
b-move: Faster Bidirectional Character Extensions
in a Run-Length Compressed Index
Lore Depuydt #

Ghent University – imec, Belgium

Luca Renders #

Ghent University – imec, Belgium

Simon Van de Vyver #

Ghent University, Belgium

Lennart Veys #

Ghent University, Belgium

Travis Gagie #

Dalhousie University, Halifax, Canada

Jan Fostier #

Ghent University – imec, Belgium

Abstract
Due to the increasing availability of high-quality genome sequences, pan-genomes are gradually
replacing single consensus reference genomes in many bioinformatics pipelines to better capture
genetic diversity. Traditional bioinformatics tools using the FM-index face memory limitations
with such large genome collections. Recent advancements in run-length compressed indices like
Gagie et al.’s r-index and Nishimoto and Tabei’s move structure, alleviate memory constraints but
focus primarily on backward search for MEM-finding. Arakawa et al.’s br-index initiates complete
approximate pattern matching using bidirectional search in run-length compressed space, but with
significant computational overhead due to complex memory access patterns. We introduce b-move,
a novel bidirectional extension of the move structure, enabling fast, cache-efficient bidirectional
character extensions in run-length compressed space. It achieves bidirectional character extensions
up to 8 times faster than the br-index, closing the performance gap with FM-index-based alternatives,
while maintaining the br-index’s favorable memory characteristics. For example, all available complete
E. coli genomes on NCBI’s RefSeq collection can be compiled into a b-move index that fits into the
RAM of a typical laptop. Thus, b-move proves practical and scalable for pan-genome indexing and
querying. We provide a C++ implementation of b-move, supporting efficient lossless approximate
pattern matching including locate functionality, available at https://github.com/biointec/b-move
under the AGPL-3.0 license.

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases Pan-genomics, FM-index, r-index, Move Structure, Bidirectional Search,
Approximate Pattern Matching, Lossless Alignment, Cache Efficiency

Digital Object Identifier 10.4230/LIPIcs.WABI.2024.10

Related Version Preprint: https://doi.org/10.1101/2024.05.30.596587

Supplementary Material Software: https://github.com/biointec/b-move
archived at swh:1:dir:9c806d58cc6d420ca3ffcae7a4ff6010f9b5d62e

Funding Lore Depuydt: PhD Fellowship FR (1117322N), Research Foundation – Flanders (FWO).
Luca Renders: PhD Fellowship SB (1SE7822N), Research Foundation – Flanders (FWO).
Travis Gagie: NSERC Discovery Grant RGPIN-07185-2020 to Travis Gagie and NIH grant
R01HG011392 to Ben Langmead.

Acknowledgements The authors thank Ben Langmead, Nathaniel Brown, and Mohsen Zakeri for
their helpful feedback and suggestions.

© Lore Depuydt, Luca Renders, Simon Van de Vyver, Lennart Veys, Travis Gagie, and Jan Fostier;
licensed under Creative Commons License CC-BY 4.0

24th International Workshop on Algorithms in Bioinformatics (WABI 2024).
Editors: Solon P. Pissis and Wing-Kin Sung; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Lore.Depuydt@UGent.be
https://orcid.org/0000-0001-8517-0479
mailto:Luca.Renders@UGent.be
https://orcid.org/0000-0002-2244-1427
mailto:simon.vandevyver@ugent.be
https://orcid.org/0009-0009-7810-2174
mailto:lennart.veys@ugent.be
mailto:travis.gagie@dal.ca
https://orcid.org/0000-0003-3689-327X
mailto:Jan.Fostier@UGent.be
https://orcid.org/0000-0002-9994-8269
https://github.com/biointec/b-move
https://doi.org/10.4230/LIPIcs.WABI.2024.10
https://doi.org/10.1101/2024.05.30.596587
https://github.com/biointec/b-move
https://archive.softwareheritage.org/swh:1:dir:9c806d58cc6d420ca3ffcae7a4ff6010f9b5d62e;origin=https://github.com/biointec/b-move;visit=swh:1:snp:d620d33409f31840b7082cd6f04bcf870812b567;anchor=swh:1:rev:b18b414549d9b48516f6ca6357d9861daa617226
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

1 Introduction

Since the advent of long-read sequencing platforms, the availability of high-quality genome
sequences has increased dramatically. To exploit this data, it is becoming increasingly
common to compile individuals from the same species or several related species into a single
index, forming what is known as a pan-genome [11]. This approach aims to better capture
genetic diversity and mitigate biased results stemming from the choice of reference.

Many widely used bioinformatics tools, such as BWA [20] and Bowtie 2 [19], rely on the
FM-index [13]. The FM-index, based on the Burrows-Wheeler transform (BWT) [8] and
suffix array (SA) [22], efficiently counts and locates exact occurrences of a search pattern
in the reference. While it is compact and fast for relatively small references (e.g., a single
human reference genome or a few dozen bacterial species), its memory use scales linearly with
the total genome content. This limitation calls for new index types capable of storing and
analyzing large genome collections within the memory constraints of modern workstations
and laptops.

The BWT’s inherent compressibility (see e.g., bzip2 [28]), particularly for highly repetitive
input texts like pan-genomes, has led to a focus on run-length compression. The run-length
FM-index (RLFM-index) [21] efficiently counts occurrences in O(r) space, r being the
number of character runs in the BWT, but requires O(n) additional space for locating
functionality. Recently, Gagie et al. [14, 15] introduced the r-index, which also supports
locating functionality in O(r) space. Its reduced memory requirements have made the
r-index the foundation for several tools, including MONI [27], PHONI [6], SPUMONI [1],
and SPUMONI 2 [2]. Nishimoto and Tabei [23] more recently proposed the “move structure”,
a run-length compressed index achieving, unlike the r-index, both O(r) space and O(1)
LF operations. Built upon this, Movi [29] offers efficient pan-genome index building and
querying, matching SPUMONI’s functionality but with significantly faster performance.

Despite these advancements, a notable limitation persists: aforementioned indexes and
tools support only backward stepping through the LF operation, limiting the range of
queries possible. Specifically, tools relying on the r-index or move structure focus almost
exclusively on MEM-finding, using (pseudo-)matching lengths and statistics. In a pan-genome
with thousands of genomes, this approach could yield an overwhelming number of MEMs,
making downstream full read alignment based on seed-and-extend algorithms challenging
and potentially infeasible [4].

Recognizing this limitation, Arakawa et al. [3] introduced the br-index. This extension of
the traditional r-index enables bidirectional match extensions during the search process, i.e.,
both to the left and right, in arbitrary order. While the br-index offers more operational
flexibility, supporting functionalities like approximate pattern matching (APM) based on
the pigeonhole principle or more general search schemes [17], it also inherits the high
computational overhead of the r-index. This overhead stems from the intricate interplay of
rank and select queries on compressed sparse bitvectors and wavelet trees, leading to multiple
cache misses. Despite its favorable O(r) memory complexity, the br-index can be one order
of magnitude slower than the bidirectional FM-index, hindering its adoption in practical
bioinformatics tools.

