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Abstract
Given a sorted list of k-mers S, the rank curve of S is the function mapping a k-mer from the k-mer
universe to the location in S where it either first appears or would be inserted. An exciting recent
development is the observation that, for certain datasets, the rank curve is predictable and can
be exploited to create small search indices. In this paper, we develop a novel search index that
first estimates a k-mer’s rank using a piece-wise linear approximation of the rank curve and then
does a local search to determine the precise location of the k-mer in the list. We combine ideas
from previous approaches and supplement them with an innovative data representation strategy
that substantially reduces space usage. Our PLA-index uses an order of magnitude less space than
Sapling and uses less than half the space of the PGM-index, for roughly the same query time. For
example, using only 9 MiB of memory, it can narrow down the position of k-mer in the suffix array
of the human genome to within 255 positions. Furthermore, we demonstrate the potential of our
approach to impact a variety of downstream applications. First, the PLA-index halves the time of
binary search on the suffix array of the human genome. Second, the PLA-index reduces the space
of a direct-access lookup table by 76 percent, without increasing the run time. Third, we plug the
PLA-index into a state-of-the-art read aligner Strobealign and replace a 2 GiB component with a
PLA-index of size 1.5 MiB, without significantly effecting runtime. The software and reproducibility
information is freely available at https://github.com/medvedevgroup/pla-index.
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1 Introduction

Modern biological sequence analysis is often performed at the level of k-mers – strings of a
fixed length k. Datasets are stored as collections of k-mers, whether they come from a set
of reads or an assembled genome or transcriptome. For methods working with such data,
it becomes essential to efficiently determine if a k-mer belongs to a collection or not. The
design of an index to store and query a collection of k-mers has thus been a central area
of research and progress in algorithmic bioinformatics in the last decade [5, 17]. In this
paper, we are particularly interested in what we call a search index, which assumes that the
collection is stored sorted in memory and a search index supplements it in order to allow
fast location queries.

An exciting recent innovation in the broader Computer Science community has been to
exploit the regularity of dataset’s rank curve in order to construct learned search indices [16].
Given a sorted list of elements from an ordered universe, the rank function takes an element
x and returns the smallest location i such that all elements before i are smaller than x

(see Figure 1A for an example). If x is in the list, this is simply the first location of x in
the list. It was hypothesized in [16] that the rank curves of real world datasets are often
highly predictable. Follow up work [10] showed that in fact one can approximate the rank
curve using a piece-wise linear approximation (PLA) with a surprisingly few number of
segments [10, 9, 15] (see Figure 1B for an example). PLA-based approaches have been
applied to construct dictionaries [3], monotone minimal perfect hash functions [8], and search
indices [10, 9, 15]. These recent innovations hold much promise for genomic datasets, where
they were used to speed up suffix array search [15] and sequence alignment [12, 13, 14].

For search indices, there is a natural construction based on storing a piece-wise linear
approximation to the rank curve. For a query x, one can compute the value of the PLA at
x and then perform a local search in the list around the predicted location to determine
if x is present or not. The state-of-the-art search index that follows this paradigm is the
PGM-index [9], though it was not applied to the k-mer list setting. On the other hand,
the only work that applies the PLA paradigm to the k-mer list setting (Sapling [15]) does
not exploit its full power. In particular, Sapling limits the PLA to have fixed segment
lengths, constrains adjacent segments to be continuous, and does not enforce a maximum
prediction error. Nevertheless, they demonstrate how a PLA-based search index can be used
to significantly accelerate suffix array lookups. Further applications remain to be found.

In this paper, we present the PLA-index, a search index for k-mer lists. Our index
contains two major innovations with respect to the PGM-index [9] and Sapling [15]. The
first is a novel compact representation of the PLA, achieved by modifying the construction
algorithm of [9] and proving properties of the resulting segments.1 The second is a novel
technique called repeat stretching, which reduces the number of segments in the PLA by
exploiting the presence of repeats in a genome.

We show that the PLA-index is very small, e.g. using only 2 MiB of memory (respectively,
34 MiB), it can narrow down the position of k-mer in the suffix array of the human genome
to within ±1023 positions (respectively, ±63 positions). For 34 MiB, this roughly halves
the time of binary search on the suffix array. On the k-spectrum of the human genome, the
PLA-index uses an order of magnitude less space than Sapling and uses less than half the
space of the PGM-index (when holding the query time constant). We show that these results
hold for various values of k and for other non-human genomes.

1 It was brought to our attention after our algorithm was finalized that some of these ideas are also
implemented in the code base of [8], though they are not described in the respective paper.
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Figure 1 Panel A shows the rank curve for the sorted list of all constituent 21-mers of human
chr1. The curve can deviate from the straight line for two general reasons: vertical jumps due to
repetitive k-mers and horizontally flat parts due to long lexicographical stretches of k-mers that do
not appear in the genome. The intuition is that as long as these effects happen roughly uniformly
along the curve, the curve can be approximated with only a few segments. Panel B shows a cartoon
illustration of a rank curve (solid black curve) and a piece-wise linear approximation (dashed black
lines).

