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Abstract

We study the classical problem of inferring ancestral genomes from a set of extant genomes under
a given phylogeny, known as the Small Parsimony Problem (SPP). Genomes are represented as
sequences of oriented markers, organized in one or more linear or circular chromosomes. Any marker
may appear in several copies, without restriction on orientation or genomic location, known as
the natural genomes model. Evolutionary events along the branches of the phylogeny encompass
large scale rearrangements, including segmental inversions, translocations, gain and loss (DCJ-indel
model).

Even under simpler rearrangement models, such as the classical breakpoint model without
duplicates, the SPP is computationally intractable. Nevertheless, the SPP for natural genomes
under the DCJ-indel model has been studied recently, with limited success. Here, we improve on
that earlier work, giving a highly optimized ILP that is able to solve the SPP for sufficiently small
phylogenies and gene families. A notable improvement w.r.t. the previous result is an optimized way
of handling both circular and linear chromosomes. This is especially relevant to the SPP, since the
chromosomal structure of ancestral genomes is unknown and the solution space for this chromosomal
structure is typically large.

We benchmark our method on simulated and real data. On simulated phylogenies we observe a
considerable performance improvement on problems that include linear chromosomes. And even
when the ground truth contains only one circular chromosome per genome, our method outperforms
its predecessor due to its optimized handling of the solution space. The practical advantage becomes
also visible in an analysis of seven Anopheles taxa.
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1 Introduction

The Small Parsimony Problem (SPP) is a general optimization problem in phylogenetics
that aims at annotating the internal vertices of a given phylogenetic tree T = (V, E) whose
leaves are already annotated, such that the total tree distance dT =

∑
(A,B)∈E d(A, B) is

minimized. Here, d(A, B) is a function returning the distance between the annotations of
any two vertices A and B of the phylogenetic tree. Traditional tree annotations may be
DNA or protein sequences, while more recently, with the emergence of phylogenomic studies,
also complete genomes, often in form of so-called marker sequences may be used.

Distance functions for marker sequences usually consider rearrangements and content-
modifying operations on the elements of the sequences. A useful general-purpose distance
in genome rearrangement is based on the DCJ-indel model. Conceived by Braga et al. [5]
as an extension of the Double-Cut-and-Join model by Yancopoulos et al. [14], operations
in the DCJ-indel model are either genomic rearrangements, modeled by a double cut and
subsequent joining of the so created ends (DCJ ), or segmental gains and losses of arbitrary
length (indels).

When each marker occurs not more than once per genome, calculating the DCJ-indel
distance between two genomes is polynomial [5]. However, on genomes with unrestricted
distributions of markers, also called natural genomes, calculating the DCJ-indel distance is
NP-hard. Nonetheless, efficient ILP solutions exist, such as ding [3].

The first attempt to generalize this method from the pairwise genomic distance to the
phylogenomic SPP under the DCJ-indel model was an ILP by Doerr and Chauve [8], called
SPP-DCJ. They did so by solving a generalized problem, in which – as a result of some
pre-processing – adjacencies in ancestral genomes could be absent or present, and in the
latter case they may be assigned a weight that would be taken into consideration during
optimization. One major issue in this generalization was ding’s use of caps, telomeric
markers that need to be matched during optimization and for which the solution space is
superexponential [12]. Doerr and Chauve went to great lengths to limit the effect of this
additional solution space, but were ultimately not able to completely remove it from their
solution.

The ILP solution presented in this manuscript combines a recent reformulation of the
DCJ-indel model that allows one to forego the matching of caps [2] with the basic modeling
of SPP pioneered by SPP-DCJ. We additionally resolve another issue described in [8], which
is the dependence of SPP-DCJ on previously known candidates for circular singletons, for
each of which SPP-DCJ creates a number of constraints and variables. Since the number
of circular singleton candidates is exponential, the size of SPP-DCJ is exponential as well.
While this problem may be less relevant when given few, refined candidate adjacencies for
ancestors, our ILP is the first to solve the SPP for natural genomes under the DCJ-indel
model while remaining of polynomial size w.r.t. any input data.

The remainder of the manuscript is organized as follows. In Section 2, we give basic
definitions and previous results needed to derive our algorithm. In Section 3, we explain the
fundamental features of our method (Subsections 3.1 and 3.2) before presenting the ILP in
Subsection 3.3. We evaluate the performance of our method in Section 4 and discuss our
overall findings in Section 5.

2 Preliminaries

For the purposes of this work, we use the abstraction to describe genomes as sequences of
oriented markers. A (genomic) marker g = (gt, gh) is a universally unique entity consisting
of marker extremities tail of g, denoted by gt, and head of g, denoted by gh.
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The structure of a genome can be described via its adjacencies. An adjacency {fx, gy}
(with x, y ∈ {t, h}) describes that markers f and g are neighbors on the same chromosome
and oriented, such that extremities fx and gy are adjacent. For ease of notation we also
write fxgy for an adjacency. Note that adjacencies can be read in either direction, i.e. gyfx

is the same as fxgy.
For the sake of a simpler formulation of the theory, we aim for each extremity to be part

of some adjacency. In order to accomplish this, we use additional extremities modeling the
ends of linear chromosomes, called telomeres. A telomere t◦ is a universally unique entity
encompassing a single telomeric extremity denoted by “◦”. A genome can then be described
as a graph as follows.

