number of processes all the problems above can be solved in Ptime (actually
Nlogspace).

Comparison with related work. Our technique helps to establish the precise complexity of
several problems considered in the papers mentioned above. To be precise, our definition of
sr-round mailbox model (mb-synchronizability) slightly differs from the one used in [3, 7, 12]
(but coincides with a variant introduced in [2]). The latter paper uses a partial-order variant
of PDL (LCPDL) to show an Exptime upper bound for the synchronizability problem for
their notion of synchronizability. Using MSO logic and special tree-width, the paper [2] also
shows that checking if a system is synchronizable with fixed round size is decidable. Knowing
if a round size exists is shown to be decidable with elementary complexity in [12], without
exact bounds.

For convenience, technical terms and notations in the electronic version of this manuscript
are hyper-linked to their definitions (cf. https://ctan.org/pkg/knowledge).

Proofs that are missing in the main text can be found in the full version of the paper [6].

2 Message-passing systems and synchronizability

Throughout the paper, P denotes a finite non-empty set of processes, and M denotes a
finite non-empty set of message contents. We consider here peer-to-peer communication
between distinct processes. Formally, the set of (communication) channels is the set Ch
of all pairs (p, q) ∈ P × P such that p ̸= q, and the set of (communication) actions is

https://ctan.org/pkg/knowledge

R. Delpy, A. Muscholl, and G. Sutre 22:3

Act = {p!q(m), q?p(m) | (p, q) ∈ Ch, m ∈ M}. An action p!q(m) denotes a send by p of
message m to q and an action p?q(m) denotes a receive by p of message m from q. In both
cases, the process performing the action is p. Throughout the paper, we let S and R denote
the sets of send actions and receive actions, formally, S = {p!q(m) | (p, q) ∈ Ch, m ∈ M} and
R = {p?q(m) | (q, p) ∈ Ch, m ∈ M}.

A communicating finite state machine [4] is a finite set of processes that exchange messages,
each process being given as a finite LTS. Recall that a (finite) labeled transition system, LTS
for short, is a quadruple (L, A, →, i) where L is a (finite) set of states, A is a finite alphabet,
→ ⊆ L × A × L is a set of transitions, and i ∈ L is an initial state. We will sometimes
consider LTS without initial state. In the following definition, Actp denotes the set of actions
a ∈ Act performed by p.

▶ Definition 2.1 (Communicating Finite-State Machine). A CFM is a tuple A = (Ap)p∈P,
where each Ap is a finite LTS Ap = (Lp, Actp, →p, ip). States in Lp are called local states.
The size of A is defined as

∑
p∈P(|Lp| + | →p |).

In this paper, we mainly study and compare two semantics of communication: peer-to-
peer and mailbox. These two semantics differ in the implementation of the communication
network. In the peer-to-peer semantics, each channel (p, q) is implemented by a dedicated
fifo buffer. This is the classical semantics for communicating finite-state machines [4]. In
the mailbox semantics, each process q is equipped with a fifo buffer that acts as a mailbox :
all messages towards q are enqueued in this buffer. Put differently, the channels (p, q) with
same receiver q are multiplexed into a single buffer.

We define both semantics of CFM jointly, by viewing channels and mailboxes as (fifo)
message buffers:

▶ Definition 2.2 (Process network). A process network over P is a pair N = (B, bf) where B
is a finite set of fifo buffers and bf : Ch → B is a map that assigns a buffer to each channel.

The peer-to-peer semantics is induced by the process network p2p = (B, bf) where B = Ch
and bf is the identity. Here, B coincides with the set of communication channels. The mailbox
semantics is induced by the process network mb = (B, bf) where B = P and bf(p, q) = q. Here,
B is a set of mailboxes, one per process.

▶ Remark 2.3. For both peer-to-peer semantics and mailbox semantics we have that the
buffer determines the recipient: bf(p, q) = bf(p′, q′) implies q = q′. We call such process
networks many-to-one.

Given a CFM and a process network we define the associated global transition system:

▶ Definition 2.4 (Global transition system). Let A = (Ap)p∈P be a CFM, and N = (B, bf)
be a process network over P. The global transition system associated with A, N is the LTS
TN (A) = (CA, Act, →A, cin) with set of configurations CA = G × ((Ch × M)∗)B consisting
of global states G =

∏
p∈P Lp (i.e., products of local states) and buffer contents, with

((ℓp)p∈P, (wb)b∈B) a−→A ((ℓ′
p)p∈P, (w′

b)b∈B) if
ℓp

a−→p ℓ′
p and ℓq = ℓ′

q for q ̸= p, where p is the process performing a.
Send actions: if a = p!q(m) then w′

b = wb ((p, q), m) and w′
b′ = wb′ for b′ ̸= b, where

b = bf(p, q).
Receive actions: if a = p?q(m) then ((p, q), m) w′

b = wb and w′
b′ = wb′ for b′ ̸= b, where

b = bf(p, q).
The initial configuration is cin = ((ip)p∈P, εB).

CONCUR 2024

22:4 Synchronizable Mailbox Communication

An execution of TN (A) is a sequence ρ = c0
a1−→ c1 · · · an−−→ cn with ci ∈ CA such that

ci−1
ai−→A ci for every i. The sequence a1 · · · an is the label of the execution. The execution

is initial if c0 = cin.

▶ Remark 2.5. Note that in the definition above we added the channel name to the message
content inserted in a buffer. This is to exclude executions like p!q(m) q?r(m) with p ≠ r.
Without this addition such executions would be allowed in the mailbox semantics, which is
clearly not intended.

▶ Definition 2.6 (Trace). A trace of a CFM A over a process network N is a sequence
u ∈ Act∗ such that there exists an initial execution of TN (A) labelled by u. The set of all
traces of A is denoted by TrN (A).

As we will also need to consider infixes of executions, we introduce action sequences
which are coherent w.r.t. the fifo behavior that we expect from a process network:

▶ Definition 2.7 (Viable sequence). Let N = (B, bf) be a process network. A sequence of
actions v ∈ Act∗ is called N -viable if for every buffer b ∈ B:

for every prefix u of v, the number of receives from b in u is less or equal the number of
sends to b in u;
for every k, if the k-th receive from b in v has label q?p(m) then the k-th send to b in v

has label p!q(m).

There is a strong connection between traces and viable sequences. For every sequence
u ∈ Act∗, u is a trace of A over N iff u is N -viable and u is recognized by

∏
p∈P Ap. Here,∏

p∈P Ap denotes the asynchronous product of the LTS Ap, viewed as automata with every
state final.

▶ Remark 2.8. It is easy to see that if a sequence is mb-viable then it is also p2p-viable. In
fact, for every process network N , we have that N -viability implies p2p-viability. However,
the converse is not true. For example, p0!p1(m0) p2!p1(m1) p1?p2(m1) is p2p-viable, but not
mb-viable because m1 is enqueued after m0 in p1’s mailbox, so it cannot be received first.

The classical happens-before relation [15], frequently used in reasoning about distributed
systems, orders the actions of each process and every (matched) send action before its
matching receive. The happens-before relation naturally associates a partial order with every
trace, known as message sequence chart:

▶ Definition 2.9 (Message Sequence Chart). An MSC over P is an Act-labeled partially
ordered set M = (E, ≤hb, λ) of events E, with λ : E → Act and ≤hb = (≤P ∪ msg)∗ the least
partial order containing the relations ≤P and msg, which are defined as:
1. For every process p, the set of events on p is totally ordered by ≤P, and ≤P is the union

of these total orders.
2. msg is the set of matching send/receive event pairs. In particular, (e, f) ∈ msg implies

λ(e) = p!q(m) and λ(f) = q?p(m) for some p, q ∈ P and m ∈ M. Moreover, msg is
a partial bijection between sends and receives such that every receive is paired with a
(unique) send. A send is called matched if it is in the domain of msg, and unmatched
otherwise.

R. Delpy, A. Muscholl, and G. Sutre 22:5

p0 p1 p2

m1

m0

m2

p0!p1(m0) p1!p2(m1) p2?p1(m1) p2!p1(m2) p1?p0(m0)

(a) A sequence and its MSC. An unmatched send
action is marked by a special arrowhead, as for m2.

p0 p1 p2

m0
m1

m2
m3

p0!p1(m0) p1!p2(m1) p2?p1(m1)
p1!p0(m2) p0?p1(m2) p2!p1(m3) p1?p2(m3)

(b) A weakly-synchronous sequence [2] that
is not mb-synchronizable.

Figure 1 Two examples of MSCs.

The fifo behavior of message buffers implies that not every MSC arises as possible
behavior. We formalise this for any process network N = (B, bf) by defining a buffer order1

<N on sends to the same buffer. Let e <N e′ if e, e′ are of type p!q and s!r, resp., with
bf(p, q) = bf(s, r), and

either e is matched and e′ is unmatched,
or (e, f), (e′, f ′) ∈ msg and f <P f ′.

▶ Definition 2.10 (Valid MSC). Given a process network N , an MSC M = (E, ≤hb, λ) is
called N -valid if the relation (<hb ∪ <N) is acyclic.

It is easy to see that an MSC is p2p-valid iff matched messages on any channel (p, q)
never overtake and unmatched sends by p to q are ≤P-ordered after the matched sends. An
MSC is mb-valid iff for any sends s <hb s′ to the same process, either they are both matched
and their receives satisfy r <P r′, or s′ is unmatched. Figure 1a shows an mb-valid MSC. An
mb-valid MSC is the same as an MSC obtained from a trace that satisfies causal delivery
in [3], and it is called mailbox MSC in [2].

If u = u[1] · · · u[n] is a p2p-viable sequence of actions then we can associate an MSC with
u by setting msc(u) = (E, ≤hb, λ) with E = {e1, . . . , en}, λ(ei) = u[i], and the orders defined
as expected:

ei ≤P ej if u[i] and u[j] are performed by the same process and i ≤ j.
(ei, ej) ∈ msg if there exists k ≥ 1 and a buffer b ∈ Ch such that u[i] is the k-th send to
b and u[j] is the k-th receive from b.

Note that msc(u) only depends (up to isomorphism) on the projection of u on each process.

Caveat. Throughout the paper we switch between reasoning on N -viable sequences (when
we use automata) and their associated MSC (when we use partial orders). So when we refer
to a position in a (viable) sequence u we often see it directly as an event of msc(u), without
further mentioning it.
▶ Remark 2.11. By definition, for any N -viable sequence u the associated MSC msc(u)
is N -valid. For the converse, if the process network is many-to-one and the MSC M
is N -valid then every (labelled) linearization of the partial order (<hb ∪ <N)∗ of M is
N -viable. Indeed, all receives from the same buffer are totally ordered by ≤P when the

1 This definition of <N is tailored for many-to-one process networks, but for simplicity we have chosen
not to mention the restriction in the definition. Note that <N is a strict partial order.

CONCUR 2024

22:6 Synchronizable Mailbox Communication

process network is many-to-one, and the corresponding sends are ordered in the same way
because of the buffer order. For example, the sequence shown in Figure 1a is mb-viable, but
p1!p2(m1) p2?p1(m1) p2!p1(m2) p0!p1(m0) p1?p0(m0) is not.

For a process network N and a CFM A we write mscN (A) = {msc(u) | u ∈ TrN (A)} for
the set of MSCs associated with initial executions of A. By Remark 2.11, the set mscN (A)
consists only of N -valid MSCs. The next definition introduces an equivalence relation ≡ on
CFM traces that is ubiquitous in this paper. Two traces are equivalent up to commuting
adjacent actions that are neither performed by the same process, nor a matching send/receive
pair:

▶ Definition 2.12 (Equivalence ≡). Two p2p-viable sequences u, v ∈ Act∗ are called equivalent
if msc(u) = msc(v) (up to isomorphism), and we write u ≡ v in this case.

▶ Remark 2.13. Two p2p-viable sequences are equivalent iff they have the same projection
on each process.
▶ Remark 2.14. If u, v ∈ Act∗ are both N -viable with u ≡ v, then u ∈ TrN (A) iff v ∈ TrN (A).
However, ≡ does not preserve N -viability, e.g. p!q(m) r!q(m) q?p(m) ≡ r!q(m) p!q(m) q?p(m),
but the left-hand side is mb-viable while the right-hand side is not.

For the rest of the section N = (B, bf) always refers to a process network. In order to be
able to cope with partial executions we start by observing that unmatched sends to a buffer
restrict the product of N -viable sequences. Let u and v be two N -viable sequences. The
product u ∗N v is defined if for every buffer b ∈ B, if there is an unmatched send to b in u,
then there is no receive from b in v. When it is defined, u ∗N v is equal to uv. Note that the
partial binary operation ∗N is associative. Moreover, if u0 ∗N · · · ui ∗N · · · uj ∗N uj+1 · · · un is
defined then u0 ∗N · · · ui ∗N uj+1 · · · un is also defined, for every i < j. Note also that, when
it is defined, the ∗N -product of two N -viable sequences is N -viable.

▶ Definition 2.15 (Exchanges, synchronizability).
1. An N -exchange is any N -viable sequence w ∈ S∗R∗.
2. An N -viable sequence u is called N -synchronous if it is a ∗N -product of N -exchanges. It

is called N -synchronizable if u ≡ v for some N -synchronous sequence v.
3. A CFM A is N -synchronizable if all its traces u ∈ TrN (A) are N -synchronizable.

▶ Remark 2.16. The above definition of N -synchronizability for N = mb differs from the
one initially used by [3, 7] and later called weak-synchronizability in [2] (mb-synchronizable
here coincides with strongly synchronizable in [2]). An mb-viable sequence of actions u is
weakly-synchronizable if it is is equivalent to a ∗p2p-product v of mb-exchanges. However, v

is not required to be mb-viable. Weak-synchronizability yields more synchronizable traces,
however some of them are spurious. In particular one cannot use the decompositions into
exchanges from [3, 2] to check regular properties of executions, as we do in Section 4 later.
Figure 1b shows an example distinguishing the definitions. The sequence there corresponds
to a decomposition in exchanges according to [3, 2], but it is not mb-viable.

We end this section by a comparison between synchronizability for peer-to-peer se-
mantics and mailbox semantics. These two notions are incomparable, in general. First,
mb-synchronizability does not imply p2p-synchronizability simply because a system under
mb-semantics has less executions than under p2p-semantics. Conversely, the following execu-
tion is mb-viable and p2p-synchronizable, but not mb-synchronizable (as we will see later the
unmatched send makes it non-decomposable): p!r(a) q!p(b) p?q(b) p!q(c) q?p(c) r!q(d) r?p(a).
Finally, we note that p2p-synchronizability was shown to be undecidable in [2].

R. Delpy, A. Muscholl, and G. Sutre 22:7

3 Reachability for mb-synchronizable systems

We start this section by showing that state reachability for mb-synchronizable CFMs is
Pspace-complete. The decidability (in exponential time) for mb-synchronizable CFMs can
be already be inferred from [2] using the partial order logic LCPDL. The main point of this
section is to introduce an automata-based approach to deal with mb-synchronizable CFMs.
Although the set of mb-synchronous traces of a CFM is not regular in general, the projection
of this set on (marked) send actions turns out to be regular. This crucial property is used
later as a basic ingredient by our algorithm for deciding mb-synchronizability.

We start with an important observation saying that mb-synchronizability allows to focus
on send actions. However, unmatched and matched sends need to be distinguished. So we
introduce an extended alphabet S = {s | s ∈ S}. Sequences over S ∪ S will be referred to as
ms-sequences. For any mb-viable sequence u, we annotate every unmatched send p!q(m) in u

by p!q(m) and we denote by marked(u) the sequence obtained in this way. For example, for
u = p!q(m)p!r(m′)r?p(m′) we have marked(u) = p!q(m)p!r(m′)r?p(m′). The ms-sequence
ms(u) associated with an mb-viable sequence u is the projection of marked(u) on S ∪ S.

▶ Lemma 3.1.
1. For any mb-exchanges u, v with ms(u) = ms(u′), we have u ≡ u′.
2. For any mb-exchange u = vv′ with v ∈ S∗, v′ ∈ R∗, we define û = vv′′ with v′′ obtained

from v′ by ordering the receives as their matching sends in v. Then û is mb-viable and
u ≡ û.

Proof. For item 1, as ms(u) = ms(u′) and u, u′ are both mb-viable, we get that for each
process p, the sequence of receives by p in u and u′, resp., are the same. We derive from
u, u′ ∈ S∗R∗ that u and u′ have the same projection on each process, and thus u ≡ u′. For
item 2 it is easy to check that û is mb-viable, hence u ≡ û by item 1. ◀

▶ Remark 3.2. It is worth noting that Lemma 3.1 does not hold anymore under p2p-
semantics. For example, the two p2p-exchanges u = p1!p2(a) p3!p2(b) p2?p3(b) p2?p1(a) and
û = p1!p2(a) p3!p2(b) p2?p1(a) p2?p3(b) have the same marked sequence, but they are not
equivalent. This is the main reason why our decidability results don’t carry over to the
p2p-semantics.

Executable mb-exchanges
We now show how to check if an ms-sequence corresponds to an executable mb-exchange
of a CFM A. Since we use the same construction also for the model-checking problem in
Section 4 we give a more general formulation below.

Given an mb-viable sequence u and two sets D, D′ ⊆ P, we write D
u
⇝ D′ if no process

from D receives any message in u, and D′ contains D and those processes q such that u has
some unmatched send to q. We refer to processes in D, D′ as deaf processes. It is routinely
checked that, for every mb-viable sequences u1, . . . , un, the product u1 ∗mb . . . ∗mb un is defined
iff D0

u1⇝ D1 · · · un⇝ Dn for some sets D0, . . . , Dn.

▶ Definition 3.3 (R-diamond). Let A = (L, S ∪ S ∪ R, −→A) be an LTS. We say that A
is R-diamond if for all states ℓ, ℓ′ ∈ L and all receives a, a′ ∈ R performed by different
processes, we have ℓ

aa′

−−→A ℓ′ iff ℓ
a′a−−→A ℓ′.

For any states ℓ, ℓ′ of A, sets D, D′ ⊆ P and mb-viable sequence u, we write (ℓ, D) u
⇝A

(ℓ′, D′) if ℓ
marked(u)−−−−−−→A ℓ′ and D

u
⇝ D′. The next lemma shows how to adapt an R-diamond

LTS to work on ms-sequences instead of mb-synchronous sequences (a similar idea appears
in [12]):

CONCUR 2024

22:8 Synchronizable Mailbox Communication

▶ Lemma 3.4. Assume that A = (L, S ∪ S ∪ R, −→A) is an R-diamond LTS. Then we can
construct an LTS with ε-transitions Async = ((L ∪ L3) × 2P, S ∪ S, −→sync) such that for any
v ∈ (S ∪ S)∗, states ℓ, ℓ′ ∈ L, and sets D, D′ ⊆ P:

(ℓ, D) v−→sync (ℓ′, D′) iff ∃u mb-synchronous s.t. v = ms(u) and (ℓ, D) u
⇝A (ℓ′, D′)

Proof. The LTS Async has the following transitions, for any ℓ, ℓ′ ∈ L, D, D′ ⊆ P, a ∈ S ∪ S:
(ℓ, D) ε−→sync (ℓ, ℓ̂, ℓ̂, D) for any ℓ̂ ∈ L

(ℓ, ℓ′, ℓ̂, D) a−→sync (ℓ1, ℓ′
1, ℓ̂, D) if a = p!q(m), q /∈ D, ℓ

a−→A ℓ1, ℓ′ q?p(m)−−−−→A ℓ′
1

(ℓ, ℓ′, ℓ̂, D) a−→sync (ℓ1, ℓ′, ℓ̂, D′) if a = p!q(m), ℓ
a−→A ℓ1, D′ = D ∪ {q}

(ℓ, ℓ′, ℓ̂, D) ε−→sync (ℓ′, D) if ℓ = ℓ̂

In other words, from a state (ℓ, D) ∈ L × 2P the LTS Async first guesses a “middle” state
ℓ̂ ∈ L for the current exchange, as the state reached after the sends. Then it switches to state
(ℓ, ℓ̂, ℓ̂, D). The first component and the second component track sends and their matching
receives (if matched) in a “synchronous” fashion. The LTS Async also guesses the end of
the current mb-exchange, checking that the first component has reached the middle state ℓ̂

guessed originally. The claimed property of Async follows from Lemma 3.1 (2) and from A
being R-diamond. ◀

Fix now a CFM A. We abusively use the same notation ⇝A as above for LTS: for
any global states g, g′ ∈ G of A, sets D, D′ ⊆ P and mb-viable sequence u, we write
(g, D) u

⇝A (g′, D′) if u labels an execution in Tmb(A) from the configuration (g, εB) to some
configuration (g′, (wb)b∈B), and D

u
⇝ D′. We obtain from the previous lemma that:

▶ Lemma 3.5. Let A be a CFM, g, g′ ∈ G two global states of A, and D, D′ ⊆ P two sets of
processes. One can construct automata B, C with O(|G|3 × 2|P|) states such that

L(B) =
{

v ∈ (S ∪ S)∗ | ∃u mb-exchange s.t. v = ms(u) and (g, D) u
⇝A (g′, D′)

}
,

L(C) =
{

v ∈ (S ∪ S)∗ | ∃u mb-synchronous s.t. v = ms(u) and (g, D) u
⇝A (g′, D′)

}
.

Proof. Assume that A = (Ap)p∈P. Let Q denote the asynchronous product
∏

p∈P Ap, where
each Ap is the LTS obtained from Ap by adding a transition ℓp

s−→p ℓ′
p for each transition

ℓp
s−→p ℓ′

p with s ∈ S. Note that Q is R-diamond. Moreover, it is routinely checked that, for
every mb-viable sequence u, the relation u

⇝A coincides with the relation u
⇝Q.

For C we take the automaton Qsync constructed according to Lemma 3.4, and set the
initial state to (g, D) and the final state to (g′, D′). For B, we need to tinker a bit with
Qsync to ensure that we read only one exchange. So we remove all transitions from/to states
in L × 2P except the transitions from (g, D), which we set as initial, and the transitions to
(g′, D′), which we set as final. If (g, D) = (g′, D′) then we make two different states for the
initial and the final one. ◀

Using Lemma 3.5 we establish the upper bound of the global-state reachability problem for
mb-synchronizable CFMs (the lower bound is straightforward). By global-state reachability
we mean the existence of a reachable configuration with a specified global state. Decidability
was shown in [7] for weak-synchronizability (correcting the proof in [3]) and assuming a
uniform bound on the size of exchanges.

R. Delpy, A. Muscholl, and G. Sutre 22:9

▶ Theorem 3.6. The global-state reachability problem for mb-synchronizable CFMs is Pspace-
complete.

Proof. Note first that if A is a CFM and u, v two mb-viable sequences u, v with u ≡ v then
cin

u−→A c implies that cin
v−→A c′ for some c′ with the same global state as c. Since we

assume that the CFM is mb-synchronizable we can choose v to be mb-synchronous. Thus we
can use automaton C from Lemma 3.5 to show the upper bound. This automaton can clearly
be constructed on-the-fly in polynomial space.

For the lower bound we reduce from the problem of intersection of NFA. Let A1, . . . , An

be NFA over the alphabet Σ. We use processes p1, . . . , pn where each pi simulates Ai. Process
p1 starts by guessing a letter a of Σ, making a transition on a and sending a to p2. Afterwards
each process pi receives a letter a from pi−1, makes a transition on a, then sends a to pi+1.
Back again at p1, the procedure restarts. Figure 2 shows the principle.

Upon reaching a final state, p1 can send message accept to p2 and then stop. If pi

receives accept from pi−1 while being in a final state, it relays accept to pi+1, and then
stops.

One can see that every trace of the CFM is mb-synchronizable, as every message is in
its own exchange. Moreover, the global-state (accept)p∈P is reachable if and only if the
intersection of A1, . . . , An is non-empty. ◀

4 Model-checking regular properties

In this section we introduce a class of properties against which we can verify mb-synchronizable
CFMs. We look for regular properties P over the alphabet S ∪ R ∪ S, so we exploit the
marked sends to refer (indirectly) to messages. The model-checking problem we consider is
the following:

CFM-vs-regular property
Input: mb-synchronizable CFM A, regular property P ⊆ (S ∪ S ∪ R)∗.
Output: Yes if for every mb-synchronous trace u ∈ Trmb(A) we have marked(u) ∈ P .

The properties we consider are regular, R-closed subsets of (S ∪ S ∪ R)∗:

▶ Definition 4.1 (R-closed properties). Let ≡R be the reflexive-transitive closure of the
relation consisting of all pairs (u a b v, u b a v) with u, v ∈ (S ∪ S ∪ R)∗, a, b ∈ R, and a, b

performed by distinct processes. A property P ⊆ (S ∪ S ∪ R)∗ is called R-closed if it is closed
under ≡R (i.e., for any u ≡R v we have u ∈ P iff v ∈ P).

As an example, we can consider a system with a central process c and a set of orbiting
processes p1, . . . , pn. The central process gives tasks to the orbiting processes, and they
send back their results. We can state a property expressing a round-based behavior for c:
it sends tasks to orbiting processes, and if a process pi does not send back to c in the next
round, it will not participate in further rounds anymore. The opposite property consists
of all sequences from A∗Sc

∗c!pi(m)Sc
∗R+(

⋃
j ̸=i Spj

)+R+Sc
+R∗A∗pi!c(m′)A∗ for some i and

m, m′, and A = S ∪ S ∪ R. As the above property is R-closed, its complement is too.
We will show that if the regular property is R-closed then the model-checking problem

stated above is Pspace-complete. Before that recall that both being mb-viable and being
mb-synchronous (assuming mb-viable) are non regular properties. However, it is not necessary
to be able to express the above, as we will apply the property to mb-synchronous traces of
CFM. The next lemma is similar to Lemma 3.4:

CONCUR 2024

22:10 Synchronizable Mailbox Communication

▶ Lemma 4.2. Let P ⊆ (S ∪ S ∪ R)∗ be regular and R-closed. Then the set

Sync(P) =
{

v ∈ (S ∪ S)∗ | ∃u mb-synchronous s.t. v = ms(u) and marked(u) ∈ P
}

is regular. If P is given by an R-diamond NFA with n states, then we can construct an NFA
for Sync(P) with O(n3 · 2|P|) states.

Proof. Let P be given by an R-diamond NFA P = (L, S ∪ S ∪ R, −→P , ℓ0, F) with n states.
We may assume w.l.o.g. that P contains no ε-transition. Consider the LTS with ε-transitions
Psync obtained from Lemma 3.4. Recall that this LTS has O(n3 × 2|P|) states. As NFA for
Sync(P), we take Psync, with (ℓ0, ∅) as initial state, and F × 2P as final states. ◀

▶ Theorem 4.3. The CFM-vs-regular property problem is Pspace-complete if the
property is R-closed. There exist properties that are not R-closed for which the problem is
undecidable.

Proof. For the upper bound, consider an mb-synchronizable CFM A = (Ap)p∈P and an
R-closed regular property P ⊆ (S ∪ S ∪ R)∗ given by an NFA P. Since P is R-closed,
its complement P co is also R-closed. As in the proof of Lemma 3.5, let Q denote the
asynchronous product

∏
p∈P Ap, where each Ap is the LTS obtained from Ap by adding a

transition ℓp
s−→p ℓ′

p for each transition ℓp
s−→p ℓ′

p with s ∈ S. Note that Q is R-diamond, so its
language Q = L(Q) is R-closed. We derive that Q ∩ P co is R-closed. It is routinely checked
that (A, P) is a positive instance of CFM-vs-regular property iff the set Sync(Q ∩ P co),
as defined in Lemma 4.2, is empty. To derive the Pspace upper bound from this lemma,
we still need to provide an R-diamond NFA for Q ∩ P co. This R-diamond NFA is simply
the synchronous product of Q and the minimal automaton of P co. The latter is R-diamond
since P co is R-closed, and it can be constructed on-the-fly in polynomial space from P . Now
it suffices to check emptiness of the NFA for Sync(Q ∩ P co) from Lemma 4.2. The lower
bound is again straightforward.

For the undecidability of model-checking a property that is not R-closed we use a
straightforward reduction from PCP. Let (ui, vi)i=1...k be an instance of PCP over the binary
alphabet {0, 1}. We can have three processes p, U, V and process p who sends, in rounds,
some pair (ui, vi) to U and V , resp. That is, p sends ui (vi, resp.) letter by letter to U (V ,
resp.). The processes U and V do nothing except receiving whatever p sends to them.

There is a solution to the given PCP instance iff there is a trace consisting of a
single fully matched mb-exchange where U and V perform the same receives in lock-
step. So we take as property P the regular language P = (S ∪ S ∪ R)∗ \ P co where
P co = S∗{U?p(0)V ?p(0), U?p(1)V ?p(1)}∗. ◀

Comparing p2p and mb semantics

Given a protocol that was designed for p2p communication, it can be useful to know whether
the protocol can be also deployed under mailbox communication. We call this property
mailbox-similarity:

▶ Definition 4.4 (Mailbox-similarity). A p2p-viable sequence of actions u is called mailbox-
similar if there exists some mb-viable sequence v such that u ≡ v. A CFM A is called
mailbox-similar if every trace from Trp2p(A) is mailbox-similar.

Equivalently, a CFM A is mailbox-similar if every MSC from mscp2p(A) is mb-valid.
Unsurprisingly, as it is often the case under p2p semantics, mailbox-similarity is undecidable
without further restrictions:

R. Delpy, A. Muscholl, and G. Sutre 22:11

. . .

. . .

. . .

..
.

..
.

..
.

..
.

p1 p2 pn−1 pn

a

a

accept

accept

Figure 2 The MSC of a trace of the CFM for
automata intersection.

p1 p2 p3
u1

u2

Figure 3 MSC of u = p2!p1(m1) p1!p2(m2)
p1?p2(m1) p2?p1(m2) p3!p2(m3), with the
two SCCs of its communication graph. Note
that 1 ⪯u

mb 2, but neither 1 ⪯u
p2p 2 nor 2 ⪯u

p2p 1
holds.

▶ Lemma 4.5. The question whether a given CFM is mailbox-similar is undecidable.

In the remainder of this section, we show that mailbox-similarity becomes decidable if we
assume that the CFM is mb-synchronizable. Recall that the latter means that every trace
from Trmb(A) is mb-synchronizable.

The next lemma shows how to check that two positions in an mb-synchronous sequence u

are causally-ordered, i.e., there is some (<hb ∪ <mb)-path between these positions (as usual,
this refers to a path between associated events in msc(u)). We mark these positions by using
a “tagged” alphabet Σ = (S ∪ S ∪ R) × {◦, •}.

▶ Lemma 4.6. We can construct an R-diamond automaton D with O(|P|) states over the
alphabet Σ such that for every mb-synchronous sequence u ∈ Act∗ and every positions i < j of
u such that u[i] and u[j] are in S, there is a (<hb ∪ <mb)-path from u[i] to u[j] iff D accepts
the word marked(u) tagged by • at i and j and by ◦ elsewhere.

Proof. Recall that ≤hb= (<P ∪ msg)∗ is the happens-before order. The automaton D will
guess a (<P ∪ msg ∪ <mb)-path from u[i] to u[j]. It will actually use only send actions of
marked(u), relying on the fact that u is mb-synchronous. That is, D guesses a subsequence
of positions i1 < · · · < it of u, with each u[ik] ∈ S, as described in the following. Let i0 = i

and it+1 = j. We have three cases, and D guesses in which case we are:
u[ik], u[ik+1] are performed by the same process p. After ik the automaton D remembers
the pair (<P, p) until it guesses ik+1.
u[ik], u[ik+1] are both sends to the same process p, and u[ik] is matched. After ik the
automaton D remembers (<mb, p) until it guesses ik+1.
u[ik] is matched, its receive u[h] is performed by the same process p as u[ik+1], and
h < ik+1. After ik the automaton D remembers the pair (msg, S, p). After the next
receive action, D changes its state to (msg, R, p) until it guesses ik+1. The assumption
that u is mb-synchronous guarantees that the receive u[h] matched with u[ik] has already
occurred when D guesses ik+1.

By construction, if D accepts marked(u), then we have a (<hb ∪ <mb)-path from u[i] to u[j],
with i < j the two positions tagged by • in marked(u).

For the left-to-right implication, assume that u[i] and u[j] are in S and that we have a
(<hb ∪ <mb)-path from u[i] to u[j]. This path is a sequence i = i0 < i1 · · · < it < it+1 = j

of positions of u, such that each pair of consecutive indices is related by <P, <mb or msg.
Moreover, we may assume w.l.o.g. that there are no two consecutive <P-arcs on this path.
If the path contains only <P and <mb-arcs, then D applies one of the first two rules above.
Consider now a msg-arc (u[ik], u[ik+1]). As u[ik+1] is a receive, we get that u[ik+1] <P u[ik+2].

CONCUR 2024

22:12 Synchronizable Mailbox Communication

Moreover, u[ik+2] is a send since there are no two consecutive <P-arcs on the path. So D
can apply the third rule to go from ik to ik+2. We get that D accepts the word marked(u)
tagged by • at i and j and by ◦ elsewhere. The number of states of D is 4 ∗ |P| + 2 (2 for
initial/final state). ◀

▶ Lemma 4.7. For any receive action r ∈ R, we can construct an R-diamond automaton Pr

with O(|P|) states over the alphabet (S ∪ S ∪ R) such that for every mb-synchronous sequence
u, it holds that u r is p2p-viable and not mailbox-similar iff Pr accepts marked(u).

Proof sketch. Consider a receive action r = q?p(m). Let Wr denote the set of words w ∈ Σ∗

such that w contains exactly two positions i < j tagged by •, w[i] is an unmatched send
to q, w[j] is p!q(m), and no w[h] with h < j is an unmatched send from p to q. It is easily
seen that Wr is recognized by an R-diamond NFA Wr with three states. Let Er denote
the synchronous product of Wr and the R-diamond automaton D from Lemma 4.6. The
desired automaton Pr is obtained from Er by untagging it, that is, by replacing each tagged
action (a, t) ∈ Σ by a. As Er is R-diamond, so is Pr. By construction, Pr satisfies the lemma
condition. The details can be found in the full version of the paper [6]. ◀

We derive from the previous lemma that mailbox-similarity can be solved in Pspace
for mb-synchronizable CFMs. The proof uses Lemma 4.2 and is similar to the proof of
Theorem 4.3.

▶ Theorem 4.8. The question whether a given mb-synchronizable CFM is mailbox-similar is
Pspace-complete.

5 Checking mb-synchronizability

In this section we show our main result, namely an algorithm to know if a CFM is mb-
synchronizable. As a side result we obtain optimal complexity bounds for some problems
considered in [7, 12].

The high-level schema of the algorithm is to look for a minimal witness for non-mb-
synchronizability. This amounts to searching for an mb-synchronous trace that violates
mb-synchronizability after adding one (receive) action. Of course, we need Theorem 3.6
to guarantee that the mb-synchronous trace is executable. In addition, we have to detect
the violation of mb-synchronizability, and for this we need to determine if an exchange is
non-decomposable into smaller exchanges. Section 5.1 shows automata for non-decomposable
exchanges, and in Section 5.2 we present the algorithm that finds minimal witnesses.

5.1 Automata for atomic exchanges
In this section we consider sequences of actions that cannot be split into smaller pieces without
separating messages [11, 12]. We introduce these notions for arbitrary many-to-one process
networks N . Later we will fix N = mb since reachability over synchronizable sequences is
decidable in this setting.

▶ Definition 5.1 (Atomic sequences). An N -viable sequence u ∈ Act∗ is N -atomic (or atomic
for short) if u ≡ v ∗N w with v, w both N -viable implies that one of v, w is empty.

To check atomicity we can use a graph criterium introduced already in [13] (see also [11]),
that is similar to the notion of conflict graph used in [3]:

R. Delpy, A. Muscholl, and G. Sutre 22:13

▶ Definition 5.2 (Communication graph). Let u be an N -viable sequence, and M = msc(u).
The N -communication graph of u is the directed graph HN (u) = (V, E) where V is the
set of all events of M and the edges are defined by (e, e′) ∈ E if e <P e′ or e <N e′ or
{(e, e′), (e′, e)} ∩ msg ̸= ∅.

The right part of Figure 4 shows (partly) the communication graph of the MSC in the
left part. The cycle witnesses that the MSC is N -atomic for N ∈ {mb, p2p}, according to
the next lemma.

▶ Lemma 5.3. Let u ∈ Act∗ be a N -viable sequence and HN (u) the N -communication graph
of msc(u). Then u is N -atomic if and only if HN (u) is strongly connected.

From Lemma 5.3 we can infer a decomposition of any trace in atomic subsequences that
is unique up to permuting adjacent atomic sequences that are not ordered in the sense of the
next definition:

▶ Definition 5.4 (Skeleton). Let u be a N -viable sequence with M = msc(u) and HN (u) be
the N -communication graph of M. Fix some arbitrary topological indexing {1, . . . , n} of the
SCCs of HN (u). We define the skeleton of u as skel(u) = ({1, . . . , n} , ⪯u

N), where ⪯u
N is

the partial order induced by setting i ≺u
N j for 1 ≤ i < j ≤ n if there is some <P-arc or some

mb-arc in HN (u) from the SCC with index i to the SCC with index j.

▶ Remark 5.5. Assume that u = u1 ∗N · · · ∗N un where each ui is N -atomic and non-empty,
and we index the SCCs according to the order of the ui. Then we obtain skel(u) =
({1, . . . , n} , ⪯u

N) with i ≺u
N j if either both ui and uj contain some actions on the same

process; or they both contain some send to the same buffer, with the one in ui being matched.
See Figure 3 for an example.

▶ Lemma 5.6. Let u be an N -viable sequence. Then there exist some N -atomic non-empty
sequences u1, . . . , uk such that u ≡ u1 ∗N . . . ∗N uk. Such a decomposition into N -atomic
non-empty sequences is unique up to the partial order ⪯u

N of skel(u).

Throughout the remaining of this section we fix N = mb. We will show now a simple,
automaton-compatible condition to certify that an ms-sequence v = ms(u) corresponds to
an mb-atomic exchange u. First we note that, in order for the communication graph Hmb(u)
to be strongly connected, there must exist for every process p that is active in u some path
from the last action of p to the first action of p (if there are at least two actions of p in u). A
process p is called active in u if there is at least some action performed by p in u (resp., if
v = ms(u) contains either a send performed by p, or a matched send to p). We look for such
a path for every active process and then we need to connect all such paths together.

Let u ∈ Act∗ be an mb-exchange. For some suitable integer n we define a labeling of
v = ms(u) as an injective mapping π : {0, . . . , n} → {1, . . . , |v|} where π(i) = j means that
position j of v is labeled by i. We say that π is a well-labeling of v (of size n) if, for every
0 ≤ i < n:

either π(i) < π(i + 1) and, for some process p:
v[π(i)] and v[π(i + 1)] are both sends by p, or
v[π(i)] and v[π(i + 1)] are both sends to p, with v[π(i)] matched

(direct arc)

or v[π(i)] is a send by p and v[π(i + 1)] is a matched send to p (indirect arc).

An example of such labeling is shown in Figure 4. Informally, one can see the two types
of arcs between positions of v as:

CONCUR 2024

22:14 Synchronizable Mailbox Communication

p0 p1 p2

m0

m3

m2
m1

m4

r3 r1

s0

r2

r0 s1

s3 s2

s4

r4

0 2

1

3

2
p1!p2(m1) ,

3
p1!p0(m0) ,

0
p1!p0(m3) ,

1
p2!p1(m2)

Figure 4 A well-labeling of the ms-sequence bottom right, witnessing a path in the communication
graph of the MSC left, from the last to the first event of process p0. The si and ri vertices of the
communication graph correspond respectively to the send and receive of message mi.

A direct arc between two sends corresponds to the process order ≤P or the mailbox order
≤mb in msc(u). For example, we have a direct arc from position 2 to 3 in Figure 4.
An indirect arc between two sends stems from composing edges of the communication
graph Hmb(u) that involve a receive event. An indirect arc is specific to mb-exchanges: in
Hmb(u) we can go from the event of v[i] to the receive associated with the event of v[j]
(since u is an mb-exchange this receive is after v[i]), and then follow the message edge
backwards to the event of v[j]. For example, we have an indirect arc from position 1 to 2
in Figure 4.

▶ Lemma 5.7. Let u be an mb-exchange with M = msc(u), and v = ms(u). There is a path
in the communication graph Hmb(u) from the event of M corresponding to v[i] to the event
corresponding to v[j] if and only if there is a well-labeling of v starting at i and ending at j.

Proof. For the right-to-left direction, let π be a well-labeling of v starting at i and ending at
j. As π is a well-labeling, there is a path in Hmb(u) from the event corresponding to v[π(k)]
to the one of v[π(k + 1)], for every k in the domain of π. Each such path is either a direct
edge, or consists of two edges, as explained before the statement of the lemma in the main
body.

For the left-to-right direction, we suppose there is a path Π in Hmb(u) from the event of
v[i] to the event of v[j]. We construct a labeling π of v that starts at i and ends at j, by
labelling the positions of v that correspond to the events of Π with their respective rank on
Π. Suppose that n positions are labeled and let 0 ≤ k < n. We show the existence of an arc
from π(k) to π(k + 1), which is either direct or indirect. There are three cases:

There is no receive between the event of v[π(k)] and the one of v[π(k + 1)] on Π. Thus
v[π(k)], v[π(k + 1)] are consecutive on Π and are either ordered by <P or by <mb. This
gives a direct arc from π(k) to π(k + 1).
Between the event of v[π(k)] and the one of v[π(k + 1)] we see on Π the receive matching
v[π(k)] before the receive matching v[π(k + 1)]. Note that both receives must be on the
same process (as all receives between v[π(k)] and v[π(k + 1)]), so they are ordered by <P.
Thus, the events of v[π(k)] and v[π(k + 1)], respectively, are ordered by <mb. This gives a
direct arc from π(k) to π(k + 1).
Between the event of v[π(k)] and the one of v[π(k +1)] we have on Π the receive matching
the event of v[π(k + 1)] on the same process as the event of v[π(k)]. This gives an indirect
arc from π(k) to π(k + 1). ◀

R. Delpy, A. Muscholl, and G. Sutre 22:15

▶ Remark 5.8. In Lemma 5.7, we only talk about send actions. If we are interested in a path
in Hmb(u) to a receive action, we just need to exhibit the path to its corresponding send
action.

We can infer a bound on the size of well-labelings, using the pigeonhole principle on the
direct arcs and indirect arcs going through each process.

▶ Lemma 5.9. Let u ∈ Act∗ be an mb-exchange and v = ms(u). If there is a path in the
communication graph Hmb(u) between v[i] and v[j] then there is a well-labeling of ms(u)
starting at position i and ending at position j of size at most |P|2 + |P|.

We construct now two kinds of automata, both working on ms-sequences v = ms(u).
Automaton Bp will check for a process p that is active in u, that all actions performed by p

are on a cycle in Hmb(u). Automaton Ball will check that all actions of active processes in u

appear together on a cycle in Hmb(u), by looking for a cycle going through all active processes
at least once. Finally we take the product of all automata Bp such that p is active and
the automaton Ball. The resulting automaton has |P|O(|P|3) states and verifies the following
property: for every mb-exchange u, it holds that u is atomic iff ms(u) is accepted by the
automaton. By taking the product of this last automaton with the automaton verifying that
the ms-sequence corresponds to an mb-exchange (see Lemma 3.5), we immediately get:

▶ Lemma 5.10. Let A be a CFM, g, g′ two global states of A and D, D′ ⊆ P. One can
construct an automaton B with O(|G|3 · |P|O(|P|3)) states, such that

L(B) =
{

v ∈ (S ∪ S)∗ | ∃u atomic mb-exchange s.t. v = ms(u) and (g, D) u
⇝A (g′, D′)

}
5.2 Verifying mb-synchronizability
To check mb-synchronizability we look for an mb-viable trace that is not equivalent to a
∗mb-product of mb-exchanges. Such a witness u must contain some atomic factor v that is
not equivalent to an mb-exchange. In other words, u ≡ u′ ∗mb v ∗mb u′′ for some u′, u′′, with
v′ /∈ S∗R∗ for every v ≡ v′. It is enough to reason on atomic factors, since for any exchange
u where u ≡ u1 ∗mb . . . ∗mb un with each ui atomic, all factors ui are also exchanges. Note that
an atomic v is not equivalent to an mb-exchange iff some process in v does a send after a
receive.

The next lemmas refer to the structure of minimal witnesses for non-mb-synchronizability.

▶ Lemma 5.11. Let u = v r be an mb-viable sequence with r ∈ R. There exist mb-atomic
non-empty sequences v1, . . . , vn and indices 1 ≤ i < j ≤ n such that (1) v ≡ v1 ∗mb · · · ∗mb vn,
and (2) u ≡ v1 ∗mb · · · ∗mb vi−1 ∗mb w ∗mb vj+1 ∗mb · · · ∗mb vn with w = (vi ∗mb · · · ∗mb vj) r being
mb-atomic.

▶ Lemma 5.12. Let u = v r be an mb-viable sequence with r ∈ R, such that v is not mb-atomic.
We denote by s the send event matched with r in u, and by q the process of r. Then u is
mb-atomic iff for every decomposition v ≡ v1 ∗mb · · · ∗mb vn with vi mb-atomic for all i:
(1) v1 contains s or some unmatched send to process q, and (2) vn contains s or some action
performed by process q.

An example of such a decomposition is shown in Figure 5.

▶ Lemma 5.13. Let u = v r be mb-viable with r ∈ R and v is mb-synchronizable. Let also s

be the send matching r in u, and q the process doing r. Then u is not mb-synchronizable iff
there exist (vi)n

i=1 with v ≡ v1 ∗ · · · ∗ vn, indices 1 ≤ i1 < · · · < ik ≤ n, and p ∈ P s.t.:

CONCUR 2024

22:16 Synchronizable Mailbox Communication

p1 p2 p3 p4

1

3

4(s)
r

5

2 u1 u2

u4

u3

u5r

<P

<
P

<P
<

mb

<P
msg

<
mb

Figure 5 The MSC of an atomic sequence. It is not mb-synchronizable by Lemma 5.13, each ui

consists of message i, the indices are (1, 2, 3, 5), and m = 2.

1. Each vi is mb-atomic.
2. For every 1 ≤ j < k we have ij ≺v

mb ij+1.
3. vi1 contains s or some unmatched send to process q; vik

contains s or some action
performed by process q.

4. There exists 1 ≤ m < k such that vim
contains a receive by p and vim+1 a send by p.

Note that while we can guess mb-synchronous sequences without storing messages
(Lemma 3.5), we need to be careful when guessing u in Lemma 5.13 so that it is mb-viable.
E.g., by reversing message 2 in Figure 5 the sequence becomes non-mb-viable.

▶ Lemma 5.14. Let u = v r be a p2p-viable sequence with r ∈ R and v mb-viable. Let q

be the process performing r. Then u is equivalent to an mb-viable sequence if and only if
there is no non-empty (<hb ∪ <mb)-path from v[i] to v[j] for some i < j such that v[i] is an
unmatched send to q and v[j] is the send matching r in u.

The next lemma shows how to check the existence of a (<hb ∪ <mb)-path between two
positions of an ms-sequence, using the automaton from Lemma 4.6.

▶ Lemma 5.15. One can construct an automaton D with O(|P|) states over the alphabet
(S ∪ S) × {◦, •} ∪ {#} with the following properties:
1. D accepts only words from (Σ∗#)∗ containing exactly two positions in (S ∪ S) × {•}.
2. For every u = u1 ∗mb . . . ∗mb un mb-viable, with each ui an exchange, D accepts tagged

v = ms(u1)# . . . #ms(un) iff, there is a (<hb ∪ <mb)-path from u[i] to u[j], where i < j

are the positions of u corresponding to the positions tagged by • in v.

We have now all ingredients to show our main result. We use Lemma 5.13 to guess the
witness sequence, exchange by exchange, and to be sure that the sequence is mb-viable we
rely on Lemmas 5.14 and 5.15, complementing the automaton on-the-fly. The lower bound is
obtained, as before, by reduction from the intersection emptiness problem for finite automata.

▶ Theorem 5.16. The question whether a CFM is mb-synchronizable is Pspace-complete.

Proof. For the upper bound we use Lemma 5.13 to guess a minimal non-mb-synchronizable
sequence u = v r. Recall that q is the process executing r, and s the matching send of r in u.
First we rely on the automaton of Lemma 5.10 in order to guess the atomic exchanges vi

composing v on-the-fly. At the same time we guess the subsequence of indices i1 < · · · < ik

and the events that witness that ij ≺v
mb ij+1 (cf. Definition 5.4).

We keep record of the current pair (g, D), where g is a global state of the CFM and D a
set of deaf processes, as we guess each vi, to check that the sequence v labels an execution.
When we process vik

, we remember its alphabet over S ∪ S until we guess vik+1 , and check
that ik ≺v

mb ik+1 (cf. Remark 5.5). We also guess m as of item (5) in Lemma 5.13, and

R. Delpy, A. Muscholl, and G. Sutre 22:17

check (5). After we have done vn, we must have reached (g, D) such that the receive r can
be done in state g. By verifying that u is mb-viable as described below, we know that s is
matched with r.

We check that u is mb-viable with Lemma 5.15. From Lemma 5.14 we know that u is
mb-viable iff there is no unmatched send s′ to q s.t. there is a (≤hb ∪ <mb)-path from s′ to s

in v. We use the complement Dco of D, which is exponential in |P| but can be constructed
on-the-fly in linear space. We make one copy Dco(p′) of Dco for every process p′ ̸= q. Each
Dco(p′) tags the first unmatched send of type p′!q and s with •. We make every Dco(p′) read
the tagged ms(v1)# . . . #ms(vn) by adding the # after each atomic mb-exchange we read.
Each Dco(p′) should accept. This guarantees that no send of type p′!q has a (≤hb ∪ <mb)-path
to s.

For the lower bound, we use the same reduction as in Theorem 3.6, and if we reach
(accept)p∈P, we use two other processes to do a non-mb-synchronizable gadget (see the
full version of the paper [6]). This way, the CFM is mb-synchronizable if and only if the
intersection of the automata A1, . . . , An is empty. ◀

Theorem 5.16 yields two interesting corollaries. In the statements below we say that
a CFM is k-mb-synchronizable if for every trace u ∈ Trmb(A), we have u ≡ u1 ∗ · · · ∗ un for
some mb-exchanges ui where |ui| ≤ k. The next result has been shown decidable in [2] (with
non-elementary complexity):

▶ Theorem 5.17. Let k be an integer given in binary. The question whether a CFM is
k-mb-synchronizable is Pspace-complete. The lower bound already holds for k in unary.

Proof. Using Theorem 5.16 we first check that the CFM is mb-synchronizable. Then we use
the automaton C from Lemma 3.5 to compute pairs (g, D) of global state and set of deaf
processes that are reachable by some mb-synchronous sequence. Finally we check whether
the automaton of Lemma 5.10 accepts only exchanges of size at most k. Since the size of our
automata is exponential the test can be done in Pspace. The lower bound can be obtained
as in the proof of Theorem 5.16 (see Figure 2). ◀

For the second result and weak synchronizability, decidability was obtained in [12]. Our
proof based on automata seems more direct and simpler than the one of [12]:

▶ Theorem 5.18. The question whether for a given CFM A there exists some k such that A
is k-mb-synchronizable, is Pspace-complete.

Proof. For the upper bound we proceed as in the previous proof. The difference is that at
the end we check whether the automaton of Lemma 5.10 accepts an infinite language from a
reachable pair (g, D). The language of this automaton is infinite iff there is no k as stated
by the theorem. The lower bound can be obtained as in the proof of Theorem 5.16. ◀

6 Conclusion

We have introduced a novel automata-based approach to reason about communication in
the sr-round mailbox model. We showed that knowing whether a system complies with
this model is Pspace-complete. An interesting theoretical question is whether we can apply
similar techniques to other types of communication. On the practical side it would be
interesting to implement our algorithms and compare e.g. with existing tools like Soter [8]
that targets safety properties for a relaxed model of Erlang. Our automata-based techniques
may be easier to implement than previous approaches, and could even adapt to a dynamic
setting.

CONCUR 2024

22:18 Synchronizable Mailbox Communication

References
1 Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. Inf.

Comput., 127(2):91–101, 1996. doi:10.1006/INCO.1996.0053.
2 Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes, and Amrita

Suresh. A unifying framework for deciding synchronizability. In Serge Haddad and Daniele
Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 14:1–14:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CONCUR.2021.14.

3 Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of
verifying message passing programs under bounded asynchrony. In Computer Aided Verification:
30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II 30, pages 372–391. Springer,
2018.

4 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the
ACM (JACM), 30(2):323–342, 1983.

5 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distrib-
uted systems with benign faults. Distributed Comput., 22(1):49–71, 2009. doi:10.1007/
S00446-009-0084-6.

6 Romain Delpy, Anca Muscholl, and Grégoire Sutre. An automata-based approach for syn-
chronizable mailbox communication, 2024. arXiv:2407.06968.

7 Cinzia Di Giusto, Laetitia Laversa, and Etienne Lozes. On the k-synchronizability of systems.
In 23rd International Conference on Foundations of Software Science and Computer Systems
(FOSSACS 2020), volume 12077, pages 157–176. Springer, 2020.

8 Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong. Automatic verification
of erlang-style concurrency. In Francesco Logozzo and Manuel Fähndrich, editors, Static
Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013.
Proceedings, volume 7935 of Lecture Notes in Computer Science, pages 454–476. Springer,
2013. doi:10.1007/978-3-642-38856-9_24.

9 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

10 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded
channels. Fundamenta Informaticae, 80(1-3):147–167, 2007.

11 Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-state high-level
mscs: Model-checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006. doi:
10.1016/J.JCSS.2005.09.007.

12 Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. Guessing the buffer bound for
k-synchronizability. Int. J. Found. Comput. Sci., 34(8):1051–1076, 2023. doi:10.1142/
S0129054122430018.

13 Loïc Hélouët and Pierre Le Maigat. Decomposition of message sequence charts. In Edel
Sherratt, editor, SAM 2000, 2nd Workshop on SDL and MSC, Col de Porte, Grenoble, France,
June 26-28, 2000, pages 47–60. Verimag, IRISA, SDL Forum, 2000.

14 Dietrich Kuske and Anca Muscholl. Communicating automata. In Jean-Éric Pin, editor,
Handbook of Automata Theory, pages 1147–1188. European Mathematical Society Publishing
House, Zürich, Switzerland, 2021. doi:10.4171/AUTOMATA-2/9.

15 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

16 Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Complete multiparty session
type projection with automata. In Constantin Enea and Akash Lal, editors, Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part III, volume 13966 of Lecture Notes in Computer Science, pages 350–373.
Springer, 2023. doi:10.1007/978-3-031-37709-9_17.

https://doi.org/10.1006/INCO.1996.0053
https://doi.org/10.4230/LIPICS.CONCUR.2021.14
https://doi.org/10.1007/S00446-009-0084-6
https://doi.org/10.1007/S00446-009-0084-6
https://arxiv.org/abs/2407.06968
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/J.JCSS.2005.09.007
https://doi.org/10.1016/J.JCSS.2005.09.007
https://doi.org/10.1142/S0129054122430018
https://doi.org/10.1142/S0129054122430018
https://doi.org/10.4171/AUTOMATA-2/9
https://doi.org/10.1007/978-3-031-37709-9_17

R. Delpy, A. Muscholl, and G. Sutre 22:19

17 Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising
projection in asynchronous multiparty session types. In Serge Haddad and Daniele Varacca,
editors, 32nd International Conference on Concurrency Theory, CONCUR 2021, August
24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 35:1–35:24. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CONCUR.2021.35.

18 Felix Stutz. Asynchronous multiparty session type implementability is decidable - lessons
learned from message sequence charts. In Karim Ali and Guido Salvaneschi, editors, 37th
European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, Washington, United States, volume 263 of LIPIcs, pages 32:1–32:31. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ECOOP.2023.32.

CONCUR 2024

https://doi.org/10.4230/LIPICS.CONCUR.2021.35
https://doi.org/10.4230/LIPICS.ECOOP.2023.32

Regular Games with Imperfect Information Are
Not That Regular
Laurent Doyen
CNRS & LMF, ENS Paris-Saclay, France

Thomas Soullard
LMF, ENS Paris-Saclay & CNRS, France

Abstract
We consider two-player games with imperfect information and the synthesis of a randomized strategy
for one player that ensures the objective is satisfied almost-surely (i.e., with probability 1), regardless
of the strategy of the other player. Imperfect information is modeled by an indistinguishability
relation describing the pairs of histories that the first player cannot distinguish, a generalization of
the traditional model with partial observations. The game is regular if it admits a regular function
whose kernel commutes with the indistinguishability relation.

The synthesis of pure strategies that ensure all possible outcomes satisfy the objective is possible
in regular games, by a generic reduction that holds for all objectives. While the solution for pure
strategies extends to randomized strategies in the traditional model with partial observations (which
is always regular), a similar reduction does not exist in the more general model. Despite that, we
show that in regular games with Büchi objectives the synthesis problem is decidable for randomized
strategies that ensure the outcome satisfies the objective almost-surely.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Probabilistic computation

Keywords and phrases Imperfect-information games, randomized strategies, synthesis

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.23

Related Version Full Version: https://arxiv.org/abs/2403.20133

1 Introduction

We consider the synthesis problem for two-player turn-based games with imperfect information,
a model that has applications in several areas of computer-science, including the design
of multi-agent systems [18], logics with uncertainty in planning and AI [5, 14], program
synthesis [10], and automata theory [1]. The synthesis problem asks to decide the existence
of (and if so, to construct) a strategy for one player that ensures a given objective is satisfied
with the largest possible probability, regardless of the choices of the other player. We focus
mostly on reachability objectives, and will also discuss ω-regular objectives [17].

Synthesis provides a natural formulation for the design of a reactive system that interacts
with an unknown environment. The interactive nature of reactive systems is modeled by
a two-player game between the system (the player) and an adversarial environment, and
the limited access of the system to the current state of the game is modeled by imperfect
information.

A simple example of a turn-based game with imperfect information is repeated matching
pennies, where the environment (secretly) chooses head or tail (say, denoted by x ∈ {0, 1}),
then the player chooses y ∈ {0, 1} without seeing x, and wins if y = x. If y ≠ x, the game
repeats for one more round; the player loses if the game repeats forever. It is clear that
there exists no pure (deterministic) strategy that is winning in repeated matching pennies,
as for all sequences x̄ = x1 . . . xi and ȳ = y1 . . . yi that represent a history of the game
(namely, the sequence of moves played in the first i rounds), given xi+1 (chosen by the

© Laurent Doyen and Thomas Soullard;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3714-6145
https://orcid.org/0009-0003-2675-6447
https://doi.org/10.4230/LIPIcs.CONCUR.2024.23
https://arxiv.org/abs/2403.20133
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Regular Games with Imperfect Information Are Not That Regular

environment), the choice of yi+1 (by the player) must be made independently of xi+1, thus
we may have xi+1 = 1 − yi+1, showing that the game may repeat forever. That the player
cannot ensure to win is counter-intuitive, and this is because pure (deterministic) strategies
are considered. With randomized strategies, the player can win with probability 1, simply by
choosing yi ∈ {0, 1} with uniform probability at every round. The power of randomization for
decision making with imperfect information is well known and occurs in many situations [16,
Section 1.3], including gene mutation in biology, penalty kick in sports, bluffing in card games,
etc. It is also known that, even for simple objectives like reachability, optimal strategies may
need memory [21].

In the sequel, we distinguish the synthesis of a pure strategy (which we call a sure winning
strategy, as it aims to ensure all possible outcomes satisfy the objective), and the synthesis
of a randomized strategy (which we call an almost-sure winning strategy, as it aims to
ensure that the objective is satisfied with probability 1). Note that the synthesis problem for
strategies that ensure the objective is satisfied with probability at least λ (given 0 < λ < 1)
is undecidable for probabilistic automata [20], a model that can be reduced to two-player
turn-based games with imperfect information [11].

Given a finite alphabet Γ of moves, we denote by Γ∗ the set of all histories in a game.
The traditional model of imperfect information in games is a (regular) observation function
defined on Γ∗ that assigns to each history of the game a color that is visible to the player,
while the history itself is not visible [22]. We call them partial-observation games, or
games à la Reif. This model of games with imperfect information (even turn-based and
non-stochastic) with randomized strategies generalizes many models such as concurrent
games (e.g., matching pennies), Markov chains, Markov decision processes, and stochastic
games [11, Theorem 5]. The synthesis of pure strategies in partial-observation games à la
Reif with ω-regular objectives can be done using automata-based techniques analogous to the
subset construction for finite automata [22, 21]. The synthesis of randomized (almost-sure
winning) strategies can be done for reachability (and Büchi) objectives with a more involved
technique based on the same approach of subset construction. The synthesis problem is
EXPTIME-complete in both cases. Note that for ω-regular (and even for coBüchi) objectives,
the synthesis problem with randomized strategies is undecidable [4].

A more abstract (and more general) model of imperfect information is given by a function
f : Γ∗ × Γ∗ → {0, 1} that specifies an indistinguishability relation [6, 7]: two histories
τ, τ ′ are indistinguishable if f(τ, τ ′) = 1. In analogy to the partial-observation model,
indistinguishable histories have the same length and their prefixes (of the same length) are
also indistinguishable. Hence this function can be viewed as a set of pairs of finite words of
the same length (over alphabet Γ), or alternatively as a language of finite words over the
alphabet Γ × Γ. Applications of this model include the synthesis of full-information protocols,
which cannot be expressed by a partial-observation game à la Reif [7, Section 6].

A generic approach to the synthesis problem with this more general model is to construct
a so-called rectangular morphism h defined on Γ∗ with finite range [7]. Note that a morphism
with finite range is a regular function (which can be defined by a finite-state automaton
with output), and we say that a game is regular if such a rectangular morphism h exists.
For instance, all partial-observation games à la Reif are regular as they admit a natural
rectangular morphism, which is essentially the subset construction. The existence of a
rectangular morphism guarantees that the information tree has a finite bisimulation quotient,
and thus (pure) strategies can be transferred back and forth (by copying the action played
in a bisimilar position of the other game), preserving the outcome of the game for arbitrary
objectives [7]. Hence, for the synthesis of pure strategies, regular games with imperfect
information can be reduced to finite games with perfect information.

L. Doyen and T. Soullard 23:3

In this paper, we consider the synthesis problem with randomized strategies, which
is central in games with imperfect information (such as matching pennies). Given the
existence of a finite bisimulation quotient in regular games, the fact that a solution based
on a rectangular morphism (the subset construction) works for the synthesis of randomized
strategies in reachability games à la Reif gives hope that synthesis in regular games is solvable
along a similar path, by a reduction to a simpler equivalent game from which randomized
strategies can be transferred back and forth, copying both the action and the probability of
playing that action. The hope is reinforced by the existence of a bijection between the set of
randomized strategies in a game à la Reif and the set of strategies in the simpler equivalent
game, which relates strategies with same (probabilistic measure on the) outcome for arbitrary
objectives [21, Theorem 4.2].

Surprisingly, we show that even a much weaker variant of such a reduction does not exist
for regular games. First the hope for a bijective transfer of strategies is not reasonable because
the information tree of regular games have in general unbounded branching [6], whereas the
simpler equivalent games induced by (finite) rectangular morphism have a bounded-branching
information tree. On the other hand, we show that even a non-bijective transfer of strategies,
as general as it can reasonably be, may not exist for some regular game with a specific
rectangular morphism (Section 4.3). Despite their nice structural properties, the existence of
a finite bisimulation in their information tree, and their apparent similarity with games à la
Reif where a bijection between randomized strategies is induced by a rectangular morphism,
regular games are not as well-behaved as games à la Reif.

In this context, we present an algorithmic solution of the synthesis problem with ran-
domized strategies for regular games with a reachability objective. The solution exploits
the properties of rectangular morphisms to define a fixpoint computation with complexity
quadratic in the size of the range of the rectangular morphism (which is of exponential size
in the case of games à la Reif [21], and of non-elementary size in the case of full-information
protocols [7]). Our algorithm shares the common features of the solutions of almost-sure
reachability objectives in Markov decision processes [12], concurrent games [13], and games à
la Reif [21], namely a nested fixpoint computation that iteratively constructs the almost-sure
winning set by computing the set Si+1 of states from which the player can win with positive
probability while ensuring to never leave the set Si, where S0 is the entire state space
(Section 3). Our solution immediately extends to Büchi objectives, using reductions to
reachability objectives from the literature.

In conclusion, this paper generalizes the positive (decidability) results about randomized
strategies from games à la Reif to regular games (namely for reachability and Büchi objectives),
whereas the reductions that worked in games à la Reif for arbitrary objectives no longer hold.

Omitted proofs are provided in the appendix.

2 Definitions

We recall basic definitions from logic and automata theory that will be useful in the rest of
the paper, and then we discuss our model of games.

2.1 Basic notions
Regular functions. A Moore machine is a finite-state automaton with outputs, consisting
of a finite input alphabet Γ, a finite output alphabet Σ, and a tuple M = ⟨Q, qε, δ, λ⟩ with a
finite set Q of states (sometimes called the memory), an initial state qε ∈ Q, a (deterministic)
transition function δ : Q× Γ → Q, and an output function λ : Q → Σ.

CONCUR 2024

23:4 Regular Games with Imperfect Information Are Not That Regular

We extend the transition function to input words in the natural way, defining δ : Q×Γ∗ →
Q by δ(q, ε) = q for all states q ∈ Q, and inductively δ(q, τc) = δ(δ(q, τ), c) for all histories
τ ∈ Γ∗ and moves c ∈ Γ.

The object of interest is the extension of the output function to a function λ : Γ∗ → Σ
defined by λ(τ) = λ(δ(qε, τ)) for all histories τ ∈ Γ∗. A function λ defined on Γ∗ is regular if
it is (the extension of) the output function of a Moore machine. The cumulative extension of
λ is denoted by λ̂ : Γ∗ → Σ∗ and defined by λ̂(ε) = ε and inductively λ̂(τc) = λ̂(τ)λ(τc), thus
λ̂(c1 . . . ck) = λ(c1)λ(c1c2) . . . λ(c1 . . . ck). Note that λ = last ◦ λ̂ where last(c1 . . . ck) = ck.
The function λ̂ is further extended to infinite words as expected: λ̂(π) = λ(c1)λ(c1c2) . . . for
all π = c1c2 . . . ∈ Γω.

Fixpoint formulas. We briefly recall the interpretation of µ-calculus fixpoint formulas [8, 9]
based on the Knaster-Tarski theorem. Given a monotonic function ψ : 2Q → 2Q (i.e., such
that X ⊆ Y implies ψ(X) ⊆ ψ(Y)), the expression νY.ψ(Y) is the (unique) greatest fixpoint
of ψ, which can be computed as the limit of the sequence (Yi)i∈N defined by Y0 = Q, and
Yi = ψ(Yi−1) for all i ≥ 1. Dually, the expression µX. ψ(X) is the (unique) least fixpoint of
ψ, and the limit of the sequence (Xi)i∈N defined by X0 = ∅, and Xi = ψ(Xi−1) for all i ≥ 1.
If |Q| = n, then it is not difficult to see that the limit of those sequences is reached after at
most n iterations, Xn = Xn+1 and Yn = Yn+1.

On equivalence relations. Given an equivalence relation ∼ ⊆ S × S and a set T ⊆ S, the
closure of T under ∼ is the set [T]∼ = {t ∈ S | ∃t′ ∈ T : t ∼ t′}, and the interior of T
under ∼ is the set int∼(T) = {t ∈ S | [t]∼ ⊆ T}. The closure and interior are monotone
operators, that is if T ⊆ U , then [T]∼ ⊆ [U]∼ and int∼(T) ⊆ int∼(U). Note the duality
S \ int∼(T) = [S \ T]∼, the complement of the interior of T is the closure of the complement
of T . We say that T is closed under ∼ if T = [T]∼ (or equivalently T = int∼(T)).

2.2 Games with imperfect information
We consider an abstract model of games, given by a (nonempty) set A of actions, a set Γ
of moves, and a surjective function act : Γ → A. The game is played over infinitely many
rounds (or steps). In each round, the player chooses an action a ∈ A, then the environment
chooses a move c ∈ Γ such that act(c) = a. We say that the move c is supported by the
action a.

The outcome of the game is an infinite sequence π ∈ Γω of moves of the environment,
called a play, from which we can reconstruct the infinite sequence of actions of the player
using the function act. A finite sequence of moves is called a history.

The winning condition is a set W ⊆ Γω of plays that are winning for the player. We
specify the winning condition by the combination of a coloring function λ : Γ∗ → C for
some finite alphabet C of colors, and a logical objective L ⊆ Cω. The coloring function
is regular, and specified by a Moore machine. The induced winning condition is the set
W = {π ∈ Γω | λ̂(π) ∈ L} of plays whose coloring satisfies the objective.

We consider the following classical objectives, for C = {0, 1}:
the reachability objective is Reach = 0∗1{0, 1}ω and for x ∈ N let Reach≤x =⋃

i≤x 0i1{0, 1}ω;
the safety objective is Safe = 0ω = {0, 1}ω \ Reach;
the Büchi objective is Büchi = (0∗1)ω;
the coBüchi objective is coBüchi = {0, 1}∗0ω = {0, 1}ω \ Büchi;

L. Doyen and T. Soullard 23:5

q0

q1 q2

q3 x q0

a1, b1 a2, b2

a1, a2
b1, b2 b1, b2 a1, a2

(a) Imperfect-information game G.

U1

U2

U3 X U1

a, b

a, b a, b

(b) Information tree of G.

Figure 1 A game with imperfect information representing matching pennies, and its information
tree.

It is convenient to consider that the coloring function λ is part of a game instance,
while the objective L can be specified independently of the game. This allows to quantify
separately the game instances and the objectives. We recall that the traditional games
played on graphs [17, 3] are an equivalent model, in particular they can be translated into
our abstract model of game, for example by letting moves be the edges of the game graph
and the corresponding action be the label of the edge, while the graph structure can be
encoded in the winning condition [23]. When we refer to a game played on a graph, we
assume that all move sequences that contain two consecutive moves (i.e., edges) ci = (q1, q2)
and ci+1 = (q3, q4) such that q2 ̸= q3 belong to the winning condition (for the player).

Imperfect information is represented by an indistinguishability relation ∼ ∈ Γ∗ × Γ∗ that
specifies the pairs of histories that the player cannot distinguish. An indistinguishability
relation is an equivalence that satisfies the following conditions [6], for all histories τ, τ ′ ∈ Γ∗

and moves c, c′ ∈ Γ: (i) if τ ∼ τ ′, then |τ | = |τ ′| (indistinguishable histories have the same
length); (ii) if τc ∼ τ ′c′, then τ ∼ τ ′ (the relation is prefix-closed) and act(c) = act(c′) (the
action is visible). Indistinguishability relations may be specified using two-tape automata,
but the results of this paper hold for arbitrary indistinguishability relations.

Given a history τ ∈ Γ∗ we call the equivalence class [τ]∼ = {τ ′ ∈ Γ∗ | τ ′ ∼ τ} containing τ
an information set. A function λ defined on Γ∗ is information consistent if λ is constant over
every information set: λ(τ) = λ(τ ′) for all indistinguishable histories τ ∼ τ ′. An equivalent
requirement is that the cumulative extension λ̂ is constant over every information set, since
indistinguishability relations are prefix-closed. We always require the coloring function of a
game to be information consistent (with respect to the indistinguishability relation of the
game). For every action a ∈ A, we define a successor relation →a over information sets,
where [τ]∼ →a [τc]∼ for all moves c ∈ Γ such that act(c) = a. The relations →a are obviously
acyclic, and induce a structure called the information tree. Note that there is a natural
extension of the coloring function λ to information sets, defined by λ([τ]∼) = λ(τ) for all
histories τ ∈ Γ∗, since λ is information-consistent.

Given the above definitions, we represent a game with imperfect information as a tuple
G = ⟨A, act,∼, λ⟩, together with an objective L ⊆ Cω, where the (finite) alphabet of moves
is Γ, and the (finite) alphabet of colors is C. The information tree of G is denoted by
U∼(G) (consisting of the information sets of G, the successor relations →a, and the coloring

CONCUR 2024

23:6 Regular Games with Imperfect Information Are Not That Regular

λ extended to information sets). The special case of perfect-information games corresponds
the indistinguishability relation ∼ being the identity (or equivalently by the information sets
[τ]∼ = {τ} being singletons for all histories τ ∈ Γ∗).

In figures, we present a very informal (but readable) description of games. The main com-
ponents of a game that figures represent are the coloring function and the indistinguishability
relation. Strictly speaking, the figures do not show a game but provide sufficient information
to reconstruct the Moore machine defining the coloring function, and the two-tape automaton
defining the indistinguishability relation. It should be possible to infer the color of a history
(when its color is relevant), and the information set containing a given history. States are
normally depicted as circles, but we may use boxes to emphasize that the action choice of the
player is not relevant and only the move of the environment determines the successor state.

In the game G of Figure 1a, representing matching pennies, the player has two actions,
A = {a, b}, and the environment has two possible responses for each of them, thus four
moves, Γ = {a1, a2, b1, b2} where act(ai) = a and act(bi) = b for i = 1, 2. Intuitively, the
adversarial environment chooses head (1) or tail (2) in the first round (at q0) by choosing
a response 1 or 2 (the action of the player is not relevant) that the player cannot observe
(all histories of length 1 are indistinguishable, as suggested by the dashed line in Figure 1a).
The player chooses head (action a) or tail (action b) in the next round, wins if the choice is
matching the environment’s choice, and replays the same game otherwise (x is a placeholder
for the whole tree of Figure 1a).

The information tree of G is shown in Figure 1b where U1 = [ε]∼ = {ε} and U2 = [a1]∼ =
{a1, a2, b1, b2} = Γ. The information set U3 contains eight of the sixteen histories of length 2.
The node X is a placeholder for a tree that is isomorphic to the tree rooted at U1.

We recall that the nodes in information trees have a finite number of successors (there is at
most |Γ|n information sets containing histories of length n), however the branching degree in
a given information tree may be unbounded [6]. The partial-observation games à la Reif [22]
are characterized by their information tree having bounded branching [6, Theorem 7].

2.3 Strategies and outcome

A probability distribution on a finite set S is a function d : S → [0, 1] such that
∑

s∈S d(s) = 1.
A Dirac distribution assigns probability 1 to a (unique) element s ∈ S. We denote by D(S)
the set of all probability distributions on S.

A strategy for the player is a function α : Γ∗ → D(A) that is information consistent,
thus α(τ) = α(τ ′) for all indistinguishable histories τ ∼ τ ′. The strategy α is pure (or,
deterministic) if α(τ) is a Dirac distribution for all τ ∈ Γ∗. A strategy for the environment is
a function β : Γ∗ × A → D(Γ) such that for all histories τ ∈ Γ∗, actions a ∈ A, and moves
c ∈ Γ, if the move c is played with positive probability β(τ, a)(c) > 0, then it is supported
by the action a, act(c) = a. The strategy β is pure (or, deterministic) if β(τ, a) is a Dirac
distribution for all τ ∈ Γ∗ and a ∈ A. We denote by AG (resp., by BG) the set of all strategies
for the player (resp., for the environment), and by Apure

G (resp., by Bpure
G) the set of all pure

strategies for the player (resp., for the environment).
A pair of strategies (α, β) for the player and the environment induce a probability measure

Prα,β on the sigma-algebra over the set of (infinite) plays. By Carathéodory’s extension
theorem, it is sufficient to define the probability measure over cylinder sets spanned by (finite)
prefixes of plays. We define a family of probability measures Prα,β

τ where τ ∈ Γ∗ corresponds
to starting the game after history τ . We set Prα,β = Prα,β

ε . Given ρ ∈ Γ∗, the measure of
the cylinder set Cyl(ρ) = ρΓω = {π ∈ Γω | ρ is a prefix of π} is defined as follows:

L. Doyen and T. Soullard 23:7

if ρ is a prefix of τ , then

Prα,β
τ (Cyl(ρ)) = 1;

if ρ = τc1 . . . ck where c1, . . . , ck ∈ Γ for some k ≥ 1, then

Prα,β
τ (Cyl(ρ)) =

k∏
i=1

α(τc1 . . . ci−1)(act(ci)) · β(τc1 . . . ci−1, act(ci))(ci);

all other cylinder sets have measure 0.

Given an objective L ⊆ Cω defined on colors, assuming the game G (and thus λ̂) is clear
from the context we take the freedom to denote by Prα,β(L) the probability Prα,β({π ∈ Γω |
λ̂(π) ∈ L}) that the objective L is satisfied by an outcome of the pair of strategies (α, β)
in G. A strategy α of the player is almost-sure winning from an information set [τ]∼ (or
simply almost-sure winning if τ = ε) for objective L if Prα,β

τ ′ (L) = 1 for all τ ′ ∈ [τ]∼ and all
strategies β ∈ BG of the environment. We are interested in solving the synthesis problem,
which is to decide, given a game G and objective L, whether there exists an almost-sure
winning strategy in G for L.

Note that the definition of almost-sure winning is equivalent to a formulation where only
pure strategies of the environment are considered, that is where we require Prα,β

τ ′ (L) = 1 for all
β ∈ Bpure

G only, as once a strategy for the player is fixed, the environment plays in a (possibly
infinite-state) Markov decision process, for which pure strategies are sufficient [19, 11].

We say that a history τ ∈ Γ∗ is compatible with α and β if Prα,β(Cyl(τ)) > 0. An outcome
of the pair of strategies (α, β) is a play π ∈ Γω all of whose prefixes are compatible with α and
β. We note that if Prα,β(Cyl(τ)) > 0, then Prα,β

τ (Cyl(τc1c2 . . . cn)) = Prα,β(Cyl(τc1c2 . . . cn) |
Cyl(τ)).

3 Almost-Sure Reachability

Throughout this section, we consider games with a (fixed) reachability objective Reach =
0∗1{0, 1}ω over color alphabet C = {0, 1}, thus a play is winning if it has a finite prefix with
color 1 according to the coloring function λ of the game. By extension, we say that a history
τ is winning if λ(τ) = 1. We also assume without loss of generality that if λ(τ) = 1, then
λ(τc) = 1 for all τ ∈ Γ∗ and all c ∈ Γ. In the rest of this section, we fix a game G as defined
in Section 2.2 and we show how to decide the existence of an almost-sure winning strategy
in games with a reachability objective, relying on the existence of a rectangular morphism
(defined below). Two interesting classes of games are known to admit rectangular morphisms,
namely the partial-observation games à la Reif and the full-information protocols [7].

3.1 Regular games with imperfect information
A rectangular morphism for G is a surjective function h : Γ∗ → P (for some finite set P) such
that for all τ, τ ′ ∈ Γ∗ and c ∈ Γ:
Rectangularity1 if h(τ) = h(τ ′), then h([τ]∼) = h([τ ′]∼),
Morphism if h(τ) = h(τ ′), then h(τc) = h(τ ′c),
Refinement if h(τ) = h(τ ′), then λ(τ) = λ(τ ′).

1 Rectangularity is equivalent to the kernel H = {(τ, τ ′) | h(τ) = h(τ ′)} of h commuting with the
indistinguishability relation, that is H ◦ ∼ = ∼ ◦ H.

CONCUR 2024

23:8 Regular Games with Imperfect Information Are Not That Regular

Note that, as h is a finite-valued morphism, it can be represented by an automaton
(whose output is not relevant) with input alphabet Γ and state space P . Games that admit a
finite-valued rectangular morphism are called regular. Define the relation ≈ = {(h(τ), h(τ ′)) |
τ ∼ τ ′} and recall a non-trivial fundamental result.

▶ Lemma 1 ([7], Lemma 3 & Lemma 4). The relation ≈ is an equivalence and h([τ]∼) =
[h(τ)]≈ for all τ ∈ Γ∗.

We call the elements of P abstract states. We extend the relation ≈ to elements of P ×A

as follows: for all p, p′ ∈ P and a, a′ ∈ A, let (p, a) ≈ (p′, a′) if p ≈ p′ and a = a′.
Thanks to the morphism property, there exists a function δP : P × Γ → P such that

δP (h(τ), c) = h(τc) for all τ ∈ Γ∗ and c ∈ Γ. Define the set PF = {p ∈ P | ∃τ ∈ Γ∗ : h(τ) =
p∧ λ(τ) = 1} of target (or final) states, which are the images by h of winning histories. Note
that the coloring function is information-consistent and therefore the set PF is closed under
≈ by Lemma 1. Moreover, by our assumption on the coloring function the states in PF form
a sink set, that is δP (p, c) ∈ PF for all states p ∈ PF and moves c ∈ Γ.

Rectangular morphisms are central to the solution of the synthesis problem for pure
strategies [7], by showing that the following abstract game is equivalent to G: starting from
p0 = h(ε), the game is played in rounds where each round starts with a value p and the
player chooses an action a ∈ A, the next round starts in p′ chosen by the environment such
that p′ ≈ δP (p, c) for some move c ∈ Γ such that act(c) = a. The player wins if a value in
PF eventually occurs along a play. We may view the elements of P as positions of the player,
and elements of P × A as positions of the environment. We further discuss this abstract
game in Section 4.2.

An abstract state p ∈ P is existentially winning if there exists a history τ ∈ Γ∗ such that
h(τ) = p and the player has an almost-sure winning strategy from [τ]∼. We denote by P∃
the set of all existentially winning states. Note that the set P∃ is closed under ≈, since for
all p ∈ P∃ and p′ ≈ p, by Lemma 1 there exists τ ′ ∈ [τ]∼, such that h(τ ′) = p′ and the player
has an almost-sure winning strategy from [τ ′]∼ = [τ]∼.

An abstract state p ∈ P is universally winning if for all histories τ ∈ Γ∗ such that
h(τ) = p, the player has an almost-sure winning strategy from [τ]∼. We denote by P∀ the
set of all universally winning states. Note that the set P∀ is closed under ≈, by an argument
analogous to the case of P∃. As we consider a reachability objective, it is easy to see that
PF ⊆ P∀ ⊆ P∃ (the latter inclusion holds since h is surjective).

Note that in games of perfect information, the existentially and universally winning states
coincide by definition since information sets are singletons, P∀ = P∃. A corollary of our
results is that P∀ = P∃ also holds in games of imperfect information with a reachability
objective.

3.2 Algorithm
We present an algorithm to decide if the player is almost-sure winning for reachability in a
game of imperfect information, assuming we have a rectangular morphism.

Given a set X ⊆ P ∪ (P ×A), define the predecessor operator as follows:

Pre(X) = {p ∈ P | ∃a ∈ A : (p, a) ∈ X}
∪
{(p, a) ∈ P ×A | ∀c : act(c) = a =⇒ δP (p, c) ∈ X}

L. Doyen and T. Soullard 23:9

It is easy to verify that if X1 ⊆ X2, then Pre(X1) ⊆ Pre(X2), that is Pre(·) is monotone.
Intuitively, from a history τ such that h(τ) ∈ Pre(X) the player can choose an action a such
that (h(τ), a) ∈ X, and if (h(τ), a) ∈ Pre(X) then for all moves c chosen by the environment
and supported by action a we have h(τc) ∈ X. In a game of perfect information, iterating the
predecessor operator from the target set PF until obtaining a fixpoint X∗ = µX.Pre(X) ∪PF

gives the (existentially and universally) winning states, that is P∀ = P∃ = X∗.
In a game of imperfect information with randomized strategies for the player, given

Xi+1 = Pre(Xi), from a history τ such that h(τ) ∈ Xi+1, we may consider playing all actions
a such that (h(τ), a) ∈ Xi uniformly at random. However, an action played in a history τ

is also played in every indistinguishable history τ ′ ∼ τ . Therefore, we need to ensure that
for all actions a played in τ (such that (h(τ), a) ∈ Xi), playing a in τ ′ does not leave X∗.
Hence for p = h(τ), even if (p, a) ∈ X∗, the action a should not be played from τ if there
exists p′ ≈ p such that (p′, a) ̸∈ X∗.

In our algorithm, we remove from X∗ all elements (p, a) such that (p′, a) ̸∈ X∗ for some
p′ ≈ p, that is we replace X∗ by its interior. We define

Y∗ = νY. µX. int≈(Y) ∩ (Pre(X) ∪ PF)

and we show that the sets Y∗, P∀, and P∃ coincide. Note that the µ-calculus formula for Y∗
is well defined since Pre(·) and int≈(·) are monotone operators, and that the fixpoint can be
effectively computed since P is finite.

As the fixpoint satisfies Y∗ = int≈(Y∗) ∩ (Pre(Y∗) ∪ PF), it follows that Y∗ = int≈(Y∗)
is closed under ≈, and Y∗ ⊆ Pre(Y∗) ∪ PF . Moreover it is easy to verify from the fixpoint
iteration that PF ⊆ Y∗ since PF , which is closed under ≈, is always contained in the least
fixpoint, and never removed from the greatest fixpoint.

▶ Theorem 2. The abstract states in the fixpoint Y∗ are the existentially winning states,
which coincide with the universally winning states, Y∗ ∩ P = P∀ = P∃.

Theorem 2 entails the decidability of the existence of an almost-sure winning strategy in
games with reachability objective: if there exists an almost-sure winning strategy (from ε),
then h(ε) ∈ P∃ = Y∗, and conversely if h(ε) ∈ Y∗ then h(ε) ∈ P∀ since h(ε) ∈ P , and there
exists an almost-sure winning strategy from [ε]∼ = {ε}.

▶ Corollary 3. There exists an almost-sure winning strategy if and only if h(ε) ∈ Y∗.

The result of Theorem 2 follows from the chain of inclusions Y∗ ∩ P ⊆ P∀ (Lemma 4),
the already established P∀ ⊆ P∃, and P∃ ⊆ Y∗ ∩ P (Lemma 5),

To show that Y∗ ∩ P ⊆ P∀ we construct a strategy for the player that is almost-sure
winning from all τ (and from [τ]∼) such that h(τ) ∈ Y∗. The strategy plays uniformly at
random all actions that ensure the successor τc of τ remains in Y∗, more precisely h(τc) ∈ Y∗.
We show that at least one such action ensures progress towards reaching a target state in PF ,
thus with probability at least 1

|A| . The target is reachable in at most |P | steps, which entails
bounded probability (at least ν = 1

|A||P |) to reach PF (from every state of Y∗) and since the
strategy ensures that Y∗ is never left, the probability of not reaching PF is at most (1 − ν)k

for all k ≥ 0, and as (1 − ν)k → 0 when k → ∞ the probability to eventually reach PF is 1.

▶ Lemma 4. Y∗ ∩ P ⊆ P∀.

The last inclusion of the chain is proved by showing that there exists a fixpoint that
contains P∃ and since Y∗ is defined as the greatest fixpoint, we have P∃ ⊆ Y∗.

▶ Lemma 5. P∃ ⊆ Y∗ ∩ P .

CONCUR 2024

23:10 Regular Games with Imperfect Information Are Not That Regular

The fixpoint computation for Y∗ can be implemented by a quadratic algorithm, with
respect to the number |P | of abstract states (assuming a constant number of actions).

Both stochastic games on graphs and Büchi objectives are subsumed by the results of
this paper: in stochastic games, almost-sure Büchi reduces to almost-sure reachability [4,
Lemma 8.3], and games with stochastic transitions can be simulated by (non-stochastic)
games with imperfect information [11, Theorem 5]. These results can easily be lifted to the
more general framework of games with imperfect information defined by indistinguishability
relations. On the other hand, we recall that almost-sure coBüchi is undecidable, already
in probabilistic automata with pure strategies [4], and also with randomized strategies [11,
Corollary 2], but without the assumption that the coloring function is information consistent.
For the special case of information-consistent coBüchi objectives, the decidability status of
the synthesis problem for almost-sure winning is open (even in games à la Reif), to the best
of our knowledge. Finally for safety objectives, almost-sure winning is equivalent to sure
winning (which requires that all possible outcomes satisfy the objective), and the problem is
equivalent to synthesis with pure strategies [7].

▶ Theorem 6. Given a regular game G with imperfect information and a rectangular
morphism h : Γ∗ → P for G, the synthesis problem for almost-sure reachability and Büchi
objectives can be solved in time O(|P |2).

Since |P | is already exponential in games à la Reif (for which the synthesis problem is
EXPTIME-complete), the quadratic blow-up is not significant. For example, we get a (k+ 1)-
EXPTIME complexity upper bound for the synthesis problem in the model of full-information
protocols (FIP) with k observers, using the rectangular morphism of [7, Section 5.2]. The
model of full-information protocols as presented in [7] features explicit communication actions
that entail full disclosure of all available information of the sender. The game involves several
players who may communicate, but only one active player who takes control actions, which
reduces the synthesis problem to a game with imperfect information as considered here.

A matching (k + 1)-EXPTIME lower bound can be obtained by a straightforward
adaptation of the proof of [7, Theorem 3], which presents a reduction from the membership
problem for alternating k-EXPSPACE Turing machines to the synthesis problem of (pure)
winning strategies. The reduction is such that in the constructed game, randomization does
not help the player. If the player takes a chance in deviating from the faithful simulation of
the Turing machine, a losing sink state is reached, thus with positive probability.

▶ Theorem 7. The synthesis problem for FIP games with k observers (and almost-sure
reachability objective) is (k + 1)-EXPTIME-complete.

The construction of an almost-sure winning strategy α can be done by following the first
step in the proof of Lemma 4, which constructs α given the value of the fixpoint Y∗. It
follows that the constructed strategy is a regular function that can be represented by the
automaton underlying the rectangular morphism of the game, and thus memory of size |P |
is sufficient to define an almost-sure winning strategy.

4 Reductions

The results of Section 3 may suggest the existence of a (strong) correspondence, possibly
an equivalence, between the game G with regular indistinguishability relation and a simpler
(finite-state) game H (essentially the abstract game presented in Section 3.1) that would
hold for arbitrary objectives.

L. Doyen and T. Soullard 23:11

While it is virtually impossible to establish the non-existence of a reasonably strong such
correspondence, we show for a natural notion of game equivalence that such a correspondence
does not hold in general.

4.1 Alternating probabilistic trace equivalence
Inspired by the notion of alternating refinement relations [2] in non-stochastic game graphs
with perfect information (also called alternating transition systems), we consider the following
definition of game refinement.

Given two games G and H, we say that G reduces to H (denoted by G ⪯ H) if for all
strategies αG of the player in G, there exists a strategy αH of the player in H, such that
for all strategies βH of the environment in H, there exists a strategy βG of the environment
in G, such that the probability measures PrαG ,βG in G and PrαH,βH in H coincide (on all
objectives L ⊆ Cω, that is PrαG ,βG (L) = PrαH,βH(L) for all L), in short:

∀αG · ∃αH · ∀βH · ∃βG · ∀L ⊆ Cω : PrαG ,βG (L) = PrαH,βH(L).

As expected, the quantifications over strategies of the player range over information-
consistent randomized strategies (in their respective game), and the quantification over
L ranges over measurable sets. Under theses quantifications, the condition PrαG ,βG (L) =
PrαH,βH(L) can be replaced by PrαG ,βG (L) ≤ PrαH,βH(L) (consider the complement of L,
which is also a measurable set), and then game refinement can be interpreted as the game
H being easier2 than G for the player because for every strategy of the player in G there is
a better2 strategy for the player in H (as reflected by the quantifier sequence ∀αG · ∃αH),
which means that the environment can always ensure a lower2 value in G (against αG) than
in H (against αH), as reflected by the quantifier sequence ∀βH · ∃βG).

Note that in the special case of pure strategies (and non-stochastic games) where the
probability measures assign probability 1 to a single play, game refinement boils down to

∀αG ∈ Apure
G · ∃αH ∈ Bpure

H : outcomeH(αH) ⊆ outcomeG(αG)

where outcomeX(α) denotes the set of plays compatible with α in game X. The condition
outcomeH(αH) ⊆ outcomeG(αG) is equivalent to

∀βH ∈ Bpure
H · ∃βG ∈ Bpure

G : outcomeH(αH, βH) = outcomeG(αG , βG),

where outcomeX(α, β) denotes the set of plays compatible with α and β in game X. This is
essentially the definition of alternating trace containment [2, Section 4]. Hence our definition
of game refinement is a natural generalization of both alternating trace containment to a
stochastic and imperfect-information setting, and of refinement for labeled Markov decision
processes [15, Section 4] to games.

We say that two games G and H are equivalent (or inter-reducible) if G ⪯ H and H ⪯ G.
We sometimes refer to this equivalence as alternating probabilistic trace equivalence.

4.2 Bijection and bisimulation
We compare the approach in Section 3 and the technique for solving almost-sure reachability
in games with partial observation à la Reif [21]. Recall that games with partial observation
are a special case of games with regular indistinguishability relation.

2 The words “easier”, “better”, “lower”, etc. are interpreted in a non-strict sense.

CONCUR 2024

23:12 Regular Games with Imperfect Information Are Not That Regular

The solution of the synthesis problem with randomized strategies for games à la Reif
established a bijection (denoted by h, but we call it ĥ to emphasize that it is a mapping
between sequences) between the histories in the original game G and in a game H of partial
observation played as follows: given a history ρ (initially ε), the player chooses an action
a ∈ A, and the environment extends the history to ρ′ = ĥ(τc) where ĥ(τ) = ρ and c is a move
(in G) such that act(c) = a. Two histories are indistinguishable if all their respective prefixes
(of the same length) are ≈-equivalent (according to the definition of ≈ before Lemma 1). We
call H the abstract game induced from G by ĥ, and by an abuse of notation, we denote by ≈
the indistinguishability relation of H.

The bijection ĥ naturally extends to a bijection between plays in G and plays in H, and
further to a bijection between strategies in G and strategies in H that preserves probability
measures. The existence of this bijection immediately ensures that the games G and H are
equivalent (in the sense of alternating probabilistic trace equivalence). Another important
consequence is that the information trees of G and H are isomorphic, a situation that is not
guaranteed when G is a game with regular indistinguishability relation and H is a finite-state
game (i.e., the set h(Γ∗) = {last(ĥ(τ)) | τ ∈ Γ∗} is finite). Indeed, the branching degree of the
information tree of G may be unbounded [6], whereas the branching degree of the information
tree of H is necessarily bounded since H is a finite game. It is therefore impossible to follow
the same route as in games à la Reif, using bijections.

Since bijection is too strong for our general setting, a more realistic hope is to rely on the
existence of a bisimulation between the information tree of G and the information tree of H [7,
Theorem 1]. Note that bisimulation is insensitive to the branching degree. The bisimulation
ensures that, under pure strategies for the player, the (perfect-information) games played
on the information trees are equivalent (in the sense of alternating trace equivalent). The
equivalence induced by the bisimulation is such that the transfer of strategies (the construction
of αH given αG) is of the form αH(·) = αG(µ(·)) where µ is a mapping between bisimilar
histories3 that is sequential, that is the image of a prefix of a history is a prefix of the image
of that history. So, for pure strategies the action played by αH at a history is a copy of the
action played by αG in a bisimilar history in G. In the case of randomized strategies, the
player chooses a distribution over actions, which we may view as attaching probabilities to
actions, in a way that could be copied along with the action to transfer randomized strategies
(on one hand from G to H, and on the other hand from H to G) and establish alternating
probabilistic trace equivalence (containment in both directions) of the two games.

We recall the strong relationships between games with imperfect information and their
induced abstract game (Figure 2). First, there is a natural bijection between an imperfect-
information game G and the perfect-information game played on its information tree U∼(G),
which is a witness of alternating trace equivalence of the two games [7, Lemma 1]. Second,
assuming the existence of a rectangular morphism h for G, the information trees of G
and of H (the abstract game induced from G by h) are bisimilar. The bijections and the
bisimulation (Figure 2) entail alternating trace equivalence of the games G and H and their
information trees, and thus equivalence of the synthesis problems with pure strategies in G
and in H [7, Lemma 2,Theorem 1].

3 In games played over information trees, the histories are sequences of information sets; we do not denote
them by a symbol to avoid having to define them formally.

L. Doyen and T. Soullard 23:13

G

U∼(G)

H

U≈(H)

(1)

alternating

trace equivalence

(via bijection)

bisimulation

alternating

trace equivalence

(via bijection)

(1)

(2)
imperfect-information games

perfect-information games

(information trees)

H

Figure 2 Equivalences between the game G, its induced abstract game H, and their information
trees.

4.3 Counterexamples

We present two examples showing the difficulty to adapt the results of alternating trace
equivalence for games with pure strategies, to alternating probabilistic trace equivalence for
games with randomized strategies.

First, we show that with randomized strategies, playing on the information tree of a game
with imperfect information is not equivalent to playing in the original game, although this is
true for pure strategies (links (1) of Figure 2).

The first example is matching pennies (the game G in Figure 1a). Recall that the set of
actions is A = {a, b}, the set of moves is Γ = {a1, a2, b1, b2} with act(ai) = a and act(bi) = b

for i = 1, 2. It is well known that the player cannot win matching pennies using a pure
strategy, but wins almost-surely by choosing head and tail uniformly at random in every
round. However, in the game played on the information tree of G (Figure 1b), the player
cannot win, even with positive probability. After the first round the information set is
U2 = Γ, which has two successors on both actions a and b. This is because U2 contains both
a history τ such that τai is winning and a history τ ′ such that τ ′bi is winning, hence U3 is a
successor of U2 (on both actions a and b), and analogously X is a successor of U2 (X is a
placeholder for the whole tree of Figure 1b). Therefore, after any choice of action by the
player in U2, the environment can always choose X and continue the game, ensuring that
the reachability objective is never satisfied.

This first example illustrates a crucial difference between pure and randomized strategies.
Considering a game G (with imperfect information induced by an indistinguishability rela-
tion ∼) and the game played on its information tree U∼(G) (which is of perfect information),
there is a natural bijection between (information-consistent) strategies in G and strategies in
U∼(G). The bijection exists for both pure and randomized strategies. However, only in the
case of pure strategies, the bijection is a witness of alternating trace equivalence (Figure 2).
Intuitively, this is because once a pure strategy for the player is fixed, the environment
“knows” the specific action played in every history (which is the same within an information
set), and therefore constructing a path in the original game G compatible with the player
strategy is equivalent to constructing a path in U∼(G) (informally, the information tree
is a valid abstraction for “existence of paths”). In contrast, once a randomized strategy
for the player is fixed, the environment only “knows” the specific distribution over actions
played in every history, which leaves an element of surprise as to which action will be played
when the strategy is executed. In this context, the information tree is no longer a valid
abstraction, intuitively because it allows the environment to choose a history within the
current information set after the randomly chosen action is known, as illustrated by matching
pennies (Figure 1b). To be valid, the abstraction should force the environment to stick

CONCUR 2024

23:14 Regular Games with Imperfect Information Are Not That Regular

q0

q1 q′

1

1 2

3 4 5 6 3 4 5 6

q2 q′

2

q3 q′

3
q4 q′

4

t1
1 − t1

x1 x11 − x1 1 − x1

t2 1 − t2 t3 1 − t3

x2 1−x2
x3 1 − x3 x3 1 − x3 x2 1−x2

(a) The game G.

p0

p1 p′

1

1 2

3 4 5 6 3 4 5 6

p2 p′

2

p3 p3p4 p4

z1
1 − z1

y1 y11 − y1 1 − y1

z2 1 − z2
z3 1 − z3

y2 1−y2
y2 1 − y2 y2 1 − y2 y2 1−y2

(b) The game H.

q0

q1 q′

1

1 2

3 6 4 5

q2 q′

2

q3 q′

3
q4 q′

4

t1
1 − t1

1

2
1

21

2

1

2

t2 1 − t2 t3 1 − t3

1 1 1 1

(c) The game G with x1 = 1
2 , x2 = 1, and x3 = 0.

·

p0

p1

1

3 4 5 6

p2

p3 p4

1

1

2
1

2

1 − y2 y2

y2 1−y2
y2 1 − y2

(d) The game H with y1 = 1
2 , z1 = 1, and z2 =

1 − y2.

Figure 3 A game G and the abstract game H induced by a rectangular morphism, with randomized
strategies encoded by the variables x̄, t̄ (in G) and ȳ, z̄ (in H).

to a single choice of a history, before the action is drawn from the distribution chosen by
the player. We may consider the abstract game H induced from G as a candidate for a
richer abstraction, and establish a direct link (2) between G and H (Figure 2), given the
link (1) breaks. Unfortunately, in our second example H is not equivalent to G for alternating
probabilistic trace equivalence (G ̸⪯ H), showing the absence of such a direct link, which
however exists in partial-observation games à la Reif, via the bijection ĥ mentioned in
Section 4.2.

The second example (Figure 3a) shows a game G and its abstract game H induced by a
rectangular morphism. To avoid tedious description of the game, we present the key features
informally. The game G has two actions for the player and two possible responses for the
adversary. The actions and moves are not shown in Figure 3a, and states are depicted as
circles when only the action of the player determines the successor, and as boxes when only
the move of the environment determines the successor. All states have color 0 except the
leaves, labeled by their color 1, 2, . . . , 6. The leaves are sink states (with a self-loop on every
move). The dashed lines show the indistinguishability classes. It is easy to check that the
coloring function is information-consistent.

L. Doyen and T. Soullard 23:15

Figure 3b shows the abstract game H, as a tree with the same shape as in Figure 3a for G.
The value h(τ) of a history can be read as the label of the node in Figure 3b corresponding
to the path defined by τ in Figure 3a. For example, the histories (of length 3) in G that
correspond to the nodes q3 and q′

3 are mapped by h to the abstract state p3. Figure 3b can
be viewed as the unraveling of the morphism h. It is easy to verify that h is a rectangular
refinement of the coloring function, and that ≈-equivalent abstract states are grouped within
the dashed lines.

We show that G does not reduce to H according to alternating probabilistic trace
containment (G ̸⪯ H). We describe all randomized strategies of the player and of the
environment by specifying the probability to play an action or a move in each (relevant, i.e.,
non-leaf) history. We use variables x̄ = x1, x2, x3 for αG ; ȳ = y1, y2 for αH; z̄ = z1, z2, z3
for βH; and t̄ = t1, t2, t3 for βG . Note that the player may only use information-consistent
strategies, hence the same variable is used from indistinguishable histories to describe αG
and αH. The claim G ̸⪯ H can be written as

ψ ≡ ∃x̄ · ∀ȳ · ∃z̄ · ∀t̄ :
6∨

c=1
φc

where φc is expresses that the mass of probability on color c differs in G and in H. For
example,

φ1 ≡ t1x1 ̸= z1y1, and

φ3 ≡ t1t2x2(1 − x1) + t3x3(1 − t1)(1 − x1) ̸= z1z2y2(1 − y1) + z3y2(1 − z1)(1 − y1).

To show that ψ holds, we fix x1 = 1
2 , x2 = 1, and x3 = 0. Now, consider all possible

values of ȳ and observe that if y1 ̸= 1
2 , then ψ holds since the probability mass in colors

{1, 2} is 1
2 in G and y1 in H (and thus φ1 ∨ φ2 must hold regardless of the value of z̄ and t̄).

So, it remains to show that ψ holds for y1 = 1
2 (and for all values of y2). Fix z1 = 1 and

z2 = 1 − y2 (the value of z3 is arbitrary), as illustrated in Figure 3c and Figure 3d.
Consider all possible values of t̄ and observe that if t1 ̸= 1, then ψ holds since the

probability mass in color 1 is 1
2 in G and t1 in H (thus φ1 holds). With t1 = 1, we show that

φ4 ∨ φ5 holds, that is:

0 ̸= (1 − y2)2

2 ∨ 0 ̸= (y2)2

2
which holds since either y2 ̸= 0 or 1 − y2 ̸= 0.

We conclude that ψ holds and thus G does not reduce to H (G ̸⪯ H). Note that
slightly stronger statements can be proved by a similar argument: first, the strategy βH
(represented by the variables z̄) can be chosen pure, by setting z2 = 1 if y2 = 0 and z2 = 0
if y2 = 1 (and setting z2 to an arbitrary value in {0, 1} otherwise); second, the example
does not even preserve almost-sure probabilities, in the following sense. Given a target set
T ⊆ C = {1, . . . , 6} of colors, let Reach(T) =

⋃
k∈T C

∗kCω be the reachability objective with
target T . Consider the formula

ψ′ ≡ ∃x̄ · ∀ȳ · ∃z̄ · ∀t̄ :
∨

T ⊆C

¬(Prx̄,t̄
G (Reach(T)) = 1 ⇔ Prȳ,z̄

H (Reach(T)) = 1)

where Prx̄,t̄
G (Reach(T)) is the probability that the objective Reach(T) is satisfied in G under

strategies αG defined by the variables x̄ for the player and βG defined by t̄ for the environment
(and analogously for Prȳ,z̄

H (Reach(T)) in H). It is easy to check that the condition ψ′ entails ψ.

CONCUR 2024

23:16 Regular Games with Imperfect Information Are Not That Regular

To prove that ψ′ holds, we fix x1 = 1
2 , x2 = 1, and x3 = 0 as before (Figure 3c).

Consider three possible cases for ȳ: (i) if y1 = 0, then no matter the value of the other
variables the objective Reach({1, 2}) has probability 1

2 in G and probability 0 in H, so we
take T = C \ {1, 2} = {3, 4, 5, 6}; (ii) if y1 = 1, we take T = {1, 2} (the probability mass is 1

2
in G and 1 in H); (iii) otherwise 0 < y1 < 1, and we take z1 = 1 and z2 = 1 − y2 (illustrated
in Figure 3d for y1 = 1

2), and consider all possible values of t̄: if t1 ̸= 1 then Reach({2}) has
positive probability in G and probability 0 in H, so we take T = C \ {2} = {1, 3, 4, 5, 6}, and
if t1 = 1, then Reach({4, 5}) has probability 0 in G and positive probability in H, so we take
T = C \ {4, 5} = {1, 2, 3, 6}.

▶ Theorem 8. There exists a regular game G such that the abstract game H induced from G
is not alternating probabilistic trace equivalent to G.

References
1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted automata?

Inf. Comput., 282:104651, 2022. doi:10.1016/j.ic.2020.104651.
2 Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating

refinement relations. In Davide Sangiorgi and Robert de Simone, editors, CONCUR ’98:
Concurrency Theory, 9th International Conference, Nice, France, September 8-11, 1998,
Proceedings, volume 1466 of Lecture Notes in Computer Science, pages 163–178. Springer,
1998. doi:10.1007/BFb0055622.

3 Krzystof R. Apt and Erich Grädel, editors. Lectures in Game Theory for Computer Scientists.
Cambridge University Press, 2011. URL: http://www.cambridge.org/gb/knowledge/isbn/
item5760379.

4 Christel. Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω-automata. J. ACM,
59(1):1, 2012. doi:10.1145/2108242.2108243.

5 Chitta Baral, Thomas Bolander, Hans van Ditmarsch, and Sheila A. McIlraith. Epistemic
planning (Dagstuhl seminar 17231). Dagstuhl Reports, 7(6):1–47, 2017. doi:10.4230/DagRep.
7.6.1.

6 Dietmar Berwanger and Laurent Doyen. Observation and distinction. representing information
in infinite games. In Christophe Paul and Markus Bläser, editors, 37th International Symposium
on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier,
France, volume 154 of LIPIcs, pages 48:1–48:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.48.

7 Dietmar Berwanger, Laurent Doyen, and Thomas Soullard. Synthesising full-information
protocols. CoRR, abs/2307.01063, 2023. doi:10.48550/arXiv.2307.01063.

8 Julian C. Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn, J. F. A. K.
van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in logic
and practical reasoning, pages 721–756. North-Holland, 2007. doi:10.1016/s1570-2464(07)
80015-2.

9 Julian C. Bradfield and Igor Walukiewicz. The mu-calculus and model checking. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 871–919. Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

10 Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and Rohit
Singh. Quantitative synthesis for concurrent programs. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer
Science, pages 243–259. Springer, 2011. doi:10.1007/978-3-642-22110-1_20.

11 Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Thomas A. Henzinger. Randomness
for free. Inf. Comput., 245:3–16, 2015. doi:10.1016/j.ic.2015.06.003.

https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1007/BFb0055622
http://www.cambridge.org/gb/knowledge/isbn/item5760379
http://www.cambridge.org/gb/knowledge/isbn/item5760379
https://doi.org/10.1145/2108242.2108243
https://doi.org/10.4230/DagRep.7.6.1
https://doi.org/10.4230/DagRep.7.6.1
https://doi.org/10.4230/LIPIcs.STACS.2020.48
https://doi.org/10.48550/arXiv.2307.01063
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1016/j.ic.2015.06.003

L. Doyen and T. Soullard 23:17

12 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification. J.
ACM, 42(4):857–907, 1995. doi:10.1145/210332.210339.

13 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games.
Theor. Comput. Sci., 386(3):188–217, 2007. doi:10.1016/j.tcs.2007.07.008.

14 Stéphane Demri and Raul Fervari. Model-checking for ability-based logics with constrained
plans. In Brian Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023,
pages 6305–6312. AAAI Press, 2023. doi:10.1609/aaai.v37i5.25776.

15 Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of labeled
markov chains. Int. J. Found. Comput. Sci., 19(3):549–563, 2008. doi:10.1142/
S0129054108005814.

16 Robert Gibbons. A primer in game theory. Harvester Wheatsheaf, 1992.
17 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite

Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

18 Dilian Gurov, Valentin Goranko, and Edvin Lundberg. Knowledge-based strategies for multi-
agent teams playing against nature. Artif. Intell., 309:103728, 2022. doi:10.1016/j.artint.
2022.103728.

19 Donald A. Martin. The determinacy of blackwell games. J. Symb. Log., 63(4):1565–1581, 1998.
doi:10.2307/2586667.

20 A. Paz. Introduction to probabilistic automata. Academic Press, 1971.
21 Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger.

Algorithms for omega-regular games with imperfect information. Log. Methods Comput. Sci.,
3(3), 2007. doi:10.2168/LMCS-3(3:4)2007.

22 John H. Reif. The complexity of two-player games of incomplete information. J. Comput.
Syst. Sci., 29(2):274–301, 1984. doi:10.1016/0022-0000(84)90034-5.

23 Wolfgang Thomas. On the synthesis of strategies in infinite games. In Ernst W. Mayr and
Claude Puech, editors, STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer
Science, Munich, Germany, March 2-4, 1995, Proceedings, volume 900 of Lecture Notes in
Computer Science, pages 1–13. Springer, 1995. doi:10.1007/3-540-59042-0_57.

A Proof of Lemma 4

The abstract states computed by the fixpoint Y∗ are all universally winning.

▶ Lemma 4. Y∗ ∩ P ⊆ P∀.

Proof. Given p ∈ Y∗ ∩ P , we show that p ∈ P∀. Let Ap = {a ∈ A | (p, a) ∈ Y∗} and
show that Ap ̸= ∅. Since Y∗ ⊆ Pre(Y∗) ∪ PF , either (i) p ∈ PF and then Ap = A ̸= ∅ as
PF ×A ⊆ Pre(PF) (states in PF form a sink set and PF is closed under ≈); or (ii) p ∈ Pre(Y∗)
and by definition there exists a ∈ A such that (p, a) ∈ Y∗, hence Ap ̸= ∅.

Consider the strategy α for the player defined, for all τ ∈ Γ∗, by α(τ) = dU (Ap) where
p = h(τ) and dU (·) is the uniform distribution. We show that α is information-consistent.
Given τ ′ ∼ τ , let p = h(τ) and p′ = h(τ ′). Hence we have p ≈ p′, and since Y∗ is closed
under ≈, if (p, a) ∈ Y∗ then (p′, a) ∈ Y∗. It follows that Ap = Ap′ and thus α(τ) = α(τ ′).

The strategy α ensures that Y∗ is never left: if h(τ) ∈ Y∗ and a ∈ Supp(α(τ)), then
h(τc) ∈ Y∗ for all c such that act(c) = a. Indeed, for p = h(τ) we have a ∈ Ap and (p, a) ∈ Y∗
thus (p, a) ∈ Pre(Y∗) which imply δP (p, c) = h(τc) ∈ Y∗.

CONCUR 2024

https://doi.org/10.1145/210332.210339
https://doi.org/10.1016/j.tcs.2007.07.008
https://doi.org/10.1609/aaai.v37i5.25776
https://doi.org/10.1142/S0129054108005814
https://doi.org/10.1142/S0129054108005814
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1016/j.artint.2022.103728
https://doi.org/10.1016/j.artint.2022.103728
https://doi.org/10.2307/2586667
https://doi.org/10.2168/LMCS-3(3:4)2007
https://doi.org/10.1016/0022-0000(84)90034-5
https://doi.org/10.1007/3-540-59042-0_57

23:18 Regular Games with Imperfect Information Are Not That Regular

We now show that α ensures from Y∗ a target state is reached within the next N = |P |
steps with probability at least ν = 1

|A|N , that is Prα,β
τ (Reach≤|τ |+N) ≥ ν for all strategies β

of the environment and for all τ ∈ Γ∗ such that h(τ) ∈ Y∗.
Since Y∗ = µX. int≈(Y∗) ∩ (Pre(X) ∪ PF), the set Y∗ is the limit of the (non-decreasing)

sequence (Xi)i∈N where X0 = ∅ and Xi+1 = Y∗ ∩ (Pre(Xi) ∪ PF). The rank of an element
y ∈ Y∗ is the least i ≥ 0 such that y ∈ Xi (i.e., such that y ∈ Xi and y ̸∈ Xi−1). By extension,
the rank of a history τ such that h(τ) ∈ Y∗ is the rank of h(τ). Note that states p ∈ Y∗ ∩ P

have odd rank, and the state-action pairs (p, a) ∈ Y∗ ∩ (P ×A) have even rank. The smallest
rank is 1 and corresponds to the set PF of target states. Let N∗ be the largest rank, which
is bounded by |Y∗|.

Intuitively, from any history τ such that h(τ) ∈ Y∗ the strategy α ensures, against all
strategies of the environment, that the history τc after the next round has a lower rank
(unless the rank of τ is 1, and thus τ is a winning history) with probability at least 1

|A| . Let
r > 1 be the rank of h(τ), then h(τ) ∈ Pre(Xr−1) and thus there is an action a ∈ A such
that (h(τ), a) ∈ Xr−1, thus (h(τ), a) ∈ Pre(Xr−2) and h(τc) ∈ Xr−2 for all c with act(c) = a.
It follows that a ∈ Ap is played with probability at least 1

|A| and the intuitive claim follows.
Combined with the fact that the strategy α ensures Y∗ is never left, this claim shows that

from all τ such that h(τ) ∈ Y∗, against all strategies β of the environment, the reachability
objective is satisfied (i.e., the rank decreases to 1) within the next N∗ rounds with probability
at least ν = 1

|A|N∗ . Formally Prα,β
τ (Reach≤|τ |+N∗) ≥ ν against all strategies. It follows that

the probability of not reaching a target state within k ·N∗ rounds is at most (1 − ν)k which
tends to 0 as k → ∞, thus Prα,β

τ (Reach) = 1 by the squeeze theorem. We conclude that
the player is almost-sure winning from [τ]∼ since Y∗ is closed under ≈, which implies that
p = h(τ) ∈ P∀. ◀

B Proof of Lemma 5

The fixpoint Y∗ contains all existentially winning states.

▶ Lemma 5. P∃ ⊆ Y∗ ∩ P .

Proof. As a preliminary, it will be useful to note that if a strategy αas for the player is
almost-sure winning from an information set [τ]∼, then for all actions a ∈ Supp(αas(τ)), for
all moves c supported by a, act(c) = a, the strategy αas is almost-sure winning from [τc]∼.
An equivalent conclusion is that for all actions a ∈ Supp(αas(τ)), the pair (h(τ), a) is in
int≈(Pre(P∃)) (⋆).

We now proceed with the proof of the lemma. First, P∃ ⊆ P by definition. To show
that P∃ ⊆ Y∗, since Y∗ is defined as a greatest fixpoint, it is sufficient to show that Y∃ :=
P∃ ∪ int≈(Pre(P∃)) is a fixpoint, that is Y∃ = µX. int≈(Y∃) ∩ (Pre(X) ∪ PF). Since P∃
is closed under ≈ (i.e., P∃ = int≈(P∃)) so is Y∃, and we only need to show that Y∃ ⊆
µX. Y∃ ∩ (Pre(X) ∪ PF) =: X∗ (the converse inclusion is trivial).

Given y ∈ Y∃, we show that y ∈ X∗, which concludes the proof. We consider two cases,
either y = p ∈ P∃ or y = (p, a) ∈ int≈(Pre(P∃)):

(i) if p ∈ P∃, then there exists τp ∈ Γ∗ such that h(τp) = p and the player is almost-sure
winning from [τp]∼ using a strategy αas. Assume towards contradiction that p ̸∈ X∗.
We construct a (pure) spoiling strategy β for the environment as follows. For all
τ ∈ Γ∗ such that h(τ) ∈ P∃ and h(τ) ̸∈ X∗ (thus h(τ) ̸∈ Pre(X∗)), for all actions
a ∈ Supp(αas(τ)) played by αas in τ , the pair (h(τ), a) is not in X∗, and further not in

L. Doyen and T. Soullard 23:19

Pre(X∗) since (h(τ), a) ∈ int≈(Pre(P∃)) by (⋆), thus there exists a move c supported
by action a such that h(τc) = δP (h(τ), c) ̸∈ X∗. Define β(τ, a) = c, and define β(τ ′, a)
arbitrarily for τ ′ such that h(τ ′) ∈ X∗.
We have the following, for all histories τ ∈ Γ∗ and for a ∈ Supp(αas(τ)) and c = β(τ, a):

if h(τ) ∈ P∃, then h(τc) ∈ P∃ (since αas is almost-sure winning),
if h(τ) ∈ P∃ and moreover h(τ) ̸∈ X∗, then h(τc) ̸∈ X∗,
h(τp) ∈ P∃ and h(τp) ̸∈ X∗.

It follows by an inductive argument that against α, the constructed strategy β ensures
from τp that X∗ and thus PF is never reached, hence Prαas,β

τp
(Reach) = 0, which

contradicts that αas is almost-sure winning from τp. Hence p ∈ X∗.
(ii) if (p, a) ∈ int≈(Pre(P∃)), then δP (p, c)) ∈ P∃ for all moves c supported by a. By an

argument similar to case (i), we have δP (p, c)) ∈ X∗. It follows that (p, a) ∈ Pre(X∗)
and thus (p, a) ∈ X∗ = Y∃ ∩ (Pre(X∗) ∪ PF). ◀

CONCUR 2024

Validity of Contextual Formulas
Javier Esparza #

Technical University of Munich, Germany

Rubén Rubio #

Universidad Complutense de Madrid, Spain

Abstract
Many well-known logical identities are naturally written as equivalences between contextual formulas.
A simple example is the Boole-Shannon expansion c[p] ≡ (p ∧ c[true]) ∨ (¬ p ∧ c[false]), where c

denotes an arbitrary formula with possibly multiple occurrences of a “hole”, called a context, and
c[φ] denotes the result of “filling” all holes of c with the formula φ. Another example is the unfolding
rule µX.c[X] ≡ c[µX.c[X]] of the modal µ-calculus.

We consider the modal µ-calculus as overarching temporal logic and, as usual, reduce the problem
whether φ1 ≡ φ2 holds for contextual formulas φ1, φ2 to the problem whether φ1 ↔ φ2 is valid. We
show that the problem whether a contextual formula of the µ-calculus is valid for all contexts can
be reduced to validity of ordinary formulas. Our first result constructs a canonical context such
that a formula is valid for all contexts iff it is valid for this particular one. However, the ordinary
formula is exponential in the nesting-depth of the context variables. In a second result we solve
this problem, thus proving that validity of contextual formulas is EXP-complete, as for ordinary
equivalences. We also prove that both results hold for CTL and LTL as well. We conclude the paper
with some experimental results. In particular, we use our implementation to automatically prove the
correctness of a set of six contextual equivalences of LTL recently introduced by Esparza et al. for
the normalization of LTL formulas. While Esparza et al. need several pages of manual proof, our
tool only needs milliseconds to do the job and to compute counterexamples for incorrect variants of
the equivalences.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases µ-calculus, temporal logic, contextual rules

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.24

Related Version Extended Version: arXiv:2407.07759 [8]

Supplementary Material Software (Source Code): https://github.com/ningit/ctxform [12]

Funding This work was partially supported by the Agencia Estatal de Investigación (AEI) under
project PID2019-108528RB-C22.

1 Introduction

Some well-known identities useful for reasoning in different logics can only be easily formulated
as contextual identities. One example is the Boole-Shannon expansion of propositional logic,
which constitutes the foundation of Binary Decision Diagrams and many SAT-solving
procedures [1]. It can be formulated as

c[p] ≡ (p ∧ c[true]) ∨ (¬ p ∧ c[false]) (1)

where, intuitively, c denotes a Boolean formula with “holes”, called a context, and c[φ]
denotes the result of “filling” every hole of the context c with the formula φ. For example,
if c := ([] ∧ p) ∨ (q → []) and φ := p, then c[p] = (p ∧ p) ∨ (q → p). More precisely, c is
a context variable ranging over contexts, and the equivalence sign ≡ denotes that for all
possible assignments of contexts to c the ordinary formulas obtained on both sides of ≡ are
equivalent.

© Javier Esparza and Rubén Rubio;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esparza@in.tum.de
https://orcid.org/0000-0001-9862-4919
mailto:rubenrub@ucm.es
https://orcid.org/0000-0003-2983-3404
https://doi.org/10.4230/LIPIcs.CONCUR.2024.24
https://doi.org/10.48550/arXiv.2407.07759
https://github.com/ningit/ctxform
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Validity of Contextual Formulas

c[ψ1 Uψ2] Wφ ≡ (GFψ2 ∧ c[ψ1 Wψ2] Wφ) ∨ c[ψ1 Uψ2] U (φ ∨ G c[false])

φW c[ψ1 Uψ2] ≡ φU c[ψ1 Uψ2] ∨ Gφ

c[GFψ] ≡ (GFψ ∧ c[true]) ∨ c[false]

c[FGψ] ≡ (FGψ ∧ c[true]) ∨ c[false]

GF c[ψ1 Wψ2] ≡ GF c[ψ1 Uψ2] ∨ (FGψ1 ∧ GF c[true])

FG c[ψ1 Uψ2] ≡ (GFψ2 ∧ FG c[ψ1 Wψ2]) ∨ FG c[false]

Figure 1 Rewrite system for the normalization of LTL formulas [9].

For linear-time temporal logic in negation normal form, a useful identity similar to the
Boole-Shannon expansion is

c[GF p] ≡ (GF p ∧ c[true]) ∨ c[false] (2)

where c now ranges over formulas of LTL with holes. For example, the identity shows that
qU (GF p ∧ r) is equivalent to GF p ∧ qU r ∨ qU false, and so after simplifying equivalent
to GF p ∧ qU r.1 As a third example, the unfolding rule of the µ-calculus (the fundamental
rule in Kozen’s axiomatization of the logic [2]

µX.c[X] ≡ c[µX.c[X]]

whose formulation requires nested contexts. Further examples of contextual LTL identities
are found in [9], where, together with Salomon Sickert, we propose a rewrite system to
transform arbitrary LTL formulas into formulas of the syntactic fragment ∆2, with at most
single-exponential blowup.2 The rewrite system consists of the six identities (oriented from
left to right) shown in Figure 1.

Remarkably, to the best of our knowledge the automatic verification of contextual
equivalences like the ones above has not been studied yet. In particular, we do not know
of any automatic verification procedure for any of the identities above. In [9] we had to
prove manually that the left and right sides of each identity are equivalent for every context
(Lemmas 5.7, 5.9, and 5.11 of [9]), a tedious and laborious task; for example, the proof of the
first identity alone takes about 3/4 of a page. This stands in sharp contrast to non-contextual
equivalences, where an ordinary equivalence φ1 ≡ φ2 of LTL can be automatically verified by
constructing a Büchi automaton for the formula ¬ (φ1 ↔ φ2) and checking its emptiness. So
the question arises whether the equivalence problem for contextual formulas is decidable, and
in particular whether the manual proofs of [9] can be replaced by an automated procedure.
In this paper we give an affirmative answer.

Let σ be a mapping assigning contexts to all context variables of a formula φ, and let σ(φ)
denote the ordinary formula obtained by instantiating φ with σ. The equivalence, validity,
and satisfiability problems for contextual formulas are:

1 The restriction to formulas in negation normal form is necessary. For example, taking c := ¬(p ∧ [])
does not yield a valid equivalence.

2 ∆2 contains the formulas in negation normal form such that every path of the syntax tree exhibits at
most one alternation of the strong and weak until operators U and W . They have different uses, and
in particular they are easier to translate into deterministic ω-automata [9].

J. Esparza and R. Rubio 24:3

1. Equivalence of φ1 and φ2: does σ(φ1) ≡ σ(φ2) hold for every σ?
2. Validity of φ: is σ(φ) valid (in the ordinary sense) for every σ?
3. Satisfiability of φ: is σ(φ) satisfiable (in the ordinary sense) for some σ?
We choose the modal µ-calculus as overarching logic, and prove that these problems can be
reduced to their counterparts for ordinary µ-calculus formulas. As corollaries, we also derive
reductions for CTL and LTL. More precisely, we obtain the following two results.

First result. Given a contextual formula φ with possibly multiple occurrences of a context
variable c, there exists a canonical instantiation κφ of c, also called the canonical context,
such that φ is valid/satisfiable iff the ordinary formula κφ(φ) is valid/satisfiable. Further,
κφ can be easily computed from φ by means of a syntax-guided procedure.

To give a flavour of the idea behind the canonical instantiation consider the distributive
law φ1 ∧ (φ2 ∨ φ3) ≡ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3) for ordinary Boolean formulas. It is well-known
that such a law is correct iff it is correct for the special case in which φ1, φ2, φ3 are distinct
Boolean variables, say p1, p2, p3. In other words, the law is correct iff the Boolean formula
p1 ∧ (p2 ∨ p3) ↔ (p1 ∧ p2) ∨ (p1 ∧ p3) is valid. This result does not extend to contextual
formulas. For example, consider the contextual equivalence (2), reformulated as the validity
of the contextual formula

φ := c[GF p] ↔
(
(GF p ∧ c[true]) ∨ c[false]

)
(3)

While φ is valid, the ordinary formula φd := p1 ↔
(
(GF p ∧ p2) ∨ p3

)
obtained by replacing

c[GF q], c[true], and c[false] by atomic propositions p1, p2, p3, respectively, is not. (We call
φd the decontextualization of φ.) Loosely speaking, the replacement erases dependencies
between c[GF q], c[true], and c[false]. For example, since contexts are formulas in negation
normal form, c[false] |= c[true] or c[false] |= c[GF p] hold for every context c, but we do not
have p3 |= p2 and p2 |= p1. To remedy this, we choose a context κφ that informally states:

At every moment in time, p1 holds if the hole is filled with a formula globally entailing
GF p and p2 holds if it is filled with a formula globally entailing true and p3 holds if
it is filled with a formula globally entailing false.

The context is:

κφ := G
((

G ([] → GF p) → p1
)

∧
(
G ([] → true) → p2

)
∧

(
G ([] → false) → p3)

))
(4)

Our result shows that κφ is a canonical context for φ. In other words, the contextual formula
φ of (3) is valid iff the ordinary formula

κφ(φ) := κφ[GF p] ↔
(
(GF p ∧ κφ[true]) ∨ κφ[false]

)
obtained by setting c := κφ in (3), is valid. After substituting according to (4) and simplifying,
we obtain

κφ(φ) ≡
(
G (p1∧p2)∧G

(
GF p∨p3)

)
↔ (GF p∧G ((GF p → p1)∧p2)∨G (p1∧p2∧p3)

)
(5)

So (3) is valid iff the formula on the right-hand-side of (5) is valid, which is proved by Spot
2.11 [4] in milliseconds.

CONCUR 2024

24:4 Validity of Contextual Formulas

Second result. Given a contextual formula φ, the ordinary formula κφ(φ) has O(|φ|d)
length, where d is the nesting depth of the context variables. Since d ∈ O(n), the blowup is
exponential. Our second result provides a polynomial reduction. Let c[ψ1], . . . , c[ψn] be the
context expressions appearing in φ. Instead of finding a canonical instantiation, we focus on
adding to the decontextualized formula φd information on the dependencies between c[ψ1],
. . . , c[ψn]. For every pair ψi, ψj , we add to φd the premise G

(
G (ψi → ψj) → (pi → pj)

)
.

Intuitively, the premise “transforms” dependencies between ψi and ψj into dependencies
between fresh atomic propositions pi and pj . For example, we obtain that (3) is valid iff the
ordinary LTL formula

G

 3∧
i=1

3∧
j=1

(
G (ψi → ψj) → (pi → pj)

) →
(
p1 ↔ ((GF p ∧ p2) ∨ p3)

is valid or, after simplification, iff

G

 (FG ¬p → (p1 → p3)) ∧ (GF p → (p2 → p1))
∧

(p3 → p1) ∧ (p1 → p2)

 →
(
p1 ↔ ((GF p ∧ p2) ∨ p3)

)
(6)

is valid. Again, Spot 2.11 proves that (6) is valid within milliseconds. Since the premise has
polynomial size in the size of the original contextual formula, we obtain a reduction from
contextual validity to ordinary validity with polynomial blowup. Observe, however, that the
ordinary formula is not obtained by directly instantiating the context variable c.

Experiments. We have implemented our reductions and connected them to validity and
satisfiability checkers for propositional logic (PySAT [10] and MiniSat [5]), LTL (Spot
2.11 [4]), and CTL (CTL-SAT [11]). We provide some experimental results. In particular,
we can prove the correctness of all the LTL identities of [9] within milliseconds.

Structure of the paper. Section 2 recalls the standard µ-calculus and presents its contextual
extension. Section 3 studies the validity problem of contextual propositional formulas, as an
appetizer for the main results on the µ-calculus in Section 4. These are extended to CTL and
LTL in Sections 4.4 and 4.5. Experimental results are presented in Section 5, and Section 6
gives some conclusions.

2 The contextual µ-calculus

We briefly recall the syntax and semantics of the µ-calculus [2], and then introduce the
syntax and semantics of the contextual µ-calculus.

The modal µ-calculus. The syntax of the modal µ-calculus over a set AP of atomic
propositions and a set V of variables is

φ ::= p | ¬ p | X | φ ∧ φ | φ ∨ φ | ⟨·⟩φ | [·]φ | µX.φ | νX.φ (7)

where p ∈ AP and X ∈ V . The semantics is defined with respect to a Kripke structure and
a valuation. A Kripke structure is a tuple K = (S,→, I,AP, ℓ), where S and I are sets of
states and initial states, → ⊆ S × S is the transition relation (where we assume that every
state has at least one successor), and ℓ : S → P(S) assigns to each state a set of atomic

J. Esparza and R. Rubio 24:5

propositions. A valuation is a mapping η : V → P(S). Given K and η, the semantics assigns
to each formula φ a set JφKη ⊆ S, the set of states satisfying φA. A Kripke structure K
satisfies φ if I ⊆ JφKη. The mapping J· · ·Kη is inductively defined by:

JpKη = {s ∈ S | p ∈ ℓ(s)}
J¬pKη = S \ JpKη
JXKη = η(X)

Jφ1 ∧ φ2Kη = Jφ1Kη ∩ Jφ2Kη
Jφ1 ∨ φ2Kη = Jφ1Kη ∪ Jφ2Kη

J⟨·⟩φKη = {s ∈ S | ∃s′.s → s′ ∧ s′ ∈ JφKη}
J[·]φKη = {s ∈ S | ∀s′.s → s′ ⇒ s′ ∈ JφKη}

JµX.φKη =
⋂

{U ⊆ S | JφKη[X/U] ⊆ U}

JνX.φKη =
⋃

{U ⊆ S | U ⊆ JφKη[X/U]}

Let FV(φ) ⊆ V be the set of free variables, i.e. not bound by a fixpoint operator, in a formula
φ. Observe that if φ is a closed formula (that is, FV(φ) = ∅), then JφKη depends only on
K, not on η, so we just write JφK. On the contrary, when dealing with multiple Kripke
structures at the same time, we write JφKK,η or JφKK to avoid ambiguity. We say that K
satisfies φ, denoted K |= φ, if I ⊆ JφKη, that is, if every initial state satisfies φ. A closed
formula φ is valid (satisfiable) if K |= φ for every (some) Kripke structure K.

It is well-known that every formula of the µ-calculus is equivalent to a formula in which all
occurrences of a variable are either bound or free, and every two distinct fixpoint subformulas
have different variables.

The contextual modal µ-calculus. Contextual formulas are expressions over a set AP of
atomic propositions, a set V of variables, and a set C of context variables. (The contextual
formulas of the introduction only had one contextual variable, but in general they can have
multiple and arbitrarily nested variables.) They are obtained by extending the syntax (7)
with a new term:

φ ::= p | ¬p | X | · · · | νX.φ | c[φ]

where c ∈ C. For the semantics, we need to introduce contexts and their instantiations. A
context is an expression over the syntax that extends (7) with holes:

φ ::= p | ¬p | X | · · · | νX.φ | []

We let C denote the set of all contexts. An instantiation of the set C of context variables is a
mapping σ : C → C. Given a contextual formula φ, we let σ(φ) denote the ordinary formula
obtained as follows: in the syntax tree of φ, proceeding bottom-up, repeatedly replace each
expression c[ψ] by the result of filling all holes of the context σ(c) with ψ. Here is a formal
inductive definition:

▶ Definition 1 (instantiation). Let F and C be the sets of ordinary and contextual formulas
of the µ-calculus. An instantiation is a function σ : C → C binding each context variable to a
context. We lift an instantiation σ to a mapping σ̄c : C → F as follows:
1. σ̄c(p) = p.
2. σ̄c(c[φ]) = (σ(c))[[]/σ̄c(φ)] (i.e., the result of substituting σ̄c(φ) for [] in σ(c)).
3. σ̄c(φ1 ∧ φ2) = σ̄c(φ1) ∧ σ̄c(φ2).
4. σ̄c(φ1 ∨ φ2) = σ̄c(φ1) ∨ σ̄c(φ2).
5. σ̄c(⟨·⟩φ) = ⟨·⟩ σ̄c(φ).
6. σ̄c([·]φ) = [·] σ̄c(φ).
7. σ̄c(µX.φ) = µX.σ̄c(φ).
8. σ̄c(νX.φ) = νX.σ̄c(φ).
Abusing language, we overload σ and write σ(φ) for σ̄(φ).

CONCUR 2024

24:6 Validity of Contextual Formulas

▶ Example 2. Let φ = pU c1[(p ∨ c1[q]) W c2[¬p ∨ q)]]. Further, let σ(c1) := G [] and
σ(c2) := ([] ∧ q). We have σ(φ) = pU G

(
(p ∨ G q) W ((¬p ∨ q) ∧ q)

)
.

We can now extend the notions of validity and satisfaction from ordinary to contextual
formulas.

▶ Definition 3 (validity and satisfiability). A closed contextual formula φ is valid if K |= σ(φ)
for every instantiation σ and Kripke structure K, and satisfiable if K |= σ(φ) for some
instantiation σ and Kripke structure K.

3 Validity of contextual propositional formulas

As an appetizer, we study the validity and satisfiability problems for the propositional
fragment of the modal µ-calculus, which allows us to introduce the main ideas in the simplest
possible framework. The syntax of contextual propositional formulas over sets AP and C of
propositional and contextual variables is

φ ::= p | ¬ p | φ ∧ φ | φ ∨ φ | c[φ] (8)

where p ∈ AP and c ∈ C. The semantics is induced by the semantics of the modal µ-calculus,
but we quickly recall it. Given a valuation β : AP → {0, 1}, the semantics of an ordinary
formula φ is the Boolean JφKβ ∈ {0, 1}, defined as usual, e.g. Jφ1 ∧ φ2Kβ = 1 iff Jφ1Kβ = 1
and Jφ2Kβ = 1. Given a valuation β and an instantiation σ : C → C of the context variables,
the semantics of a contextual formula is the boolean Jσ(φ)Kβ , where σ(φ) is the formula
obtained by instantiating each context variable c with the context σ(c).

We will use the substitution lemma of propositional logic. Let F and C be the set of all
ordinary and contextual propositional formulas, respectively.

▶ Lemma 4 (substitution lemma). For any φ ∈ F, valuation β : AP → {0, 1}, and substitution
σ : AP → F, Jσ(φ)Kβ = JφKβ′ where β′ is given by β′(p) := Jσ(p)Kβ for every p ∈ V .

Moreover, since formulas with syntax (8) are in negation normal form, we have the following
monotonicity result.

▶ Lemma 5 (monotonicity). For any φ,ψ, ψ′ ∈ F, propositional variable p that does not appear
negated in φ, and valuation β : AP → {0, 1}, if Jψ → ψ′Kβ = 1 then Jφ[p/ψ] → φ[p/ψ′]Kβ = 1.

3.1 Canonical instantiations
Let us now prove that a contextual propositional formula φ ∈ C is valid (satisfiable) iff it is
valid (satisfiable) for the following canonical instantiation κφ of its context variables.

▶ Definition 6 (maximal context subformulas). A context subformula of φ ∈ C is a subformula
of φ of the form c[ψ] for some c ∈ C and ψ ∈ C. The set of context subformulas of φ is
denoted CSub(φ). A context subformula is maximal if it is not a proper subformula of any
other context subformula. The decontextualization of φ, denoted φd, is the result of replacing
every maximal context subformula c[ψ] of φ by a fresh propositional variable pc[ψ].

▶ Definition 7 (canonical instantiation of a contextual formula). The canonical instantiation
of φ ∈ C, also called the canonical context, is the mapping κφ : C → C that assigns to every
context variable c ∈ C the context

κφ(c) :=
∧

c[ψ]∈CSub(φ)

(
[] → ψd

)
→ pc[ψ]

J. Esparza and R. Rubio 24:7

▶ Example 8. Let us illustrate Definition 7 on an example. Boole-Shannon’s expansion
holds iff the contextual formula

φ := c[p] ↔
(
(p ∧ c[true]) ∨ (¬ p ∧ c[false])

)
is valid. We have CSub(φ) = {c[p], c[true], c[false]}. All elements of CSub(φ) are maximal.
Since pd = p, trued = true, and falsed = false, the canonical instantiation is given by

κφ(c) =
(
([] → p) → pc[p]

)
∧

(
([] → true) → pc[true]

)
∧

(
([] → false) → pc[false]

)
We need an auxiliary lemma.

▶ Lemma 9. For any φ ∈ C, instantiation σ, and valuation β, there is a valuation β′ that
coincides with β in every variable occurring in σ(φ) and satisfies Jσ(φ)Kβ = Jκφ(φ)Kβ′ .

Proof sketch (full proof in [8]). Given φ, σ, and β, we define β′(pc[ψ]) = Jσ(c[ψ])Kβ for
every c[ψ] ∈ CSub(φ) and β′(p) = β(p) otherwise. We first prove Jσ(ϕ)Kβ = JϕdKβ′ as
a direct application of the substitution lemma with γσ(pc[ψ]) = σ(c[ψ]), which satisfies
γσ(ϕd) = σ(ϕ). Then, we prove Jσ(ϕ)Kβ = Jκφ(ϕ)Kβ′ by induction on ϕ, using the previous
statement and some calculations on the expression of κφ(c[ψ]) using the monotonicity of
contexts by Lemma 5. ◀

▶ Proposition 10 (fundamental property of the canonical instantiation). A contextual formula
φ ∈ C is valid (resp. satisfiable) iff the ordinary formula κφ(φ) ∈ F is valid (resp. satisfiable).

Proof. For validity, if φ is valid, then σ(φ) is valid for every instantiation σ, and so in
particular κφ(φ) is valid. For the other direction, assume κφ(φ) is valid. We prove that σ(φ)
is also valid for any instantiation σ. Let β be a valuation. By Lemma 9 there is another
valuation β′ such that Jσ(φ)Kβ = Jκ(φ)Kβ′ . Moreover, we have Jκ(φ)Kβ′ = 1 because κ(φ) is
valid. So σ(φ) is valed, because β is arbitrary.

Satisfiability is handled by a dual proof. If κφ(φ) is satisfiable, then so is φ by definition.
If φ is satisfiable, then there is an instantiation σ such that Jσ(φ)Kβ = 1. Lemma 9 give us a
valuation β′ such that Jκφ(φ)Kβ′ = Jσ(φ)Kβ = 1. ◀

▶ Example 11. Let φ and κφ(c) be as in Example 8. By definition, we have κφ(φ) :=
κφ(c[p]) ↔

(
(p ∧ κφ(c[true])) ∨ (¬ p ∧ κφ(c[false]))

)
. Simplification yields

pc[p] ∧ pc[true] ∧ (¬p → pc[false])
κφ(φ) ≡ ↔

(p ∧ (p → pc[p]) ∧ pc[true]) ∨ (¬p ∧ pc[p] ∧ pc[true] ∧ pc[false])

This formula is not valid, and so by Proposition 10 Boole-Shannon’s expansion is valid.

The following example shows that the ordinary formula κφ(φ) may be exponentially
larger than the contextual formula φ when φ contains nested contexts.

▶ Example 12. Consider the contextual formula φ := cn[q], where c0[ψ] := ψ and cn[ψ] :=
c[cn−1[ψ]] for every formula ψ. The size of φ is n + 4. The canonical context is κφ(c) =∧n
l=1([] → pcl−1[q]) → pcl[q] with pc0[q] = q. Instantiating the “holes” of κφ(c) with a

formula ψ of size k yields the formula κφ(c)[[]/ψ] of size n(7 + k) − 1 ≥ nk. Since κφ(φ) =
κφ(cn[q]) = κ(c)[[]/κ(cn−1[q])] by definition, the size of κφ(φ) is at least n! = (|φ| − 4)!, and
so exponential in the size of φ.

CONCUR 2024

24:8 Validity of Contextual Formulas

3.2 A polynomial reduction
As anticipated in the introduction, in order to avoid the exponential blowup illustrated
by the previous example, we consider a second method that relies on finding an ordinary
formula equivalid to the contextual formula. This will lead us to the complexity result of
Corollary 14.

▶ Proposition 13. A propositional contextual formula φ ∈ C is valid iff the ordinary
propositional formula

φe :=

 ∧
c[ψ1],c[ψ2]∈CSub(φ)

(ψd1 → ψd2) → (pc[ψ1] → pc[ψ2])

 → φd

is valid.

Proof sketch (full proof in [8]). We follow here the same ideas of Section 3.1. (⇒) If φe
is valid, for a given substitution σ and Kripke structure K, we define the Kripke structure
K′ of Lemma 9. After showing again that JϕdKβ′ = Jσ(ϕ)Kβ for every subformula, we
see that the condition of φe holds through a calculation, and then its conclusion yields
JφdKβ′ = Jσ(φ)Kβ = 1, so φ is valid. (⇐) If φ is valid, so is κφ(φ) with a valuation β. We
show φe holds under the same valuation. This is immediate if the premise does not hold.
Otherwise, we can use the monotonicity encoded in the premise of φe to almost repeat the
calculation on κφ(c[ψ]) in Lemma 9 and conclude Jκφ(φ)Kβ = JφdKβ′ = 1. ◀

▶ Corollary 14. The validity and satisfiability problems for contextual propositional formulas
are co-np-complete and np-complete, respectively.

Proof. Proposition 13 gives a polynomial reduction to validity of ordinary formulas. Indeed,
|φd| ≤ |φ|+ |φ|3 · (2|φ|+5) ≤ 8|φ|4. For satisfiability, it suffices to replace the top implication
of φe by a conjunction. ◀

▶ Remark 15. In the propositional calculus, once we assign truth values to the atomic
propositions every formula is equivalent to either true or false. Similarly, every context is
equivalent to true, false, or []. Hence, an alternative method to check validity of a contextual
propositional formula is to check the validity of all possible instantiations of the context
variables with these three contexts. However, for n different context variables, this requires
3n validity checks.
▶ Remark 16. Other examples of valid identities are c[p ∧ q] ≡ c[p] ∧ c[q], c[p ∨ q] ≡ c[p] ∨ c[q],
and c[p] ≡ c[c[p]]. Example of valid entailments are (p ↔ q) |= (c[p] ↔ c[q]) and (p →
q) |= (c[p] → c[q]); the entailments in the other direction are not valid, as witnessed by the
instantiation σ(c) := false. Finally, p ≡ c[p] is an example of an identity that is not valid
in any direction. All these facts can be automatically checked using any of the methods
described in the section.

4 Validity of contextual µ-calculus formulas

We extend the reductions of Section 3 to the contextual modal µ-calculus. In particular,
this requires introducing a new definition of canonical instantiation and a new equivalid
formula. The main difference with the propositional case is that contexts may now contain
free variables (that is, variables that are bound outside the context). For example, in the
unfolding rule we find the context c[X], and X appears free in the argument of c. This

J. Esparza and R. Rubio 24:9

problem will be solved by replacing each free variable X by either the fixpoint subformula that
binds it, or by a fresh atomic proposition pX . We will also need to tweak decontextualizations.
More precisely, the canonical instantiation will have the shape

κφ(c) :=
∧

c[ψ]∈CSub(φ)

(AG ([] → ψ∗)) → pc[ψ]

where AGψ is an abbreviation for νX.([·]X ∧ ψ), and ψ∗ is a slight generalization of ψd.
Throughout the section we let F and C denote the sets of all ordinary and contextual

formulas of the contextual µ-calculus over sets AP, V , and C, of atomic propositions,
variables, and context variables, respectively. Further, we assume w.l.o.g. that all occurrences
of a variable in a formula are either bound or free, and that distinct fixpoint subformulas
have distinct variables. The following notation is also used throughout:

▶ Definition 17. Given a formula φ ∈ C and a bound variable X occurring in φ, we let
αX.φX denote the unique fixpoint subformula of φ binding X.

4.1 Variable and propositional substitutions
A key tool to obtain the results of Section 3 was the substitution lemma for propositional
logic. On top of atomic propositions, the µ-calculus has also variables, and we need separate
substitution lemmas for both of them. We start with the variable substitution lemma. In
this case, we have a µ-calculus formula φ with some free variables X ∈ FV(φ) and we want
to replace them by closed formulas σ(X) ∈ F. As usual, bound variables are not replaced
by variable substitutions, i.e. σ(αX.ϕ) = α.σ|V \{X}(ϕ). The following lemma is a direct
translation of the substitution lemma for propositional logic.

▶ Lemma 18 (variable substitution lemma). For any Kripke structure with set of states S,
valuation η : V → P(S), and substitution σ : V → F such that σ(X) is either X or a closed
formula for all X ∈ V , we have Jσ(φ)Kη = JφKη′ where η′ is defined by η′(X) := Jσ(X)Kη.

Replacing atomic propositions is more subtle, since they can be mapped to non-ground µ-
calculus formulas. While propositions have a fixed value, the semantics of their replacements
may depend on the valuation, which could be the dynamic result of fixpoint calculations
appearing in the formula. Consequently, the substitution lemma will not work for an arbitrary
valuation like in Lemma 18, but only for those who match the values of the fixpoint variables
of the formula.

▶ Definition 19 (fixpoint valuation). η is a fixpoint valuation of a formula φ ∈ F iff
η(X) = JαX.ϕKη for every bound variable X of φ.

▶ Lemma 20 (propositional substitution lemma). For any Kripke structure K =
(S,→, I,AP, ℓ), formula φ ∈ F, substitution σ : AP → F such that σ(p) = p if p ap-
pears negated in φ, and valuation η : V → P(S) such that η(X) = JαX.σ(ϕX)Kη for every
subformula αX.ϕX of φ, we have Jσ(φ)KK,η = JφKK′,η where K′ = (S,→,AP, I, ℓ′) is the
Kripke structure with ℓ′(p) = Jσ(p)Kη for every p ∈ AP.

These two lemmas will be very helpful in the proof of the main theorems, where we
turn subformulas and variables into atomic propositions to make formulas like κφ(φ) and φe
ordinary and closed, respectively. For example, consider µX.c[X] = c[µX.c[X]]. If we take
ψd instead of ψ∗ in the canonical instantiation, we obtain

κφ(c) =
(
(AG ([] → X)) → pc[X]

)
∧

((
AG ([] → µX.pc[X])

)
→ pc[µX.c[X]]

)
(9)

CONCUR 2024

24:10 Validity of Contextual Formulas

Since X is free in this context, which value should it take? The following lemma proves there
is a unique fixpoint valuation η̂ for each formula φ and Kripke structure K. This will give
the answer to this question.

▶ Lemma 21 (existence of fixpoint valuation). For every Kripke structure K and closed
formula φ ∈ F, there is a unique fixpoint valuation η̂, up to variables that do not appear in φ.

Moreover, in (9), we will be interested in getting rid of the free occurrence of X to reduce
the problem to validity of ordinary closed formulas. The following lemma claims that we can
replace the free variables in the formula by the fixpoint subformula defining those variables,
without changing the semantics of the formula. We call the substitution achieving this, which
we show to be independent of any Kripke structure, the fixpoint substitution of φ.

▶ Lemma 22 (fixpoint substitution). For every closed formula φ ∈ F, there is a (unique)
variable substitution σ̂ : X → F such that σ̂(X) is closed and σ̂(X) = σ̂(αX.ϕX). Moreover,
for every Kripke structure K, every subformula ϕ of φ, and every fixpoint valuation η for φ,
we have Jσ(ϕ)K = JϕKη.

4.2 Canonical instantiation
We are now ready to define the canonical instantiation of a contextual formula.

▶ Definition 23 (canonical instantiation of a contextual formula). Let φ ∈ C be a contextual
formula of the µ-calculus. Given a subformula ψ of φ, let ψ∗ be the result of applying to ψd
its fixpoint substitution. The canonical instantiation of φ is the mapping κφ : C → C defined
by

κφ(c) :=
∧

c[ψ]∈CSub(φ)

(AG ([] → ψ∗)) → pc[ψ]

where AGψ is an abbreviation for νX.([·]X ∧ ψ) for some fresh variable X.

We prove that φ is valid (resp. satisfiable) iff κφ(φ) is valid (satisfiable). We need two
lemmas. The first one is the extension of Lemma 5 to the µ-calculus.

▶ Lemma 24 (monotonicity). For every φ,ψ, ψ′ ∈ F, where only φ may contain [], fixpoint
valuation η̂, and every s ∈ S, if s ∈ JAG (ψ → ψ′)Kη, then s ∈ Jφ[[]/ψ]Kη̂ implies s ∈
Jφ[[]/ψ′]Kη̂.

The second lemma is the key one.

▶ Lemma 25. For every φ ∈ F, instantiation σ, and Kripke structure K = (S,→, I,AP, ℓ),
there is a Kripke structure K′ = (S,→,AP ′, I, ℓ′), where AP ⊆ AP ′ and ℓ′ extends ℓ, such
that Jσ(φ)KK = Jκφ(φ)KK′ .

