
Swiftly Identifying Strongly Unique k-Mers
Jens Zentgraf #Ñ

Algorithmic Bioinformatics, Department of Computer Science,
Saarland University, Saarbrücken, Germany
Center for Bioinformatics Saar, Saarland Informatics Campus, Saarbrücken, Germany
Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany

Sven Rahmann #Ñ

Algorithmic Bioinformatics, Department of Computer Science,
Saarland University, Saarbrücken, Germany
Center for Bioinformatics Saar, Saarland Informatics Campus, Saarbrücken, Germany

Abstract

Motivation. Short DNA sequences of length k that appear in a single location (e.g., at a single
genomic position, in a single species from a larger set of species, etc.) are called unique k-mers.
They are useful for placing sequenced DNA fragments at the correct location without computing
alignments and without ambiguity. However, they are not necessarily robust: A single basepair
change may turn a unique k-mer into a different one that may in fact be present at one or more
different locations, which may give confusing or contradictory information when attempting to place
a read by its k-mer content. A more robust concept are strongly unique k-mers, i.e., unique k-mers
for which no Hamming-distance-1 neighbor with conflicting information exists in all of the considered
sequences. Given a set of k-mers, it is therefore of interest to have an efficient method that can
distinguish k-mers with a Hamming-distance-1 neighbor in the collection from those that do not.

Results. We present engineered algorithms to identify and mark within a set K of (canonical)
k-mers all elements that have a Hamming-distance-1 neighbor in the same set. One algorithm is
based on recursively running a 4-way comparison on sub-intervals of the sorted set. The other
algorithm is based on bucketing and running a pairwise bit-parallel Hamming distance test on small
buckets of the sorted set. Both methods consider canonical k-mers (i.e., taking reverse complements
into account) and allow for efficient parallelization. The methods have been implemented and applied
in practice to sets consisting of several billions of k-mers. An optimized combined approach running
with 16 threads on a 16-core workstation, yields wall-clock running times below 20 seconds on the
2.5 billion distinct 31-mers of the human telomere-to-telomere reference genome.

Availability. An implementation can be found at https://gitlab.com/rahmannlab/strong-k-
mers.

2012 ACM Subject Classification Applied computing → Molecular sequence analysis; Applied
computing → Bioinformatics; Theory of computation → Parallel algorithms; Theory of computation
→ Sorting and searching; Information systems → Nearest-neighbor search

Keywords and phrases k-mer, Hamming distance, strong uniqueness, parallelization, algorithm
engineering

Digital Object Identifier 10.4230/LIPIcs.WABI.2024.15

Supplementary Material Software (Source code): https://gitlab.com/rahmannlab/strong-k-
mers [18], archived at swh:1:dir:7ce51b0df8003cb2d49b99084d09f2ce6df56638

Acknowledgements We thank Karl Bringmann for discussions about the FourWay algorithm. We
also thank the four reviewers of the initial version of this manuscript for their suggestions to improve
its presentation.

© Jens Zentgraf and Sven Rahmann;
licensed under Creative Commons License CC-BY 4.0

24th International Workshop on Algorithms in Bioinformatics (WABI 2024).
Editors: Solon P. Pissis and Wing-Kin Sung; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zentgraf@cs.uni-saarland.de
https://www.rahmannlab.de/people/zentgraf
https://orcid.org/0000-0001-9444-2755
mailto:sven.rahmann@uni-saarland.de
https://www.rahmannlab.de/people/rahmann
https://orcid.org/0000-0002-8536-6065
https://gitlab.com/rahmannlab/strong-k-mers
https://gitlab.com/rahmannlab/strong-k-mers
https://doi.org/10.4230/LIPIcs.WABI.2024.15
https://gitlab.com/rahmannlab/strong-k-mers
https://gitlab.com/rahmannlab/strong-k-mers
https://archive.softwareheritage.org/swh:1:dir:7ce51b0df8003cb2d49b99084d09f2ce6df56638;origin=https://gitlab.com/rahmannlab/strong-k-mers;visit=swh:1:snp:69ece597a22096d56e1fa4598d2ccb6e6627fb52;anchor=swh:1:rev:7187800f25c4f697df674a935fe3d05e7d72eaf9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Swiftly Identifying Strongly Unique k-Mers

1 Introduction

Alignment-based sequence analysis methods are increasingly being replaced by alignment-free
(or at least partially alignment-free) methods. The reason for this development is the high
computational cost for sequence alignments. An early example of this development was
the replacement of overlap-consensus based genome assembly by De Bruijn graph based
assembly methods, subdividing the sequenced DNA fragments further into overlapping pieces
of length k (so-called k-mers) [14].

Another example is transcript quantification from RNA-seq data, pioneered by kallisto [1],
which assigns a transcript to each read not by computing alignments, but directly from the
k-mer content of the reads. As transcripts from the same gene typically share many of the
same k-mers, an elaborate procedure (based on the expectation maximization algorithm)
was necessary to obtain exact read-to-transcript assignments.