▶ Definition 1. A genome A is a graph with vertices E(A) ∪ T (A), namely its marker
extremities E(A) and telomeric extremities T (A). The set of edges is M(A) ∪ A(A), namely
its marker edges M(A) and adjacency edges A(A). This graph fulfills the following properties:
1. M(A) is a perfect matching on E(A) with M(A) = {{mt, mh} | ∀mt, mh ∈ E(A)}, and
2. A(A) is a perfect matching on E(A) ∪ T (A).

An example of a genome is given in Figure 1.

1t
1 1h

1 1t
2 1h

2 2t
1 2h

1 4t
1 4h

1 3h
1 3t

1

Telomere
Marker extremity
Adjacency edge
Marker edge

Figure 1 A genome of five markers 11, 12, 21, 31, 41 on a single linear chromosome.

Because each marker is universally unique, in order to compare genomes we need to
establish which markers are homologous. We model homology as an equivalence relation
(≡), that is ma ≡ mb for some markers ma ∈ M(A), mb ∈ M(B) and genomes A,B. Note
that this includes the case A = B, i.e. there can be homologous markers in the same genome
(in-paralogs). The equivalence class of a marker m, denoted by [m], is called its family. If a
marker m exists in A, but has no equivalent in B or vice versa, we refer to m as singular
w.r.t. A,B.

Given the equivalence relation on markers, one can easily derive an equivalence relation
on extremities, namely mt

a ≡ mt
b and mh

a ≡ mh
b if and only if ma ≡ mb. For this derived

equivalence we have mh
a ̸≡ mt

b for all ma, mb. We call extremities singular if and only if their
corresponding marker is singular. One can visualize such an equivalence relation for two
genomes A,B using the Capping-Free Multi-Relational Diagram:

▶ Definition 2. Given two genomes A,B and a homology (≡), the Capping-Free Multi-
Relational Diagram (CFMRD) is a graph CFMRD(A,B, ≡) = (E ∪ T , Eadj ∪ Eself ∪ Eext)
with E = E(A) ∪ E(B), T = T (A) ∪ T (B), adjacency edges Eadj = A(A) ∪ A(B), self edges
Eself = {m ∈ M(A) ∪ M(B) | m singular w.r.t. A,B} and extremity edges Eext = {{u, v} |
u ∈ E(A), v ∈ E(B), u ≡ v}.

An example of a CFMRD is given in Figure 2.
An established way to compare two genomes on a structural level is the rearrangement

distance. The rearrangement distance of two genomes A,B is defined as the minimum number
of operations needed to transform A into B with operations restricted to a certain model
(such as DCJ-indel). When (≡) maps each marker of genome A to at most one marker of

WABI 2024
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1t
1 1h

1 1t
2 1h

2 2t
1 2h

1 4t
1 4h

1 3h
1 3t

1

1t
3 1h

3 1t
4 1h

4 2t
2 2h

2
5t

1 5h
1 3h

23t
2

Telomere
Singular extremity
Adjacency edge
Self edge
Extremity edge

Figure 2 Capping-Free Multi-Relational Diagram for two genomes on an unresolved homology
(≡1) with families {11, 12, 13, 14}, {21, 22}, {31, 32}, {41}, {51}.

genome B, calculating the rearrangement distance between A and B is typically easy. We
refer to such a homology as resolved. More formally, a homology is resolved if for each genome
A and marker m ∈ M(A) the family of m contains only itself, i.e. [m] ∩ M(A) = {m}. On
these homologies, CFMRD(A,B, ≡) consists only of simple cycles and simple paths. An
example of a CFMRD on a resolved homology is shown in Figure 3.

1t
1 1h

1 1t
2 1h

2 2t
1 2h

1 4t
1 4h

1 3h
1 3t

1

1t
3 1h

3 1t
4 1h

4 2t
2 2h

2
5t

1 5h
1 3h

23t
2

Telomere
Singular extremity
Adjacency edge
Self edge
Extremity edge

Figure 3 CFMRD for the two genomes of Figure 2 on a resolved homology (≡2) with families
{11, 13}, {12, 14}, {21, 22}, {31, 32}, {41}, {51}. Note that (≡2) is a matching on (≡1).