Proof sketch (full proof in [8]). The ideas of Lemma 9 are reproduced here, although with
the additional complication of µ-calculus variables. Given φ, σ, and K, we define K′ :=
(S,→, I,AP ′, ℓ′), AP ′ := AP ∪ {pc[ψ] | c[ψ] ∈ CSub(φ)}, ℓ′(p) = ℓ(p) if p ∈ AP, and
ℓ′(pc[ψ]) = Jσ(c[ψ])Kη̂ using the fixpoint valuation η̂ of Lemma 21 for σ(φ). First, we show
Jϕ∗Kη̂ = JϕdKη̂ for every subformula ϕ of φ using the variable substitution lemma (Lemma 18)
with γ∗(X) = αX.φX . Then, like in the proposition case, we prove Jσ(ϕ)Kη̂ = JϕdKη̂ for any
subformula ϕ using the propositional substitution lemma (Lemma 20) with γσ(pc[ψ]) = σ(c[ψ]).
Finally, we prove Jσ(ϕ)Kη̂ = Jκφ(ϕ)Kη̂ by induction using some calculation (essentially the
same in Lemma 9) by the monotonicity of Lemma 24 on the expression of κφ(c) as well as
the propositional substitution lemma. ◀

J. Esparza and R. Rubio 24:11

▶ Theorem 26. For every φ ∈ C,φ is valid (resp. satisfiable) iff κφ(φ) ∈ F is valid
(satisfiable).

Proof. For validity: (⇒) If φ is valid, then σ(φ) is valid for every instantiation σ. In
particular, κφ(φ) is valid. (⇐) Assuming κφ(φ) is valid and for any instantiation σ, we must
prove that σ(φ) is also valid. Let K be a Kripke structure, Lemma 25 claims there is another
Kripke structure K′ such that Jσ(φ)KK = Jκφ(φ)KK′ , so K |= σ(φ) iff K′ |= κφ(φ). Moreover,
we have K′ |= κφ(φ) because κφ(φ) is valid, so σ(φ) is valid too since K is arbitrary.

For satisfiability, (⇐) If κφ(φ) is satisfiable, then φ is satisfiable by definition. (⇒) If
φ is satisfiable, then K |= σ(φ) for some σ and K. Lemma 25 then ensures K′ |= κφ(φ) for
some K′, so κφ(φ) is satisfiable. ◀

As in the propositional case, the length of κφ(φ) grows exponentially in the nesting depth
of the context. However, in the µ-calculus it can also grow exponentially even for non-nested
contexts. The reason is that applying the fixpoint substitution to a µ-formula can yield an
exponentially larger formula.

▶ Example 27. Consider φ = µX1. · · ·µXn.X1 ∧ · · · ∧ Xn for any n ∈ N, whose size
is |φ| = 3n − 1. It can be proven by induction that |σ(Xk)| = 2k−1(3n − 2) + 1, so
|σ(Xn)| = 2n−1(3n− 2) + 1 = 2 1

3 (|φ|−2)(|φ| + 1) + 1 ∈ O(2|φ|).3

Both problems are solved in the next section by giving an alternative reduction to
validity/satisfiability of ordinary µ-calculus formulas.

4.3 A polynomial reduction
Given a contextual formula φ of the µ-calculus, we construct an ordinary formula φe equivalid
to φ of polynomial size in φ. Following the idea of Proposition 13, we replace all context
occurrences in φ by fresh atomic propositions, and insert additional conditions to ensure that
the values of these propositions are consistent with what they represent. However, in the
µ-calculus, these conditions may introduce unbound variables, and the strategy to remove
them in Theorem 26 involves the exponential blowup attested by Example 27. To solve this
problem, we also replace the free µ-calculus variables in the context occurrences by fresh
atomic propositions; further, we add additional clauses to ensure that they take a value
consistent with the fixpoint calculation.

▶ Definition 28 (equivalid formula). For every contextual formula φ ∈ C,
let F =

⋃
c[ψ]∈CSub(φ) FV(ψ) be the free variables in all context arguments of φ;

for every X ∈ F , let pX be a fresh variable that does not occur in φ; and
for every subformula ϕ of φ, let ϕ+ be the result of replacing every free occurrence of X
in the formula ϕd by pX .

We define the ordinary formula φe ∈ F as ∧
c[ψ1],c[ψ2]
∈CSub(φ)

AG (AG (ψ+
1 → ψ+

2) → (pc[ψ1] → pc[ψ2])) ∧
∧
X∈F

AG (pX ↔ αX.ϕ+
X)

 → φ+

We say K′ is an extension of K if K′ = (S, {→}, I,AP ′, ℓ′), AP ⊆ AP ′, and ℓ′|AP = ℓ.

3 The difficulty in the previous example are fixpoint formulas with free variables. Otherwise, |σ(X)| =
|σ(αX.φX)| = |αX.φX | ≤ |φ|.

CONCUR 2024

24:12 Validity of Contextual Formulas

▶ Proposition 29. For every contextual formula φ ∈ C, instantiation σ, and Kripke structure
K = (S,→, I,AP, ℓ),
1. there is an extension K′ of K such that K |= σ(φ) iff K′ |= φe.
2. for any extension K′ of K such that K′ is a model for the premise of φe, K′ |= κφ(φ) iff

K′ |= φe.

Proof sketch (full proof in [8]). We follow the main strategy of Proposition 13. (1) Using
the valuation η̂ given by Lemma 21 for σ(φ), we define the Kripke structure K′ of Lemma 25
with some more variables ℓ′(pX) = JαX.φXKK,η̂. Again, for every subformula, we prove
JϕdKK′,η̂ = Jϕ+KK′,η̂, JϕdKK′,η̂ = Jσ(ϕ)KK,η̂ invoking the appropriate substitution lemmas.
This let us prove that the premise of φe holds because of the monotonicity of contexts
reflected in Lemma 24 and the matching definitions of η̂ and ℓ′(pX). Hence, φe is equivalent
to its conclusion, and we have proven JφdKK′,η̂ = Jσ(φ)KK,η̂, which implies the statement.

(2) Let φe = φp → φd, we now assume K′ |= φp and must prove K′ |= κφ(φ) iff K′ |= φe,
or equivalently iff K′ |= φ+. Using the fixpoint valuation η̂ of κφ(φ), we inductively extract
from the premise that ℓ′(pX) = η̂(X) and ℓ′(pc[ψ]) = Jκφ(c[ψ])Kη̂ with the usual calculations
and substitutions. Then, we conclude that the right argument of the top implication in φe
satisfies Jφ+K = Jσ(φ)K, which implies the statement. ◀

▶ Theorem 30. A contextual µ-calculus formula φ ∈ C is valid iff φe ∈ F is valid.

Proof. (⇐) φ is valid if σ(φ) is valid for every instantiation σ. Let K be any Kripke structure,
K |= σ(φ) must hold. However, Proposition 29 ensures there exists K′ such that K |= σ(φ)
if K |= φe. Since φe is valid, we are done. (⇒) If φ is valid, so is κφ(φ). We should prove
that φe is valid, which means K |= φe for all K. If the premise of φe does not hold, K |= φe
trivially. Otherwise, Proposition 29 reduce the problem to K |= κφ(φ), which holds by
hypothesis. ◀

▶ Corollary 31. The validity and satisfiability problems for contextual µ-calculus formulas
are exptime-complete.

Proof. The validity and satisfiability problems for ordinary formulas of the µ-calculus are
exptime-complete [2]. Theorem 30 gives a polynomial reduction from contextual to ordinary
validity. Indeed, a rough bound is |φe| ≤ |φ|3 · (2|φ| + 5) + |φ| · (|φ| + 2) + |φ| ≤ 11|φ|4. For
satisfiability, we can again replace the top implication of φe by a conjunction. ◀

4.4 Validity of contextual CTL formulas
We assume that the reader is familiar with the syntax and semantics of CTL (see e.g. [3]), and
only fix a few notations. The syntax of contextual CTL over a set AP of atomic propositions
is:

φ ::= p | ¬ p | φ ∧ φ | φ ∨ φ | c[φ] | A (φUφ) | A (φWφ) | E (φUφ) | E (φWφ)

where p ∈ AP, c ∈ C, and U, W are the strong until and weak until operators. As for the
µ-calculus, the syntax of contextual CTL-formulas adds a term c[φ], and the syntax of CTL
contexts adds the hole term [].

Given a Kripke structure K = (S,→, I,AP, ℓ) and a mapping ℓ : S → P(S), the semantics
assigns to each ordinary formula φ the set JφK ⊆ S of states satisfying φ. For example,
JE (φ1 Wφ2)K is the set of states s0 such that some infinite path s0s1s2 · · · of the Kripke

J. Esparza and R. Rubio 24:13

structure satisfies either si ∈ Jφ1K for every i ∈ N, or sk ∈ Jφ2K and s0, . . . , sk−1 ∈ Jφ1K
for some k ≥ 1. We extend the semantics to contexts and contextual formulas as for the
µ-calculus.

We proceed to solve the validity problem for contextual CTL using the syntax-guided
translation from CTL to the µ-calculus [6, Pag. 1066]. The translation assigns to each
CTL-formula φ a closed formula φµ of the µ-calculus such that JφK = JφµK holds for every
Kripke structure K and mapping ℓ.

▶ Definition 32 (CTL to µ-calculus translation). For any context or contextual CTL formula
φ we inductively define the µ-calculus formula φµ by
1. pµ = p

2. (¬ p)µ = ¬ p
3. ([])µ = []
4. (c[ψ])µ = c[ψµ]
5. (φ1 ∧ φ2)µ = φµ1 ∧ φµ2
6. (φ1 ∨ φ2)µ = φµ1 ∨ φµ2
7. A (φ1 Uφ2)µ = µX.([·]X ∧ φµ1) ∨ φµ2 .
8. A (φ1 Wφ2)µ = νX.([·]X ∧ φµ1) ∨ φµ2 .
9. E (φ1 Uφ2)µ = µX.(⟨·⟩X ∧ φµ1) ∨ φµ2 .

10. E (φ1 Wφ2)µ = νX.(⟨·⟩X ∧ φµ1) ∨ φµ2 .
The translations of AF, AG, EF, and EG follow by instantiating (7-10) appropriately.

The proof of the following corollary can be found in [8]. Intuitively, it is a consequence of
the fact that the canonical instantiation of Definition 23 is a formula of the CTL-fragment of
the µ-calculus.

▶ Corollary 33. For any contextual CTL formula φ, let κφ : C → CTL be the instantiation
of contexts defined by

κφ(c) :=
∧

c[ψ]∈CSub(φ)

(
AG ([] → ψd)

)
→ pc[ψ]

Then, the following statements are equivalent:
1. φ is valid,
2. κφ(φ) is valid, and
3. φe :=

(∧
c[ψ1],c[ψ2]∈CSub(φ) AG (AG (ψd1 → ψd2) → (pc[ψ1] → pc[ψ2]))

)
→ φd is valid.

Proof sketch (full proof in [8]). A straightforward induction shows that (σ(φ))µ = σµ(φµ)
for any instantiation σ. Moreover, κµφ = κφµ and φµe = (φµ)e. Hence, going back and forth
between CTL and the µ-calculus, we can translate Theorems 26 and 30 to CTL. ◀

▶ Corollary 34. The validity problem for contextual CTL formulas is exptime-complete.

Proof. The validity problem for CTL is known to be exptime-complete [7], it is a specific
case of the contextual validity problem, and Corollary 33 gives a polynomial reduction from
the latter to the former. ◀

▶ Example 35. Let us use item (2) of Corollary 33 to show that the Boole-Shannon expansion
is not valid in CTL. As in Example 11, let φ := c[p] ↔ (p ∧ c[true]) ∨ (¬ p ∧ c[false]). By
definition, κφ(φ) := κφ(c[p]) ↔

(
(p∧κφ(c[true]))∨ (¬ p∧κφ(c[false]))

)
. Simplification yields

pc[p] ∧ pc[true] ∧ (AG ¬p → pc[false])
κφ(φ) ≡ ↔

(p ∧ (AG p → pc[p]) ∧ pc[true]) ∨ (¬p ∧ pc[p] ∧ pc[true] ∧ pc[false])

CONCUR 2024

24:14 Validity of Contextual Formulas

This formula is not valid. For example, take any Kripke structure with a state s satisfying
p and pc[true], but neither pc[p] nor AG p. Then s satisfies the right-hand side of the bi-
implication, because it satisfies the left disjunct, but not the left-hand side, because it does
not satisfy pc[p]. By Corollary 33, the Boole-Shannon expansion is not valid.

Either item (2) or (3) of Corollary 33 can be used to check, for instance, that the
substitution rules AG (a ↔ b) |= AG (c[a] ↔ c[b]), and AG (a → b) |= AG (c[a] → c[b]) do
hold.

4.5 Validity of contextual LTL formulas
The syntax of LTL is obtained by dropping E and A from the syntax of CTL. Formulas
are interpreted over infinite sequences of atomic propositions [3], and a state s0 of a Kripke
structure satisfies a formula φ if every infinite path s0s1s2 · · · of the Kripke structure satisfies
φ. The Kripke structure itself satisfies φ if all its initial states satisfy φ.

Unlike for CTL, there is no syntax-guided translation from LTL to µ-calculus. However,
there is one for lassos, finite Kripke structures in which every state has exactly one infinite
path rooted at it.

▶ Definition 36. A Kripke structure K = (S,→, I,AP, ℓ) is a lasso if S is finite and for
every s ∈ S there is exactly one state s′ ∈ S such that s → s′.

Consider the variation of the translation φµ from CTL where X, U, G, and F are
translated as AX, AU, AG, and AF. For example, we define (φ1 Uφ2)µ := µX.([·]X ∧
φµ1) ∨ φµ2 . We have:

▶ Lemma 37. An LTL formula is valid iff it holds over all lassos. Further, for every lasso
K and every formula φ of LTL, K |=LTL φ iff K |= φµ.

The results of Theorems 26 and 30 can be extended to LTL similarly to the CTL case.
However, since φµ and φ are only guaranteed to be equivalent in lassos, some care should be
taken to always use them.

▶ Corollary 38. For any LTL formula φ, let κφ : C → LTL be the instantiation of contexts
defined by

κφ(c) :=
∧

c[ψ]∈CSub(φ)

(
G ([] → ψd)

)
→ pc[ψ]

Then, the following statements are equivalent
1. φ is valid,
2. κφ(φ) is valid, and
3. φe :=

(∧
c[ψ1],c[ψ2]∈CSub(φ) G (G (ψd1 → ψd2) → (pc[ψ1] → pc[ψ2]))

)
→ φd is valid.

Proof sketch (full proof in [8]). Like for CTL, (σ(φ))µ = σµ(σµ), κµφ = κφµ , and φµe =
(φµ)e. Each implication of the equivalence can be derived as depicted in Figure 2. Notice
that, while σ(φ) and σµ(φµ) are not equivalent in general, they are when evaluated on a
lasso by Lemma 37. This allows going back and forth between LTL and the µ-calculus, and
Lemma 25 and Proposition 29 complete the proof. ◀

Using the procedure just described, we can check that the rules in Figure 1 are valid,
that the Boole-Shannon expansion does not hold in LTL, and one-side implications like
c[G p] |= c[p], G (a ↔ b) |= G (φ[a] ↔ φ[b]) and G (a → b) |= G (φ[a] → φ[b]).

J. Esparza and R. Rubio 24:15

φ is valid L |= σ(φ)

L |= σµ(φµ)

L′ |= κφ(φ)

L′ |= κφµ(φµ)

L′ |= φe

L′ |= φµe

LTL

µ-calculus
Lem. 25 Prop. 29

Prop. 29

(2) ⇒ (1) (3) ⇒ (1) (2) ⇒ (3)

Figure 2 Proof summary of Corollary 38 (arrow is problem reduction).

5 Experiments

We have implemented the methods of Propositions 10 and 13 and Corollaries 33 and 38 in a
prototype that takes two contextual formulas as input and tells whether they are equivalent,
one implies another, or they are incomparable.4 The prototype is written in Python and calls
external tools for checking validity of ordinary formulas: MiniSat [5] through PySAT [10] for
propositional logic, Spot 2.11 [4] for LTL, and CTL-SAT [11] for CTL. No tool has been
found for deciding µ-calculus satisfiability, so this logic is currently not supported.

Most formulas of Figure 1 are solved in less than 10 milliseconds by the first and second
methods. The hardest formula is the second one: using the equivalid formula, the largest
automaton that appears in the process has 130 states and it is solved in 16.21 ms; with
the canonical instantiation, the numbers are 36 and 20.22 ms. We have also applied small
mutations to the rules of Figure 1 to yield other identities that may or may not hold (see
Appendix C of [8] for a list). Solving them takes roughly the same time and memory as the
original ones. For CTL, the behavior even with small formulas is much worse because of the
worse performance of CTL-SAT. The canonical context method takes 20 minutes to solve
c[a ∧ b] ≡ c[a] ∧ c[b], while the method by the equivalid formula runs out of memory with
that example and requires 22 minutes for the Boole-Shannon expansion. Hence, we have
not continued with further benchmarks on CTL. The first three rows of Table 1 show the
time, peak memory usage (in megabytes), and number of states of the automata (for LTL)
required for checking the aforementioned examples. The experiments have been run under
Linux in an Intel Xeon Silver 4216 machine limited to 8 Gb of RAM. Memory usage is as
reported by Linux cgroups’ memory controller.

In addition to these natural formulas, we have tried with some artificial ones with greater
sizes and nested contexts to challenge the performance of the algorithm. We have considered
two repetitive expansions of the rules in Figure 1:
1. There is a dual of the first rule in Figure 1 that removes a W-node below a U-node:

φU c[ψ1 Wψ2] ≡ φU c[ψ1 Uψ2] ∨ (FGφ ∧ (φ ∧ F c[true]) W c[ψ1 Wψ2]).

Then, we can build formulas like c1[ψ1 Uψ2] Wφ (n = 1), c1[ψ1 U c2[ψ2 Wψ3]] Wφ

(n = 2), c1[ψ1 U c2[ψ2 W c3[ψ3 Uψ4]]] Wφ (n = 3), and so on, and apply the first rule of
the rewrite system and its dual to obtain the normalized right-hand side. Table 1 shows
that the first method does not finish within an hour for n = 2, and the second reaches this
time limit for n = 3. For n = 2 the second method checks the emptiness of an automaton
of 1560 states (and another of 720 states for the other side of the implication).

4 The prototype and its source code are publicly available at https://github.com/ningit/ctxform.

CONCUR 2024

https://github.com/ningit/ctxform

24:16 Validity of Contextual Formulas

Table 1 Compared performance with the challenging examples (memory in Mb).

Method 1 Method 2

Example Time Memory States Time Memory States

Shannon
Bool 8.18 ms 3.67 15.08 ms 3.67
LTL 5 ms 2.62 9 8.07 ms 2.62 12

Rules [9] (max) 23.88 ms 5.24 36 16.21 ms 4.71 130

Mutated (max) 44.12 ms 5.72 48 31.68 ms 4.98 130

(1)
0 1.66 ms 1.05 4 1.53 ms 1.05 4
1 17.40 ms 4.92 36 15.62 ms 4.46 130
2 timeout 3:25 min 413.83 1560

(2)
1 36.19 ms 5.24 45 22.40 ms 5.24 80
2 623.07 ms 26.96 168 117.79 ms 10.49 160
3 5:21 min 1245.95 1140 26.04 s 100.25 220

2. The third and fourth rules of Figure 1 can also be nested. We can consider c0[FG c1[p]]
(n = 1), c0[FG c1[GF c2[p]]] (n = 2), c0[FG c1[GF c2[FG c3[p]]]] (n = 3), and so on. We
also take c0 = c1 = · · · = cn to make the problem harder. As shown in Table 1, we can
solve up to n = 3 within the memory constraints.

6 Conclusions

We have presented two different methods to decide the validity and satisfiability of contextual
formulas in propositional logic, LTL, CTL, and the µ-calculus. Moreover, we have shown that
these problems have the same complexity for contextual and ordinary formulas. Interesting
contextual equivalences can now be checked automatically. In particular, we have replaced
the manual proofs of the several LTL simplification rules in [9] to a few milliseconds of
automated check.

While we have limited our exposition to formulas in negation normal form, and hence to
monotonic contexts, the results for propositional logic, CTL, and LTL can be generalized to
the unrestricted syntax of the corresponding logics and to arbitrary contexts. Some clues are
given in Appendix B of [8].

References
1 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of

Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021. doi:10.3233/FAIA336.

2 Julian C. Bradfield and Igor Walukiewicz. The mu-calculus and model checking. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 871–919. Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

3 Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. Introduction to model checking.
In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors,
Handbook of Model Checking, pages 1–26. Springer, 2018. doi:10.1007/978-3-319-10575-8_1.

4 Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexan-
dre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin, Jérôme
Dubois, Clément Gillard, and Henrich Lauko. From Spot 2.0 to Spot 2.10: What’s
new? In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
II, volume 13372 of Lecture Notes in Computer Science, pages 174–187. Springer, 2022.
doi:10.1007/978-3-031-13188-2_9.

https://doi.org/10.3233/FAIA336
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-031-13188-2_9

J. Esparza and R. Rubio 24:17

5 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.
doi:10.1007/978-3-540-24605-3_37.

6 E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 995–1072.
Elsevier and MIT Press, 1990. doi:10.1016/B978-0-444-88074-1.50021-4.

7 E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. J. Comput. Syst. Sci., 30(1):1–24, 1985. doi:10.1016/
0022-0000(85)90001-7.

8 Javier Esparza and Rubén Rubio. Validity of contextual formulas (extended version). arXiv,
2024. doi:10.48550/arXiv.2407.07759.

9 Javier Esparza, Rubén Rubio, and Salomon Sickert. Efficient normalization of linear temporal
logic. J. ACM, 71(2):16:1–16:42, 2024. doi:10.1145/3651152.

10 Alexey Ignatiev, António Morgado, and João Marques-Silva. PySAT: A Python toolkit for
prototyping with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors,
Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 428–437.
Springer, 2018. doi:10.1007/978-3-319-94144-8_26.

11 Nicola Prezza. CTL (Computation Tree Logic) SAT solver, 2014. URL: https://github.
com/nicolaprezza/CTLSAT.

12 Rubén Rubio. Equivalence checker for contextual formulas. Software (visited on 2024-07-25).
URL: https://github.com/ningit/ctxform.

CONCUR 2024

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/B978-0-444-88074-1.50021-4
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.48550/arXiv.2407.07759
https://doi.org/10.1145/3651152
https://doi.org/10.1007/978-3-319-94144-8_26
https://github.com/nicolaprezza/CTLSAT
https://github.com/nicolaprezza/CTLSAT
https://github.com/ningit/ctxform

A Unifying Categorical View of Nondeterministic
Iteration and Tests
Sergey Goncharov #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Tarmo Uustalu #

Reykjavik University, Iceland, and Tallinn University of Technology, Estonia

Abstract
We study Kleene iteration in the categorical context. A celebrated completeness result by Kozen
introduced Kleene algebra (with tests) as a ubiquitous tool for lightweight reasoning about program
equivalence, and yet, numerous variants of it came along afterwards to answer the demand for more
refined flavors of semantics, such as stateful, concurrent, exceptional, hybrid, branching time, etc.
We detach Kleene iteration from Kleene algebra and analyze it from the categorical perspective. The
notion, we arrive at is that of Kleene-iteration category (with coproducts and tests), which we show
to be general and robust in the sense of compatibility with programming language features, such as
exceptions, store, concurrent behaviour, etc. We attest the proposed notion w.r.t. various yardsticks,
most importantly, by characterizing the free model as a certain category of (nondeterministic)
rational trees.

2012 ACM Subject Classification Theory of computation Ñ Categorical semantics; Theory of
computation Ñ Axiomatic semantics

Keywords and phrases Kleene iteration, Elgot iteration, Kleene algebra, coalgebraic resumptions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.25

Related Version Full Version: https://arxiv.org/abs/2407.08688

Funding Sergey Goncharov: German Research Foundation (DFG) project 501369690, Icelandic
Research Fund project 228684-052
Tarmo Uustalu: Icelandic Research Fund project 228684-052

1 Introduction

Axiomatizing notions of iteration both algebraically and categorically is a well-established
topic in computer science where two schools of thought can be distinguished rather crisply:
the first one is based on the inherently nondeterministic Kleene iteration, stemming from the
seminal work of Stephen Kleene [22] and deeply rooted in automata and formal language
theory; the second one stems from another seminal work – by Calvin Elgot [12] – and is based
on another notion of iteration, we now call Elgot iteration. The most well-known instance
of Kleene iteration is the one that is accommodated in the algebra of regular expressions
where a˚ represents n-fold compositions a ¨ ¨ ¨ a and n nondeterministically ranges over all
naturals. More abstractly, Kleene iteration is an operation of the following type:

p : X Ñ X

p˚ : X Ñ X

Intuitively, we think of p as a program whose inputs and outputs range over X, and of p˚

as a result of composing p nondeterministically many times with itself. Elgot iteration, in
contrast, is agnostic to nondeterminism, but crucially relies on the categorical notion of
binary coproduct, and thus can only be implemented in categorical or type-theoretic setting.

© Sergey Goncharov and Tarmo Uustalu;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 25; pp. 25:1–25:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergey.goncharov@fau.de
https://orcid.org/0000-0001-6924-8766
mailto:tarmo@ru.is
https://orcid.org/0000-0002-1297-0579
https://doi.org/10.4230/LIPIcs.CONCUR.2024.25
https://arxiv.org/abs/2407.08688
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 A Unifying Categorical View of Nondeterministic Iteration and Tests

Concretely, the typing rule for Elgot iteration is

p : X Ñ Y ` X

p: : X Ñ Y
(:)

That is, given a program that receives an input from X, and can output either to Y or
to X, p: self-composes p precisely as long as p outputs to X.

A profound exploration of both versions of iteration and their axiomatizations in the
categorical context, more precisely, in the context of Lavwere theories, has been done by
Bloom and Ésik in a series of papers and subsumed in their monograph [6]. One outcome of
this work is that in the context of Lawvere theories, in presence of nondeterminism, Kleene
iteration and Elgot iteration are essentially equivalent – the ensuing theory was dubbed
iteration grove theory [5]. The existing analysis still does not cover certain aspects, which we
expressly address in our present work, most importantly, the following.

Lavwere theories are only very special categories, while iteration is a common ingredient
of semantic frameworks, which often involve it directly via an ambient category with
coproducts, and not via the associated Lavwere theory.
Previous results on the equivalence of Elgot iteration and Kleene iteration do not address
the connection between control mechanisms involved in both paradigms: Elgot iteration
fully relies on coproducts for making decisions whether to continue or to end the loop,
while Kleene iteration for the same purpose uses an additional mechanism of tests [24],
which are specified axiomatically and thus yield a higher degree of flexibility.
A key feature of Kleene iteration of Kleene algebra, are the quasi-equational laws, which
can be recast [16] to a form of the versatile and powerful uniformity principle (e.g. [36]).
The latter is parameterized by a class of well-behaved elements, which in Kleene algebra
coincide with the algebra’s entire carrier. However, in many situations, this class has to
be restricted, which calls for axiomatizing it, analogously to tests.

Here, we seek a fundamental, general and robust categorical notion of Kleene iteration, which
addresses these issues, is in accord with Elgot iteration and the corresponding established
laws for it (Elgot iteration operators that satisfy these laws are called Conway operators). In
doing so, we depart from the laws of Kleene algebra, and relax them significantly. Answering
the question how to do this precisely and in a principled way is the main insight of our work.

Let us dwell briefly on the closely related issues of generality and robustness. The laws
of Kleene algebra, as originally axiomatized by Kozen [23], capture a very concrete style of
semantics, mirrored in the corresponding free model, which is the algebra of regular events,
i.e. the algebra of regular sets of strings over a finite alphabet of symbols, with iteration
rendered as a least fixpoint. Equations validated by this model are thus shared by the whole
class of Kleene algebras. By regarding Kleene algebra terms as programs, the interpretation
over the free model can be viewed as finite trace semantics of linear-time nondeterminism.
A standard example of properly more fine-grained – branching-time – nondeterminism is
(bisimulation-based) process algebra, which fails the Kleene algebra’s law of distributivity
from the left:

p ; pq ` rq “ p ; q ` p ; r. (1)

Similarly, if we wanted to allow our programs to raise exceptions, the laws of Kleene algebra
would undesirably force all exceptions to be equal:

raise e1 “ raise e1 ; 0 “ 0 “ raise e2 ; 0 “ raise e2.

S. Goncharov and T. Uustalu 25:3

Here, we combine the law p ; 0 “ 0 of Kleene algebra with the equation raisei ; p “ raisei that
alludes to the common programming knowledge that raising an exception exits the program
instantly and discards any subsequent fragment p. The resulting equality raise e1 “ raise e2
states that raising exception e1 is indistinguishable from raising exception e2.

We can interpret these and similar examples as evidence that the axioms of Kleene
algebra are not sufficiently robust under extensions by programming language features. More
precisely, Kleene algebras can be scaled up to Kleene monads [17], and thus reconciled with
Moggi’s approach to computational effects [30]. An important ingredient of this approach
are monad transformers, which allow for combining effects in a principled way. For example,
one uses the exception monad transformer to canonically add exception raising to a given
monad. The above indicates that Kleene monads are not robust under this transformer.

Finally, even if we accept all iteration-free implications of Kleene algebra, these will not
jointly entail the following identity:

1˚ “ 1, (2)

which is however entailed by the Kleene algebra axioms. One setting where (2) is undesirable
is domain theory, which insists on distinguishing deadlock from divergence, in particular, (2)
is failed by interpreting programs over the Plotkin powerdomain [33]. Intuitively, (2) states
that, if a loop may be exited, it will eventually be exited, while failure of (2) would mean
that the left program may diverge, while the right program must converge, and this need not
be the same. Let us call the corresponding variant of Kleene algebra, failing (2), may-diverge
Kleene algebra. However, it is not a priori clear how the axioms of may-diverge Kleene
algebras must look like, given that (2) is not a Kleene algebra axiom, but a consequence
of the assumption that Kleene iteration is a least fixpoint. Hence, in may-diverge Kleene
algebras Kleene iteration is not a least fixpoint (w.r.t. the order, induced by `).

The notion we develop and present here is that of Kleene-iteration category (with tests)
(KiC(T)). It is designed to address the above issues and to provide a uniform general and
robust framework for Kleene iteration in a category. We argue in various ways that KiC(T)
is in a certain sense the most basic practical notion of Kleene iteration, most importantly by
characterizing its free model, as a certain category of (nondeterministic) rational trees.

Related work. The (finite or ω-complete) partially additive categories (PACs) by Arbib
and Manes [2] and the PACs with effects of Cho [8] are similar in spirit to KiCs in that they
combine structured homsets and coproducts, but significantly more special; in particular they
support relational, sets of traces and similar semantics, but not branching time semantics.
A PAC is a category with coproducts enriched in partial commutative monoids (PMC).
The PMC structure of homsets and the coproducts are connected by axioms that make the
PMC structure unique. In an ω-complete PAC, these axioms also ensure the presence of an
Elgot iteration operator, which is computed as a least fixpoint. A PAC with effects comes
with a designated effect algebra object; this defines a wide subcategory of total morphisms,
with coproducts inherited from the whole category. Effectuses [21] achieve the same as
PACs with effects, but starting with a category of total morphisms and then adding partial
morphisms. Cockett [9] recently proposed a notion of iteration in a category, based on
restriction categories, and analogous to Elgot iteration (:), but avoiding binary coproducts
in favor of a suitably axiomatized notion of disjointness for morphisms.

In the strand of Kleene algebra, various proposals were made with utilitarian motivations
to weaken or modify the Kleene algebra laws, and thus to cope with process algebra [14],
branching behaviour [31], probability [27], statefulness [20], graded semantics [15], without

CONCUR 2024

25:4 A Unifying Categorical View of Nondeterministic Iteration and Tests

however aiming to identify the conceptual core of Kleene iteration, which is our objective here.
A recent move within this tendency is to eliminate nondeterminism altogether, with guarded
Kleene algebras [37], which replace nondeterministic choice and iteration with conditionals
and while-loops. This is somewhat related to our analysis of tests and iteration via while-loops,
but largely orthogonal to our main objective to stick to Kleene iteration as nondeterministic
operator in the original sense. Our aim to reconcile Kleene algebra, (co)products and Elgot
iteration is rather close to that of Kozen and Mamouras [25].

Our characterization of the free KiCT in a way reframes the original Kozen’s characteriz-
ation of the free Kleene algebra [23]. We are not generalizing this result though, essentially
because we work in categories with coproducts, while a true generalization would only be
achieved via categories without any extra structure (noting that algebras are single-object
categories). This distinction becomes particularly important in the context of branching time
semantics, which we also cover by allowing a controlled use of programs that fail distributivity
from the left (1). An axiomatization for such semantics has been proposed by Milner [29]
and was shown to be complete only recently [19]. Again, we are not generalizing this result,
since the definability issues, known to be the main obstruction for completeness arguments
there, are not effective in presence of coproducts.

Plan of the paper. We review minimal notations and conventions from category theory in
Section 2. We then introduce idempotent grove and Kleene-Kozen categories in Section 3 to
start off. In Section 4, we formally compare two control mechanisms in categories: decisions
and tests. In Sections 5, 6, we establish equivalent presentations of nondeterministic iteration
as Kleene iteration, as Elgot iteration and as while-iteration. In Section 7 we construct a
free model for our notion of iteration, and then come to conclusions in Section 8.

2 Notations and Conventions

We assume familiarity with the basics of category theory [26, 3]. In a category C, |C| will
denote the class of objects and CpX, Y q will denote the set of morphisms from X to Y .
The judgement f : X Ñ Y will be regarded as an equivalent to f P CpX, Y q if C is clear
from the context. We tend to omit indexes at natural transformations for readability. A
subcategory D of C is called wide if |C| “ |D|. We will use diagrammatic composition ; of
morphisms throughout, i.e. given f : X Ñ Y and g : Y Ñ Z, f ; g : X Ñ Z. We will denote
by 1X , or simply 1 the identity morphism on X.

Coproducts. In this paper, by calling C “a category with coproducts” we will always mean
that C has selected binary coproducts, i.e. that a bi-functor ‘ : C ˆ C Ñ C exists such
that X ‘ Y is a coproduct of X and Y . In such a category, we write in0 : X Ñ X ‘ Y

and in1 : Y Ñ X ‘ Y for the left and right coproduct injections correspondingly. We will
occasionally condense ini ; inj to ini j for the sake of succinctness.

Monads. A monad T on C is determined by a Kleisli triple pT, η, p´q7q, consisting of a
map T : |C| Ñ |C|, a family of morphisms pηX : X Ñ TXqXP|C| and Kleisli lifting sending
each f : X Ñ TY to f 7 : TX Ñ TY and obeying monad laws:

η7 “ 1, η ; f 7 “ f, pg ; f 7q7 “ g7 ; f 7.

S. Goncharov and T. Uustalu 25:5

It follows that T extends to a functor, η extends to a natural transformation – unit,
µ “ 17 : TTX Ñ TX extends to a natural transformation – multiplication, and that pT, η, µq

is a monad in the standard sense [26]. We will generally use blackboard capitals (such as T)
to refer to monads and the corresponding Roman letters (such as T) to refer to their functor
parts. Morphisms of the form f : X Ñ TY are called Kleisli morphisms and form the Kleisli
category CT of T under Kleisli composition f, g ÞÑ f ; g7 with identity η. If C has binary
coproducts then so does CT: the coproduct injections are Kleisli morphisms of the form
in0 ; η : X Ñ T pX ‘ Y q, in1 ; η : Y Ñ T pX ‘ Y q.

Coalgebras. Given an endofunctor F : C Ñ C, a pair pX P |C|, c : X Ñ FXq is called an F -
coalgebra. Coalgebras form a category under the following notion of morphism: h : X Ñ X 1

is a morphism from pX, cq to pX 1, c1q if h ; c1 “ c ; Fh. A terminal object in this category is
called a final coalgebra. We reserve the notation pνF, outq for a selected final coalgebra if it
exists. A well-known fact (Lambek’s lemma) is that out is an isomorphism.

For a coalgebra pX, c : X Ñ FXq on Set a relation B Ď X ˆ X is a (coalgebraic)
bisimulation if it extends to a coalgebra pB, b : B Ñ FBq, such that the left and the right
projections from B to X are coalgebra morphisms; x P X and y P X are bisimilar if x B y for
some bisimulation B; the coalgebra pX, c : X Ñ FXq is strongly extensional [38] if bisimilarity
entails equality. Final coalgebras are the primary example of strongly extensional coalgebras.

3 Idempotent Grove and Kleene-Kozen Categories

A monoid is precisely a single-object category. Various algebraic structures extending monoids
can be generalized to categories along this basic observation (e.g. a group is a single-object
groupoid, a quantale is a single-object quantaloid, etc.). In this section, we consider two classes
of categories for nondeterminism and Kleene iteration, which demonstrate our principled
categorical approach of working with algebraic structures.

▶ Definition 1 (Idempotent Grove Category, cf. [4, 5]). Let us call a category C an idempotent
grove category if the hom-sets of CpX, Y q are equipped with the structure p0,`q of bounded
join-semilattice such that, for all p P CpY, Zq and q, r P CpX, Y q,

0 ; p “ 0, pq ` rq ; p “ q ; p ` r ; p. (3)

In such a category, we call a morphism p P CpX, Y q linear if it satisfies, for all q, r P CpY, Zq,

p ; 0 “ 0, p ; pq ` rq “ p ; q ` p ; r. (4)

An idempotent grove category with coproducts is an idempotent grove category with selected
binary coproducts and with in0 and in1 linear.

Given p, q P CpX, Y q, let p ď q if p ` q “ q. This yields a partial order with 0 as the bottom
element, and morphism composition is monotone on the left, while linear morphisms are
additionally monotone on the right. The class of all linear morphisms of an idempotent
grove category thus forms a sub-category enriched in bounded join-semilattices (equivalently:
commutative and idempotent monoids) – thus, an idempotent grove category where all
morphisms are linear is an enriched category. However, we are interested in categories where
not all morphisms are linear. An instructive example is as follows.

CONCUR 2024

25:6 A Unifying Categorical View of Nondeterministic Iteration and Tests

▶ Example 2 (Synchronization Trees). Let A be some non-empty fixed set of labels, and let
TX “ νγ. Pω1pX‘Aˆγq where Pω1 is the countable powerset functor. By generalities [39], T

extends to a monad T on Set. The elements of TX can be characterized as countably-
branching strongly extensional synchronization trees with exit labels in X. Synchronization
trees have originally been introduced by Milner [28] as denotations of process algebra terms,
and subsequently generalized to infinite branching and to explicit exit labels (e.g. [1]). A
generic element t P TX can be more explicitly represented using the following syntax:

t “
∑

iPI
ai. ti `

∑
iPJ

xi

where I and J are at most countable, the ai range over A, the ti range over TX, and xi range
over X. The involved summation operators

∑
iPI are considered modulo countable versions

of associativity, commutativity and idempotence, and 0 “
∑

iP∅ ti and t1 ` t2 “
∑

iP{1,2} ti.
Recall that strong extensionality means that bisimilar elements are equal [38]. The

Kleisli category of T is idempotent grove with 0 and ` inherited from Pω1 and ensuring (3)
automatically. It is easy to see that linear morphisms are precisely those that do not
involve actions.

A straightforward way to add a Kleene iteration operator to a category is as follows.

▶ Definition 3 (Kleene-Kozen Category [16]). An idempotent grove category C is a Kleene-
Kozen category if all morphisms of C are linear and there is a Kleene iteration operator
p--q˚ : CpX, Xq Ñ CpX, Xq such that, for any p : X Ñ X, q : Y Ñ X and r : X Ñ Z, the
morphism q ; p˚ is the least (pre-)fixpoint of q ` p--q ; p and the morphism p˚ ; r is the least
(pre-)fixpoint of r ` p ; p--q.

It is known [16] that Kleene algebra is precisely a single-object Kleene-Kozen category.
In idempotent grove categories with coproducts, the following property is a direct con-

sequence of linearity of in0, in1, and will be used extensively throughout.

▶ Proposition 4. In idempotent grove categories with coproducts, rp, qs ` rp1, q1s “

rp ` p1, q ` q1s.

4 Decisions and Tests in Category

We proceed to compare two mechanisms for modeling control in categories: decisions and
tests. The first one is inherently categorical, and requires coproducts. The second one needs
no coproducts, but requires nondeterminism. The latter one is directly inspired by tests of
the Kleene algebra with tests [24]. We will show that tests and decisions are in a suitable
sense equivalent, when it comes to modeling control that satisfies Boolean algebra laws.

▶ Definition 5 (Decisions [10, 16]). In a category C with binary coproducts, we call morphisms
from CpX, X ‘ Xq decisions.

We consider the following operations on decisions, modeling truth values and logical con-
nectives: tt “ in1 (true), ff “ in0 (false), ~ d “ d ; rin1, in0s (negation), d || e “ d ; re, in1s

(disjunction), d && e “ d ; rin0, es (conjunction). Even without constraining decisions in
any way, certain logical properties can be established, e.g. (not necessarily commutative
or idempotent) monoidal structures pff, ||q, ptt, &&q, involutivity of ~, “de Morgan laws”
~ pd || eq “ ~d && ~e, ~ pd && eq “ ~d || ~e, and the laws tt || d “ tt, ff && d “ ff.

Given d P CpX, X ‘ Xq and p, q P CpX, Y q, let

if d then p else q “ d ; rq, ps. (5)

S. Goncharov and T. Uustalu 25:7

▶ Definition 6 (Tests). Given an idempotent grove category C, we call a family of linear
morphisms C? “ pC?pXq Ď CpX, XqqXP|C| tests if every C?pXq forms a Boolean algebra
under ; as conjunction and ` as disjunction.

It follows that 1 P C?pXq and 0 P C?pXq correspondingly are the top and bottom elements
of C?pXq. Given b P C?pXq, p, q P CpX, Y q, let

if b then p else q “ b ; p ` b̄ ; q. (6)

In an idempotent grove category C with coproducts and tests C?, let ?: CpX, X ‘ Xq Ñ

C?pXq be the morphism d? “ d ; r0, 1s.

▶ Proposition 7. Let C be an idempotent grove category with coproducts. If a decision d is
linear, then, for all p and q, we have if d then p else q “ if d? then p else q.

Let us say that a pair pb, cq P CpX, Xq ˆ CpX, Xq satisfies (the law of) contradiction if
b ; c “ 0, and that it satisfies (the law of) excluded middle if b ` c “ 1. The following
characterization is instructive.

▶ Proposition 8. Given an idempotent grove category C, a family of linear morphisms
C? “ pC?pXq Ď CpX, XqqXP|C| forms tests for C iff, for every b P C?, there is b̄ P C? such
that pb, b̄q satisfies contradiction and excluded middle.

Note that the smallest choice of tests in C is C?pXq “ {0, 1}. We proceed to characterize
the smallest possible choice of tests, sufficient for modeling control.

▶ Definition 9 (Expressive Tests). We call the tests C? expressive if every C?pXq con-
tains rin0, 0s whenever X “ X1 ‘ X2.

▶ Lemma 10. The smallest expressive family of tests always exists and is obtained by closing
tests of the form 0, 1, rin0, 0s, and r0, in1s under ` and ; .

In the sequel, we will use the notation J, K, ^, _ for tests, synonymously to 1, 0, ; , ` to
emphasize their logical character.

▶ Lemma 11. Let C? be tests in an idempotent grove category C with binary coproducts.
1. The morphisms ˛ : C?pXq Ñ CpX, X ‘ Xq, ?: CpX, X ‘ Xq Ñ C?pXq defined by ˛ b “

b̄ ; in0 `b ; in1, d? “ d ; r0, 1s form a retraction.
2. Every morphism d in the image of ˛ is linear. Moreover, we have d ; ∇ “ 1, d “ d && d,

and d “ d || d.
3. For all e and d in the image of ˛, it holds that pe || dq? “ e? _ d?, pe && dq? “ e? ^ d?,

and p ~dq? “ d?.

Lemma 11 indicates that in presence of coproducts and with linear coproduct injections,
instead of Boolean algebras on subsets of CpX, Xq, one can equivalently work with Boolean
algebras on subsets of CpX, X ‘ Xq.

We conclude this section by an illustration that varying tests, in particular, going beyond
smallest expressive tests is practically advantageous.

▶ Example 12. Consider the nondeterministic state monad T with TX “ PpSˆXqS on Set,
where S is a fixed global store, which the programs, represented by Kleisli morphisms of T
are allowed to read and modify. Morphisms of the Kleisli category SetT are equivalently (by
uncurrying) maps of the form p : S ˆ X Ñ PpS ˆ Y q, meaning that SetT is equivalent to
a full subcategory of SetP , from which SetT inherits the structure of an idempotent grove

CONCUR 2024

25:8 A Unifying Categorical View of Nondeterministic Iteration and Tests

in0 ; rp, qs “ p in1 ; rp, qs “ q rin0, in1s “ 1 rp, qs ; r “ rp ; r, q ; rs

0 ` p “ p p ` p “ p p ` q “ q ` p pp ` qq ` r “ p ` pq ` rq

0 ; p “ 0 pq ` rq ; p “ q ; p ` r ; p u ; 0 “ 0 u ; pp ` qq “ u ; p ` u ; q

p˚-Fixq p˚ “ 1 ` p ; p˚ p˚-Sumq pp ` qq˚ “ p˚ ; pq ; p˚q˚ p˚-Uniq
u ; p “ q ; u

u ; p˚ “ q˚ ; u

Figure 1 Axioms of KiCs, including binary coproducts (p, q, r range over C, u ranges over C).

category. The tests identified in Lemma 10 are those maps b : S ˆ X Ñ PpS ˆ Xq that are
determined by decompositions X “ X1 ‘X2, in particular, they can neither read nor modify
the store. In practice, only the second is regarded as undesirable (and indeed would break
commutativity of tests), while reading is typically allowed. This leads to a more permissive
notion of tests, as those that are determined by the decompositions S ˆ X “ X1 ‘ X2.

5 Kleene Iteration, Categorically

We now can introduce our central definition by extending idempotent grove categories with
a selected class of linear morphisms, called tame morphisms, and with Kleene iteration.
Crucially, we assume the ambient category C to have coproducts as a necessary ingredient.
Finding a general definition, not relying on coproducts, presently remains open.

▶ Definition 13 (KiC(T)). We call a tuple pC, Cq a Kleene-iteration category (KiC) if
1. C is an idempotent grove category with coproducts;
2. C is a wide subcategory of C, whose morphisms we call tame such that

C has coproducts strictly preserved by the inclusion to C;
the morphisms of C are all linear;

3. for every X P |C|, there is a Kleene iteration operator p--q˚ : CpX, Xq Ñ CpX, Xq such
that the laws ˚-Fix, ˚-Sum and ˚-Uni in Figure 1, with u ranging over C, are satisfied.

A functor F : pC, Cq Ñ pD, Dq between KiCs is a coproduct preserving functor F : C Ñ D
such that F 0 “ 0, F pq`rq “ Fq`Fr and Fp˚ “ pFpq˚ for all q, r P CpX, Y q, p P CpX, Xq,
and Fp P DpFX, FY q for all p P CpX, Y q.

A KiC pC, Cq equipped with a choice of tests C? in C we call a KiCT (=KiC with tests).
Correspondingly, functors between KiCTs are additionally required to send tests to tests.

It transpires from the definition that the role of tameness is to limit the power of the uniformity
rule ˚-Uni. The principal case for C ‰ C is Example 2. As we see later (Example 24), this
yields a KiC. More generally, unless we restrict C to programs that satisfy the linearity
laws (4), the uniformity principle ˚-Uni would tend to be unsound. Very roughly, uniformity
is some infinitary form of distributivity from the left and it fails for programs that fail
the standard left distributivity. This phenomenon is expected to occur for other flavors of
concurrent semantics: as long as C admits morphisms that fail (4), C would have to be
properly smaller than C. Apart from concurrency, if C models a language with exceptions,
those must be excluded from C, for otherwise uniformity would again become unsound.

If we demand all morphisms to be tame, we will obtain a notion very close to that of
Kleene-Kozen category (Definition 3).

S. Goncharov and T. Uustalu 25:9

▶ Definition 14 (˚-Idempotence). A KiC is ˚-idempotent if it satisfies (2).

▶ Proposition 15. A category C is Kleene-Kozen iff pC, Cq is a ˚-idempotent KiC.

Proof. As shown previously [16], C is a Kleene-Kozen category iff
1. C is enriched over bounded join-semilattices and strict join-preserving morphisms;
2. there is an operator p--q˚ : CpX, Xq Ñ CpX, Xq such that

a. p˚ “ 1 ` p ; p˚;
b. 1˚ “ 1;
c. p˚ “ pp ` 1q˚;
d. u ; p “ q ; u implies u ; p˚ “ q˚ ; u.

This yields sufficiency by noting that (1) states precisely that all morphisms in C are linear. To
show necessity, it suffices to obtain (2.c) from the assumptions that pC, Cq is a ˚-idempotent
KiC and that all morphisms in C are linear. Indeed, we have pp`1q˚ “ 1˚ ; pp; 1˚q˚ “ p˚. ◀

KiCs thus deviate from Kleene algebras precisely in four respects:
1. by generalizing from monoids to categories,
2. by allowing non-linear morphisms,
3. by dropping ˚-idempotence, and
4. by requiring binary coproducts.

▶ Example 16. The axiom ˚-Sum, included in Definition 13, is one of the classical Conway
identities. The other one pp; qq˚ “ 1`p; pq ; pq˚ ; q is derivable if C “ C, e.g. in Kleene-Kozen
categories. Indeed, q ; p ; q “ q ; p ; q entails q ; pp ; qq˚ “ pq ; pq˚ ; q by ˚-Uni, and using ˚-Fix,
pp ; qq˚ “ 1 ` p ; q ; pp ; qq˚ “ 1 ` p ; pq ; pq˚ ; q.

Clearly, this argument remains valid with only q being tame, but otherwise the requisite
identity is not provable.

It may not be obvious why the requirement to support binary coproducts is part of Defini-
tion 13, given that the axioms of iteration do not involve them. The reason is that certain
identities that also do not involve coproducts are only derivable in their presence.

▶ Example 17. The identity p˚ “ pp ; p1 ` pqq˚ holds in any KiC.

A standard way to instantiate Definition 13 is to start with a category V with coproducts, and
a monad T on it, and take C “ VT, C “ V or, possibly, C “ VT. The monad must support
nondeterminism and Kleene iteration so that the axioms of KiC are satisfied. Consider a
class of Kleene-Kozen categories that arise in this way.

▶ Example 18. Let Q be a unital quantale, and let TX “ QX for every set X. Then T

extends to a monad on Set as follows: ηpxqpxq “ 1, ηpxqpyq “ K if x ‰ y, and

pp : X Ñ QY q7pf : X Ñ Qqpy P Y q “
∨

xPX
ppxqpyq ¨ fpxq.

We obtain a Kleene-Kozen structure in SetT as follows:
0: X Ñ QY sends x to λy.K;
p ` q : X Ñ QY sends x to λy. ppxqpyq _ qpxqpyq;
p˚ : X Ñ QX is the least fixpoint of the map q ÞÑ 1 ` q ; p.

This construction restricts to QX
ω1

“ {f : X Ñ Q | | supp f | ď ω} where supp f is the set of
those x P X, for which fpxq ‰ 0. Thus, e.g. the Kleisli categories of the powerset monad P
and the countable powerset monad Pω1 are Kleene-Kozen.

For a contrast, consider a similar construction that yields a KiC, which is not Kleene-Kozen.

CONCUR 2024

25:10 A Unifying Categorical View of Nondeterministic Iteration and Tests

▶ Example 19. Let Q “ {0, 1,8} be the complete lattice under the ordering 0 ă 1 ă 8,
and let us define commutative binary multiplication as follows: 0 ¨ x “ 0, 1 ¨ x “ x and
8¨8 “ 8. This turns Q into a unital quantale, hence an idempotent semiring, whose binary
summation ` is binary join. Next, define infinite summation with the formula

∑
iPI

xi “

{∨
iPI1 xi, if I 1 “ {i P I | xi ą 0} is finite

8, otherwise

This makes Q into a complete semiring [11]. Let us define the monad R and the idem-
potent grove structure on SetR like Q

p--q
ω1 in Example 18 (with

∑
instead of

∨
). For every

f : X Ñ RX, let p˚ “
∑

nPN pn : X Ñ RX where, inductively, p0 “ 1 and pn`1 “ p ; pn,
and infinite sums are extended from Q to the Kleisli hom-sets pointwise.

It is easy to verify that pSetR, SetRq is a KiC, but SetR is not a Kleene-Kozen category,
for ˚-idempotence fails: η˚ “

∑
nPN ηn “

∑
nPN η “ λx, y.8 ‰ η. We will use a more

convenient notation for the elements of RX as infinite formal sums
∑

iPI xi (xi P X), modulo
associativity, commutativity, idempotence (but without countable idempotence

∑
iPI x “ x!).

Below, we provide two results for constructing new KiCs from old: Theorem 20 and The-
orem 23, which are also used prominently in our characterization result in Section 7.

▶ Theorem 20. Let pC, Cq be a KiC and let T be a monad on C such that
1. Tr˚ “ pTrq˚, for all r P CpX, Xq;
2. the monad T restricts to a monad on C.

Then CT is a subcategory of C and pCT, CTq is a KiCT where 0 and ` are defined as in C,
and for any p : X Ñ TX, the corresponding Kleene iteration is computed as η ; pp7q˚.

Let us illustrate the use of Theorem 20 by a simple example.

▶ Example 21 (Finite Traces). Consider the monad PpA‹ˆ--q on Set. Elements of PpA‹ˆXq

are standardly used as (finite) trace semantics of programs. A trace is then a sequence of
actions from A, followed by an end result in X. Of course, it can be verified directly that the
Kleisli category of PpA‹ˆ --q is Kleene-Kozen. Let us show how this follows from Theorem 20.

The Kleisli category of P is isomorphic to the category of relations, and is obviously
Kleene-Kozen. For P , like for any commutative monad, the Kleisli category SetP is symmetric
monoidal: X b Y “ X ˆ Y and, given p : X Ñ PY , q : X 1 Ñ PY 1,

pp b qqpx, x1q “ {py, y1q | y P ppxq, y1 P qpx1q}.

The set A‹ is a monoid in SetP w.r.t. this monoidal structure. This yields a writer monad T
on SetP via TX “ A‹ b X and pTpqpw, xq “ {pw, yq | y P ppxq}. Its Kleisli category
pSetPqT is isomorphic to our original Kleisli category of interest. The assumptions (1)
of Theorem 20 are thus satisfied in the obvious way. The assumption (2) is vacuous, as we
chose all morphisms to be tame.

Finally, we establish robustness of KiCs under the generalized coalgebraic resumption monad
transformer [32, 18], which is defined as follows.

▶ Definition 22 (Coalgebraic Resumptions). Let V be a category with coproducts and let T be
a monad on V. Let H : V Ñ V be some endofunctor and assume that all final coalgebras
νγ. T pX ‘ Hγq exist. The assignment X ÞÑ νγ. T pX ‘ Hγq yields a monad TH , called the
(generalized) coalgebraic resumption monad transformer of T.

S. Goncharov and T. Uustalu 25:11

▶ Theorem 23. Let TH be as in Definition 22 and such that pVT, Cq is a KiC for some
choice of C. Then VT is a wide subcategory of VTH

and pVTH
, Cq is a KiC w.r.t. the

following structure:
the bottom element in every VpX, THY q is 0 ; out-1, and the join of p, q P VpX, THY q is
pp ; out ` q ; outq ; out-1;
given p P VpX, THXq, p˚ P VpX, THXq is the unique solution of the equation

p˚ ; out “ in0 ; rp ; out, 0s˚ ; T p1 ‘ Hp˚q.

We defer the proof to Section 6 where we use reduction to the existing result [18], using the
equivalence of Kleene and Elgot iterations, we establish in Section 6.

▶ Example 24. By taking T “ Pω1 and H “ A ˆ -- in Theorem 23, we obtain THX “

νγ. Pω1pX ‘ A ˆ γq from Example 2. Let us illustrate the effect of Kleene iteration by
example. Consider the system of equations

P “ a. P ` Q, Q “ b. Q ` P

for defining the behaviour of two processes P and Q. This system induces a function
p : {P, Q} Ñ TH{P, Q}, sending P to a. P `Q and Q to b. Q`P . The expression rp ; out, 0s˚
calls the iteration operator of the powerset-monad, resulting in the function that sends
both P and Q to a. P ` b. Q ` Q ` P . Finally, p˚ sends P to P 1 and Q to Q1, where P 1

and Q1 are the synchronization trees, obtained as unique solutions of the system:

P 1 “ a. P 1 ` b. Q1 ` Q ` P, Q “ a. P 1 ` b. Q1 ` Q ` P.

6 Elgot Iteration and While-Loops

In this section, we establish an equivalence between Kleene iteration, in the sense of KiC and
Elgot iteration, as an operation with the following profile in a category C with coproducts:

p--q: : CpX, Y ‘ Xq Ñ CpX, Y q. (7)

This could be done directly, but we prove an equivalence between Elgot iteration and while-
loops first, and then prove the equivalence of the latter and Kleene iteration. In this chain of
equivalences, only while-loops need tests, and it will follow that a particular choice of tests is
not relevant, once they are expressive. On the other hand, existence of expressive tests is
guaranteed by Lemma 10. This explains why tests disappear in the resulting equivalence.

▶ Definition 25 (Conway Iteration, Uniformity). An Elgot iteration operator (7) in a category C
with coproducts is Conway iteration [13] if it satisfies the following principles:

Naturality : p: ; q “ pp ; pq ‘ 1qq: Dinaturality : pp ; rin0, qsq: “ p ; r1, pq ; rin0, psq:s

Codiagonal : pp ; r1, in1sq
: “ p::

Moreover, given a subcategory D of C, p--q: is uniform w.r.t. D, or D-uniform, if it satisfies

Uniformity : u ; q “ p ; p1 ‘ uq

u ; q: “ p:
(with u from D)

By taking q “ in1 in Dinaturality, we derive

Fixpoint : p ; r1, p:s “ p:.

CONCUR 2024

25:12 A Unifying Categorical View of Nondeterministic Iteration and Tests

DW-Fix: while d do p “ if d then p ; pwhile d do pq else 1

DW-Or: while pd || eq do p “ pwhile d do pq ; while e do pp ; while d do pq

DW-And: while pd && pe || ttqq do p “ while d do pif e then p else pq

DW-Uni: u ; if d then p ; tt else ff “ if e then q ; u ; tt else v ; ff
u ; while d do p “ pwhile e do qq ; v

Figure 2 Uniform Conway iteration in terms of decisions.

▶ Theorem 26. Let C be a category with coproducts, let D be its wide subcategory with
coproducts, preserved by the inclusion, and let for every X P |C|, C˛pXq be a set of decisions
such that (i) in0, in1 P C˛pXq, (ii) C˛pXq is closed under (5), (iii) in0 ‘ in1 P C˛pXq if
X “ X1 ‘ X2. Then, to give a D-uniform Conway iteration on C is the same as to give an
operator

d P C˛pXq p P CpX, Xq

while d do p P CpX, Xq

that satisfies the laws in Figure 2 with p, q ranging over C, and with u, v ranging over D.

Theorem 26 yields an equivalence between two styles of iteration: Elgot iteration and while-
iteration. We next specialize it to idempotent grove categories with tests using Lemma 11.

Note that in any KiC pC, Cq with tests C?, in addition to the if-then-else (6), we have
the while operator, defined in the standard way: given b P C?pXq, p P CpX, Xq,

while b do p “ pb ; pq˚ ; b̄. (8)

▶ Proposition 27. Let C be an idempotent grove category, let D be a wide subcategory of C
with coproducts, which are preserved by the inclusion to C, and with expressive tests C?.
Then C supports D-uniform Conway iteration iff it supports a while-operator that satisfies
the laws in Figure 3, where b and c come from C?, p and q come from C and u, v come
from D and the if-then-else operator is defined as in (8).

Proof. For every X P |C|, let C˛pXq be the image of C?pXq under ˛ from Lemma 11. As
shown in the lemma, C˛pXq inherits the Boolean algebra structure from C?pXq. Using the
isomorphism between C˛pXq and C?pXq and Proposition 7, the laws from Figure 2 can be
reformulated equivalently, resulting in TW-Fix, TW-Or, TW-Uni, and additionally

while pb ^ pc _Jqq do p “ while b do pif c then p else pq

which however holds trivially. ◀

Thus, in grove categories with expressive tests, Elgot iteration and while-loops are equivalent.
We establish a similar equivalence between Kleene iteration and while-loops, which will entail
an equivalence between Elgot iteration and Kleene iteration by transitivity.

▶ Theorem 28. Let C, C and C? be as follows.
1. C is an idempotent grove category with coproducts.
2. C is a wide subcategory of C with coproducts, consisting of linear morphisms only and

such that the inclusion of C to C preserves coproducts.
3. C? are expressive tests in C.

Then pC, Cq is a KiCT iff C supports a while-operator satisfying the laws in Figure 3.

S. Goncharov and T. Uustalu 25:13

TW-Fix: while b do p “ if b then p ; pwhile b do pq else 1

TW-Or: while pb _ cq do p “ pwhile b do pq ; while c do pp ; while b do pq

TW-Uni: u ; b̄ “ c̄ ; v u ; b ; p “ c ; q ; u

u ; while b do p “ pwhile c do qq ; v

Figure 3 Uniform Conway iteration in terms of tests.

We can now characterize KiCs in terms of Elgot iteration.

▶ Theorem 29. Let C be an idempotent grove category with coproducts, and let C be a
wide subcategory of C with coproducts, consisting of linear morphisms only and such that the
inclusion of C to C preserves coproducts.

Then pC, Cq is a KiC iff C supports C-uniform Conway iteration.

Proof. Let us define C? as in Definition 9. By Theorem 28, pC, Cq is a KiCT iff C supports
a while-operator, satisfying the laws in Figure 3. By Proposition 27, the latter is the case
iff C supports C-uniform Conway iteration. ◀

Now we can prove Theorem 23.

Proof Theorem 23 (Sketch). We need to check that pVTH
, Cq is a KiC. By Theorem 29, we

equivalently prove that VTH
supports C-uniform Conway iteration. It is already known [18,

Lemma 7.2] that if T supports Conway iteration, then so does TH . By Theorem 29, we are
left to check that TH satisfies Uniformity, which is a matter of calculation. ◀

7 Free KiCTs and Completeness

In this section, we characterize a free KiCT with strict coproducts (i.e. those, for which
coherence maps X ‘ pY ‘ Zq – pX ‘ Y q ‘ Z are identities) on a one-sorted signature. We
achieve this by combining techniques from formal languages [7], category theory and the
theory of Elgot iteration with coalgebraic reasoning [34], in particular proofs by coalgebraic
bisimilarity. We claim that a more general characterization of a free KiCT on a multi-sorted
signature can be achieved along the same lines, modulo a significant notation overhead and
the necessity to form final coalgebras in the category of multisorted sets SetS where S is the
set of sorts. We dispense with this option for the sake of brevity and readability. Let us fix

a signatures of n-ary symbols Σn for each n P N, and let Σ “
⋃

n Σn;
a signature Γ of (unary) symbols, disjoint from Σ;
a finite (!) signature Θ of (unary) symbols, disjoint from Σ Y Γ.

Let Θ̂ denote the set of finite subsets of Θ. We regard Θ as a signature for tests, Γ as
a signature for tame morphisms and Σ as a signature for general morphisms; Θ̂ is meant
to capture finite conjunctions of the form b1 ^ . . . ^ bn ^ b̄n`1 ^ . . . ^ b̄m as semantic
correspondents of subsets {b1, . . . , bn} P Θ̂, assuming an enumeration Θ “ {b1, . . . , bm}.
This is inspired by Kleene algebra with tests [24]. Furthermore, we accommodate guarded
strings from op. cit.: let ΓΘ be the set of strings ⟨b1, u1, . . . , bn, un, bn`1⟩ with ui P Γ, bi P Θ̂.

CONCUR 2024

25:14 A Unifying Categorical View of Nondeterministic Iteration and Tests

7.1 Interpretations
An interpretation J--K of pΣ, Γ, Θq over a KiCT pC, C, C?q is specified as follows:

J1K P |C| JfK P CpJ1K, JnKq pf P Σnq

JuK P CpJ1K, J1Kq pu P Γq JbK P C?pJ1K, J1Kq pb P Θq

where JnK abbreviates the n-fold sum J1K ‘ . . . ‘ J1K. The latter immediately extends to Θ̂:
J{ }K “ 1, J{b1, . . . , bn}K “ b1 ; . . . ; bn ; b̄n`1 ; . . . ; b̄m, assuming that Θ “ {b1, . . . , bm}.
Note that we interpret n-ary symbols over CpJ1K, JnKq “ CoppJ1Kn, J1Kq. This equation seems
to suggest that it could be more natural to use categories with products as models, rather
than categories with coproducts. Our present choice helps us to treat generic KiCTs on the
same footing with the free KiCT, which is defined in terms of coproducts and not products.

▶ Definition 30 (Free KiCT). A free KiCT w.r.t. pΣ, Γ, Θq is a KiCT pFΣ,Γ,Θ,FΣ,Γ,Θ,F?
Σ,Γ,Θq

together with an interpretation of pΣ, Γ, Θq in FΣ,Γ,Θ, such that for any other inter-
pretation of pΣ, Γ, Θq over a KiCT pC, C, C?q, there is unique compatible functor from
FΣ,Γ,Θ to C. More formally, for any interpretation J--K, there is unique KiCT-functor
J--K� : pFΣ,Γ,Θ,FΣ,Γ,Θ,F?

Σ,Γ,Θq Ñ pC, C, C?q such that the diagram

FΣ,Γ,Θ C

pΣ, Γ, Θq

J--K�

J--KF J--K (9)

commutes.

In what follows, we characterize FΣ,Γ,Θ as a certain category of rational trees, i.e. trees
with finitely many distinct subtrees. An alternative, equivalent formulation would be to
view FΣ,Γ,Θ as a free model of the (Lawvere) theory of KiCTs.

Like in the case of original Kozen’s completeness result [23], a characterization of the free
model immediately entails completeness of the corresponding axiomatization over it. Indeed,
by generalities, a free KiCT is isomorphic to the free algebra of terms, quotiented by the
provable equality relation. Hence, if an equality holds over the free model, it is provable.

7.2 A KiCT of Coalgebraic Resumptions
For any set X, define TX “ RpΓΘ ˆ Xq and TνX “ νγ. T pX ‘ Σγq, in the category of
sets Set where R is the monad from Example 19.

A stepping stone for constructing FΣ,Γ,Θ is the observation that pSetTν
, SetTq forms a

KiC. Indeed, pSetR, SetRq is a KiC and the monad R is commutative, hence symmetric
monoidal. In SetR, ΓΘ is a monoid under the following operations:

⟨w1, . . . , wn`1⟩ ¨ ⟨u1, . . . , um`1⟩ “

{
⟨w1, . . . , wn, u2, . . . , um`1⟩ if wn “ u1

0 otherwise

This produces the monad T, whose Kleisli category is a KiC by Theorem 20, analogously
to Example 21. Now, pSetTν

, SetTq is a KiC by Theorem 23. We will use the following
representation for generic elements of TνX:

t “
∑

iPI
bi. ui. ti `

∑
iPJ

bi. fipti,1, . . . , ti,ni
q `

∑
iPK

bi. xi (10)

S. Goncharov and T. Uustalu 25:15

where I, J , K are mutually disjoint countable sets, bi range over Θ̂, ui range over Γ, fi range
over Σ, ti, ti,j range over TνX and xi range over X.

▶ Definition 31 (Derivatives). For every t P TνX, as in (10), define the following derivative
operations:

Bb,uptq “
∑

iPI,b“bi,u“ui
ti, for b P Θ̂, u P Γ;

Bk
b,fptq “

∑
iPJ,b“bi,f“fi

ti,k, for b P Θ̂, k P {1, . . . , ni}, f P Σni
with ni ą 0.

Additionally, let optq “
∑

iPK bi. xi. We extend these operations to arbitrary morphisms
Y Ñ TνX pointwise. The set of derivatives of t P TνX is the smallest set Dptq that
contains t and is closed under all Bb,u and Bk

b,f .

The following property is a direct consequence of these definitions:

▶ Lemma 32. Let t P TνX be as in (10), and let s : X Ñ TνY . Then

Bb,upt ; s7q “ Bb,uptq ; s7 ` optq ; pBb,upsqq
7 opt ; s7q “ optq ; popsqq7

Bk
b,fpt ; s7q “ Bk

b,fptq ; s7 ` optq ; pBk
b,fpsqq

7

▶ Lemma 33. Given a set X, let B Ď TνX ˆ TνX be such a relation that whenever t B s,
1. Bb,uptq B Bb,upsq for all b P Θ̂, u P Γ,
2. Bk

b,fptq B Bk
b,fpsq for all b P Θ̂, f P Σ,

3. optq “ opsq.
Then, t “ s whenever t B s.

Proof Sketch. It suffices to show that B is a coalgebraic bisimulation. The claim is then a
consequence of strong extensionality of the final coalgebra TνX. Let us spell out what it
means for B to be a coalgebraic bisimulation. Given t and t1, such that t B t1, and assuming
representations

t “
∑

iPI
gi. fipti,1, . . . , ti,niq `

∑
iPJ

gi. xi,

t1 “
∑

iPI1
gi. fipti,1, . . . , ti,ni

q `
∑

iPJ 1
gi. xi

where the gi range over ΓΘ, the sums
∑

iPJ gi. xi and
∑

iPJ 1 gi. xi must be equal, and there
must exist a set K and surjections e : K Ñ I, e1 : K Ñ I 1, such that for every k P K,
gepkq “ ge1pkq, fepkq “ fe1pkq and tepkq,1 B te1pkq,1, . . . , tepkq,m B te1pkq,m where m is the arity
of fepkq. This is indeed true for B. The reason for it is that t and t1 can be represented as

t “
∑

nPN

∑
iPI,|gi|“n

gi. fipti,1, . . . , ti,ni
q `

∑
nPN

∑
iPJ,|gi|“n

gi. xi,

t1 “
∑

nPN

∑
iPI1,|gi|“n

gi. fipt1i,1, . . . , t1i,ni
q `

∑
nPN

∑
iPJ 1,|gi|“n

gi. xi

and we can derive the requisite properties for inner sums by induction on n from the
assumptions. ◀

7.3 Rational Trees
In what follows, we identify every n P N with the set {0, . . . , n ´ 1}, and select binary
coproducts in Set so that n‘m “ {0, . . . , n´1}‘{0, . . . , m´1} “ {0, . . . , n`m´1} “ n`m.
The inclusion of n to m ě n is then a coproduct injection, which we refer to as inm

n .

CONCUR 2024

25:16 A Unifying Categorical View of Nondeterministic Iteration and Tests

▶ Definition 34 (Prefinite, Flat, (Non-)Guarded, Rational, Definable).
1. The set of prefinite elements of TνX is defined by induction: t P TνX of the form (10)

is prefinite if the involved sums contain finitely many distinct elements and all the
ti, ti,j P TνX are prefinite.

2. A prefinite t P TνX of the form (10) is flat if ti, ti,j P X.
3. An element t P TνX of the form (10) is guarded if K “ ∅.
4. An element t P TνX of the form (10) is non-guarded if I Y J “ ∅.
5. An element t P TνX is rational if Dptq is finite and t depends on a finite subset of Σ Y Γ.
A map t : Y Ñ TνX is prefinite/flat/guarded/non-guarded if correspondingly for every x P X,
every tpxq is prefinite/flat/guarded/non-guarded. Finally:
6. A map t : k Ñ Tνn (with k, n P N) is definable if for some m ě k there is flat guarded

s : m Ñ Tνm and non-guarded r : m Ñ Tνn, such that t “ inm
k ; s˚ ; r7.

Using Lemma 32, one can show

▶ Lemma 35. Sum, composition and Kleene iteration of rational maps are again rational.

The following property is a form of Kleene theorem, originally stating the equivalence of
regular and recognizable languages [35]. In our setting it is proven with the help of Lemma 33.

▶ Proposition 36. Given n, k P N, a map n Ñ Tνk is rational iff it is definable.

Let F “ FΣ,Γ,Θ be the (non-full) subcategory of SetTν
, identified as follows:

the objects of F are positive natural numbers,
the morphisms in Fpn, kq are rational maps f : n Ñ Tνk (equivalently: (co)tuples
rt0, . . . , tn´1s of rational elements of Tνk).

Let the wide subcategory of tame morphisms F consist of such tuples rt0, . . . , tn´1s that ti P Tk

for all i, and let F? consist of those maps in F that do not involve symbols from Γ. This
defines a KiCT essentially due to the closure properties from Lemma 35.

Given an interpretation J--K : pΣ, Γ, Θq Ñ C, let us extend it to flat elements first via

J0K “ 0, Jt ` sK “ JtK ` JsK, Jη˚K “ J1K˚, Jt ; s7K “ JtK ; JsK, JkK “ ink pk P nq

where η˚ stands for a tuple of infinite sum r
∑

iPN{}.0, . . . ,
∑

iPN{}.pn ´ 1qs, and is the
interpretation of η‹ in F. The clause for η˚ in necessary to cater for infinite sums that can
occur in prefinite elements. Such sums can only contain finitely many distinct elements, and
thus can be expressed via finite sums and composition with η˚. Next, define J--K� : F Ñ C

on objects via JnK� “ J1K ‘ . . . ‘ J1K (J1K repeated n times),
on morphisms, via JtK� “ inm

n ; JsK˚ ; JrK, where t “ inm
n ; s˚ ; r7, for a guarded flat

s : m Ñ Tνm, and a non-guarded r : m Ñ Tνk, computed with Proposition 36.

▶ Theorem 37. FΣ,Γ,Θ is a free KiCT over Σ, Γ, Θ.

The following property is instrumental for proving this result:

▶ Lemma 38. Let pC, Cq and pD, Dq be two KiCs, and let F be the following map, acting
on objects and on morphisms: FX P |D| for every X P |C|, Fp P DpFX, FY q for every
p P CpX, Y q. Suppose that F preserves coproducts, Fp P DpFX, FY q for all p P CpX, Y q.
F is a KiC-functor if the following further preservation properties hold

Fp˚ “ pFpq˚, F pp ; in0q “ Fp ; in0, F pp ; in1q “ Fp ; in1, F pp ; r0, 1sq “ Fp ; r0, 1s.

Let us briefly outline a potential application of Theorem 37 to may-diverge Kleene algebras,
which we informally described in the introduction. Let us now define them formally:

S. Goncharov and T. Uustalu 25:17

▶ Definition 39 (May-Diverge Kleene Algebra). A may-diverge Kleene algebra is an idempotent
semiring pS, 0, 1, `, ; q equipped with an iteration operator p--q˚ : S Ñ S satisfying the laws:

p˚ “ 1 ` p ; p˚ pp ` qq˚ “ p˚ ; pq ; p˚q˚
r ; p “ q ; r

r ; p˚ “ q˚ ; r

Thus, may-diverge Kleene algebras are very close to KiCs of the form pC, Cq with |C| “ 1,
except that in our present treatment all KiCs come with binary coproducts as an additional
structure. We conjecture though that any may-diverge Kleene algebra, viewed as a category,
can be embedded to a KiC pC, Cq with |C| “ {1, 2, . . .}. Theorem 37 will then entail a
characterization of the free may-diverge Kleene algebra on Γ as the full subcategory induced
by the single object 1 of the Kleisli category of the monad TX “ RpΓ‹ ˆXq. In other words,
the free may-diverge Kleene algebra is carried (up-to-isomorphism) by rational elements of
RpΓ‹q, similarly to that how the free Kleene algebra is carried by rational elements of PpΓ‹q.

8 Conclusions and Further Work

We developed a general and robust categorical notion of Kleene iteration – KiC(T) (=Kleene-
iteration category (with tests)) – inspired by Kleene algebra (with tests) and its numerous
cousins. We attested this notion with various yardsticks: stability under the generalized
coalgebraic resumption monad transformer (hence under the exception transformer, as its
degenerate case), equivalence to the classical notion of Conway iteration and to a suitably
axiomatized theory of while-loops, but most remarkably, we established an explicit description
of the ensuing free model, as a category of certain nondeterministic rational trees, playing
the same role for our theory as the algebra of regular events for Kleene algebra. However, in
our case, the free model is much more intricate and difficult to construct, as the iteration
operator of it is neither a least fixpoint nor a unique fixpoint. A salient feature of our notion,
mirrored in the structure of the free model, is that it can mediate between linear time and
branching time semantics via corresponding specified classes of morphisms.

Given the abstract nature of our results, we expect them be be reusable for varying and
enriching the core notion of Kleene iteration with other features. For example, our underlying
notion of nondeterminism is that of idempotent grove category. General grove categories are
a natural base for probabilistic or graded semantics, and we expect that most of our results,
including completeness can be adapted to this case. Yet more generally, a relevant ingredient
of our construction is monad R, currently capturing the effect of nondeterminism, but which
can potentially be varied to obtain other flavors of linear behavior.

An important open problem that remains for future work is that of defining KiCTs without
coproducts, potentially providing a bridge to relevant algebraic structures as single-object
categories. Now that the free KiCT with coproduct is identified, the free KiCT without
coproducts is expected to be complete over the same model. Identifying such a notion is
hard, because it would simultaneously encompass independent axiomatizations of iterative
behavior, e.g. branching time and linear time. As of now, such axiomatizations are built on
hard-to-reconcile approaches to iteration as either a least or a unique fixpoint.

References

1 Luca Aceto, Arnaud Carayol, Zoltán Ésik, and Anna Ingólfsdóttir. Algebraic synchronization
trees and processes. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer,
editors, Proc. of 39th Int. Coll on Automata, Languages, and Programming, ICALP 2012,
Part 2, volume 7392 of Lect. Notes in Comput. Sci., pages 30–41. Springer, 2012. doi:
10.1007/978-3-642-31585-5_7.

CONCUR 2024

https://doi.org/10.1007/978-3-642-31585-5_7
https://doi.org/10.1007/978-3-642-31585-5_7

25:18 A Unifying Categorical View of Nondeterministic Iteration and Tests

2 Michael A. Arbib and Ernest G. Manes. Partially additive categories and flow-diagram
semantics. J. Algebra, 62(1):203–227, 1980. doi:10.1016/0021-8693(80)90212-4.

3 Steve Awodey. Category Theory. Oxford University Press, 2nd edition, 2010.
4 David B. Benson and Jerzy Tiuryn. Fixed points in free process algebras, part I. Theor.

Comput. Sci., 63(3):275–294, 1989. doi:10.1016/0304-3975(89)90010-8.
5 S.L. Bloom, Z. Esik, and D. Taubner. Iteration theories of synchronization trees. Information

and Computation, 102(1):1–55, 1993. doi:10.1006/inco.1993.1001.
6 Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The Equational Logic of Iterative

Processes. Springer, 1993. doi:10.1007/978-3-642-78034-9.
7 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.

doi:10.1145/321239.321249.
8 Kenta Cho. Total and partial computation in categorical quantum foundations. In Chris

Heunen, Peter Selinger, and Jamie Vicary, editors, Proc. of 12th Int. Workshop on Quantum
Physics and Logic, QPL 2015, volume 195 of Electron. Proc. in Theor. Comput. Sci., pages
116–135. Open Publishing Assoc., 2015. doi:10.4204/eptcs.195.9.

9 Robin Cockett. Itegories & PCAs, 2007. Slides from Fields Institute Meeting on Traces
(Ottawa, 2007). URL: https://pages.cpsc.ucalgary.ca/~robin/talks/itegory.pdf.

10 Robin Cockett and Stephen Lack. Restriction categories III: colimits, partial limits and ex-
tensivity. Math. Struct Comput. Sci., 17(4):775–817, 2007. doi:10.1017/s0960129507006056.

11 Manfred Droste and Werner Kuich. Semirings and formal power series. In Handbook of
Weighted Automata, pages 3–28. Springer, 2009. doi:10.1007/978-3-642-01492-5_1.

12 Calvin Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose and J.C.
Shepherdson, editors, Logic Colloquium 1973, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 175–230. Elsevier, 1975. doi:10.1016/s0049-237x(08)71949-9.

13 Zoltán Ésik. Equational properties of fixed-point operations in cartesian categories: An
overview. Math. Struct. Comput. Sci., 29(6):909–925, 2019. doi:10.1017/s0960129518000361.

14 Wan J. Fokkink and Hans Zantema. Basic process algebra with iteration: Completeness of its
equational axioms. Comput. J., 37(4):259–268, 1994. doi:10.1093/comjnl/37.4.259.

15 Leandro Gomes, Alexandre Madeira, and Luís S. Barbosa. On Kleene algebras for weighted
computation. In Simone Cavalheiro and José Fiadeiro, editors, Proc. of 20th Brazilian Symp.
on Formal Methods, SBMF 2017, volume 10623 of Lect. Notes in Comput. Sci., pages 271–286.
Springer, 2017. doi:10.1007/978-3-319-70848-5_17.

16 Sergey Goncharov. Shades of iteration: From Elgot to Kleene. In Alexandre Madeira and
Manuel A. Martins, editors, Revised Selected Papers from 26th IFIP WG 1.3 Int. Workshop
on Recent Trends in Algebraic Development Techniques, WADT 2022, volume 13710 of Lect.
Notes in Comput. Sci., pages 100–120. Springer, 2023. doi:10.1007/978-3-031-43345-0_5.

17 Sergey Goncharov, Lutz Schröder, and Till Mossakowski. Kleene monads: Handling iteration
in a framework of generic effects. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki,
editors, Proc. of 3rd Int. Conf. Algebra and Coalgebra in Computer Science, CALCO 2009,
volume 5728 of Lect. Notes in Comput. Sci., pages 18–33. Springer, 2009. doi:10.1007/
978-3-642-03741-2_3.

18 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Julian Jakob. Unguarded recursion
on coinductive resumptions. Log. Methods in Comput. Sci., 14(3):10:1–10:47, 2018. doi:
10.23638/lmcs-14(3:10)2018.

19 Clemens Grabmayer. Milner’s proof system for regular expressions modulo bisimilarity is
complete: Crystallization: Near-collapsing process graph interpretations of regular expressions.
In Proc. of 37th Ann. ACM/IEEE Symp. on Logic in Computer Science, LICS ’22, pages
34:1–34:13, New York, 2022. doi:10.1145/3531130.3532430.

20 Niels Grathwohl, Dexter Kozen, and Konstantinos Mamouras. KAT + B! In Proc. of 23rd EACL
Ann. Conf. on Computer Science Logic and 29th Ann. ACM/IEEE Symp. on Logic in Computer
Science, CSL-LICS 2014, pages 44:1–44:10. ACM, 2014. doi:10.1145/2603088.2603095.

https://doi.org/10.1016/0021-8693(80)90212-4
https://doi.org/10.1016/0304-3975(89)90010-8
https://doi.org/10.1006/inco.1993.1001
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1145/321239.321249
https://doi.org/10.4204/eptcs.195.9
https://pages.cpsc.ucalgary.ca/~robin/talks/itegory.pdf
https://doi.org/10.1017/s0960129507006056
https://doi.org/10.1007/978-3-642-01492-5_1
https://doi.org/10.1016/s0049-237x(08)71949-9
https://doi.org/10.1017/s0960129518000361
https://doi.org/10.1093/comjnl/37.4.259
https://doi.org/10.1007/978-3-319-70848-5_17
https://doi.org/10.1007/978-3-031-43345-0_5
https://doi.org/10.1007/978-3-642-03741-2_3
https://doi.org/10.1007/978-3-642-03741-2_3
https://doi.org/10.23638/lmcs-14(3:10)2018
https://doi.org/10.23638/lmcs-14(3:10)2018
https://doi.org/10.1145/3531130.3532430
https://doi.org/10.1145/2603088.2603095

S. Goncharov and T. Uustalu 25:19

21 Bart Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic.
Log. Methods Comput. Sci., 11(3):24:1–24:76, 2015. doi:10.2168/lmcs-11(3:24)2015.

22 S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, 1956.

23 Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Inf. Comput., 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

24 Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443,
1997. doi:10.1145/256167.256195.

25 Dexter Kozen and Konstantinos Mamouras. Kleene algebra with products and iteration
theories. In Simona Ronchi Della Rocca, editor, Proc. of 22nd EACSL Ann. Conf. on
Computer Science Logic, CSL 2013, volume 23 of Leibniz Int. Proc. in Inform., pages 415–431.
Dagstuhl Publishing, 2013. doi:10.4230/lipics.csl.2013.415.

26 Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts
in Mathematics. Springer, 1971.

27 Annabelle McIver, Tahiry M. Rabehaja, and Georg Struth. On probabilistic Kleene algebras,
automata and simulations. In Harrie de Swart, editor, Proc. of 12th Int. Conf. on Relational
and Algebraic Methods in Computer Science, RAMICS 2011, volume 6663 of Lect. Notes in
Comput. Sci., pages 264–279. Springer, 2011. doi:10.1007/978-3-642-21070-9_20.

28 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lect. Notes in Comput.
Sci. Springer, 1980. doi:10.1007/3-540-10235-3.

29 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.

30 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
doi:10.1016/0890-5401(91)90052-4.

31 Bernhard Möller. Kleene getting lazy. Sci. Comput. Program., 65(2):195–214, 2007. doi:
10.1016/j.scico.2006.01.010.

32 Maciej Piróg and Jeremy Gibbons. Monads for behaviour. Electron. Notes Theor. Comput.
Sci., 298:309–324, 2013. doi:10.1016/j.entcs.2013.09.019.

33 Gordon D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–487, 1976.
doi:10.1137/0205035.

34 J.J.M.M. Rutten. Behavioural differential equations: A coinductive calculus of streams, auto-
mata, and power series. Theor. Comput. Sci., 308(1):1–53, 2003. doi:10.1016/S0304-3975(02)
00895-2.

35 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
36 Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In

Proc. of 15th Ann. IEEE Symp. on Logic in Computer Science, LICS ’00, pages 30–41. IEEE,
2000. doi:10.1109/lics.2000.855753.

37 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva.
Guarded Kleene algebra with tests: Verification of uninterpreted programs in nearly linear
time. Proc. ACM Program. Lang., 4(POPL), 2020. doi:10.1145/3371129.

38 Daniele Turi and Jan Rutten. On the foundations of final coalgebra semantics: non-well-
founded sets, partial orders, metric spaces. Math. Struct. Comput. Sci., 8(5):481–540, 1998.
doi:10.1017/s0960129598002588.

39 Tarmo Uustalu. Generalizing substitution. Theor. Inform. Appl., 37(4):315–336, 2003.
doi:10.1051/ita:2003022.

A Selected Proof Details

Proof of Proposition 8. The necessity is obvious. Let us show sufficiency. For every b P

C?pXq, let us fix some choice of b̄ P C?pXq, for which the pair pb, b̄q satisfies contradiction and
excluded middle, and show that C?pXq forms a Boolean algebra, i.e. C?pXq is a complemented
distributive lattice. Complementation amounts to the assumed identities, and we are left to

CONCUR 2024

https://doi.org/10.2168/lmcs-11(3:24)2015
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/256167.256195
https://doi.org/10.4230/lipics.csl.2013.415
https://doi.org/10.1007/978-3-642-21070-9_20
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/j.scico.2006.01.010
https://doi.org/10.1016/j.scico.2006.01.010
https://doi.org/10.1016/j.entcs.2013.09.019
https://doi.org/10.1137/0205035
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1109/lics.2000.855753
https://doi.org/10.1145/3371129
https://doi.org/10.1017/s0960129598002588
https://doi.org/10.1051/ita:2003022

25:20 A Unifying Categorical View of Nondeterministic Iteration and Tests

show the laws of distributive lattices. Since complements are uniquely defined in Boolean
algebras, it will follow that b̄ is uniquely determined by b. Of course, this is not used in the
subsequent proof.

It follows by definition that pC?pXq, 0,`q and pC?pXq, 1, ; q are monoids. Showing that
they are idempotent and commutative (hence, are semilattices) amounts to showing that
b ; b “ b and b ; c “ c ; b for all b, c P C?pXq. The first identity is shown as follows, using
linearity and the assumed identities:

b “ b ; 1 “ b ; pb ` b̄q “ b ; b ` b ; b̄ “ b ; b ` 0 “ b ; b.

For the second one, note that 1 “ b ` b̄ “ b ` b ` b̄ “ b ` 1, and then

b ; c “ b ; c ; 1 “ b ; c ; pb ` 1q “ b ; c ; b ` b ; c

“ b ; c ; b ` b ; c ; b ; c “ b ; c ; b ; p1 ` cq “ b ; c ; b,

where we used the instance of idempotence b ; c “ b ; c ; b ; c that we just established.
Analogously, c ; b “ b ; c ; b, and hence b ; c “ c ; b.

Finally, distributivity amounts to pa ` bq ; c “ a ; c ` b ; c and a ` b ; c “ pa ` bq ; pa ` cq

for all a, b, c P C?pXq. The first identity is an axiom of idempotent grove categories. The
second one is obtained as follows:

pa ` bq ; pa ` cq “ a ; a ` a ; c ` b ; a ` b ; c “ a ` a ; c ` a ; b ` b ; c

“ a ; p1 ` c ` bq ` b ; c “ a ; 1 ` b ; c “ a ` b ; c ◀

Proof of Lemma 10. Negation is defined as follows:

0̄ “ 1, rin0, 0s “ r0, in1s, b ` c “ b̄ ; c̄,

1̄ “ 0, r0, in1s “ rin0, 0s, b ; c “ b̄ ` c̄.

For every X, let C?pXq be the smallest subset of CpX, Xq that contains 0, 1, rin0, 0s and
r0, in1s, and closed under ` and ; . By Proposition 8, we need to show that every b P C?pXq

is linear and satisfies b ; b̄ “ 0, b ` b̄ “ 1, which we do by induction. Let us strengthen
the induction invariant by also adding b̄ ; b “ 0. Note that the above equations do not
uniquely define complement, e.g. rin0, 0s “ r0, in1s refers to a particular decomposition of X

as X1 ‘X2, while another decomposition could theoretically produce a different result. Thus,
more precisely, we use the fact that every element of C?pXq has a representation in the free
algebra of terms over 0, 1, rin0, 0s, r0, in1s, ` and ; . The claim is then obtained by induction
over this representation. ◀

Proof of Lemma 35. The dependency condition is obvious in all three cases. We will prove
finiteness of sets of derivatives only.

Sum. Let t, s P Tνn be rational. Then Dpt ` sq “ {t ` s} YDptq YDpsq, which is finite,
since Dptq and Dpsq are so.

Composition. It suffices to stick to the following instance: given n, k P N, a rational element
t P Tνn and a rational map s : n Ñ Tνk, show that t ; s7 P Tνk is rational. Consider the set
P of sums of the form

t1 ; s7 `
∑

s1PDpsq
rs1 ; ps1q7

S. Goncharov and T. Uustalu 25:21

where t1 ranges over Dptq and rs1 range over non-guarded elements of Tνn. Then P is finite.
Moreover, P is closed under derivatives: using Lemma 32,

Bb,upt
1 ; s7 `

∑
s1PDpsq

rs1 ; ps1q7q

“ Bb,upt
1q ; s7 ` opt1q ; pBb,upsqq

7 `
∑

s1PDpsq
Bb,uprs1q ; ps1q7

`
∑

s1PDpsq
oprs1q ; pBb,ups

1qq7

“ Bb,upt
1q ; s7 ` opt1q ; pBb,upsqq

7 `
∑

s1PDpsq
oprs1q ; pBb,ups

1qq7

“ Bb,upt
1q ; s7 ` popt1q ` oprsqq ; pBb,upsqq

7 `
∑

s1PDpsq∖{s}
oprs1q ; pBb,ups

1qq7,

and analogously for Bk
b,f . Note that t ; s7 P P . Therefore Dpt ; s7q Ď P . Since P is finite, so

is Dpt ; s7q.

Iteration. Let t “ rt0, . . . , tn´1s : n Ñ Tνn, and Dptiq be finite for i “ 0, . . . , n ´ 1. Analog-
ously to the previous clause, consider the set P of sums of the form∑

t1PDptq
rt1 ; pt1q7 ; pt˚q7 ` r

where t1 ranges over Dptq and rs1 , r range over those non-guarded elements of Tνn. In the
same manner as in the previous clause: P is finite, contains t˚ and is closed under derivatives,
hence Dpt˚q is finite. ◀

Proof of Theorem 37. The key observation is that Jinm
n ; s˚ ; r7K� does not depend on the

choice of s and r. This is argued as follows. Using the construction in Proposition 36, for a
given t “ inm

n ; s˚ ; r7, we obtain a canonical representation t “ inl
n ; ŝ˚ ; r̂ 7, with ŝ : l Ñ Tν l,

r̂ : l Ñ Tνk, and this representation only depends on t, hence, it suffices to show that

Jinm
n ; s˚ ; r7K� “ Jinl

n ; ŝ˚ ; r̂ 7K�. (11)

Because of the restrictions on s and r, there is an epimorphism u : m Ñ l, such that
s ; Tνu “ u ; ŝ and u ; r̂ “ r. W.l.o.g. assume that inl,m is a left inverse of u. Now, (11) is
obtained as follows:

Jinm
n ; s˚ ; r7K� “ inm

n ; JsK˚ ; JrK

“ inm
n ; JsK˚ ; JuK ; J r̂K

“ inm
n ; u ; J ŝK˚ ; J r̂K // ˚-Uni

“ inl
n ; inl,m ; u ; J ŝK˚ ; J r̂K

“ inl
n ; J ŝK˚ ; J r̂K

“ Jinl
n ; ŝ˚ ; r̂ 7K�

The defined lifting J--K� : F Ñ C is easily seen to make (9) commute. Also, note that there
is no more than one structure-preserving candidate for J--K�, to make (9) commute: indeed,
since every morphism in F is representable as t “ inm

n ; s˚ ; r7, JtK� must only be defined as
inm

n ; JsK˚ ; JrK.
We are left to check that J--K� is a KiCT-functor, which is facilitated by Lemma 38. The

only non-trivial clause is preservation of Kleene star. As an auxiliary step, we show that

Jη ` inm
n ; s˚ ; r7K� “ JηK� ` Jinm

n ; s˚ ; r7K� (12)

CONCUR 2024

25:22 A Unifying Categorical View of Nondeterministic Iteration and Tests

for any guarded flat s : m Ñ Tνm, and a non-guarded r : m Ñ Tνn. In order to calculate
the left-hand side of (12), we need to find a suitable representation for 1 ` inm

n ; s˚ ; r7.
Concretely, we show that

η ` inm
n ; s˚ ; r7 “ inm`m

n ; rin1 ; η, s ; Tν in1s
˚ ; rrηn, 0s, rs7

Indeed, using ˚-Fix and ˚-Uni,

inm`m
n ; rin1 ; η, s ; Tν in1s

˚ ; rrηn, 0s, rs7

“ inm`m
n ; pη ` rin1 ; η, s ; Tν in1s ; prin1 ; η, s ; Tν in1s

˚q7q ; rrηn, 0s, rs7

“ η ` inm
n ; in1 ; η ; prin1 ; η, s ; Tν in1s

˚q7 ; rrηn, 0s, rs7

“ η ` inm
n ; s˚ ; Tν in1 ; rrηn, 0s, rs7

“ η ` inm
n ; s˚ ; r7.

Now, (12) turns into

inm`m
n ; rin1, JsK ; in1s

˚ ; rr1n, 0s, JrKs “ 1 ` inm
n ; JsK˚ ; JrK.

This equation is shown as above, since ˚-Fix and ˚-Uni are sound for C.
An analogous method is used to show that J--K� preserves Kleene star. Let s : m Ñ Tνm

be guarded flat, and let r : m Ñ Tνn be non-guarded, and prove that:

Jpinm
n ; s˚ ; r7q˚K� “ Jinm

n ; s˚ ; r7K˚� . (13)

The following equation is provable using the axioms of KiC

pinm
n ; s˚ ; r7q˚ “ η ` inm

n ; ppr ; Tν inm
n q˚ ; s7q˚ ; ppr ; Tν inm

n q˚ ; r7q7,

hence, the equation

pinm
n ; JsK˚ ; JrK7q˚ “ 1 ` inm

n ; ppJrK ; inm
n q˚ ; JsKq˚ ; pJrK ; inm

n q˚ ; JrK

is provable as well. Now, the proof of (13) is as follows:

Jpinm
n ; s˚ ; r7q˚K� “ Jη ` inm

n ; ppr ; Tν inm
n q˚ ; s7q˚ ; ppr ; Tν inm

n q˚ ; r7q7K�

“ 1 ` inm
n ; ppJrK ; inm

n q˚ ; JsK7q˚ ; pJrK ; inm
n q˚ ; JrK // (12)

“ pinm
n ; JsK˚ ; JrK7q˚

“ Jinm
n ; s˚ ; r7K˚� . ◀

Phase-Bounded Broadcast Networks over
Topologies of Communication
Lucie Guillou #

IRIF, CNRS, Université Paris Cité, France

Arnaud Sangnier #

DIBRIS, Università di Genova, Italy

Nathalie Sznajder #

LIP6, CNRS, Sorbonne Université, Paris, France

Abstract
We study networks of processes that all execute the same finite state protocol and that communicate
through broadcasts. The processes are organized in a graph (a topology) and only the neighbors of a
process in this graph can receive its broadcasts. The coverability problem asks, given a protocol and
a state of the protocol, whether there is a topology for the processes such that one of them (at least)
reaches the given state. This problem is undecidable [6]. We study here an under-approximation of
the problem where processes alternate a bounded number of times k between phases of broadcasting
and phases of receiving messages. We show that, if the problem remains undecidable when k is
greater than 6, it becomes decidable for k = 2, and ExpSpace-complete for k = 1. Furthermore, we
show that if we restrict ourselves to line topologies, the problem is in P for k = 1 and k = 2.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Parameterized verification, Coverability, Broadcast Networks

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.26

Related Version Long Version: https://arxiv.org/abs/2406.15202 [15]

Funding Lucie Guillou: ANR project PaVeDyS (ANR-23-CE48-0005)

1 Introduction

Verifying networks with an unbounded number of entities. Ensuring safety properties for
concurrent and distributed systems is a challenging task, since all possible interleavings must
be taken into account; hence, even if each entity has a finite state behavior, the verification
procedure has to deal with the state explosion problem. Another level of difficulty arises when
dealing with distributed protocols designed for an unbounded number of entities. In that case,
the safety verification problem consists in ensuring the safety of the system, for any number
of participants. Here, the difficulty comes from the infinite number of possible instantiations
of the network. In their seminal paper [13], German and Sistla propose a formal model to
represent and analyze such networks: in this work, all the processes in the network execute the
same protocol, given by a finite state automaton, and they communicate thanks to pairwise
synchronized rendez-vous. The authors study the parameterized coverability problem, which
asks whether there exists an initial number of processes that allow an execution leading to a
configuration in which (at least) one process is in an error state (here the parameter is the
number of processes). They show that it is decidable in polynomial time. Later on, different
variations of this model have been considered, by modifying the communication means:
token-passing mechanism [1,5], communication through shared register [8, 11], non-blocking
rendez-vous mechanism [14], or adding a broadcast mechanism to send a message to all the

© Lucie Guillou, Arnaud Sangnier, and Nathalie Sznajder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillou@irif.fr
https://orcid.org/0000-0002-6101-2895
mailto:arnaud.sangnier@unige.it
https://orcid.org/0000-0002-6731-0340
mailto:nathalie.sznajder@lip6.fr
https://orcid.org/0000-0002-4199-2443
https://doi.org/10.4230/LIPIcs.CONCUR.2024.26
https://arxiv.org/abs/2406.15202
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Phase-Bounded Broadcast Networks over Topologies of Communication

entities [9]. The model of population protocol proposed in [2] and for which verification
methods have been developed recently in [10,12] belongs also to this family of systems. In this
latter model, the properties studied are different, and more complex than safety conditions.

Broadcast networks working over graphs. In [6], Delzanno et. al propose a new model of
parameterized network in which each process communicates with its neighbors by broadcasting
messages. The neighbors of an entity are given thanks to a graph: the communication topology.
This model was inspired by ad hoc networks, where nodes communicate with each other
thanks to radio communication. The difficulty in proving safety properties for this new
model lies in the fact that one has to show that the network is safe for all possible numbers
of processes and all possible communication topologies. So the verification procedure not
only looks for the number of entities, but also for a graph representing the relationship of the
neighbours to show unsafe execution. As mentioned earlier, it is not the first work to propose a
parameterized network with broadcast communication; indeed the parameterized coverability
problem in networks with broadcast is decidable [9] and non-primitive recursive [24] when the
communication topology is complete (each entity is a neighbor of all the others). However,
when there is no restriction on the allowed communication topologies the problem becomes
undecidable [6] but decidability can be regained by providing a bound on the length of all
simple paths in allowed topologies [6]. This restriction has then been extended in [7] to allow
also cliques in the model. However, with this restriction, the complexity of parameterized
coverability is non-primitive recursive [7].

Bounding the number of phases. When dealing with infinite-state systems with an unde-
cidable safety verification problem, one option consists in looking at under-approximations of
the global behavior, restricting the attention to a subset of executions. If proving whether the
considered subset of executions is safe is a decidable problem, this technique leads to a sound
but incomplete method for safety verification. Good under-approximation candidates are
the ones that can be extended automatically to increase the allowed behavior. For instance,
it is known that safety verification of finite systems equipped with integer variables that
can be incremented, decremented, or tested to zero is undecidable [19], but if one considers
only executions in which, for each counter, the number of times the execution alternates
between an increasing mode and a decreasing mode is bounded by a given value, then safety
verification becomes decidable [16]. Similarly, verifying concurrent programs manipulating
stacks is undecidable [22] but decidability can be regained by bounding the number of allowed
context switches (a context being a consecutive sequence of transitions performed by the same
thread) [20]. Context-bounded analysis has also been applied to concurrent programs with
stacks and dynamic creation of threads [3]. Another type of underapproximation analysis has
been conducted by [17] (and by [4] in another context), by considering bounded round-robin
schedules of processes. Inspired by this work, we propose here to look at executions of
broadcast networks over communication topologies where, for each process, the number
of alternations between phases where it broadcasts messages and phases where it receives
messages is bounded. We call such protocols k-phase-bounded protocols where k is the
allowed number of alternations.

Our contributions. We study the parameterized coverability problem for broadcast networks
working over communication topologies. We first show in Section 2 that it is enough to
consider only tree topologies. This allows us to ease our presentation in the sequel and is
also an interesting result by itself. In Section 3, we prove that the coverability problem

L. Guillou, A. Sangnier, and N. Sznajder 26:3

qin

q4 q5

q1 q2 q3

!!a, !!b ?c

?b

!!a

?a !!c

?a

Figure 1 Example of a broadcast protocol denoted P .

is still undecidable when considering k-phase-bounded broadcast protocols with k greater
than 6. The undecidability proof relies on a technical reduction from the halting problem
for two counter Minsky machines. We then show in Sections 4 and 5 that if the number of
alternations is smaller or equal to 2, then decidability can be regained. More precisely, we
show that for 1-phase-bounded protocols, we can restrict our attention to tree topologies
of height 1, which provides an ExpSpace-algorithm for the coverability problem. To solve
this problem in the case of 2-phase-bounded protocols, we prove that we can bound the
height of the considered tree and rely on the result of [6] which states that the coverability
problem for broadcast networks is decidable when considering topologies where the length of
all simple paths is bounded. We furthermore show that if we consider line topologies then
the coverability problem restricted to 1- and 2-phase-bounded protocols can be solved in
polynomial time.

Due to lack of space, omitted proofs and reasonings can be found in [15].

2 Preliminaries

Let A be a countable set, we denote A∗ as the set of finite sequences of elements taken in
A. Let w ∈ A∗, the length of w is defined as the number of elements in the sequence w and
is denoted |w|. For a sequence w = a1 · a2 · · · ak ∈ A+, we denote by w[−1] the sequence
a1 ·a2 · · · ak−1. Let ℓ, n ∈ N with ℓ ≤ n, we denote by [ℓ, n] the set of integers {ℓ, ℓ+1, . . . , n}.

2.1 Networks of processes
We study networks of processes where each process executes the same protocol given as a
finite-state automaton. Given a finite set of messages Σ, a transition of the protocol can be
labelled by three types of actions: (1) the broadcast of a message m ∈ Σ with label !!m, (2)
the reception of a message m ∈ Σ with label ?m or (3) an internal action with a special label
τ ̸∈ Σ. Processes are organised according to a topology which gives for each one of them
its set of neighbors. When a process broadcasts a message m ∈ Σ, the only processes that
can receive m are its neighbors, and the ones having an output action ?m have to receive it.
Furthermore, the topology remains fixed during an execution.

Let Σ be a finite alphabet. In order to refer to the different types of actions, we write !!Σ
for the set {!!m | m ∈ Σ} and ?Σ for {?m | m ∈ Σ}.

▶ Definition 2.1. A Broadcast Protocol is a tuple P = (Q, Σ, qin, ∆) such that Q is a
finite set of states, Σ is a finite alphabet of messages, qin is an initial state and ∆ ⊆
Q × (!!Σ×?Σ ∪ {τ}) × Q is a finite set of transitions.

We depict an example of a broadcast protocol in Figure 1. Processes are organised according
to a topology, defined formally as follows.

CONCUR 2024

26:4 Phase-Bounded Broadcast Networks over Topologies of Communication

▶ Definition 2.2. A topology is an undirected graph, i.e. a tuple Γ = (V, E) such that V is
a finite set of vertices, and E ⊆ V × V is a finite set of edges such that (u, v) ∈ E implies
(v, u) ∈ E for all (u, v) ∈ V 2, and for all u ∈ V , (u, u) ̸∈ E (there is no self-loop).

We will use V(Γ) and E(Γ) to denote the set of vertices and edges of Γ respectively, namely
V and E. For v ∈ V , we will denote NΓ(v) the set {u | (v, u) ∈ E}. When the context is
clear, we will write N(v). For u, v ∈ V(Γ), we denote ⟨v, u⟩ for the two pairs (v, u), (u, v). We
name Graphs the set of topologies. In this work, we will also be interested in some families of
topologies: line and tree topologies. A topology Γ = (V, E) is a tree topology if V is a set of
words of N∗ which is prefix closed with ϵ ∈ V , and if E = {⟨w[−1], w⟩ | w ∈ V ∩ N+}. This
way, the root of the tree is the unique vertex ϵ ∈ V and a node w ∈ V ∩ N+ has a unique
parent w[−1]. The height of the tree is max{n ∈ N | |w| = n}. We denote by Trees the set of
tree topologies. A topology Γ = (V, E) is a line topology if V is such that V = {v1, . . . , vn} for
some n ∈ N and E = {⟨vi, vi+1⟩ | 1 ≤ i < n}. We denote by Lines the set of line topologies.

Semantics. A configuration C of a broadcast protocol P = (Q, Σ, qin, ∆) is a tuple (Γ, L)
where Γ is a topology, and L : V(Γ) → Q is a labelling function associating to each vertex v of
the topology its current state of the protocol. In the sequel, we will sometimes call processes
or nodes the vertices of Γ. A configuration C is initial if L(v) = qin for all v ∈ V(Γ). We let
CP be the set of all configurations of P , and IP the set of all initial configurations. When P is
clear from the context, we may drop the subscript and simply use C and I. Given a protocol
P = (Q, Σ, qin, ∆), and a state q ∈ Q, we let R(q) = {m ∈ Σ | ∃q′ ∈ Q, (q, ?m, q′) ∈ ∆} be
the set of messages that can be received when in the state q.

Consider δ = (q, α, q′) ∈ ∆ a transition of P , and C = (Γ, L) and C ′ = (Γ′, L′) two
configurations of P , and let v ∈ V(Γ) be a vertex. The transition relation v,δ−−→ ∈ C × C
is defined as follows: we have C

v,δ−−→ C ′ if and only if Γ = Γ′, and one of the following
conditions holds:

α = τ and L(v) = q, L′(v) = q′ and L′(u) = L(u) for all u ∈ V(Γ)\{v}: vertex v performs
an internal action;
α =!!m and L(v) = q, L′(v) = q′ (vertex v performs a broadcast), and for each process
u ∈ N(v) neighbor of v, either (L(u), ?m, L′(u)) ∈ ∆ (vertex u receives message m

from v), or m ̸∈ R(L(u)) and L(u) = L′(u) (vertex u is not in a state in which it can
receive m and stays in the same state). Furthermore, L′(w) = L(w) for all other vertices
w ∈ V(Γ) \ ({v} ∪ N(v)) (vertex w does not change state).

We write C −→ C ′ whenever there exists v ∈ V(Γ) and δ ∈ ∆ such that C
v,δ−−→ C ′. We

denote by →∗ [resp. →+] for the reflexive and transitive closure [resp. transitive] of →. An
execution of P is a sequence of configurations C0, . . . , Cn ∈ CP such that for all 0 ≤ i < n,
Ci → Ci+1.

▶ Example 2.3. We depict in Figure 2 an execution of protocol P (from Figure 1): it starts
with an initial configuration with three processes v1, v2, v3, organised as a clique (each vertex
is a neighbour of the two others), each on the initial state qin. More formally, Γ = (V, E)
with V = {v1, v2, v3} and E = {⟨v1, v2⟩, ⟨v2, v3⟩, ⟨v1, v3⟩}. From the initial configuration, the
following chain of events happens: C0

v1,(qin,!!b,q4)−−−−−−−−−→ C1
v2,(q1,!!a,qin)−−−−−−−−−→ C2

v3,(q2,!!c,q3)−−−−−−−−→ C3.

2.2 Verification problem
In this work, we focus on the coverability problem which consists in ensuring a safety property:
we want to check that, no matter the number of processes in the network, nor the topology
in which the processes are organised, a specific error state can never be reached.

L. Guillou, A. Sangnier, and N. Sznajder 26:5

v1 : qin

v2 : qinv3 : qin

v1
v1 : q4

v2 : q1v3 : q1

v2
v1 : q4

v2 : qinv3 : q2

v3
v1 : q5

v2 : qinv3 : q3

Figure 2 Example of an execution of protocol P (Figure 1).

The coverability problem over a family of topologies S ∈ {Graphs, Trees, Lines} is stated
as follows:

Cover[S]

Input: A broadcast protocol P and a state qf ∈ Q;
Question: Is there Γ ∈ S, C = (Γ, L) ∈ IP and C′ = (Γ, L′) ∈ CP and v ∈ V(Γ) such that

C →∗ C′ and L′(v) = qf ?

For a family S, if indeed there exist C = (Γ, L) and C ′ = (Γ, L′) such that C →∗ C ′ and
L′(v) = qf for some v ∈ V(Γ), we say that qf is coverable (in P) with Γ. We also say that
the execution C →∗ C ′ covers qf . For short, we write Cover instead of Cover[Graphs].
Observe that Cover is a generalisation of Cover[Trees] which is itself a generalisation of
Cover[Lines]. In [6], the authors proved that the three problems are undecidable, and they
later showed in [7] that the undecidability of Cover still holds when restricting the problem
to families of topologies with bounded diameter.

However, in [6], the authors show that Cover becomes decidable when searching for an
execution covering qf with a K-bounded path topology for some K ∈ N, i.e. for a topology
in which all simple paths between any pair of vertices v1, v2 ∈ V have a length bounded by
K. In [7], it is also shown that Cover is Ackermann-hard when searching for an execution
covering qf with a topology where all maximal cliques are connected by paths of bounded
length. We establish the first result.

▶ Theorem 2.4. Cover[Graphs] and Cover[Trees] are equivalent.

Indeed, if it is obvious that when a state is coverable with a tree topology, it is coverable
with a topology from Graphs, we can show that whenever a state is coverable, it is coverable
with a tree topology. If a set qf of a protocol P is coverable with a topology Γ ∈ Graphs,
let ρ = C0 → · · · → Cn = (Γ, Ln) be an execution covering qf , and a vertex vf ∈ V(Γ) such
that Ln(vf) = qf . We can build an execution covering qf with a tree topology Γ′ where the
root reaches qf . Actually, Γ′ is the unfolding of Γ in a tree of height n.

3 Phase-Bounded Protocols

As Cover[Graphs], Cover[Trees] and Cover[Lines] are undecidable in the general case, we
investigate a restriction on broadcast protocols: phase-bounded protocols.

For k ∈ N, a k-phase-bounded protocol is a protocol that ensures that each process
alternates at most k times between phases of broadcasts and phases of receptions. Before
giving our formal definition of a phase-bounded protocol, we motivate this restriction.

Phase-bounded protocols can be seen as a semantic restriction of general protocols in
which each process can only switch a bounded number of times between phases where it
receives messages and phases where it broadcasts messages. When, usually, restricting the
behavior of processes immediately yields an underapproximation of the reachable states, we
highlight in [15] the fact that preventing messages from being received can in fact lead to
new reachable states. Actually, the reception of a message is something that is not under

CONCUR 2024

26:6 Phase-Bounded Broadcast Networks over Topologies of Communication

q0
in

qb,1
4 qr,2

5

qr,1
1

qr,1
2

qb,2
3

qb,2
in qb,2

4

qr,2
1 qr,2

2

Phase 0
Phase 1 Phase 2

!!a, !!b
?c

?b ?a

!!c ?a

!!a
?b

!!a, !!b

?a

?a

Figure 3 P2: the 2-unfolding of protocol P (Figure 1).

the control of a process. If another process broadcasts a message, a faithful behavior of the
system is that all the processes that can receive it indeed do so, no matter in which phase
they are in their own execution. Hence, in a restriction that attempts to limit the number
of switches between broadcasting and receiving phases, one should not prevent a reception
to happen. This motivates our definition of phase-bounded protocols, in which a process
in its last broadcasting phase, can still receive messages. A k-unfolding of a protocol P is
then a protocol in which we duplicate the vertices by annotating them with the type and the
number of phase (b or r for broadcast or reception and an integer between 0 and k for the
number).

▶ Example 3.1. Figure 3 pictures the 2-unfolding of protocol P (Figure 1). Observe that
from state qb,2

4 , which is a broadcast state, it is still possible to receive message a and go to
state qr,2

5 . However, it is not possible to send a message from qr,2
5 (nor from any reception

state of phase 2).

We show in [15] that this definition of unfolding can be used as an underapproximation
for Cover. In the remaining of the paper, we study the verification problems introduced
in Section 2.2 when considering phase-bounded behaviors. We turn this restriction into a
syntactic one over the protocol, defined as follows.

▶ Definition 3.2. Let k ∈ N. A broadcast protocol P = (Q, Σ, qin, ∆) is k-phase-bounded if
Q can be partitioned into 2k + 1 sets Q = {Q0, Qb

1, Qr
1, . . . Qb

k, Qr
k}, such that qin ∈ Q0 and

for all (q, α, q′) ∈ ∆ one of the following conditions holds:
1. there exist 0 ≤ i ≤ k and β ∈ {r, b} such that q, q′ ∈ Qβ

i and α = τ (for ease of notation,
we take Q0 = Qb

0 = Qr
0);

2. there exists 1 ≤ i ≤ k such that q, q′ ∈ Qb
i and α ∈!!Σ;

3. there exists 1 ≤ i ≤ k such that q, q′ ∈ Qr
i and α ∈?Σ;

4. there exists 0 ≤ i < k such that q ∈ Qb
i , q′ ∈ Qr

i+1 and α ∈?Σ;
5. there exists 0 ≤ i < k such that q ∈ Qr

i , q′ ∈ Qb
i+1 and α ∈!!Σ;

6. q ∈ Qb
k, q′ ∈ Qr

k and α ∈?Σ

A protocol P is phase-bounded if there exists k ∈ N such that P is k-phase-bounded.

▶ Example 3.3. Observe that the protocol P displayed in Figure 1 is not phase-bounded:
by definition, it holds that Q0 = {qin}, and q1 ∈ Qr

1 (because of the transition (qin, ?b, q1)).
As a consequence qin ∈ Qb

2, because of the transition (q1, !!a, qin). This contradicts the fact
that Qb

2 ∩ Q0 = ∅. Intuitively, P does not ensure that every vertex alternates at most a
bounded number of times between receptions and broadcasts, in particular, for any integer
k ∈ N, it might be that there exists an execution where a process alternates k + 1 times

L. Guillou, A. Sangnier, and N. Sznajder 26:7

between reception of a message b from state qin, and broadcast of a message a from state
q1. Removing the transition (q1, !!a, qin) from P would give a 2-phase-bounded protocol P ′:
Q0 = {qin}, Qr

1 = {q1, q2}, Qb
1 = {q4}, Qb

2 = {q3} and Qr
2 = {q5}.

The following table summarizes our results (PB stands for phase-bounded).

1-PB Protocols 2-PB Protocols PB Protocols
Cover[Lines] ∈ P (Section 6.2) Undecidable (k ≥ 4) (Sec 4)
Cover[Graphs] ExpSpace-complete Decidable Undecidable (k ≥ 6)
Cover[Trees] (Section 5) (Section 6.1) (Section 4)

4 Undecidability Results

We prove that Cover restricted to k-phase-bounded protocols (with k ≥ 6) is undecidable
by a reduction from the halting problem of a Minksy machine [19]: a Minsky machine is a
finite-state machine (whose states are called locations) with two counters, x1 and x2 (two
variables that take their values in N). Each transition of the machine is associated with an
instruction: increment one of the counters, decrement one of the counters or test if one of
the counters is equal to 0. The halting problem asks whether there is an execution that ends
in the halting location. In a first step, the protocol will enforce the selection of a line of
nodes from the topology. All other nodes will be inactive. In a second step, the first node of
the line (that we call the head) visits the different states of the machine during an execution,
while all other nodes (except the last one) simulate counters’ values: they are either in a state
representing value 0, or a state representing x1 (respectively x2). The number of processes on
states representing x1 gives the actual value of x1 in the execution. The last node (called the
tail) checks that everything happens as expected. When the head has reached the halting
location of the machine, it broadcasts a message which is received and forwarded by each
node of the line until the tail receives it and reaches the final state to cover.

When the head of the line simulates a transition of the machine, it broadcasts a message
(the instruction for one of the counters), which is transmitted by each node of the line
until the tail receives it. A classical way of forwarding the message through receptions and
broadcasts would not give a phase-bounded protocol. Hence, during the transmission, the tail
only receives messages and all other nodes only broadcast and do not receive any message.
The main idea is that we do not use the reception of messages to move into the next state of
the execution but to detect errors (and in that case, go to a bad sink state from which the
process can not do anything). The processes will have to guess the correct message to send,
and the correct instant to send it, otherwise some of them will go to the sink state upon the
reception of this “wrong” message. Hence, when everyone makes the correct guesses, the only
reception that occurs in the transmission is done by the tail process, whereas when someone
makes an incorrect guess, a process goes to a bad state with a reception. In the reduction, if
the halting state of the Minsky Machine is not reachable, there will be no way to make a
correct guess that allows to cover the final state. In the next subsection, we explain how this
is achieved. To do so, we explain the mechanism by abstracting away the actual instruction,
and just show how to transmit a message.

4.1 Propagating a message using only broadcasts in a line
In a line, a node has at most two neighbors, but cannot necessarily distinguish between the
two (its left and its right one). To do so, nodes broadcast messages with subscript 0, 1 or
2, and we ensure that: if a node broadcasts with subscript 1, its right [resp. left] neighbor
broadcasts with subscript 0 [resp. subscript 2]. Similarly, if a node broadcasts with subscript

CONCUR 2024

26:8 Phase-Bounded Broadcast Networks over Topologies of Communication

s0 s1 s2

§ § §

!!td0 !!td0

?m, m ∈ Σ
?m, m ̸∈
{td1, d1}

?m, m ̸∈
{td1, d1}

Figure 4 Protocol Ph executed by v0.

idl ch§ §
?d1

?d1

?m, m ̸= d1 ?m, m ̸= d1

Figure 5 Protocol Pt executed by vn.

idl0

ex0

hlt0

§

§

§

tr0
td

tr0
d

!!td0

!!d0!!td0

!!td0

!!d0

!!d0

?m,
m ̸∈ {td2,
d2, td1, d1}

?m,
m ̸∈ {td2, d2,

td1, d1}

?m,
m ̸∈ {td2, d2,

td1, d1}

?m, m ̸∈
{td2, td1}

?m, m ̸∈
{d2, d1}

Figure 6 P0.

idl1

ex1

hlt1

§

§

§

tr1
td

tr1
d

!!td1

!!d1!!td1

!!td1

!!d1

!!d1

?m,
m ̸∈ {td0,
d0, td2, d2}

?m,
m ̸∈ {td0, d0,

td2, d2}

?m,
m ̸∈ {td0, d0,

td2, d2}

?m, m ̸∈
{td0, td2}

?m, m ̸∈
{d0, d2}

Figure 7 P1.

idl2

ex2

hlt2

§

§

§

tr2
td

tr2
d

!!td2

!!d2!!td2

!!td2

!!d2

!!d2

?m,
m ̸∈ {td1,
d1, td0, d0}

?m,
m ̸∈ {td1, d1,

td0, d0}

?m,
m ̸∈ {td1, d1,

td0, d0}

?m, m ̸∈
{td1, td0}

?m, m ̸∈
{d1, d0}

Figure 8 P2.

0 [resp. 2], its right neighbor broadcasts with subscript 2 [resp. 1] and its left one with
subscript 1 [resp. 0].

Consider the five protocols displayed in Figures 4–8. The states marked as initial are the
ones from which a process enters the protocol. Protocol Ph is executed by the head of the
line, Pt by the tail of the line and other nodes execute either P0, P1 or P2. Observe that
messages go by pairs: tdi, tdi and di, di for all i ∈ {0, 1, 2}.

The head broadcasts a request to be done with the pair of messages td0, td0. Each
process in one of the Pi starts in idli and has a choice: either it transmits a message without
executing it, or it “executes” it and tells it to the others. When it transmits a message not
yet executed, it broadcasts the messages tdi and tdi and visits states tri

td and idli. When
it executes the request, it broadcasts the messages tdi and di and visits states exi and hlti.
Finally, when it transmits a request already done, it broadcasts the messages di and di and
visits states tri

d and idli. Once a process has executed the request (i.e. broadcast a pair tdj ,
dj for some j ∈ {0, 1, 2}), only pairs dj , dj , with j ∈ {0, 1, 2}, are transmitted in the rest of
the line.

Correct transmission of a request. Take for instance the configuration C0 depicted in
Figure 9 for n = 5 (i.e. there are six vertices). We say that a configuration is stable if the head
is in s0 or s2, the tail is in idl and other nodes are in idli or hlti for i ∈ {0, 1, 2}. Note that C0
is stable. We depict a transmission in Figures 10a and 10b, starting from C0. We denote the
successive depicted configurations C0, C1, . . . C11. Note that C11 is stable. Between C0 and

v0 : s0 v1 : idl1 v2 : idl2 v3 : idl0 v4 : idl1 vn−1 : idl1 vn : idl. . .

Figure 9 A configuration from which the transmission can happen: a node in state idli can only
broadcast messages with subscript i.

L. Guillou, A. Sangnier, and N. Sznajder 26:9

v0 :s0 v1 : idl1 v2 :idl2
!!td0

v0 :s1 v1 : idl1 v2 :idl2

!!td1
v0 :s1 v1 : tr1

td v2 :idl2
!!td0

v0 :s2 v1 : tr1
td v2 :idl2

!!td2
v0 :s2 v1 : tr1

td v2 :tr2
td

!!td1
v0 :s2 v1 : idl1 v2 :tr2

td

(a) C0 → C1 → · · · → C5.

v2 :tr2
td v3 :idl0 v4 :idl1 v5 :idl

!!td0

v2 :tr2
td v3 :ex0 v4 :idl1 v5 :idl

!!td2

v2 :idl2 v3 :ex0 v4 :idl1 v5 :idl
!!d1

v2 :idl2 v3 :ex0 v4 :tr1
d v5 :ch

!!d0
v2 :idl2 v3 :hlt0 v4 :tr1

d v5 :ch
!!d1

v2 :idl2 v3 :hlt0 v4 :idl1 v5 :idl

(b) C6 → C7 → · · · → C11.

Figure 10 Example of correct transmission.

C11, the following happens: Between C0 and C3, v0 broadcasts the request with messages
td0 and td0. Between C1 and C8, v1 and v2 successively repeat the request to be done with
messages td1 and td1 for v1 and td2 td2 for v2. Between C6 and C10, v3 executes the request
by broadcasting messages td0 and d0. Between C7 and C11, v4 transmits the done request
with messages d1 and d1. Hence, the request is executed by exactly one vertex (namely
v3), as highlighted in Figure 10b. Observe that the processes sort of spontaneously emit
broadcast to avoid to receive a message. A correct guess of when to broadcast yields the
interleaving of broadcasts that we have presented in this example.

How to prevent wrong behaviors? Observe that, when a node is in state idl1, if one of its
neighbor broadcasts a message which is not td0, d0 or td2, d2, then the node in idl1 reaches
§. We say that a process fails whenever it reaches §. We have the following lemma:

▶ Lemma 4.1. Let C ∈ C be a stable configuration such that C0 →+ C. Then in C, it holds
that v0 is in s2, and there is exactly one vertex v ∈ {v1, v2, v3, v4} on a state hltj for some
j ∈ {0, 1, 2}.

Indeed, let C be a stable configuration such that C0 →+ C. It holds that:
1. From C0, the first broadcast is from v0 and it broadcasts td0.

Indeed, if another vertex than v0 broadcasts a message m with subscript i from C0, its left
neighbor would fail with transition (idlj , ?m,§) as j = (i − 1) mod 3 and m ∈ {tdi, di}.
Let us consider an example depicted in Figure 11b: Assume v1 is in state idl1 and v2
broadcasts td2 or d2 (it issues a request whereas v1 is not broadcasting any request), then
v1 receives the message with transition that goes from idl1 to §, as depicted in Figure 7.
Hence, we can not reach a stable configuration from there.

2. Each vertex (except the tail) broadcasts one pair of messages between C0 and C.
Assume for instance that v1 does not broadcast anything. From Item 1, v0 broadcasts
td0, and so at some point it will also broadcasts td0 otherwise it would not be in s0 or s2
in C. Hence v1 fails as depicted in Figure 11a. Actually, each vertex (except the tail)
broadcasts exactly one pair: if it broadcasts more, its left neighbor would fail as well.

3. When a node broadcasts a pair (tdj, tdj), its right neighbor broadcasts either a pair (tdi,
tdi) or (tdi, di), for j, i ∈ {0, 1, 2}.
Assume its right neighbor broadcasts di, it must be that i = (j + 1) mod 3. Such an
example is depicted in Figure 11b: v1 fails with (tr1

td, ?d2,§). Similarly, we have:
4. When a node broadcasts a pair (tdj , dj) or a pair (dj , dj), its right neighbor broadcasts a

pair (di, di), for j, i ∈ {0, 1, 2}.

CONCUR 2024

26:10 Phase-Bounded Broadcast Networks over Topologies of Communication

v0 :s0 v1 : idl1
!!td0

v0 :s1 v1 : idl1
!!td0

v0 :s2 v1 : §
(a) v1 does not transmit the request.

v1 : idl1 v2 :idl2
!!td1

v1 : tr1
td v2 :idl2

!!d2
v1 : § v2 :tr2

d

(b) v2 broadcasts the wrong pair of messages.

Figure 11 Example of wrong behaviors during the transmission.

4.2 Putting everything together

We adapt the construction of Section 4.1 to propagate operations on counters of the machine
issued by the head of the line. Counters processes will evolve in three different protocols as
in Section 4.1. They can be either in a zero state, from which all the types of instructions
can be transmitted, or in a state 1x for x one of the two counters, from which all the types of
operations can be transmitted, except 0-tests of x. Increments and decrements of a counter x
are done in a similar fashion as in Section 4.1 (exactly one node changes its state). 0-tests
are somewhat easier: no node changes state nor executes anything, and the tail accepts the
same pair as the one broadcast by the head. However, if a node is in a 1x when x is the
counter compared to 0, it fails when its left neighbor broadcasts the request.

We ensure that we can select a line with a similar structure as the one depicted in
Figure 9 thanks to a first part of the protocol where each node: (i) receives an announcement
message from its predecessor with a subscript j (except the head which broadcasts first), (ii)
broadcasts an announcement message with the subscript (j + 1) mod 3 (head broadcasts
with subscript 0) and (iii) waits for the announcement of its successor with subscript (j + 2)
mod 3 (except for the tail). If it receives any new announcement at any point of its execution,
it fails. When considering only line topologies, as each node has at most two neighbors, this
part can be achieved with fewer alternations. We get the two following theorems.

▶ Theorem 4.2. Cover and Cover[Trees] are undecidable for k-phase-bounded protocols
with k ≥ 6.

▶ Theorem 4.3. Cover[Lines] is undecidable for k-phase-bounded protocols with k ≥ 4.

5 Cover in 1-Phase-Bounded Protocols

We show that Cover[Graphs] restricted to 1-phase-bounded protocols is ExpSpace-complete.
We begin by proving that for such protocols Cover[Graphs] and Cover[Stars] are

equivalent (where Stars correspond to the tree topologies of height one). To get this property,
we first rely on Theorem 2.4 (stating that Cover and Cover[Trees] are equivalent) and
without loss of generality we can assume that if a control state can be covered with a tree
topology, it can be covered by the root of the tree. We then observe that when dealing
with 1-phase-bounded protocols, the behaviour of the processes of a tree which are located
at a height strictly greater than 1 have no incidence on the root node. Indeed if a process
at depth 2 performs a broadcast received by a node at depth 1, then this latter node will
not be able to influence the state of the root because in 1-phase-bounded protocols, once
a process has performed a reception, it cannot broadcast anymore. In the sequel we fix a
1-phase-bounded protocol P = (Q, Σ, qin, ∆) and a state qf ∈ Q. We then have:

L. Guillou, A. Sangnier, and N. Sznajder 26:11

▶ Lemma 5.1. There exist Γ ∈ Graphs, C = (Γ, L) ∈ IP and D = (Γ, L′) ∈ CP and
v ∈ V(Γ) such that C →∗ D and L′(v) = qf iff there exists Γ′ ∈ Stars, C ′ = (Γ′, L′′) ∈ I and
D′ = (Γ′, L′′′) ∈ CP such that C ′ →∗

P D′ and L′′′(ϵ) = qf .

To solve Cover[Stars] in ExpSpace, we proceed as follows (1) we first propose an
abstract representation for the configurations reachable by executions where the root node
does not perform any reception, and that only keeps track of states in Q0 and Qb

1 (2) we
show that we can decide in polynomial space whether a configuration corresponding to a
given abstract representation can be reached from an initial configuration (3) relying on
reduction to the control state reachability problem in VASS (Vector Addition System with
States), we show how to decide whether there exists a configuration corresponding to a given
abstract representation from which qf can be covered in an execution where the root node
does not perform any broadcast. This reasoning relies on the fact that a process executing
a 1-phase-bounded protocol first performs only broadcast (or internal actions) and then
performs only receptions (or internal actions).

We use Qb to represent the set Q0 ∪ Qb
1 and we say that a configuration C = (Γ, L)

in CP is a star-configuration whenever Γ ∈ Stars. For a star-configuration C = (Γ, L)
in CP such that L(ϵ) ∈ Qb, the broadcast-print of C, denoted by bprint(C), is the pair
(L(ϵ), {L(v) ∈ Qb | v ∈ V(Γ) \ {ϵ}}) in Qb × 2Qb . We call such a configuration C a
b-configuration. Note that any initial star-configuration Cin = (Γin, Lin) ∈ I is a b-
configuration verifying bprint(Cin) ∈ {(qin, ∅), (qin, {qin})} (the first case corresponding to
V(Γ) = {ϵ}). We now define a transition relation ⇒ between broadcast-prints. Given (q, Λ)
and (q′, Λ′) in Qb × 2Qb , we write (q, Λ) ⇒ (q′, Λ′) if there exists two b-configurations C and
C ′ such that bprint(C) = (q, Λ) and bprint(C ′) = (q′, Λ′) and C → C ′. We denote by ⇒∗

the reflexive and transitive closure of ⇒.
One interesting point of this abstract representation is that we can compute in polynomial

time the ⇒-successor of a given broadcast-print. The intuition is simple: either the root
performs a broadcast of m ∈ Σ, and in that case we have to remove from the set Λ all the
states from which a reception of m can be done (as the associated processes in C ′ will not
be in a state in Qb anymore) or one process in a state of Λ performs a broadcast and in that
case it should not be received by the root node (otherwise the reached configuration will not
be a b-configuration anymore).

▶ Lemma 5.2. Given (q, Λ) ∈ Qb × 2Qb , we can compute in polynomial time the set
{(q′, Λ′) | (q, Λ) ⇒ (q′, Λ′)}.

In order to show that our abstract representation can be used to solve Cover[Stars], we need
to rely on some further formal definitions. Given two star-configurations C = (Γ, L) and
C ′ = (Γ′, L′), we write C ⪯ C ′ iff the two following conditions hold (i) L(ϵ) = L′(ϵ), and, (ii)
|{v ∈ V(Γ)\{ϵ} | L(v) = q}| ≤ |{v ∈ V(Γ′)\{ϵ} | L′(v) = q}| for all q ∈ Qb. We then have the
following lemma where the two first points show that when dealing with star-configurations,
the network generated by 1-phase-bounded protocol enjoys some monotonicity properties.
Indeed, if the root node performs a broadcast received by other nodes, then if we put more
nodes in the same state, they will also receive the message. On the other hand if it is another
node that performs a broadcast, only the root node is able to receive it. The last point of the
lemma shows that we can have as many processes as we want in reachable states in Qb (as
soon as the root node does not perform any reception) by duplicating nodes and mimicking
behaviors.

CONCUR 2024

26:12 Phase-Bounded Broadcast Networks over Topologies of Communication

▶ Lemma 5.3. The following properties hold:
(i) If C1, C ′

1 and C2 are star-configurations such that C1 → C ′
1 and C1 ⪯ C2 then there

exists a star-configuration C ′
2 such that C ′

1 ⪯ C ′
2 and C2 →∗ C ′

2.
(ii) If C1, C ′

1 and C2 are b-configurations such that C1 → C ′
1 and bprint(C1) = bprint(C2)

and C1 ⪯ C2 then there exists a b-configuration C ′
2 such that C ′

1 ⪯ C ′
2 and bprint(C ′

1) =
bprint(C ′

2) and C2 →∗ C ′
2 .

(iii) If C is a b-configuration such that Cin →∗ C for some initial configuration Cin then for
all N ∈ N, there exists an initial configuration C ′

in and a b-configuration C ′ = (Γ′, L′)
such that C ′

in →∗ C ′ and bprint(C) = bprint(C ′) = (q, Λ) and |{v ∈ V(Γ′) \ {ϵ} |
L′(v) = q′}| ≥ N for all q′ ∈ Λ.

We can now prove that we can reason in a sound and complete way with broadcast prints
to characterise the b-configurations reachable from initial star-configurations. To prove this
next lemma, we rely on the two last points of the previous lemma and reason by induction
on the length of the ⇒-path leading from (qin, Λin) to (q, Λ).

▶ Lemma 5.4. Given (q, Λ) ∈ Qb × 2Qb , we have (qin, Λin) ⇒∗ (q, Λ) with Λin ∈ {∅, {qin}}
iff there exist two b-configurations Cin ∈ I and C ∈ C such that Cin →∗ C and bprint(C) =
(q, Λ).

Finally, we show that we can verify in exponential space whether there exists a configura-
tion with a given broadcast-print (q, Λ) from which we can reach a configuration covering qf

thanks to an execution where the root node does not perform any broadcast. This result is
obtained by a reduction to the control state reachability problem in (unary) VASS which is
known to be ExpSpace-complete [18, 21]. VASS are finite state machines equipped with
variables (called counters) taking their values in N, and where each transition of the machine
can either change the value of a counter, by incrementing or decrementing it, or do nothing.
In our reduction, we encode the state of the root in the control state of the VASS and we
associate a counter to each state of Qb to represent the number of processes in this state.
In a first phase, the VASS generates a configuration with (q, Λ) as broadcast-print and in
a second phase it simulates the network. For instance, if a process performs a broadcast
received by the root node, then we decrement the counter associated to the source state
of the broadcast, we increment the one associated to the target state and we change the
control state of the VASS representing the state of the root node accordingly. We need a last
definition to characterise executions where the root node does not perform any broadcast:
given two star-configurations C = (Γ, L) and C ′ = (Γ, L′), we write C −→r C ′ whenever there
exist v ∈ V(Γ) and δ ∈ ∆ such that C

v,δ−−→ C ′ and either v ̸= ϵ or δ = (q, τ, q′) for some
q, q′ ∈ Q. We denote by →∗

r the reflexive and transitive closure of →r.

▶ Lemma 5.5. Given (q, Λ) ∈ Qb × 2Qb , we can decide in ExpSpace whether there exist a
b-configuration C = (Γf , L) and a star-configuration Cf = (Γf , Lf) such that bprint(C) =
(q, Λ) and Lf (ϵ) = qf and C →∗

r Cf .

Combining the results of the previous lemmas leads to an ExpSpace-algorithm to solve
Cover[Stars]. We first guess a broadcast-print (q, Λ) and check in polynomial space whether
it is ⇒-reachable from an initial broadcast-print in {(qin, ∅), (qin, {qin})} thanks to Lemma 5.2
(relying on a non-deterministic polynomial space algorithm for reachability). Then we use
Lemma 5.5 to check the existence of a b-configuration C with bprint(C) = (q, Λ) from
which we can cover qf . By Savitch’s theorem [23], we conclude that the problem is in
ExpSpace. The completeness of this method is direct. For the soundess, we reason as

L. Guillou, A. Sangnier, and N. Sznajder 26:13

follows: using Lemma 5.4, there exists a configuration C reachable from an initial star-
configuration such that bprint(C) = (q, Λ), and by Lemma 5.5, there is a configuration C ′

such that bprint(C ′) = (q, Λ) from which we cover qf . Thanks to Lemma 5.3.(iii), there is
a configuration C ′′ reachable from an initial configuration such that C ⪯ C ′′ and C ′ ⪯ C ′′

and bprint(C ′′) = (q, Λ). Thanks to Lemma 5.3.(i) applied to each transition, we can build
an execution from C ′′ that covers qf . The lower bound is obtained by a reduction from the
control state reachability in VASS.

▶ Theorem 5.6. Cover[Graphs] and Cover[Trees] are ExpSpace-complete for 1-phase-
bounded protocols.

6 Decidability Results for 2-Phase-Bounded Protocols

6.1 Cover and Cover[Trees] are Decidable on 2-PB Protocols

A simple path between u and u′ in a topology Γ = (V, E) is a sequence of distinct vertices
v0, . . . , vk such that u = v0, u′ = vk, and for all 0 ≤ i < k, (vi, vi+1) ∈ E. Its length is
denoted d(v0, . . . , vk) and is equal to k. Given an integer K, we say that a topology Γ is
K-bounded path (and we write Γ ∈ K − BP) if there is no simple path v0, . . . , vk such that
d(v0, . . . , vk) > K The result of this subsection relies on the following theorem.

▶ Theorem 6.1 ([6],Theorem 5). For K ≥ 1, Cover[K-BP] is decidable.

Hence, we show that if a state qf of a protocol P is coverable with a tree topology, then
qf is actually coverable with a tree topology that is also 2(|Q| + 1) − BP. To establish this
result, consider a coverable state qf of a protocol P with a tree topology Γ, such that Γ is
minimal in the number of nodes needed to cover qf . We can suppose wlog that qf is covered
by the root of the tree. We argue that all nodes (except maybe the root) in the execution
covering qf broadcast something, as otherwise they are useless and could then be removed.
We also argue that, since P is 2-phase-bounded, a node that would first broadcast after the
first broadcast of its father would also be useless for the covering of qf : this broadcast will
only be received by its father in its last phase of reception, hence it will have no influence on
the behavior of the root. These two properties are the key elements needed to establish the
following lemma.

▶ Lemma 6.2. Let P = (Q, Σ, qin, ∆) be a 2-phase-bounded protocol and qf ∈ Q. If qf can
be covered with a tree topology, then it can be covered with a topology Γ ∈ Trees such that, for
all u ∈ V(Γ), |u| ≤ |Q| + 1.

Indeed, a counting argument implies that if this is not the case, there exist two nodes u1
and u2 on the same branch, different from the root, with u1 a prefix of u2, that both execute
their first broadcast from the same state q. In this case, we could replace the subtree rooted
in u1 by the subtree rooted in u2, and still obtain an execution covering qf . Once u1 has
reached q (possibly by receiving broadcasts from the children of u2), it will behave as in
the initial execution. Behaviors of the children of u1 might differ in this second part, but it
can only influence u1 in its reception phase, which will be the last phase, and hence will not
influence the behavior of the root. Thanks to Theorems 2.4 and 6.1, we can then conclude.

▶ Theorem 6.3. Cover and Cover[Trees] are decidable for 2-phase-bounded protocols.

CONCUR 2024

26:14 Phase-Bounded Broadcast Networks over Topologies of Communication

v1 :qin vN−2 :qin vN−1 :qin vN :qin vN+1 :qin vN+2 :qin vℓ :qin.

∗

C0

v1 :_ vN−2 :q1 vN−1 :qin vN :qin vN+1 :qin vN+2 :qin vℓ :qin.

∗

Cj1

v1 :_ vN−2 :q1 vN−1 :qin vN :qin vN+1 :qin vN+2 :q2 vℓ :_.

∗

Cj2

v1 :_ vN−2 :_ vN−1 :_ vN :qf vN+1 :_ vN+2 :_ vℓ :_.Cn

no broadcast from vN−2

no broadcast from vN+2

Figure 12 Illustration of execution ρ obtained from Lemma 6.4.

6.2 Polynomial Time Algorithm for Cover[Lines] on 2-PB Protocols
In the rest of this section, we fix a 2-phase-bounded protocol P = (Q, Σ, qin, ∆) and a state
qf ∈ Q to cover. For an execution ρ = C0 −→ C1 −→ · · · −→ Cn with Cn = (Γ, Ln), for all
v ∈ V(Γ), we denote by bfirst(v, ρ) the smallest index 0 ≤ i < n such that Ci

v,t−−→ Ci+1 with
t = (q, !!m, q′) ∈ ∆. If v never broadcasts anything, bfirst(v, ρ) = −1. We also denote by
tlast(v, ρ) the largest index 0 ≤ i < n, such that Ci

v,t−−→ Ci+1 for some transition t ∈ ∆. If v

never issues any transition, we let tlast(v, ρ) = −1.
The polynomial time algorithm relies on the fact that to cover a state, one can consider

only executions that have a specific shape, described in the following lemma.

▶ Lemma 6.4. If qf is coverable with a line topology Γ such that V(Γ) = {v1, . . . , vℓ}
then there exists an execution ρ = C0 −→ C1 −→ · · · −→ Cn such that Cn = (Γ, Ln), and
3 ≤ N ≤ ℓ − 2 with Ln(vN) = qf , and

1. there exist 0 ≤ j1 < j2 < n such that for all 0 ≤ j < n, if we let Cj
vj ,tj

−−−→ Cj+1:
(a) if 0 ≤ j < j1, then vj ∈ {v1, . . . , vN−2} and if vj = vN−2, then tj = (q, τ, q′) for

some q, q′ ∈ Q; and
(b) if j1 ≤ j < j2, then vj ∈ {vN+2, . . . , vℓ} and if vj = vN+2, then tj = (q, τ, q′) for

some q, q′ ∈ Q; and
(c) if j2 ≤ j < n, then vj ∈ {vN−2, . . . , vN+2}.

2. (a) for all 1 ≤ i ≤ N − 2, tlast(vi, ρ) ≤ bfirst(vi+1, ρ), and
(b) for all N + 2 ≤ i ≤ ℓ, tlast(vi, ρ) ≤ bfirst(vi−1, ρ).

Figure 12 illustrates the specific form of the execution described in Item 1 of Lemma 6.4:
the first nodes to take actions are the ones in the purple part (on the left), then, only nodes
in the green part (on the right) issue transitions), and finally the nodes in the orange central
part take actions in order to reach qf . The fact that P is 2-phase bounded allows us to
establish Item 2 of Lemma 6.4: when vi+1 starts broadcasting, no further broadcasts from vi

will influence vi+1’s broadcasts (it can only receive them in its last reception phase).
Figure 12 highlights why we get a polynomial time algorithm: when we reach the orange

part of the execution, the nodes vN−1, vN and vN+1 are still in the initial state of the protocol.
Moreover, in the orange part (which is the one that witnesses the covering of qf), only five
nodes take actions. Once one has computed in which set of states the nodes vN−2 and vN+2
can be at the beginning of the orange part, it only remains to compute the set of reachable
configurations from a finite set of configurations. Let H be the set of possible states in which

L. Guillou, A. Sangnier, and N. Sznajder 26:15

vN−2 and vN+2 can be at the beginning of the last part of the execution, and for q1, q2 ∈ H ,
let Cq1,q2 = (Γ5, Lq1,q2) where Γ5 is the line topology with five vertices {v1, v2, v3, v4, v5} and
Lq1,q2(v1) = q1, Lq1,q2(v5) = q2 and for all other vertex v, Lq1,q2(v) = qin.

Our algorithm is then: (1) Compute H; (2) For all q1, q2 ∈ H, explore reachable
configurations from Cq1,q2 ; (3) Answer yes if we reach a configuration covering qf , answer no
otherwise. It remains to explain how to compute H. This computation relies on Item 2 of
Lemma 6.4: locally, each node vi at the left of vN−1 (resp. at the right of vN+1) stops issuing
transitions once its right neighbor vi+1 (resp. its left neighbor vi−1) starts broadcasting.

Hence we compute iteratively set of coverable pairs of states S ⊆ Q × Q by relying on a
family (Si)i∈N of subsets of Q × Q formally defined as follows:

S0 = {(qin, qin)}
Si+1 = Si ∪ {(q1, q2) | there exist (p1, p2) ∈ Si, j ∈ {1, 2} s.t. (pj , τ, qj) ∈ ∆ and p3−j = q3−j}
∪ {(q1, q2) | there exists (p1, p2) ∈ Si, s.t. (p2, !!m, q2) ∈ ∆, (p1, ?m, q1) ∈ ∆, m ∈ Σ}
∪ {(q1, q2) | there exists p2 ∈ Q s.t. (q1, p2) ∈ Si, and (p2, !!m, q2) ∈ ∆ and m ̸∈ R(q1)}
∪ {(qin, q) | there exists (q, q′) ∈ Si for some q′ ∈ Q}.

We then define S =
⋃

n ∈N Sn, and H = {q ∈ Q | there exists q′ and (q, q′) ∈ S}. Observe
that (Si)i∈N is an increasing sequence bounded by |Q|2. The computation reaches then a
fixpoint and S can be computed in polynomial time. We define H = {q | ∃q′ ∈ Q, (q, q′) ∈ S}.
Note that H ⊆ Q0 ∪ Qr

1, as expected by Item 2 of Lemma 6.4. We also state that our
construction is complete and correct, leading to the following theorem.

▶ Theorem 6.5. Cover[Lines] is in P for k-phase-bounded protocols with k ∈ {1, 2}.

Proof. We explain why the algorithm takes a polynomial time: step 1 (computing H) is done
in polynomial time as explained above. For step 2, there are at most |H| × |H| ≤ |Q|2 pairs,
and for each pair, we explore a graph of at most |Q|5 nodes in which each vertex represents
a configuration C = (Γ5, L). Accessibility in a graph can be done non-deterministically in
logarithmic space, and so in polynomial time. Observe that all the lemmas of this section
hold true when considering 1-phase-bounded protocols, hence the theorem. ◀

References
1 B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parametrized model checking of token-

passing systems. In VMCAI’14, volume 8318 of LNCS, pages 262–281. Springer-Verlag,
2014.

2 D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. In PODC’04, pages 290–299. ACM, 2004.

3 M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent programs
with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011.

4 B. Bollig, M. Lehaut, and N. Sznajder. Round-bounded control of parameterized systems. In
ATVA’18, volume 11138 of Lecture Notes in Computer Science, pages 370–386. Springer, 2018.

5 E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decomposition. In
CONCUR’04, volume 3170 of LNCS, pages 276–291. Springer-Verlag, 2004.

6 G. Delzanno, A.Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks. In
CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer, 2010.

7 G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the parameterized
verification of ad hoc networks. In FOSSACS’11, volume 6604 of LNCS, pages 441–455.
Springer, 2011.

8 A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar. Model checking parameterized
asynchronous shared-memory systems. Formal Methods Syst. Des., 50(2-3):140–167, 2017.

CONCUR 2024

26:16 Phase-Bounded Broadcast Networks over Topologies of Communication

9 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In LICS’99,
pages 352–359. IEEE Computer Society, 1999.

10 J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. Verification of population protocols. Acta
Informatica, 54(2):191–215, 2017.

11 J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous shared-
memory systems. J. ACM, 63(1):10:1–10:48, 2016.

12 J. Esparza, S. Jaax, M. A. Raskin, and C. Weil-Kennedy. The complexity of verifying
population protocols. Distributed Comput., 34(2):133–177, 2021.

13 S. M. German and A. P. Sistla. Reasoning about systems with many processes. Journal of the
ACM, 39(3):675–735, 1992.

14 L. Guillou, A. Sangnier, and N. Sznajder. Safety analysis of parameterised networks with
non-blocking rendez-vous. In CONCUR’23, volume 279 of LIPIcs, pages 7:1–7:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

15 L. Guillou, A. Sangnier, and N. Sznajder. Phase-bounded broadcast networks over topologies
of communication, 2024. arXiv:2406.15202.

16 O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J. ACM,
25(1):116–133, 1978.

17 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV’10, volume 6174 of LNCS, pages 629–644. Springer,
2010.

18 R.J. Lipton. The reachability problem requires exponential space. Research report (Yale Uni-
versity. Department of Computer Science). Department of Computer Science, Yale University,
1976.

19 M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
20 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS’05,

volume 3440 of LNCS, pages 93–107. Springer, 2005.
21 C. Rackoff. The covering and boundedness problems for vector addition systems. Theoretical

Computer Science, 6:223–231, 1978.
22 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM

Trans. Program. Lang. Syst., 22(2):416–430, 2000.
23 W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J.

Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.
24 S. Schmitz and P. Schnoebelen. The power of well-structured systems. In CONCUR’13,

volume 8052 of LNCS, pages 5–24. Springer, 2013.

https://arxiv.org/abs/2406.15202
https://doi.org/10.1016/S0022-0000(70)80006-X

Inaproximability in Weighted Timed Games
Quentin Guilmant # Ñ

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Joël Ouaknine # Ñ

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
We consider two-player, turn-based weighted timed games played on timed automata equipped with
(positive and negative) integer weights, in which one player seeks to reach a goal location whilst
minimising the cumulative weight of the underlying path. Although the value problem for such
games (is the value of the game below a given threshold?) is known to be undecidable, the question
of whether one can approximate this value has remained a longstanding open problem. In this
paper, we resolve this question by showing that approximating arbitrarily closely the value of a
given weighted timed game is computationally unsolvable.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases Weighted timed games, approximation, undecidability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.27

Funding Joël Ouaknine: Also affiliated with Keble College, Oxford as emmy.network Fellow, and
supported by DFG grant 389792660 as part of TRR 248.