Contribution. In this paper, we introduce b-move, a bidirectional extension of the move
structure, as a faster alternative to the br-index. This paper is organized as follows. In
Section 2, we recapitulate basic concepts and existing methods that form the foundation of this
paper. In Section 3, we propose our bidirectional move structure, with a detailed description

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:3

of its core bidirectional character extension functionalities. In Section 4, we demonstrate
its efficiency in performing synchronized bidirectional character extensions, achieving a
speedup of 6 to 8 times compared to the br-index and showing performance comparable to
FM-index-based tools. We confirm b-move’s favorable O(r) memory complexity, superior to
the bidirectional FM-index both in theory and in practice.

2 Preliminaries

In this paper, arrays and strings are indexed starting from zero. Consider a search text T with
a length of n = |T | over an alphabet Σ. In the context of pan-genomes, T consists of multiple
concatenated genome sequences. We assume that T ends with the sentinel character $, which
is lexicographically smaller than any other character in Σ. A substring within string T is
represented as an interval [i, j] over T , where 0 ≤ i ≤ j ≤ n − 1. The ith suffix of T , denoted
as Ti, refers to the substring T [i, n − 1].

In this paper, we primarily focus on accelerating bidirectional character extensions,
which are based on the LF operation. These extensions are fundamental to the counting
functionality, which returns the number of occurrences of a specific pattern in the search
text. Consequently, our discussion will be limited to the data structures required for these
character extensions and the computations needed to perform them.

2.1 Counting exact occurrences with the FM-index and r-index
The uncompressed FM-index supports counting functionality in O(n) space and O(m) time,
where m is the length of pattern P [13]. Consider the interval [s, e] in the FM-index
corresponding to all sorted suffixes of T prefixed by pattern P . The interval [s′, e′] for P ’s
extension cP can be found as s′ = C[c]+rankc(BWT, s) and e′ = C[c]+rankc(BWT, e+1)−1.
Here, C[c] denotes the number of characters in T strictly smaller than c, and rankc(BWT, i)
counts the occurrences of character c in the BWT before index i. These operations can
be executed in constant time if the BWT is represented as a collection of |Σ| bitvectors
with constant-time rank support. For readers less familiar with counting functionality using
backward search in the FM-index, a more extensive overview is provided in [12].

To address the FM-index’s space inefficiency, which increases linearly with the size of
the search text, Gagie et al. [14, 15] introduced the r-index. The r-index offers counting
functionality in O(r) space with a time complexity of O(m · log(logw(|Σ| + n/r))), where
w = Ω(log(n)) is the machine word size. Although the counting process in the r-index is
conceptually similar to that in the FM-index, it requires a more complex combination of
operations. Specifically, each character extension involves a combination of access, rank,
select, and conditional operations performed on multiple data structures, which, collectively,
cannot be performed in constant time. For further details, refer to [15]. This complexity
leads to more random access operations and, consequently, cache misses.

2.2 Constant-time LF operations with the move structure
The LF(i) operation maps the character at index i in the BWT or L (the last column of
the lexicographically ordered rotations of T) to its corresponding character in F (the first
column of the lexicographically ordered rotations of T). Nishimoto and Tabei [23] introduced
the move structure as an alternative to the r-index that achieves LF operations in constant
time. Their key insight is that LF mappings within a single run map to consecutive positions

WABI 2024

10:4 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

Algorithm 1 Find LF(i) given tuple (i, j), where j is the run index that contains BWT
index i, using the move structure M .

1 def fastForward(LFpos, currentRun):
2 while M [currentRun].p ≤ LFpos do
3 currentRun ← currentRun + 1
4 return currentRun − 1
5

6 def LF(i, j):
7 offset ← i−M [j].p
8 LFpos ←M [j].π + offset
9 LFrun ← fastForward(LFpos, M [j].ξ)

10 return (LFpos, LFrun)

in F . Instead of mapping a single position in L to F , input intervals in L are mapped to
output intervals in F . For example, in the index illustrated in Table 1, the input interval
[2, 5] from the second BWT run corresponds to the output interval [11, 14] in F .

Conceptually, the move structure is a table with r rows: one for each run in the BWT.
Following the notation from Zakeri et al. [29], each row contains four elements: the character
c of the run, the starting index p of its input interval, the starting index π = LF(p) of its
output interval, and the run index ξ that contains π. The move structure M for the example
of Table 1 is shown in Table 2. Note that ξ is not injective: multiple input runs can have
their π residing in the same output run.

To perform the LF operation on a given BWT index i, we need the run index j that
contains i to access move structure M . Assuming we know both i and j and aim to compute
LF(i), Algorithm 1 outlines the process. We start by determining the offset between i and the
start of its run. With this offset and the start of the output interval for run j, we compute
LF(i). For potential subsequent LF operations, we must also find the run index containing
LF(i) using fast forwarding functionality. Fast forwarding is necessary when run M [j].ξ does
not contain LF(i). For example, to find the run index corresponding to LF(5) = 14, where
i = 5 resides within BWT run j = 1, we observe that run index M [1].ξ = 6 (covering the
interval [11, 11]) does not include BWT index 14. In such cases, we traverse subsequent runs
until the correct run is located using the fastForward function. We ensure that the access
on line 2 is never out-of-bounds by adding an extra row at the bottom of the move structure
M , such that M [r].p = n.

The LF operation, as described in Algorithm 1, is more cache-friendly than the alternative
in the r-index. It involves jumping to row M [M [j].ξ] and possibly accessing subsequent rows.
Fetching these subsequent rows translates to linear memory access (streaming) and can be
efficiently performed in contemporary computer architectures. For true constant-time LF
operations, the number of steps in the fast forwarding function should be limited. While
Nishimoto and Tabei [23] suggested balancing or splitting the input and output intervals to
achieve this, Zakeri et al. [29] found that splitting these intervals did not result in a notable
speedup when implementing Movi. Therefore, we maintain the original runs in this paper.
Technically, this leads to an O(r) worst-case time complexity. In practice, however, this is
the more efficient choice for building and storing the index and does not noticeably impact
search performance.

The move structure principle can also provide for constant-time ϕ and ϕ−1 operations.
However, in this paper, we focus solely on accelerating character extensions.