With a resolved homology, the DCJ-indel distance can be calculated easily by just counting
different types of components in the CFMRD. For the purpose of this counting, we ignore
self edges. We write c for the number of cycles and pab (resp. paa, resp. pbb) for the number
of paths that start in A and end in B (resp. start in A and end in A, resp. start in B and end
in B). Since the graph is undirected, we canonize their labels by reading paths from A to B.
When the vertex the path starts or ends in is a telomere of A (resp. B), we write A (resp. B)
in uppercase. When the path ends because the only way to continue it would be a self edge
(note that we ignore self edges here), we write a (resp. b) in lowercase. When a path starts
and ends in the same genome, we read it from telomere to singular extremity (note that in
all other cases, the label is symmetric).

For example, the CFMRD of Figure 3 has c = 2, pAB = 1 (path t◦, 1t
1, 1t

3, t◦), pab = 1
(path 4t

1, 2h
1 , 2h

2 , 5t
1), paB = 1 (path 4h

1 , 3h
1 , 3h

2 , t◦) and pAb = 1 (path t◦, 3t
1, 3t

2, 5h
1).

There is one case, in which we need to consider self edges, namely circular singletons.
Circular singletons are cycles that consist only of adjacency and self edges. We denote their
number by s. For a more in-depth explanation of these terms, the interested reader is referred
to [2]. Using these terms, the following formula can be used.

▶ Theorem 3 (adapted from [2]). For two genomes A,B and a resolved homology ( ⋆
≡), the

DCJ-indel distance is

d̄DCJ−ID(A,B,
⋆≡) = n − c +

⌈
pab + max(pAa, paB) + max(pAb, pBb) − pAB

2

⌉
+ s

with n the number of matched markers, n = |{(ma, mb) ∈ M(A) × M(B) | ma
⋆
≡mb}|.
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This formula holds because it is equivalent to previously proven distance formulas under
the DCJ-indel model, however it can also be derived independently. Details are explained
in [2]. To paraphrase the results there, it is shown that two genomes are equal if and
only if their CFMRD consists of only c cycles and pAB paths between telomeres of both
genomes with n = c + pAB

2 . Additionally, for each DCJ or indel operation the formula of
Theorem 3 changes by at most 1. These two facts combined yield the formula as a lower
bound. Additionally [2] contains an algorithm transforming A into B using DCJ and indel
operations that is able to reach this lower bound, proving it is a formula for the rearrangement
distance under the DCJ-indel model.

When the homology is not resolved, we need to refine the homology to be resolved. We
call such a refinement a matching. More formally, a matching ( ⋆

≡) on (≡) is a resolved
homology, such that ma

⋆
≡mb =⇒ ma ≡ mb.

Since allowing for arbitrary matchings can lead to an excess of indels in the sorting
scenario, we restrict ourselves to the maximum matching model. A matching (+

≡) is maximum
w.r.t. A,B if a maximum amount of markers in A has a homolog in B and vice versa.

▶ Definition 4. Given homology (≡), the DCJ-indel distance between A and B under the
maximum matching model is

dDCJ−ID(A,B, ≡) = min
(+

≡) maximum matching on (≡)
d̄DCJ−ID(A,B,

+≡).

When reconstructing a phylogeny, only extant genomes are known, that is, there is no
definitive information about the adjacencies at the inner nodes. In order to capture this
uncertainty, a typical approach is to generate a large set of candidate adjacencies at each
inner node that very likely will include the correct ones. Such a set can be viewed as a
degenerate genome, which however may contain multiple conflicting adjacencies, such as ab

and ac with b ̸= c. (In a normal genome this cannot occur, as the matching requirement
ensures that there is only one adjacency that involves a.) More formally, a degenerate genome
D is a graph (E(D) ∪ T (D), M(D) ∪ A(D)) that fulfills only Property 1 of Definition 1.

All possible ancestors at a certain node in the phylogeny are then built from disambig-
uations of these conflicting adjacencies. We call these possible ancestors linearizations. A
linearization of a degenerate genome D is a genome A, such that E(A) = E(D), T (A) ⊆ T (D),
M(A) = M(D) and A(A) ⊆ A(D). If such a linearization exists, we call D linearizable. We
give an example of a linearizable degenerate genome and one of its linearizations in Figure 4.
Note that each genome is also a degenerate genome with precisely one linearization, namely
itself.

Figure 4 Left: A degenerate genome. Right: A linearization of it.

We can then formulate the problem we are considering in this paper as finding linearizations
of all (degenerate) genomes in the phylogeny, such that the sum of all DCJ-indel distances in
the tree is minimized. Optionally, we also allow to put weights on the adjacencies and take
these into account during the minimization.

WABI 2024
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▶ Problem 5 (Weighted Small Parsimony Linearization Problem). Given a phylogeny T = (V, E),
a homology (≡), a weighting function w for adjacencies, and a parameter α ∈ [0, 1], find a
linearization Li for each (degenerate) genome Di in T , such that

∑
(Di,Dk)∈E

α dDCJ−ID(Li,Lk, ≡) + (α − 1)
∑

ab∈A(Li)∪A(Lk)

w(ab)

 (1)

is minimized.