1 Introduction

Weighted timed games are zero-sum games played by two players on a timed automaton
equipped with weights, where one player seeks to reach a goal location whilst minimising the
cumulative weight. Such games generalise timed games, which were introduced in the 1990s as
a means to model open systems (whose behaviours are influenced by external environments),
and to study controller-synthesis problems for real-time systems [19, 2, 17]. The introduction
of numerical weights within the formalism of timed games, initiated independently in the
early 2000s by Alur et al. [1] and Bouyer et al. [4], serves a dual purpose: first, it enables
one to ascribe a quantitative quality measure to various controllers able to achieve a given
objective, by computing the value of the corresponding game-theoretic strategy; and second,
it allows one to model various resources (energy, bandwidth, memory, etc.) and associated
costs incurred following a particular strategy. Here, one may choose to restrict weights to
have either exclusively non-negative values, or both positive and negative values. The latter
is useful when modelling resources that can both decrease and grow during an execution of
the system, such as energy. Much of the early work in this area focussed on weighted timed
games with non-negative weights, but over the last decade weighted timed games featuring
arbitrary integer (or rational) weights have been fairly extensively studied.

Another important consideration in the modelling of real-time systems via weighted timed
games is whether to adopt a turn-based or concurrent formalism. The former partitions
discrete locations into those belonging to Player Min (representing the controller, which seeks
to minimise the overall cumulative cost) and those belonging to Player Max (representing
the environment). Concurrent games, on the other hand, enable both Min and Max to
act at any given point and time (subject to the constraints imposed by the game). Both
paradigms are well established. Concurrent games are strictly more expressive than their
turn-based counterparts, but in general unfortunately suffer from not being determined (this

© Quentin Guilmant and Joël Ouaknine;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:quentin.guilmant@mpi-sws.org
https://quentin.guilmant.fr
https://orcid.org/0009-0004-7097-0595
mailto:joel@mpi-sws.org
https://people.mpi-sws.org/~joel/
https://orcid.org/0000-0003-0031-9356
https://doi.org/10.4230/LIPIcs.CONCUR.2024.27
https://emmy.network/
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Inaproximability in Weighted Timed Games

is in fact true even for unweighted timed games [15]). We focus on turn-based weighted
timed games in the present paper; since concurrent games are at least as expressive, our
main inapproximability result immediately carries over to the concurrent setting as well.

The central algorithmic problem concerning weighted timed games is the calculation of
their value, i.e., the optimal cost assuming best play for each of the players. As noted earlier,
we are exclusively considering reachability objectives in the present work: in other words,
Player Min seeks to reach a specified goal location whilst minimising the cumulative weight
of the underlying path, whereas Player Max seeks to prevent Min from reaching said goal
location and, failing that, to extract as high a cost as possible in the process. Unfortunately,
it has been known for some two decades that whether there exists a strategy for Player
Min whose value is below a given threshold is an undecidable problem [7, 3]. A related
(but subtly different) question, whether the optimal value of a weighted timed game falls
below a given threshold (the so-called value problem), is also known to be undecidable [5].
These results hold even when restricting to turn-based games with exclusively non-negative
weights. Nevertheless, various restrictions have been investigated in the literature, leading to
decidability; see, e.g., [6, 22, 16, 10, 8, 11, 9, 20, 13].

The negative results cited above have spurred researchers to examine the approximation
problem for weighted timed games: under what conditions, if any, can the value of a given
weighted timed game be approximated arbitrarily closely? As noted in [13, Sec. 12], this
is a “longstanding open problem”, and furthermore “the value of a weighted timed game
could be non approximable, though we are not aware of any such game”. Bouyer et al.
provided the first positive result in 2015, showing that the value of almost strongly non-Zeno
weighted timed games (a class of turn-based games with weights in N in which the weight
of any cycle is either null or uniformly lower bounded) is approximable [5]. This result
is all the more remarkable since the value problem for this class of games is undecidable.
Busatto-Gaston et al. extended this line of work a couple of years later to the class of divergent
and almost-divergent weighted timed games (in which the restriction to non-negative weights
is lifted but additional mild conditions are imposed) [11, 12]. For a thorough overview of
both the history and the state of the art concerning weighted timed games, we refer the
reader to the recent and comprehensive article [13].

We are now in a position to state our main contribution:

▶ Theorem 1. Given a two-player, turn-based, weighted timed game with (positive and
negative) integer weights, the problem of approximating its value arbitrarily closely is compu-
tationally unsolvable.

An important open problem is whether this result can be extended to timed games in
which only non-negative integer weights are allowed. We return to this question in Sec. 4.

2 Weighted Timed Games

Let X be a finite set of clocks. Clock constraints over X are expressions of the form
x ∼ n or x − y ∼ n, where x, y ∈ X are clocks, ∼ ∈ {<, ≤, =, ≥, >} is a comparison symbol,
and n ∈ N is a natural number. We write C to denote the set of all clock constraints over X .
A valuation on X is a function ν : X → R≥0. For d ∈ R≥0 we denote by ν + d the valuation
such that, for all clocks x ∈ X , (ν + d)(x) = ν(x) + d. Let X ⊆ X be a subset of all clocks.
We write ν[X := 0] for the valuation such that, for all clocks x ∈ X, ν[X := 0](x) = 0, and
ν[X := 0](y) = ν(y) for all other clocks y /∈ X. For C ⊆ C a set of clock constraints over X ,
we say that the valuation ν satisfies C, denoted ν |= C, if and only if all the comparisons in
C hold when replacing each clock x by its corresponding value ν(x).

Q. Guilmant and J. Ouaknine 27:3

▶ Definition 2. A (turn-based) weighted timed game is given by a tuple G =
(LMin, LMax, G, X , T, w), where:

LMin and LMax are the (disjoint) sets of locations belonging to Players Min and Max
respectively; we let L = LMin ∪ LMax denote the set of all locations. (In drawings, locations
belonging to Min are depicted by blue circles, and those belonging to Max are depicted by
red squares.)
G ⊆ LMin are the goal locations.
X is a set of clocks.
T ⊆ (L \ G) × 2C × 2X × L is a set of (discrete) transitions. A transition ℓ

C,X−−−→ ℓ′

enables moving from location ℓ to location ℓ′, provided all clock constraints in C are
satisfied, and afterwards resetting all clocks in X to zero.
w : (L \ G) ∪ T → Z is a weight function.

In the above, we assume that all data (set of locations, set of clocks, set of transitions, set of
clock constraints) are finite.

▶ Remark 3. The weight function w associates integer weights to each discrete transition
and each non-goal location. It is worth pointing out that in our proof of inapproximability
(Theorem 1), only transitions may carry negative weights; all locations have weights in N.

Let G = (LMin, LMax, G, X , T, w) be a weighted timed game. A configuration over G
is a pair (ℓ, ν), where ℓ ∈ L and ν is a valuation on X . Let d ∈ R≥0 be a delay and
t = ℓ

C,X−−−→ ℓ′ ∈ T be a discrete transition. One then has a delayed transition (or
simply a transition if the context is clear) (ℓ, ν) d,t−−→ (ℓ′, ν′) provided that ν + d |= C and
ν′ = (ν + d)[X := 0]. Intuitively, control remains in location ℓ for d time units, after which it
transitions to location ℓ′, resetting all the clocks in X to zero in the process. The weight of
such a delayed transition is d · w(ℓ) + w(t), taking account both of the time spent in ℓ as
well as the weight of the discrete transition t.

As noted in [13], without loss of generality one can assume that no configuration (other
than those associated with goal locations) is deadlocked; in other words, for any location
ℓ ∈ L\G and valuation ν ∈ RX

≥0, there exists d ∈ R≥0 and t ∈ T such that (ℓ, ν) d,t−−→ (ℓ′, ν′).1
Let k ∈ N. A run ρ of length k over G from a given configuration (ℓ0, ν0) is a sequence

of matching delayed transitions, as follows:

ρ = (ℓ0, ν0) d0,t0−−−→ (ℓ1, ν1) d1,t1−−−→ · · · dk−1,tk−1−−−−−−→ (ℓk, νk) .

The weight of ρ is the cumulative weight of the underlying delayed transitions:

weight(ρ) =
k−1∑
i=0

(di · w(ℓi) + w(ti)) .

An infinite run ρ is defined in the obvious way; however, since no goal location is ever reached,
its weight is defined to be infinite: weight(ρ) = +∞.

A run is maximal if it is either infinite or cannot be extended further. Thanks to our
deadlock-freedom assumption, finite maximal runs must end in a goal location. We refer to
maximal runs as plays.

1 In our setting, this can be achieved by adding unguarded transitions to a sink location for all locations
controlled by Min and unguarded transitions to a goal location for the ones controlled by Max (noting
that in all our constructions, Max-controlled locations always have weight 0). Nevertheless, in the
pictorial representations of timed-game fragments that appear in this paper, in the interest of clarity we
omit such extraneous transitions and locations; we merely assume instead that neither player allows
him- or herself to end up in a deadlocked situation, unless a goal location has been reached.

CONCUR 2024

27:4 Inaproximability in Weighted Timed Games

We now define the notion of strategy. Recall that locations of G are partitioned into sets
LMin and LMax, belonging respectively to Players Min and Max. Let Player P ∈ {Min, Max},
and write FRP

G to denote the collection of all non-maximal finite runs of G ending in a
location belonging to Player P. A strategy for Player P is a mapping σP : FRP

G → R≥0 × T

such that for all finite runs ρ ∈ FRP
G ending in configuration (ℓ, ν) with ℓ ∈ LP, the delayed

transition (ℓ, ν) d,t−−→ (ℓ′, ν′) is valid, where σP(ρ) = (d, t) and (ℓ′, ν′) is some configuration
(uniquely determined by σP(ρ) and ν).

Let us fix a starting configuration (ℓ0, ν0), and let σMin and σMax be strategies for Players
Min and Max respectively (one speaks of a strategy profile). We write playG((ℓ0, ν0), σMin, σMax)
to denote the unique maximal run starting from configuration (ℓ0, ν0) and unfolding ac-
cording to the strategy profile (σMin, σMax): in other words, for every strict finite prefix
ρ of playG((ℓ0, ν0), σMin, σMax) in FRP

G , the delayed transition immediately following ρ in
playG((ℓ0, ν0), σMin, σMax) is labelled with σP(ρ).

Recall that the objective of Player Min is to reach a goal location through a play whose
weight is as small possible. Player Max has an opposite objective, trying to avoid goal
locations, and, if not possible, to maximise the cumulative weight of any attendant play.
This gives rise to the following two symmetrical definitions:

ValG(ℓ0, ν0) = inf
σMin

{
sup
σMax

{
weight(playG((ℓ0, ν0), σMin, σMax))

}}
and

ValG(ℓ0, ν0) = sup
σMax

{
inf
σMin

{
weight(playG((ℓ0, ν0), σMin, σMax))

}}
.

ValG(ℓ0, ν0) represents the smallest possible weight that Player Min can possibly achieve,
starting from configuration (ℓ0, ν0), against best play from Player Max, and conversely for
ValG(ℓ0, ν0): the latter represents the largest possible weight that Player Max can enforce,
against best play from Player Min.2 As noted in [13], turned-based weighted timed games are
determined, and therefore ValG(ℓ0, ν0) = ValG(ℓ0, ν0) for any starting configuration (ℓ0, ν0);
we denote this common value by ValG(ℓ0, ν0).
▶ Remark 4. Note that ValG(ℓ0, ν0) can take on real numbers, or either of the values −∞ and
+∞. Our proof of inapproximability, however, only makes use of games having finite values.

3 Inapproximability

3.1 Probabilistic Finite Automata
We establish value inapproximability for weighted timed games by reducing from an unsolvable
approximation problem for probabilistic automata. We start with some definitions.

▶ Definition 5 (PFA). A (two-letter) probabilistic automaton is given by a tuple A =
(Q, q1, F, Aa, Ab), where:

Q = {q1, . . . , qℓ} is a finite set of states.
q1 ∈ Q is the initial state.
F ⊆ Q are the accepting states.
Aa, Ab ∈ ([0, 1] ∩ Q)ℓ×ℓ are left stochastic transition matrices corresponding to letters
a and b respectively.3

2 Technically speaking, these values may not be literally achievable; however given any ε > 0, both players
are guaranteed to have strategies that can take them to within ε of the optimal value.

3 Left stochasticity means that each column of the matrix sums to 1.

Q. Guilmant and J. Ouaknine 27:5

Given such a probabilistic automaton A, any word w ∈ {a, b}∗ induces a probability
distribution on Q, as follows. For the empty word λ, we let the distribution D(λ) =
(1, 0, . . . , 0)T , i.e., initially all the probability mass lies in the initial state q1. Suppose
now that the distribution on Q upon reading word w is D(w), i.e., the probability Pw(qi)
of being in state qi after reading w is precisely the ith component of D(w). We then let
D(wa) = AaD(w) and D(wb) = AbD(w).

Finally, for any word w ∈ {a, b}∗, we write A(w) = Pw(F) =
∑

q∈F Pw(q) to denote the
probability that the automaton A accepts word w.

The key result we need (the main ingredient of which is due to Condon and Lipton [14])
is the following [18, Thm. 3.3]:

▶ Theorem 6. There exists an algorithm which takes a Turing machine TM as input and
outputs a two-letter probabilistic automaton A satisfying the following:

if TM does not accept the empty string, then A accepts no word with probability exceeding
1/10, and
if TM does accept the empty string, then A accepts some word with probability at least
1/2.

Theorem 6 states, in effect, that the maximum probability with which a given probabilistic
automaton accepts some word cannot in general be approximated.4 In the remainder of this
section, we show how to exploit this fact to establish that the value of a given weighted time
game is, in turn, also not approximable in general.

3.2 Reduction Overview
Let probabilistic automaton A = (Q, q1, F, Aa, Ab), with Q = {q1, . . . , qℓ}, be fixed for the rest
of this paper. Without loss of generality, we may assume that all non-zero probabilistic trans-
itions have weight 1/M , for some constant M ∈ N.5 In other words, Aa, Ab ∈ {0, 1/M}ℓ×ℓ.

Players Min and Max will play a weighted timed game G representing the evolution of A
as it reads a word w ∈ {a, b}∗. Min will choose the letters of w, and will simulate running
this word through A, seeking to minimise the cumulative weight of the underlying path
in G. As long as Min faithfully simulates the behaviour of A, the cumulative weight will
remain constant. Any error or “cheating” by Min, however, will be “punishable” by Max in
the form of an increase in the cumulative weight, the size of which will be proportional to
the magnitude of the error. Naturally, as Max seeks to maximise the cumulative weight of
the path, the dominant strategy for him will always be to seek to extract as large a cost as
possible.

To this end, the game G will be equipped with two sets of clocks:
Z = {z1, . . . , zℓ} ∪ {zF }; intuitively, for i ∈ {1, . . . , ℓ}, zi is intended to store the current
value of the probability of being in state qi, and zF is intended to store the probability of
being in one of the accepting states in F .
XMin = {µ1, . . . , µℓ} ∪ {µF }; intuitively, for i ∈ {1, . . . , ℓ}, µi will store Min’s guess of the
value to which to update clock zi next, and likewise for µF and zF .

In addition, G has use of an auxiliary clock t to ensure proper synchronisation, etc.

4 Technically speaking, we should speak of a supremum.
5 This can straightforwardly be achieved via an increase in the number of states of A, as follows. Take M

to be the least common multiple of all denominators of all transition weights. For every state q of A,
create M fresh states, denoted q′

1, . . . , q′
M . And for each a-labelled transition q → s in A with weight

k/M , for all 1 ≤ i ≤ M and for all 1 ≤ j ≤ k, create a fresh a-labelled transition q′
i → s′

j having weight
1/M , and similarly for the letter b. The desired new matrices Aa and Ab are now obtained from these
fresh states and transitions.

CONCUR 2024

27:6 Inaproximability in Weighted Timed Games

The game unfolds through a cycle of modules, as follows (see also Fig. 5):
1. Min chooses a letter (a or b) to append to the word that has been played so far.
2. Min compiles her guesses as to how the resulting probabilities of being in each state (q1

to qℓ) should then be updated, and stores the corresponding values in clocks µ1, . . . , µℓ

(and in µF for the collection of states in F). In so doing, the game infrastructure ensures
that clocks z1, . . . , zℓ and zF remain untouched (their values at the beginning and at the
end of the relevant module are the same).

3. Max extracts a cost (an increase to the cumulative weight) for every gap between the
values guessed by Min and the actual freshly computed values of the clocks in Z, as per
the transition matrices of A.

4. The aforementioned gaps are then erased, by updating each of the clocks in Z to assume
the value of its counterpart in XMin.

5. Finally, before looping back, Min is given the opportunity to reach the goal location of G;
this transition is however only available if zF ≥ 1/2.

▶ Remark 7. Note in the above that G contains a transition in which a clock is compared
to 1/2 (rather than an integer). If desired, this is easily circumvented by considering an
equivalent weighted timed game in which all constants have been multiplied by 2. We opted
for the present half-integer formulation as this enables clock values directly to represent
probabilities, rather than twice the corresponding probabilities.

Assuming that A does accept some word w with probability at least 1/2, Min need
not make any error; she only has to guess correctly each letter of w in turn, along with
the corresponding exact distribution updates, and eventually zF will rise to 1/2 or above,
allowing her to reach the goal location at zero cumulative cost.

On the other hand, if no word is accepted by A with probability exceeding 1/10, then
Min will be forced to make errors in order to enable µF , and thus in turn zF , to reach 1/2.
Such errors will be punished by Max, extracting a total cumulative cost of at least 0.4M .
This is formalised in the following proposition, whose proof is deferred to Sec. 3.4.

▶ Proposition 8. Let A and G be as above. Then:
If there is a word w ∈ {a, b}∗ such that A(w) ≥ 1/2, then the value of G is exactly 0.
If, for all words w ∈ {a, b}∗, A(w) ≤ 1/10, then the value of G is at least 0.4M .

Since approximating the value of G to within 0.1M would enable, thanks to Theorem 6
and Proposition 8, to decide whether the Turing machine TM corresponding to A halts or
not, one concludes that weighted timed game values cannot in general be approximated,
since otherwise one could solve the Halting Problem.

3.3 Modules and Widgets
We now describe a number of modules enabling us to implement the high-level protocol
described in the previous section. In what follows, recall our assumption from Sec. 2, made
without loss of generality, to the effect that neither player allows him- or herself to be
deadlocked; in particular, if a clock constraint on a given transition requires the transition to
be taken at a certain specific time, or within a certain time interval, for otherwise the run
would deadlock (either immediately or shortly afterwards), then we assume the transition in
question is indeed taken at the correct time.

We begin with the modules Guess(x, Y) and Guesses, depicted in Fig. 1, which enable
Min to set the clocks in XMin to arbitrary values of her choosing in [0, 1]. Here x stands for
an arbitrary clock, and Y for an arbitrary set of clocks not containing x.

Q. Guilmant and J. Ouaknine 27:7

Guesses

Guess
(
µ1, (XMin ∪ Z) \ {µ1}

)
· · · Guess

(
µℓ, (XMin ∪ Z) \ {µℓ}

)
Guess

(
µF , (XMin ∪ Z) \ {µF }

)

Guess(x, Y)

0 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

t ≥ 1, x := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2∧
y∈Y

y < 2

Figure 1 The guessing modules enable Min to set clocks µ1, . . . , µℓ and µF to arbitrary values of
her choosing in [0, 1], whilst leaving the values of clocks in Z unchanged. Recall that blue circles
depict locations belonging to Player Min. The value 0 inside these circles, in module Guess(x, Y),
represents the weight of these locations (i.e., the rate at which the cumulative weight changes when
control is in one of these locations). The notation ∪y∈Y (y = 2; y := 0) represents a collection
of transitions, one for each y ∈ Y . Note that any such transition, when enabled (i.e., upon the
corresponding clock y ∈ Y reaching value 2), must instantly be taken, otherwise the guard on the
transition exiting module Guess(x, Y) could never be satisfied, and deadlock would ensue.

Add−r (x, Y)

r 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2∧
y∈Y

y < 2

x := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2 −2r∧
y∈Y

y < 2

Add+r (x, Y)

0 r
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2∧
y∈Y

y < 2

x := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2∧
y∈Y

y < 2

Figure 2 Modules Add−
r (x, Y) and Add+

r (x, Y) enable to alter the cumulative weight by −rx̃

and rx̃ respectively, where x̃ denotes the value of clock x upon entering the module and r ∈ N is a
positive weight. Upon exiting the module, x as well as all clocks in Y have recovered their initial
values. Note the negative weight of −2r on the transition exiting module Add−

r (x, Y); this is the
only place in our weighted timed game G in which a negative weight is used.

The correctness of the following two statements is clear upon inspection; we therefore
omit the proofs.

▶ Lemma 9. Provided x /∈ Y and the initial values of all clocks in Y upon entering
Guess(x, Y) lie in [0, 2), then upon exiting Guess(x, Y) all clocks in Y have their respective
initial values, x has value in [0, 1], and the cumulative weight is unchanged.

▶ Corollary 10. Provided all clocks in XMin and Z have values in [0, 2) upon entering module
Guesses, then upon exit the values of clocks in Z are unchanged, all clocks in XMin have
values in [0, 1], and the cumulative weight is unchanged.

We now introduce modules Add−
r (x, Y) and Add+

r (x, Y), depicted in Fig. 2. Here r ∈ N
stands for a positive weight, x is a clock, and Y is a set of clocks not containing x. The role
of these two modules is to alter the cumulative weight, as follows:

CONCUR 2024

27:8 Inaproximability in Weighted Timed Games

▶ Lemma 11. Assume x /∈ Y and all clocks in {x} ∪ Y have values in [0, 2) upon entering
either Add−

r (x, Y) or Add+
r (x, Y). Let x̃ denote the initial value of clock x. Then upon

exiting Add−
r (x, Y), the cumulative weight has changed by −rx̃ (a decrease), whereas upon

exiting Add+
r (x, Y), the cumulative weight has changed by rx̃ (an increase). Moreover, all

clocks in {x} ∪ Y have recovered their initial values upon exiting either module.

Once again, the statements are clear upon inspection.
We now turn to the payment modules, depicted in Fig. 3, which enable Player Max

to extract a cost for guessing errors committed by Min. We first need to introduce some
auxiliary definitions.

Given a state qi ∈ Q, let ina(qi) denote the set of all states qj ∈ Q such that there is an
a-labelled non-null transition from qj to qi in A (and recall, as noted in Sec. 3.2, that all such
transitions have weight 1/M). Formally, ina(qi) = {qj ∈ Q | (Aa)i,j = 1/M}. Overloading
notation, write ina(F) = ∪q∈F ina(q). We define inb(qi) and inb(F) in similar fashion.

We also define outa(qi) symmetrically, representing the set of states qj such that there is
an a-labelled non-null transition from qi to qj , and similarly for outb(qi).

For qi ∈ Q, let clock(qi) = zi, and extend the clock function to sets of states in the
obvious way: clock(S) = ∪q∈Sclock(q).

We also consider the inverse function clock−1, which associates to clock zi ∈ Z \ {zF }
the state qi ∈ Q.

▶ Lemma 12. Let Y1 = {y1, . . . , yk}, Y2 be two disjoint sets of clocks, and x /∈ Y1 ∪ Y2
be another clock. Let x̃ and ỹ1, . . . , ỹk denote the initial values of clocks x and y1, . . . , yk

respectively. Provided that all clocks in {x} ∪ Y1 ∪ Y2 have values in [0, 2) upon entering
ControlM (x, Y1, Λ, Y2), the cumulative weight of this submodule is

∣∣∣Mx̃ −
∑k

i=1 ỹi

∣∣∣. Moreover,
upon exiting, all clocks (aside from t) have recovered their initial values.

▶ Corollary 13. For µ ∈ XMin and z ∈ Z, let µ̃ and z̃ respectively denote the initial values
of clocks µ and z upon entering module Paya. Assuming all clocks in XMin ∪ Z have initial
values in [0, 2) upon entering Paya, then all clocks have recovered their initial values upon
exiting Paya, and the cumulative weight has increased by

ℓ∑
j=1

∣∣∣∣∣∣Mµ̃j −
∑

i|qi∈ina(qj)

z̃i

∣∣∣∣∣∣ +

∣∣∣∣∣∣Mµ̃F −
∑

i|qi∈F

∑
j|qj∈ina(qi)

z̃j

∣∣∣∣∣∣ .

By symmetry, an entirely similar assertion holds for module Payb.

Both statements follow by inspection, making use of the previous assertions laid out in
this section.

Our last module updates the values of clocks in Z to agree with their counterparts in
XMin, thereby erasing any gaps created by errors in Min’s guesses, and setting the stage for a
fresh cycle to play out; see Fig. 4.

The following is immediate:

▶ Lemma 14. Provided that all initial values of clocks in {x} ∪ Y lie in [0, 2) upon entering
module Update(x, x′, Y), then upon exiting all variables in {x}∪Y have recovered their initial
values, x′ agrees with x, and the cumulative weight remains unchanged.

Likewise, assuming all initial values of clocks in XMin ∪ Z lie in [0, 2), module Updates
preserves the values of all clocks in XMin, does not alter the cumulative weight, and ensures
that every clock in Z has the same value as its counterpart in XMin upon exit.

Q. Guilmant and J. Ouaknine 27:9

ControlM (x, Y1,Λ, Y2)
where Y1 = {y1, . . . , yk}

0

Add+M (x, Y1 ∪ Y2)

Add−M (x, Y1 ∪ Y2)

Add−Λ(y1)
(y1, (Y1 \ {y1}) ∪ {x} ∪ Y2) · · · Add−Λ(yk)

(yk, (Y1 \ {yk}) ∪ {x} ∪ Y2)

Add+Λ(y1)
(y1, (Y1 \ {y1}) ∪ {x} ∪ Y2) · · · Add+Λ(yk)

(yk, (Y1 \ {yk}) ∪ {x} ∪ Y2)

t := 0

t = 0

t = 0

Paya
where {q1, . . . , qℓ} is the set of states of A

ControlM

(
µ1, clock(ina(q1)),1, (XMin ∪ Z) \ (clock(ina(q1)) ∪ {µ1})

)

· · ·

ControlM

(
µℓ, clock(ina(qℓ)),1, (XMin ∪ Z) \ (clock(ina(qℓ)) ∪ {µℓ})

)

ControlM

(
µF , clock(ina(F)),Λa, (XMin ∪ Z) \ (clock(ina(F)) ∪ {µF })

)

Figure 3 The payment modules, enabling Max to charge Min for guessing errors. x is a clock,
and Y1 and Y2 are disjoint sets of clocks, neither of which contains x. Only Paya is depicted here;
Payb is defined in entirely symmetrical fashion. The submodule ControlM (x, Y1, Λ, Y2) is entered via
a location represented as a red square, and hence belonging to Max, who can then choose between
the upper and lower paths, whichever increases the cumulative weight (the two paths carry weights
of equal magnitude but opposite signs). Note however that Max must act instantly upon entering
submodule ControlM (x, Y1, Λ, Y2), as the clock guard t = 0 would otherwise lead to deadlock.
The function Λa : Z → N is defined as follows: Λa(z) = #(outa(clock−1(z)) ∩ F); in other words, Λa

retrieves the state of A corresponding to clock z (call it q), and counts how many non-null a-labelled
transitions into F originate from q in A. This is required in order to properly calculate the total
probability of being in F upon reading letter a.
The function 1 simply returns the value 1 on all inputs.

Update(x, x′, Y)

0 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2, x := 0, x′ := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2∧
y∈Y

y < 2

Updates

Update
(
µ1, z1, (XMin ∪ Z) \ {µ1, z1}

)
· · · Update

(
µℓ, zℓ, (XMin ∪ Z) \ {µℓ, zℓ}

)
Update

(
µF , zF , (XMin ∪ Z) \ {µF , zF }

)

Figure 4 The Updates module resets the value of each clock in Z to its counterpart in XMin.

CONCUR 2024

27:10 Inaproximability in Weighted Timed Games

0

0

G

Guesses

0

Updates

Paya Payb

1

2

z1 = 1zF := 0 if q1 /∈ F
ℓ∧

i=2

zi := 0

t := 0
t = 0

zF ≥ 1
2

t = 0

t := 0

t = 0 t = 0

t := 0

Figure 5 The weighted timed game G. The start location sits at the top, and all clocks have
value 0 in the initial configuration. All three blue circles have null weight (or rate), and likewise all
transitions appearing in the drawing carry null weight. The clock constraint t = 0 on edges forces
an immediate transition to the next location. The goal state (in green, bottom left) is designated by
the letter G. In order to reach it, clock zf must have value at least 1/2 in the preceding location.

3.4 The Reduction
Recall that we are given a probabilistic automaton A = (Q, q1, F, Aa, Ab) with set of states
Q = {q1, . . . , qℓ}, over alphabet {a, b}, with the property that every non-zero state transition
carries probability exactly 1/M for some M ∈ N. We are moreover promised that either
A accepts some word with probability at least 1/2, or A accepts no word with probability
exceeding 1/10.

Our corresponding weighted timed game G is depicted in Fig. 5. As noted earlier, the
convenient use of the half-integral constant 1/2 in one of the clock constraints is easily
circumvented if desired.

Recall the following proposition:

▶ Proposition 8. Let A and G be as above. Then:
If there is a word w ∈ {a, b}∗ such that A(w) ≥ 1/2, then the value of G is exactly 0.
If, for all words w ∈ {a, b}∗, A(w) ≤ 1/10, then the value of G is at least 0.4M .

Proof. Consider a run of G in which word w = w1 . . . wn ∈ {a, b}∗ has been played. Let
k ∈ {1, . . . , n}, and for i ∈ {1, . . . , ℓ}, let z̃i,k and z̃F,k be the respective values of clocks zi

and zF upon exiting location
1

for the kth time, and let µ̃i,k and µ̃F,k be the respective

values of clocks µi and µF upon exiting module
2

for the kth time.
By the lemmas and corollaries from the previous section, we have, for all i and k,

µ̃i,k = z̃i,k+1, and likewise µ̃F,k = z̃F,k+1 . (∗)

Q. Guilmant and J. Ouaknine 27:11

Let us also introduce the following expressions:

Ei,k = z̃i,k − Pw1...wk−1(qi) and EF,k = z̃F,k − Pw1...wk−1(F) ,

εi,k = µ̃i,k −
∑

j|qj∈inwk
(qi)

z̃j,k

M
and εF,k = µ̃F,k −

∑
i|qi∈F

∑
j|qj∈inwk

(qi)

z̃j,k

M
.

Intuitively, Ei,k is the absolute cumulative error on the probability of being in state qi after
k − 1 iterations, and εi,k is the marginal error on this probability upon reading letter wk.
Finally, we let costk be the maximum cumulative weight that Player Max can achieve upon

exiting state
1

for the kth time. For k ∈ {1, . . . , n} and i ∈ {1, . . . , ℓ}, we have:

Ei,k+1 = z̃i,k+1 − Pw1...wk
(qi)

= µ̃i,k − Pw1...wk
(qi) (by (∗))

= εi,k +
∑

j|qj∈inwk
(qi)

z̃j,k

M
− Pw1...wk

(qi)

= εi,k +
∑

j|qj∈inwk
(qi)

z̃j,k

M
−

∑
j|qj∈inwk

(qi)

Pw1...wk−1(qj)(Awk
)i,j

= εi,k +
∑

j|qj∈inwk
(qi)

z̃j,k

M
−

∑
j|qj∈inwk

(qi)

Pw1...wk−1(qj)
M

Ei,k+1 = εi,k + 1
M

∑
j|qj∈inwk

(qi)

Ej,k . (†)

Similarly:

EF,k+1 = εF,k + 1
M

∑
qi∈F

∑
j|qj∈inwk

(qi)

Ej,k . (⋆)

Let us now consider the following properties for k ∈ {1, . . . , n + 1}:

P(k) :
ℓ∑

i=1
|Ei,k| ≤

ℓ∑
i=1

k−1∑
m=1

|εi,m|

Q(k) : costk = M
ℓ∑

i=1

k−1∑
m=1

|εi,m| + M

k−1∑
m=1

|εF,m| .

We prove both properties by induction.

The base case is k = 1. Since only the start location and location
1

have been visited,
we have z̃1,1 = 1, z̃i,1 = 0 for 2 ≤ i ≤ ℓ, and z̃F,1 = 1 if q1 ∈ F , and z̃F,1 = 0 otherwise.
On the other hand, Pλ(q1) = 1, Pλ(qi) = 0 for 2 ≤ i ≤ ℓ, and Pλ(F) = 1 if q1 ∈ F , and
Pλ(F) = 0 otherwise.
Therefore Ei,1 = 0 for 1 ≤ i ≤ ℓ and EF,1 = 0. Likewise, cost1 = 0, whence P(1) and
Q(1) hold.

CONCUR 2024

27:12 Inaproximability in Weighted Timed Games

Let k ∈ {1, . . . , n}, and assume that both P(k) and Q(k) hold. Thanks to Corollary 13,
we have:

costk+1 = costk +
ℓ∑

j=1

∣∣∣∣∣∣Mµ̃j,k −
∑

i|qi∈inwk
(qj)

z̃i,k

∣∣∣∣∣∣ +

∣∣∣∣∣∣Mµ̃F,k −
∑

i|qi∈F

∑
j|qj∈inwk

(qi)

z̃j,k

∣∣∣∣∣∣
= costk + M(

ℓ∑
i=1

|εi,k| + |εF,k|)

= M
ℓ∑

i=1

k∑
m=1

|εi,m| + M
k∑

m=1
|εF,m| , as required.

Also,

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

∑
j|qj∈inwk

(qi)

|Ej,k| , (by (†))

≤
ℓ∑

i=1
|εi,k| + 1

M

∑
i,j|(Awk

)i,j=1/M

|Ej,k|

≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

∑
j|qj∈outwk

(qi)

|Ei,k| .

By our assumption on A, each state has exactly M non-null outgoing transitions for each
letter. Therefore

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

M |Ei,k| .

Applying P(k),

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| +

ℓ∑
i=1

k−1∑
m=1

|εi,m| =
ℓ∑

i=1

k∑
m=1

|εi,m| ,

and therefore P(k + 1) holds, concluding the induction step.

Now if w is such that A(w) = Pw1...wk
(F) ≥ 1/2, Player Min need only correctly set

each clock µi to its expected value in every iteration, so that, for all i ∈ {1, . . . , ℓ} and all
k ∈ {1, . . . , n + 1}, we have εi,k = 0 and εF,k = 0. By Q(n + 1), the value of G is at most 0.
Since it is easily seen that the value of G cannot be negative, it must indeed be precisely 0.

If, on the other hand, A(w) ≤ 1/10, then in order for Min to reach the goal state after
playing w, it is necessary to have EF,n+1 ≥ 1/2 − 1/10 = 0.4. Using (⋆),

0.4 ≤ εF,n+1 + 1
M

∑
qi∈F

∑
j|qj∈inwn (qi)

Ej,n+1

≤ |εF,n+1| + 1
M

∑
qi∈F

∑
j|qj∈inwn (qi)

|Ej,n+1|

≤ |εF,n+1| + 1
M

∑
i,j|(Awn)i,j=1/M∧qi∈F

|Ej,n+1| .

Q. Guilmant and J. Ouaknine 27:13

Recall that each state of A has exactly M non-null outgoing transitions for each letter, and
thus at most M wn-labeled outgoing transitions to a final state. We then get

0.4 ≤ |εF,n+1| +
ℓ∑

j=1
|Ej,n+1| .

Using P(n + 1),

0.4 ≤ |εF,n+1| +
ℓ∑

i=1

n∑
m=1

|εi,m| ≤
ℓ∑

i=1

n∑
m=1

|εi,m| +
n∑

m=1
|εF,m| ,

whence, using Q(n + 1),

0.4M ≤ costn+1 .

This is true for any word played. Therefore if no word is accepted by A with probability
exceeding 0.1, the value of G must be at least 0.4M , as claimed. ◀

Our main result now immediately follows:

▶ Theorem 1. Given a two-player, turn-based, weighted timed game with (positive and
negative) integer weights, the problem of approximating its value arbitrarily closely is compu-
tationally unsolvable.

4 Conclusion

We have shown that the problem of approximating the value of weighted timed games with
positive and negative weights is computationally unsolvable. An obvious question is whether
this result can be extended to games only making use of non-negative weights. This appears
to be rather difficult. Negative weights play a critical role in our construction in enabling us,
thanks to modules Add−

r (x, Y) and Add+
r (x, Y) (depicted in Fig. 2), to keep a cumulative

tally of the costs incurred through the repeated commission of small errors (or “cheating”)
by Player Min. Without the use of negative weights, it does not seem possible to implement
a “punishing” mechanism for Player Max that can be re-used arbitrarily many times, and
accordingly we conjecture that in this case, the value of such games can be approximated
arbitrarily closely.

A related observation is that both the above modules require the passage of two full time
units to execute properly. It follows that over bounded time, one would need to implement
a different approach. We conjecture that the value problem for weighted timed games is
undecidable even over bounded time, but however that the corresponding time-bounded
approximation problem is solvable.6

6 Here “bounded time” refers to the requirement that there be some global constant T such that all plays
are required to have total duration at most T . Various undecidable real-time problems are known to
become decidable in a time-bounded setting [21].

CONCUR 2024

27:14 Inaproximability in Weighted Timed Games

References
1 Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted

timed games. In ICALP, volume 3142 of Lecture Notes in Computer Science, pages 122–133.
Springer, 2004.

2 Rajeev Alur and Thomas A. Henzinger. Modularity for timed and hybrid systems. In CONCUR,
volume 1243 of Lecture Notes in Computer Science, pages 74–88. Springer, 1997.

3 Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on
weighted timed automata. Inf. Process. Lett., 98(5):188–194, 2006.

4 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim Guldstrand Larsen. Optimal
strategies in priced timed game automata. In FSTTCS, volume 3328 of Lecture Notes in
Computer Science, pages 148–160. Springer, 2004.

5 Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted timed
games. In CONCUR, volume 42 of LIPIcs, pages 311–324. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015.

6 Patricia Bouyer, Kim Guldstrand Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost
optimal strategies in one clock priced timed games. In FSTTCS, volume 4337 of Lecture Notes
in Computer Science, pages 345–356. Springer, 2006.

7 Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strategies.
In FORMATS, volume 3829 of Lecture Notes in Computer Science, pages 49–64. Springer,
2005.

8 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege.
Simple priced timed games are not that simple. In FSTTCS, volume 45 of LIPIcs, pages
278–292. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

9 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege.
One-clock priced timed games with negative weights. Log. Methods Comput. Sci., 18(3), 2022.

10 Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Benjamin
Monmege, and Ashutosh Trivedi. Adding negative prices to priced timed games. In CONCUR,
volume 8704 of Lecture Notes in Computer Science, pages 560–575. Springer, 2014.

11 Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal reachability
in divergent weighted timed games. In FoSSaCS, volume 10203 of Lecture Notes in Computer
Science, pages 162–178, 2017.

12 Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Symbolic approxima-
tion of weighted timed games. In FSTTCS, volume 122 of LIPIcs, pages 28:1–28:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

13 Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal controller
synthesis for timed systems. Log. Methods Comput. Sci., 19(1), 2023.

14 Anne Condon and Richard J. Lipton. On the complexity of space bounded interactive proofs
(extended abstract). In FOCS, pages 462–467. IEEE Computer Society, 1989.

15 Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariëlle Stoelinga.
The element of surprise in timed games. In CONCUR, volume 2761 of Lecture Notes in
Computer Science, pages 142–156. Springer, 2003.

16 Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster algorithm
for solving one-clock priced timed games. In CONCUR, volume 8052 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2013.

17 Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. Rectangular hybrid games.
In CONCUR, volume 1664 of Lecture Notes in Computer Science, pages 320–335. Springer,
1999.

18 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34, 2003.

19 Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems (an extended abstract). In STACS, volume 900 of Lecture Notes in Computer
Science, pages 229–242. Springer, 1995.

Q. Guilmant and J. Ouaknine 27:15

20 Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Decidability of one-clock
weighted timed games with arbitrary weights. In CONCUR, volume 243 of LIPIcs, pages
15:1–15:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

21 Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-bounded verification. In
CONCUR, volume 5710 of Lecture Notes in Computer Science, pages 496–510. Springer, 2009.

22 Michal Rutkowski. Two-player reachability-price games on single-clock timed automata. In
QAPL, volume 57 of EPTCS, pages 31–46, 2011.

CONCUR 2024

Faster and Smaller Solutions of Obliging Games
Daniel Hausmann #

University of Gothenburg, Gothenburg, Sweden
Chalmers University of Technology, Gothenburg, Sweden
University of Liverpool, Liverpool, United Kingdom

Nir Piterman #

University of Gothenburg, Gothenburg, Sweden
Chalmers University of Technology, Gothenburg, Sweden

Abstract
Obliging games have been introduced in the context of the game perspective on reactive synthesis in
order to enforce a degree of cooperation between the to-be-synthesized system and the environment.
Previous approaches to the analysis of obliging games have been small-step in the sense that they
have been based on a reduction to standard (non-obliging) games in which single moves correspond
to single moves in the original (obliging) game. Here, we propose a novel, large-step view on obliging
games, reducing them to standard games in which single moves encode long-term behaviors in the
original game. This not only allows us to give a meaningful definition of the environment winning
in obliging games, but also leads to significantly improved bounds on both strategy sizes and the
solution runtime for obliging games.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Two-player games, reactive synthesis, Emerson-Lei games, parity games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.28

Related Version Extended Version: https://arxiv.org/abs/2407.11856

Funding Both authors supported by the ERC Consolidator grant D-SynMA (No. 772459).
Daniel Hausmann: Supported by the EPSRC through grant EP/Z003121/1.

1 Intro

Infinite duration games [11] and their analysis are central to various logical problems in
computer science; problems with existing game reductions subsume model checking [5, 16]
and satisfiability checking [9, 10] for temporal logics (such as CTL or the µ-calculus), or
reactive synthesis for LTL specifications [8]. Game arenas that are used in such reductions
typically incorporate two antagonistic players (called player ∃ and player ∀ in the current
work) that have dual objectives. Then the reductions construct game arenas and objectives
in such a way that the instance of the original problem has a positive answer if and only if
player ∃ has a strategy that ensures that the player’s objective is satisfied (that is, player
∃ wins the game). Solving games then amounts to determining their winner. Games with
Borel objectives are known to be determined [21], that is, for each node in them, exactly one
of the players i has a winning strategy of type V ∗Vi → V , where V is the set of game nodes,
and Vi the set of nodes controlled by player i.

Reactive synthesis [22] considers a setting in which a system works within an antagonistic
environment, and the system-enviroment interaction is modelled by means of input variables
from a set I (controlled by the environment), and output variables from a set O (controlled by
the system). The synthesis problem then takes a logical specification φ over the variables I ∪O

as input and asks for the automated construction of a system in which all interactions between
the system and the environment satisfy the specification; if such a system exists, then φ is said
to be realizable. The reactive synthesis problem therefore goes beyond checking realizability
by also asking for a witnessing system in the case that the input specification is realizable.
While the problem has been shown to be 2ExpTime-complete for specifications that are

© Daniel Hausmann and Nir Piterman;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.hausmann@liverpool.ac.uk
https://orcid.org/0000-0002-0935-8602
mailto:piterman@chalmers.se
https://orcid.org/0000-0002-8242-5357
https://doi.org/10.4230/LIPIcs.CONCUR.2024.28
https://arxiv.org/abs/2407.11856
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Faster and Smaller Solutions of Obliging Games

formulated in LTL, a landscape of algorithms and implementations has been developed that
shows good performance in (some) practical use cases (e.g. [18, 23]). The feasability of these
algorithms is largely owed to an underlying reduction to infinite-duration two-player games,
most commonly with parity objectives. Answering the realizability problem then corresponds
to deciding the winner of the reduced game, while the construction of a witnessing system for
a realizable specification corresponds to the extraction of a winning strategy from that game.
This motivates the interest not only in game solving algorithms, but also in the analysis and
extraction of winning strategies. In particular, the amount of memory required by winning
strategies in the types of games at hand determines the minimum size of witnessing systems.

Building on the described game perspective on reactive synthesis, obliging games have
been proposed to deal with the situation that a system might trivially realize a specification
by disallowing most or all interactions with the environment (cf. [2, 6]). Obliging games
address this problem by requiring the system player to have a strategy that not only always
guarantuees that the system’s strong objective (say αS) is achieved, but to also always keep
an interaction possible in which intuitively both players cooperate to achieve a second, weak,
objective (say αW). Such a strategy then is called graciously winning for the system player.
For example, the generalized reactivity (GR[1]) setting (cf. [4]) incorporates k different
requests and k corresponding grants (Ri, Gi for 1 ≤ i ≤ k). Then the objective αS states
that “if all Ri (requests) hold infinitely often, then all Gi (grants) hold infinitely often”.
In this setting, player ∃ may satisfy the objective αS trivially by simply ensuring that, for
each interaction, there is some Ri that is eventually avoided forever. The obliging game
setting allows to address this situation by taking αW to require that all Ri hold infinitely
often. Then a gracious strategy for player ∃ has to ensure αS (possibly by avoiding, on most
interactions, some Ri), but it also has to enable player ∀ to additionally realize αW , thereby
always enabling at least one “interesting” interaction on which all Ri and also all Gi hold
infinitely often.

Previous approaches to the analysis of obliging games [6, 20] have been largely based on a
reduction to equivalent non-obliging games in which the players still take single steps on the
original game graph, but in addition to that, game nodes are annotated with auxiliary memory
that is used to deal with the more involved obliging game’s objectives. Obliging GR[1] games,
as in the example above, have been considered under the names of “cooperative” [3] and
“environmentally-friendly” [19]. Independent bespoke symbolic algorithms of slightly better
complexity than the general solution have been suggested.

In this context, the contributions of the current work are threefold:

We propose a novel perspective on obliging games that is based on considering multi-step
strategies of players in the original game, rather than emulating single-step moves. In
more detail, we provide an alternative reduction that takes obliging games to equivalent
non-obliging games in which the system player commits to certain long-term behaviors,
encoded by so-called witnesses, which are just plays of the original game (we therefore
call the resulting games witness games). The environment player in turn can either check
whether a given witness is valid, that is, satisfies both αS and αW , or accept the witness
and exit it at any game node that occurs in the witness, thereby intuitively challenging
the system player to still win when a play only traverses the witness up to the exit node
and then continues on outside of the proposed witness; in the latter case, the system
player has to provide a new witness for the challenged game node, and so on. We use the
reduction to witness games to show determinacy of obliging games with Borel objectives
(however, with respect to strategies of type V ∗ → V ω for the system player, and strategies
of type V ω → V ∪ V ω for the environment player).

D. Hausmann and N. Piterman 28:3

We show that witnesses for obliging games with ω-regular objectives αS and αW have finite
representations, as they correspond to (accepting) runs of ω-automata with acceptance
condition αS ∧ αW ; we call such representations certificates. Using certificates in place of
infinite witnesses, we modify witness games to obtain an alternative reduction that takes
ω-regular obliging games to finite ω-regular non-obliging games, called certificate games.
Technically, we present the reduction for obliging games with Emerson-Lei objectives.
During the correctness proof for this reduction, we show that the memory requirements
of graciously winning strategies for Emerson-Lei obliging games depend only linearly on
the size of αW , improving significantly upon existing upper bounds [6, 20] that are, in
general, exponential in the size of αW .
The certificate games that we propose contain an explicit game node for any possible
certificate within an obliging game. Hence they are prohibitively large and it is not viable
to solve them naively. However, we show how a technique of fixpoint acceleration can
be used to speed up the solving process of certificate games, replacing the exploration
of all certificate nodes with emptiness checking for suitable ω-automata; this technique
solves certificate games by computing nested fixpoints of a function that checks for the
existence of suitable certificates. Thereby we are able to improve previous upper runtime
bounds for the solution of obliging games; in many cases, our algorithm outperforms
existing algorithms by an exponential factor.

Summing up, we propose a novel approach to the analysis of obliging games that provides
more insight in their determinacy, and for obliging games with Emerson-Lei objectives, we
significantly improve existing upper bounds both on strategy sizes and solution time.

Structure. We introduce obliging games and related notions in Section 2. In Section 3, we
reduce obliging games to witness games and use the reduction to show that obliging games
are determined (for strategies with additional information). Subsequently, we restrict our
attention to ω-regular obliging games with Emerson-Lei objectives. In Section 4 we reduce
witness games with such objectives to certificate games and use the latter to obtain improved
upper bounds on strategy sizes in obliging games. In Section 5 we show how certificate games
can be solved efficiently, in consequence improving previous upper bounds on the runtime
complexity of solving obliging games. Full proofs and additional details can be found in an
extended version of this paper.

2 Preliminaries

We start by recalling obliging games and extend the setup from previous work to use general
Borel objectives in place of Muller objectives; we also introduce the special case of obliging
games with Emerson-Lei objectives, and recall the definition of Emerson-Lei automata.

Arenas, plays, strategies. An arena is a graph A = (V, V∃, E), consisting of a set V of
nodes and a set E ⊆ V × V of moves; furthermore, we assume that the set of nodes is
partitioned into the sets V∃ and V∀ := V \ V∃ of nodes owned by player ∃ and by player ∀,
respectively. We write E(v) = {w ∈ V | (v, w) ∈ E} for the set of nodes reachable from
node v ∈ V by a single move. We assume without loss of generality that every node has
at least one outgoing edge, that is, that E(v) ̸= ∅ for all v ∈ V . A play π = v0v1 . . . on A

is a (finite or infinite) sequence of nodes such that vi+1 ∈ E(vi) for all i ≥ 0. The length
|π| = n + 1 of a finite play π = v0v1 . . . vn is the number of vertices it contains; throughout,
we denote the set {0, . . . , n} for n ∈ N by [n]. By abuse of notation, we denote by Aω the set
of infinite plays on A and by A∗ and A+ the set of finite (nonempty) plays on A. A strategy

CONCUR 2024

28:4 Faster and Smaller Solutions of Obliging Games

for player i ∈ {∃, ∀} is a function σ : A∗ · Vi → V that assigns a node σ(πv) ∈ V to every
finite play πv that ends in a node v ∈ Vi. A strategy σ for player i is said to be positional if
the moves that it prescribes do not depend on previously visited game nodes. Formally this
is the case if we have σ(πv) = σ(π′v) for all v ∈ Vi and all π, π′ ∈ A∗. A play π = v0v1 . . . is
compatible with a strategy σ for player i ∈ {∃, ∀} if for all j ≥ 0 such that vj ∈ Vi, we have
vj+1 = σ(v0v1 . . . vj).

Objectives and games. In this work we consider two types of objectives: Borel objectives
and Emerson-Lei objectives. Borel objectives are explicit sets of infinite sequences of vertices.
A set is Borel definable if it is in the σ-algebra over the open subsets of infinite sequences of
vertices V ω. That is, sets that can be obtained by countable unions, countable intersections,
and complementations from the open sets (sets of the form wV ω for w ∈ V ∗). A play π on
A satisfies a Borel objective B if π ∈ B.

Emerson-Lei objectives are specified relative to a coloring function γC : E → 2C (for some
set C of colors) that assigns a set γC(v, w) ⊆ C of colors to every move (v, w) ∈ E; we note
that our setup is more succinct than the one from [6] where each edge has (at most) one color.
A play π = v0v1 . . . then induces a sequence γC(π) = γC(v0, v1)γC(v1, v2) . . . of sets of colors.
Emerson-Lei objectives are given as positive Boolean formulas φC ∈ B+({Inf c, Fin c | c ∈ C})
over atoms of the shape Inf c and Fin c. Such formulas are interpreted over infinite sequences
γ0γ1 . . . of sets of colors. We put γ0γ1 . . . |= Inf c if and only if there are infinitely many
positions i such that c ∈ γi, and γ0γ1 . . . |= Fin c if there are only finitely many such positions;
satisfaction of Boolean operators is defined in the usual way. Then an infinite play π on A

satisfies the formula φC if and only if γC(π) |= φC and we define the Emerson-Lei objective
induced by γC and φC by putting

αγC ,φC
= {π ∈ Aω | γC(π) |= φC}.

Parity objectives are a special case of Emerson-Lei objectives with set C = {p0, . . . , pk}
of colors, where each edge has exactly one color (also called priority), and where φ =∨

i even Inf pi ∧
∧

i<j≤k Fin pj , stating that the maximal priority that is visited infinitely often
has an even index. We can denote such objectives by just a single function Ω : E → [k].
Further standardly used conditions include Büchi, generalized Büchi, generalized reactivity
(GR[1]), Rabin and Streett objectives, all of which are special cases of Emerson-Lei objectives
(see e.g. [15]); the memory required for winning in such games has been investigated in [7].

We note that neither Borel nor Emerson-Lei objectives enable a simple distinction between
finite plays ending in existential and universal nodes; hence we will avoid deadlocks in our
game reductions, ensuring that all games in this work allow only infinite plays.

A standard game is a tuple (A, α), where A = (V, V∃, E) is an arena and α is an objective.
A strategy σ is winning for player ∃ at some node v ∈ V if all plays that start at v and are
compatible with σ satisfy the objective α. A strategy τ for player ∀ is defined winning dually.

An obliging game is a tuple (A, αS , αW), consisting of an arena A = (V, V∃, E) together
with two objectives αS and αW , called the strong and weak objective, respectively; we also
refer to such games as αS / αW obliging games. A strategy σ for player ∃ is graciously
winning for v ∈ V if all plays that start at v and are compatible with σ satisfy the strong
objective φS and furthermore every finite prefix π ∈ A∗ of a play that is compatible with
σ can be extended to an infinite play πτ that is compatible with σ and satisfies the weak
objective αW . We sometimes refer to the infinite plays πτ witnessing the satisfaction of
the weak objective as obliging plays. It follows immediately that player ∃ can only win
graciously at nodes at which at least one obliging play (satisfying αS ∧ αW) starts, so we
assume without loss of generality that this is the case for all nodes in V .

D. Hausmann and N. Piterman 28:5

▶ Example 1. We consider the Emerson-Lei obliging game depicted below with the set
{a, b, c, d} of colors, a Streett condition (with two pairs (a, b) and (c, d)) as strong objective
αS , and generalized Büchi condition enforcing visiting both a and c as weak objective αW .
In all examples in this work, nodes belonging to player ∃ are depicted with rounded corners,
while ∀-nodes are depicted by rectangles; edges may have several colors in Emerson-Lei
games, but in this example, each edge has at most one color. We use the dashed edge to
illustrate both winning and losing in an obliging game.

v1 v2 v3

v5 v4

a c

b d αS = (Inf a → Inf b) ∧ (Inf c → Inf d)
αW = Inf a ∧ Inf c

Consider the strategy σ with which player ∃ alternatingly moves to v5 and to v1 when node
v4 is reached, depending on where they moved from v4 the last time it has been visited.
Without the dashed edge, σ is graciously winning: every play compatible with σ visits the
colors a, b and d infinitely often and hence satisfies αS ; also, σ allows player ∀ to visit color c

arbitrarily often by moving from v2 to v3, so every finite prefix of a σ-play can be continued
to an obliging σ-play that infinitely often visits v3 and therefore satisfies αS ∧ αW . If the
dashed edge is added to the arena, then σ is no longer graciously winning. Indeed, when
playing against σ, player ∀ can prevent b from ever being visited by always moving from v5
to v4. However, the modified strategy σ′ that moves from v4 to v1 only if the last visited
node is not v5 and also b has been visited more recently than d (and otherwise moves back
to v5) is graciously winning. Every σ′-play that ends in (v4v5)ω satisfies αS but also can be
made into an obliging play by having ∀ move to v1 whenever v5 is reached.

Emerson-Lei automata. Given an Emerson-Lei objective αγC ,φC
, an Emerson-Lei auto-

maton is a tuple A = (Σ, Q, δ, q0, αγC ,φC
), where Σ is the alphabet, Q is a set of states,

δ ⊆ Q × Σ × Q is the transition relation, and q0 ∈ Q is the initial state; in this context, we
assume that γC : δ → 2C assigns sets of colors to transitions in A. A run of A on some
infinite word w = a0a1 . . . ∈ Σω is a sequence π = q0q1 . . . ∈ Qω such that (qi, ai, qi+1) ∈ δ

for all i ≥ 0. A run π is accepting if and only if γC(π) |= φC , and A recognizes the language

L(A) = {w ∈ Σω | there is an accepting run of A on w}.

An Emerson-Lei automaton A is non-empty if and only if L(A) ̸= ∅. All automata that we
consider in this work will have a single-letter alphabet Σ = {∗} so that they can read just
the single infinite word ∗ω.

3 Determinacy of Obliging Games

Chatterjee et al. [6], when formalizing obliging games, stated that the standard shape of
strategies (that is, A∗ ·Vi → V) does not allow player ∀ to counteract player ∃’s strategy with
a single strategy. We show that, for a more general form of strategy (of type Aω → V ∪ Aω),
this is possible. Furthermore, with these more general strategies, the games are determined.
That is, players are not disadvantaged by revealing their strategy first and one of the
players always has a winning strategy. This insight allows offering alternative (more efficient)
solutions to obliging games in the next sections.

CONCUR 2024

28:6 Faster and Smaller Solutions of Obliging Games

Fix an obliging game G = (A, αS , αW). Let A = (V, V∃, E) and let αS and αW be Borel
sets. A witness for vertex v ∈ V is an infinite play π = v0v1 · · · ∈ Aω such that v0 = v; we
write witness(v) to denote the set of witnesses for v ∈ V . The witness game W (G) = (A′, α′)
captures the obliging game by allowing player ∃ to choose an explicit witness for a given
vertex. Player ∀ can then either check whether the witness satisfies both αS and αW , or stop
at some point verifying the witness and ask for a new witness. If player ∀ changes witnesses
infinitely often, they still check that the resulting play satisfies αS .

Formally, we have A′ = (V ′, V ′
∃, E′), where V ′ = V ∪ Aω, V ′

∃ = V and E′ is as follows.

E′ = {(v, π) | v ∈ V, π ∈ witness(v)} ∪ {(vπ, π) | vπ ∈ Aω} ∪
{(vπ, v′′) | vπ ∈ Aω, v ∈ V∀, v′′ ∈ E(v)}.

Given vπ ∈ V ′
∀ put head(vπ) = v. We extend head to sequences over V ′ in the natural

way. Consider a play π′ ∈ (A′)ω. Let π′ ⇓V ′
∀

denote the projection of π′ to the elements
of V ′

∀, that is, π′ ⇓V ′
∀

is obtained from π′ by removing all elements in V ′
∃ = V . Then put

seqA(π′) = head(π′ ⇓V ′
∀
). Clearly, seqA(π′) ∈ Aω, that is, seqA(π′) extracts from π′ the

infinite play in A that is followed in π′. The winning condition α′ consists of plays π′ that
remain eventually in V ′

∀ forever such that seq(π′) satisfies both αS and αW , or plays π′ that
visit V ′

∃ infinitely often such that seq(π′) satisfies αS . Formally, we have the following:

α′ = {π′ ∈ V ′∗ · (V ′
∀)ω | seqA(π′) ∈ αS ∩ αW } ∪

{π′ ∈ V ′∗ · (V ′
∃ · (V ′

∀)∗)ω | seqA(π′) ∈ αS}

▶ Example 2. For brevity, we refrain from showing the complete witness game associated to
the obliging game from Example 1 and instead consider just two witnesses for the node v1,
namely (v1v2v4v5)ω and (v1v2v3v4v1v2v4v5)ω. The former satisfies the Streett objective αS

as it visits the colors a and b. However, it does not satisfy the generalized Büchi objective
αW as color c is not visited infinitely often. The latter witness, contrarily, visits all colors
infinitely often and hence satisfies αS ∧ αW . In the witness game, player ∃ can move from v1
to these two witnesses (and to many more). Player ∀ in turn can win the first witness by
exploring it indefinitely, thereby showing that it does not satisfy αW ; doing the same for the
second witness, player ∀ loses. In both certificates, we have exit moves from every position
such that the node at the position is owned by player ∀, that is, moves from positions with
node v2 to E(v2), and similarly for v3 and v5.

▶ Lemma 3. Player ∃ is graciously winning in G at v iff player ∃ is winning in W (G) at v.

▶ Corollary 4. Obliging games are determined.

Proof. This follows immediately from Lemma 3 and the determinacy of games with Borel
winning conditions [21]. Notice that Martin’s determinacy result holds also for games with
continuous vertex-spaces and continuous branching degrees, as in the witness game. ◀

4 Reducing ω-Regular Obliging Games to Finite Games

From this point on, we restrict our attention to obliging games in which both objectives are
Emerson-Lei objectives; we note that every ω-regular objective can be transformed to an
Emerson-Lei objective. It turns out that due to the ω-regularity of Emerson-Lei objectives,
obliging plays in such games have finite witnesses that take on the form of lassos that are
built over the game arena at hand. Formally, we show that for every such game we can
create a game that is smaller than the witness game by restricting attention to witnesses of
this specific form that satisfy the acceptance conditions. We call such witnesses certificates,
which we define next.

D. Hausmann and N. Piterman 28:7

4.1 Certificates from Witnesses
We fix an Emerson-Lei obliging game G = (A, αS , αW) with arena A = (V, V∃, E), objectives
αS = (γS , φS) and αW = (γW , φW), and put n := |V |, d := |S| and k := |W |.

▶ Definition 5 (Certificate). Given a node v ∈ V , a certificate for v (in G) is a witness for v

that is of the form c = wuω; if c satisfies φS ∧ φW , then we say that c is a valid certificate.

We equally represent c = wuω by the pair c = (w, u). Let w = w0w1 . . . wm and
u = u0u1 . . . ur. We refer to w as the stem and to u as the loop of c, and to m and r as the
length of the stem and the loop, respectively. When the partition of c is not important we
sometimes just write c = v0 . . . vm+r+1. Clearly, as satisfaction of Emerson-Lei objectives
depends only on the infinite suffixes of a play, it follows that in a valid certificate, uω also
satisfies φS and φW .

Given a coloring function γC over some set C of colors, the C-fingerprint of a finite play
π = v0v1 . . . vj ∈ A∗ is the set

⋃
0≤i<j γC(vi, vi+1) of colors visited by π, according to γC .

Next we show that given a witness in G that satisfies αS ∧ αW , we can alway construct a
valid certificate of size at most certLen := n · d + (d + k + 1) · (n + 1) ∈ O(n · (max(d, k))).

▶ Lemma 6 (Certificate existence). Let v ∈ V and let π = π0π1 . . . be a witness for π0 = v

that satisfies φS ∧ φW . Then there is a valid certificate c = (w, u) for v with stem length at
most n · d and loop length at most (d + k + 1) · (n + 1), such that for all positions i in c there
is a position j in π such that vi = πj and the S-fingerprints of v0 . . . vi and π0 . . . πj coincide.

We let Cert(v) and Cert denote the sets of all valid certificates for some v ∈ V in G and
all valid certificates for all v ∈ V in G, respectively, subject to the size bounds obtained in
Lemma 6. Then we have |Cert(v)| ≤ |Cert| ≤ ncertLen ∈ 2O(n·(max(d,k))·log n).

4.2 Certificate Games and Smaller Winning Strategies
Next we adapt the witness games from Section 3 to use finite certificates in place of witnesses,
which leads to certificate games that have finite game arenas. In a certificate game, player ∃
has to pick a single valid certificate at each node v ∈ V , thereby commiting to a long-term
future behavior that satisfies αS ∧ αW . Player ∀ in turn can either accept the certificate
(and thereby lose the play), or pick some position i in the certificate and challenge whether
player ∃ still has a strategy to graciously win when player ∀ exits the certificate at position i.
All plays then either end with player ∀ eventually losing by accepting some certificate, or
player ∀ infinitely often exits certificates, in which case the winner of the play is determined
using just the strong objective αS .

Formally, the certificate game associated to G is a (non-obliging) Emerson-Lei game
C(G) = (B, β) with arena B = (N, N∃, R). The game is played over the sets N∃ = V and
N∀ = Cert ∪ Cert × [certLen] × V of nodes. The moves in C(G) are defined by

R(v) = Cert(v) R(c) = {(c, i, v) ∈ N∀ | vi ∈ V∀, v ∈ E(vi)} ∪ {c} R(c, i, v) = {v}

for v ∈ V , c = v0v1 . . . vm ∈ Cert and i ∈ [certLen]. Thus player ∃ has to provide a valid
certificate for v whenever a play reaches a node v ∈ V . Player ∀ in turn can challenge the
way certificates are combined by exiting them from universal nodes in their stem or loop,
and continuing the game at the exit node; if a certificate c does not contain a universal node,
then player ∀ has to take the loop at c, intuitively accepting the certificate c. Intermediate
nodes (c, i, v) are used to make explicit the S-fingerprint of the path through a certificate c

CONCUR 2024

28:8 Faster and Smaller Solutions of Obliging Games

that is taken before exiting it by moving from vi to v; this is necessary since a certificate
may contain universal nodes that allow moving from different positions in the certificate to a
single exit node v, potentially giving player ∀ a choice on the path that is taken (and on the
S-fingerprint that is accumulated) through the certificate before exiting to v.

As our notion of games does not support deadlocks, we annotate trivial loops with an
additional color c⊤ to encode the situation that player ∀ accepts a certificate and thereby
loses. The coloring function γ′ : R → 2S∪{c⊤} also keeps track of the S-fingerprints when
passing through certificates and is defined by γ′(c, (c, i, v)) = γS(v0 . . . viv), γ′(v, c) = ∅
and γ′((c, i, v), v) = ∅ for the non-looping moves and by γ′(c, c) = c⊤ for looping moves at
certificates c ∈ Cert. We then define φ′ = Inf(c⊤) ∨ φS , intuitively expressing that player ∃
can win either according to φS or by forcing player ∀ to get stuck in a trivial loop. Then we
define β to be the objective induced by φ′ and γ′.

▶ Example 7. Below we depict the construction for a single node v ∈ V , showing, as
examples, just two valid certificates c1 = v0v1v2 ∈ Cert(v) and c2 = w0w1w2w3 ∈ Cert(v)
(in particular, we assume v0 = w0 = v and that the certificates c1 and c2 satisfy both φS

and φW). We further assume that v2 ∈ V∀, E(v2) = {v1, x}, and that w1 = w3 ∈ V∀ and
E(w1) = E(w3) = {w2}; all other nodes in c1 and c2 are assumed to be contained in V∃.

v

. . .c1 c2

c1, 2, xc1, 2, v1

v1 x

c2, 1, w2 c2, 3, w2

w2

c⊤ c⊤

γS(v0v1v2v1) γS(v0v1v2x) γS(w0w1w2) γS(w0w1w2w3w2)

At node v, player ∃ has to provide some valid certificate for v; assuming that player ∃
picks the certificate c1 = v0v1v2, player ∀ in turn can exit the certificate at position 2 (as
v2 ∈ V∀) by moving to either (c1, 2, v1) or (c1, 2, x) (as E(v2) = {v1, x}) thereby triggering
S-fingerprint γS(v0v1v2v1) or γS(v0v1v2x); player ∀ intuitively cooperates during the play
that leads from v0 to v2, but may stop cooperating at node v2 by moving to either v1 or x.
Similarly, player ∀ can exit the certificate c2 at positions 1 or 3, both leading to the node w2,
but with different S-fingerprints, that is, with different sets of visited colors.

As the above example shows, certificate games have a three-stepped structure. Plays
progress from nodes v of the original game on to certificate nodes c, and then onwards to
nodes (c, i, v′) that encode the part of c that is visited before exiting c, and then proceed
back to some node v′ of the original game. We refer to these three-step subgames a gadgets;
each gadget has a starting node v and a (possibly empty) set of exiting nodes. We point out
that, crucially, gadgets do not contain (non-trivial) loops.

We state the correctness of the reduction to certificate games as follows.

▶ Theorem 8. Let G be an Emerson-Lei obliging game and let v be a node in G, and recall
that W (G) and C(G) respectively are the witness game and the certificate game associated
with G. The following are equivalent:
1. player ∃ graciously wins v in G;
2. player ∃ wins v in W (G);
3. player ∃ wins v in C(G).

D. Hausmann and N. Piterman 28:9

Proof. The equivalence of the first two items is stated by Lemma 3 and the proof of the
implication from item two to item three is technical but straight-forward. Therefore we
show just the implication from item three to item one, which also shows how to construct a
graciously winning strategy in G from a winning strategy in C(G). For this proof, we use
strategies with memory, introduced next. A strategy for player i ∈ {∃, ∀} with memory M is a
tuple σ = (M, m0, update : M ×E → M, move : Vi×M → V), where M is some set of memory
values, m0 ∈ M is the initial memory value, the update function update assigns the outcome
update(m, e) ∈ M of updating the memory value m ∈ M according to the effects of taking
the move e ∈ E, and the moving function move prescribes a single move (v, move(v, m)) ∈ E

to every game node v ∈ Vi that is owned by player i, depending on the memory value m. We
extend update to finite plays π by putting update(m, π) = m in the base case that π consists
of a single node, and by putting update(m, π) = update(update(m, τ), (v, w)) if π is of the
shape τvw, that is, contains at least two nodes.

Let σ = (M, m0, update, move) be a winning strategy with memory M for player ∃ in
the game C(G). We construct a strategy τ = (M ′, (m0, v, 1), update′, move′) with memory
M ′ = V × M × {1, . . . , 2|S| + |W |} for player ∃ in the game G such that τ graciously wins
v. To this end, we note that σ provides, for each node w ∈ V and memory value m ∈ M , a
certificate c(w, m) := move(w∃, m) ∈ Cert(w) for w in G.

The strategy τ uses memory values (w, m, i), where w and m identify a current certificate
c(w, m) and i is a counter used for the construction of this certificate. We define τ such that
player ∃ starts by building the certificate c(v, m0) for v and m0. This process continues as long
as player ∀ obliges, that is, does not move outside of this certificate. Assuming that player ∀
obliges, the memory required to construct the certificate is bounded by 2|S| + W , walking,
in the prescribed order, through the certificate. In the case that player ∀ eventually stops
obliging and takes a move to some node w that is not the next node on the path prescribed
by the certificate, the memory for the strong objective is updated according to the play from
v to w, resulting in a new memory value m, and the memory for certificate construction
is reset. Then the certificate construction starts again, this time for the certificate c(w, m)
prescribed by σ for the new starting values w and m.

In more detail, every node from V is visited at most 2|S| + |W | times within a certificate
c(v, m) = (v0v1 . . . vn) before the end of the loop vn is reached. To each position i within
c(v, m), we associate the number ♯i such that vi is the ♯i-th occurence of the node vi in
c(v, m); we note that for all 1 ≤ i ≤ n, we have 1 ≤ ♯i ≤ 2|S| + |W |. Conversely, given a
node w and a number j between 1 and 2|S| + |W |, we let pos(w, j) denote the position of the
j-th occurence of w in c(v, m). In the case w occurs less than j times in c(v, m), we leave
pos(w, j) undefined; below we make sure that this value is always defined when it is used.

Let j be the starting position of the loop of c(v, m). Given a position i in c(v, m), we
abuse notation to let i + 1 denote just i + 1 if i < n, and to denote j if i = n; in this way, we
encode taking single steps within a certificate, wrapping back to the start of the certificate
loop, once the end of the loop is reached.

We define the strategy τ to always move to the next node in the current certificate, using
the memory value i together with the current node w to find the current position in the
certificate c(v, m), that is, we put

move′(w, (v, m, i)) = vpos(w,i)+1

for w ∈ V∃ and (v, m, i) ∈ M ′. The memory update in τ incorporates the memory update
function from σ, but additionally also keeps track of the memory for certificate construction.
For moves (w, w′) that stay within the current certificate (that is, w′ = vpos(w,i)+1), this

CONCUR 2024

28:10 Faster and Smaller Solutions of Obliging Games

memory is updated according to proceeding one step within the certificate; for moves that
leave the current certificate, the memory for certificate construction is reset while the memory
for σ is updated according to the path taken through the certificate before exiting it. Formally,
we put

update′((v, m, i), (w, w′)) =
{

(v, m, ♯(pos(w, i) + 1)) w′ = vpos(w,i)+1

(w′, update(m, (v0v1 . . . ww′)), 1) w′ ̸= vpos(w,i)+1

for (v, m, i) ∈ M ′ such that c(v, m) = v0v1 . . . vn and (w, w′) ∈ E; notice that in plays that
adhere to τ , the latter case can, by definition of move′, only happen for w ∈ V∀.

To see that player ∃ graciously wins v using the constructed strategy τ , let π be a play
that adheres to τ . Then π either eventually stays within one certificate c(w, m) forever,
or π induces an infinite play ρ of C(G) that adheres to σ. In the latter case, π changes
the certificate infinitely often, and the S-fingerprints of π and ρ coincide by construction,
showing that π satisfies φS ; if π eventually stays within one certificate c(w, m) forever, we
note that the loop of c(w, m) satisfies φS so that π satisfies φS as well. Thus every play that
adheres to τ satisfies the strong objective φS . Next, let πf be a finite prefix of some play
that adheres to τ , and let πf end in some node w. We have to show that there is an infinite
play π that adheres to τ , extends πf and satisfies φW . Let m be the value of the memory for
the strong objective at the end of πf . We consider the play of G in which player ∀ obliges
from the end of πf on, forever. By construction, this play is πf extended with the certificate
c(w, m) which adheres to τ and satisfies φW . ◀

The strategy construction given in the proof of Theorem 8 yields:

▶ Corollary 9. Given an obliging game with Emerson-Lei objectives αS and αW and n nodes
that contains a node v at which ∃ is graciously winning, there is a graciously winning strategy
for v that uses memory at most n · (2|S| + |W |) · m, where m is the amount of memory
required by winning strategies for player ∃ in standard games with objective αS.

▶ Remark 10 (Canonical certificates). With the proposed strategy extraction, certificate
strategies memorize the starting point of the certificate that player ∃ currently attempts
to construct, leading to an additional linear factor n in strategy size. We conjecture that
winning strategies in certificate games can be transformed to make them reuse certificates (so
that the choice of the certificate does not depend on the starting point). Strategies with such
canonical certificate choices would allow for removing the additional factor n in Corollary 9.

In particular, our result shows the existence of graciously winning strategies with quadratic
sized strategies for all obliging games that have a half-positional strong objective (i.e. one
for which standard games have positional winning strategies for player ∃); this covers, e.g.,
obliging games in which αS is a parity or Rabin objective.

In the table below we compare the solution via certificate games to a previous solution
method [6, 20] reduces αS / αW obliging games to standard games with an objective of type
αS∧ Büchi. In this approach, the weak objective is encoded by a non-deterministic Büchi
automaton and graciously winning strategies obtained in this way incorporate the state space
of the automaton. The encoding of αW by a Büchi automaton leads to linear blow-up if αW

is a Rabin objective, but is exponential if αW is a Streett or general Emerson-Lei objective.
In contrast to this, the certificate games that we propose here always have (essentially)

just αS as objective, and the dependence of strategy size on the weak objective αW is in all
cases linear in |W |. In comparison to [6], our approach hence leads to significantly smaller

D. Hausmann and N. Piterman 28:11

Table 1 Comparison of upper bounds on strategy sizes for various types of obliging games.

type of αS type of αW objective red. [6] strategy size [6] strategy size

parity(d)
Rabin(k)

parity(d)∧ Büchi
d(4k + 2) (2d + 2k)n

Streett(k) 2k+1dk (2d + 2k)n
EL(k) 2k+1dk (2d + k)n

Rabin(d)
Rabin(k)

Rabin(d)∧ Büchi
d(4k + 2) (4d + 2k)n

Streett(k) 2k+1dk (4d + 2k)n
EL(k) 2k+1dk (4d + k)n

Streett(d)
Rabin(k)

Streett(d + 1)
(d + 1)!(4k + 2) (4d + 2k)d!n

Streett(k) (d + 1)!2k+2k (4d + 2k)d!n
EL(k) (d + 1)!2k+2k (4d + k)d!n

EL(d) EL(k) EL(d + 1) (d + 1)!2k+2k (2d + k)d!n

strategies for obliging games in which αW is at least a Streett objective. In the cases where
αW is a Rabin objective, strategies obtained from certificate games are slightly larger than
in [6]; we conjecture that this can be improved by sharing certificates (cf. Remark 10).

For instance, for obliging games with αS = Rabin(d) and αW = Streett(k), the approach
from [6] uses nondeterministic Büchi automata with 2kk states to encode the weak (Streett)
objective. The reduction leads to a game with objective Rabin(d)∧ Büchi; winning strategies
in such games require 2d additional memory values for each automaton state (cf. [7]), resulting
in an overall memory requirement of 2k+1dk. In contrast, the reduced certificate game in
this case is a Rabin(d) game, and the extracted gracious strategies require memory only
to identify the current certificate and a position in it; the overall memory requirement for
strategies obtained through our approach thus is (4d + 2k)n.

5 Solving Certificate Games Efficiently

In the previous section we have shown how obliging games with Emerson-Lei objectives αS

and αW can be reduced to certificate games. This reduction not only yields games with a
simpler objective (essentially just αS) than in the previously known alternative reduction
from [6], but it also shows that the memory required for graciously winning strategies in
obliging games always depends only linearly on |W |. However, the proposed reduction to
certificate games makes explicit all possible certificates that exist in the original obliging
game and therefore incurs exponential blowup. In more detail, given an Emerson-Lei obliging
game G with n nodes and sets S and W of colors, the certificate game C(G) from the
previous section is of size 2O(n·max(|S|,|W |)·log n) and uses |S| many colors; solving it naively
does not improve upon previously known solution algorithms for obliging games.

In this section, we show that the gadget constructions in certificate games essentially
encode non-emptiness checking for non-deterministic ω-automata; intuitively, a certificate
for a game node is a witness for the non-emptiness of an Emerson-Lei automaton with
acceptance condition αS ∧ αW that lives over (parts of) the original game arena. We show
that it suffices to check for the existence of a single suitable certificate, rather than exploring
all possible certificates that occur as explicit nodes in the reduced game.

As pointed out above, the gadget parts in a certificate game do not have non-trivial
cycles (that is, we can regard them as directed acyclic graphs, DAGs). Consequently, it is
possible to simplify the solution process of these (potentially) exponential-sized parts of the
game by instead using non-emptiness checking for suitable ω-automata. If for instance both
αS and αW are Streett conditions (so that αS ∧ αW again is a Streett condition), then the

CONCUR 2024

28:12 Faster and Smaller Solutions of Obliging Games

solution of every gadget part in the game can be reduced to non-emptiness checking of Streett
automata. As non-emptiness checking for Streett automata can be done in polynomial time,
this trick in effect removes the exponential runtime factor that originates from the large
number of certificates when solving such games (and in general, whenever non-emptiness of
αS ∧ αW -automata can be checked efficiently).

Our program is as follows: We first show how Emerson-Lei certificate games can be reduced
to parity games using a tailored later-appearence-record (LAR) construction, incurring blow-
up |S|! in game size, but retaining the DAG structure of gadget subgames. Importantly, this
is required to retain the dependence of non-DAG nodes on a small number of (post DAG)
successors. Then we show the relation between attractor computation in gadget subgames
within the obtained parity games and the non-emptiness problem for specific Emerson-Lei
automata. Finally, we apply a fixpoint acceleration method from [14] to show that during
the solution of parity games, the solution of DAG substructures can be replaced with a
procedure that decides attraction to (subsets of) the exit nodes of the DAG. Overall, we
therefore show that the winning regions of certificate games can be computed as nested
fixpoints of a function that checks certificate existence by nonemptiness checking suitable
Emerson-Lei automata.

5.1 Lazy parity transform
We intend to transform C(G) to an equivalent parity game, using a lazy variant of the
later-appearance-record (LAR) construction (cf. [12, 17]). To this end, we fix a set C of
colors and introduce notation for permutations over C. We let Π(C) denote the set of
permutations over C, and for a permutation π ∈ Π(C) and a position 1 ≤ i ≤ |C|, we let
π(i) ∈ C denote the element at the i-th position of π. For D ⊆ C and π ∈ Π(C), we let
π@D denote the permutation that is obtained from π by moving the element of D that
occurs at the right-most position in π to the front of π; for instance, for C = {a, b, c, d} and
π = (a, d, c, b) ∈ Π(C), we have π@{a, d} = π@{d} = (d, a, c, b) and (d, a, c, b)@{a, d} = π.
Crucially, restricting the reordering to single colors, rather than sets of colors, ensures that
for each π ∈ Π(C) and all D ⊆ C, there are only |C| many π′ such that π@D = π′. Given a
permutation π ∈ Π(C) and an index 1 ≤ i ≤ |C|, we furthermore let π[i] denote the set of
colors that occur in one of the first i positions in π.

Next we show how permutations over C can be used to transform Emerson-Lei games
with set C of colors to parity games; the reduction annotates nodes from the original game
with permutations that serve as a memory, encoding the order in which colors have recently
been visited. The transformation is lazy as it just moves the most significant color that is
visited by a set of colors C rather than the entire set.

▶ Definition 11. Let G = (A, αC) be an Emerson-Lei game with arena A = (V, V∃, E), set
C of colors and objective αC induced by γC and φC . We define the parity game

P (G) = (V × Π(C), V∃ × Π(C), E′, Ω : E′ → {1, . . . , 2|C| + 1})

by putting E′(v, π) = {(w, π@γC(v, w)) | (v, w) ∈ E} for (v, π) ∈ V × Π(C), as well
as Ω((v, π), (w, π′)) = 2p if π[p] |= φC and Ω((v, π), (w, π′)) = 2p + 1 if π[p] ̸|= φC ,
for ((v, π), (w, π′)) ∈ E′. In the definition of Ω((v, π), (w, π′)), we write p to denote
the right-most position in π that contains some color from γC(v, w). For a finite play
τ = (v0, π0)(v1, π1) . . . (vn, πn) of P (G), we let p(τ) denote the right-most position in π0 such
that π0(p(τ)) ∈ γC(v0v1 . . . vn). The game P (G) has |V | · |C|! nodes and 2|C| + 1 priorities.

D. Hausmann and N. Piterman 28:13

▶ Lemma 12. For all v ∈ V and π ∈ Π(C), player ∃ wins from v in G iff player ∃ wins
from (v, π) in P (G).

Now we consider the parity game P (C(G)) that is obtained by applying the above
LAR construction to the certificate game C(G) from Section 4. It is a parity game with
2O(n·max(|S|,|W |)·log n) · |S|! many nodes and 2|S| + 1 priorities. We recall that all nodes in
C(G) that are of the shape c or (c, i, v) such that c, (c, i, v) ∈ N∀ are inner nodes of gadget
subgames that consist of three layers. Each such subgame has exactly one entry node and at
most n exit nodes, all contained in N∃ = V . The LAR construction preserves this general
structure as it simply annotates game nodes with permutations of colors. Specifically, P (G)
has |S|! · n entry and exit nodes for all such subgames together. Furthermore, for all entry
nodes (v, π) of a subgame in P (G), we have that every exit node (that can be reached from
(v, π) with excactly three moves, not accounting for trivial loops) is of the shape (w, π@i)
where w ∈ V and 0 ≤ i ≤ |C|. While an entry node for an individual subgame in C(G) has
at most n exit nodes, each entry node for a subgame in P (C(G)) has at most n(|S| + 1) exit
nodes. Using the classical LAR would result in a potentially exponential number of exit
nodes. Indeed, for every possible subset C ′ ⊆ C there could be a different exit node.

▶ Example 13. Below, we depict (part of) the parity game that is obtained from the
certificate game fom Example 7 by using the proposed LAR construction.

v π

. . .c1 π c2π

c1, 2, x π@jc1, 2, v1 π@i

v1 π@i x π@j

c2, 1, w2 π@q c2, 3, w2 π@r

w2 π@q w2 π@r

0 0
2i 2j + 1 2q + 1 2r

Here i = p(v0v1v2v1), j = p(v0v1v2x), q = p(w0w1w2), r = p(w0w1w2w3w2) and we assume
that the sets π[i] and π[r] satisfy φS and that the sets π[j] and π[q] do not satisfy φS , leading
to the respective even and odd priorities. In particular, we have 2q +1 ̸= 2r so that (w2, π@q)
and (w2, π@r) are two distinct exit nodes from the certificate c2. Intuitively they correspond
to two different paths through c2 with different S-fingerprints; while in the Emerson-Lei game
C(G), the different fingerprints are dealt with by signalling different sets of colors, in the
parity game P (C(G)), the two paths have different effects on the later-appearence memory
π and thus lead to different outcome nodes. The self-loops at nodes c1 and c2 correspond to
player ∀ giving up, so we assign priority 0 to these moves.

5.2 Solving parity games using DAG attraction
A standard way of solving parity games is by computing a nested fixpoint of a function
that encodes one-step attraction in the game; the domain of this fixpoint computation then
is the set of all game nodes. For parity games that contain cycle-free parts (DAGs), this
process can be improved by instead computing a nested fixpoint of a function that encodes
multi-step attraction along the DAG parts of the game. The domain of the latter fixpoint
computation then does not contain the internal nodes of the DAG parts, which leads to
accelerated fixpoint stabilization. We formalize this idea as follows.

CONCUR 2024

28:14 Faster and Smaller Solutions of Obliging Games

▶ Definition 14 (DAGs in games). Let G = (A, Ω) be a parity game with A = (V, V∃, E) and
k +1 priorities 0, . . . , k. We refer to a set W ⊆ V of nodes as a DAG (directed acyclic graph)
if it does not contain an E-cycle; then there is no play of G that eventually stays within W

forever. A DAG need not be connected, that is, it may consist of several cycle-free subgames
of G. Given a DAG W ⊆ V , we write V ′ = V \ W and refer to the set V ′ as real nodes
(with respect to W). A DAG is positional if for each existential node w ∈ W ∩ V∃ in it, there
is exactly one real node v ∈ V ′ from which w is reachable without visiting other real nodes.

▶ Definition 15 (DAG attraction). Given a DAG W and k + 1 sets V = (V0, . . . , Vk) of real
nodes and a real node v ∈ V ′, we say that player ∃ can attract to V from v within W if they
have a strategy σ such that for all plays π that start at v and adhere to σ, the first real node v′

in π such that v′ ̸= v is contained in Vp, where p is the maximal priority that is visited by the
part of π that leads from v to v′. Given a dag W , we define the dag attractor function DAttrW

∃ :
P(V ′)k → P(V ′) by DAttrW

∃ (V) = {v ∈ V ′ | player ∃ can attract to V from v within W}
for V = (V0, . . . , Vk) ∈ P(V ′)k. We denote by tAttrW

∃
the time required to compute, for every

input V ∈ P(V ′)k, the dag attractor of V through W .

▶ Remark 16. The sets Vi in the above definition correspond to valuations of fixpoint
variables in the nested fixpoint computation that is used by the fixpoint acceleration method
in Lemma 17 below to solve games via DAG attraction. These sets monotonically increase
or decrease during the solution process and at each point of the solution process, a set Vi

intuitively holds game nodes for which it currently is assumed that player ∃ wins if they can
force the game to reach a node from Vi via a partial play in which the maximal priority is i.

During the computation of the DAG attractor to a tuple V = (V0, . . . , Vk), we therefore
intuitively consider the argument nodes V to be safe in the sense that in order to win from a
node v, is suffices that existential player has a strategy that ensures that every partial play
through the DAG exits it to a node from Vi, where i the maximal priority visited by that
play along the DAG. Thus if player ∃ can win from all nodes in V , then they can win from
all nodes in DAttrW

∃ (V).
In our case, from a node v, a strategy σ corresponds to choosing one certificate. Then,

player ∀ can attract to all successors of ∀-nodes on the certificate. The path through the
certificate to this ∀-node and to its successor outside the certificate shows a certain priority
j that implies the successor must be in the set Vj .

▶ Lemma 17 ([13]). Let G be a parity game with priorities 0 to k and set V of nodes, let
W be a positional DAG in G, and let n = |V | and m = n − |W |. Then G can be solved with
O(mlog k+1) computations of a DAG attractor; if k + 1 < log m, then G can be solved with a
number of DAG attractor computations that is polynomial in m (specifically: in O(m5)).

We always have tAttrW
∃

≤ |E|, using a least fixpoint computation to check for alternating
reachability, thereby possibly exploring all DAG edges of the game. However, in the case
that m < log n and tAttrW

∃
∈ O(log n) (that is, when most of the game nodes are part of a

DAG, and DAG attractability can be decided without exploring most of the DAG nodes),
Lemma 17 enables exponentially faster game solving.

5.3 Checking certificate existence efficiently
The parity game P (C(G)) that is obtained by applying the LAR construction from Subsec-
tion 5.1 to the certificate game C(G) has 2O(n·max(d,k)·log n)) · |S|! nodes, but only |S|!n of
these are real nodes: all certificate nodes are internal nodes in a gadget that has a DAG
structure. In this section, we show that DAG attractors in P (C(G)) can be computed
efficiently relying on non-emptiness checking of suitable Emerson-Lei automata.

D. Hausmann and N. Piterman 28:15

In P (C(G)), the DAG attractor to a tuple V = (V1, . . . , V2|C|+1) consists of the nodes
(v, π) such that there is a valid certificate starting at v such that all exits points of the
cerficate are safe in the sense of Remark 16, that is, exiting the certificate with fingerprint i

is only possible to nodes w ∈ Vi; we refer to such certificates as valid and safe.
Next we show how the existence of valid and safe certificates can efficiently be checked

by using non-emptiness checking for Emerson-Lei automata to find valid and safe certificate
loops that reside over single sets Vi (as the fingerprint does not increase within certificate
loops, by the construction of certificates as in the proof of Lemma 6), and then using a
reachability analysis that keeps track of fingerprints to compute safe stems leading (with
fingerprint i) to some loop over Vi. In more detail, we check for the existence of valid and
safe certificates as follows, fixing a permutation π and a tuple (V1, . . . , V2|C|+1), where each
Vi is a set of real nodes in P (C(G)).

Make the fingerprints explicit. Define the graph M = (V × [2|C| + 1], R) as follows.
Vertices of the graph are pairs (v, i) consisting of a game node v ∈ V and a priority
i ∈ [2|C| + 1], intuitively encoding the largest priority that has been visited since a
DAG has been entered; edges in this graph correspond to game moves but also update
the priority value according to visited priorities, that is, R contains exactly the edges
((v, i), (w, j)) such that w ∈ E(v) and j = max(i, Ωπ(v, w)), where Ωπ(v, w) denotes
priority associated to seeing the set γC(v, w) of colors on memory π (cf. Definition 11).
Remove unsafe vertices. A vertex (u, i) such that (u, π@i) is contained neither in V2i

nor in V2i+1 is unsafe. Remove from M all vertices (v, i) such that v ∈ V∀ and there is
w ∈ E(v) such that (w, i) is unsafe; these are vertices from where player ∀ can access an
unsafe exit point of the DAG.
Find safe and valid certificate loops: Define, for all i ∈ [2|C| + 1], a nondeterministic
Emerson-Lei automaton Ai = (Qi, δ, αS ∧ αW) (with singleton alphabet {∗}) by putting
Qi = {(v, i) | (v, i) still exists in M} and δ((v, i), ∗) = {(w, i) | w ∈ E(v) and Ωπ(v, w) ≤
i} for (v, i) ∈ Qi. Compute the non-emptiness region of Ai and call it Ni.
Find safe stems: Remove from M all vertices (v, 0) for which there is no j such that some
vertex from Nj is reachable (in M) from (v, 0).

For all vertices (v, 0) that are contained in M after this procedure terminates, there is a safe
stem w leading (with maximal priority j) to some safe and valid loop u over Nj ; (w, u) is a
valid certificate for v. We state the correctness of the described procedure as follows.

▶ Lemma 18. Given subsets V = V0, . . . V2k of the real nodes in P (C(G)) and a real node
(v, π) in P (C(G)), we have that player ∃ can attract to V from (v, π) within Cert × Π(S)
if and only if the set M contains the pair (v, 0) after execution the above procedure (for
parameters V and (v, π)).

▶ Corollary 19. DAG attractors in P (C(G)) can be computed in time O(d!dt) where t denotes
the time it takes to check αS ∧ αW automata of size n for non-emptiness.

Proof. In order to compute a DAG attractor in P (C(G)), it suffices to execute the above
procedure once for each π ∈ Π(S), that is, d! many times; a single execution of the procedure
can be implemented in time O(dt). ◀

5.4 Faster solution of obliging games
We are now ready to state the main result of this section.

CONCUR 2024

28:16 Faster and Smaller Solutions of Obliging Games

▶ Theorem 20. Certificate games for objectives αS and αW with n nodes and d := |S|
colors for the strong objective can be solved in time O((d!n)5d!dt), where t denotes the time
it takes to check Emerson-Lei automata of size n and with acceptance condition αS ∧ αW for
non-emptiness. If αS is a parity objective, then the runtime bound is O(nlog(2d+1)dt).

Proof. By Lemma 12, it suffices to solve the paritized version P (C(G)) of C(G). By
Lemma 18, computing DAG attractors in P (C(G)) can be done in time O(d!dt). As we
have d < log(d! · n), P (C(G)) can be solved with (d!n)5 computations of a DAG attractor by
Lemma 17. If αS is a parity objective, then the LAR construction is not necessary as C(G)
already is a parity game; DAG attractors then can be computed in time O(dt) and C(G)
can be solved with O(nlog(2d+1)) computations of a DAG attractor. ◀

We collect results on the complexity of non-emptiness checking of Emerson-Lei automata
with acceptance condition αS ∧ αW for specific αS and αW . It is known (cf. Table 2. in [1])
that while the problem is in P for most frequently used objectives (subsuming automata with
generalized Büchi, Rabin or Streett conditions, with linear or quadratic dependence on the
number of colors), it is NP-complete for Emerson-Lei conditions. For combinations of such
objectives, the problem remains in P unless one of the objectives is of type Emerson-Lei:

▶ Lemma 21. The Rabin(d)∧Streett(k) non-emptiness problem is in P (more precisely: in
O(mdk2) for automata with m edges).

Proof. Let A be an Emerson-Lei automaton with n nodes, m edges and acceptance condition
Streett(d)∧ Rabin(k). We check A for non-emptiness as follows. Let the Rabin(k) condition
be encoded by k Rabin pairs (Ei, Fi). For each 1 ≤ i ≤ k, check the same automaton but
with acceptance condition Streett(d) ∧ Inf(Fi) ∧ Fin(Ei) for emptiness; call this automaton
Ai. The acceptance condition of Ai can be treated as a Streett(d + 2) condition where the
two additional Streett pairs are (⊤, Fi) and (Ei, ⊥). As a state in A is non-empty if and
only if there is some i such the state is non-empty in Ai, it suffices to check the k many
Streett(d + 2) automata for emptiness. The claim follows from the bound on emptiness
checking for Streett automata given in [1]. ◀

Using the equivalence of certificate games and obliging games (Theorem 8), Theorem 20
together with the described complexities of emptiness checking yields improved upper bounds
on the runtime complexity of solving obliging games, shown in the table below; we let
n denote the number of nodes; m the number of edges; b the size of a nondeterministic
Büchi automaton accepting αW ; and t the time required for emptiness checking an Emerson-
Lei automaton of size n with acceptance condition αS ∧ αW ; finally we let o abbreviate
max(|W |, |S|). Recall that the approach from [6] reduces an obliging game to a standard
game in which the objective α′ is the conjunction of αS with a Büchi objective, incurring
blowup b on the arena size. This game then can be transformed to a parity game G (with
parameters v, e and r) incurring additional blowup for the LAR transformation of α′ to a
parity objective. Notice the definition of e (an underapproximation of the number of edges
in G) in column 4 and its usage in column 5.

For instance for an obliging game with objectives αS = Streett(d) and αW =generalized
Büchi(d) consisting of the Streett requests, the approach from [6] reduces the game to a
parity game G with d!nd nodes, at least d!md edges, and 2d priorities; such a game can be
solved in time O(d!md6(d!n)5). In contrast, emptiness checking for αS ∧ αW -automata is
just emptiness checking for generalized Büchi automata so that our new algorithm solves
such games in time O(d!md2(d!n)5). For objectives αS = Rabin(d) and αW = Streett(k),
the approach from [6] has time complexity O(m(d!k2k)6n5) while our algorithm has time

D. Hausmann and N. Piterman 28:17

Table 2 Comparison of runtime complexities for solving obliging games of various types.

type of αS type of αW b |G|(v, e, r) [6] time [6] t [1] time here

parity(d)
Rabin(k) k + 1

dnb, dmb, d O(e(dnb)log d)
O(mo2)

O(nlog d+1dt)Streett(k) 2kk O(mo2)
EL(k) 2kk O(mo22o)

Rabin(d) Rabin(k) k + 1
d!nb, d!mb, 2d O(e(d!nb)5)

O(mo3)
O((d!n)5d!dt)or Streett(k) 2kk O(mo3)

Streett(d) EL(k) 2kk O(mo22o)
EL(d) EL(k) 2kk d!nb, d!mb, 2d O(e(d!nb)5) O(mo22o) O((d!n)5d!dt)
Streett(d) g.Büchi(d) d d!nb, d!mb, 2d O(e(d!nb)5) O(md) O((d!n)5d!dt)
GR[1](d, k) g.Büchi(d) d dknb, dkmb, 3 O(e(dknb)2) O(md) O((dk)3n2dt)

complexity just O(m(d!)6n5do3); this is due to the fact that Büchi automata that recognize
Streett objectives are of exponential size (as they have to guess a set of Streett pairs and
then verify their satisfaction), while emptiness checking for Streett(d)∧ Rabin(k)-automata
can be done in time cubic in o.

6 Conclusion

We propose a new angle of looking at the solution of obliging games. In contrast to previous
approaches that have been based on single-step game reasoning, our method requires players
to make promises about their long-term future behavior, which we formalize using the concept
of certificates (or, more generally, witnesses). This new approach to obliging games enables us
to not only show their determinacy (with strategies that contain additional information), but
to also significantly improve previously existing upper bounds both on the size of graciously
winning strategies, and on the worst-case runtime complexity of the solution of such games.

Technically, we use our new approach to show that the strategy sizes for Emerson-Lei
obliging games with strong objective αS and weak objective αW are linear in the number
|W | of colors used in the weak objective; we obtain a similar polynomial dependence on
|W | for the runtime of solving obliging games, however with the important exception of the
case where αW is a full Emerson-Lei objective that cannot be expressed by a simpler (e.g.
Rabin or Streett) objective. In previous approaches, those dependencies on |W | have been,
in general, exponential. Thereby we show that the strategy complexity of αS / αW obliging
games is not significantly higher than that of standard games with objective just αS , and
that in many cases, this holds for the runtime complexity as well.

We leave the existence of canonical certificates (cf. Remark 10) as an open question
for future work; such canonical certificates would allow for the extraction of yet smaller
graciously winning strategies for obliging games.

We solve certificate games by using the LAR reduction to obtain equivalent parity games
and then solving these parity games by fixpoint acceleration, computing nested fixpoints of a
function that checks for certificate existence. We conjecture that it is possible to directly
compute the more involved nested fixpoint associated to Emerson-Lei objectives (as given
in [15]) over the original game arena; this would avoid the LAR reduction step in the solution
process.

CONCUR 2024

28:18 Faster and Smaller Solutions of Obliging Games

References

1 Christel Baier, Frantisek Blahoudek, Alexandre Duret-Lutz, Joachim Klein, David Müller,
and Jan Strejcek. Generic emptiness check for fun and profit. In Automated Technology for
Verification and Analysis, ATVA 2019, volume 11781 of LNCS, pages 445–461. Springer, 2019.
doi:10.1007/978-3-030-31784-3_26.

2 Roderick Bloem, Rüdiger Ehlers, Swen Jacobs, and Robert Könighofer. How to handle
assumptions in synthesis. In Workshop on Synthesis, SYNT 2014, volume 157 of EPTCS,
pages 34–50, 2014. doi:10.4204/EPTCS.157.7.

3 Roderick Bloem, Rüdiger Ehlers, and Robert Könighofer. Cooperative reactive synthesis. In
Automated Technology for Verification and Analysis, ATVA 2015, volume 9364 of Lecture Notes
in Computer Science, pages 394–410. Springer, 2015. doi:10.1007/978-3-319-24953-7_29.

4 Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis
of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012. doi:10.1016/J.JCSS.2011.
08.007.

5 Julian C. Bradfield and Igor Walukiewicz. The µ-calculus and model checking. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 871–919. Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

6 Krishnendu Chatterjee, Florian Horn, and Christof Löding. Obliging games. In Concurrency
Theory, 21th International Conference, CONCUR 2010, volume 6269 of LNCS, pages 284–296.
Springer, 2010. doi:10.1007/978-3-642-15375-4_20.

7 Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed to
win infinite games? In Logic in Computer Science, LICS 1997, pages 99–110. IEEE Computer
Society, 1997. doi:10.1109/LICS.1997.614939.

8 Javier Esparza, Jan Kretínský, Jean-François Raskin, and Salomon Sickert. From linear
temporal logic and limit-deterministic Büchi automata to deterministic parity automata. Int.
J. Softw. Tools Technol. Transf., 24(4):635–659, 2022. doi:10.1007/S10009-022-00663-1.

9 Oliver Friedmann and Martin Lange. Deciding the unguarded modal µ-calculus. J. Appl. Non
Class. Logics, 23(4):353–371, 2013. doi:10.1080/11663081.2013.861181.

10 Oliver Friedmann, Markus Latte, and Martin Lange. Satisfiability games for branching-time
logics. Log. Methods Comput. Sci., 9(4), 2013. doi:10.2168/LMCS-9(4:5)2013.

11 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002. doi:10.1007/3-540-36387-4.

12 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Symposium on Theory of
Computing, STOC 1982, pages 60–65. ACM, 1982. doi:10.1145/800070.802177.

13 Daniel Hausmann. Faster game solving by fixpoint acceleration. CoRR, abs/2404.13687, 2024.
arXiv:2404.13687.

14 Daniel Hausmann. Faster game solving by fixpoint acceleration. In Fixed Points in Computer
Science, FICS 2024, EPTCS, 2024, to appear.

15 Daniel Hausmann, Mathieu Lehaut, and Nir Piterman. Symbolic solution of Emerson-
Lei games for reactive synthesis. In Foundations of Software Science and Computation
Structures, FoSSaCS 2024, volume 14574 of LNCS, pages 55–78. Springer, 2024. doi:10.1007/
978-3-031-57228-9_4.

16 Daniel Hausmann and Lutz Schröder. Game-based local model checking for the coalgebraic
µ-calculus. In Concurrency Theory, CONCUR 2019, volume 140 of LIPIcs, pages 35:1–35:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.CONCUR.2019.
35.

17 Paul Hunter and Anuj Dawar. Complexity bounds for regular games. In Mathematical
Foundations of Computer Science, MFCS 2005, volume 3618 of Lecture Notes in Computer
Science, pages 495–506. Springer, 2005. doi:10.1007/11549345_43.

https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.4204/EPTCS.157.7
https://doi.org/10.1007/978-3-319-24953-7_29
https://doi.org/10.1016/J.JCSS.2011.08.007
https://doi.org/10.1016/J.JCSS.2011.08.007
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-642-15375-4_20
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/S10009-022-00663-1
https://doi.org/10.1080/11663081.2013.861181
https://doi.org/10.2168/LMCS-9(4:5)2013
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/800070.802177
https://arxiv.org/abs/2404.13687
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.1007/978-3-031-57228-9_4
https://doi.org/10.4230/LIPICS.CONCUR.2019.35
https://doi.org/10.4230/LIPICS.CONCUR.2019.35
https://doi.org/10.1007/11549345_43

D. Hausmann and N. Piterman 28:19

18 Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. Practical synthesis of reactive
systems from LTL specifications via parity games. Acta Informatica, 57(1-2):3–36, 2020.
doi:10.1007/s00236-019-00349-3.

19 Rupak Majumdar, Nir Piterman, and Anne-Kathrin Schmuck. Environmentally-friendly GR(1)
synthesis. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019,
volume 11428 of LNCS, pages 229–246. Springer, 2019. doi:10.1007/978-3-030-17465-1_13.

20 Rupak Majumdar and Anne-Kathrin Schmuck. Supervisory controller synthesis for nonter-
minating processes is an obliging game. IEEE Trans. Autom. Control., 68(1):385–392, 2023.
doi:10.1109/TAC.2022.3143108.

21 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975. doi:
10.2307/1971035.

22 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Principles of
Programming Languages, POPL 1989, pages 179–190. ACM Press, 1989. doi:10.1145/75277.
75293.

23 Tom van Dijk, Feije van Abbema, and Naum Tomov. Knor: reactive synthesis using oink. In
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2024, volume
14570 of LNCS, pages 103–122. Springer, 2024. doi:10.1007/978-3-031-57246-3_7.

CONCUR 2024

https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-030-17465-1_13
https://doi.org/10.1109/TAC.2022.3143108
https://doi.org/10.2307/1971035
https://doi.org/10.2307/1971035
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-031-57246-3_7

Strategic Dominance: A New Preorder for
Nondeterministic Processes
Thomas A. Henzinger # Ñ

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Nicolas Mazzocchi # Ñ

Slovak University of Technology in Bratislava, Slovak Republic
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

N. Ege Saraç # Ñ

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Abstract
We study the following refinement relation between nondeterministic state-transition models: model
B strategically dominates model A iff every deterministic refinement of A is language contained
in some deterministic refinement of B. While language containment is trace inclusion, and the
(fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between
the two and can be characterized as “strategy inclusion” between A and B: every strategy that
resolves the nondeterminism of A is dominated by a strategy that resolves the nondeterminism of B.
Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with
quantification over words and strategies, called resolver logic. We give several other applications of
resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and
quantitative automata, and checking the inclusion between hyperproperties that are specified by
nondeterministic boolean and quantitative automata.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Logic and verification; Theory of computation → Program reasoning

Keywords and phrases quantitative automata, refinement relation, resolver, strategy, history-
determinism

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.29

Funding This work was supported in part by the ERC-2020-AdG 101020093. N. Mazzocchi was
affiliated with ISTA when this work was submitted for publication.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Nondeterminism is a powerful mechanism for varying the degree of detail shown in a state-
transition model of a system. Intuitively, a nondeterministic model captures the set of possible
deterministic implementations. Consider the process model ab + ac. This model allows
two possible deterministic implementations, ab and ac. Mathematically, each deterministic
implementation of a nondeterministic model corresponds to a strategy for resolving the
nondeterminism, i.e., a function f that maps a finite run h through the model (the “history”)
and a new letter σ to a successor state f(h, σ) allowed by the model. Consider the recursive
process model X = abX + acX, which repeatedly chooses either the ab branch or the ac

branch. There are infinitely many different strategies to resolve the repeated nondeterminism,
e.g., the strategy fprime whose nth choice is the ab branch if n = 1 or n is prime, and whose
nth choice is the ac branch when n > 1 and n is composite.

Two models that describe the same system at different levels of detail are related by
a preorder. Milner’s simulation preorder and the trace-inclusion preorder represent two
particularly paradigmatic and widely studied examples of preorders on state-transition

© Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 29; pp. 29:1–29:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tah@ist.ac.at
https://pub.ista.ac.at/~tah/
https://orcid.org/0000-0002-2985-7724
mailto:nicolas.mazzocchi@stuba.sk
https://mazzocchi.github.io/
https://orcid.org/0000-0001-6425-5369
mailto:esarac@ist.ac.at
https://egesarac.github.io/
https://orcid.org/0009-0000-2866-8078
https://doi.org/10.4230/LIPIcs.CONCUR.2024.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Strategic Dominance

models, but many variations and other refinement preorders can be found in the literature
[30, 29, 4, 9, 26]. In its purest form, the linear-time view of model refinement postulates
that for two models A and B, for B to describe the same system as A at a higher level of
abstraction, the less precise model B must allow all traces that are possible in the more
refined model A while potentially allowing more traces. In contrast, the pure branching-time
view of model refinement postulates that for two models A and B, for B to describe the same
system as A at a higher level of abstraction, the less precise model B must allow all subtrees
of the full computation tree of the more refined model A (modulo its isomorphic subtrees)
while potentially allowing more trees. This tree-inclusion view of branching time corresponds
to the simulation preorder and its generalization to fair simulation [20].

In this paper, we introduce and study a third fundamental view of model refinement –
strategy inclusion – which lies strictly between trace inclusion and tree inclusion. According
to the strategic view, for B to describe the same system as A at a higher level of abstraction,
the less precise model B must allow all deterministic implementations that are possible
for the more refined model A (but B may allow strictly more implementations than A).
Mathematically, we say that B (strategically) dominates A if for every strategy f resolving
the nondeterminism of A, there exists a strategy g for resolving the nondeterminism of
B such that every trace of Af (the deterministic result of applying the strategy f to the
nondeterministic model A) corresponds to a trace of Bg.

Strategic dominance, like simulation, is a branching-time preorder, but while simulation
corresponds to inclusion of all subtrees of the full computation tree of a model, dominance
corresponds to the inclusion of all deterministic subtrees. To see that dominance is strictly
coarser than simulation, recall the model X = abX + acX and compare it with the model
Y = ababY + abacY + acabY + acacY . Both models X and Y have the same traces, but
Y does not simulate X. Nonetheless, for every strategy resolving the nondeterminism of
X there exists a strategy resolving the nondeterminism of Y that produces same infinite
trace (and vice versa). In particular, the strategy gprime for Y that dominates the strategy
fprime for X makes the following choices: initially gprime chooses the abab branch (since 2 is
prime) and thereafter, for all n > 1, the nth choice of gprime is abac if 2n + 1 is prime, and
acac otherwise (because 2n + 2 is never prime). To see that strategic dominance is strictly
finer than trace inclusion, the standard example of comparing a(b + c) with ab + ac will
do; these two process models are trace equivalent, but only the former has a deterministic
implementation that includes both traces.

Relation to prior work. Our motivation for studying the strategic view of model refinement
originated from the definition of history-determinism [22, 8]. A state-transition model A
is history-deterministic if there exists a strategy for resolving the nondeterminism of A
which captures exactly the language of A. In other words, the nondeterminism of a history-
deterministic model can be resolved on-the-fly, by looking only at the history, without making
guesses about the future.

Strategies (a.k.a. policies) are a central concept of game theory, and our resolvers
correspond mathematically to deterministic strategies of games played on graphs. However,
we study the single-player case – where the player resolves the nondeterminism of a state-
transition model – and not the multi-player case that arises in game models [3, 12]. Besides
general strategies, we consider the special cases of finite-state strategies (which can remember
only a finite number of bits about the history), and of positional strategies (which have no
memory about the history). Positional (a.k.a. memoryless) strategies correspond, in our
setting, to the removal of nondeterministic edges from a model (“edge pruning”). To the best
of our knowledge, strategic dominance is a novel relation that has not been studied before.

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:3

In particular, the seminal works on the linear time-branching time spectrum of sequential
processes [30, 29] do not present a comparable relation. In general, these works do not involve
a game-theoretic view of nondeterminism, which is a crucial aspect captured through our
use of resolvers. In this way, the game-theoretic view adds a new dimension to the spectrum
of process preorders.

For generality, we study strategies for state-transition models in a quantitative setting,
where all states have outgoing transitions and all transitions have numeric weights [11]. In
this setting, every finite path through a state-transition model can be extended, every infinite
path is assigned a numeric value, and the values of different paths can be compared. The
trace preorder between A and B requires that for every infinite word w, for every run of
A on w there exists a run of B on w of equal or greater value. All refinement relations
we consider are refinements of the trace preorder. The quantitative setting generalizes the
boolean setting (take {0, 1} as the value set, and assign the value 1 to a run iff the run is
accepted by the model), and it generalizes many common acceptance conditions on finite and
infinite runs (Sup and Inf values correspond to reachability and safety acceptance; LimSup
and LimInf values to Büchi and coBüchi acceptance). Extensions of simulation and inclusion
preorders to this setting have been studied in [11].

Contributions of this paper. Our results are threefold. First, we define resolver logic as
a first-order logic that is interpreted over a set QA of quantitative finite automata over
infinite words. Resolver logic quantifies over infinite words w, strategies f that resolve the
nondeterminism of automata A ∈ QA (so-called “resolvers”), and natural numbers. The
existentially quantified formulas are built from terms of the form Af (w) using Presburger
arithmetic. The term Af (w) denotes the value of the unique run of the automaton A over
the word w when all nondeterministic choices are resolved by the strategy f . We show that
model-checking problem for resolver logic – i.e., the problem of deciding if a closed formula
φ is true over a given set A of automata – can be solved in d-ExpTime, where d is the
number of quantifier switches in φ. Our model-checking algorithm uses automata-theoretic
constructions over parity tree automata that represent resolvers. A main difference of
resolver logic to strategy logics [12, 25], besides the handling of quantitative constraints and
Presburger arithmetic, lies in the quantification over infinite words. This quantification is not
present in strategy logics, and lets us define strategic dominance and other inclusion-based
relations.

Second, we define in resolver logic eight different resolver relations between quantitative
automata, including the strategic-dominance relation explained above. The eight relations
are obtained from each other by reordering quantifiers in resolver logic. We show that six
of the eight relations are preorders: one coincides with simulation, four coincide with trace
inclusion, and the sixth – strategic dominance – lies strictly between simulation and trace
inclusion. The remaining two relations are finer than simulation and transitive, but not
reflexive. Since all eight relations are defined in resolver logic, they can be decided using
the model-checking algorithm for resolver logic. We also specialize our expressiveness and
decidability results to specific value functions (Sup; Inf; LimSup; LimInf) and to restricted
classes of strategies (positional; finite-state).

Third, we provide three more applications for resolver logic, in addition to checking
strategic dominance. These applications show that resolvers play a central role in many
different automata-theoretic problems.

CONCUR 2024

29:4 Strategic Dominance

Three more applications. Our first application concerns the co-safety and co-liveness of
boolean and quantitative automata [21, 5]. In [5], while the authors solved the problems of
deciding safety or liveness, they left open the bottom-value problem for quantitative automata,
which needs to be solved when checking if a quantitative automaton specifies a co-safety
or co-liveness property. The bottom value of a quantitative automaton A can be defined
as the infimum over all words w of the supremum over all resolvers f of the value Af (w).
The bottom value, and all similarly defined values, can therefore be computed using the
model-checking algorithm for resolver logic.

Our second application concerns the history-determinism of boolean and quantitative
automata. For a model B to strategically dominate A, different resolvers for A may give rise
to different resolvers for B. Alternatively, one may postulate that in refinement, all resolvers
for A should be “dominated” by the same resolver for B, that is, a single deterministic
implementation of B should capture all possible deterministic implementations of A. Such
blind domination gives rise to a nonreflexive relation on quantitative automata which implies
simulation. We show that a quantitative automaton is history-deterministic iff the automaton
blindly dominates itself. Consequently, our model-checking algorithm for resolver logic can
be used to check history-determinism and generalizes the algorithm provided in [22] for
checking the history determinism of boolean automata.

Our third application concerns the specification of hyperproperties. A hyperproperty is a
set of properties [14]; hyperproperties occur in many different application contexts such as
system security. A nondeterministic boolean automaton A can be viewed as specifying a
hyperproperty [[A]] in the following natural way: if R(A) is the set of all possible resolvers
for the nondeterminism of A, then [[A]] = {Af | f ∈ R(A)}, where Af is the property (or
“language”) that is specified by A if its nondeterminism is resolved by f . In the same way,
nondeterministic quantitative automata can be used to specify quantitative hyperproperties
as sets of quantitative languages [11]. We show that there are simple automata that specify
the boolean hyperproperties that contain all safety (resp. co-safety) properties, which cannot
be specified in HyperLTL [13]. However, there are also boolean hyperproperties that can
be specified in HyperLTL but not by applying resolvers to nondeterministic automata.
Finally, we show how resolver logic can decide the inclusion problem for resolver-specified
hyperproperties.

2 Definitional Framework

Let Σ = {a, b, . . .} be a finite alphabet of letters. An infinite (resp. finite) word (a.k.a. trace
or execution) is an infinite (resp. finite) sequence of letters w ∈ Σω (resp. u ∈ Σ∗). Given
u ∈ Σ∗ and w ∈ Σ∗ ∪ Σω, we write u ≺ w when u is a strict prefix of w. We denote by |w|
the length of w ∈ Σ∗ ∪ Σω and, given a ∈ Σ, by |w|a the number of occurrences of a in w.
We assume that the reader is familiar with formal language theory.

▶ Definition 2.1 (automaton). A (quantitative) automaton is a tuple A = (Σ, Q, s, ∆, µ, ν)
where Σ is a finite alphabet, Q is a finite set of states, s ∈ Q is the initial state, ∆ ⊆ Q×Σ×Q

is a transition relation, µ : ∆→ Q is a weight function, and ν : Qω → R is a value function.
The size of A is defined by |Q| +

∑
δ∈∆ 1 + log2(µ(δ)). A run π over a finite (resp. an

infinite) word w = σ0σ1 . . . is a finite (resp. an infinite) sequence π = q0σ0q1σ1 . . . such
that q0 = s is the initial state of A and (qi, σi, qi+1) ∈ ∆ holds for all 0 ≤ i < |w| (resp.
i ∈ N). A history is a run over a finite word, and we denote the set of histories of A by ΠA.
The weight sequence µ(π) of a run π is defined by x0x1 . . . where xi = µ(qi, σi, qi+1) for all
i ∈ N. The value of a run π is defined as ν(µ(π)). In this paper, we consider automata with
ν ∈ {Inf, Sup, LimInf, LimSup} and without loss of generality µ : ∆→ N since a finite set of
rational weights can be scaled and shifted to naturals and back.

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:5

A

q0 q1 q2

Σ : 0

a : 0

b : 1

a : 0

Σ : 2

Figure 1 A LimSup-automaton A over Σ = {a, b} with Rpos(A) ⊊ Rfin(A) ⊊ R(A).

In general, automata resolve their nondeterminism by taking the sup over its set of runs
on a given word. We take an alternative view and pair every automaton with a resolver – an
explicit description of how nondeterminism is resolved, which is a central concept in this
work. Given a finite prefix of a run and the next input letter, a resolver determines the next
state of the automaton.

▶ Definition 2.2 (resolver). Let A = (Σ, Q, s, ∆, µ, ν) be an automaton. A resolver for A is
a function f : ΠA × Σ→ Q such that for every history h = q0σ0q1σ1 . . . qn ∈ ΠA and every
σ ∈ Σ we have (qn, σ, f(h, σ)) ∈ ∆. A resolver f for A and a word w = σ1σ2 . . . ∈ Σω produce
a unique infinite run πf,w = q0σ1q1σ2 . . . of A such that q0 = s and f(q0σ1 . . . qi−1, σi) = qi

for all i ≥ 1. Given an automaton A, we denote by R(A) the set of its resolvers. Given a
resolver f ∈ R(A), we define the quantitative language Af : w 7→ ν(µ(πf,w)) where w ∈ Σω.
We also define the quantitative language Asup : w 7→ supf∈R(A)Af (w), which is the standard
interpretation of nondeterminism for automata.

We define finite-memory and positional resolvers the usual way: a resolver f is finite-
memory iff it can be implemented by a finite-state machine, and it is positional iff the output
of f only depends on the last state in the input history and the incoming letter (see [17, Sec.
1.5] for the formal definitions). Given an automaton A, we denote by Rfin(A) the set of its
finite-memory resolvers, and by Rpos(A) set of its positional resolvers. Let us demonstrate
the notion of resolvers.

▶ Example 2.3. Let A be a LimSup-automaton over the alphabet Σ = {a, b} as in Figure 1
and observe that the only source of nondeterminism is the transitions (q0, a, q0) and (q0, a, q1).

Consider a resolver f1 that maps any history of the form q0(bq0)∗ followed by a to q1.
Intuitively, it is a positional resolver because it ignores the transition (q0, a, q0) and its output
only depends on the current state and the next letter. It denotes the language Af1 that
maps a given word w to 0 if w has no a, to 1 if w has exactly one a, and to 2 otherwise.

Now, consider a resolver f2 that maps the histories of the form q0(bq0)∗ followed by a to
q0, and those of the form q0(bq0)∗aq0(bq0)∗ followed by a to q1. Intuitively, it is a finite-state
resolver because it only distinguishes between a occurring once or twice or neither. The
language Af2 then maps a word w to 0 if w has at most one a, to 1 if w has exactly two as,
and to 2 otherwise.

Finally, consider a resolver f3 that maps every history that ends at q0 with the incoming
letter a to q1 if the given history is of the form q0(Σq0)∗(bq0)p where p is a prime, and to q0
otherwise. Intuitively, it is an infinite-memory resolver because it needs to store the length
of every block of bs, which is not bounded, and check whether it is prime. The language Af3

maps a word w to 0 if it has no prefix u = vbpa with v ∈ Σ∗, to 1 if it has such a prefix u

and w = ubω, and to 2 otherwise.

Next, we introduce the notion of partial resolvers. In contrast to (nonpartial) resolvers,
partial resolvers output a set of successor states for a given history and letter.

CONCUR 2024

29:6 Strategic Dominance

A

s0 s1

Σ : 0

a : 0

Σ : 1 B

q0 q1

Σ : 1

a : 0

Σ : 0
A×1 B

s0, q0 s1, q0

s0, q1 s1, q1

Σ : 0 Σ : 1

Σ : 0 Σ : 1

a : 0

a : 0
a : 0 a : 1

a : 0

Figure 2 Two LimSup-automata A and B and the product A ×1 B.

▶ Definition 2.4 (partial resolver). Let A = (Σ, Q, s, ∆, µ, ν) be an automaton. A partial
resolver for A is a function f : ΠA×Σ→ 2Q such that for every history h = q0σ0q1σ1 . . . qn ∈
ΠA and every σ ∈ Σ we have {(qn, σ, q) | q ∈ f(h, σ)} ⊆ ∆. A collection of partial resolvers
f1, . . . , fn for A is said to be conclusive when |

⋂n
i=1 fi(h, σ)| = 1 for all h ∈ ΠA and all

σ ∈ Σ. Given a conclusive collection of resolvers f1, . . . , fn, we denote by A{f1,...,fn} the
quantitative language Af where f is a resolver defined by f(h, σ) =

⋂n
i=1 fi(h, σ) for all

h ∈ ΠA and all σ ∈ Σ.

Partial resolvers are particularly useful when we consider products of automata. In
particular, we will use these objects to capture simulation-like relations in Section 3.

▶ Definition 2.5 (synchronized product). Let A1 and A2 be two automata such that Ai =
(Σ, Qi, si, ∆i, µi, νi) for i ∈ {1, 2}. For k ∈ {1, 2}, the (synchronized) product A1 ×k A2
corresponds to the input-synchronization of A1 and A2 where the transition weights are taken
from Ak. Formally, A1 ×k A2 = (Σ, Q1 ×Q2, (s1, s2), ∆, µ, νk) where the transition relation
is such that ((q1, q2), σ, (q′

1, q′
2)) ∈ ∆ if and only if (qi, σ, q′

i) ∈ ∆k for i ∈ {1, 2}, and the
weight function is such that µ((q1, q2), σ, (q′

1, q′
2)) = µk(qk, σ, q′

k).
Given i ∈ {1, 2}, we denote by RS

i (A1,A2) the set of partial resolvers operating non-
partially on the ith component of any product between A1 and A2. Formally, every
f ∈ Ri(A1,A2) is a partial resolver that satisfies the following: for all h ∈ ΠA1×iA2 ,
all (q1, q2) ∈ Q1×Q2 and all σ ∈ Σ, there exists (qi, σ, q′

i) ∈ ∆i such that f(h · (q1, q2), σ)) =
{(q′

1, q′
2) | (q3−i, σ, q′

3−i) ∈ ∆3−i}.

Let us demonstrate the notions of partial resolvers and synchronized products.

▶ Example 2.6. Let A and B be as in Figure 2. Because of the loop in their initial states,
as in Example 2.3, both automata have infinitely many resolvers, Their product A×1 B is
also shown in Figure 2. Intuitively, the product is similar to the boolean construction with
difference of handling the transition weights instead of the accepting states. For A×1 B, the
transition weights are obtained from the corresponding ones in A.

Consider the positional resolver f of A that moves from s0 to s1 as soon as a occurs.
Observe that there is a partial resolver f ′ of A×1 B, namely f ′ ∈ R1(A,B), that imitates
f . In particular, f ′((s0, q0), a) = {(s1, q0), (s1, q1)} since f moves A from s0 to s1 with a,
but it is not specified how the B-component of the product resolves this nondeterministic
transition. Now, suppose we have g′ ∈ R2(A,B) such that g′((s0, q0), a) = {(s0, q1), (s1, q1)}.
The two partial resolvers f ′ and g′ together are conclusive for A ×1 B, as witnessed by
f ′((s0, q0), a) ∩ g′((s0, q0), a) = {(s1, q1)}.

▶ Remark 2.7. As demonstrated in Example 2.6, when we consider partial resolvers over
product automata, the partial resolvers operating on the distinct components are conclusive
for the product. Formally, let A and B be two automata and consider one of their products.
Every pair of partial resolvers f ∈ R1(A,B) and g ∈ R2(A,B) is conclusive for the product
automaton by definition, and thus corresponds to a (non-partial) resolver over the product.

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:7

3 Strategic Dominance and Other Resolver-Based Relations

Given two automata A and B, we investigate the relations between the problems defined in
Figure 3. We denote the strategic dominance relation by ⊴: the automaton A is strategically
dominated by B, denoted A ⊴ B, iff for all resolvers f ∈ R(A) there exists a resolver
g ∈ R(B) such that Af (w) ≤ Bg(w) for all words w ∈ Σω. Intuitively, this holds when each
deterministic implementation of A can be countered by some deterministic implementation
of B that provides a value at least as large for each word.

We define and study other resolver-based relations and compare their expressiveness. In

−⊆, the automaton B has the freedom to choose a resolver per input word (unlike in ⊴). The
relations ≤◀ and •■■− can be seen as variants of ⊴ and −⊆ where the resolvers of B are blind,
meaning that they cannot depend on the resolvers of A.

To capture simulation-like relations, we additionally define the relations ⊴×,≤◀×, −⊆×,•■■−×
that relate product automata through their partial resolvers. In particular, we show that ⊴×,
the product-based strategic dominance, coincides with simulation. Thanks to Remark 2.7,
we are able to reason about these relations the same way we do for non-partial resolvers.

In addition to these resolver relations, we denote the trace-inclusion preorder by ⊆
and the simulation by ⪯. To define simulation formally, let us recall quantitative simu-
lation games [11]: Let A = (Σ, QA, sA, ∆A, µA, νA) and B = (Σ, QB, sB, ∆B, µB, νB). A
strategy τ for Challenger is a function from (QA × QB)∗ to Σ × QA satisfying for all
π = (q1, p1) . . . (qn, pn) ∈ (QA×QB)∗, if τ(π) = (σ, q) then (qn, σ, q) ∈ ∆A. Given a strategy
τ for Challenger, the set of outcomes is the set of pairs (q0σ1q1σ2q2 . . . , p0σ1p1σ2p2 . . .) of
runs such that q0 = sA, p0 = sB, and for all i ≥ 0 we have (σi+1, qi+1) = τ((q0, p0) . . . (qi, pi))
and (pi, σi, pi+1) ∈ ∆B. A strategy τ for Challenger is winning iff νA(µA(r1)) > νB(µB(r2))
for all outcomes (r1, r2) of τ .

Given a problem instance A ∼ B where ∼ is one of the relations in Figure 3, we write
A ∼fin B (resp. A ∼pos B) for the restriction of the corresponding problem statement to
finite-memory (resp. positional) resolvers. For example, A ⊴fin B iff for all f ∈ Rfin(A) there
exists g ∈ Rfin(B) such that Af (w) ≤ Bg(w) for all w ∈ Σω.
▶ Remark 3.1. The results in this paper hold for quantitative Inf-, Sup-, LimSup-, and LimInf-
automata as well as boolean safety, reachability, Büchi, and coBüchi automata. Moreover,
they also hold when restricted to finite-state or positional resolvers.

We start with a short lemma showing that the supremum over the values of any word w

is attainable by some run over w, which follows from the proof of [11, Thm. 3].

▶ Lemma 3.2. Let ν ∈ {Inf, Sup, LimSup, LimInf} and A be a ν-automaton. For every
w ∈ Σω there exist f ∈ R(A) such that Af (w) = Asup(w).

3.1 Implications Between Resolver Relations
We now prove the implications in Figure 3 without any memory constraints on the resolvers.
We start with showing that some of these relations coincide with inclusion.

▶ Proposition 3.3. Let ν1, ν2 ∈ {Inf, Sup, LimSup, LimInf}. For all ν1-automata A and all
ν2-automata B, we have A −⊆ B iff A•■■− B iff A −⊆× B iff A•■■−× B iff A ⊆ B. This is equally
true for boolean safety, reachability, Büchi, and coBüchi automata.

Next, we show an equivalent formulation for simulation.

▶ Proposition 3.4. Let ν1, ν2 ∈ {Inf, Sup, LimSup, LimInf}. For all ν1-automata A and all ν2-
automata B, we have A ⊴× B iff A ⪯ B. This is equally true for boolean safety, reachability,
Büchi, and coBüchi automata.

CONCUR 2024

29:8 Strategic Dominance

Notation Problem statement
A ⊆ B ∀w ∈ Σω : Asup(w) ≤ Bsup(w)

A ⪯ B no winning strategy for Challenger
in the simulation game for A and B

A ⊴ B ∀f ∈ R(A) : ∃g ∈ R(B) : ∀w ∈ Σω : Af (w) ≤ Bg(w)
A ≤◀ B ∃g ∈ R(B) : ∀f ∈ R(A) : ∀w ∈ Σω : Af (w) ≤ Bg(w)
A −⊆ B ∀w ∈ Σω : ∀f ∈ R(A) : ∃g ∈ R(B) : Af (w) ≤ Bg(w)
A•■■− B ∀w ∈ Σω : ∃g ∈ R(B) : ∀f ∈ R(A) : Af (w) ≤ Bg(w)

A ⊴× B
∀f ∈ R1(A,B) : ∃g ∈ R2(A,B) : ∀w ∈ Σω

(A×1 B){f,g}(w) ≤ (A×2 B){f,g}(w)

A ≤◀× B
∃g ∈ R2(A,B) : ∀f ∈ R1(A,B) : ∀w ∈ Σω

(A×1 B){f,g}(w) ≤ (A×2 B){f,g}(w)

A −⊆× B
∀w ∈ Σω : ∀f ∈ R1(A,B) : ∃g ∈ R2(A,B)

(A×1 B){f,g}(w) ≤ (A×2 B){f,g}(w)

A•■■−× B
∀w ∈ Σω : ∃g ∈ R2(A,B) : ∀f ∈ R1(A,B)

(A×1 B){f,g}(w) ≤ (A×2 B){f,g}(w)

•■■− , −⊆,•■■−×, −⊆×,⊆

⊴

⊴×,⪯

≤◀×

≤◀

Figure 3 Left: The definitions of inclusion (denoted ⊆), simulation (denoted ⪯), and the resolver
relations we study in Section 3 including strategic dominance (denoted ⊴). Right: The implications
between these relations as proved in Propositions 3.3–3.7 and Corollary 3.8.

We proceed to show the implications posed in Figure 3.

▶ Proposition 3.5. Let ν1, ν2 ∈ {Inf, Sup, LimSup, LimInf}. For all ν1-automata A and all
ν2-automata B, the following statements hold. Moreover, they are equally true for boolean
safety, reachability, Büchi, and coBüchi automata.
1. A ⊴ B ⇒ A ⊆ B
2. A ⪯ B ⇒ A ⊴ B
3. A ≤◀× B ⇒ A ⪯ B
4. A ≤◀ B ⇒ A ≤◀× B

The implications given in Figure 3 (and proved in Propositions 3.3–3.5) also hold when
the problem statements are restricted to only finite-memory resolvers or positional resolvers.

▶ Proposition 3.6. Let ν1, ν2 ∈ {Inf, Sup, LimSup, LimInf}. For all ν1-automata A and all
ν2-automata B and each r ∈ {fin, pos} the following statements hold. Moreover, they are
equally true for boolean safety, reachability, Büchi, and coBüchi automata.
1. A −⊆r B ⇔ A•■■−r B ⇔ A −⊆r

× B ⇔ A•■■−r
× B ⇔ A ⊆r B

2. A ⊴r
× B ⇔ A ⪯r B

3. A ⊴r B ⇒ A ⊆r B
4. A ⪯r B ⇒ A ⊴r B
5. A ≤◀r

× B ⇒ A ⪯r B
6. A ≤◀r B ⇒ A ≤◀r

× B

3.2 Separating Examples for Resolver Relations
In this part, we provide separating examples for the implications we proved above, establishing
a hierarchy of relations given in Figure 3. The counter-examples we used in the proofs below
are displayed in Figures 4 and 5.

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:9

A Σ : 1

B

q0

q1

q2

Σ

Σ

a

b

b

a

Σ : 1

Σ : 0

Figure 4 Two automata A and B such that A ⊆pos B but A ̸⊴pos B. Note that A and B can be
Inf-, Sup-, LimSup-, or LimInf-automata as well as safety, reachability, Büchi, or coBüchi automata.
The exact values of the omitted weights depend on the considered value function. For example, we
can take as weight 1 for Inf and 0 for Sup while both choices work for LimSup and LimInf.

A

s0 s1

s2

s3

a

a

a

a

b

b

a

Σ : 1

Σ : 0

B

q0

q1

q2

q3

q4

a

a

a

a

a

b

b

a

Σ : 1

Σ : 0

Figure 5 Two automata A and B such that (i) A ⊴pos B but A ̸⪯pos B, (ii) A ⪯pos A but
A ≰◀pos

× A, and (iii) B ≤◀pos
× A but B ≰◀pos A. The transitions that are not shown lead to a sink state

with a self-loop on every letter with weight 0. Note that A and B can be Inf-, Sup-, LimSup-, or
LimInf-automata as well as safety, reachability, Büchi, or coBüchi automata. The exact values of the
omitted weights depend on the considered value function. For example, we can take as weight 1 for
Inf and 0 for Sup while both choices work for LimSup and LimInf.

▶ Proposition 3.7. Let ν1, ν2 ∈ {Inf, Sup, LimSup, LimInf}. For each statement below, there
exist a ν1-automaton A and a ν2-automaton B to satisfy it. Moreover, they are equally true
for boolean safety, reachability, Büchi, and coBüchi automata.
1. A ⊆pos B ∧ A ̸⊴pos B
2. A ⊴pos B ∧ A ̸⪯pos B
3. A ⪯pos B ∧ A ̸≤◀pos

× B
4. A ≤◀pos

× B ∧ A ̸≤◀pos B

Since Rpos(A) = Rfin(A) = R(A) for each automaton A we consider in this section (see
Figures 4 and 5), the statements above also hold for the finite-memory and the general cases.

▶ Corollary 3.8. Let ν1, ν2 ∈ {Inf, Sup, LimSup, LimInf}. For each statement below, there
exist a ν1-automaton A and a ν2-automaton B to satisfy it. Moreover, they are equally true
for boolean safety, reachability, Büchi, and coBüchi automata.
1. A ⊆fin B ∧ A ̸⊴fin B
2. A ⊴fin B ∧ A ̸⪯fin B
3. A ⪯fin B ∧ A ̸≤◀fin

× B
4. A ≤◀fin

× B ∧ A ̸≤◀fin B
5. A ⊆ B ∧A ̸⊴ B
6. A ⊴ B ∧ A ̸⪯ B
7. A ⪯ B ∧A ̸≤◀× B
8. A ≤◀× B ∧ A ̸≤◀ B

▶ Remark 3.9. The relations ≤◀ and ≤◀× are not reflexive (and thus not a preorder). For the
automaton A given in Figure 5, we have A ̸≤◀pos

× A as shown in the proof of Item (3) of
Proposition 3.7, and thus A ̸≤◀× A since all of its resolvers are positional. Then, by Item (4)
of Proposition 3.5, we also have A ̸≤◀ A.

CONCUR 2024

29:10 Strategic Dominance

4 Resolver Logic

We dedicate this section to describing resolver logic, which intuitively extends Presburger
arithmetic by introducing variables evaluated by automata parameterized by quantified
words and resolvers. We formally define resolver logic and show that the model-checking of a
resolver logic formula is decidable.

▶ Definition 4.1 (resolver logic). Let QA = {A1, . . . ,An} be a finite set of automata over
the same alphabet Σ. For all k ∈ {1, . . . , n}, let Fk be a set of resolver variables ranging
over R(Ak), and let W ⊆ Σω be a set of word variables ranging over Σω. We define the
set V = {v(x,y) | x ∈ W, y ∈

⋃n
k=1 Fk} of variables ranging over non-negative integers. A

resolver logic formula on the automata domain QA is a term generated by the grammar
Ψ ::= ∃x : Ψ | ∀x : Ψ | φ, where x ∈W ∪

⋃n
k=1 Fk and φ ∈ ∃FO(N, =, +, 1) is an existential

Presburger formula whose set of free variables is V .

We write |Ψ | to denote the size of Ψ defined as |Ψ | = n + m + |φ| where n = |QA| is the
cardinality of the automata domain, m = |W |+

∑n
i=1 |Fi| is the number of word and resolver

variables in Ψ , and |φ| is the number of (existential) quantifiers in φ. Note that the strategic
dominance and the other relations defined in Section 3 are examples of resolver logic formulas.
An assignment α maps variables of W to words in Σω, variables of Fk to resolvers in R(Ak)
for all k ∈ {1, . . . , n}, and variables of v ∈ V to values in N. In particular, α(v(x,x′)) = Af

k(w)
where x ∈W and x′ ∈ Fk such that α(x) = w ∈ Σω and α(x′) = f ∈ R(Ak). The semantics
of Ψ is defined as follows.

(QA, α) |= φ iff φ[∀v ∈ V : v ← α(v)] holds
(QA, α) |= ∃x ∈W : Ψ iff for some w ∈ Σω we have α[x← w] |= Ψ
(QA, α) |= ∀x ∈W : Ψ iff for all w ∈ Σω we have α[x← w] |= Ψ
(QA, α) |= ∃y ∈ Fk : Ψ iff for some f ∈ R(Ak) we have α[y ← f] |= Ψ
(QA, α) |= ∀y ∈ Fk : Ψ iff for all f ∈ R(Ak) we have α[y ← f] |= Ψ

▶ Theorem 4.2. The model-checking of a given resolver logic formula Ψ is decidable. When
|Ψ | is fixed, model-checking is in d-ExpTime if there are d > 0 quantifier alternations and
PTime if there is no quantifier alternation.

The decision procedure relies on the following: (1) Each variable assignment can be
represented by a single tree. (2) Each resolver logic formula admits a parity tree automata
that accepts all tree-encoded assignments that satisfy its inner Presburger formula. (3) The
model-checking of a given resolver formula can be decided based on nested complementations
and projections over the above parity tree automaton. Below we provide an overview of
the corresponding constructions (the full proof is deferred to the appendix due to space
constraints). We start by defining trees and describing to use them to encode assignments.

Trees. Let Σ be an alphabet for the structure of trees. We view the set Σ∗ of finite words as
the domain of an infinite |Σ|-ary tree. The root is the empty word ε, and for a node u ∈ Σ∗

together with some letter σ ∈ Σ we call uσ the σ-successor of u. Let Λ be an alphabet for
the labeling of nodes. An infinite Λ-labeled Σ-structured tree is a function t : Σ∗ → Λ. We
denote by Λω

Σ the set of all such trees. In a tree t ∈ Λω
Σ, the word w = σ0σ1 · · · ∈ Σω induces

the branch t(w) defined as the infinite sequence t(ε)σ0t(σ0)σ1t(σ0σ1) · · · ∈ (Λ× Σ)ω.

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:11

Let QA = {A1, . . . ,An} be a set of automata over the same alphabet Σ. Consider the
resolver logic formula over QA of the form Ψ = ∇1x1 : · · · : ∇mxm : φ, where ∇i ∈ {∃, ∀}.
The decision procedure encodes assignments for resolver and word variables of Ψ into Λ-
labeled Σ-structured trees, where Λ =

(
{0, 1} ∪

⋃n
i=1 Qn

)m. All dimensions of the tree that
correspond to a word must have exactly one branch labeled by 1 (which encodes the word),
and all other nodes are labeled by 0. Formally, the assignment αt encoded by a tree t ∈ Λω

Σ
maps the word variable xj ∈W to the unique word αt(xj) = σ1σ2 · · · ∈ Σω for which the jth
dimension of the branch t(αt(xj)) is tj(αt(xj)) = 1σ11σ2 · · · ∈ ({1} ×Σ)ω. All dimensions of
the tree that correspond to a resolver of Ak must respect its transition relation. Formally,
the assignment αt encoded by a tree t ∈ Λω

Σ maps the resolver variable xi ∈ Fk to the
unique resolver αt(xi) ∈ R(Ak) defined by αt(xi)(πk, σ) = ti(uσ) where πk is the finite run
of Aαt(xi)

k over u ∈ Σ∗. Consequently, for all xi ∈ Fk and all xj ∈ W , the assignment αt

encoded by a tree t ∈ Λω
Σ maps the variable v(xi,xj) ∈ V to the unique non-negative integer

Aαt(xi)
k (αt(xj)). Next, we describe the parity tree automaton constructed in the decision

procedure.

Parity Tree Automata. A (nondeterministic) parity tree automaton T over Λω
Σ is a tuple

(Λ, Σ, Q, I, ∆, θ) where Λ is a finite labeling alphabet, Σ is a finite structure alphabet, Q is a
finite set of states, I ⊆ Q is a set of initial states, ∆ ⊆ Q×Λ×(Σ→ Q) is a transition relation,
and θ : Q→ N is the priority function. Note that the arity of the trees is |Σ| and is statically
encoded in the transition relation. A run of T over t ∈ Λω

Σ is a Q-labeled Σ-structured tree
π ∈ Qω

Σ such that π(ε) ∈ I and for each u ∈ Σ∗ we have (π(u), t(u), σ 7→ π(uσ)) ∈ ∆. The
set of runs of A over t is denoted Πt(T). A run π is accepting if, for all w ∈ Σω, the maximal
priority that appears infinitely often along the branch t(w), namely lim supi→∞ θ(π(σ0 . . . σi)),
is even. The language of A is T (A) = {t ∈ Λω

Σ | π ∈ Πt(T), lim supi→∞ θ(π(σ0 . . . σi)) ≡ 0
mod 2}, i.e., the set of all trees that admit an accepting run.

Parity tree automata are expressive enough to recognize the language of tree-encoded
assignments for a given resolver logic formula. We describe an automaton with three
computational phases. In first phase, the automaton guesses its initial state. All states
hold a vector z⃗ of m2 weights appearing in A1, . . . ,An and satisfying φ, i.e., such that
φ[∀v(x,x′) ∈ V : v(x,x′) ← z⃗[x][x′]] is true. Such a vector is guessed at the root of the run
tree and carried in all nodes thanks to the states. Since there are finitely many weights
and free variables in φ, there are also finitely many vectors z⃗. In the second phase, the
automaton “waits” for finitely many transitions. This is important for LimInf and LimSup
automata, because the run of Aαt(xi)

k over αt(xj) may visit finitely many times some weights
independent of the long-run value. In the third phase, the automaton checks whether the
guessed vector z⃗ is coherent with the tree-encoded assignment that it reads. Given a run π

over the tree t ∈ Λω
Σ that carries the vector z⃗, for all word variable xj ∈W and all resolver

variable xi ∈ Fk, the value z⃗[xi][xj] is a coherent assignment for the variable v(xi,xj) ∈ V

when z⃗[xi][xj] = Aαt(xi)
k (αt(xj)). Consider the assignment αt given as an input tree t ∈ Λω

Σ.
The run produced by the resolver αt(xi) ∈ R(Ak) over the word αt(xj) ∈ Σω corresponds,
by construction, to the branch ti(αt(xj)). To check z⃗[xi][xj] = Aαt(xi)

k (αt(xj)) at runtime,
the automaton ensures that: (1) the weight z⃗[xi][xj] is visited infinitely often along the run
ti(αt(xj)), and (2) it is never dismissed by another weight (e.g., for LimInf value function, the
guessed weight should be the smallest visited after the waiting phase). Hence, the accepting
condition of the automaton is such that, for all xj ∈ W and all xi ∈ Fk, if the automaton
accepts t ∈ Λω

Σ then Aαt(xi)
k (αt(xj)) = z⃗[xi][xj]. Next, we describe how the quantifiers

of a resolver logic formula are handled base on the automaton corresponding to its inner
Presburger formula.

CONCUR 2024

29:12 Strategic Dominance

Handling Quantifiers. To decide the model-checking of a resolver logic formula of fixed
size, we first construct a parity tree automata as presented above. Its size is at most
O(|max1≤i≤n |Ai|)O(m2+n). Since, the satisfiability of an existential Presburger formula
with a fixed number of quantifiers is in PTime [27], the automaton can be constructed
in polynomial time when |Ψ | is fixed (i.e., n, m and |φ| are fixed). Then, we release the
existentially quantified variables through projections, i.e., leaving the automaton a non-
deterministic choice while relaxing a dimension of the input tree. Universal quantifiers
∀x : Ψ ′ are treated as ¬∃x : ¬Ψ ′, where each negation ¬ requires the complementation of
the current tree automaton, and then induce an exponential blow up of the computation
time [24]. Ultimately, we obtain a tree automaton that does not read labels and the model-
checking of the resolver logic formula reduces to its language non-emptiness. It is worth
emphasizing that, when a universal quantifier appears at the edge of the quantifier sequence,
some complementations can be avoided (e.g., when all quantifiers are universal). When the
innermost quantifier is universal, the automaton is constructed over ¬φ instead of φ. When
the outermost quantifier is universal, we leverage the parity acceptance condition of the tree
automata to perform a final complementation in PTime. Formally, we increase all state
priority by 1 and we check the language emptiness instead of non-emptiness.

▶ Remark 4.3. Resolver logic, as presented above, quantifies over non-partial resolvers (called
full here to improve clarity). We can extend it to handle partial resolvers over product
automata. The key observation is that, as long as a collection of partial resolvers is conclusive,
they collectively define a full resolver. Moreover, partial resolvers over the components of
product automata are conclusive by definition (see Remark 2.7). Hence, the parity tree
automaton in the proof of Theorem 4.2 is constructed similarly. Some modifications are
necessary to reason about the full resolver defined by the conclusive collection of partial
resolvers, but the size of the parity tree automaton constructed above and the overall
complexity will not change. This is because the partial resolvers are defined over a product
of automata, which is already taken into account for full resolvers in the construction above.

To conclude, let us note that our construction allows checking inclusion or simulation
at a high cost. For example, although checking the inclusion of two LimSup-automata
is PSpace-complete, using an equivalent formulation from Proposition 3.3, we obtain a
2-ExpTime algorithm using the construction presented in this section. Similarly, while
checking simulation for LimSup-automata can be done in NP∩co-NP, we obtain a 3-ExpTime
algorithm using Proposition 3.4.

5 Applications of Resolver Logic

In this section, we explore various applications of resolver logic, highlighting its versatility in
addressing problems in automata theory and system verification. We begin by presenting how
resolver logic can be used for checking strategic dominance and other relations we studied in
Section 3. Next, we examine its role in checking the bottom value of automata, which is a
crucial problem for deciding co-safety and co-liveness of automata and was left open in [5].
Then, we explore its application for checking history-determinism of automata, and finally
discuss its relevance in checking hyperproperty inclusion. As in the previous sections, we note
that the results of this section also hold when we only consider boolean safety, reachability,
Büchi, and coBüchi automata.

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:13

5.1 Checking Strategic Dominance and Other Resolver-Based Relations
Let A and B be two automata and recall that B strategically dominates A, denoted A ⊴ B,
iff for all resolvers f ∈ R(A) there exists a resolver g ∈ R(B) such that Af (w) ≤ Bg(w)
for all words w ∈ Σω. Formulating this condition as a resolver logic formula, we obtain a
2-ExpTime algorithm for checking strategic dominance thanks to Theorem 4.2.

▶ Corollary 5.1. Let ν1, ν2 ∈ {Inf, Sup, LimSup, LimInf}. For all ν1-automata A and all
ν2-automata B, checking whether A ⊴ B can be done in 2-ExpTime.

Note that other relations introduced in Section 3 can be also checked similarly.

5.2 Checking the Bottom Value of Automata
Safety and liveness [1, 2], as well as co-safety and co-liveness, are fundamental concepts in
specification of system properties and their verification. These concepts have been recently
extended to quantitative properties [21], and safety and liveness have been studied in the
context of quantitative automata [5]. Note that quantitative automata resolve nondeterminism
by sup, i.e., given an automaton A and a word w, we have A(w) = Asup(w).

For deciding the safety or liveness of a given automaton A, computing its top value,
namely the value of ⊤A = supw∈Σω supf∈R(A)Af (w), is shown to be a central step. The
PTime algorithm provided in [5] is used as a subroutine for computing the safety closure of
a given automaton A, which is used for checking both safety and liveness of A. In particular,
A is safe iff the safety closure of A maps every word w to the same value as A, and A is live
iff the safety closure of A maps every word w to ⊤A.

Given an automaton A, we can solve the top-value problem by simply iterating over its
weights in decreasing order and checking for each weight k whether there exist f ∈ R(A) and
w ∈ Σω with Af (w) ≥ k. The largest k for which this holds is the top value of A. Note that
thanks to Theorem 4.2 we can achieve this in PTime as it is only an existential formula,
which gives us a new algorithm for this problem.

However, the problems of deciding the co-safety and co-liveness of automata were left
open. For these, one needs to compute bottom value of a given automaton A, namely
⊥A = infw∈Σω supf∈R(A)Af (w). Similarly as above, using the computation of the bottom
value of A as a subroutine, we can decide its co-safety and co-liveness: A is co-safe iff the
co-safety closure of A maps every word w to the same value as A, and A is co-live iff the
co-safety closure of A maps every word w to ⊥A.

For the classes of automata we consider, we can compute the bottom value in PSpace by
repeated universality checks over its finite set of weights: the largest weight k for which the
automaton is universal is its bottom value. We remark that the bottom value of limit-average
automata is uncomputable since their universality is undecidable [16, 10].

Together with Theorem 4.2, the theorem below provides us with a 2-ExpTime algorithm
for computing the bottom value of Inf-, Sup-, LimInf-, and LimSup-automata.