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:5

Table 1 Search text T = “CTATGTCATATGTTGGTC$” with its suffix array SA, Burrows-
Wheeler transform BWT or L, LF mapping, and suffixes (the first characters of which represent F).
BWT runs are delineated by horizontal lines.

i T SA BWT LF TSA[i]

0 C 18 C 4 $
1 T 7 C 5 ATATGTTGGTC$
2 A 2 T 11 ATGTCATATGTTGGTC$
3 T 9 T 12 ATGTTGGTC$
4 G 17 T 13 C$
5 T 6 T 14 CATATGTTGGTC$
6 C 0 $ 0 CTATGTCATATGTTGGTC$
7 A 14 T 15 GGTC$
8 T 15 G 7 GTC$
9 A 4 T 16 GTCATATGTTGGTC$

10 T 11 T 17 GTTGGTC$
11 G 1 C 6 TATGTCATATGTTGGTC$
12 T 8 A 1 TATGTTGGTC$
13 T 16 G 8 TC$
14 G 5 G 9 TCATATGTTGGTC$
15 G 13 T 18 TGGTC$
16 T 3 A 2 TGTCATATGTTGGTC$
17 C 10 A 3 TGTTGGTC$
18 $ 12 G 10 TTGGTC$

Table 2 Move structure M corresponding to search text T = “CTATGTCATATGTTGGTC$”.

j c p π ξ

0 C 0 4 1
1 T 2 11 6
2 $ 6 0 0
3 T 7 15 9
4 G 8 7 3
5 T 9 16 10
6 C 11 6 2
7 A 12 1 0
8 G 13 8 4
9 T 15 18 11

10 A 16 2 1
11 G 18 10 5

WABI 2024

10:6 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

2.3 Finding approximate occurrences with the bidirectional FM-index
and br-index

The bidirectional FM-index [18] can extend a pattern P to Pc or cP by maintaining
synchronized intervals over SA and SArev. Here, SArev is the suffix array of T rev (the reverse
of T). To enable bidirectional extension, certain components corresponding to the FM-index
of T rev are stored; see [12] for details. Consider intervals [s, e] and [srev, erev] for P in SA and
P rev in SArev. To extend P to cP , we find [s′, e′] for cP in SA as in Section 2.1. Updating
[srev, erev] involves recognizing that [srev′, erev′] ⊆ [srev, erev] due to P revc being prefixed by
P rev. Moreover, all suffixes in SArev prefixed by P reva, a ≺ c, are sorted before those within
the interval [srev′, erev′]. If we compute the cumulative number of occurrences x of aP in T ,
for all characters a ≺ c, using the procedure from Section 2.1, interval [srev′, erev′] in SArev

can be found as srev′ = srev + x and erev′ = srev + x + y − 1, where y = e′ − s′ + 1 is the
count of cP occurrences in T . Extending P to Pc is done symmetrically.

Arakawa et al. [3] introduced the br-index, an extension of the r-index taking up O(r+rrev)
space, rrev being the number of runs in the BWT of T rev. Interval synchronization in the
br-index parallels the method above but uses more intricate combinations of access, rank,
select, and conditional operations on various data structures. Similar to the r-index, this
leads to multiple cache misses and hence, slower performance. Additionally, the problem
exacerbates as the number of occurrences for all a ≺ c must be found, requiring O(|Σ|) rank
operations on BWT or BWTrev.

If locating the occurrences is necessary, a toehold update follows each character extension.
This is also achieved with a combination of core operations like LF. This toehold can then
be used later to find occurrences using ϕ and ϕ−1. For a more detailed overview, refer to [3].

Note that being able to match a pattern P in both directions, starting at any position
within P and switching direction at any time, increases operational flexibility. For example,
approximate matches of a pattern can be sought using the pigeonhole principle or, more
generally, search schemes [17]. The demonstrated efficiency of search schemes, for example in
lossless read-mapper Columba [26, 24, 25], motivates the need for fast bidirectional character
extensions.

3 Bidirectional move structure

While Nishimoto and Tabei’s move structure with constant-time LF support shows promise,
practical implementations remain scarce. Brown et al. [7] analyzed time-space tradeoffs
and proposed a compressed implementation of the move table that efficiently counts exact
occurrences while using less space. Zakeri et al. [29] introduced Movi, a fast and cache-efficient
full-text pan-genome index that supports computing matching statistics and pseudo-matching
lengths, useful for finding maximal exact matches. However, to our knowledge, no practical
bidirectional move structure exists that supports finding approximate occurrences of a
pattern in a search text. In this section, we introduce our bidirectional move structure, which
(cache-)efficiently performs bidirectional character extensions using O(r + rrev) space.

3.1 Backward search
We elaborate on unidirectional search based on the LF functionality discussed in Section 2.2.
As for the LF operation, run indices corresponding to the current SA interval boundaries
are required for character extension. Consider interval [s, e] in SA for pattern P , with Rs

and Re the runs containing s and e. To extend P to cP , the LF functionality cannot be

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:7

Algorithm 2 Let [s, e] be the interval over SA corresponding to P , which we want to extend
to cP . Rs and Re are the runs containing s and e, respectively. Functions walkToNextRun
and walkToPreviousRun return the SA indices sc and ec (along with their run indices Rs,c

and Re,c) which indicate the smallest subinterval within [s, e] containing all occurrences of c

in the BWT.
1
2
3
4
5
6
7
8
9

def walkToNextRun([s, e], Rs, Re, c):
sc ← s

Rs,c ← Rs

while M [Rs,c].c ̸= c and Rs,c ≤ Re do
Rs,c ← Rs,c + 1
sc ←M [Rs,c].p

if Rs,c > Re then
return (−1,−1)

return (sc, Rs,c)

def walkToPreviousRun([s, e], Rs, Re, c):
ec ← e

Re,c ← Re

while M [Re,c].c ̸= c do
Re,c ← Re,c − 1
ec ←M [Re,c + 1].p− 1

return (ec, Re,c)

Algorithm 3 Extend pattern P , represented by [s, e], corresponding to respectively run
index Rs and Re, to cP . The algorithm returns the updated interval [s′, e′], corresponding
to respectively run index R′

s and R′
e, for cP .

1 def addChar([s, e], Rs, Re, c):
2 (sc, Rs,c)← walkToNextRun([s, e], Rs, Re, c)
3 if sc = −1 then
4 return ([−1,−1],−1,−1)
5 (ec, Re,c)← walkToPreviousRun([s, e], Rs, Re, c)
6 (s′, R′

s)← LF(sc, Rs,c)
7 (e′, R′

e)← LF(ec, Re,c)
8 return ([s′, e′], R′

s, R′
e)

applied directly to the interval boundaries, as runs Rs and Re may not match c. Instead, LF
must be performed on subinterval [sc, ec] ⊆ [s, e], which is the smallest interval containing
all occurrences of c in the BWT in [s, e]. We again require run indices Rs,c and Re,c for
sc and ec. To find Rs,c and Re,c using only the move structure, we simply walk down and
up along the rows until finding an instance of c, inspired by Zakeri et al.’s repositioning in
Movi-default [29]. Function walkToNextRun in Algorithm 2 demonstrates this approach. If
no occurrences of c exist within [s, e] (checked on line 7), −1 is returned for both values.