We further demonstrate how the PLA-index can be applied to improve several other
downstream methods. First, we consider applications where the query time is a higher
priority than lower memory, which is currently best achieved with a direct access table.
The PLA-index reduces the total space by 76%, without increasing the run time. Second,
we consider a state-of-the-art short read aligner (Strobealign [26]) and show how a 2 GiB
component of the aligner index can be replaced with a PLA-index of size 1.5 MiB, without
significantly effecting runtime. These results demonstrate the wide applicability and potential
impact of the PLA-index on k-mer-based methods.

2 Preliminaries

K-mer lists

Let S denote a list of k-mers, sorted in non-decreasing order and indexed from 0. We let
N denote the length of S and we let n denote the number of distinct k-mers in S. Given a
string, its sorted k-spectrum is the sorted list of its constituent k-mers. For example, the
2-spectrum of the string GCCACC is S = (AC, CA, CC, CC, GC), with N = 5 and n = 4.
For a k-mer x ∈ S, we define rank(S, x) as the largest integer 0 ≤ i < N such that, for all
0 ≤ j < i, S[j] is strictly less than x. For x /∈ S, we define rank(S, x) = −1. In our example,
rank(S, CC) = 2, rank(S, AC) = 0, and rank(S, AG) = −1.

Operations

Given a sorted list of k-mers S and a k-mer x, our indices will support two operations:
search(x) returns a value i such that S[i] = x if x ∈ S and i = −1 otherwise, and
rank(x) returns rank(S, x). 2

2 Note that rank returns −1 for elements not in S. Support for rank on elements not in S could be

WABI 2024
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The two operations are very similar and any answer to rank is also a valid answer to search.
We separate the two because there will be cases (described in Section 4) when the additional
overhead of finding the first occurrence of x makes rank more expensive to support than
search.

Indices to support these operations involve an inherent space/time trade-off. Our
PLA-index and its variations will fall in between the following two extremes. On one
extreme, binary search does not need any space for an index but is considered slow because
it does not have cache locality. At the other extreme, one can construct a minimal perfect
hash function (MPHF), with the set of keys being the distinct k-mers in S. An MPHF is a
data structure that maps elements of the key set of size n to an integer between 0 and n − 1,
without any collisions. For k-mers that are not in the key set, the MPHF maps them to an
arbitrary integer between 0 and n − 1. With an MPHF, we can construct a direct-access
table (i.e. an array) of size n to store the exact rank of each k-mer. Such a solution gives
very fast queries but uses Θ(n lg N) space.

We stress that our indices are not dictionaries, i.e. they are data structures stored on top
of S and do not replace S itself. Our work is thus orthogonal to the PLA-based dictionary
of [3]. Similarly, our work is orthogonal to a recent paper that uses a PLA-approximation to
construct a monotone MPHF [8], where the MPHF is intended to replace S and does not
handle duplicates in S.

Piece-wise linear function

A piece-wise linear function is defined by an array of k-mers X, sorted in increasing order, and
two arrays Ystart and Yend of y-values. Intuitively, X[i] is the x-value at the ith breakpoint of
the function, Ystart[i] is the y-value of the segment starting at the ith breakpoint, and Yend[i]
is the y-value of the segment ending at the ith breakpoint (Figure 1B). We let b = |X| − 1,
i.e. the number of segments. Formally, for 0 ≤ i < b, the ith line segment connects the points
(X[i], Ystart[i]) and (X[i + 1], Yend[i + 1]). It has slope mi = Yend[i+1]−Ystart[i]

X[i+1]−X[i] . To evaluate
the function at a k-mer x, we first find the largest integer i such that X[i] ≤ x and then
evaluate x using linear interpolation along the ith segment. Formally,

plaEst(x) = Ystart[i] + mi(x − X[i]). (1)

O’Rourke’s algorithm

To compute the piece-wise linear approximation of a rank curve, we make use of an algorithm
published by O’Rourke [19] and implemented in [3]. The input to the algorithm is presented
in an on-line manner, i.e. one element at a time. Each element consists of an x-value x and a
y-range [ℓ, h]. It is required that x is strictly larger than previous x-values. A line is said to
fit these points if for each x, its y-value lies in the range [ℓ, h]. The algorithm maintains the
set of all lines that fit the input so far3. When an input element is presented such that there
is no longer any line that fits the data, the algorithm outputs a line that fits the previous
ranges and terminates. The algorithm running time and memory is linear in the number of
input elements.

added to our indices, though we have not implemented it and therefore do not describe the details.
3 The crux of O’Rourke’s algorithm is how to maintain this set efficiently, but since we use the algorithm

in a black-box manner, we omit this description.
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3 The basic PLA-index

The basic PLA-index is constructed from S and an error threshold ε. It consists of a piece-
wise linear function, stored in X, Ystart, and Yend arrays, and a prefix lookup table D. In this
section, we will describe the data structure and, in doing so, prove the following Theorem:

▶ Theorem 1. Let S be a sorted list of N k-mers, let ε ≥ 1 be a positive integer, and let
0 < ℓ < 1 be a real number. There exists a data structure called the basic PLA-index with
the following properties.

It can be constructed in Θ(N) time.
The total bits used is b

(
2k − lg

(
b2−ℓ

N(1+4ε)

)
+ c

)
+ o(b), where b is a function of S and ε,

and c is a value between 3 and 4.
It supports the rank and search operations in Θ(lg b + lg ε) time.