▶ Theorem 5.2. Let ν ∈ {Inf, Sup, LimSup, LimInf}. Let A be a ν-automaton and x be an
integer. Then, the bottom value of A is x iff ∃w1 ∈ Σω : ∃f1 ∈ R(A) : ∀w2 ∈ Σω : ∀f2 ∈
R(A) : ∃f3 ∈ R(A) : Af1(w1) = x ∧ Af1(w1) ≥ Af2(w1) ∧ Af1(w1) ≤ Af3(w2). Moreover,
given A and x, this can be checked in 2-ExpTime.

5.3 Checking History-Determinism of Automata
History-determinism [22, 15] lies between determinism and nondeterminism. Intuitively, an
automaton is history-deterministic if there exists a way of resolving its nondeterminism based
on the current execution prefix (i.e., only the past) while ensuring that the value of the

CONCUR 2024

29:14 Strategic Dominance

resulting run equals the value assigned to the word by resolving its nondeterminism by sup.
Although the concept of history-determinism first appeared as “good-for-gameness” in [22],
following the distinction made in [6], we use the definition of history-determinism in [15].

▶ Definition 5.3 (history-determinism [15]). Let A = (Σ, Q, s, ∆, µ, ν) be an automaton. Then,
A is history-deterministic iff Player-2 wins the letter game defined below.

The letter game on A is played as follows: The game begins on the initial state q0 = s.
At each turn i ≥ 0 that starts in a state qi, Player-1 first chooses a letter σi ∈ Σ, then
Player-2 chooses a transition di = (qi, σi, qi+1) ∈ ∆, and the game proceeds to state qi+1.
The corresponding infinite play is an infinite run π over the word w = σ0σ1 . . ., and Player-2
wins the game iff Asup(w) ≤ ν(µ(π)).

▶ Remark 5.4. An automaton A is history-deterministic iff there exists a resolver f ∈ R(A)
such that Asup(w) ≤ Af (w) for all w ∈ Σω. One can verify that the resolver f is exactly the
winning strategy for Player-2 in the letter game on A.

History-deterministic automata offer a balance between deterministic and nondeterministic
counterparts, with notable advantages. For instance, history-deterministic LimInf-automata
are exponentially more concise than deterministic ones [23], and history-deterministic push-
down automata exhibit both increased expressiveness and at least exponential succinctness
compared to their deterministic counterparts [19]. Further exploration is detailed in [8, 7].

In [7], algorithms are presented to determine whether an automaton is history-
deterministic. The approach involves solving a token game that characterizes history-
determinism for the given automata type. The procedure is in PTime for Inf- and Sup-
automata, quasipolynomial time for LimSup, and ExpTime for LimInf. Combined with
Theorem 4.2, the theorem below presents a new ExpTime algorithm for checking history-
determinism across all these automata types, providing competitive complexity with [7] for
LimInf-automata.

▶ Theorem 5.5. Let ν ∈ {Inf, Sup, LimSup, LimInf} and A be a ν-automaton. Then, A is
history-deterministic iff A ≤◀ A. Moreover, given A, this can be checked in ExpTime.

5.4 Checking Hyperproperty Inclusion
We have focused on trace properties – functions mapping words to values, either 0 or
1 in the boolean setting. While adept at representing temporal event orderings, trace
properties lack the capacity to capture dependencies among multiple system executions,
such as noninterference in security policies [18] or fairness conditions for learning-based
systems [28].

This limitation is addressed by hyperproperties [14]. Unlike trace properties, hyper-
properties encompass global characteristics applicable to sets of traces. This enables the
specification of intricate relationships and constraints beyond temporal sequencing. Formally,
while a trace property is a set of traces, a hyperproperty is a set of trace properties.

In this subsection, we use nondeterministic automata as a specification language for
hyperproperties. A deterministic automaton defines a trace property where each word has a
single run, yielding a unique value. In contrast, a nondeterministic automaton specifies a
trace property only when equipped with a resolver, representing a function from its resolvers
to trace properties. Formally, a nondeterministic automaton A specifies the hyperproperty
HA = {Af | f ∈ R(A)}. An illustrative example is presented in Figure 6 and Proposition 5.6.

▶ Proposition 5.6. The nondeterministic automata A and B in Figure 6 respectively specify
the hyperproperties SP = {P ⊆ Σω | P is safe} and CP = {P ⊆ Σω | P is co-safe}.

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:15

A

s0 s1

Σ Σ

Σ

B

q0 q1

Σ Σ

Σ

Figure 6 Two nondeterministic automata A and B over a finite alphabet Σ that respectively
specify the hyperproperties SP = {P ⊆ Σω | P is safe} and CP = {P ⊆ Σω | P is co-safe}.

HyperLTL [13] extends linear temporal logic (LTL) only with quantification over traces,
and therefore cannot express the hyperproperty SP specifying the set of all safety trace
properties. However, using HyperLTL over the alphabet Σ = {i, s, o, x}, one can express the
noninterference between a secret input s and a public output o as follows: ∀π, π′ : 2(iπ ↔
iπ′)→ 2(oπ ↔ oπ′), i.e., for every pair π, π′ of traces, if the positions of the public input i

coincide in π and π′, then so do the positions of the public output o. We show below that a
simpler variant of this property cannot be specified by nondeterministic automata, separating
them as a specification language for hyperproperties from HyperLTL.

▶ Proposition 5.7. Let Σ = {a, b, c} and let ϕ = ∀π, π′ : 2(bπ ↔ bπ′) be a HyperLTL formula.
Neither H1 = {P ⊆ Σω | P satisfies ϕ} nor H2 = {P ⊆ Σω | P satisfies ¬ϕ} is expressible
by an automaton.

Together with Theorem 4.2, the following theorem gives us a 2-ExpTime algorithm for
checking if the hyperproperty specified by an automaton is included in another one.

▶ Theorem 5.8. Let A and B be two nondeterministic automata respectively denoting the
hyperproperties HA and HB. Then, HA ⊆ HB iff ∀f ∈ R(A) : ∃g ∈ R(B) : ∀w ∈ Σω :
Af (w) = Bg(w). Moreover, given A and B, this can be checked in 2-ExpTime.

Using A for a deterministic automaton representing a system and B for a nondeterministic
automaton defining a hyperproperty, we solve the model checking problem by determining if
there exists g ∈ R(B) such that A(w) = Bg(w) for all w ∈ Σω. This is solvable in ExpTime
(Theorem 4.2). Notably, for HyperLTL, which is incomparable to nondeterministic automata
as a specification language, the complexity is PSpace-hard in the system’s size [13].

6 Conclusion

We introduced a novel perspective on model refinement, termed strategic dominance. This
view, which falls between trace inclusion and tree inclusion, captures the relationship between
two nondeterministic state-transition models by emphasizing the ability of the less precise
model to accommodate all deterministic implementations of the more refined one. We formally
defined strategic dominance and showed that it can be checked in 2-ExpTime using resolver
logic – a decidable extension of Presburger logic we developed in this work. Resolver logic is a
powerful tool for reasoning about nondeterministic boolean and quantitative finite automata
over infinite words. We provided a model-checking algorithm for resolver logic which, besides
the verification of resolver-based refinement relations such as strategic dominance, allows the
checking of co-safety, co-liveness, and history-determinism of quantitative automata, and
the inclusion of hyperproperties specified by nondeterministic automata. There are some
problems we have left open, including the study of resolver logic for other value functions
as well as lower bounds for the model-checking problem of resolver logic and its fragments.
Future research should also extend resolver logic and its model-checking algorithm to handle
the settings of partial information, of multiple agents, and of probabilistic strategies.

CONCUR 2024

29:16 Strategic Dominance

References
1 Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,

1985. doi:10.1016/0020-0190(85)90056-0.
2 Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Comput.,

2(3):117–126, 1987. doi:10.1007/BF01782772.
3 Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating

refinement relations. In Davide Sangiorgi and Robert de Simone, editors, CONCUR ’98:
Concurrency Theory, 9th International Conference, Nice, France, September 8-11, 1998,
Proceedings, volume 1466 of Lecture Notes in Computer Science, pages 163–178. Springer,
1998. doi:10.1007/BFB0055622.

4 Ralph-Johan Back and Joakim von Wright. Refinement Calculus - A Systematic Introduction.
Graduate Texts in Computer Science. Springer, 1998. doi:10.1007/978-1-4612-1674-2.

5 Udi Boker, Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Safety and liveness
of quantitative automata. In Guillermo A. Pérez and Jean-François Raskin, editors, 34th
International Conference on Concurrency Theory, CONCUR 2023, September 18-23, 2023,
Antwerp, Belgium, volume 279 of LIPIcs, pages 17:1–17:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.CONCUR.2023.17.

6 Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in quantitative
automata. In Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021,
December 15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages 38:1–38:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.FSTTCS.2021.38.

7 Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative-
automata. Log. Methods Comput. Sci., 19(4), 2023. doi:10.46298/LMCS-19(4:8)2023.

8 Udi Boker and Karoliina Lehtinen. When a little nondeterminism goes a long way: An
introduction to history-determinism. ACM SIGLOG News, 10(1):24–51, 2023. doi:10.1145/
3584676.3584682.

9 Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci., 375(1-
3):227–270, 2007. doi:10.1016/J.TCS.2006.12.034.

10 Krishnendu Chatterjee, Laurent Doyen, Herbert Edelsbrunner, Thomas A. Henzinger, and
Philippe Rannou. Mean-payoff automaton expressions. In Paul Gastin and François Laroussinie,
editors, CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR
2010, Paris, France, August 31-September 3, 2010. Proceedings, volume 6269 of Lecture Notes
in Computer Science, pages 269–283. Springer, 2010. doi:10.1007/978-3-642-15375-4_19.

11 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4):23:1–23:38, 2010. doi:10.1145/1805950.1805953.

12 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. Inf. Comput.,
208(6):677–693, 2010. doi:10.1016/J.IC.2009.07.004.

13 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and Steve
Kremer, editors, Principles of Security and Trust - Third International Conference, POST
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8414 of Lecture Notes
in Computer Science, pages 265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8_15.

14 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

15 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and
Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Internatilonal
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, volume
5556 of Lecture Notes in Computer Science, pages 139–150. Springer, 2009. doi:10.1007/
978-3-642-02930-1_12.

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BFB0055622
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.4230/LIPICS.CONCUR.2023.17
https://doi.org/10.4230/LIPICS.FSTTCS.2021.38
https://doi.org/10.46298/LMCS-19(4:8)2023
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1016/J.TCS.2006.12.034
https://doi.org/10.1007/978-3-642-15375-4_19
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1016/J.IC.2009.07.004
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-642-02930-1_12

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:17

16 Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon
Torunczyk. Energy and mean-payoff games with imperfect information. In Anuj Dawar
and Helmut Veith, editors, Computer Science Logic, 24th International Workshop, CSL 2010,
19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceed-
ings, volume 6247 of Lecture Notes in Computer Science, pages 260–274. Springer, 2010.
doi:10.1007/978-3-642-15205-4_22.

17 Nathanaël Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud
Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey,
Benjamin Monmege, Petr Novotný, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier
Serre, and Mateusz Skomra. Games on graphs. CoRR, abs/2305.10546, 2023. doi:10.48550/
arXiv.2305.10546.

18 Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20.
IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.

19 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A bit of
nondeterminism makes pushdown automata expressive and succinct. Log. Methods Comput.
Sci., 20(1), 2024. doi:10.46298/LMCS-20(1:3)2024.

20 Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. Fair simulation. Inf.
Comput., 173(1):64–81, 2002. doi:10.1006/INCO.2001.3085.

21 Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Quantitative safety and liveness.
In Orna Kupferman and Pawel Sobocinski, editors, Foundations of Software Science and
Computation Structures - 26th International Conference, FoSSaCS 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France,
April 22-27, 2023, Proceedings, volume 13992 of Lecture Notes in Computer Science, pages
349–370. Springer, 2023. doi:10.1007/978-3-031-30829-1_17.

22 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Zoltán
Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of
Lecture Notes in Computer Science, pages 395–410. Springer, 2006. doi:10.1007/11874683_26.

23 Denis Kuperberg and Michal Skrzypczak. On determinisation of good-for-games automata. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 299–310. Springer, 2015. doi:10.1007/978-3-662-47666-6_24.

24 Christof Löding. Automata on infinite trees. In Jean-Éric Pin, editor, Handbook of Automata
Theory, pages 265–302. European Mathematical Society Publishing House, Zürich, Switzerland,
2021. doi:10.4171/AUTOMATA-1/8.

25 Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strategies. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,
India, volume 8 of LIPIcs, pages 133–144. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2010. doi:10.4230/LIPICS.FSTTCS.2010.133.

26 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007. doi:10.1016/J.TCS.2006.12.035.

27 Bruno Scarpellini. Complexity of subcases of presburger arithmetic. Transactions of the
American Mathematical Society, 284(1):203–218, 1984. URL: http://www.jstor.org/stable/
1999283.

28 Sanjit A. Seshia, Ankush Desai, Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh,
Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xiangyu Yue. Formal
specification for deep neural networks. In Shuvendu K. Lahiri and Chao Wang, editors,
Automated Technology for Verification and Analysis - 16th International Symposium, ATVA
2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes
in Computer Science, pages 20–34. Springer, 2018. doi:10.1007/978-3-030-01090-4_2.

CONCUR 2024

https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.46298/LMCS-20(1:3)2024
https://doi.org/10.1006/INCO.2001.3085
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.4171/AUTOMATA-1/8
https://doi.org/10.4230/LIPICS.FSTTCS.2010.133
https://doi.org/10.1016/J.TCS.2006.12.035
http://www.jstor.org/stable/1999283
http://www.jstor.org/stable/1999283
https://doi.org/10.1007/978-3-030-01090-4_2

29:18 Strategic Dominance

29 Rob J. van Glabbeek. The linear time - branching time spectrum II. In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany,
August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science, pages
66–81. Springer, 1993. doi:10.1007/3-540-57208-2_6.

30 Rob J. van Glabbeek. The linear time - branching time spectrum I. In Jan A. Bergstra, Alban
Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages 3–99. North-Holland
/ Elsevier, 2001. doi:10.1016/B978-044482830-9/50019-9.

A Appendix

Proof of Theorem 4.2. We assume that each automata Ak = (Qk, sk, ∆k, µk, νk) is ei-
ther a LimSup-automaton or a LimInf-automaton. This is without loss of generality since
Sup-automata and Inf-automata can be converted in PTime into LimInf-automata [5, Propo-
sition 2.1]. The proof goes as follows. First, we construct in polynomial time a parity tree
automaton C which read an assignment α for Ψ as input, such that its language is empty if
and only if α |= Ψ . Then we handle the quantifiers of Ψ based on nested complementations
and projections applied on C. Finally, we construct a parity game such that the even player
wins iff Ψ is satisfiable over A1, . . . ,An.

Construction of C. Let Ψ be of the form ∇1x1 : · · · : ∇mxm : φ, where ∇i ∈ {∃, ∀}. In
this construction, we encode assignments for resolver and word variables of Ψ into single
Σ-structured trees. The labeling alphabet is defined from the sets Q1, . . . , Qn and {0, 1}
in order to manipulate branches as runs. For all i ∈ {1, . . . , m}, we define Λi and ℓi ∈ Λi

such that if xi ∈W then Λi = {0, 1} and ℓi = 1; otherwise, xi ∈ Fk for some k ∈ {1, . . . , n},
and so Λi = Qk and ℓi = sk where sk is the initial state of Ak. Let the labeling alphabet
be Λ = Λ1 × · · · × Λm and let the label of roots be ℓ = ℓ1 × · · · × ℓm. For all λ ∈ Λ and
1 ≤ i ≤ m we write λ[i] to denote the dimension of λ corresponding to Λi. In the same way,
we construct the value domains of the variables of V from the sets of weights of A1, . . . ,Ak.
For all xi ∈ Fk and all xj ∈ W , we define the value domain of the variable v(xi,xj) ∈ V as
Z(xi,xj) = {µk(δ) ∈ N | δ ∈ ∆k}. Let Z = Πn

k=1Πf∈Fk
Πw∈W Z(f,w) be the set of assignment

of the variable of V . For all z ∈ Z, all xi ∈ Fk and all xj ∈W , we write z[xi][xj] to denote
the dimension of z corresponding to Z(f,w).

We now construct the parity tree automaton C = (Λ, Σ, Q, I, ∆, θ). The set of ♡-
states is Q♡ = {(♡(y1,y2), z, λ) | y1, y2 ∈ {1, . . . , m}, z ∈ Z, λ ∈ Λ}, the set of ♠-states
is Q♠ = {(♠(y1,y2), z, λ) | y1, y2 ∈ {1, . . . , m}, z ∈ Z, λ ∈ Λ}, and the set of ⊥-states is
Q⊥ = {(⊥, z, λ) | z ∈ Z, λ ∈ Λ}. The set of states is Q = Q⊥∪Q♡∪Q♠ and the set of initial
states is I = {(⊥, z, ℓ) | z ∈ Z, φ[∀v(x,x′) ∈ V : v(x,x′) ← z[x][x′]]}. The priority function
θ : Q→ {1, 2} maps ♡-states to 2 and all the other states to 1. The transition relation ∆ is
defined as follows.

((⊥, z, λ), λ, σ 7→ (Sσ, z, λσ)) ∈ ∆ where Sσ ∈ {⊥,♠(1,1)} iff

∧
∧m

j=1

(
xj ∈W ⇒

∑
σ∈Σ λσ[j] = λ[j]

)
∧m

i=1
∧n

k=1
∧

σ∈Σ

(
xi ∈ Fk ⇒ (λ[i], σ, λσ[i]) ∈ ∆k

)
For all transitions, C ensures that the encoding of its assignment for x1, . . . , xm is a coherent
Λ-labeled Σ-structured tree. Above, the first constraint guarantees that all dimensions
encoding a word have exactly one branch labeled by 1 (which encodes the word), and all
other nodes are labeled by 0. Formally, each tree t ∈ T (C) assigns the variable xj ∈ W to
the unique word αt(xj) = σ1σ2 · · · ∈ Σω for which the jth dimension of the branch t(αt(xj))
equals 1σ11σ2 · · · ∈ ({1} × Σ)ω. The second constraint guarantees that all dimensions

https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/B978-044482830-9/50019-9

T. A. Henzinger, N. Mazzocchi, and N. E. Saraç 29:19

encoding a resolver of Ak respect its transition relation, i.e., a node labeled by λ and its
σ-child labeled by λσ must encode a transition of Ak in these dimensions. Formally, each
tree t ∈ T (C) assigns the variable xi ∈ Fk to the unique resolver αt(xi) ∈ R(Ak) defined by
αt(xi)(πk, σ) = t(uσ) where πk is the finite run of Aαt(xi)

k over u ∈ Σ∗. In particular, for all
t ∈ T (C), all xi ∈ Fk and xj ∈ W , the value Aαt(xi)

k (αt(xj)) is the correct assignment for
the free variable v(xi,xj) ∈ V of φ.

((♠(y1,y2), z, λ), λ, σ 7→ (♠(y1,y2), z, λσ)) ∈ ∆ iff

∧

∧m

j=1

(
xj ∈ W ⇒

∑
σ∈Σ λσ[j] = λ[j]

)
∧m

i=1

∧n

k=1

∧
σ∈Σ

(
xi ∈ Fk ⇒ (λ[i], σ, λσ[i]) ∈ ∆k

)
∧m

i=1

∧n

k=1

∧m

j=1

∧
σ∈Σ

((
xi ∈ Fk ∧ λ[j] = 1

)
⇒ hk(z[xi][xj], µk(λ[i], σ, λσ[i])) = z[xi][xj]

)
where hk = max if Ak is a LimSup-automaton and hk = min if it is a LimInf-automaton.

Observe that ⊥-states are reachable only from ⊥-states and cannot lead to acceptance as
their priority is odd. Once a ♠(1,1)-state is reached, C checks through the rest of the run tree
whether z provides a correct assignment for the variable of V . By construction, z is guessed at
the root of the run tree and carried in all its nodes. Given a run π of C over t ∈ Λω

Σ that carries
z ∈ Z, for all xj ∈W , all xi ∈ Fk, the value z[xi][xj] is a correct assignment for v(xi,xj) when
z[xi][xj] = Aαt(xi)

k (αt(xj)). Intuitively, v(xi,xj) requires C to ensure that the weight z[xi][xj]
is (†) visited infinitely often, (‡) never dismissed by another weight, and so along the branch
induced by the word αt(xj). The condition (†) is handled by C thanks to its acceptance
condition that we explain below. Above, the last constraint guarantees the condition (‡), i.e.,
assuming that xj ∈W , xi ∈ R(Ak) and that the current node belongs to the branch induced
by αt(xj), if Ak is a LimSup-automaton then the weight of the transition (λ[i], σ, λσ[i]) ∈ ∆k

from the node to its σ-child is at most z[xi][xj], otherwise Ak is a LimInf-automaton and
the weight of this transition is at least z[xi][xj]. This constrain appears in all transitions
outgoing from the ♠-states and the ♡-states.

((♠(y1,y2), z, λ), λ, σ 7→ (Sσ(y1,y2), z, λσ)) ∈ ∆ where Sσ(y1,y2) ∈ {♡(y1,y2),♠(y1,y2)} iff

∧

∧m

j=1

(
xj ∈ W ⇒

∑
σ∈Σ λσ[j] = λ[j]

)
∧m

i=1

∧n

k=1

∧
σ∈Σ

(
xi ∈ Fk ⇒ (λ[i], σ, λσ[i]) ∈ ∆k

)
∧m

i=1

∧n

k=1

∧m

j=1

∧
σ∈Σ

((
xi ∈ Fk ∧ λ[j] = 1

)
⇒ hk(z[xi][xj], µk(λ[i], σ, λσ[i])) = z[xi][xj]

)
∧n

k=1

∧
σ∈Σ

((
xy1 ∈ Fk ∧ λ[y2] = 1 ∧ Sσ(y1,y2) = ♡(y1,y2)

)
⇒ µk(λ[y1], σ, λσ[y1]) = z[xy1][xy2]

)
Given a run π of C over t ∈ Λω

Σ that carries z ∈ Z, assuming that xy2 ∈W and xy1 ∈ Fk, the
condition (†) asks C to check whether the guessed value z[xy1][xy2] is among the values visited
infinitely many times along the branch induced by αt(xy2) ∈ Σω. Above, the last constraint
guarantees that C allows to move from a ♠(y1,y2)-state to a ♡(y1,y2)-state only if either
xy1 /∈ R(Ak), or the current node does not belong to the branch induced by αt(xy2) ∈ Σω,
or the guessed weight z[xy1][xy2] is visited in the corresponding dimension. Observe that
♡-states have priority 2 in C, while ♠-states have priority 1. The condition (†) on z[xy1][xy2]
holds for all accepting runs because C ensures that a ♡(y1,y2)-state is visited infinitely many
times on all branches of its accepting runs, as we explain below.

CONCUR 2024

29:20 Strategic Dominance

((♡(y1,y2), z, λ), λ, σ 7→ (♠(y′
1,y′

2), z, λσ)) ∈ ∆ iff

∧

∧m

j=1

(
xj ∈ W ⇒

∑
σ∈Σ λσ[j] = λ[j]

)
∧m

i=1

∧n

k=1

∧
σ∈Σ

(
xi ∈ Fk ⇒ (λ[i], σ, λσ[i]) ∈ ∆k

)
∧m

i=1

∧n

k=1

∧m

j=1

∧
σ∈Σ

((
xi ∈ Fk ∧ λ[j] = 1

)
⇒ hk(z[xi][xj], µk(λ[i], σ, λσ[i])) = z[xi][xj]

)
(y′

1 = y1 ∧ y′
2 = y2 + 1) ∨ (y′

1 = y1 + 1 ∧ y2 = m ∧ y′
2 = 1) ∨ (y1 = y2 = m ∧ y′

1 = y′
2 = 1)

We recall that O(m2) values are checked by C through its runs. To ensure that condition (†)
holds for all dimensions of z, the transitions of C enforces to visit cyclically all ♡(y1,y2)-states
in order to get a run of even priority. Above, the last constraint guarantees that C allows
to leave a ♡(y1,y2)-state only toward a ♠-state that regulates the next pair of index. Since
there is no transition from a ♡-state to a ♡-state, a run of C is accepting if and only if all
branches visit a ♡(y1,y2)-state infinitely often for all y1, y2 ∈ {1, . . . , m}. As final observation,
we point out that, since z carried in all nodes of the run tree, the consistency of (†) and (‡)
through branches is guaranteed. Hence, for all t ∈ T (C), if xj ∈ W and xi ∈ Fk then the
value Aαt(xi)

k (αt(xj)) equals z[xi][xj] thanks to the conditions (†) and (‡).

Construction of the parity game. Note that the size of C is at most
O(|max1≤i≤n |Ai|)O(m2+n). In particular, when |Ψ | is fixed (i.e., n, m and |φ| are fixed), C
can be constructed in polynomial time since the satisfiability of an existential Presburger
formula with a fixed number of quantifiers is in PTime [27]. To handle the quantifiers
of Ψ , we construct a parity tree automaton C′ that do not take inputs. Essentially, C′ is
constructed from C by releasing the existentially quantified variables through projections,
i.e., leaving the tree automaton a non-deterministic choice while relaxing a dimension of the
input tree. Universal quantifiers ∀x : Ψ ′ are treated as ¬∃x : ¬Ψ ′, where each negation ¬
requires the computation of the complement of the current tree automaton, and then induce
an exponential blow up of the computation time [24]. The parity game is constructed in
PTime from a tree automaton C′. The game proceeds with the even player first choosing
a transition in the tree automaton, and then the odd player choosing a subtree. The even
player wins iff the language of the tree automaton is not empty. Naturally, a resolver logic
formula with only existential quantifiers do not require tree automata complementations.
However, with a naive approach, a formula with only universal quantifiers may requires two
complementations while none are necessary. This is because if the innermost quantifier is
universal then the first complementation can be avoided by using ¬φ instead of φ to construct
C. Additionally, if the outermost quantifier is universal then the last complementation can
be avoided by constructing a parity game that is winning for the player with even objective
if and only if the current tree automaton is empty. This is doable in PTime as before, but
the players are swapped and the priority are increased by one. ◀

Around Classical and Intuitionistic Linear Processes
Juan C. Jaramillo #

Unversity of Groningen, The Netherlands

Dan Frumin # Ñ

Unversity of Groningen, The Netherlands

Jorge A. Pérez # Ñ

Unversity of Groningen, The Netherlands

Abstract
Curry-Howard correspondences between Linear Logic (LL) and session types provide a firm foundation
for concurrent processes. As the correspondences hold for intuitionistic and classical versions of LL
(ILL and CLL), we obtain two different families of type systems for concurrency. An open question
remains: how do these two families exactly relate to each other? Based upon a translation from CLL
to ILL due to Laurent, we provide two complementary answers, in the form of full abstraction results
based on a typed observational equivalence due to Atkey. Our results elucidate hitherto missing
formal links between seemingly related yet different type systems for concurrency.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Type theory; Theory of computation → Process calculi

Keywords and phrases Process calculi, session types, linear logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.30

Related Version Full Version: http://arxiv.org/abs/2407.06391

Funding Juan C. Jaramillo: Ministry of Science of Colombia (Minciencias).
Jorge A. Pérez : Support of the Dutch Research Council (NWO) under project No.016.Vidi.189.046
(Unifying Correctness for Communicating Software) is gratefully acknowledged.

Acknowledgements We are most grateful to Bas van den Heuvel for initial discussions on the topic
of this paper. We also thank the anonymous reviewers for their helpful suggestions.

1 Introduction

We address an open question on the logical foundations of concurrency, as resulting from
Curry-Howard correspondences between linear logic (LL) and session types. These cor-
respondences, often referred to as “propositions-as-sessions”, connect LL propositions and
session types, proofs in LL and π-calculus processes, as well as cut-elimination in LL and
process synchronization. The result is type systems that elegantly ensure important forms
of communication correctness for processes. The correspondence was discovered by Caires
and Pfenning, who relied on an intuitionistic presentation of LL (ILL) [8]; Wadler later
presented it using classical LL (CLL) [24]. These two works triggered the emergence of
multiple type systems for concurrency with firm logical foundations, based on (variants of)
ILL (e.g., [21, 17, 3, 7]) and CLL (e.g., [6, 12, 15, 14, 19]). While key differences between these
two families of type systems, intuitionistic and classical, have been observed [22], in this
paper we ask: can we formally relate them from the standpoint of (typed) process calculi?

From a logical standpoint, the mere existence of two different families of type systems may
seem surprising – after all, the relationship between ILL and CLL is well understood [20, 11, 16].
Laurent has given a thorough account of these relationships, including a translation from
CLL to ILL [16]. A central insight in our work is the following: while translations from

© Juan C. Jaramillo, Dan Frumin, and Jorge A. Pérez;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 30; pp. 30:1–30:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.c.jaramillo.londono@rug.nl
https://orcid.org/0009-0003-0973-4123
mailto:dan@groupoid.moe
https://groupoid.moe
https://orcid.org/0000-0001-5864-7278
mailto:j.a.perez@rug.nl
https://www.jperez.nl
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.4230/LIPIcs.CONCUR.2024.30
http://arxiv.org/abs/2407.06391
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Around Classical and Intuitionistic Linear Processes

⊢c ∆

∆•
R ⊢i R

⊢c ∆•⊥
R , R

CLL

ILL(−)•
R [16]

(−)•⊥
R [§ 3]

(−)⊥

Figure 1 Translations between CLL and ILL. In this paper, we shall fix R = 1.

CLL to ILL are useful, they alone do not entail formal results for typed processes, and a
satisfactory answer from the “propositions-as-sessions” perspective must include process
calculi considerations.

Let us elaborate. Given some context ∆ and a formula A, let us write ⊢c ∆ and ∆ ⊢i A

to denote sequents in CLL and ILL, respectively. Under the concurrent interpretation induced
by “propositions-as-sessions”, these sequents are annotated as P ⊢c ∆ and ∆ ⊢i P :: x : A,
respectively, where P is a process, x is a name, and ∆ is now a finite collection of assignments
x1 : A1, . . . , xn : An. An assignment specifies a name’s intended session protocol. This way,
e.g., “x : A⊗B” (resp. “x : A NB”) says that x outputs (resp. inputs) a name of type A

before continuing as described by B. Also, “x : 1” says that x has completed its protocol
and has no observable behavior. The judgment ∆ ⊢i P :: x : A has a rely-guarantee flavor:
“P relies on the behaviors described by ∆ to offer a protocol A on x”. Hence, the assignment
x : A in the right-hand side plays a special role: this is the only observation made about
the behavior of P . Differently, the judgment P ⊢c ∆ simply reads as “P implements the
behaviors described by ∆”; as such, all assignments in ∆ are equally relevant for observing
the behavior of P .

Unsurprisingly, these differences between intuitionistic and classical processes arise in their
associated (typed) behavioral equivalences [18, 15, 1, 13]. For intuitionistic processes, theories
of logical relations [18, 13] induce contextual equivalences in which only the right-hand side
assignment matters in comparisons; the assignments in ∆ are used to construct appropriate
contexts. For classical processes, we highlight Atkey’s observed communication semantics [1],
whose induced observational equivalence accounts for the entire typing context.

Laurent’s negative translation from CLL to ILL [16], denoted (−)•
R, translates formulas

using the parameter R (an arbitrary formula in ILL) as a “residual” element. We have, e.g.,:

(A ⊗ B)•
R = ((A•

R ⊸ R) ⊗ (B•
R ⊸ R)) ⊸ R

As Figure 1 shows, using (−)•
R we can transform ⊢c ∆ into (∆)•

R ⊢i R. Now, from the view of
“propositions-as-sessions”, we see that (−)•

R increases the size of formulas/protocols and that
fixing R = 1 results into the simplest residual protocol. Given this, Laurent’s translation
transforms P ⊢c ∆ into (∆)•

R ⊢i (P)• :: w : 1 (for some fresh z), where (P)• is a process
that reflects the translation. The translation has an unfortunate effect, however: a classical
process P with observable behavior given by ∆ is transformed into an intuitionistic process
(P)• without observable behavior (given by w : 1). We conclude that, independently of the
chosen R, the translation (−)•

R alone does not adequately relate the concurrent interpretations
of CLL and ILL, as it does not uniformly account for observable behavior in P and (P)•.

Our goal is to complement the scope of Laurent’s translation, in a way that is consistent
with existing theories of (typed) behavioral equivalence for logic-based processes.

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:3

We proceed in two steps, shown in Figure 1. In the following, we shall fix R = 1 and omit
“R” when clear from the context. First, there is a well-known translation from ILL to CLL,
denoted (−)⊥, under which a sequent ∆ ⊢i A is transformed into ⊢c ∆⊥, A. Our observation
is that (−)•⊥ (the composition of the two translations) goes from CLL into itself, translating
⊢c ∆ into ⊢c ∆•⊥, 1. At the level of processes, this allows us to consider the corresponding
processes P and (P)• in the common setting of classical processes. To reason about their
observable behavior we employ Atkey’s observational equivalence [1], denoted “ ≃ ”.

Our second step leads to our main contributions: two full abstraction results that
connect ⊢c ∆ and ⊢c ∆•⊥, 1 from the perspective of “propositions-as-sessions”.

The first result, given in § 3, adopts a denotational approach to ensure that P (typable with
⊢c ∆) and (P)• (typable with both ∆• ⊢i 1 and ⊢c ∆•⊥, 1) are behaviorally equivalent.
This full abstraction result ensures that P ≃ Q iff (P)• ≃ (Q)• (Corollary 3.12).
The second result, given in § 4, is an operational bridge between ⊢c ∆ and ⊢c ∆•⊥, 1:
Corollary 4.15 ensures that P ≃ Q iff C[P] ≃ C[Q], where C is a so-called transformer
context, which “adapts” observable behavior in processes using types in ∆.

Next, we recall CP (Wadler’s concurrent interpretation of CLL), Atkey’s observational
equivalence, and Laurent’s translation. § 3 and § 4 develop our full abstraction results. § 5
further discusses our contributions; in particular, we discuss how they are related to the
locality principle – one of the known distinguishing features between typed processes based
on “propositions-as-sessions” [22, 9, 25].

2 Background

Propositions-as-Sessions / Classical Processes (CP). We shall work with classical pro-
cesses (CP) as proposed by Wadler [24]. Assuming an infinite set of names (x, y, z, . . .), the
set of processes (P, Q, . . .) is defined as follows:

P, Q ::= 0 | (νx)P | P | Q | [x ↔ y] | x[y].(P | Q) | x(y).P | !x(y).P | ?x[y].P
| x[i].P | x.case(P, Q) | x[] | x().P for i ∈ {1, 2}

We write P{x/y} to denote the capture-avoiding substitution of y for x in P . We have usual
constructs for inaction, restriction, and parallel composition. The forwarder [x ↔ y] equates
x and y. We then have x[y].(P | Q) (send the restricted name y along x, proceed as P | Q)
and x(y).P (receive a name z along x, proceed as P{z/y}). Processes !x(y).P and ?x[y].P
denote a replicated input (server) and a client request, respectively. Process x[i].P denotes
the selection of one of the two alternatives of a corresponding branching process x.case(P, Q).
Processes x[] and x().P enable coordinated closing of the session along x. In a statement, a
name is fresh if it is not among the names of the objects of the statement (e.g., processes).

In (νx)P , name x is bound in P ; also, in x[y].(P | Q), x(y).P , !x(y).P , and ?x[y].P ,
name y is bound in P but not in Q.

The types are assigned to names and correspond to the following formulas of CLL:

A, B ::= 1 | ⊥ | A⊗B | A

N

B | A⊕B | ANB | !A | ?A

The assignment x : A says that the session protocol through x goes as described by A. As
we have seen, x : A⊗B and x : A NB are read as sending and receiving along x, respectively.
Also, x : A⊕B denotes the selection of either A or B along x, whereas x : ANB denotes the
offer of A and B along x. Finally, x : !A and x : ?A assign server and client behaviors to
x, respectively. There then is a clear duality in the interpretation of the following pairs: ⊗

CONCUR 2024

30:4 Around Classical and Intuitionistic Linear Processes

[x ↔ y] ⊢c x : A, y : A⊥ Id
x[] ⊢c x : 1

1
P ⊢c Γ

x().P ⊢c Γ, x : ⊥
⊥

P ⊢c Γ, y : A Q ⊢c ∆, x : B

x[y].(P | Q) ⊢c Γ, ∆, x : A⊗B
⊗

P ⊢c Γ, y : A, x : B

x(y).P ⊢c Γ, x : A NB

N P ⊢c Γ, x : Ai

x[i].P ⊢c Γ, x : A1⊕A2
⊕i

P ⊢c Γ, x : A1 Q ⊢c Γ, x : A2

x.case(P, Q) ⊢c Γ, x : ANB
N

P ⊢c ?∆, y : A

!x(y).P ⊢c ?∆, x : !A
!

P ⊢c ∆, x : A

?x[y].P ⊢c ∆, x : ?A
?

P ⊢c ∆, x1 : ?A, x2 : ?A

P{x1/x2} ⊢c ∆, x1 : ?A
C

P ⊢c Γ
P ⊢c Γ, x : ?A

W

P ⊢c Γ, x : A Q ⊢c ∆, x : A⊥

(νx)(P | Q) ⊢c Γ, ∆
Cut

P ⊢c ∆ Q ⊢c Γ
P | Q ⊢c ∆, Γ

Mix2
0 ⊢c ·

Mix0

Figure 2 Typing rules. CP does not include “mix”. CP0 is CP + Mix0, CP02 is CP0 + Mix2.

and N; ⊕ and N; and ! and ?. It reflects reciprocity between the behavior of a name: when
a process on one side sends, the process on the opposite side must receive, and vice versa.
Formally, the dual type of A, denoted A⊥, is defined as

1⊥ := ⊥ (A⊗B)⊥ := A⊥ N

B⊥ (ANB)⊥ := A⊥⊕B⊥ (!A)⊥ := ?A⊥

⊥⊥ := 1 (A NB)⊥ := A⊥⊗B⊥ (A⊕B)⊥ := A⊥NB⊥ (?A)⊥ := !A⊥

Duality is an involution, i.e., (A⊥)⊥ = A. We write ∆, Γ to denote contexts, a finite
collection of assignments x : A. The empty context is denoted “ · ”. The typing judgments
are then of the form P ⊢c ∆, with typing rules as in Figure 2. For technical convenience, we
shall consider mix principles (rules Mix0 and Mix2, not included in [24]), which enable the
typing of useful forms of process composition. This way, in § 3 we will consider CP0: the
variant of CP with Mix0; in § 4 we will consider CP02: the extension of CP0 with Mix2.

Note that the type system CP0 corresponds exactly to the sequent calculus for CLL if
we ignore name and process annotations. This correspondence goes beyond typing: an
important aspect of “propositions-as-sessions” is that the dynamic behavior of processes
(process reductions) corresponds to simplification of proofs (cut elimination). In the following
we will not need this reduction semantics, which can be found in, e.g., [24]. Rather, we will
use the denotational semantics of CP0 as defined by Atkey [1], which we recall next.

Denotational Semantics for CP. We adopt Atkey’s denotational semantics for CP0 [1],
which allows us to reason about observational equivalence of processes. Here we recall the
notions of configurations, observations, and denotations as needed for our purposes.

The observational equivalence on processes relies on the notion of configuration, which is a
process that has some of its names selected for the purposes of “observations”. Configurations,
defined in Figure 3, are typed as C ⊢cfg ∆ | Θ, where ∆ contains free/unconnected names,
and Θ contains the names that we intend to observe. Rule C:Cut, for example, states that
we can compose two configurations along a name x, and make the name observable.

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:5

C:Proc
P ⊢c Γ

P ⊢cfg Γ | ·

C:Cut
C1 ⊢cfg Γ1, x : A | Θ1 C2 ⊢cfg Γ2, x : A⊥ | Θ2

C1 |x C2 ⊢cfg Γ1, Γ2 | Θ1, Θ2, x : A

C:0

0 ⊢cfg · | ·

C:W
C ⊢cfg Γ | Θ

C ⊢cfg Γ, x : ?A | Θ

C:Con
C ⊢cfg Γ, x1 : ?A, x2 : ?A | Θ
C{x1/x2} ⊢cfg Γ, x1 : ?A | Θ

Figure 3 Classical Processes: Configurations.

0 ⇓ ()
Stop

C[C ′[{x/y}]] ⇓ θ[x 7→ a]
C[[x ↔ y] |x C ′] ⇓ θ[x 7→ a, y 7→ a]

Link
C[P |x Q] ⇓ θ[x 7→ a]
C[(νx)(P | Q)] ⇓ θ

Comm

C[0] ⇓ θ

C[0] ⇓ θ
0

C[P |y (Q |x R)] ⇓ θ[x 7→ a, y 7→ b]
C[x[y].(P | Q) |x x(y).R] ⇓ θ[x 7→ (a, b)]

⊗ N

C[P] ⇓ θ

C[x[] |x x().P] ⇓ θ[x 7→ ∗]
1⊥

C[P |x Qi] ⇓ θ[x 7→ a]
C[x[i].P |x x.case(Q0, Q1)] ⇓ θ[x 7→ (i, a)]

⊕N

C[P |y Q] ⇓ θ[y 7→ a]
C[!x(y).P |x ?x[y].Q] ⇓ θ[x 7→ HaI]

!?
C[C ′] ⇓ θ

C[!x(y).P |x C ′] ⇓ θ[x 7→ ∅]
!W

C[!x1(y).P |x1 (!x2(y).P |x2 C ′)] ⇓ θ[x1 7→ α, x2 7→ β]
C[!x1(y).P |x1 C ′{x1/x2}] ⇓ θ[x1 7→ α ⊎ β]

!C
C ′ ⇓ θ C ≡ C ′

C ⇓ θ
≡

Figure 4 Classical Processes: Observations.

Observations for configurations are given in Figure 4. The observation relation C ⇓ θ is
defined for closed configurations C ⊢cfg · | Θ, and the shape observation θ ∈ JΘK is defined
based on the shape of types in Θ. For a type A, the set of observations JAK is defined as

J1K = J⊥K = {∗} J!AK = J?AK = Mf (JAK)

JA ⊗ BK = JA NBK = JAK × JBK JA0 ⊕ A1K = JA0NA1K =
∑

i∈{0,1}

JAiK

and we set JΘK = Jx1 : A1, · · · , xn : AnK = JA1K × · · · × JAnK. Here Mf (X) denotes finite
multisets with elements from X. We use the standard notations ∅, ⊎, and Ha1, . . . , anI to
denote the empty multiset, multiset union, and multiset literals, respectively.

If θ ∈ Jx1 : A1, · · · , xn : AnK, then we write θ[xi 7→ θi] for the observation which is
identical to θ, except that its ith component is set to θi. In Figure 4, Rule Stop says that 0
has no observations; Rule ⊗ Ncollects observations a and b into a single observation (a, b).

Using these notions, there is an immediate canonical notion of observational equivalence.
In the following, we write P, Q ⊢c Γ whenever P ⊢c Γ and Q ⊢c Γ hold.

▶ Definition 2.1 (Observational equivalence [1]). Let P, Q ∈ CP0 such that P, Q ⊢c Γ. They
are observationally equivalent, written P ≃ Q, if for all configurations-process context C[−]
where C[P], C[Q] ⊢c · | Θ, and all θ ∈ JΘK, C[P] ⇓ θ ⇔ C[Q] ⇓ θ.

CONCUR 2024

30:6 Around Classical and Intuitionistic Linear Processes

J[x ↔ y] ⊢c x : A, y : A⊥K = {(a, a) | a ∈ JAK} Jx[] ⊢c x : 1K = {(∗)} J0 ⊢c K = {()}

Jx().P ⊢c Γ, x : ⊥K = {(γ, ∗) | γ ∈ JP ⊢c ΓK}

J(νx)(P | Q) ⊢c Γ, ∆K = {(γ, δ) | (γ, a) ∈ JP ⊢c Γ, x : AK, (δ, a) ∈ JQ ⊢c ∆, x : A⊥K}

Jx[y].(P | Q) ⊢c Γ, ∆, x : A⊗BK =
{

(γ, δ, (a, b)) | (γ, a) ∈ JP ⊢c Γ, y : AK,
(δ, b) ∈ JQ ⊢c ∆, x : BK

}
Jx(y).P ⊢c ∆, x : A NBK = {(γ, δ, (a, b)) | (γ, a, b) ∈ JP ⊢c ∆, y : A, x : BK}

Jx[i].P ⊢c Γ, x : A1⊕A2K = {(γ, (i, a)) | (γ, a) ∈ JP ⊢c Γ, x : AiK}

Jx.case(P1, P2) ⊢c Γ, x : A1NA2K =
⋃

i∈{1,2}

{(γ, (i, a)) | (γ, a) ∈ JPi ⊢c Γ, x : AiK}

J!x(y).P ⊢c ?∆, x : !AK =
{

(⊎k
j=1α1

j , . . . , ⊎k
j=1αn

j , Ha1, . . . , anI)
| ∀i ∈ {1, . . . , k}.(α1

i , . . . , αk
i , ai) ∈ JP ⊢c ?∆, y : AK

}
J?x[y].P ⊢c Γ, x : ?AK = {(γ, HaI) | (γ, a) ∈ JP ⊢c Γ, y : AK}

JP ⊢c Γ, x : ?AK = {(γ, ∅) | γ ∈ JP ⊢c ΓK}

JP{x1/x2} ⊢c Γ, x1 : ?AK = {(γ, α1 ⊎ α2) | (γ, α1, α2) ∈ JP ⊢c Γ, x1 : ?A, x2 : ?AK}

Figure 5 Classical Processes: Denotational Semantics.

We take this notion of observational equivalence as the equivalence of CP0, sometimes
writing P ≃ Q ⊢c Γ to emphasize the typing of processes we are comparing. Establishing
observational equivalence of two processes directly is complicated, due to the universal
quantification over all potential configurations C. To establish equivalence in a compositional
way, we recall Atkey’s notion of denotational semantics for CP in Figure 5: it assigns to
each process P ⊢c ∆ a denotation JP ⊢c ∆K as a subset of observations J∆K on its names.
When the typing of a process P is clear from the context we simply write JP K ⊆ J∆K. The
denotational semantics are sound and complete w.r.t. the observations:

▶ Theorem 2.2 (Adequacy [1]). If C ⊢c · | Θ, then C ⇓ θ iff θ ∈ JC ⊢c · | ΘK.

Hence, we can use denotational semantics to prove observational equivalence:

▶ Corollary 2.3 ([1]). If P, Q ⊢c Γ and JP K = JQK, then P ≃ Q.

Above, the condition P, Q ⊢c Γ is important, as there are processes with different types that
have the same denotations. Examples are x[1].x[] ⊢c x : 1⊕1 and x.case(x[], x[]) ⊢c x : 1N1.
▶ Remark 2.4. Atkey shows that ≃ captures many equalities on processes induced by proof
transformations, such as cut permutations and commuting conversions; see [1, Sect. 5].

Laurent’s Translation (−)•
R. As mentioned above, Laurent gives a parametric translation

from CLL to ILL. Here we recall this translation following [16, § 2.1], considering only the
class of formulas needed for our purposes. The formulas of ILL are built using the grammar:

I, J ::= 1 | I⊗J | I ⊸ J | I⊕J | INJ | !I

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:7

Table 1 Translations (−)•
R and (−)•⊥

R .

F F •
R (ILL) F •

R (CLL) F •⊥
R

⊥ 1 1 ⊥
1 1 ⊸ R ⊥ NR 1 ⊗ R⊥

A ⊗ B
((A•

R ⊸ R) ⊗ (B•
R ⊸ R))

⊸ R
((A•⊥

R

NR) ⊗ (B•⊥
R

NR))⊥

`R
((A•⊥

R

NR) ⊗ (B•⊥
R

NR))
⊗ R⊥

A NB A•
R ⊗ B•

R A•
R ⊗ B•

R A•⊥
R

NB•⊥
R

A ⊕ B
((A•

R ⊸ R) ⊕ (B•
R ⊸ R))

⊸ R
((A•⊥

R

NR) ⊕ (B•⊥
R

NR))⊥

`R
((A•⊥

R

NR) ⊕ (B•⊥
R

NR))
⊗ R⊥

ANB A•
R ⊕ B•

R A•
R ⊕ B•

R A•⊥
R NB•⊥

R

!A !(A•
R ⊸ R) ⊸ R (!(A•⊥

R

NR))⊥ NR !(A•⊥
R

NR) ⊗ R⊥

?A !((A•
R ⊸ R) ⊸ R) !((A•⊥

R

NR)⊥ NR) ?((A•⊥
R

NR) ⊗ R⊥)

The sequent calculus for ILL (omitted for space reasons) works on the judgments of the form
∆ ⊢i I. Let R be a fixed but arbitrary formula in ILL. We have the following derivable rules:

Γ, I ⊢i R
RR

Γ ⊢i I ⊸ R
Γ ⊢i I R ⊢i R RL

Γ, I ⊸ R ⊢i R

By using Rule RR, the formula I in the left-hand side of ⊢i becomes I ⊸ R on the right-hand
side. Similarly, by using Rule RL, the formula I on the right-hand side of ⊢i becomes I ⊸ R
on the left-hand side. Moving the formula I from one side to the other of ⊢i results in I ⊸ R,
which allows us to mimic in ILL the one-sided sequents of CLL. The translation in ILL of a
CLL formula F , denoted (F)•

R, is inductively defined using this movement of formulas; see
Table 1 (second column).

The amount of (nested) occurrences of “⊸ R” indicates how many times a formula has
to be moved. Not all connectives require such transformations; we will expand on this in § 3.
This translation extends to contexts as expected; it is correct, in the following sense:

▶ Theorem 2.5 ([16]). If ⊢c ∆ is provable in CLL then ∆•
R ⊢i R is provable in ILL.

Given an R such that
⊗

n R ⊢i R (for all n > 0), the theorem extends to CLL02 – CLL with
the corresponding Mix0 and Mix2 rules (obtained from CP02 in Figure 2). The following
result considers the case R = 1; it will be useful in § 4, where we use CP02.

▶ Lemma 2.6 ([16]). Let R = 1. ⊢c ∆ is provable in CLL02 iff ∆•
R ⊢i R is provable in ILL.

As already mentioned, since we interpret propositions as sessions, we pick the simplest residual
formula/protocol that satisfies the premise of Lemma 2.6, i.e., we fix R = 1. Considering
this, in the remainder of the paper we refer to the translation simply as (−)•.

3 A Denotational Characterization of Laurent’s Translation

Here we study the effect of Laurent’s translation (−)• on processes typed under CP0. We prove
our first full abstraction result (Corollary 3.12) by lifting (−)• to the level of denotations.

The Composed Translation. As discussed in § 1, we wish to compare processes in the
uniform setting of CLL. We know that if ∆ ⊢i A is provable in ILL, then ⊢c ∆⊥, A is
provable in CLL (see, e.g., [16]). Hence, we can interpret sequents in ILL as sequents in CLL.

CONCUR 2024

30:8 Around Classical and Intuitionistic Linear Processes

Notice that formulas in ILL can be treated as formulas in CLL by letting A ⊸ B := A⊥ N

B.
Using this transformation within the composition of (−)• and (−)⊥, we obtain the desired
transformation on CLL proofs. From now on, we shall write (−)•⊥ to denote the translation
given in Table 1 (rightmost column).

▶ Theorem 3.1. If ⊢c ∆ is provable in CLL0, then ⊢c ∆•⊥, 1 is provable in CLL0.

We shall write A ∈ CP0, when is clear from the context that A is a type. Similarly, A ∈ CLL0
says that A is a formula in CLL0.

The Translation on Processes. (−)•⊥ induces a translation on processes, denoted (−)•,
which is defined inductively on typing derivations (Definition 3.3). This translation is the
computational interpretation of the composition of the two steps in Figure 1. Before detailing
its definition, we examine two illustrative cases: output and input.

Let us first consider the process P = x[y].(P1 | P2), which is typed as follows:
P1 ⊢c ∆, y : A P2 ⊢c Γ, x : B ⊗
x[y].(P1 | P2) ⊢c ∆, Γ, x : A⊗B

From the standpoint of the “propositions-as-sessions” interpretation, by Theorem 2.5 there
exists a process (P)• and fresh names z and w such that ∆•, z : (A⊗B)• ⊢i (P)• :: w : 1.
As Table 1 (second column) shows, (A⊗B)• = ((A• ⊸ 1) ⊗ (B• ⊸ 1)) ⊸ 1. To determine
the shape of (P)•, we can reason inductively and apply Theorem 2.5 to the judgments
P1 ⊢c ∆, y : A and P2 ⊢c Γ, x : B. This gives us ∆•, y : A• ⊢i (P1)• :: z1 : 1 and
Γ•, x : B• ⊢i (P2)• :: z2 : 1, respectively. We can then obtain the following typing derivation
(and shape) for (P)•:

∆•, y : A• ⊢i (P1)• :: z1 : 1
∆• ⊢i z1(y).(P1)• :: z1 : A•⊸1

Γ•, x : B• ⊢i (P2)• :: z2 : 1
Γ• ⊢i z2(x).(P2)• :: z2 : B•⊸1

∆•, Γ• ⊢i z2[z1].(z1(y).(P1)• | z2(x).(P2)•) :: z2 : (A•⊸1)⊗(B•⊸1) (⋆)
∆•, Γ•, x′ : (A⊗B)• ⊢i x′[z2].(z2[z1].(z1(y).(P1)• | z2(x).(P2)•) | [x′ ↔ w])︸ ︷︷ ︸

(P)•

:: w : 1

where (⋆) stands for x′ : 1 ⊢i [x′ ↔ w] :: w : 1. Above, we see how each nested “⊸ 1”
induced by Laurent’s translation entails extra actions on the level of processes, due to
the interpretation of ⊸ as input (when introduced on the right, as in this case): moving
y : A• and x : B• to the right-hand side induces the inputs along z1 and z2, respectively.
Subsequently, we use the ⊗ rule on the right, which produces the output on z2; we then
move the resulting assignment for z2 back to the left, finally obtaining x′ : (A⊗B)•. This last
movement adds the final “⊸ 1”: because it is introduced on the left, we obtain an output
along x′. At this point, we can return to the classical setting by applying the translation
(−)⊥ to the derivation above, which leads to the following typing derivation for (P)• in CP0:

(P1)• ⊢c ∆•⊥, y : A•⊥, z1 : 1
z1(y).(P1)• ⊢c ∆•⊥, z1 : A•⊥ N1

(P2)• ⊢c Γ•⊥, x : B•⊥, z2 : 1
z2(x).(P2)• ⊢c Γ•⊥, z2 : B•⊥ N1

z2[z1].(z1(y).(P1)• | z2(x).(P2)•) ⊢c ∆•⊥, Γ•⊥, z2 : (A•⊥ N1)⊗(B•⊥ N1) (⋆⋆)
x′[z2].(z2[z1].(z1(y).(P1)• | z2(x).(P2)•) | [x′ ↔ w])︸ ︷︷ ︸

(P)•

⊢c ∆•⊥, Γ•⊥, x′ : (A⊗B)•⊥
, w : 1

where (⋆⋆) stands for [x′ ↔ w] ⊢c x′ : ⊥, w : 1. Importantly, while the translation (−)⊥

modifies the types for (P)•, it does not change its shape. Also, it is worth noticing how the
output on x in P is mimicked by (P)• through the output on z2, not by the output on x′.

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:9

Now consider the case when Q = x(y).Q1, which is typed as:

Q1 ⊢c ∆, y : A, x : B

x(y).Q1 ⊢c ∆, x : A

N

B

In this case, we expect to obtain a process (Q)• such that ∆•, x′ : (A N

B)• ⊢i (Q)• :: w : 1,
where (A NB)• = A• ⊗ B• (cf. Table 1, second column). By reasoning inductively on
Q1 ⊢c ∆, y : A, x : B, we obtain ∆•, y : A•, x′ : B• ⊢i (Q1)• :: w : 1, which enables us to
obtain the following derivation:

∆•, y : A•, x′ : B• ⊢i (Q1)• :: w : 1
∆•, x′ : A• ⊗ B• ⊢i x′(y).(Q1)•︸ ︷︷ ︸

(Q)•

:: w : 1

Differently from the case of ⊗, here the transformation (−)• does not add any “⊸ 1”. This
is relevant, because it ensures that the process (Q)• does not have input/output actions in
front of the input on x′, which mimics the input on x in Q. By applying the translation
(−)⊥ to the derivation above, we obtain the following typing derivation for (Q)• in CP0:

(Q1)• ⊢c ∆•⊥, y : A•⊥, x′ : B•⊥, w : 1
x′(y).(Q1)•︸ ︷︷ ︸

(Q)•

⊢c ∆•⊥, x′ : (A NB)•⊥
, w : 1

Once again, notice that the translation (−)⊥ does not modify the shape of (Q)•.
A key observation is that although P = x[y].(P1 | P2) and Q = x(y).Q1 are compatible

(i.e., they have complementary actions on x), their translations (P)• and (Q)• are not. In
general, given two composable processes P ⊢c ∆, x : A and Q ⊢c Γ, x : A⊥, we have:

(P)• ⊢c ∆•⊥, x′ : A•⊥, w : 1 (Q)• ⊢c Γ•⊥, x′ : A⊥•⊥
, z : 1

and so (P)• and (Q)• cannot be composed directly: the types of x′ are not dual ((A•⊥)⊥ ̸=
A⊥•⊥). To circumvent this difficulty, we shall consider synchronizer processes SA

z,w such that

SA
z,w ⊢c w : A•⊗⊥, z : A⊥•⊗⊥, s : 1

Using synchronizers, a mediated composition between (P)• and (Q)• is then possible:

(νw)((νz)(z(y).(Q)• | SA
z,w) | w(x′).(P)•)

Synchronizer processes have a purely logical origin: Laurent [16] shows that for any A the
sequent ⊢c A•⊗⊥, A⊥•⊗⊥, 1 is provable; using this result, the definition of synchronizers
(given next) arises by reading off the process associated with this proof.

▶ Definition 3.2 (Synchronizer). Given F ∈ CP0 and names z, w, and s, we define the
synchronizer process SA

z,w, satisfying SA
z,w ⊢c z : A•⊗⊥, w : A⊥•⊗⊥, s : 1, by recursion on A.

Armed with the notion of synchronizer processes, we can finally define:

▶ Definition 3.3 (Laurent’s translation on processes). Let SA
z,w be a synchronizer as in

Definition 3.2. Given a typed process P ⊢c ∆, we define (P)• inductively in Figure 6.

The next lemma ensures that for a given CP0 process P , (P)• is well-typed.

CONCUR 2024

30:10 Around Classical and Intuitionistic Linear Processes

([x ↔ y])• = x′[x].([x ↔ y] | [x′ ↔ w])
(x().P)• = x′().(P)•

(x[])• = x′[x].(x[] | [x′ ↔ w])
(x(y).P)• = x′(y).(P)•

(x[y].(P | Q))• = x′[z2].(z2[z1].(z1(y).(P)• | z2(x).(Q)•) | [x′ ↔ w])
(x.case(P1, P2))• = x′.case((P1)•, (P2)•)

(x[i].P)• = x′[z].(z[i].z(y).(P)• | [x′ ↔ w])
(!x(y).P)• = x′[x].(!x(v).v(y).(P)• | [x′ ↔ w])
(?x[y].P)• = ?x′[m].m[v].(v(y).(P)• | [m ↔ w])

((νx)(P | Q))• = (νw)((νz)(z(x′).(Q)• | SA
z,w) | w(x′).(P)•)

Figure 6 Laurent’s translation on CP processes (Definition 3.3).

▶ Lemma 3.4. Let P ⊢c ∆ be a process in CP0, then (P)• ⊢c ∆•⊥, w : 1.

▶ Example 3.5. To illustrate mediated composition, consider the processes x[] ⊢c x : 1
and x().P ⊢c ∆, x : ⊥. By Lemma 3.4, we have x′[x].(x[] | [x′ ↔ w]) ⊢c x′ : 1•⊥, w : 1 and
z(m).m().(P)• ⊢c ∆•⊥, m : ⊥, z : 1, respectively. These two processes can be composed with
the synchronizer for A = 1:

S1
w,z = w[x′].(x′(x).z[m1].([m1 ↔ x] | [x′ ↔ z]) | [w ↔ s])

By expanding Definition 3.3, we obtain the following observational equivalence:

((νx)(x[] | x().P))• = (νz)((νw)(w(x′).(x[])• | S1
z,w) | z(m).(x().P)•)

= (νz)((νw)(w(x′).x′[x].(x[] | [x′ ↔ w])
| w[x′].(x′(x).z[m].([m ↔ x] | [x′ ↔ z]) | [w ↔ s]))
| z(m).m().(P)•)

≃ (P)•{s/z}

Properties. The logical translations strongly suggest that P and (P)• should be equivalent
in some sense. How to state this relation? Our technical insight is to bring (−)•⊥ to the
level of denotations: we define the function LA(−) : JAK → JA•⊥K, which “saturates” JAK
by adding as many “∗” (the observation of 1 and ⊥) as residual ⊥s and 1s are induced by
(−)•⊥.

▶ Definition 3.6 (Transformations on Denotations). Given A ∈ CP0, LA(−) : JAK 7→ JA•⊥K is
defined in Figure 7. Given ∆ = x1 : A1, . . . , xn : An, we define L∗

∆(−) : J∆K 7→ J∆•⊥, 1K as

L∗
∆((a1, . . . , an)) = (LA1(a1), . . . ,LAn

(an), ∗)

Our goal is to show that L∗
∆(JP ⊢c ∆K) = J(P)• ⊢c ∆•⊥, w : 1K (Theorem 3.11). In particular

we use synchronizers (and their observations) to prove the property for processes with cut.
Also, the following two properties will be useful:

▶ Lemma 3.7. For any A and ∆ in CP0, both LA(−) and L∗
∆(−) are injective.

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:11

L⊥(∗) = ∗ L!A(Ha1, a2I) = (H(LA(a1), ∗), (LA(a2), ∗)I, ∗)
L1(∗) = (∗, ∗) L?A(Ha1, a2I) = H((LA(a1), ∗), ∗), ((LA(a2), ∗), ∗)I

LA NB((a, b)) = (LA(a),LB(b)) LA⊗B((a, b)) = ((LA(a), ∗), (LB(b), ∗), ∗)
LA1NA2((i, a)) = (i,LAi(a)) LA1⊕A2((i, a)) = ((i, (LAi(a), ∗)), ∗)

Figure 7 Transformation on denotations induced by Laurent’s translation (Definition 3.6). The
generalized definitions L!A(Ha1, . . . , anI) and L?A(Ha1, . . . , anI) arise as expected.

▶ Lemma 3.8. Let ?A ∈ CP0. Suppose αj ∈ J?AK for all j = 1, . . . , k. Then L?A(⊎k
j=1αj) =

⊎k
j=1L?A(αj).

Proof sketch. It follows by Definition 3.6 and definition of ⊎. ◀

As explained above, synchronizers mediate between the translation of two processes. The
following lemma ensures that a synchronizer SA

w,z acts as a forwarder:

▶ Lemma 3.9. Let ∆ = z : A•⊗⊥, w : A⊥•⊗⊥, s : 1, for some A ∈ CP0. Then
JSA

z,w ⊢c ∆K = {((LA(a), ∗), (LA⊥(a), ∗), ∗) | a ∈ JAK}.

Proof sketch. The proof follows by induction on A. ◀

The next lemma is crucial to ensure that the denotations of a composed process correspond
(in the sense of Definition 3.6) with those of its translation:

▶ Lemma 3.10 (Synchronizers are well-behaved). Let P, P ′, Q, Q′ ∈ CP02, such that

JP ′ ⊢c ∆′, x′ : A•⊥, w : 1K = L∗
∆,x:A(JP ⊢c ∆, x : AK)

JQ′ ⊢c Γ′, x′ : A⊥•⊥
, z : 1K = L∗

Γ,y:A⊥(JQ ⊢c Γ, x : A⊥K)

Then:

(δ, γ) ∈ J(νx)(P | Q)K ⇔ (L∆(δ),LΓ(γ), ∗) ∈ J(νw)(w(x′).P ′ | (νz)(z(x′).Q′ | SA
z,w))K.

Proof.

(δ, γ) ∈ J(νx)(P | Q)K
⇔ (δ, a) ∈ JP K ∧ (γ, a) ∈ JQK (by Figure 5)
⇔ (L∆(δ),LA(a), ∗) ∈ JP ′K ∧ (LΓ(γ),LA⊥(a), ∗) ∈ JQ′K (by assumption)
⇔ (L∆(δ), (LA(a), ∗)) ∈ Jw(x′).P ′K ∧ (LΓ(γ), (LA⊥(a), ∗)) ∈ Jz(x′).Q′K (by Figure 5)
⇔ (L∆(δ), (LA⊥(a), ∗), ∗) ∈ J(νw)(w(x′).P ′ | SA

z,w)K
∧ (LΓ(γ), (LA⊥(a), ∗)) ∈ Jz(x′).Q′K (by Lemma 3.9)

⇔ (L∆(δ),LΓ(γ), ∗) ∈ J(νw)(w(x′).P ′ | (νz)(z(x′).Q′ | SA
z,w))K (by Figure 5)

◀

The next result, Theorem 3.11, states that the lifting of Laurent’s transformation (−)•⊥ to
the level of denotations is correct.

▶ Theorem 3.11. Let P ⊢c Γ be a CP0 process. Then L∗
Γ(JP ⊢c ΓK) = J(P)• ⊢c Γ•⊥, w : 1K.

CONCUR 2024

30:12 Around Classical and Intuitionistic Linear Processes

C ⇓ θ C ′ ⇓ γ

C | C ′ ⇓ (σ, γ)
ObsMix

C1 ⊢cfg Γ1 | Σ1 C2 ⊢cfg Γ2 | Σ2

C1 | C2 ⊢cfg Γ1, Γ2 | Σ1, Σ2
cfgMix

JP | Q ⊢c Γ, ∆K = {(γ, δ) | γ ∈ JP ⊢c ΓK, δ ∈ JQ ⊢c ∆K}

Figure 8 Extensions concerning Mix2.

Proof sketch. By induction on the structure of P ⊢c Γ, with a case analysis in the last
rule applied. We give a representative case. Consider !x(y).P ⊢c ?∆, x : !A, with ∆ = x1 :
A1, . . . , xn : An. In one direction, we apply Lemma 3.8 and Definition 3.6 to show

L∗
?∆,x:!A(J!x(y).P ⊢c ?∆, x : !AK)

= {L∗
?∆,x:!(A)(⊎k

j=1α1
j , · · · , ⊎k

j=1αn
j , Ha1, , · · · , akI) |

∀i ∈ {1, · · · , k}.(α1
i , · · · , αn

i , ai) ∈ JP ⊢c ?∆, y : AK}
= {(⊎k

j=1β1
j , · · · , ⊎k

j=1βn
j , (H(b1, ∗), · · · , (bk, ∗)I, ∗), ∗) | with LAi

(αi) = βi,
∀i ∈ {1, · · · , k}.(α1

i , · · · , αn
i , ai, ∗) ∈ JP ⊢c ?∆, y : AK} (and LA(a) = b)

In the other direction, by the I.H., we obtain:

J(!x(y).P)• ⊢c (?∆)•⊥
, m : (!A)•⊥

, w : 1K

= {(⊎k
j=1β1

j , · · · , ⊎k
j=1βn

j , (H(b1, ∗), · · · , (bk, ∗)I, ∗), ∗) |
∀i ∈ {1, · · · , k}.(α1

i , · · · , αn
i , ai, ∗) ∈ JP ⊢c ?∆, y : AK}

when the last rule is cut, we rely on I.H. and Lemma 3.10. ◀

By combining Theorems 2.2 and 3.11 and Lemma 3.7, we obtain our first full abstraction
result:

▶ Corollary 3.12 (Full Abstraction (I)). Suppose P, Q ⊢c ∆. Then P ≃ Q iff (P)• ≃ (Q)•.

Proof. We have the following equivalences:

P ≃ Q ⇔ JP ⊢c ∆K = JQ ⊢c ∆K (by Theorem 2.2)
⇔ L∗

∆(JP ⊢c ∆K) = L∗
∆(JQ ⊢c ∆K) (by Lemma 3.7)

⇔ J(P)• ⊢c ∆•⊥, w : 1K = J(Q)• ⊢c ∆•⊥, w : 1K (by Theorem 3.11)
⇔ (P)• ≃ (Q)• (by Theorem 2.2)

◀

4 An Operational Characterization of Laurent’s Translation

In this section, we show that the translation (−)• can be internalized as an evaluation context.
That is, given P ⊢c ∆, we can define a corresponding transformer context, denoted T̂∆[−].
Using this context, we obtain a process denoted T̂∆[P], in which the behavior of P is adapted
following ∆, so as to produce ∆•⊥, w : 1. This is clearly different from translating P into (P)•

by examining its structure. We shall show that T̂∆[P] is equivalent to (P)• (Corollary 4.10).
As in § 3, we will also show a full-abstraction result for T̂∆[−] (Corollary 4.15).

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:13

T⊥
x,x′ = [x ↔ y] ⊢c x : 1, x′ : ⊥

T1
x,x′ = x′[y].([y ↔ x] | x′().0) ⊢c x : ⊥, x′ : 1⊗⊥

TA⊗B
x,z = x(y).z[z2].(z1[z2].(z1(y).(TA

y,y′ | z1[]) | z2(x′).(TB
x,x′ | z2[]) | z().0 ⊢c ∆

(with ∆ = x : A⊥ NB⊥, z : (A⊗B)•⊥)
TA NB

x,x′ = x′(y′).x[y].(TA
y,y′ | TB

x,x′) ⊢c x : A⊥⊗B⊥, x′ : A NB•⊥

T!A
x,x′ = x′[w′].(!w′(w).?x[y].w(y′).(TA

y,y′ | w[]) | x′().0) ⊢c x : ?(A⊥), x′ : (!A)•⊥

T?A
x,x′ = !x(y).?x′[m].m[z].(z(y′).(TA

y,y′ | z[]) | m().0) ⊢c x : !(A⊥), x′ : (?A)•⊥

TA1NA2
x,x′ = x′.case(x[1].TA1

x,x′ , x[2].TA2
x,x′) ⊢c x : A⊥

1 ⊕A⊥
2 , x′ : (A1NA2)•⊥

TA1⊕A2
x,x′ = y.case(P1, P2) ⊢c x : A⊥

1 NA⊥
2 , x′ : (A1⊕A2)•⊥

(with Pi = m[w].
(
w[i].w(y′).(TAi

x,x′ | w[]) | m().0
)
)

Figure 9 Transformer processes (Definition 4.3).

This strategy works in presence of Rule Mix2 (cf. Figure 2). Hence, in this section we work
with typed processes in CP02. Accordingly, we extend the denotational semantics (cf. § 2)
as given in Figure 8. It is easy to check that soundness and completeness (Theorem 2.2
and Corollary 2.3) still hold for CP02. In CP02, additional observational equivalences arise
from permutation of Rule Mix2 with other rules:

▶ Lemma 4.1. Given P, Q, R ∈ CP02, we have: x.case(P, Q) | R ≃ x.case(P | R, Q | R),
(νx)(P | Q) | R ≃ (νx)(P | (Q | R)) ≃ (νx)((P | R) | Q) and x[y].(P | (Q | R)) ≃
x[y].(P | Q) | R.

We also need to extend (−)• (Definition 3.3). Given processes P ⊢c ∆ and Q ⊢c Γ (with
their translations (P)• ⊢c ∆•⊥, y : 1 and (Q)• ⊢c Γ•⊥, x : 1, respectively), we define:

(P | Q)• = (νx)(x[y].((P)• | (Q)•) | Mx)

where Mx = x(y).y().[x ↔ m]. It is easy to check that Mx ⊢c x : ⊥ N⊥, m : 1.

▶ Remark 4.2. The results about L∗(−) in § 3 can be adapted to CP02.

Transformers. We define transformer processes, which adapt the behavior of one session on
a given name.

▶ Definition 4.3 (Transformers). Given a type A in CP02, we define the transformer process
TA

x,x′ ⊢c x : A⊥, x′ : A•⊥ by induction on the type A as in Figure 9. With a slight abuse of
notation, in the figure we write TA

x,x′ = P ⊢c ∆ to express that TA
x,x′ = P with P ⊢c ∆.

We now define transformer contexts, which adapt an entire context ∆ using transformer
processes. We first define typed contexts.

Typed Process Contexts. A typed context is a typed process with a typed hole. We write
K[□] ⊢c

k ∆ ∥ Γ for a typed context which contains a typed hole □, and which produces
a process of type Γ. That is, given a process P ⊢c ∆, we can fill K[□] as K[P] ⊢c Γ, by

CONCUR 2024

30:14 Around Classical and Intuitionistic Linear Processes

K[□] ⊢c
k Σ ∥ Γ, x : A Q ⊢c ∆, x : A⊥

(νx)(K[□] | Q) ⊢c
k Σ ∥ Γ, ∆

KCut1

K[□] ⊢c
k Σ ∥ Γ P ⊢c ∆

K[□] | P ⊢c
k Σ ∥ Γ, ∆

KMix
□ ⊢c

k ∆ ∥ ∆
KHole

Figure 10 Typed Contexts.

replacing the unique occurrence of □ with P . Figure 10 gives the rules for forming typed
contexts. As an example, consider the derivation for a parallel context (νx)(□ | TA

x,y):

□ ⊢c
k x : A ∥ x : A TA

x,y ⊢c x : A⊥, y : A•⊥

(νx)(□ | TA
x,y) ⊢c

k x : A ∥ y : A•⊥

Above, we can replace the use of Rule KHole with a typing derivation for P ⊢c x : A, thus
obtaining (νx)(P | TA

x,y) ⊢c y : A•⊥. Such “filling” of contexts can be done in general:

▶ Lemma 4.4. Given K[□] ⊢c
k ∆ ∥ Γ and P ⊢c ∆, we have that K[P] ⊢c Γ is derivable.

Transformer contexts. As we have seen, contexts in our setting are hardly arbitrary: only
type-compatible processes are inserted into holes. Based on this observation, and following
the typing rules, we define transformer contexts and transformer contexts with closing name:

▶ Definition 4.5. Let ∆ = x1 : A1, . . . , xn : An be a typing context. We define:
transformer contexts: T∆[□] = (νxn)(· · · (νx1)(□ | TA1

x1,y1
) | · · ·) | TAn

xn,yn
)

transformer contexts with closing name (z is fresh wrt ∆): T̂∆[□] = T∆[□] | z[].

Note that by Remark 2.4 the order of the cuts in T∆[−] does not matter.
We will show that transformers are correct: the transformed process T̂∆[P] is equivalent

to the translated process (P)• (Lemma 4.9). We need auxiliary results about transformers.

▶ Lemma 4.6. The following observational equivalences hold:
x′(y′).T̂∆,y:A,x:B [P] ≃ T̂∆,x:A NB [x(y).P]
x′[w′].(!w′(w).w(y′).T̂?(∆),y:A[P] | x′().0) | n[] ≃ T̂∆,x:!A[!x(y).P]
?x[m].m[z].(z(y).T̂∆,y:A[P] | m().0) ≃ T̂∆,x:?A[?x[y].P]
m[w].(w[i].w(y).T̂∆,y:A[P] | m().0) | n[] ≃ T̂y:A1⊕A2 [y[i].P]
y′.case(T̂∆,y:A1 [P1], T̂∆,y:A2 [P2]) ≃ T̂∆y:A1NA2 [y.case(P1, P2)]
z[z2].(z2[z1].(z1(y′).T̂∆,y:A[P1] | z2(x′).T̂Γ,x:B [P2]) | z().0) | w[] ≃
T̂∆,Γ,x:A⊗B [x[y].(P1 | P2)]

Proof sketch. The proof follows from Remark 2.4 and Lemma 4.1. ◀

▶ Lemma 4.7. J[x ↔ y] ⊢c x : 1, y : ⊥K = Jx[] | y().0 ⊢c x : 1, y : ⊥K

▶ Lemma 4.8. Let ∆ = x1 : !A⊥, x′
1 : ?((A N1)⊗⊥). We have:

JT?A
x1,x′

1
⊢c ∆K =

{
(Ha1, . . . , akI, ⊎k

j=1H((a′, ∗), ∗)I)
| ∀i ∈ {1, . . . , k}.(ai, a′

i) ∈ JTA
y,y′ ⊢c y : A⊥, y′ : A•⊥K

}
We may now establish the correctness of transformers:

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:15

▶ Lemma 4.9. Suppose P ⊢c Γ. Then J(P)• ⊢c Γ•⊥, w : 1K = JT̂Γ[P] ⊢c Γ•⊥, w : 1K.

Proof sketch. By induction on the structure of P . We consider a number of illustrative
cases. If P = !x(y).P ′, then:

(!x(y).P ′)• = m[x].(!x(w).w(y).(P ′)• | [m ↔ n])

≃ m[x].(!x(w).w(y).T̂∆,y:A[P ′] | m().0) | n[] (by I.H. and Lemma 4.7)

≃ T̂∆,x:!(A)[P ′] (by Lemma 4.6)

If P = (νx)(R | Q), then we need to show:

(P)• ≃ (νz)(z(y).T̂Γ,x:A⊥ [Q] | (νw)(w(x′).T̂∆,x:A[R] | SA
z,w)) ≃ T̂Γ,∆[(νx)(R | Q)]

By I.H. and Theorem 3.11 we know that:

(L∆(δ),LΓ(γ), ∗) ∈ J(νz)(z(y).T̂Γ,x:A⊥ [Q] | (νw)(w(x′).T̂∆,x:A[R] | SA
z,w))K

⇔ (δ, γ) ∈ J(νx)(R | Q)K

Thus, the observations on the left-hand side are exactly those from (νx)(R | Q) under some
transformation; that transformation being the one induced by the transformers, having thus
the same observation as T̂Γ,∆[(νx)(R | Q)]. When the last rule applied is either W or C, we
rely on the I.H. and Lemma 4.8. ◀

▶ Corollary 4.10. Given P ⊢c ∆, then (P)• ≃ T̂∆[P].

Proof. The proof follows from Corollary 2.3 and Lemma 4.9. ◀

Transformer contexts and L∗
∆(−). Transformer contexts induce a function on denotations,

similar to L∗
∆(−) (Definition 3.6). In general, we have the following result, for any context.

▶ Definition 4.11. For K[□] ⊢c
k ∆ ∥ Γ, we define JK[□]K : P(J∆K) 7→ P(JΓK) inductively:

J□ ⊢c
k ∆ ∥ ∆K(X) = X

J(νx)(K[□] | Q) ⊢c
k ∆ ∥ Σ, ΓK(X) =

{
(σ, γ) |

(σ, a) ∈ JK[□] ⊢c
k ∆ ∥ Σ, x : AK(X),

(γ, a) ∈ JQ ⊢c Γ, x : A⊥K

}
JK[□] | Q ⊢c

k ∆ ∥ Σ, ΓK(X) = {(σ, γ) | σ ∈ JK[□] ⊢c
k ∆ ∥ ΣK(X), γ ∈ JQ ⊢c ΓK}

▶ Lemma 4.12. Let K[□] ⊢c
k ∆ ∥ Γ and P ⊢c ∆ be a typed context and process, respectively.

Then JK[□] ⊢c
k ∆ ∥ ΓK(JP ⊢c ∆K) = JK[P] ⊢c ΓK.

Definition 4.11 can be specialized to transformer contexts, so as to obtain the following
function: JT̂∆[□]K : P(J∆K) → P(J∆•⊥, w : 1K). Putting all these elements together, we can
show that transformers also internalize Laurent’s translation on the level of denotations.

▶ Lemma 4.13. For any type A ∈ CP02, and for any a ∈ JAK, b ∈ JA•⊥K, we have

(a, b) ∈ JTA
x,yK ⇐⇒ LA(a) = b

Proof. By induction on the type A. ◀

▶ Theorem 4.14. For any typing context ∆, and for any set X ⊆ J∆K,

JT̂∆[□] ⊢c
k ∆ ∥ ∆•⊥, w : 1K(X) = L∗

∆(X)

CONCUR 2024

30:16 Around Classical and Intuitionistic Linear Processes

Proof. Let ∆ = x1 : A1, . . . , xn : An. Then, J∆•⊥, w : 1K = JA1
•⊥K × · · · × JAn

•⊥K × {∗}.
Then, we reason as follows:

(δ1, . . . , δn, ∗) ∈ JT̂∆[□]K(X)
⇐⇒ (δ1, . . . , δn) ∈ JT∆[□]K(X) = J(νxn)(· · · (νx1)(□ | TA1

x1,x′
1
) | · · ·) | TAn

xn,x′
n
)K(X)

⇐⇒ ∃dn ∈ JAnK.
(dn, δn) ∈ JTAn

xn,x′
n
K ∧

(δ1, . . . , δn−1, dn) ∈ J(νxn−1)(· · · (νx1)(□ | TA1
x1,x′

1
) | · · ·))K(X)

⇐⇒ ∃dn ∈ JAnK, . . . , d1 ∈ JA1K.
(dn, δn) ∈ JTAn

xn,x′
n
K ∧ · · · ∧ (d1, δ1) ∈ JTA1

x1,x′
1
K∧

(d1, . . . , dn) ∈ J□K(X)
⇐⇒ ∃(d1, . . . , dn) ∈ X. LA1(d1) = δ1 ∧ · · · ∧ LAn

(dn) = δn

⇐⇒ (δ1, . . . , δn, ∗) ∈ L∗
∆(X) ◀

Thus, Theorem 4.14 shows that T̂∆[□] is the proper internalization of Laurent’s translation
as a typed context in CP02. In § 3 we have shown that Laurent’s translation preserves and
reflects equivalence of processes. Theorem 4.14 allows us to lift that result to processes with
transformers, thus also obtaining a full abstraction result:

▶ Corollary 4.15 (Full Abstraction (II)). For all P ∈ CP02,

P ≃ Q ⊢c ∆ ⇔ T̂∆[P] ≃ T̂∆[Q] ⊢c ∆•⊥, w : 1

Proof. Follows from the soundness of denotational semantics, Lemmata 3.7 and 4.12 and The-
orem 4.14. ◀

5 Concluding Remarks

This paper has brought the translation (−)• : CLL → ILL (due to Laurent [16]), into the
realm of concurrent interpretations of linear logic (“propositions-as-sessions”). As we have
seen, under the “propositions-as-sessions” interpretation, the translation converts a classical
process P into an intuitionistic process (P)• (cf. Definition 3.3); then, exploiting the fact that
(P)• can be analyzed without changes in the classical setting, we contrast the behavior of P

and (P)• using Atkey’s observational semantics for CP [1]. Our two full abstraction results
(Corollary 3.12 and Corollary 4.15) give denotational and operational characterizations that
extend the scope of Laurent’s translation, and connect purely logical results with their
corresponding computational interpretations. To our knowledge, ours is the first formal
relationship of its kind.

Differences between classical and intuitionistic variants of “propositions-as-sessions” have
already been observed by Caires and Pfenning [8] and by Wadler [24]. There are superficial
differences, such as the nature/reading of typing judgments (already discussed) and the
number of typing rules – classical interpretations have one rule per connective, whereas
intuitionistic ones have two: one for expressing the reliance on a behavior, another for
expressing an offer. But there are also more subtle differences, in particular the locality
principle, which, informally speaking, ensures that received names can only be used for
sending. Intuitionistic interpretations enforce locality for shared names. Consider, e.g., the
process P = x(y).!y(z).Q, which uses the name y received on x to define a server behavior.
Because P does not respect locality, it is not typable in the intuitionistic system of [8].

Prior work by Van den Heuvel and Pérez [22, 23] studies this specific difference: they
study the sets of processes typable under classical and intuitionistic interpretations, and
use non-local processes such as P to prove that the intuitionistic set is strictly included

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:17

in the classical one. Crucially, this prior work focuses on typing, and does not formally
relate the behavioral equivalences in the two classes, as we achieve here by coupling (−)•

with typed observational equivalences on processes. In fact, our results go beyond [22, 23]
in that Definition 3.3 stipulates how to translate a process P with non-local servers into a
corresponding process (P)• with localized servers. This translation not only follows directly
the logical translation by Laurent, but is also correct in a strong sense under the two different
perspectives (denotational and operational) given by our full abstraction results.

The issue of translating non-local processes into local processes was studied, albeit in a
different setting, by Boreale [5], who considers a calculus with locality as an intermediate
language between the asynchronous π-calculus and the internal π-calculus. His work makes
heavy use of link processes, which are closely related to the forwarding process [x ↔ y] of CP.
More fundamentally, because Borale’s translations and results are framed in the untyped,
asynchronous setting, comparisons with our work in the typed setting are difficult to draw.

We find it remarkable that our results leverage two separate, well-established technical
ingredients, namely Laurent’s translation and Atkey’s observational equivalence and denota-
tional semantics [1]. In particular, Atkey’s denotational semantics, based on the relational
semantics of CLL, is simple and effective for our purposes, and also amenable to extensions
(like incorporating support for Mix2). Indeed, our denotational characterization LA(−) of
Laurent’s translation (Definition 3.6) benefits from this simplicity.

Our technical results make use of the mix principles – we use Rule Mix0 in § 3 and also
and Rule Mix2 in § 4. The use of mix principles in the context of “propositions-as-sessions”
has been analyzed by Atkey et al. [2]. Already, one difference between Wadler’s presentation
in [24] and Atkey’s observational semantics in [1] is the use of Rule Mix0. As we have briefly
mentioned, our results in § 3 hold also for CP02, the extension with both Mix0 and Mix2.

Finally, we note that Caires and Pfenning based their interpretation on Barber’s Dual
Intuitionistic Linear Logic (DILL) [4], which is based on sequents of the form Γ; ∆ ⊢d A,
where Γ and ∆ specify unrestricted and linear assignments, respectively. This is a bit different
from ILL as considered by Laurent. However, the two systems are equivalent (as logics), and
so this difference does not jeopardize our results. Barber [4] provides translations between
DILL and ILL and shows that ILL is isomorphic to the sub-system of DILL with sequents of
the form · ; ∆ ⊢d A. From the point of view of (−)•, this means that ⊢c ∆ is a provable in
CLL iff · ; ∆• ⊢d 1 is provable in DILL. Hence we can regard (P)• as a DILL process. This
observation, together with the fact that (P)• is typable with both ∆• ⊢i 1 and ⊢c ∆•⊥, 1,
provides us with a solid groundwork for the computational interpretation of the translation.

Future Work. We intend to adapt our approach to other denotational semantics for typed
languages under “propositions-as-sessions”, such as the one by Kokke et al. [15], whose
definition is inspired by Brzozowski derivatives and includes the polarity of names/channels.
Also, we plan to study the potential of our full abstraction results as a tool for a better
understanding of the locality principle for shared names in the session-typed setting. Moreover,
it would be worthwhile exploring the consequences of varying the parameter R in Laurent’s
translation, which we currently instantiate with the simplest possible proposition/type.

From a more applied perspective, we believe that our work can shed light on connections
between different existing implementation strategies for process calculi with session types
based on linear logic. On the intuitionistic side, the work by Pfenning and Griffith develops
SILL, a language based on ILL [17]; on the classical side, recent work by Caires and Toninho
develops a Session Abstract Machine based on CLL [10]. It would be interesting to establish
to what extent our work can be applied to connect such language implementations.

CONCUR 2024

30:18 Around Classical and Intuitionistic Linear Processes

References

1 Robert Atkey. Observed communication semantics for classical processes. In Hongseok Yang,
editor, Programming Languages and Systems, pages 56–82, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg. doi:10.1007/978-3-662-54434-1_3.

2 Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation Confers Concurrency, pages
32–55. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-30936-1_2.

3 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proc. ACM
Program. Lang., 1(ICFP):37:1–37:29, 2017. doi:10.1145/3110281.

4 Andrew Barber. Dual intuitionistic linear logic, 1996. Technical report, available at https:
//www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/.

5 Michele Boreale. On the expressiveness of internal mobility in name-passing calculi. Theoretical
Computer Science, 195(2):205–226, 1998. Concurrency Theory. doi:10.1016/S0304-3975(97)
00220-X.

6 Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In Hong-
seok Yang, editor, Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, volume 10201 of Lecture Notes in Computer Science, pages 229–259. Springer, 2017.
doi:10.1007/978-3-662-54434-1_9.

7 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-aware session
types. In Wan J. Fokkink and Rob van Glabbeek, editors, 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands,
volume 140 of LIPIcs, pages 39:1–39:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.CONCUR.2019.39.

8 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
Paul Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, 21th
International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010.
Proceedings, volume 6269 of Lecture Notes in Computer Science, pages 222–236. Springer,
2010. doi:10.1007/978-3-642-15375-4_16.

9 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Math. Struct. Comput. Sci., 26(3):367–423, 2016. doi:10.1017/S0960129514000218.

10 Luís Caires and Bernardo Toninho. The session abstract machine. In Stephanie Weirich,
editor, Programming Languages and Systems - 33rd European Symposium on Programming,
ESOP 2024, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part
I, volume 14576 of Lecture Notes in Computer Science, pages 206–235. Springer, 2024. doi:
10.1007/978-3-031-57262-3_9.

11 Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of
linear logic. Technical Report CMU-CS-03-131R, Department of Computer Science, Carnegie
Mellon University, November 2003. doi:10.1184/R1/6587498.v1.

12 Ornela Dardha and Simon J. Gay. A new linear logic for deadlock-free session-typed processes.
In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation
Structures - 21st International Conference, FOSSACS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer Science, pages
91–109. Springer, 2018. doi:10.1007/978-3-319-89366-2_5.

13 Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session logical relations for noninterfer-
ence. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021, pages 1–14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470654.

https://doi.org/10.1007/978-3-662-54434-1_3
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1145/3110281
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
https://doi.org/10.1016/S0304-3975(97)00220-X
https://doi.org/10.1016/S0304-3975(97)00220-X
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.4230/LIPICS.CONCUR.2019.39
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1007/978-3-031-57262-3_9
https://doi.org/10.1007/978-3-031-57262-3_9
https://doi.org/10.1184/R1/6587498.v1
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1109/LICS52264.2021.9470654

J. C. Jaramillo, D. Frumin, and J. A. Pérez 30:19

14 Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. Separating
sessions smoothly. In Serge Haddad and Daniele Varacca, editors, 32nd International Con-
ference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference,
volume 203 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.CONCUR.2021.36.

15 Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never: a fully-abstract
semantics for classical processes. Proc. ACM Program. Lang., 3(POPL):24:1–24:29, 2019.
doi:10.1145/3290337.

16 Olivier Laurent. Around classical and intuitionistic linear logics. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 629–638, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3209108.3209132.

17 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In Andrew M.
Pitts, editor, Foundations of Software Science and Computation Structures - 18th International
Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume
9034 of Lecture Notes in Computer Science, pages 3–22. Springer, 2015. doi:10.1007/
978-3-662-46678-0_1.

18 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Information and Computation,
239:254–302, 2014. doi:10.1016/j.ic.2014.08.001.

19 Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in linear logic. Proc.
ACM Program. Lang., 5(ICFP):1–31, 2021. doi:10.1145/3473567.

20 Harold Schellinx. Some Syntactical Observations on Linear Logic. Journal of Logic and
Computation, 1(4):537–559, September 1991. doi:10.1093/logcom/1.4.537.

21 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Peter Schneider-Kamp and Michael Hanus, editors, Proceedings of
the 13th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 20-22, 2011, Odense, Denmark, pages 161–172. ACM, 2011. doi:10.1145/
2003476.2003499.

22 Bas van den Heuvel and Jorge A. Pérez. Session type systems based on linear logic: Classical
versus intuitionistic. In Stephanie Balzer and Luca Padovani, editors, Proceedings of the
12th International Workshop on Programming Language Approaches to Concurrency- and
Communication-cEntric Software, PLACES@ETAPS 2020, Dublin, Ireland, 26th April 2020,
volume 314 of EPTCS, pages 1–11, 2020. doi:10.4204/EPTCS.314.1.

23 Bas van den Heuvel and Jorge A. Pérez. Comparing session type systems derived from linear
logic. CoRR, abs/2401.14763, 2024. doi:10.48550/arXiv.2401.14763.

24 Philip Wadler. Propositions as sessions. In Proceedings of the 17th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’12, pages 273–286, New York, NY,
USA, 2012. Association for Computing Machinery. doi:10.1145/2364527.2364568.

25 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi:
10.1017/S095679681400001X.

CONCUR 2024

https://doi.org/10.4230/LIPICS.CONCUR.2021.36
https://doi.org/10.1145/3290337
https://doi.org/10.1145/3209108.3209132
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1145/3473567
https://doi.org/10.1093/logcom/1.4.537
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.4204/EPTCS.314.1
https://doi.org/10.48550/arXiv.2401.14763
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X

Bi-Reachability in Petri Nets with Data
Łukasz Kamiński
University of Warsaw, Poland

Sławomir Lasota
University of Warsaw, Poland

Abstract
We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from
an infinite data domain, and executability of transitions is conditioned by equalities between data
values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its
two configurations, we ask if each of the configurations is reachable from the other. This pushes
forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem
(which is known to be decidable) and is subsumed by the reachability problem (whose decidability
status is unknown).

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Petri nets, Petri nets with data, reachability, bi-reachability, reversible
reachability, mutual reachability, orbit-finite sets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.31

Funding Łukasz Kamiński: Partially supported by NCN grant 2021/41/B/ST6/00535.
Sławomir Lasota: Partially supported by the ERC grant INFSYS, agreement no. 950398.

Acknowledgements We are grateful to Piotrek Hofman for inspiring discussions.

1 Introduction

We investigate the model of Petri nets with data, where tokens carry values from some fixed
data domain, and executability of transitions is conditioned by relations between data values
involved. We study Petri nets with equality data [20, 22, 28], i.e., a countable infinite data
domain with equality as the only relation. Other data domains have been also studied,
for instance Petri nets with ordered data [22], i.e., a countable infinite, densely and totally
ordered data domain (the model subsumes Petri nets with equality data). One can also
consider an abstract setting of Petri nets with an arbitrary fixed data domain [20].

As an illustrating example, consider a Petri net with equality data which has two places
p1, p2 and two transitions t1, t2, as depicted in Fig. 1. Transition t1 outputs two tokens with
arbitrary but distinct data values onto place p1. Transition t2 inputs two tokens with the
same data value, say a, one from p1 and one from p2, and outputs three tokens: two tokens
with arbitrary but equal data values b, where b ̸= a, one onto p1 and the other onto p2, plus
one token with a data value c ̸= a onto p1. Note that transition t2 does not specify whether
b = c or not, and therefore both options are allowed.

The most fundamental decision problem for Petri nets, the reachability problem, asks,
given a net together with source and target configurations, if there is a run from source to
target. It is well known that the reachability problem is undecidable for Petri nets with
ordered data [22], while the decidability status of this problem for equality data still remains
an intriguing open question. The same applies to two other major extensions of plain Petri
nets, namely pushdown Petri nets [23] and branching Petri nets [9, 29]. On the other hand,
the coverability problem (where we ask if there is a run from source to a configuration that
possibly extends target by some extra tokens) is decidable for both equality and ordered

© Łukasz Kamiński and Sławomir Lasota;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 31; pp. 31:1–31:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0004-1641-9049
https://orcid.org/0000-0001-8674-4470
https://doi.org/10.4230/LIPIcs.CONCUR.2024.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Bi-Reachability in Petri Nets with Data

p1 p2

t1
x1, x2

t2

y1 y2

z1, z3 z2

x1 ̸= x2 z1 = z2 ̸= y1 = y2 ̸= z3

Figure 1 A Petri net with equality data, with places {p1, p2} and transitions {t1, t2}. The shown
configuration engages 5 tokens, carrying 3 different data values, depicted through different colors.

data [20]. As widely known, coverability easily reduces to reachability. Furthermore, the
reachability problem is decidable, also for equality and ordered data, in the special case of
reversible Petri nets (where transitions are closed under reverse), as recently shown in [15].

In this paper we do a step towards decidability of reachability in Petri nets with equality
data, and study a relevant decision problem sandwiched between reachability and the two
latter decidable problems: the bi-reachability problem (also called mutual reachability problem
or reversible reachability problem [24]). It asks, for a net and two its configurations, if each
of the configurations is reachable from the other one. In other words, the problem asks if
two given configurations are in the same bi-reachability equivalence class. Here are all know
reductions, valid for Petri nets with either equality or ordered data, as well as for plain Petri
nets (without data):

coverability // bi-reachability // reachability

reachability in
reversible Petri nets

OO

As our main result we prove decidability of this problem for equality data domain. This
result pushes further the decidability border, subsuming decidability of coverability, and of
reachability in reversible Petri nets with equality data. Our approach is specific to equality
data, and thus we leave unresolved the status of bi-reachability in case of ordered data.

The decision procedure for bi-reachability is inspired by the classical decomposition
approach used to decide reachability in plain Petri nets [18, 19, 27]. There, it is often more
convenient to work with vector addition systems with states (vass) instead of Petri nets
[18, 27]. Following this line, for technical convenience we prefer to work with the model
of data vass (dvass) [16] rather than with Petri nets. In short, our approach consists of
two ingredients. First, we provide a sufficient condition for a dvass to admit bi-reachability
(resembling Θ1 and Θ2 conditions of [18, 27]), which is effectively testable. Second, in case
the condition fails, we provide an effective way of reducing a dvass to an equivalent one,
with respect to bi-reachability, which has smaller rank. As ranks are well founded, the
reduction step guarantees correctness and termination. Importantly, the decision procedure
manipulates dvass, and does not need to resort to manipulation of more general structures
(like generalised vass of [18, 27], or graph-transition sequences of [19], or witness graph
sequences of [25], or KLM sequences of [26]). This allows us to avoid similar generalisations
in the data setting, and allows to keep the algorithm relatively simple.

Our work leaves two exciting open questions: can one extend our approach to bi-
reachability in case of ordered data, or to reachability in case of equality data. Clearly, if
attempting to solve the latter problem, one unavoidably will be faced with some generalisation
of the above-mentioned structures to the data setting.

Ł. Kamiński and S. Lasota 31:3

Related research. Petri nets with equality data are a well established and widely studied
model of concurrent systems, as data allow to model important aspects of such systems not
captured by plain Petri nets, e.g. process identity [1, 5]. The model can be also seen as a
reinterpretation of the classical definition of Petri nets with a relaxed notion of finiteness,
namely orbit-finiteness, where one allows for orbit-finite sets of places and transitions instead
of just finite ones; this is along the lines of [3, 4]. Similar net models have been proposed
already in the early 80ies: high-level Petri nets [13] and colored Petri nets [17]. Since
then, similar formalisms seem to have been rediscovered, for instance constraint multiset
rewriting [6, 7, 8].

In plain Petri nets, bi-reachability is decidable as a consequence of decidability of
reachability [18, 19, 27]. Later, exact ExpSpace complexity was established in [24]. In our
setting, the problem is Ackermann-hard due to [23]. In pushdown Petri nets, decidability
of reachability in the reversible subclass has been shown only recently [12], while decidability
status of bi-reachability is still open. Indeed, it is known that reachability in pushdown Petri
nets with d places reduces to coverability in pushdown Petri nets with d + 1 places, and
the latter problem reduces to bi-reachability in pushdown Petri nets. Hence, decidability of
bi-reachability would imply decidability of reachability in case of pushdown Petri nets.

2 Preliminaries: orbit-finite sets and vectors

In the sequel, let A denote a fixed countable infinite set of data values (called also atoms).
By Aut(A) we denote the set of all permutations of A (called also automorphisms). For
a subset S ⊆ A we define the subgroup AutS(A) = {σ ∈ Aut(A) |σ(s) = s for all s ∈ S}.
Permutations in AutS(A) we call S-automorphisms.

Orbit-finite sets. In the following we study actions of the group Aut(A) on different sets.
An action of Aut(A) on a set Z is a group homomorphism ι from Aut(A) to functions Z → Z.
We write σ(z) instead of ι(σ)(z) for σ ∈ Aut(A) and z ∈ Z. In the sequel we always use
the natural action of Aut(A) that, regardless of Z, renames atoms a ∈ A but leaves other
elements intact. Here are two specific examples of such action that will serve later as building
blocks in the definition of our model:

▶ Example 1. Let ⊥ /∈ A. For any finite sets L and R of locations and register names,
respectively, the group Aut(A) acts naturally on the set of states Q = L× (R → (A ∪ {⊥})),
namely given σ ∈ Aut(A) and q = (ℓ, ν) ∈ Q, we put

σ(q) := (ℓ, σ(ν)) where σ(ν)(r) =
{

σ(ν(r)), if ν(r) ∈ A
⊥ if ν(r) = ⊥.

Furthermore, for any finite sets H, P of plain places and atom places, respectively, Aut(A)
acts naturally on functions H ∪P ×A→ Z, namely given σ ∈ Aut(A) and v : H ∪P ×A→ Z
we put σ(v)(h) := v(h) for h ∈ H, and σ(v)(p, σ(a)) := v(p, a) for p ∈ P . ⌟

Roughly speaking, a set is orbit-finite if it has a finite number of elements up to auto-
morphisms of atoms. We define the orbit of an element z ∈ Z:

Orbit(z) := {σ(z) |σ ∈ Aut(A)} .

CONCUR 2024

31:4 Bi-Reachability in Petri Nets with Data

As different orbits are necessarily disjoint, Z partitions uniquely into orbits. A subset X ⊆ Z

is orbit-finite if it is a finite union of orbits. Clearly all orbits, and hence also all finite unions
thereof, are closed under the action of Aut(A). Orbit-finite sets are closed under finite unions
and products [2, Lem. 3.24].

▶ Example 2. We continue Example 1. The whole set Q = L × (R → (A ∪ {⊥})) is
orbit-finite, since the orbit of a state q = (ℓ, ν) ∈ Q is determined by its location ℓ, the
inverse image of ⊥, namely {r ∈ R | ν(r) = ⊥}, and the equality type of ν, namely the set{

(r, r′) ∈ R2
∣∣ ν(r) = ν(r′) ̸= ⊥

}
. Indeed, for every two states q = (ℓ, ν) and q′ = (ℓ′, ν′)

such that ℓ = ℓ′, and ν and ν′ have the same inverse image of ⊥ and the same equality type,
there is an automorphism σ ∈ Aut(A) such that σ(q) = q′.

On the other hand, the function space (H ∪ P × A)→ Z is not orbit-infinite. ⌟

Vectors. Given a set X, by X →fin Z we denote the commutative group freely generated by
X, and the group operation we denote by ⊕. We write v⊖w instead of v⊕w−1. Equivalently,
X →fin Z can be identified with the set of all functions v : X → Z which map almost all
elements of X to 0, i.e., those functions where the set {x ∈ X |v(x) ̸= 0} is finite. Elements
of X →fin Z we call X-vectors, or simply vectors if the generating set X is clear from the
context. The zero vector we denote by 0, irrespectively of X, and a single-generator vector
x ∈ X we denote by 1x. Seen as a function X → Z, the vector 1x maps x to 1 and all
other elements of X to 0. When X is finite, we call X-vectors finite as well. Nonnegative
vectors, denoted X →fin N, are elements of the commutative monoid freely generated by
X, or functions v : X → N which map almost all elements of X to 0 or, equivalently, finite
multisets of elements of X. We write ⊕W to denote the sum of a finite set W of vectors.

In the sequel the generating set X is most often of the form H ∪P×A for some finite sets
P , H. Clearly, (H ∪ P×A) →fin Z is isomorphic to (H →fin Z) × (P×A →fin Z), as every
vector v : (H ∪ P×A)→fin Z decomposes uniquely as the sum v = u⊕w, where u : H →fin Z,
w : P×A →fin Z. Given v : (H ∪ P×A) →fin Z, we define its support supp(v) ⊆ A, as the
(necessarily finite) set of those atoms which are sent by v to a nonzero value:

supp(v) := {a ∈ A | ∃p ∈ P : v(p, a) ̸= 0} .

Intuitively, supp(v) contains those atoms that ’appear’ in v. We observe that σ(v) = v
as long as σ(a) = a for all a ∈ supp(v). The natural action of Aut(A) given in Example 1
restricts to the set of vectors (H ∪ P×A)→fin Z, which is still not orbit-infinite.

▶ Example 3. Transitions t1, t2 of Petri net in Figure 1 are semantically orbit-finite sets of
(P×A)-vectors, where P = {p1, p2} (i.e., H = ∅). Indeed, the effect of firing t1 amounts to
adding two arbitrary but different atoms a ̸= b to place p1, i.e., is described by an X-vector

v1 = (p1, a)⊕ (p1, b) (a ̸= b).

As the choice of atoms a ̸= b is arbitrary, all possible effects of firing the transition span one
orbit of vectors: V1 = Orbit(v1). The effect of firing t2 amounts to removing some arbitrary
atom a from both p1 and p2, and adding two further atoms b, c not equal to a: one of them
is added to both p1 and p2, while the other one only to p1. As it is not specified whether
b = c or not, we describe t2 by two X-vectors:

v2 = (p1, c)⊕ (p1, b)⊕ (p2, b)⊖ (p1, a)⊖ (p2, a) (a ̸= b ̸= c ̸= a) (1)
v′

2 = (p1, b)⊕ (p1, b)⊕ (p2, b)⊖ (p1, a)⊖ (p2, a) (a ̸= b). (2)

Ł. Kamiński and S. Lasota 31:5

As before, the choice of atoms is arbitrary, and hence all possible effects of firing t2 span
the union of two orbits of vectors: V2 = Orbit(v2) ∪Orbit(v′

2). Intuitively, different orbits
in T2 correspond to different equality types of a tuple of atoms (a, b, c): one defined by
inequalities a ̸= b ̸= c ̸= a, and another defined by a ̸= b = c. This example illustrates a
transformation of Petri nets to data vass, the model we work with in this paper.1 ⌟

Multiset sum problem. The following core decision problem, parametrised by an orbit-finite
set X, will be useful later:

Multiset Sum
Input: an orbit-finite set M of X-vectors, and an X-vector b.
Question: is b equal to the sum of a finite multiset of vectors from M?

In other words, we ask if b is a nonnegative integer linear combination of vectors from M .
We assume that M is represented by a finite set of representatives, one per orbit.

▶ Lemma 4 ([14, Thm. 17]). Multiset Sum is decidable.

3 Data vector addition systems with states

Classical Petri nets are equivalent, with respect to most decision problems, to vector addition
systems (vass). Likewise, we introduce here a formalism equivalent to Petri nets with data,
called data vector addition systems with states (dvass). It is an extension of (stateless) data
vector addition systems (dvas) studied in [16].

Data VASS. A data vass (dvass) V = (L,R, H, P, T) consists of pairwise disjoint finite
sets of locations L, register names R, plain places H, atom places P , and an orbit-finite set

T ⊆ Q× ((H ∪ P×A)→fin Z)×Q

of transitions, where Q = L × (R → (A ∪ {⊥})) is the set of states. The set T is thus
assumed to be a finite union of orbits, under the natural action of Aut(A) on transitions
that extends the action on vectors and states given in Example 1: for t = (q, v, q′) ∈ T we
put σ(t) := (σ(q), σ(v), σ(q′)). In particular, T is closed under the action of Aut(A). Given
a state q = (ℓ, ν) ∈ Q, the function ν is called register valuation. Intuitively, ν(r) = a means
that register r contains atom a, while ν(r) = ⊥ means that r is empty. The vector v is called
the effect of transition (q, v, q′).

The model of (plain) vass corresponds to the special case where R = ∅ and P = ∅, i.e.,
dvass without registers and atom places. In this case the set T ⊆ Q× (H →fin Z)×Q, being
orbit-finite, is necessarily finite. The model of dvas corresponds to the special case when
L = {∗} is a singleton and R = ∅ and H = ∅, i.e., dvass without locations, registers and
plain places.

A pseudo-configuration of V is a pair (q, v) ∈ Q × ((H ∪ P×A) →fin Z), written
q(v). A pseudo-run from q1(v0) to qk(vk) is a sequence of pseudo-configurations π =
q0(v0) q1(v1) . . . qk(vk) such that ti = (qi−1, vi − vi−1, qi) ∈ T for every i = 1, . . . , k. We
say that the pseudo-run π uses the transitions t1, . . . , tk ∈ T . The support of a state
q = (ℓ, ν) is the set of all atoms used in registers, i.e. supp(q) = ν(R) ∩ A. The sup-
port of a transition t = (q, v, q′) is supp(t) = supp(q) ∪ supp(v) ∪ supp(q′). We also

1 As in a transformation from plain Petri nets to vass, in case of Petri net with tight loops, i.e., transitions
that simultaneously input and output the same atom from/to the same place, we would have to split
every such transition into input and output part.

CONCUR 2024

31:6 Bi-Reachability in Petri Nets with Data

define the support of a pseudo-run as the union of supports of all its pseudo-configurations:
supp(π) = supp(q0) ∪ supp(v0) ∪ supp(q1) ∪ . . . ∪ supp(qk) ∪ supp(vk). We again extend
the action of Aut(A), this time to pseudo-runs, in an expected way:

σ
(
q0(v0) q1(v1) . . . qk(vk)

)
:= σ(q0)(σ(v0)) σ(q1)(σ(v1)) . . . σ(qk)(σ(vk)).

The set of pseudo-runs is closed under the action of Aut(A).
Configurations are those pseudo-configurations q(v) where the vector v is nonnegative,

i.e., v : (H ∪ P×A) →fin N. Let Conf = Q ×
(
(H ∪ P×A) →fin N

)
denote the set of all

configurations. A run is a pseudo-run where every pseudo-configuration qi(vi) is actually
a configuration. We write q(v) 99K q′(v′) (resp. q(v) −→ q′(v′)) if there is a pseudo-run
(resp. a run) from q(v) to q′(v′).

▶ Example 5. Continuing Example 3, Petri net in Figure 1 is equivalent to a dvas V =
({∗} , ∅, ∅, {p1, p2} , T), whose transitions are (as R = ∅, we omit register valuations)

T = {∗} × (V1 ∪ V2)× {∗} .

The initial configuration shown in Figure 1 is ∗(v), where v = (p1, a)⊕(p1, c)⊕(p1, c)⊕(p2, a)⊕
(p2, b) for some distinct atoms a, b, c ∈ A. In order to illustrate dvass, we drop the first
inequality in the constraint on t2, and consider the relaxed constraint z1 = z2 ∧ y1 = y2 ̸= z3
instead. This adds a third orbit of possible effects of firing t2, when the atom b added to
places p1 and p2 is the same as the atom a removed (c.f. (1) in Example 3):

v′′
2 = (p1, c)⊕ (p1, a)⊕ (p2, a)⊖ (p1, a)⊖ (p2, a) (a ̸= c).

The modified Petri net is equivalent to a dvass V ′ = (L, ∅, ∅, P, T ′) with two locations
L = {ℓ, ℓ′}, still no registers, a larger set of atom places P = {p1, p2, p}, and transitions:

T ′ = {ℓ} × (V1 ∪ V2)× {ℓ} ∪ {ℓ} ×Orbit(w)× {ℓ′} ∪ {ℓ′} ×Orbit(w′)× {ℓ} ,

where vectors w, w′ are splitting v′′
2 into input and output part, using an auxiliary place p

to temporarily store atom a:

w = (p, a)⊖ (p1, a)⊖ (p2, a) w′ = (p1, c)⊕ (p1, a)⊕ (p2, a)⊖ (p, a) (a ̸= c). (3)

Transitions in T ′ corresponding to V1 ∪ V2 go from ℓ to ℓ, while the other transitions go from
ℓ to ℓ′, or from ℓ′ to ℓ. The initial configuration of V ′ is ℓ(v). Instead of place p one could
also use a single register R = {r}, and transitions of the form

((ℓ,⊥), ⊖(p1, a)⊖ (p2, a), (ℓ′, a)) ((ℓ′, a), (p1, c)⊕ (p1, a)⊕ (p2, a), (ℓ,⊥)) (a ̸= c),

to the same effect as in (3). The initial configuration would be then q(v), where q = (ℓ,⊥). ⌟

▶ Remark 6. Our model of dvass syntactically extends dvas by locations, registers and
plain places. The extended model is convenient for our decidability argument, while being
equivalent to dvas with respect to most of decision problems. Indeed, a dvass may be
transformed into an essentially equivalent dvas in three steps (as in the proof of Lemma 12):

locations 2
// plain places

3

��
registers

1 //

1

OO

atom places

(4)

First, we eliminate registers using locations and atom places, then we encode locations into
plain places, and finally we encode plain places into atom ones.

Ł. Kamiński and S. Lasota 31:7

State graph. We define the state graph Graph(T) = (Q, E) of a dvass V. Its nodes are
states Q, and its edges E ⊆ Q×Q are pairs of states related by some transition of V:

E =
{

(q, q′) ∈ Q2 ∣∣ (q, v, q′) ∈ T for some vector v : (H ∪ P×A)→fin Z
}

.

When R is non-empty, the sets of nodes and edges of Graph(T) are infinite but orbit-finite.

Bi-reachability problem. We say that a configuration q′(v′) is reachable from q(v) if there
is a run q(v) −→ q′(v′). Two configurations q(v), q′(v′) are bi-reachable if each of them is
reachable from the other: q(v) −→ q′(v′) and q(v)←− q′(v′).

dvass bi-reachability
Input: a dvass (L,R, H, P, T) and two configurations, q(v) and q′(v′) .
Question: are q(v), q′(v′) bi-reachable?

As before, we assume that the orbit-finite set T of transitions is represented by a finite set of
representatives, one per orbit. As our main result we prove:

▶ Theorem 7. dvass bi-reachability problem is decidable.

Since our model of dvass includes plain places, we can assume w.l.o.g. a convenient form of
source and target configuration that consists, essentially, of just a location. Let ⊥⊥ denote
the empty register valuation: ⊥⊥(r) = ⊥ for every r ∈ R.

▶ Lemma 8. In dvass bi-reachability problem we may assume, w.l.o.g., that q = (ℓ,⊥⊥),
q′ = (ℓ′,⊥⊥), and v = v′ = 0.

4 Toolset

Our decision procedure relies on a number of existing tools. One of them is solvability of
Multiset sum (Lemma 4). Here we introduce two further tools: a sufficient condition for
vass reachability, and computability of coverability sets in dvas.

Sufficient condition for VASS reachability. We recall a condition that guarantees existence
of a run in a vass. It is a simplification of the classical condition of [18, 19, 27] which
guarantees existence of a run in a generalised vass. Consider a vass V with plain places H.
For v : H →fin N we write v≫ 0 to mean that for every h ∈ H we have v(h) > 0.

Θ1: For every m ∈ N, there is a pseudo-run q(0) 99K q′(0) using every transition at least
m times.
Θ2: For some vectors ∆, ∆′ ≫ 0, there are runs: q(0) −→ q(∆) and q′(∆′) −→ q′(0).

▶ Lemma 9 (Thm. 2 in [18], Prop. 1 in [21]). For every vass, Θ1 ∧Θ2 implies q(0) −→ q′(0).

Coverability sets in dvass. Let V = (L,R, H, P, T) be a dvass, and let X = H ∪ (P×A).
We define the pointwise order on nonnegative vectors X →fin N: v ≤ v′ if and only if for
every x ∈ X we have v(x) ≤ v′(x). We define a quasi-order by relaxation of ≤, up to
automorphisms: v ⊑ v′ if σ(v) ≤ v′ for some σ ∈ Aut(A). We extend the relation ⊑ to
configurations: for states q, q′ and vectors v, v′ ∈ X →fin N we put q(v) ⊑ q′(v) if σ(q) = q′

and σ(v) ≤ v′ for some σ ∈ Aut(A).

▶ Lemma 10. ⊑ is a wqo on configurations.

CONCUR 2024

31:8 Bi-Reachability in Petri Nets with Data

The coverability set of a configuration q(v) is defined as the downward closure, with
respect to ⊑, of the reachability set:

Cover(q(v)) = {s(w) ∈ Conf | ∃s(w) ∈ Conf : s(w) ⊑ s(w) ∧ q(v) −→ s(w)} .

It is known that the coverability set is representable by a finite union of ideals (downward
closed directed sets) [10, 11]. Let’s complete N with a top element, Nω

def= N ∪ {ω}, which
is larger than all numbers: n < ω for all n ∈ N. We consider pairs (q, f) ∈ Q× (X → Nω),
written q(f), and called ω-configurations. Each such pair determines a set of configurations
(we extend ⊑ to all ω-configurations in the expected way):

q(f)↓ := {s(v) ∈ Conf | s(v) ⊑ q(f)} ,

which is downward closed (whenever s(v) ∈ q(f)↓ and s′(v′) ⊑ s(v) then s′(v′) ∈ q(f)↓) and
directed (for every two s(v), s′(v′) ∈ q(f)↓ there is s(v) ∈ q(f)↓ such that s(v) ⊑ s(v) and
s′(v′) ⊑ s(v)). The set q(f)↓ is thus an ideal. We call an ω-configuration q(f) simple if for
every p ∈ P , either f(p, a) = 0 for almost all a ∈ A (i.e., for all a ∈ A except finitely many),
or f(a, p) = ω for almost all a ∈ A. Simple ω-configurations are thus finitely representable.
Ideals determined by simple ω-configurations we call simple too.

▶ Example 11. In the dvass V ′ in Example 5, Cover(ℓ(v)) = ℓ(f) ↓ ∪ ℓ(g) ↓ ∪ ℓ′(f ′) ↓
∪ ℓ′(g′)↓ , where f(p1, c) = g(p1, c) = f ′(p1, c) = g′(p1, c) = ω for every c ∈ A,

f(p2, a) = f(p2, b) = 1 g(p2, a) = 2
f ′(p2, a) = f ′(p, b) = 1 g′(p2, a) = g′(p, a) = 1

for some a ̸= b ∈ A, and all other arguments are mapped by f , g, f ′ and g′ to 0. Indeed,
due to transition t1, place p1 can be filled up with arbitrary many tokens with any atoms.
On the other hand place p2 has two tokens in the initial configuration ℓ(v), and hence will
invariantly have, in location ℓ, two tokens whose atoms may be equal or not. Furthermore,
in location ℓ′, places p2 and p have always one token each, with atoms equal or not. ⌟

Simple ω-configurations provide finite representations of simple ideals. Relying on the result
of [16], the coverability set in a dvas is a union of a finite set of simple ideals, which is
computable. We lift this result to the model of dvass:

▶ Lemma 12. Given a dvass and its configuration q(v), one can compute a finite set of simple
ω-configurations {s1(f1), . . . , sn(fn)} such that Cover(q(v)) = s1(f1)↓ ∪ . . . ∪ sn(fn)↓ .

Proof. Let V = (L,R, H, P, T) be a dvass, let q(v) be its configuration, where q = (ℓ, η).
Theorem 3.5 in [16] proves the claim in the special case of dvas. We reduce dvass to dvas
in three steps, as shown in the diagram (4) in Remark 6.

As the first step we get rid of registers by considering them as additional atom places
that store at most one token, while keeping track, in locations, of the set of currently empty
registers. We set P1 := P ∪ R ∪ R, where R = {r | r ∈ R} is distinct a copy of R, and
L1 = (L ∪ L) × P(R), where L =

{
ℓ

∣∣ ℓ ∈ L
}

, and define the new set of transitions T1 by
transforming transitions from T as follows. In the construction we identify a register valuation
µ with a vector µ = ⊕{(r, a) |µ(r) = a ̸= ⊥}, or with a vector µ = ⊕{(r, a) |µ(r) = a ̸= ⊥}.
Every transition t = ((ℓ, µ), v, (ℓ′, µ′)) ∈ T gives rise to a transition in T1(

(ℓ, µ−1(⊥)), v⊖ µ⊕ µ′, (ℓ′
, (µ′)−1(⊥))

)

Ł. Kamiński and S. Lasota 31:9

that starts in location (ℓ, µ−1(⊥)), ends in a location (ℓ′
, (µ′)−1(⊥)) and whose effect is v

plus, intuitively speaking, removing µ from places R and putting µ′ to places R. In addition,
all transitions of the form(

(ℓ′
, ν−1(⊥)), ν ⊖ ν, (ℓ′, ν−1(⊥))

)
are added to T1, where ν : R → (A ∪ {⊥}) is any register valuation. Intuitively, these
transitions flash back all tokens from places R to the corresponding places R. This yields
a dvass V1 := (L1, ∅, H, P1, T1) computable from V, and its location ℓ1 = (ℓ, η−1(⊥))
corresponding to state q such that the coverability sets in V (on the left) is computable from
the one in V1 (on the right):

▷ Claim 13. Cover(q(v)) =
{

(ℓ′, µ′)(v′)
∣∣ (ℓ′, (µ′)−1(⊥))(v′ ⊕ µ′) ∈ Cover(ℓ1(v⊕ η))

}
.

As the second step, we dispose of locations L1 by moving them to plain places. We set
H2 := H ∪L1 ∪ L̃1, where L̃1 =

{
ℓ̃

∣∣∣ ℓ ∈ L1

}
, and transform each transition t = (ℓ, v, ℓ′) ∈ T1

into a transition in T2:

(∗, v⊖ ℓ⊕ ℓ̃′, ∗).

We also add a new transition (∗, ℓ ⊖ ℓ̃, ∗) for every ℓ ∈ L1. This yields a dvass V2 :=
({∗} , ∅, H2, P1, T2) computable from V1, and the corresponding configuration ∗(v⊕ ℓ) such
that the coverability sets in V1 (on the left) is computable from the one in V2 (on the right):

▷ Claim 14. Cover(ℓ(v)) = {ℓ′(v′) |v′ ⊕ ℓ′ ∈ Cover(∗(v⊕ ℓ))}.

Eventually, as the last step we get rid of plain places H2 by moving them to atom ones,
and considering atoms residing on these atom places irrelevant. Let P3 := H2 ∪ P1. In
order to transfer transitions T2 from plain places to the new atom places, we introduce the
projection mapping π : (H2 ∪ P1)×A→ H2 ∪ (P1×A),

(h, a) 7→ h (p, a) 7→ (p, a) (h ∈ H2, p ∈ P1, a ∈ A),

that forgets, intuitively speaking, about atoms on the new atom places. It extends uniquely
to a commutative group homomorphism π from (H2 ∪ P1)×A→fin Z to H2 ∪ (P1×A)→fin Z.
We define transitions as the inverse image of T2 along π:

T3 := π−1(T2).

This yields a dvas V3 := ({∗} , ∅, ∅, P3, T3). We observe that π−1(v) is orbit-finite for every
vector v, and therefore π−1(T2), being orbit-finite union of orbit-finite sets, is itself orbit-finite
[2, Ex. 62]. Therefore V3 is computable from V2. The coverability set in V2 is computable
from the one in V3, since coverability sets commute the projection (the coverability set on
the left is in V2, while the one on the right is in V3):

▷ Claim 15. Cover(∗(π(w))) = π(Cover(∗(w))).

Indeed, in order to compute a representation Cover(∗(v)) = g1 ↓ ∪ . . . ∪ gn ↓ in V2, we
take any w with π(w) = v, compute a representation Cover(∗(w)) = f1 ↓ ∪ . . . ∪ fn ↓
in V3 using [16, Thm. 3.5], and modify the functions fi by summing up, for every h ∈ H2,
namely (under the proviso that ω + n = ω + ω = ω):

gi(h) :=
∑
a∈A

fi(h, a) gi(p, a) := fi(p, a) (h ∈ H2, p ∈ P1, a ∈ A).

This concludes the proof. ◀

CONCUR 2024

31:10 Bi-Reachability in Petri Nets with Data

5 Sufficient condition for DVASS bi-reachability

In this and in the next section we prove Theorem 7. Throughout the rest of the paper let
V = (L,R, H, P, T) be an input dvass. Relying on Lemma 8 we investigate bi-reachability of
q(0) and q′(0), for states q = (ℓ,⊥⊥) ∈ Q and q′ = (ℓ′,⊥⊥′) ∈ Q with empty register valuations.
The states q, q′ are invariant under the action of Aut(A), which is crucial in the sequel:

▷ Claim 16. For every σ ∈ Aut(A), we have σ(q) = q and σ(q′) = q′.

We now formulate a sufficient condition for bi-reachability of q(0) and q′(0), as an
adaptation of the classical Θ1 and Θ2 conditions. In the context of bi-reachability, it is
enough to rely on a simplified version of these conditions given by Lemma 9. We write below
v≫ 0 to mean that v(h) > 0 for every h ∈ H , and for every p ∈ P there is some a ∈ A such
that v(p, a) > 0.

Φ1: There are pseudo-runs, each of them using some transition from every orbit in T :

q(0) 99K q′(0) q(0) L99 q′(0). (5)

Φ2: For some vectors ∆, ∆′, Γ, Γ′ ≫ 0, there are runs:

q(0) −→ q(∆) q′(∆′) −→ q′(0)
q(0)←− q(Γ) q′(Γ′)←− q′(0).

(6)

▶ Lemma 17. Φ1 ∧Φ2 implies q(0) −→ q′(0) and q(0)←− q′(0).

Proof. Assume V satisfies Φ1 ∧ Φ2. Let S be the union of supports of the two pseudo-
runs (5) and the four runs (6). Recall that AutA\S(A) ⊆ Aut(A) denotes the subset of those
automorphisms σ that are identity outside S: σ(a) = a for every a /∈ S. When restricted
to S, each such automorphism is a permutation, i.e., σ(S) = S. In the sequel we will apply
permutations σ ∈ AutA\S(A) to atoms from S only, and therefore the value σ(a) = a, for
a /∈ S, will be irrelevant. The set AutA\S(A) is finite, |AutA\S(A)| = |S|!.

We define a (plain) vass VS by, intuitively speaking, restricting the set of atoms to
the finite set S. The set of locations of VS is LS := L × (R → S ∪ {⊥}), its places are
HS := H ∪P×S, and its transitions TS ⊆ T are all transitions of V that use only atoms from
S. Formally, VS = (LS , ∅, HS , ∅, TS), where TS := {t ∈ T | supp(t) ⊆ S} . We claim that the
vass satisfies the conditions Θ1 and Θ2 of Lemma 9.

We consider Θ1 first. Let π : q(0) 99K q′(0) and π′ : q′(0) 99K q(0) be the pseudo-runs
in (5). By applying all permutations σ ∈ AutA\S(A) to their concatenation π; π′ : q(0) 99K
q′(0) 99K q(0) , and concatenating all the |S|! resulting cyclic pseudo-runs, we get a cyclic
pseudo-run δ : q(0) 99K q(0). This pseudo-run uses every transition from TS at least once,
since π uses a representative of every orbit of T , and the following fact holds:

▷ Claim 18. Let t, t′ ∈ T be two transitions in the same orbit such that supp(t), supp(t′) ⊆ S.
Then t′ = σ(t) for some σ ∈ AutA\S(A).

Likewise we get a cyclic pseudo-run δ′ : q′(0) 99K q′(0) that uses every transition from TS

at least once. Furthermore, for every m ∈ N, the m-fold concatenation of δ or δ′ yields a
cyclic pseudo-run that uses every transition from TS at least m times. We thus have two
pseudo-runs

δm; π : q(0) 99K q′(0) (δ′)m; π′ : q(0) L99 q′(0)

Ł. Kamiński and S. Lasota 31:11

each of them using every transition from TS at least m times. Thus the vass VS satisfies
two instances of Θ1, one towards a run q(0) −→ q′(0) and the other one towards a run
q′(0) −→ q(0).

Now we concentrate on Θ2. We proceed similarly as before, namely apply all automorph-
isms σ ∈ AutA\S(A) to ∆, and sum up all the resulting vectors:

∆S := ⊕
{

σ(∆)
∣∣ σ ∈ AutA\S(A)

}
.

Let ∆S : H ∪ P×S →fin N be the restriction of ∆S to H ∪ P×S. Knowing that ∆≫ 0, we
deduce that ∆S(h) > 0 for every h ∈ H , and ∆S(p, a) > 0 for every (p, a) ∈ P × S. In other
words, ∆S ≫ 0. By applying all automorphisms σ ∈ AutA\S(A) to the run q(0) −→ q(∆)
in Φ2, and concatenating all the resulting runs, we get a run q(0) −→ q(∆S) in V. Clearly,
only atoms from S appear in this run, and therefore it is also a run q(0) −→ q(∆S) in VS .
In a similar way we define vectors ∆′

S , ΓS and Γ′
S , and the corresponding runs in VS :

q(0) −→ q(∆S) q′(∆′
S) −→ q′(0) (7)

q(0)←− q(ΓS) q′(Γ′
S)←− q′(0). (8)

Therefore, the vass VS satisfies two instances of Θ2, one towards a run q(0) −→ q′(0) and
the other one towards a run q′(0) −→ q(0).

Finally, using Lemma 9 we deduce two runs in VS , which are automatically also runs in
V. This completes the proof. ◀

6 Reduction algorithm

As the rank of a dvass V = (L,R, H, P, T) we take the triple Rank(V) = (|P |, |H|, ||T ||),
consisting of the number of atom places, the number of plain places, and the number of
orbits ||T || the set T partitions into. Ranks are compared lexicographically.

Given a dvass V , the algorithm verifies the conditions Φ1 and Φ2. If they are all satisfied,
it answers positively, relying on Lemma 17. Otherwise, depending on which of the conditions
is violated, the algorithm either immediately answers negatively, or applies a reduction step,
as outlined below in Sections 6.1 and 6.2. Each of the steps produces a new dvass V̂ of
strictly smaller rank, which guarantees termination. Finally, when both P and H are empty,
the problem reduces to reachability from q to q′ in state graph Graph(V), which is decidable
due to:

▶ Lemma 19. For a set E ⊆ Q×Q of edges between states, given as a finite union of orbits,
and a pair (s, s′) ∈ Q×Q, it is decidable if there is a path from s to s′ in the graph (Q, E).

Proof. The orbit of an edge ((ℓ, ν), (ℓ′, ν′)) ∈ E is determined by the following data: locations
ℓ, ℓ′; the inverse images ν−1(⊥), (ν′)−1(⊥); and the equality type of the remaining entries in
ν and ν′, that is:

{(r, r′) | ν(r) = ν(r′) ̸= ⊥} {(r, r′) | ν′(r) = ν′(r′) ̸= ⊥} {(r, r′) | ν(r) = ν′(r′) ̸= ⊥} .

Using equational reasoning, one computes the transitive closure E∗ of E, by consecutively
adding to E∗ every new orbit which is forced to be included in E∗ by some two orbits already
included in E∗, until saturation. Termination is guaranteed as Q ×Q is orbit-finite. The
transitive closure is thus forcedly a finite union of orbits. Finally, one tests if the orbit of
(s, s′) is included in E∗. ◀

CONCUR 2024

31:12 Bi-Reachability in Petri Nets with Data

For future use we note an immediate consequence of the above proof: for every pair of
states, if there is a path from one to the other, then there is also a path of bounded length.
This implies a bound on the number of atoms involved:

▶ Corollary 20. There is an effective bound b(Q) ∈ N such that whenever there is a path
from s ∈ Q to s′ ∈ Q in the graph (Q, E), then there is such a path π with |supp(π)| ≤ b(Q).

Below we describe the two reduction steps, proving their progress property (decreasing
rank), correctness and effectiveness.

6.1 Violation of Φ1

Suppose V violates Φ1. If states q, q′ are not in the same strongly connected component of
Graph(T), which is testable using Lemma 19, the configurations q(0), q′(0) are clearly not
bi-reachable and the algorithm answers negatively. Otherwise, the algorithm constructs a
dvass V̂ of smaller rank, as defined below, such that bi-reachability of q(0) and q′(0) in V is
equivalent to their bi-reachability in V̂.

Let Graph(T) = (Q, E). Transitions witnessing bi-reachability of q(0) and q′(0), namely
used in some cyclic run q(0) −→ q′(0) −→ q(0), form a cycle in Graph(T). As a consequence,
a transition (s, v, s′) ∈ T may be useful for bi-reachability only if the edge (s, s′) belongs to the
strongly connected component of Graph(T) containing q and q′. Therefore, bi-reachability
of q(0), q′(0) in V reduces to bi-reachability of q(0), q′(0) in V̂ obtained by restriction to the
strongly connected component of q and q′. This component is computed by enumerating
all orbits included in E. For every orbit o ⊆ E one chooses a representative (s, s′) ∈ o, and
uses Lemma 19 to test reachability, in Graph(T), for the four pairs: (q, s), (s′, q), (q′, s) or
(s′, q′). Then one removes from T all orbits of transitions (s, v, s′) such that reachability test
fails for any of the four pairs above. The resulting set of transitions is still a finite union
of orbits. Consequently, from now on we may assume, w.l.o.g., that Graph(T) is strongly
connected (we ignore isolated vertices).

Useful transitions. By a finite multiset of transitions we mean a nonnegative vector
f : T →fin N. Given such a finite multiset, let State-Eq(q, q′) denote conjunction of the
following conditions:
(a) the sum of effects of all transitions in the multiset is 0,
(b) for every state s /∈ {q, q′}, the number of transitions incoming to s equals the number of

ones outgoing from s,
(c) the number of transitions outgoing from q exceeds by one the number of incoming ones,
(d) the number of transitions incoming to q′ exceeds by one the number of outgoing ones;

Symmetrically, let State-Eq(q′, q) denote the conjunction of (a), (b) and the symmetric
versions of (c) and (d) with q and q′ swapped. Let O = {Orbit(t) | t ∈ T} be the set of all
orbits in T . We call an orbit o ∈ O useful if there are two finite multisets of transitions f , f ′

satisfying State-Eq(q, q′) and State-Eq(q′, q), respectively, each of them containing some
transition from o.

▶ Lemma 21. Φ1 holds if and only if all orbits of transitions are useful.

Proof. The only if direction of the characterisation is immediate, as the multiset of transitions
used in a pseudo-run q(0) 99K q′(0) necessarily contains some transition from every orbit
and satisfies all the conditions (a)–(d), and likewise for a pseudo-run q′(0) 99K q(0). For

Ł. Kamiński and S. Lasota 31:13

the opposite direction, suppose that for every orbit o ∈ O there are finite multisets fo, f ′
o

satisfying State-Eq(q, q′) and State-Eq(q′, q), respectively, each of them containing some
transition from o. Let

f := ⊕{fo | o ∈ O} f ′ := ⊕{f ′
o | o ∈ O} S := supp(f) ∪ supp(f ′),

where ⊕ denotes the multiset sum operator. Thus S is the (finite) set of atoms used in
all the transitions appearing in f or f ′. Similarly as in the proof of Lemma 17 we use the
subgroup AutA\S(A) ⊆ Aut(A) of automorphisms σ of A that are identity outside S, and
define a plain vass VS = (LS , ∅, HS , ∅, TS) by restricting the set of atoms to S. Locations
of VS are LS := L × (R → S ∪ {⊥}), its places are HS := H ∪ P×S, and its transitions
TS ⊆ T are all transitions of V that use only atoms from S: TS = {t ∈ T | supp(t) ⊆ S} . The
state graph Graph(TS) is a subgraph of Graph(T). As Graph(T) is strongly connected,
we use Corollary 20 to deduce that, for sufficiently large S, the state graph Graph(TS) is
also strongly connected. Therefore we enlarge S, if necessary, to assure that Graph(TS) is
strongly connected.

As finite multisets f , f ′ are just nonnegative vectors T →fin N, they inherit the natural
(pointwise) action of Aut(A). Basing on f , f ′ we define two larger multisets of transitions by
applying all automorphisms from AutA\S(A) to f and f ′, respectively, and summing up all
the resulting multisets:

g := ⊕
{

σ(f)
∣∣ σ ∈ AutA\S(A)

}
g′ := ⊕

{
σ(f ′)

∣∣ σ ∈ AutA\S(A)
}

.

By Claim 18, each of g, g′ contains all transitions from TS . Furthermore, the multiset
h = f⊕g⊕g′ satisfies State-Eq(q̂, q̂′), where q̂, q̂′ are locations (=states) of VS corresponding
to q and q′ respectively. Likewise, the multiset h′ = f ′ ⊕ g ⊕ g′ satisfies State-Eq(q̂′, q̂).
Using the standard Euler argument in the (strongly) connected graph Graph(TS), and
relying on conditions (b)–(d), we deduce existence of a pseudo-run in VS that uses exactly
transitions h. Due to condition (a), this is a pseudo-run q̂(0) 99K q̂′(0) in VS . Likewise we
deduce a pseudo-run q̂′(0) 99K q̂(0) in VS . The pseudo-runs are essentially also pseudo-runs
in V, both supported by S, and both using some transition from every orbit in T . This
completes the proof of the characterisation. ◀

Reduction step. We define a dvass V̂ by removing some useless orbit of transitions,
V̂ = (L,R, H, P, T̂). It has the same locations, registers and places as V.

▶ Lemma 22 (Progress). ||T̂ || < ||T ||, and hence Rank(V̂) < Rank(V).

Proof. As some useless orbit of transitions is removed from T̂ , we have ||T̂ || < ||T ||, and
therefore Rank(V̂) = (|P |, |H|, ||T̂ ||) < (|P |, |H|, ||T ||) = Rank(V). ◀

▶ Lemma 23 (Correctness). The configurations q(0), q′(0) are bi-reachable in V if and only
if they are bi-reachable in V̂.

Proof. Indeed, useless transitions can not be used in runs between q(0) and q′(0). ◀

▶ Lemma 24 (Effectiveness). The condition Φ1 is decidable. When it fails, some useless
orbit of transitions is computable.

Proof. It is sufficient to prove that it is decidable if a given orbit o ∈ O is useful. We show
decidability by reduction to Multiset sum (recall Lemma 4), i.e., we use the algorithm for
Multiset Sum to check existence of a finite multiset f that satisfies conditions (a)–(d) and

CONCUR 2024

31:14 Bi-Reachability in Petri Nets with Data

contains a transition from o (and likewise to check existence of f ′). Let X = H ∪ P×A and
Y = X ∪Q ∪ {∗}. The set Y is orbit-finite. Let every transition t = (s, v, s′) ∈ T determine
a vector yt : Y →fin Z, and let every transition t = (s, v, s′) ∈ o determine additionally a
vector xt : Y →fin Z, each of them extending the vector v : X →fin Z as follows:

xt(s) = −1 xt(s′) = 1 xt(∗) = 1,

yt(s) = −1 yt(s′) = 1 yt(∗) = 0,
(9)

and xt(r) = yt(r) = 0 for other states r ∈ Q \ {s, s′}. Intuitively, the first two columns track
contribution of t to the number of transitions outgoing from s, or incoming to s′, while the
latter column tracks the number of usages of transitions from o. Likewise, let the target
vector b : Y →fin Z extend 0 : X →fin Z by

b(q) = −1 b(q′) = 1 b(∗) = 1, (10)

and b(s) = 0 for other states s ∈ Q \ {q, q′}. Let M = {yt | t ∈ T}∪{xt | t ∈ o}, and consider
the instance let (M, b) of Multiset Sum. Observe that solutions of (M, b) necessarily use
exactly one vector xt exactly once, as in (11) below. It remains to prove that some finite
multiset f = {t, u1, . . . , um} of transitions from T , where t ∈ o, satisfies the conditions (a)–(d)
exactly when

b = xt + yu1 + . . . + yum
. (11)

As b(c) = 0 for all c ∈ H ∪ P×A, condition (a) is equivalent to the equality (11) restricted
to H ∪P×A. By the first two columns in (9) and (10), and since b(s) = 0 for s ∈ Q \ {q, q′},
condition (b) is equivalent to the equality (11) restricted to Q \ {q, q′}, and the conditions
(c) and (d) are equivalent to the equality (11) restricted to {q, q′}. ◀

6.2 Violation of Φ2

Suppose V violates Φ2. We define a dvass V̂ of smaller rank and two its states q̂, q̂′ such
that bi-reachability of q(0) and q′(0) in V is equivalent to bi-reachability of q̂(0) and q̂′(0) in
V̂.

Pumpability and boundedness. Any run of the form q(0) −→ q(∆) (resp. q(∆) −→ q(0))
we call forward (resp. backward) pump from q. Likewise we define forward (resp. backward)
pumps from q′.

A plain place h ∈ H (resp. an atom place p ∈ P) we call forward pumpable from q if
there is a pump q(0) −→ q(∆) such that ∆(h) > 0 (resp. ∆(p, a) > 0 for some atom a ∈ A).
Symmetrically, a place h ∈ H (resp. p ∈ P) we call backward pumpable from q if there is a
pump q(∆) −→ q(0) such that ∆(h) > 0 (resp. ∆(p, a) > 0 for some atom a ∈ A). Likewise
we define places forward (resp. backward) pumpable from q′. Finally, a (plain or atom)
place is called pumpable if it is forward and backward pumpable both from q and from q′.
Otherwise, the place is called unpumpable.

▶ Lemma 25. Φ2 holds if and only if all places are pumpable.

Proof. In one direction, Φ2 amounts to simultaneous (= using one pump) forward and
backward pumpability of all places, from both q and q′. In the converse direction, suppose
all places are forward and backward pumpable from both q and q′. We observe that forward
(resp. backward) pumps from q compose, and hence all places are simultaneously forward
(resp. backward) pumpable from q. Likewise for q′. ◀

Ł. Kamiński and S. Lasota 31:15

We now introduce a suitable version of boundedness. In case of plain places h ∈ H

boundedness applies, as expected, to the value v(h) in a configuration s(v). On the other
hand in case of atom places p ∈ P , boundedness applies to the number of tokens on a place.
For uniformity we define the size of a place p ∈ P in a vector v as

v(p) =
∑
{v(p, a) | a ∈ A, v(p, a) > 0} ∈ N. (12)

For a family F of runs, we say that a place c ∈ H ∪ P is bounded on F by B ∈ N if for every
configuration s(v) appearing in every run in the family F , v(c) ≤ B. A place is bounded on
F , if it is bounded on F by some B. Otherwise, the place is called unbounded on F .

As forward (resp. backward) pumps compose, every place which is forward (resp. backward)
pumpable from q (resp. q′) is necessarily unbounded on respective pumps. We show the
opposite implication, namely unpumpable places are bounded on respective pumps:

▶ Lemma 26. A place which is not forward (resp. backward) pumpable from q is bounded on
forward (resp. backward) pumps from q. Likewise for q′.

Proof. W.l.o.g. we focus on forward pumps from q only. (Backward pumps are tackled simil-
arly as forward ones, but in the reversed dvass, whose transitions {(s′,−v, s) | (s, v, s′) ∈ T}
are inverses of transitions of V .) Assuming that a place c ∈ H ∪ P is unbounded on forward
pumps from q, we show that c is forward pumpable from q. Unboundedness of c means that
for every i ∈ N there is a run

q(0) −→ si(vi) −→ q(∆i) (13)

such that ni := vi(c) > i. By choosing a subsequence of (ni)i we may assume w.l.o.g. that this
sequence is strictly increasing. As ⊑ is a wqo, for some j < i we have sj(vj) ⊑ si(vi), i.e.,
there is some σ ∈ Aut(A) such that σ(sj) = si and σ(vj) ≤ vi. Equivalently, σ(vj) + ∆ = vi

for some nonnegative vector ∆. Recall that q = (ℓ,⊥⊥) and hence σ(q) = q. Therefore, we can
construct a new run, by first using the first half of (13) to go from p(0) to si(vi), and then
applying σ to the second half sj(vj) −→ q(∆j) to return from σ(sj(vj)) = σ(sj)(σ(vj)):

q(0) −→ si(vi) = σ(sj)(σ(vj) + ∆) −→ q(σ(∆j) + ∆).

By strict monotonicity of (ni)i we have nj < ni, i.e., vj(c) < vi(c), which implies ∆(c) > 0.
The place c is thus forward pumpable from q, as required. ◀

Reduction step. Let B ∈ N be the universal bound for all unpumpable places on all
respective pumps. Formally, let’s assume that B bounds every place which is not forward
(resp. backward) pumpable from q, on all forward (resp. backward) pumps from q, and B

also bounds every place which is not forward (resp. backward) pumpable from q′, on all
forward (resp. backward) pumps from q′. As V violates Φ2, we know by Lemma 25 that
there are some unpumpable places. We define a dvass V̂ = (L̂, R̂, Ĥ, P̂ , T̂) by, intuitively
speaking, removing some such place. Let X = H ∪ P×A.

Case 1: some plain place is unpumpable. Let P̂ := P and R̂ = R. We choose
an arbitrary unpumpable h ∈ H, and let Ĥ := H \ {h}. We keep track of values on h

by extending the locations L̂ := L × {0 . . . B}. Finally, transitions T̂ are obtained from
transitions T by replacing each t = ((ℓ, µ), v, (ℓ′, µ′)) ∈ T by all the transitions of the form

t̂ = ((⟨ℓ, n⟩, µ), w, (⟨ℓ′, n + v(h)⟩, µ′)),

where w is the restriction of v : (H ∪ P×A) →fin Z to Ĥ ∪ P×A. Let q̂ = (⟨ℓ, 0⟩,⊥⊥) and
q̂′ = (⟨ℓ′, 0⟩,⊥⊥).

CONCUR 2024

31:16 Bi-Reachability in Petri Nets with Data

Case 2: some atom place is unpumpable. Let L̂ := L and Ĥ := H. We choose an
arbitrary unpumpable p ∈ P , remove place p, namely P̂ := P \ {p}, and add B new registers,
namely R̂ = R ∪ {r1, . . . , rB}, which store, intuitively speaking, every possible content of
the place p. Using the new registers the transitions T̂ track, intuitively speaking, the effect
of transitions from T on the removed place p. Every register valuation µ naturally induces a
vector µ̂ : {p}×A→fin N, namely µ̂ := ⊕{(p, a) |µ(ri) = a ̸= ⊥, i ∈ {1 . . . B}} . Using this
notation we define the transitions T̂ by replacing every transition ((ℓ, ν), v, (ℓ′, ν′)) ∈ T with
all the transitions of the form(

(ℓ, ν ⊕ µ), w, (ℓ′, ν′ ⊕ µ′)
)
,

where w is the restriction of v : (H ∪ P×A)→fin Z to H ∪ P̂×A, and v = w⊕ µ̂′ ⊖ µ̂. Let
q̂, q̂′ be extensions of the states q, q′, respectively, by empty valuation of all the new registers
{r1, . . . , rB}.

▶ Lemma 27 (Progress). Rank(V̂) < Rank(V).

Proof. In the former case P̂ = P and |Ĥ| < |H|, while in the latter case |P̂ | < |P |. In each
case, Rank(V̂) = (|P̂ |, |Ĥ|, ||T̂ ||) < (|P |, |H|, ||T ||) = Rank(V). ◀

▶ Lemma 28 (Correctness). The configurations q(0), q′(0) are bi-reachable in V if and only
if q̂(0), q̂′(0) are bi-reachable in V̂.

Proof. As V̂ is obtained from V by restricting values in configurations on some places, each
run in V̂ is automatically a run in V, and bi-reachability in V̂ implies bi-reachability in V.

For the converse implication, suppose q(0), q′(0) are bi-reachable in V, and fix two
arbitrary runs π : q(0) −→ q′(0) and π′ : q′(0) −→ q(0). Consider any unpumpable place
c ∈ H ∪ P and suppose, w.l.o.g., that the place is not forward pumpable from q. By Lemma
26 the place is bounded by B on all forward pumps from q. In particular, it is bounded by B

on the composed run π; π′ : q(0) −→ q(0), i.e., on both π and π′. Therefore we know that in
each configuration (s, v) in both runs, v(c) ≤ B. If c ∈ H we keep track of v(c) in locations;
and if c ∈ P , we keep track of all tokens on c by storing their atoms in the new registers
{r1, . . . , rB}. Therefore, both runs are realisable in V̂. ◀

▶ Lemma 29 (Effectiveness). The set of pumpable places and the universal bound B are
computable (and therefore the condition Φ2 is decidable).

Proof. For a simple ω-configuration s(f) and an atom place p ∈ P we define f(p) = ω if
f(p, a) = ω for some atom a ∈ A, and otherwise f(p) :=

∑
{f(p, a) | f(p, a) > 0, a ∈ A} .

Relying on Lemma 25, we test forward (resp. backward) pumpability of every place from q

(and likewise from q′). Specifically, to test if a place is forward pumpable from q, we apply
Lemma 12 and compute a simple-ideal representation of the coverability set Cover(q(0)),
given by simple ω-configurations G = {s1(g1), . . . , sn(gn)}. A plain or atom place c ∈ H ∪ P

is forward pumpable from q if for some i ∈ {1 . . . n} we have si = q and gi(c) > 0. Likewise
we test if a place is backward pumpable from q (using the reverse dvass), or forward
(resp. backward) pumpable from q′. The set of pumpable places is thus computable.

Suppose there is some unpumpable place c, w.l.o.g. say not forward pumpable from
q. By Lemma 26, the place c is bounded on all forward pumps from q, but may be a
priori unbounded on some other run, and therefore it may happen that gi(c) = ω for some
i ∈ {1 . . . n}. Nevertheless we claim the following bound on forward pumps:

B := max {gi(c) | gi(c) < ω, i ∈ {1 . . . n}} . (14)

Ł. Kamiński and S. Lasota 31:17

▷ Claim 30. The place c is bounded on all forward pumps from q by B.

Proof. Consider an atom place p ∈ P (the argument for plain places is similar but simpler).
Towards contradiction, suppose that some configuration s(v) on some forward pump from q

satisfies v(p) > B. We have thus two runs:

π : q(0) −→ s(v) ρ : s(v) −→ q(w)

for some s ∈ Q and nonnegative vector w. Therefore s(v) ∈ Cover(q(0)), and hence
s(v) ∈ I = sj(gj) ↓ for some j ∈ {1 . . . n}. As v(p) is larger than all gi(p) < ω for
i ∈ {1 . . . n}, we deduce that gj(p) = ω. Therefore the ideal I contains configurations s′(v′)
with arbitrary large values of v′(p). In particular, I contains some configuration s′(v′) with
v(p) < v′(p). As I is directed, it contains a configuration s′′(v′′) such that

s(v) ⊑ s′′(v′′) s′(v′) ⊑ s′′(v′′),

which implies v(p) < v′′(p). Finally, as I ⊆ Cover(q(0)), it must contain a configuration s(v)
reachable from q(0), such that s′′(v′′) ⊑ s(v). We thus have s(v) ⊑ s(v) and v(p) < v(p),
which means that for some automorphism σ ∈ Aut(A) and vector w we have

σ(s) = s σ(v) + w = v w(p) > 0.

By composing runs π : q(0)→ s(v) and σ(ρ) : s(σ(v)) −→ q(σ(w)) we get a run

π; σ(ρ) : q(0) −→ q(σ(w) + w),

i.e., we deduce that p is forward pumpable from q, which is a contradiction. ◁

The universal bound is computed as the maximum of (14) for forward and backward pumps
from q and q′, for all unbounded places c. ◀

7 Final remarks

We show decidability of the bi-reachability problem for Petri nets with equality data. The
problem subsumes coverability, and reachability in the reversible subclass, and therefore the
result pushes further the decidability border towards the reachability problem. The latter
problem (which we believe to be decidable) is still beyond our reach, and development of
this paper is not sufficient. For instance, the approach of proving of Lemma 17 would fail
for reachability, as we rely on the fact that bi-reachability implies a cycle. Moreover, Φ1
reduction step would fail as well, as it assumes that a transition (orbit) is either unusable, or
usable unboundedly, while in case of reachability a transition can be usable only boundedly.