Function walkToPreviousRun in Algorithm 2 is similar to function walkToNextRun, but
the check on line 7 is no longer necessary as the function is always executed in circumstances
where it is known that c occurs in the BWT within [s, e] (usually by running walkToNextRun
first). Also, on line 6 in function walkToPreviousRun, a subsequent row is accessed since
the end indices of the runs are not stored in the move table. Note that this access can never
be out-of-bounds. Function walkToPreviousRun can also be used to update the toehold if
required for locating, details are omitted here.

Algorithm 3 then combines the walking from Algorithm 2 and the LF from Algorithm 1
into the functionality to extend a pattern P to cP . Algorithms 2 and 3 have a worst-case
time complexity of O(r) but are very fast in practice. We also explored constant-time
alternatives for Algorithm 2, such as storing additional bitvectors representing the run heads,
supporting rank and select operations. However, this option performed worse in practice,
both in memory usage and speed, due to complex memory access patterns.

WABI 2024

10:8 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

Table 3 Move structure M rev corresponding to search text T rev = “$CTGGTTGTATACT-
GTATC”.

j c p π ξ

0 C 0 4 1
1 T 1 11 6
2 $ 5 0 0
3 A 6 1 1
4 T 7 15 9
5 G 10 7 4
6 A 11 2 1
7 G 12 8 4
8 A 14 3 1
9 C 15 5 2

10 T 16 18 12
11 C 17 6 3
12 G 18 10 5

3.2 Bidirectional search
Similar to the bidirectional FM-index and r-index, we incorporate an additional component
to represent the reverse search text T rev for bidirectional search with our bidirectional move
structure. Specifically, we store the move table M rev corresponding to T rev. Table 3 shows
M rev corresponding to M in Table 2. For completeness, the FM-index corresponding to T rev

is shown in Table S1.
Using the combination of M and M rev, we can synchronize the intervals corresponding

to a search pattern P over SA and P rev over SArev. Algorithm 4 details how pattern P can
be extended to cP while keeping both intervals up to date. The approach is conceptually
similar to that described in Section 2.3. Extending P to the right, i.e., to Pc, is analogous
and is detailed in supplementary Algorithm S1.

Memoization. For clarity, the algorithms were built step-by-step. Thus, the time complexity
for Algorithms 4 and S1 is O(|Σ| · r) and O(|Σ| · rrev), respectively, as all characters a ≺ c

must be checked (line 8). Alternatively, combining Algorithms 1 to 4 can achieve O(r)
bidirectional character extensions instead of O(|Σ| · r). As |Σ| is small in the context of
this paper, this is mostly a theoretical improvement. To achieve this, consider the calls to
function addChar in the for-loop on line 8 (and on line 2) of Algorithm 4, causing the |Σ|
factor. As Algorithm 3 is called |Σ| times, the following O(r) time functions are also executed
|Σ| times:

i walkToNextRun (Alg. 2)
ii walkToPreviousRun (Alg. 2)
iii LF (Alg. 1), twice

For walkToNextRun (i), the while-loop on line 4 in Algorithm 2 could be merged with
the for-loop on line 8 of Algorithm 4 to continue walking until the first occurrence of each
character a ⪯ c is found. This results in one O(r) walk, keeping each (sa, Rs,a) tuple in
memory. Similarly, walkToPreviousRun (ii) can be reduced to one O(r) walk, keeping each
(ea, Re,a) tuple in memory.

Then, on each (sa, Rs,a) and (ea, Re,a) tuple, LF (iii) is performed, which is O(r) due
to the fastForward procedure. However, fast forwarding is always limited to the output
interval corresponding to the input run/interval. Since the input runs for different characters

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:9

Algorithm 4 Update intervals ([s, e], Rs, Re) and ([srev, erev], Rrev
s , Rrev

e) corresponding
to P , to intervals ([s′, e′], R′

s, R′
e) and ([srev′, erev′], Rrev

s , Rrev
e) that correspond to cP .

1 def addCharToLeft(([s, e], Rs, Re), ([srev, erev], Rrev
s , Rrev

e), c):
2 ([s′, e′], R′

s, R′
e)←M.addChar([s, e], Rs, Re, c)

3 if s′ = −1 then
4 return empty intervals
5 if e′ − s′ = e− s then
6 return ([s′, e′], R′

s, R′
e), ([srev, erev], Rrev

s , Rrev
e)

7 x← 0
8 for a where a ≺ c do
9 ([s′′, e′′], R′′

s , R′′
e)←M.addChar([s, e], Rs, Re, a)

10 if s′′ ̸= −1 then
11 x← x + e′′ − s′′ + 1
12 srev′ ← srev + x

13 erev′ ← srev + x + (e′ − s′)
14 return ([s′, e′], R′

s, R′
e), ([srev′, erev′], Rrev

s , Rrev
e)

Algorithm 5 Update run indices using binary search to find the correct run containing
index i. The algorithm uses the move table M upon which it is called.

1 def updateRunIndices(i, Rs, Re):
2 while Re −Rs > 0 do
3 Rm ← (Rs + Re + 1)/2
4 if M [Rm].p ≤ i then
5 Rs ← Rm

6 else
7 Re ← Rm − 1
8 return Rs

a ⪯ c are distinct, fast forwarding occurs in disjoint output intervals, collectively summing
to O(r) steps. If Rs,a = Re,a (i.e., they have the same output interval), redundant fast
forwarding can be avoided through memoization as well.

As such, the total combination of walking steps and fast forwarding steps necessary to
perform bidirectional character extensions sums to O(r) instead of O(|Σ| · r). Analogously,
Algorithm S1 can be performed in O(rrev) time. We emphasize that in practice, the number
of walking/fast forwarding steps is small, and due to linear memory access (streaming), the
bidirectional character extensions are very fast.

3.3 Direction switches
In Algorithm 4, run indices Rrev

s and Rrev
e are not updated, and the same holds for Rs and

Re in Algorithm S1. Updating these indices at each synchronization step is not efficient nor
necessary; they are required only when switching search direction.

In practice, patterns can be split into multiple parts using different partitioning techniques
(e.g., dynamic partitioning [26]). For the sake of the example, however, consider pattern
P =“TATGTTGGT”, split into two parts: “TATGT|TGGT”, for which we match the first
part to the left starting at the separation point. After five calls to addCharToLeft, the
state is ([s, e], Rs, Re), ([srev, erev], Rrev

s , Rrev
e) = ([11, 12], 6, 7), ([16, 17], 0, 12). Indeed, neither

SArev index 16 nor 17 lies within their corresponding runs of 0 and 12. To switch direction
and extend the match to the right, we first update Rrev

s and Rrev
e .