Because the pairwise comparison of (non-degenerate) natural genomes is already NP-hard,
the Weighted Small Parsimony Linearization Problem is NP-hard as well. Doerr and Chauve’s
algorithm SPP-DCJ, which solves Problem 5, is therefore formulated as an ILP. Thus, we
formulate our improved algorithm in Section 3.3 as an ILP as well.

3 A new method

3.1 Capping-free model
The previous solution by Doerr and Chauve [8] was based on a different graph structure,
namely the Capped Multi-Relational Diagram (CMRD). The CMRD differs from the CFMRD
in the way it treats telomeres. In the CMRD of two genomes A and B there exist additional
extremity edges between each telomere of A and each telomere of B, leading to additional
|T (A)| · |T (B)| extremity edges.

When calculating the DCJ-indel distance using the CMRD, one must not only determine
the resolved homology, but also a matching between telomeres, that is, on T (A) × T (B). As
identified in [12], this leads to a superexponential increase of the solution space. As our new
method is based on the CFMRD, we can use the formula of Theorem 3 and thus avoid such
an increase in the solution space.

3.2 Ensuring linearizability
It is vital for our method that the degenerate genomes in the phylogeny are linearizable
(see Problem 5). However, not all degenerate genomes are linearizable (see Figure 5).
Moreover, not all methods used to infer candidate adjacencies for ancestors guarantee this
requirement. In particular DeCoSTAR [9], a method for inferring ancestral genomes that
is integrated together with SPP-DCJ into a larger reconstruction workflow detailed in [6],
generates conflicting ancestral adjacencies. Yet, testing for linearizability is a computationally
challenging problem of unknown complexity.

Figure 5 Left: This degenerate genome is not linearizable because of missing telomeres. Right:
The genome becomes linearizable when adding telomeres. One linearization is that of Figure 4.

While we cannot test for linearizability, we can modify the given degenerate genomes by
adding telomeres, such that they become linearizable. We offer two different modes, which
we detail in the following subsections.



L. Bohnenkämper, J. Stoye, and D. Dörr 12:7

3.2.1 Local guarantees
We cannot generally decide, whether a degenerate genome is linearizable. Still, some edge
cases are simple to solve:

▶ Lemma 6. A perfect matching M ⊆ A(D) in a degenerate genome D = (E(D) ∪
T (D), M(D) ∪ A(D)) corresponds to a linearization of D.

Proof. Observe that in the M -induced degenerate genome D′ = (E(D) ∪ T (D), M(D) ∪ M)
each node is incident to exactly one adjacency edge. Further each connected component
corresponds to a linear component where both degree-one nodes correspond to telomeres, or
a circular component where each node corresponds to a marker extremity. ◀

However, the converse is not true: Since not all telomeric extremities must be covered, D
may still be linearizable even if no perfect matching may be derived from D.

In the earlier version of SPP-DCJ [8], a simple approach was introduced that comple-
ments each degenerate genome D with additional telomeres and telomeric adjacencies to
ensure linearizability. To this end, D is decomposed into connected components that are
independently tested. If the size of a component, i.e., the number of its vertices, is even, and
it is either linear, circular, or fully connected, then it is considered as locally linearizable.
Otherwise, each extremity e of the component is complemented with a telomere te, and a
telomeric adjacency {e, te} is added to the degenerate genome, ensuring that it is linearizable
as a whole.

3.2.2 Allowing each extremity to be connected to a telomere
Given the uncertainty about inferred ancestral adjacencies, even when a component is locally
linearizable, individual adjacencies of that component might still be wrongly inferred by the
preprocessing and thus might be erroneously included in the linearization, simply because
otherwise a linearization might not be possible.

In order to prevent this behavior, we offer a mode in which each extremity is connected
to an (artificially introduced) telomere to reflect this uncertainty. In contrast to the method
described above, we do this even in components with local guarantees.

This approach was previously practically unsound because of inefficient handling of
telomeres. Now it may become the standard mode of operation, as it allows to find reasonable
solutions in case of noisy input data, while the computational overhead introduced by the
addition of the artificial telomeres remains moderate. We refer to this mode as the safer
linearization mode in subsequent sections.

3.3 A new ILP formulation
Algorithm 1 gives an overview of our method with additional tables detailing some of the
parts of the ILP.

In principle, our algorithm solves Problem 5 in the same way as SPP-DCJ [8], namely
it determines linearizations while simultaneously computing the distances between nodes
in the phylogeny with the objective of minimizing the total distance. However, for ease
of readability, we separate the linearization and distance computation into two different
subsections.

On the global level, the linearizations Li are derived for each (degenerate) genome Di. On
the local level, the resulting linearizations are compared to each other along the branches of
the phylogeny. Each branch gives rise to a pairwise comparison by means of the CFMRD. In
doing so, the selection of adjacencies of a derived genome is propagated from across CFMRDs,
thus ensuring global consistency.

WABI 2024
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The main differences between our algorithm and that in [8] are found in the local level,
as this is where the CFMRD plays a role.