Our approach is specific to equality data, and thus we leave unresolved the status of
bi-reachability in case of ordered data. In case of ordered data domain the approach of
proving Lemma 17 would fail again, as the trick of applying all permutations of S would be
impossible. Moreover, it is not clear how to implement Φ2 reduction step, as no procedure
computing coverability sets is known.

References
1 Michael Blondin and Franccois Ladouceur. Population protocols with unordered data. In

Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, Proc. ICALP 2023, volume
261 of LIPIcs, pages 115:1–115:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ICALP.2023.115.

CONCUR 2024

https://doi.org/10.4230/LIPICS.ICALP.2023.115

31:18 Bi-Reachability in Petri Nets with Data

2 Mikołaj Bojańczyk. Slightly infinite sets, 2019. URL: https://www.mimuw.edu.pl/~bojan/
paper/atom-book.

3 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.
Logical Methods in Computer Science, 10(3:4):paper 4, 2014.

4 Mikołaj Bojańczyk, Bartek Klin, Slawomir Lasota, and Szymon Toruńczyk. Turing machines
with atoms. In LICS, pages 183–192, 2013.

5 Iliano Cervesato, Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov.
A meta-notation for protocol analysis. In Proc. CSFW 1999, pages 55–69. IEEE Computer
Society, 1999. doi:10.1109/CSFW.1999.779762.

6 Iliano Cervesato, Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov. A
meta-notation for protocol analysis. In Proc. CSFW 1999, pages 55–69, 1999.

7 Giorgio Delzanno. An overview of MSR(C): A CLP-based framework for the symbolic
verification of parameterized concurrent systems. Electr. Notes Theor. Comput. Sci., 76:65–82,
2002.

8 Giorgio Delzanno. Constraint multiset rewriting. Technical Report DISI-TR-05-08, DISI,
Universitá di Genova, 2005.

9 Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-
space completeness of reachability for succinct branching VASS in dimension one. In Proc. IC-
ALP 2017, volume 80 of LIPIcs, pages 119:1–119:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPICS.ICALP.2017.119.

10 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: completions. In
Susanne Albers and Jean-Yves Marion, editors, Proc. STACS 2009, volume 3 of LIPIcs, pages
433–444. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2009.

11 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part II: complete WSTS.
Log. Methods Comput. Sci., 8(3), 2012.

12 Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche.
Reachability in bidirected pushdown VASS. In Proc. ICALP 2022, volume 229 of LIPIcs,
pages 124:1–124:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

13 Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level Petri nets.
Theor. Comput. Sci., 13:109–136, 1981.

14 A. Ghosh, P. Hofman, and S. Lasota. Orbit-finite linear programming. In Proc. LICS 2023,
pages 1–14, 2023.

15 Arka Ghosh and Slawomir Lasota. Equivariant ideals of polynomials. In Proc. LICS 2024,
pages 38:1–38:14. ACM, 2024. doi:10.1145/3661814.3662074.

16 Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability trees for petri nets with unordered data. In Bart Jacobs and Christof
Löding, editors, Proc. FOSSACS 2016, volume 9634 of Lecture Notes in Computer Science,
pages 445–461. Springer, 2016.

17 Kurt Jensen. Coloured Petri nets and the invariant-method. Theor. Comput. Sci., 14:317–336,
1981.

18 S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version).
In Proc. STOC 1982, pages 267–281, 1982.

19 Jean-Luc Lambert. A structure to decide reachability in Petri nets. Theor. Comput. Sci.,
99(1):79–104, 1992.

20 Slawomir Lasota. Decidability border for Petri nets with data: WQO dichotomy conjecture.
In Proc. Petri Nets 2016, volume 9698 of Lecture Notes in Computer Science, pages 20–36.
Springer, 2016.

21 Slawomir Lasota. VASS reachability in three steps. CoRR, abs/1812.11966, 2018. arXiv:
1812.11966.

22 Ranko Lazic, Thomas Christopher Newcomb, Joël Ouaknine, A. W. Roscoe, and James Worrell.
Nets with tokens which carry data. In Proc. ICATPN 2007, volume 4546 of Lecture Notes in
Computer Science, pages 301–320. Springer, 2007.

https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://doi.org/10.1109/CSFW.1999.779762
https://doi.org/10.4230/LIPICS.ICALP.2017.119
https://doi.org/10.1145/3661814.3662074
https://arxiv.org/abs/1812.11966
https://arxiv.org/abs/1812.11966

Ł. Kamiński and S. Lasota 31:19

23 Ranko Lazic and Patrick Totzke. What makes Petri nets harder to verify: stack or data?
In Concurrency, Security, and Puzzles - Essays Dedicated to Andrew William Roscoe on the
Occasion of His 60th Birthday, volume 10160 of Lecture Notes in Computer Science, pages
144–161. Springer, 2017.

24 Jérôme Leroux. Vector addition system reversible reachability problem. Log. Methods Comput.
Sci., 9(1), 2013.

25 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In
Proc. LICS 2015, pages 56–67. IEEE Computer Society, 2015.

26 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In Proc. LICS 2019, pages 1–13. IEEE, 2019.

27 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. STOC
1981, pages 238–246, 1981.

28 Fernando Rosa-Velardo and David de Frutos-Escrig. Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci., 412(34):4439–4451, 2011.

29 Kumar Neeraj Verma and Jean Goubault-Larrecq. Karp-Miller trees for a branching extension
of VASS. Discret. Math. Theor. Comput. Sci., 7(1):217–230, 2005. doi:10.46298/DMTCS.350.

A Proofs for Section 3 (Data vector addition systems with states)

▶ Lemma 8. In dvass bi-reachability problem we may assume, w.l.o.g., that q = (ℓ,⊥⊥),
q′ = (ℓ′,⊥⊥), and v = v′ = 0.

Proof. Consider a dvass V = (L,R, P, H, T) and two configurations q(v), q′(v′), where
q = (ℓ, ν), q′ = (ℓ′, ν′). We proceed in three steps, as shown in the diagram (cf. diagram (4)
in Remark 6):

locations plain places3
oo

registers
1 //

1

OO

atom places

2
OO

As the first step we redo the first step of the proof of Lemma 12 which yields a dvass
V1 = (L1, ∅, H, P1, T1) without registers (which implies q = (ℓ,⊥⊥) and q′ = (ℓ′,⊥⊥)). We
choose initial and final location

ℓ := (ℓ, ν−1(⊥)) ℓ
′ := (ℓ′, (ν′)−1(⊥)) ∈ L1

and, identifying a register valuation ν with the vector ⊕{(r, a) | ν(r) = a ̸= ⊥}, we choose
initial and final vector H ∪ P1×A→fin N,

v := v⊕ ν v′ := v′ ⊕ ν′,

and claim that the reachability is preserved (we omit registers, and write e.g. ℓ(v)):

▷ Claim 31. The configurations q(v), q′(v′) are bi-reachable in V if and only if ℓ(v), ℓ
′(v′)

are bi-reachable in V1.

Second, consider a register-less dvass V1 = (L1, ∅, H1, P1, T1) and two configurations
ℓ(v) = q(u⊕w) and ℓ′(v′) = q′(u′ ⊕w′), where u, u′ : H1 →fin N and w, w′ : P1×A→fin N.
We argue that w.l.o.g. we can assume w = w′ = 0. Let S = supp(v)∪ supp(v′) be the set of
those atoms which appear in w or w′. Intuitively, we move the set P1×S to plain places. We
take H2 = H1 ∪ P1×S as plain places, and consider atoms A′ = A \ S instead of A. Clearly,

H1 ∪ (P1×A) = H2 ∪ (P1×A′)

CONCUR 2024

https://doi.org/10.46298/DMTCS.350

31:20 Bi-Reachability in Petri Nets with Data

and therefore we may take the same transitions T1 as transitions of the new dvass V2 =
(L1, ∅, H2, P1, T1). As S is finite, the set T1 is still orbit-finite with respect to Aut(A′).

▷ Claim 32. The configurations ℓ(v), ℓ′(v′) are bi-reachable in V1 if and only if ℓ(v), ℓ′(v′)
are bi-reachable in V2.

In the last third step, consider a dvass V = (L2, ∅, H2, P2, T2) without registers and
two configurations ℓ(u) and ℓ′(u′), where u, u′ : H2 →fin N. We eliminate the initial
and final values u, u′ on plain places in a classical way, by introducing new initial and
final locations ℓ, ℓ

′ and adding to T2 the following four transitions, and thus defining
V3 = (L2 ∪

{
ℓ, ℓ

′}
, ∅, H2, P2, T3):

(ℓ, u, ℓ) (ℓ′,−u′, ℓ
′) (ℓ,−u, ℓ) (ℓ′

, u′, ℓ′). (15)

▷ Claim 33. The configurations ℓ(u), ℓ′(u′) are bi-reachable in V2 if and only if ℓ(0), ℓ
′(0)

are bi-reachable in V3.

Indeed, a run ℓ(u) −→ ℓ′(u′) in V2 extended with the first two transitions in (15) yields
a run ℓ(0) −→ ℓ

′(0) in V3, and likewise a run ℓ′(u′) −→ ℓ(u) in V2 extended with the
last two transitions in (15) yields a run ℓ

′(0) −→ ℓ(0) in V3. Conversely, consider a run
π : ℓ(0) −→ ℓ

′(0) in V3. It necessarily starts with the first transition in (15), and ends with
the second one. If transitions (15) are used elsewhere in π, they are necessarily used in pairs,
namely the second one followed immediately by the fourth one, or the third one is followed
immediately by the first one. Effects of each such pair cancel out, and thus each pair can be
safely removed from π. Finally, removing the first and the last transition makes π into a run
ℓ(u) −→ ℓ′(u′) in V2, as required. Likewise we transform a run ℓ

′(0) −→ ℓ(0) in V3. ◀

B Proofs for Section 4 (Toolset)

▶ Lemma 10. ⊑ is a wqo on configurations.

Proof. Recall the sets of states Q = L × (R → (A ∪ {⊥})) and configurations Conf =
Q ×

(
(H ∪ P×A) →fin N

)
. The quasi-order ⊑ is a wqo on the set of nonnegative vectors

P×A →fin N, as it is quasi-order-isomorphic to M(P →fin Z), the set of finite multisets
of finite vectors from P →fin Z, ordered by multiset inclusion. Furthermore, ⊑ is a wqo
on (H ∪ P×A) →fin N, as it is quasi-order-isomorphic to the Cartesian product (H →fin

N)× (P×A→fin N) of two wqo’s, and Cartesian product preserves wqo.
Every register valuation ν : R → (A ∪ {⊥}) may be seen as an R′-vector, where R′ =

ν−1(A) is the set of non-empty registers, namely ν̂ = ⊕{(r, a) | ν(r) = a ̸= ⊥} : R′ →fin N.
We use this fact to argue that ⊑ is a wqo on Y = (R → (A ∪ {⊥}))× ((H ∪ P×A)→fin N).
Indeed, we split this set into 2|R| subsets, determined by non-empty registers, i.e., for every
subset R′ ⊆ R we consider a subset

CR′ :=
{

(ν, v)
∣∣ ν−1(A) = R′} ⊆ Y.

For every fixed R′, the set CR′ is essentially a subset of H ∪ (P ∪R′)× A →fin N, due to
the bijection (ν, v) 7→ ν̂ ⊕ v, containing those vectors which use exactly one generator from
R′ × A. Therefore CR′ is a wqo. In consequence, Y is a wqo too, as finite sums preserve
wqo.

Finally, the set Conf = L × Y is a wqo, as Cartesian product of the finite set L and
a wqo. ◀

Minimising the Probabilistic Bisimilarity Distance
Stefan Kiefer #

Department of Computer Science, University of Oxford, UK

Qiyi Tang #

Department of Computer Science, University of Liverpool, UK

Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e.,
together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to
interval Markov chains. Motivated by applications to the verification of probabilistic noninterference
in security, we study problems of minimising probabilistic bisimilarity distances of labelled MDPs,
in particular, whether there exist strategies such that the probabilistic bisimilarity distance between
the induced labelled Markov chains is less than a given rational number, both for memoryless
strategies and general strategies. We show that the distance minimisation problem is ∃R-complete
for memoryless strategies and undecidable for general strategies. We also study the computational
complexity of the qualitative problem about making the distance less than one. This problem is
known to be NP-complete for memoryless strategies. We show that it is EXPTIME-complete for
general strategies.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of
computation → Models of computation; Mathematics of computing → Probability and statistics

Keywords and phrases Markov decision processes, Markov chains

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.32

Related Version Full Version: https://arxiv.org/abs/2406.19830 [18]

Funding This work has been supported in part by the Engineering and Physical Sciences Research
Council (EPSRC) through grant EP/X042596/1.

Acknowledgements We thank the referees for their constructive feedback.

1 Introduction

Given a model of computation (e.g., finite automata), and two instances of it, are they
semantically equivalent (e.g., do the automata accept the same language)? Such equivalence
problems can be viewed as a fundamental question for almost any model of computation. As
such, they permeate computer science, in particular, theoretical computer science.

In labelled Markov chains (LMCs), which are Markov chains whose states (or, equivalently,
transitions) are labelled with an observable letter, there are two natural and very well-studied
versions of equivalence, namely trace (or language) equivalence and probabilistic bisimilarity.

The trace equivalence problem has a long history, going back to Schützenberger [28]
and Paz [21] who studied weighted and probabilistic automata, respectively. Those models
generalise LMCs, but the respective equivalence problems are essentially the same. For
LMCs, trace equivalence asks if the same label sequences have the same probabilities in the
two LMCs. It can be extracted from [28] that equivalence is decidable in polynomial time,
using a technique based on linear algebra; see also [32, 9].

Probabilistic bisimilarity is an equivalence that was introduced by Larsen and Skou [20].
It is finer than trace equivalence, i.e., probabilistic bisimilarity implies trace equivalence.
A similar notion for Markov chains, called lumpability, can be traced back at least to the
classical text by Kemeny and Snell [15]. Probabilistic bisimilarity can also be computed in

© Stefan Kiefer and Qiyi Tang;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stekie@cs.ox.ac.uk
https://orcid.org/0000-0003-4173-6877
mailto:qiyi.tang@liverpool.ac.uk
https://orcid.org/0000-0002-9265-3011
https://doi.org/10.4230/LIPIcs.CONCUR.2024.32
https://arxiv.org/abs/2406.19830
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Minimising the Probabilistic Bisimilarity Distance

polynomial time [1, 7, 33]. Indeed, in practice, computing the bisimilarity quotient is fast
and has become a backbone for highly efficient tools for probabilistic verification such as
Prism [19] and Storm [12].

Numerous quantitative generalisations of this behavioural equivalence have been proposed,
the probabilistic bisimilarity distance due to Desharnais et al. [8] being the most notable one.
This distance can be at most 1, and is 0 if and only if the LMCs are probabilistic bisimilar.
It was shown in [5] that the distance can be computed in polynomial time.

In this paper, we study distance minimisation problems for (labelled) Markov decision
processes (MDPs), which are LMCs plus nondeterminism; i.e., each state may have several
actions (or “moves”) one of which is chosen by a controller, potentially randomly. An MDP
and a controller strategy together induce an LMC (potentially with infinite state space,
depending on the complexity of the strategy). We consider both general strategies and the
more restricted memoryless ones. There are good reasons to consider memoryless strategies,
particularly their naturalness and simplicity in implementations, and their connection to
interval Markov chains (see, e.g., [14, 6]) and parametric MDPs (see, e.g., [11, 35]). There
are also good reasons to consider general unrestricted strategies, primarily their naturalness
(in their definition for MDPs) and their generality. The latter is important particularly for
security applications, see below, where general strategies can make programs more secure, in
a precise, quantitative sense.

Let us elaborate on the connection to security. Noninterference refers to an information-
flow property of a program, stipulating that information about high data (i.e., data with high
confidentiality) may not leak to low (i.e., observable) data, or, quoting [25], “that a program is
secure whenever varying the initial values of high variables cannot change the low-observable
(observable by the attacker) behaviour of the program”. It was proposed in [25] to reason
about probabilistic noninterference in probabilistic multi-threaded programs by proving
probabilistic bisimilarity; see also [29, 22]. More precisely, probabilistic noninterference is
established if it can be shown that any two states that differ only in high data are probabilistic
bisimilar, as then an attacker who only observes the low part of a state learns nothing about
the high part. The observable behaviour of a multi-threaded program depends strongly on
the scheduler, which in this context amounts to a strategy in the corresponding MDP.

Nevertheless, ensuring perfect (probabilistic) noninterference proves challenging, and
a certain degree of information leakage may be acceptable [13, 24]. In such scenarios,
where (probabilistic) bisimilarity might not hold under any scheduler, turning to bisimilarity
distances allows us to estimate the security degree of a system under different schedulers.
The smaller the distance, the more secure the system. Therefore, we would like to devise
schedulers that minimise the probabilistic bisimilarity distances.

Some qualitative problems have already been studied in previous work. Concerning
memoryless strategies, it was shown in [16] that the bisimilarity equivalence problem, i.e.,
whether strategies exist to make the distance 0, is NP-complete. Similarly, it was also
shown in [16] that the problem whether memoryless strategies exist to make the distance less
than one is NP-complete; cf. Table 1. The bisimilarity inequivalence problem, i.e., whether
strategies exist to make the distance greater than 0, can be decided in polynomial time for
memoryless strategies [16].

Concerning general strategies, the bisimilarity equivalence and inequivalence problems
were studied in [17]. It was shown there that these problems are EXPTIME-complete and
in P, respectively.

It remained open whether the existence of strategies to make the distance less than one is
decidable for general strategies. We show that the distance less than one problem for general
strategies is decidable. In fact, it is EXPTIME-complete, and therefore the problem has the

S. Kiefer and Q. Tang 32:3

Table 1 Summary of results on distance minimisation problems.

Problem Memoryless Strategy General Strategy

distance = 0 NP-complete [16] EXPTIME-complete [17]
distance < 1 NP-complete [16] EXPTIME-complete (Section 6)
distance < θ ∃R-complete (Section 4) undecidable (Section 5)

same complexity as the bisimilarity equivalence problem for general strategies. To obtain
this result, we prove a tight connection between the distance less than one problem and the
bisimilarity equivalence problem: loosely speaking, whenever there are general strategies for
two states to have distance less than one, the two states can reach a pair of states whose
distance can be made 0, thus probabilistic bisimilar. This connection is natural and known
for finite labelled Markov chains, but nontrivial to establish in general.

We also study quantitative distance minimisation problems: do there exist memoryless
(resp. general) strategies for two given MDPs such that the induced LMCs have distance less
than a given threshold? We show that the distance minimisation problem is ∃R-complete for
memoryless strategies and undecidable for general strategies. Here, ∃R refers to the class of
problems that are many-one reducible to the existential theory of the reals; it is known that
NP ⊆ ∃R ⊆ PSPACE.

The rest of the paper is organised as follows. We give preliminaries in Section 2. In
Section 3 we discuss probabilistic noninterference. In Sections 4 and 5 we prove our results
on the quantitative distance minimisation problems for general strategies and memoryless
strategies, respectively. We study the distance less than one problem for general strategies in
Section 6. We conclude in Section 7. Missing proofs can be found in the full version of this
paper [18].

2 Preliminaries

We write N for the set of nonnegative integers. Let S be a finite set. We denote by
Distr(S) the set of probability distributions on S. For a distribution µ ∈ Distr(S) we
write support(µ) = {s ∈ S | µ(s) > 0} for its support. We denote the Dirac distribution
concentrated on an element s ∈ S by 1s, that is, 1s(s) = 1 and 1s(t) = 0 for all t ̸= s. We
denote by ρ(i) the i-th element of a sequence ρ. We denote the least fixed point of a function
f by µ.f .

A labelled Markov chain (LMC) is a quadruple ⟨S, L, τ, ℓ⟩ consisting of a nonempty
countable set S of states, a nonempty finite set L of labels, a transition function τ : S →
Distr(S), and a labelling function ℓ : S → L. We denote by τ(s)(t) the transition probability
from s to t. Similarly, we denote by τ(s)(E) =

∑
t∈E τ(s)(t) the transition probability from

s to E ⊆ S. We require the LMCs to be finitely branching, that is, |support(τ(s))| is finite
for every s ∈ S.

An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all (s, t) ∈ R,
ℓ(s) = ℓ(t) and τ(s)(E) = τ(t)(E) for each R-equivalence class E. Probabilistic bisimilarity,
denoted by ∼M (or ∼ when M is clear), is the largest probabilistic bisimulation.

The probabilistic bisimilarity distance, a pseudometric on LMCs, was first defined by
Desharnais, Gupta, Jagadeesan and Panangaden in [8]. Their definition is based on a
real-valued modal logic. This logic can be viewed as a function which maps a formula f

of the logic and a state s of the LMC to a real number f(s) ∈ [0, 1]. The distance d(s, t)
between two states s, t is defined as supf |f(s) − f(t)|. Later, Van Breugel and Worrell [34]

CONCUR 2024

32:4 Minimising the Probabilistic Bisimilarity Distance

defined probabilistic bisimilarity distances on LMCs as a fixed point of a function. They
showed that their pseudometric coincides with the one defined in [8]. In this paper, we use
the definition from [34]. The probabilistic bisimilarity distance, denoted by dM (or d when
M is clear), is a function from S × S to [0, 1], that is, an element of [0, 1]S×S . It is the least
fixed point of the following function:

∆(e)(s, t) =

1 if ℓ(s) ̸= ℓ(t)

min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) e(u, v) otherwise

where the set Ω(µ, ν) of couplings of µ, ν ∈ Distr(S) is defined as Ω(µ, ν) ={
ω ∈ Distr(S × S)

∣∣ ∑
t∈S ω(s, t) = µ(s) ∧

∑
s∈S ω(s, t) = ν(t)

}
. Note that a coupling ω ∈

Ω(µ, ν) is a joint probability distribution with marginals µ and ν (see, e.g., [2, page 260-262]).
For all s, t ∈ S, s ∼ t if and only if s and t has probabilistic bisimilarity distance zero [8,
Theorem 1].

A (labelled) Markov decision process (MDP) is a tuple ⟨S, Act, L, φ, ℓ⟩ consisting of a
finite set S of states, a finite set Act of actions, a finite set L of labels, a partial function
φ : S × Act 7→ Distr(S) denoting the probabilistic transition, and a labelling function
ℓ : S → L. The set of available actions in a state s is Act(s) = {m ∈ Act | φ(s, m) is defined}.

A path is a sequence ρ = s0m1s1 · · · mnsn such that φ(si, mi+1) is defined and
φ(si, mi+1)(si+1) > 0 for all 0 ≤ i < n. The last state of ρ is last(ρ) = sn. Let Paths(D)
denote the set of paths in D.

A (general) strategy for an MDP is a function α : Paths(D) → Distr(Act) that given a
path ρ, returns a probability distribution on the available actions at the last state of ρ, last(ρ).
A memoryless strategy depends only on last(ρ); so we can identify a memoryless strategy
with a function α : S → Distr(Act) that given a state s, returns a probability distribution on
the available actions at that state.

A general strategy α for D induces an LMC D(α) = ⟨P , L, τ, ℓ′⟩, where P ⊆ Paths(D).
For ρ ∈ P, we have τ(ρ)(ρmt) = α(ρ)(m)φ(s, m)(t) and ℓ′(ρ) = ℓ(s) where s = last(ρ) and
m ∈ Act(s).

3 Probabilistic Noninterference

In this section we provide examples that show some challenges in distance minimisation and
illustrate the relation between distance minimisation and probabilistic noninterference in
security. As described in the introduction, we are interested in schedulers that minimise the
information leakage.

▶ Example 1. We borrow an example from [25, Section 4] and [17, Section 3]. Consider the
following simple program composed of two threads, involving a high boolean variable h (high
confidentiality) and a low boolean variable l (observable):

l := h | l := ¬h

The vertical bar | separates two threads. The order in which the threads are executed is
determined by a scheduler. We assume that assignments to the value of variable l are visible.
One may model the program as the following MDP in Figure 1. Here, s0 and s1 correspond
to initial states with h = 0 and h = 1, respectively. The two actions in the MDP, m0 and m1,
correspond to the two possible orders of execution: action m0 models the choice of executing
l := h first, followed by l := ¬h, while m1 models the reverse order. The different colours

S. Kiefer and Q. Tang 32:5

s0
m0

0

1

m1

1

0

t0

s1
m0

1

0

m1

0

1

t1

Figure 1 The program from Example 1 as an MDP. The states s0 and s1 have two available
actions, m0 and m1. The default action m for the other states is omitted. Different colours (state
labels) indicate the distinct values of the low data. Throughout the paper, transition probabilities
out of each action are one unless explicitly specified.

represent the distinct values of the low, observable data. For instance, in state s0, if the
scheduler selects m0 (the left branch of s0), then l becomes 0 after executing l := h and 1
after executing l := ¬h. All transitions are with probability one. A memoryless strategy that
chooses actions m0, m1 uniformly at random (i.e., with probability 0.5 each) makes s0, s1
probabilistic bisimilar; i.e., d(s0, s1) = 0 under this strategy. ⌟

▶ Example 2. Consider the following variant of Example 1.

repeat
l := h | l := ¬h

until coin(p) ∨ h

Here, coin(p), for a fixed parameter p ∈ [0, 1], models a biased coin that returns true with
probability p and false with probability 1 − p. One may model the program as the MDP
in Figure 2, except that t0, t1 are sinks, as in Example 1. The value of h influences the
termination condition of the loop and therefore “leaks” (with probability 1 − p). As a result,
under the optimal (in terms of minimising the distance) strategy, which is the same as in
Example 1, we have now d(s0, s1) = 1 − p. The smaller p, the “worse” the leak. ⌟

The following example shows that general strategies may be needed for optimal security.

▶ Example 3. In order to mitigate the leak from Example 2, one might extend the program
as follows, so that the scheduler is given an opportunity to disguise the fact that the program
with h = 1 tends to terminate earlier than the program with h = 0:

repeat
l := h | l := ¬h

until coin(p) ∨ h

repeat forever
l := 0 ⊕ l := 1

Here, ⊕ stands for a nondeterministic choice, to be made by the scheduler, where exactly
one of the instructions l := 0 and l := 1 is executed. In Figure 2, this corresponds to
taking actions m2 and m3, respectively. One can show that the optimal memoryless strategy

CONCUR 2024

32:6 Minimising the Probabilistic Bisimilarity Distance

s0
m0

0

1

m1

1

0

t0m2

0

m3

1

p p

1 − p 1 − p

s1
m0

1

0

m1

0

1

t1m2

0

m3

1

Figure 2 The program from Example 3 as an MDP. The states s0 and s1 have two available
actions, m0 and m1. The states t0 and t1 also have two available actions, m2 and m3. Different
colours (state labels) indicate the distinct values of the low data.

chooses between m0 and m1 uniformly at random (as before), and also chooses between m2
and m3 uniformly at random. Under this strategy we have d(s0, t1) = 0.5+0.5(1−p)d(s0, t1),
implying d(s0, t1) = 1

1+p , and thus d(s0, s1) = (1 − p)d(s0, t1) = 1−p
1+p , which is, for p ∈ (0, 1),

smaller (i.e., better) than the distance achievable in Example 2.
However, there is a general strategy α, not memoryless, that perfectly disguises when the

first loop is exited. This strategy α chooses between m0 and m1 uniformly at random (as
before). When the execution path visits t0 or t1 for the ith time, i ≥ 1, then, if i is odd, α

chooses between m2 and m3 uniformly at random, and if i is even, α chooses the action that
was not taken upon the (i − 1)th visit of t0 or t1. Under this strategy α we have d(s0, s1) = 0,
i.e., s0 and s1 are probabilistic bisimilar. ⌟

4 Memoryless Strategies: Distance Minimisation

In this section we consider the memoryless distance minimisation problem which, given
an MDP, two states s1, s2 of the MDP, and a rational number θ, asks whether there is a
memoryless strategy α such that d(s1, s2) < θ holds in the LMC induced by α.

We show that the memoryless distance minimisation problem is ∃R-complete. We prove
the lower and upper bound in Theorems 7 and 8, respectively.

The existential theory of the reals, ETR, is the set of valid formulas of the form

∃x1 . . . ∃xn R(x1, . . . , xn),

where R is a Boolean combination of comparisons of the form p(x1, . . . , xn) ∼ 0, in
which p(x1, . . . , xn) is a multivariate polynomial (with rational coefficients) and ∼ ∈
{<, >, ≤, ≥, =, ̸=}. The complexity class ∃R [27] consists of those problems that are many-
one reducible to ETR in polynomial time. Since ETR is NP-hard and in PSPACE [4, 23], we
have NP ⊆ ∃R ⊆ PSPACE.

S. Kiefer and Q. Tang 32:7

To prove that the memoryless distance minimisation problem is ∃R-hard (Theorem 7),
we proceed via a sequence of reductions, represented by the following lemmas, Lemmas 4–6.

▶ Lemma 4. The following problem is ∃R-complete: given a multivariate polynomial p :
Rn → R of (total) degree at most 6, does there exist x ∈ Rn with p(x) < 0? The problem
remains ∃R-complete under the promise that if there is x with p(x) < 0 then there is x′ with
p(x′) < 0 and ∥x′∥ < 1 (where ∥ · ∥ denotes the Euclidean norm).

Proof. Membership in ∃R is clear. It remains to prove ∃R-hardness. It is shown in [26,
Lemma 3.9] that the following problem is ∃R-complete: given multivariate polynomials
f1, . . . , fs : Rn → R, each of degree at most 2, does there exist x ∈ Rn with ∥x∥ < 1 such
that

∧s
i=1(fi(x) = 0)? It follows from the proof that the problem remains ∃R-complete

under the promise that
∧

i fi(x) = 0 implies ∥x∥ < 1. We reduce from this promise problem.
Let f1, . . . , fs : Rn → R, each of degree at most 2, such that for all x ∈ Rn we have that∧

i fi(x) = 0 implies ∥x∥ < 1. Define the polynomial q : Rn → R by q(x) :=
∑s

i=1 fi(x)2.
Clearly, q(x) ≥ 0 always holds, and we have q(x) = 0 if and only if

∧
i fi(x) = 0. Consider the

two sets {(q(x), x) ∈ Rn+1 | ∥x∥ ≤ 1} and {(0, x) ∈ Rn+1 | ∥x∥ ≤ 1}. If q has a root x, then
the two sets overlap in the point (0, x); otherwise, by [27, Corollary 3.4], they have distance
at least 22−k , where k is a natural number whose unary representation can be computed in
polynomial time. It follows that if ∥x∥ ≤ 1 and q(x) < 22−k then there exists x′ such that
q(x′) = 0.

In the following let us use real-valued variables x1, . . . , xn, y1, . . . , yk and write x =
(x1, . . . , xn) and y = (y1, . . . , yk). Define the polynomial r : Rn+k → R (of degree at most 6)
by

r(x, y) := (y1 − 4)2 + (y2 − y2
1)2 + · · · + (yk − y2

k−1)2 + y2
kq(x) + ∥x∥2 − 1 .

Let us also use a real-valued variable z. Define the polynomial p : Rn+k+1 (of degree at
most 6) by

p(x, y, z) := z6r
(x1

z
, . . . ,

xn

z
,

y1

z
, . . . ,

yk

z

)
.

Suppose there is x ∈ Rn with
∧

i fi(x) = 0. Then q(x) = 0. For 1 ≤ i ≤ k, set yi := 22i .
Then r(x, y) = ∥x∥2 − 1 < 0. Set z > 0 small enough so that z2 (

∥x∥2 + ∥y∥2 + 1
)

< 1. For
1 ≤ i ≤ n, set x′

i := xiz. For 1 ≤ i ≤ k, set y′
i := yiz. Then p(x′, y′, z) = z6r(x, y) < 0 and

∥x′∥2 + ∥y′∥2 + z2 = z2 (
∥x∥2 + ∥y∥2 + 1

)
< 1.

Towards the other direction, suppose there is (x′, y′, z) ∈ Rn+k+1 with p(x′, y′, z) < 0.
Since p is a polynomial, it is continuous. So we can assume without loss of generality
that z ̸= 0. For 1 ≤ i ≤ n, set xi := x′

i/z. For 1 ≤ i ≤ k, set yi := y′
i/z. Then

r(x, y) = p(x′, y′, z)/z6 < 0. This implies y2
kq(x) < 1 and ∥x∥ < 1. Using r(x, y) < 0, we

show by induction that yi ≥ 22i−1 + 1 holds for all i ∈ {1, . . . , k}. For the induction base
(i = 1) we have (y1 − 4)2 ≤ 1. Thus, y1 − 4 ≥ −1, and so y1 ≥ 3 = 221−1 + 1. For the step
(1 ≤ i ≤ k − 1), suppose that yi ≥ 22i−1 + 1. Since r(x, y) < 0, we have (yi+1 − y2

i)2 ≤ 1, and
so

yi+1 ≥ y2
i − 1 ≥ (22i−1

+ 1)2 − 1 = 22i

+ 2 · 22i−1
≥ 22i

+ 1 .

Hence, we have shown that yk ≥ 22k−1 + 1 > 22k−1 . It follows that q(x) < 1/y2
k < 2−2k . Since

∥x∥<1, it follows from the argument at the beginning that there exists x′ such that q(x′) = 0
and so

∧
i fi(x′) = 0.

CONCUR 2024

32:8 Minimising the Probabilistic Bisimilarity Distance

This completes the hardness proof. Note that by combining the two directions, it follows
that if there is w ∈ Rn+k+1 with p(w) < 0, then there is w′ ∈ Rn+k+1 with p(w′) < 0 and
∥w′∥ < 1, showing also ∃R-hardness of the promise version of the problem. ◀

▶ Lemma 5. The following problem is ∃R-complete: given a multivariate polynomial p :
Rn → R of degree at most 6, does there exist x ∈ [0, 1]n with p(x) > 0?

Proof. Membership in ∃R is clear. For hardness we reduce from the promise problem from
the previous lemma. Let p : Rn → R be a multivariate polynomial of degree at most 6 such
that if there is x ∈ Rn with p(x) < 0 then there is x′ ∈ Rn with p(x′) < 0 and ∥x′∥ < 1. Define
the polynomial q : R2n → R by q(y1, . . . , yn, z1, . . . , zn) := −p(y1 − z1, . . . , yn − zn). The
degree of q is at most 6. We have to show that there is x ∈ Rn with p(x) < 0 if and only if
there are y1, . . . , yn, z1, . . . , zn ∈ [0, 1] with q(y1, . . . , yn, z1, . . . , zn) > 0.

Suppose there are x1, . . . , xn ∈ R with p(x1, . . . , xn) < 0. By the property of p we can
assume that x2

1 + · · · + x2
n < 1. It follows that xi ∈ [−1, 1] holds for all i. For all i with xi ≥ 0

define yi := xi and zi := 0. For all i with xi < 0 define yi := 0 and zi := −xi. Then we have
xi = yi − zi and yi, zi ∈ [0, 1] for all i. Further,

q(y1, . . . , yn, z1, . . . , zn) = −p(y1 − z1, . . . , yn − zn) = −p(x1, . . . , xn) > 0 .

Towards the other direction, suppose that there are y1, . . . , yn, z1, . . . , zn ∈ [0, 1] with
q(y1, . . . , yn, z1, . . . , zn) > 0. For all i define xi := yi − zi. Then we have

p(x1, . . . , xn) = p(y1 − z1, . . . , yn − zn) = −q(y1, . . . , yn, z1, . . . , zn) < 0 ,

as required. ◀

▶ Lemma 6. The following problem is ∃R-complete: given a rational number θ ≥ 0 and a
multivariate (degree-6) polynomial p : Rn → R of the form p(x) =

∑k
j=1 fj(x) where each

fj(x1, . . . , xn) is a product of a nonnegative coefficient and 6 terms of the form xi or (1 − xi),
does there exist x ∈ [0, 1]n with p(x) > θ?

Proof. Membership in ∃R is clear. Towards hardness, suppose m : Rn → R is a monomial
with a negative coefficient, i.e.,

m(x1, . . . , xn) = −c
d∏

j=1
xij

for some c > 0 and i1, . . . , id ∈ {1, . . . , n} .

Then we have

m(x1, . . . , xn) = −c
d∏

j=1
xij

= c(1 − xi1)
d∏

j=2
xij

− c
d∏

j=2
xij

= . . .

= −c +
d∑

k=1
c(1 − xik

)
d∏

j=k+1
xij .

We reduce from the problem from Lemma 5. Let p : Rn → R be a multivariate polynomial
of degree at most 6. By rewriting each monomial of p that has a negative coefficient using
the pattern above, we can write p(x) = −θ + q(x) for some θ ≥ 0 and some q : Rn → R of
the form q(x) =

∑k
j=1 fj(x) where each fj(x) is a product of a nonnegative coefficient and at

most 6 terms of the form xi or (1 − xi). As long as there is an fj(x1, . . . , xn) of degree less
than 6, we can replace it by the two summands x1fj(x1, . . . , xn) and (1 − x1)fj(x1, . . . , xn).
So we can assume that every fj(x) has the required form. For all x ∈ Rn we have that
p(x) > 0 if and only if q(x) > θ, as required. ◀

S. Kiefer and Q. Tang 32:9

s1

u11 v11 w11

1
u12 v12 w12

1
u13 v13 w13

−2

u21 v21 w21

2
u22 v22 w22

4
u23 v23 w23

−4
u′

t

1
3

2
3

s2

u

v1 v2 v3 v4 t′

w11 w−1−1 w22 w−2−2 w33 w−3−3 w44 w−4−4

1
5

1
5

1
5 1

5

1
5

Figure 3 An illustration of the proof of Theorem 7. Consider the polynomial p with
p(x1, x2, x3, x4) = 1

3 x2
1(1 − x2) + 2

3 x2x4(1 − x4). This example polynomial has degree 3 (instead of
degree 6 in the proof) to allow for a more succinct picture. The analogous construction from the
reduction yields the shown MDP. The labels are written next to the states in blue, unlike the other
figures in this paper where we usually use different colours to indicate different state labels. We omit
label 0. There is a one-to-one correspondence between an assignment x ∈ [0, 1]4 and a memoryless
strategy α(x) in the MDP. It is such that d(s1, s2) = 1 − p(x)

54 , establishing a connection between an
evaluation of p and the distance.

To show that the memoryless distance minimisation problem is ∃R-hard, we reduce from
the problem in Lemma 6. We give a brief outline of the reduction. Given a multivariate
polynomial p : Rn → R of the form as in Lemma 6, we construct an MDP with initial states
s1 and s2 such that each assignment x ∈ [0, 1]n corresponds to a memoryless strategy α(x)
of the MDP. The distance of s1 and s2 in the LMC induced by the memoryless strategy α(x)
is 1 − c · p(x) where c is a constant. Therefore, there exists x ∈ [0, 1]n with p(x) > θ if and
only if there exists a memoryless strategy α(x) such that the distance of s1 and s2 is less
than 1 − c · θ.

▶ Theorem 7. The memoryless distance minimisation problem is ∃R-hard.

Proof. We reduce from the problem from Lemma 6. Let θ ≥ 0 and let p : Rn → R be
a multivariate polynomial of the form p(x) =

∑m
j=1 fj(x) where each fj(x1, . . . , xn) is a

product of a nonnegative coefficient and 6 terms of the form xi or (1 − xi). Let us write
fj(x1, . . . , xn) = cj

∏6
k=1 xℓ(j,k) where each cj ≥ 0 and each ℓ(j, k) ∈ {−n, . . . , −1, 1, . . . , n}

and we use the notation x−i for i > 0 to mean 1 − xi. We can assume that
∑m

j=1 cj = 1
(otherwise, divide θ and each cj by

∑m
j=1 cj).

Construct an MDP which consists of two disjoint parts as follows; see Figure 3 for an
illustration. The first part is an LMC. Include states uj,k, vj,k, wj,k for each j ∈ {1, . . . , m}
and each k ∈ {1, . . . , 6}. Each uj,k, vj,k has label 0, and each wj,k has label ℓ(j, k). Each

CONCUR 2024

32:10 Minimising the Probabilistic Bisimilarity Distance

uj,k transitions with probability 1 to vj,k. Each vj,k transitions with probability 1 to wj,k.
Each wj,k, except those with k = 6, transitions with probability 1 to uj,k+1. Include also
states s1, u′ and t with label 0. State s1 transitions with probability cj to uj,1, for each j.
State u′ transitions with probability 1 to t. State t is a sink state, that is, it transitions with
probability 1 to itself. Also each wj,6 transitions with probability 1 to u′.

The second part is an MDP. Include states s2, u, t′ with label 0. State s2 transitions
with probability 1 to u. Include also states v1, . . . , vn, each with label 0. State u transitions
to each vi and t′ with probability 1

n+1 . State t′ is a sink state. Include also states
w−n, . . . , w−1, w1, . . . , wn, where each wi has label i. Each vi has two actions, one of which
leads with probability 1 to wi, the other one with probability 1 to w−i. Each wi transitions
with probability 1 to u.

Each assignment x ∈ [0, 1]n corresponds to a memoryless strategy α(x) such that in
state vi the memoryless strategy α(x) takes with probability xi the action that leads to wi,
and α(x) takes with probability 1 − xi the action that leads to w−i. In fact, this mapping α

(from an assignment to a memoryless strategy) is a bijection. Fix an arbitrary x ∈ [0, 1]n
and consider the distances in the LMC induced by α(x). For notational convenience, for any
states s, s′ let us write d(s, s′) := 1 − d(s, s′). Further, let us write uj,7 for u′.

Let j ∈ {1, . . . , m} and k ∈ {1, . . . , 6}. Then we have

d(uj,k, u) = 1
n + 1d(vj,k, v|ℓ(j,k)|) = 1

n + 1xℓ(j,k)d(wj,k, wℓ(j,k)) = 1
n + 1xℓ(j,k)d(uj,k+1, u) .

Since d(uj,7, u) = d(u′, u) = 1
n+1 , it follows

d(uj,1, u) =
(

1
n + 1

)7 6∏
k=1

xℓ(j,k) .

Hence,

d(s1, s2) =
m∑

j=1
cjd(uj,1, u) =

m∑
j=1

cj

(
1

n + 1

)7 6∏
k=1

xℓ(j,k) =
(

1
n + 1

)7 m∑
j=1

fj(x)

= p(x)
(n + 1)7 .

Thus, we have p(x) > θ if and only if d(s1, s2) > θ
(n+1)7 if and only if d(s1, s2) < 1 − θ

(n+1)7 .
This completes the hardness proof. ◀

The following theorem, proved in [18, A.1], provides a matching upper bound.

▶ Theorem 8. The memoryless distance minimisation problem is in ∃R.

Together with Theorem 7 we obtain:

▶ Corollary 9. The memoryless distance minimisation problem is ∃R-complete.

5 General Strategies: Distance Minimisation

In this section we consider the general distance minimisation problem which, given an MDP,
two states s1, s2 of the MDP, and a rational number θ, asks whether there is a general
strategy α such that d(s1, s2) < θ holds in the LMC induced by α.

To show that the general distance minimisation problem is undecidable, we establish a
reduction from the emptiness problem for probabilistic automata.

S. Kiefer and Q. Tang 32:11

A probabilistic automaton is a tuple A = ⟨Q, q0, L, δ, F ⟩ consisting of a finite set Q of
states, an initial state q0 ∈ Q, a finite set L of letters, a transition function δ : Q × L →
Distr(Q) assigning to every state and letter a distribution over states, and a set F of final states.
We also extend δ to words, by letting δ(q0, ε) = 1q0 and δ(q0, σw) =

∑
q∈Q δ(q0, σ)(q)δ(q, w)

for σ ∈ L and w ∈ L∗. For a state q ∈ Q, Aq is the probabilistic automaton obtained from
A by making q the initial state.

We write PrA(w) =
∑

q∈F δ(q0, w)(q) to denote the probability that A accepts a word
w. The emptiness problem asks, given a probabilistic automaton A, whether there exists a
word w such that PrA(w) > 1

2 holds. The probabilistic automaton A is called empty if no
such word exists. This problem is known to be undecidable [10, 21], even for probabilistic
automata with only two letters [3]1.

Let A = ⟨Q, q0, L, δ, F ⟩ be a probabilistic automaton; without loss of generality we assume
that q0 ̸∈ F and L = {a, b}. We construct an MDP D with states s1 and s2 and a number θ

such that A is nonempty if and only if there is a general strategy such that d(s1, s2) < θ in
the induced LMC.

Let us first outline the idea of the construction. Our MDP includes the part shown in
Figure 4, where after a random word w ∈ L∗ is produced, the strategy must choose between
taking the transition to x or to y. Lemma 10 below characterises the distance of s1 and
s2 under strategy α in terms of α and PrA. It follows from Lemma 10 that the following
strategy minimises the distance: if the random word w satisfies PrA(w) ≤ 1

2 , choose the
transition to x; otherwise choose the transition to y. Setting θ as the distance under the
strategy that always chooses the transition to x, we obtain that the distance can be made
less than θ if and only if there is a word w with PrA(w) > 1

2 .

a b

$mx my

x y

1
3

1
3

1
3

1
3

1
3

1
3

1 1

1 1

Figure 4 The first part of the MDP D. The $ state is the only one that has nondeterministic
choices: it has two available actions, mx and my. The default action m for the other states is omitted.
Different colours indicate different state labels.

We now give the details of the construction. The MDP D = ⟨S, Act, L′, φ, ℓ⟩ consists of two
disjoint parts as follows; see Figure 4 and Figure 5. The set of actions is Act = {m, mx, my}.
The set of labels is L′ = {a, b, $, x, y}.

The first part is an MDP shown in Figure 4. Its set of states is {a, b, $, x, y}. The state
s1 is defined to be a. The transitions φ are defined as follows:

1 It is stated in [3, Theorem 2.1] that the emptiness problem with unfixed threshold λ, i.e., whether there
exists a word w such that PrA(w) > λ, is undecidable for probabilistic automata with only two letters.
It is easy to adapt the proof to show undecidability of the emptiness problem with fixed threshold 1

2 .

CONCUR 2024

32:12 Minimising the Probabilistic Bisimilarity Distance

The state a (resp. b) transitions with uniform probability to its three successors a, b and
$, that is, φ(s, m)(a) = φ(s, m)(b) = φ(s, m)($) = 1

3 for s ∈ {a, b}.
The state $ has two actions mx and my; the action mx goes with probability 1 to x and
the action my goes with probability 1 to y. That is, φ($, mx)(x) = φ($, my)(y) = 1.
The states x and y are sink states, that is, φ(s, m)(s) = 1 for s ∈ {x, y}.

Each of the states is labelled with its name, that is, ℓ(s) = s for s ∈ {a, b, $, x, y}. This
sub-MDP “is almost” an MC, in the sense that a strategy α does not influence its behaviour
until eventually a transition to x or y is taken. Since a, b, x and y have only one available
action, we may omit the default action m in the paths that contain m only. For example, we
may write s1ab$ to represent the path s1mambm$.

q

q1

q2
q ̸∈ F

p1 and p2 are transition
probabilities:
p1 = δ(q, a)(q1) and
p2 = δ(q, b)(q2).

p1, a

p2, b

(a, q)

(a, q1)

(b, q2)

$x

x′

p1
3

p2
31

3

1

1

f

q3

q4
f ∈ F

p3 and p4 are transition
probabilities:
p3 = δ(f, a)(q3) and
p4 = δ(f, b)(q4).

p3, a

p4, b

(a, f)

(a, q3)

(b, q4)

$y

y′

p3
3

p4
31

3

1

1

The probabilistic automaton A The second part of D

Figure 5 The second part of the MDP D is an LMC, constructed from the probabilistic automaton
A. The default deterministic action m for all states is omitted. The state (b, q) in the MDP D,
where q ∈ Q, has the same transitions as the state (a, q); it is labelled with b.

The other part of D is an LMC constructed from A as follows; see Figure 5. The set of
states is (L × Q) ∪ {$x, $y, x′, y′}. The state s2 is defined to be (a, q0).

We describe the transitions of the LMC using the transition function δ of A. Con-
sider a letter σ ∈ L and a state q ∈ Q. The state (σ, q) with probability 1

3 simulates
the probabilistic automaton A reading the letter a, and with probability 1

3 simulates the
probabilistic automaton A reading the letter b. That is, φ

(
(σ, q), m

)(
(a, q′)

)
= 1

3 δ(q, a)(q′)
and φ

(
(σ, q), m

)(
(b, q′)

)
= 1

3 δ(q, b)(q′).

S. Kiefer and Q. Tang 32:13

For the remaining probability of 1
3 , we distinguish the following two cases:

If q ̸∈ F , the state (σ, q) transitions to $x with probability 1
3 , that is, φ

(
(σ, q), m

)
($x) = 1

3 .
Otherwise, if q ∈ F , the state (σ, q) transitions to $y with probability 1

3 , that is,
φ

(
(σ, q), m

)
($y) = 1

3 .
The state $x (resp. $y) transitions with probability one to the sink state x′ (resp. y′). That
is, φ($x, m)(x′) = φ($y, m)(y′) = φ(x′, m)(x′) = φ(y′, m)(y′) = 1.

A state (σ, q) ∈ L × Q is labelled with σ. The states $x and $y are labelled with $. The
states x′ and y′ are labelled with x and y, respectively.

Given a general strategy α, the next lemma expresses the distance between s1 and s2 in
terms of α and PrA. The proof is technical and can be found in [18, A.2].

▶ Lemma 10. For any general strategy α, we have

dα(s1, s2) =
∑

w∈L∗

1
3|w|+1

(
(1 − PrA(w))α(s1w$)(my) + PrA(w)α(s1w$)(mx)

)
.

Using Lemma 10, we prove the main theorem of this section:

▶ Theorem 11. The general distance minimisation problem is undecidable.

Proof. We reduce from the emptiness problem for probabilistic automata. Let A =
⟨Q, q0, L, δ, F ⟩ be a probabilistic automaton; without loss of generality we assume that
q0 ̸∈ F and L = {a, b}. Let D be the MDP constructed from A shown in Figures 4 and 5.

Let αx be the memoryless strategy that chooses the action mx whenever it is in state
$, that is, αx(s1w$) = 1mx

for all w ∈ L∗. Let θ be the distance between s1 and s2 in the
LMC D(αx). It can be computed in polynomial time [5]. We show in [18, A.3]that there is a
word w ∈ L∗ such that PrA(w) > 1

2 (A is nonempty) if and only if there is a general strategy
α such that dα(s1, s2) < θ in the induced LMC. ◀

6 General Strategies: Distance Less Than One

In this section, we consider the distance less than one problem which, given an MDP and two
states, asks whether there is a general strategy such that the two states have probabilistic
bisimilarity distance less than one in the LMC induced by the general strategy. The challenge
here is that general strategies induce, in general, LMCs with infinitely many states.

We show that the distance less than one problem is EXPTIME-complete. We prove the
upper and lower bound in Sections 6.1 and 6.2, respectively.

6.1 Membership in EXPTIME
Let M = ⟨S, L, τ, ℓ⟩ be a (possibly infinite) LMC. We partition the set S2 of state pairs into

S2
0 = { (s, t) ∈ S2 | s ∼ t }

S2
1 = { (s, t) ∈ S2 | ℓ(s) ̸= ℓ(t) }

S2
? = S2 \ (S2

0 ∪ S2
1) .

We call T : S2
? → Distr(S2) a policy for the LMC if for all (s, t) ∈ S2

? we have T (s, t) ∈
Ω(τ(s), τ(t)). We write T for the set of policies. Given a policy T ∈ T , the Markov chain
CT

M = ⟨S2, τ ′⟩ induced by T is defined by

τ ′((u, v)
)(

(u, v)
)

= 1 if (u, v) ∈ S2
0 ∪ S2

1 ;
τ ′((u, v)

)(
(x, y)

)
= T (u, v)(x, y) otherwise.

CONCUR 2024

32:14 Minimising the Probabilistic Bisimilarity Distance

s0 s1 s2 s3 · · · t1
1
3

2
3

2
3

1
3

1
3

1

(a) An infinite LMC M.

(s0, t) (s1, t) (s2, t) (s3, t) · · ·1
1
3

2
3

2
3

1
3

1
3

(b) The Markov chain CT
M.

Figure 6 (a) An infinite state LMC M with an infinite state space S =
{

si | i ∈ {0, 1, 2, . . .}
}

∪{t}.
All states have the same label except s0. The states s0 and t are sink states, that is, τ(s0)(s0) =
τ(t)(t) = 1. Each si where i ∈ {1, 2, . . .} transitions to si−1 with probability 1

3 and si+1 with
probability 2

3 . (b) The Markov chain CT
M induced by an arbitrary policy T in which only the states

reachable from (s1, t) are shown. The shown part of CT
M is the same for every policy T .

For (s, t) ∈ S2 and a set of state pairs Z ⊆ S2 we write RT
M((s, t), Z) ∈ [0, 1] for the

probability that in the Markov chain CT
M the state (s, t) reaches a state (u, v) ∈ Z.

By [31, Theorem 4, Proposition 5], the following proposition holds.

▶ Proposition 12. Let M = ⟨S, L, τ, ℓ⟩ be a finite LMC and s, t ∈ S. We have d(s, t) < 1 if
and only if there exists a policy T such that RT

M((s, t), S2
0) > 0.

The “only if” direction of Proposition 12 does not generally hold for LMCs with infinite
state space, as the following example shows.

▶ Example 13. Consider the LMC M in Figure 6a. Let T be an arbitrary policy for M. We
have T (si, t)(si−1, t) = 1

3 and T (si, t)(si+1, t) = 2
3 for all i ∈ {1, 2, . . .}. The Markov chain

CT
M induced by T is shown in Figure 6b; we only show the states that are reachable from

(s1, t). The shown part of CT
M is the same for every policy.

We have d(si, t) = 1
2i for all i ∈ {0, 1, 2, . . .}. In the Markov chain CT

M, all state pairs
that (s1, t) can reach have distances greater than zero: for all i ∈ {1, 2, . . .} the pair (s1, t)
can reach (si, t) and we have d(si, t) = 1

2i > 0. ⌟

The following theorem follows from [30, Theorem 6.1.7] for LMCs with finite state space.
The same proof, see [18, A.4], works for LMCs with infinite state space.

▶ Theorem 14. Let M = ⟨S, L, τ, ℓ⟩ be an LMC. There is a policy T ∈ T such that we have

d(s, t) = RT
M((s, t), S2

1) ≤ RT ′

M((s, t), S2
1) for all (s, t) ∈ S2 and all T ′ ∈ T .

In short, d = min
T ∈T

RT
M(·, S2

1).

The following corollary of Theorem 14 is similar to Proposition 12 but holds even for
infinite-state LMCs.

▶ Corollary 15. Let M = ⟨S, L, τ, ℓ⟩ be an LMC and s, t ∈ S. We have d(s, t) < 1 if and only
if there exists a policy T such that RT

M((s, t), S2
1) < 1. In particular, if there is a policy T

with RT
M((s, t), S2

0) > 0 then d(s, t) < 1.

S. Kiefer and Q. Tang 32:15

Corollary 15 falls short of an “if and only if” connection between distance less than one
and bisimilarity. Indeed, as we have seen, Proposition 12 does not always hold in infinite-state
LMCs. However, the key technical insight of this section is that a version of Proposition 12
holds for (finite-state) MDPs and general strategies. More precisely, the following proposition
characterises the existence of a strategy such that the distance is less than one.

▶ Proposition 16. Let D = ⟨S, Act, L, φ, ℓ⟩ be an MDP, and let s, t ∈ S. There exists
a strategy α′′ with dD(α′′)(s, t) < 1 if and only if there are strategies α, α′, a policy T for
the LMC D(α), two states u, v ∈ S and two paths ρ1, ρ2 ∈ Paths(D) with u = last(ρ1) and
v = last(ρ2), such that RT

D(α)((s, t), {(ρ1, ρ2)}) > 0 and u and v are probabilistically bisimilar
in the LMC D(α′).

The more difficult direction of the proof is the “only if” direction. It is based on Lévy’s
zero-one law, several applications of the Bolzano-Weierstrass theorem, and a characterisation
of probabilistic bisimilarity in MDPs in terms of an “attacker-defender” game defined [17,
Section 3.1].

The starting point of the proof of Proposition 16 is the following statement, which follows
from Theorem 14 and Corollary 15 using Lévy’s zero-one law.

▶ Corollary 17. Let M = ⟨S, L, τ, ℓ⟩ be an LMC and s, t ∈ S with d(s, t) < 1. There exists a
policy T such that for all ε>0 there is (u, v) ∈ S2 with d(u, v) ≤ ε and RT

M((s, t), {(u, v)})>0.

Proof. Let M = ⟨S, L, τ, ℓ⟩ be an LMC and s, t ∈ S with d(s, t) < 1. By Corollary 15 there
exists a policy T such that RT

M((s, t), S2
1) < 1. By Lévy’s zero-one law, the probability in CT

M
is one that a random run (s0, t0)(s1, t1) . . . started from (s0, t0) = (s, t) satisfies one of the
following conditions:
1. the sequence RT

M((s0, t0), S2
1), RT

M((s1, t1), S2
1), . . . converges to 1 and S2

1 is reached;
2. the sequence RT

M((s0, t0), S2
1), RT

M((s1, t1), S2
1), . . . converges to 0 and S2

1 is not reached.
Event 1 can be equivalently characterised by saying that S2

1 is reached. Since RT
M((s, t), S2

1)<

1, Event 2 happens with a positive probability. It follows that in CT
M there exists a run

(s0, t0)(s1, t1) . . . started from (s0, t0) = (s, t) such that RT
M((s0, t0), S2

1), RT
M((s1, t1), S2

1), . . .

converges to 0. Let ε > 0. Then there exists (u, v) ∈ S2 such that RT
M((u, v), S2

1) ≤ ε and
RT

M((s, t), {(u, v)}) > 0. By Theorem 14 it follows that d(u, v) ≤ ε. ◀

▶ Example 18. Consider again Example 13. We have d(s1, t) = 1
2 . Corollary 17 asserts that

there is a policy T such that for all ε > 0, in CT
M the pair (s1, t) can reach (u, v) ∈ S2 with

d(u, v) ≤ ε. Indeed, take an arbitrary policy T . Given any ε > 0 choose i with 1
2i ≤ ε. Then

(s1, t) can reach (si, t) and d(si, t) = 1
2i ≤ ε. ⌟

See [18, A.5] for the rest of the proof of Proposition 16. Proposition 16 is the key to
proving the following result.

▶ Theorem 19. The distance less than one problem is in EXPTIME.

Proof. Let ⟨S, Act, L, φ, ℓ⟩ be an MDP. Abusing the notation from the beginning of Sec-
tion 6.1, let us define

S2
0 = { (s, t) ∈ S2 | ∃ α′ such that s, t are probabilistically bisimilar in D(α′) }

S2
1 = { (s, t) ∈ S2 | ℓ(s) ̸= ℓ(t) }

S2
? = S2 \ (S2

0 ∪ S2
1) .

By [17, Theorem 7] the set S2
0 can be computed in exponential time. Consider the elements

of S2 as vertices of a directed graph with set of edges

CONCUR 2024

32:16 Minimising the Probabilistic Bisimilarity Distance

E := {(z, z) | z ∈ S2
0 ∪ S2

1} ∪{(
(s1, s2), (t1, t2)

)
∈ S2

? × S2 | ∀ i ∈ {1, 2} ∃ mi ∈ Act(si) : support(φ(si, mi)) ∋ ti

}
.

After S2
0 has been computed (in exponential time), the directed graph G := (S2, E) can be

computed in polynomial time, and given two states s, t ∈ S, it can be checked in polynomial
time if S2

0 can be reached from (s, t) in G. It follows from Proposition 16 that this is the
case if and only if there exists a strategy α′′ with dD(α′′)(s, t) < 1. ◀

6.2 EXPTIME-Hardness
Given an MDP and two (initial) states, the bisimilarity problem asks whether there is a
general strategy such that the two states are probabilistically bisimilar in the induced LMC.
The bisimilarity problem was shown EXPTIME-complete in [17, Theorem 7]. We show in
[18, A.6] that it can be reduced to the distance less than one problem. This gives us the
following theorem.

▶ Theorem 20. The distance less than one problem is EXPTIME-hard.

Together with Theorem 19 we obtain:

▶ Corollary 21. The distance less than one problem is EXPTIME-complete.

7 Conclusion

Motivated by probabilistic noninterference, a security notion, we have settled the decidability
and complexity of the most natural bisimilarity distance minimisation problems of MDPs
under memoryless and general strategies.

Specifically, we have proved that the distance minimisation problem for memoryless
strategies is ∃R-complete (which implies, in particular, that it is NP-hard and in PSPACE).
In contrast, we have shown that the distance minimisation problem for general strategies is
undecidable, reducing from the emptiness problem for probabilistic automata.

We have also shown that it is EXPTIME-complete to decide if there are general strategies
to make the probabilistic bisimilarity distance less than one. This extends a result from [17]
that the bisimilarity equivalence problem under general strategies is EXPTIME-complete.
The key technical link we need here is natural but nontrivial to establish under general
strategies: if there are general strategies such that two states have distance less than one,
these two states can reach another pair of states which can be made probabilistic bisimilar.

Distance maximisation problems also relate to probabilistic noninterference, but in terms
of antagonistic schedulers wanting to maximise the information leakage. The decidability
and complexity of several distance maximisation problems in MDPs is still open, including
the distance equals one problem for general strategies.

References
1 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simulation.

In Rajeev Alur and Thomas A. Henzinger, editors, Computer Aided Verification, pages 50–61,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

2 Patrick Billingsley. Probability and measure. Wiley Series in Probability and Statistics. Wiley,
New York, NY, USA, 3rd edition, 1995.

3 Vincent D. Blondel and Vincent Canterini. Undecidable problems for probabilistic auto-
mata of fixed dimension. Theory Comput. Syst., 36(3):231–245, 2003. doi:10.1007/
S00224-003-1061-2.

https://doi.org/10.1007/S00224-003-1061-2
https://doi.org/10.1007/S00224-003-1061-2

S. Kiefer and Q. Tang 32:17

4 John Canny. Some algebraic and geometric computations in PSPACE. In STOC, pages
460–467, 1988.

5 Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabilistic
bisimilarity. In Lars Birkedal, editor, Foundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer Science, pages
437–451. Springer, 2012. doi:10.1007/978-3-642-28729-9_29.

6 Benoît Delahaye. Consistency for parametric interval Markov chains. In Étienne André and
Goran Frehse, editors, 2nd International Workshop on Synthesis of Complex Parameters,
SynCoP 2015, April 11, 2015, London, United Kingdom, volume 44 of OASICS, pages 17–32.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

7 Salem Derisavi, Holger Hermanns, and William H. Sanders. Optimal state-space lumping in
Markov chains. Inf. Process. Lett., 87(6):309–315, 2003.

8 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labeled Markov systems. In Jos Baeten and Sjouke Mauw, editors, Proceedings of the 10th
International Conference on Concurrency Theory, volume 1664 of Lecture Notes in Computer
Science, pages 258–273, Eindhoven, The Netherlands, August 1999. Springer-Verlag.

9 Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of labeled
Markov chains. Int. J. Found. Comput. Sci., 19(3):549–563, 2008. doi:10.1142/
S0129054108005814.

10 Nathanaël Fijalkow. Undecidability results for probabilistic automata. ACM SIGLOG News,
4(4):10–17, 2017. doi:10.1145/3157831.3157833.

11 Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for
parametric Markov models. Int. J. Softw. Tools Technol. Transf., 13(1):3–19, 2011.

12 Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and Matthias Volk.
The probabilistic model checker Storm, 2020. arXiv:arXiv:2002.07080.

13 James W. Gray III. Probabilistic interference. In Proceedings of the 1990 IEEE Symposium
on Security and Privacy, Oakland, California, USA, May 7-9, 1990, pages 170–179. IEEE
Computer Society, 1990. doi:10.1109/RISP.1990.63848.

14 Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic
processes. In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS
’91), Amsterdam, The Netherlands, July 15-18, 1991, pages 266–277. IEEE Computer Society,
1991.

15 John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Van Nostrand, 1960.
16 Stefan Kiefer and Qiyi Tang. Comparing labelled Markov decision processes. In Nitin

Saxena and Sunil Simon, editors, 40th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS, volume 182 of LIPIcs, pages 49:1–
49:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.FSTTCS.
2020.49.

17 Stefan Kiefer and Qiyi Tang. Strategies for MDP Bisimilarity Equivalence and Inequivalence.
In Bartek Klin, Sławomir Lasota, and Anca Muscholl, editors, 33rd International Conference
on Concurrency Theory (CONCUR 2022), volume 243 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 32:1–32:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CONCUR.2022.32.

18 Stefan Kiefer and Qiyi Tang. Minimising the probabilistic bisimilarity distance, 2024. arXiv:
2406.19830.

19 Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of probabil-
istic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591.
Springer, 2011.

CONCUR 2024

https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/10.1142/S0129054108005814
https://doi.org/10.1142/S0129054108005814
https://doi.org/10.1145/3157831.3157833
https://arxiv.org/abs/arXiv:2002.07080
https://doi.org/10.1109/RISP.1990.63848
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.49
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.49
https://doi.org/10.4230/LIPIcs.CONCUR.2022.32
https://arxiv.org/abs/2406.19830
https://arxiv.org/abs/2406.19830

32:18 Minimising the Probabilistic Bisimilarity Distance

20 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1–28, 1991.

21 Azaria Paz. Introduction to probabilistic automata. Academic Press, 2014.
22 Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Formalizing probabilistic noninterference.

In Georges Gonthier and Michael Norrish, editors, Certified Programs and Proofs - Third
International Conference, volume 8307 of Lecture Notes in Computer Science, pages 259–275.
Springer, 2013. doi:10.1007/978-3-319-03545-1_17.

23 James Renegar. On the computational complexity and geometry of the first-order theory of
the reals. Parts I–III. Journal of Symbolic Computation, 13(3):255–352, 1992.

24 Peter Y. A. Ryan, John D. McLean, Jonathan K. Millen, and Virgil D. Gligor. Non-interference:
Who needs it? In 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001),
11-13 June 2001, Cape Breton, Nova Scotia, Canada, pages 237–238. IEEE Computer Society,
2001. doi:10.1109/CSFW.2001.930149.

25 Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs.
In Proceedings of the 13th IEEE Computer Security Foundations Workshop, pages 200–214.
IEEE Computer Society, 2000. doi:10.1109/CSFW.2000.856937.

26 Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric Graph
Theory, pages 461–482. Springer, 2012.

27 Marcus Schaefer and Daniel Stefankovic. Fixed points, Nash equilibria, and the exist-
ential theory of the reals. Theory Comput. Syst., 60(2):172–193, 2017. doi:10.1007/
s00224-015-9662-0.

28 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

29 Geoffrey Smith. Probabilistic noninterference through weak probabilistic bisimulation. In
16th IEEE Computer Security Foundations Workshop (CSFW-16 2003), pages 3–13. IEEE
Computer Society, 2003. doi:10.1109/CSFW.2003.1212701.

30 Qiyi Tang. Computing Probabilistic Bisimilarity Distances. Phd thesis, York Univer-
sity, Toronto, September 2018. Available at https://yorkspace.library.yorku.ca/items/
7640b6ad-edb3-4e60-8f09-3db33c817061.

31 Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity distance one for labelled
Markov chains. In Hana Chockler and Georg Weissenbacher, editors, Proceedings of the
30th International Conference on Computer Aided Verification, volume 10981 of Lecture
Notes in Computer Science, pages 681–699, Oxford, UK, July 2018. Springer-Verlag. doi:
10.1007/978-3-319-96145-3_39.

32 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM Journal on Computing, 21(2):216–227, 1992.

33 Antti Valmari and Giuliana Franceschinis. Simple O(m logn) time Markov chain lumping. In
Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages
38–52. Springer, 2010.

34 Franck van Breugel and James Worrell. Towards quantitative verification of probabilistic
transition systems. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Automata, Languages and Programming, 28th International Colloquium, ICALP 2001, Crete,
Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages
421–432. Springer, 2001. doi:10.1007/3-540-48224-5_35.

35 Tobias Winkler, Sebastian Junges, Guillermo A. Pérez, and Joost-Pieter Katoen. On the
complexity of reachability in parametric Markov decision processes. In Wan J. Fokkink and Rob
van Glabbeek, editors, 30th International Conference on Concurrency Theory, CONCUR 2019,
August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 14:1–14:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.
14.

https://doi.org/10.1007/978-3-319-03545-1_17
https://doi.org/10.1109/CSFW.2001.930149
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1109/CSFW.2003.1212701
https://yorkspace.library.yorku.ca/items/7640b6ad-edb3-4e60-8f09-3db33c817061
https://yorkspace.library.yorku.ca/items/7640b6ad-edb3-4e60-8f09-3db33c817061
https://doi.org/10.1007/978-3-319-96145-3_39
https://doi.org/10.1007/978-3-319-96145-3_39
https://doi.org/10.1007/3-540-48224-5_35
https://doi.org/10.4230/LIPIcs.CONCUR.2019.14
https://doi.org/10.4230/LIPIcs.CONCUR.2019.14

Automating Memory Model Metatheory with
Intersections
Aristotelis Koutsouridis
MPI-SWS, Kaiserslautern and Saarbrücken, Germany

Michalis Kokologiannakis
MPI-SWS, Kaiserslautern and Saarbrücken, Germany

Viktor Vafeiadis
MPI-SWS, Kaiserslautern and Saarbrücken, Germany

Abstract
In the weak memory consistency literature, the semantics of concurrent programs is typically defined
as a constraint on execution graphs, expressed in relational algebra. Prior work has shown that
basic metatheoretic questions about memory models are decidable as long as they can be expressed
as irreflexivity and emptiness constraints over Kleene Algebra with Tests (KAT), a condition that
rules out practical memory models such the C/C++ and the Linux kernel models.

In this paper, we extend these results to memory models containing arbitrary intersections with
uninterpreted relations. We can thus automatically establish compilation correctness and derive
efficient incremental consistency checkers for RC11, LKMM, and other memory models.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Concurrency

Keywords and phrases Kleene Algebra, Weak Memory Models

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.33

Supplementary Material Text (Full paper with technical appendix): https://plv.mpi-sws.org/
kater

Funding This work was supported by a European Research Council (ERC) Consolidator Grant
for the project “PERSIST” under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101003349).

Acknowledgements We would like to thank the anonymous reviewers for their feedback.

1 Introduction

In the weak memory consistency literature, the semantics of a concurrent and/or distributed
program is typically defined as a set of labeled directed graphs, each representing a single
possible execution of the program. These execution graphs comprise a set of nodes recording
the individual memory accesses performed and a set of edges recording various ordering
constraints among them. Example constraints [2] include the program order (po), the
reads-from relation (rf), and the coherence order (co).

Each memory model defines a “consistency” constraint on execution graphs, asserting
which graphs are possible outcomes of any program. These constraints are conveniently
expressed in relational algebra with the help of some additional built-in sets (e.g., the
set of read events R, and the set of write events W) and relations (e.g., sameloc relating
events accessing the same memory location, and diffthread relating events originating
from different threads). For example, sequential consistency (SC) [18] can be defined as
the constraint (SC) in Fig. 1; coherence (a.k.a., SC-per-location) as (COH), or equivalently
as (COH2); release-acquire (RA) as (RA), or equivalently as (RA2), or equivalently as the
conjunction of (COH) and (RA3); and Total Store Order (TSO) [22] as the conjunction of
(COH) and (TSO).

© Aristotelis Koutsouridis, Michalis Kokologiannakis, and Viktor Vafeiadis;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0001-7815-7417
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0001-8436-0334
https://doi.org/10.4230/LIPIcs.CONCUR.2024.33
https://plv.mpi-sws.org/kater
https://plv.mpi-sws.org/kater
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Automating Memory Model Metatheory with Intersections

irreflexive((po ∪ rf ∪ co ∪ fr)+) where fr △= rf−1; co (SC)
irreflexive((po ∩ sameloc ∪ rf ∪ co ∪ fr)+) (COH)
irreflexive(po?; (rf ∪ co ∪ fr)+) (COH2)
irreflexive(((po ∪ rf)+ ∩ sameloc ∪ co ∪ fr)+) (RA)
irreflexive((po ∪ rf)+; (co ∪ fr)?) (RA2)
irreflexive((ppo ∪ rf)+; (co ∪ fr)?) where ppo △= po \ (W × R) (RA3)
irreflexive((ppo ∪ rf ∩ diffthread ∪ co ∪ fr)+) (TSO)

Figure 1 Sample consistency constraints.

Kokologiannakis et al. [14] present Kater, a framework that can automatically answer
certain fundamental questions about such definitions, but only for the case where the models
are expressed purely as irreflexivity constraints over Kleene Algebra with Tests (KAT) [16].
This restriction to KAT, however, is a severe limitation of Kater: many common model
definitions do not fall into this fragment (e.g., COH, RA, TSO), and although some of the
simpler definitions can be equivalently expressed in KAT, more advanced practical models
such as RC11 [17] and the Linux kernel memory model (LKMM) [1], cannot.

In response, we present KATI, an extension of KAT with intersections with uninterpreted
relations, as well as a top element. KATI can express terms like − ∩ sameloc and − ∩
diffthread in Fig. 1, and supports all the aforementioned memory models. However, KATI
also makes answering the following questions more difficult:
(Incremental) consistency checking: Is a given execution graph G consistent according to

a model M? Moreover, given an execution graph G and an event e ∈ G such that G \ {e}
is M -consistent, is G also M -consistent?

Inclusion: Is memory model A stronger than a memory model B, i.e., does the consistency
predicate of A imply that of B?

Incremental consistency checking is important for testing and automated verification
of concurrent programs (e.g., via stateless model checking [7, 15]). The problem admits a
straightforward cubic solution (in the size of the execution graph) that calculates the relation
appearing in the irreflexivity constraints in a bottom-up fashion. For acyclicity constraints
of KAT expressions, Kater provides a better solution of linear complexity: it performs
a custom DFS of the cross product of the execution graph with a finite state automaton
corresponding to the KAT expression. We extend Kater’s linear-time solution to KATI
with register automata [11], which extend standard finite state automata with a finite set of
registers, which can store arbitrary values and compare them for equality.

Inclusion is not only an important metatheoretical question, but it actually also underlies
the correctness proofs of compilation from one model to another and of local program
transformations (compiler optimizations). Unfortunately, however, we cannot simply use our
encoding into register automata because inclusion between register automata is generally
undecidable [11]. We therefore follow another approach, and reduce relational intersection
to KAT expressions over an extended alphabet with additional “bracket” letters. We prove
that the resulting inclusion algorithm remains decidable (PSPACE-complete for a bounded
number of intersections).

Our contributions can be summarized as follows:
§2 We review KAT and show how it encodes consistency constraints of weak memory models.
§3–§5 We present KATI, an extension of KAT that supports intersections with primitive

relations, prove equivalence between its relational and language interpretation, and
provide a decision procedure for language inclusion based on NFAs.

A. Koutsouridis, M. Kokologiannakis, and V. Vafeiadis 33:3

§6 We show how KATI can be used to check consistency of execution graphs in linear time.
We conclude the paper with a presentation of related work (§7) and a note about future
work (§8).

2 Kleene Algebra with Tests

In this section, we review the syntax and semantics of Kleene Algebra with Tests (KAT) [16].

2.1 Syntax and Interpretation
Syntax. KAT has two kinds of terms: tests and expressions.

Tests, t ∈ Test, form a boolean algebra over a set of primitive predicates, p ∈ P, i.e., they
are constructed using the standard boolean/set operators: true (⊤), false (⊥), union (∪),
intersection (∩), and complement ().

t ::= ⊤ | ⊥ | p | t1 ∪ t2 | t1 ∩ t2 | t

Expressions, e ∈ KAT, form a Kleene algebra over primitive relations, r ∈ R, and tests;
i.e., they are constructed using relational composition (sequencing), union, and repetition.

e ::= r | [t] | e1 ; e2 | e1 ∪ e2 | e∗

Unlike plain Kleene Algebra, KAT does not need special constructs for the empty string and
the empty set, as these are given by the KAT expressions [⊤] and [⊥] respectively.

Relational Interpretation. KAT terms can be interpreted in the context of a graph G,
which defines the interpretations of primitive tests and relations. Formally, a graph G is
a tuple ⟨EG, IP

G, IR
G⟩ where EG is a set of nodes (events) and IP

G is a function interpreting
primitive tests over subsets of EG and IR

G primitive relations over binary relations on EG.

IP
G : P → P(EG) IR

G : R → P(EG × EG)

We extend these interpretations to arbitrary KAT terms as follows:

JpKG
△= IP

G(p) JrKG
△= IR

G(r)
J⊤KG

△= EG J[t]KG
△=

{
⟨a, a⟩ a ∈ JtKG

}
J⊥KG

△= ∅ Je1; e2KG
△=

{
⟨a, c⟩ ∃b. ⟨a, b⟩ ∈ Je1KG ∧ ⟨b, c⟩ ∈ Je2KG

}
JtKG

△= EG \ JtKG Je∗KG
△= (JeKG)∗

Jt1 ∪ t2KG
△= Jt1KG ∪ Jt2KG Je1 ∪ e2KG

△= Je1KG ∪ Je2KG

Jt1 ∩ t2KG
△= Jt1KG ∩ Jt2KG

Language Interpretation. The main property of KAT is that inclusion and equivalence
between KAT expressions is decidable (PSPACE-complete). This can be shown either with
an algebraic axiomatization of KAT [16] or, as we show below, via an equivalent model of
KAT expressions as a regular language.

Specifically, KAT expressions can be seen as regular languages over guarded strings,
which we shall define below. To do so, we first define the atoms of a set of primitive tests.

▶ Definition 1 (Atom). An atom over P = {p1, ... , pk} is a string of literals c1c2 ... ck such
that ci ∈ {pi, pi}, 1 ≤ i ≤ k. Furthermore, the set of all 2k atoms over P is denoted AP.

CONCUR 2024

33:4 Automating Memory Model Metatheory with Intersections

We use the greek lowercase letters α, β, ... to denote atoms. For an atom α and a test t we
write α ≤ t to denote that α → t is a propositional tautology.

▶ Definition 2 (Guarded String). A guarded string is a string over GS △= (AP; R)∗; AP, i.e.,
consists of a non-empty, alternating sequence of atoms and primitive relations, starting and
ending with an atom.

Concatenation and Kleene closure can be lifted to languages of guarded strings:

X # Y
△= {u · α · v | u · α ∈ X, α · v ∈ Y }

X(0) △= AP X(n+1) △= X # X(n) X⊛ △=
⋃

n≥0 X(n)

Observe that concatenation is guarded, i.e., it is only defined if the two strings are composable.
The language interpretation, J.KL, maps tests to sets of atoms and KAT expressions to

(regular) sets of guarded strings.

JpKL
△= {α ∈ AP | α ≤ p} JrKL

△= {α · r · β | α, β ∈ AP}
J⊤KL

△= AP J[t]KL
△= JtKL

J⊥KL
△= ∅ Je1 ∪ e2KL

△= Je1KL ∪ Je2KL

JtKL
△= AP \ JtKL Je1 ; e2KL

△= Je1KL # Je2KL

Jt1 ∪ t2KL
△= Jt1KL ∪ Jt2KL Je∗KL

△= (JeKL)⊛

Jt1 ∩ t2KL
△= Jt1KL ∩ Jt2KL

2.2 Interpretation Equivalence
The language and relational interpretations of KAT expressions are equivalent in the sense
that e1 is included in e2 according to the one interpretation if and only if it is included
according to the other.

▶ Theorem 3 (Interpretation Equivalence). Je1KL ⊆ Je2KL if and only if ∀G. Je1KG ⊆ Je2KG.

Proof sketch. For the “⇒” direction, we define a function ρG : GS → P(EG × EG) that
interprets guarded strings as relations on a graph G as follows:

ρG(α) △=
{

⟨a, a⟩ a ∈ JαKG

}
ρG(α · r · w) △= ρG(α) ; JrKG ; ρG(w)

Here, JαKG interprets the atom α as the composition of its primitive tests. We show that
JeKG =

⋃
w∈JeKL

ρG(w) (by induction on e). Then,

Je1KG =
⋃

w∈Je1KL
ρG(w) ⊆

⋃
w∈Je2KL

ρG(w) = Je2KG .

For the “⇐” direction, from a word w ∈ Je1KL, we construct a “canonical” graph Gw as a
sequence of nodes n0, ... , nk, such that the only guarded string w′ such that ⟨n0, nk⟩ ∈ ρGw

(w′)
is w′ = w. Then it follows that ⟨n0, nk⟩ ∈ Je1KGw

⊆ Je2KGw
, and thus w ∈ Je2KL. ◀

Deciding Language Inclusion with NFAs. When deciding the inclusion Je1KL ⊆ Je2KL, it is
convenient to use NFAs that accept guarded strings.

▶ Definition 4. An NFA over an alphabet Σ is a tuple ⟨Q, ι, F, δ⟩, where Q is the set of
states, ι ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ ⊆ Q × Σ × Q is the
transition relation.

A. Koutsouridis, M. Kokologiannakis, and V. Vafeiadis 33:5

Given an NFA, we abuse notation and write δ(S, a) for the set
{

q ∈ Q ∃s ∈ S. ⟨s, a, q⟩ ∈ δ
}

.
We also lift the transition relation to words as follows δ(S, ϵ) △= S, and δ(S, aw) △= δ(δ(S, a), w).

The language accepted by an NFA contains all words accepted by the NFA: L(⟨Q, ι, F, δ⟩) △={
w ∈ Σ δ({ι}, w) ∩ F ̸= ∅

}
.

Let us now define the function J−KNFA to convert an expression e ∈ KAT to an NFA over
the alphabet of atoms and primitive relations: Σ △= AP ∪ R.

JrKNFA
△= ⟨{q0, q1, q2, q3}, q0, {q3}, {⟨q1, r, q2⟩} ∪

⋃
α∈AP

{⟨q0, α, q1⟩, ⟨q2, α, q3⟩}⟩

J[t]KNFA
△= ⟨{q0, q1}, q0, {q1},

{
⟨q0, α, q1⟩ α ∈ JtKL

}
⟩

Je1; e2KNFA
△= ⟨Q1 ⊎ Q2, ι1, F2, δ1 ∪ δ2 ∪

{
⟨q1, α, q2⟩ δ1(q1, α) ∈ F1 ∧ (ι2, α, q2) ∈ δ2

}
⟩

where JeiKNFA = ⟨Qi, ιi, Fi, δi⟩ for i ∈ {1, 2}
Je1 ∪ e2KNFA

△= ⟨Q1 ⊎ Q2, ι1, F1 ∪ F2, δ1 ∪ δ2 ∪
{

⟨ι1, α, q2⟩ ⟨ι2, α, q2⟩ ∈ δ2
}

⟩

where JeiKNFA = ⟨Qi, ιi, Fi, δi⟩ for i ∈ {1, 2}
Je∗KNFA

△= ⟨Q ⊎ {q}, ι, F ∪ {q}, δ ∪
{

⟨q2, α, q1⟩ ⟨ι, α, q1⟩ ∈ δ, ⟨q2, α, qF ⟩ ∈ δ, qF ∈ F
}

∪
{

⟨ι, α, q⟩ α ∈ AP
}

⟩

where JeKNFA = ⟨Q, ι, F, δ⟩

By construction, the function J−KNFA creates an NFA that accepts only guarded strings. In
fact, JeKNFA accepts precisely the words in JeKL.

▶ Proposition 5 (NFA Equivalence). For all e ∈ KAT, JeKL = L(JeKNFA).

Language inclusion between KAT expressions can thus be checked via NFA automata and is
PSPACE-complete.

2.3 Memory Models as KAT Constraints
Kokologiannakis et al. [14] observe that declarative memory models M can be formulated as a
pair ⟨e∅, eirr⟩ of an emptiness and an irreflexivity constraint over KAT. A memory model is in-
terpreted as a set of execution graphs as follows J⟨e∅, eirr⟩K

△=
{

G Je∅KG ∪ JeirrKG ∩ id = ∅
}

,
where id △= {⟨x, x⟩ | x ∈ EG} is the identity relation.

Crucially, Kokologiannakis et al. [14] prove that various metatheoretic properties about
memory models (such properties boil down to irreflexivity implications) can be decided in a
sound and complete fashion:

▶ Theorem 6 (Kater). For every e1, e2 ∈ KAT, sameEnds(Je1KL) ⊆ DEDUP(ROT(Je2KL))
if and only if for all G, irreflexive(Je2KG) implies irreflexive(Je1KG).

In the theorem above, sameEnds(L) △=
{

α · v · α α · v · α ∈ L
}

restricts L so that its end-
points are compatible, ROT(L) △=

{
α · u · β · v · α β · v · α · u · β ∈ L

}
is the rotation closure

of L, and DEDUP(L) △=
{

α · w · α ∃n. (α · w)n · α ∈ L
}

the deduplication closure.
Kokologiannakis et al. [14] further observe that the deduplication closure is never needed

in practice, and so their tool, Kater, simply checks sameEnds(Je1KL) ⊆ ROT(Je2KL).

3 KATI: Kleene Algebra with Tests and Intersections

In this section, we present our extension of KAT with relational intersection. KATI
(Kleene Algebra with Tests and Intersections) extends KAT with relational intersection with
intersection relations, ir ∈ IR, with the standard relational interpretation.

e ∈ KATI ::= ... | e ∩ ir Je ∩ irKG
△= JeKG ∩ JirKG

CONCUR 2024

33:6 Automating Memory Model Metatheory with Intersections

In this section, for simplicity, we assume that the set of primitive relations R and the set of
intersection relations IR are disjoint. We will later lift this assumption in §5.

3.1 Language Interpretation
To show that inclusion between KATI expressions remains decidable, we need to suitably
extend the language interpretation. To do so, we cannot employ the usual interpretation
of intersection between formal languages because JrKL ∩ JirKL =

{
α · r · β α, β ∈ AP

}
∩{

α · ir · β α, β ∈ AP
}

= ∅.
Our idea is to introduce a set of bracket symbols IR()

△=
⋃

ir∈IR{(ir ,)ir} and interpret
intersections as well-bracketed words over IR() ∪ R ∪ AP. Note, however, that we cannot
simply interpret e ∩ ir as

{
(ir · w ·)ir w ∈ JeKL

}
, as such an interpretation fails to validate

the following four important equivalences between KATI expressions that hold according to
the relational interpretation.

(e ∩ ir) ∩ ir = e ∩ ir (e ∩ ir) ∩ ir ′ = (e ∩ ir ′) ∩ ir
([t] ; e) ∩ ir = [t] ; (e ∩ ir) (e ; [t]) ∩ ir = (e ∩ ir) ; [t]

Idempotence fails because the LHS has more brackets the RHS, while the commutativity
properties fail because the brackets (and the tests) appear in different orders. In addition,
we sometimes want intersection relations, such as sameloc, to be reflexive, in which case we
would like to support the equivalence [t] ∩ ir = [t].

To resolve these problems, we assume a total order ≺ on IR and a function1 id : IR → Test
such that J[id(ir)]KG = J[⊤] ∩ irKG. Then, we can extend the notion of guarded strings to
enforce a number of well-formed properties: (1) ignoring bracket symbols, words form an
non-empty alternating sequence of atoms and primitive relations, starting and ending with
an atom; (2) brackets are properly nested; (3) words inside brackets do not start or end with
an atom, (4) directly nested brackets are sorted according to ≺. To do so, we introduce a
set PGS of non-empty words indexed by a set S ⊆ IR constraining any end-to-end bracket
symbol to be indexed by an intersection relation in S,

PGSS
△=

{
r r ∈ R

}
∪

{
w1 · α · w2 w1, w2 ∈ PGSIR, α ∈ AP

}
∪

{
(ir · w ·)ir ir ∈ S, w ∈ PGS{≻ir}

}
GS △=

{
α α ∈ AP

}
∪

{
α · w · β α, β ∈ AP, w ∈ PGSIR

}
where {≻ir} △=

{
ir ′ ir ≺ ir ′}.

Note that given w ∈ PGSIR and ir ∈ IR, there exist u ∈ ({≺ir}
∗, v ∈ (?

ir , w′ ∈ PGS{≻ir}
such that w = u · v · w′ · v · u, where for a sequence of opening brackets u, we write u for the
corresponding sequence of closing brackets such that u · u is well-nested.

We extend the language interpretation of KAT to KATI as follows:

Je ∩ irKL
△=

{
α · u · (ir · w ·)ir · u · β

α · u · v · w · v · u · β ∈ JeKL,

u ∈ ({≺ir}
∗
, v ∈ (?

ir , w ∈ PGS{≻ir}

}
∪ {α | α ∈ JeKL, α ∈ Jid(ir)KL}

Using this definition, one can show that inclusion of the language interpretation implies
inclusion of the relational interpretation.

1 Such a function can always be defined by extending P with additional primitive tests if necessary.

A. Koutsouridis, M. Kokologiannakis, and V. Vafeiadis 33:7

▶ Proposition 7. For all KATI expressions e1, e2, if Je1KL ⊆ Je2KL, then ∀G. Je1KG ⊆ Je2KG.

Proof sketch. The conclusion follows by showing that JeKG =
⋃

w∈JeKL
ρG(w), where the

function ρG : (GS ∪ PGSIR) → P(EG × EG) is defined recursively as follows:

ρG(α) △= J[α]KG ρG(α · u · β) △= J[α]KG ; ρG(u) ; J[β]KG

ρG(r) △= JrKG ρG(u · α · v) △= ρG(u) ; J[α]KG ; ρG(v)
ρG((ir · u ·)ir) △= ρG(u) ∩ JirKG ◀

The other direction, however, does not hold because r ∩ ir ⊆ r clearly holds according
to the relational interpretation, but not according to the language interpretation. More
generally, the issue is that RHS can have fewer intersections than the LHS and so its language
interpretation can have fewer brackets than that of the LHS.

We therefore define a partial order ≲B on guarded strings (GS ∪ PGSIR) that allows the
LHS to contain more brackets than the RHS as the least structure-preserving partial order
relating (ir · w ·)ir ≲B w for all w ∈ PGSIR, where we call an order ≲B structure-preserving if:

u ≲B w

α · u · β ≲B α · w · β

u1 ≲B w1 u2 ≲B w2

u1 · α · u2 ≲B w1 · α · w2

u ≲B w

(ir · u ·)ir ≲B (ir · w ·)ir

We can easily define the bracketed saturation of a language BR(L) △=
{

u w ∈ L ∧ u ≲B w
}

,
and write L1 ≲B L2 when L1 ⊆ BR(L2), i.e., when for all u ∈ L1, there exists w ∈ L2 such
that u ≲B w.

With the above building blocks in place, we can prove the following equivalence between
the two KATI representations.

▶ Theorem 8 (Interpretation Equivalence). Je1KL ≲B Je2KL if and only if ∀G. Je1KG ⊆ Je2KG.

Proof sketch. The “⇒‘” direction follows from Prop. 7 and the observation that u ≲B v

implies ρG(u) ⊆ ρG(v).
In the “⇐‘” direction, from a guarded string w ∈ Je1KL, we construct a “canonical‘” graph

Gw as a sequence of nodes n0, ... , nk, such that a guarded string u has ⟨n0, nk⟩ ∈ ρGw (u) iff
w ≲B u. Then, it follows that ⟨n0, nk⟩ ∈ Je1KGw

⊆ Je2KGw
, and thus w ∈ BR(Je2KL). ◀

Theorem 8 provides a way to use language-based techniques to reason about inclusion of
KATI expressions. There are two remaining questions:

How can we finitely represent JeKL?
How can we finitely represent the bracketing closure, BR(L)?

We first tackle the former question in § 3.2, and relegate the second to § 3.3.
Before we do so, we present an improvement of the bracketing closure that does not

blindly add further brackets, but only ones that appear in the LHS of the inclusion. We
say that the nesting context at given index of a guarded string is the sequence of relations
corresponding to unmatched open brackets up to that index. We will be mainly interested in
the set of all nesting contexts of a string, c(w), which can be defined inductively as follows:

c(α) △= c(r) △= {ϵ} c((ir · w ·)ir) △= {ϵ} ∪ {ir · u | u ∈ c(w)}
c(w1 · α · w2) △= c(w1) ∪ c(w2) c(α · w · β) △= c(w)

Given a set of nesting contexts C and a language of guarded strings L, its restricted
bracketing closure is BRC(L) △=

{
u w ∈ L ∧ u ≲B w ∧ c(u) ⊆ C

}
. Using the restricted

bracketing closure suffices to show inclusion.

▶ Proposition 9. L1 ≲B L2 if and only if L1 ⊆ BRc(L1)(L2).

CONCUR 2024

33:8 Automating Memory Model Metatheory with Intersections

3.2 Converting KATI Expressions to Automata
As in §2, we will again use NFAs to compute J.KL albeit with a much more complex construction.
As it is difficult to provide a direct NFA construction corresponding to Je ∩ irKL, we will first
put e in a normal form that enables a straightforward construction.

Normalization. The idea of the normal form is to ensure that (1) there are no tests
immediately inside a bracket, and (2) directly nested brackets appear in ≺-order. To arrive
at such a form, we first convert an expression e into a form that makes all possible tests at
the beginning and the end of a string explicit. For this, we define pred(e), which returns a
test t such that [t] = e ∩ [⊤], and pull(e), which makes explicit any tests at the beginning of e.

pred([t]) △= t

pred(r) △= ⊥
pred(e ∩ ir) △= ⊥

pred(e1 ∪ e2) △= pred(e1) ∪ pred(e2)
pred(e1 ; e2) △= pred(e1) ∩ pred(e2)

pred(e∗) △= ⊤

pull([t]) △= ∅
pull(r) △= r

pull(e ∩ ir) △= e ∩ ir
pull(e1 ∪ e2) △= pull(e1) ∪ pull(e2)
pull(e1 ; e2) △= [pred(e1)] ; pull(e2) ∪ pull(e1) ; e2

pull(e∗) △= pull(e) ; e∗

▶ Definition 10. The converse of an expression e ∈ KATI, written e−1, is defined as follows:

[t]−1 △= [t] (e1 ∪ e2)−1 △= e−1
1 ∪ e−1

2 (e1 ; e2)−1 △= e−1
2 ; e−1

1

(e∗)−1 △= (e−1)∗ (e ∩ ir)−1 △= e−1 ∩ ir−1 (x−1)−1 △= x for x ∈ R ∪ IR.

▶ Lemma 11. JeKL = J[pred(e)] ∪ pull(e)KL = J[pred(e)] ∪ pull((pull(e−1))−1)KL.

To convert an expression into normal form, we apply the following rewrite rules in a
bottom-up fashion. The first rule is applied only once for each intersection in the KATI
expression; the remaining rules as much as possible.

e ∩ ir = [pred(e) ∩ id(ir)] ∪ pull((pull(e−1))−1) ∩ ir
([t] ; e) ∩ ir = [t] ; (e ∩ ir)
(e ; [t]) ∩ ir = (e ∩ ir) ; [t]

(e1 ∪ e2) ∩ ir = e1 ∩ ir ∪ e2 ∩ ir
((e1 ∪ e2) ; e) ∩ ir = (e1 ; e) ∩ ir ∪ (e2 ; e) ∩ ir
(e ; (e1 ∪ e2)) ∩ ir = (e ; e1) ∩ ir ∪ (e ; e2) ∩ ir

(e ∩ ir) ∩ ir = e ∩ ir
(e ∩ ir ′) ∩ ir = (e ∩ ir) ∩ ir ′ if ir ′ ≺ ir

It is easy to show that all these rules are equivalences according to the language interpretation,
and thus Jnormalize(e)KL = JeKL. We observe that the size of the normalized expression
increases exponentially with the nesting depth of the expression. However, if we assume a
bounded nesting of intersections in KATI expressions (as in all memory models), then our
decision procedure for inclusion remains PSPACE-complete.

NFA Conversion. Once e is in normal form, conversion to an NFA is fairly straightforward.
The only new case is that of the intersection of an automaton with ir , which adds (ir and)ir
transitions at the start and end of the automaton, and ensures that any α-transition from the
initial to a final state satisfies α ∈ Jid(ir)KL. Assuming that JeKNFA = ⟨Q, ι, F, δ⟩, Je ∩ irKNFA
returns the NFA ⟨Q′, ι, F, δ′⟩, where:

A. Koutsouridis, M. Kokologiannakis, and V. Vafeiadis 33:9

Q′ = Q ⊎
{

qopen ⟨ι, _, q⟩ ∈ δ
}

⊎
{

qclose ⟨q, _, qF ⟩ ∈ δ, qF ∈ F
}

δ′ =
{

⟨q, σ, q′⟩ ∈ δ q ̸= ι, q′ /∈ F
}

∪
{

⟨ι, α, qopen⟩, ⟨qopen, (ir , q⟩ ⟨ι, α, q⟩ ∈ δ
}

∪
{

⟨q,)ir , qclose⟩, ⟨qclose, α, qF ⟩ ⟨q, α, qF ⟩ ∈ δ, qF ∈ F
}

∪
{

⟨ι, α, qF ⟩ ⟨ι, α, qF ⟩ ∈ δ, qF ∈ F, α ∈ Jid(ir)KL
}

The correctness of the conversion is captured by the following proposition.

▶ Proposition 12. For all KATI expressions e, L(Jnormalize(e)KNFA) = JeKL.

3.3 Saturating NFAs with Brackets
We move on to define the bracketing saturation of an NFA. We begin by making an observation
about the structure of the automaton JeKNFA corresponding to a KATI expression e. Observe
that every state q in JeKNFA has a unique nesting context: all runs from the initial state(s) to
q go through the same sequence of unmatched brackets. As such, we first define the function
c(·) : Q → IR∗ returning the nesting context of each state.

▶ Definition 13 (Nesting context). Given an NFA ⟨Q, ι, F, δ⟩ and a state q ∈ Q, the nesting
context of q, written c(q), is the word ir1 · · · irk corresponding to the unmatched open bracket
symbols (ir1

· · · (irk
along any run from an initial state ι to q.

Then, we define the notion of nesting context completion (or nesting completion for short).
Intuitively, a nesting completion is used to saturate a KATI expression with matching
brackets. In practice, we want to saturate the right-hand side of an inclusion with brackets
that exist in the left-hand side, and as such we define the nesting completion of a context d

w.r.t. a set of nesting contexts C.

▶ Definition 14 (Nesting completion). Given a nesting context d = ir1 · · · irk and a set of
nesting contexts C, the sequence N = [w1, ... , wk+1] of k + 1 words wi ∈ IR∗ is called a
nesting completion of d with respect C, written d⇝N C, if w1 · ir1 · · · irk · wk+1 ∈ C.

Given a sequence N of words wi ∈ IR∗, we write:
N.ϵ for the sequence that appends the empty string at the end of N : [w1, w2, ... , wk+1, ϵ].
N/ir for the sequence that appends ir ∈ IR at the last word of N : [w1, ... , wk, (wk+1 · ir)].

At this point we are ready to define our bracketed substring saturation on NFAs. Using
nesting completions, we can construct the saturated automaton. Given an NFA ⟨Q, ι, F, δ⟩
we define its bracketed saturation w.r.t. a set of nesting contexts C, written BRC(⟨Q, ι, F, δ⟩),
as the automaton ⟨Qsat, ιsat, Fsat, δsat⟩, where:

Qsat
△={(q, N) | q ∈ Q, c(q)⇝N C}

ιsat
△=(ι, [ϵ])

Fsat
△={(q, [ϵ]) | q ∈ F}

δsat
△={((q, N), a, (q′, N)) | (q, a, q′) ∈ δ, (q, N), (q′, N) ∈ Qsat}

∪ {((q, N), (ir , (q′, N.ϵ)) | (q, (ir , q′) ∈ δ, (q, N), (q′, N.ϵ) ∈ Qsat}
∪ {((q, N.ϵ),)ir , (q′, N)) | (q,)ir , q′) ∈ δ, (q, N), (q′, N.ϵ) ∈ Qsat}
∪ {((q, N), (ir , (q, N/ir)) | (q, N/ir), (q, N) ∈ Qsat}
∪ {((q, N/ir),)ir , (q, N)) | (q, N/ir), (q, N) ∈ Qsat}

CONCUR 2024

33:10 Automating Memory Model Metatheory with Intersections

As can be seen, the saturated NFA has the initial and final states of the original NFA with
the empty completion as its initial states and final states, while its transition relation has
three kinds of edges: (a) those maintaining the same nesting completion (modulo adding or
removing an empty word at the end), when the original NFA performs the corresponding
transition, (b) those incrementing the last word of the current nesting completion by reading
an open bracket, and (c) those decrementing the last word of the current nesting completion
by closing a bracket.

Correctness. We next prove that bracketing saturation at the level of NFAs is a sound and
complete method for proving inclusion between KATI expressions, and thus inclusion is
decidable.

▶ Proposition 15 (Bracketing Saturation Correctness). Let A be an automaton accepting only
guarded strings and C be a set of nesting contexts. Then, BRC(L(A)) = L(BRC(A)) ∩ GS.

Proof sketch. In the “⊇‘” direction, let w ∈ L(BRC(A)) ∩ GS, and (s, [ϵ]) w−→ (t, [ϵ]) the
respective accepting run on BRC(A). By induction on the structure of w, we show that there
exists a corresponding run s

u−→ t in A such that w ≲B u. This run is accepting on A, since s

and t are an initial and final state of A, respectively, so w ∈ BRC(L(A)).
In the “⊆‘” direction, let s

u−→ t be an accepting path in A and w ≲B u with c(w) ⊆ C. By
induction on the structure of ≲B, we show that there exists a corresponding path (s, [ϵ]) w−→
(t, [ϵ]) in BRC(A). Since (s, [ϵ]) w−→ (t, [ϵ]) are initial/final in BRC(A) by construction, we
obtain the desired result. ◀

Putting Propositions 9, 12, and 15 together, we can derive the soundness and completeness
of the NFA-based checking of inclusion.

▶ Theorem 16 (Decidability of Inclusion). For all e1, e2 ∈ KATI, Je1KL ≲B Je2KL if and only
if L(Jnormalize(e1)KNFA) ⊆ L(BRc(e1)(Jnormalize(e2)KNFA)).

Proof. We show that the LHS is equivalent to the RHS:

L(Jnormalize(e1)KNFA) = Je1KL by Prop. 12
⊆ BRc(e1)(Je2KL) by Prop. 9 and the LHS
= BRc(e1)(L(Jnormalize(e2)KNFA)) by Prop. 12
= L(BRc(e1)(Jnormalize(e2)KNFA)) by Prop. 15 ◀

4 Memory Models as KATI Constraints

Let us now revisit §2, and see how irreflexivity implications between model definitions in
KATI can be proved in a sound fashion. Recall from Theorem 6 that Kater reduces
irreflexivity implications to a language inclusion problem, after taking some closures on the
involved expressions. We would of course like to follow the same strategy in KATI, but
unfortunately the deduplication closure DEDUP(L) cannot be easily adjusted to bracketed
strings.

Nonetheless, we can adjust the rotation closure ROT(L) which raises a problem when
applied to bracketed strings. Indeed, assuming the previous definition of ROT(L), if the
language L contains the string α · u1 · β · (ir · w1 · γ · w2)ir · α, ROT(L) will include strings
that are not well-bracketed like γ · w2 ·)ir · α · u1 · β · (ir · w1 · γ.

A. Koutsouridis, M. Kokologiannakis, and V. Vafeiadis 33:11

To retain well-bracketedness, we have to redefine ROT(L). To that end, we first define a
helper function split() that splits a string into a prefix and a suffix, and inverts the unmatched
brackets of each substring.

split(r) △= ∅
split((ir · w ·)ir) △=

{
⟨)ir−1 · u, β, v · (ir−1⟩ ⟨u, β, v⟩ ∈ split(w)

}
split(w1 · α · w2) △=

{
⟨u, β, v′ · r · α · (S · w2⟩ ⟨u, β, v′ · r · (S⟩ ∈ split(w1)

}
∪

{
⟨w1 ·)S · α · r · u′, β, v⟩ ⟨)S · r · u′, β, v⟩ ∈ split(w2)

}
∪ {⟨w1, α, w2⟩}

Inverting a bracket, inverts the corresponding intersection relation; if the relation is symmetric,
then ir−1 = ir . In the definition above, (S ,)S denotes a sequence of zero or more opening
and closing brackets respectively and S is the sequence of intersection relations ir that
appear in the bracket subscripts. We can easily verify that if ⟨u, α, v⟩ ∈ split(w), then
u, v ∈ ((R ∪ IR()) · AP)∗ · (R ∪ IR()), i.e., they are in guarded form.

Given split(), we define ROT(L) as follows:

ROT(α) △= {α}

ROT(α · w · α) △=
{

β · v · r′ · α · r · u · β
⟨)S · r · u, β, v · r′ · (S⟩ ∈ split(w)
∀ir ∈ S. α ≤ id(ir)

}
∪ {α · w · α}

ROT(L) △=
{

u ∈ ROT(w) w ∈ L
}

Observe that rotation produces only guarded strings because it commutes tests outside of
brackets and split() inverts the direction of brackets.

We obtain the following equivalences.

▶ Proposition 17 (Irreflexivity Equivalence). Given a graph G and a language L ⊆ GS:

irreflexive(ρG(L)) ⇔ irreflexive(ρG(sameEnds(L))) ⇔ irreflexive(ρG(BR(L)))
⇔ irreflexive(ρG(ROT(L))) ,

where ρG(L) △=
⋃

w∈L ρG(w) and ρG(w) is defined in the proof sketch of Prop. 7.

Proof sketch. The first equivalence can be shown in a similar fashion to that in [14]. The
second equivalence follows directly from the observation that w ≲B u implies ρG(w) ⊆ ρG(u).
For the final one, the “⇐‘” direction is trivial because L ⊆ ROT(L).

To prove that irreflexive(ρG(L)) ⇒ irreflexive(ρG(ROT(L))), consider ⟨b, b⟩ ∈ ρG(w) for
some w ∈ ROT(L) \ L. (If w ∈ L, the conclusion holds trivially.) Expanding the definition
of rotation, w = β · v · α · u · β with ⟨u, α, v⟩ ∈ split(w), where u, v are the result of inverting
the unmatched brackets of u′, v′ respectively, and w′ = α · u′ · β · v′ · α ∈ L. Here, b is the
node of G that corresponds to the atom β, and let a be the node that corresponds to the
atom α in the cycle ⟨b, b⟩. Let γ1, γ2 be the atom adjacent to a possible unmatched bracket
(originating from a matching pair of brackets (ir ,)ir) in v and u respectively and g1, g2 the
corresponding nodes of G for these atoms in the cycle ⟨b, b⟩. Also, since ⟨b, b⟩ ∈ ρG(w), we
know that ⟨g1, g2⟩ ∈ JirKG. When calculating ρG(w′) we would interpret this pair of brackets
with an intersection of the tuple {⟨g2, g1⟩} with Jir−1KG, which includes {⟨g2, g1⟩}. Therefore,
⟨a, a⟩ ∈ ρG(w′) contradicting that ρG(L) is irreflexive. ◀

▶ Theorem 18 (Irreflexivity Implications). For every e1, e2 ∈ KATI, if sameEnds(Je1KL) ⊆
ROT(BR(Je2KL)) then for all G, irreflexive(Je2KG) ⇒ irreflexive(Je1KG).

Proof sketch. Follows by repeated application of Prop. 17. ◀

CONCUR 2024

33:12 Automating Memory Model Metatheory with Intersections

5 KATI: Adding a “Top” Element

In this section, we extend KATI so that any relation r ∈ R can be used in intersections (and
not only some dedicated relations).

The problem when doing so is that KATI’s language interpretation is inadequate when it
comes to prove certain relational properties. For instance, even though Jr1 ∩r2KG = Jr2 ∩r1KG,
our bracketed language interpretation will yield Jr1 ∩ r2KL = (r2

· r1 ·)r2
which in turn is

not equal to (r1
· r2 ·)r1

= Jr2 ∩ r1KL. Of course, this particular case could be handled
as part of our normalization procedure, but more complicated relational inclusions (e.g.,
J(r1; r2) ∩ r3KG ⊆ Jr3KG) cannot be handled with said normalization.

To remedy this, we introduce a top relation, top, and express all primitive relations as
intersections with top as follows:

JtopKL
△=

{
α · top · β α, β ∈ AP

}
JrKL

△= Jtop ∩ rKL =
{

α · (r · top ·)r · β α, β ∈ AP
}

∪ {α | α ∈ Jid(r)KL}

Observe that using the definition above and assuming that ≺ totally orders R(), we can already
easily prove inclusions like Jr1 ∩ r2KL = Jr2 ∩ r1KL, since KATI’s language interpretation of
intersections already imposes a total order on brackets: the language interpretation of both
expressions is (r1

· (r2
· top ·)r2

·)r1
.

To be able to prove inclusions like (r1; r2) ∩ r3 ⊆ r3, we introduce the top-closure ≲T
as the least structure-preserving partial order on GS ∪ PGSIR containing w ≲T top for all
w ∈ PGS∅, and define ≲BT

△= (≲B ∪≲T)+, which is in fact equivalent to ≲B ;≲T. The top
closure of a language L ⊆ GS is T(L) △=

{
u1 · w · u2 u1 · top · u2 ∈ L, w ∈ PGS∅

}
.

With the above definition for ≲T we can prove equivalence between the language and the
relational interpretation of KATI (Theorem 8).

As far as the decision procedure of §3.2 and §3.3 is concerned, we can extend it to handle
the new top element by modifying the NFA conversion of expressions consisting of a single
primitive relation r, and our bracketed saturation. For the former, we redefine JrKNFA as the
automaton ⟨{q0, q1, q2, q3, q4, q5}, q0, {q5}, δtop∩r⟩ where

δtop∩r
△=

⋃
α∈AP

{⟨q0, α, q1⟩} ∪ {⟨q1, (r, q2⟩, ⟨q2, top, q3⟩, ⟨q3,)r, q4⟩} ∪
⋃

α∈AP
{⟨q4, α, q5⟩} .

For the latter, given an NFA A = ⟨Q, ι, F, δ⟩, we define its top-closure T(A) as the automaton
⟨Q, ι, F, δ ∪ δtop⟩ where δtop = {⟨q′, α, q⟩ | ⟨q, top, q′⟩ ∈ δ, α ∈ AP}

▶ Proposition 19 (Top Closure Correctness). For every automaton A accepting only guarded
strings, T(L(A)) = L(T(A)).

Then, we take the combined bracketing-top closure as BRtop
C (A) △= BRC(T(A)), and we

obtain as corollary of Theorem 16 and Prop. 19 our main decidability result.

▶ Theorem 20. Je1KL ≲BT Je2KL iff L(Jnormalize(e1)KNFA) ⊆ L(BRtop
c(e1)(Jnormalize(e2)KNFA)).

6 Consistency Checking

Similarly to Kater, KATI can also be used to generate consistency-checking code for a
memory model’s acyclicity constraints. In this section, we briefly recall Kater’s code-
generating infrastructure, and then show this infrastructure can be extended for the KATI
language.

A. Koutsouridis, M. Kokologiannakis, and V. Vafeiadis 33:13

6.1 Consistency Checking with Kater
The key idea behind Kater’s consistency-checking infrastructure is twofold. First, given a
constraint demanding that a KAT expression e be acyclic, any e-cycle in a given graph G

will ultimately be composed of primitive relations and predicates r ∈ R and π ∈ P, i.e., the
same primitives used to express e in KAT. As such, to find e-cycles in G, one only has to
find some cyclic path in G, a permutation of which is accepted by JeKNFA.

To determine whether a cyclic path is accepted by JeKNFA, Kater treats G as another
automaton, and takes its intersection with JeKNFA

2. Given the intersection, Kater searches
for strongly connected components (SCCs) that contain at least one accepting state of
JeKNFA. (Observe that such SCCs are guaranteed to represented cycles in G that are accepted
by JeKNFA.) By using a depth-first-search algorithm (e.g., Tarjan’s SCC algorithm [5]),
the complexity of the generated consistency-checking code is O(nm), where n = |G| and
m = |JeKNFA|.

6.2 Consistency Checking in KATI
When generating code for KATI expressions, we can employ the language representation of
§3, as in the weak memory literature there is a disjoint set of relations used in intersections.

As such, we can extend Kater’s code-generating infrastructure by making the following
observation: the language representation of the KATI expressions JeKL and Je ∩ irKL is the
same, modulo the (ir symbols. This observation implies that in order to check for acyclicity
of e ∩ ir , we can use the procedure of § 6.1 to enumerate all e-paths, and then simply restrict
to paths whose endpoints are ir-matching (e.g., have the same location, if ir = sameloc).

Such a restriction can easily be performed by using dedicated variables vc,ir for ir ∈ R
and 0 < c ≤ c(e). Whenever the intersection of Je ∩ irKNFA and G encounters the symbol (ir ,
the corresponding information of the respective graph event is saved in vir (e.g., the event’s
location, if ir = sameloc), and the exploration proceeds as normal. Subsequently, when the
intersection encounters the matching)ir , the exploration only proceeds if the corresponding
information of the respective graph event matches the information stored in vir .

Incremental Consistency Checking
In certain scenarios like testing or stateless model checking [15], we know that a given graph
G′ is consistent, and we want to check whether an event a can be added in a particular way
maintaining consistency.

Even though we can use the algorithm of § 6.2 to check whether the newly constructed
graph G is consistent, we can devise a more efficient procedure for checking G’s consistency,
inspired by the respective algorithm of Kokologiannakis et al. [14]. The key idea is that,
since G′ is consistent, any inconsistency in G will be caused by a (cyclic) path that passes
through a. As such, we only have to find a cyclic paths in G that starts from a and is also a
word accepted by Je ∩ irKNFA. The only problem is that the word accepted by Je ∩ irKNFA
might not have a in the beginning, but rather in the middle of the word.

To solve this, we perform a variation of the algorithm using the following construction.
First, we enforce that Je ∩ irKNFA has a single starting/accepting state q0 (e.g., by taking
its reflexive-transitive closure), and we assume that G has a as its single starting/accepting
state. Then, we run the algorithm, but instead of following the algorithm of § 6.2 and look

2 In this construction, all of G’s states are considered starting/final.

CONCUR 2024

33:14 Automating Memory Model Metatheory with Intersections

for SCCs starting from any state of the product (i.e., for each state ⟨e, q0⟩, where e ∈ G), we
can instead only look for SCCs starting from the states ⟨a, q⟩ of the product, where q is a
state in Je ∩ irKNFA.

Observe that any such SCC that we find represents a consistency violation, as some
permutation of the respective path in G is guaranteed to be accepted by Je ∩ irKNFA. Such
an algorithm leads to better performance, as it essentially corresponds to taking all rotations
of Je ∩ irKNFA (instead of taking all rotations of G), and typically |Je ∩ irKNFA| ≪ |G|.

7 Related Work and Conclusion

There has been an abundance of work building on Kleene Algebra (with Tests) [16].
Many works focus on extending KA(T) to particular program domains. [8] support more

program transformations than plain KAT by adding mutable tests. Anderson et al. [3] develop
an instance of KAT called NetKAT to model packet transmission in networks, Wagemaker
et al. [23] extend NetKAT for concurrency. Hoare et al. [9] presents Concurrent KA (CKA),
an extension of Kleene Algebra with a built-in operator modeling parallel composition, and
Jipsen [10] extends CKA with tests. Kappé et al. [12] present an alternative foundation
for the concurrent setting called KA with Observations (KAO), to which they subsequently
add tests [13]. Pous et al. [19] show that a lot of KA variants that have extra assumptions
or impose additional structure (e.g., KAO, NetKAT) fit into the framework of KA with
Hypotheses, and provide modular proofs for various such variants.

Others focus on handling a richer algebraic structure. Pous and Wagemaker [21] present
two variants of KAT with an additional top element: one that only supports JeKG ⊆ JtopKG,
and one that has the additional property that JeKG ⊆ Je; top; eKG. Ésik and L. Bernátsky [6]
extend KA with a converse operator, and prove equivalence between the language, relational
and algebraic models. Brunet and Pous [4] prove that the equational theory of relation
algebras that support union, intersection (with arbitrary relations) and concatenation, but do
not support converse or the identity relation is decidable. Pous and Vignudelli [20] show that
the equational theory of relation algebras that support concatenation, converse, arbitrary
intersections and the identity relation (but neither union nor star!) is decidable.

As Pous and Wagemaker [21] note, however: “The case of intersection (with or without
converse or the various constants) is significantly more difficult, and remains partly open
[. . .]”. KATI attempts to tackle a useful instance of this problem by providing a decision
procedure for KAT with intersections, assuming that intersections are restricted to primitive
relations. Such a restriction is common when using KAT to describe weak memory consistency
models, as per the work of Kokologiannakis et al. [14], which forms the basis for KATI.

8 Conclusion

In this paper, we have extended the results of Kokologiannakis et al. [14] to handle memory
models containing intersections with uninterpreted relations. While this restriction on
intersections appears sufficient for existing memory model definitions, it would definitely be
nice to devise a more general technique that can handle arbitrary intersections. We leave the
exploration of such a technique for future work.

A. Koutsouridis, M. Kokologiannakis, and V. Vafeiadis 33:15

References

1 Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. Frightening
small children and disconcerting grown-ups: Concurrency in the Linux kernel. In ASPLOS
2018, pages 405–418, New York, NY, USA, 2018. ACM. doi:10.1145/3173162.3177156.

2 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,
July 2014. doi:10.1145/2627752.

3 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,
Cole Schlesinger, and David Walker. NetKAT: Semantic foundations for networks. In
Suresh Jagannathan and Peter Sewell, editors, POPL 2014, 2014, pages 113–126. ACM, 2014.
doi:10.1145/2535838.2535862.

4 Paul Brunet and Damien Pous. Petri automata for Kleene allegories. In LICS 2015, pages
68–79. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.17.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

6 Zoltán Ésik and L. Bernátsky. Equational properties of Kleene algebras of relations with
conversion. Theor. Comput. Sci., 137(2):237–251, 1995. doi:10.1016/0304-3975(94)00041-G.

7 Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model checking
software. In POPL 2005, pages 110–121, New York, NY, USA, 2005. ACM. doi:10.1145/
1040305.1040315.

8 Niels Bjørn Bugge Grathwohl, Dexter Kozen, and Konstantinos Mamouras. KAT + B! In
Thomas A. Henzinger and Dale Miller, editors, LICS 2014, pages 44:1–44:10. ACM, 2014.
doi:10.1145/2603088.2603095.

9 C. A. R. Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene algebra.
In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR 2009, volume 5710 of LNCS,
pages 399–414. Springer, 2009. doi:10.1007/978-3-642-04081-8_27.

10 Peter Jipsen. Concurrent Kleene algebra with tests. In Peter Höfner, Peter Jipsen, Wolfram
Kahl, and Martin Eric Müller, editors, RAMiCS 2014, volume 8428 of LNCS, pages 37–48.
Springer, 2014. doi:10.1007/978-3-319-06251-8_3.

11 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

12 Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio
Zanasi. Kleene algebra with observations. In Wan J. Fokkink and Rob van Glabbeek, editors,
CONCUR 2019, volume 140 of LIPIcs, pages 41:1–41:16. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.41.

13 Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. Concurrent
Kleene algebra with observations: From hypotheses to completeness. CoRR, abs/2002.09682,
2020. doi:10.48550/arXiv.2002.09682.

14 Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. Kater: Automating weak memory
model metatheory and consistency checking. Proc. ACM Program. Lang., 7(POPL), January
2023. doi:10.1145/3571212.

15 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model checking for weakly
consistent libraries. In PLDI 2019, New York, NY, USA, 2019. ACM. doi:10.1145/3314221.
3314609.

16 Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3), 1997.
doi:10.1145/256167.256195.

17 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in C/C++11. In PLDI 2017, pages 618–632, New York, NY, USA,
2017. ACM. doi:10.1145/3062341.3062352.

CONCUR 2024

https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1109/LICS.2015.17
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1016/0304-3975(94)00041-G
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/2603088.2603095
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1007/978-3-319-06251-8_3
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://doi.org/10.48550/arXiv.2002.09682
https://doi.org/10.1145/3571212
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/3062341.3062352

33:16 Automating Memory Model Metatheory with Intersections

18 Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690–691, September 1979. doi:10.1109/TC.1979.
1675439.

19 Damien Pous, Jurriaan Rot, and Jana Wagemaker. On tools for completeness of Kleene
algebra with hypotheses. CoRR, abs/2210.13020, 2022. doi:10.48550/arXiv.2210.13020.

20 Damien Pous and Valeria Vignudelli. Allegories: Decidability and graph homomorphisms.
In Anuj Dawar and Erich Grädel, editors, LICS 2018, pages 829–838. ACM, 2018. doi:
10.1145/3209108.3209172.

21 Damien Pous and Jana Wagemaker. Completeness theorems for Kleene algebra with tests and
top. CoRR, abs/2304.07190, 2023. doi:10.48550/arXiv.2304.07190.

22 SPARC International Inc. SPARC architecture manual - version 8. Prentice Hall, 1992.
23 Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra

Silva. Concurrent NetKAT - modeling and analyzing stateful, concurrent networks. In
Ilya Sergey, editor, ESOP 2022, volume 13240 of LNCS, pages 575–602. Springer, 2022.
doi:10.1007/978-3-030-99336-8_21.

https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.48550/arXiv.2210.13020
https://doi.org/10.1145/3209108.3209172
https://doi.org/10.1145/3209108.3209172
https://doi.org/10.48550/arXiv.2304.07190
https://doi.org/10.1007/978-3-030-99336-8_21

On Continuous Pushdown VASS in One Dimension
Guillermo A. Pérez # Ñ

University of Antwerp – Flanders Make, Antwerp, Belgium

Shrisha Rao #

University of Antwerp – Flanders Make, Antwerp, Belgium

Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition
systems with a pushdown stack. The algorithmic analysis of PVASS has applications such as static
analysis of recursive programs manipulating integer variables. Unfortunately, reachability analysis,
even for one-dimensional PVASS is not known to be decidable. So, we relax the model of one-
dimensional PVASS to make the counter updates continuous and show that in this case reachability,
coverability, and boundedness are decidable in polynomial time. In addition, for the extension of
the model with lower-bound guards on the states, we show that coverability and reachability are
NP-complete, and boundedness is coNP-complete.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Theory of computation → Concurrency

Keywords and phrases Vector addition systems, Pushdown automata, Reachability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.34

Funding Work supported by the Flemish inter-university (iBOF) “DESCARTES” project.

Acknowledgements We thank Georg Zetzsche for help with the hardness proofs in the model with
lower bounds; A. R. Balasubramanian for his comments on an early version of this work, and Tim
Leys and Ritam Raha for useful discussions on the topic of (continuous) counter automata.

1 Introduction

Vector addition systems with states (VASS) are commonly used to model distributed systems
and concurrent systems with integer variables. A VASS consists of a set of (control) states
and a set of counters. Transitions between states are labelled with vectors of integers
(usually encoded in binary) that are added to the current values of the counters. Importantly,
transitions resulting in a counter value becoming negative are disallowed.

An equivalent way of understanding this model is to see the counters as unary-alphabet
stacks. This alternative formulation has a natural extension obtained by adding one general
stack to it. Pushdown VASS (PVASS), as they are usually called, can be used to model
recursive programs manipulating integer variables [17, Sec. 6.2]. Arguably the most basic
question one can attempt to answer algorithmically in a computational model is that of
reachability. In the context of (pushdown) VASS, we ask whether a given target configuration
(formed by the current state and the values of the counters) can be seen along a run from
a given source configuration. While the complexity of reachability for VASS is now better
understood [15, 6], it is not known to be decidable for PVASS and the best known lower
bound is HyperAck-hardness [14]. The problem is not known to be decidable even for one
dimension and the known lower bound is Pspace-hardness [7].

Motivated by the (complexity) gap in our understanding of reachability for PVASS,
researchers have studied the problem for different relaxations of the model: A PVASS is
bidirected [9] if the effect (on the stack and counters) of every transition can be (immediately)
reversed; A Z-PVASS [11] allows counters to hold negative values; A continuous PVASS [2]
instead allows them to hold nonnegative values and counter updates labelling a transition

© Guillermo A. Pérez and Shrisha Rao;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 34; pp. 34:1–34:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillermo.perez@uantwerpen.be
https://www.uantwerpen.be/en/staff/guillermoalberto-perez/
https://orcid.org/0000-0002-1200-4952
mailto:shrisha.rao@uantwerpen.be
https://orcid.org/0000-0001-5559-7287
https://doi.org/10.4230/LIPIcs.CONCUR.2024.34
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 On Continuous Pushdown VASS in One Dimension

Table 1 Previously known complexity bounds (in black) and our bounds (in green) for problems
in PVASS and relaxations thereof.

PVASS B-PVASS Z-PVASS CPVASS lb-CPVASS

Gen. Reach HypAck-h ∈Ack/Tower-h [9] NP-comp. NEXP-c Undec. [1]
Reach Pspace-h ∈Pspace NP-comp. Ptime-c NP-c

1-dim. Cover ∈EXPspace ∈Pspace [9] ∈NP Ptime-c NP-c
Bound ∈HypAck ∈HypAck ∈HypAck Ptime-c coNP-c

can be scaled by any γ ∈ (0, 1] when taking the transition. For all of these, reachability is
known to be decidable. For some of them, lower complexity bounds for the special case of
one dimension have also been established. See Table 1 for a summary of known results.

In this work, we study reachability, coverability, and boundedness for continuous PVASS in
one dimension. The boundedness problem asks whether the set of all reachable configurations,
from a given source configuration, is bounded. In turn, coverability asks whether a vector at
least as large as the given vector can be reached. In contrast to reachability, coverability
is known to be decidable and in EXPspace for PVASS in one dimension [16]. Similarly,
boundedness is known to be decidable and in HyperAck, this time in general, not only in
one dimension [14].

Contributions

In this paper, we prove that, for continuous PVASS in one dimension, reachability, coverability,
boundedness and even computing the infimum bound are Ptime-complete. We further show
that if one adds to the model lower-bound guards on the states for the counter (thus allowing
for a “tighter” relaxation of the original model, since one can now partially control the
counter values before a transition), then reachability and coverability are NP-complete while
boundedness is coNP-complete.

2 Preliminaries

We first recall a definition of pushdown automata. Then, we extend it to continuous PVASS.

2.1 Pushdown automata and Context-free grammars
▶ Definition 1 (Pushdown automata). A pushdown automaton (PDA, for short) is a tuple
P = (S, Σ, Γ, δ, s0, ⊥, F) where S is a finite set of states, Σ a finite (possibly empty) alphabet,
Γ a finite stack alphabet, s0 ∈ S the initial state, ⊥ ∈ Γ the initial stack symbol, F ⊆ S a
set of accepting states, and δ : S × S →

(
Σ ∪ ϵ

)
×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
a partial function,

where, a and a denote pushing and popping a from the stack respectively.

A configuration of a PDA P is of the form (s, w, α) ∈ S × Σ∗ × Γ∗ where s represents the
current state of the PDA, w the word read by the PDA until reaching the state s and α the
current stack contents of the PDA (with the right being the “top” from which we pop and
onto which we push). The initial configuration q0 is (s0, ϵ, ⊥).

A run of a PDA P is of the form π = q0q1 . . . qn where the qi = (si, wi, αi) are config-
urations and for all 0 ≤ i < n, δ(si, si+1) is defined, wi+1 = wi · δ(si, si+1)1, αi+1 = αi if
δ(si, si+1)2 = ϵ, αi+1 = αi · a if δ(si, si+1)2 = a, and αi = αi+1 · a if δ(si, si+1)2 = a. Above,
δ(_, _)i represents the i-th component. For any Q ⊆ S, we say the run reaches Q if sn ∈ Q.

We focus on state reachability, that is, a run π of a PDA is accepting if q0 is the initial
configuration and sn ∈ F .

G. A. Pérez and S. Rao 34:3

The language of a PDA P, denoted by L(P), is the set of all words wn ∈ Σ∗ read by
accepting runs q0 . . . (sn, wn, αn) of P. The Parikh image Φ(w) of a word w ∈ Σ∗, i.e. the
vector in N|Σ| such that its ith component is the number of times the ith letter of Σ (assuming
an arbitrary choice of total order) appears in w.

Context-free grammars
CFGs, for short, are a model that is expressively equivalent to PDAs in terms of their
languages. The models are logspace reducible to each other [13, Section 5.3].

▶ Definition 2 (Context-free grammars). A CFG is a tuple G = (V, Σ, P, S), where V is a
set of variables; Σ, a set of terminals; P ⊂ V × {V, Σ}∗, a set of productions; and S ∈ V ,
the start symbol.

A production (A, w) ∈ P is written as A → w, where the production symbol “→” separates
the head (a variable) of the production, to the left of →, from the body (a string of variables
and terminals) of the production, to the right of →. Each variable represents a language,
i.e., a (possibly empty) set of strings of terminals. The body of each production represents
one way to form strings in the language of the head.

▶ Example 3. The grammar G = ({A}, {a, b}, P, S = A) represents the set of all palindromes
over {a, b} where the productions are A → ϵ, A → a, A → b, A → aAa and A → bAb. The
word abaaaba, for example, is in the language of A since it can be obtained by A → aAa →
abAba → abaAaba → abaaaba where the fourth, fifth, again the fourth, and finally, the
second production rules are applied, in that order.

Chomsky normal form (or CNF) [13, Section 4.5] is a normal form for CFGs with the
restriction that all production rules can only be of the form A → BC, or A → a, or S → ε.
Every CFG has an expressively equivalent CFG in CNF.

2.2 Continuous pushdown VASS
A CPVASS in one dimension is a PDA with a continuous counter.

▶ Definition 4 (lb-C1PVASS). A continuous pushdown VASS (with lower-bound guards) in
one dimension is a tuple A = (S, Σ, Γ, δ, ⊥, s0, F, ℓ) where S is a finite set of states; s0 ∈ S,
the initial state; F ⊆ S, a set of accepting states; Σ, a finite alphabet; Γ, a finite stack
alphabet; ⊥ ∈ Γ, the initial stack symbol; δ : S × S →

(
Σ ∪ ϵ

)
× Z ×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
, a

partial transition function; and ℓ : S → N, a function that assigns lower bounds to states.

Since we only study runs, and not languages, of lb-C1PVASS, we henceforth omit Σ. We
also assume, without loss of generality, that the set F is a singleton. This can be done by
adding a new final state f ′ to S and adding transitions for all f ∈ F to f ′ which read ϵ,
have a +0 counter update, and do not modify the stack. With these assumptions, we have a
simpler representation of a lb-C1PVASS A = (S, Γ, δ, ⊥, s0, f, ℓ) where δ is now of the form
δ : S × S → Z ×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
.

A configuration of a lb-C1PVASS is of the form (s, α, c) where s and α are as for PDAs,
and c ∈ R≥0 is the current nonnegative value of the counter with the property that c ≥ ℓ(s),
that is, the counter value at a state must be at least the lower bound on that state. The
initial configuration q0 of the lb-C1PVASS is (s0, ⊥, 0).

CONCUR 2024

34:4 On Continuous Pushdown VASS in One Dimension

s0, 0start s1, 2

s2, 0

s3, 2

s4, 0

f, 4
+2

push a

+0

−1

+1

+0
+1

+0

+1

+0
pop a

Figure 1 An example of a lb-C1PVASS A.

A run of the lb-C1PVASS A is a sequence of configurations π = q0q1 . . . qn with qi =
(si, αi, ci) such that π|PA

, obtained by removing the counter values ci, is a run in the PDA
PA, which is obtained by removing the counter updates from A, and for all 0 ≤ i < n,
ci+1 = ci + γδ(si, si+1)1 holds for some γ ∈ R ∩ (0, 1] where γ are the scaling factors.

▶ Example 5. Figure 1 shows a lb-C1PVASS with 6 states. The second component of the
tuple inside the states denotes the lower bound on that state. For instance, ℓ(s1) = 2. This
lb-C1PVASS does not have any run reaching f . This is because the only way to make the
counter reach 4 is via s2 or s3. The run through s2 does not push an a into the stack which
has to be popped later in order to reach f . Also, s3 cannot be reached, since there are only
two updates +2 and −1 before s3 and γ1 · 2 + γ2 · (−1) < 2 for all γ1, γ2 ∈ (0, 1].

Acceptance conditions of a lb-C1PVASS
There are two classical ways of extending (state reachability) acceptance from runs of a PDA
to runs π = q0 . . . qn of lb-C1PVASS, namely: reachability and coverability for k ∈ R≥0.
k-Reachability says the run is accepting if π|PA

is accepting in PA and cn = k.
k-Coverability says the run is accepting if π|PA

is accepting in PA and cn ≥ k.
Like in PDAs, q0 = (s0, α0, c0) = (s0, ⊥, 0) means that accepting runs start with the initial
configuration. We refer to accepting runs according to the above conditions as k-reaching
and k-covering runs, respectively.

We make the following simplifying assumption. All the counter updates in the transition
function are in the set {−1, +0, +1}. This is no loss of generality, due to the following lemma.

▶ Lemma 6. Given a lb-C1PVASS A = (S, Γ, δ, ⊥, s0, f, ℓ), there exists an equivalent lb-
C1PVASS1 with counter updates in the set {−1, +0, +1}, which is quadratic in the size of
the encoding of A, thus polynomial even if the counter updates are encoded in binary.

The proof follows from the construction of a simple gadget that takes as input the binary
encoding of the update and outputs that exact number of +1 (or −1) updates.

We also study lb-C1PVASS where all lower-bound guards are 0 (a looser approximation
of PVASS) where we give simpler algorithms to solve the decision problems we consider.

▶ Definition 7 (C1PVASS). A C1PVASS is a lb-C1PVASS A = (S, Γ, δ, ⊥, s0, f) where
ℓ(s) = 0 for all s ∈ S.

For C1PVASS, we omit ℓ. Configurations, runs, and accepting runs are defined similarly
to lb-C1PVASS. Note that, in a configuration (s, α, c), instead of c ≥ ℓ(s), we now only have
the restriction that c ≥ 0, that is, the counter values never go below 0.

1 To be precise: there is a clear relation between their sets of reachable configurations.

G. A. Pérez and S. Rao 34:5

▶ Example 8. In Figure 1, if all the lower bounds were 0, then we would be able to reach f

with a counter value of at least 4 by taking the run to s3 and taking the self loop a few times
before entering f with a counter value of at least 4. However, the run via s2 would still not
be a 4-reaching run since there is no a to pop from the stack when the run reaches s4.

2.3 Decision problems
We focus on the computational complexity of two decision problems we call reachability and
coverability, respectively: Given a lb-C1PVASS and k ∈ N (in binary), determine whether it
has a k-reaching run. Given a lb-C1PVASS and k ∈ N (in binary), determine whether it has
a k-covering run. In addition, we also study the complexity of the boundedness problem:
Given a lb-C1PVASS, determine whether for some k ∈ R≥0 it has no k-covering run.

▶ Remark 9. Note that our definition of lb-C1PVASS is equivalent to the one where δ and ℓ

map to rationals and k ∈ Q≥0, that is, δ : S × S →
(
Σ ∪ ϵ

)
× Q ×

(
{a, a | a ∈ Γ\⊥} ∪ ϵ

)
and

ℓ : S → Q≥0, as one can multiply all counter updates, lower bounds and k by the product of
all the denominators. Since the numbers are encoded in binary, the representation of the
new integers will be polynomial in the size of the rationals (i.e. the bitsize of integer pairs).
This preserves all the properties studied in this paper.

3 Counter properties of C1PVASS

We first show a relation between reachability and coverability.

▶ Lemma 10. The reachability and coverability problems are equivalent for C1PVASS with
k > 0, but 0-coverability does not imply 0-reachability.

Proof. By definition, k-reachability implies k-coverability. To show the converse, take any
covering run with counter value at the end of the run being k + c, for some c ≥ 0. Now, we
modify the run by scaling all of the counter updates in that run by k

k+c . The reader can
easily verify that this is indeed a reaching run.

This proof does not work for k = 0 since we cannot scale the counter updates by 0.
A simple example for the second part of the lemma would be a C1PVASS with a single
transition, which goes from s0 to f with a +1 counter update (and no stack update). In this
case, 0 can be covered but not reached. ◀

From the proof above we directly get the following.

▶ Remark 11. Let k ∈ N>0. Then, for all k′ ∈ (0, k], k-reachability implies k′-reachability.

We also have the following simple observation about the first nonzero counter update due to
our choice of q0.

▶ Remark 12. Along any run, the first nonzero counter update must be positive, since the
updates cannot be scaled to 0 and the counter values must always be nonnegative

Since we have shown that k-reachability and coverability are different for k = 0 but
the same for k > 0, we first analyse the complexity of 0-reachability and 0-coverability in
Section 3.1. We then show, in Section 3.2, that boundedness is decidable in PTime and that,
if a C1PVASS is bounded, computing the infimum upper bound is also in PTime. Finally,
in Section 3.3, we leverage the size of the upper bound along with Remark 11 to show that
k-reachability and k-coverability, for k > 0, are also in PTime.

CONCUR 2024

34:6 On Continuous Pushdown VASS in One Dimension

3.1 0-reachability and 0-coverability
In this section, reduce both 0-reachability and 0-coverability to checking nonemptiness of
PDAs (with an empty alphabet) to show the following:

▶ Theorem 13. The 0-reachability and 0-coverability problems for a C1PVASS are decidable
in PTime.

The result follows from the fact that checking nonemptiness of the language of a PDA can
be done in polynomial time (see, e.g. [13, Proof of Lemma 4.1]) and the following lemma.

▶ Lemma 14. The 0-reachability and 0-coverability problems for C1PVASS are polynomial
time reducible to the nonemptiness of the language of a PDA.

Proof sketch. For 0-coverability, first note the fact that any run in the underlying PDA
of the C1PVASS A corresponds to a 0-covering run in A if and only if the first non-zero
counter update in the run is a +1. We design a PDA as shown in Figure 2 (the blue dashed
box) which simulates this property of 0-covering runs, where P0 and P1 are copies of the
underlying PDA where P0 only has transitions corresponding to +0 updates in A, and the
run can enter P1 only after a +1 update.

s0start u2

u1

u3f

P0 v2

v1

v3 f

w2

w1

w3

P1 x2

x1

x3 f

P ′
0

P

+1

+1

+1

-1

-1

-1

Figure 2 The construction of the PDA P where P0 and P ′
0 are copies of A obtained by the

counter and removing all the transitions that have a nonzero counter update; the transitions from
P0 to P1 are exactly the transitions in A with a positive counter update and those from P1 to P ′

0
are exactly the ones with a negative counter update. For coverability, P consists of just P0 and P1

and the copies of accepting states in P1 are also accepting in this case.

For reachability, note that a run in the underlying PDA of A corresponds to a 0-reaching
run in A if and only if the first non-zero counter update is +1 and the last non-zero counter
update is −1. Figure 2 (the green dashed box) simulates this by creating 3 copies of the
underlying PDA of A, namely, P0, P1 and P ′

0 where P0 and P ′
0 only contain transitions

corresponding to +0 updates in A. ◀

3.2 Boundedness for C1PVASS
In this section, we first analyze the complexity of deciding whether a C1PVASS is bounded
or not. If it is bounded, we provide a bound which is polynomial (when encoded in binary)
in the size of the encoding of the C1PVASS. We next show that, for a bounded C1PVASS,
the “tight” bound, that is,

b = inf{k ∈ R | A has no k-covering run} (1)

G. A. Pérez and S. Rao 34:7

is an integer and the natural decision problem associated to finding b is in PTime. First,
we convert the C1PVASS into a PDA P ′ as we did in the proof of Lemma 14 in Figure 2
(the blue dashed box), further modify its alphabet, and observe some properties about the
resulting PDA.

Let A be the C1PVASS. Make two copies P0 and P1 of A without the counter. Next,
remove from P0 all the transitions that were not a +0 counter update in A and add, for each
transition in A with a positive counter update, a transition from P0 to P1. The copies of
accepting states in P0 and P1 are all accepting in the resulting PDA, which we call P (see the
blue dashed box in Figure 2). To obtain P ′ from P , we modify its alphabet. The alphabet Σ
of P ′ is unary, i.e. Σ = {a}. The transitions of P ′ read a if they had a +1 counter update in
A and read the empty letter ϵ otherwise.

One can see a relation between accepting runs in A and P ′. Let π be an accepting run in
P ′. The corresponding run in A has the property that the first nonzero update is a positive
update (i.e., a transition from P0 to P1) which makes it an accepting run in A. Similarly, an
accepting run in A must have a +1 as the first nonzero update, hence, it is also an accepting
run in P ′ by construction.

The lemma below follows immediately from the construction.

▶ Lemma 15. am ∈ L(P ′) if and only if there is an accepting run in A with exactly m many
+1 updates.

For all 0 < ε < 1, and an accepting run in the PDA P ′, in the corresponding run in A,
one can choose γ = 1 for all the +1 updates and γ ∈ (0, 1] small enough, for all negative
updates, so that their sum is in the interval [0, ε). This leads to the following result.

▶ Lemma 16. The cardinality of L(P ′) is bounded if and only if the C1PVASS A is bounded.
Moreover, if the maximum length of a word accepted by P ′ is p ∈ N then b = p, where b is as
in Equation (1).

There are Ptime algorithms (see, e.g., [13, Theorem 6.6]) to determine whether the language
of a PDA is finite. We thus get:

▶ Theorem 17. Deciding boundedness of a C1PVASS A is in PTime. Moreover, the bound
can be at most 2O(|A|6), where |A| is the size of the encoding of A.

The first part of the proof follows from the discussion above. The bound is due to the facts
that any PDA of size n can be converted to a CFG in CNF of size at most O(n6) (at most
2500n6 to be exact), the size of P is at most twice that of A, and 2m is a bound on the
length of the words accepted by a (bounded) CFG in CNF of size m.

Using this upper bound on the largest reachable counter for a bounded C1PVASS, we
argue the tight upper bound is an integer and give an algorithm to compute it.
▶ Remark 18. Using Lemma 15 and the fact that nonnegative updates can be scaled down
arbitrarily, one can see that the bound b defined in Equation (1) is a nonnegative integer
when it exists.

▶ Theorem 19. The tight upper bound of a bounded C1PVASS can be computed in PTime.

Proof. The idea for the proof comes from [8] which gives a PTime algorithm to find the
shortest word accepted by a CFG.

Assume the language is not empty. Construct the PDA described in Lemma 16. We
know that if m is the length of a longest word accepted by the PDA P, then m is the tight
bound. We also know, by Theorem 17, that m ≤ 2k where k = O(|A|)6. We construct a

CONCUR 2024

34:8 On Continuous Pushdown VASS in One Dimension

grammar (V, Σ, P, S) in CNF for the PDA. This grammar has size at most 2O(|A|)6 , as shown
in Theorem 17. Since the grammar is in CNF, all productions are of the form A → BC or
A → a and the language of all variables is nonempty.

Define the function N : V → N such that N(A) is the length of the longest word produced
by the variable A, for all A ∈ V . The following algorithm computes N(A) for all A ∈ V .
1. Initialize W (A) = 0 for all A ∈ V , W (a) = 1 for all a ∈ T .
2. Repeat, for all A and all productions with head A:

W (A) =
{

max{W (B) + W (C), W (A)} if A → BC;
max{W (a), W (A)} if A → a.

until we reach a fixed point (we know a fixed point will be reached eventually since the
length of words is bounded).

3. Output the vector W (V).
We know that the above algorithm terminates since the length of the longest word is bounded.
It remains to show that it terminates in polynomially many iterations. Each iteration has
|V ||P | comparisons of numbers bounded by 2O(|A|)6 , and we know that such numbers can
be compared in time polynomial in |A|. Hence, showing that the fixed point is obtained in
polynomially many iterations of the algorithm suffices to establish that the tight bound can
be obtained in polynomial time.

Consider the directed graph with V ∪ Σ as vertices and where we add the edge (A, β),
where A ∈ V and β ∈ V ∪ Σ, if and only if there is a production in P whose head is A

and with β in its body. The graph can be shown to be acyclic, since the language of the
grammar is finite and the language of every variable is nonempty. Now, every iteration of
the algorithm induces a labelling of the vertices of the graph via W . Observe that the label
of a vertex only changes if the label of one of its immediate successors changes. It follows
that the fixed point is reached after at most |V | iterations. ◀

▶ Lemma 20. The set of all reachable values in a C1PVASS is closed on the right (i.e., the
bound b can be reached) if and only if there is an accepting run for ab in P ′ which does not
contain any −1 transitions from A.

The proof follows from the simple fact that any −1 update in A cannot be scaled down to 0,
and b is an upper bound on the counter value in the final configuration of any accepting run.

Lemma 20 gives us an easy way to check whether the interval of all reachable counter
values is closed on the right. Remove all transitions from P ′ which correspond to a −1
update transition in A. This PDA P ′′ will accept am if and only if A has an accepting run
with exactly m many +1 updates and no negative updates. This can be checked in PTime
due to [5].

3.3 k-reachability and k-coverability for k > 0
The following stronger theorem implies that both k-reachability and coverability are in
PTime for all k ≥ 0.

▶ Theorem 21. The interval of all reachable counter values of a C1PVASS is computable in
polynomial time.

Proof. Use Theorem 13 to decide whether 0 is reachable. If so, the interval is closed on
the left, open otherwise. Next, use Theorem 17 to decide if the highest reachable counter
value is bounded. If not, the upper bound will be ∞ (and thus open). If it is bounded,
use Theorem 19 to compute the tight bound b. Finally, use Lemma 20 to find whether the
interval is closed on the right. ◀

G. A. Pérez and S. Rao 34:9

Ptime-hardness for all the problems in this section follows from the nonemptiness problem
for PDAs being Ptime-hard (see, e.g. [5, Prop. 1]). For coverability and reachability this
is immediate, for boundedness one can add a self loop with a positive counter update on
accepting states.

4 Counter properties of lb-C1PVASS

In this section, we show that coverability and reachability for lb-C1PVASS are decidable in
NP and comment on how our treatment of boundedness from the previous section adapts
almost identically to lb-C1PVASS to yield, in this case, a complexity of coNP. Finally,
we provide a two-step reduction from the subset-sum problem to show completeness in the
respective complexity classes.

Both for coverability and reachability, we proceed as follows. First, we convert the given
lb-C1PVASS into a PDA P such that the Parikh image of a word accepted by the PDA
satisfies some quantifier-free Presburger formula φ if and only if the lb-C1PVASS has an
accepting run. Then, we use a construction from [18, Theorem 4] (later corrected in [12]) to
obtain, in polynomial time, an existential Presburger formula φL whose models correspond
to the Parikh images of words in the language of P. The problem thus reduces to checking
satisfiability of the existential Presburger formula φ∧φL. The result follows since satisfiability
for such formulas is known to be NP-complete [10].

▶ Theorem 22. Deciding k-coverability and k-reachability for lb-C1PVASS is NP-complete,
and boundedness is coNP-complete.

4.1 k-coverability for lb-C1PVASS
For lb-C1PVASS, k-coverability is equivalent to state reachability, i.e. without asking for
the final counter value to be at least some given value: to check k-coverability, we add a
new final state with lower-bound guard k and transitions from the old final state(s) to this
new state with +0 counter updates and no stack update. Because of this, we focus on state
reachability as acceptance condition and omit k when speaking of coverability in the sequel.

Let A = (S, Γ, δ, ⊥, s0, f, ℓ) be the lb-C1PVASS. Recall that ℓ : S → N is the mapping
from states to the lower bounds on those states. That is, ℓ(s) = x implies that the counter
value must be at least x in order to enter the state s. Let n = |S| be the number of states.
We have the assumption, from Lemma 6, that the only counter updates in the lb-C1PVASS
are in the set {−1, +0, +1}. Let m + 1 ≤ n be the size of the range of ℓ. That is, there are
m + 1 distinct lower bounds 0 = ℓ0 < ℓ1 < ℓ2 < · · · < ℓm that occur in the lb-C1PVASS A.
Note that 0 must be one of the lower bounds since ℓ(s0) = 0 in order for any run to exist.

Now, we construct the PDA, followed by the Presburger formula. The PDA P has
4(m + 1) “blocks” and its alphabet is Σ = {ai, a′

i, bi | 0 ≤ i ≤ m + 1}. Each block is a
subPDA (so, we ignore counter updates) of the lb-C1PVASS with some restrictions. For
each 0 ≤ i ≤ m, the 4 types of blocks we use all have copies of the same set of states: all
s ∈ S such that ℓ(s) ≤ ℓi.
1. Ii The transitions come from those in A with counter update +0 and they read ϵ in P;
2. I+

i The transitions come from those in A with +0 or +1 updates and the PDA P reads
an ai on the +1 transitions;

3. A−
i The transitions come from those in A with +0 or −1 updates and the PDA P reads

a bi on the −1 transitions;
4. A±

i And here, all transitions in A are present and the PDA will read bi on −1 and ai on
the +1 transitions.

CONCUR 2024

34:10 On Continuous Pushdown VASS in One Dimension

+0 : ϵ

Ii

+1 : ai

I+
i

Ii+1

−1 : bi

A−
i−1

−1 : bi, +1 : ai

A±
i

A±
i+1

+1
ai

+1
a′

i

+1
a′

i

−1bi

+1ai

−1 bi

+1
a′

i

Figure 3 A slice of the PDA P constructed for k-coverability of a lb-C1PVASS. The subscript
being i for 0 ≤ i ≤ m of a block (for example, i in Ii) denotes that all the states in the block have
lower bounds at most ℓi. Note +0 : ϵ is omitted unless it is the only option for transitions in the
block.

Figure 3 depicts how the blocks are connected in what we henceforth call a slice (depicted by
the dashed box), i.e. Ii, I+

i , A−
i−1 and A±

i , for some 0 ≤ i ≤ m. It also shows how the slices
themselves are connected. Note that the transitions in the PDA do not actually have the
counter updates −1, +0, +1, but we include them in the explanation and figure for clarity.
The accepting states of P are all the copies of accepting state in A.

Now, we define a Presburger formula for the Parikh images of accepting runs in P that
correspond to the accepting runs in A (#a denotes the number of a’s read during the run).

m∧
k=1

(
#a′

k−1
= 0

)
∨

((k−1∑
i=0

#ai + #a′
i

≥ ℓk

)
∧

(k−1∑
i=0

#bi = 0
))

∨

((k−1∑
i=0

#ai
+ #a′

i
> ℓk

)
∧

(k−1∑
i=0

#bi
> 0

))
 (2)

Intuitively, the second disjunct ensures that if the run saw no negative updates (stayed
in the green layer), then the number of +1 updates in order to enter the kth slice must be at
least the kth lower bound; The third disjunct ensures that if there was a negative update
seen then the number of +1 updates seen must be strictly greater than the kth lower bound;
and the first disjuct is if the run never enters the kth slice.

▶ Theorem 23. For all runs π in A, there is one in P with the same sequence of states
whose Parikh image satisfies the Presburger formula from Equation (2) if and only if π is
accepting in A.