WABI 2024

10:10 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

Table 4 Details of the pan-genomes that are used for benchmarking. For each pan-genome,
we report the number of chromosomes or strains it contains, the length n of the corresponding
concatenated string T , the number of runs r in the BWT of T , the number of runs rrev in the BWT
of T rev, and the ratio of n and r.

Dataset # n/106 r/106 rrev/106 n/r

Human chrom. 19

2 111.61 31.16 31.16 3.58
4 223.22 31.63 31.63 7.06
8 446.44 32.00 32.00 13.95

16 892.89 32.40 32.40 27.56
32 1 785.77 32.83 32.82 54.40
64 3 571.53 33.34 33.34 107.12

128 7 143.04 34.05 34.05 209.76
256 14 286.12 35.62 35.62 401.07
512 28 572.24 39.24 39.24 728.22

E. coli

2 10.08 5.06 5.06 1.99
4 20.11 9.11 9.11 2.21
8 40.16 11.43 11.43 3.51

16 80.14 15.17 15.17 5.28
32 158.30 19.42 19.42 8.15
64 317.21 27.34 27.35 11.60

128 630.15 34.68 34.68 18.17
256 1 262.28 52.06 52.06 24.24
512 2 527.97 64.20 64.20 39.38

1 024 5 075.37 78.79 78.79 64.42
2 048 10 172.03 98.74 98.74 103.02
3 264 16 207.62 118.15 118.15 137.18

We employ a binary search over the move rows, starting with the current (outdated) run
indices, detailed in Algorithm 5. For our example, M rev.updateRunIndices(16, 0, 12) = 10
and M rev.updateRunIndices(17, 0, 12) = 11. With the correct run indices, we can extend
the match to the right.

Algorithm 5 has a time complexity of O(log(r)). Note that in practice, direction switches
are infrequent. Moreover, the binary search often operates with narrow starting intervals. In
the example above, we started from the complete interval over all move rows. For another
switch back to the left, we would call M.updateRunIndices(i, 6, 7).

4 Results

4.1 Data and hardware
We built pan-genomes from two datasets1: i) 512 human chromosome 19 haplotypes from the
1000 Genomes Project [10], and ii) 3264 Escherichia coli strains downloaded from NCBI’s
Reference Sequence (RefSeq) collection. Characters ‘N’ were removed from these genomes.
The chromosomes or strains are concatenated into one string, from which the indexes are
built. Table 4 provides more detailed statistics regarding the pan-genomes we used for
benchmarking. Note that the last column with the ratio between n and r confirms that the
human pan-genome is more repetitive and conserved than the bacterial pan-genome.

1 Details available at https://github.com/biointec/b-move/tree/data/2024

https://github.com/biointec/b-move/tree/data/2024

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:11

0 1 2 3 4
Number of mismatches

0

200

400

600

T
im

e
[s

]

26
.3

4
4.

89

85
.8

0
12

.8
1

17
1.

20
22

.4
1

30
6.

65
38

.4
1

69
0.

40
85

.3
0

Total search time

br-index
b-move

0 1 2 3 4
Number of mismatches

0

200

400

600

800

T
im

e
[n

s]

94
8.

19
12

0.
23

78
7.

12
10

8.
55

66
8.

25
95

.8
9

62
8.

77
94

.4
8

61
1.

24
10

0.
73

Average character extension time

br-index
b-move

Figure 1 Benchmark results for finding all SA intervals corresponding to all occurrences up to a
certain number of mismatches (x-axis). The left panel displays the total search time, while the right
panel shows the average execution time for the core bidirectional character extension functionality.
We aligned 100 000 Illumina reads of length 151 bp and their reverse complements to the pan-genome
composed of 512 human chromosome 19 haplotypes.

The index construction process for b-move supports two options: in-memory or prefix-free
parsing based [5]. The in-memory method is fast but requires a substantial amount of RAM
for large pan-genomes. The prefix-free parsing based method is slower but uses much less
memory. For example, constructing the index for the largest pan-genome of 512 human
chromosome 19 haplotypes takes 2 hours and 550 GB in-memory, whereas prefix-free parsing
based takes 5 hours and 64 GB, suitable for most workstations.

For benchmarking the human pan-genomes, we consider 100 000 Illumina HiSeq 2500
reads (151 bp) randomly sampled from a larger whole genome sequencing dataset (accession
number SRR17981962). For the bacterial pan-genomes, we use 100 000 Illumina NovaSeq
6000 reads (151 bp) randomly sampled from a larger whole genome sequencing dataset
(accession number SRR28249370). Benchmarks were performed on a Red Hat Enterprise
Linux 8 system, using a single core of two 18-core Intel® Xeon® Gold 6140 CPUs running
at a base clock frequency of 2.30 GHz with 177 GiB of RAM. To account for variability in
runtime, all reported runtimes are based on the median of 10 runs. They exclude the time to
read the index from and write the output to disk.

4.2 Character extension performance

In Figure 1, we compare the efficiency of bidirectional character extensions using the original
br-index implementation2 by Arakawa et al. [3], and our bidirectional move structure, referred
to as b-move. The left panel displays the total time for finding all SA intervals for occurrences
up to a specific number of mismatches (i.e., no ϕ operations). To ensure a fair comparison,
we adjusted b-move’s parameters to closely match the implementation of the br-index (e.g.,
Hamming distance, the use of the pigeonhole principle, and no further optimizations). As
shown in the chart, b-move outperforms the br-index by a factor of 5 to 8 in terms of total
search time, with the speed-up increasing with the allowed number of mismatches.

2 Available at https://github.com/U-Ar/br-index

WABI 2024

https://github.com/U-Ar/br-index

10:12 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

0 100 200 300
Number of walking steps

101

103

105

107

F
re

qu
en

cy
 (

lo
g

sc
al

e)
Median: 0.0
Mean: 0.41

0 200 400 600 800
Number of fast forward steps

Median: 1.0
Mean: 2.51

Figure 2 Log scale histograms for the number of walking and fast forwarding steps required
per successful bidirectional character extension (96 363 328 in total) for finding all SA intervals
corresponding to all occurrences up to 3 mismatches. We aligned 100 000 Illumina reads of length
151 bp and their reverse complements to the pan-genome composed of 512 human chromosome 19
haplotypes.