More recently, there has been the example of xenograft sorting [19], where one wants to
separate reads in a mixed sample from two species (typically, human tumor with surrounding
mouse tissue). This had previously been done by aligning all reads to both the human
genome and the mouse genome and picking the better alignment for each read to assign
the species of origin. However, it is computationally much more efficient to build a k-mer
index (for k = 25, for example) with associated species information and to classify reads
according to their k-mer content. This approach can save up to 80% of the CPU work [19].
The same ideas generalize to metagenomic profiling, where one seeks to quantify the amount
of different species in a metagenomic sample, again not based on alignments, but based on
k-mer content [2, 7, 3].

Many more examples could be mentioned, but here we want to focus on a particular
aspect of alignment-free methods: the utility of strongly unique k-mers vs. (weakly) unique
k-mers vs. non-unique k-mers.

Informally, a k-mer is unique if it occurs in a single location in the sequence collection
under consideration. Details depend on the definition of location, which in turn depends on
the intended application. When indexing a reference genome, a k-mer is unique if it occurs
at a single position on a single chromosome (considering both strands of all chromosomes).
In the transcript quantification scenario, it is unique if it occurs in a single transcript (but
it may occur several times in that transcript). In the xenograft or metagenomic scenario,
it is unique if it occurs in a single species (possibly several times). Thus, unique k-mers
are both more useful and technically easier to handle than non-unique k-mers: They give
unambiguous information about the origin of the sequence that does not need to be further
decoded or disambiguated together with information from other k-mers. They also allow
us to keep the key-value store implementation simple because only a single value (location)
is associated with them. In the above respective scenarios, the value would be the unique
chromosome-position pair (in a reference genome), the unique transcript ID (for transcript
quantification), the unique species ID (xenograft or metagenomics applications), respectively.
It is also possible to consider only the k-mers without associated value, which is the setting
we consider here, and where uniqueness simply means a single occurrence in the sequence
collection.

For non-unique k-mers, a variable-length list of such values would need to be properly
handled, which typically involves another level of indirection with more memory lookups and
more cache misses. Instead, when focusing on unique k-mers, one simply stores a special
value (call it ∞) for non-unique k-mers, indicating that they occur in more than one location.

J. Zentgraf and S. Rahmann 15:3

Of course, the main question is whether sufficiently many unique k-mers exist in the
indexed sequence collection for the intended application. For k ≥ 23, most of the canonical
k-mers in the human genome are unique [17, 11]. For transcript quantification with many
similar transcripts (splice variants) from the same gene, it can be difficult to cover each
transcript with sufficiently many unique k-mers (even for large values of k), but for k ≥ 25,
distinguishing between human and mouse k-mers is relatively easy, because only few k-mers
occur in both species [19].

Given the advantages of unique k-mers, they should be used wherever their abundance
permits, as they greatly simplify sequence data analysis. However, and this is our main point
here, uniqueness is not a robust property: A single nucleotide change, such as a sequencing
error or an individual single-nucleotide variant, may turn a unique k-mer x (with some
associated value v) into a different k-mer x′ that may either not exist at all in the indexed
collection, exist as a unique k-mer with the same value v or a different value v′, or as a
non-unique k-mer. The critical case is that x′ ̸= x exists as a unique k-mer with a different
value v′ ̸= v, because then we receive confusing or conflicting information about the origin of
the examined sequence.

Therefore, a stronger concept than just uniqueness is helpful. Consider a k-mer x and
its Hamming-distance-1 neighborhood N(x) containing exactly the 3k k-mers that differ
at exactly one position from x. If none of the x′ ∈ N(x) exists in the indexed collection,
then we can be certain that no single substitution can turn x into a k-mer with a different
associated value. The same is true if all existing x′ ∈ N(x) have the same associated value v

as x. (This idea also applies to plain sequences or multisets of k-mers without associated
values.) We call such k-mers strongly unique. Strong uniqueness is a useful concept for
alignment-free sequence analysis for the reasons stated above: If a strongly unique k-mer
is seen in a sequenced DNA fragment, that fragment can be unambiguously and robustly
located; a single substitution cannot give wrong information.

A technical complication arises from the double-strandedness of DNA and from the
equivalence of a sequence s to its reverse complement. Formal details and definitions are
therefore presented in Section 2.

The above explanation should give enough motivation to consider the weak k-mer
identification problem (formally stated as Problem 5 in Section 2): Given a k-mer set
K, identify those elements of K (called the weak k-mers) that have a Hamming-distance-1
neighbor in K. In practical settings, one combines a solution for this problem with k-mer
counting to classify unique vs. non-unique k-mers and can also add comparisons of k-mer
associated values, as described above.

In this work, we focus on the basic problem of weak k-mer identification, for which we
present two different efficient approaches (Section 3) after giving formal definitions (Section 2).
An comparative evaluation of both methods follows (Section 4), and a discussion concludes.

2 Preliminaries

We introduce several basic definitions: k-mers, their (canonical) integer encoding, bit-parallel
computation of the Hamming distance between two k-mers, canonical Hamming distance,
strong and weak k-mers in a set.

We only consider DNA sequences over the alphabet Σ = {A, C, G, T} here (and in our
current implementation), but the ideas generalize to other alphabets. However, we take the
double-stranded nature of DNA molecules into account when considering Hamming distance
between DNA sequences; this would and should not be done with different alphabets.

WABI 2024

15:4 Swiftly Identifying Strongly Unique k-Mers

▶ Definition 1 (k-mer). Given an alphabet Σ, a k-mer is a sequence of length k over Σ.
Given a (long) string s over Σ, a k-mer of s is any substring of length k of s.