The following auxiliary lemmas are helpful in the intuition for the proof of the theorem.

▶ Lemma 24. Let 0 < ε < 1. For any run π in A, there is another run π′ with the same
sequence of states such that all the +1 counter updates in the run are scaled up to 1 and all
the −1 updates in the run are scaled down so as to add up to −ε.

G. A. Pérez and S. Rao 34:11

The proof follows from a few simple observations: Since π is a run and π′ is a run with the
same sequence of states, the stack will behave the same in both runs. For the counter, since
we only have lower bounds, and we chose small coefficients for negative updates, all the
counter updates in π′ are greater than, or equal to the counter updates in π, hence satisfying
all lower bounds along the run.

▶ Lemma 25. A run ends in a green state (i.e., a state in Ii or I+
i for some 0 ≤ i ≤ m) in

P if and only if there was no bj read along the run for all 0 ≤ j ≤ m.

This follows from the construction since there is no path from the blue states (states in A−
i

for 0 ≤ i ≤ m) or the red states (states in A±
i for 0 ≤ i ≤ m) to any green state. Intuitively,

the counter values are integers when reaching green states and nonintegers when reaching
blue or red states.

This gives us NP inclusion for deciding coverability in lb-C1PVASS.

4.2 k-reachability for lb-C1PVASS

Here, we show that k-reachability for k ∈ N is also in NP for lb-C1PVASS. Unlike for
C1PVASS, k-coverability does not imply k-reachability in lb-C1PVASS: scaling down the
vectors along the entire run can lead to some lower bounds being violated. E.g., consider a
lb-C1PVASS with 3 states s0, s1 and f with ℓ(s1) = 1 and a +1 update on both s0 → s1
and s1 → f . For any accepting run π, the counter value at s1 must be 1. This means that
even if the second +1 update is scaled down, the counter value at f must be strictly greater
than 1. For this lb-C1PVASS, 1-coverability holds but 1-reachability does not.

Like in the previous section, we construct a PDA and a Presburger formula such that the
PDA accepts a word that satisfies the Presburger formula if and only if the lb-C1PVASS has
a k-reaching run, for some given k ∈ N. However, the construction is more involved since it
is not always possible to reach a specific counter value by scaling down all negative counter
updates to arbitrarily small numbers. Instead, we first introduce a normal form of scaled
runs (i.e. the sequences of coefficients) that guides our construction for a PDA with no block
cycles in the same way Lemma 24 guided our construction for reachability.

4.2.1 The Dense Normal Form (DNF)

We show that all k-reaching runs have a normal form which scales the counter updates in
the run so that the positive updates are concentrated towards the start of the run and the
negative updates towards the end of the run. Formally, let π be a run in the lb-C1PVASS
which reaches the counter value k ∈ N. Let Pπ be the sum of all positive updates in π and
Nπ be the sum of all negative updates. Define Iπ

P = ⌊Pπ⌋, F π
P = Pπ − Iπ

P , Iπ
N = ⌈Nπ⌉ and

F π
N = Nπ − Iπ

N . Clearly Iπ
P + F π

P + F π
N + Iπ

N = k and, moreover, Iπ
P + Iπ

N = k and F π
P = −F π

N

since k is an integer. To define a normal form and argue all runs can be put in it, we scale
consecutive positive updates and consecutive Iπ

N negative updates at the start and at the end
the run in full, i.e. γ = 1 (except for a special case where we scale one of the negative updates
by ∆ close to 1). The remaining positive and negative updates can be scaled arbitrarily
(small) as long as their sum adds up to 0. For the latter, we will scale down positive and
negative updates by coefficients from E and D respectively, where E and D are finite sets
of arbitrarily small “epsilons” (ε) and “deltas” (δ) in the interval (0, 1). The updates are
concentrated at the start and the end of the run, hence the name dense normal form. For
simplicity, we also add ∆ to D.

CONCUR 2024

34:12 On Continuous Pushdown VASS in One Dimension

▶ Lemma 26. Let π be a run in the lb-C1PVASS which reaches the counter value k ∈ N.
Then, there exists a run π′ such that:
1. The sequence of states in π′ is the same as in π, and
2. π′ is also a k-reaching run.
3. All positive and negative updates in π′ are scaled from the set {1} ∪ E and {1} ∪ D ∪ ∆,

respectively.
4. The sequence of all nonzero updates in π′ is of the form ({+1}∪−D)∗(−D∪+E)∗({−1}∪

+E)∗ or ({+1})∗(−D)+(−∆)({−1})∗.
5. Let π′|E∪D be the sequence of counter updates restricted to +E’s and −D’s. Then,

π′|E∪D is of the form:
(−D)∗(+E)(+E ∪ −D)∗(−D), in which case, for any proper prefix of π′|E∪D with at
least one epsilon, the sum of all epsilons and deltas is positive; or
(+E ∪ −D)∗(−D)(+E)+, and for any proper prefix of π′|E∪D that contains an epsilon
and not the final delta, the sum of all epsilons and deltas is positive while for any
proper prefix with the final delta, the sum is negative; or
(−D)+(−∆), and none of the deltas occur before a +1 counter update.

6. For configurations q = (s, α, c) in π and q′ = (s, α, c′) in π′ which occur in the same
position in both runs, c′ ≥ ⌊c⌋.

Note that the DNF (in particular Item 4) precludes −1 updates before a +1 update. It
also visits the same sequence of states, satisfies all lower-bound guards along the run and
reaches the same counter value k as the given run.

▶ Example 27. Let the sequence of nonzero updates in a 1-reaching run be +1, +0.8, −0.9,
−0.9, +1, −1, +1. This run is not in the dense normal form. To transform it into the
normal form, we choose different values of γ to scale the updates along the run to obtain
+1, +1, −δ1, −δ2, +ε1, −1, +ε2. It is easy to see that this is also a 1-reaching run and the
integer parts of the counter values along the run are at least those along the original run.

Since, if a k-reaching run exists, a k-reaching run in dense normal form exists, we construct
a PDA and a Presburger formula which simulate runs of the lb-C1PVASS in DNF.

4.2.2 Constructing the PDA P
The construction of P is shown in Figure 4. Each slice consists of 9 layers, namely L1, . . . , L9,
each of which contains one or two blocks. Each block, like in Section 4.1 is a copy of the
lb-C1PVASS A restricted to states with lower bounds at most ℓi, where i is the subscript of
the block, and transitions with updates written inside the block. The transitions labelled
+ε and −δ correspond to +1 and −1 update transitions respectively, but we label them
differently to make the explanation later easier to read. Each block also has all transitions
from A with a +0 update. Note that the connections between blocks allow exactly the
transitions on the labels and not the +0 transitions from A.

In the figure, we are assuming that ℓi−1 < ℓi − 1. If ℓi−1 = ℓi − 1, there will be the
following changes:
1. All transitions entering A−

i−1 will now go to A−
i−2 instead (both in L7), and

2. All transitions entering I−
i−1 will now go to Ii−1 instead.

Checking whether ℓi−1 = ℓi − 1 can be done beforehand for all 0 < i ≤ m, and P can be
constructed accordingly. The discussion that follows still holds.

Due to the complexity of the PDA, a fully formal proof like in Section 4.1 would obscure
rather than support our claims. Instead, we focus on providing the high-level intuition behind
the construction of the PDA and the Presburger formula.

G. A. Pérez and S. Rao 34:13

+0

Ii

+1

I+
i

Ii+1

−δA−
i−1 −δ, +1

A±
i

A±
i+1

+ε

A+
i

+ε

A+
i

+ε, −δ

A±
i

+ε, −δ

A±
i

+ε

A+
i−1

+ε

A+
i

+ε, −δ

A±
i

+0

Ai−1

−1

A−
i

A−
i−1

+ε

A+
i−1

−1, +ε

A±
i

A±
i−1

−1 I−
i

I−
i−1

L1: Only +1 updates yet.

L2: Only +1 and at least one
−δ updates have been seen. A
+ε update must be seen later
unless it is a type 3 run and

reads −∆

L3: Only +1 and at least one +ε have
been seen, i.e., the (+1 ∪ −D)∗ part only
had +1 updates. At least one −δ update
must be seen later. Counter values here
are slightly greater than some integer.

L4: The last fractional update will be +ε.
Counter values here are slightly greater
than some integer since the final −δ has
not yet been seen. At least one +ε and

one −δ have been seen but no −1.

L5: The last fractional update will be +ε.
The final −δ update has been seen but
no −1. Counter values here are slightly

less than some integer.

L6: The last fractional update will be −δ.
At least one +ε and one −δ updates have
been seen but no −1 yet. Counter values

here are slightly greater than some
integer.

L7: At least one +ε seen later and final
fractional update is +ε. The final −δ and

one −1 have been seen. Counter values here
are slightly less than some integer.

L8: After seeing at least one +ε and one
−δ update, there are no more −δ updates.

L9: Only −1 updates from here.

−1

+ε

+ε

−δ

−δ

+ε

+ε
−1

+1

+1

−δ

−1

+ε

+1

−δ

−1

+ε

+1

−1

−∆

+1

−δ −δ

−1

−δ

−1

+ε

−1

+ε

−1

+ε

−1
+ε

−1

Figure 4 The ith slice of the PDA P constructed for k-reachability of a lb-C1PVASS. The slice
itself is inside the dashed box, the text to the right provides intuition for the layer. The subscript
being i for 0 ≤ i ≤ m of a block (eg, i in Ii) denotes that all the states in the block have lower
bounds at most ℓi. Note +0 is omitted unless it is the only option for transitions in the block.

▶ Remark 28. By construction, there are no block cycles in P. That is, once a run exits a
block, it cannot enter the same block later. This follows due to the simple observation that,
from every block, there are transitions only to a block either to the left or to the right on
the same level (but never both), or a block in a lower layer.

Note that, since there is no way to enter a block in an upper layer from a lower one,
and a run always starts from I0 (the leftmost green block), any run will first traverse green
blocks, moving to the right, then it will either enter a blue block and move down or directly
enter a red block and start moving to the left.

CONCUR 2024

34:14 On Continuous Pushdown VASS in One Dimension

▶ Lemma 29. The sequence of states in any run in P is a sequence of states in green blocks,
followed by a (possibly empty) sequence of states in blue blocks, followed by a (possibly empty)
sequence of states in red blocks. Furthermore, while the run is visiting green, blue and red
blocks, the index of the slices is non-decreasing, constant and non-increasing, respectively.

The proof follows by construction.
We now show how the PDA P is split into 3 main components and the letters read on

the transitions in slice i.

The green component consists of the first two layers. This component corresponds to
the (+1 ∪ −D)∗ part of the run in Item 4. This is easy to see since this component looks
exactly like Figure 3, with the exception that the states in the second layer (which were
the states in blue and red states in Figure 3), are not accepting. The PDA reads alphabet
ai on all +1 transitions in and to green blocks in Figure 4, except the transitions entering
the next slice, on which it reads a′

i, and it reads di on all the −δ transitions.

The blue component consists of layers 3, 4, 5 and 6 which correspond to the (+E ∪ −D)∗

part of the run. This component is entered after reading the first +ε update. Due to
Item 5, the run stays in a single slice during this part of the run. The empty letter ϵ is
read on all transitions in and to this component.

The red component, consisting of the last 3 layers, corresponds to the (−1 ∪ +E)∗ part
of the run, and is entered after the first −1 or the last fractional update. Note that the
run can never exit this component once it is entered. The PDA reads b′

i on all the −1
transitions in and to L7, bi on all −1 transitions in and to L8 and L9, ϵ on all other
transitions and a d′

i on the −∆ transition entering L9. Note that
∑m

i=1 #d′
i

∈ {0, 1} since
a −∆ transition can occur at most once in any run.

▶ Lemma 30. If the lb-C1PVASS accepts some run in DNF which reaches some k ∈ N, there
exists an accepting run in the PDA P such that

∑m
i=1 #ai + #a′

i
− #bi − #b′

i
− #d′

i
= k.

The proof follows from the fact that the run (in DNF) can be simulated on the PDA P
by staying in the green component for the (−1 ∪ −D)∗ portion of the run, then going to the
(+E ∪ −D)∗ portion of the run, and finally the run enters the red portion for the (−1 ∪ +E)∗

part of the run (except for the case where the run is of the form ({+1})∗(−D)+(−∆)({−1})∗,
in which case the run enters the last layer on the −∆ update). The run moves between layers
as the counter values move between different slice bounds.

4.2.3 The Presburger formula

The main intuition for having the Presburger formula is to make sure that the run stays in
the correct block. For example, on reading a +1 in I+

i , there is a choice to either stay within
the block or move to Ii+1. The formula ensures that it stays in I+

i when the counter value
is in the interval (ℓi, ℓi+1) and moves to Ii+1 when the counter value reaches ℓi+1.

We also use a formula to ensure that the sum of all the +1 and −1 updates is exactly k.
Using Lemma 29, we are able to split the Presburger formula into 4 conjuncts as well.

G. A. Pérez and S. Rao 34:15

φG =
m∧

k=1

(
#a′

k−1
= 0

)
∨

((k−1∑
i=0

#ai
+ #a′

i
≥ ℓk

)
∧

(k−1∑
i=0

#di
= 0

))
∨

((k−1∑
i=0

#ai + #a′
i

> ℓk

)
∧

(k−1∑
i=0

#di > 0
))

φ′

R =
m∧

k=1

(
#b′

k
= 0

)
∨

(m∑
i=1

#ai
+ #a′

i
−

m∑
j=k

#b′
j

> ℓk

)
φR =

m∧
k=1

(
#bk

+ #d′
k+1

= 0
)

∨
(m∑

i=1
#ai

+ #a′
i

−
m∑

j=k

#b′
j

+ #bj
+ #d′

j+1
≥ ℓk

)
φk =

m∑
i=0

#ai + #a′
i

− #bi − #b′
i

− #d′
i

= k

The final formula φ will be a conjunction of all the formulas described above.

φ = φG ∧ φ′
R ∧ φR ∧ φk. (3)

Now, with the PDA P and formula φ, we get the main result of this section.

▶ Theorem 31. For all runs π in A, there is one in P with the same sequence of states
whose Parikh image satisfies the Presburger formula φ from Equation (3) if and only if π is
k-reaching in A.

The proof is similar to that of Theorem 23, simulating the k-reaching runs of A using
accepting runs in P satisfying φ and vice-versa.

4.3 Boundedness for lb-C1PVASS
For boundedness, we first note that the set of all reachable counter values from a lb-C1PVASS
A is a subset of all reachable values of the C1PVASS A′, where A′ is obtained by replacing
the lower bounds in A by 0. It follows, from Theorem 17, that 2O(|A|6) is an upper bound
on the largest reachable counter value in A, if A is bounded, where |A| is the size of the
encoding of A. Hence, we can ask for k-coverability with k = 2O(|A|6) and if the answer is
yes, the set of all reachable counter values is unbounded. Hence, boundedness is in coNP.

4.4 Hardness of k-reachability, k-coverability and boundedness
We now show that reachability and coverability are NP-hard for lb-C1PVASS and coNP-
hard for boundedness. This gives us NP-completeness for reachability and coverability, and
coNP-completeness for boundedness.

▶ Lemma 32 (Context-free sum problem). Given a context-free language L ⊆ a∗b∗ and two
numbers k, ℓ ∈ N (encoded in binary), determining whether there exists a word ambn ∈ L
such that m ≥ k and m + n ≥ ℓ is NP-hard.

Proof. We reduce from the subset sum problem: Given a set of positive integers S =
{x1, . . . , xn} and an integer X, is there a subset S′ ⊆ S such that

∑
xi∈S′ xi = X?

CONCUR 2024

34:16 On Continuous Pushdown VASS in One Dimension

We construct the CFG as follows: We have non-terminals A0, . . . , An where A0 is the
start symbol, and productions Ai → axi+1Ai+1, Ai → Ai+1b2xi+1 , for all 0 ≤ i ≤ n − 1,
and An → ε. This CFG defines the following language: L = {arbs | ∃S′ ⊆ S : r =∑

xi∈S′ xi and s = 2
∑

j ̸∈S′ xj}. One can easily verify that a word anbm satisfying n ≥ X

and n + m ≥ 2
∑n

i=1 xi − X is in L if and only if the subset sum instance is positive. ◀

We now give the reduction from this problem to reachability, coverability and unboundedness
in an lb-C1PVASS. Without loss of generality, we assume that the context-free language
is given as a PDA such that there is a partition between all the states with an outgoing
transition labelled by an a and those with a transition labelled by a b as shown in Figure 5.

s0start u2

u1

u3

A v2, k

v1, k

v3, k

f1

f2

f3

f ′, ℓB

a

+1

a

+1

a

+1

ε

+0
ε

+0
ε

+0

ε, +1

Figure 5 The construction of the lb-C1PVASS where A is the part of the PDA consisting of only
the transitions which do not read b’s and on the last a, there is a check verifying that at least k

many a’s were seen, before seeing the bs. From the final states, there is a transition to the new final
state f ′ with a lower bound of ℓ which checks that the total number of a’s and b’s is at least ℓ.

To show that this construction establishes a reduction from the context-free sum problem
to reachability, coverability and unboundedness, it is enough to see that an accepting run
from the PDA will be accepting in this C1PVASS if and only if the total number of a’s is at
least k and the total number of a’s and b’s is at least ℓ. Thus ℓ is reachable if and only if it is
coverable if and only if there exists a solution to the context-free sum problem. Finally, due
to the +1 self loop on the final state, there is are accepting runs with unbounded value if and
only if the context-free sum instance is positive. This gives us NP-hardness for reachability
and coverability, and coNP-hardness for boundedness.

5 Conclusion

In this work we established reachability, coverability, and boundedness are decidable in
polynomial time for continuous PVASS in one dimension (C1PVASS). When the model is
extended with lower-bound guards for the counter on the states, we proved reachability
and coverability are NP-complete while boundedness is coNP-complete. There are cells of
Table 1 for which complexity bounds can be tightened in the future. Our algorithms can be
used as heuristics to guide the exact algorithm for the reachability problem if it is decidable
(cf. [3]). In the direction of using C1PVASS as approximations of PVASS, we posit the most
interesting direction is to add both upper and lower bounds to the values the counter can
take (cf. [4]) towards an approximation of one-counter pushdown automata. This model
with upper and lower bounds can be seen as a generalization of one clock pushdown timed
automata without resets.

G. A. Pérez and S. Rao 34:17

References
1 A. R. Balasubramanian. Decidability and complexity of decision problems for affine continuous

VASS. In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the 39th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia,
July 8-11, 2024, pages 7:1–7:13. ACM, 2024. doi:10.1145/3661814.3662124.

2 A. R. Balasubramanian, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche.
Reachability in continuous pushdown VASS. Proc. ACM Program. Lang., 8(POPL):90–114,
2024. doi:10.1145/3633279.

3 Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed reachability for infinite-
state systems. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part
II, volume 12652 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021. doi:
10.1007/978-3-030-72013-1_1.

4 Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, and Guillermo A. Pérez.
Continuous one-counter automata. ACM Trans. Comput. Log., 24(1):3:1–3:31, 2023. doi:
10.1145/3558549.

5 Dmitry Chistikov and Rupak Majumdar. Unary pushdown automata and straight-line programs.
In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming, pages 146–157, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

6 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for petri nets is not elementary. J. ACM, 68(1):7:1–7:28, 2021.
doi:10.1145/3422822.

7 Matthias Englert, Piotr Hofman, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Juliusz
Straszyński. A lower bound for the coverability problem in acyclic pushdown vas. Information
Processing Letters, 167:106079, 2021.

8 Yuval Filmus. Hardness of finding a word of length at most k accepted by a nondetermin-
istic pushdown automaton. https://cstheory.stackexchange.com/questions/4429/
hardness-of-finding-a-word-of-length-at-most-k-accepted-by-a-nondeterministic,
2011.

9 Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche.
Reachability in bidirected pushdown VASS. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
124:1–124:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
ICALP.2022.124.

10 Christoph Haase. A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–82,
2018.

11 Matthew Hague and Anthony Widjaja Lin. Model checking recursive programs with numeric
data types. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
volume 6806 of Lecture Notes in Computer Science, pages 743–759. Springer, 2011. doi:
10.1007/978-3-642-22110-1_60.

12 Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded analysis of
multithreaded programs with counters. In CAV, volume 7358 of Lecture Notes in Computer
Science, pages 260–276. Springer, 2012.

13 John E. Hopcroft and Jeff D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, 1979.

CONCUR 2024

https://doi.org/10.1145/3661814.3662124
https://doi.org/10.1145/3633279
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1145/3558549
https://doi.org/10.1145/3558549
https://doi.org/10.1145/3422822
https://cstheory.stackexchange.com/questions/4429/hardness-of-finding-a-word-of-length-at-most-k-accepted-by-a-nondeterministic
https://cstheory.stackexchange.com/questions/4429/hardness-of-finding-a-word-of-length-at-most-k-accepted-by-a-nondeterministic
https://doi.org/10.4230/LIPIcs.ICALP.2022.124
https://doi.org/10.4230/LIPIcs.ICALP.2022.124
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1007/978-3-642-22110-1_60

34:18 On Continuous Pushdown VASS in One Dimension

14 Jérôme Leroux, M. Praveen, and Grégoire Sutre. Hyper-ackermannian bounds for pushdown
vector addition systems. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 63:1–63:10. ACM, 2014. doi:
10.1145/2603088.2603146.

15 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.
doi:10.1109/LICS.2019.8785796.

16 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability problem for pushdown
vector addition systems in one dimension. In International Colloquium on Automata, Languages,
and Programming, pages 324–336. Springer, 2015.

17 Sylvain Schmitz. The complexity of reachability in vector addition systems. ACM SIGLOG
News, 3(1):4–21, 2016. doi:10.1145/2893582.2893585.

18 Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity of equational
horn clauses. In CADE, volume 3632 of Lecture Notes in Computer Science, pages 337–352.
Springer, 2005.

A Appendix

A.1 Proof of Lemma 26
Proof. We first construct a run π′′ which satisfies Iπ′

P = Iπ
P and Iπ′

N = Iπ
N . Notice that none

of the lower bounds along the run π can exceed Iπ
P .

end
−1

0

1

−δ+

+ε

+ε

({+ε} + {−δ})∗

sequence of epsilons and deltas

su
m

of
al

le
ps

ilo
ns

an
d

de
lta

s

−δ

+ε+
+ε+

−δ

−∆

Figure 6 A graphical representation of the multiple cases.

π must have at least Iπ
P positive and Iπ

N negative updates due to Lemma 6. The idea is
to scale up the first Iπ

P many +1 updates and the last Iπ
N many −1 updates in the π′′ by 1

(call this the 1-scaling), and scale the remainder of +1 and −1 updates by updates in E and
D. There are two major cases for this:
1. The Iπ

P ’th 1-scaled +1 update occurs before the first 1-scaled −1 update.
2. The Iπ

P ’th 1-scaled +1 update occurs after the first 1-scaled −1 update.
If the first case holds, π′′ is of the form ({+1} ∪ −D)∗(−D ∪ +E)∗({−1} ∪ +E)∗ and we
scale the updates in E and D according to Figure 6 on a case-by-case basis:

https://doi.org/10.1145/2603088.2603146
https://doi.org/10.1145/2603088.2603146
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1145/2893582.2893585

G. A. Pérez and S. Rao 34:19

There are exactly Iπ
P many positive updates and Iπ

N many negative updates in π (which
means that all of them must have been scaled to 1 and F π

P = F π
N = 0), π′′ = π′ = π and

the bounds are satisfied.
The number of positive updates in π is strictly greater than Iπ

P and has exactly Iπ
N many

negative updates. π′′ is of the form (+1)∗({−1} ∪ E)∗. Note that π′′ does not reach k,
but k + e where e is the sum of all epsilons in the run. Since all the −1 updates are
1-scaled even in π, there must be some update in the first Iπ

P +1 updates which is not
1-scaled. Also, the lower bound in any state in π is at most Iπ

P − 1. For π′, we scale
down the Iπ

P ’th +1 update in π′′ to +ε (the solid black edge in Figure 6) and the first
1-scaled −1 update to −δ, such that the sum of all the epsilons and deltas is now 0. The
lower bounds until the Iπ

P ’th positive update (i.e., the first epsilon update) are satisfied
since they were satisfied in π and the counter value after this sequence of update will
be Iπ

P − 1 + ε. The counter values until the (only) delta updates will be satisfied since
the counter values will be between Iπ

P − 1 and Iπ
P . After the delta update, the counter

values are satisfied in π′ because they were satisfied in π, both runs reach k and π′ scales
up the −1 updates by 1 and scaled down the +1 updates to ε in this section of the run
(intuitively, reaching the same number with lower positive updates and higher negative
updates implies that the counter values must be better).
The number of negative updates in π is strictly greater than Iπ

N and has exactly Iπ
P many

positive updates. π′′ is of the form ({+1} ∪ D)∗(−1)∗. Note that π′′ does not reach k,
but k − d where d is the sum of all deltas in the run. Here, we encounter the special case
which calls for the need of ∆, that is there might be no negative update in π before a
positive update, in which case, the Iπ

P ’th +1 update may not be able to be scaled down
in π′ since the lower bound after the Iπ

P ’th +1 update might be Iπ
P . If this is the case, π′

1-scales all of the +1 updates and the last Iπ
N − 1 many −1 updates. The remaining −1

updates are scaled to some small values in D (the dotted blue edge in Figure 6) except
the last one, which is scaled to ∆ (the brown edge in Figure 6). Thus, the sum is still k

since all of the negative updates which are not 1-scaled add up to exactly −1. The lower
bounds in this case are satisfied since they were satisfied in π and all of the +1 updates
are scaled to 1 and the negative updates are postponed as much as possible.
If this is not the case, that is the lower bound after the Iπ

P ’th positive update is not Iπ
P ,

it follows that none of the lower bounds along π are Iπ
P . In π′, we 1-scale the first Iπ

P

many +1 updates and the last Iπ
N − 1 many −1 updates, scale down the Iπ

P ’th +1 update
to a value in E (the solid black edge or the solid blue edge in Figure 6) in π′, and scale
the −1 updates which were not 1-scaled to small values in D (the zigzag line and the
green edge in Figure 6). The lower bounds are satisfied until the (only) +ε since they
were satisfied in π, all +1 updates are scaled to 1 and all negative updates are scaled
down to small values in D. The lower bound immediately after the +ε update is satisfied
since the counter value at this point is between Iπ

P − 1 and Iπ
P . The lower bounds in the

remainder are satisfied since π and π′ both reach k, there are no positive updates and π′

postpones the negative updates as much as possible.
For the remaining cases, we assume the number of positive and negative updates in π

is strictly greater than Iπ
P and Iπ

N respectively. We also fix π′ = π′′ for these cases and
hence omit the use of π′′.
After the 1-scaling, the first non-zero update remaining is a +1 and the last one is a
−1 (i.e., the first scaled down update in π′ is a +ε and the last one is a −δ). Since the
first nonzero update in the run apart from the 1-scaled ones is a +1 and this update
must occur after all the 1-scaled +1 updates (because we scale the first Iπ

P consecutive
updates), this implies the absence of a negative update until the Iπ

P ’th +1 update. The
bounds in π′ until this point are satisfied because they were satisfied in π, π′ scales all the

CONCUR 2024

34:20 On Continuous Pushdown VASS in One Dimension

+1 updates to 1 and the remaining updates are +0. The counter value at this point is Iπ
P .

The first +1 update after this sequence is scaled down to some ε ∈ E (denoted by the first
black edge in Figure 6). Similarly, since the last nonzero update apart from the 1-scaled
ones is a 11 and this update must occur before all the 1-scaled +1 updates (because we
scale the last Iπ

N consecutive updates), this implies the absence of a negative update after
the Iπ

N ’th −1 update from the end. The last −1 update after this sequence is scaled down
to some δ ∈ D (denoted by the green edge in Figure 6). The lower bounds until the first
−1 update which was 1-scaled are satisfied since the counter values always stayed above
Iπ

P . The lower bounds in the final section of the string of −1 1-scaled updates are also
satisfied since they were satisfied in π, π′ delayed the −1 updates as much as possible
and they both reach the same value k.
After the 1-scaling, the first non-zero update remaining is a −1 and the last one is a +1
(i.e., the first scaled down update in π′ is a +δ and the last one is a −ε). The lower bounds
in the first section with the Iπ

P many 1-scaled +1 updates (and possibly some −δ updates)
are satisfied because they were satisfied in π and π′ scales the +1 updates to 1 and the
−1 updates to −δ whose sum never crosses −1 (as depicted by the dashed blue lines in
Figure 6). The bounds are satisfied up to the first +ε update by the same argument,
even if there are more −δ updates after the Iπ

P ’th 1-scaled +1 update. Similarly, the
bounds after the last −δ update are satisfied since they are satisfied in π, both π and π′

reach k, and all −1 updates are scaled up by 1 and all +1 updates are scaled down to
+ε. Now, we only need to show that the bounds were satisfied from the first +ε to the
final −δ. If there was exactly one +ε (the solid red edge labelled ε in Figure 6), then the
bounds are satisfied since it must occur after the last −δ update. Else, the first +ε (the
solid blue edge in Figure 6) update takes the counter value over Iπ

P , it stays there until
the final −δ and the counter values are satisfied.
For the remaining 2 cases, namely, the first and last scaled down updates in π′ are both
in +E or −D, the proof follows from a permutation of the arguments in the previous two
cases.

Now that we have shown that the bounds are satisfied in π′, one can easily check that the
rest of the properties are satisfied by π′ by construction.

Next, if the second case holds, that is there exists a 1-scaled −1 update before a 1-
scaled +1 update, π′′ does not satisfy Item 4 of the normal form. The run π′′ is of the
form ({+1} ∪ −D)∗ · −1 · {+1, −1}∗ · +1 · ({−1} ∪ +E)∗. π′′ does not necessarily satisfy
the lower bounds, nor reach k, but it does have the property that Iπ′′

P − Iπ′′

N = k. We
construct π′ using π′′ and show that the lower bounds hold sequentially. First, the bounds
along the ({+1} ∪ −D)∗ section of π′′ are satisfied since they were satisfied in π, all
+1 updates are 1-scaled and all −1 updates are scaled down to values in D. Similarly,
the bounds in the ({−1} ∪ +E)∗ of π′′ are satisfied. These sections are the same for
π′. We scale down the last 1-scaled +1 and the first 1-scaled −1 update in π′′ to a +ε

and −δ respectively. Thus, these two updates are “absorbed” into the ({−1} ∪ +E)∗

and ({+1} ∪ −D)∗ sections of the run respectively. Call this new run π′′
1 . This run also

has the property that the +1 updates are concentrated on the left, the −1 updates are
concentrated on the right, and I

π′′
1

P − I
π′′

1
N = k (since I

π′′
1

P = Iπ′′

P − 1 and I
π′′

1
N = Iπ′′

N − 1).
If π′′

1 is of the form ({+1} ∪ −D)∗(−D ∪ +E)∗({−1} ∪ +E)∗, construct a k-reaching run
in DNF as in case 1, but with π′′

1 as input instead of π. Otherwise, π′′
1 is also of the form

({+1}∪−D)∗ ·−1 · {+1, −1}∗ ·+1 · ({−1}∪+E)∗, but the size of the {+1, −1}∗ section of the
run will be strictly smaller than that of π′′, and we make π′′

2 by absorbing the first 1-scaled
−1 and the last 1-scaled +1 update. Continue this until a run where the first 1-scaled −1
update occurs after the last 1-scaled +1 update. ◀

Nominal Tree Automata with Name Allocation
Simon Prucker #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Lutz Schröder #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
Data trees serve as an abstraction of structured data, such as XML documents. A number of
specification formalisms for languages of data trees have been developed, many of them adhering
to the paradigm of register automata, which is based on storing data values encountered on the
tree in registers for subsequent comparison with further data values. Already on word languages,
the expressiveness of such automata models typically increases with the power of control (e.g.
deterministic, non-deterministic, alternating). Language inclusion is typically undecidable for non-
deterministic or alternating models unless the number of registers is radically restricted, and even
then often remains non-elementary. We present an automaton model for data trees that retains a
reasonable level of expressiveness, in particular allows non-determinism and any number of registers,
while admitting language inclusion checking in elementary complexity, in fact in parametrized
exponential time. We phrase the description of our automaton model in the language of nominal
sets, building on the recently introduced paradigm of explicit name allocation in nominal automata.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Data languages, tree automata, nominal automata, inclusion checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.35

Related Version Full Version: https://arxiv.org/abs/2405.14272 [32]

Funding Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -–
Projektnummer 517924115.

1 Introduction

Letters from infinite alphabets generally serve as an abstraction of data values in formalisms
for the specification and verification of structured data such as data words or data trees
(e.g. [29]). They have variously been used to represent data values in XML documents [29],
object identities [14], parameters of method calls [17], or nonces in cryptographic protocols [24].
There are, by now, quite a number of automata models for data languages, including register
automata [20], data walking automata [27], and data automata [3]. A typical phenomenon
in such models is that expressiveness increases strictly with the power of control (ranging
from deterministic to alternating models). In such models, the key reasoning problem
of inclusion checking tends to be either undecidable or computationally very hard unless
stringent restrictions are imposed on either the power of control or on key parameters such
as the number of registers. For instance, inclusion checking of nondeterministic register
automata is undecidable unless one restricts either to unambiguous automata [28, 7] or to
automata with at most two registers [20] (no complexity bound being given in the latter case);
inclusion checking for alternating register automata is undecidable unless one restricts to only
one register, and even then fails to be primitive recursive [11]; the inclusion problem of data
walking automata is decidable but at least as hard as Petri net reachability [8], which by recent
results is Ackermann-complete [25, 10, 26]; non-emptiness of data automata [3] is decidable
but, again, at least as hard as Petri net reachability; and emptiness of variable automata [15]
is undecidable unless one restricts to the (less expressive) deterministic fragment.

© Simon Prucker and Lutz Schröder;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simon.prucker@fau.de
https://orcid.org/0009-0000-2317-5565
mailto:lutz.schroeder@fau.de
https://orcid.org/0000-0002-3146-5906
https://doi.org/10.4230/LIPIcs.CONCUR.2024.35
https://arxiv.org/abs/2405.14272
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Nominal Tree Automata with Name Allocation

Register-based automata models are often essentially equivalent to automata models in
nominal sets [31]; for instance, register automata with nondeterministic reassignment [22] are
equivalent to nondeterministic orbit-finite automata [4]. In the nominal setting, one way to
ameliorate the mentioned degree of computational hardness while retaining a reasonable level
of expressiveness is provided by the paradigm of explicit name allocation in nominal automata,
which first appeared in regular nondeterministic nominal automata (RNNA) [34] and has
subsequently been used in Büchi RNNA [40] and in a linear-time nominal µ-calculus [16].
In this paradigm, notions of freshness are based on α-equivalence, i.e. renaming of bound
names as in λ-calculus, which blocks renaming of bound names into names that have free
occurrences later in the word; in terms of the equivalent register-based setting, this amounts
to a lossiness condition saying that at every point, register contents may nondeterministically
be erased (thus freeing the register). At the same time, name-allocating models impose finite
branching. Inclusion checking in these models is typically elementary, and in fact has low
parametrized complexities with the parameter being the degree, which in the register-based
setting corresponds to the number of registers.

Our present contribution is a nominal non-deterministic top-down tree automaton model
that follows the name allocation paradigm. As our main result, we show that our model of
regular nominal tree automata (RNTA) admits inclusion checking in doubly exponential time,
more precisely in parametrized singly exponential time with the degree as the parameter (recall
that the problem is already ExpTime-complete for finite-alphabet non-deterministic top-
down tree automata). We thus obtain an efficiently decidable formalism for the specification
data words that admits full non-determinism and unboundedly many registers.

Omitted proofs can be found in the full version [32].

Related Work. We have already mentioned work on register word automata. Kaminski
and Tan [21] introduce top-down and bottom-up register tree automata with or without non-
deterministic reassignment; computational hardness of inclusion and universality is inherited
from register word automata (while membership and emptiness are decidable in elementary
complexity NP and ExpTime, respectively [36]). Without non-deterministic reassignment,
the top-down model and the bottom-up model have incomparable expressiveness. Our model
of regular nominal tree automata (RNTA) relates, along the usual correspondence [4], to
non-deterministic top-down register tree automata without non-deterministic reassignment.
Van Heerdt et al. [41] treat bottom-up nominal tree automata with name allocation in a
general algebraic setting, describing minimization and determinization constructions (without
considering inclusion checking; determinization produces orbit-infinite automata). Since the
finite-branching condition for the bottom-up variant differs from top-down finite branching
as imposed in RNTAs, we expect similar incomparability as in the register-based setting; we
leave the investigation of this point to future work. A register automata model for data trees
with a different navigation pattern has been introduced by Jurdziński and Lazić [18, 19] and
extended by Figueira [12]; in this model, the automaton moves downwards or rightwards
on the tree instead of passing copies of itself to child nodes. The emptiness problem of the
alternating model is decidable but not primitive recursive when the number of registers
is restricted to 1; expressiveness is incomparable to Kaminski and Tan’s model [19]. One
formalism for data trees that does allow inclusion checking in elementary complexity is the
logic FO2(+1, ∼) [5], whose satisfiablity problem is in 3NexpTime. Register tree automata
have been extended to cover an ordering on the data values [37, 38].

S. Prucker and L. Schröder 35:3

2 Preliminaries

We assume basic familiarity with category theory (e.g. [1]). We briefly recall some background
on nominal sets (see [31] for a textbook treatment), as well as on tree automata (e.g. [9]),
register automata [20], and nominal automata [4].

Group Actions and Nominal sets. We fix a countably infinite set A of names. Throughout,
we let G denote the group of finite permutations on A, which is generated by the permutations
(ab) that swap two names a, b ∈ A; we write id for the identity permutation, and (−) · (−)
for the group operation, i.e. applicative-order composition of permutations. A G-set consists
of a set X and a left action (−) · (−) : G × X → X of G on X (subject to id · x = x and
π ·(π′ ·x) = (π ·π′)·x). Given G-sets X, Y , a map f : X → Y is equivariant if f(π ·x) = π ·f(x)
for all x, y, and a subset S ⊆ X is equivariant if π · s ∈ S for all π ∈ G and s ∈ S, i.e. S is
closed under the group action. The orbit of x ∈ X is G · x = {π · x | π ∈ G}. The orbits form
a disjoint decomposition of X; the G-set X is orbit-finite if it has only finitely many orbits.

We write fix(x) = {π ∈ G | π(x) = x} for x ∈ X, and Fix(A) =
⋂

x∈A fix(x) for A ⊆ X.
The set A itself is a G-set in a canonical manner. A set S ⊆ A is a support of an element
x ∈ X if

Fix(S) ⊆ fix(x),

that is, if every permutation that fixes all names in S also fixes x, which we understand as x

depending only on the names in S.
Then, a G-set X is a nominal set if every element of X has a finite support. It follows

that every x ∈ X has a least finite support supp(x), also just called the support of x. A
name a ∈ A is fresh for x if a /∈ supp(x), in which case we write a # x. We write Nom for
the category of nominal sets and equivariant maps. Examples of nominal sets include A
itself (with supp(a) = {a} for a ∈ A); the product X × Y of nominal sets X, Y (with
supp(x, y) = supp(x)∪ supp(y)); and the finitely supported powerset PfsX of a nominal set X,
which consists of the subsets of X that have finite support under the pointwise action of G

on the full powerset. A set A ⊆ X is uniformly finitely supported if
⋃

x∈A supp(x) is finite; we
write PufsX = {A ⊆ X | A uniformly finitely supported} for the uniformly finitely supported
powerset of X. If X is orbit-finite, then the uniformly finitely supported subsets of X are
precisely the finite subsets.

An important role in the technical development is played by the abstraction functor
[A](−) on Nom. For a nominal set X, [A]X is defined as the quotient A× X/ ∼ of A× X by
the equivalence relation ∼ defined by

(a, x) ∼ (b, y) iff (ca) · x = (cb) · y for c # (a, x, b, y).

Equivalently, (a, x) ∼ (b, y) iff either (a, x) = (b, y) or y = (ab) · x and b # x. We write ⟨a⟩x
for the equivalence class of (a, x) under ∼. Thus, ⟨a⟩x may be read as arising from x by
binding the name a. The equivalence ∼ then captures α-equivalent renaming of the bound
name a; in particular, note that by the alternative description of ∼, renaming a into b in
⟨a⟩x is blocked when b ∈ supp(x).

Nominal automata and register automata. The classical notion of nondeterministic finite
automaton can be transferred canonically to the category of nominal sets, where finiteness
corresponds to orbit-finiteness; this gives rise to the notion of nondeterministic orbite-finite
automaton (NOFA) [4]. For simplicity, we use the set A of names as the alphabet (more

CONCUR 2024

35:4 Nominal Tree Automata with Name Allocation

generally, one can work with any orbit-finite alphabet). Then, a NOFA consists of an
orbit-finite set Q of states; an equivariant transition relation ∆ ⊆ Q × A × Q; an equivariant
initial state q0 (or more generally a set of initial states); and an equivariant set F ⊆ Q of
final states. NOFAs accept finite words over A, with the notions of run and acceptance
defined exactly as in the classical case.

NOFAs are equivalent to a flavour of nondeterministic register automata with nondetermin-
istic reassignment, roughly described as follows (see [4] for details). A register automaton
has a finite set Q of control states; a fixed finite number of registers, which at any point in
time can be either empty or contain a letter (i.e. a name from A); an initial control state q0;
a set F of final control states; and a transition relation δ consisting of triples (q, ϕ, q′) where
q, q′ ∈ Q and where ϕ is a boolean combination of equality constraints concerning register
contents before and after the transition and the current input letter. For simplicity, we
require that all registers are initially empty. A configuration of the automaton consists of a
control state and an assignment of letters to some of the registers (the others are empty).
A run of the automaton is a sequence of configurations starting in the initial configuration
(consisting of q0 and all registers empty) such that every next configuration is justified by
some transition (q, ϕ, q′) in the sense that the boolean combination ϕ of equality constraints
is satisfied by the register contents in the configurations before and after the transition and
by the current input letter. A run is accepting if it ends in a configuration over a final control
state. The language of the automaton is the set of accepted words. What this means is
that the automaton can, in each transition step, perform any combination of the following
actions as specified by the transition constraint ϕ: store the current letter in a register;
copy content among registers; delete content from a register; nondeterministically store any
name in a register (nondeterministic reassigment). These actions are conditioned on tests
for equality or inequality among the registers and the input letter. In the correspondence
between NOFAs and register automata, a configuration c of a register automaton becomes a
state in the corresponding NOFA, whose support contains precisely the letters stored in the
registers in c.

Both nondeterminism and nondeterministic reassignment strictly increase expressive
power. For instance, the language L2 “some letter occurs twice” can be accepted by a
nondeterministic register automaton but not by a deterministic one; and the language “the
last letter has not been seen before” can only be accepted using nondeterministic reassignment.
Also, the nondeterministic model is not closed under complement: The complement of the
above-mentioned language L2 is the language “all letters are distinct”, which cannot be
accepted by a nondeterministic register automaton.

Tree automata. Throughout, we fix a finite ranked alphabet (or signature) Σ, consisting
of finitely many (function) symbols, each equipped with an assigned finite arity; we write
f/n ∈ Σ to indicate that f is a symbol of arity n in Σ. We assume that Σ contains at
least one constant, i.e. a symbol of arity 0. The set T (Σ) of (ground) Σ-Terms is defined
inductively by stipulating that whenever f/n ∈ Σ and t1, . . . , tn ∈ T (Σ), then f(t1, . . . , tn)
in Σ. Terms are regarded as a representation of trees, with each node of the tree labelled
with a symbol from Σ whose arity determines the number of child nodes.

A (classical, finite-alphabet) nondeterministic top-down tree automaton (NFTA) (e.g. [9])
over Σ is a tuple A = (Q, q0, ∆) (we elide the fixed signature Σ) where Q is a finite set of
states, q0 ∈ Q is the initial state, and ∆ is a set of rewrite rules or transitions of the form

q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn))

S. Prucker and L. Schröder 35:5

where f/n ∈ Σ, q, q1, . . . , qn ∈ Q, and the xi are variables; these rules thus manipulate
extended terms containing automata states as unary symbols (with at most one occurrence
of such a symbol per tree branch). Much as usual (e.g. [2, 9]), such rewrite rules are applied
within a surrounding context, and with the variables xi substituted with ground terms; we
continue to write → for the arising rewrite relation on extended terms. When f/n ∈ Σ
has arity n > 1, then a rewrite rule of the above shape transforms a single automaton
state q into several automaton states q1, . . . , qn. One may view this phenomenon as the
automaton creating copies of itself, which continue to operate independently on the children
of the present node. The NFTA A accepts a term t if q0(t) →∗ t. The language L(A) is
the set of terms (trees) accepted by A. NFTAs have the same expressiveness as bottom-up
tree automata, in which the rewrite rules propagate automata states from the leaves to the
root. Deterministic top-down tree automata, on the other hand, are strictly less expressive
than NFTA. In the present work, our focus is on nondeterministic top-down models. The
inclusion problem for NFTA, i.e. to decide whether L(A) ⊆ L(B) for given NFTAs A, B, is
ExpTime-complete [35].

3 A Nominal View on Data Tree Languages

We proceed to introduce the relevant notion of nominal tree language, viewed as representing
a data tree language. Trees are represented as a form of algebraic terms, and carry data values
on their nodes. Throughout the technical development, we fix a finite algebraic signature Σ,
i.e. a finite set of operation symbols f, g, . . . , each equipped with a finite arity. We write
f/n ∈ Σ to indicate that f is an operation symbol of arity n in Σ.

▶ Definition 3.1 (Terms). We define the set TA(Σ) of nominal Σ-terms, or just (Σ-)terms, t

by the grammar

t ::= a.f(t1, . . . , tn) | νa.f(t1, . . . , tn) (t1, . . . , tn ∈ TA(Σ), f/n ∈ Σ, a ∈ A) (3.1)

For uniformity of notation, we occasionally write A for the set A∪ {νa | a ∈ A}; in particular,
all terms then have the form γ.f(t1, . . . , tn) with γ ∈ A.

▶ Remark 3.2. Like in the finite-alphabet case as recalled in Section 2, the base case of the
above definition is the one where f is a constant (i.e. has arity 0). The case of words is
recovered by taking Σ to consist of unary operations and an end-of-word constant. When
viewing terms as trees, we see the operations of Σ as spanning the tree structure, with every
node being labelled with an element of A. We understand terms of the form a.f(t1, . . . , tn) as
being labelled with a free name a, and terms of the form νa.f(t1, . . . , tn) as allocating a new
name a with scope f(t1, . . . , tn). In the latter case, the name a is bound by the ν-operator, in
the same style as in the π-calculus or in nominal Kleene algebra [13], with formal definitions
to be provided presently. (In work on nominal word automata with name allocation [34], the
notation a has been used in place of νa.)

▶ Remark 3.3. For brevity of presentation, we have opted for a setup where every node
either binds a name or carries a free name. A generalization that allows nodes not labelled
with any name is easily encoded into the present setup by means of a fixed free dummy
name that appears in place of the absent name. We thus do use this generalization in the
examples. In particular, it allows for trees not containing any name, while terms according
to Definition 3.1 always contain at least one name.

The notion of free name informally used above is formally defined in the expected way:

CONCUR 2024

35:6 Nominal Tree Automata with Name Allocation

▶ Definition 3.4. The set FN(t) of free names of a term t is defined recursively by the clauses

FN(a.f(t1, . . . , tn)) = FN(t1) ∪ · · · ∪ FN(tn) ∪ {a}
FN(νa.f(t1, . . . , tn)) = (FN(t1) ∪ · · · ∪ FN(tn)) \ {a}.

Contrastingly, we refer to the name a in a term νa.f(t1, . . . , tn) as a bound name. A term t is
closed if FN(t) = ∅. The sets A and TA(Σ) become nominal sets under the expected actions
of G, defined on A by π · a = π(a) and π · νa = νπ(a), and on TA(Σ) recursively by

π · (δ.f(t1, . . . , tn)) = π(δ).f(π · t1, . . . , π · tn).

From this view, we obtain the expected notion of α-equivalence of terms: α-equivalence ≡α

is the least congruence on terms such that νa.f(t1, . . . , tn) ≡α νb.f(t′
1, . . . , t′

n) whenever
⟨a⟩(t1, . . . , tn) = ⟨b⟩(t′

1, . . . , t′
n), which means that in νa.f(t1, . . . , tn), a can be renamed

into b provided that b does not occur in t1, . . . , tn (by temporary renaming of inner bound
names, one can then also rename a into b if b is not free in t1, . . . , tn). We write [t]α for
the equivalence class of a term t under α-equivalence. A term t is clean if all its bound
names are mutually distinct and not free in t, and non-shadowing if on every branch of t, all
bound names are mutually distinct and not free in t (in particular, no bound name is ever
shadowed in t). Clearly, every term is α-equivalent to a clean one (hence, a forteriori, to a
non-shadowing one).

▶ Example 3.5. Under the extension where names are made optional (Remark 3.3), we can
represent λ-terms as terms for the signature {app/2, λ/1, var/0}. For instance, the λ-term
λa.aa is represented as the Σ-term νa.λ(app(a.var, a.var)). (Of course, there are Σ-terms not
corresponding to any λ-term, such as νa.var; in our automaton model, it will be no problem
to exclude such terms by just letting them get stuck.) Similarly, we can represent π-calculus
expressions as terms for a suitable signature; we will return to this in Example 4.7. The
notion of α-equivalence defined above is exactly the standard one in these examples.

As indicated in the introduction, the notion of α-equivalence determines how we interpret
allocating a new name as “reading a name” in a paradigm where we see bound names as
placeholders for arbitrary free names. For this purpose, we distinguish between literal tree
languages, which consist of terms and hence are subsets of TA(Σ), and alphatic tree languages,
which consist of α-equivalence classes of terms and hence are subsets of TA(Σ) / ≡α. (The
latter generalize the bar languages used in work on nominal word automata [34] but in the
absence of the bar notation a, that term seems no longer appropriate.) In both cases, we
say that a language is closed if it consists of closed (equivalence classes of) words only. For
brevity, we restrict the main line of the technical treatment to closed languages. The notion
of bound names representing free names is captured by the function dν, which removes all
occurrences of ν from a term, and is recursively defined by

dν(νa.f(t1, . . . , tn)) = dν(a.f(t1, . . . , tn)) = a.f(dν(t1), . . . , dν(tn)).

Thus, dν returns terms without name allocation νa. We refer to such terms as data trees;
they correspond essentially to the notion of data tree found in the literature (which is often
restricted to binary trees for simplicity, e.g. [21, 18]), with A serving as the infinite alphabet
of data values. We capture notions of freshness by imposing different disciplines on variable
management in α-renaming and subsequently applying dν. Specifically, a global freshness
semantics, a branchwise freshness semantics, and a local freshness semantics for alphatic
tree languages L are embodied in the operators N, B, and D, respectively, defined by

S. Prucker and L. Schröder 35:7

N(L) = {dν(t) | t clean, [t]α ∈ L} B(L) = {dν(t) | t non-shadowing, [t]α ∈ L}
D(L) = {dν(t) | [t]α ∈ L}.

That is, N and B insist on clean or non-shadowing α-renaming, respectively, while D allows
unrestricted α-renaming. The languages N(L), B(L), and D(L) are what we term data tree
languages, i.e. languages consisting only of data trees. This makes one additional semantics
in comparison to the case of words [34] where, of course, N and B coincide.

▶ Example 3.6. Consider Σ = {f/2, k/0} and the term

t = νa.f(νb.f(a.k, b.k), νb.f(b.k, b.k)).

Then

N({t}) = {a.f(b.f(a.k, b.k), c.f(c.k, c.k)) | a, b, c ∈ A, a ̸= b, a ̸= c, b ̸= c}
B({t}) = {a.f(b.f(a.k, b.k), c.f(c.k, c.k)) | a, b, c ∈ A, a ̸= b, a ̸= c}
D({t}) = {a.f(b.f(a.k, b.k), c.f(c.k, c.k)) | a, b, c ∈ A, a ̸= b}.

Thus, N instantiates bound names by free names that are fresh w.r.t. the entire tree, while B

only enforces freshness w.r.t. the current branch, and allows siblings to instantiate bound
names by the same free name (i.e. allows b = c in B({t}). Finally, D, enforces freshness only
where α-renaming is blocked. In the case of t, renaming b into a is blocked in the left-hand
subterm νb.f(a.k, b.k) because of the free occurrence of a, while there is no such occurrence
in the right-hand subterm νb.f(b.k, b.k) so that b can be renamed into a in that subterm; this
is why D({t}) requires a ̸= b but not a ̸= c. Thus, N and B are variants of global freshness
as found, for instance, in session automata [6], while D is indeed a notion of local freshness:
We will see later (Lemma 4.2) that the presence of the free name a in νb.f(a.k, b.k) implies
that at the time of reading νb in a run of a regular nominal tree automaton, the name a is
still kept in memory, so D essentially enforces freshness w.r.t. currently stored names in the
spirit of register automata models. As indicated in the introduction, we trade some of the
expressiveness of register automata models for computational tractability. In our example,
this is apparent in the right-hand subterm νb.f(b.k, b.k), in which freshness of b w.r.t. a

cannot be enforced under D because there is no free occurrence of a; as a slogan, D enforces
freshness w.r.t. stored names only if these are still expected to be seen again. In work on
nominal word automata [34], it is shown that this phenomenon relates to a lossiness property
stating that register contents may be non-deterministically lost at any time.

It turns out that both variants of global freshness remain essentially equivalent to the original
alphatic language, in the sense that they do not affect language inclusion:

▶ Lemma 3.7. Both N and B preserve and reflect language inclusion: For alphatic languages
L1, L2, we have L1 ⊆ L2 iff N(L1) ⊆ N(L2) iff B(L1) ⊆ B(L2).

That is, for purposes of checking language inclusion, it does not matter whether we consider
alphatic languages, their global freshness semantics, or their branchwise freshness semantics.

CONCUR 2024

35:8 Nominal Tree Automata with Name Allocation

4 Regular Nominal Tree Automata

We cast our model of regular nominal tree automata (RNTAs) as an extension of regular
nondeterministic nominal automata (RNNAs) [34], which differ from NOFAs (Section 2) in
essentially two ways: Branching is restricted to be finite (in NOFAs, the set of successors
of a state only needs to be finitely supported, as implied by equivariance of the transition
relation); this is partially made up for by including bound transitions which read bound
names. RNTAs natively accept alphatic tree languages, which as discussed in Section 3
may be seen as representing languages of data trees in a number of ways differing w.r.t.
notions of freshness: Under global or branchwise freshness semantcs, RNTAs may be seen as
a generalization of session automata [6], while under local freshness semantics, they will be
seen to correspond to a subclass of nondeterministic register tree automata [21] characterized
by a lossiness condition (Remark 5.6). As indicated in the introduction and in Example 3.6,
we thus incur a decrease in expressiveness in comparison to the register model, which however
buys elementary complexity of inclusion checking.

▶ Definition 4.1 (Regular nominal tree automata). A regular nominal tree automaton (RNTA)
over our fixed signature Σ is a tuple

A = (Q, ∆, q0)

where Q is a orbit-finite nominal set of states, q0 ∈ Q is the initial state and ∆ is an
equivariant set of rewrite rules or transitions of the form

q(γ.f(x1, . . . , xn)) → γ.f(q1(x1), . . . , qn(xn))

where q1, . . . , qn ∈ Q, γ ∈ A, f/n ∈ Σ, and the xi are variables. When no confu-
sion is likely, we just write q(γ.f(x1, . . . , xn)) → γ.f(q1(x1), . . . , qn(xn)) to indicate that
(q(γ.f(x1, . . . , xn)) → γ.f(q1(x1), . . . , qn(xn))) ∈ ∆. We impose two properties on ∆:

α-invariance: For q, q1, . . . , qn, q′
1, . . . , q′

n ∈ Q, if ⟨a⟩(q1, . . . , qn) = ⟨b⟩(q′
1. . . . , q′

n), then

q(νa.f(x1, . . . , xn)) → νa.f(q1(x1), . . . , qn(xn)) implies
q(νb.f(x1, . . . , xn)) → νb.f(q′

1(x1), . . . , q′
n(xn)).

Finite branching up to α-equivalence: For all q ∈ Q and f/n ∈ Σ, the sets
{(a, (q1, . . . , qn)) | q(a.f(x1, . . . , xn)) → a.f(q1(x1), . . . , qn(xn))} and {⟨a⟩(q1, . . . , qn) |
q(νa.f(x1, . . . , xn)) → νa.f(q1(x1), . . . , qn(xn))} are finite.

Like in the classical case (Section 2), the rewrite rules in ∆ may be applied within a
surrounding context and with variables substituted by (ground) terms. A state q ∈ Q accepts
a term t if there exists a sequence of applications of the rewrite rules in ∆, called a run, that
starts from q(t) and ends in t, symbolized as q(t) ∗−→ t. We define the literal tree language
L(q) and the alphatic tree language Lα(q) accepted by q by

L(q) = {t ∈ TA(Σ) | q accepts t} Lα(q) = {[t]α | t ∈ L(q)}

We put L(A) = L(q0) and Lα(A) = Lα(q0), i.e. the RNTA A accepts t if its initial state
accepts t. Moreover, A accepts a data tree s under global, branchwise, or local freshness
semantics if s ∈ N(Lα(A)), s ∈ B(Lα(A)), or s ∈ D(Lα(A)), respectively (cf. Section 3).

The degree of A is the maximal cardinality of supports of states in A.

We think of the support of an RNTA state as consisting of finitely many stored names. In
examples, we typically write states in the form

q(a1, . . . , an)

S. Prucker and L. Schröder 35:9

where q indicates the orbit and a1, . . . , an are stored names. Thus, the degree of an RNTA
corresponds morally to the number of registers. As an important consequence of finite
branching, stored names can come about only by either inheriting them from a predecessor
state or by reading (i.e. binding) them:

▶ Lemma 4.2. In an RNTA, we have the following properties:
1. If q(a.f(x1, . . . , xn)) → a.f(q1(x1), . . . , qn(xn)), then supp(qi) ∪ {a} ⊆ supp(q) for i =

1, . . . , n.
2. If q(νa.f(x1, . . . , xn)) → νa.f(q1(x1), . . . , qn(xn)), then supp(qi) ⊆ supp(q) ∪ {a} for

i = 1, . . . , n.

▶ Corollary 4.3. If state q accepts term t, then FN(t) ⊆ supp(q).

▶ Remark 4.4. For brevity, we restrict the further technical treatment to the case where the
initial state has empty support, which by Corollary 4.3 implies that the accepted language
is closed. We also assume this without further mention in the examples, with the possible
exception of the dummy name needed in examples with unlabelled nodes (cf. Remark 3.3),
in which the dummy name is assumed to be in the support of all states.

▶ Example 4.5. Let Σ = {f/2, k/0} (so Σ-terms are just A-labelled binary trees).
1. The universal data tree language, i.e. the language consisting of all (non-empty, cf.

Remark 3.3) data trees, is accepted under local freshness semantics by the RNTA with
only one state q and transitions q(νa.f(x, y)) → νa.f(q(x), q(y)), q(νa.k) → νa.k. On the
other hand, it is easy to see that the universal data tree language cannot be accepted by
an RNTA under global or branchwise freshness semantics. Under the latter semantics,
the above RNTA accepts the language of all data trees in which all names are distinct or
in which all names found on the same branch are distinct, respectively.

2. The data tree language “the letter at the root of the tree (which moreover is not a leaf)
reappears in all leaves, but not in any other node of the tree” is accepted under local
freshness semantics by the RNTA with states q0, q1(a) (a ∈ A) and transitions

q0(νa.f(x, y)) → νa.f(q1(a)(x), q1(a)(y))
q1(a)(νb.f(x, y)) → νb.f(q1(a)(x), q1(a)(y)) q1(a)(a.k) → a.k

where we mean this and all further examples to be implicitly closed under equivariance
and α-invariance. (Regarding notation, read q1(a)(y) as “state q1(a) processing term y‘”.)

3. The data tree language “there is some letter that appears twice on the same branch”
(which, in analogy to the word case [4, 34], cannot be accepted by a deterministic register
tree automaton) is accepted under local freshness semantics by the RNTA with states
q0, q1(a), q2 (a ∈ A), transitions

q0(νa.f(x, y)) → νa.f(q0(x), q2(y)) q0(νa.f(x, y)) → νa.f(q2(x), q0(y))
q0(νa.f(x, y)) → νa.f(q1(a)(x), q2(y)) q0(νa.f(x, y)) → νa.f(q2(x), q1(a)(y))

q1(a)(νb.f(x, y)) → νb.f(q1(a)(x), q2(y)) q1(a)(νb.f(x, y)) → νb.f(q2(x), q1(a)(y))
q1(a)(a.f(x, y)) → a.f(q2(x), q2(y)),

and transitions ensuring that q2 accepts the universal data tree language as in item 1. It
is easy to see that the complement of this language, while acceptable under branchwise
freshness semantics as seen in item 1., cannot be accepted by an RNTA under local
freshness semantics.

CONCUR 2024

35:10 Nominal Tree Automata with Name Allocation

▶ Example 4.6 (Structured data). We use Σ = {!elem/2, #data/1, eof/0} to support an
XML-like syntax for structured data. We want to recognize the language of Σ-trees where
every occurrence of !elem is properly closed by eof in the subtree below it, at a leaf as far to
the left in the tree as possible under the policy that later occurrences of !elem are closed
further to the left. Occurrences of eof and !elem are matched by binding a name at !elem
and labelling the corresponding eof with this name (moreover, one unlabelled eof closes the
entire term), as in the term

νa.! elem(
νb.# data(
νc.! elem(

νd.# data(
νd.# data(
νd.# data(
c.eof))),

νb.# data(
a.eof),

eof)))

Under local freshness semantics, the data elements b in the #data fields of this term can be
any names except a, similarly for d and c. This language is accepted by the RNTA with
states q0, q1(a), q1(c) (a, c ∈ A) and transitions

q0(νa.!elem(x1, x2)) → νa.!elem(q1(a)(x1), q0(x2))
q0(νb.#data(x1)) → νb.#data(q0(x1)) q0(eof) → eof

q1(a)(νc.!elem(x1, x2)) → νc.!elem(q1(c)(x1), q1(a)(x2))
q1(a)(νd.#data(x1)) → νd.#data(q1(a)(x1)) q1(a)(a.eof) → a.eof.

Notice here that although every state stores at most one name, the automaton is able to
track an unbounded number of !elem markers as it effectively creates copies of itself when
reading an input tree.

▶ Example 4.7 (π-Calculus expressions). We use Σ = {par/2, rw/1, ch/1, 0/0}, A =
{⊥, a, b, c . . . } to represent the syntax (only!) of a small fragment of the π-calculus, with par
standing for parallel composition, and with ch and rw working in combination to represent
writing or reading on a channel. Here, we model reading and allocation of channel names
natively as name binding: a.ch communicates on an existing channel a, and νa.ch on a
newly allocated channel a. Similarly, a.rw writes a, while νa.rw reads a value a. E.g.,
νa.ch(νb.rw(x)) reads b from a newly allocated channel a, and continues with x. Let L be
the language of all Σ-terms that are parallel composites of k ≥ 1 processes that each read a
name b from a newly allocated channel a and then may, maybe repeatedly, read a new name
from b and use that name as the input channel in the next round, before terminating (0).
This language is accepted by the RNTA with states q0, q1, q2(a) (a ∈ A) and transitions

q0(par(x, y)) → par(q0(x), q0(y)) q0(νa.ch(x)) → νa.ch(q1(x))
q1(νa.rw(x)) → νa.rw(q2(a)(x)) q2(a)(a.ch(x)) → a.ch(q1(x))

q2(a)(0) → 0.

(Notice that the right hand transitions forget the channel name once the channel command
has been processed; the name is no longer needed, as every channel is used only once.)

S. Prucker and L. Schröder 35:11

▶ Remark 4.8. In the paradigm of universal coalgebra [33], RNTAs may be viewed as
coalgebras for the functor F given by

FX = Pufs(
∑

f/n ∈ Σ(A × Xn + [A]Xn)). (4.1)

5 Name Dropping

The key to the algorithmic tractability of name-allocating automata models in general [34, 40,
16] is to ensure that the literal language of an automaton is closed under α-equivalence, so
that only boundedly many names need to be considered in inclusion checking. The problem
to be overcome here is that this property does not hold in general, and needs to be enforced
in a modification of the automaton that preserves the alphatic language. Specifically, the
problem comes about by extraneous names that do not occur in the remainder of a given word
to be processed but do still occur in the relevant successor state, thus blocking the requisite
α-renaming. As a simple example, when an automaton state q is processing νa.f(t)) for
f/1 ∈ Σ and we have a matching transition q(νa.f(x)) → νa.f(q′(x)), then it may happen
that b /∈ FN(t), so that a may be α-equivalently renamed into b in νa.f(t)), but a ∈ supp(q′)
so that a cannot be α-equivalently renamed into b in νa.f(q′(x)). The solution to this is to
extend the automaton by states that come about by dropping some of the names from the
support of previous states [34]; in the example, a state q′′ that has b removed from its support
but otherwise behaves like q′ will allow for the requisite α-renaming of the transition into
νa.f(q′′(x)), and will still be able to accept the remaining term t since b /∈ FN(t). We proceed
to lay out the details of this construction, which we dub the name-dropping modification.

Following work on nominal Büchi automata [40], we first transform the automaton into
one whose state set Q forms a strong nominal set; we do not need the original definition of
strong nominal set [39] but instead use the equivalent description [30] of strong nominal sets
as being those of the form

∑
i∈I A#Xi where the Xi are finite sets and A#Xi denotes the

nominal set of total injective maps Xi → A. We generally write elements of sums like the
above as pairs (i, r), in this case consisting of i ∈ I and r ∈ A#Xi . Strong nominal sets thus
materialize the intuition that the states of a nominal automaton consist of a control state
(the index i in the above sum) and a store configuration assigning names to registers in a
duplicate-free manner.

▶ Lemma 5.1. For every RNTA A, there exists an RNTA A′ whose states form a strong
nominal set such that A and A′ accept the same literal language.

Our name-dropping modification will now come about by dropping the requirement that
each register is necessarily occupied. This amounts to working with partial injective maps
r : Xi ⇀ A, with undefinedness (denoted as r(x) = ⊥) indicating that a register is currently
empty. We first introduce notation for restricting such partial maps by dropping some of the
names:

▶ Definition 5.2. Let X be a finite set. We write A$X for the set of partial injective
mas X ⇀ A. Let r ∈ A$X , and let N ⊆ supp(r) = r[X]. Then the partial injective map
r|N ∈ A$X defined by r|N (x) = r(x) if r(x) ∈ N and r|N (x) = ⊥ otherwise is the restriction
of r to N (and r is an extension of r|N).

▶ Definition 5.3 (Name-dropping modification). Let A = (Q, ∆, q0) be an RNTA such that
Q =

∑
i∈I A#Xi is a strong nominal set. For q = (i, r) ∈ Q, we write q|N = (i, r|N). Then

the name-dropping modification of A is the RNTA A⊥ = (Q⊥, ∆⊥, q0) where

CONCUR 2024

35:12 Nominal Tree Automata with Name Allocation

1. Q⊥ =
∑

i∈I A$Xi ;
2. for all q, q′

1, . . . , q′
n ∈ Q, N ⊆ supp(q), Ni ⊆ supp(q′

i) ∩ N (i = 1, . . . , n), and a ∈ N ,
whenever q(a.f(x1, . . . , xn) → a.f(q′

1(x1), . . . , q′
n(xn)) in A„ then q|N (a.f(x1, . . . , xn)) →

a.f(q′
1|N1(x1), . . . , q′

n|Nn(xn)) in A⊥; and
3. for all q, q′

1, . . . , q′
n ∈ Q, N ⊆ supp(q), a ∈ A, and Ni ⊆ supp(q′

i)∩(N ∪{a}) (i = 1, . . . , n),
whenever q(νa.f(x1, . . . , xn)) → νa.f(q′

1(x1), . . . , q′
n(xn)) in A and ⟨a⟩q′

i|Ni = ⟨b⟩q′′
i ,

i = 1, . . . , n, then q|N (νb.f(x1, . . . , xn)) → νb.f(q′′
1 (x1), . . . , q′′

n(xn)) in A⊥.
Notice that clauses defining the transition relation on A⊥ are only implications: A⊥ inherits
transitions from A as long as these are consistent with Corollary 4.3, and bound transitions
in A⊥ are subsequently closed under α-invariance. The arising transitions are characterized
as follows.

▶ Lemma 5.4. Let A = (Q, ∆, i) be an RNTA with Q strong, and let A⊥ = (Q⊥, ∆⊥, i) be
its name-dropping modification.
1. If q|N (a.f(x1, . . . , xn)) → a.f(q1(xi), . . . , qn(xn)) in A⊥ for some q, q1, . . . , qn ∈ Q and

N ⊆ supp(q), then each qi has the form qi = q′
i|Ni

for some q′
i ∈ Q, Ni ⊆ supp(q) ∩ N

such that q(a.f(x1, . . . , xn)) → a.f(q′
1(x1), . . . , q′

n(xn)) in A.
2. If q|N (νa.f(x1, . . . , xn)) → νa.f(q1(xi), . . . , qn(xn)) in A⊥ for some q, q1, . . . , qn ∈ Q

and N ⊆ supp(q), then for each qi there is q′
i and Ni ⊆ supp(q′

i) ∩ (N ∪ {b}) such that
q(νa.f(x1, . . . , xn)) → νb.f(q′

1(xi), . . . , q′
n(xn)) in A and ⟨b⟩q′

i|Ni
= ⟨a⟩qi.

In both claims, the given conditions are, by definition, also sufficient; the key point of the
lemma is that all transitions of a given state q|N come from transitions of q even when one
also has q|N = q′|N for a different q′.

The degree of the name-dropping modification remains the same because the new states
arise by deleting names from the support of previous states; the number of orbits increases
only by a factor 2d, where d is the degree, because there are only 2d ways to delete names
from a support of size d. Moreover, one can show that as per the intention of the construction,
the name dropping modification closes an RNTA under α-equivalence; summing up:

▶ Theorem 5.5. For each RNTA A, the name-dropping modification A⊥ of A is an RNTA
that accepts the closure of the literal tree language of A under α-equivalence, and hence the
same alphatic tree language as A. Moreover, A⊥ has the same degree d as A, and the number
of orbits of A⊥ exceeds that of A by at most a factor 2d.

▶ Remark 5.6 (Lossiness). It is apparent from the construction of the name-dropping modific-
ation that, in the usual correspondence between nominal automata models and register-based
models [4, 34], it establishes a lossiness property saying that during any transition, letters
may nondeterministically be lost from the registers. Intuitively speaking, the effect of losing
a letter from a register is on the one hand that one escapes freshness requirements against
that letter in successor states, but on the other hand progress may later be blocked when the
lost name is required to be seen in the word; the overall consequence of this phenomenon is
that distinctness of the current letter b from a letter a seen previously in the word can only
be enforced if a is expected to be seen again, as already illustrated in Examples 3.6 and 4.5.

6 Inclusion Checking

We conclude by showing that language inclusion of RNTAs is decidable in elementary
complexity, in sharp contrast to the typical situation in register-based models as discussed
in Section 1. The algorithm is based on reducing the problem to language inclusion of
classical NFTAs over finite signatures (Section 2), using the name-dropping modification

S. Prucker and L. Schröder 35:13

to ensure closure of literal tree languages under α-equivalence (Section 5): Using closure
under α-equivalence, we can restrict to a finite set of names that is large enough to represent
every relevant α-equivalence class. Using this set of names, we cut out a finite part of the
RNTA in which only the specified names appear. For these restricted automata, which are
just NFTAs, we can decide language inclusion in ExpTime. A key step in this programme is
thus the following:

▶ Definition 6.1. Given a finite set S ⊆ A, we write TS(Σ) = {t ∈ TA(Σ) | supp(t) ⊆ S}.

(That is, a term is in TS(Σ) if all its free and bound names are in S.)

▶ Lemma 6.2. Let A be an RNTA of degree dA, and let nar be the maximal arity of symbols
in Σ. Pick S ⊆ A such that |S| = dA · nar + 1. If A accepts a term t, then A also accepts
some term t′ ∈ TS(Σ) such that t′ ≡α t.

(Recall that initial states have empty support by our running assumption; otherwise, S would
also need to contain the support of the initial state.)

▶ Theorem 6.3. Alphatic tree language inclusion Lα(A) ⊆ Lα(B) of RNTAs A, B of degrees
dA, dB, respectively, over the fixed signature Σ is decidable in doubly exponential time, and in
fact in parametrized singly exponential time with the degree as the parameter, i.e. exponential
in a function that depends exponentially on dA + dB and polynomially on the size of A, B.

Here, we understand the size of A and B in terms of standard finitary representations of
orbit-finite nominal sets, which essentially just enumerate the support sizes and symmetry
groups of the orbits (e.g. [40]). In the complexity analysis, we assume the sigature to be fixed;
if the signature is made part of the input, then the parameter includes also the maximal
arity nar of symbols in Σ as in Lemma 6.2.

Proof. The proof uses reduction to a finite-alphabet [34, 40]. Again, let nar be the maximal
arity of symbols in Σ, and pick S ⊆ A such that |S| = dA · nar + 1 as required in Lemma 6.2.
Put S = S ∪ {νa | a ∈ S}, and let B⊥ be the name-dropping modification of B as per
Theorem 5.5. Let (QA, ∆A, qA

0) = A and (QB , ∆B , qB
0) = B.

1. Show that Lα(A) ⊆ Lα(B) iff L(A) ∩ TS(Σ) ⊆ L(B⊥) ∩ TS(Σ).
“⇒”: By Theorem 5.5, L(B⊥) is the closure of L(B) under α-equivalence. Thus,
L(A) ⊆ L(B⊥), and hence L(A) ∩ TS(Σ) ⊆ L(B⊥) ∩ TS(Σ).
“⇐”: Let [t]α ∈ Lα(A); we have to show that [t]α ∈ Lα(B). By definition of Lα(A),
we have t′ ∈ L(A) such that t′ ≡α t, so by Lemma 6.2 there exists t′′ ∈ L(A) ∩ TS(Σ)
such that t′′ ≡α t. Then t′′ ∈ L(B⊥) by hypothesis, and hence [t]α ∈ Lα(B⊥). By
Theorem 5.5, we obtain [t]α ∈ Lα(B) as required.

2. By 1, we are left to decide whether L(A) ∩ TS(Σ) ⊆ L(B⊥) ∩ TS(Σ). Observe that
L(A) ∩ TS(Σ) and L(B⊥) ∩ TS(Σ) are effectively just tree languages over the finite sig-
nature S × Σ. We construct top-down NFTAs AS and BS over S × Σ that restrict A

and B⊥, respectively, to S and accept L(A) ∩ TS(Σ) and L(B⊥) ∩ TS(Σ), respectively:
Put AS = (QA,S , ∆A,S , qA

0) where QA,S = {q ∈ QA | supp(q) ⊆ S} and ∆A,S =
{(q(γ.f(x1, . . . , xn) → γ.f(q1(x1), . . . , qn(xn))) ∈ ∆A | q, q1, . . . , qn ∈ QA,S , γ ∈ S}.
The construction of BS = (QB⊥,S , Σ×S, ∆B⊥,S , iB⊥) is analogous. The automata AS and
BS are finite because A and B⊥ are orbit-finite and each orbit of a nominal set contains
only finitely many elements with a given finite support.
We verify that AS accepts L(A) ∩ TS(Σ), i.e. L(AS) = L(A) ∩ TS(Σ); the corresponding
claim for B⊥ is analogous. Since all states and rewrite rules of AS are inherited from A,
it is immediate that L(AS) ⊆ L(A) ∩ TS(Σ); we show the reverse inclusion. So let

CONCUR 2024

35:14 Nominal Tree Automata with Name Allocation

t ∈ L(A) ∩ TS(Σ); we have to show that AS accepts t. We show more generally that every
state q of AS accepts all terms t ∈ TS(Σ) that q accepts in A, and proceed via induction
on the length of an accepting run.
For the base case, let q accept t = γ.c in A, where γ ∈ S because t ∈ TS(Σ). That is, we
have δ = (q(γ.c) → γ.c) ∈ ∆A. The δ ∈ ∆A,S by construction, so q accepts t in AS .
For the inductive step, let q accept t = γ.f(t1, . . . , tn) in A. Again, γ ∈ S because
t ∈ TS(Σ). Thus, we have δ = (q(γ.f(x1, . . . , xn)) → γ.f(q1(x1), . . . , qn(xn))) ∈ ∆A such
that qi accepts ti for i = 1, . . . , n. We distinguish between bound and free transitions:

γ = a: By Lemma 4.2, supp(qi) ⊆ supp(q) ⊆ S, so qi ∈ QS , and by induction, qi

accepts ti in AS for i = 1, . . . , n. Since, γ ∈ S, we thus have δ ∈ ∆A,S ; it follows that q

accepts t in AS .
γ = νa: By Lemma 4.2, supp(qi) ⊆ supp(q) ∪ {a}. Since a ∈ S and supp(q) ⊆ S, this
implies supp(qi) ⊆ S, i.e. qi ∈ QS for i = 1, . . . , n. By induction, qi accepts ti in AS ,
and again, δ ∈ ∆A,S by construction because γ ∈ S, implying that q accepts t in AS .

3. So far, we have reduced the problem to deciding language inclusion of NFTAa, which is in
ExpTime [9]; it remains to analyse the size of the NFTAs AS , BS constructed in step 2.,
where we have first constructed the name-dropping modification B⊥ of the RNTA B

and have then extracted AS and BS from A and B⊥, respectively, by restricting to the
finite set S of names. We assume for simplicity that the state spaces of A and B are
given as strong nominal sets, so that the size of A and B is essentially the respective
number of orbits. When estimating the size of AS and BS , it suffices to consider the
number of states, since the size of the signature S × Σ is linear in dA (as Σ is assumed to
be fixed) so that the number of transitions of NFTAs over S × Σ is polynomial in their
number of states and dA. It thus suffices to show that the number of states in AS and BS ,
respectively, is the number of orbits of A or B, respectively, multiplied by a factor that is
singly exponential in the degree. Now by Theorem 5.5, the name-dropping modification
step for B increases the number of orbits by an exponential factor in the degree dB but
leaves the degree itself unchanged. Moreover, we generally have that every orbit of a given
nominal set with support size m has at most m! elements with a given fixed support,
so the step from A, B to AS , BS indeed incurs only an exponential factor in the degree,
which proves the claim. ◀

From Lemma 3.7, it is immediate that the same complexity bound as in Theorem 6.3 holds
also for inclusion checking of RNTAs under global and branchwise freshness semantics,
respectively (i.e. for checking whether N(Lα(A)) ⊆ N(Lα(B)) or B(Lα(A)) ⊆ B(Lα(B)),
respectively). We conclude by showing that this remains true under local freshness semantics.
The following observation is key:

▶ Definition 6.4. We define an ordering ≤ on A by a ≤ νa for all a ∈ A. We then define
the ordering ⊑ on TA(Σ) recursively by t ⊑ s iff t, s have the form t = γ.f(t1, . . . , tn) and
s = δ.f(s1, . . . , sn) where γ ≤ δ and ti ⊑ si for i = 1, . . . , n. For a literal language L,
↓L = {t ∈ TA(Σ) | ∃t′ ∈ L. t ⊑ t′} denotes the downward closure of L with respect to ⊑.

That is, t ⊑ t′ if t arises from t’ by removing zero or more occurrences of ν; e.g.
νa.f(a.f(a.f(a.k)) ⊑ νa.f(νa.(νa.f(a.k)).

▶ Lemma 6.5. For closed alphatic languages L1, L2, we have D(L1) ⊆ D(L2) iff for all
[t] ∈ L1 there exists t ⊑ t′ such that [t′] ∈ L2.

S. Prucker and L. Schröder 35:15

▶ Theorem 6.6. Language inclusion D(Lα(A)) ⊆ D(Lα(B)) under local freshness semantics
of RNTAs A, B of degrees dA, dB, respectively, over the fixed signature Σ is decidable in
doubly exponential time, and in fact in parametrized singly exponential time with the degree
as the parameter, i.e. exponential in a function that depends exponentially on dA + dB and
polynomially on the size of A, B.

Proof. The proof is largely analogous to that of Theorem 6.3. In step 1., one shows using
Lemma 6.5 (and recalling Remark 4.4) that D(Lα(A)) ⊆ D(Lα(B)) iff L(A) ∩ TS(Σ) ⊆
↓(L(B⊥) ∩ TS(Σ)). In step 2., the NFTA accepting ↓(L(B⊥) ∩ TS(Σ)) is constructed as in
Theorem 6.3 and then closed downwards under ⊑ by adding a transition q(a.f(x1, . . . , xn)) →
a.f(q1(x1). . . . , qn(xn)) for every transition q(νa.f(x1, . . . , xn)) → νa.f(q1(x1). . . . , qn(xn)).

◀

7 Conclusions

We have introduced the model of regular nominal tree automata (RNTA), a species of non-
deterministic top-town nominal tree automata. RNTAs can be equipped with different data
tree semantics ranging from global freshness as found in session automata [6] to local freshness.
Under the latter, RNTAs correspond, via the usual equivalence of nominal automata and
register-based automata [4, 34], to a subclass of register tree automata [21]. As such, they
are less expressive than the full register model, but in return admit inclusion checking
in elementary complexity (parametrized exponential time); this in a model that allows
unboundedly many registers and unrestricted nondeterminism (cf. Section 1). RNTAs feature
a native notion of name allocation, allowing them to process terms in languages with name
binding such as the λ- and the π-calculus.

In future research, we aim to work towards a notion of nominal automata with name
allocation for infinite trees, in particular with a view to applications in reasoning over name-
allocating fragments of the nominal µ-calculus [23]. Also, it will be of interest to develop
the theory in coalgebraic generality [33], aiming to support automata with effects such as
probabilistic or weighted branching.

References

1 Jiří Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories.
John Wiley and Sons, 1990. Reprint: http://www.tac.mta.ca/tac/reprints/articles/17/
tr17abs.html.

2 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

3 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011. doi:
10.1145/1970398.1970403.

4 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

5 Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic
on data trees and XML reasoning. J. ACM, 56(3):13:1–13:48, 2009. doi:10.1145/1516512.
1516515.

6 Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A robust class
of data languages and an application to learning. Log. Meth. Comput. Sci., 10(4), 2014.
doi:10.2168/LMCS-10(4:19)2014.

CONCUR 2024

http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.2168/LMCS-10(4:19)2014

35:16 Nominal Tree Automata with Name Allocation

7 Thomas Colcombet. Unambiguity in automata theory. In Descriptional Complexity of
Formal Systems, DCFS 2015, volume 9118 of LNCS, pages 3–18. Springer, 2015. doi:
10.1007/978-3-319-19225-3.

8 Thomas Colcombet and Amaldev Manuel. µ-calculus on data words. CoRR, 2014. arXiv:
1404.4827.

9 Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. HAL
Portal Inria, 2008. hal-03367725. URL: https://hal.inria.fr/hal-03367725/document.

10 Wojciech Czerwiński and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. CoRR, 2021. arXiv:2104.13866.

11 Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1–16:30, 2009. doi:10.1145/1507244.1507246.

12 Diego Figueira. Forward-XPath and extended register automata on data-trees. In Luc Segoufin,
editor, Database Theory, ICDT 2010, pages 231–241. ACM, 2010. doi:10.1145/1804669.
1804699.

13 Murdoch James Gabbay and Vincenzo Ciancia. Freshness and name-restriction in sets of traces
with names. In Foundations of Software Science and Computation Structures, FOSSACS 2011,
volume 6604 of LNCS, pages 365–380. Springer, 2011. doi:10.1007/978-3-642-19805-2.

14 Radu Grigore, Dino Distefano, Rasmus Petersen, and Nikos Tzevelekos. Runtime verification
based on register automata. In Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2013, volume 7795 of LNCS, pages 260–276. Springer, 2013. doi:10.1007/
978-3-642-36742-7_19.

15 Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Model checking systems and spe-
cifications with parameterized atomic apropositions. In Automated Technology for Veri-
fication and Analysis, ATVA 2012, volume 7561 of LNCS, pages 122–136. Springer, 2012.
doi:10.1007/978-3-642-33386-6_11.

16 Daniel Hausmann, Stefan Milius, and Lutz Schröder. A linear-time nominal µ-calculus with
name allocation. In Filippo Bonchi and Simon J. Puglisi, editors, Mathematical Foundations
of Computer Science, MFCS 2021, volume 202 of LIPIcs, pages 58:1–58:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.MFCS.2021.58.

17 Falk Howar, Bengt Jonsson, and Frits Vaandrager. Combining black-box and white-box
techniques for learning register automata. In Computing and Software Science – State of
the Art and Perspectives, volume 10000 of LNCS, pages 563–588. Springer, 2019. doi:
10.1007/978-3-319-91908-9_26.

18 Marcin Jurdziński and Ranko Lazić. Alternation-free modal mu-calculus for data trees.
In Logic in Computer Science, LICS 2007, pages 131–140. IEEE Computer Society, 2007.
doi:10.1109/LICS.2007.11.

19 Marcin Jurdziński and Ranko Lazić. Alternating automata on data trees and XPath satisfiab-
ility. ACM Trans. Comput. Log., 12(3):19:1–19:21, 2011. doi:10.1145/1929954.1929956.

20 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

21 Michael Kaminski and Tony Tan. Tree automata over infinite alphabets. In Arnon Avron,
Nachum Dershowitz, and Alexander Rabinovich, editors, Pillars of Computer Science, Essays
Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, volume 4800 of
LNCS, pages 386–423. Springer, 2008. doi:10.1007/978-3-540-78127-1_21.

22 Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-deterministic reassign-
ment. Int. J. Found. Comput. Sci., 21(5):741–760, 2010. doi:10.1142/S0129054110007532.

23 Bartek Klin and Mateusz Łełyk. Scalar and vectorial µ-calculus with atoms. Log. Methods
Comput. Sci., 15(4), 2019. doi:10.23638/LMCS-15(4:5)2019.

24 Klaas Kürtz, Ralf Küsters, and Thomas Wilke. Selecting theories and nonce generation for
recursive protocols. In Formal methods in security engineering, FMSE 2007, pages 61–70.
ACM, 2007. doi:10.1145/1314436.1314445.

https://doi.org/10.1007/978-3-319-19225-3
https://doi.org/10.1007/978-3-319-19225-3
https://arxiv.org/abs/1404.4827
https://arxiv.org/abs/1404.4827
https://hal.inria.fr/hal-03367725/document
https://arxiv.org/abs/2104.13866
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1804669.1804699
https://doi.org/10.1145/1804669.1804699
https://doi.org/10.1007/978-3-642-19805-2
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-642-33386-6_11
https://doi.org/10.4230/LIPICS.MFCS.2021.58
https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1109/LICS.2007.11
https://doi.org/10.1145/1929954.1929956
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-540-78127-1_21
https://doi.org/10.1142/S0129054110007532
https://doi.org/10.23638/LMCS-15(4:5)2019
https://doi.org/10.1145/1314436.1314445

S. Prucker and L. Schröder 35:17

25 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. CoRR,
2021. arXiv:2104.12695.

26 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In Logic in Computer Science, LICS 2019, pages 1–13. IEEE,
2019. doi:10.1109/LICS.2019.8785796.

27 Amaldev Manuel, Anca Muscholl, and Gabriele Puppis. Walking on data words. Theory
Comput. Sys., 59(2):180–208, 2016. doi:10.1007/s00224-014-9603-3.

28 Antoine Mottet and Karin Quaas. The containment problem for unambiguous register
automata. In Theoretical Aspects of Computer Science, STACS 2019, volume 126 of LIPIcs,
pages 53:1–53:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.STACS.2019.53.

29 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

30 Daniela Petrişan. Investigations into Algebra and Topology over Nominal Sets. PhD thesis,
University of Leicester, 2011.

31 Andrew Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

32 Simon Prucker and Lutz Schröder. Nominal tree automata with name allocation. CoRR,
abs/2405.14272, 2024. doi:10.48550/arXiv.2405.14272.

33 Jan Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci., 249:3–80, 2000.
34 Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal automata with

name binding. In Foundations of Software Science and Computation Structures, FOSSACS
2017, volume 10203 of LNCS, pages 124–142, 2017. doi:10.1007/978-3-662-54458-7_8.

35 Helmut Seidl. Deciding equivalence of finite tree automata. SIAM J. Comput., 19(3):424–437,
1990. doi:10.1137/0219027.

36 Ryoma Senda, Yoshiaki Takata, and Hiroyuki Seki. Complexity results on register context-free
grammars and register tree automata. In Theoretical Aspects of Computing, ICTAC 2018,
volume 11187 of LNCS, pages 415–434. Springer, 2018. doi:10.1007/978-3-030-02508-3_22.

37 Tony Tan. Extending two-variable logic on data trees with order on data values and its
automata. ACM Trans. Comput. Log., 15(1):8:1–8:39, 2014. doi:10.1145/2559945.

38 Szymon Torunczyk and Thomas Zeume. Register automata with extrema constraints, and
an application to two-variable logic. Log. Methods Comput. Sci., 18(1), 2022. doi:10.46298/
LMCS-18(1:42)2022.

39 Nikos Tzevelekos. Nominal Game Semantics. PhD thesis, University of Oxford, 2008.
40 Henning Urbat, Daniel Hausmann, Stefan Milius, and Lutz Schröder. Nominal büchi automata

with name allocation. In Serge Haddad and Daniele Varacca, editors, Concurrency Theory,
CONCUR 2021, volume 203 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPICS.CONCUR.2021.4.

41 Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino, and Alexandra Silva.
Tree automata as algebras: Minimisation and determinisation. In Algebra and Coalgebra in
Computer Science, CALCO 2019, volume 139 of LIPIcs, pages 6:1–6:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CALCO.2019.6.

CONCUR 2024

https://arxiv.org/abs/2104.12695
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/s00224-014-9603-3
https://doi.org/10.4230/LIPIcs.STACS.2019.53
https://doi.org/10.4230/LIPIcs.STACS.2019.53
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.48550/arXiv.2405.14272
https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1137/0219027
https://doi.org/10.1007/978-3-030-02508-3_22
https://doi.org/10.1145/2559945
https://doi.org/10.46298/LMCS-18(1:42)2022
https://doi.org/10.46298/LMCS-18(1:42)2022
https://doi.org/10.4230/LIPICS.CONCUR.2021.4
https://doi.org/10.4230/LIPIcs.CALCO.2019.6

Branching Bisimilarity for Processes with
Time-Outs
Gaspard Reghem #

ENS Paris-Saclay, Université Paris-Saclay, France

Rob J. van Glabbeek # Ñ

School of Informatics, University of Edinburgh, UK
School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

Abstract
This paper provides an adaptation of branching bisimilarity to reactive systems with time-outs.
Multiple equivalent definitions are procured, along with a modal characterisation and a proof of
its congruence property for a standard process algebra with recursion. The last section presents a
complete axiomatisation for guarded processes without infinite sequences of unobservable actions.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Reactive Systems, Time-outs, Branching Bisimilarity, Modal Characterisation,
Congruence, Axiomatisation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.36

Related Version Full Version: https://arxiv.org/abs/2408.10117 [20]

Funding Supported by Royal Society Wolfson Fellowship RSWF\R1\221008.

1 Introduction

Strong bisimilarity [17] is the default semantic equivalence on labelled transition systems
(LTSs), modelling systems that move from state to state by performing discrete, uninterpreted
actions. In [11], it has been generalised, under the name strong reactive bisimilarity, to LTSs
that feature, besides the hidden action τ [17], an unobservable time-out action t [9], modelling
the end of a time-consuming activity from which we abstract. This addition significantly
increases the expressiveness of the model [10, 11].

Applied to the verification of realistic distributed systems, strong bisimilarity is too fine an
equivalence, especially because it does not cater to abstraction from internal activity. Branch-
ing bisimilarity [13] is a variant that does abstract from internal activity, and lies at the basis
of many verification toolsets [3, 6]. The present paper generalises branching bisimilarity to
LTSs with time-outs, thereby combining the virtues of [11] and [13]. It supports the resulting
notion of branching reactive bisimilarity through a modal characterisation, congruence results
for a standard process algebra with recursion, and a complete axiomatisation.

The addition of the time-out action t aims at modelling the passage of time while staying
in the realm of untimed process algebra. Here, “untimed” means that our framework does
not facilitate measuring time, even though it models whether a system can pause in some
state or not. We assume that the execution of any action is instantaneous; thus, time elapses
in states only. The amount of time spent in a state is dictated by the interaction of the
system with an external entity called its environment.

We call a system reactive if it interacts with an environment able to allow or disallow
visible actions. The environment represents a user or other systems, running in parallel,
which has no control over τ or t actions. If X is the set of visible actions currently allowed
by the environment and the system can perform any transition labelled by an element of
X ∪ {τ} then it will perform one of those transitions immediately. When a visible action

© Gaspard Reghem and Rob J. van Glabbeek;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 36; pp. 36:1–36:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gaspard.reghem@ens-paris-saclay.fr
mailto:rvg@cs.stanford.edu
http://theory.stanford.edu/~rvg/
https://orcid.org/0000-0003-4712-7423
https://doi.org/10.4230/LIPIcs.CONCUR.2024.36
https://arxiv.org/abs/2408.10117
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Branching Bisimilarity for Processes with Time-Outs

is performed, it triggers the environment to choose a new set of allowed actions. If the
environment is allowing X and the system cannot perform any action from X ∪ {τ}, then
the system is said to be idling. When the system idles, time-outs become executable, but
the environment can also get impatient and choose a new X before any time-out occurs.

We have supposed that the environment cannot synchronise with the execution of a
time-out, thus implying that, right after executing a time-out, the environment is still
allowing the same set of allowed actions as before this execution. For example, the process
a.P + t.(a.Q+ τ.R) will never reach Q because, for the time-out to happen, the environment
has to block a and so a.Q+ τ.R can only be reached when the environment blocks a. In this
case, the τ -transition is always executed before the environment can allow a again.

Similarly, strong and branching reactive bisimilarity satisfy the process algebraic law
τ.P + t.Q = τ.P , essentially giving τ priority over t. Whereas this could have been formalised
through an operational semantics in which the process τ.P+t.Q lacks an outgoing t-transition,
here, and in [11], we derive an LTS for a standard process algebra with time-outs in a way
that treats t just like any other action. Instead, the priority of τ over t is implemented in the
reactive bisimilarity: its says that even though the transition τ.P + t.Q t−→ Q is present in
our LTS, it will never be taken. This approach is not only simpler, it also generalises better
to choices like b.P + t.Q, where the priority of b over t is conditional on the environment in
which the system is placed, namely on whether or not this environment allows the b-action
to occur.

From the system’s perspective, the environment can be in two kinds of states: either
allowing a specific set of actions, or being triggered to change. Our model does not stipulate
how much time the environment takes to choose a new set of allowed actions once triggered, or
even if it will ever make such a choice. Thus, the system could perform some transitions while
the environment is triggered, especially those labelled τ . In our view, the most natural way to
see the environment is as another system executed in parallel, while enforcing synchronisation
on all visible actions. This implies that the environment allows a set X of actions when
it idles in a state whose set of initial actions is X, and the environment is triggered when
it is not idling, especially when it can perform a τ -transition. In this paradigm, while the
environment is triggered, any action can be allowed for a brief amount of time. However,
there is no reason to believe that it will necessarily settle down on a specific set. For instance,
this can happen if the environment reaches a divergence: an infinite sequence of τ -transitions.

In [7], seven (or nine) forms of branching bisimilarity are classified; they differ only in
the treatment of divergence. In the present paper we are chiefly interested in divergence-free
processes, on grounds that in the intuition of [11] any sequence of τ -transitions could be
executed in time zero; yet we do wish to allow infinite sequences of t-transitions. For
divergence-free process all these forms of branching bisimilarity coincide. Nevertheless, we
do not formally exclude divergences, and in their presence our branching reactive bisimilarity
generalises the stability respecting branching bisimilarity of [7], which differs from the default
version from [13] through the presence of Clause 2.e of Definition 1. There does not exist a
plausible reactive generalisation of the default version.

Section 2 supplies the formal definition of branching reactive bisimilarity as well as its
rooted version, which will be shown to be its congruence closure. It also provides equivalent
definitions that reduce our bisimilarity to a non-reactive one and illustrate that branching
reactive bisimilarity coincides with stability respecting branching bisimilarity in the absence
of time-outs.

Section 3 gives a modal characterisation of branching reactive bisimilarity and its rooted
version on an extension of the Hennessy-Milner logic. Section 4 introduces the process algebra
CCSPθ

t along with an alternative characterisation of branching reactive bisimilarity that will
be used to prove that rooted branching reactive bisimilarity is a full congruence for CCSPθ

t .

G. Reghem and R. J. van Glabbeek 36:3

Section 5 displays a complete axiomatisation of our bisimilarity on different fragments of
CCSPθ

t . Most completeness proofs rely on standard techniques like equation merging, but
the very last one uses a relatively new method called “canonical representatives”.

2 Branching Reactive Bisimilarity

A labelled transition system (LTS) is a triple (P, Act,→) with P a set (of states or processes),
Act a set (of actions) and → ∈ P × Act × P. In this paper we consider LTSs with Act :=
A ⊎ {τ, t}, where A is a set of visible actions, τ is the hidden or invisible action, and t the
time-out action. Let Aτ := A∪ {τ}. P α−→ P ′ stands for (P, α, P ′) ∈ → and these triplets are
called transitions. Moreover, P (α)−−→ P ′ denotes that either α = τ and P = P ′, or P α−→ P ′.
Furthermore, paths are sequences of connected transitions and =⇒ is the reflexive-transitive
closure of τ−→. The set of initial actions of a process P ∈ P is I(P) := {α ∈ Aτ | P α−→}. Here
P

α−→ means that there is a Q with P
α−→ Q.

▶ Definition 1. A branching reactive bisimulation is a symmetric1 relation R ⊆ (P × P) ∪
(P × P(A) × P) such that, for all P,Q ∈ P and X ⊆ A,
1. if R(P,Q) then

a. if P α−→ P ′ with α ∈ Aτ then there is a path Q =⇒ Q1
(α)−−→ Q2 with R(P,Q1) and

R(P ′, Q2),
b. for all Y ⊆ A, R(P, Y,Q);

2. if R(P,X,Q) then
a. if P τ−→ P ′ then there is a path Q =⇒ Q1

(τ)−−→ Q2 with R(P,X,Q1) and R(P ′, X,Q2),
b. if P a−→ P ′ with a ∈ X then there is a path Q =⇒ Q1

a−→ Q2 with R(P,X,Q1) and
R(P ′, Q2),

c. if I(P) ∩ (X ∪ {τ}) = ∅ then there is a path Q =⇒ Q0 with R(P,Q0),
d. if I(P) ∩ (X ∪ {τ}) = ∅ and P

t−→ P ′ then there is a path Q =: Q0 =⇒ Q1
t−→ Q2 =⇒

Q3
t−→ . . . =⇒ Q2r−1

(t)−→ Q2r with r > 0, such that ∀i ∈ [0, r−1],R(P,X,Q2i) ∧
I(Q2i+1) ∩ (X ∪ {τ}) = ∅ and R(P ′, X,Q2r),

e. if P ̸τ−→ then there is a path Q =⇒ Q0 ̸τ−→.
For P,Q ∈ P, if there exists a branching reactive bisimulation R with R(P,Q) (resp.
R(P,X,Q)) then P and Q are said to be branching reactive bisimilar (resp. branching
X-bisimilar), which is denoted P ↔

brQ (resp. P ↔X
brQ).

To build the above definition, the definition of a strong reactive bisimulation [11] was modified
in a branching manner [13]. Intuitively, a triplet R(P,X,Q) affirms that P and Q behave
similarly when the environment allows (only) the set of actions in X to occur, whereas a
couple R(P,Q) says that P and Q behave in the same way when the environment has been
triggered to change. As said before, the environment can be seen as a system executed in
parallel while enforcing the synchronisation of all visible actions.

Clause 1 captures the scenario of a triggered environment: if P can perform a visible or
invisible action then Q has to be able to match it; and the environment can settle on a set Y
of allowed actions at any moment. Time-outs are not considered because these can occur
only when the system idles, and idling can happen only when the environment has stabilised
on a set of allowed actions. One might notice that, in [11], the first clause was only required
for invisible actions. However, there the case α ̸= τ is actually implied by the other clauses.
If in our definition Clause 1.a were restricted to invisible actions then ↔

br would not be a
congruence for the parallel operator, as shown in Appendix A.

1 meaning that (P,Q) ∈ R ⇔ (Q,P) ∈ R and (P,X,Q) ∈ R ⇔ (Q,X,P) ∈ R

CONCUR 2024

36:4 Branching Bisimilarity for Processes with Time-Outs

Clause 2 depicts the scenario of an environment allowing X. τ -transitions have to be
matched since the environment cannot disallow them, and their execution does not trigger the
environment to change. Visible actions have to be matched only if they are allowed, and their
execution triggers the environment. Triggering the environment or not explains why Clause
2a matches Q2 in a triplet and Clause 2b in a couple. If P idles (i.e. I(P) ∩ (X ∪ {τ}) = ∅)
then the environment can be triggered, thus, Q has to be able to instantaneously reach a
state Q0 related to P in a triggered environment.2 If P idles and has an outgoing time-out
transition then Q has to be able to match it in a branching manner. This involves Q
performing any sequence of τ and t-transitions, such that all states encountered prior to
the last optional t are related to P .3 Lastly, a stability respecting clause [7] was added for
practical reasons. In Appendix A, an example shows that without it ↔

br would not even be
an equivalence. For the important class of divergence-free systems, without infinite sequences
Q0

τ−→ Q1
τ−→ . . . , Clause 2.e is easily seen to be redundant.

▶ Lemma 2. Let R be a branching reactive bisimulation.
1. If R(P,X,Q), P ̸τ−→ and Q =⇒ Q′ then also R(P,X,Q′).
2. If R(P,Q) or R(P,X,Q), P ̸τ−→ and Q ̸τ−→ then I(Q) = I(P).
3. If R(P,X,Q), I(P) ∩ (X ∪ {τ}) = ∅ and Q ̸τ−→ then R(P,Q).
4. If R(P,X,Q) and I(P) ∩ (X ∪ {τ}) = ∅ then there is a path Q =⇒ Q0 with R(P,Q0),

Q0 ̸τ−→ and I(Q0) = I(P).

Proof.
1. This is an immediate consequence of the symmetric counterpart of Clause 2.a (where Q

takes a τ -step). When that clause yields P =⇒ P1
(τ)−−→ P2 we have P2 = P .

2. This is a direct consequence of Clause 1.a or 2.b and its symmetric counterpart.
3. By Clause 2.e there is path Q =⇒ Q0 with Q0 ̸τ−→. By Claim 1 of this lemma, R(P,X,Q0).

Thus, by Clause 2.c there is a path Q0 =⇒Q1 with R(P,Q1), but Q1 =Q0 =Q since Q ̸τ−→.
4. By Clause 2.e there is path Q =⇒ Q0 with Q0 ̸τ−→. By Claim 1 of this lemma, R(P,X,Q0).

That I(Q0) = I(P) and R(P,Q0) follows by Claims 2 and 3 of this lemma. ◀
Definition 1 enables us to elide some time-outs. Using the process algebra notation to be
formally introduced in Section 4, the processes a.t.b.0 and a.t.t.b.0 (as well as a.t.τ.t.b.0) are
branching reactive bisimilar. Both require an unquantified positive but finite amount of rest
between the actions a and b. To support this example, Clause 2.d of Definition 1 must allow
a single time-out transition of one process to be matched by either zero or multiple time-outs
of the other. An alternative definition, treating time-outs more like visible transitions, is
obtained by replacing Clause 2.d by
2. d. if I(P) ∩ (X ∪ {τ}) = ∅ and P

t−→ P ′ then there is a path Q =⇒ Q1
t−→ Q2 with

R(P ′, X,Q2).
Requiring that the matching time-out is executable (i.e. I(Q1) ∩ (X ∪ {τ}) = ∅) is not
necessary here, as it is implied by the other clauses. Indeed, Lemma 2.3, which is not affected
by changing Clause 2.d, implies the existence of a path Q =⇒ Q1 ̸τ−→ such that R(P,Q1) and
I(Q1) ∩ (X ∪ {τ}) = ∅. Since Q1 ̸τ−→, I(P) ∩ (X ∪ {τ}) = ∅ and P

t−→ P ′, Clause 2d yields
Q1

t−→ Q2 with R(P ′, X,Q2). This version of the definition has been studied [21] and has
properties similar to ↔

br, which are recapped in Appendix B.

2 By Lemma 2.4 we can even choose Q0 such that Q0 ̸τ−→, so that I(Q0) = I(P).
3 Clause 2.d requires this only for states of the form Q2i with i ∈ [0, r−1], but by Lemma 2.1 it holds for

all of them. Clause 2.c further implies that in Clause 2.d we have R(P,Q2i+1) for all i ∈ [0, r−1].

G. Reghem and R. J. van Glabbeek 36:5

In [13], branching bisimilarity is expressed in multiple equivalent ways. For practical
purposes, our definition uses the semi-branching format, which is equivalent to the branching
format thanks to the following lemma.

▶ Lemma 3 (Stuttering Lemma). Let P, P †, P ‡, Q ∈ P, if P ↔
br Q, P ‡ ↔

br Q (resp.
P ↔X

brQ, P ‡ ↔X
brQ) and P τ−→ P † τ−→ P ‡ then P † ↔

brQ (resp. P † ↔X
brQ).

Proof. Let R be a branching reactive bisimulation. Let’s define R′ := R∪{(P †, Q), (Q,P †) |
∃P, P ‡ ∈ P, P =⇒ P † =⇒ P ‡ ∧ R(P,Q) ∧ R(P ‡, Q)} ∪ {(P †, X,Q), (Q,X,P †) | ∃P, P ‡ ∈ P,
P =⇒ P † =⇒ P ‡ ∧ R(P,X,Q) ∧ R(P ‡, X,Q)}. R′ is symmetric by definition and R′ is a
branching reactive bisimulation, as proven in [20, Appendix E]. ◀

▶ Proposition 4. ↔
br and (↔X

br)X⊆A are equivalence relations.

Proof. Reflexivity and symmetry are trivial following the definition. For transitivity, consider
two branching reactive bisimulations R1 and R2. Let’s define R := (R1◦R2)∪(R2◦R1). Here
R1 ◦ R2 := {(P,Q) | ∃R. R(P,R) ∧ R(R,Q)} ∪ {(P,X,Q) | ∃R. R(P,X,R) ∧ R(R,X,Q)}.
R is symmetric by definition and R is a branching reactive bisimulation, as proven in [20,
Appendix E]. ◀

2.1 Rooted Version
A well-known limitation of branching bisimilarity ↔

b is that it fails to be a congruence for
the choice operator +. For example, a ↔

b τ.a but a+ b ↮
b τ.a+ b. Since the objective is

to define a congruence, instead of ↔
br we use the congruence closure of ↔

br, which is the
coarsest congruence included in ↔

br.

▶ Definition 5. A rooted branching reactive bisimulation is a symmetric relation R ⊆
(P × P) ∪ (P × P(A) × P) such that, for all P,Q ∈ P and X ⊆ A,
1. if R(P,Q)

a. if P α−→ P ′ with α ∈ Aτ then there is a transition Q
α−→ Q′ with P ′ ↔

brQ
′,

b. for all Y ⊆ A, R(P, Y,Q);
2. if R(P,X,Q)

a. if P τ−→ P ′ then there is a transition Q
τ−→ Q′ with P ′ ↔X

brQ
′,

b. if P a−→ P ′ with a ∈ X then there is a transition Q
a−→ Q′ with P ′ ↔

brQ
′,

c. if I(P) ∩ (X ∪ {τ}) = ∅ then R(P,Q),
d. if I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′ then there is a transition Q t−→ Q′ with P ′ ↔X

brQ
′.

For P,Q ∈ P, if there exists a rooted branching reactive bisimulation R with R(P,Q) (resp.
R(P,X,Q)) then P and Q are said to be rooted branching reactive bisimilar (resp. rooted
branching X-bisimilar), which is denoted P ↔r

brQ (resp. P ↔rX
br Q).

A rooted version of a bisimulation consists in enforcing a stricter matching on the first
transition of a system. In the branching case, the first transition is matched in the strong
manner. The stability respecting clause can be removed, as it is now implied by the other
clauses. Rooting the bisimilarity is the standard technique to obtain its congruence closure;
later ↔r

br will be proven to be a congruence. As any branching reactive bisimulation relating
P + b and Q + b, for a fresh action b, induces a rooted branching reactive bisimulation
relating P and Q, it then follows that ↔r

br is the coarsest included in ↔
br. Since ↔

br is an
equivalence, the proof of Proposition 4 can be adapted to ↔r

br in a straightforward way.

▶ Proposition 6. ↔r
br and (↔rX

br)X⊆A are equivalence relations.

CONCUR 2024

36:6 Branching Bisimilarity for Processes with Time-Outs

2.2 Alternative Forms of Definition 1
Definition 1 can be rephrased in various ways. First of all, using Requirements 1.b and 2.c,
one can move Requirement 2.d from Clause 2 (dealing with triples (P,X,Q)) to Clause 1
(dealing with pairs (P,Q)), now adding a universal quantifier over X to the requirement.
Next, Requirement 2.e can be copied under Clause 1. This makes Clause 1.b unnecessary,
thereby obtaining a definition in which the triples (P,X,Q) are encountered only after taking
a t-transition. In this form it is obvious that branching reactive bisimilarity reduces to the
classical stability respecting branching bisimilarity for systems without t-transitions. We
have chosen the form of Definition 1 over the above alternatives, because we believe it comes
with more natural intuitions for its plausibility.

In Appendix C a further modification of Definitions 1 and 5 is proposed, called generalised
[rooted] branching reactive bisimulation. We show that each [rooted] branching reactive
bisimulation is a generalised [rooted] branching reactive bisimulation, and two systems are
[rooted] branching reactive bisimilar iff they are related by a generalised [rooted] branching
reactive bisimulation. This characterisation of ↔

br and ↔r
br will be used in the proofs of

Theorem 11 and Proposition 15.
In [19], Pohlmann introduces an encoding which maps strong reactive bisimilarity to

strong bisimilarity where time-outs are considered as any visible action. This encoding in
essence places a given process in a most general environment, one that features environment
time-out actions tε, as well as actions εX for settling in a state that allows exactly the actions
in X. This proves that reactive equivalences can be expressed as non-reactive ones at the
cost of increasing the processes’ size. Thus, any tool set able to work on strong bisimulation
could theoretically deal with its reactive counterpart.

In Appendix D, this encoding is slightly modified to yield a similar result for branching
reactive bisimulation and its rooted version, for the latter result also employing actions tX .
It appears that these modifications do not impact its effect on strong reactive bisimilarity.
Since our bisimilarity has some time-out eliding properties, it is not mapped to stability
respecting branching bisimilarity, but to a new bisimilarity, defined below.

▶ Definition 7. A t-branching bisimulation is a symmetric relation R ⊆ P× P such that, for
all P,Q ∈ P, if R(P,Q) then
1. if P α−→ P ′ with α ∈ Aτ ∪ {tε, εX | X ⊆ A} then there is a path Q =⇒ Q1

(α)−−→ Q2 with
R(P,Q1) and R(P ′, Q2),

2. if P t−→ P ′ then there is a path Q = Q0 =⇒ Q1
t−→ Q2 =⇒ Q3

t−→ ... =⇒ Q2r−1
(t)−→ Q2r

with r > 0, such that ∀i ∈ [0, 2r−1], R(P,Qi) and R(P ′, Q2r),
3. if P ̸τ−→ then there is a path Q =⇒ Q0 ̸τ−→.
For P,Q ∈ P, if there exists a t-branching bisimulation R with R(P,Q) then P and Q are
said to be t-branching bisimilar, which is denoted P ↔tbQ.

The encoding also sends ↔r
br to the rooted version of ↔tb.

▶ Definition 8. A rooted t-branching bisimulation is a symmetric relation R ⊆ P × P such
that, for all P,Q ∈ P, if R(P,Q) then
1. if P α−→P ′ with α∈Act∪{tε, tX , εX |X⊆A} then there is a transition Q α−→Q′ with P ′ ↔tbQ

′.
For P,Q ∈ P, if there exists a rooted t-branching bisimulation R with R(P,Q) then P and
Q are said to be rooted t-branching bisimilar, which is denoted P ↔r

tbQ.

Providing a complete axiomatisation of rooted t-branching bisimilarity will be useful in the
proof of completeness of the axiomatisation of rooted branching reactive bisimilarity.

G. Reghem and R. J. van Glabbeek 36:7

3 Modal Characterisation

The Hennessy-Milner logic [15] expresses properties of the behaviour of processes in an
LTS. In [11], the modality ⟨X⟩φ was added to obtain a modal characterisation of strong
reactive bisimilarity (↔r). In order to capture branching reactive bisimilarity we add another
modality Xφ. To avoid confusion, ⟨X⟩φ is renamed ⟨tX⟩φ.

▶ Definition 9. The class L of reactive Hennessy-Milner formulas is defined as follows, where
I is an index set, α ∈ Act, a ∈ A and X ⊆ A,

φ ::= ⊤ |
∧
i∈I

φi | ¬φ | ⟨α⟩φ | Xφ

Table 1 Semantics of |= and (|=Y)Y ⊆A.

P |= ⊤ P |=Y ⊤
P |=

∧
i∈I

φi iff ∀i ∈ I, P |= φi P |=Y

∧
i∈I

φi iff ∀i ∈ I, P |=Y φi

P |= ¬φ iff P ̸|= φ P |=Y ¬φ iff P ̸|=Y φ

P |= ⟨α⟩φ iff ∃P α−→ P ′, P ′ |= φ P |=Y ⟨τ⟩φ iff ∃P τ−→ P ′, P ′ |=Y φ

P |=Y ⟨t⟩φ iff ∃P t−→ P ′, P ′ |=Y φ

P |=Y ⟨a⟩φ iff (a ∈ Y ∨ I(P) ∩ (Y ∪ {τ}) = ∅) ∧ ∃P a−→ P ′, P ′ |= φ

P |= Xφ iff I(P) ∩ (X ∪ {τ}) = ∅ ∧ P |=X φ

P |=Y Xφ iff I(P) ∩ (X ∪ Y ∪ {τ}) = ∅ ∧ P |=X φ

The satisfaction rules of L are given in Table 1. P |= φ means that P satisfies φ when the
environment is triggered, and P |=Y φ indicates that P satisfies φ when the environment
allows Y . The modality Xφ expresses that a process can idle in its current state during a
period in which the environment allows the actions in X, after which it behaves according to φ.

The modality ⟨tX⟩φ from [11] can now be defined as ⟨tX⟩φ := X⟨t⟩φ. Write Ls for the
fragment of L from [11], which includes ⟨tX⟩φ but does not feature Xφ or ⟨t⟩φ. Then the
modal characterisation theorem of [11] says P ↔

rQ ⇔ ∀φ ∈ Ls. (P |= φ ⇔ Q |= φ) .
Here we restrict attention to the fragment of L that includes ⟨tX⟩φ and Xφ, but not ⟨t⟩φ.

On this fragment |=Y is defined such that whenever I(P) ∩ (Y ∪ {τ}) = ∅ then P |=Y φ iff
P |= φ. This is because the environment may choose to change during a period of idling.

To obtain a modal characterisation of [rooted] branching relative bisimilarity, we need
a few other derived modalities. First of all, ⟨ε⟩φ :=

∨
i∈N⟨τ⟩iφ. To lessen the notations,

for all α ∈ Aτ , ⟨α̂⟩φ denotes φ ∨ ⟨τ⟩φ if α = τ , ⟨α⟩φ otherwise, and the modality ⟨t̂X⟩φ
denotes ⟨tX⟩φ∨Xφ or X⟨t̂⟩φ. Moreover, φ∧ ⟨α̂⟩φ′ is shortened to φ⟨α̂⟩φ′. Furthermore, we
define φ⟨εX⟩φ′ :=

∨
i∈N φ⟨εX⟩(i)φ′, where φ⟨εX⟩(0)φ′ := ⟨ε⟩(φ ∧ ⟨t̂X⟩φ′) and, for all i > 0,

φ⟨εX⟩(i)φ′ := ⟨ε⟩(φ∧⟨tX⟩(φ∧(φ⟨εX⟩(i−1)φ′))). The satisfaction rules of these new modalities
can be derived from the basic ones: see Table 2.

▶ Definition 10. The sub-classes Lb and Lr
b are defined as follows, where I is an index set,

α ∈ Aτ , X ⊆ A, φ,φ′ ∈ Lb and ψ ∈ Lr
b ,

φ ::= ⊤ |
∧
i∈I

φi | ¬φ | ⟨ε⟩(φ⟨α̂⟩φ′) | φ⟨εX⟩φ′ | ⟨ε⟩¬⟨τ⟩⊤ (Lb)

ψ ::= ⊤ |
∧
i∈I

ψi | ¬ψ | ⟨α⟩φ | ⟨tX⟩φ (Lr
b)

CONCUR 2024

36:8 Branching Bisimilarity for Processes with Time-Outs

Table 2 Semantics of |= and (|=Y)Y ⊆A for the derived modalities.

P |= ⟨α̂⟩φ iff ∃P (α)−−→ P ′, P ′ |= φ P |=Y ⟨τ̂⟩φ iff ∃P (τ)−−→ P ′, P ′ |=Y φ

P |= ⟨ε⟩φ iff ∃P =⇒ P ′, P ′ |= φ P |=Y ⟨ε⟩φ iff ∃P =⇒ P ′, P ′ |=Y φ

P |= φ⟨εX⟩φ′ iff ∃P =⇒ P1
t−→ P2 =⇒ P3

t−→ ... =⇒ P2r−1
(t)−→ P2r with r > 0, such that

∀i ∈ [1, 2r−1] Pi |=X φ ∧ P2r |=X φ′ and
∀i ∈ [0, r−1] I(P2i+1) ∩ (X ∪ {τ}) = ∅

P |=Y φ⟨εX⟩φ′ iff ∃P =⇒ P1
t−→ P2 =⇒ P3

t−→ ... =⇒ P2r−1
(t)−→ P2r with r > 0, such that

∀i ∈ [1, 2r−1] Pi |=X φ ∧ P2r |=X φ′ and
I(P1) ∩ (Y ∪ {τ}) = ∅ ∧ ∀i ∈ [0, r−1] I(P2i+1) ∩ (X ∪ {τ}) = ∅

P |= ⟨tX⟩φ iff I(P) ∩ (X ∪ {τ}) = ∅ ∧ ∃P t−→ P ′, P ′ |=X φ

The last option for Lb, inspired by [5], is used to encompass the stability respecting Clause
2.e of Definition 1.

▶ Theorem 11. Let P,Q ∈ P. For all X ⊆ A,
P ↔

brQ iff ∀φ ∈ Lb, P |= φ ⇔ Q |= φ,
P ↔X

brQ iff ∀φ ∈ Lb, P |=X φ ⇔ Q |=X φ,
P ↔r

brQ iff ∀ψ ∈ Lr
b , P |= ψ ⇔ Q |= ψ,

P ↔rX
br Q iff ∀ψ ∈ Lr

b , P |=X ψ ⇔ Q |=X ψ.

Proof. (⇒) The four propositions are proven simultaneously by structural induction on Lb

and Lr
b in [20, Appendix F].

(⇐) Let ≡ := {(P,Q) | ∀φ ∈ Lb, P |= φ ⇔ Q |= φ} ∪ {(P,X,Q) | ∀φ ∈ Lb, P |=X φ ⇔
Q |=X φ}, and ≡r := {(P,Q) | ∀ψ ∈ Lr

b , P |= ψ ⇔ Q |= ψ} ∪ {(P,X,Q) | ∀ψ ∈ Lr
b , P |=X

ψ ⇔ Q |=X ψ}. It suffices to check that ≡ [resp. ≡r] is a generalised [rooted] branching
reactive bisimulation. This is done in [20, Appendix F]. ◀

4 Process Algebra and Congruence

The process algebra CCSPθ
t is composed of classical operators from the well-known process

algebras CCS [17], CSP [2, 18] and ACP [1, 4], as well as the time-out action t and two
environment operators from [11], that were added in order to enable a complete axiomatisation.

▶ Definition 12. Let V be a countable set of variables, the expressions of CCSPθ
t are

recursively defined as follows:

E ::= 0 | x | α.E | E + F | E ∥S F | τI(E) | R(E) | θU
L (E) | ψX(E) | ⟨y|S⟩

where x ∈ V , α ∈ Act, S, I, L, U,X ⊆ A, L ⊆ U , R ⊆ A×A, S is a recursive specification: a
set of equations {x= Sx | x∈VS} with VS ⊆ V and each Sx a CCSPθ

t expression, and y ∈VS .
We require that all sets {b | (a, b) ∈ R} for a ∈ A are finite.

0 stands for a system which cannot perform any action. The expression α.E represents a
system that first performs α and then E. The expression E+F represents a choice to behave
like E or F . The parallel composition E ∥S F synchronises the execution of E and F , but
only when performing actions in S. τI(E) represents the system E where all actions a ∈ I

are transformed into τ . The operator R renames a given action a ∈A into a choice between
all actions b with (a, b) ∈ R. ⟨y|S⟩ is the y-component of a solution of S.

CCSPθ
t also has two environment operators that help to develop a complete axiomatisation

(like the left merge for ACP). θU
L (E) is the expression E plunged into an environment X such

that L ⊆ X ⊆ U . θX
X (E) is denoted θX(E). ψX(E) plunges E into the environment X if a

G. Reghem and R. J. van Glabbeek 36:9

time-out occurs, but, has no effect if any other action is performed. The operational semantics
of CCSPθ

t is given in Figure 1. All operators except the environment ones follow the semantics
of CCS, CSP or ACP. As θU

L (E) simulates the expression E plunged in an environment
L ⊆ X ⊆ U , it has no effect on τ -transitions, which do not trigger the environment. Moreover,
θU

L restricts the ability to perform visible actions to those allowed by the environment (i.e.
included in U) and performing these actions triggers the environment. However, if the
expression idles (i.e. I(E) ∩ (L ∪ {τ}) = ∅) then it might trigger the environment and θU

L (E)
acts like E. ψX(E) supposes that time-outs are performed while the environment allows X,
thus, it has no effect on actions that are not t. However, if E can perform a time-out while
the environment allows X (i.e. I(E) ∩ (X ∪ {τ}) = ∅) then ψX(E) can perform the time-out
while plunging the expression in the environment X.

x
α−→ y

α.x
α−→ x

x
α−→ x′

x+ y
α−→ x′

y
α−→ y′

x+ y
α−→ y′

x
a−→ x′ ∧ R(a, b)

R(x) b−→ R(x′)
x

τ−→ x′

R(x) τ−→ R(x′)
x

t−→ x′

R(x) t−→ R(x′)

x
α−→ x′ ∧ α ̸∈ S

x ∥S y
α−→ x′ ∥S y

y
α−→ y′ ∧ α ̸∈ S

x ∥S y
α−→ x ∥S y

′

x
a−→ x′ ∧ y

a−→ y′ ∧ a ∈ S

x ∥S y
a−→ x′ ∥S y

′

x
α−→ x′ ∧ α ̸∈ I

τI(x) α−→ τI(x′)
x

a−→ x′ ∧ a ∈ I

τI(x) τ−→ τI(x′)
⟨Sx|S⟩ α−→ x′

⟨x|S⟩ α−→ x′

x
τ−→ x′

θU
L (x) τ−→ θU

L (x′)
x

a−→ x′ ∧ a ∈ U

θU
L (x) a−→ x′

x
α−→ x′ ∧ α ̸= t

ψX(x) α−→ x′

x
α−→ x′ ∧ I(x) ∩ (L ∪ {τ}) = ∅

θU
L (x) α−→ x′

x
t−→ x′ ∧ I(x) ∩ (X ∪ {τ}) = ∅

ψX(x) t−→ θX(x′)

Figure 1 Operational semantics of CCSPθ
t .

All Sx are considered to be sub-expressions of ⟨y|S⟩. An occurrence of a variable x is
bound in E ∈ CCSPθ

t iff it occurs in a sub-expression ⟨y|S⟩ of E such that x ∈ VS ; otherwise
it is free. An expression E is invalid if it has a sub-expression θU

L (F) or ψX(F) such that a
variable occurrence is free in F , but bound in E. An example justifying this condition can
be found in [11]. The set of valid expressions of CCSPθ

t is denoted E. If an expression is
valid and all of its variable occurrences are bound then it is closed and we call it a process;
the set of processes is denoted P.

A substitution is a partial function ρ : V ⇀ E. The application E[ρ] of a substitution ρ

to an expression E ∈ E is the result of the simultaneous replacement, for all x ∈ dom(ρ), of
each free occurrence of x by the expression ρ(x), while renaming bound variables to avoid
name clashes. We write ⟨E|S⟩ for the expression E where any y ∈ VS is substituted by ⟨y|S⟩.

CONCUR 2024

36:10 Branching Bisimilarity for Processes with Time-Outs

4.1 Time-out Bisimulation
Thanks to the environment operator θU

L , it is possible to express our bisimilarity in a much
more succinct way. Indeed, θX was defined so that P ↔X

brQ if and only if θX(P) ↔
br θX(Q).

▶ Definition 13. A branching time-out bisimulation is a symmetric relation B ⊆ P × P such
that, for all P,Q ∈ P, if P B Q then
1. if P α−→ P ′ with α ∈ Aτ then there is a path Q =⇒ Q1

(α)−−→ Q2 with P B Q1 and P ′ B Q2

2. if I(P) ∩ (X ∪ {τ}) = ∅ and P
t−→ P ′ then there is a path Q =⇒ Q1

t−→ Q2 =⇒ Q3
t−→

... =⇒ Q2r−1
(t)−→ Q2r with r > 0, such that Q1 ̸τ−→, ∀i ∈ [1, r−1], θX(P) B θX(Q2i) ∧

I(Q2i+1) ∩ (X ∪ {τ}) = ∅ and θX(P ′) B θX(Q2r)
3. if P ̸τ−→ then there is a path Q =⇒ Q0 ̸τ−→.
Note that in Condition 2 above one also has P B Q1 and consequently I(Q1)∩ (X∪{τ}) = ∅.
A rooted version of branching time-out bisimulation can be defined in the same vein.

▶ Definition 14. A rooted branching time-out bisimulation is a symmetric relation B ⊆ P×P
such that, for all P,Q ∈ P such that P B Q,
1. if P α−→ P ′ with α ∈ Aτ then there is a step Q

α−→ Q′ such that P ′ ↔
brQ

′

2. if I(P)∩(X∪{τ})=∅ and P t−→P ′ then there is a step Q t−→Q′ such that θX(P ′)↔
brθX(Q′).

▶ Proposition 15. Let P,Q ∈ P,
1. P ↔

br Q (resp. P ↔X
br Q) iff there exists a branching time-out bisimulation B with

P B Q (resp. (θX(P) B θX(Q)),
2. P ↔X

brQ if and only if θX(P) ↔
br θX(Q),

3. P ↔r
brQ (resp. P ↔rX

br Q) iff there exists a rooted branching time-out bisimulation B

with P B Q (resp. (θX(P) B θX(Q)).

Proof. Note that Proposition 15.2 is a trivial corollary of 15.1.
Let R be a [generalised rooted] branching reactive bisimulation, let’s define B := {(P,Q) |

R(P,Q)} ∪ {(θX(P), θX(Q)) | R(P,X,Q)}. B is a [rooted] branching time-out bisimulation,
as proven in [20, Appendix G]. Let B be a [rooted] branching time-out bisimulation, let’s
define R = {(P,Q) | P B Q} ∪ {(P,X,Q) | θX(P) B θX(Q)}. R is a [rooted] generalised
branching reactive bisimulation, as proven in [20, Appendix G]. ◀

Time-out bisimulations are very practical as there are no triplets to deal with anymore.

4.2 Congruence
Until now, bisimilarity was only defined between closed expressions, but any relation ∼ ⊆ P×P
can be extended to E × E in the following way: E ∼ F iff ∀ρ : V → P, E[ρ] ∼ F [ρ]. It
can be extended further to substitutions ρ, ν ∈ V ⇀ E by ρ ∼ ν iff dom(ρ) = dom(ν) and
∀x ∈ dom(ρ), ρ(x) ∼ ν(x).

▶ Definition 16. An equivalence ∼ ⊆ E×E is a congruence for an n-ary operator f if Pi ∼ Qi

for all i = 0, . . . , n−1 implies f(P0, ..., Pn−1) ∼ f(Q0, ..., Qn−1). It is a lean congruence if,
for all E ∈ E and all ρ, ν ∈ V ⇀ E such that ρ ∼ ν, E[ρ] ∼ E[ν]. It is a full congruence if
1. it is a congruence for all operators in the language, and
2. for all recursive specifications S,S ′ with VS = VS′ and x ∈ VS such that ⟨x|S⟩, ⟨x|S ′⟩ ∈ P,

if ∀y ∈ VS , Sy ∼ S ′
y then ⟨x|S⟩ ∼ ⟨x|S ′⟩.

G. Reghem and R. J. van Glabbeek 36:11

To show that ∼ is a lean congruence it suffices to restrict attention to closed substitutions
ρ, ν ∈ V → P, because the general property will then follow by composition of substitutions.
A full congruence is a lean congruence, and a lean congruence is a congruence for all operators
in the language, but both implications are strict, as shown in [8].

To show that ↔r
br and ↔r

tb are full congruences, it is first necessary to prove that ↔
br

and ↔tb are congruences for some of the operators of CCSPθ
t .

▶ Proposition 17. ↔
br and ↔tb are congruences for action prefixing, parallel composition,

abstraction, renaming and the environment operator θU
L , for all L ⊆ U ⊆ A.

Proof. Let B be the smallest relation such that, for all P,Q ∈ P,
if P ↔

brQ then P B Q;
if P B Q then, for all α ∈ Act, I ⊆ A, R ∈ A × A and L ⊆ U ⊆ A, α.P B α.Q,
τI(P) B τI(Q), R(P) B R(Q) and θU

L (P) B θU
L (Q);

if P1 B Q1, P2 B Q2 and S ⊆ A then P1 ∥S P2 B Q1 ∥S Q2.
It suffices to show that B is a branching time-out bisimulation up to ↔, which implies
B ⊆ ↔

br. A bisimulation “up to” is a notion introduced by Milner in [17]; it is commonly
used when proving congruence properties. The proof uses some lemmas which were obtained
in [11]. Details can be found in [20, Appendix H]. A similar proof yields the result for ↔tb. ◀

▶ Theorem 18. ↔r
br and ↔r

tb are full congruences.

Proof. Let B ⊆ P × P be the smallest relation such that
if P ↔r

brQ then P B Q;
if P1 B Q1 and P2 B Q2 then P1 + P2 B Q1 +Q2 and ∀S ⊆ A, P1 ∥S P2 B Q1 ∥S Q2;
if P B Q then ∀α ∈ Act, α.P B α.Q, ∀I ⊆ A, τI(P) B τI(Q), ∀R ⊆ A × A, R(P) B

R(Q), ∀L⊆ U ⊆A, θU
L (P) B θU

L (Q) and ∀X ⊆ A, ψX(P) B ψX(Q);
if S is a recursive specification with z ∈ VS and ρ, ν ∈ V \ VS → P are substitutions such
that ∀x ∈ V \ VS , ρ(x) B ν(x), then ⟨z|S⟩[ρ] B ⟨z|S⟩[ν];
if S and S ′ are recursive specifications and x ∈ VS = VS′ with ⟨x|S⟩, ⟨x|S ′⟩ ∈ P such that
∀y ∈ VS , Sy ↔r

br S ′
y, then ⟨x|S⟩ B ⟨x|S ′⟩.

Since ↔r
br ⊆ B, it suffices to prove that B is a rooted branching time-out bisimulation up to

↔
br, as done in [20, Appendix I]. This implies B = ↔r

br and the definition will then give
us that ↔r

br is a lean congruence. Moreover, the last condition of B adds that it is a full
congruence. A similar proof yields the result for ↔r

tb. ◀

5 Axiomatisation

We will provide complete axiomatisations for ↔r
br and ↔r

tb on various fragments of CCSPθ
t .

5.1 Recursive Principles
The expression ⟨x|S⟩ is intuitively defined as the x-component of the solution of S. However,
S could perfectly well have multiple solutions that are not bisimilar to each other. For instance,
take S = {x= x}; any expression is an x-component of a solution of S. For our complete
axiomatisation, we need to restrict attention to recursive specifications which have a unique
solution with respect to our notion of bisimilarity. This property can be decomposed into two
principles [1, 4]: the recursive definition principle (RDP) states that a system of recursive
equations has at least one solution and the recursive specification principle (RSP) that it has
at most one solution. The latter holds under a condition traditionally called guardedness.

CONCUR 2024

36:12 Branching Bisimilarity for Processes with Time-Outs

▶ Definition 19. Let S be a recursive specification and ∼ ⊆ P × P, a solution up to ∼ of S
is a substitution ρ ∈ EVS such that ρ ∼ S[ρ]. Here ρ and S ∈ EVS are seen as VS -tuples.

In [1, 4] RDP was proven for the classical notion of strong bisimilarity ↔. Since ↔r
br and

↔r
tb are included in ↔, it holds for both of these relations as well.

▶ Proposition 20 (RDP). Let S be a recursive specification. The substitution ρ : x 7→ ⟨x|S⟩
for all x ∈ VS is a solution of S up to ↔. It is called the default solution of S.

An occurrence of a variable x in an expression E is well-guarded if x occurs in a subexpression
a.F of E, with a∈A. Here we do not allow τ and t as guards. An expression E is well-guarded
if no operator τI occurs in E and all free occurrences of variables in E are well-guarded.
A recursive specification S is manifestly well-guarded if no operator τI occurs in S and for
all x, y ∈ VS all occurrences of x in the expression Sy are well-guarded; it is well-guarded if
it can be made manifestly well-guarded by repeated substitution of Sy for y within terms Sx.
A CCSPθ

t process P ∈ P is guarded if each recursive specification occurring in E is well-
guarded. It is strongly guarded if moreover there is no infinite path of τ and t-transitions
P0

α1−→ P1
α2−→ P2

α1−→ . . . with αi ∈ {τ,t} for all i> 0, starting in a state P0 reachable from P.

▶ Proposition 21 (RSP). Let S be a well-guarded recursive specification and ρ, ν ∈ EVS. If ρ
and ν are solutions of S up to ↔r

br (or ↔r
tb) then ρ ↔r

br ν (resp. ρ ↔r
tb ν).

Proof. Modifying S by substituting Sy for y within terms Sx with x, y ∈ VS does not affect
the set of its solutions. Hence we can restrict attention to manifestly well-guarded S.

Thanks to the composition of substitutions, it suffices to prove the proposition when
ρ, ν ∈ PVS and only variables of VS can occur in Sx for x ∈ VS . It suffices to show that the
symmetric closure of B := {(H[S[ρ]], H[S[ν]]) | H ∈ E is without τI operators and with
free variables from VS only} is a rooted branching time-out bisimulation up to ↔

br. Here
S[ρ] ∈ PVS is seen as a substitution. Details can be found in [20, Appendix J]. An almost
identical strategy can be applied to get RSP for ↔r

tb. ◀

The following lemma, whose proof can be found in [20, Appendix K], states that, when
considering strongly guarded processes, eliding a time-out is independent of the set of allowed
actions.

▶ Lemma 22. Let P be a strongly guarded CCSPθ
t process and X ⊆ A. If I(P)∩(X∪{τ}) = ∅,

P
t−→ P ′ and θX(P) ↔

br θX(P ′) then ∀Y ⊆ A, I(P) ∩ (Y ∪ {τ}) = ∅ ⇒ θY (P) ↔
br θY (P ′).

Actually, this lemma holds because our restriction of strong guardedness is too strong. Indeed,
the equation x = t.(a+τ.x) has a single solution, but it is not well-guarded. The process P =
⟨x | {x = t.(a+ τ.x)}⟩ is not guarded, yet satisfies P t−→ P ′ := a+ τ.P and θ∅(P) ↔

br θ∅(P ′),
while θ{a}(P) ↮

br θ{a}(P ′). Even if we write P as τ{b}(⟨x | {x = t.(a+ b.x)}⟩ it fails to be
strongly guarded. This restriction was kept because being more precise is very challenging.
For instance, the equation x = t.(a + τ.x) + t.a has multiple solutions: the default one,
⟨x | {x = t.(a + τ.x) + t.a + t.(a + t.b)}⟩ and others. Notice that adding a branch t.a

to an equation with one solution can lead to it having multiple ones. Intuitively, there
are situations where time-out contraction enables to hide the existence of other time-outs.
Characterising these situations requires the use of semantic conditions that are difficult to
verify, thus, making them undesirable. Moreover, applying the Pohlmann encoding to the
processes in order to, then, use the axiomatisation of ↔r

tb leads to the similar complications.
This limitation deserves to be studied properly because it will appear for all bisimilarities
authorising time-out contraction.

G. Reghem and R. J. van Glabbeek 36:13

5.2 Axioms and Soundness
The set of axioms provided is composed of the axiomatisation of ↔

r [11], together with three
branching axioms. The branching axiom is well-known since it is used in the axiomatisation
of rooted branching bisimilarity [13]. The t-branching axiom and the τ/t-branching axiom are
newly introduced; they are the adaptation of the branching axiom to time-out contraction.

Table 3 Axiomatisation of ↔r
br and ↔r

tb.

x+ (y + z) = (x+ y) + z τI(x+ y) = τI(x) + τI(y) R(x+ y) = R(x) + R(y)

x+ y = y + x τI(α.x) = α.τI(x) if α ̸∈ I R(τ.x) = τ.R(x)

x+ x = 0 τI(α.x) = τ.τI(x) if α ∈ I R(t.x) = t.R(x)

x+ 0 = x R(a.x) =
∑

{b|R(a,b)} b.R(x)

Expansion Theorem: if P =
∑
i∈I

αi.Pi and Q =
∑
j∈J

βj .Qj then

P ∥S Q =
∑

i∈I,αi ̸∈S

(αi.Pi ∥S Q) +
∑

j∈J,βj ̸∈S

(P ∥S βj .Qj) +
∑

i∈I,j∈J,αi=βj ∈S

αi.(Pi ∥S Qj)

α.(τ.(x+ y) + x) = α.(x+ y) (Branching Axiom)
α.(t.(x+

∑
i∈I

t.yi) + x) = α.(x+
∑

i∈I
t.yi) (t-Branching Axiom)

α.(τ.(x+ y) + t.(x+ y) + x) = α.(x+ y) (τ/t-Branching Axiom)
⟨x|S⟩ = ⟨Sx|S⟩ (RDP) S ⇒ x = ⟨x|S⟩ with S well-guarded (RSP)

θU
L (

∑
i∈I

αi.xi) =
∑

i∈I
αi.xi (∀i ∈ I, αi ̸∈ L ∪ {τ})

θU
L (x+ α.y + β.z) = θU

L (x+ α.y) (α ∈ L ∪ {τ} ∧ β ̸∈ U ∪ {τ})

θU
L (x+ α.y + β.z) = θU

L (x+ α.y) + θU
L (β.z) (α ∈ L ∪ {τ} ∧ β ∈ U ∪ {τ})

θU
L (α.x) = α.x (α ̸= τ)

θU
L (τ.x) = τ.θU

L (x)

ψX(x+ α.y) = ψX(x) + α.y (α ̸∈ X ∪ {τ, t})

ψX(x+ α.y + t.z) = ψX(x+ α.y) (α ∈ X ∪ {τ})

ψX(x+ α.y + β.z) = ψX(x+ α.y) + β.z (α, β ∈ X ∪ {τ})

ψX(α.x) = α.x (α ̸= t)

ψX(
∑

i∈I
t.yi) =

∑
i∈I

t.θX(yi)

(∀X ⊆ A, ψX(x) = ψX(y)) ⇒ x = y (Reactive Approximation Axiom)

Let Ax∞ be the set of all axioms in the first two rectangles in Table 3 and Ax :=
Ax∞ \ {RDP,RSP}. Let Ax∞

r be the set of all axioms in Table 3 except the τ/t-branching
one and Axr := Ax∞

r \{RDP,RSP}. The τ/t-branching axiom is removed from Ax∞
r because

the law Lτ : τ.x + t.y = τ.x can be derived from the reactive approximation axiom [11],
and applying Lτ to the branching axiom yields the τ/t-branching axiom, thus making it
redundant.

▶ Proposition 23. Let P,Q be two CCSPθ
t processes.

If Ax∞ ⊢ P = Q then P ↔r
tbQ.

If Ax∞
r ⊢ P = Q then P ↔r

brQ.

Proof. Since ↔r
br and ↔r

tb are congruences, it suffices to prove that each axiom is sound,
meaning that replacing, in each axiom, = by the desired bisimilarity and each variable by
a process produces a true statement. Most of these axioms were proven to be sound for
the classical notion ↔ of strong bisimilarity [17] in [11]. Thus, since both ↔r

br and ↔r
tb are

included in ↔, most of them are sound for ↔r
br and ↔r

tb.

CONCUR 2024

36:14 Branching Bisimilarity for Processes with Time-Outs

Only the branching axioms, RSP and the reactive approximation axiom remain to be
proven sound. The soundness of the branching axioms is trivial and the soundness of RSP
is exactly Proposition 21. For the reactive approximation axiom, it suffices to show that
B := ↔r

br ∪{(P,Q), (Q,P) | ∀X ⊆ A,ψX(P) ↔r
br ψX(Q)} is a rooted branching time-out

bisimulation, as done in [20, Appendix L]. ◀

5.3 Completeness

A well-known feature of most process algebras is that the standard collection of axioms
allows one to bring any guarded process expression in the following normal form [1, 4].

▶ Definition 24. Let P be a guarded CCSPθ
t process. The head-normal form of P is

P̂ :=
∑

{(α,Q)|P
α−→Q}

α.Q.

In [11], it is proven that the axiomatisation of ↔
r enables one to equate any guarded process

with its head-normal form (using a definition of guardedness that is more liberal than the one
employed here, with τ and t allowed as guards). Since the axiomatisation of ↔

r is included
in Ax∞ and Ax∞

r , this yields the property for them as well.

▶ Lemma 25. Let P be a guarded CCSPθ
t process. Then Ax∞ ⊢ P = P̂ and Ax∞

r ⊢ P = P̂ .
Moreover, Ax or Axr are sufficient if P is recursion-free.

This lemma is used extensively in the proof of the following completeness results.

▶ Proposition 26. Let P,Q be two recursion-free CCSPθ
t processes. If P ↔

br Q (resp.
P ↔tbQ) then, for all α ∈ Act, Axr ⊢ α.P̂ = α.Q̂ (resp. Ax ⊢ α.P̂ = α.Q̂).

Proof. The depth d(p) of a process P is the length of the longest path starting from P . Note
that it is properly defined for recursion-free processes only. The proof proceeds by induction
on max(d(P), d(Q)). The technique is fairly standard and the details can be found in [20,
Appendix M]. ◀

▶ Theorem 27. Let P,Q be two recursion-free CCSPθ
t processes. If P ↔r

brQ (resp. P ↔r
tbQ)

then Axr ⊢ P = Q (resp. Ax ⊢ P = Q).

Proof. It suffices to express both processes in their head-normal form and then to equate
each pair of matching branches using Proposition 26. Details are in [20, Appendix M]. ◀

The following theorem lifts this result for ↔r
tb from finite (recursion-free) processes to arbitrary

(infinite) ones, subject to the restriction of strong guardedness.

▶ Theorem 28. Let P,Q be strongly guarded CCSPθ
t processes.

If P ↔r
tbQ then Ax∞ ⊢ P = Q.

Proof. A well-known technique called equation merging can be applied. Details can be found
in [20, Appendix N]. ◀

G. Reghem and R. J. van Glabbeek 36:15

5.4 Canonical Representative
Unfortunately, equation merging does not work on reactive bisimulations [11]. Thus, another
technique is used [14, 16], called canonical representatives. The idea is to build the simplest
process for each equivalence class of ↔r

br and use them as intermediary to equate processes.
Let us denote with Pg the strongly guarded fragment of P. For all P ∈ Pg, [P] := {Q ∈

Pg | P ↔
brQ} is the ↔

br-equivalence class of P . [Pg] denotes the set of all ↔
br-equivalence

classes. Using the axiom of choice, a choice function χ : [Pg] → Pg can be defined such that
∀R ∈ [Pg], χ(R) ∈ R. A transition relation can be defined between ↔

br-equivalence classes:

∀α ∈ Aτ , (R
α−→ R′ ⇔ χ(R) =⇒ P1

α−→ P2 ∧ P1 ∈ R ∧ P2 ∈ R′ ∧ (α ∈ A ∨R ̸= R′))

R
t−→ R′ ⇔ ∃X ⊆A, r > 0, χ(R) =⇒ P1

t−→ P2 =⇒ P3
t−→ ... =⇒ P2r−1

t−→ P2r

∧ ∀i ∈ [0, r−1], θX(P2i) ∈ [θX(χ(R))] ∧ I(P2i+1) ∩ (X ∪ {τ}) = ∅
∧ P1 ∈ R ∧ P2r ∈ R′ ∧ [θX(χ(R))] ̸= [θX(χ(R′))]

All bisimulations can be extended to ↔
br-equivalence classes. It suffices to consider the set

of states Pg ⊎ [Pg] ⊎ {θX([P]) | X ⊆ A ∧ P ∈ Pg}.

▶ Proposition 29. Let P ∈ Pg, P ↔
br [P].

Proof. It suffices to prove that B:= {(P, [P]), ([P], P) | P ∈ Pg} is a branching time-out
bisimulation up to ↔

br. Details can be found in [20, Appendix O]. ◀

▶ Definition 30. Let P,Q ∈ Pg, the canonical representative of P and Q is a recursive
specification S such that VS := {xP , xQ} ∪ {xR | R ∈

⋃
P ′∈Reach(P)∪Reach(Q) Reach([P ′])},

and ∀R ∈
⋃

P ′∈Reach(P)∪Reach(Q) Reach([P ′]),

SxP
:=

∑
{(α,P ′)|P

α−→P ′}

α.x[P ′] ; SxQ
:=

∑
{(α,Q′)|Q

α−→Q′}

α.x[Q′] and SxR
:=

∑
{(α,R′)|R

α−→R′}

α.xR′

The canonical representative is well-defined since P , Q, as well as processes [P ′] ∈ [Pg]
are finitely branching [11]. Additionally,

⋃
P ′∈Reach(P)∪Reach(Q) Reach([P ′]) is countable.

Moreover, S is strongly guarded. Furthermore, by construction ⟨xR|S⟩ ↔ R for all R ∈⋃
P ′∈Reach(P)∪Reach(Q) Reach([P ′]).

▶ Proposition 31. Let P,Q ∈ Pg and S be the canonical representative of P and Q,
Ax∞

r ⊢ P = ⟨xP |S⟩.

Proof. It suffices to show that P and ⟨xP |S⟩ are yP -components of solutions of {yP † =∑
{(α,P ‡)|P †

α−→P ‡}
α.yP ‡ | P † ∈ Reach(P)}. Details can be found in [20, Appendix P]. ◀

▶ Theorem 32. Let P,Q ∈ Pg, if P ↔r
brQ then Ax∞

r ⊢ P = Q.

Proof. It suffices to equate ⟨xP |S⟩ and ⟨xQ|S⟩ using RDP and the reactive approximation
axiom. Details can be found in [20, Appendix P]. ◀

Conclusion

This paper defined a form of branching bisimilarity for processes with time-out transitions,
and provided a modal characterisation, congruence results, and a complete axiomatisation
for strongly guarded processes. The restriction to strongly guarded processes is rather

CONCUR 2024

36:16 Branching Bisimilarity for Processes with Time-Outs

severe; it rules out processes that may engage in an infinite sequence of time-out transitions,
interspersed with τs. Relaxing this restriction is a suitable topic for further work. Another
task is to combine this work with the ideas behind justness [12], a weaker form of fairness
that allows the formulation and derivation of useful liveness properties. In a setting with
time-outs, justness would demand that once a parallel component reaches a state in which a
time-out transition is enabled, it cannot stay in that state forever after.

As an example of the use of branching reactive bisimulation, one could verify the
correctness of a non-trivial system, such as Peterson’s mutual exclusion protocol, as modelled
in [10]. There it was argued that a similar model without time-out transitions is not possible.
The model from [10] features eight visible actions of entering or leaving the critical or non-
critical section of process A or B. Abstracting from all actions pertaining to process B yields
a protocol that only deals with process A, and a correctness claim could be validated by
showing it branching reactive bisimilar with a simple specification of the intended behaviour
of A that would apply when B were not around. Although doing such a verification is
entirely feasible, for now, it can not be achieved by algebraic means, using our complete
axiomatisation. The reason is that abstraction from process B yields infinite sequences of
unobservable actions, which are currently not covered by our work.

References
1 Jos C.M. Baeten and W. Peter Weijland. Process Algebra. Cambridge Tracts in Theoretical

Computer Science 18. Cambridge University Press, 1990. doi:10.1017/CBO9780511624193.
2 Stephen D. Brookes, Tony (C.A.R.) Hoare, and Bill (A.W.) Roscoe. A theory of communicating

sequential processes. Journal of the ACM, 31(3):560–599, 1984. doi:10.1145/828.833.
3 Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.

de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 toolset for
analysing concurrent systems—improvements in expressivity and usability. In Tomáš Vojnar
and Lijun Zhang, editors, Proc. 25th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’19, held as part of the European Joint
Conferences on Theory and Practice of Software, ETAPS’19, Prague, Czech Republic, volume
11428 of LNCS, pages 21–39. Springer, 2019. doi:10.1007/978-3-030-17465-1_2.

4 Wan J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science, An
EATCS Series. Springer, 2000. doi:10.1007/978-3-662-04293-9.

5 Wan J. Fokkink, Rob J. van Glabbeek, and Bas Luttik. Divide and congruence III: From
decomposition of modal formulas to preservation of stability and divergence. Information and
Computation, 268:104435, 2019. doi:10.1016/j.ic.2019.104435.

6 Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2010: A
toolbox for the construction and analysis of distributed processes. In Parosh Aziz Abdulla
and K. Rustan M. Leino, editors, Proceedings Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’11, volume 6605 of LNCS, pages 372–387. Springer, 2011.
doi:10.1007/978-3-642-19835-9_33.

7 Rob J. van Glabbeek. The linear time – branching time spectrum II; the semantics of sequential
systems with silent moves (extended abstract). In E. Best, editor, Proceedings CONCUR’93,
4th International Conference on Concurrency Theory, Hildesheim, Germany, August 1993,
volume 715 of LNCS, pages 66–81. Springer, 1993. doi:10.1007/3-540-57208-2_6.