While we aimed for similar parameters, implementation differences beyond core character
extension functionality may affect the total search time. For example, small differences in
the search strategies can lead to a different number of character extensions performed to
obtain the same result. To address this, we specifically benchmarked the character extension
functionality described in Algorithms 4 and S1, along with their counterparts in the br-index.
We used a built-in instruction (constant rdtscp) to count CPU cycles and scaled the average
cycle count to time using the clock frequency. Given that cache misses consume dozens of
CPU cycles, the time per character extension also serves as a proxy for cache misses. The
right panel of Figure 1 shows a speed-up of 6 to 8 × in favor of b-move. The time for a single
bidirectional character extension in the br-index decreases when allowing more mismatches.
This is because with more allowed paths in the search tree, certain memory accesses are
repeated more frequently, either to determine the widths of all intervals for a ≺ c or to
extend with a itself. Consequently, the number of cache misses also decreases somewhat at
higher error rates. This effect is mitigated in b-move due to its superior cache efficiency.

Additionally, we analyzed the O(r) and O(rrev) operations in each bidirectional character
extension (see Section 3.2). Figure 2 shows the number of walking and fast forwarding steps
for each successful bidirectional character extension from the same experiment as Figure 1
(3 mismatches). Most extensions require very few steps (note the log scale): 95% need fewer
than 4 walking steps and fewer than 8 fast forwarding steps. This observation is confirmed
by the median number of 0 walking steps and 1 fast forwarding step per extension (note that
at least 1 fast forwarding step is required for each LF operation, see Alg. 1). Thus, these
worst-case time complexities have minimal impact on actual performance.

4.3 Complete approximate pattern matching performance

To leverage the efficient bidirectional character extensions from the previous section to their
full potential, we extended b-move into a practical tool for lossless approximate pattern
matching of reads to large pan-genomes. This means we report all occurrences within a
pre-specified Hamming or edit distance, in the form of one SAM line per occurrence. This

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:13

0 100 200 300 400 500
Number of human chrom. 19 copies

0

20

40

60

80

100

M
em

or
y

[G
B

]
Peak memory usage (human chrom. 19)

0 100 200 300 400 500
Number of human chrom. 19 copies

0

100

200

300

T
im

e
[s

]

APM performance (human chrom. 19)

0 1000 2000 3000
Number of E. coli strains

0

20

40

60

80

M
em

or
y

[G
B

]

Peak memory usage (E. coli)

0 1000 2000 3000
Number of E. coli strains

0

250

500

750

1000

1250

1500
T

im
e

[s
]

APM performance (E. coli)

Columba b-move b-move + report br-index

Figure 3 Benchmark results for approximate pattern matching using the br-index, b-move, and
Columba (suffix array sparseness of 8). Additionally, we include results for b-move with reporting
functionality, which is not included in the other results. We aligned 100 000 Illumina reads of length
151 bp and their reverse complements to pan-genomes for both human chromosome 19 and E. coli,
across multiple sizes. We allowed for a maximum error distance of 3 (Hamming for br-index, edit for
b-move and Columba).

functionality is similar to that provided by lossless read-mapper Columba (developed in
the same research group) [26, 24, 25], but Columba’s index is based on the bidirectional
FM-index (O(n) memory requirements). b-move does not support reporting CIGAR strings,
however, since the original text would have to be stored in memory for that. The locating
functionality for b-move is based on the br-index’s ϕ and ϕ−1 implementation.

To ensure practical efficiency in b-move, we incorporated several optimizations originally
developed for Columba: optimized edit distance to reduce redundancy, superior search
schemes replacing pigeonhole methods, a lookup-table to bypass matching the first 10-mers,
dynamic pattern partitioning, and bit-parallel pattern matching.

In Figure 3, we compare the br-index, b-move with these optimizations in place, and
Columba3 in terms of peak memory usage (left panels) and approximate pattern matching
performance (right panels) across various pan-genome sizes. This performance evaluation

3 Available at https://github.com/biointec/columba

WABI 2024

https://github.com/biointec/columba

10:14 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

Table 5 Detailed overview of the components in the bidirectional r-index and the bidirectional
move structure for character extension support. The bottom section shows the additional memory
required for supporting locating functionality, applicable to both previously discussed indexes.

Component Description Memory usage for 3 264
E. coli genomes [MB]

Bidirectional r-index as described in [3]

Reg. bv. runs Sparse bitvector with r 1-bits indicating
run endings in the BWT of T

78.56

Reg. bv. runs-per-letter Division of the runs bitvector into |Σ|
shorter sparse bitvectors per character 142.37

Reg. run heads Characters corresponding to runs in the
BWT of T

49.13

Rev. bv. runs Analogous for T rev 78.56
Rev. bv. runs-per-letter Analogous for T rev 142.37
Rev. run heads Analogous for T rev 49.13
Total - 540.13

Bidirectional move structure (this paper)
Reg. move table M Move table as described in Section 2.2 2 953.80

Rev. move table M rev Move table for T rev as described in
Section 3.2 2 953.75

Total - 5 907.55

Extra data to support locate functionality [3]
Total - 3 306.51

includes both the human chromosome 19 pan-genomes (top panels) and the E. coli pan-
genomes (bottom panels). For a fair comparison, note that optimizations in Columba
requiring the original text are disabled.

Despite the fact that the E. coli pan-genomes are less repetitive than the human pan-
genomes, both datasets demonstrate that the sublinear memory scaling characteristics of
the br-index and b-move result in substantial memory reductions. Even for the largest
pan-genomes, the br-index and b-move produce indexes that can stored in the RAM of a
regular laptop. The difference in size between the br-index and b-move (more pronounced for
E. coli) is put into perspective by the significant reduction relative to the FM-index-based
tool. Regarding approximate pattern matching performance (including ϕ), b-move’s speed
is of the same order of magnitude as Columba’s, albeit a constant factor of 2 or 3 larger.
Conversely, the br-index is roughly 5 times slower than b-move.

In summary, b-move’s memory usage is orders of magnitude smaller than Columba’s for
large, repetitive datasets, and closely resembles that of the br-index. Conversely, b-move
outperforms the br-index by almost one order of magnitude while closely matching Columba’s
performance in approximate pattern matching. Thus, we believe that b-move is the optimal
index for scaling lossless approximate pattern matching to large pan-genomes.

Finally, the charts include a fourth line: b-move with reporting functionality. These
results capture the overhead incurred by converting all found occurrences into SAM lines
and maintaining them in memory throughout the search. Comparison between b-move +
report and b-move alone highlights the substantial performance overhead of this reporting

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:15

functionality. As a result, we excluded it from the main comparison. Nonetheless, an
implementation for reporting is available both in b-move and Columba for users who require
this feature. Note that the memory overhead due to reporting can be decreased significantly
by writing out the alignments gradually throughout matching instead of buffering occurrences
in memory (e.g., for E. coli the alignments comprise more space than Columba’s index). This
can be achieved by implementing a dedicated reader and writer thread. The performance
overhead, however, is less straightforward to address. One option would be to explore different
techniques for extracting the desired information without relying on locating, such as tagging
the index with additional metadata [4]. Such alternatives would avoid the locating and
reporting process altogether.