▶ Definition 2 (reverse complement). The reverse complement rc(s) of a DNA sequence s is
obtained by reversing the sequence and substituting A↔ T and C↔ G.

Canonical integer encoding of k-mers. To represent and store a DNA k-mer x efficiently,
it can be bijectively encoded as an integer 0 ≤ enc(x) < 4k for fixed k: Each base is encoded
as a number in {0, 1, 2, 3} (e.g. lexicographically), and the resulting sequence of k numbers
is interpreted as a base-4 integer. Equivalently, and relevant for the bit-parallel Hamming
distance test described below, we may write the same integer in its 2k-bit representation.
For example, enc(TACG) = (3012)4 = (11|00|01|10)2 = 198.

To ensure that a k-mer x and its reverse complement rc(x), which both represent the
same DNA molecule, are encoded by the same integer value, we define the canonical integer
encoding or canonical code of x as cc(x) := max{enc(x), enc(rc(x))}. (In most of the
literature, the definition is given with the minimum instead of the maximum, but it does
not matter in the context here. The maximum-based definition offers advantages when also
using minimizers to avoid taking a minimum twice.) For example, cc(TACG) = cc(CGTA) =
max{enc(TACG), enc(CGTA)} = max{198, 108} = 198.

Hamming distance between two k-mers. The Hamming distance d(x, y) between two
k-mers x, y is the number of positions in which x and y differ. For 2-bit encoded DNA
sequences, there is a fast bit-parallel way to compute the Hamming distance and to test
whether d(x, y) ≤ 1.

From the 2k-bit patterns of x and y – let them be p = (p2k−1, . . . , p0) and q = q2k−1, . . . , q0,
respectively – we compute a bit pattern h = (h2k−1, . . . , h0) that has hi = 0 for all odd i,
and hi = 1 for even i if and only if the nucleotides encoded by (pi+1, pi) and (qi+1, qi) differ.

To achieve this, we first compute u := p⊕ q, where ⊕ is the bitwise exclusive-or (XOR)
operation, setting those bits ui = 1 where pi ̸= qi. We then combine the two bits of each
nucleotide into the even bits of u and clear the odd bits to indicate which nucleotides differ
between x and y by setting h := (u | (u≫ 1)) & (0101 . . . 01)2. Here, the operators |, & and
≫ represent bitwise or, bitwise and, and bit shift right, respectively. The obtained h has the
desired properties. The population count (number of 1-bits) of h then equals the Hamming
distance between the k-mers x and y.

Testing whether the Hamming distance is at most 1 (i.e., whether h is zero or a power
of 2) can be further simplified by computing w := h & (h− 1). We have w = 0 if and only if
h has at most a single 1-bit, and w ≠ 0 if and only if the Hamming distance between the
k-mers represented by x and y is at least 2.

Canonical Hamming distance. In the following, we interpret DNA k-mers as double
stranded molecules, i.e., both x and rc(x) are represented by either of them (in practice,
their canonical integer encoding cc(x)). This has to be considered for Hamming distance
computations.

For example, take x = AAAA and y = ATTT. Seen as single-stranded k-mers, clearly
d(x, y) = 3. However, seen as double-stranded DNA molecules, ATTT is equivalent to its
reverse complement AAAT, and d(x, rc(y)) = 1. Therefore, we make the following definition.

J. Zentgraf and S. Rahmann 15:5

▶ Definition 3 (Canonical Hamming distance). Given DNA k-mers x, y, their canonical
Hamming distance is

H(x, y) := min{d(x, y), d(x, rc(y))} . (1)

Problem Statement. As stated in the introduction, our goal is to identify the strongly
unique canonical k-mers in a collection of sequences. The uniqueness property is identified
by k-mer counting, for which there exist many efficient methods and tools with different
strength and weaknesses, such as KMC2 [4], KMC3 [8], Gerbil [6], Jellyfish [10], hackgap [20],
Kaarme[5], among others. In fact, being able to count up to 2 is sufficient for the present
purpose. The output of a k-mer counter is a set K of distinct canonical k-mers, and a count
value for each x ∈ K. The missing piece is to identify the weak canonical k-mers in K in the
following sense.

▶ Definition 4 (Weak k-mer, strong k-mer). Given a set K of distinct canonical DNA k-mers,
a canonical k-mer x ∈ K is called weak (within K) if there exists another y ∈ K with
H(x, y) = 1. The other canonical k-mers are called strong (within K).

When we mark weak canonical k-mers in K and additionally have their counts, we have
identified the strongly unique canonical k-mers as those with a count of 1 that are not weak
in K. Therefore, we here focus on the following problem.

▶ Problem 5 (Weak canonical k-mer identification). Given a set K of canonical DNA k-mers,
identify the subset W ⊆ K of the weak canonical k-mers.

How a solution to this problem is implemented in a concrete setting may vary with the
representation of K. In practice, the elements of K will typically be canonical integer codes
of k-mers, and we may use one more bit to indicate the weak ones.