3.3.1 Global level
The global level deals with the setting of adjacencies or telomeres of (ancestral) genomes. For
each (marker or telomeric) extremity v, we determine its presence or absence with a binary
variable gv. We require each marker extremity to occur – but not each telomere, that may
or may not occur (see Constraint C.01). Each extremity is required to be part of exactly
one (possibly telomeric) adjacency (C.02), which ensures a properly linearized genome.

3.3.2 Local level
The local level deals with each edge of the tree separately, making use of the CFMRD of
the corresponding genome pair. Since this part is entirely local to the edge in question, we
presume that each vertex vi of the CFMRD has a unique identifier among all other CFMRDs,
making all its variables globally unique. In order to limit the range of the general variable
yvi

, we also assign each vertex a rank i that is local and unique only within the specific
CFMRD. We map each extremity to its identifier for the global level by the function γ.

In order to compute decompositions of CFMRDs, we make use of a capping-free formula-
tion for the computation of the pairwise DCJ indel distance derived in [2]. This formulation
is based on the distance formula found in Theorem 3.

The formulation counts cycles cE as well as the six different types of paths relevant
to Theorem 3, namely pab, pAa, paB , pAb, pBb, pAB. Each counting variable pX is set by
summing up binary report variables rX

v that are set to 1 once per component on a specific
vertex v (see Constraints C.08 to C.12 and C.17). These counters are then combined to the
terms of the formula in Constraints C.13 to C.16 and C.03 to C.07. The constraints for
ensuring the reporting variables being set correctly can be found in Tables 4, 5 and 6. For a
complete description of this part of the ILP the interested reader is referred to [2].

We make only few major changes in our local section w.r.t. the ILP described in [2].
Firstly, we determine whether an adjacency edge e is set (xe = 1) by “inheriting” this
value from the linearization generated in the global section (see C.20) of the corresponding
adjacency. Secondly, we allow only vertices that are part of the linearized genome (gv = 1)
to contribute to the count of components that decrease the formula (zv = 1), see C.21.

Due to the fact that ancestral genomes may be degenerate, the number of possible circular
singletons can be as large as the number of possible circular chromosomes. Listing all
candidates, such as is done in [2] and in SPP-DCJ [8], leads to a combinatorial explosion on
certain input data. Particularly, when all possible adjacencies are present in the degenerate
genome, any non-empty subset of singular markers can form a circular singleton. A lower
bound on the number of candidates is therefore

∑|Eself|
i=1

(|Eself|
i

)
= 2|Eself| − 1. To avoid

an exponential worst case size of our ILP, we use a new technique for counting circular
singletons without listing all candidates when the number of candidates is larger than a
given (polynomial) threshold, which we arbitrarily set at twice the number of self edges. The
constraints for this technique are listed in Table 1 and described in the following.

A circular singleton manifests in the graph as a cycle of alternating adjacency and indel
edges. The idea of the technique is to have a general integer variable w that is required to
increase at each adjacency edge in a walk of the cycle. There must then be one point in the
walk in which it decreases again. Detecting this, one can then report a circular singleton.
For this to work, the walk needs a direction. This is accomplished by annotating the vertices
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Algorithm 1 Capping-free Small Parsimony.
Objective

Minimize∑
E∈E(T )

(α fE + (α − 1) wE)

Global level
For each genome A = (E ∪ T , M ∪ A) of phylogeny T :

(C.01) gv = 1 v ∈ E
(C.02)

∑
uv∈A auv = gv ∀v ∈ E ∪ T

Local level
For each edge E = (A,B) ∈ E(T ) with CFMRD(A,B) = (E∪T , Eadj∪Eext∪Eself):

(C.03) wE =
∑

e∈Eadj
w(e)xe

(C.04) fE = nE − cE + qE + sE

(C.05) nE = 1
2

∑
e∈Eext

xe

(C.06) cE =
∑

v∈E rc
v

(C.07) 2qE ≥ pab
E + pmax a

E + pmax b
E − pAB

E

(C.08) pab
E =

∑
v∈E rab

v

(C.09) pAa
E =

∑
v∈T A rAa

v

(C.10) paB
E =

∑
v∈T B raB

v

(C.11) pAb
E =

∑
v∈T A rAb

v

(C.12) pBb
E =

∑
v∈T B rBb

v

(C.13) pmax a
E ≥ pAa

E

(C.14) pmax a
E ≥ paB

E

(C.15) pmax b
E ≥ pAb

E

(C.16) pmax b
E ≥ pBb

E

(C.17) pAB
E =

∑
v∈T A rAB

v

(C.18) sE =
∑

v∈E rs
v

(C.19)
∑

uv∈Eext∪Eself
xuv = gγ(u) ∀u ∈ E

(C.20) aγ(u)γ(v) = xuv ∀uv ∈ Eadj

(C.21) zv ≤ gγ(v) ∀v ∈ E
(C.22) to (C.24) Reporting circular singletons – see Table 1
(C.25) to (C.27) Shao-Lin-Moret [13] constraints – see Table 4 in Appendix A
(C.28) to (C.31) Reporting for regular vertices – see Table 5 in Appendix A
(C.32) to (C.37) Reporting for pseudo-caps – see Table 6 in Appendix A
(D.01) to (D.13) Domains – see Tables 2 and 3