3.1 Construction
We process the k-mers of S from smallest to largest, treating each k-mer as an integer between
0 and 4k − 1. For each k-mer x ∈ S, we define its y-range to be [rank(S, x) − ε, rank(S, x) + ε].
We feed x and its y-range to O’Rourke’s algorithm, until the algorithm stops and outputs a
line that fits the previously given ranges. We store the k-mer and the y-value of the first point
of this line in X and Ystart, respectively. We store the y-value of the last fitted point in Yend.
We then restart O’Rourke’s algorithm, but we reuse the last k-mer of the previous fitted
line to start the next iteration. As will be clear later, this will allow us to more compactly
represent the Yend array. The construction algorithm runs in Θ(N) time. Memory use is
linear with respect to the maximum number of k-mers in a fitted line and is inversely related
to ε.

In order to store the Ystart and Yend values as integers, rather than reals, we round the
y-values returned by O’Rourke’s algorithm. In some rare cases, this results in a line that
no longer fits the range of some point x. In these cases, we re-run O’Rourke’s algorithm
but manually terminate it at x, using whatever line is a valid fit up to that point. We then
restart from x. Our experimental results will show that, in practice, the amount of such
forced breaks is negligible (Section 6).

We will let b denote the number of lines created by the construction algorithm, i.e. the
number of segments in our PLA. This is also the number of elements in X, Ystart, or Yend.

We also construct a prefix lookup table D, which is used to speed up binary search on
X. We have a parameter 0 < ℓ < 1 that trades off the size of D and the average search
range in X. We set ℓ automatically to be roughly 1/16, subject to the constraint that bℓ is a
power of two (formally, ℓ = 2⌊lg b⌋

16b ). D contains bℓ entries, each of size ⌈lg b⌉ bits, and the ith

element of D is the smallest position j such that the first lg(bℓ) bits of X[j] are at least i.
This results in an average search range in X of 1/ℓ entries, while the size of D is ℓb⌈lg b⌉
bits. D can be trivially constructed by a linear scan through the X array.

3.2 Queries
Let y be the first lg bℓ bits of x, viewed as an integer. This gives us an index into D and
we look up D[y] and D[y + 1]. Then, we do a binary search in X between positions D[y]
and D[y + 1] to find the largest index i such that X[i] ≤ x. Then we can compute plaEst(x)
according to Eq. 1. We then do a binary search in S[⌊plaEst(x)−ε⌋], . . . ,S[⌈plaEst(x)+ε⌉] to

WABI 2024
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𝑆 Array
…

529 011011
530 011100
531 011100
532 011110
533 011111
534 100000
535 100000
536 100000
537 100100
538 101100
539 101101

…

Prefix 
Lookup 
Table, D
00 0

01 2

10 5

11 5

Query: 011110

X Array
0 𝟎𝟎0000

1 𝟎𝟎0101

2 𝟎𝟏0100

3 𝟎𝟏0111

4 𝟎𝟏1010

5 𝟏𝟏0000

6 𝟏𝟏0100

7 𝟏𝟏1101

𝒀𝒔𝒕𝒂𝒓𝒕 
Array

… …

3 312

4 494

5 716

… …

𝒀𝒆𝒏𝒅 
Array

… …

4 493

5 714

6 790

… …

− 𝝐

+𝝐

𝒑𝒍𝒂𝑬𝒔𝒕(𝟎𝟏𝟏𝟏𝟏𝟎)

Return 
532Binary 

Search

Figure 2 Example of a search query using the PLA-index. The query is x = (011110)2 = (30)10

and we set ε = 4 and bℓ = 4. Each of the arrays is shown with two columns, where the left
column shows the indices and the right column shows the array values. The indices of D are
shown in binary, while the rest of the tables’ indices are shown in decimal. The values of the X

and S arrays are shown in binary, while the rest of the tables’ values are shown in decimal. To
perform the query, we start by extracting the leftmost y = lg bℓ = 2 bits of the query. In our
case, these bits have the value (01)2 = (1)10. We then look up the value of D[1] and the value
following that, D[2]. We then do a binary search in X between the values stored at D[1] and
D[2], i.e. between locations 2 and 5 in X. We find that the largest index i such that X[i] ≤ x

is 4 (X[4] = (011010)2 = (26)10). Thus, we know that if x is present, it must be in the 4th

segment. The ending x-value of this segment is X[5] = (110000)2 = (48)2. The y-values that
start and end this segment are found in Ystart[4] and Yend[5]. With these values in hand, we
can calculate plaEst(30) = Ystart[4] + Yend[5]−Ystart[4]

X[5]−X[4] (x − X[4]) = 494 + 714−494
48−26 (30 − 26) = 534.

Finally, we do a binary search in S[⌊534 − 4⌋], . . . , S[⌈534 + 4⌉]. At position 532, we find that
S[532] = (011110)2 = (30)10 = x. We return this position as search result.

find the smallest value i such that S[i] ≥ x. We return i if S[i] = x and return −1 otherwise.
The only difference between search and rank is that with search we can shortcut the
binary search in S as soon as we hit a value i such that S[i] = x. Figure 2 illustrates how
query works on an example.