We point out two obvious algorithms (that are too inefficient in practice) to solve the
problem. Let K contain n distinct k-mers.
1. Full pairwise comparison: Use the bit-parallel method from above to test all

(
n
2
)

=
n(n− 1)/2 pairs x ≠ y whether they satisfy H(x, y) ≤ 1, and if yes, mark both x and y

as weak.
2. Neighborhood generation: If K is given as a hash table allowing efficient look-up, for each

x ∈ K, generate the canonical integer codes of the 3k Hamming-distance-1 neighbors, and
look them up in K. If any neighbor is found, mark both x and the discovered neighbor
as weak.

The first method is impractical because of its quadratic running time. The second method
has a running time linear in n, but with a factor of 3k, and every memory lookup is likely a
cache miss. It is thus slow in practice, but can still be useful as a baseline for comparison.
In the following section, we present more efficient practical methods for identifying weak
canonical k-mers. An evaluation follows in Section 4.

3 Methods

We present two algorithms to identify weak k-mers. Independently of the given form of
input (hash table based key-value store, or sorted or unsorted list of distinct k-mers) and
independently of the used algorithm, we first create a lexicographically sorted list of the k-mers
and their reverse complements. If the original input consists of canonical k-mers, or the
reverse complements are not included for another reason, this step may double the input size

WABI 2024

15:6 Swiftly Identifying Strongly Unique k-Mers

when we add the reverse complements explicitly. This step is necessary for both algorithms to
ensure that we consider the canonical Hamming distance instead of the (standard) Hamming
distance for the original input.

The first algorithm is based on 4-way comparisons, similar to a multi-way mergesort. In
the first round, the sorted k-mer list is divided into 4 buckets based on the k-mers’ first
nucleotide (A, C, G, T). For each nucleotide c, a pointer pc initially points at the start of
the c-bucket. In each step, we compare the four (or possibly less, once entire buckets have
been processed) elements pointed to by the pc, c ∈ Σ, ignoring the bucket prefixes. (In the
first round, the bucket prefixes are single nucleotides, so we compare only the remaining
(k − 1)-mers.) We identify the set C∗ ⊆ Σ such that the pc, c ∈ C∗, point to the minimal
element(s) of the examined (k − 1)-mers. If |C∗| = 1, there is a unique minimal (k − 1)-mer,
but if |C∗| ≥ 2, we have found equal minimal (k − 1)-mers, i.e. k-mers that differ only in
their first nucleotide, and therefore a group of weak k-mers. The pc, c ∈ C∗, are incremented,
and the process is repeated until all buckets have been fully processed. In the next round,
each of the buckets is subdivided into 4 sub-buckets, and the 4-way comparison is repeated
recursively for each sub-bucket (with k decreased by 1). Details are given in Section 3.1.

The second algorithm does pairwise Hamming distance tests, but on small buckets. If
H(x, y) = 1, then the one difference must be either in the first, second, third, or fourth
quarter of the sequence (rounding arbitrarily for now). Because the input contains all reverse
complements, it is sufficient to consider the third and the fourth quarter: If x, y differ in
the first (second) quarter, then rc(x), rc(y) differ in the fourth (third) quarter, respectively.
If the difference is in the fourth quarter, the first 3k/4 nucleotides are equal, and we can
linearly scan the sorted k-mer list, divide it into corresponding buckets of equal 3k/4 first
nucleotides and run a bit-parallel pairwise Hamming test within each bucket. The overall
efficiency of this approach depends on the relation between n and 43k/4 and not having
large buckets. If k is sufficiently large, many of the buckets will contain only a single or two
elements, and the process is indeed very fast. It remains to deal with pairs x, y that differ in
one nucleotide in their third quarter. Details are given in Section 3.2.

3.1 Recursive 4-way comparisons (FourWay)
Basic algorithm. The algorithm FourWay is based on 4-way merges. The input is a
set K of canonical k-mers, which are “unpacked” into twice as many forward and reverse
complement k-mers, which are then sorted lexicogaphically. This yields a sorted k-mer
array A of length n.

The algorithm FourWay is recursive. It is called with a depth parameter d ∈ {1, . . . , k−1}
and a list of start pointers q = (qc) with c ∈ Σ ∪ {$}. Each invocation FourWay(A, d, q)
identifies weak k-mers in an interval I = [qA, q$[of A, where the first (d− 1) nucleotides of
the contained k-mers are equal, and qc (for c ∈ Σ) points to the start of the sub-interval
of I where the d-th nucleotide is c (Figure 1). The sentinel pointer q$ points beyond the
end of the interval I. In the initial call, d = 1 (no common prefix, the first nucleotide is
compared), qA = 0 points to the first (smallest) element in A (with indexing starting at zero)
and q$ = n points past the end of A. The initial values of the other pointers qc, c ∈ {C,G,T}
are determined by linearly scanning the sorted array once.

First, we create working copies p = (pc) of q = (qc) for c ∈ Σ. While q will stay unchanged,
the pc increase towards larger elements as the algorithm proceeds. Initially, all the pc pointers
are active. When pc moves beyond the end of its sub-interval (i.e., it reaches a qc′ for a
character c′ > c, where the sentinel is larger than any character in Σ), the pointer becomes
inactive. If only a single pointer or no pointer is active any more, we are done and proceed
to the recursive calls; see below.

J. Zentgraf and S. Rahmann 15:7

b=k-1 b=k-2 b=k-3

.
.

.
.

.
.

.
.

.
.

.
.

...

...
TA T T T

C A A A A
A
A

...