4.4 Index size

Though the (bidirectional) move structure offers faster (see Section 4.2) character extensions
than the (bidirectional) r-index with identical O(r) space complexity, its memory requirements
are somewhat larger in practice. We evaluate this for the largest pan-genome (in terms of
BWT runs) from Table 4: the pan-genome of 3 264 E. coli strains. A detailed overview
of the space usage of the different components can be found in Table 5. For character
extensions without locating functionality, the bidirectional move structure (5.9 GB) requires
approximately 10 times more space than the bidirectional r-index (0.5 GB). Nevertheless,
it is worth noting that our move structure, occupying less than 6 GB of memory, remains
manageable even on a standard laptop.

For many bioinformatics applications that rely on read alignment, however, locating
functionality is essential. When considering these additional data structures (detailed at the
bottom of Table 5), the bidirectional move structure occupies 9.2 GB, compared to 3.8 GB
required for the bidirectional r-index. In a broader context, this difference is reasonable given
the substantial performance improvement offered by the move structure. This becomes even
more evident when comparing the space usage with FM-index-based tools (as discussed in
Section 4.3).

Note that the additional memory usage required to support locating can still be decreased
by applying the subsampling technique [9, 16].

5 Conclusion

We propose b-move, a cache-efficient, run-length compressed index supporting lossless
approximate pattern matching against large pan-genomes. b-move can perform character
extensions 6 to 8 times faster than the br-index and is narrowing the performance gap
with non-compressed FM-index-based pattern matching. Additionally, b-move demonstrates
favorable sublinear memory characteristics, being orders of magnitude smaller than the
FM-index for large pan-genomes. For example, all 3 264 available complete E. coli genomes
on NCBI’s RefSeq collection can be compiled into a b-move index usable on a regular laptop.
Future work includes investigating the application of the move principle to the ϕ and ϕ−1

operations to reduce cache misses in b-move’s locating functionality. Moreover, we aim to
optimize the reporting functionality to minimize both memory (by altering the writing system)
and runtime (by researching alternatives such as tagging) overhead. We also aim to integrate
subsampling functionality to further reduce memory usage of the index itself. The source code
of b-move is written in C++ and is available at https://github.com/biointec/b-move
under AGPL-3.0 license.

WABI 2024

https://github.com/biointec/b-move

10:16 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

References
1 Omar Ahmed, Massimiliano Rossi, Sam Kovaka, Michael C. Schatz, Travis Gagie, Christina

Boucher, and Ben Langmead. Pan-genomic matching statistics for targeted nanopore sequen-
cing. iScience, 24(6):102696, 2021. doi:10.1016/j.isci.2021.102696.

2 Omar Y. Ahmed, Massimiliano Rossi, Travis Gagie, Christina Boucher, and Ben Langmead.
Spumoni 2: improved classification using a pangenome index of minimizer digests. Genome
Biology, 24(1):122, May 2023. doi:10.1186/s13059-023-02958-1.

3 Yuma Arakawa, Gonzalo Navarro, and Kunihiko Sadakane. Bi-Directional r-Indexes. In 33rd
Annual Symposium on Combinatorial Pattern Matching (CPM 2022), volume 223 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 11:1–11:14, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CPM.2022.11.

4 Andrej Baláž, Travis Gagie, Adrián Goga, Simon Heumos, Gonzalo Navarro, Alessia Petescia,
and Jouni Sirén. Wheeler maps. In LATIN 2024: Theoretical Informatics, pages 178–192,
Cham, 2024. Springer Nature Switzerland. doi:10.1007/978-3-031-55598-5_12.

5 Christina Boucher, Travis Gagie, Alan Kuhnle, and Giovanni Manzini. Prefix-Free Parsing for
Building Big BWTs. In Laxmi Parida and Esko Ukkonen, editors, 18th International Workshop
on Algorithms in Bioinformatics (WABI 2018), volume 113 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 2:1–2:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.WABI.2018.2.

6 Christina Boucher, Travis Gagie, I Tomohiro, Dominik Köppl, Ben Langmead, Giovanni
Manzini, Gonzalo Navarro, Alejandro Pacheco, and Massimiliano Rossi. Phoni: Streamed
matching statistics with multi-genome references. In 2021 Data Compression Conference
(DCC), pages 193–202, 2021. doi:10.1109/DCC50243.2021.00027.

7 Nathaniel K. Brown, Travis Gagie, and Massimiliano Rossi. RLBWT tricks. In Data
Compression Conference, DCC 2022, Snowbird, UT, USA, March 22-25, 2022, page 444.
IEEE, 2022. doi:10.1109/DCC52660.2022.00055.

8 Michael Burrows and David Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
Research Report 124, Digital Equipment Corporation Systems Research Center, 130 Lytton
Avenue, Palo Alto, California 94301, May 1994.

9 Dustin Cobas, Travis Gagie, and Gonzalo Navarro. A Fast and Small Subsampled R-Index.
In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021), volume 191
of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:16, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
CPM.2021.13.

10 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526(7571):68–74, October 2015. doi:10.1038/nature15393.

11 The Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises
and challenges. Briefings in Bioinformatics, 19(1):118–135, October 2016. doi:10.1093/bib/
bbw089.

12 Lore Depuydt, Luca Renders, Thomas Abeel, and Jan Fostier. Pan-genome de bruijn
graph using the bidirectional fm-index. BMC Bioinform., 24(1):400, 2023. doi:10.1186/
S12859-023-05531-6.

13 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proceedings
41st Annual Symposium on Foundations of Computer Science, pages 390–398, 2000. doi:
10.1109/SFCS.2000.892127.

14 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in bwt-
runs bounded space. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
1459–1477. SIAM, 2018. doi:10.1137/1.9781611975031.96.

15 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully Functional Suffix Trees and Optimal
Text Searching in BWT-Runs Bounded Space. J. ACM, 67(1), January 2020. doi:10.1145/
3375890.

https://doi.org/10.1016/j.isci.2021.102696
https://doi.org/10.1186/s13059-023-02958-1
https://doi.org/10.4230/LIPIcs.CPM.2022.11
https://doi.org/10.1007/978-3-031-55598-5_12
https://doi.org/10.4230/LIPIcs.WABI.2018.2
https://doi.org/10.1109/DCC50243.2021.00027
https://doi.org/10.1109/DCC52660.2022.00055
https://doi.org/10.4230/LIPIcs.CPM.2021.13
https://doi.org/10.4230/LIPIcs.CPM.2021.13
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1186/S12859-023-05531-6
https://doi.org/10.1186/S12859-023-05531-6
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890

L. Depuydt, L. Renders, S. Van de Vyver, L. Veys, T. Gagie, and J. Fostier 10:17

16 Adrián Goga, Lore Depuydt, Nathaniel K. Brown, Jan Fostier, Travis Gagie, and Gonzalo
Navarro. Faster maximal exact matches with lazy lcp evaluation. In 2024 Data Compression
Conference (DCC), pages 123–132, 2024. doi:10.1109/DCC58796.2024.00020.