The time to compute rank is the time to do a binary search on X plus the time to do
a binary search on S. While the prefix lookup table speeds up the binary search on X in
practice, in the worst case it can still be Θ(lg b). The binary search on S takes Θ(lg ε) time.
Thus the worst case total time for rank is Θ(lg b + lg ε). This is no worse than index-less
binary search (as long as bε ≤ N , which previous theoretical result suggest: Theorem 3.1
in [10]; Lemma 2 in [9]). The big advantage, however, is gained from cache effects, since in
practice we observe that the PLA-index fits into the cache while S is stored in RAM. In this
case, the number of RAM accesses now depends only on ε and not on N .

Compact storage

The arrays X, Ystart, Yend, and D can be naïvely stored using 2kb, b⌈lg N⌉, b⌈lg N⌉, and
ℓb⌈lg b⌉ bits, respectively. However, we exploit properties of the first three arrays to store them
more compactly. The X array is an array of increasing integers, which can be represented
compactly using the Elias-Fano technique [6, 7], as described in [23] and implemented
in [20]. Elias-Fano encodes an array of m non-decreasing elements coming from a universe
of size U in m⌈lg(U/m) + cef⌉ + o(m) bits, where cef is a number between 1.5 and 2. It
supports constant time access to arbitrary elements. In our case, the space for the x-values
is b⌈lg(4k/b) + cef⌉ + o(b) bits.

Elias-Fano lookups are nevertheless slower than the naïve encoding in practice, and
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we query X repeatedly as part of computing plaEst. We therefore consider an alternate
encoding in practice. Consider the ith element and let x = X[i]. If the values of X were
distributed evenly among all the universe of 4k k-mers, then x would be i4k/b. Instead of
storing x, we store the difference between x and this value, i.e. we store x − i4k/b. To the
extent that the k-mers of X are somewhat evenly distributed among the universe, the stored
difference is small. This allows us to use a small number of bits to store each value. We use
a constant-width encoding, where the number of bits is chosen so that it can fit the largest
difference in X. We find in practice that this takes more space than Elias-Fano but less space
than the naïve 2k bit encoding, while performing lookups as fast as with the naïve encoding.

To compact the Ystart array, we first show that its values are non-decreasing. The following
lemma gives the basis for this.

▶ Lemma 2. Given a line fitted by O’Rourke’s algorithm, let ystart denote the y-value of
the line at the first fitted point and let yend denote the y-value of the line at the last fitted
point. Let Xfit = (xstart, . . . , xend) be the sequence of k-mers that are covered by a run of
O’Rourke’s algorithm during the PLA-index construction algorithm. Then there exists a line
that fits Xfit such that

ystart ≤ rank(S, xend) − ε (2)
yend ≥ rank(S, xstart) + ε

Proof. Observe that if rank(S, xstart) + ε ≤ rank(S, xend) − ε then any fitted line will satisfy
the lemma. Therefore, we assume that rank(S, xend) < rank(S, xstart) + 2ε. Consider the
line with ystart = rank(S, xend) − ε and yend = rank(S, xstart) + ε. Let x be an element of
(xstart, . . . , xend) and let y be the value of this line at x. By our assumption, the line has
positive slope, and, therefore, ystart ≤ y ≤ yend. Then,

rank(S, x) ≤ rank(S, xend) = ystart + ε < y + ε

rank(S, x) ≥ rank(S, xstart) = yend − ε ≥ y − ε

Therefore, the line covers x and hence fits Xfit. Figure 3 illustrates the idea of the proof. ◀

Lemma 2 can be used to guarantee that both Ystart and Yend are non-decreasing, but
our encoding only needs that Ystart is non-decreasing. To guarantee that the line chosen by
O’Rourke’s algorithm satisfies the ystart constraint (Eq. 2), we can choose the line with the
smallest ystart value. We now prove that Ystart is non-decreasing:

▶ Corollary 3. Let 0 ≤ i < b − 1. Then Ystart[i] ≤ Ystart[i + 1].

Proof. Let x be the last k-mer fitted by segment i (i.e. the segment starting at X[i]).
Because x is the end of segment i, Lemma 2 gives that Ystart[i] ≤ rank(S, x) − ε. In the way
that we use O’Rourke’s algorithm during construction, we have that x = X[i + 1]. However,
all that is needed for the proof is that x ≤ X[i + 1] and, since the rank function is increasing,
rank(S, x) ≤ rank(S, X[i + 1]). Therefore, Ystart[i] ≤ rank(S, X[i + 1]) − ε. Simultaneously,
since segment i + 1 must fit X[i + 1], we have that Ystart[i + 1] ≥ rank(S, X[i + 1]) − ε. Hence,
we get Ystart[i] ≤ rank(S, X[i + 1]) − ε ≤ Ystart[i + 1]. ◀

Therefore, we can encode the Ystart values using Elias-Fano. Ystart contains b elements
from a universe of size N , so the space used is b⌈lg(N/b) + cef⌉ + o(b) bits. Note also that
the Ystart values are only accessed once during a rank operation, to compute the slope of the
segment. Therefore, the slower access time of Elias-Fano does not have a substantial effect
on runtime.

WABI 2024
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Figure 3 Illustration of the proof of Lemma 2. The values of rank(S, xstart) and rank(S, xend) are
shown in black, along with the ±ε vertical region around them. The proposed fitting line is shown
in solid orange, and the dashed region denotes the ±ε region covered by the line. A sample middle
point x is shown in red and its possible rank(S, x) values are denoted by the range of the red arrow.
The proof is based on the fact that the red range is covered by the orange range.