...
A T T T
C A A A

A
A

...

...
A T T
C

A
A A A

pA

pT

pC

pG

pA

pT

pC

pG

pA

pT

pC

pG

...

...
TC T T T

G A A A A
A
A

...

...
C T T T
G A A A

A
A

...

...
C T T
G

A
A A A

...

...
TG T T T

T A A A A
A
A

...

...
G T T T
T A A A

A
A

...

...
G T T
T

A
A A A.

.

.
.

.
.

TT T T T ... T T T T ...A T T T ...AA

...A A A A A ...AA A A A ...A AA A A

.
.

.
.

.
.

Figure 1 Recursive 4-way comparison at different depths d = 1, 2, 3, from left to right. At
depth d, the first d − 1 characters of all k-mers within the considered interval are equal, and the
d-th character is compared. Let b := k − d. The (at most) four b-mer suffixes of the k-mers pointed
to by pointers pc, c ∈ Σ are compared, and the minimal b-mer(s) are identified among the four
elements. The k-mers with equal minimal b-mers are marked as weak if there are at least two equal
minimal b-mers. The pointers of minimal b-mers are incremented (or inactivated, if their bucket has
been completely scanned). After the 4-way comparison of an interval is completed, it is repeated
recursively with increased depth d + 1 on its 4 sub-intervals (only the first such recursive call for the
A-subinterval is shown).

In each step, the algorithm examines the k-mers at the locations pointed to by the active
pointers pc. We call these the active k-mers. They jointly have the following properties:
1. Their first d− 1 characters are equal (true for all k-mers in interval I),
2. their d-th characters are distinct,
3. their suffixes of length b = k − d are arbitrary, but examined in increasing order;
4. they are the smallest k-mers in I that have not yet been but still may be identified as

weak based on a single difference at their d-th character.
The comparison is visualized in Figure 2. We look at the b-suffixes of the active k-mers and
find the smallest one(s). Let C∗ be the character set such that exactly the k-mers at pc,
c ∈ C∗, have the minimal b-suffixes among the active k-mers. If |C∗| ≥ 2, we have identified
a group of k-mers of size |C∗| that differ only at their d-th position; hence all of them are
marked as weak. (If |C∗| = 1, nothing happens.) Then, all pc for c ∈ C∗ are incremented.
These steps are repeated until a single (or no) active pc remains.

After processing interval I, if d < k, the sub-intervals are processed recursively, so there
are |Σ| = 4 recursive calls, each with increased d ← d + 1 (and reduced b = k − d). The
initial pointers q for each subinterval are obtained by a linear scan through the sub-interval.
The recursive call is not performed if the length of the subinterval is at most 1, as there is
nothing to compare then.

Implementation on 2k-bit encoded integers. The current implementation uses a 2k-bit
encoded representation of k-mers and is restricted to k ≤ 31, leaving at least one bit for
marking weak k-mers within the 64-bit integer encoding.

WABI 2024

15:8 Swiftly Identifying Strongly Unique k-Mers

.
.

.
.

T G C A 1 hit
no weak0 0 1 0

A T A T C AA C G T A
A T A T C GA C G T A

pC

pG

pT

pA

.
.

CA C G T A T A T A A
CA C G T A T A T T A

GA C G T A T A T C A
GA C G T A T A T C T

TA C G T A T A T G T
TA C G T A T A T T T

.
.

.
.

T G C A 2 hits
weak found0 1 0 1

A T A T C AA C G T A
A T A T C GA C G T A

pC

pG

pT

pA

.
.

CA C G T A T A T A A
CA C G T A T A T T A

GA C G T A T A T C A
GA C G T A T A T C T

TA C G T A T A T G T
TA C G T A T A T T T

.
.

.
.

T G C A 1 hit
no weak0 0 0 1

A T A T C AA C G T A
A T A T C GA C G T A

pC

pG

pT

pA .
.

CA C G T A T A T A A
CA C G T A T A T T A

GA C G T A T A T C A
GA C G T A T A T C T

TA C G T A T A T G T
TA C G T A T A T T T

Figure 2 Weak k-mer identification by 4-way comparison at depth d = 6. The first d − 1 = 5
characters are identical. Pointers pc, c ∈ {A,C,G,T}, point at k-mers whose d-th character is c.
Considering the b := (k − d)-suffixes, we identify the smallest suffix among the pointed-to k-mers.
Left panel: The smallest suffix is TATAA at pC, as indicated by the bit vector (0010). As a single
b-suffix is minimal, no weak k-mers are identified, and pC is increased. Middle panel: The smallest
b-suffix is TATCA at pA and pG. Therefore, the two k-mers pointed to by pA and pG are identical
except for their d-th characters, and we have found a weak pair. Both pA and pG are incremented.
Right panel: The smallest b-suffix is TATCG at pA only. No weak k-mers are identified, and pA is
incremented.

In order to compute C∗, and to keep track of the smallest k-mers, a 4-bit vector v is used.
Iterating over the active k-mers only, if the b-suffix is a new minimum (and also initially), a
single bit is set in v, corresponding to the nucleotide at position d (using A = (0001)2 = 1,
C = (0010)2 = 2, G = (0100)2 = 4, T = (1000)2 = 8). If another b-suffix is equal to the
current minimum, the bit corresponding to the character at position d is additionally set in
v (using bitwise or).