17 Gregory Kucherov, Kamil Salikhov, and Dekel Tsur. Approximate String Matching Using a
Bidirectional Index. In Combinatorial Pattern Matching, pages 222–231, Cham, 2014. Springer
International Publishing. doi:10.1007/978-3-319-07566-2_23.

18 T. W. Lam, Ruiqiang Li, Alan Tam, Simon Wong, Edward Wu, and S. M. Yiu. High Throughput
Short Read Alignment via Bi-directional BWT. In 2009 IEEE International Conference on
Bioinformatics and Biomedicine, pages 31–36, 2009. doi:10.1109/BIBM.2009.42.

19 Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357–359, April 2012. doi:10.1038/nmeth.1923.

20 Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009. doi:10.1093/bioinformatics/btp324.

21 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding.
In Combinatorial Pattern Matching, pages 45–56, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg. doi:10.1007/11496656_5.

22 Udi Manber and Gene Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

23 Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on bwt-runs compressed indexes. In
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 101:1–101:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.
101.

24 Luca Renders, Lore Depuydt, and Jan Fostier. Approximate Pattern Matching Using Search
Schemes and In-Text Verification. In Bioinformatics and Biomedical Engineering, pages 419–
435, Cham, 2022. Springer International Publishing. doi:10.1007/978-3-031-07802-6_36.

25 Luca Renders, Lore Depuydt, Sven Rahmann, and Jan Fostier. Automated design of efficient
search schemes for lossless approximate pattern matching. In Research in Computational
Molecular Biology, pages 164–184, Cham, 2024. Springer Nature Switzerland. doi:10.1007/
978-1-0716-3989-4_11.

26 Luca Renders, Kathleen Marchal, and Jan Fostier. Dynamic partitioning of search patterns
for approximate pattern matching using search schemes. iScience, 24(7):102687, 2021. doi:
10.1016/j.isci.2021.102687.

27 Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI:
A pangenomic index for finding maximal exact matches, 2022. doi:10.1089/CMB.2021.0290.

28 Julian Seward. bzip2 and libbzip2 - a program and library for data compression. avaliable at
http: // www. bzip. org , 1996.

29 Mohsen Zakeri, Nathaniel K. Brown, Omar Y. Ahmed, Travis Gagie, and Ben Langmead.
Movi: a fast and cache-efficient full-text pangenome index. bioRxiv, 2024. Accepted into
RECOMB-seq 2024 proceedings track. doi:10.1101/2023.11.04.565615.

WABI 2024

https://doi.org/10.1109/DCC58796.2024.00020
https://doi.org/10.1007/978-3-319-07566-2_23
https://doi.org/10.1109/BIBM.2009.42
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1007/11496656_5
https://doi.org/10.1137/0222058
https://doi.org/10.4230/LIPICS.ICALP.2021.101
https://doi.org/10.4230/LIPICS.ICALP.2021.101
https://doi.org/10.1007/978-3-031-07802-6_36
https://doi.org/10.1007/978-1-0716-3989-4_11
https://doi.org/10.1007/978-1-0716-3989-4_11
https://doi.org/10.1016/j.isci.2021.102687
https://doi.org/10.1016/j.isci.2021.102687
https://doi.org/10.1089/CMB.2021.0290
http://www.bzip.org
https://doi.org/10.1101/2023.11.04.565615

10:18 b-move: Faster Bidirectional Character Extensions in an RL-Compressed Index

Appendix

Table S1 Reverse search text T rev = “$CTGGTTGTATACTGTATC” with its suffix array SArev,
Burrows-Wheeler transform BWTrev, LF mapping LFrev, and suffixes. BWT runs are delineated by
horizontal lines.

i T rev SArev BWTrev LFrev T rev
SArev[i]

0 $ 0 C 4 $CTGGTTGTATACTGTATC
1 C 11 T 11 ACTGTATC
2 T 9 T 12 ATACTGTATC
3 G 16 T 13 ATC
4 G 18 T 14 C
5 T 1 $ 0 CTGGTTGTATACTGTATC
6 T 12 A 1 CTGTATC
7 G 3 T 15 GGTTGTATACTGTATC
8 T 7 T 16 GTATACTGTATC
9 A 14 T 17 GTATC

10 T 4 G 7 GTTGTATACTGTATC
11 A 10 A 2 TACTGTATC
12 C 8 G 8 TATACTGTATC
13 T 15 G 9 TATC
14 G 17 A 3 TC
15 T 2 C 5 TGGTTGTATACTGTATC
16 A 6 T 18 TGTATACTGTATC
17 T 13 C 6 TGTATC
18 C 5 G 10 TTGTATACTGTATC

Algorithm S1 Update intervals ([s, e], Rs, Re) and ([srev, erev], Rrev
s , Rrev

e) corresponding
to P , to intervals ([s′, e′], Rs, Re) and ([srev′, erev′], Rrev

s
′, Rrev

e
′) that correspond to P c.

1 def addCharToRight(([s, e], Rs, Re), ([srev, erev], Rrev
s , Rrev

e), c):
2 ([srev′, erev′], Rrev

s
′, Rrev

e
′)←M rev.addChar([srev, erev], Rrev

s , Rrev
e , c)

3 if srev′ = −1 then
4 return empty intervals
5 if erev′ − srev′ = erev − srev then
6 return ([s, e], Rs, Re), ([srev′, erev′], Rrev

s
′, Rrev

e
′)

7 x← 0
8 for a where a ≺ c do
9 ([srev′′, erev′′], Rrev

s
′′, Rrev

e
′′)←M rev.addChar([srev, erev], Rrev

s , Rrev
e , a)

10 if srev′′ ̸= −1 then
11 x← x + erev′′ − srev′′ + 1
12 s′ ← s + x

13 e′ ← s + x + (erev′ − srev′)
14 return ([s′, e′], Rs, Re), ([srev′, erev′], Rrev

s
′, Rrev

e
′)

	1 Introduction
	2 Preliminaries
	2.1 Counting exact occurrences with the FM-index and r-index
	2.2 Constant-time LF operations with the move structure
	2.3 Finding approximate occurrences with the bidirectional FM-index and br-index

	3 Bidirectional move structure
	3.1 Backward search
	3.2 Bidirectional search
	3.3 Direction switches

	4 Results
	4.1 Data and hardware
	4.2 Character extension performance
	4.3 Complete approximate pattern matching performance
	4.4 Index size

	5 Conclusion