To compact the Yend array, we encode each value relative to Ystart. Consider an arbitrary
position i in Yend and let x = X[i] be the k-mer at i. Recall that the segment starting
at X[i − 1] ends at x with a y-value of Yend[i], while the segment starting at x starts
with a y-value of Ystart[i]. Both segments are subject to the max error constraint at x

so therefore |Yend[i] − rank(S, x)| ≤ ε and |Ystart[i] − rank(S, x)| ≤ ε. Putting it together,
−2ε ≤ Yend[i] − Ystart[i] ≤ 2ε. Therefore, we can encode Yend[i] by encoding the difference
with Ystart[i], using only ⌈lg(1 + 4ε)⌉ bits per entry. Note that this is why we run O’Rourke’s
algorithm starting from the previous fitted k-mer. This guarantees that we can efficiently
encode the difference between Ystart and Yend using a fixed number of bits.

We can now derive the total bits used by the basic PLA-index, as stated in Theorem 1.
We assume that X is stored using Elias-Fano and, for convenience, we ignore ceilings. The
total space used by X, Ystart, Yend, and D is:(

b
(

lg 4k

b
+ cef

)
+ o(b)

)
+

(
b
(

lg N

b
+ cef

)
+ o(b)

)
+

(
b lg(1 + 4ε)

)
+ ℓb lg b

= b

(
lg 4k

b
+ lg N

b
+ lg(1 + 4ε) + ℓ lg b + 2cef

)
+ o(b)

= b

(
2k − lg

(
b2−ℓ

N(1 + 4ε)

)
+ 2cef

)
+ o(b).

Choosing ε

If the user has in mind how large of an error their runtime can tolerate, they can set ε

directly. Alternatively, they can set a target memory for the index. In this case, we can
run the construction algorithm and compute the ratio r = N/b, using an arbitrary ε, e.g.
ε = 256. If we make the simplifying assumption that N/b does not vary greatly as a function
of ε, then we can replace N with rb in the space equation given by Theorem 1, and then
solve it (ignoring the lower order o(b) term) to obtain the value of ε that would give the
target memory. This approach is not very precise but can get the index in the ballpark of
the target memory. More sophisticated techniques have been presented in [10], but we have
not implemented them in our prototype.
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4 PLA-index with repeat stretching

In this section, we describe an alternative version of the PLA-index which is preferable when
the common query is search rather than rank and S contains a lot of repeats. The idea
is that if we are allowed to report any position containing x, rather than necessarily the
first one, then we can allow plaEst(x) to be ε higher than the last (rather than the first)
occurrence of x. In this way, we can give more leeway to O’Rourke’s algorithm, allowing it
to use fewer segments.

4.1 Construction and storage
Let occ(x) define the number of times a k-mer is repeated in S. We modify the basic
PLA-index construction algorithm by modifying the y-ranges fed to O’Rourke’s algorithm,
making them [rank(S, x) − ε, rank(S, x) + ε + occ(x) − 1]. In other words, we expand the
y-range so that any y-value in the range is at most ε away from some position of x, but not
necessarily the first one. The rest of the construction and storage is identical to the basic
PLA-index, except for the two aspects we describe below.

When using repeat stretching, we can no longer guarantee that Yend[i] and Ystart[i] values
lie within 2ε of each other, because occ(x) can be as high as N − n + 1. Nevertheless, we
observe that |Yend[i] − Ystart[i]| still tends to be small. We therefore can encode Yend using
a technique for variable-width encoding of integers that allows random access, known as
Directly Addressable Codes [4] and implemented in [11]. Since the encoding only works for
non-negative values, we transform the values prior to encoding to be 2|Yend[i] − Ystart[i]| + t,
where t = 1 if Yend[i] − Ystart[i] is positive and t = 0 otherwise.

The reason that the basic PLA-index construction algorithm reused the previously fitted
k-mer for O’Rourke’s algorithm was to guarantee that Yend[i] − Ystart[i] is bounded. Since
this is no longer possible, we now do not reuse the k-mer, thereby decreasing the number of
segments. Further, the proof of Corollary 3 also works without the k-mer reuse, and so we
can encode Ystart as before.

4.2 Queries
The algorithm for the search query remains the same as for the basic PLA-index. To
understand the runtime of rank, we distinguish between two ways that S may be represented,
which affects the cache locality of accessing consecutive elements. In the indirect case, S is
represented indirectly via pointers. For example, let S be the sorted k-spectrum of a genome.
Then the suffix array of the genome is an indirect representation of S (ignoring suffixes
shorter than k). That is, accessing the suffix array at location i gives you a location in the
genome that is the start of the k-mer S[i]. In such a situation, accessing consecutive k-mers
of S is not cache-local, because consecutive k-mers in S are not necessarily nearby in the
genome. In the direct case, S is represented directly, e.g. an array of k-mers. In such a case,
it is not necessary to look into the genome and accessing consecutive values of S becomes
fast due to cache locality.