We test whether |C∗| ≥ 2 by checking if the population count of v is at least 2, which is
done by testing if v & (v − 1) ̸= 0.

Optimizations and parallelization. In principle, the depth d is recursively increased up
to k. However, since the array contains both forward and reverse-complement k-mers, we
identify each pair with a Hamming distance of 1 twice, both as x, y and as rc(x), rc(y). In
one case, the difference is in the first half; in the other case, the difference is in the second
half of the k-mers. Therefore, we could stop the recursion at depth ⌈k/2⌉.

However, it is even better to process only the second half of the k-mers, i.e. start at
depth d = ⌊k/2⌋. By an initial linear scan, we identify intervals whose k-mers share the first
(d − 1) nucleotides and divide them among parallel threads, as each such interval can be
processed independently. This allows for almost trivial parallelization among many threads.
In addition, the processed intervals at d ≥ k/2 tend to be short already and can be handled
with good cache locality.

As the depth d approaches k, the intervals become shorter and shorter, even singletons or
empty. Even before that point, the book-keeping required by the recursion creates more work
than the actual comparison of elements. Therefore, if the interval length drops below a certain
value (we determined 24 as a reasonable threshold), we switch to the direct bit-parallel
pairwise comparison, which has excellent cache locality on short intervals. We call this
optimization the FourWay+Pairwise method.

J. Zentgraf and S. Rahmann 15:9

ℓ-prefix ℓ-suffixm

ℓ-prefix s1 s2

Figure 3 All k-mers are split into blocks based on the ℓ := ⌊k/2⌋-prefix and further separated
into sections based on third quarter s1 and last quarter s2.

ℓ-prefix s1 s2

Swap bits Sort

ℓ-prefix s1s2 ℓ-prefix s1s2

Figure 4 After checking if the k-mers differ in a single position in the last quarter s2, existence
of a single difference in the third quarter s1 has to be checked. For this, the nucleotides of s1 and s2

are swapped. Then, k-mers are locally re-sorted (within buckets of common ℓ = ⌊k/2⌋-prefixes), and
the algorithm for the last quarter is applied again.

Overall, the FourWay and FourWay+Pairwise algorithms mainly perform (4-way)
linear scans of intervals of the array, and therefore have excellent cache locality. Hardware
prefetching takes care of moving required k-mers into the CPU caches before they are needed
for comparison, so there is very little memory latency and high memory throughput for these
algorithm by design.

3.2 Pairwise comparisons in small buckets (Quarter)
With the Quarter algorithm, we reduce the number of pairs for which we calculate the
Hamming distance. If two canonical k-mers x ̸= y have a canonical Hamming distance of
H(x, y) = 1, then at least one of the pairs from {x, rc(x)} × {y, rc(y)} have their single
difference in the third quarter s1 or last quarter s2 of their sequences; in the case of odd k,
the middle position m must be included in the third quarter s1 (see Figure 3).

If the difference is in the last quarter s2, then pairwise comparisons can be restricted
to within buckets that share a common ℓ := ⌊k/2⌋-prefix and a common s1 section (for an
overall shared 3k/4-prefix of the k-mer). For example, for k = 25 = (6 + 6 + 7 + 6), we
partition the sorted k-mer array into intervals that share the same (6 + 6 + 7) = 19-mers. As
already many 19-mers are unique in a mammalian genome, the 25-mer intervals are often
small or even contain just a single 25-mer, requiring no further comparisons at all.

If the difference is in the third quarter s1, then pairwise comparisons can be restricted to
sets of k-mers that share both their ℓ-prefix and the sequence in the last quarter s2. These
sets may be conveniently constructed by local re-sorting within blocks that share a common
ℓ-prefix: Swap the nucleotides belonging to sections s1 with those in s2 and re-sort locally
within the ℓ-block (Figure 4); then apply the same interval partitioning as above (in the
example using common (6 + 6 + 6) = 18-mers.

Implementation and parallelization. To keep track of which k-mers are marked as weak,
we use one of the 64 bits of the k-mers. This limits the implementation to k ≤ 31. For the
Quarter algorithm, we use the least significant bit for marking weak k-mers. In the sorting
step after swapping s1 and s2 it is not necessary to special case the bit. Since it is the least
significant bit, the k-mers are sorted correctly.

The algorithm can be easily parallelized over the initial ℓ = ⌊k/2⌋-mers, as these sub-
intervals may be processed independently; this is similar to the FourWay algorithm.

WABI 2024

15:10 Swiftly Identifying Strongly Unique k-Mers

3.3 Memory usage and chunking

As presented here, the algorithms start with an already sorted k-mer set K that contains
both forward and reverse-complemented k-mers. In practice, one more often has an unsorted
collection of canonical k-mers available, e.g., from a key-value store such as a hash table or
file on disk.

However, it may take considerable time and additional memory to convert the available
representation into the required input of the algorithms presented here. For example, the k-
mer counter hackgap can represent the roughly 2.39 billion distinct human canonical 25-mers
and counts up to 255 in less than 12 GB of memory, using bit packing and quotienting ×[20].
However, expanding these into twice as many (4.78 billion) 64-bit integers takes an additional
38 GB of memory for identifying the weak 25-mers.