with a binary variable dv that “flips” across each pair of connected vertices (see C.22). We
then require w to be the same for vertices connected by an indel edge (see C.23) and for it to
increase by 1 in the direction of the vertex that has dv = 1 (see C.24). We require this except
when vertices are not connected (1 − xuv = 0) or when reporting a circular singleton (rs

u = 1
or rs

v = 1). In this case, the constraint is automatically fulfilled by adding the maximum
length of circular singletons K to the left hand side of the inequation.
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Table 1 Reporting circular singletons.

(C.22) du + dv + xuv ≤ 2 ∀uv ∈ Eadj ∪ Eself

du + dv − xuv ≥ 0 ∀uv ∈ Eadj ∪ Eself

(C.23) wu = wv ∀uv ∈ Eself

(C.24) K(1 − xuv + rs
u + rs

v) + wv ≥ wu + dv − du ∀uv ∈ Eadj

Table 2 Domains – global level.

(D.01) gv ∈ {0, 1} for each genome X, ∀v ∈ E(X) ∪ T (X)
(D.02) fE , nE , cE , sE ∈ N0 ∀E ∈ E(T )
(D.03) pxy

E , pmax a
E , pmax b

E ∈ N0 ∀E ∈ E(T ) ∀x, y ∈ {A, B, a, b}, x ̸= y

(D.04) qE ∈ Z ∀E ∈ E(T )
(D.05) wE ∈ R ∀E ∈ E(T )

Table 3 Domains – local level. For each edge (A,B) ∈ E(T ) with CFMRD(A,B) = (E ∪ T , Eall)
with Eall = Eadj ∪ Eext ∪ Eself.

(D.06) xe ∈ {0, 1} ∀e ∈ Eall

(D.07) yvi
∈ {0, ..., i} vi ∈ E ∪ T

(D.08) zv, lv ∈ {0, 1} v ∈ E ∪ T
(D.09) dv ∈ {0, 1} v ∈ E

(D.10) wv ∈ N0 v ∈ E
(D.11) rab

v ∈ {0, 1} ∀v ∈ E(A)
(D.12) rAa

v , rAb
v , rAB

v ∈ {0, 1} ∀v ∈ T (A)
(D.13) raB

v , rBb
v ∈ {0, 1} ∀v ∈ T (B)

3.3.3 Size of the ILP
For each CFMRD, the local level of the ILP assigns a constant number of variables to
each vertex and edge (see Table 3). Additionally there is a constant number of constraints
associated with each vertex and edge (see Tables 1, 4, 5, 6). For each edge in the phylogeny,
there is a constant number of constraints and variables in the global level (see C.01 to C.02
and Table 2 respectively). The size of the ILP is thus linear with respect to the total size of
all CFMRDs of the tree.

4 Evaluation

We implemented Algorithm 1 and made it publicly available1. We refer to this algorithm as
SPP-DCJ-v2 in the following. We performed a number of different experiments evaluating
the solving time under different conditions as compared to SPP-DCJ as well as precision and
recall for the safer linearization mode.

While solving the same problem, SPP-DCJ adds another parameter β to the optimization
which gives further negative weight to telomeres. In short, the optimization function of
SPP-DCJ is equivalent to the form

Minimize

α′
∑

E∈E(T )

fE + β′
∑

E∈E(T )

#telomeres in decompositions of E − (1 − α′ − β′)
∑

E∈E(T )

wE

We can simulate this behavior in our ILP by decreasing the assigned weight of telomeric
adjacencies and by using a re-scaled α.

1 https://github.com/marschall-lab/spp_dcj_v2

https://github.com/marschall-lab/spp_dcj_v2
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When comparing to SPP-DCJ, we thus used default settings for SPP-DCJ with α′ = 1
2 ,

β′ = 1
4 . This corresponds in our ILP to α = 2

3 and reducing the weight of each telomeric
adjacency by 1, so we used these parameters for SPP-DCJ-v2 when comparing to SPP-DCJ.

In all instances, we used gurobi version 11.0.0 on a single thread and with a time limit of
1 hour (3600 seconds) to solve the ILPs.

4.1 Performance on linear genomes
In order to compare the behavior of SPP-DCJ and SPP-DCJ-v2 in the presence of multiple
linear chromosomes, we used the simulator ffs-dcj introduced in [2]. The simulator performs
a number of DCJs, indels and duplications with fixed rates for a given tree topology. In
this experiment, we used a fixed balanced tree topology, namely (((A : 1.0, B : 1.0)F :
1.0), ((C : 1.0, D : 1.0)G : 1.0))Root;. We simulated 30 operations per branch on genomes of
size 100 markers. More detailed settings (such as rates of duplications and indels) can be
found in Table 7 (Appendix B). The experiment was run for 2, 4, 6, 8, 10, 12, 14 and 16 linear
chromosomes at the root of the tree with 10 replicates for each step. We then proceeded to
introduce 30 adjacencies of adversarial noise for each sample at the inner nodes utilizing a
script provided by the SPP-DCJ repository.