Now, to compute rank(x), we first let p = search(x). Then, to get rank(S, x), we
continuously decrement p as long as S[p] = x. If S is stored directly, then rank is fast
because of cache locality. If S is stored indirectly, then each access to a k-mer of S incurs a
cache miss, making rank slow. This can be sped up by storing an additional bitvector, B,
which marks the positions in S which have a k-mer that is different from the preceding k-mer.
However, this adds N bits of space, which can easily dwarf the space of the PLA-index. We
therefore do not recommend using repeat stretching for the case that rank needs to be
supported and S is stored indirectly.
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5 PLA-index-exact

The basic (and repeat-stretched) PLA-index can be viewed as using a tiny bit more space to
significantly speed up binary search. However, it still does not perform as fast as a direct
access table of k-mer ranks. We therefore propose a variant of the PLA-index that is as fast
as the direct access table of k-mer ranks but takes substantially less space. A similar idea
was used in the context of a PLA-based dictionary [3].

First, we construct an MPHF with the set of keys being the distinct k-mers in S. We
then build the basic PLA-index. Finally, we construct an error array E of size n. For each
distinct x in S, we set E[MPHF(x)] = plaEst(x) − rank(S, x). To perform rank(x), we let
p = plaEst(x) − E[MPHF(x)], check if S[p] = x, and if yes, then return p, otherwise return
−1. The binary search through S done by the basic PLA-index is now avoided and replaced
with the cost of one MPHF calculation and one access to E.

Since each entry in E is guaranteed to be between −ε and +ε, the additional space
required over the basic PLA-index is n lg(2ε + 1) bits for the E array and the space to store
the MPHF (usually 2-4 bits per k-mer). The additional space is decreased for lower ε but
the space of the basic PLA-index is increased (Theorem 1). We explore the trade-off in
Section 6.4.

6 Experimental results

In this section, we evaluate the performance of the PLA-index and demonstrate how it can
be applied in a variety of bioinformatic applications. PLA-index is freely available and open-
source at https://github.com/medvedevgroup/pla-index, along with reproducibility
information for the experiment in this section.

6.1 Experimental setup

We used a machine with an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz processor with 64
cores and 512 GB of memory to run our experiments. Unless otherwise stated, all reported
running times are wall clock times and medians of five runs. The results of all search and
rank PLA-index operations were confirmed for correctness. We note that our experiments
with the PLA-index do not change the output of any downstream applications, thus we do
not report accuracy in any of the experiments. Unless otherwise stated, we used k = 21 for
our indices, in line with previous work [15]. We used libdivsufsort [18] to construct suffix
arrays and we use PTHash [22] for MPHF construction.

6.2 PLA-index speeds up suffix array queries

We demonstrate how the repeat-stretched PLA-index can be used to speed up the search
query in the case that S is represented indirectly via a suffix array. We compare against
an index-less binary search, Sapling [15], and two versions of the PGM-index [9]. There
are other k-mer indexing tools (e.g. SSHash [21]), including ones using piece-wise linear
approximation to the rank curve (eg. Lemonhash [8]); however, as these are not search
indices, we do not compare against them. We use three genomes: the human genome
(hg38, N = 3, 049, 315, 763, n = 2, 333, 046, 826), the Gorilla genome (RefSeq Accession
GCF_029281585.1, N = 3, 595, 314, 193, n = 2, 346, 463, 274), and the C.elegans genome
(RefSeq Accession GCF_000002985.6, N = 100, 286, 381, n = 93, 046, 063).

https://github.com/medvedevgroup/pla-index
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For the human genome (Figure 4A), first, we observe that the repeat-stretched PLA-index
outperforms the basic PLA-index. Second, the (repeat-stretched) PLA-index nearly halves
the time of a regular binary search when used with ε = 63, for only 34 MiB of space. Third,
when compared to Sapling, for similar index size, PLA-index is at least 75% faster (a precise
comparison is difficult because the index sizes do not match exactly). This underscores the
importance of an error guarantee, optimal segment selection, and compact representation, as
these are the main improvements of PLA-index over Sapling. Fourth, the PLA-index uses
less than half the space of the PGM index, when keeping the query time fixed.

For the Gorilla (Figure 4B) and C.elegans (Figure 4C) genomes, the trends of the results
are generally the same. A major difference is that for C.elegans, the basic and repeat-stretched
PLA-index have near identical performance. This can be explained by the fact the average
repeat length in C.elegans is N/n = 1.08, while for the human it is N/n = 1.31. As expected,
repeat stretching does not help when there are not many repeats.

Overall, we find it remarkable how small the PLA-index is. With only 2 MiB of memory,
we can estimate the position of a k-mer in a suffix array of size ≈ 3 billion to within 1023
positions. With 34 MiB of memory, we can estimate it to within 63 positions.

We also measured construction time and memory on hg38 (Table 1). The PLA-index
was roughly the same as the PGM-index: it used a little bit less memory but was a little bit
faster. Sapling was substantially slower and more memory intensive. Overall, we did not
optimize construction time or memory, so we believe there is a lot of room for improvement.

We also evaluated the performance of PLA-index for a different k-mer size (k = 31) and
found the resulting trends to be the same as for the chromosome 1 of the whole genome
(Figure 5).