8 Rob J. van Glabbeek. Lean and full congruence formats for recursion. In Proceedings 32nd

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’17, Reykjavik, Iceland,
June 2017. IEEE Computer Society Press, 2017. doi:10.1109/LICS.2017.8005142.

9 Rob J. van Glabbeek. Failure trace semantics for a process algebra with time-outs. Logical
Methods in Computer Science, 17(2), 2021. doi:10.23638/LMCS-17(2:11)2021.

10 Rob J. van Glabbeek. Modelling mutual exclusion in a process algebra with time-outs.
Information and Computation, 294, 2023. doi:10.1016/j.ic.2023.105079.

https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1145/828.833
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1016/j.ic.2019.104435
https://doi.org/10.1007/978-3-642-19835-9_33
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1109/LICS.2017.8005142
https://doi.org/10.23638/LMCS-17(2:11)2021
https://doi.org/10.1016/j.ic.2023.105079

G. Reghem and R. J. van Glabbeek 36:17

11 Rob J. van Glabbeek. Reactive bisimulation semantics for a process algebra with timeouts.
Acta Informatica, 60(1):11–57, 2023. doi:10.1007/s00236-022-00417-1.

12 Rob J. van Glabbeek and Peter Höfner. Progress, justness and fairness. ACM Computing
Surveys, 52(4), August 2019. doi:10.1145/3329125.

13 Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3):555–600, 1996. doi:10.1145/233551.233556.

14 Clemens Grabmayer and Wan J. Fokkink. A complete proof system for 1-free regular expressions
modulo bisimilarity. In H. Hermanns, L. Zhang, N. Kobayashi, and D. Miller, editors, Proc.
35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’20, pages 465–478.
ACM, 2020. doi:10.1145/3373718.3394744.

15 Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985. doi:10.1145/2455.2460.

16 Xinxin Liu and Tingting Yu. Canonical solutions to recursive equations and completeness of
equational axiomatisations. In I. Konnov and L. Kovacs, editors, Proceedings 31st International
Conference on Concurrency Theory (CONCUR 2020), volume 171 of Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CONCUR.2020.35.

17 Robin Milner. Operational and algebraic semantics of concurrent processes. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 19, pages 1201–1242.
Elsevier Science Publishers B.V. (North-Holland), 1990. Alternatively see Communication and
Concurrency, Prentice-Hall, Englewood Cliffs, 1989, of which an earlier version appeared as A
Calculus of Communicating Systems, LNCS 92, Springer, 1980, doi:10.1007/3-540-10235-3.

18 Ernst-Ruediger Olderog and Tony (C.A.R.) Hoare. Specification-oriented semantics for
communicating processes. Acta Informatica, 23:9–66, 1986. doi:10.1007/BF00268075.

19 Maximilian Pohlmann. Reducing strong reactive bisimilarity to strong bisimilarity. Bach-
elor’s thesis, Technische Universität Berlin, 2021. URL: https://maxpohlmann.github.io/
Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf.

20 Gaspard Reghem and Rob J. van Glabbeek. Branching bisimilarity for processes with time-outs.
technical report, full version of the present paper, 2024. arXiv:2408.10117.

21 Gaspard Reghem and Rob J. van Glabbeek. Concrete branching bisimilarity for processes
with time-outs, 2024. URL: https://theory.stanford.edu/~rvg/abstracts.html#167.

A Examples

Scope of the First Clause of Definition 1

P0

P1P2

P3 Q0

T0 U0

R0 S0

Q1 R1 S1

τ

a

a

τ

t
b

a b

τ a b

Figure 2 Counter-Example to a Naive Clause 1.a.

In Figure 2, the process a.0 + τ.(t.b.0 + a.b.0) + τ.(τ.a.b.0 + a.0) is represented as an LTS.
Let A := {a, b}. Removing the dashed a-transition generates the process τ.(t.b.0 + a.b.0) +
τ.(τ.a.b.0 + a.0).

CONCUR 2024

https://doi.org/10.1007/s00236-022-00417-1
https://doi.org/10.1145/3329125
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/3373718.3394744
https://doi.org/10.1145/2455.2460
https://doi.org/10.4230/LIPIcs.CONCUR.2020.35
http:dx.doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BF00268075
https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf
https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf
https://arxiv.org/abs/2408.10117
https://theory.stanford.edu/~rvg/abstracts.html#167

36:18 Branching Bisimilarity for Processes with Time-Outs

First, we are going to show that these two processes are not branching reactive bisimilar.
Let’s try to build a branching reactive bisimulation between them. The only way to match
the dashed a-transition of a.0+τ.(t.0+a.b.0)+τ.(τ.a.b.0+a.0) is by the a-transition between
P1 and P2, because all other a-transitions are followed by a b-transition. This requires to
elide the τ -transition between P0 and P1, who must be branching reactive bisimilar. Since
P0 ↔

brP1, when considering the τ -transition between P0 and Q0, Q0 has to be branching
reactive bisimilar to P1 or Q1. Now, the a-transition between Q0 and R0 has to be matched
by the a-transition between Q1 and R1 because of the following b-transition. This implies
Q0 ↔

brQ1, thus, Q0 ↔∅
brQ1. One has I(Q0) ∩ (∅ ∪ {τ}) = ∅ and Q0

t−→ T0, i.e., when the
environment temporary allows no visible actions, Q0 can time-out into a state in which b is
possible. This behaviour cannot be matched by Q1 – a contradiction.

Now, consider the alternative to Definition 1 in which the first clause has been changed to
1. a. if P τ−→ P ′ then there is a path Q =⇒ Q1

(τ)−−→ Q2 with R(P,Q1) and R(P ′, Q2).
In other words, the scope of the first clause is restricted to τ -transitions. This modification
enables building a bisimulation between the two processes. Indeed, the dashed a-transition
is only considered when the environment allows a. Thus, it is sufficient to get P0 ↔A

br P1

and P0 ↔{a}
br P1 and not P0 ↔

br P1 anymore. Therefore, it is sufficient to match Q0 and
Q1 in environments allowing a. As a result, the outgoing time-out transition of Q0 is never
considered when matching Q0 with Q1, solving our previous issue. Once this observation is
made, building the bisimulation is trivial.

Finally, place both processes in the context __ ∥{a} (τ.0 + a.0). It behaves like a one-way
switch enabling to block all a-transitions forever as soon as the τ -transition is performed.
Let’s try to build a branching reactive bisimulation between the two processes. Following the
same reasoning as before, it is necessary to get P0 ∥{a} (τ.0 + a.0) ↔A

br P1 ∥{a} (τ.0 + a.0)
because of the dashed a-transition, and then Q0 ∥{a} (τ.0 + a.0) ↔A

br Q1 ∥{a} (τ.0 + a.0)
because of the a-transition between Q0 and R0. Note that Q0 ∥{a} (τ.0 + a.0) τ−→ Q0 ∥{a} 0
t−→ T0 ∥{a} 0 b−→ U0 ∥{a} 0 and I(Q0 ∥{a} 0) ∩ (A ∪ {τ}) = ∅. As before, Q0 ∥{a} (τ.0 + a.0)
can time-out into a state in which b is executable, whereas this behaviour is impossible in
Q1 ∥{a} (τ.0 + a.0). As a result, restricting the scope of the first clause of Definition 1 to
τ -transitions prevents ↔

br from being a congruence for parallel composition.

Necessity of the Stability Respecting Clause

P0 P2

P1

P3t

a

a

Q0 Q2 Q′
2

Q1

Q3t

a

τ

τ

a

R0 R2 R′
2

R1

t

a

τ

τ

Figure 3 Counter-Example to the Absence of a Stability Respecting Clause.

In Figure 3, three processes are represented as LTSs. Take A := {a}. According to Definition 1,
¬(P0 ↔

brQ0) and Q0 ↔
brR0.

G. Reghem and R. J. van Glabbeek 36:19

Let’s try to build a branching reactive bisimulation between the top-left and bottom
processes. Matching the time-out between Q0 and Q2 implies that Q2 ↔∅

brP0 or Q2 ↔∅
brP2.

However, P0 ̸τ−→ and P2 ̸τ−→, thus, there should be a path Q2 =⇒ Q′
2 ̸τ−→, but this is not the

case.
The symmetric closure of

R := {(Q0, R0), (Q1, R1), (Q2, ∅, R2), (Q′
2, ∅, R′

2)} ∪ {(Q0, X,R0), (Q1, X,R1) | X ⊆ A}

is a branching reactive bisimulation. The a-transition between Q′
2 and Q3 does not have to

be matched since Q′
2 is considered only when the environment disallows a.

Now, suppose that the stability respecting condition is removed from Definition 1. As
a result, a branching reactive bisimulation can be built between the top-left and bottom
processes. The symmetric closure of

R′ :={(P0, Q0), (P1, Q1), (P2, Q2), (P2, Q
′
2), (P3, Q3)}

∪ {(P0, X,Q0), (P1, X,Q1), (P2, X,Q2), (P2, X,Q
′
2), (P3, X,Q3) | X ⊆ A}

would be a branching reactive bisimulation. Moreover, R would still be a branching reactive
bisimulation, since Definition 1 has merely been weakened. Therefore, according to the
modified Definition 1, P0 ↔

br Q0 and Q0 ↔
br R0. However, when trying to construct a

branching reactive bisimulation between P0 and R0, because of the time-out transition, R2 has
to be matched to P0 or P2 and no a-transition is reachable from R2; therefore, ¬(P0 ↔

brR0).
As a result, removing the stability respecting clause from Definition 1 prevents ↔

br from
being an equivalence relation.

B Concrete Time-out Version

Before studying ↔
br, we looked at another version which is not eliding any time-out transitions.

More formally, it is defined by replacing Clause 2.d of Definition 1 by
2. d. if I(P) ∩ (X ∪ {τ}) = ∅ and P

t−→ P ′ then there exists a path Q =⇒ Q1
t−→ Q2 with

R(P ′, X,Q2).
It is not necessary to require to match with an executable time-out (i.e. I(Q1)∩(X∪{τ}) = ∅)
since this is implied by the other clauses. It is also implied that R(P,X,Q1) in the above
clause. This bisimilarity has properties similar to ↔

br, to be recapped below. No proof will
be provided here since they rely on the same strategies and are actually simpler because
of the absence of time-out omission. However, a technical report [21] is available. In the
remainder of this appendix, ↔c

br stands for the concrete time-out version.
The stuttering lemma (Lemma 3) still holds and ↔c

br and (↔cX
br)X⊆A are still equivalence

relations (Proposition 4). The rooted version of ↔c
br is exactly Definition 5 and ↔r

br and
(↔rX

br)X⊆A are still equivalence relations (Proposition 6). The Pohlmann encoding (Table 4)
is simplified as the rooted variants are no longer needed: P ↔cr

br Q ⇔ ϑ(P) ↔r
b ϑ(Q).

If ↔
b stands for the classical stability respecting branching bisimulation [13, 7], P ↔c

br

Q ⇔ ϑ(P) ↔
b ϑ(Q); P ↔cX

br Q ⇔ ϑX(P) ↔
b ϑX(Q); P ↔cr

br Q ⇔ ϑ(P) ↔r
b ϑ(Q) and

P ↔crX
br Q ⇔ ϑX(P) ↔r

b ϑX(Q).
The generalised definition of ↔c

br can be obtained by replacing Clause 1.b. and 2.c. in
Definition 33 by
1. b. If I(P) ∩ (X ∪ {τ}) = ∅ and P

t−→ P ′ then there exists a path Q =⇒ Q1
t−→ Q2 with

R(P ′, X,Q2)
2. c. If I(P) ∩ (X ∪ Y ∪ {τ}) = ∅ and P

t−→ P ′ then there exists a path Q =⇒ Q1
t−→ Q2

with R(P ′, Y,Q2)

CONCUR 2024

36:20 Branching Bisimilarity for Processes with Time-Outs

The rooted generalised version is exactly Definition 34 and they induce the same bisimilarities
as the previous definitions (Proposition 35). In the modal characterisation, Xφ is not useful
anymore, nor φ⟨εX⟩φ′. Replacing the fifth induction rule of Lb by ⟨ε⟩⟨tX⟩φ yields the
counterpart of Theorem 11.

The corresponding time-out bisimulation can be obtained by replacing Clause 2. of
Definition 13 by
2. if I(P) ∩ (X ∪ {τ}) = ∅ and P

t−→ P ′ then there exists a path P =⇒ P1
t−→ P2 with

θX(P ′) B θX(Q2).
The rooted time-out bisimulation is exactly Definition 14 and they agree with the previ-
ous definitions (Proposition 15). ↔c

br is a congruence for prefixing, parallel composition,
abstraction, renaming and the operator θU

L (Proposition 17). ↔cr
br is a full congruence

(Theorem 18).
As ↔cr

br ⊆ ↔, RDP holds for ↔cr
br. The definition of well-guarded recursion can be

weakened by allowing t as a guard and RSP holds for ↔cr
br on processes that are guarded

in this sense. Lemma 22 is not useful anymore since time-out omissions are not considered.
The set of all axioms of Table 3 except the t-branching and τ/t-branching ones is a complete
axiomatisation of ↔c

br (Theorem 32). Moreover, to obtain the complete axiomatisation of
↔c

br on recursion-free processes, it suffices to remove RDP and RSP.

C Generalised branching reactive bisimulation

The second clause of Definition 1 is quite tedious to check; thus, an equivalent definition of
the bisimilarity would be useful. Actually, it is possible to define the exact same notion in a
more general way at the cost of some clear motivations.

▶ Definition 33. A generalised branching reactive bisimulation is a symmetric relation
R ⊆ (P × P) ∪ (P × P(A) × P) such that, for all P,Q ∈ P and X ⊆ A,
1. if R(P,Q)

a. if P α−→ P ′ with α ∈ Aτ then there is a path Q =⇒ Q1
(α)−−→ Q2 with R(P,Q1) and

R(P ′, Q2),
b. if I(P) ∩ (X ∪ {τ}) = ∅ and P

t−→ P ′ then there is a path Q = Q0 =⇒ Q1
t−→

Q2 =⇒ Q3
t−→ ... =⇒ Q2r−1

(t)−→ Q2r with r > 0, such that Q1 ̸τ−→, ∀i ∈ [1, r−1],
R(P,X,Q2i) ∧ I(Q2i+1) ∩ (X ∪ {τ}) = ∅ and R(P ′, X,Q2r),

c. if P ̸τ−→ then there exists a path Q =⇒ Q0 ̸τ−→;
2. if R(P,X,Q)

a. if P τ−→ P ′ then there is a path Q =⇒ Q1
(τ)−−→ Q2 with R(P,X,Q1) and R(P ′, X,Q2),

b. if P a−→ P ′ with a ∈ X ∨ I(P) ∩ (X ∪ {τ}) = ∅ then there is a path Q =⇒ Q1
a−→ Q2

with R(P,X,Q1) and R(P ′, Q2),
c. if I(P) ∩ ((X ∪ Y) ∪ {τ}) = ∅ and P

t−→ P ′ then there is a path Q = Q0 =⇒ Q1
t−→

Q2 =⇒ Q3
t−→ ... =⇒ Q2r−1

(t)−→ Q2r with r > 0, such that Q1 ̸τ−→, ∀i ∈ [1, r−1],
R(P, Y,Q2i) ∧ I(Q2i+1) ∩ (Y ∪ {τ}) = ∅ and R(P ′, Y,Q2r),

d. if P ̸τ−→ then there is a path Q =⇒ Q0 ̸τ−→.
The strong point of the generalised definitions is the restriction on the use of triplets, making
use of them only after performing a time-out. A generalised version of rooted branching
reactive bisimulation can be defined in a similar fashion.

G. Reghem and R. J. van Glabbeek 36:21

▶ Definition 34. A generalised rooted branching reactive bisimulation is a symmetric relation
R ⊆ (P × P) ∪ (P × P(A) × P) such that, for all P,Q ∈ P and X ⊆ A,
1. if R(P,Q)

a. if P α−→ P ′ with α ∈ Aτ then there is a transition Q
α−→ Q′ such that P ′ ↔

brQ
′,

b. if I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′ then there is a transition Q t−→ Q′ with P ′ ↔X
brQ

′,
2. if R(P,X,Q)

a. if P τ−→ P ′ then there is a transition Q
τ−→ Q′ such that P ′ ↔X

brQ
′,

b. if P a−→ P ′ with a ∈ X ∨ I(P) ∩ (X ∪ {τ}) = ∅ then there is a transition Q
a−→ Q′ such

that P ′ ↔
brQ

′,
c. if I(P) ∩ ((X ∪Y) ∪ {τ}) = ∅ and P t−→ P ′ then there is a transition Q t−→ Q′ such that
P ′ ↔Y

brQ
′.

Note that if a system has no time-out, then a generalised [rooted] branching reactive
bisimulation is a stability respecting [rooted] branching bisimulation, thus proving that
[rooted] branching reactive bisimilarity is indeed an extension of stability respecting [rooted]
branching bisimilarity to reactive systems with time-outs.

▶ Proposition 35. Let P,Q ∈ P and X ⊆ A,
P ↔

brQ (resp. P ↔X
brQ) iff there exists a generalised branching reactive bisimulation R

with R(P,Q) (resp. R(P,X,Q)),
P ↔r

brQ (resp. P ↔rX
br Q) iff there exists a rooted generalised branching reactive bisimu-

lation R with R(P,Q) (resp. R(P,X,Q)).

Proof. It suffices to verify that any [rooted] branching reactive bisimulation is a [rooted]
generalised branching reactive bisimulation and that, for any [rooted] generalised branching
reactive bisimulation R, R′ := R ∪ {(P,X,Q) | R(P,Q) ∧ X ⊆ A} ∪ {(P, Y,Q), (P,Q) |
∃X ⊆ A, R(P,X,Q) ∧ (I(P) ∪ I(Q)) ∩ (X ∪ {τ}) = ∅ ∧ Y ⊆ A} is a [rooted] branching
reactive bisimulation. Details can be found in [20, Appendix C]. ◀

D Pohlmann Encoding

Reactive bisimulations are sometimes complicated to check because of the large number of
potential sets of allowed actions. In [19], Pohlmann introduces an encoding which reduces
strong reactive bisimilarity to strong bisimilarity. To this end he introduces unary operators
ϑ and ϑX for X ⊆ A that model placing their argument process in an environment that is
triggered to change, or allows exactly the actions in X, respectively. The actions tε /∈ A and
εX /∈ A for X ⊆ A are generated by the new operators, but may not be used by processes
substituted for their arguments P . They model a time-out action taken by the environment,
and the stabilisation of an environment into one that allows exactly the set of actions X,
respectively. After a slight modification of the encoding, a similar result can be obtained
for branching reactive bisimilarity. We also introduce variants ϑr and ϑr

X of these operators
that are targeting rooted branching reactive bisimilarity.

In [19], the first rule only applies to τ -transitions; this echoes the previous remark about
applying the first clause of Definition 1 only to invisible actions. As the intermediary actions
tε and (εX)X⊆A interfere with rootedness, the actions (tX)X⊆A are added when rootedness
has to be preserved. One can think of these as doing the actions εX and t in one (instead of
two) steps. Note that the encoding rules mirror the clauses of Definition 1. The encoding
transforms ↔

br into ↔tb (see Definition 7), and ↔r
br in ↔r

tb (Definition 8).

CONCUR 2024

36:22 Branching Bisimilarity for Processes with Time-Outs

Table 4 Operational semantics of ϑ, ϑr, (ϑX)X⊆A and (ϑr
X)X⊆A.

ϑ(P) α−→ ϑ(P ′) ∧ ϑr(P) α−→ ϑ(P ′) ⇔ P
α−→ P ′ ∧ α ∈ Aτ

ϑr(P) tX−−→ ϑX(P ′) ⇔ I(P) ∩ (X ∪ {τ}) = ∅ ∧ P
t−→ P ′

ϑ(P) εX−−→ ϑX(P) ∧ ϑr(P) εX−−→ ϑX(P)
ϑX(P) τ−→ ϑX(P ′) ∧ ϑr

X(P) τ−→ ϑX(P ′) ⇔ P
τ−→ P ′

ϑX(P) a−→ ϑ(P ′) ∧ ϑr
X(P) a−→ ϑ(P ′) ⇔ P

a−→ P ′ ∧ α ∈ X

ϑX(P) tε−→ ϑ(P) ∧ ϑr
X(P) tε−→ ϑr(P) ⇔ I(P) ∩ (X ∪ {τ}) = ∅

ϑX(P) t−→ ϑX(P ′) ∧ ϑr
X(P) t−→ ϑX(P ′) ⇔ I(P) ∩ (X ∪ {τ}) = ∅ ∧ P

t−→ P ′

▶ Proposition 36. Let P,Q ∈ P.
P ↔

brQ ⇔ ϑ(P) ↔tbϑ(Q)
P ↔r

brQ ⇔ ϑr(P) ↔r
tbϑ

r(Q)
P ↔X

brQ ⇔ ϑX(P) ↔tbϑX(Q)
P ↔rX

br Q ⇔ ϑr
X(P) ↔r

tbϑ
r
X(Q)

Proof. It suffices to prove that: if R is a branching reactive bisimulation then R′ :=
{(ϑ(P), ϑ(Q)) | R(P,Q)} ∪ {(ϑX(P), ϑX(Q)) | R(P,X,Q)} is a t-branching bisimulation;
and if R is a t-branching bisimulation then R′ := {(P,Q), (P,X,Q)|R(ϑ(P), ϑ(Q)) ∧ X ⊆
A} ∪ {(P,X,Q)|R(ϑX(P), ϑX(Q))} is a branching reactive bisimulation. The rooted case is
very similar. Details can be found in [20, Appendix D]. ◀

It would have been possible to define the t-branching bisimilarity differently while preserving
the same result. The encoded processes are part of a sub-class with specific properties. For
instance, an encoded process cannot have an outgoing τ -transition and an outgoing time-out
by definition of ϑ and (ϑX)X⊆A, i.e., for any encoded process P , P t−→ ⇒ P ̸τ−→. Thus, adding
the condition ∀i ∈ [0, r − 1], Q2i+1 ̸τ−→ in clause 2 of Definition 7 does not interfere with our
result even though it obviously defines a different bisimilarity. We settled on Definition 7
because it is the one that yields the simplest proofs.

A Spectrum of Approximate Probabilistic
Bisimulations
Timm Spork #

Technische Universität Dresden, Dresden, Germany

Christel Baier #

Technische Universität Dresden, Dresden, Germany

Joost-Pieter Katoen #

RWTH Aachen University, Aachen, Germany

Jakob Piribauer #

Technische Universität Dresden, Dresden, Germany
Universität Leipzig, Leipzig, Germany

Tim Quatmann #

RWTH Aachen University, Aachen, Germany

Abstract
This paper studies various notions of approximate probabilistic bisimulation on labeled Markov
chains (LMCs). We introduce approximate versions of weak and branching bisimulation, as well as
a notion of ε-perturbed bisimulation that relates LMCs that can be made (exactly) probabilistically
bisimilar by small perturbations of their transition probabilities. We explore how the notions
interrelate and establish their connections to other well-known notions like ε-bisimulation.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Random walks and Markov chains

Keywords and phrases Markov chains, Approximate bisimulation, Abstraction, Model checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.37

Related Version Full Version: http://arxiv.org/abs/2407.07584

Funding Christel Baier, Jakob Piribauer and Timm Spork: This work was partly funded by the
DFG Grant 389792660 as part of TRR 248 (Foundations of Perspicuous Software Systems) and the
Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence
Strategy).
Tim Quatmann: This research was funded by a KI-Starter grant from the Ministerium für Kultur
und Wissenschaft NRW.

Acknowledgements We thank the reviewers for their helpful feedback, comments and suggestions.
In particular, we thank the reviewer who pointed out the work in [31, 32] on approximate simulation
relations which we were previously not aware of.

1 Introduction

Probabilistic model checking is widely used for the automatic verification of probabilistic
models, like labeled Markov chains (LMC), against properties specified in (temporal) logics
like PCTL∗ [11]. In practice, a big obstacle is the state space explosion problem: the number
of states required to model a system can make its verification intractable [37, 11, 36].

To circumvent this issue, a well-established approach is the use of abstractions. For a
given LMC M, an abstraction A is a model derived from M that is (oftentimes) smaller
than M and preserves some properties of interest. Instead of verifying a formula on M, one
does so on A and afterwards transfers the result back to the original model [11, 27, 38].

© Timm Spork, Christel Baier, Joost-Pieter Katoen, Jakob Piribauer, and Tim Quatmann;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 37; pp. 37:1–37:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timm.spork@tu-dresden.de
https://orcid.org/0009-0008-4461-0667
mailto:christel.baier@tu-dresden.de
https://orcid.org/0000-0002-5321-9343
mailto:katoen@cs.rwth-aachen.de
https://orcid.org/0000-0002-6143-1926
mailto:jakob.piribauer@tu-dresden.de
https://orcid.org/0000-0003-4829-0476
mailto:tim.quatmann@cs.rwth-aachen.de
https://orcid.org/0000-0002-2843-5511
https://doi.org/10.4230/LIPIcs.CONCUR.2024.37
http://arxiv.org/abs/2407.07584
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 A Spectrum of Approximate Probabilistic Bisimulations

A prominent type of abstraction are probabilistic bisimulation quotients. They are
constructed w.r.t. probabilistic bisimulations, a class of behavioral equivalences introduced
by Larsen and Skou [41] as an extension of Milner’s bisimulation [43] to probabilistic
models. A probabilistic bisimulation is an equivalence R on the state space of an LMC
M that only relates states that behave exactly the same, i.e., that have the same local
properties, and transition to R-equivalence classes with equal probability. The coarsest
probabilistic bisimulation ∼, called (probabilistic) bisimilarity, is the union of all probabilistic
bisimulations in M [11]. The bisimilarity relation can be computed efficiently [9, 19, 48] and
preserves PCTL∗ state formulas [8, 33]. Since verifying PCTL∗ on bisimulation quotients
can significantly speed up the verification process [37], their use is a vital part of probabilistic
model checkers such as, e.g., Storm [34].

Other notions of behavioral equivalence are weak and branching probabilistic bisimulations
[42, 51, 10, 12, 18, 50], which were introduced with the intention to abstract from sequences of
internal actions or stutter steps a model can perform. Intuitively, these notions can abstract
from the possibility of a state to, for some time, only visit equally labeled states (weak) or
stay in its own equivalence class (branching) [35]. It is well-known that weak and branching
probabilistic bisimilarity, denoted ≈w and ≈b, respectively, coincide for LMCs [10], and that
they characterize satisfaction equivalence for a variant of PCTL∗ [24].

A problem with all of the above notions lies, however, in their lack of robustness against
errors in the transition probabilities. The requirement of related states to have exactly
the same transition probabilities to equivalence classes implies that even an infinitesimally
small perturbation of any of these probabilities can cause two bisimilar states to become
non-bisimilar, resulting in larger quotients [20, 52, 27]. This disadvantage was first observed
in [30], where the use of approximate notions of bisimulation is suggested for its mitigation.

The literature proposes various types of approximate bisimilarity, the most well-known
and well-studied one being ε-bisimilarity (∼ε) [25]. Other notions include approximate
probabilistic bisimilarity with precision ε (≡ε), or ε-APB for short [27, 1, 2], up-to-(n, ε)-
bisimilarity (∼n

ε) [25, 13], or ε-lumpability of a given LMC [17, 29, 28]. Here, we propose
definitions for approximate versions of weak (≈w

ε) and branching probabilistic bisimilarity
(≈b

ε). Similar notions have, to the best of our knowledge, only been discussed sporadically
in the context of noninterference under the term “weak bisimulation with precision ε”
[4, 7, 5, 6, 26, 3]. Moreover, we introduce ε-perturbed bisimilarity (≃ε) which relates two
LMCs if they can be made bisimilar by small perturbations of their transition probabilities.
Implicitly, this relation arises in the work [38] on a type of abstraction called ε-quotients.
With our definition, two LMCs are ε-perturbed bisimilar iff they have bisimilar ε-quotients.

All of the approximate notions have in common that they allow a small tolerance, say
ε > 0, in the transition probabilities of related states, but differ in the specifics of where
and how this tolerance is put to use. Broadly speaking, we can distinguish two groups of
relations: while ∼ε, ≡ε, ∼n

ε and ≈w
ε are additive in their tolerances and are closer to classic

process relations, the notions underlying ∼∗
ε and ≡∗

ε, denoting transitive ε-bisimilarity and
transitive ε-APB, respectively, as well as ≃ε and ≈b

ε are better suited for the construction of
abstractions since they are required to be equivalences. Collapsing the equivalence classes of
such a relation into single states yields quotient models, which in some cases are such that
formulas given in specific (fragments of) logics are (approximately) preserved between the
original LMC and its quotient. However, it turns out that requiring transitivity can cause
some unnatural behavior, like the possibility to distinguish probabilistically bisimilar LMCs
and a lack of additivity. Furthermore, the induced bisimilarity relations, which are again
defined as the union of all corresponding relations in the model M (e.g., ≈b

ε is the union of

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:3

Table 1 Overview of the notions of approximate bisimulation we consider and some of their
properties. Being suitable for “quotienting” is meant w.r.t. the underlying bisimulation relation.

Notion Symbol for Union Additive Quotienting
ε-Bisimulation [25, 14] ∼ε

 ✓ ×
ε-APB [27, 1, 2] ≡ε

Up-To-(n, ε)-Bisimulation [25, 13] ∼n
ε

Weak ε-Bisimulation ≈w
ε

Transitive ε-Bisimulation ∼∗
ε

 × ✓
Transitive ε-APB ≡∗

ε

Branching ε-Bisimulation ≈b
ε

ε-Perturbed Bisimulation [38] ≃ε

all branching ε-bisimulations in M) might themselves not be of the respective type anymore
(e.g., ≈b

ε is not necessarily a branching ε-bisimulation). This contrasts the non-transitive case,
where the induced bisimilarity relations are always of the respective type. We summarize the
relations we consider, together with some of their properties, in Table 1.

Main Contributions. The main contributions are as follows:
1. Starting with the classic notion of ε-bisimilarity, we show tightness of a bound from [32]

on the absolute difference of unbounded reachability probabilities in ε-bisimilar states
(Example 3.13).

2. We introduce ε-perturbed bisimilarity (≃ε), a notion that relates two LMCs if they have
bisimilar ε-quotients á la [38], i.e., if they can be made probabilistically bisimilar by small
perturbations of their transition probabilities. We show that ≃ε is strictly finer than
(transitive) ε-bisimilarity ∼(∗)

ε (Lemma 4.6 and Theorem 4.7) and that deciding both ≃ε

and ∼∗
ε is NP-complete (Theorem 4.12). Furthermore, we characterize ≃ε in terms of

transitive ε-bisimulations satisfying a centroid property (Theorem 4.10) and discuss some
anomalies of ≃ε: the relation is not always an ε-perturbed bisimulation itself, it is not
additive in ε and it can distinguish bisimilar LMCs (Proposition 4.4).

3. We define approximate versions of weak (≈w
ε) and branching probabilistic bisimilarity

(≈b
ε). Our definitions can be evaluated locally and coincide with the exact notions ≈b

and ≈w, respectively, if ε = 0. We discuss how ≈w
ε and ≈b

ε are related to one another, as
well as to ε-bisimilarity (Propositions 5.4 and 5.5). Moreover, we extend the bounds for
reachability probabilities of Theorem 3.11 to states related by ≈w

ε and ≈b
ε (Corollary 5.9

and Proposition 5.10), and prove that deciding ≈b
ε is NP-complete (Theorem 5.11).

Together with various known results from the literature and some easy observations, our
results complete the relation between several notions of approximate probabilistic bisimulation,
as summarized in Figure 1.

Structure. Section 2 presents preliminaries. Section 3 considers ε-bisimulations, ε-APBs
and up-to-(n, ε)-bisimulations. Section 4 introduces and analyzes ε-perturbed bisimulations.
Section 5 introduces weak and branching ε-bisimulations and establishes how they relate to
ε-bisimulations. Section 6 summarizes our results and points out future work.

2 Preliminaries

Distributions. Distr(S) = {µ : S → [0, 1] |
∑

s∈S µ(s) = 1} is the set of distributions over
countable S ̸= ∅. µ ∈ Distr(S) has support supp(µ) = {s ∈ S | µ(s) > 0}, and for A ⊆ S we
set µ(A) =

∑
s∈A µ(s). The L1-distance of µ, ν ∈ Distr(S) is ∥µ − ν∥1 =

∑
s∈S |µ(s) − ν(s)|.

CONCUR 2024

37:4 A Spectrum of Approximate Probabilistic Bisimulations

M ∼ε N M ∼∗
ε N M ∼∗

ε N
+ centroid property

M ≡ε N M ≡∗
ε N

M ∼n
ε N ∀n ∈ N M ≃ε N

M ≈b
ε N

M ≈w
ε N

[25]

Thm. 4.10

Prop. 5.5
×

Prop. 5.5×

Prop. 5.5×Prop. 5.5×
Prop. 5.4

×

Thm. 4.8

×

[14] ×

×

× ×
[38]

Lem. 4.5 × Lem. 4.6

Figure 1 The relationship of different approximate probabilistic bisimulations.

Labeled Markov chains. Fix a countable set AP of atomic propositions. A labeled Markov
chain (LMC) M = (S, P, sinit, l) has a countable set of states S ̸= ∅, a transition distribution
function P : S → Distr(S), a unique initial state sinit, and a labeling function l : S → 2AP .
We use M and N to range over LMCs. For s ∈ S, let L(s) = {t ∈ S | l(s) = l(t)}. M is
finitely branching if |supp(P (s))| < ∞ for all s ∈ S, and M is finite if |S| < ∞. The direct
sum M ⊕ N is the LMC obtained from the disjoint union of M and N . The initial state of
M ⊕ N is not relevant for our purposes.

For s, t ∈ S, P (s)(t) denotes the probability to move from s to t in a single step. We write
Succ(s) = supp(P (s)) for the set of direct successors of s. π = s0s1 · · · ∈ Sω is an (infinite)
path of M if si+1 ∈ Succ(si) for all i ∈ N. π[i] = si is the state at position i of π, and
trace(π) = l(s0)l(s1) · · · ∈ (2AP)ω is the trace of π. The set of infinite paths is Paths(M).
Finite paths π = s0s1 . . . sk ∈ Sk+1 for some k ∈ N and their traces are defined analogously.

Let s ∈ S. We consider the standard probability measure PrM
s on sets of infinite paths of

LMCs, defined via cylinder sets Cyl(ρ) = {π ∈ Paths(M) | ρ is a prefix of π} of finite paths
ρ ∈ S∗. See [11] for details. For ρ = s0s1 . . . sn, we abbreviate PrM

s (Cyl(ρ)) by PrM
s (ρ) and

the measure yields PrM
s (ρ) = 0 if s0 ≠ s and PrM

s (ρ) =
∏n−1

j=0 P (sj)(sj+1) otherwise. We
write PrM for PrM

sinit
and drop the superscript if M is clear from the context. Given a set of

finite traces T ⊆ (2AP)k+1 for some k ∈ N, Prs(T) denotes the probability to follow, when
starting in s, a finite path π = ss1 . . . sk−1 with trace(π) ∈ T . EM

s (X) or simply Es(X)
denotes the expected value of a random variable X on Paths(M) w.r.t. PrM

s .

LTL. A popular logic for the specification of desired properties of LMCs is the linear
temporal logic (LTL) which can be used to, e.g., specify properties such as reachability, safety
or liveness [44, 11]. For a ∈ AP , LTL formulas are formed w.r.t. the grammar

φ ::= true | a | ¬φ | φ1 ∨ φ2 | ⃝φ | φ1Uφ2.

Here, ⃝ is the next operator, so π ∈ Paths(M) satisfies ⃝φ iff φ is true in π[1]. For the
until operator U, π satisfies φ1Uφ2 iff, alongside π, φ1 holds until φ2 is true. As syntactic
sugar we define the reachability operator ♢φ ≡ trueUφ and the always operator □φ ≡ ¬♢¬φ.

For B, C ⊆ S and s ∈ S, Prs(BUC) is the probability to reach a state in C via a (finite)
path from s that only consists of states in B. Moreover, Prs(♢≤nφ) denotes the probability
to reach a state satisfying φ from s in at most n ∈ N steps. For details on LTL, see [11].

Relations. Given a relation R ⊆ S×S and an A ⊆ S, R(A) = {t ∈ S | ∃ s ∈ A : (s, t) ∈ R} is
the image of A under R. If R is reflexive then A ⊆ R(A), and A is called R-closed if R(A) ⊆ A.
When R is an equivalence, i.e., when it is reflexive, symmetric and transitive, the equivalence
class of s ∈ S is [s]R = R({s}) = {t ∈ S | (s, t) ∈ R}, and we set S/R = {[s]R | s ∈ S}. For
an equivalence R, the R-closed sets are precisely the (unions of) R equivalence classes.

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:5

Bisimulation. An equivalence R ⊆ S × S is a (probabilistic) bisimulation on M if for all
(s, t) ∈ R and all R-equivalence classes C it holds that l(s) = l(t) and P (s)(C) = P (t)(C).
States s, t ∈ S are (probabilistically) bisimilar, written s ∼M t or simply s ∼ t, if there is a
bisimulation R on M with (s, t) ∈ R. We call two LMCs M, N bisimilar, written M ∼ N ,
if sM

init ∼ sN
init in M ⊕ N . An alternative characterization of bisimulations can be found

in, e.g., [23, 25, 27, 14]: an equivalence R is a bisimulation iff for all (s, t) ∈ R and all
R-closed sets A ⊆ S it holds that l(s) = l(t) and P (s)(A) = P (t)(A). The (probabilistic
bisimulation) quotient of M is the LMC M/∼ = (S/∼, P∼, [sinit]∼, l∼) with l∼([s]∼) = l(s),
and P∼([s]∼)([t]∼) =

∑
q∈[t]∼

P (s)(q) for all [s]∼, [t]∼ ∈ S/∼. It holds that M ∼ M/∼. An
important result is that bisimilarity ∼ preserves the satisfaction of PCTL∗ state formulas [8].

We also consider weak and branching probabilistic bisimulations [43, 51, 10, 35]. An
equivalence R is a weak probabilistic bisimulation if, for all (s, t) ∈ R and all R-equivalence
classes C ̸= [s]R = [t]R, it holds that l(s) = l(t) and Prs(L(s)UC) = Prt(L(t)UC). R is a
branching probabilistic bisimulation if, instead of the second condition in the previous defini-
tion, Prs([s]RUC) = Prt([t]RUC) holds. Weak probabilistic bisimilarity ≈w and branching
probabilistic bisimilarity ≈b are defined like ∼, and lifted to LMCs in the same way.

3 ε-Bisimulation, ε-APB and Up-To-(n, ε)-Bisimulation

If not specified otherwise, we always assume ε ∈ [0, 1] and M = (S, P, sinit, l) to be finitely
branching. This section summarizes various notions of approximate probabilistic bisimulation
from the literature. We first provide their formal definitions and discuss how the notions
interrelate. Afterwards, in Section 3.2, we present some logical preservation results.

3.1 Definitions and Interrelation
We start with the seminal notion of ε-bisimulations of Desharnais et al. [25]. While originally
introduced for labeled Markov processes [21, 22], ε-bisimulations were later adapted to other
models like LMCs [14, 38] or Segala’s probabilistic automata [45, 47].

▶ Definition 3.1 ([25, 14]). A reflexive1 and symmetric relation R ⊆ S×S is an ε-bisimulation
if for all (s, t) ∈ R and any A ⊆ S it holds that

(i) l(s) = l(t) and (ii) P (s)(A) ≤ P (t)(R(A)) + ε.

States s, t are ε-bisimilar, denoted s ∼ε t, if there is an ε-bisimulation R with (s, t) ∈ R.
LMCs M, N are ε-bisimilar, denoted M ∼ε N , if sM

init ∼ε sN
init in M ⊕ N .

Intuitively, s ∼ε t if both states can mimic the other’s transition probabilities to any
A ⊆ S by transitioning to the (potentially bigger) set ∼ε(A) with a probability that is smaller
by at most ε than the original one. The parameter ε describes how much the behavior of
related states may differ: for ε close to 1 more states can be related, while for ε ≈ 0 related
states behave almost equivalently. In the extreme case of ε = 0, we have ∼0 = ∼ [25, 14].

Instead of being transitive, ε-bisimulations are additive in their tolerances: s ∼ε1 t and
t ∼ε2 u implies s ∼ε′ u for some 0 ≤ ε′ ≤ min{1, ε1 + ε2} [25]. As the next example suggests,
transitivity is not always desirable for ε-bisimulations if ε > 0.

1 In contrast to [25, 14] we require reflexivity of ε-bisimulations. This is a rather natural assumption (a
state should always simulate itself) that does not affect ∼ε.

CONCUR 2024

37:6 A Spectrum of Approximate Probabilistic Bisimulations

s0 s1 s2 . . . sn

x

1 1 − ε

ε

1 − 2ε

2ε

ε

1
1

∅ ∅ ∅ ∅
{a}

Figure 2 The LMC used in Example 3.2.

s u0 u1 . . . ui . . . un−1 un t

x y

1

1 1−ε
ε 1−iε iε ε

1−ε 1

1 1

1

{a} {a}{a}

{a}

{a}

{a}

{a}

{c}{b}

Figure 3 The LMC used in Example 3.5, adapted from [14].

▶ Example 3.2. Let ε = 1
n for n ≥ 1 and consider the LMC of Figure 2. There, the reflexive

and symmetric closure of R = {(si, si+1) | 0 ≤ i ≤ n − 1} is an ε-bisimulation. Hence, s0 and
sn are related by a chain of ε-bisimilar states, even though they behave completely different:
s0 transitions to the {a}-labeled state x with probability 0, sn does so with probability 1.

Desharnais et al. [25] describe how to check condition (ii) of Definition 3.1 in terms
of the values of maximum flows in specific flow networks á la [46, 9]. Their result is well-
suited for algorithmic purposes, but is restricted to finite models. Equivalently, one can
characterize ε-bisimulations by the existence of weight functions ∆: S → Distr(S) that
describe how to split the successor probabilities of related states. This formulation is used in,
e.g., [47, 38, 39, 31]. The following lemma provides one such characterization that is proved
using ideas from [14, 15] and a technical measure-theoretic statement from [16].

▶ Lemma 3.3. A reflexive and symmetric relation R ⊆ S ×S that only relates states with the
same label is an ε-bisimulation iff for all (s, t) ∈ R there is a map ∆: Succ(s) → Distr(Succ(t))
such that
1. for all t′ ∈ Succ(t) we have P (t)(t′) =

∑
s′∈Succ(s) P (s)(s′) · ∆(s′)(t′), and

2.
∑

s′∈Succ(s) P (s)(s′) · ∆(s′)(R(s′) ∩ Succ(t)) ≥ 1 − ε.

Intuitively, Lemma 3.3 tells us that, if s ∼ε t, the successors s′ of s can be mapped to
distributions ∆(s′), i.e., convex combinations, of successors of t. More precisely, it shows
that (i) if we move from s to a successor s′ with probability P (s)(s′) and, afterwards, from
s′ to a successor t′ of t with probability ∆(s′)(t′), then we reach t′ with probability P (t)(t′),
and that (ii) the overall probability that the states s′ and t′ are ε-bisimilar is at least 1 − ε.

A second notion of approximate probabilistic bisimulation are ε-APBs, which stands
short for approximate probabilistic bisimulations with precision ε [27, 1, 2]. In contrast
to ε-bisimulations, where the differences in transition probabilities of related states are
bounded w.r.t. all subsets A ⊆ S, an ε-APB R only requires a difference of at most ε for the
probabilities of related states to transition to R-closed subsets of S.

▶ Definition 3.4 ([27]). A reflexive and symmetric relation R ⊆ S × S is an ε-APB if for
all (s, t) ∈ R and any R-closed set A ⊆ S it holds that

(i) l(s) = l(t) and (ii) |P (s)(A) − P (t)(A)| ≤ ε.

We write s ≡ε t if s and t are related by any ε-APB, and M ≡ε N if sM
init ≡ε sN

init in M⊕N .

Like ∼ε, ε-APBs are additive in their tolerances, and we have ≡0 = ∼ = ∼0 [25, 27].

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:7

▶ Example 3.5 ([14]). Let ε ∈ (0, 1] and n =
⌈ 1

ε

⌉
∈ N. Consider M as in Figure 3, and let R

be the reflexive and symmetric closure of {(s, t), (x, x), (y, y)} ∪ {(ui, ui+1) | 0 ≤ i ≤ n − 1}.
The R-closed sets in M are {s, t}, {x}, {y}, {ui | 0 ≤ i ≤ n} and their unions. For all
(p, q) ∈ R and R-closed sets A it holds that |P (p)(A) − P (q)(A)| ≤ ε, so R is an ε-APB.

Example 3.5 illustrates that the use of ε-APBs as a notion that relates states with almost
equivalent behavior is questionable: even though states s and t in Figure 3 are related by
≡ε, they behave completely different. This is caused by the set {u0, . . . , un} of (unreachable)
states being R-closed, which in turn allows to relate s and t by the relation R from the
example. Such an anomaly cannot occur for ∼ε, and we in fact have s ≁ε t in Figure 3 for
every ε ∈ (0, 1). In particular, this shows that ∼ε can be strictly finer than ≡ε for ε ∈ (0, 1).

Lastly, we introduce up-to-(n, ε)-bisimulations [25, 13], which are relations that require
the behaviors of related states to differ by at most ε for at least n steps.

▶ Definition 3.6 ([25, 13]). The up-to-(n, ε)-bisimulation ∼n
ε ⊆ S × S is inductively defined

on n via s ∼0
ε t for all s, t ∈ S and, for n ≥ 0, s ∼n+1

ε t iff for all A ⊆ S

(i) l(s) = l(t), (ii) P (s)(A) ≤ P (t)(∼n
ε (A)) + ε and (iii) P (t)(A) ≤ P (s)(∼n

ε (A)) + ε.

States s, t are (n, ε)-bisimilar if s ∼n
ε t, and the notion is lifted to LMCs as usual. Similar

to ∼ε and ≡ε, ∼n
ε is reflexive and symmetric, but not transitive. Instead, it is additive in the

tolerances and monotonic in n and ε, i.e., for n ≥ n′ and ε ≤ ε′, s ∼n
ε t implies s ∼n′

ε′ t [13].
It is clear that s ∼n

ε t for a fixed n does not necessarily imply s ∼ε t or s ≡ε t, as (n, ε)-
bisimilarity only restricts the behavior of related states for n steps. However, considering the
limit n → ∞ makes ∼ε and ∼n

ε coincide, i.e., s ∼ε t iff s ∼n
ε t for all n ∈ N [25].

We now make precise the relationship between ε-APBs and up-to-(n, ε)-bisimulations.

▶ Proposition 3.7. If ε ∈ (0, 1), s ≡ε t implies s ∼n
ε t if n ≤ 2, but not necessarily if n ≥ 3.

3.2 Preservation of Logical Properties

A key application of exact probabilistic bisimilarity ∼ is the use of quotients Q = M/∼ to
speed up PCTL∗ model checking [37, 36]. As abstractions built by grouping states related
by approximate probabilistic bisimulations can be smaller than Q [27], these notions might
prove useful to combat the state space explosion problem of model checking [37, 11, 36]. It is
hence of interest to see which logical properties these relations preserve.

We start by considering ∼ε. As shown by Bian and Abate [14], ε-bisimilarity induces
bounds on the absolute difference of satisfaction probabilities of finite horizon properties,
i.e., of properties that only depend on traces of finite length, in related states.

▶ Theorem 3.8 ([14]). Let s ∼ε t, k ∈ N and T ⊆ (2AP)k+1 a set of traces of length k + 1.
Then |Prs(T) − Prt(T)| ≤ 1 − (1 − ε)k.

Since any finite horizon LTL formula coincides with a set of traces of finite length,
Theorem 3.8 in particular bounds the satisfaction probabilities of such formulas in ε-bisimilar
states. Furthermore, as argued in [14] and the next example, this bound is tight.

▶ Example 3.9. Consider Figure 4. For i ∈ {0, . . . , n}, let l(si) = l(ti) = ai for pairwise
distinct ai, l(G1) = g = l(G2) and l(F) = f for some f ̸= g. Then s0 ∼ε t0 and the upper
bound of Theorem 3.8 is met exactly: |Prs0(♢≤n+1g) − Prt0(♢≤n+1g)| = 1 − (1 − ε)n+1.

CONCUR 2024

37:8 A Spectrum of Approximate Probabilistic Bisimulations

s0 s1 . . . sn G1 t0 t1 . . . tn

F

G2
1 1 1 1

1

1−ε

ε

1−ε

ε

1−ε 1−ε

ε
1

1
{a0} {a1} {an}

{g}
{a0} {a1} {an}

{g}{f}

Figure 4 An LMC in which s0 ∼ε t0 and |Prs0 (♢≤n+1g) − Prt0 (♢≤n+1g)| = 1 − (1 − ε)n+1.

s0 s2s1 s3

1
2

1
2 ε

1−ε

1 1

{a}{a} {a} {g}

Figure 5 The LMC used in Example 3.10.

A disadvantage of the bound provided in Theorem 3.8 is, however, that it rapidly converges
to 1 for increasing k and is thus not suitable when reasoning about long (or infinite) time
horizons. In fact, it is the case that – without further assumptions – even simple unbounded
reachability probabilities in ε-bisimilar states can strongly deviate.

▶ Example 3.10. Let ε ≥ 0. The states s0, s1, and s2 in Figure 5 are pairwise ε-bisimilar.
However, if ε > 0, we have Prs0(♢g) = 1

2 , Prs1(♢g) = 0, and Prs2(♢g) = 1.

The difference in reachability probabilities observed in the last example is caused by ∼ε

relating states that are able to reach a goal state g with positive probability to those that
can not reach g at all. One way to avoid this issue is to require that states from which
g is not reachable are labeled with a distinct label f . The existence of such a label f is
a rather natural assumption, as a typical preprocessing step when computing reachability
probabilities is to identify the states from which no goal state is reachable, i.e., to identify
the states we assume to be labeled with f [11]. A result in the spirit of Theorem 3.8 that
deals with unbounded reachability properties can then be obtained as follows.

▶ Theorem 3.11 ([31, 32]). Let some states in M be labeled with g, and let exactly the states
that cannot reach a g-labeled state be labeled with f . Further, let s ∼ε t, and let N be the
random variable that counts the number of steps until reaching a g- or f -labeled state. Then,

|Prs(♢g) − Prt(♢g)| ≤ ε · Es(N).

▶ Remark 3.12. A result similar to Theorem 3.11 is derived by Haesaert et al. in [31, 32]
in the context of policy synthesis in control theory. In fact, their result is more general,
as it considers all properties that can be described as the language of a deterministic
finite automaton. These properties include, among others, the syntactically co-safe LTL
formulas [40], which form a fragment of LTL built according to the grammar

φ ::= true | a | ¬a | φ1 ∨ φ2 | φ1 ∧ φ2 | ⃝φ | φ1Uφ2,

where a ∈ AP . As unbounded reachability ♢g is a syntactically co-safe LTL formula, the
results of [31, 32] extend the bound in Theorem 3.11 to a broader class of properties.

Next, we show that the bound described in Theorem 3.11 is actually tight.

▶ Example 3.13. Let p ∈ (0, 1), ε < p
2 and consider Figure 6, where s ∼ε t. There,

Prs(♢g) = 1
2 , Prt(♢g) = 1

2 − ε
p and Es(N) = Et(N) = 1

p . Hence, the bound in Theorem 3.11
is met exactly: |Prs(♢g) − Prt(♢g)| = ε

p = ε · Es(N) = ε · Et(N).

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:9

s rq t r′q′
p
2

1−p
p
2 11

p
2 +ε

1−p
p
2 −ε

11

{a}{g} {f} {a}{g} {f}

Figure 6 The LMC used in Example 3.13. The states s and t are ε-bisimilar.

Regarding ε-APBs and up-to-(n, ε)-bisimilarity, some preservation results w.r.t. the
(approximate or robust) satisfaction of PCTL state-formulas can be found in the literature.
Since, as we have seen in Section 3.1, s ∼ε t implies both s ≡ε t and s ∼n

ε t for any n ∈ N
and any two states s, t, the following results also hold for ε-bisimilar states.

An important property of ε-APBs is that related states satisfy the same ε-robust PCTL
state formulas Φrobust [27], i.e., that s ≡ε t implies that s ⊨ Φrobust iff t ⊨ Φrobust, where ⊨ is
the usual PCTL satisfaction relation [11]. Intuitively, Φrobust is ε-robust if for all subformulas
ϕ of Φrobust and all s ∈ S either a strengthened version of ϕ, obtained by making ϕ’s
probability thresholds harder to meet, holds in s, or even relaxing ϕ’s probability thresholds
is not sufficient to ensure that s satisfies ϕ. For details, see [27].

Furthermore, it was shown in [13] that (n, ε)-bisimilar states approximately satisfy the
same bounded PCTL state formulas. The fragment of PCTL considered does not allow
unbounded until, and requires all until operator appearing in a formula to have the same time
bound k ∈ N. Under these assumptions, the precision of the approximation of satisfaction
probabilities between (n, ε)-bisimilar states is proved to depend linearly on the parameters n

and ε, as well as the common step bound k of the until operators. For details, see [13].

4 ε-Perturbed Bisimulation

In this section we consider finite LMCs. In [38], Kiefer and Tang define the notion of ε-
quotients for ε ≥ 0. Their goal is to construct, from a given perturbed LMC M′, an abstraction
that is as close as possible to the exact bisimulation quotient of an unknown, unperturbed
LMC M corresponding to M′. This inspires us to introduce ε-perturbed bisimulations, which
relate two LMCs iff they can be made probabilistically bisimilar by small perturbations of
their transition probabilities. Since we require ε-perturbed bisimulations to be equivalences,
these relations are well-suited for the construction of quotients of a given model.

Like the ε-quotients of [38], we base our definition on ε-perturbations of LMCs.

▶ Definition 4.1 ([38]). M′ = (S, P ′, sinit, l) is an ε-perturbation of M = (S, P, sinit, l) if
∥P (s) − P ′(s)∥1 ≤ ε for all s ∈ S.

M and any of its ε-perturbations M′ have the same state space and labeling, and we
often write S′ = {s′ | s ∈ S} for the state space of M′. Hence, M and M′ only differ in
their transition distribution functions. However, M′ does not need to preserve the structure
of M, i.e., there can be transitions in M that have probability 0 in M′ and vice versa. As
the next lemma shows, the total probability mass of these transitions cannot exceed ε

2 .

▶ Lemma 4.2. For all s ∈ S and A ⊆ S it holds that |P (s)(A) − P ′(s′)(A′)| ≤ ε
2 .

We now define the novel notion of ε-perturbed bisimulation.

▶ Definition 4.3. An equivalence R ⊆ S × S is called an ε-perturbed bisimulation on M
if there is an ε-perturbation M′ of M such that R is a bisimulation on M′. Two states
s, t ∈ S are ε-perturbed bisimilar, denoted s ≃ε t, if they are related by some ε-perturbed
bisimulation. Given LMCs M and N , then M ≃ε N if sM

init ≃ε sN
init in M ⊕ N .

CONCUR 2024

37:10 A Spectrum of Approximate Probabilistic Bisimulations

s t u

x y
0.5−ε

0.5+ε
0.5 0.5

0.5+ε

0.5−ε
1 1

∅ ∅ ∅

{a} {b}

Figure 7 An LMC in which there is no unique maximal transitive ε-bisimulation.

s

u1 u2 u3 u4

v w

t
1
4 1

4

1
4

1
4

1
2

1
2

1 1

1
2 −2ε

1
2 +2ε

1
2 −ε

1
2 +ε 1

2 −ε
1
2 +ε

1
2

1
2

{a} {a}

{b} {b} {b} {b}

∅ {c}

[s]

[u1] [u2] [u4]

[v] [w]

[t]

1
4

1
2

1
4

1
2

1
2

1 1

1
2 −2ε

1
2 +2ε

1
2 −ε 1

2 +ε

1
2

1
2

{a} {a}

{b} {b} {b}

∅ {c}

Figure 8 Two LMCs Ms and Mt (left) with initial states s and t, respectively, and Q = Ms/∼
(right), demonstrating that ≃ε and ∼∗

ε can differentiate bisimilar models and are not additive.

In the terminology of [38], M ≃ε N iff M and N have bisimilar ε-perturbations iff there
are bisimilar ε-quotients of M and N . If all states of M and N are reachable, even the
stronger characterization M ≃ε N iff M and N have isomorphic ε-perturbations iff there
are isomorphic ε-quotients of M and N holds. Since the unique 0-perturbation of any LMC
is the LMC itself, M ≃0 N iff M ∼ N . Moreover, ≃ε is symmetric and reflexive, but not
always transitive, which implies that ≃ε is not necessarily an ε-perturbed bisimulation itself.

Let s ∼∗
ε t denote that states s and t are related by a transitive ε-bisimulation. We

remark that both ≃ε and ∼∗
ε are definitions in the spirit of a notion called ε-lumpability (or

quasi-lumpability), which describes that a LMC can be made exactly lumpable w.r.t. a given
equivalence by slight changes (up to ε in each value) of its transition probabilities [17, 29, 28].
In contrast to the non-transitive case, any transitive ε-APB is also an ε-bisimulation.

The requirement of transitivity comes with the downside that there is not always a unique
largest transitive ε-bisimulation: in Figure 7, no transitive ε-bisimulation R can contain
both (s, t) and (t, u), as otherwise also (s, u) ∈ R must hold. However, s ∼∗

ε t and t ∼∗
ε u

as R1 = {{s, t}, {u}, {x}, {y}} and R2 = {{s}, {t, u}, {x}, {y}} are transitive ε-bisimulations.
Hence, the union of all transitive ε-bisimulations in a given model is thus not always a
transitive ε-bisimulation itself. This is different than in the non-transitive case, where ∼ε is
always an ε-bisimulation [25]. Since s ≃ε t and t ≃ε u but s ̸≃ε u in Figure 7, it follows that
there is also not always a unique largest ε-perturbed bisimulation.

Now consider, for ε < 1
4 , the LMCs Ms and Mt on the left of Figure 8, with initial

states s and t, respectively. In both models, ∼ is the finest equivalence that contains (u2, u3).
Let R1 be the finest equivalence that contains (s, t), (u1, u2), (u3, u4), and let R2 be the one
that contains (s, t), (u1, u3), (u2, u4). Both R1 and R2 are transitive ε-bisimulations, and
since u1 ≁ε u4 no other transitive ε-bisimulation can contain (s, t). Hence, no such relation
contains (u2, u3). Let Q = Ms/∼ be as on the right of the figure. Then Ms ∼ Q and
Ms ≃ε Mt as, e.g., the ε-perturbations M′

s and M′
t that enforce u′

1 ∼ u′
2 and u′

3 ∼ u′
4 and

are otherwise unchanged are bisimilar. However, there are no bisimilar ε-perturbations of
Mt and Q, i.e., Mt ̸≃ε Q. Since ≃0 = ∼ this observation additionally yields that ≃ε cannot
be additive, as otherwise Ms ∼ Q and Ms ≃ε Mt would have to imply Mt ≃ε Q. All in
all, this leads to the following result.

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:11

s u1
u2

u3

x y z

t
1
2

1
2

1
1
3 −ε

1
3 +ε

1
3 1

3 −ε 1
3

1
3 +ε

1
3

1
3 1

3

1
1

1

{a} {a}

{b} {b} {b}

∅ {a} {b}

Figure 9 An LMC that demonstrates that ≃ε is strictly finer than ∼∗
ε .

s s2

s1

s3

x

4
9

4
9

1
9

0.5+ε

0.5−ε

0.5−3ε

0.5−ε

0.5+ε

0.5+3ε

1

t t2

t1

t3

y

1
9

4
9

4
9

0.5+2ε

0.5

0.5−2ε

0.5−2ε

0.5

0.5+2ε

1

{a}

{b}

{b}

{b}

{c} {a}

{b}

{b}

{b}

{c}

Figure 10 The LMCs M2 (left) and N2 (right), as used in the proof of Theorem 4.8.

▶ Proposition 4.4. The relation ≃ε is not additive in the tolerances and can distinguish
bisimilar LMCs in the following sense: there are LMCs M1, M2 and N such that M1 ∼ M2
and M1 ≃ε N , but M2 ̸≃ε N .

This behavior of ≃ε is in contrast to, e.g., ∼ε, as s1 ∼ s2 and s1 ∼ε t always implies
s2 ∼ε t. In particular, the non-additivity does not hinge on the existence of bisimilar states
in the model. To see this consider, e.g., slight perturbations M′

s and M′
t of the LMCs on the

left of Figure 8, where for some δ < ε we set P (u2)(v) = 1
2 − ε − δ and P (u2)(w) = 1

2 + ε + δ,
and leave the rest of the models unchanged. Then u2 ≁ u3 in M′

s and M′
t, but still M′

s ≃δ Q
and M′

s ≃ε M′
t while M′

t ̸≃ε+δ Q, where Q is again the (unperturbed) LMC on the right
of the figure. Similar results hold for ∼∗

ε, as Ms ∼∗
ε Mt and Ms ∼ Q, but Mt ≁∗

ε Q.
We now discuss how ≃ε relates to ∼ε and ∼∗

ε, starting with the direction from left to
right. From [39] it follows directly that M ≃ε N implies M ∼ε N . As we show next, the
claim also holds when considering the stronger requirement of transitive ε-bisimilarity.

▶ Lemma 4.5. M ≃ε N implies M ∼∗
ε N .

It is thus possible to transfer known results for ∼ε like, e.g., the preservation of approx-
imate satisfaction of bounded PCTL state formulas [13], the exact preservation of ε-robust
PCTL [27], or the bounds on finite horizon [14] and syntactically co-safe [31, 32] LTL
satisfaction probabilities to ε-perturbed bisimilar LMCs.

Regarding the reverse implication, consider Figure 9. There, the finest equivalence that
relates u1, u2 and u3 and contains (s, t) is a transitive ε-bisimulation. However, there is no
ε-perturbation of the LMC in which s and t are bisimilar. Hence, s ∼∗

ε t, but s ̸≃ε t.

▶ Lemma 4.6. ≃ε is strictly finer than ∼∗
ε.

In fact, ε-bisimilarity is not even guaranteed to imply δ-perturbed bisimilarity if ε ≪ δ,
or if the Markov chains in question are graph-isomorphic.

▶ Theorem 4.7. Let ε ∈
(
0, 1

4
]
. There are LMCs M and N with M ∼ε N but M ̸≃ 1

4
N .

CONCUR 2024

37:12 A Spectrum of Approximate Probabilistic Bisimulations

▶ Theorem 4.8. There is a family F = {(Mn, Nn) | n ∈ N≥1} of pairs of finite LMCs
such that, for all n ∈ N≥1 and ε ∈

(
0, 1

n·(n+1)2

]
, Mn and Nn are graph-isomorphic and

ε-bisimilar, but Mn ̸≃δ Nn for any δ < nε.

Proof sketch. We sketch the case n = 2, with M2 and N2 as in Figure 10, ε ∈
(
0, 1

18
]

and ∼ε

the symmetric and reflexive closure of {(s, t), (s1, t1), (s1, t2), (s2, t2), (s2, t3), (s3, t3), (x, y)}.
Any bisimilar perturbations M′

2 and N ′
2 must ensure s′ ∼ t′. The smallest (w.r.t. the

required tolerances) perturbations that achieve this make s′
2, s′

3 and t′
3, as well as s′

1, t′
1 and

t′
2, bisimilar, and set the total probability mass from s′ (resp. t′) to reach these (sets of)

state(s) to 1
2 each. But this requires a perturbation by at least δ = 1

9 ≥ 2ε. ◀

▶ Remark 4.9. Theorems 4.7 and 4.8 seem to resemble results of [38, 39]. There, an LMC is
presented in which a specific order of merging ε-bisimilar states results in an approximate
quotient that requires tolerance ≥ 1

4 , and a family of LMCs is provided [39, Thm. 12] in
which merging ε-bisimilar states yields an approximate quotient that requires tolerance ≥ nε.
Our results differ in that we consider the existence of bisimilar ε-perturbations of two LMCs,
and in that we show that no suitable smaller tolerance exists.

The observation that ≃ε is strictly finer than ∼ε (and even ∼∗
ε) raises the question

whether there are logical properties which are preserved under ≃ε, but not necessarily under
∼(∗)

ε . It is future work to make this precise. Here, we note that the bound for reachability
probabilities from Theorem 3.11 remains tight under ≃ε: the LMCs M and N in Figure 6
satisfy M ≃ε N , but the bounds are tight by Example 3.13.

The following theorem characterizes ≃ε in terms of transitive ε-bisimulations that satisfy
an additional centroid property specified as in Equation (1) below.

▶ Theorem 4.10. The following statements are equivalent:
(i) M ≃ε N .
(ii) There is an ε-perturbation of M ⊕ N in which sM

init ∼ sN
init.

(iii) There is a transitive ε-bisimulation R on M ⊕ N with (sM
init, sN

init) ∈ R such that for
each A ∈ S/R, where S is the disjoint union of SM and SN , there is a P ∗

A ∈ Distr(S/R)
with

|P (s)(C) − P ∗
A(C)| ≤ ε

2 for all s ∈ A and all R-closed sets C. (1)

From the next lemma it follows immediately that, for a given equivalence R ⊆ S × S, the
centroid property in Equation (1) can be checked efficiently.

▶ Lemma 4.11. For a finite set X and µ1, . . . , µk ∈ Distr(X), the following are equivalent:
(i) There exists µ∗ ∈ Distr(X) with |µl(B) − µ∗(B)| ≤ ε

2 for all l ∈ {1, . . . , k} and B ⊆ X.
(ii) There exists µ ∈ Distr(X) with ∥µl − µ∥1 ≤ ε for all l ∈ {1, . . . , k}.
(iii) The following linear constraint system over non-negative variables δl,i and xi for

l ∈ {1, . . . , k} and i ∈ X is solvable:∑
i∈X

xi = 1 and xi − µl(i) ≤ δl,i and µl(i) − xi ≤ δl,i and
∑
i∈X

δl,i ≤ ε.

The equivalence to (iii) further implies that µ∗ = µ can be computed in polynomial time.

However, as we show next, for given M, N and ε it is NP-complete to decide if M ≃ε N
and if M ∼∗

ε N . This stands in contrast to the polynomial time computability of ∼ε [25],
which is possible in O(|S|7) by iteratively solving maximum flow problems. Our proofs are
inspired by [39, Thm. 1], which proves that deciding if a LMC has an ε-quotient with a fixed
number of states is NP-complete.

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:13

▶ Theorem 4.12. For given finite LMCs M and N and given ε ∈ (0, 1], it is NP-complete
to decide if (i) M ≃ε N and to decide if (ii) M ∼∗

ε N .

Nevertheless, one can check in polynomial time if a given equivalence R is a transitive
ε-bisimulation or an ε-perturbed bisimulation. Since constructing quotients w.r.t. these
relations by collapsing equivalence classes into single states can be done efficiently as well,
the notions are therefore still suitable for constructing abstractions in practical applications.

▶ Proposition 4.13. Given an equivalence R, one can decide in polynomial time if (i) R is
a transitive ε-bisimulation and if (ii) R is an ε-perturbed bisimulation.

5 Branching and Weak ε-Bisimulation

We now introduce approximate versions of branching and weak probabilistic bisimulation. A
similar approach has been discussed sporadically in the context of noninterference under the
term “weak bisimulation with precision ε” [4, 7, 5, 6, 26, 3]. While our notion of branching
ε-bisimilarity is a branching variant of transitive ε-bisimilarity ∼∗

ε, the weak ε-bisimilarity
we propose is a weak variant of ∼ε. Hence, the former is tailored to the construction of
quotients of a given model, while the latter is closer to classic process relations.

▶ Definition 5.1. An equivalence R ⊆ S ×S is a branching ε-bisimulation if for all (s, t) ∈ R

and all R-closed sets A ⊆ S it holds that

(i) l(s) = l(t) and (ii) |Prs([s]RUA) − Prt([t]RUA)| ≤ ε.

We call s, t ∈ S branching ε-bisimilar, written s ≈b
ε t, if they are related by a branching

ε-bisimulation. LMCs M and N are branching ε-bisimilar, written M ≈b
ε N , if sM

init ≈b
ε sN

init

in M ⊕ N .

We require branching ε-bisimulations to be equivalences, as their goal is to abstract from
stutter steps inside a state’s equivalence class. Because of transitivity, Definition 5.1 can also
be formulated in the style of Definition 3.1 and should thus not be understood as an explicit
extension of Definition 3.4. With the same arguments as for ∼∗

ε and ≃ε, transitivity causes
that there may not be a unique maximal branching ε-bisimulation, that ≈b

ε is not additive in
the tolerances, and that it can differentiate bisimilar models: the first claim follows from
s ≈b

ε t and t ≈b
ε u but s ̸≈b

ε u in Figure 7, the others from ∼∗
ε = ≈b

ε in Figure 8.

▶ Definition 5.2. A reflexive and symmetric relation R ⊆ S × S is a weak ε-bisimulation if
for all (s, t) ∈ R and all A ⊆ S it holds that

(i) l(s) = l(t) and (ii) Prs(L(s)UA) ≤ Prt(L(t)UR(A)) + ε.

We call s, t ∈ S weakly ε-bisimilar, written s ≈w
ε t, if they are related by a weak ε-bisimulation.

LMCs M and N are weakly ε-bisimilar, written M ≈w
ε N , if sM

init ≈w
ε sN

init in M ⊕ N .

In contrast to branching ε-bisimulations, we do not require transitivity for weak ε-
bisimulations. As it turns out, ≈w

ε is instead additive in the tolerances.

▶ Lemma 5.3. s ≈w
ε t and t ≈w

δ u implies s ≈w
ε+δ u.

Further, ≈w
0 and ≈b

0 coincide with ≈w and ≈b, respectively, so our notions are conservative
extensions of their exact counterparts. In particular, as ≈w = ≈b for LMCs [10], it follows
that ≈w

0 = ≈b
0. For ε > 0 the notions can, however, become incomparable. This is different

compared to the nonprobabilistic case, where ≈b is strictly finer than ≈w [51].

CONCUR 2024

37:14 A Spectrum of Approximate Probabilistic Bisimulations

s

s1

x

y

t

t1

1
2

1
2

1
4

3
4

1
2 +ε

1
2 −ε

3
4 −ε

1
4 +ε1

1

{a}

{a}

∅

{b}

{a}

{a}
s

t

v

u

w

x

y

1
2

1
2
1
2

1
2

1
2 +ε

1
2 −ε

1
2 +ε

1
2 −ε

1
2

1
2

1

1

{a}

{a}

{a}

{a}

{a}

∅

{b}

Figure 11 The LMCs used in the proof of Proposition 5.4.

s

x1

x2

t
ε1

ε2
1−ε1−ε2

1

1

ε2

ε1
1−ε1−ε2

{a} {a}

{b}

∅

s s1 x

y

t1 t
1−ε

ε
2

ε
2

1−ε

ε
2

ε
2

11

1

1

{a} {a} {a}{a}

{b}

∅

Figure 12 The LMCs used in the proof of (i) of Proposition 5.5.

▶ Proposition 5.4. For 0 < ε < 1
4 , s ≈b

ε t ⇏ s ≈w
ε t and s ≈w

ε t ⇏ s ≈b
ε t.

Proof. Let ε ∈ (0, 1
4) and consider Figure 11. In the left LMC, s ≈b

ε t, as the largest
branching ε-bisimulation is induced by the equivalence classes {{s, t}, {s1, t1}, {x}, {y}} and,
in particular, s ̸≈b

ε s1 and t ̸≈b
ε t1. However, s ̸≈w

ε t as Prt(L(t)U{x}) = 5
8 + 5

4 ε − ε2 >
5
8 + ε = Prs(L(s)U{x}) + ε. Furthermore, in the right LMC, s ≈w

ε t while s ̸≈b
ε t since any

branching ε-bisimulation R that contains (s, t) must also contain (u, w) due to transitivity,
which is not possible as, e.g., |Pru([u]RU[x]R) − Prw([w]RU[x]R)| > ε. ◀

The major difference between ≈w
ε , ≈b

ε and ∼ε, ≡ε is that the former can abstract from
(some) stutter steps. Consequently, if no stuttering is possible, i.e., when P (s)(L(s)) = 0 for
all s ∈ S, we have ∼∗

ε = ≈b
ε and ∼ε = ≈w

ε . Otherwise, the notions become incomparable.

▶ Proposition 5.5. Let ≈ε ∈ {≈b
ε, ≈w

ε }. Then there are LMCs with states s, t ∈ S such that
(i) s ∼ε t and s ≡ε t but s ̸≈ε t, and (ii) s ≈ε t but s ≁ε t and s ̸≡ε t. Hence, ≈ε and ∼ε, ≡ε

are incomparable. Furthermore, (i) and (ii) also hold for ∼∗
ε and ≡∗

ε instead of ∼ε and ≡ε.

Proof. To show (i) we do a case distinction on ≈ε. If ≈ε = ≈b
ε, consider the LMC on the

left of Figure 12 where ε1, ε2 ∈ (0, 1), ε1 ̸= ε2, ε1 + ε2 < 1, and ε = |ε1 − ε2|. In this model,
both s ∼ε t and s ≡ε t. However, for any equivalence R that only relates states with the
same label, |Prs([s]RU{x1}) − Prt([t]RU{x1})| = |ε1−ε2|

ε1+ε2

ε1+ε2<1
> |ε1 − ε2| = ε, so s ̸≈b

ε t.
If ≈ε = ≈w

ε , consider the right of Figure 12 with ε ∈ (0, 1). There, s ∼ε t and s ≡ε t.
However, Prt(L(t)U{x}) = 1 > 4(1−ε)2

(2−ε)2 = Prs(L(t)U{x}) for all ε ∈ (0, 1), so s ̸≈w
ε t.

The second claim follows when considering an LMC with three states, say s, t and x,
with initial state s and l(s) = l(t) ̸= l(x) as well as P (s)(t) = P (t)(x) = P (x)(x) = 1. There,
s ≈b

ε t and s ≈w
ε t for any ε, but neither s ≡ε t nor s ∼ε t.

The claims are shown analogously when replacing ∼ε and ≡ε with ∼∗
ε resp. ≡∗

ε. ◀

Note that the anomaly of ≡ε described in Example 3.5 does not occur for branching
ε-bisimilarity, as here transitivity would enforce ui ≈b

ε uj for all i, j in Figure 3 if s ≈b
ε t.

The next lemma bounds the probabilities of states related by ≈b
ε or ≈w

ε to stutter forever.

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:15

s x t

s1 t1

p q

1−ε

ε

1

1
1

1− ε
2

ε
2

1−2δ
δ δ 0.5−ε 0.5+ε

{a}
{a}

{a}
{a}

∅∅

{b}
s x

sC1

t

s1 t1

p q

sC2

ε

1−ε

1

1

ε
2

1− ε
2

1− ε
2

ε
2

0.5 0.5 0.5−ε 0.5+ε

1

1

{a}

{a}

{a}
{a}

{a}

∅∅

{b}

{b}

Figure 13 An LMC M (left) and its transformation MR (right) w.r.t. the branching ε-bisimulation
R with equivalence classes {s, t, s1, t1}, {p, q}, {x} for 0 < ε < 1 − 2δ and divR = {{s, t, s1, t1}, {x}}.

▶ Lemma 5.6. Let ε ∈ [0, 1] and let R be a branching ε-bisimulation.
1. If (s, t) ∈ R and C = [s]R = [t]R then |Prs(□C) − Prt(□C)| ≤ ε.
2. If M is finite and (s, t) ∈ R then, for any C ∈ S/R, either (i) Prs(□C) = 0 or

(ii) Prs(□C) ≥ 1 − ε for all s ∈ C.
3. If s ≈w

ε t and b = l(s) = l(t) then |Prs(□b) − Prt(□b)| ≤ ε.

Since ≈b
ε and ≈w

ε cannot differentiate single steps from steps after an arbitrary (but
finite) amount of stuttering, they do not preserve any next-step probabilities. Furthermore,
in Figure 4 both s ≈b

ε t and s ≈w
ε t, so by Example 3.9 we cannot expect a better bound

for finite horizon satisfaction probabilities in related states than the one from [14] stated in
Theorem 3.8. We can, however, extend Theorem 3.11 to states related by ≈b

ε and ≈w
ε .

Given an equivalence R on a finite LMC M, let divR ⊆ S/R be the set of divergent
R-equivalence classes, i.e., C ∈ divR iff Prs(□C) ≥ 1 − ε for all s ∈ C. We construct from M
an LMC MR and an equivalence Rb on MR with R ⊆ Rb. Intuitively, MR is obtained from
M by redirecting the probabilities Prs(□C) for C = [s]R to fresh “divergence states” sC .

▶ Definition 5.7. Given a finite LMC M and an equivalence R that only relates states with
the same label, let MR = (SR, PR, sinit, lR) with

SR = S ∪ {sC | C ∈ divR} where the sC are fresh, pairwise different states
lR(s) = l(s) if s ∈ S and l(sC) = l(s) for some s ∈ C

for s ∈ S and C = [s]R, the values of the distribution PR(s) are defined by

PR(s)(t) =

Prs(CUt), if t ∈ S \ C

Prs(□C), if s ̸= sC and t = sC

1, if s = t = sC

0, otherwise

.

An example for the transformation from M to MR can be found in Figure 13. We now
show the connection between branching ε-bisimulations R on finite LMCs M and transitive
ε-bisimulations on their transformations MR.

▶ Lemma 5.8. Let M be finite, R an equivalence relating only equally labeled states, and
Rb the finest equivalence on SR with R ⊆ Rb and (s, sC) ∈ Rb for all C ∈ divR and s ∈ C.
Then R is a branching ε-bisimulation on M iff Rb is a transitive ε-bisimulation on MR.

It is clear from the definition of MR that for every C ∈ S/R and all s ∈ S with s /∈ C we
have PrM

s ([s]RUC) = PR(s)(C). Hence, Lemma 5.8 allows us to transfer Theorem 3.11 to
states s ≈b

ε t, since they are ε-bisimilar in MR. As in MR any transition from s to a u ∈ S

represents an equivalence class change in M, the random variable N b now has to count the
number of equivalence class changes on paths to a g- or f -labeled state.

CONCUR 2024

37:16 A Spectrum of Approximate Probabilistic Bisimulations

▶ Corollary 5.9. Let M be finite, let some states in M be labeled with g, and let exactly the
states that cannot reach a g-labeled state be labeled with f . Further, let s ≈b

ε t, and let N b

denote the random variable that counts the number of equivalence class changes until a g- or
f -labeled state is reached. Then |Prs(♢g) − Prt(♢g)| ≤ ε · Es(N b).

Furthermore, it is possible to extend Theorem 3.11 to weakly ε-bisimilar states.
▶ Proposition 5.10. Let M, f and g be as in Corollary 5.9, let s ≈w

ε t and let Nw denote
the random variable that counts the number of label changes until a g- or f -labeled state is
reached. Then |Prs(♢g) − Prt(♢g)| ≤ ε · Es(Nw).
Proof sketch. Let L = {b ∈ 2AP | ∃ s ∈ S : Prs(□b) > 0}. From M we construct an LMC
Mw, almost similar to MR in Definition 5.7. The main differences are that we introduce fresh
states sb for all b ∈ L, and that we set P w(s)(t) = Prs(L(s)Ut) for all s, t ∈ S with l(s) ̸= l(t)
as well as P w(s)(sb) = Prs(□b) if l(s) = b ∈ L. Because for any weak ε-bisimulation R the
finest reflexive and symmetric relation Rw on Mw with R ⊆ Rw and (s, sb) ∈ Rw iff b = l(s)
and Prs(□b) ≥ 1 − ε is an ε-bisimulation on Mw, the result follows from Theorem 3.11. ◀

As the LMCs in Figure 6 are both branching ε
p -bisimilar and weak ε

p -bisimilar, and since
in these models Es(N b) = Es(Nw) = 1, the bounds are again tight by Example 3.13.

We finish this section by analyzing the complexity of deciding if two given states s, t are
branching ε-bisimilar, i.e., if s ≈b

ε t. The analogous problem for ≈w
ε is left open.

▶ Theorem 5.11. Given a finite M, s, t ∈ S, and ε ∈ (0, 1], deciding if s ≈b
ε t is NP-complete.

6 Conclusion and Future Work

We investigated several new types of approximate probabilistic bisimulation and showed how
they interrelate, as well as how they are connected to notions from the literature like, e.g., ∼ε

and ≡ε (see Figure 1). These connections in turn allowed the transfer of known preservation
results for logical formulas between the different notions, which we extended by tight bounds
on the absolute difference of unbounded reachability probabilities in weak and branching
ε-bisimilar states. Additionally, we established complexity results for most of our relations.

The results of Section 4 indicate that ε-perturbed bisimilarity ≃ε and transitive ε-
bisimilarity ∼∗

ε show some anomalies (lack of additivity, the possibility to differentiate
bisimilar models and the fact that they themselves are not necessarily an ε-perturbed resp. a
transitive ε-bisimulation) when viewed as process relations. However, both relations can be
interesting for algorithmic purposes as they permit efficient quotienting techniques: given a
transitive ε-bisimulation R (with or without the centroid property) on an LMC M, one can
build in polynomial time a quotient LMC that arises from M by collapsing all R-equivalence
classes into single states. The quotient under an ε-perturbed bisimulation R1 enjoys the
property that every state s and its R1-equivalence class [s]R1 are ε

2 -bisimilar [38], while for
the quotients under a transitive ε-bisimulation R2 that lacks the centroid property we can
only guarantee s ∼ε [s]R2 . On the other hand, transitive ε-bisimulations can identify more
states and hence can induce smaller quotients.

Similarly, the transitivity of branching ε-bisimulations causes the same anomalies as for
≃ε and ∼∗

ε. However, checking if a given equivalence is a branching ε-bisimulation and con-
structing a corresponding quotient is again possible in polynomial time. Hence, investigating
the potential of transitive (or branching) ε-bisimulations as abstraction techniques for an
approximate analysis of LMCs in practice is an interesting future research direction.

Other open questions include the search for a characterization of logical formulas that
distinguish ∼ε, ∼∗

ε, ≈w
ε , ≈b

ε and ≃ε, and how our results relate to bisimilarity distances [49].

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:17

References
1 Alessandro Abate. Approximation metrics based on probabilistic bisimulations for general

state-space Markov processes: A survey. Electronic Notes in Theoretical Computer Science,
297:3–25, 2013. Proceedings of the first workshop on Hybrid Autonomous Systems.

2 Alessandro Abate, Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic
model checking of labelled Markov processes via finite approximate bisimulations. In Franck
van Breugel, Elham Kashefi, Catuscia Palamidessi, and Jan Rutten, editors, Horizons of the
Mind. A Tribute to Prakash Panangaden: Essays Dedicated to Prakash Panangaden on the
Occasion of His 60th Birthday, volume 8464 of Lecture Notes in Computer Science (LNCS),
pages 40–58. Springer International Publishing, Cham, 2014.

3 Alessandro Aldini. A note on the approximation of weak probabilistic bisimulation, 2009.
4 Alessandro Aldini, Mario Bravetti, Alessandra Di Pierro, Roberto Gorrieri, Chris Hankin, and

Herbert Wiklicky. Two formal approaches for approximating noninterference properties. In
Riccardo Focardi and Roberto Gorrieri, editors, Foundations of Security Analysis and Design
II (FOSAD 2001), volume 2946 of Lecture Notes in Computer Science (LNCS), pages 1–43.
Springer, Berlin, Heidelberg, 2004.

5 Alessandro Aldini, Mario Bravetti, and Roberto Gorrieri. A process-algebraic approach for
the analysis of probabilistic noninterference. J. Comput. Secur., 12(2):191–245, April 2004.

6 Alessandro Aldini and Alessandra Di Pierro. A quantitative approach to noninterference for
probabilistic systems. Electronic Notes in Theoretical Computer Science, 99:155–182, 2004.
Proceedings of the MEFISTO Project 2003, Formal Methods for Security and Time.

7 Alessandro Aldini and Roberto Gorrieri. Security analysis of a probabilistic non-repudiation
protocol. In Holger Hermanns and Roberto Segala, editors, Process Algebra and Probabilistic
Methods: Performance Modeling and Verification, volume 2399 of Lecture Notes in Computer
Science (LNCS), pages 17–36. Springer, Berlin, Heidelberg, 2002.

8 Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. It usually works: The temporal logic of stochastic systems. In Pierre Wolper,
editor, Computer Aided Verification (CAV 1995), volume 939 of Lecture Notes in Computer
Science (LNCS), pages 155–165, Berlin, Heidelberg, 1995. Springer, Berlin, Heidelberg.

9 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simulation.
In Rajeev Alur and Thomas A. Henzinger, editors, Computer Aided Verification (CAV 1996),
volume 1102 of Lecture Notes in Computer Science (LNCS), pages 50–61. Springer, Berlin,
Heidelberg, 1996.

10 Christel Baier and Holger Hermanns. Weak bisimulation for fully probabilistic processes. In
Orna Grumberg, editor, Computer Aided Verification (CAV 1997), volume 1254 of Lecture
Notes in Computer Science (LNCS), pages 119–130. Springer, Berlin, Heidelberg, 1997.

11 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.
12 Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf. Comparative

branching-time semantics for Markov chains. Information and Computation, 200(2):149–214,
2005.

13 Massimo Bartoletti, Maurizio Murgia, and Roberto Zunino. Sound approximate and asymptotic
probabilistic bisimulations for PCTL. Logical Methods in Computer Science, 19(1), 2023.

14 Gaoang Bian and Alessandro Abate. On the relationship between bisimulation and trace
equivalence in an approximate probabilistic context. In Javier Esparza and Andrzej S.
Murawski, editors, Foundations of Software Science and Computation Structures (FoSSaCS),
volume 10203 of Lecture Notes in Computer Science (LNCS), pages 321–337. Springer, Berlin,
Heidelberg, 2017.

15 Gaoang Bian and Alessandro Abate. On the relationship between bisimulation and trace
equivalence in an approximate probabilistic context (extended version). CoRR, abs/1701.04547,
2017. Full version of [14]. arXiv:1701.04547.

16 Béla Bollobás and Nicolas Th. Varopoulos. Representation of systems of measurable sets.
Mathematical Proceedings of the Cambridge Philosophical Society, 78(2):323–325, 1975.

17 Peter Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of Applied
Probability, 31:59–75, January 1995.

CONCUR 2024

https://arxiv.org/abs/1701.04547

37:18 A Spectrum of Approximate Probabilistic Bisimulations

18 David de Frutos-Escrig, Jeroen J. A. Keiren, and Tim A. C. Willemse. Games for bisimulations
and abstraction. CoRR, abs/1611.00401, 2016. arXiv:1611.00401.

19 Salem Derisavi, Holger Hermanns, and William H. Sanders. Optimal state-space lumping in
Markov chains. Information Processing Letters, 87(6):309–315, 2003.

20 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labeled Markov systems. In Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR’99
Concurrency Theory (CONCUR 1999), volume 1664 of Lecture Notes in Computer Science
(LNCS), pages 258–273. Springer, Berlin, Heidelberg, 1999.

21 Josée Desharnais, Abbas Edalat, and Prakash Panangaden. A logical characterization of
bisimulation for labeled Markov processes. In Proceedings of the Thirteenth Annual IEEE
Symposium on Logic in Computer Science (LiCS), pages 478–487, 1998.

22 Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for labelled Markov
processes. Information and Computation, 179(2):163–193, 2002.

23 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Approximating
labelled Markov processes. Information and Computation, 184(1):160–200, 2003.

24 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Weak bisim-
ulation is sound and complete for pCTL*. Information and Computation, 208(2):203–219,
2010.

25 Josée Desharnais, François Laviolette, and Mathieu Tracol. Approximate analysis of probabil-
istic processes: Logic, simulation and games. In Fifth International Conference on Quantitative
Evaluation of Systems (QEST 2008), pages 264–273, 2008.

26 Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Measuring the confinement
of probabilistic systems. Theoretical Computer Science, 340(1):3–56, 2005. Theoretical
Foundations of Security Analysis and Design II.

27 Alessandro D’Innocenzo, Alessandro Abate, and Joost-Pieter Katoen. Robust PCTL model
checking. In Proceedings of the 15th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC 2012), pages 275–286, New York, NY, USA, 2012. Association
for Computing Machinery.

28 András Faragó. On the convergence rate of quasi lumpable Markov chains. In András Horváth
and Miklós Telek, editors, Formal Methods and Stochastic Models for Performance Evaluation,
volume 4054 of Lecture Notes in Computer Science (LNCS), pages 138–147. Springer, Berlin,
Heidelberg, 2006.

29 Giuliana Franceschinis and Richard R. Muntz. Bounds for quasi-lumpable markow chains.
Perform. Evaluation, 20:223–243, 1994.

30 Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning for probabil-
istic concurrent systems. In Manfred Broy and Cliff B. Jones, editors, Proceedings of the IFIP
TC2 Working Conference on Programming Concepts and Methods, pages 443–458, 1990.

31 Sofie Haesaert, Petter Nilsson, and Sadegh Soudjani. Formal multi-objective synthesis of
continuous-state mdps. In 2021 American Control Conference (ACC), pages 3428–3433, 2021.

32 Sofie Haesaert and Sadegh Soudjani. Robust dynamic programming for temporal logic control
of stochastic systems. IEEE Transactions on Automatic Control, 66(6):2496–2511, 2021.

33 Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

34 Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and Matthias Volk.
The probabilistic model checker storm. International Journal on Software Tools for Technology
Transfer (STTT), 24:589–610, 2022.

35 David N. Jansen, Jan Friso Groote, Ferry Timmers, and Pengfei Yang. A Near-Linear-Time
Algorithm for Weak Bisimilarity on Markov Chains. In Igor Konnov and Laura Kovács, editors,
31st International Conference on Concurrency Theory (CONCUR 2020), volume 171 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 8:1–8:20, Dagstuhl, Germany, 2020.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

36 Joost-Pieter Katoen. The probabilistic model checking landscape. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science (LiCS’16), pages 31–45, New
York, NY, USA, 2016. Association for Computing Machinery.

https://arxiv.org/abs/1611.00401

T. Spork, C. Baier, J.-P. Katoen, J. Piribauer, and T. Quatmann 37:19

37 Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David N. Jansen. Bisimulation minim-
isation mostly speeds up probabilistic model checking. In Orna Grumberg and Michael Huth,
editors, Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2007),
volume 4424 of Lecture Notes in Computer Science (LNCS), pages 87–101. Springer, Berlin,
Heidelberg, 2007.

38 Stefan Kiefer and Qiyi Tang. Approximate Bisimulation Minimisation. In Mikołaj Bojańczy
and Chandra Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2021), volume 213 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 48:1–48:16, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

39 Stefan Kiefer and Qiyi Tang. Approximate bisimulation minimisation. CoRR, abs/2110.00326,
2021. Full version of [38]. arXiv:2110.00326.

40 Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. In Nicolas
Halbwachs and Doron Peled, editors, Computer Aided Verification (CAV 1999), volume 1633
of Lecture Notes in Computer Science (LNCS), pages 172–183, Berlin, Heidelberg, 1999.
Springer, Berlin, Heidelberg.

41 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991.

42 R. Milner. Communication and Concurrency. Prentice-Hall, Inc., USA, 1989.
43 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer

Science (LNCS). Springer-Verlag, Berlin, Heidelberg, 1982.
44 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of

Computer Science (SFCS 1977), pages 46–57, 1977.
45 Roberto Segala. Modeling and verification of randomized distributed real-time systems. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.
46 Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. In

Bengt Jonsson and Joachim Parrow, editors, CONCUR ’94: Concurrency Theory, volume 836
of Lecture Notes in Computer Science (LNCS), pages 481–496. Springer, Berlin, Heidelberg,
1994.

47 Mathieu Tracol, Josée Desharnais, and Abir Zhioua. Computing distances between probabilistic
automata. In Mieke Massink and Gethin Norman, editors, Proceedings Ninth Workshop on
Quantitative Aspects of Programming Languages (QAPL 2011), Saarbrücken, Germany, April
1-3, 2011, volume 57 of EPTCS, pages 148–162, 2011.

48 Antti Valmari and Giuliana Franceschinis. Simple O(m logn) time Markov chain lumping. In
Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 6015 of Lecture Notes in Computer Science (LNCS), pages 38–52,
Berlin, Heidelberg, 2010. Springer, Berlin, Heidelberg.

49 Franck van Breugel. Probabilistic bisimilarity distances. ACM SIGLOG News, 4(4):33–51,
2017.

50 Rob J. van Glabbeek, Jan Friso Groote, and Erik P. de Vink. A complete axiomatization of
branching bisimilarity for a simple process language with probabilistic choice. In Mário S. Alvim,
Kostas Chatzikokolakis, Carlos Olarte, and Frank Valencia, editors, The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and Privacy:
Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birthday, volume
11760 of Lecture Notes in Computer Science (LNCS), pages 139–162, Cham, 2019. Springer
International Publishing.

51 Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in bisimulation
semantics. J. ACM, 43(3):555–600, May 1996.

52 Ralf Wimmer and Bernd Becker. Correctness issues of symbolic bisimulation computation for
Markov chains. In Bruno Müller-Clostermann, Klaus Echtle, and Erwin P. Rathgeb, editors,
Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault
Tolerance (MMB&DFT 2010), volume 5987 of Lecture Notes in Computer Science (LNCS),
pages 287–301. Springer, Berlin, Heidelberg, 2010.

CONCUR 2024

https://arxiv.org/abs/2110.00326

Progress, Justness and Fairness in Modal
µ-Calculus Formulae
Myrthe S. C. Spronck #

Eindhoven University of Technology, The Netherlands

Bas Luttik #

Eindhoven University of Technology, The Netherlands

Tim A. C. Willemse #

Eindhoven University of Technology, The Netherlands

Abstract
When verifying liveness properties on a transition system, it is often necessary to discard spurious
violating paths by making assumptions on which paths represent realistic executions. Capturing that
some property holds under such an assumption in a logical formula is challenging and error-prone,
particularly in the modal µ-calculus. In this paper, we present template formulae in the modal
µ-calculus that can be instantiated to a broad range of liveness properties. We consider the following
assumptions: progress, justness, weak fairness, strong fairness, and hyperfairness, each with respect
to actions. The correctness of these formulae has been proven.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Modal µ-calculus, Property specification, Completeness criteria, Progress,
Justness, Fairness, Liveness properties

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.38

Related Version Full Version: https://arxiv.org/abs/2407.08060

Acknowledgements We thank an anonymous reviewer for the observation that weak and strong
hyperfairness must be distinguished.

1 Introduction

Formal verification through model checking requires a formalisation of the properties of
the modelled system as formulae in some logic, such as LTL [32], CTL [17] or the modal
µ-calculus [29]. In this paper, we focus on the modal µ-calculus, a highly expressive logic
used in established model checkers such as mCLR2 [10] and CADP [19].

A frequently encountered problem when checking liveness properties is that spurious
violations are found, such as paths on which some components never make progress. Often,
such paths do not represent realistic executions of the system. It is then a challenge to
restrict verification to those paths that do represent realistic system executions. For this,
we use completeness criteria [21, 22]: predicates on paths that say which paths are to be
regarded as realistic runs of the system. These runs are called complete runs. Examples of
completeness criteria are progress, justness and fairness.

It turns out that writing a modal µ-calculus formula for a property being satisfied under a
completeness criterion is non-trivial. Since the µ-calculus is a branching-time logic, we cannot
separately formalise when a path is complete and when it satisfies the property, and then
combine the two formalisations with an implication. Instead, a more intricate integration
of both aspects of a path is needed. Our aim is to achieve such an integration for a broad
spectrum of liveness properties and establish the correctness of the resulting formulae. To
this end, we shall consider a template property that can be instantiated to a plethora of

© Myrthe S. C. Spronck, Bas Luttik, and Tim A. C. Willemse;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 38; pp. 38:1–38:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.s.c.spronck@tue.nl
https://orcid.org/0000-0003-2909-7515
mailto:s.p.luttik@tue.nl
https://orcid.org/0000-0001-6710-8436
mailto:t.a.c.willemse@tue.nl
https://orcid.org/0000-0003-3049-7962
https://doi.org/10.4230/LIPIcs.CONCUR.2024.38
https://arxiv.org/abs/2407.08060
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Progress, Justness and Fairness in Modal µ-Calculus Formulae

liveness properties and, in particular, covers all liveness property patterns of [16]. Then, we
present modal µ-calculus formulae integrating the completeness criteria of progress, justness,
weak fairness, strong fairness, and hyperfairness with this template property.

As discussed in [23], for the formulation of realistic completeness criteria it is sometimes
necessary to give special treatment to a set of blocking actions, i.e., actions that require
cooperation of the environment in which the modelled system operates. Our template
formulae are therefore parameterised with a set of blocking actions. We shall see that, given
a set of blocking actions, there are two different interpretations of hyperfairness; we call these
weak and strong hyperfairness.

Regarding our presented formulae, the progress formula is similar to those commonly used
for liveness properties even when completeness is not explicitly considered. Our formulae
for justness, weak fairness and weak hyperfairness only subtly differ from each other. We
characterise the similarities these three share and give a generic formula that can be adapted
to represent all completeness criteria that meet these conditions. Lastly, we observe that
strong fairness and strong hyperfairness do not meet these conditions. We give alternative
formulae that are significantly more complex. Whether more efficient formulae for these
completeness criteria exist remains an open problem.

Modal µ-calculus formulae are often hard to interpret. Accordingly, it is not trivial to see
that our formulae indeed express the integration of liveness properties with completeness
criteria. We therefore include elaborate correctness proofs in the full version of this paper.

Our work is essentially a generalisation along two dimensions (viz., the completeness
criterion and the liveness property) of the works of [34] and [6, 36]. In [34], the tool PASS
is presented for automatically translating common property patterns into modal µ-calculus
formulae. Some of those patterns integrate an assumption that excludes paths deemed
unrealistic, but since the exact assumption is not stated separately, we cannot make a formal
comparison with our approach. In [6], a formula for justness is presented, covering one of the
properties we cover. This formula forms the basis for our justness, weak fairness and weak
hyperfairness formulae. Our formulae for strong fairness and strong hyperfairness are in part
inspired by the formula for termination under strong fairness presented in [36].

The organisation of this paper is as follows. In Section 2 we recap the relevant definitions
on labelled transition systems, as well as the syntax and semantics of the modal µ-calculus.
In Section 3, we motive our work with an example, and in Section 4 we give the completeness
criteria we cover in this paper. In Section 5, we formally identify the class of liveness
properties we study and relate it to a popular class of properties. Our template formulae are
presented in Section 6, combining the completeness criteria from Section 4 with the property
template from Section 5. We give a small application example in Section 7 and discuss the
scope of our work in Section 8. Finally, we give our conclusions in Section 9.

2 Preliminaries

We represent models as labelled transition systems (LTSs). In this section, we briefly
introduce the relevant definitions on LTSs, as well as the modal µ-calculus.

2.1 Labelled Transition Systems
▶ Definition 1. An LTS is a tuple M = (S, sinit ,Act,Trans) where

S is a set of states,
sinit ∈ S is the initial state,
Act is a set of action labels, also referred to as the alphabet of the LTS, and
Trans ⊆ S × Act × S is a transition relation.

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:3

In this paper, we only consider finite LTSs, such as the kind used in finite-state model
checking. In particular, our formulae are proven correct under the assumption that Act
is finite. We write s a−→ s′ as shorthand for (s, a, s′) ∈ Trans, and for a given transition
t = (s, a, s′) we write src(t) = s, act(t) = a and trgt(t) = s′.

For the definitions below, we fix an LTS M = (S, sinit ,Act,Trans).

▶ Definition 2. A path is an (alternating) sequence π = s0t1s1t2 . . . of states s0, s1, . . . ∈ S
and transitions t1, t2, . . . ∈ Trans. A path must start with a state, and must be either infinite,
or end in a state. In the latter case, the end of the path is referred to as the final state. For
all i ≥ 0, ti+1 must satisfy src(ti+1) = si and trgt(ti+1) = si+1.

We sometimes refer to transitions on a path as steps. We say an action occurs on a path if a
transition labelled with that action is on the path. We call a path on which no action in some
set α occurs an α-free path. One path can be appended to another: let π′ = s′

0t
′
1s

′
1 . . . t

′
ns

′
n

and π′′ = s′′
0 t

′′
1s

′′
1 . . ., where π′ must be finite and π′′ may be finite or infinite. Then the path

π defined as π′′ appended to π′ is written as π = π′ · π′′ = s′
0t

′
1s

′
1 . . . t

′
ns

′
nt

′′
1s

′′
1 This is

only allowed when s′
n = s′′

0 .

▶ Definition 3. We say that:
A transition t ∈ Trans is enabled in a state s ∈ S if, and only if, src(t) = s.
An action a ∈ Act is enabled in a state s ∈ S if, and only if, there exists a transition
t ∈ Trans with act(t) = a that is enabled in s.
An action a ∈ Act is perpetually enabled on a path π if a is enabled in every state of π.
An action a ∈ Act is relentlessly enabled on a path π if every suffix of π contains a state
in which a is enabled.
A state without enabled actions is called a deadlock state.

Every action that is perpetually enabled on a path is also relentlessly enabled on that path.

2.2 Modal µ-Calculus
The modal µ-calculus is given in [29]. Our presentation of the logic is based on [7, 8, 9, 26].

The syntax of the modal µ-calculus is described by the following grammar, in which a

ranges over the set of actions Act, and X ranges over a set of formal variables Var .

ϕ, ψ ::= ff | X | ¬ϕ | ϕ ∨ ψ | ⟨a⟩ϕ | µX .ϕ

Here ff is false; ¬ represents negation; ∨ is disjunction; ⟨ ⟩ is the diamond operator; and µ is
the least fixpoint operator. We say that µX .ϕ binds X in ϕ. Variables that are unbound in
a formula are free, and a formula without free variables is closed.

A modal µ-calculus formula ϕ must both adhere to this grammar and be syntactically
monotonic, meaning that for every occurrence of µX.ψ in ϕ, every free occurrence of X in ψ
must always be preceded by an even number of negations.

We give the semantics of a modal µ-calculus formula ϕ with respect to an arbitrary LTS
M = (S, sinit ,Act,Trans) and environment e : Var → 2S .

Jff KM
e = ∅ Jϕ ∨ ψKM

e = JϕKM
e ∪ JψKM

e

JXKM
e = e(X) J⟨a⟩ϕKM

e =
{
s ∈ S | ∃s′∈S .s

a−→ s′ ∧ s′ ∈ JϕKM
e

}
J¬ϕKM

e = S \ JϕKM
e JµX .ϕKM

e =
⋂ {

S ′ ⊆ S | S ′ ⊇ JϕKM
e[X:=S′]

}
In contexts where the model is fixed, we drop the M from JϕKM

e . Additionally, we drop e
when the environment does not affect the semantics of the formula, e.g. with closed formulae.

CONCUR 2024

38:4 Progress, Justness and Fairness in Modal µ-Calculus Formulae

We use conjunction, ∧, and implication, ⇒, as the usual abbreviations. We also add
several abbreviations: tt = ¬ff for true; [a]ϕ = ¬⟨a⟩¬ϕ for the box operator; and νX.ϕ =
¬µX.(¬ϕ[X := ¬X]) for the greatest fixpoint.

To express formulae more compactly, we extend our syntax to allow regular expressions
over finite sets of actions to be used in the box and diamond operators. Since we limit this
to finite sets of actions, the syntactical extension does not increase the expressivity of the
logic, it merely simplifies the presentation. This is a common extension of the µ-calculus
syntax, for instance shown in [26], based on the operators defined for PDL [18]. We overload
the symbol for a single action to also represent the singleton set containing that action. We
use union, intersection, set difference, and set complement to describe sets of actions as
usual. Regular expressions over sets of actions, henceforth referred to as regular formulae,
are defined by the following grammar:

R,Q ::= ε | α | R ·Q | R+Q | R⋆

The empty sequence is represented by ε, and α ranges over sets of actions. The symbol ·
represents concatenation, + the union of formulae, and ⋆ is closure under repetition.

We define the meaning of the diamond operator over the new regular formulae as
abbreviations of standard modal µ-calculus formulae:

⟨ε⟩ϕ = ϕ ⟨α⟩ϕ =
∨
a∈α

⟨a⟩ϕ ⟨R · Q⟩ϕ = ⟨R⟩⟨Q⟩ϕ

⟨R + Q⟩ϕ = ⟨R⟩ϕ ∨ ⟨Q⟩ϕ ⟨R⋆⟩ϕ = µX .(⟨R⟩X ∨ ϕ)

The box operator is defined dually. We say a path π matches a regular formula R if the
sequence of actions on π is in the language of R.

3 Motivation

When analysing algorithms and systems, there are many different properties which may need
to be checked. For instance, when model checking mutual exclusion algorithms we want to
check linear properties such as mutual exclusion and starvation freedom, but also branching
properties such as invariant reachability of the critical section. The modal µ-calculus, which
subsumes even CTL⋆, is able to express all these properties and more, and is therefore used
in toolsets such as mCLR2 [10] and CADP [19].

An issue that is frequently encountered when checking liveness properties in particular, is
that the model admits executions that violate the property but do not represent realistic
executions of the real system. For example, models of algorithms that contain a busy waiting
loop usually admit executions where processes do nothing except wait. Infinite loops can
also be introduced by abstractions of reality, such as modelling a loop to represent an event
that occurs an arbitrary, but finite, number of times. Counterexamples that are due to such
modelling artefacts obscure whether the property is satisfied on all realistic executions. The
problem we address in this paper is how to avoid such counterexamples and check properties
only on realistic executions. We illustrate the problem with an example, which we also
employ as a running example throughout this paper.

▶ Example 4. Consider the coffee machine modelled in Figure 1. When a user places an
order for one or more cups of coffee, they are required to scan their payment card. If the user
prefers using coinage, they switch the machine to its alternate mode (to_cash), and then
pay in cash. In the alternate mode, the machine can be switched back using to_card. After

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:5

s0 s1

s2

s3 s4

t1:order

t2:to_cash t3:to_card

t4 :card

t5:cash
t6:brew

t7:brew

t8:deliver

Figure 1 The LTS for the running example.

payment, the machine will brew the cup(s) of coffee. This is modelled as a non-deterministic
choice between a looping and a final brew action, since at least one cup was ordered. Finally,
the coffee is delivered and the machine awaits the next order.

We consider three example properties.
1. Single order : whenever an order is made, there may not be a second order until a deliver

has taken place, [Act⋆ · order · deliver⋆ · order]ff .
2. Inevitable delivery: whenever an order is made, there will inevitably be an occurrence of

deliver , [Act⋆ · order]µX.(⟨Act⟩tt ∧ [deliver]X).
3. Possible delivery: it is invariantly possible to eventually execute the deliver action,

[Act⋆]⟨Act⋆ · deliver⟩tt.

The described problem occurs with inevitable delivery: s0t1s1t4(s3t6)ω is a violating path,
on which infinitely many cups are part of the same order. Similarly, s0t1(s1t2s2t3)ω violates
the property because the user never decides on a payment method. The first counterexample
represents an impossible scenario, and the second gives information on problematic user
behaviour but tells us little about the machine itself.

The kind of spurious counterexamples discussed in the example above primarily occur
when checking liveness properties. We therefore focus on liveness properties, such as inevitable
delivery, in this paper. We will briefly discuss safety properties in Section 8.

There are ad-hoc solutions to exclude unrealistic counterexamples, e.g. altering the model
to remove the unrealistic executions, or tailoring the formula to exclude specific problematic
counterexamples [25]. Such ad-hoc solutions are undesirable because they clutter the model
or the formula, and are therefore error-prone. We aim for a more generic solution, of which
the correctness can be established once and for all. Such a generic solution requires, on the
one hand, a general method to distinguish between realistic and unrealistic executions, and,
on the other hand, a general class of liveness properties.

A general method to distinguish between realistic and unrealistic executions is provided
by completeness criteria [21, 22], i.e., predicates on paths that label some as complete and
all others as incomplete. If a property is satisfied on all complete paths, it is satisfied under
the given completeness criterion. Completeness criteria give us a model-independent way
to determine which paths are unrealistic, and therefore a generic solution to the stated
problem. Depending on the property and the model, we may prefer a different completeness
criterion. We therefore consider several criteria instead of fixing one specific criterion. These
completeness criteria are discussed in Section 4.

To find a general class of liveness properties, we take the property specification patterns
(PSP) of [16] as a starting point. Since the modal µ-calculus as presented in Section 2.2
supports references to action occurrences but not state information, we specifically interpret
these patterns on action occurrences. Our first contribution, in Section 5, will be to
characterise a class of liveness properties that subsumes all liveness properties expressible in

CONCUR 2024

38:6 Progress, Justness and Fairness in Modal µ-Calculus Formulae

PSP. Our second and main contribution is then presented in Section 6, where we combine
the identified completeness criteria with our class of liveness properties, yielding template
formulae for each combination.

4 Completeness Criteria

It is often assumed, sometimes implicitly, that as long as a system is capable of executing
actions, it will continue to do so [24]. One could consider this the “default” completeness
criterion, also known as progress [21]; it says that only paths that are infinite or end in
a deadlock state model complete runs and are hence complete paths. We first present a
modified version of the progress assumption that allows some actions to be blocked by the
environment. We then define the other completeness criteria considered in this paper. As
already remarked in the previous section, the modal µ-calculus is most suited to reasoning
about action occurrences. Hence, we focus on completeness criteria defined on action labels.
For more general definitions on sets of transitions, see [24].

4.1 Progress with Blocking Actions
In [23], it is argued that it is useful to consider some actions of an LTS as blocking. A
blocking action is an action that depends on participation by the environment of the modelled
system. Consequently, even when such an action is enabled in a state because the system is
willing to perform it, it may not be possible for the action to occur because the environment
is uncooperative. In this paper, we refer to the set of blocking actions as B ⊆ Act, and the
set of non-blocking actions as B = Act \ B. Which actions are in B is a modelling choice.

The default progress assumption can be adapted to account for blocking actions [20, 24].

▶ Definition 5. A state s ∈ S is a B-locked state if, and only if, all actions enabled in s are
in B. A path π is B-progressing if, and only if, it is infinite or ends in a B-locked state.

We refer to the assumption that only B-progressing paths represent complete executions
as B-progress. The “default” completeness criterion is equivalent to ∅-progress.

▶ Example 6. Consider Figure 1. Here, order is an environment action, since it involves the
user. If we do not assume that there will always be a next user, we should add order to B.
In some cases, we may want to consider the possibility that the machine is broken and not
capable of producing coffee. In those cases, we should add brew to B. Our choice of B affects
which paths are progressing: s0t1s1t4s3 is not ∅-progressing, but it is {brew}-progressing.

All completeness criteria we discuss in this paper are parameterised with a set of blocking
actions. The justness and fairness assumptions discussed in the remainder of this section
label paths as incomplete if certain actions do not occur. Since it can never be assumed that
the environment supports the occurrence of blocking actions, we do not want justness and
fairness to label paths as incomplete due to the non-occurrence of blocking actions.

For readability the prefix B- will sometimes be dropped from the names of the completeness
criteria and their acronyms. From this point, we will always discuss completeness criteria
with respect to a set of blocking actions.

4.2 Justness
Justness [20, 24] is a natural extension of progress to exclude infinite paths instead of
finite paths. The idea is that in addition to the system as a whole progressing, individual
components in that system should also be able to make progress unless they are prevented

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:7

from doing so by other components. It is a weaker, and hence frequently more justifiable,
assumption than the fairness assumptions we cover in the next section. In its original
presentation, justness is defined with respect to sets of transitions. Which components
contribute to a transition and how they contribute to them determines which transitions
interfere with each other. We here consider justness defined with respect to actions instead,
based on [6]. We do not go into how it is determined which actions interfere with each other
here. For discussions on this topic and when the two definitions coincide, see [5, 6, 20].

Intuitively, justness of actions says that if an action a is enabled at some point of a path,
then eventually some action that can interfere with the occurrence of a must occur in that
path. That action may be a itself. In order to formalise the concept of interference, we
require the concept of a concurrency relation on actions, ⌣•.

▶ Definition 7. Relation ⌣• ⊆ Act × Act is a concurrency relation on actions if, and only if:
1. ⌣• is irreflexive, and
2. for all a ∈ Act, if π is a path from a state s in which a is enabled to a state s′ ∈ S such

that a⌣• b for all actions b occurring in π, then a is enabled in s′.
We write ⌣̸• for the complement of ⌣•. Note that ⌣• may be asymmetric.

Read a⌣• b as “a is concurrent with b”, and a⌣̸• b as “b interferes with a” or “b eliminates
a”. A labelled transition system can be extended with a concurrency relation on actions,
which produces a labelled transition system with concurrency (LTSC).

We here present the definition for justness of actions with blocking actions.

▶ Definition 8. A path π satisfies B-justness of actions (B-JA) if, and only if, for each
action a ∈ B that is enabled in some state s in π, an action a′ ∈ Act occurs in the suffix π′

of π starting in s such that a ⌣̸• a′.

▶ Example 9. Consider Figure 1, specifically the path s0t1(s1t2s2t3)ω. On this path the
user keeps switching the mode of the machine, without paying. To see if this path satisfies
∅-JA, we need a concrete ⌣•. Consider a ⌣• such that card ⌣̸• to_cash, cash ⌣̸• to_card,
and a ⌣̸• a for all action labels a. These are all required for ⌣• to be a valid concurrency
relation. This is because by Definition 7, ⌣• must be irreflexive, and when an action is
enabled it must remain enabled on any path on which no interfering action occurs. Since
card is enabled in s1 but not s2, it must be the case that card ⌣̸• to_cash. Similarly, we must
have cash ⌣̸• to_card. With such a concurrency relation, the path satisfies ∅-JA since every
action that is enabled is subsequently eliminated. In this LTS, there is no valid choice of ⌣•

that makes this path violate ∅-JA. However, if we modify Figure 1 by replacing both card
and cash with the action pay, then Definition 7 does not enforce that to_cash and to_card
interfere with the actions on t4 and t5, since pay is enabled in both s1 and s2. We can choose
whether pay ⌣• to_cash and pay ⌣• to_card. If pay is concurrent with both, then the path
s0t1(s1t2s2t3)ω violates ∅-JA. If either interferes with pay, then the path satisfies ∅-JA.

4.3 Fairness
There are situations where we want to exclude a larger set of infinite paths than those
excluded by justness, or where we do not have a concurrency relation. For this, we can use
what are called fairness assumptions in the literature. These are a class of predicates on
paths that distinguish between fair and unfair infinite paths. It is assumed that only the fair
paths are complete. For an overview of many common fairness assumptions, see [24]. In this
paper, we consider weak fairness of actions, strong fairness of actions, and (weak and strong)
hyperfairness of actions. Each of the assumptions we discuss has the general shape, adapted

CONCUR 2024

38:8 Progress, Justness and Fairness in Modal µ-Calculus Formulae

from [2], “if it is sufficiently often possible for an action to occur, it will occur sufficiently
often”. What it means for an action to be “sufficiently often possible” and “occur sufficiently
often” depends on the exact assumption.

We first discuss weak fairness of actions, which says that actions that are always enabled
must eventually occur. It is one of the most commonly discussed fairness assumptions. We
define weak fairness of actions formally, with respect to a set of blocking actions B.

▶ Definition 10. A path π satisfies B-weak fairness of actions (B-WFA) if, and only if, for
every suffix π′ of π, every action a ∈ B that is perpetually enabled in π′ occurs in π′.

▶ Example 11. Consider again Figure 1, with card and cash both replaced by pay. Then
the path s0t1(s1t2s2t3)ω violates ∅-WFA, since pay is perpetually enabled in a suffix of this
path without occurring. If there are two separate actions for paying with cash or card, the
path satisfies ∅-WFA because no actions are perpetually enabled in any suffix.

Next, strong fairness of actions says that on a path, all actions that are enabled infinitely
often, must occur infinitely often. Formally, we define strong fairness of actions as:

▶ Definition 12. A path π satisfies B-strong fairness of actions (B-SFA) if, and only if, for
every suffix π′ of π, every action a ∈ B that is relentlessly enabled in π′ occurs in π′.

Strong fairness is a stronger assumption than weak fairness, since it classifies more paths
as incomplete. This follows from perpetual enabledness implying relentless enabledness.

▶ Example 13. The path s0t1(s1t2s2t3)ω in Figure 1 satisfies ∅-WFA since there are no
perpetually enabled actions in any suffix of the path. However, cash is relentlessly enabled
in suffixes of this path, and yet does not occur. Hence, this path violates ∅-SFA.

Finally, we discuss hyperfairness of actions. Informally, it says that on all fair paths,
every action that can always become enabled must occur infinitely often. The idea is that if
there is always a reachable future where the action occurs, then it is merely unlucky if the
action does not occur infinitely often. The concept of hyperfairness is introduced and named
in [3]. For our presentation of hyperfairness, we use the generalisation from [30]. We first
formalise what it means that an action “can become” enabled, by defining reachability.

▶ Definition 14. We say that:
A state s ∈ S is B-reachable from some state s′ ∈ S if, and only if, there exists a B-free
path starting in s′ that ends in s.
An action a ∈ Act is B-reachable from some state s ∈ S if, and only if, there exists a
state s′ ∈ S that is B-reachable from s and in which a is enabled.
A state s ∈ S or action a ∈ Act is perpetually B-reachable on a path π if, and only if, it
is B-reachable from every state of π.
A state s ∈ S or action a ∈ Act is relentlessly B-reachable on a path π if, and only if,
every suffix of π contains a state from which it is B-reachable.

From the intuitive description of hyperfairness, it is clear it is a variant of weak or
strong fairness with reachability instead of enabledness, giving us two possible definitions of
hyperfairness. We name the two interpretations weak hyperfairness and strong hyperfairness
respectively. Both interpretations of hyperfairness are reasonable, and in fact when not
considering blocking actions, they coincide [30]. However, this is not the case when blocking
actions are included in the definitions. We therefore consider both variants.

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:9

▶ Definition 15. A path π satisfies weak B-hyperfairness of actions (B-WHFA) if, and only
if, for every suffix π′ of π, every action a ∈ B that is perpetually B-reachable in π′ occurs
in π′.

▶ Definition 16. A path π satisfies strong B-hyperfairness of actions (B-SHFA) if, and only
if, for every suffix π′ of π, every action a ∈ B that is relentlessly B-reachable in π′ occurs
in π′.

Since enabledness implies reachability, WHFA is stronger than WFA, and SHFA is stronger
than SFA. Perpetually reachability implies relentless reachability, so SHFA is also stronger
than WHFA. However, as the next examples will show, SFA and WHFA are incomparable.

▶ Example 17. The impact of hyperfairness can clearly be seen when non-determinism is
used. Consider the path s0t1s1t4(s3t6)ω in Figure 1. This path satisfies ∅-SFA, since the only
action that is relentlessly enabled on this path, brew, also occurs infinitely often. However,
as long as deliver ̸∈ B and brew ̸∈ B, this path does not satisfy B-WHFA or B-SHFA: deliver
is B-reachable from s3, and therefore is perpetually and relentlessly B-reachable in a suffix of
this path, but does not occur. We here see B-SFA does not imply B-WHFA.

▶ Example 18. In Figure 1, consider s0t1(s1t2s2t3)ω with B = {order , to_cash, to_card}.
This path satisfies B-WHFA because card and cash are only B-reachable from s1 and s2
respectively. They are not perpetually B-reachable in any suffix of this path, therefore
B-WHFA is satisfied. However, they are relentlessly B-reachable, so B-SHFA is violated.
This demonstrates that B-WHFA and B-SFHA do not coincide when blocking actions are
considered. The actions card and cash are also relentlessly B-enabled, so B-SFA is also
violated. Hence, B-WHFA does not imply B-SFA.

5 A Generalisation of the Property Specification Liveness Patterns

Dwyer, Avrunin and Corbett observed that a significant majority of properties that are used
in practice can be fit into a set of property specification patterns [16]. These patterns consist
of a behaviour that must be satisfied and a scope within a path that delimits where the
behaviour must be satisfied. We focus on expressing properties that are captured by PSP.

Of all behaviours considered in [16], only existence, existence at least, response and chain
response represent pure liveness properties. The global and after scopes, when combined
with any of these four behaviours, give liveness properties.1 All other scopes result in safety
properties or properties that combine safety and liveness. Of those, we cover the until and
after-until scopes, since we can incorporate those into our formulae with little difficulty.

For behaviours, existence at least says some action in a set Sr must occur at least k
times in the scope; when k = 1 we call this existence. The response behaviour requires that
whenever an action in a set Sq occurs, it must be followed by the occurrence of an action in
Sr. When chains of action occurrences are used instead of individual action occurrences, this
is called chain response. For the scopes, global refers to the full path and after to the path
after the first occurrence of an action in a set Sa. The until scope refers to the path before
the first occurrence of an action in a set Sb, or the full path if no such action occurs. Finally,
after-until combines after and until, referring to every subpath of the path that starts after
any occurrence of an action in Sa and ends before the following occurrence of an action in
Sb. If no action in Sb occurs, the behaviour must still be satisfied after Sa.

1 In the full version, we recap PSP and argue why only these patterns represent pure liveness properties.

CONCUR 2024

38:10 Progress, Justness and Fairness in Modal µ-Calculus Formulae

▶ Example 19. Consider again the properties we presented in Example 4. Single order is
absence after-until, with Sa = {order}, Sb = {deliver} and Sr = {order}. Inevitable delivery
is global response with Sq = {order} and Sr = {deliver}. Possible delivery does not fit into
the patterns on occurrences of actions, since it contains a requirement on states, specifically
that the state admits a path on which delivery occurs.

We want to create formulae for all 16 combinations of the selected behaviours and scopes.
To make our results more compact and generic, we first generalise these 16 patterns into a
single template property. This template works by describing the shape of a violating path for
a property that fits one of these patterns. Intuitively, this shape is: “after the occurrence of
ρ, there are no occurrences of αf up until the (optional) occurrence of αe”. For our template
formulae to be syntactically correct, it is important that ρ is a regular formula, describing the
prefix that a violating path must have, whereas αf and αe are sets of actions. The actions
in αf are those that are forbidden from occurring after ρ on a violating path, whereas the
actions in αe indicate the end of the scope in which αf may not occur.

We formalise this template as follows:

▶ Definition 20. A path π is (ρ, αf , αe)-violating if, and only if, there exist πpre and πsuf
such that:
1. π = πpre · πsuf , and
2. πpre matches ρ, and
3. πsuf satisfies at least one of the following conditions:

a. πsuf is αf -free, or
b. πsuf contains an occurrence of an action in αe, and the prefix of πsuf before the first

occurrence of an action in αe is αf -free.
For readability, we frequently refer to (ρ, αf , αe)-violating paths as violating paths. We
sometimes summarise condition 3 as “πsuf is αf -free up until the first occurrence of αe”. See
Figure 2 for an illustration of what types of paths are considered violating.

ρ αf -free ρ αf -free ρ αf -free ρ αf -freeαe αe

Figure 2 The four types of (ρ, αf , αe)-violating paths: finite or infinite, and without or with αe.
Always, it has a prefix matching ρ and is αf -free up until the first occurrence of an action in αe.

All 16 patterns can indeed be represented by the non-existence of (ρ, αf , αe)-violating
paths, albeit some more directly than others. It turns out that ρ, αf and αe can mostly be
determined separately for behaviour and scope. For these patterns, αf is only affected by
behaviour and αe only by scope. However, we must split up the regular formula ρ into a
behaviour component, ρb, and scope component, ρs, such that ρ = ρs · ρb. See Table 1a and
Table 1b for how the variables should be instantiated for the four scopes and three of the
four behaviours. For a compact representation, we use

∑
to generalise the union operator

on regular formulae (+). We also use xi to represent i concatenations of x, where x0 = ε.
We do not include chain response in Table 1b, since it does not fit into a single formula.

However, it is possible to represent chain response as several response formulae placed in
conjunction with each other.2

2 We give an example of this in the full version of this paper.

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:11

Table 1 Variable instantiation for templates.

(a) For scopes.

Scope ρs αe

Global ε ∅
Until ε Sb

After Sa
⋆ · Sa ∅

After-until Act⋆ · Sa Sb

(b) For behaviours.

Behaviour ρb αf

Existence ε Sr

Existence at least k
∑

0≤i<k
(αe ∪ Sr

⋆ · Sr)i Sr

Response αe
⋆ · Sq Sr

Chain response - -

6 Template Formulae

In this section, we present the modal µ-calculus formulae representing the non-existence of a
violating path, as defined in Section 5, that satisfies one of the completeness criteria from
Section 4. We express the non-existence of such a path, rather than expressing the equivalent
notion that all complete paths satisfy the property, because we find the resulting formulae to
be more intuitive. We first present a formula for B-progress only. Subsequently, we give the
formulae for weak fairness, weak hyperfairness and justness using a common structure all
three share. Finally, we present the formulae for strong fairness and strong hyperfairness. In
the justness and fairness formulae, B-progress is also included: these assumptions eliminate
unrealistic infinite paths, but we still need progress to discard unrealistic finite paths.

Proofs of the theorems in this section are included in the full version of this paper. A
sketch of the proof of Theorem 24 is included in Appendix A to illustrate our approach.

6.1 Progress
A formula for the non-existence of a violating path without progress is uninteresting. If
progress is not assumed then all finite paths are complete, and therefore a path consisting of
just ρ is a violating path whenever αf ̸= ∅. The non-existence of a violating path would then
be captured by ¬⟨ρ⟩tt. This is why we include progress in all our formulae.

To represent progress, we must capture that as long as non-blocking actions are enabled,
some transitions must still be executed. The following formula captures the non-existence of
violating paths under B-progress:

¬⟨ρ⟩νX.(⟨αe⟩tt ∨ [B]ff ∨ ⟨αf ⟩X) (1)

Intuitively, this formula says that there is no path that starts with a prefix matching ρ, after
which infinitely often a transition can be taken that is not labelled with an action in αf , or
such transitions can be taken finitely often before a state is reached that is B-locked or in
which αe is enabled. In the former case there is a B-progressing path on which no actions in
αf occur after ρ. If a state in which αe is enabled is reached, then it is guaranteed a violating
and B-progressing path exists: by arbitrarily extending the path as long as non-blocking
actions are still enabled, a B-progressing and violating path can be constructed.

▶ Theorem 21. A state in an LTS satisfies Formula 1 if, and only if, it does not admit
B-progressing paths that are (ρ, αf , αe)-violating.

Since representing a liveness pattern without progress leads to uninteresting formulae,
it is unsurprising that previous translations of PSP to the µ-calculus have also implicitly
included progress. For instance, the translations from [31] for the liveness patterns of PSP
are very similar to Formula 1, albeit in positive form and without blocking actions.

CONCUR 2024

38:12 Progress, Justness and Fairness in Modal µ-Calculus Formulae

6.2 Weak Fairness, Weak Hyperfairness and Justness
For weak fairness, weak hyperfairness and justness, we employ a trick inspired by the formula
for justness presented in [6] (which was in turn inspired by [11]): we translate a requirement
on a full path into an invariant that can be evaluated within finitely many steps from every
state of the path. We illustrate this using weak fairness.

On every suffix of a weakly fair path, every perpetually enabled non-blocking action
occurs. To turn this into an invariant, we observe that we can evaluate a property on all
suffixes of a path by evaluating it from every state of the path instead. Next we must
determine, within finitely many steps, if an action is perpetually enabled on a possibly
infinite path. We do this by observing that if an action is not perpetually enabled, it must
become disabled within finitely many steps. An equivalent definition of WFA therefore is:
a path π satisfies WFA if, and only if, for every state s in π, every action a ∈ B that is
enabled in s occurs or becomes disabled within finitely many steps on the suffix of π starting
in s. This translation of WFA determines three things for every non-blocking action a. First,
which actions may need to occur because of a; in the case of WFA this is a itself. Second,
when those actions need to occur; for WFA this is when a is enabled. We refer to this as
the action being “on”. Finally, when those actions do not need to occur; for WFA this is
when a becomes disabled. We refer to this as the action being “off”. When an action that
was previously on becomes off, or one of the required actions occurs, we say the action is
“eliminated”. By choosing different definitions for an action being on or off, and when an
action is eliminated, we can also represent justness and weak hyperfairness in the same way.

We find that completeness criteria for which such a translation can be made can be
represented using the same generalised formula. We will present this formula and how to
instantiate it for WFA, WHFA and JA. However, we must first formalise what it means for a
predicate on paths to be translatable to an invariant that can be evaluated within finitely
many steps. We introduce the term finitely realisable (path) predicates for this purpose.

▶ Definition 22. A path predicate P is finitely realisable if, and only if, there exist mappings
ϕon and ϕof from non-blocking actions to closed modal µ-calculus formulae, and a mapping
αel from non-blocking actions to sets of actions, such that:
1. A path π satisfies predicate P if, and only if, all states s on π satisfy the following: for all

a ∈ B, if s satisfies ϕon(a) then the suffix π′ of π starting in s must contain an occurrence
of some action in αel(a) or a state that satisfies ϕof (a).

2. A state s is a B-locked state if, and only if, s ̸∈ Jϕon(a)K for all a ∈ B.
3. For every state s and for all a ∈ B, s ∈ Jϕon(a)K implies s ̸∈ Jϕof (a)K.
4. For all states s and all a ∈ B such that s ∈ Jϕon(a)K, if there exists a finite path π from s

to a state s′ such that there is no occurrence of an action in αel(a) on π and there is no
state on π that satisfies ϕof (a), then s′ ∈ Jϕon(a)K.

We refer to these four properties as the invariant property, the locking property, the exclusive
property and the persistent property, respectively.

The general formula for finitely realisable predicates is as follows:

¬⟨ρ⟩νX.(
∧

a∈B

(ϕon(a) ⇒ ⟨αf
⋆⟩(⟨αe⟩tt ∨ (ϕof (a) ∧X) ∨ ⟨αel(a) \ αf ⟩X))) (2)

This formula has similarities to Formula 1, particularly how ρ and αe are integrated. The
important part is that after ρ, it must invariantly hold that all non-blocking actions for which
ϕon(a) is satisfied are later eliminated. An action a is eliminated if, within finitely many
steps, ϕof (a) is satisfied or an action in αel(a) occurs. In both cases, the invariant must

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:13

once again hold. After ρ, no actions in αf may occur. The formula works correctly for finite
paths as well as infinite ones: if it is possible to reach a B-locked state after ρ without taking
actions in αf , then X is satisfied due to the locking property, and a violating path is found.

Formula 2 is a template formula in two ways: ρ, αf and αe determine what property is
captured, and ϕon , ϕof and αel determine the completeness criterion. In this paper, we only
cover how to instantiate the formula for WFA, WHFA and JA, but it can also be used for
other finitely realisable predicates. However, the correctness proof of the formula depends on
the criterion being feasible. Feasibility on paths [2] is defined as follows.

▶ Definition 23. A predicate on paths P is feasible if, and only if, for every LTS M , every
finite path π in M can be extended to a path π′ that satisfies P and is still a valid path in M .

That WFA, WHFA and JA are indeed feasible for finite LTSs is proven in the full version.

▶ Theorem 24. For all feasible and finitely realisable path predicates P , it holds that an
LTSC satisfies Formula 2 if, and only if, its initial state does not admit B-progressing paths
that satisfy P and are (ρ, αf , αe)-violating.

By instantiating the theorem for each completeness criterion, we derive the following:

▶ Corollary 25. A state in an LTS satisfies Formula 2 with ϕon(a) = ⟨a⟩tt, ϕof (a) = [a]ff
and αel(a) = {a} for all a ∈ B if, and only if, it does not admit B-progressing paths that
satisfy B-weak fairness of actions and are (ρ, αf , αe)-violating.

▶ Corollary 26. A state in an LTS satisfies Formula 2 with ϕon(a) = ⟨B⋆ · a⟩tt, ϕof (a) =
[B⋆ · a]ff and αel(a) = {a} for all a ∈ B if, and only if, it does not admit B-progressing paths
that satisfy weak B-hyperfairness of actions and are (ρ, αf , αe)-violating.

▶ Corollary 27. A state in an LTSC satisfies Formula 2 with ϕon(a) = ⟨a⟩tt, ϕof (a) = ff
and αel(a) = {b ∈ Act | a ⌣̸• b} for all a ∈ B if, and only if, it does not admit B-progressing
paths that satisfy B-justness of actions and are (ρ, αf , αe)-violating.

6.3 Strong Fairness and Strong Hyperfairness
SFA is not finitely realisable because we cannot observe within finitely many steps whether
an action is relentlessly enabled: even if we observe several times that it is disabled, it may
still be infinitely often enabled along the whole path. Hence, we cannot use Formula 2.

Instead we observe that, on a path, actions that are not relentlessly enabled must
eventually become perpetually disabled. If the path is strongly fair, then all relentlessly
enabled non-blocking actions occur infinitely often. We can therefore say that a path is
strongly fair if we can divide all non-blocking actions into two disjoint sets: those that occur
infinitely often and those that eventually become perpetually disabled. This observation is
also made in [36], where a µ-calculus formula for termination under strong fairness is given.

Using this idea, we give the following template formula for SFA:

¬⟨ρ · αf
⋆⟩(⟨αe⟩tt ∨ [B]ff ∨

∨
∅̸=F ⊆B

νX.(
∧

a∈F

µW.((
∧

b∈B\F

[b]ff) ∧ (⟨a \ αf ⟩X ∨ ⟨αf ⟩W)))) (3)

The use of negation, the exclusion of αf , and ρ in the diamond operator at the start of this
formula are the same as in Formula 1. We explain the start of the formula after addressing
the part starting with

∨
∅̸=F ⊆B. Here, we use that on a strongly fair path, all non-blocking

CONCUR 2024

38:14 Progress, Justness and Fairness in Modal µ-Calculus Formulae

actions can be divided into those that occur infinitely often and those that become perpetually
disabled. The disjunction over subsets considers all possible ways of selecting some non-empty
subset F of B that should occur infinitely often. The greatest fixpoint states that infinitely
often, all those actions must indeed occur within finitely many steps. Additionally, at no
point may a non-blocking action not in F be enabled. We exclude F = ∅ because the logic
of the greatest fixed point formula we give relies on there being at least one a in F . The
special case that F is empty and therefore a B-locked state should be reached, is instead
covered by explicitly considering [B]ff earlier in the formula. Returning to the start of the
formula, we allow a finite αf -free path before the greatest fixpoint is satisfied. The reason
is that it may take several steps before all the non-blocking actions that are only finitely
often enabled become perpetually disabled. Since we include a finite prefix already, we also
add the cases that an action in αe becomes enabled or that a B-locked state is reached here,
rather than deeper into the formula like in Formula 2.

▶ Theorem 28. An LTS satisfies Formula 3 if, and only if, its initial state does not admit
B-progressing paths that satisfy B-strong fairness of actions and are (ρ, αf , αe)-violating.

Due to the quantification over subsets, the formula is exponential in the number of actions
in B. Beyond small models, it is therefore not practical. However, it can serve as a basis
for future work. For instance, if fairness is applied to sets of actions rather than individual
actions, the formula is exponential in the number of sets instead, which may be smaller
depending on how the sets are formed [35].

We can adapt the formula for strong fairness to a formula for strong hyperfairness, by re-
placing perpetual disabledness of non-blocking actions not in F with perpetual unreachability.

¬⟨ρ · αf
⋆⟩(⟨αe⟩tt ∨ [B]ff ∨

∨
∅̸=F ⊆B

νX.(
∧

a∈F

µW.((
∧

b∈B\F

[B⋆ · b]ff)∧(⟨a \ αf ⟩X∨⟨αf ⟩W)))) (4)

▶ Theorem 29. An LTS satisfies Formula 4 if, and only if, its initial state does not admit a
B-progressing path that satisfies strong B-hyperfairness of actions and is (ρ, αf , αe)-violating.

Since we are not aware of other completeness criteria that fit the same structure, we do
not provide a generalised formula here like we did with Formula 2.

7 Application Example

We here give an example of an application of the template formulae. In [25], several mutual
exclusion algorithms are analysed using the mCRL2 toolset. Their analysis of Dekker’s
algorithm [14] presents the following modal µ-calculus formula for starvation freedom of
processes with id’s 0 and 1. For clarity, the notation has been adjusted to match the previous
sections and action names have been simplified.

[Act⋆]
∧

i∈{0,1}

[{wish_flag(i, b) | b ∈ B}]µX.([enter(i)]X ∧ ⟨Act⟩tt) (5)

Starvation freedom is a global response property. In this case, the starvation freedom of a
process i is represented as an instantiation of the pattern with Sq = {wish_flag(i, b) | b ∈ B}
and Sr = {enter(i)}. Indeed, the above formula is equivalent to:∧

i∈{0,1}

¬⟨Act⋆ · {wish_flag(i, b) | b ∈ B}⟩νX.(⟨∅⟩tt ∨ [Act]ff ∨ ⟨enter(i)⟩X) (6)

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:15

Observe that, when taking B = ∅, the above matches a conjunction of two instances of
Formula 1, taking ρ, αe and αf as suggested in Table 1 for global response. Thus, this formula
captures starvation freedom under ∅-progress. In [25], it is reported that mCRL2 finds a
violating path for this formula; a path which the authors note is unfair. The exact fairness
assumption considered is not made concrete. As an ad-hoc solution, the modal µ-calculus
formula is adjusted to specifically ignore that counterexample. Subsequently, mCRL2 finds
another counterexample, which the authors again claim is unfair. Instead of creating yet
another formula, they move on to Peterson’s algorithm, which is deemed easier to analyse.
Using our template formulae, we can easily produce a formula for starvation freedom under
several different completeness criteria. We give the formula for ∅-WFA, as an example.∧

i∈{0,1}

¬⟨Act⋆ · {wish_flag(i, b) | b ∈ B}⟩

νX.(
∧

a∈Act
(⟨a⟩tt ⇒ ⟨enter(i)

⋆
⟩(⟨∅⟩tt ∨ ([a]ff ∧X) ∨ ⟨a \ enter(i)⟩X))) (7)

We check this formula on the model from [25] using mCRL2. Since mCRL2 only supports
quantification over data parameters and not over actions, the conjunction over Act must
be written out explicitly. The tool reports that the formula is violated. Examining the
counterexample reveals this is because actions in the model do not show which process
performs the action. Therefore, process i reading value v from a register r is labelled with
the same action as process j reading v from r. We add the responsible process to each action
label, and also define B = {wish_flag(i, i, b) | i ∈ {0, 1}, b ∈ B}, to capture that processes
are allowed to remain in their non-critical section indefinitely. This was not considered in
Formula 5, but it is part of the mutual exclusion problem [15, 22]. The tool reports that the
modified formula is satisfied. We can therefore conclude that Dekker’s algorithm satisfies
starvation freedom when assuming weak fairness of actions, as long as it is taken into account
for each action which process is responsible for it.

Our other formulae can be used in similar ways. An example of how to use the justness
formula in mCRL2, including a method for encoding the concurrency relation, is given in [6].

8 Discussion

In this section, we briefly reflect on the coverage of the properties we consider, and our choice
in focusing on the modal µ-calculus.

Firstly, we have exclusively addressed liveness properties in this paper thus far. As
indicated previously, the problem we are considering primarily crops up for these properties.
This is because, as pointed out in [22], when a completeness criterion is feasible, assuming
the criterion holds true or not has no impact on whether a safety property is satisfied or not.
The reason is that for safety properties on paths, any path that violates the property must
contain a finite prefix such that any extension of that prefix also violates the property [1].
Therefore, if a completeness criterion is feasible, then whenever a model contains incomplete
paths that violate a safety property it also contains complete paths that violate the property.
All completeness criteria discussed in Section 4 are feasible with respect to finite LTSs,
and hence we do not need to consider patterns that capture safety properties. For modal
µ-calculus formulae for the safety properties of PSP, without integrated completeness criteria,
we refer to [31] and [34]. For properties that are a combination of safety and liveness, the
components can be turned into separate formulae and checked separately.

CONCUR 2024

38:16 Progress, Justness and Fairness in Modal µ-Calculus Formulae

Readers may also wonder about alternative methods of representing properties under
completeness criteria, such as using LTL. As indicated in Section 3, there are many contexts
where we also want to consider non-linear properties, and hence the modal µ-calculus is
preferred. Automatic translations from LTL to the modal µ-calculus exist, but can be
exponential in complexity [13] and it is unclear at this time if this blow-up is avoided in this
case. Anecdotal evidence [33] suggests this is not the case for existing translations. In [22]
several completeness criteria are represented in LTL, but it is noted that this translation
requires introducing new atomic propositions which hides the complexity of this translation.
The representation of hyperfairness in particular may be expensive, since atomic propositions
for all reachable actions are required. It is also unclear how to combine LTL-based translations
effectively with symbolic model checking approaches. For these reasons, a direct representation
in the modal µ-calculus is preferable.

9 Conclusion
In this paper, we have presented formulae for liveness properties under several completeness
criteria. As part of this, we defined a property template that generalises the liveness properties
of PSP, which has been estimated to cover a majority of properties found in the literature [16].
The completeness criteria covered are progress, justness, weak fairness, strong fairness, and
hyperfairness, all defined with respect to actions and parameterised with a set of blocking
actions. The formulae have all been manually proven to be correct.

For future work, one goal is to formalise our manual proofs using a proof assistant. Another
avenue for future work is extending our formulae to cover a wider range of completeness
criteria and properties. We suggest some potential extensions here.

One of our contributions is the identification of a shared common structure underlying
justness, weak fairness and weak hyperfairness: they are finitely realisable path predicates.
Our formula for such predicates can be adapted to arbitrary feasible finitely realisable path
predicates. While we do not have such a generic formula for other completeness criteria,
our characterisation of (ρ, αf , αe)-violating paths can be used as a basis to express the
non-existence of complete paths violating many common properties for different notions
of completeness as well, as we demonstrate with strong fairness and strong hyperfairness.
We are especially interested in extending our formulae to allow fairness over sets of actions,
rather than individual actions, similar to the task-based definitions from [24].

In terms of properties, we can look at proposed extensions of PSP, such as those suggested
in [12]. There is also the constrained chain behaviour, which is a modification of precedence
chain and response chain given in [16]. There are extensions of PSP to real-time [4, 28] and
probabilistic [27] contexts as well. Finally, in [5] the formula from [6] that formed the basis
of Formula 2 is extended to also include state information.

There are therefore many potentially useful extensions of the formulae presented in this
paper. However, the presented template formulae already cover many completeness criteria
and liveness properties, making them useful for model checking in practice.

References
1 Mack W. Alford, Leslie Lamport, and Geoff P. Mullery. Basic concepts. In Mack W. Alford,

Jean-Pierre Ansart, Günter Hommel, Leslie Lamport, Barbara Liskov, Geoff P. Mullery, and
Fred B. Schneider, editors, Distributed Systems: Methods and Tools for Specification, An
Advanced Course, April 3-12, 1984 and April 16-25, 1985, Munich, Germany, volume 190 of
Lecture Notes in Computer Science, pages 7–43. Springer, 1984. doi:10.1007/3-540-15216-4_
12.

2 Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in languages for
distributed programming. Distributed Comput., 2(4):226–241, 1988. doi:10.1007/BF01872848.

https://doi.org/10.1007/3-540-15216-4_12
https://doi.org/10.1007/3-540-15216-4_12
https://doi.org/10.1007/BF01872848

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:17

3 Paul C. Attie, Nissim Francez, and Orna Grumberg. Fairness and hyperfairness in multi-
party interactions. In Frances E. Allen, editor, Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, San Francisco, California, USA,
January 1990, pages 292–305. ACM Press, 1990. doi:10.1145/96709.96739.

4 Pierfrancesco Bellini, Paolo Nesi, and Davide Rogai. Expressing and organizing real-time
specification patterns via temporal logics. J. Syst. Softw., 82(2):183–196, 2009. doi:10.1016/
j.jss.2008.06.041.

5 Mark S. Bouwman. Supporting Railway Standardisation with Formal Verification. Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science, Eindhoven Univer-
sity of Technology, 2023. URL: https://pure.tue.nl/ws/portalfiles/portal/307965423/
20231023_Bouwman_hf.pdf.

6 Mark S. Bouwman, Bas Luttik, and Tim A. C. Willemse. Off-the-shelf automated analysis
of liveness properties for just paths. Acta Informatica, 57(3-5):551–590, 2020. doi:10.1007/
s00236-020-00371-w.

7 Julian C. Bradfield and Colin Stirling. Modal logics and mu-calculi: an introduction. In Jan A.
Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra, pages
293–330. Elsevier Science, 2001. doi:10.1016/b978-044482830-9/50022-9.

8 Julian C. Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn, Johan Van
Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in logic and
practical reasoning, pages 721–756. Elsevier, 2007. doi:10.1016/s1570-2464(07)80015-2.

9 Julian C. Bradfield and Igor Walukiewicz. The mu-calculus and model checking. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 871–919. Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

10 Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 toolset for
analysing concurrent systems. In Tomáš Vojnar and Lijun Zhang, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 25th International Conference, TACAS 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II, volume 11428 of Lecture
Notes in Computer Science, pages 21–39. Springer, 2019. doi:10.1007/978-3-030-17465-1_2.

11 Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan, and Xudong Zhao. Efficient
generation of counterexamples and witnesses in symbolic model checking. In Bryan Preas,
editor, Proceedings of the 32st Conference on Design Automation, San Francisco, California,
USA, Moscone Center, June 12-16, 1995, pages 427–432. ACM Press, 1995. doi:10.1145/
217474.217565.

12 Rachel L. Cobleigh, George S. Avrunin, and Lori A. Clarke. User guidance for creating precise
and accessible property specifications. In Michal Young and Premkumar T. Devanbu, editors,
Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006, pages 208–218. ACM,
2006. doi:10.1145/1181775.1181801.

13 Sjoerd Cranen, Jan Friso Groote, and Michel A. Reniers. A linear translation from CTL⋆

to the first-order modal µ-calculus. Theor. Comput. Sci., 412(28):3129–3139, 2011. doi:
10.1016/j.tcs.2011.02.034.

14 Edsger W Dijkstra. Over de sequentialiteit van procesbeschrijvingen (EWD-35). EW dijkstra
archive. Center for American History, University of Texas at Austin, 1962. URL: https:
//www.cs.utexas.edu/~EWD/ewd00xx/EWD35.PDF.

15 Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569, 1965. doi:10.1145/365559.365617.

16 Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Barry W. Boehm, David Garlan, and Jeff
Kramer, editors, Proceedings of the 1999 International Conference on Software Engin-
eering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999, pages 411–420. ACM, 1999.
doi:10.1145/302405.302672.

CONCUR 2024

https://doi.org/10.1145/96709.96739
https://doi.org/10.1016/j.jss.2008.06.041
https://doi.org/10.1016/j.jss.2008.06.041
https://pure.tue.nl/ws/portalfiles/portal/307965423/20231023_Bouwman_hf.pdf
https://pure.tue.nl/ws/portalfiles/portal/307965423/20231023_Bouwman_hf.pdf
https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1007/s00236-020-00371-w
https://doi.org/10.1016/b978-044482830-9/50022-9
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1145/217474.217565
https://doi.org/10.1145/217474.217565
https://doi.org/10.1145/1181775.1181801
https://doi.org/10.1016/j.tcs.2011.02.034
https://doi.org/10.1016/j.tcs.2011.02.034
https://www.cs.utexas.edu/~EWD/ewd00xx/EWD35.PDF
https://www.cs.utexas.edu/~EWD/ewd00xx/EWD35.PDF
https://doi.org/10.1145/365559.365617
https://doi.org/10.1145/302405.302672

38:18 Progress, Justness and Fairness in Modal µ-Calculus Formulae

17 E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982. doi:
10.1016/0167-6423(83)90017-5.

18 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

19 Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: a toolbox
for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf.,
15(2):89–107, 2013. doi:10.1007/s10009-012-0244-z.

20 Rob J. van Glabbeek. Justness - A completeness criterion for capturing liveness properties
(extended abstract). In Mikołaj ojańczyk and Alex Simpson, editors, Foundations of Software
Science and Computation Structures - 22nd International Conference, FOSSACS 2019, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11425 of Lecture Notes in
Computer Science, pages 505–522. Springer, 2019. doi:10.1007/978-3-030-17127-8_29.

21 Rob J. van Glabbeek. Reactive temporal logic. In Ornela Dardha and Jurriaan Rot, editors,
Proceedings Combined 27th International Workshop on Expressiveness in Concurrency and
17th Workshop on Structural Operational Semantics, EXPRESS/SOS 2020, and 17th Workshop
on Structural Operational SemanticsOnline, 31 August 2020, volume 322 of EPTCS, pages
51–68. Open Publishing Association, 2020. doi:10.4204/EPTCS.322.6.

22 Rob J. van Glabbeek. Modelling mutual exclusion in a process algebra with time-outs. Inf.
Comput., 294:105079, 2023. doi:10.1016/j.ic.2023.105079.

23 Rob J. van Glabbeek and Peter Höfner. CCS: It’s not fair! fair schedulers cannot be
implemented in CCS-like languages even under progress and certain fairness assumptions.
Acta Informatica, 52(2-3):175–205, 2015. doi:10.1007/s00236-015-0221-6.

24 Rob J. van Glabbeek and Peter Höfner. Progress, Justness, and Fairness. ACM Comput.
Surv., 52(4):69:1–69:38, 2019. doi:10.1145/3329125.

25 Jan Friso Groote and Jeroen J. A. Keiren. Tutorial: designing distributed software in mCRL2.
In Kirstin Peters and Tim A. C. Willemse, editors, Formal Techniques for Distributed Objects,
Components, and Systems - 41st IFIP WG 6.1 International Conference, FORTE 2021, Held
as Part of the 16th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12719 of Lecture Notes
in Computer Science, pages 226–243. Springer, 2021. doi:10.1007/978-3-030-78089-0_15.

26 Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of Commu-
nicating Systems. MIT Press, August 2014. URL: https://mitpress.mit.edu/books/
modeling-and-analysis-communicating-systems.

27 Lars Grunske. Specification patterns for probabilistic quality properties. In Wilhelm Schäfer,
Matthew B. Dwyer, and Volker Gruhn, editors, 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, pages 31–40. ACM, 2008.
doi:10.1145/1368088.1368094.

28 Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In Gruia-Catalin
Roman, William G. Griswold, and Bashar Nuseibeh, editors, 27th International Conference on
Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages 372–381.
ACM, 2005. doi:10.1145/1062455.1062526.

29 Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27(3):333–354,
1983. doi:10.1016/0304-3975(82)90125-6.

30 Leslie Lamport. Fairness and hyperfairness. Distributed Comput., 13(4):239–245, 2000.
doi:10.1007/PL00008921.

31 Radu Mateescu. Property Pattern Mappings for RAFMC, 2019. Available at: https://cadp.
inria.fr/resources/evaluator/rafmc.html (Accessed: 26 January 2024).