We then ran SPP-DCJ and SPP-DCJ-v2 on degenerate genomes consisting of the true
and noise adjacencies. The results in solving time are shown in Figure 6.

2 4 6 8 10 12 14 162 4 6 8 10 12 14 16
#telomeres

10
1

10
2

10
3

so
lv

in
g 

tim
e 

[s
]

SPP-DCJ
SPP-DCJ-v2
time limit

Figure 6 Solving times for SPP-DCJ and SPP-DCJ-v2 on simulated genomes with increasing
numbers of telomeres. Solid lines represent corresponding median values.

We see that SPP-DCJ-v2 consistently needed one or two orders of magnitude less solving
time than SPP-DCJ. A majority of SPP-DCJ runs did not complete within the time limit.
The performance of SPP-DCJ also dramatically worsens with increasing numbers of linear
chromosomes, such that for 16 linear chromosomes no run was completed within the time
limit.

SPP-DCJ-v2 in turn was also affected by the rising numbers of linear chromosomes, but
the effect is less drastic. In fact, the solving time for SPP-DCJ-v2 is well below a minute for
all samples.

4.2 Performance on circular genomes
As we have seen in Section 3.2, even when in the ground truth all linearizations of chromosomes
are circular, additional telomeres might still be necessary to ensure that all degenerate genomes
are linearizable.

WABI 2024
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In order to examine this effect, we used the same pipeline as in [8] to simulate trees and
genomes of 100 markers for each tree using ZOMBI [7] with tree scales ranging from 5 to 15
with 10 samples per step (for all parameter settings see Table 8). We then inferred degenerate
genomes using DeCoSTAR [9] and solved the resulting SPP instances using SPP-DCJ and
SPP-DCJ-v2. We visualize the resulting solving times in Figure 7.
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Figure 7 Solving times for SPP-SCJ and SPP-DCJ-v2 on genomes generated by ZOMBI on a
range of trees with increasing branch lengths with ancestral adjacencies inferred by DecoSTAR.
Solid lines represent corresponding median values.

Genomes generated by ZOMBI are circular, so one might assume that there is only
negligible difference in runtime between SPP-DCJ and SPP-DCJ-v2. However, the results
indicate that the improved handling of the solution space by SPP-DCJ-v2 allows it to solve
problem instances with up to twice the tree scale as SPP-DCJ with comparable solving times.

Additionally, solving times by SPP-DCJ-v2 are much more predictable, increasing steadily
with the tree scale while the runtimes of SPP-DCJ vary widely with some tree scales for
which almost all runs did not terminate before the time limit. At present, we do not have a
definitive explanation for this behavior. However, we hypothesize that certain tree scales
might lead to sub-structures that have a more complicated structure with regard to the
added telomeres, which then in turn negatively influence the solving time.

4.3 Evaluation of the safer linearization mode

We used the same pipeline to simulate genomes of 1000 markers with ZOMBI, inferring
degenerate ancestral genomes with DecoSTAR over a range of tree scales with five samples
per step. All other parameters are the same as in Table 8. This time, however, we used
SPP-DCJ-v2 with both the default and the safer linearization modes and examined the
precision and recall of recovered adjacencies. In this experiment, we used α = 0.5 with
weight 0 for the telomeric adjacencies added to ensure linearizability (see Section 3.2).

The results, illustrated in Figure 8, indicate that while our method displays very high
precision and recall rates in both modes, the safer linearization mode has a minor, but
consistent advantage over the default setting, especially considering precision. The trend in
the data shows that this gap could widen further on more noisy data.
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5 6 7 8 9 10
Tree Scale

99.900%

99.920%

99.940%

99.960%

99.980%

100.000%

Precision Safer Linearization
Precision Default

5 6 7 8 9 10
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99.40%

99.60%
Recall Safer Linearization
Recall Default
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Figure 8 Mean precision, recall and F1 score for default and safer linearization mode for varying
tree scales. Transparent ranges indicate minimum to maximum range of the five tested samples per
step. Note that the diagrams have different y-axis scaling.

4.4 Reconstructing the ancestral X chromosomes of seven mosquitos
We further evaluated our method on biological data from seven Anopheles species whose
inferred phylogeny is depicted in Figure 9. Gene annotations from protein coding genes of the
X chromosome of present-day mosquitos were obtained from VectorBase [1]. Chromosome
sizes fluctuated at around 600 genes. We then used the ancestral gene order (AGO) pipeline [6]
to obtain candidate ancestral adjacencies. Using AGO, multiple sequence alignments were
computed with MACSE [11], based upon which gene trees were inferred and reconciled with
the species tree with IQ-TREE [10]. Finally, candidate ancestral adjacencies were computed
with DeCoSTAR.