6.3 PLA-index reduces memory use of read aligner

Strobealign is a recent aligner for short reads [26]. To represent the reference, it uses a seed
table where each row corresponds to a seed and contains the 64-bit hash of the seed sequence
and its associated data. The rows are sorted in increasing order of hash values. Thus, the
seed table is a direct representation of a sorted list of values, with the minor difference
that each element is not a k-mer but a 64-bit hash value. To align the reads, strobealign
repeatedly searches the table to find the location of a read’s seeds in the reference. In order
to avoid cache-unfriendly binary search, strobealign also stores a large pointer vector (e.g.
for the human reference, it has 228 elements), where the element at position h is the index of
the first row in the seed table whose hash value starts with h.

We modified strobealign by replacing the pointer vector with the repeat-stretched
PLA-index. Table 2 shows that the PLA-index takes two or three orders of magnitude
less space than the pointer vector. For example, while the pointer vector takes 2 GiB for
the human, PLA-index takes 1.5 MiB for ε = 63. The overall memory usage of strobealign
is still dominated by other components of their index; though these can be substantially
optimized [27], it is outside the scope of our project. We did observe a 1% slow down on
Drosophila and about a 5% slow down on human. We believe that this is simply due to the
fact that strobealign code has been highly optimized for speed [27], while our implementation
is only a prototype. We note that increasing ε does not increase the runtime, indicating
that the overhead of implementing rank on a repeat-stretched PLA-index when S is stored
directly is negligible.

WABI 2024
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Figure 4 Suffix array search query time on the whole genomes of human (Panel A), Gorilla
(Panel B), and C.elegans (Panel C). To measure query time for a genome, we randomly choose 50
million positions of the genome (for C.elegans we chose 5 million), and used the k-mers (k = 21)
starting at those positions as queries. We report the total wall-clock time needed to run all the
queries. PGM-index only returns an interval of possible locations, so we supplemented it with
the same binary search as we have in PLA-index. Binary search does not use an index, hence the
running time is shown at index size 0. Each curve was generated from four runs. For non-Sapling
tools, the runs corresponded to values of ε ∈ {15, 63, 255, 1023}. For Sapling, the runs corresponded
to setting the number of buckets to 220, 221, 222 and 223 for human, 219, 221, 223 and 225 for Gorilla,
and 213, 216, 218 and 220 for C.elegans. Raw numbers are shown in the Appendix in Tables 5, 6,
and 7.
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Table 1 Construction time and memory for hg38. Index size is shown in MiB, construction time
is shown in minutes, and construction memory is shown in GiB. Peak memory was measured.

Basic PLA-index Repeat PLA-index PGM-index Sapling

Index Construction Index Construction Index Construction Index Construction

Size Time Mem Size Time Mem Size Time Mem Size Time Mem

2.5 21 26 2.4 23 26 5.0 19 29 16 35 100
9.3 21 26 8.9 22 26 21.0 19 29 32 33 100

35.3 21 26 33.8 21 26 84.9 19 29 64 29 100
145.1 21 26 135.8 20 26 370.4 20 29 128 32 101

Figure 5 Suffix array search time on human chromosome 1 using k = 31. We used the same
experimental setup as Figure 4, but, because chr1 is relatively small, we used only 5 million queries
and set ℓ = 1/8. For Sapling, the runs correspond to setting the number of buckets to 215, 217, 219

and 221.

6.4 PLA-index-exact reduces memory of a direct access rank table
We compare PLA-index-exact to the fastest alternative option, which stores each k-mer’s
exact rank, rather than its error. Table 3 shows that PLA-index-exact offers a drastic
improvement, reducing the total space by 76% without increasing the run time (using ε = 63
on hg38). Further space improvements are possible by making ε = 15, but the run time
starts to increase beyond that of the direct access rank table. PLA-index-exact also more
than halves the search time of the repeat-stretched PLA-index (Figure 4A), though at a
considerable space cost. Table 3 also shows that decreasing ε does not speed up the search
time; the run time seems to be influenced by low-level system effects, and we do not pursue
the question further in this paper.

6.5 Number of segments
The intention behind repeat stretching is that it should reduce the number of segments.
Table 4 confirms this effect in practice. Using ε = 63 for illustrative purposes, the percentage
decrease in the number of segments is 11%, 16%, and 1%, respectively for Human, Gorilla,
and C.elegans. Unsurprisingly, this correlates with how repetitive the genomes are. In
particular, the N/n values for these three genomes are 1.31, 1.53, and 1.08, respectively.
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Table 2 Breakdown of memory usage and runtime by Strobealign, with and without our
PLA-index. The PV column indicates the space used by the Pointer Vector, which our modified
version replaces with PLA-index. The “Other” column refers to the sum of all other components of
the aligner that remain unaffected by our modifications. To measure runtime, we used 16 threads
and measure wall clock time of a single run. The Drosophila experiment uses a read set with 10.5
million paired-end reads and BDGP6.22 [24] as the reference. The human experiment uses a read
set with 10 million paired-end reads with T2T-CHM13v2.0 [25] as the reference. All reads were
simulated using the same setup as [26].

Index memory (MiB) Alignment time (s)

Dataset Max Error N. segments PLA-index PV Other Modified Original

Drosophila
255 495 .01

64 615
421

41763 6,368 .07 427
15 62,092 .60 425

Human
255 28,374 0.3

2,048 12,710
630

59063 136,322 1.5 622
15 1,055,142 10.5 625

Table 3 Performance of PLA-index-exact on the suffix array of hg38 on 50 million queries. We
compare against storing the exact ranks in a direct access table. The run-times reported are the
medians of five independent runs. The queries are the same as in Figure 4A.