On smaller-memory systems, the input data can be created and processed in smaller
chunks (at the expense of speed): Select a small number s ≤ ⌊k/2⌋ of initial nucleotides;
often s = 1 or s = 2 is sufficient in practice. Split up the input set K into 4s chunks,
Kj , j = 0, . . . , 4s − 1, where chunk Kj is defined as the sorted subset of K that has an
integer-encoded length-s prefix with value j (i.e., enc(x[: s]) = j). Each chunk is generated
by linearly scanning over the existing representation and extracting only k-mers and reverse
complements that start with the correct prefix; this is done 4s times. The default case
(everything is one big chunk) corresponds to s = 0. All presented algorithms can be run on
each chunk sequentially (and then parallelized based on sub-chunks based on more initial
characters).

3.4 Result interpretation

The presented algorithms only identify one pair with canonical Hamming distance 1, say
x ̸= y with their difference in the second half of the sequences, but not the other pair,
rc(x) ̸= rc(y), with their difference in the first half of the sequences. It is this property that
gives us chunks and parallelization essentially for free.

However, this means that post-processing is required. This is typically required anyway,
as the weak k-mers must be annotated in the original (canonical) representation (say, the
hash table). This involves a linear scan of the annotated sorted set K and a look-up of the
canonical form in the original representation.

In the following evaluation, (times for) pre- and post-processing are not considered.
However, a practical use-case for xenograft sorting is presented, including pre- and post-
processing times (Section 4.3).

4 Computational Experiments

We evaluate FourWay, FourWay+Pairwise and Quarter on the human telomere-to-
telomere (t2t) reference genome [13] with roughly 3.1 billion basepairs and 2.5 billion distinct
31-mers. After presenting results on the exact number of weak and strong k-mers for different
values of k, we compare the algorithms’ running times and their speedup factors when
increasing the number of threads.

Our implementations are written in numba-compiled Python 3.11 [9]. We read a pre-
computed sorted numpy array [16] from disk. The benchmarking equipment consists of a
workstation with AMD Ryzen 9 5950X 16-core processor with 128 GB of main memory.
Code is available at https://gitlab.com/rahmannlab/strong-k-mers.

https://gitlab.com/rahmannlab/strong-k-mers

J. Zentgraf and S. Rahmann 15:11

13 15 17 19 21 23 25 27 29 31

k

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

N
u

m
b

e
r

o
f

k
-m

e
rs

strong
weak

13 15 17 19 21 23 25 27 29 31

k

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n

ta
g

e
 o

f
s
tr

o
n

g
 k

-m
e
rs

Figure 5 Left: Number of strong and weak k-mers in the t2t reference genome for different
values of k (stacked bar chart). The total number of k-mer rapidly increases for k between 13 and
19. For k ≥ 21, there are only a few new k-mers with increasing k. Right: The percentage of strong
k-mers among all distinct k-mers. For k ≥ 25, almost 90% of the distinct k-mers are strong.

The array mentioned above is pre-computed as follows: We compute the set of all
canonical k-mers by executing the k-mer counter hackgap [20]. This results in an in-memory
hash table with all canonical k-mers (encoded as 2k-bit integers) and their counts. The
canonical k-mers are expanded to 64-bit integer encodings of the k-mers and their reverse
complements, and stored in a large uint64 numpy array, which is then sorted and written to
disk. The time for this preprocessing step is not included in the measurements reported here.

4.1 Number of strong and weak k-mers

As shown in Figure 5, with increasing k, the total number of distinct k-mers in the t2t
reference genome increases. Since the t2t reference genome contains ≈ 3.1 billion nucleotides,
for k ≤ 16, most of the approximately 4k/2 canonical k-mers are present in the sequence.
Consequently, almost all of these k-mers are weak. For k ≥ 18, the k-mers get more unique
and specific, and the increase of distinct k-mers in the sequence flattens out for k ≥ 21. At
the same time, the number of strong k-mers increases. For k = 18, only approximately 4% of
the k-mers are strong. For k = 23, already more than 80% of the k-mers are strong. For
k ≥ 24, the number of strong k-mers gradually approaches 90% of the distinct k-mers.

4.2 Running Times

We compare the running times of our implementations of algorithms FourWay, Four-
Way+Pairwise and Quarter (Figure 6 left). As a baseline, the neighborhood generation
method (looking up all 3k canonical neighbor k-mers, or less until the first neighbor is found,
for each canonical k-mer in the input set; skipping k-mers already marked as weak) for
k = 25 using 8 threads needs 3937 seconds (approximately 65 minutes), using the multi-way
Cuckoo hash tables of hackgap [20].

For k ∈ {13, . . . , 31}, each algorithm was executed three times; individual running times
and their mean are shown in Figure 6 (left).

The running time of FourWay correlates with the total number of distinct k-mers. For
k ≤ 22, the running time increases up to approximately 140 seconds. The running time for
k ≥ 22 remains nearly constant at 140 seconds.