32 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.4204/EPTCS.322.6
https://doi.org/10.1016/j.ic.2023.105079
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1145/3329125
https://doi.org/10.1007/978-3-030-78089-0_15
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/PL00008921
https://cadp.inria.fr/resources/evaluator/rafmc.html
https://cadp.inria.fr/resources/evaluator/rafmc.html
https://doi.org/10.1109/SFCS.1977.32

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:19

33 Jaco van de Pol and Michael Weber. A multi-core solver for parity games. Electronic Notes
in Theoretical Computer Science, 220(2):19–34, 2008. Proceedings of the 7th International
Workshop on Parallel and Distributed Methods in verifiCation (PDMC 2008). doi:10.1016/
j.entcs.2008.11.011.

34 Daniela Remenska. Bringing Model Checking Closer To Practical Software Engineering. PhD
thesis, Vrije U., Amsterdam, 2016. PhD Thesis, available at: https://hdl.handle.net/1871/
53958.

35 Myrthe S. C. Spronck. Fairness assumptions in the modal µ-calculus, 2023. Master’s
thesis, Eindhoven University of Technology, available at https://research.tue.nl/en/
studentTheses/fairness-assumptions-in-the-modal-%C2%B5-calculus.

36 Frank A. Stomp, Willem-Paul de Roever, and Rob T. Gerth. The µ-calculus as an
assertion-language for fairness arguments. Inf. Comput., 82(3):278–322, 1989. doi:10.1016/
0890-5401(89)90004-7.

A Proof Sketch

Full proofs are included in the appendices of the full version of this paper. Here, we provide an
outline of the proof of Theorem 24 by presenting all the supporting lemmas and propositions
proven. We include brief sketches of how we prove these claims, but not the full proofs. This
is done to illustrate the approach we have taken. This appendix corresponds to Appendix
D.3 in the full version. We begin with restating Theorem 24.

▶ Theorem 24. For all feasible and finitely realisable path predicates P , it holds that an
LTSC satisfies Formula 2 if, and only if, its initial state does not admit B-progressing paths
that satisfy P and are (ρ, αf , αe)-violating.

The following propositions3 give properties of finitely realisable paths that can be derived
from the invariant, locking, exclusive and persistent properties.

▶ Proposition 46. Every B-progressing, finite path satisfies every finitely realisable path
predicate, for all B ⊆ Act.

▶ Proposition 47. Every path that satisfies a finitely realisable path predicate P is B-
progressing.

▶ Proposition 48. If a path π satisfies finitely realisable path predicate P , then every path of
which π is a suffix also satisfies P .

▶ Proposition 49. If a path π satisfies a finitely realisable path predicate P , then every suffix
of π also satisfies P .

Proposition 46 follows from the invariant, locking, and persistent properties. For Proposi-
tion 47, we use the invariant, locking, and exclusive properties, and for Proposition 48, the
invariant and persistent property are enough. Finally, Proposition 49 follows directly from
the invariant property.

For the proof of the main theorem, we fix an LTS M , as well as B, ρ, αf and αe. We
also fix a feasible, finitely realisable path predicate P . To characterise the semantics of the
formula, we first split it into multiple smaller subformulae.

3 We use the same numbering here as in the full version, hence the jump to 46.

CONCUR 2024

https://doi.org/10.1016/j.entcs.2008.11.011
https://doi.org/10.1016/j.entcs.2008.11.011
https://hdl.handle.net/1871/53958
https://hdl.handle.net/1871/53958
https://research.tue.nl/en/studentTheses/fairness-assumptions-in-the-modal-%C2%B5-calculus
https://research.tue.nl/en/studentTheses/fairness-assumptions-in-the-modal-%C2%B5-calculus
https://doi.org/10.1016/0890-5401(89)90004-7
https://doi.org/10.1016/0890-5401(89)90004-7

38:20 Progress, Justness and Fairness in Modal µ-Calculus Formulae

violateG = ⟨ρ⟩invariantG

invariantG = νX.(
∧

a∈B

(ϕon(a) ⇒ eliminateG(a)))

eliminateG(a) = ⟨αf
⋆⟩(⟨αe⟩tt ∨ (ϕof (a) ∧X) ∨ ⟨αel(a) \ αf ⟩X)

We have that Formula 2 = ¬violateG.
The proof proceeds by characterising the semantics of every subformulae. We define the

length of a path to be the number of transitions. A path of length 0 is called the empty path.

▶ Lemma 50. For all environments e, states s ∈ S, actions a ∈ B and sets F ⊆ S, it holds
that s ∈ JeliminateG(a)Ke[X:=F] if, and only if, s admits a finite path π with final state sfinal
that satisfies the following conditions:
1. π is αf -free, and
2. one of the following three holds:

a. at least one action in αe is enabled in sfinal, or
b. sfinal ∈ F and sfinal satisfies ϕof (a), or
c. sfinal ∈ F and the last transition in π, tfinal, is labelled with an action in αel(a) \ αf .

In the full proof of Lemma 50, we use another supporting proposition that characterises
the semantics of a simple least fixpoint formula that generalises eliminateG(a), and then show
in detail how the lemma follows. For this overview, we only give an intuitive explanation: the
⟨αf

⋆⟩ part of eliminateG(a) gives us the finite, αf -free path π that the lemma refers to. The
conditions on the final state of this path follow from the rest of the formula: ⟨αe⟩tt considers
the possibility that an action in αe is enabled; ϕof (a) ∧X represents reaching a state in F
where ϕof (a) is satisfied (recall that Lemma 50 refers to the environment where X is mapped
to F); and ⟨αel(a) \ αf ⟩X appends one extra transition to a state in F , eliminating a. Since
the total path has to be αf -free, the eliminating action may not be in αf .

The next step is invariantG. This formula exactly describes those states that admit paths
that are B-progressing, (ε, αf , αe)-violating and satisfy P . Since ε is the empty sequence, we
are ignoring the ρ-prefix for now. We define the set SG to be exactly those states in M that
admit a path π meeting the following conditions:

π satisfies P , and
π is B-progressing, and
π satisfies one of the following conditions:
π is αf -free, or
π contains an occurrence of an action in αe, and the prefix of π before the first
occurrence of an action in αe is αf -free.

Our goal is then to prove that JinvariantGKe = SG. This takes two steps: first we prove
that SG is a fixed point of the transformer characterising invariantG, and then that it is the
greatest fixed point.

▶ Lemma 51. SG is a fixed point of the transformer TG defined by:

TG(F) =
⋂

a∈B

{
s ∈ S | s ∈ Jϕon(a)Ke[X:=F] ⇒ s ∈ JeliminateG(a)Ke[X:=F]

}

M. S. C. Spronck, B. Luttik, and T. A. C. Willemse 38:21

Proving that SG is a fixed point means proving TG(SG) = SG, which we do by mutual
set inclusion. We briefly explain how we reach the conclusion that if a state s is in TG(SG),
then it must also be in SG. If there are no non-blocking actions a such that s ∈ Jϕon(a)K,
then the empty path witnesses that s is in SG; for this we use the locking property as well
as Proposition 46. If there is an action a ∈ B such that s ∈ Jϕon(a)K, then we know from
s ∈ TG(SG) that s ∈ JeliminateGKe[X:=SG]. Then Lemma 50 yields a finite path π that is
αf -free and on which a state in which αe is enabled is reached, or a is eliminated and a state
in SG is reached. In the former case, we can use feasibility of P and Proposition 47 to find a
path that satisfies P and is B-progressing, and that is also αf -free until the first occurrence
of an action in αe. Hence, we find a path that witnesses s ∈ SG. If a is eliminated instead,
then since π reaches a state that is in SG, we can create a path π′′ = π · π′, where π′ is a
path from the final state of π that is B-progressing, satisfies P , and is αf -free up until the
first occurrence of an action in αe. Using Proposition 48, we can then show π′′ witnesses
s ∈ SG. The other part of the proof, that an arbitrary state in SG is also in TG(SG), works
very similarly, just in the other direction. We need Proposition 49 in that part of the proof
in place of Proposition 48.

To prove that SG is actually the greatest fixed point of TG, we use the following supporting
lemma:

▶ Lemma 52. For all states s in a fixed point F of TG as defined in Lemma 51, if there is
no action in αe that is reachable from s without doing an action in αf and there exists at
least one action a ∈ B such that s satisfies ϕon(a), then there exists a finite path π from s to
some state s′ meeting all of the following conditions:
1. s′ ∈ F , and
2. π has length at least one, and
3. π is αf -free, and
4. for all actions a ∈ B such that s satisfies ϕon(a), there is a state on π that satisfies ϕof (a)

or there is a transition on π labelled with an action in αel(a).

However, for an intuitive explanation of the proof that SG is the greatest fixed point of
TG we do not need this supporting lemma. We therefore do not go into its proof here.

▶ Lemma 53. SG is the greatest fixed point of the transformer TG as defined in Lemma 51.

In the proof of Lemma 53, we take an arbitrary state s in an arbitrary fixed point F of
TG, and then prove that s ∈ SG. This is done by constructing a path π from s that satisfies
P , is B-progressing, and (ε, αf , αe)-violating. The proof considers three cases. The first case
is when s is B-locked. In that case, the empty path is trivially B-progressing and violating,
and by Proposition 46 also satisfies P . The second case is that it is possible to reach a state
in which an action in αe is enabled without taking actions in αf . If this is the case, then
that path can be extended using feasibility of P to create a path that is violating, satisfies
P , and, by Proposition 47, is B-progressing. The most complicated case is the one in which
neither of the previous two is true. The idea is that we construct a path from s by repeatedly
adding αf -free path segments to an initial path π = s, in a potentially endless construction.
In every iteration, we consider whether the final state of the path constructed thus far is
B-locked. If so, then, similar to the first case, we have found a witness for s ∈ SG. If not,
then there is some non-blocking action a that is “on”. And therefore, by the definition of
TG, there is a finite αf -free path on which a is eliminated. We can disregard the possibility
that we instead reach a state in which αe is enabled, since we addressed that case separately.
The segment we append to π is the finite αf -free path on which a is eliminated. By the

CONCUR 2024

38:22 Progress, Justness and Fairness in Modal µ-Calculus Formulae

persistent property, non-blocking actions for which ϕon is satisfied but are not eliminated
remain “on”, and hence can be eliminated later in π. We can therefore simply keep track of
all the actions for which ϕon is satisfied in states we encounter, and eliminate them all in
turn. This produces an infinite, and therefore B-progressing, path that satisfies P , and that
is entirely αf -free. So in this case too, we construct a path that witnesses s ∈ SG.

Since the semantics of invariantG are characterised as the greatest fixed point of TG, we
can conclude the following from the definition of SG.

▶ Corollary 54. The set of states characterised by invariantG is exactly the set of states that
admit B-progressing, (ε, αf , αe)-violating paths that satisfy P .

We then prepend the ρ part of the formula.

▶ Lemma 55. For all environments e and states s ∈ S, it holds that s ∈ JviolateGKe if, and
only if, s admits a path that is B-progressing, satisfies P and is (ρ, αf , αe)-violating.

This step is rather trivial, since it follows directly from Corollary 54 and the basic definition
of the modal µ-calculus.

The final step of the proof is then to negate violateG. Theorem 24 follows directly.

Coinductive Techniques for Checking Satisfiability
of Generalized Nested Conditions
Lara Stoltenow #

University of Duisburg-Essen, Germany

Barbara König #

University of Duisburg-Essen, Germany

Sven Schneider #

Hasso Plattner Institute at the University of Potsdam, Germany

Andrea Corradini #

Università di Pisa, Italy

Leen Lambers #

Brandenburgische Technische Universität Cottbus-Senftenberg, Germany

Fernando Orejas #

Universitat Politècnica de Catalunya, Spain

Abstract
We study nested conditions, a generalization of first-order logic to a categorical setting, and provide
a tableau-based (semi-decision) procedure for checking (un)satisfiability and finite model generation.
This generalizes earlier results on graph conditions. Furthermore we introduce a notion of witnesses,
allowing the detection of infinite models in some cases. To ensure completeness, paths in a tableau
must be fair, where fairness requires that all parts of a condition are processed eventually. Since the
correctness arguments are non-trivial, we rely on coinductive proof methods and up-to techniques
that structure the arguments. We distinguish between two types of categories: categories where
all sections are isomorphisms, allowing for a simpler tableau calculus that includes finite model
generation; in categories where this requirement does not hold, model generation does not work, but
we still obtain a sound and complete calculus.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Program reasoning

Keywords and phrases satisfiability, graph conditions, coinductive techniques, category theory

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.39

Related Version Full Version: https://arxiv.org/abs/2407.06864 [28]

Funding Andrea Corradini: Research partially supported by the Italian MUR under the PRIN
20228KXFN2 “STENDHAL” and by the University of Pisa under the PRA 2022_99 “FM4HD”.
Fernando Orejas: Research partially supported by MCIN/ AEI /10.13039/501100011033 under grant
PID2020-112581GB-C21.

1 Introduction

Nested graph conditions (called graph conditions subsequently) are a well-known specification
technique for graph transformation systems [8] where they are used, e.g., to specify graph
languages and application conditions. While their definition is quite different from first-order
logic (FOL), they have been shown to be equivalent to FOL in [23, 8]. They are naturally
equipped with operations such as shift, a form of partial evaluation, which is difficult to
specify directly in FOL. This operation can be used to compute weakest preconditions and
strongest postconditions for graph transformation systems [1].

© Lara Stoltenow, Barbara König, Sven Schneider, Andrea Corradini, Leen Lambers, and
Fernando Orejas;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 39; pp. 39:1–39:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lara.stoltenow@uni-due.de
https://orcid.org/0009-0009-1667-8573
mailto:barbara_koenig@uni-due.de
https://orcid.org/0000-0002-4193-2889
mailto:sven.schneider@hpi.de
https://orcid.org/0000-0001-9828-618X
mailto:andrea@di.unipi.it
https://orcid.org/0000-0001-6123-4175
mailto:leen.lambers@b-tu.de
https://orcid.org/0000-0001-6937-5167
mailto:orejas@lsi.upc.edu
https://orcid.org/0000-0002-3023-4006
https://doi.org/10.4230/LIPIcs.CONCUR.2024.39
https://arxiv.org/abs/2407.06864
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

In [1] it has also been observed that graph conditions can be generalized to the categorical
setting of reactive systems [16] as an alternative to the previously considered instantiation to
graphs and injective graph morphisms that is equivalent to FOL. Further possible instan-
tiations include cospan categories where the graphs, equipped with an inner and an outer
interface, are the arrows, as well as Lawvere theories. To derive analysis techniques for all
such instantiations, we consider nested conditions in the general categorical setting.

Here we are in particular interested in satisfiability checks on the general categorical level.
As in FOL, satisfiability can be an undecidable problem (depending on the category), and we
propose a semi-decision procedure that can simultaneously serve as a model finder. For FOL
there are several well-known methods for satisfiability checking, for instance resolution or
tableau proofs [6], while model generation is typically performed separately. The realization
that satisfiability checking is feasible directly on graph conditions came in [18, 19], and a set
of tableau rules was presented [18] without a proof of (refutational) completeness that was
later published in [13], together with a model generation procedure [26]. A generalization to
non-injective graph morphisms was given in [17].

The contributions of the current paper can be summarized as follows:
We generalize the tableau-based semi-decision procedure for graph conditions from [13]
to the level of general categories, under some mild constraints (such as the existence of
so-called representative squares [1]). We present a procedure that has some resemblance
to the construction of a tableau in FOL.
We distinguish between two cases: one simpler case in which all sections (arrows that
have a right inverse) in the category under consideration are isomorphisms (Section 3);
and a more involved case where this does not necessarily hold (Section 5). The tableau
rules of the former case (Section 3) are easier to present and implement, and we can
give additional guarantees, such as model generation whenever there exists a so-called
finitely decomposable model, generalizing the notion of finite models. The latter case
(Section 5) does not guarantee model generation and has more involved tableau rules, but
it allows for instantiations to more categories, such as graphs and arbitrary morphisms.
The results of both cases generalize [13, 17, 26] from graphs and graph morphisms to
an abstract categorical level, which allows application to additional categories such as
cospan categories and Lawvere theories (see [28]).
The completeness argument for the satisfiability checking procedure – in particular
showing that non-termination implies the existence of an infinite model – requires that
the tableau construction satisfies a fairness constraint. The resulting proof is non-trivial
and – compared to the proof in [13] – we show that it can be reformulated using up-to
techniques. Here we give it a completely new and hopefully clarifying structure that relies
on coinductive methods [20, 22]. The alternative would be to inline the up-to techniques,
or to rely on complex ad-hoc notation that are less clear and further complicate the proof.
Furthermore we use coinductive techniques to display witnesses for infinite models
(Section 4): in some cases where only infinite models exist and hence the tableau
construction is non-terminating, we can still stop and determine that there does exist
an infinite model. Coinductive techniques [24, 22] are reasoning techniques based on
greatest fixpoints, suitable to analyze infinite or cyclic structures. To the best of our
knowledge, such techniques have not yet been employed in the context of satisfiability
checking for FOL and graph conditions.

The main contribution compared to previous work consists of a categorical generalization to
reactive systems on the one hand, and the use of coinductive (up-to) techniques on the other
hand. The implication of the first type of contribution is that the theory becomes available

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:3

for new instantiations such as adhesive categories (which includes all variants of graphs, such
as typed graphs, Petri nets, but also algebraic specifications, cf. [3]), as well as other cases
such as cospan categories and Lawvere theories. The second type of contribution implies
that the proofs (especially for completeness) can now be presented in a more systematic way.

2 Preliminaries

2.1 Coinductive Techniques

A complete lattice is a partially ordered set (L,⊑) where each subset Y ⊆ L has a greatest
lower bound, denoted by

d
Y and a least upper bound, denoted by

⊔
Y .

A function f : L → L is monotone if for all l1, l2 ∈ L, l1 ⊑ l2 implies f(l1) ⊑ f(l2),
idempotent if f ◦ f = f , and extensive if l ⊑ f(l) for all l ∈ L.

Given a monotone function f : L→ L we are in particular interested in its greatest fixpoint
νf . By Tarski’s Theorem [29], νf =

⊔
{x | x ⊑ f(x)}, i.e., the greatest fixpoint is the least

upper bound of all post-fixpoints. Hence for showing that l ⊑ νf (for some l ∈ L), it is
sufficient to prove that l is below some post-fixpoint l′, i.e., l ⊑ l′ ⊑ f(l′).

In order to employ up-to techniques one defines a monotone function u : L → L (the
up-to function) and checks whether u is f-compatible, that is u ◦ f ⊑ f ◦ u. If that holds
every post-fixpoint l of f ◦ u (that is l ⊑ f(u(l))) is below the greatest fixpoint of f (l ⊑ νf).
This simple technique can often greatly simplify checking whether a given element is below
the greatest fixpoint. For more details see [20].

2.2 Categories

We will use standard concepts from category theory. Given an arrow f : A→ B, we write
dom(f) = A, cod(f) = B. For two arrows f : A→ B, g : B → C we denote their composition
by f ; g : A→ C. An arrow s : A→ B is a section (also known as split mono) if there exists
r : B → A such that s; r = id. That is, sections are those arrows s that have a right-inverse r.
Arrows that have a left-inverse (in this case r) are called retractions.

As in graph rewriting we will consider the category Graphfin, which has finite graphs
as objects and graph morphisms as arrows. We also consider Graphinj

fin, the subcategory of
Graphfin that has the same objects, but only injective, i.e. mono, graph morphisms. In this
category the sections are exactly the isos, while this is not the case in Graphfin.

Another important example category that will be used in Section 4 is based on cospans:
note that reactive systems instantiated with cospans [11, 25, 27] yield exactly double-pushout
rewriting [5]. Given a base category D with pushouts, the category Cospan(D) has as
objects the objects of D and as arrows cospans, which are equivalence classes of pairs of
arrows of the form A

fL−→ X
fR←−− B, where the middle object is considered up to isomorphism.

Cospan composition is performed via pushouts (for details see Appendix A).
A cospan is left-linear if its left leg fL is mono. For adhesive categories [12], the

composition of left-linear cospans again yields a left-linear cospan, and ILC(D) is the
subcategory of Cospan(D) where the arrows are restricted to left-linear cospans.

Note that Graphinj
fin can be embedded into ILC(Graphfin) by transforming an injective

graph morphism f to a left-linear cospan with f as the left leg and id as the right leg.
Another application are Lawvere theories, where arrows are (tuples of) terms, an approach

we explore in the full version of this paper [28].

CONCUR 2024

39:4 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

2.3 Generalized Nested Conditions
We consider (nested) conditions over an arbitrary category C in the spirit of reactive
systems [16, 15]. Following [23, 8], we define conditions as finite tree-like structures, where
nodes are annotated with quantifiers and objects, and edges are annotated with arrows.

▶ Definition 1 (Condition). Let C be a category. A condition A over an object A in C is
defined inductively as follows: it is either

a finite conjunction of universals
∧
i∈{1,...,n} ∀fi.Ai = ∀f1.A1 ∧ . . . ∧ ∀fn.An, or

a finite disjunction of existentials
∨
i∈{1,...,n} ∃fi.Ai = ∃f1.A1 ∨ . . . ∨ ∃fn.An

where fi : A→ Ai are arrows in C and Ai ∈ Cond(Ai) are conditions. We call A = RO(A)
the root object of the condition A. Each subcondition Qfi.Ai (Q ∈ {∀, ∃}) is called a child
of A. The constants trueA (empty conjunction) and falseA (empty disjunction) serve as the
base cases. We will omit subscripts in trueA and falseA when clear from the context.

The set of all conditions over A is denoted by Cond(A).

Instantiated with Graphfin respectively Graphinj
fin, conditions are equivalent to graph

conditions as defined in [8], and equivalence to first-order logic has been shown in [23].
Intuitively, these conditions require the existence of certain subgraphs or patterns, or that
whenever a given subgraph occurs, the surroundings of the match satisfy a child condition.
For instance, ∀ ∅ → 1 2 .∃ 1 2 → 1 2 .true requires that for every edge, a second
edge in the reverse direction also exists. For additional examples of conditions we refer to
Examples 19, 24, and 27 given later.

To simplify our algorithms and their proofs, the definition of conditions requires that
conjunctions contain only universal children and disjunctions only existential children (e.g.,
∃f.A ∧ ∃g.B is excluded). However, this can be simulated using ∀id.∃f.A ∧ ∀id.∃g.B, and
similarly for disjunctions of universals. Hence we sometimes write A∧B or A∨B for arbitrary
conditions in the proofs.

While in [1] a model for a condition was a single arrow, we have to be more general,
since there are some satisfiable conditions that have no finite models. Here we want to work
in categories of finite graphs (so that conditions are finite), but at the same time we want
to consider infinite models. The solution is to evaluate conditions on infinite sequences of
arrows ā = [a1, a2, a3, ...], where A a1−→ A1

a2−→ A2
a3−→ . . . , called composable sequences.1 We

define dom(ā) = dom(a1) = A and we call such a sequence finite iff for some index k all ai
with i > k are identities.

Intuitively, the model is represented by the “composition” of the infinite sequence of
arrows. In the category Graphinj

fin this would amount to taking the limit of this sequence.
As we will later see, it does not play a role how exactly an infinite structure is decomposed
into arrows, as all decompositions are equivalent with respect to satisfaction.

▶ Definition 2 (Satisfaction). Let A ∈ Cond(A). Let ā = [a1, a2, a3, ...] be a composable
sequence with A = dom(ā). We define the satisfaction relation ā |= A as follows:

ā |=
∧
i∈I ∀fi.Ai iff for every i ∈ I and every arrow g : RO(Ai)→ B and all n ∈ N0 we

have: if a1; ...; an = fi; g, then [g, an+1, ...] |= Ai.
ā |=

∨
i ∃fi.Ai iff there exists i ∈ I and an arrow g : RO(Ai)→ B and some n ∈ N0 such

that a1; ...; an = fi; g and [g, an+1, ...] |= Ai.

1 Another option would be to work in the category of potentially infinite graphs. However, that would
allow conditions based on infinite graphs for which satisfiability checks become algorithmically infeasible.

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:5

Note that this covers the base cases (ā |= true, ā |̸= false for every sequence ā). Furthermore
a1; ...; an equals the identity whenever n = 0. For a finite sequence ā = [a1, ..., ak, id, id, ...]
this means that ā |= A iff a = a1; ...; ak is a model for A according to the definition of
satisfaction given in [1]. In this case we write [a1, ..., ak] |= A or simply a |= A.
▶ Remark 3. In the following we use Cond to denote the set2 of all conditions and Seq as the
set of all composable sequences of arrows (potential models). ⌟

We write A |= B (A implies B) if RO(A) = RO(B) and for every ā with dom(ā) = RO(A)
we have: if ā |= A, then ā |= B. Two conditions are equivalent (A ≡ B) if A |= B and B |= A.

Every condition can be transformed to an equivalent condition that alternates between
∀, ∃ by inserting ∀id or ∃id as needed. Such conditions are called alternating.

We also define what it means for two conditions to be isomorphic. It is easy to see that
isomorphic conditions are equivalent, but not necessarily vice versa.

▶ Definition 4 (Isomorphic Conditions). For conditions A,B and an iso h : RO(B)→ RO(A),
we say that A,B are isomorphic (A ∼= B) wrt. h, whenever both are universal, i.e.,
A =

∧
i∈I ∀fi.Ai, B =

∧
j∈J ∀gj .Bj, and for each i ∈ I there exists j ∈ J and an iso

hj,i : RO(Bj)→ RO(Ai) such that h; fi = gj ;hj,i and Ai ∼= Bj wrt. hj,i; and vice versa (for
each j ∈ J there exists i ∈ I . . .). Analogously if both conditions are existential.

2.4 Representative Squares and the Shift Operation
We will now define the notion of representative squares, which describe representative ways to
close a span of arrows. They generalize idem pushouts [16] and borrowed context diagrams [4].

▶ Definition 5 (Representative squares [1]). A class κ of commuting squares in a category C is
representative if for every commuting square α1; δ1 = α2; δ2 in C there exists a representative
square α1;β1 = α2;β2 in κ and an arrow γ such that δ1 = β1; γ and δ2 = β2; γ.

A B

C
D

D′

α1

α2
β1

β2 γ
δ1

δ2

For two arrows α1 : A→ B, α2 : A→ C, we define κ(α1, α2) as the set of pairs of arrows
(β1, β2) which, together with α1, α2, form representative squares in κ.

Compared to weak pushouts, more than one square might be needed to represent all
commuting squares that extend a given span (α1, α2). In categories with pushouts (such as
Graphfin), pushouts are the most natural candidate for representative squares. In Graphinj

fin
pushouts do not exist, but jointly epi squares can be used instead. For cospan categories,
one can use borrowed context diagrams [4] (see Appendix A for a summary).

For many categories of interest – such as Graphfin and ILC(Graphfin) – we can
guarantee a choice of κ such that each set κ(α1, α2) is finite and computable. In the rest of
this paper, we assume that we work in such a category, and use such a class κ. Hence the
constructions described below are effective since the finiteness of the transformed conditions
is preserved.

2 Actually, without restrictions these are proper classes rather than sets. We tacitly assume that we
are working in the corresponding skeleton category where no two different objects are isomorphic and
assume that we can consider Cond, Seq as sets.

CONCUR 2024

39:6 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

One central operation is the shift of a condition along an arrow. The name shift is taken
from an analogous operation for nested application conditions (see [19]).

▶ Definition 6 (Shift of a Condition). Given a fixed class of representative squares κ, the
shift of a condition A along an arrow c : RO(A)→ B is inductively defined as follows:(∧

i∈I
∀fi.Ai

)
↓c

=
∧
i∈I

∧
(α,β)∈κ(fi,c)

∀β.(Ai)↓α

fi

c α

βShifting of existential conditions is performed analogously.

The shift operation can be understood as a partial evaluation of A under the assumption
that c is already “present”. In particular it satisfies [c; d1, d2, ...] |= A ⇐⇒ [d1, d2, ...] |= A↓c.
This implies that while the representation of the shifted condition may differ depending on
the chosen class of representative squares, the resulting conditions are equivalent. Since we
assume that each set κ(fi, c) is finite, shifting a finite condition will again result in a finite
condition.

As an example in Graphinj
fin, shifting ∀ ∅ → 1 .∃ 1 → 1 2 .true (every node has

an outgoing edge) over ∅ → (a node exists) yields ∀ → .∃ → 1 .true ∧
∀ → 1 .

(
∃ 1 → 1 2 .true ∨ ∃ 1 → 1 .true

)
(the designated node has

an outgoing edge, and so does every other node, possibly to the designated node).
In the case where α1 in Definition 5 is an iso, we can always assume that κ(α1, α2) =

{(α−1
1 ;α2, id)} and we will use this assumption in the paper.

2.5 Further Concepts
Our goal is to develop a procedure that finds a finite model if one exists, produces unsatis-
fiability proofs if a condition has neither finite nor infinite models, and otherwise does not
terminate. In order to state the correctness of this procedure, we will need an abstract notion
of finiteness and to this aim we introduce finitely decomposable morphisms. Intuitively this
means that every infinite decomposition contains only finitely many non-isomorphisms.

▶ Definition 7 (Finitely decomposable morphism). A morphism m : A→ B is finitely decom-
posable if for every infinite sequence of (fi, gi), i ∈ N0, such that f0 = m and fi = gi; fi+1
(cf. the diagram below), only finitely many gi are non-isomorphisms.

A

B

· · ·
m = f0

g0 g1

f1 f2

Note that in Graphinj
fin all arrows are finitely decomposable, while this is not the case

in Graphfin. In Graphfin, there exists a section s (with associated retraction r such that
s; r = id) that is not an iso (example: s = 1 → 1 2 , r = 1 2 → 1). Then, the identity on
the domain of s has a decomposition into infinitely many non-isos (an alternating sequence
of s and r, more concretely: g2i = s, g2i+1 = r and f2i = id, f2i+1 = r) and is hence not
finitely decomposable.

While satisfaction is typically defined inductively (as in Definition 2), i.e., as a least
fixpoint, we can also view it coinductively, i.e., as a greatest fixpoint, due to the fact that all
conditions are finite.

▶ Proposition 8 (Fixpoint function for satisfaction). Let ā = [a1, a2, a3, ...] ∈ Seq be a
composable sequence of arrows. We define the function s : P(Seq× Cond)→ P(Seq× Cond)
as follows: Let P ⊆ Seq× Cond, then

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:7

(ā,
∧
i ∀fi.Ai) ∈ s(P) iff for every i ∈ I and every arrow g : RO(Ai)→ B and all n ∈ N0

we have: if a1; ...; an = fi; g, then ([g, an+1, ...],Ai) ∈ P .
(ā,
∨
i ∃fi.Ai) ∈ s(P) iff there exists i ∈ I and an arrow g : RO(Ai)→ B and some n ∈ N0

such that a1; ...; an = fi; g and ([g, an+1, ...],Ai) ∈ P .
The least and greatest fixpoint of s (µs, νs) coincide and they equal the satisfaction relation |=.

3 Satisfiability Checking in the Restricted Case

Given a condition A, we want to know whether A is satisfiable and generates a finitely
decomposable model, if it exists. Here we provide a procedure that works under the
assumption that we are working in a category where all sections are isos. This is for instance
true for Graphinj

fin and ILC(Graphinj
fin), where non-trivial right-inverses do not exist. It does

not hold for non-injective graph morphisms (see counterexample above) or left-linear cospans
(counterexample: id = 1 → 1 ← 1 2 ; 1 2 → 1 2 ← 1).

The general case where this assumption does not hold will be treated in Section 5.

3.1 Tableau Calculus
The underlying idea is fairly straightforward: we take an alternating condition A and
whenever it is existential, that is A =

∨
i∈I ∃fi.Ai, we branch and check whether some Ai

is satisfiable. If instead it is universal, i.e., A =
∧
i∈I ∀fi.Ai, we check whether some fi is

an iso. If that is not the case, clearly the sequence of identities on RO(A) is a model, since
there is no arrow g such that id = fi; g, assuming that all sections are isos. If however some
fi is an iso, we invoke a pull-forward rule (see below for more details) that transforms the
universal condition into an existential condition and we continue from there. We will show
that this procedure works whenever the pull-forward follows a fair strategy: in particular
every iso (respectively one of its successors) must be pulled forward eventually.

The pull-forward rule relies on the equivalence (A ∧ ∃f.B) ≡ ∃f.(A↓f ∧ B).

▶ Lemma 9 (Pulling forward isomorphisms). Let
∧
i∈I ∀fi.Ai be a universal condition and

assume for some p ∈ I, fp is an iso and Ap =
∨
j∈J ∃gj .Bj. Then fp can be pulled forward:

∧
i∈I
∀fi.Ai ≡ ∃fp.

∨
j∈J
∃gj .

(
Bj ∧

(∧
m∈I\{p}

∀fm.Am
)

↓fp;gj

)

▶ Definition 10 (SatCheck tableau construction rules). Given an alternating condition A, we
give rules for the construction of a tableau for A that has conditions as nodes, A as root
node, and edges (→) labeled with arrows. The tableau is extended at its leaf nodes as follows:

For every p ∈ I: For one p ∈ I such that fp is iso and Ap =
∨
j∈J ∃gj .Bj:∨

i∈I
∃fi.Ai

fp−→ Ap
∧
i∈I
∀fi.Ai

fp−→
∨
j∈J
∃gj .

(
Bj︸ ︷︷ ︸

Ap

∧
(∧
m∈I\{p}

∀fm.Am
)

↓fp;gj︸ ︷︷ ︸
other children, shifted to include gj

)

For existential conditions, for each(!) child condition ∃fp.Ap, add a new descendant.
For universal conditions, non-deterministically pick one(!) child condition ∀fp.Ap that
can be pulled forward (fp is an iso), pull it forward (cf. Lemma 9), and add the result as
its (only) descendant. If a universal condition contains no isos, then add no descendant.

CONCUR 2024

39:8 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

A branch of a tableau is a (potentially infinite) path A0
u1−→ A1

e1−→ A2
u2−→ . . . starting

from the root node. A finite branch is extendable if one of the tableau construction rules is
applicable at its leaf node and would result in new nodes (hence, a branch where the leaf is
an empty existential or a universal without isomorphisms is not extendable). A branch is
closed if it ends with an empty existential, otherwise it is open.

Due to Lemma 9 each universal condition is (up to iso fp) equivalent to its (unique)
descendant (if one exists), while an existential condition is equivalent to the disjunction of
its descendants prefixed with existential quantifiers.

The labels along one branch of the tableau are arrows between the root objects of
the conditions. Their composition corresponds to the prefix of a potential model being
constructed step by step. Finite paths represent a model if they are open and not extendable.
For infinite paths, we need an additional property to make sure that the procedure does not
“avoid” a possibility to show unsatisfiability of a condition.

To capture that, we introduce the notion of fairness, meaning that all parts of a condition
are eventually used in a proof and are not postponed indefinitely (a related concept is
saturation, see e.g. [13], though the definition deviates due to a different setup). For this
we first need to track how pulling forward one child condition changes the other children
by shifting. We define a successor relation that, for each pair of ∀-condition and one of its
∀-grandchildren, relates child conditions of the ∀-condition to their shifted counterparts (the
successors) in the ∀-condition of the second-next nesting level. The successor relation is
similar in spirit to the one used in [13]. In this work, saturation is given in a more descriptive
way and has to account for nesting levels in the tableau, a complication that we were able to
avoid in the present paper.

▶ Definition 11 (Successor relation). Assume in the construction of a tableau we have a path∧
i∈I
∀fi.Ai

fp−→ C gj−→ Bj∧
(∧
m∈I\{p}

∀fm.Am
)

↓fp;gj

= Bj∧
∧

m∈I\{p}

∧
(α,β)∈κ(fm, fp;gj)

∀β.(Am)↓α

where C is the existential condition given in Definition 10. Then for each m ∈ I \ {p}, each
∀β.(Am)↓α where (α, β) ∈ κ(fm, fp; gj) is a successor of ∀fm.Am. The transitive closure of
the successor relation induces the indirect successor relation.

▶ Definition 12 (Fairness). An infinite branch of a tableau is fair if for each universal
condition A on the branch and each child condition ∀fi.Ai of A where fi is an iso, it holds
that some indirect successor of ∀fi.Ai is eventually pulled forward.

▶ Remark 13 (Fairness strategies). One possible strategy that ensures fairness is to maintain
for each incomplete branch a queue of child conditions for which a successor must be pulled
forward. Then the first entry in this queue is processed. Note that by the assumption on κ

made earlier at the end of Section 2.4, each iso in a universal condition that is not pulled
forward has exactly one successor and the queue is modified by replacing each condition
accordingly and adding newly generated child conditions with isos at the end. ⌟

3.2 Up-To Techniques, Fair Branches and Models
While showing soundness of the tableau method is relatively straightforward, the crucial
part of the completeness proof is to show that every infinite and fair branch of the tableau
corresponds to a model. The proof strategy is the following: given such a branch, we aim
to construct a witness for this model, by pairing conditions on this path with the suffix

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:9

consisting of the sequence of arrows starting from this condition. If one could show that
the set P ⊆ Seq× Cond of pairs so obtained is a post-fixpoint of the satisfaction function s

defined in Proposition 8 (P ⊆ s(P)), we could conclude, as the satisfaction relation |= is the
greatest fixpoint of s (Proposition 8) and hence above any post-fixpoint.

However, P is in general not a post-fixpoint, which is mainly due to the fact that universal
conditions are treated “sequentially” one after another and are “pulled forward” only if they
become isos. Hence, if we want to show that for a chain [a1, a2, ...] the universal condition
of the form

∧
i ∀fi.Ai is satisfied, we have to prove for every child ∀fi.Ai that whenever

a1; ...; an = fi; g it holds that [g, an+1, ...] |= Ai. If ∀fi.Ai actually is the child that is pulled
forward in the next tableau step, P contains the tuple required by s. If not, there is a “delay”
and intuitively that means that we can not guarantee that P is indeed a post-fixpoint.

However it turns out that it is a post-fixpoint up-to (P ⊆ s(u(P))), where u is a
combination of one or more suitable up-to functions. We first explore several such up-
to functions: u∧(P) obtains new conditions by non-deterministically removing parts of
conjunctions; with u#(P) we can arbitrarily recompose (decompose and compose) the arrows
in a potential model; with u↓(P) we can undo a shift; and u∼=(P) allows replacing conditions
with isomorphic conditions. For each, we show their s-compatibility (i.e., u(s(P)) ⊆ s(u(P))).

▶ Theorem 14 (Up-to techniques). Let P ⊆ Seq× Cond, i.e. tuples of potential model and
condition. Then the following four up-to functions are s-compatible:

Conjunction removal: We inductively define a relation U∧ containing a pair of conditions
(A, T) iff T is the same as A but with some conjunctions removed. That is, U∧ contains(∧

i∈I ∀fi.Ai,
∧
j∈J⊆I∀fj .Tj

)
whenever (Aj , Tj) ∈ U∧ for all j ∈ J(∨

i∈I ∃fi.Ai,
∨
i∈I ∃fi.Ti

)
whenever (Ai, Ti) ∈ U∧ for all i ∈ I

Then define: u∧(P) = {(c̄, T) | (c̄,A) ∈ P, (A, T) ∈ U∧}
Recomposition: u#(P) = {([b1, ..., bℓ, c̄],A) | ([a1, ..., ak, c̄],A) ∈ P, a1; ...; ak = b1; ...; bℓ}
Shift: u↓(P) = {([(c; c1), c2, ...],B) | ([c1, c2, ...],B↓c) ∈ P}
Isomorphic condition: u∼=(P) = {([(h; c1), c2, ...],B) | ([c1, c2, ...],A) ∈ P, A ∼= B with
iso h : RO(B)→ RO(A)}

Note however that up-to equivalence u≡ is not a valid up-to technique: let U be an unsatisfiable
condition and let P = {([id, ...], ∀id.U)}. As U ≡ ∀id.U , then also ([id, ...],U) ∈ u≡(P) and
hence P ⊆ s(u≡(P)). If the technique were correct, this would imply id |= U .

A convenient property of compatibility is that it is preserved by various operations, in
particular, composition, union and iteration (fω =

⋃
i∈N0

f i). This can be used to combine
multiple up-to techniques into a new one that also has the compatibility property. [21]

▶ Lemma 15 (combining up-to techniques). Let u = (u# ∪ u∧ ∪ u↓ ∪ u∼=)ω be the iterated
application of the up-to techniques from Theorem 14, then u is s-compatible.

We are now able to prove the central theorem needed for showing completeness.

▶ Theorem 16 (Fair branches are models). Let A0 be an alternating condition. Let a fixed
tableau constructed by the rules of Definition 10 be given. Let A0

b1−→ A1
b2−→ A2

b3−→ . . . be a
branch of the tableau that is either not extendable and ends with a universal quantification
(i.e., it is open), or is infinite and fair. For such a branch, we define P = {(b̄,Ai) | i ∈
N0, b̄ = [bi+1, bi+2, ...]} ⊆ Seq× Cond, i.e., the relation P pairs suffixes of the branch with
the corresponding conditions. Finally, let u be the combination of up-to techniques defined
in Lemma 15. Then, P ⊆ s(u(P)), which implies that P ⊆ |=. In other words, every such
branch in a tableau of Definition 10 corresponds to a model of A0.

CONCUR 2024

39:10 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

Proof sketch. Let ([c1, c2, ...], C0) ∈ P , which corresponds to a suffix C0
c1−→ C1

c2−→ C2
c3−→ . . .

of the chosen branch. We show that ([c1, c2, ...], C0) ∈ s(u(P)):
C0 is existential: The next label on the branch is the arrow of some child ∃c1.C1 of C0
and ([c2, c3, ...], C1) ∈ P implies ([c1, c2, ...], C0) ∈ s(P) ⊆ s(u(P)).
C0 is universal and contains no iso: The branch ends at this point, so the sequence of
arrows in the tuple is empty and represents id, where (id, C0) ∈ s(u(P)): no fi is an iso,
therefore fi; g = id is never true and hence the universal condition is trivially satisfied.
C0 is universal and contains at least one iso: By definition of s, we need to be able
to satisfy any given child ∀d0.D0, i.e., show that whenever c1; ...; cn = d0; g for some g, n,
then ([g, cn+1, ...],D0) ∈ u(P).
Fairness guarantees that an indirect successor ∀dq.Dq of ∀d0.D0 is pulled forward, which
results (after up-to conjunction removal) in a tuple ([cm, ...],Dq) ∈ u(P). The intermediate
steps on the branch, where other children are pulled forward instead, allow expressing Dq
as (D0)↓α1↓...↓αq

. Use up-to shift to transform to ([α1; ...;αq; cm, ...],D0) ∈ u(P), then
up-to recomposition to the required ([g0, cn+1, ...],D0) ∈ u(P). ◀

3.3 Soundness and Completeness
We are finally ready to show soundness and completeness of our method.

As a condition is essentially equivalent to any of its tableaux, which break it down into
existential subconditions, a closed tableau represents an unsatisfiable condition.

▶ Theorem 17 (Soundness). If there exists a tableau T for a condition A where all branches
are closed, then the condition A in the root node is unsatisfiable.

Proof sketch. By induction over the depth of T . Base case is false (obviously unsatisfiable).
Induction step for ∃:

∨
i ∃fi.Ai is unsatisfiable if all Ai are. For ∀: by construction, the only

child contains an equivalent condition. ◀

We now prove completeness, which – to a large extent – is a corollary of Theorem 16.

▶ Theorem 18 (Completeness). If a condition A is unsatisfiable, then every tableau con-
structed by obeying the fairness constraint is a finite tableau where all branches are closed.
Furthermore, at least one such tableau exists.

Proof. The contraposition follows from Theorem 16: If the constructed tableau is finite with
open branches or infinite, then A is satisfiable. Furthermore, a fair tableau must exist and
can be constructed by following the strategy described in Remark 13. ◀

In the next section we will show how the open branches in a fully expanded tableau can
be interpreted as models, thus giving us a procedure for model finding.

▶ Example 19 (Proving unsatisfiability). We work in Graphinj
fin. For this example, we use

the following shorthand notation for graph morphisms: [1 2] means 1 → 1 2 , i.e., the
morphism is the inclusion from the light-gray graph elements to the full graph.

Consider the condition A = ∀[∅].∃[1].true∧∀[×].false, meaning (1) there exists a node
and (2) no node must exist. It is easily seen that these contradict each other and hence A is
unsatisfiable. We obtain a tableau with a single branch for this condition:

A [∅]−−→ ∃[1].
(
true ∧ (∀[×].false)↓[1]

) [1]−−→ ∀[1].false ∧ ∀[1 ×].false [1]−−→ false

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:11

In the first step, A is universal with an isomorphism ∅ → ∅, which is pulled forward.
Together with its (only) existential child, this results in the partial model [1] and another
universal condition with the meaning: (1) the just created node 1 must not exist, and
(2) no additional node × may exist either.

This condition includes another isomorphism ([1]) to be pulled forward. Its child
Ap =

∨
j∈J ∃gj .Bj = false is an empty disjunction, so the tableau rule for universals adds an

empty disjunction (false) as the only descendant. This closes the (only) branch, hence the
initial condition A can be recognized as unsatisfiable. ⌟

3.4 Model Finding
We will now discuss the fact that the calculus not only searches for a logical contradiction
to show unsatisfiability, but at the same time tries to generate a (possibly infinite) model.
We can show that every finitely decomposable (i.e., “finite”) model (or a prefix thereof)
can be found after finitely many steps in a fully expanded tableau, i.e., a tableau where all
branches are extended whenever possible, including infinite branches. This is a feature that
distinguishes it from other known calculi for first-order logic.

The following lemma shows that an infinite branch always makes progress towards
approximating the infinite model.

▶ Lemma 20. Let A be a condition and T be a fully expanded tableau for A. Then,
for each branch it holds that it either is finite, or that there always eventually is another
non-isomorphism on the branch.

Proof sketch. We define the size of a condition and show that it decreases if an iso occurs
on a path. This means that eventually there will always occur another non-iso on a path. ◀

▶ Theorem 21 (Model Finding). Let A be a condition, m a finitely decomposable arrow such
that m |= A and let T be a fully expanded tableau for A.

Then, there exists an open and unextendable branch with arrows c1, ..., cn in T , having
condition R in the leaf node, where m = c1; ...; cn; r for some r with r |= R. Furthermore
the finite prefix is itself a model for A (i.e., [c1, ..., cn] |= A).

Note that this finite branch can be found in finite time, assuming a suitable strategy for
exploration of the tableau such as breadth-first search or parallel processing.

▶ Algorithm 22 (Satisfiability Check). Given a condition A, we define the procedure SAT (A)
that may either produce a model c : RO(A)→ C, answer unsat or does not terminate.

Initialize the tableau with A in the root node.
While the tableau still has open branches:

Select one of the open branches as the current branch, using an appropriate strategy
that extends each open branch eventually.
If the leaf is a universal condition without isomorphisms, terminate and return the
labels of the current branch as model.
Otherwise, extend the branch according to the rules of Definition 10, obeying the
fairness constraint.

If all branches are closed, terminate and answer unsat.

This procedure has some similarities to the tableau-based reasoning from [13]. The aspect of
model generation was in particular considered in [26]. Overall, we obtain the following result:

CONCUR 2024

39:12 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

▶ Theorem 23. There is a one-to-one correspondence between satisfiability of a condition
(A unsatisfiable; A has a finitely decomposable model; A is satisfiable, but has no finitely
decomposable model) and the output of Algorithm 22 (SAT (A)) (terminates with unsat,
terminates with a model, does not terminate).

Proof.
A unsatisfiable ⇐⇒ algorithm outputs unsat: (⇒) Theorem 18, (⇐) Theorem 17
A has a finitely decomposable model ⇐⇒ algorithm finds finitely decomposable model:
(⇒) Theorem 21, (⇐) Theorem 16
A has only models that are not finitely decomposable ⇐⇒ algorithm does not terminate:
(⇒) exclusion of other possibilities for non-termination, Lemma 20 for model in the limit
(⇐) Theorem 16 ◀

▶ Example 24 (Finding finite models). We now work in Graphinj
fin and use the shorthand

notation introduced in Example 19. Let the following condition be given:

∀ ∅→ ∅.∃∅→ 1 .true (there exists a node 1 ,

∧∀ ∅→ 1 .∃ 1 → 1 2 .true and every node has an outgoing edge to some other node)

This condition has finite models, the smallest being the cycle 1 2 . When running
Algorithm 22 on this condition, it obtains the model in the following way:

1. The given condition is universal with an iso ∅→ ∅, which is pulled forward. Together
with its (only) existential child, this results in the partial model [1] and the condition

true ∧
(
∀[1] .∃ [1 2].true

)
↓[1]

= ∀[1] .∃ [1 2].true ∧ ∀[1 A].
(B︷ ︸︸ ︷
∃[1 A B].true ∨ ∃[1 A].true

)
meaning: (1) the just created node 1 must have an outgoing edge; (2) and every other
node A must also have an outgoing edge to either another node or to the existing node.

2. Pull forward iso [1] and extend the partial model by [1 2], resulting in:

true ∧
(
∀[1 A].B

)
↓[1 2] = ∀[1 2].B↓[1 A] ∧ ∀[1 2 A].B↓[1 A2]

= ∀[1 2].
(
∃[1 2 3].true ∨ ∃[1 2].true

)
∧ ∀[1 2 A].

(
∃[1 2 A B].true ∨ ∃[1 2 A].true ∨ ∃[1 2 A].true

)
meaning: (1) the second node has an edge to a third node or to the first one; (2) and every
other node A also has an edge to either another node or to one of the existing nodes.

3. Next, we pull forward [1 2] and extend the model by [1 2]:

true ∧
(
∀[1 2 A]. . . .

)
↓[1 2] = ∀[1 2 A]. . . .

4. This condition does not have any children with isos, so it is satisfiable by id. Hence the
composition of the partial models so far ([1 2]) is a model for the original condition. ⌟

4 Witnesses for infinite models

If there is no finitely decomposable model for a satisfiable condition A (such as in Example 27
below), then the corresponding infinite branch produces a model in the limit. To detect such
models in finite time we introduce an additional use of coinductive techniques based on the
tableau calculus previously introduced: We will show that under some circumstances, it is

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:13

possible to find some of these infinite models while checking for satisfiability. Naturally, one
can not detect all models, since this would lead to a decision procedure for an undecidable
problem. We first have to generalize the notion of fairness to finite path fragments:

▶ Definition 25. Let C0
b1−→ C1

b2−→ . . .
br−→ Cr be a finite path (also called segment) in a

tableau (cf. Definition 30). Such a finite path is called fair if for every child of C0 where the
morphism is an iso, an indirect successor is pulled forward at some point in the path.

This notion of fairness does not preclude that new isos appear. It only states that all isos
present at the beginning are pulled forward at some point.

▶ Theorem 26 (Witnesses). Let C0 be an alternating, universal condition. Let a fixed tableau
constructed by the rules of Definition 10 be given. Let C0

b1−→ C1
b2−→ . . .

br−→ Cr be a fair segment
of a branch of the tableau where r > 0, and let some arrow m be given such that C0 ∼= (Cr)↓m for
an iso ι : RO(Cr↓m)→ RO(C0). Then, [b1, ..., br,m; ι]ω := [b1, ..., br,m; ι, b1, ..., br,m; ι, ...]
is a model for C0.

Proof sketch. Construct the relation

P = {([b1, b2, ..., br,m; ι, (b1, ..., br,m; ι)ω], C0),
([b2, ..., br,m; ι, (b1, ..., br,m; ι)ω], C1), . . . , ([m; ι, (b1, ..., br,m; ι)ω], Cr)}

and show that P ⊆ s(u(P)), using an approach similar to that of Theorem 16. Steps b1, . . . , br
are handled in the same way as in Theorem 16. For the newly introduced step based on m; ι,
the next element of the sequence of representative squares and the successor di are chosen
from a child of Cr↓m instead of from a successor of Di. ◀

▶ Example 27 (Finding witnesses). Consider the following condition:

∀ ∅→ ∅.∃∅→ 1 .∀ 1 → 1 .false (there is a node 1 without an incoming edge

∧∀ ∅→ .∃ → + .true and every node has an outgoing edge to some other node

∧∀ ∅→ 1 2 .false and no node has two incoming edges)

This condition has an infinite model, namely an infinite path (1 2 3 · · ·). It does
not have any finite model.

In order to display a witness for this model, we need to consider the condition in the
category of cospans ILC(Graphinj

fin), into which Graphinj
fin can be embedded. We use the

following shorthand notation for cospans: J 1 2 K means 1 → 1 2 ← 1 2 , i.e., the left
object consists of only the light-gray graph elements, the center and right objects consist of
the full graph, the left leg is the inclusion and the right leg is always the identity.

If we execute our algorithm on the condition, after one step we obtain a condition C0 that
is rooted at 1 , and spells out the requirements of the original condition for node 1 and all
other nodes separately (1 has a successor, and all other nodes have successors, and so on).

After another step, we obtain C1, which is rooted at 1 2 , and does the same for node
2 separately as well. (These steps are displayed more concretely in the appendix, Table 1.)

Now let m = 1 2 → 1 2 ← 2 . Then, we can compute (C1)↓m, which essentially
“forgets” node 1 from all subconditions of C1. (Subconditions that contain edges from or to
this node disappear entirely, which is a consequence of the way borrowed context diagrams
are constructed (via pushout complements).) Then, (C1)↓m is similar in structure to C0, and
in fact, using a renaming isomorphism ι = 2 → ← 1 , it holds that (C1)↓m ∼= C0 wrt. ι. ⌟

In general this witness construction will almost never be applicable for simple graph
categories, we need to work in other categories, such as cospan categories.

CONCUR 2024

39:14 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

5 Satisfiability in the General Case

Section 3 heavily depends on the fact that all sections are isos, i.e., only isos have a right
inverse. However, in the general case we might have conditions of the form ∀s.A where s has
a right inverse r with s; r = id (note that r need not be unique). This would invalidate our
reasoning in the previous sections, since the identity is not necessarily a model of ∀s.A.

▶ Example 28. We work in the category Graphfin. Consider the following condition
A = ∀ 1 → 1 2 .∃ 1 2 → 1 2 .true, defined over a single node 1 as root object,
which states that the distinguished node has an edge to every other node – including itself,
since a non-injective match may merge the two nodes. The first morphism of A is a section,
while the second is injective, but not a section.

The identity on the single node is not a model of A, but 1 → 1 is. However, the
condition A ∧ ∀ 1 → 1 .false is unsatisfiable, a fact that would not be detected by
Algorithm 22, since neither of the universal quantifiers contains an iso. ⌟

Pulling forward isos is still sound even in the general case as the equivalence of Lemma 9
still holds, but it is not sufficient for completeness. Hence we will now adapt the tableau
calculus to deal with sections.

▶ Lemma 29 (Pulling forward sections). Let
∧
i∈I ∀fi.Ai be a universal condition and assume

that fp, p ∈ I, is a section, and rp is a right inverse of fp (i.e., fp; rp = id). Furthermore let
Ap↓rp

=
∨
j∈J ∃hj .Hj be the result of shifting the p-th child over the right inverse. Then fp

can be pulled forward:∧
i∈I
∀fi.Ai ≡

∨
j∈J
∃hj .

(
Hj ∧

(∧
i∈I
∀fi.Ai

)
↓hj

)

As for the analogous Lemma 9, pulling forward sections produces an equivalent condition.
However, here the child being pulled forward is still included in the children shifted by hj .
Hence the condition will increase in size, unlike for the special case. This is necessary, since
fp might have other inverses which can be used in pulling forward and might lead to new
results. This leads to the following adapted rules.

▶ Definition 30 (SatCheck rules, general case). Let A be an alternating condition. We can
construct a tableau for A by extending it at its leaf nodes as follows:

For every p ∈ I: For one p ∈ I such that fp is section, fp; rp = id,
and

∨
j∈J ∃hj .Hj = Ap↓rp

:∨
i∈I
∃fi.Ai

fp−→ Ap
∧
i∈I
∀fi.Ai

id−→
∨
j∈J
∃hj .

(
Hj ∧

(∧
i∈I
∀fi.Ai

)
↓hj

)

For existential conditions, for each(!) child condition ∃fp.Ap, add a new descendant.
For universal conditions, pick one(!) child condition ∀fp.Ap that can be pulled forward in
the sense of Lemma 29 and add the result as its (only) descendant.

The rules are similar to those of the specialized case (Definition 10) and as in the special
case, we need to define a successor relation on children with sections, that in addition tracks
the corresponding right-inverses. The definition of the successor relation is slightly more
complex than in the previous case (Definition 11).

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:15

▶ Definition 31 (Successor relation and tracking right-inverses). We define a relation on pairs
of (fi, ri), where fi is a morphism of a child of a universal condition and ri is one of its
right-inverses. Assume that in the construction of a tableau we have a path∧

i∈I
∀fi.Ai

id−→ C hj−→ Hj ∧
(∧
i∈I
∀fi.Ai

)
↓hj

= Hj ∧
∧
i∈I

∧
(α,β)∈κ(fi,hj)

∀β.(Ai)↓α

where C is the existential condition given in Lemma 29. Given (fi, ri) (where fi; ri = id),
we can conclude that the outer square below commutes and hence there exists an inner
representative square (α, β) ∈ κ(fi, hj) and rβ such that the diagram below commutes (in
particular β is a section and rβ is a retraction). In this situation, we say that (β, rβ) is a
(retraction) successor of (fi, ri).

hj

fi
β

α rβ
id

ri;hj
We extend the definition of fairness to cover sections (not just isomorphisms) and also

require that all right-inverses of each section are eventually used in a pull-forward step:

▶ Definition 32 (Fairness in the general case). A branch of a tableau is fair if for each
universal condition A on the branch, each child condition ∀fi.Ai of A where fi is a section,
and each right-inverse ri of fi, there is n ∈ N0 such that in the n-th next step, for some
indirect successor (f ′

i , r
′
i) of (fi, ri) it holds that f ′

i is pulled forward using the right inverse
r′
i. (Every universally-quantified section is eventually pulled forward with every inverse.)

For this definition to be effective, we need to require that every section has only finitely
many right-inverses (this is true for e.g. Graphfin). Given that property, one way to imple-
ment a fairness strategy is to use a queue, to which child conditions (and the corresponding
right-inverses) are added. This queue has to be arranged in such a way that for each
section/retraction pair a successor is processed eventually.

We now show how to adapt the corresponding results of the previous section (Theorems 16–
18) and in particular show that infinite and fair branches are always models, from which we
can infer soundness and completeness.

▶ Theorem 33 (Fair branches are models (general case)). Let A0 be an alternating condition.
Let a fixed tableau constructed by the rules of Definition 30 be given. Let A0

b1−→ A1
b2−→

A2
b3−→ . . . be a branch of the tableau that is either unextendable and ends with a universal

quantification, or is infinite and fair. For such a branch, we define: P = {(b̄,Ai) | i ∈ N0,

c̄ = [bi+1, bi+2, ...]} ⊆ Seq × Cond. Then, P ⊆ s(u(P)). (Every open and unextendable or
infinite and fair branch in a tableau of Definition 30 corresponds to a model.)

▶ Theorem 34 (Soundness and Completeness).
If all branches in a tableau are closed, then the condition in the root node is unsatisfiable.
If a condition A is unsatisfiable, then in every tableau constructed by obeying the fairness
constraint all branches are closed.

Proof. Use the proof strategies of Theorems 17 and 18. Tableaux constructed by the rules of
Definition 30 have all properties that are required for the proofs (in particular, universal steps
lead to an equivalent condition). Use Theorem 33 to obtain models for open branches. ◀

CONCUR 2024

39:16 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

In the general case, although soundness and completeness still hold, we are no longer
able to find all finite models as before. This is intuitively due to the fact that a condition
might have a finite model, but what we find is a seemingly infinite model that always has
the potential to collapse to the finite model.

On the other hand, the weaker requirements on the category imply that more instantiations
are possible, such as to Graphfin (graphs and arbitrary morphisms). Here, pushouts can be
used for representative squares, which allows for a more efficient shift operation that avoids
the blowup of the size of the conditions that is associated with jointly epi squares.

6 Conclusion

We introduced a semi-decision procedure for checking satisfiability of nested conditions at
the general categorical level. The correctness of this tableau-based procedure has been
established using a novel combination of coinductive (up-to) techniques. In the restricted
case we also considered the generation of finite models and witnesses for (some) infinite
models. Our procedure thereby generalizes prior work [13, 26, 17] on nested graph conditions
that are equivalent to first-order logic [6]. As a result, we can also handle cospan categories
over adhesive categories (using borrowed context diagrams for representative squares) and
other categories, such as Lawvere theories.

There is a notion of Q-trees [7] reminiscent of the nested conditions studied in this paper,
but to our knowledge no generic satisfiability procedures have been derived for Q-trees.

We plan to transfer the technique of counterexample-guided abstraction refinement
(CEGAR) [9], a program analysis technique based on abstract interpretation and predicate
abstraction, to graph transformation and reactive systems. The computation of weakest
preconditions and strongest postconditions for nested conditions is fairly straightforward [1]
and satisfiability checks give us the necessary machinery to detect and eliminate spurious
counterexamples. One still has to work around undecidability issues and understand whether
there is a generalization of Craig interpolation, used to simplify conditions.

One further direction for future work is to understand the mechanism for witness gener-
ation in more detail. In particular, since it is known that FOL satisfiability for graphs of
bounded treewidth is decidable [2], the question arises whether we can find witnesses for all
models of bounded treewidth (or a suitable categorical generalization of this notion).

Another direction is to further explore instantiation with a Lawvere theory [14], where
arrows are n-tuples of m-ary terms. In this setting representative squares are closely related
to unification. The full version [28] contains some initial results.

Finally we plan to complete development of a tool that implements the satisfiability check
and explore the potential for optimizations regarding its runtime.

References
1 H.J. Sander Bruggink, Raphaël Cauderlier, Mathias Hülsbusch, and Barbara König. Condi-

tional reactive systems. In Proc. of FSTTCS ’11, volume 13 of LIPIcs. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011. URL: http://drops.dagstuhl.de/opus/frontdoor.
php?source_opus=3325.

2 Bruno Courcelle. The monadic second-order logic of graphs I. Recognizable sets of finite
graphs. Information and Computation, 85(1):12–75, 1990.

3 Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of
Algebraic Graph Transformation. Monographs in Theoretical Computer Science. Springer,
2006.

4 Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in the DPO approach
to graph rewriting with borrowed contexts. MSCS, 16(6):1133–1163, 2006.

http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=3325
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=3325

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:17

5 Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph grammars: An algebraic
approach. In Proc. 14th IEEE Symp. on Switching and Automata Theory, pages 167–180,
1973.

6 Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.
7 Peter J. Freyd and Andre Scedrov. Categories, Allegories. North-Holland, 1990.
8 Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transformation systems

relative to nested conditions. Mathematical Stuctures in Computer Science, 19(2):245–296,
2009.

9 Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions
from proofs. In Proc. of POPL ’04, pages 232–244. ACM, 2004.

10 Mathias Hülsbusch and Barbara König. Deriving bisimulation congruences for conditional
reactive systems. In Proc. of FOSSACS ’12, pages 361–375. Springer, 2012. LNCS/ARCoSS
7213.

11 Mathias Hülsbusch, Barbara König, Sebastian Küpper, and Lara Stoltenow. Conditional
Bisimilarity for Reactive Systems. Logical Methods in Computer Science, Volume 18, Issue 1,
January 2022. doi:10.46298/lmcs-18(1:6)2022.

12 Stephen Lack and Paweł Sobociński. Adhesive and quasiadhesive categories. RAIRO –
Theoretical Informatics and Applications, 39(3), 2005.

13 Leen Lambers and Fernando Orejas. Tableau-based reasoning for graph properties. In Proc.
of ICGT ’14, pages 17–32. Springer, 2014. LNCS 8571.

14 William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University,
1963.

15 James J. Leifer. Operational congruences for reactive systems. PhD thesis, University of
Cambridge Computer Laboratory, September 2001.

16 James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive systems. In
Proc. of CONCUR 2000, pages 243–258. Springer, 2000. LNCS 1877.

17 Marisa Navarro, Fernando Orejas, Elvira Pino, and Leen Lambers. A navigational logic for
reasoning about graph properties. Journal of Logical and Algebraic Methods in Programming,
118:100616, 2021.

18 Karl-Heinz Pennemann. An algorithm for approximating the satisfiability problem of high-level
conditions. In GT-VC@CONCUR, volume 213.1 of Electronic Notes in Theoretical Computer
Science, pages 75–94. Elsevier, 2007.

19 Karl-Heinz Pennemann. Development of Correct Graph Transformation Systems. PhD thesis,
Universität Oldenburg, May 2009.

20 Damien Pous. Complete lattices and up-to techniques. In Proc. of APLAS ’07, pages 351–366.
Springer, 2007. LNCS 4807.

21 Damien Pous. Techniques modulo pour les bisimulations. PhD thesis, ENS Lyon, February
2008. URL: https://hal.archives-ouvertes.fr/tel-01441480.

22 Damien Pous and Davide Sangiorgi. Enhancements of the coinductive proof method. In
Davide Sangiorgi and Jan Rutten, editors, Advanced Topics in Bisimulation and Coinduction.
Cambridge University Press, 2011.

23 Arend Rensink. Representing first-order logic using graphs. In Proc. of ICGT ’04, pages
319–335. Springer, 2004. LNCS 3256.

24 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,
2011.

25 Vladimiro Sassone and Paweł Sobociński. Reactive systems over cospans. In Proc. of LICS
’05, pages 311–320. IEEE, 2005.

26 Sven Schneider, Leen Lambers, and Fernando Orejas. Symbolic model generation for graph
properties. In Proc. of FASE ’17, pages 226–243. Springer, 2017. LNCS 10202.

27 Paweł Sobociński. Deriving process congruences from reaction rules. PhD thesis, Department
of Computer Science, University of Aarhus, 2004.

CONCUR 2024

https://doi.org/10.46298/lmcs-18(1:6)2022
https://hal.archives-ouvertes.fr/tel-01441480

39:18 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

28 Lara Stoltenow, Barbara König, Sven Schneider, Andrea Corradini, Leen Lambers, and
Fernando Orejas. Coinductive techniques for checking satisfiability of generalized nested
conditions, 2024. arXiv:2407.06864. URL: https://arxiv.org/abs/2407.06864.

29 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–309, 1955.

A Additional Material for §2 (Preliminaries)

Graphs and graph morphisms

We will define in more detail which graphs and graph morphisms we are using: in particular, a
graph is a tuple G = (V,E, s, t, ℓ), where V,E are sets of nodes respectively edges, s, t : E → V

are the source and target functions and ℓ : V → Λ (where Λ is a set of labels) is the node
labelling function. In the examples we will always omit node labels by assuming that there
is only a single label.

A graph G is finite if both V and E are finite.
Furthermore, given two graphs Gi = (Vi, Ei, si, ti, ℓi), i ∈ {1, 2}, a graph morphism

φ : G1 → G2 consists of two maps φV : V1 → V2, φE : E1 → E2 such that φV ◦ s1 = s2 ◦ φE ,
φV ◦ t1 = t2 ◦ φE and ℓ1 = ℓ2 ◦ φV .

In the examples, the mapping of a morphism is given implicitly by the node identifiers:
for instance, 1 2 → 1 23 adds the node identified by 3 and adds two edges from the
existing nodes identified by 1 and 2.

Cospans and cospan composition

Two cospans f : A fL−→ X
fR←−− B, g : B gL−→ Y

gR←−− C are composed by taking the pushout
(pL, pR) of (fR, gL) as shown in Figure 1. The result is the cospan f ; g : A fL;pL−−−−→ Z

gR;pR←−−−− C,
where Z is the pushout object of fR, gL. We see an arrow f : A→ C of Cospan(D) as an
object B of D equipped with two interfaces A,C and corresponding arrows fL, fR to relate
the interfaces to B, and composition glues the inner objects of two cospans via their common
interface.

A X

B

Y C

Z

fL

fR gL

gR

pL pR

f g

f ; g

(PO)

Figure 1 Composition of cospans f and g is done via pushouts.

In order to make sure that arrow composition in Cospan(D) is associative on the nose,
we quotient cospans up to isomorphism. In more detail: two cospans f : A fL−→ X

fR←−− B,
g : A gL−→ Y

gR←−− B are equivalent whenever there exists an iso ι : X → Y such that fL; ι = gL,
fR; ι = gR. Then, arrows are equivalence classes of cospans.

Equivalence laws for conditions

We rely on the results given in the following two propositions that were shown in [1]. They
were originally stated for satisfaction with single arrows, but it is easy to see they are valid
for possibly infinite sequences as well: conditions have finite depth and satisfaction only
refers to finite prefixes of the sequence.

https://arxiv.org/abs/2407.06864

L. Stoltenow, B. König, S. Schneider, A. Corradini, L. Lambers, and F. Orejas 39:19

▶ Proposition 35 (Adjunction). Let A,B be two conditions with root object A, let C,D be
two conditions with root object B and let φ : A→ B. Then it holds that:
1. A |= B implies A↓φ |= B↓φ.
2. C |= D implies Qφ.C |= Qφ.D for Q ∈ {∃, ∀}.
3. ∃φ.(A↓φ) |= A and for every C with ∃φ.C |= A we have that C |= A↓φ.
4. A |= ∀φ.(A↓φ) and for every C with A |= ∀φ.C we have that A↓φ |= C.

▶ Proposition 36 (Laws for conditions). One easily obtains the following laws for shift and
quantification, conjunction and disjunction:

A↓id ≡ A A↓φ ;ψ ≡ (A↓φ)↓ψ

∀id.A ≡ A ∀(φ ;ψ).A ≡ ∀φ.∀ψ.A
∃id.A ≡ A ∃(φ ;ψ).A ≡ ∃φ.∃ψ.A

(A ∧ B)↓φ ≡ A↓φ ∧ B↓φ (A ∨ B)↓φ ≡ A↓φ ∨ B↓φ

∀φ.(A ∧ B) ≡ ∀φ.A ∧ ∀φ.B ∃φ.(A ∨ B) ≡ ∃φ.A ∨ ∃φ.B

Borrowed context diagrams

For cospan categories over adhesive categories (such as ILC(Graphfin)), borrowed context
diagrams – initially introduced as an extension of DPO rewriting [4] – can be used as
representative squares. Before we can introduce such diagrams, we first need the notion of
jointly epi.

▶ Definition 37 (Jointly epi). A pair of arrows f : B → D, g : C → D is jointly epi (JE) if
for each pair of arrows d1, d2 : D → E the following holds: if f ; d1 = f ; d2 and g; d1 = g; d2,
then d1 = d2.

In Graphfin jointly epi equals jointly surjective, meaning that each node or edge of D is
required to have a preimage under f or g or both (it contains only images of B or C).

This criterion is similar to, but weaker than a pushout: For jointly epi graph morphisms
d1 : B → D, d2 : C → D, there are no restrictions on which elements of B,C can be merged
in D. However, in a pushout constructed from morphisms a1 : A→ B, a2 : A→ C, elements
in D can (and must) only be merged if they have a common preimage in A. (Hence every
pushout generates a pair of jointly epi arrows, but not vice versa.)

▶ Definition 38 (Borrowed context diagram [10]). A commuting diagram in the category
ILC(C), where C is adhesive, is a borrowed context diagram whenever it has the form of
the diagram shown in Figure 2a, and the four squares in the base category C are pushout
(PO), pullback (PB) or jointly epi (JE) as indicated. Arrows depicted as ↣ are mono. In
particular L↣ G+, G↣ G+ must be jointly epi.

Figure 2b shows a more concrete version of Figure 2a, where graphs and their overlaps
are depicted by Venn diagrams (assuming that all morphisms are injective). Because
of the two pushout squares, this diagram can be interpreted as composition of cospans
a; f = ℓ; c = D → G+ ← K with extra conditions on the top left and the bottom right
square. The top left square fixes an overlap G+ of L and G, while D is contained in the
intersection of L and G (shown as a hatched area). Being jointly epi ensures that it really is
an overlap and does not contain unrelated elements. The top right pushout corresponds to
the left pushout of a DPO rewriting diagram. It contains a total match of L in G+. Then,
the bottom left pushout gives us the minimal borrowed context F such that applying the
rule becomes possible. The top left and the bottom left squares together ensure that the
contexts to be considered are not larger than necessary. The bottom right pullback ensures
that the interface K is as large as possible.

CONCUR 2024

39:20 Coinductive Techniques for Checking Satisfiability of Generalized Nested Conditions

D L I

G G+ C

J F K

JE PO

PO PB

ℓ

a c

f

(a) Structure of a borrowed context diagram.
The inner, lighter arrows are morphisms of the
base category C, while the outer arrows are
morphisms of ILC(C).

D L I

G G+ C

J F K

JE PO

PO PB

(b) Borrowed context diagrams represented as Venn
diagrams. The outer circles represent graphs L, G, and
the area between the inner and outer circles represents
their interfaces I, J .

Figure 2 Borrowed context diagrams.

For more concrete examples of borrowed context diagrams, we refer to [4, 11].
For cospan categories over adhesive categories, borrowed context diagrams form a represen-

tative class of squares [1]. Furthermore, for some categories (such as Graphinj
fin), there are –

up to isomorphism – only finitely many jointly epi squares for a given span of monos and
hence only finitely many borrowed context diagrams given a, ℓ (since pushout complements
along monos in adhesive categories are unique up to isomorphism).

Whenever the two cospans ℓ, a are in ILC(Graphinj
fin), it is easy to see that f, c are in

ILC(Graphinj
fin), i.e., they consist only of monos, i.e., injective morphisms.

Note also that representative squares in Graphinj
fin are simply jointly epi squares and they

can be straighforwardly extended to squares of ILC(Graphinj
fin).

Visualization of shifts

Given a condition A and an arrow c : A = RO(A)→ B, we will visualize shifts in diagrams
as follows:

A B X
c d

A A↓c

Remember that for an arrow d : B → X it holds that d |= A↓c ⇐⇒ c; d |= A.

B Additional Material for §4 (Witnesses for infinite models)

Table 1 Steps for the condition of Example 27, showing that a repeating infinite model exists.

C0 C1 (C1)↓m
∀J 1 K.false ∀J 1 2 K.false

∧ ∀J 1 2 K.false
∧ ∀J 1 + K.

(
∧ ∀J 1 2 + K.

(
∀J 2 + K.

(
∃J 1 + K.true ∃J 1 2 + K.true ∃J 2 + K.true
∨∃J 1 + K.true

)
∨∃J 1 2 + K.true ∨∃J 2 + K.true

)
∨∃J 1 2+ K.true

)
∧ ∀J 1 K.∃J 1 2 K.true ∧ ∀J 1 2 K.

(
∃J 1 2 3 K.true ∧ ∀J 2 K.∃J 2 3 K.true
∨∃J 1 2 K.true

)
∧ ∀J 1 A × B K.false ∧ ∀J 1 2 A × B K.false ∧ ∀J 2 A × B K.false
∧ ∀J 1 × B K.false ∧ ∀J 1 2 × B K.false ∧ ∀J 2 × B K.false

∧ ∀J 1 2 B K.false ∧ ∀J 2 B K.false
∧ . . . ∧ . . . ∧ . . .

A PSPACE Algorithm for Almost-Sure
Rabin Objectives in Multi-Environment MDPs
Marnix Suilen1 #

Radboud University, Nijmegen, The Netherlands

Marck van der Vegt1 #

Radboud University, Nijmegen, The Netherlands

Sebastian Junges #

Radboud University, Nijmegen, The Netherlands

Abstract
Markov Decision Processes (MDPs) model systems with uncertain transition dynamics. Multiple-
environment MDPs (MEMDPs) extend MDPs. They intuitively reflect finite sets of MDPs that
share the same state and action spaces but differ in the transition dynamics. The key objective in
MEMDPs is to find a single strategy that satisfies a given objective in every associated MDP. The
main result of this paper is PSPACE-completeness for almost-sure Rabin objectives in MEMDPs.
This result clarifies the complexity landscape for MEMDPs and contrasts with results for the more
general class of partially observable MDPs (POMDPs), where almost-sure reachability is already
EXP-complete, and almost-sure Rabin objectives are undecidable.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Markov Decision Processes, partial observability, linear-time Objectives

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2024.40

Related Version Full Version: https://arxiv.org/abs/2407.07006 [38]

Funding Marnix Suilen: NWO OCENW.KLEIN.187
Sebastian Junges: NWO Veni Grant ProMiSe (222.147)

1 Introduction

Markov decision processes (MDPs) are the ubiquitous model for decision-making under uncer-
tainty [34]. An elementary question in MDPs concerns the existence of strategies that satisfy
qualitative temporal properties, such as is there a strategy such that the probability of reaching
a set of target states is one? Qualitative properties in MDPs have long been considered as
pre-processing for probabilistic model checking of quantitative properties [6, 24]. Recently,
however, qualitative properties have received interest in the context of shielding [1, 29], i.e.,
the application of model-based reasoning to ensure safety in reinforcement learning [25, 39].

An often prohibitive assumption in using MDPs is that the strategy can depend on
the precise state. To follow such a strategy, one must precisely observe the state of the
system, i.e., of an agent and its environment. The more general partially observable MDPs
(POMDPs) [30] do not make this assumption. In POMDPs, a strategy cannot depend on the
precise states of the system but only on the (sequence of) observed labels of visited states. As
a consequence, and in contrast to MDPs, winning strategies may require memory. Indeed, the
existence of strategies that satisfy qualitative objectives on MDPs is efficiently decidable in
polynomial time using standard graph-algorithms [15, 14]. In contrast, in POMDPs, deciding
almost-sure reachability is already EXPTIME-complete [4, 14], and the existence of strategies
for a more general class of almost-sure Rabin objectives is undecidable [4].

1 Both authors contributed equally

© Marnix Suilen, Marck van der Vegt, and Sebastian Junges;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Concurrency Theory (CONCUR 2024).
Editors: Rupak Majumdar and Alexandra Silva; Article No. 40; pp. 40:1–40:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marnix.suilen@ru.nl
https://orcid.org/0000-0003-2163-3504
mailto:marck.vandervegt@ru.nl
https://orcid.org/0000-0003-2451-5466
mailto:sebastian.junges@ru.nl
https://orcid.org/0000-0003-0978-8466
https://doi.org/10.4230/LIPIcs.CONCUR.2024.40
https://arxiv.org/abs/2407.07006
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

s0 s2

s1

s3

s4

a2

a 1

0.5

0.5

1
1

1

1

s0 s2

s1

s3

s4

a 1

a2

1
1

1

1

s0 s2

s1

s3

s4

a 1

a2

1
1

1

1

Figure 1 A MEMDP with three environments.

Multi-environment MDPs (MEMDPs) [36] model a finite set of MDPs, called environments,
that share the state space but whose transition relation may be arbitrarily different. For
any given objective, the key decision problem asks to find a single strategy that satisfies the
objective in every associated MDP. MEMDPs are particularly suitable to model settings where
one searches for a winning strategy that is robust to perturbations or random initialization
problems. Examples of MEMDPs range from code-breaking games such as Mastermind, card
games such as Free-cell, or Minesweeper, to more serious applications in robotics [17], e.g.,
high-level planning where an artifact with unknown location must be recovered.

MEMDPs are special POMDPs [11]: An agent can observe the current state but not the
transition relation determining the outcomes of its actions. This type of partial observation
has an important effect: When an agent observes the next state, it may rule out that a
certain MDP describes the true system. Thus, the set of MDPs that may describe the system
is monotonically decreasing [11]. We call this property as monotonic information gain.

We illustrate MEMDPs in Fig. 1. This MEMDP consists of three environments. When
playing action a1 in state s0, we end up in state s1 in every environment. If we play action
a2 and observe that we end up in state s2, we can infer that we have to either be in the left
or the middle environment, while observing s3 after a2 rules out the middle environment.
Such information cannot be lost in a MEMDP, hence monotonic information gain.

The most relevant results for qualitative properties on MEMDPs are by Raskin and
Sankur [36], and by Van der Vegt et al. [40]. The former paper focuses on the case with
only two environments, which we refer to as 2-MEMDPs (and more generally, k-MEMDPs).
It shows, among others, that almost-sure parity can be decided in polynomial time. In
2-MEMDPs, the memory for a winning strategy is polynomial in the size of the MEMDP,
while for arbitrary environments, winning strategies for almost-sure reachability may be
exponential [40]. However, despite the need for exponential strategies, almost-sure reachability
in MEMDPs is decidable in PSPACE via a recursive algorithm that exploits the aforementioned
monotonic information gain [40].

Table 1 Known complexity (completeness) for MEMDPs, new results are in boldface. NL and
EXP denote the classes NLOGSPACE and EXPTIME, and UD denotes UNDECIDABLE.

Semantics Almost-sure Possible
Model MDP 2-MEMDP k-MEMDP MEMDP POMDP MDP MEMDP POMDP

Reachability P [14] P [36] P Cor. 49 PSPACE [40] EXP [4, 14] NL [14] NL Thm. 6 NL [14]
Safety P [14] P [36] P Cor. 49 PSPACE Thm. 41 EXP [8, 35] P [14] P Thm. 6 EXP [14]
Büchi P [14] P [36] P Cor. 49 PSPACE Thm. 41 EXP [4, 14] P [14] P Thm. 6 UD [4]
Co-Büchi P [14] P [36] P Cor. 49 PSPACE Thm. 41 UD [4] P [14] P Thm. 6 EXP [14]
Parity P [14] P [36] P Cor. 49 PSPACE Thm. 41 UD [4] P [14] P Thm. 6 UD [4]
Rabin P [13] P Cor. 49 P Cor. 49 PSPACE Thm. 41 UD [4] P [6] P Thm. 6 UD [4]

M. Suilen, M. van der Vegt, and S. Junges 40:3

The main result of this paper is a landscape of qualitative Rabin objectives and their
subclasses in MEMDPs, see Tbl. 1. The key novelty is a PSPACE algorithm to decide the
existence of strategies in MEMDPs that satisfy an almost-sure Rabin objective. The algorithm
relies on two key ingredients: First, as shown in Sect. 4, for almost-sure Rabin objectives,
a particular type of finite-memory strategies (with memory exponential in the number of
environments) is sufficient, in contrast to POMDPs. Second, towards an algorithm, we
observe that a traditional, per Rabin-pair, approach for Rabin objectives does not generalize
to MEMDPs (Sect. 6.1). It does, however, generalize to what we call belief-local MEMDPs,
in which one, intuitively, cannot gain any information (Sect. 6.3). Exploiting the monotonic
information gain of (general) MEMDPs, we construct a recursive algorithm with polynomial
stack size, inspired by [40], that solves Rabin objectives in belief-local MEMDPs (Sect. 6.4).
Finally, we establish PSPACE-hardness for almost-sure safety and clarify that for possible
objectives, MEMDPs can be solved as efficiently as MDPs. Proofs are in the appendix of the
full version of this paper [38].

Related Work
Besides almost-sure objectives, Raskin and Sankur [36] also study limit-sure objectives for
MEMDPs of two environments. Where almost-sure objectives require that the satisfaction
probability of the objective equals one, an objective is satisfied limit-surely whenever for any
ϵ > 0, there is a strategy under which the objective is satisfied with probability at least 1− ϵ.
For 2-MEMDPs, limit-sure parity objectives are decidable in P [36].

Closely related to the study of almost-sure objectives in MEMDPs and POMDPs is the
value 1 problem for probabilistic automata (PA). A PA can be seen as a POMDP where all
states have the same observation and are thus indistinguishable. The value 1 problem is to
decide whether the supremum of the acceptance probability over all words equals one. This
problem is undecidable for general PA [26], but recent works have studied several subclasses of
PA for which the value 1 problem is decidable. Most notably, #-acyclic PA [26], structurally
simple and simple PA [16], and leaktight PA [23]. Leaktight PA are the most general of these
subclasses [20]. They contain the others, and the value 1 problem is PSPACE-complete [22].

The interpretation of MEMDPs as a special POMDP is successfully used in the quantitat-
ive setting, where the goal is to find a strategy that maximizes the probability of reaching a
target. Finding a strategy that maximizes the finite-horizon expected reward in MEMDPs is
PSPACE-complete [9], as is also the case for the same problem in more general POMDPs [33].

Besides a special class of POMDP, MEMDPs are also a class of robust MDP with discrete
uncertainty sets [32, 27]. In the robotics and AI communities MEMDPs are studied in that
context, primarily for quantitative objectives such as maximizing discounted reward or regret
minimization [37]. Parametric MDPs (pMDPs) are another formalism for defining MDPs with
a range of transition functions [28]. Where we seek a single strategy that is winning for all
environments, parameter synthesis is often about finding a single parameter instantiation (or:
environment) such that all strategies are winning [18, 2]. That is, the quantifiers are reversed.
A notable exception is work on quantitative properties in pMDPs by Arming et al. [3], which
interprets a parametric MDP as a MEMDP and solves it as a POMDP. With the (altered)
quantifier order in pMDPs, memoryless deterministic strategies are sufficient: The complexity
of finding a parameter instantiation such that under all (memoryless deterministic) strategies
a quantitative reachability objective is satisfied is in NP when the number of parameters
is fixed and ETR-complete in the general case [41]. Determining whether a memoryless
deterministic policy is robust is both ETR and co-ETR-hard [41].

CONCUR 2024

40:4 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

Concurrent parameterized games have a similar type of partial observability as MEMDPs
but lack a probabilistic transition function. The complexity of deciding reachability objectives
in concurrent parameterized games is PSPACE-complete [7], equal to that of almost-sure
reachability objectives in MEMDPs [40].

2 Background and Notation

Let N denote the natural numbers. For a set X, the powerset of X is denoted by P(X), and
the disjoint union of two sets X, Y is denoted X ⊔ Y . A discrete probability distribution
over a finite set X is a function µ : X → [0, 1] with

∑
x∈X µ(x) = 1, the set of all discrete

probability distributions over X is Dist(X). The support of a distribution µ ∈ Dist(X) is
the set of elements x with µ(x) > 0 and is denoted by Supp(µ). We denote the uniform
distribution over X by unif(X) and the Dirac distribution with probability 1 on x by dirac(x).

2.1 Markov Decision Processes

We briefly define standard (discrete-time) Markov decision processes and Markov chains.

▶ Definition 1 (MDP). A Markov decision process (MDP) is a tuple M := ⟨S, A, ι, p⟩ where
S is a finite set of states and ι ∈ S is the initial state, A is the finite set of actions, and
p : S ×A ⇀ Dist(S) is the partial probabilistic transition function. By A(s), we denote the
set of enabled actions for s, which are the actions for which p(s, a) is defined.

For readability, we write p(s, a, s′) for p(s, a)(s′). A path in an MDP is a sequence of
successive states and actions, π = s0a0s1a1 . . . ∈ (SA)∗S, such that s0 = ι, ai ∈ A(s), and
p(si, ai, si+1) > 0 for all i ≥ 0, and we write π for only the sequence of states in π. The
probability of following a path π in an MDP with transition function p is defined as p(π) =
p(s0a0 . . .) =

∏
i=0 p(si, ai, si+1). The set of all (finite) paths on an MDP M is Path(M) (resp.

Pathfin(M)). Whenever clear from the context, we omit the MDP M from these notations.
We write first(π) and last(π) for the first and last state in a finite path, respectively, and
the concatenation of two paths π1, π2 is written as π1 · π2. The set of reachable states from
S′ ⊆ S is Reachable(S′) := {s′ ∈ S | ∃π ∈ Pathfin : first(π) ∈ S′, last(π) = s′}. A state s ∈ S

is a sink state if Reachable({s}) = {s}. An MDP is acyclic if each state is a sink state or not
reachable from its successor states. The underlying graph of an MDP is a tuple ⟨V, E⟩ with
vertices V := {vs | s ∈ S} and edges E := {⟨vs, vs′⟩ | ∀s, s′ ∈ S : ∃a ∈ A : p(s, a, s′) > 0}.

A sub-MDP of an MDP M = ⟨S, A, ι, p⟩ is a tuple ⟨S′, A′, ι′, p′⟩ with states ∅ ̸= S′ ⊆ S,
actions ∅ ≠ A′ ⊆ A, initial state ι′ ∈ S′, and a transition function p′ such that ∀s ∈ S : ∅ ≠
A′(s) ⊆ A(s) and ∀s, s′ ∈ S′, a ∈ A′(s) : Supp(p(s, a)) ⊆ S′ and p′(s, a, s′) := p(s, a, s′). An
end-component of an MDP M is a sub-MDP where Reachable(S′) = S′. Sub-MDPs and
end-components are standard notions; for details, cf. [19, 6, 36].

A Markov chain is an MDP where there is only one action available at every state:
∀s ∈ S : |A(s)| = 1. We write an MC as a tuple C := ⟨S, ι, p⟩ where S is a set of states,
ι ∈ S is the initial state, and p : S → Dist(S) is the transition function. Paths in MCs are
sequences of successive states, and their underlying graph is analogously defined as for MDPs.
A subset T ⊆ S is strongly connected if for each pair of states ⟨s, s′⟩ ∈ T there exists a
finite path π with first(π) = s and last(π) = s′. A strongly connected component (SCC) is a
strongly connected set of states T such that no proper superset of T is strongly connected.
A bottom SCC (BSCC) is an SCC S′ where no state s ∈ S \ S′ is reachable.

M. Suilen, M. van der Vegt, and S. Junges 40:5

2.2 Strategies and Objectives
We now formally define strategies and their objectives. Strategies resolve the action choices
in MDPs. A strategy is a measurable function σ : Pathfin → Dist(A) such that for all finite
paths π ∈ Pathfin we have Supp(σ(last(π))) ⊆ A(last(π)). A strategy is deterministic if
it maps only to Dirac distributions, and it is memoryless if the action (distribution) only
depends on the last state of every path. We write Σ for the set of all strategies.

A strategy σ applied to an MDP M induces an infinite-state MC M [σ] = ⟨S∗, ι, pσ⟩ such
that for any path π: pσ(π, π ·s′) =

∑
a∈A σ(π)(a) ·p(last(π), a, s′). This MC has a probability

space with a unique probability measure PM [σ] via the cylinder construction [6, 21].
A strategy is a finite-memory strategy if it can be encoded by a stochastic Moore machine,

also known as a finite-state controller (FSC) [31]. An FSC is a tuple F = ⟨N, nι, α, η⟩,
where N is a finite set of memory nodes, the initial node nι ∈ N , α : S ×N → Dist(A) is
the action mapping, and η : N × A × S → Dist(N) is the memory update function. The
induced MC M [F] of an MDP M and finite-memory strategy represented by an FSC F is
finite and defined by the following product construction: M [F] = ⟨S ×N, ⟨ι, nι⟩, pF ⟩, where
pF (⟨s, n⟩, ⟨s′, n′⟩) =

∑
a∈A α(s, n, a) · p(s, a, s′) · η(n, a, s′, n′). A strategy is memoryless if its

FSC representation has a single memory node, i.e., |N | = 1.
We consider both almost-sure and possible objectives for MDPs and MCs with state space

S. An objective Φ is a measurable subset of P ⊆ Sω. An MC C is almost-surely (or possibly)
winning for an objective Φ iff PC(Path(C) ∩ Φ) = 1 (or PC(Path(C) ∩ Φ) > 0). A state s is
winning whenever the MC with its initial state replaced by s is winning. We write C |= Φ
and s |=C Φ to denote that MC C and state s are winning for Φ.

▶ Definition 2 (Winning). An MDP M is winning for Φ if there exists a strategy σ ∈ Σ such
that the induced MC M [σ] is winning for Φ, and the strategy σ is then also called winning.

Like above, we denote winning in MDPs with M |= Φ or s |=M Φ, respectively. Sometimes,
we explicitly add the winning strategy and write M [σ] |= Φ and s |=M [σ] Φ for the MDP
winning Φ under σ from its initial state or some other state s, respectively.

▶ Definition 3 (Winning Region). We call the set of states of an MDP (or MC) that are
winning objective Φ the winning region, denoted as WinM (Φ) = {s ∈ S | s |=M Φ}.

We define Rabin objectives. Let C = ⟨S, ι, p⟩ be a MC with associated probability measure
PC , π ∈ Path(C) a path, and Inf (π) ⊆ S the set of states reached infinitely often along π.

▶ Definition 4 (Rabin objective). A Rabin objective is a set of Rabin pairs: Φ = {⟨Bi,Ci⟩ |
1 ≤ i ≤ k. Ci ⊆ Bi ⊆ S}. A path π ∈ Path(C) wins Φ if there is a Rabin pair ⟨Bi,Ci⟩
in Φ where the path leaves the states in Bi only finitely many times, and states in Ci are
visited infinitely often. The MC C wins a Rabin objective almost-surely (or possibly) if
PC(π ∈ Path(C) | ∃⟨Bi,Ci⟩ ∈ Φ: Inf (π) ⊆ Bi ∧ Inf (π)∩ Ci ̸= ∅) = 1 (or possibly when > 0).

For MDPs, almost-sure and possible Rabin objectives can be solved in polynomial time [6,
Thm. 10.127], and the strategies are memoryless deterministic [13, Thm. 4]. Other objectives,
specifically reachability (♢T), safety (□T), Büchi (□♢T), co-Büchi (♢□T), and parity are
included in Rabin objectives [13] for a set T ⊆ S. App. A contains formal definitions.

3 Multi-Environment MDPs and the Problem Statement

Next, we introduce the multi-environment versions of MDPs and MCs. Intuitively, these can
be seen as finite sets of MDPs and MCs that share the same states and actions.

CONCUR 2024

40:6 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

▶ Definition 5 (MEMDP). A multi-environment MDP is a tuple M = ⟨S, A, ι, {pi}i∈I⟩
with S, A, ι as for MDPs, and {pi}i∈I is a finite set of transition functions, where I are the
environment indices. We also writeM = {Mi}i∈I as a set of MDPs, where Mi = ⟨S, A, ι, pi⟩.

For a MEMDP M and a set I ′ ⊆ I, we define the restriction to I ′ as the MEMDP M↓I′ =
⟨S, A, ι, {pi}i∈I′⟩. To change the initial state of M, we define Mι′ = ⟨S, A, ι′, {pi}i∈I⟩.

A multi-environment MC (MEMC) is a MEMDP with ∀s ∈ S : |A(s)| = 1. A MEMC is
a tuple C = ⟨S, ι, {pi}i∈I⟩ or equivalently a set of MCs C = {Ci}i∈I . A BSCC in a MEMC
is a set of states S′ ⊆ S such that S′ forms a BSCC in every MC Ci ∈ C. The underlying
graph of a MEMDP or MEMC is the disjoint union of the graphs of the environments.

Similarly to Def. 2 for MDPs, a strategy σ for a MEMDP M is winning for objective
Φ if and only if the induced MEMC M[σ] = {M[σ]i}i∈I is winning in all environments:
∀i ∈ I : M[σ]i is winning for Φ. Winning regions, Def. 3, extend similarly to MEMDPs:
WinM(Φ) = {s ∈ S | s |=M Φ}.

The central decision problem in this paper is:

Given a MEMDP M and a Rabin objective Φ, is there a winning strategy for Φ in M.

We assume MEMDPs are encoded as an explicit list of MDPs and each MDP is given by the
explicit transition function. The value of the probabilities are not relevant.

We first consider possible semantics in MEMDPs, completing Tbl. 1. For POMDPs,
co-Büchi objectives are known to be undecidable [4]. We show that for various objectives,
deciding them in MEMDPs is equally hard as in their MDP counterparts.

▶ Theorem 6. Deciding possible reachability objectives for MEMDPs is in NL. Deciding
possible safety, Büchi, co-Büchi, parity and Rabin objectives for MEMDPs is in P.

Using results on MDPs from [14], these upper bounds are tight. The main observation
for membership is that a MEMDP is winning possibly objectives iff each MDP is possibly
winning, due to a randomization over the individual winning strategies. We can then construct
algorithms that solve each environment sequentially to answer the query on MEMDPs.

From here on, we focus exclusively on the almost-sure objectives.

▶ Theorem 7. Almost-sure reach, safety, (co-)Büchi, and Rabin objectives for MEMDPs are
PSPACE-hard.

This theorem follows from [40], which shows that almost-sure reachability is PSPACE-complete.
PSPACE-hardness of almost-sure safety can be established by minor modifications to the proof:
In particular, the PSPACE-hardness proof for reachability operates on acyclic MEMDPs,
where we may reverse the target and non-target states to change the objective from almost-
sure reachability to safety. PSPACE-hardness of almost-sure (co-)Büchi, parity, and Rabin
objectives follows via reduction from almost-sure reachability.

4 Belief-Based Strategies are Sufficient

In this section, we fix a MEMDP M = ⟨S, A, ι, {pi}i∈I⟩ with an almost-sure Rabin objective
Φ, and constructively show a more refined version of the following statement.

▶ Corollary 8. For a MEMDP M and an almost-sure Rabin objective Φ, if there exists a
winning strategy for Φ, there also exists a winning finite-memory strategy σ∗ such that the
finite-state controller (FSC) for σ∗ is exponential (only) in the number of environments.

M. Suilen, M. van der Vegt, and S. Junges 40:7

This corollary to Thm. 15 below immediately gives rise to EXP algorithms for the decision
problem that simply iterate over all strategies. The particular shape of the strategy, a notion
that we call belief-based, will be essential later to establish PSPACE algorithms.

4.1 Beliefs in MEMDPs
It is helpful to consider the strategy as a model for a decision-making agent. Then, in
MEMDPs, the agent observes in which state s ∈ S it currently is but does not have
access to the environment i ∈ I. The hiding of environments gives rise to the notion of a
belief-distribution in MEMDPs, akin to beliefs in partially observable MDPs [30]. A belief
distribution in a MEMDP is a probability distribution over environments µ ∈ Dist(I) that
assigns a probability to how likely the agent is operating in each environment. As we show
below, we only need to consider the belief-support, i.e., a subset of environments that keeps
track of whether it is possible that the agent operates in those environments. From now on,
we shall simply write belief instead of belief-support.

▶ Definition 9 (Belief, belief update). Given a finite path π, we define its belief as its last state
together with the set of environments for which this path has positive probability: Belief(π) =
⟨last(π), {i ∈ I | pi(π) > 0}⟩. For path π · as′, the belief can be characterized recursively
by the belief update function BU : S × P(I) × A × S → S × P(I). Let ⟨s, J⟩ = Belief(π),
then: ⟨s′, J ′⟩ = BU(⟨s, J⟩, a, s′) := Belief(π · as′), where J ′ = {j ∈ J | pj(s, a, s′) > 0}. We
also liberally write BU(⟨s, J⟩, a) for the set of beliefs ⟨s′, J ′⟩ that are possible from ⟨s, J⟩ via
action a, and define the two projection functions: St(⟨s, J⟩) = s and Env(⟨s, J⟩) = J .

Key to MEMDPs is the notion of revealing transitions [36]. A revealing transition is a
tuple ⟨s, a, s′⟩ such that there exist two environments i, i′ ∈ I, i ̸= i′ with pi(s, a, s′) > 0
and pi′(s, a, s′) = 0. Intuitively, a transition is revealing whenever observing this transition
reduces the belief over environments the agent is currently in, since we observed a transition
that is not possible in one or more environments. From this notion of revealing transitions
immediately follows the property of monotonic information gain in MEMDPs.

▶ Corollary 10. Let π · as′ be a finite path. Then: (1) Env(Belief(π · as′)) ⊆ Env(Belief(π)),
and (2) If there are environments j, j′ ∈ Env(Belief(π)) with pj(last(π), a, s′) > 0 =
pj′(last(π), a, s′)), then j′ ̸∈ Env(Belief(π·as′)) and thus Env(Belief(π·as′)) ⊂ Env(Belief(π)).

Key to our analysis of MEMDPs is the notion of belief-based strategies.

▶ Definition 11 (Belief-based strategy). A strategy σ is belief-based when for all finite paths
π, π′ such that Belief(π) = Belief(π′) implies σ(π) = σ(π′). Belief-based strategies can also
be written as a function σ : S × P(I)→ Dist(A).

Belief-based strategies are a form of finite-memory strategies and are representable by FSCs.

▶ Lemma 12. A belief-based strategy σ : S × P(I)→ Dist(A) for a MEMDP M with states
S and actions A can be represented by an FSC.

Similar to how states may be winning, beliefs can also be winning.

▶ Definition 13 (Winning belief). We call the belief ⟨s, J⟩ winning for objective Φ in M,
written as ⟨s, J⟩ |=M Φ, if there exists a strategy σ : Pathfin → Dist(A) such that for every
environment j ∈ J , the induced MC is winning. That is, ∀j ∈ J : Mj [σ] |= Φ.

CONCUR 2024

40:8 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

A MEMDP M is winning, M |= Φ, iff the initial belief ⟨ι, I⟩ is winning. We can extend
the notion of a winning region to beliefs. The (belief) winning region of a MEMDP M is
WinM(Φ) = {⟨s, J⟩ ∈ S ×P(I) | ⟨s, J⟩ |=M Φ}. The notion of winning beliefs has been used
before in the context of POMDPs with other almost-sure objectives [10].

The induced MEMC of a MEMDP and FSC conservatively extends the standard product
construction between an MDP and FSC to be applied to each transition function {pi}i∈I

individually. In that MEMC, the objective must be lifted to the new state space S ×N .

▶ Definition 14 (Lifted Rabin objective). For Rabin objective Φ = {⟨Bi,Ci⟩ | 1 ≤ i ≤ k. Ci ⊆
Bi ⊆ S} on S, the lifted Rabin objective to S ×N is Φ̂ := {⟨Ci ×N,Bi ×N⟩ | 1 ≤ i ≤ k}.

When clear from the context, we implicitly apply this lifting where needed.

4.2 Constructing Winning Belief-Based Strategies
We are now ready to state the main theorem of this section.

▶ Theorem 15. For MEMDP M and Rabin objective Φ, there exists a winning strategy σ

for Φ iff there exists a belief-based strategy σ∗ that is winning for Φ.

The remainder of this section is dedicated to the necessary ingredients to prove Thm. 15.

▶ Definition 16 (Allowed actions). The set of allowed actions for a winning belief ⟨s, J⟩ is
Allow(⟨s, J⟩) := {a ∈ A(s) | ∀⟨s′, J ′⟩ ∈ BU(⟨s, J⟩, a) : ⟨s′, J ′⟩ |=M Φ}.

That is, an action at a winning belief is allowed if all possible resulting successor beliefs are still
winning. Using allowed actions we define the belief-based strategy σAllow : S×P(I)→ Dist(A):

σAllow(⟨s, J⟩) :=
{

unif(Allow(⟨s, J⟩)) if Allow(⟨s, J⟩) ̸= ∅,
unif(A(s)) otherwise.

The strategy σAllow randomizes uniformly over all allowed actions when the successor beliefs
are still winning and over all actions when the belief cannot be winning. We now sketch how
to use σAllow to construct a winning belief-based strategy. See App. C for the details.

When playing σAllow, the induced MEMC M[σAllow] will almost-surely end up in a BSCC.
Given belief ⟨s, J⟩, we compute all environments j ∈ J for whichMj [σAllow] is in a BSCC SB:
J⟨s,J⟩ := {j ∈ J | ∃SB ⊆ S × P(I) : SB is a BSCC in MC M[σAllow]j ∧ ⟨s, J⟩ ∈ SB}.

As a consequence, since σAllow is a belief-based strategy, every BSCC of the MEMC
M[σAllow] has a fixed set of environments that cannot change anymore. As σAllow uniformly
randomizes over all allowed actions, and it remains possible to win, there has to exist a
strategy σBSCC : SB → Dist(A) that is a sub-strategy of σAllow, i.e., it only plays a subset of
actions that are also played by σAllow. We construct appropriate sub-MDPs to compute σBSCC
for a belief ⟨s, J⟩ that is almost-surely winning for Φ. Using σAllow and σBSCC, we construct
the following belief-based strategy and show it is indeed winning. The other direction follows
since beliefs are based on paths, which proves Thm. 15.

σ∗(⟨s, J⟩) :=
{

σAllow(⟨s, J⟩) if J⟨s,J⟩ = ∅,
σBSCC(⟨s, J⟩) otherwise.

Thm. 15 shows that belief-based strategies are sufficient for almost-sure Rabin objectives
in MEMDPs, which is not true on more general POMDPs [12]. Key is the monotonic
information gain in MEMDPs, a property that POMDPs do not have in general [11].
▶ Remark. For the remainder of this paper, we assume all strategies are finite-memory
strategies, and the induced (ME)MCs are defined via the product construction from Sect. 2.2.

M. Suilen, M. van der Vegt, and S. Junges 40:9

5 Explicitly Adding Belief to MEMDPs

Above, we showed that it is sufficient for a strategy to reason over the beliefs. Now, we show
how to add beliefs to the MEMDP, yielding a belief observation MDP (BOMDP). We discuss
their construction (Sect. 5.1) and then algorithms on BOMDPs for reachability (Sect. 5.2)
and so-called safe Büchi objectives (Sect. 5.3). We discuss Rabin objectives in Sect. 6.

5.1 Belief-Observation MDPs
We create a product construction between the MEMDP and the beliefs P(I) such that the
beliefs of the MEMDP M are directly encoded in the state space:

▶ Definition 17 (BOMDP). The belief observation MDP (BOMDP) of MEMDP M =
⟨S, A, ι, {pi}i∈I⟩ is a MEMDP BM = ⟨S′, A, ι′, {p′

i}i∈i⟩ with states S′ = S × P(I), initial
state ι′ = ⟨ι, I⟩, and partial transition functions that are defined when a ∈ A(s) such that

p′
j(⟨s, J⟩, a, ⟨s′, J ′⟩) =

{
pj(s, a, s′) if ⟨s′, J ′⟩ = BU(⟨s, J⟩, a, s′) ∧ j ∈ J,

0 otherwise.

BOMDPs are special MEMDPs; hence, all definitions for MEMDPs apply to BOMDPs. Due
to the product construction, a belief-support-based strategy for M can be turned into a
memoryless strategy for BM, and vice versa. In BOMDPs, the belief J is already part of the
state, so we simplify the satisfaction notation to ⟨s, J⟩ |=BM Φ instead of ⟨⟨s, J⟩, J⟩ |=BM Φ.

▶ Definition 18 (Lifted strategy). Given MEMDP M and a belief-based strategy σ. The
lifted memoryless strategy σ̂ : (S × P(I))→ Dist(A) on BM is σ̂(s, J) := σ(⟨s, J⟩).

This lifting ensures that belief-based strategies and their liftings to BOMDPs coincide.

▶ Lemma 19. Given a MEMDP M, its BOMDP BM, a belief-based strategy σ for M and
its lifted strategy σ̂ for BM, we have that the two induced MEMCs coincide: M[σ] = BM[σ̂].

Consequently, satisfaction of objectives is preserved by the transformation.

▶ Theorem 20. Let M be a MEMDP with state space S and Φ a Rabin objective. Let
Φ̂ be the lifted Rabin objective to S × P(I) by Def. 14. A belief-based strategy σ for M is
winning the Rabin objective Φ iff the lifted strategy σ̂ is winning the lifted objective Φ̂ for
BM: ∀σ : ⟨s, J⟩ |=M[σ] Φ⇔ ⟨s, J⟩ |=BM[σ̂] Φ̂.

As a result of Thm. 20, we will implicitly lift strategies and objectives.

5.2 An Algorithm for Reachability in BOMDPs
In this subsection, we establish an algorithm for computing the winning region for reachability
objectives in a BOMDP. The winning region of a BOMDP BM is precisely the set of winning
beliefs of its MEMDP M: WinBM(Φ) = {⟨s, J⟩ ∈ S × P(I) | ⟨s, J⟩ |=M Φ}. The algorithm
specializes a similar fixed-point computation for POMDPs [12] to BOMDPs.

Alg. 1 computes these winning regions. It relies on a state-remove operation defined
below. Intuitively, the algorithm iteratively removes losing states, which does not affect the
winning region until all states that remain in BM are winning.

Removing state s from a BOMDP removes the state and disables outgoing action from
any state where that action that could reach s with positive probability. This operation thus
also removes any action and its transitions that could reach the designated state.

CONCUR 2024

40:10 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

Algorithm 1 Reachability algorithm for a BOMDP BM of MEMDP M.
1: function Reach(BOMDP BM, T ⊆ S)
2: do
3: for i ∈ I do
4: Si ← {⟨s, J⟩ ∈ S × P(I) | i ∈ J}
5: for ⟨s, J⟩ ∈ Si \WinBMi

(♢T) do ▷ Iterate over all losing states
6: BM ← StateRemove(BM, ⟨s, J⟩) ▷ See Def. 21
7: while

∧
i∈I Si ̸= WinBMi

(♢T) ▷ Check if stable
8: return SBM

▶ Definition 21 (State removal). Let BM = ⟨S × P(I), A, ι, {pi}i∈I⟩ be a BOMDP, and
⊥̸∈ S ×P(I) a sink state. The BOMDP StateRemove(BM, ⟨s, J⟩) for BM and state ⟨s, J⟩ ∈
S×P(I) is given by ⟨{⊥}∪S×P(I) \ {⟨s, J⟩}, A, ι′, {p′

i}i∈I⟩, where ι′ =⊥ if ⟨s, J⟩ = ι, and
ι′ = ι otherwise, and for all states ⟨s′, J ′⟩ ̸= ⟨s, J⟩ and environments i ∈ I we have

p′
i(⟨s′, J ′⟩, a) =

{
pi(⟨s′, J ′⟩, a) if ⟨s, J⟩ ̸∈ Supp(pi(⟨s′, J ′⟩, a)),
dirac(⊥) if ⟨s, J⟩ ∈ Supp(pi(⟨s′, J ′⟩, a)).

The main results in this section are the correctness and the complexity of Alg. 1:

▶ Theorem 22. For BOMDP BM and targets T : WinBM(♢T) = Reach(BM, T) in Alg. 1.

Towards a proof, the notions of losing states and strategies as defined for MDPs also apply
to BOMDP states and strategies. For BOMDPs, we additionally define losing actions as
state-action pairs that lead with positive probability to a losing state. It follows that a
BOMDP state is losing iff every action from that state is losing, and a single environment
where a BOMDP state is losing suffices as a witness that the state is losing in the BOMDP
(see the App. D). Finally, the following lemma is the key ingredient to the main theorem.

▶ Lemma 23. Removing losing states from BM does not affect the winning region, i.e.,
⟨s, J⟩ ̸∈WinBM(♢T) implies WinStateRemove(BM,⟨s,J⟩)(♢T) = WinBM(♢T).

▶ Lemma 24. Alg. 1 takes polynomial time in the size of BM.

5.3 Safe Büchi in BOMDPs
In this section, we consider winning regions for safe Büchi objectives of the form □B ∧□♢C,
where C ⊆ B ⊆ S. The condition C ⊆ B is convenient but does not restrict the expressivity.
These objectives are essential for our Rabin algorithm in Sect. 6. The main result is:

▶ Theorem 25. For BOMDP BM, WinBM(□B ∧□♢C) is computable in polynomial time.

We provide the main ingredients for the proof below. We first consider arbitrary MEMDPs.

▶ Definition 26 (State restricted (ME)MDP). Let M = ⟨S, A, ι, p⟩ be an MDP and S′ ⊆ S a
set of states. The MDP M□S′ := ⟨S′ ∪ {⊥}, A, ι′, p′⟩ is M restricted to S′, with ⊥ a sink
state, ι′ = ι if ι ∈ S′ and ⊥ otherwise, and for s ∈ S′, a ∈ A(s) and s′ ∈ S′ ∪{⊥}, we define:

p′(s, a, s′) :=
{∑

s′′∈S\S′ p(s, a, s′′) if s′ = ⊥,

p(s, a, s′) otherwise.

This definition conservatively extends to MEMDPs per environment i: (M□S′)i = (Mi)□S′ .

M. Suilen, M. van der Vegt, and S. Junges 40:11

s1
{1, 2}

M1 a

s1
{1, 2}

M2
s2
{2}a

1/2 1/2
a

Figure 2 Example of a BOMDP fragment with Rabin objective Φ = {⟨{s1}, {s1}⟩, ⟨{s2}, {s2}⟩}.

The winning regions of a MEMDP M and M□B coincide as, intuitively, winning strategies
must remain in B, thus removing other states does not affect the winning region.

▶ Lemma 27. The winning regions for □B ∧□♢C with C ⊆ B in M□B and M coincide.

Satisfying the Büchi objective □♢C inside M□B implies satisfying the safety condition, thus:

▶ Lemma 28. The winning regions for □B ∧□♢C with C ⊆ B and □♢C in M□B coincide.

We can lift these lemmas to the BOMDP associated with a MEMDP.

▶ Lemma 29. The winning regions for □B∧□♢C with C ⊆ B in BM and B(M□B) coincide.

Almost-sure Büchi objectives can be reduced to almost-sure reachability objectives using a
construction similar to the one in [5], see the proof in the App. D for details.

▶ Lemma 30. Büchi in BOMDPs is decidable in polynomial time.

Now, to prove Thm. 25, WinBM(□B ∧□♢C) is computable as Büchi objective on a polyno-
mially larger MEMDP (Lem. 29) in polynomial time (Lem. 30).

6 A Recursive PSPACE Algorithm for Rabin Objectives

We now show how to exploit the structure of BOMDPs to arrive at our PSPACE algorithm
for Rabin objectives in MEMDPs. We first discuss the non-local behavior of Rabin objectives,
and in particular, why the standard approach for almost-sure Rabin objectives for MDPs
fails on BOMDPs. Then, in Sect. 6.2, we introduce J-local MEMDPs, which are MEMDPs
where the belief J does not change. These J-local MEMDPs also occur as fragments of the
BOMDPs. In J-local MEMDPs, whenever a transition is made that would cause a belief
update to a strict subset of J , we transition to dedicated sink states, which we refer to as
frontier states. These frontier states reflect transitioning into a different fragment of the
BOMDP, from which all previously accessed BOMDP states are unreachable due to the
monotonicity of the belief update operator. Next, in Sect. 6.3, we present an algorithm for
efficiently computing the winning region of Rabin objectives on J-local MEMDPs. Finally, in
Sect. 6.4, we prove that frontier states can be summarized as being either winning or losing,
ultimately leading to a PSPACE algorithm for deciding Rabin objectives in MEMDPs.

6.1 Non-Local Behavior of Rabin Objectives
The traditional approach for checking almost-sure Rabin objectives on MDPs, see e.g. [6],
computes for each state s ∈ S, whether there is a strategy that immediately satisfies a Rabin
pair Φi = ⟨Bi,Ci⟩, i.e., satisfying □Bi ∧□♢Ci, and is a stronger condition. A state satisfies
the Rabin condition Φ iff it almost-surely reaches the set of immediately winning states (the
win set). The example below illustrates why this approach fails to generalize to MEMDPs.

▶ Example 31. In Fig. 2, we see a BOMDP for which the “MDP approach” does not work.
First, note that the only strategy that always plays a is winning in every state. Now, consider
the algorithm and the first Rabin pair Φ1 = ⟨{s1}, {s1}⟩. State ⟨s2, {2}⟩ does not satisfy

CONCUR 2024

40:12 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

□{s1} ∧□♢{s1}. State ⟨s1, {1, 2}⟩ also does not belong to the win set, as in M2 there is a
1/2 probability of reaching the sink state ⟨s2, {2}⟩. For the second Rabin pair, (only) state
⟨s2, {2}⟩ is immediately winning. Thus, the win set is the singleton set containing ⟨s2, {2}⟩.
From the initial state ⟨s1, {1, 2}⟩, it is not possible to almost-surely reach the state ⟨s2, {2}⟩,
due to M1. Therefore, a straightforward adaption of the traditional algorithm for MDPs
would yield that the initial state is losing.

The difficulty in the example above lies in the fact that in the different environments, a
different Rabin pair is satisfied. However, taking the self-loop in s1 does not update the
belief and it remains unclear whether we will eventually satisfy Φ1 or Φ2.

6.2 Local View on BOMDPs
We formalize J-local MEMDPs, that transition into frontier states if the belief updates.

▶ Definition 32 (J-local MEMDPs). Given a MEMDP M = ⟨S, A, ι, {pi}i∈I⟩, the J-local
MEMDP M{J} = ⟨S ⊔ F, A, {p′

j}j∈J , ι⟩ is a MEMDP, with as state space the disjoint
union of the (original) states S and the frontier states F := S × A × S. The transition
functions {p′

j : S ⊔F ×A ⇀ Dist(S ⊔F)}j∈J are defined s.t. (1) p′
j(f, a, f) = 1 for all f ∈ F ,

(2) p′
j(s, a) is undefined if pj(s, a) is undefined, and (3) for every state s ∈ S and a ∈ A(s), we

define p′
j(s, a, ⟨s, a, s′⟩) = pj(s, a, s′) if BU(⟨s, J⟩, a, s′) ̸= ⟨s′, J⟩ and p′

j(s, a, s′) = pj(s, a, s′)
otherwise.

By definition of the transition functions {p′
j}j∈J of a J-local MEMDPM{J}, all environments

ofM{J} share the same underlying graph within the states of S. Transitions to the frontiers
may, however, differ (made formal in App. E). As both M and M{J} have states in S, a
Rabin objective Φ can readily be applied to both. To give meaning to the frontier states F

in M{J}, we introduce localized Rabin objectives:

▶ Definition 33 (Localized Rabin objective, winning frontier). Given Rabin objective Φ =
{⟨Bi,Ci⟩ | 1 ≤ i ≤ k. Ci ⊆ Bi ⊆ S} and some subset of frontier state WF ⊆ F , the localized
Rabin objective for J-local MEMDPM{J} is ΦLoc(WF) := {⟨Bi∪WF,Ci∪WF⟩ | 1 ≤ i ≤ k}.
We call WF the winning frontier, as any path that reaches a state in WF is winning.

6.3 An Algorithm for Localized Rabin Objectives
Below, we present an algorithm to compute the winning region of a localized Rabin objective
on a J-local MEMDP, using some auxiliary definitions on winning in a J-local MEMDPs.

▶ Definition 34 (Immediately winning Rabin pair/state). A J-local MEMDP state s ∈ S ⊔ F

has an immediately winning Rabin pair Φi = ⟨Bi,Ci⟩ when s |=M{J} □Bi ∧□♢Ci. A state
s ∈ S ⊔ F is immediately winning if it has an immediately winning Rabin pair.

Immediately winning states are, in particular, also winning states (see Lem. 59, App. E). It
is natural also to consider specialized winning regions for just immediately winning states:

▶ Definition 35. The Rabin win set WΦLoc is {s ∈ S ⊔ F | s is immediately winning }.

The crux of our algorithm is that in J-local MEMDPs, as in MDPs but unlike in BOMDPs,
winning a Rabin objective is equivalent to almost-surely reaching the Rabin win set.

▶ Lemma 36. A state s in a J-local MEMDP is winning iff it can almost-surely reach WΦLoc .

M. Suilen, M. van der Vegt, and S. Junges 40:13

Algorithm 2 Local Rabin Algorithm.
1: function Rabin(Local MEMDP L =M{J}, WF, Φ = {⟨B1,C1⟩, · · · , ⟨Bn,Cn⟩})
2: Swin ← ∅
3: for 1 ≤ i ≤ n do
4: B′

i ← Bi ∪WF ; C′
i ← Ci ∪WF

5: Swin ← Swin ∪WinL(□B′
i ∧□♢C′

i) ▷ See Thm. 25
6: return WinL(♢Swin)

We sketch the proof ingredients later. We first introduce Alg. 2, which lifts the MDP approach
(Sect. 6.1) to J-local MEMDPs. The set Swin on line 2 stores states for which an immediately
winning Rabin pair has been found. For each Rabin pair Φi, the algorithm computes the
localized Rabin pair ΦLoc

i . Next, in line 5, it compute the winning region WinL(□B′
i ∧□♢C′

i)
using the approach described in Sect. 5.3. These are exactly the states that have ΦLoc

i as an
immediately winning Rabin pair, i.e., they constitute the win set Swin . Finally, the algorithm
outputs the winning region by computing states that almost-surely reach Swin using Alg. 1.

▶ Theorem 37. Alg. 2 yields winning regions for local MEMDPs and localized Rabin objectives.

The remainder of this subsection discusses the ingredients for proving Lem. 36 and the
theorem above. Therefore, we consider the induced Markov chain C of environment j under
any strategy, i.e., C =M{J}[σ]j . In any state that is in a BSCC of C, we notice that the
reachable states in any environment are contained by the BSCC and the frontier states.
Furthermore, we observe that in any environment, either the BSCCs in those states are
the original BSCC or are (trivial) BSCCs in the frontier. Formal statements are given in
App. E. The next lemma shows that states that are (under a winning strategy and in some
environment) in a BSCC are immediately winning with some Rabin pair. The main challenge
is that this BSCC may not be a BSCC in every environment. Using the observations above,
if the states do not constitute a BSCC, they will almost surely reach (winning) frontier states,
which allows us to derive the following formal statement:

▶ Lemma 38. Given a J-local MEMDP M{J} and a winning strategy σ. Every state that
is in a BSCC SBj of M{J}[σ]j of some environment j ∈ J , is in WΦLoc .

With this statement, we can now prove Lem. 36 as under any winning strategy, we almost-
surely end up in BSCCs. We return to the proof of the main theorem about the correctness
of Alg. 2. First, we observe that we correctly identify the immediately winning states.

▶ Lemma 39. Alg. 2 computes the set of states that are immediately winning, WΦLoc .

Lems. 36 and 39 together prove Thm. 37. Finally, we remark:

▶ Lemma 40. Alg. 2 is a polynomial time algorithm.

6.4 Recursive Computation of Winning Regions
We now detail how to combine the local computations of winning regions towards a global
winning region. Furthermore, we show that to obtain the winning region at the root (i.e.,
I-local), we can forget about the winning regions below and, consequently, present a recursive
approach (akin to [40]) to decide almost-sure Rabin objectives for MEMDPs in PSPACE.

▶ Theorem 41. Winning almost-sure Rabin objectives in MEMDPs is decidable in PSPACE.

CONCUR 2024

40:14 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

Algorithm 3 Generic recursive algorithm for MEMDPs.
1: function Check(MEMDP M = ⟨S, A, ι, {pi}i∈I⟩, Φ)
2: L ←M{I}
3: RF ← Reachable(SL) ∩ F L ▷ Compute the reachable frontier states
4: WF← {⟨s, a, s′⟩ ∈ RF | ⟨s′, J ′⟩ = BU(⟨s, J⟩, a, s′) ∧Check(Ms′

↓J ′ , Φ)}
5: return ι ∈ Rabin(L, WF, Φ) ▷ Compute winning set with winning frontier

In the remainder, we show this by providing a recursive algorithm and proving its correctness.
An important construction is to project the winning region into a particular set of beliefs.

▶ Definition 42 (Belief-restricted winning regions). For a Rabin objective Φ, we define the
following restrictions of the winning region: (1) WinM(Φ)J := WinM(Φ) ∩ (S × {J}),
(2) WinM(Φ)⊂J :=

⋃
J′⊂J WinM(Φ)J′ , and (3) WinM(Φ)⊆J := WinM(Φ)⊂J ∪WinM(Φ)J .

We now define the localized Rabin objective where we determine the winning frontiers based
on the actual winning states in a BOMDP. We use the following auxiliary notation: We
define the reachable frontier RF := Reachable(S) ∩ F . Then, we can determine where a
local transition s

a−→ s′ leads in the global system, ToGlobJ (⟨s, a, s′⟩) := BU(⟨s, J⟩, a, s′) and
finally consider WinLocalJ(F, B) := {f ∈ F | ToGlobJ(f) ∈ B}.

▶ Definition 43 (Correct localized Rabin objective). For belief J , the correct localized Rabin
objective is ΦCLoc(J) := ΦLoc(WinLocalJ(RF , WinM(Φ)⊂J)).

The notion of correctness in the definition above is justified by the following theorem, which
says that computing the correct localized Rabin objective provides the belief-restricted
winning region. That is, the winning region of the J-local MEMDP M{J} with its correct
localized Rabin objective is equal to the global winning region restricted to J .

▶ Theorem 44. For Rabin objective Φ: (WinM{J}(ΦCLoc(J)) ∩ S)× {J} = WinM(Φ)J .

The theorem immediately leads to the following characterization of the winning region.

▶ Corollary 45. For Rabin objective Φ: WinM(Φ) =
⋃

J(WinM{J}(ΦCLoc(J)) ∩ S)× {J}.

Cor. 45 suggests computing the winning region from local MEMDPs. The computation can
go bottom-up, as the winning region of a MEMDP restricted to a belief J only depends on
the J-local MEMDP M{J} and the winning regions of beliefs J ′ ⊂ J . These observations
lead us to Alg. 3. We construct the J-local MEMDP, recursively determine the winning
status of all its frontier states, and then compute the local winning region of M{J}.

▶ Theorem 46. In Alg. 3 with Rabin objective Φ: Check(M, Φ) iff ι ∈WinM(Φ).

▶ Lemma 47. Alg. 3 runs in polynomial space.

This lemma follows from observing that a local MEMDP and thus its frontier is polynomial
and that the recursion depth is limited by |I|. Thm. 46 and Lem. 47 together prove the main
theorem Thm. 41: The decision problem of almost-sure Rabin objectives in MEMDPs is in
PSPACE. Thus, almost-sure safety, Büchi, co-Büchi, and parity are in PSPACE too [13].

▶ Theorem 48. The time complexity of Alg. 3 is in O((|S|2 · |A|)|I| · poly(|M|, |Φ|)).

M. Suilen, M. van der Vegt, and S. Junges 40:15

The bound in Thm. 48 is conservative2, and it shows that deciding almost-sure Rabin
objectives for 2-MEMDPs is in P. Almost-sure parity objectives for 2-MEMDPs were already
known to be in P [36]. Indeed, it establishes the complexity for any fixed number of constants3.

▶ Corollary 49. For constant k, deciding almost-sure Rabin for k-MEMDPs is in P.

7 Conclusion

We have presented a PSPACE algorithm for almost-sure Rabin objectives in MEMDPs. This
result establishes PSPACE-completeness for many other almost-sure objectives, including
parity, and completes the complexity landscape for MEMDPs. We additionally showed that
all objectives under the possible semantics we consider in MEMDPs belong to the same
complexity classes as MDPs. Interesting directions for future work are to investigate whether
the constructions used in this paper can also be of benefit for quantitative objectives in
MEMDPs or more expressive subclasses of POMDPs, for example, a form of MEMDPs where
the environments may change over time.

References
1 Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum,

and Ufuk Topcu. Safe reinforcement learning via shielding. In AAAI, pages 2669–2678. AAAI
Press, 2018.

2 Roman Andriushchenko, Milan Ceska, Sebastian Junges, Joost-Pieter Katoen, and Simon
Stupinský. PAYNT: A tool for inductive synthesis of probabilistic programs. In CAV (1),
volume 12759 of LNCS, pages 856–869. Springer, 2021.

3 Sebastian Arming, Ezio Bartocci, Krishnendu Chatterjee, Joost-Pieter Katoen, and Ana
Sokolova. Parameter-independent strategies for pMDPs via POMDPs. In QEST, volume
11024 of LNCS, pages 53–70. Springer, 2018.

4 Christel Baier, Nathalie Bertrand, and Marcus Größer. On decision problems for probabilistic
Büchi automata. In FoSSaCS, volume 4962 of LNCS, pages 287–301. Springer, 2008.

5 Christel Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω-automata. J. ACM,
59(1):1:1–1:52, 2012.

6 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
7 Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Concurrent parameterized games.

In FSTTCS, volume 150 of LIPIcs, pages 31:1–31:15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019.

8 Dietmar Berwanger and Laurent Doyen. On the power of imperfect information. In FSTTCS,
volume 2 of LIPIcs, pages 73–82. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2008.

9 Iadine Chades, Josie Carwardine, Tara G. Martin, Samuel Nicol, Régis Sabbadin, and Olivier
Buffet. MoMDPs: A solution for modelling adaptive management problems. In AAAI. AAAI
Press, 2012.

10 Krishnendu Chatterjee, Martin Chmelík, Raghav Gupta, and Ayush Kanodia. Optimal cost
almost-sure reachability in POMDPs. Artif. Intell., 234:26–48, 2016.

11 Krishnendu Chatterjee, Martin Chmelík, Deep Karkhanis, Petr Novotný, and Amélie Royer.
Multiple-environment Markov decision processes: Efficient analysis and applications. In
ICAPS, pages 48–56. AAAI Press, 2020.

2 A more precise bound can likely be obtained from the number of revealing transitions in the MEMDP.
3 That is, the decidability problem is in XP with parameter number of environments k.

CONCUR 2024

40:16 A PSPACE Algorithm for Almost-Sure Rabin Objectives in MEMDPs

12 Krishnendu Chatterjee, Martin Chmelík, and Mathieu Tracol. What is decidable about
partially observable Markov decision processes with ω-regular objectives. J. Comput. Syst.
Sci., 82(5):878–911, 2016.

13 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. The complexity of
stochastic Rabin and Streett games’. In ICALP, volume 3580 of LNCS, pages 878–890.
Springer, 2005.

14 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Qualitative analysis
of partially-observable Markov decision processes. In MFCS, volume 6281 of LNCS, pages
258–269. Springer, 2010.

15 Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantitative stochastic
parity games. In SODA, pages 121–130. SIAM, 2004.

16 Krishnendu Chatterjee and Mathieu Tracol. Decidable problems for probabilistic automata on
infinite words. In LICS, pages 185–194. IEEE Computer Society, 2012.

17 Min Chen, Emilio Frazzoli, David Hsu, and Wee Sun Lee. POMDP-lite for robust robot
planning under uncertainty. In ICRA, pages 5427–5433. IEEE, 2016.

18 Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, and Ufuk Topcu. Con-
vex optimization for parameter synthesis in MDPs. IEEE Trans. Autom. Control., 67(12):6333–
6348, 2022.

19 Luca de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,
USA, 1997.

20 Nathanaël Fijalkow. What is known about the value 1 problem for probabilistic automata?
CoRR, abs/1410.3770, 2014.

21 Nathanaël Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud
Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey,
Benjamin Monmege, Petr Novotný, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier
Serre, and Mateusz Skomra. Games on graphs. CoRR, abs/2305.10546, 2023.

22 Nathanaël Fijalkow, Hugo Gimbert, Edon Kelmendi, and Youssouf Oualhadj. Deciding the
value 1 problem for probabilistic leaktight automata. Log. Methods Comput. Sci., 11(2), 2015.

23 Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Deciding the value 1 problem for
probabilistic leaktight automata. In LICS, pages 295–304. IEEE Computer Society, 2012.

24 Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Automated
verification techniques for probabilistic systems. In SFM, volume 6659 of LNCS, pages 53–113.
Springer, 2011.

25 Javier García and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res., 16:1437–1480, 2015.

26 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable and
undecidable problems. In ICALP (2), volume 6199 of LNCS, pages 527–538. Springer, 2010.

27 Garud N. Iyengar. Robust dynamic programming. Math. Oper. Res., 30(2):257–280, 2005.
28 Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen. Parameter synthesis in Markov

models: A gentle survey. In Principles of Systems Design, volume 13660 of LNCS, pages
407–437. Springer, 2022.

29 Sebastian Junges, Nils Jansen, and Sanjit A. Seshia. Enforcing almost-sure reachability in
POMDPs. In CAV (2), volume 12760 of LNCS, pages 602–625. Springer, 2021.

30 Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

31 Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R. Cassandra. Solving
POMDPs by searching the space of finite policies. In UAI, pages 417–426. Morgan Kaufmann,
1999.

32 Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with
uncertain transition matrices. Oper. Res., 53(5):780–798, 2005.

33 Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision processes.
Math. Oper. Res., 12(3):441–450, 1987.

M. Suilen, M. van der Vegt, and S. Junges 40:17

34 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994.

35 Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger.
Algorithms for omega-regular games with imperfect information. Log. Methods Comput. Sci.,
3(3), 2007.

36 Jean-François Raskin and Ocan Sankur. Multiple-environment Markov decision processes.
In FSTTCS, volume 29 of LIPIcs, pages 531–543. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2014.

37 Marc Rigter, Bruno Lacerda, and Nick Hawes. Minimax regret optimisation for robust planning
in uncertain Markov decision processes. In AAAI, pages 11930–11938. AAAI Press, 2021.

38 Marnix Suilen, Marck van der Vegt, and Sebastian Junges. A PSPACE algorithm for almost-
sure Rabin objectives in multi-environment MDPs, 2024. arXiv:2407.07006.

39 Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998.

40 Marck van der Vegt, Nils Jansen, and Sebastian Junges. Robust almost-sure reachability in
multi-environment MDPs. In TACAS (1), volume 13993 of LNCS, pages 508–526. Springer,
2023.

41 Tobias Winkler, Sebastian Junges, Guillermo A. Pérez, and Joost-Pieter Katoen. On the
complexity of reachability in parametric Markov decision processes. In CONCUR, volume 140
of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

CONCUR 2024

https://arxiv.org/abs/2407.07006

	p000-Frontmatter
	Preface
	Committees

	p001-Gurfinkel
	p002-Raad
	p003-Wies
	p004-Aceto
	1 Introduction
	2 The Model and the Logic
	2.1 The Logic Hyper-recHML
	2.2 On the Expressiveness of Hyper-recHML

	3 Centralized Monitoring
	4 Decentralized Monitoring
	4.1 Synthesizing Decentralized Monitors Correctly
	4.2 From Formulas to Decentralized Monitors
	4.3 On the Decentralized-Monitor Synthesis for Diamonds

	5 Conclusion

	p005-Akshay
	1 Introduction
	2 Preliminaries
	3 Liveness for GTA
	4 Translating MITL to GTA
	5 Conclusion

	p006-Akshay
	1 Introduction
	2 Preliminaries
	3 Factored MDPs and Causal Determinacy
	3.1 Local Reachability
	3.2 Causal Determinacy and Complete Strategies

	4 An Event Structure Semantics for FMDPs
	4.1 Mazurkiewicz Trace Languages
	4.2 The Mazurkiewicz Trace Language of an FMDP
	4.3 The Event Structure Representation of FMDPs

	5 The Key Result for CMDPs
	5.1 Relating the Probability of e to the Probability of FPathReach
	5.2 All Complete Strategies Achieve the Same Value

	6 Implementation and Experimental Evaluation
	6.1 Algorithm Description
	6.2 Setup and Results

	7 Conclusion
	A Algorithm Description
	B Proof of Lemma 10

	p007-Aranda
	1 Introduction
	2 The Model
	2.1 Opinion Transition Systems
	2.2 Runs and Consensus

	3 Strong Connectivity, Puppet-Freedom and Fairness
	3.1 Strong Connectivity
	3.2 Puppet-Freedom
	3.3 Strong Fairness
	3.4 Bounded Fairness

	4 A New Notion of Bounded Fairness
	4.1 Consensus Theorem

	5 Dynamic Influence
	6 Conclusions and Related Work

	p008-Avni
	1 Introduction
	2 Bidding Games with Charging
	3 Reachability Bidding Games with Charging
	3.1 Bounded-Horizon Reachability and Safety
	3.2 Existence of Thresholds (for Reachability and Safety Objectives)
	3.3 Complexity Bounds (for Reachability and Safety Objectives)

	4 Büchi Bidding Games with Charging
	4.1 Frugal-Reachability Objectives
	4.2 Bounded-Visit Büchi and Co-Büchi
	4.3 Existence of Thresholds (for Büchi and Co-Büchi Objectives)
	4.4 Complexity Bounds (for Büchi and Co-Büchi Objectives)

	5 Lower Complexity Bounds
	6 Repairing Bidding Games
	7 Conclusion and Future Work

	p009-Baier
	1 Introduction
	2 Preliminaries
	3 Mean absolute deviation-penalized expectation
	3.1 Randomization and optimality of ERMin-schedulers
	3.2 Sufficiently small parameters lambda
	3.3 Computing the maximal MADPE
	3.4 Computational hardness of the MADPE

	4 Semi-deviation measure-penalized expectation
	5 Threshold-based penalty
	6 Prototypical implementation and first experiments
	7 Conclusion
	A Experimental evaluation

	p010-Balachander
	1 Introduction
	2 Preliminaries
	3 Warm Up: Passive Learning of DFA
	4 Learning Register Automata from Positive and Negative Samples
	5 Identification in the Limit of the Class of Regular Data Languages
	6 Future work
	A Completability of DFA
	B Completability for DRA

	p011-Baldan
	1 Introduction
	2 M-adhesive categories and rewriting systems
	2.1 M-adhesivity
	2.2 DPO rewriting systems derivations

	3 Independence in rewriting
	3.1 Sequentially independent and switchable derivations
	3.2 Church-Rosser: Sequential independence and switchability
	3.3 Well-switching rewriting systems
	3.4 A canonical form for switch equivalences

	4 Conclusions and further work
	A Properties of M-adhesive categories
	A.1 Some results on A-stable and A-Van Kampen squares
	A.2 Useful properties of M-adhesive categories

	B M-adhesivity is not enough

	p012-Boker
	1 Introduction
	2 Preliminaries
	2.1 Labelled transition systems
	2.2 Automata

	3 History-determinism, simulation and related games
	4 Criteria for when History-Determinism = Guidability
	4.1 Closure under (history-)determinism
	4.2 Via token games
	4.3 Via Adam's strategy in the letter game

	5 Automata Classes for which History-Determinism = Guidability
	5.1 Straightforward cases
	5.2 Uniform infinite state systems
	5.3 Visibly pushdown and timed automata
	5.4 Linear automata

	6 Automata Classes for which History-Determinism ! = Guidability
	7 Conclusions

	p013-Bose
	1 Introduction
	2 Preliminaries
	3 Lower bounds
	4 Open objectives
	5 Prefix-independent Pi_2 objectives
	6 A non-prefix-independent Pi_2 objective
	7 Conclusion

	p014-Bruyere
	1 Introduction
	2 Background
	3 Studied Problems
	4 Pareto-Optimality
	4.1 Existence of Lassos
	4.2 Particular Zero-sum Games
	4.3 Pareto-Optimality Check
	4.4 Upper Bounds

	5 Nash Equilibria
	6 Conclusion
	A Example of a Nondeterministic Mealy Machine and Product Game

	p015-Castiglioni
	1 Introduction
	2 The Evolution Sequence Model
	3 Robustness Temporal Logic
	3.1 Distance Expressions
	3.2 Perturbations
	3.3 RobTL Formulae

	4 RobTL model checker
	4.1 Complexity
	4.2 Statistical error

	5 Concluding remarks
	A The Wasserstein hemimetric
	B The algorithms

	p016-Ceragioli
	1 Introduction
	2 Background
	2.1 Probability Distributions
	2.2 Quantum Computing
	2.3 Quantum Effects

	3 Effect-Based Models
	3.1 Effect Distribution
	3.2 Effect Transition Systems and their Bisimilarity

	4 Modelling a Minimal Process Algebra with eLTSs
	5 Related Works
	6 Conclusions and future works
	A Proofs of Section 3
	B Proofs of Section 4

	p017-Chistikov
	1 Introduction
	2 Related Work
	3 OCA with Equality and Disequality Tests
	4 Getting Familiar with Disequality Tests
	5 Pessimistic Reachability
	6 Reachability in Strongly Connected OCA
	6.1 Ruling Out the Unbounded Case
	6.2 Inductive Invariants in the Bounded Case
	6.3 The Complexity of Reachability in Strongly Connected OCA

	7 Combining Strongly Connected Components
	7.1 Locally Bounded Configurations and Runs
	7.2 Leaky Invariants
	7.3 Perfect Cores
	7.4 Non-reachability Witnesses and Their Complexity
	7.5 Adding Equality Tests

	8 Conclusions
	A Proof of Lemma 4.3
	B Finding Positive-Effect Simple Cycles is NP-hard
	C Discussion of the Choice of Operators

	p018-Clemente
	1 Introduction
	1.1 Motivation and context
	1.2 Contributions
	1.3 Related works

	2 Weighted extension of basic parallel processes
	2.1 Basic parallel processes
	2.2 Weighted basic parallel processes
	2.3 Basic properties
	2.4 Differential algebra of shuffle-finite series
	2.5 Equivalence and zeroness problems

	3 Constructible differentially finite power series
	3.1 Multivariate CDF power series
	3.2 Support restrictions
	3.3 CDF = Commutative WBPP series
	3.4 Zeroness of CDF power series

	4 Constructible species of structures
	5 Conclusions

	p019-Czerner
	1 Introduction
	2 Preliminaries and regular transition systems
	3 Regular abstraction frameworks
	3.1 The abstract safety problem
	3.2 AbstractSafety is in EXPSPACE

	4 AbstractSafety is EXPSPACE-hard
	5 Learning regular sets of inductive constraints
	5.1 The learning algorithm
	5.2 The separability problem
	5.3 Some experimental results

	6 Conclusions

	p020-DAngelo
	1 Introduction
	2 Preliminaries
	3 Motivation from Transportation Theory
	4 Setting Up a Fibred Adjunction
	5 The Coalgebraic Kantorovich Lifting
	5.1 Definition of the Coalgebraic Kantorovich Lifting
	5.2 Compositionality of the Kantorovich Lifting
	5.3 Finite Coproduct Polynomial Functors

	6 Application: Up-To Techniques
	6.1 Introduction to Up-To Techniques
	6.2 Lifting Distributive Laws

	7 Case Study: Transition Systems with Exceptions
	8 Conclusion

	p021-Dartois
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Composition of gp2RT
	5 gpDT to gp2RT
	6 From gpSST to gp2RT
	7 From gp2DT to gpSST
	8 Continuity and topological closure of a gp2DT
	9 Conclusion
	A Appendix for Section 5
	B Appendix for Section 6
	C Appendix for Section 7

	p022-Delpy
	1 Introduction
	2 Message-passing systems and synchronizability
	3 Reachability for mb-synchronizable systems
	4 Model-checking regular properties
	5 Checking mb-synchronizability
	5.1 Automata for atomic *exchanges
	5.2 Verifying mb-synchronizability

	6 Conclusion

	p023-Doyen
	1 Introduction
	2 Definitions
	2.1 Basic notions
	2.2 Games with imperfect information
	2.3 Strategies and outcome

	3 Almost-Sure Reachability
	3.1 Regular games with imperfect information
	3.2 Algorithm

	4 Reductions
	4.1 Alternating probabilistic trace equivalence
	4.2 Bijection and bisimulation
	4.3 Counterexamples

	A Proof of Lemma 4
	B Proof of Lemma 5

	p024-Esparza
	1 Introduction
	2 The contextual µ-calculus
	3 Validity of contextual propositional formulas
	3.1 Canonical instantiations
	3.2 A polynomial reduction

	4 Validity of contextual µ-calculus formulas
	4.1 Variable and propositional substitutions
	4.2 Canonical instantiation
	4.3 A polynomial reduction
	4.4 Validity of contextual CTL formulas
	4.5 Validity of contextual LTL formulas

	5 Experiments
	6 Conclusions

	p025-Goncharov
	1 Introduction
	2 Notations and Conventions
	3 Idempotent Grove and Kleene-Kozen Categories
	4 Decisions and Tests in Category
	5 Kleene Iteration, Categorically
	6 Elgot Iteration and While-Loops
	7 Free KiCTs and Completeness
	7.1 Interpretations
	7.2 A KiCT of Coalgebraic Resumptions
	7.3 Rational Trees

	8 Conclusions and Further Work
	A Selected Proof Details

	p026-Guillou
	1 Introduction
	2 Preliminaries
	2.1 Networks of processes
	2.2 Verification problem

	3 Phase-Bounded Protocols
	4 Undecidability Results
	4.1 Propagating a message using only broadcasts in a line
	4.2 Putting everything together

	5 Cover in 1-Phase-Bounded Protocols
	6 Decidability Results for 2-Phase-Bounded Protocols
	6.1 Cover and Cover[Trees] are Decidable on 2-PB Protocols
	6.2 Polynomial Time Algorithm for Cover[Lines] on 2-PB Protocols

	p027-Guilmant
	1 Introduction
	2 Weighted Timed Games
	3 Inapproximability
	3.1 Probabilistic Finite Automata
	3.2 Reduction Overview
	3.3 Modules and Widgets
	3.4 The Reduction

	4 Conclusion

	p028-Hausmann
	1 Intro
	2 Preliminaries
	3 Determinacy of Obliging Games
	4 Reducing omega-Regular Obliging Games to Finite Games
	4.1 Certificates from Witnesses
	4.2 Certificate Games and Smaller Winning Strategies

	5 Solving Certificate Games Efficiently
	5.1 Lazy parity transform
	5.2 Solving parity games using DAG attraction
	5.3 Checking certificate existence efficiently
	5.4 Faster solution of obliging games

	6 Conclusion

	p029-Henzinger
	1 Introduction
	2 Definitional Framework
	3 Strategic Dominance and Other Resolver-Based Relations
	3.1 Implications Between Resolver Relations
	3.2 Separating Examples for Resolver Relations

	4 Resolver Logic
	5 Applications of Resolver Logic
	5.1 Checking Strategic Dominance and Other Resolver-Based Relations
	5.2 Checking the Bottom Value of Automata
	5.3 Checking History-Determinism of Automata
	5.4 Checking Hyperproperty Inclusion

	6 Conclusion
	A Appendix

	p030-Jaramillo
	1 Introduction
	2 Background
	3 A Denotational Characterization of Laurent's Translation
	4 An Operational Characterization of Laurent's Translation
	5 Concluding Remarks

	p031-Kaminski
	1 Introduction
	2 Preliminaries: orbit-finite sets and vectors
	3 Data vector addition systems with states
	4 Toolset
	5 Sufficient condition for DVASS bi-reachability
	6 Reduction algorithm
	6.1 Violation of Phi_1
	6.2 Violation of Phi_2

	7 Final remarks
	A Proofs for Section 3 (Data vector addition systems with states)
	B Proofs for Section 4 (Toolset)

	p032-Kiefer
	1 Introduction
	2 Preliminaries
	3 Probabilistic Noninterference
	4 Memoryless Strategies: Distance Minimisation
	5 General Strategies: Distance Minimisation
	6 General Strategies: Distance Less Than One
	6.1 Membership in EXPTIME
	6.2 EXPTIME-Hardness

	7 Conclusion

	p033-Koutsouridis
	1 Introduction
	2 Kleene Algebra with Tests
	2.1 Syntax and Interpretation
	2.2 Interpretation Equivalence
	2.3 Memory Models as KAT Constraints

	3 KATI: Kleene Algebra with Tests and Intersections
	3.1 Language Interpretation
	3.2 Converting KATI Expressions to Automata
	3.3 Saturating NFAs with Brackets

	4 Memory Models as KATI Constraints
	5 KATI: Adding a ``Top'' Element
	6 Consistency Checking
	6.1 Consistency Checking with Kater
	6.2 Consistency Checking in KATI

	7 Related Work and Conclusion
	8 Conclusion

	p034-Perez
	1 Introduction
	2 Preliminaries
	2.1 Pushdown automata and Context-free grammars
	2.2 Continuous pushdown VASS
	2.3 Decision problems

	3 Counter properties of C1PVASS
	3.1 0-reachability and 0-coverability
	3.2 Boundedness for C1PVASS
	3.3 k-reachability and k-coverability for k > 0

	4 Counter properties of lb-C1PVASS
	4.1 k-coverability for lb-C1PVASS
	4.2 k-reachability for lb-C1PVASS
	4.2.1 The Dense Normal Form (DNF)
	4.2.2 Constructing the PDA P
	4.2.3 The Presburger formula

	4.3 Boundedness for lb-C1PVASS
	4.4 Hardness of k-reachability, k-coverability and boundedness

	5 Conclusion
	A Appendix
	A.1 Proof of Lemma 26

	p035-Prucker
	1 Introduction
	2 Preliminaries
	3 A Nominal View on Data Tree Languages
	4 Regular Nominal Tree Automata
	5 Name Dropping
	6 Inclusion Checking
	7 Conclusions

	p036-Reghem
	1 Introduction
	2 Branching Reactive Bisimilarity
	2.1 Rooted Version
	2.2 Alternative Forms of Definition 1

	3 Modal Characterisation
	4 Process Algebra and Congruence
	4.1 Time-out Bisimulation
	4.2 Congruence

	5 Axiomatisation
	5.1 Recursive Principles
	5.2 Axioms and Soundness
	5.3 Completeness
	5.4 Canonical Representative

	A Examples
	B Concrete Time-out Version
	C Generalised branching reactive bisimulation
	D Pohlmann Encoding

	p037-Spork
	1 Introduction
	2 Preliminaries
	3 Epsilon-Bisimulation, Epsilon-APB and Up-To-(n, Epsilon)-Bisimulation
	3.1 Definitions and Interrelation
	3.2 Preservation of Logical Properties

	4 Epsilon-Perturbed Bisimulation
	5 Branching and Weak Epsilon-Bisimulation
	6 Conclusion and Future Work

	p038-Spronck
	1 Introduction
	2 Preliminaries
	2.1 Labelled Transition Systems
	2.2 Modal mu-Calculus

	3 Motivation
	4 Completeness Criteria
	4.1 Progress with Blocking Actions
	4.2 Justness
	4.3 Fairness

	5 A Generalisation of the Property Specification Liveness Patterns
	6 Template Formulae
	6.1 Progress
	6.2 Weak Fairness, Weak Hyperfairness and Justness
	6.3 Strong Fairness and Strong Hyperfairness

	7 Application Example
	8 Discussion
	9 Conclusion
	A Proof Sketch

	p039-Stoltenow
	1 Introduction
	2 Preliminaries
	2.1 Coinductive Techniques
	2.2 Categories
	2.3 Generalized Nested Conditions
	2.4 Representative Squares and the Shift Operation
	2.5 Further Concepts

	3 Satisfiability Checking in the Restricted Case
	3.1 Tableau Calculus
	3.2 Up-To Techniques, Fair Branches and Models
	3.3 Soundness and Completeness
	3.4 Model Finding

	4 Witnesses for infinite models
	5 Satisfiability in the General Case
	6 Conclusion
	A Additional Material for §2 (Preliminaries)
	B Additional Material for §4 (Witnesses for infinite models)

	p040-Suilen
	1 Introduction
	2 Background and Notation
	2.1 Markov Decision Processes
	2.2 Strategies and Objectives

	3 Multi-Environment MDPs and the Problem Statement
	4 Belief-Based Strategies are Sufficient
	4.1 Beliefs in MEMDPs
	4.2 Constructing Winning Belief-Based Strategies

	5 Explicitly Adding Belief to MEMDPs
	5.1 Belief-Observation MDPs
	5.2 An Algorithm for Reachability in BOMDPs
	5.3 Safe Büchi in BOMDPs

	6 A Recursive PSPACE Algorithm for Rabin Objectives
	6.1 Non-Local Behavior of Rabin Objectives
	6.2 Local View on BOMDPs
	6.3 An Algorithm for Localized Rabin Objectives
	6.4 Recursive Computation of Winning Regions

	7 Conclusion