PLA-index-exact Rank table

Max error MPHF PLA-index Table search Table search
(MiB) (MiB) (MiB) time (s) (MiB) time (s)

4,095

728

0.6 3,616 27

8,900 32
1,023 2.5 3,059 28
255 9.3 2,503 28
63 35.3 1,947 31
15 145.1 1,391 33

Table 4 also confirms that the the number of forced segments created by our construction
algorithm is negligible, i.e. about 1 in 10,000 in the worst case. Thus the idea of improving
compression by rounding the Ystart and Yend values does not result in any noticeable increase
of the number of segments.

7 Conclusion

In this paper, we presented several variations of the PLA-index, a search index for a sorted
list of k-mers. The PLA-index exploits the linear-like structure of the rank curve in order to
speed up rank and search queries. It uses an order of magnitude less space than Sapling
and uses less than half the space of the PGM-index, for roughly the same query time. We
demonstrated how the PLA-index can be applied in various settings to achieve dramatic time
and/or memory improvements. For example, the PLA-index sped up the binary search for a
k-mer in a suffix array by two-fold, reduced the memory of a short-read aligner by 2 GiB on
human dataset, and reduced the memory of a direct access table of k-mer ranks by 76%.
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Table 4 The number of segments in the basic and repeat-stretched PLA-indices, for the three
genomes in Figure 4. The number of forced segments is the number of segments that need to be
added because we round Ystart or Yend.

Genome Max error Number of segments

Basic Repeat-stretched

Total Forced Total Forced

Human 1,023 302,990 1 269,717 16
255 1,198,397 1 1,066,934 88
63 4,831,533 5 4,290,786 465
15 21,298,004 73 18,497,919 2,177

Gorilla 1,023 377,156 0 319,179 40
255 1,461,437 1 1,226,663 179
63 5,673,700 3 4,704,707 715
15 22,932,639 102 19,156,813 2,719

C. elegans 1,023 8,039 0 8,022 0
255 33,974 0 33,771 0
63 148,427 0 144,405 0
15 694,719 0 654,870 5

One can imagine different ways in which the rank curve linearity can be exploited to
index sorted lists. The PLA-index is just one possibility, guided by our own design choices.
However, several reasonable alternatives might be pursued. For example, one can abandon
the maximum error guarantee of the piece-wise linear function and instead take a heuristic or
probabilistic approach to reducing the error (e.g. reduce the average error). One might also
not be limited by a linear function but instead fit quadratic function, or, even better, learn
from the data a set of functions that can be fit to each piece. While some alternatives were
explored in previous works (e.g. [15]), we believe there remains a lot of unexplored potential.

More broadly, the linearity of the rank curve of genomic spectra could be exploited by
other data structures and algorithms. For example, [3] proposed a PLA-based dictionary,
but it has not been applied in the k-mer setting. Other possibilities include minimum perfect
hash functions [8], rank and select data structures, and k-mer counting. We believe that
PLA-based approaches have the potential to outperform many state-of-the-art approaches
when dealing with genomic k-mer data.
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A Appendix

The Appendix contains Tables 5, 6, and 7, which provide the raw numbers used to generate
Figure 4.

Table 5 Index sizes, in MiB, of PLA-index and PGM. This table provides the raw numbers
already shown in Figure 4.

Genome Max error PLA-index PGM PGM-compress

Basic Repeat-stretched

Human 1,023 2.5 2.4 5.0 3.3
255 9.3 8.9 21.0 12.5
63 35.3 33.8 84.9 49.0
15 145.1 135.8 370.4 208.0

Gorilla 1,023 3.1 2.8 6.3 3.9
255 11.3 10.2 24.4 14.5
63 41.2 36.9 94.0 54.3
15 156.0 143.2 387.2 217.9

C.elegans 1,023 0.07 0.07 0.16 0.11
255 0.27 0.28 0.66 0.41
63 1.09 1.14 2.83 1.65
15 4.77 4.80 12.91 7.14
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Table 6 Query times, in seconds, of PLA-index and PGM. This table provides the raw numbers
already shown in Figure 4.

Genome Max error PLA-index PGM PGM-compress Binary Search

Basic Repeat-stretched

Human 1,023 112 105 112 142

153255 103 87 94 121
63 79 74 78 115
15 65 62 63 110

Gorilla 1,023 108 104 103 139

140255 93 84 86 124
63 80 72 73 121
15 67 62 56 108

C.elegans 1,023 9.1 9.1 9.2 10.9

8.7255 7.0 7.2 7.3 9.2
63 5.6 5.7 5.7 8.7
15 4.1 4.2 4.2 7.2

Table 7 Sapling results. This table provides the raw size and time numbers already shown in
Figure 4, along with the number of segments.

Genome N. of segments Index size (MiB) Query time (s)

Human 1,048,576 16 133
2,097,152 32 130
4,194,304 64 123
8,388,608 128 120

Gorilla 524,288 8 242
2,097,152 32 227
8,388,608 128 218

33,554,432 512 218

C.elegans 8,192 0.13 9.1
65,536 1.0 7.5

262,144 4.0 6.8
1,048,576 16.0 6.1
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