Anopheles albimanus
Anopheles atroparvus
Anopheles farauti
Anopheles gambiae
Anopheles coluzzii
Anopheles funestus
Anopheles minimus

Figure 9 Cladogram for seven Anopheles taxa.

We ran both SPP-DCJ and SPP-DCJ-v2 to generate corresponding ILPs. These were
then input to gurobi, which ran on 10 threads with a time limit of 12 hours on the same
machine for both ILPs. Based on the SPP-DCJ ILP, gurobi did not find any solution within
the time limit whereas using the improved ILP formulation with SPP-DCJ-v2, gurobi found
an approximate solution with a 0.79% gap. Initial approximate solutions with a gap of 10%
were found with SPP-DCJ-v2 already within the first minute of solving time.

5 Discussion

We presented SPP-DCJ-v2, the first ILP of polynomial size to solve the Small Parsimony
Problem for natural genomes under the DCJ-indel model. Using a more efficient representation
of the solution space, the Capping-Free Multi-Relational Diagram, we were able to significantly
improve upon the performance of its predecessor, SPP-DCJ. Additionally, we introduced a
new method of ensuring linearizability that is more robust when applied to (potentially noisy)
real data because linearization is not the main constraint any more. Finally, we demonstrated
that our approach is efficient enough to derive good solutions for SPP on real phylogenies.

WABI 2024
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A Additional constraint tables

Table 4 Shao-Lin-Moret constraints.

(C.25) xe = xd for all sibling edges e, d

(C.26) yvi
+ j(1 − xuj vi ) ≥ yuj

∀ujvi ∈ Eadj ∪ Eext

j(1 − xuj vi ) ≥ yuj
∀ujvi ∈ Eself

(C.27) izvi ≤ yvi
∀v ∈ E ∪ T

Table 5 Reporting for regular vertices.

(C.28) lv ≤ 1 − xuv ∀uv ∈ Eself, u ∈ E(A)
lv ≥ xuv ∀uv ∈ Eself, u ∈ E(B)

(C.29) lv ≤ lu + (1 − xuv) ∀uv ∈ Eext

lu ≤ lv + rab
uv + (1 − xuv) ∀uv ∈ Eadj , u ∈ E(A)

lu ≤ lv + (1 − xuv) ∀uv ∈ Eadj , u ∈ E(B)
(C.30) rc

v ≤ zv ∀v ∈ E(A)
(C.31) rab

u ≤ xuv ∀uv ∈ Eself, u ∈ E(A)

Table 6 Reporting for telomeres.

(C.32) lv = 0 ∀v ∈ T (A)
lv = 1 ∀v ∈ T (B)

(C.33) lu ≤ lv + rAB
v + rAb

v + (1 − xuv) ∀uv ∈ Eadj, v ∈ T (A)
lu ≤ lv + raB

u + (1 − xuv) ∀uv ∈ Eadj, u ∈ T (B)
(C.34) rAB

v ≤ zv ∀v ∈ T (A)
(C.35) 1 − yv ≤ rAb

v + rAa
v v ∈ T (A)

1 − yv ≤ raB
v + rBb

v v ∈ T (B)
(C.36) yvi

≤ i(1 − rR
v ) v ∈ T (A), R ∈ {Ab, Aa}

yvi
≤ i(1 − rR

v ) v ∈ T (B), R ∈ {aB, Bb}
(C.37) rAB

v ≤ lu + (1 − xuv) ∀uv ∈ Eadj, v ∈ T (A)
rAb

v ≤ lu + (1 − xuv) ∀uv ∈ Eadj, v ∈ T (A)
raB

v ≤ 1 − lu + (1 − xuv) ∀uv ∈ Eadj, v ∈ T (B)
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B Experiment parameter tables

Table 7 Parameters for ffs-DCJ for the linear chromosome experiment.

Duplication rate 0.4
Zipf parameter duplication 6.0
Deletion Rate 0.2
Insertion Rate 0.1
Zipf parameter indel 4.0

Table 8 Parameter settings for ZOMBI and DeCoSTAR for the tree scale and precision experi-
ments. For the sake of benchmarking SPP-DCJ-v2, ZOMBI parameters for genome evolution were
chosen to represent an elevated degree of genome evolution, both in terms of gene content innovation
(duplication+loss) and rearrangement (inversion+transposition).

ZOMBI

DUPLICATION f:2
INITIAL_GENOME_SIZE 100

LOSS f:2
LOSS_EXTENSION g:0.8

ORIGINATION f:0
INVERSION f:2

INVERSION_EXTENSION g:0.5
TRANSPOSITION f:2

TRANSPOSITION_EXTENSION g:0.5

DeCoSTAR

use.boltzmann 1
boltzmann.temperature 1.0

nb.sample 1000
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