WABI 2024

15:12 Swiftly Identifying Strongly Unique k-Mers

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k

0

20

40

60

80

100

120

140
tim

e
[s

] FOURWAY
QUARTER
FOURWAY+PAIRWISE

1 2 4 8 16
threads

2

4

6

8

10

Sp
ee

du
p

FOURWAY
QUARTER
FOURWAY+PAIRWISE

Figure 6 Comparison of the running time of FourWay, FourWay+Pairwise and Quarter.
Left: running time for different values of k using 8 threads. The naive neighborhood generation
approach needs 3937 seconds (≈ 65 min) for k = 25 using 8 threads, while all presented algorithms
need less than 140 seconds, the best ones around 30 seconds in this case. (For a fair comparison to
neighborhood generation, the pre- and post-processing time of about 300 seconds should be added.)
Right: Speedup as a function of the number of threads used for parallelization, measured on a
AMD Ryzen 9 5950X 16-core processor, for a fixed value of k = 25.

The optimization of FourWay+Pairwise, stopping the recursion early if the interval
to be examined has at most 24 elements (276 cache-friendly pairwise comparisons), yields
a significant reduction of running time, especially for large k. Using 8 threads, the longest
running time is 40 seconds for 19 ≤ k ≤ 21. For longer k-mers, the running time decreases
down to below 20 seconds for k = 31.

The running time of Quarter increases with the number of distinct k-mers for k ≤ 17.
Interestingly, the algorithm has its highest running time for k = 17 with approximately 110
seconds, even though the number of distinct k-mers increases further for larger k, while the
running time decreases. We here start to see the benefit of longer and more specific 3k/4 (≥
13-mer) prefixes that for increasing k yield smaller and smaller buckets for the quadratic-time
comparison. If k is increased further, this effect is even more noticeable, as the buckets
become smaller, while the total number of k-mers stays approximately constant. For k ≥ 24,
the running time is nearly constant at approximately 30 seconds.

Thus, for k ≥ 24, Quarter is approximately 4.5 times faster than the purely recursive
FourWay approach. However, the optimized FourWay+Pairwise approach, where the
recursion stops early and intervals of length at most 24 are examined with the bit-parallel
pairwise Hamming distance computation, is even faster than Quarter for k ≥ 28 and for
k ≤ 19 and comparable to Quarter in-between (20 ≤ k ≤ 27).

To compare these times fairly to the baseline neighborhood generation method, one
should add 300 seconds of pre- and post-processing time to the times shown in Figure 6.
Nevertheless, this yields 330 seconds for Quarter and FourWay+Pairwise against almost
3400 seconds for the neighborhood generation approach.

Parallelization. We examine the effect of parallelization for an increasing number of threads
(Figure 6, right), using a constant value of k = 25 and 1, 2, 4, 8 and 16 threads. We compute
the speedup for T threads as usual, dividing the time used by a single thread by the time
used by T threads, which ideally would give a ratio of T . We see that for two threads, the
speedup is nearly the desired factor of 2 for all algorithms. For T = 4 threads, the speedup
for Fourway and Quarter is closer to 3 than to 4, but for FourWay+Pairwise, it reaches
almost 4. For 8 threads, the result is similar: a speedup of roughly 6 emerges for Fourway

J. Zentgraf and S. Rahmann 15:13

and Quarter, but almost 7 for FourWay+Pairwise. The effect is even more pronounced
for 16 threads, where Quarter achieves a speedup of 8, FourWay a speedup of nearly 9,
but FourWay+Pairwise yields a speedup of almost 12. Overall, the parallelization scales
quite well for all algorithms, with a distinct advantage for FourWay+Pairwise.

4.3 Use case: xenograft sorting
The alignment-free xenograft sorting tool xengsort [19] initially builds an index of all canon-
ical 25-mers in the human and mouse reference genome and associates species information
(only human, only mouse, both) with each canonical 25-mer. It then runs a method to
identify the weak canonical k-mers (k-mers that occur in human or both and have a neighbor
in mouse or both and vice versa) on the 4 496 607 845 ≈ 4.5 billion 25-mers in the union of
the genomes. This takes 158 wall-time minutes overall, even though it is (at least partially)
parallelized using 8 threads, as reported in the original publication [19]. The used method is
similar to Quarter, but does quadratic-time pairwise search on buckets that share only a
⌊k/2⌋-prefix. One has to note that this reported time on a 64 GB machine does includes
several chunk passes through the array and pre- and post-processing.

We have replaced this method in xengsort by Quarter and run it under the same
circumstances on the same machine, with the same number of passes, the same number of
threads, and with the same pre- and postprocessing. The total time using the Quarter
algorithm is 6.1 minutes, a speedup factor of 25.9.

5 Discussion and Conclusion

In this work, we have introduced the weak canonical k-mer identification problem (as a step
to identify strongly unique k-mers). This problem does not seem to have been considered
at large scale elsewhere, even though the identification of strongly unique k-mers is useful
in many different contexts in alignment-free sequence analysis. We have developed and
evaluated three engineered algorithms to identify weak k-mers. They require a sorted array
of k-mers and their reverse complements as input.

The best method FourWay+Pairwise needs at most 40 seconds to identify weak k-mers
for any k = 13, . . . , 31 on the human t2t reference genome, using 8 threads. All methods
need less than 2.5 minutes for each of these tasks. These times are much faster than for
querying all 3k canonical neighbors for each canonical k-mer in a fast hash table (65 minutes
for 25-mers on the same dataset), even when adding the initial sorting time for the k-mer
array (below 300 seconds).

The FourWay recursive comparison based algorithm benefits from its cache-friendly
design and from hardware prefetching, but suffers from book-keeping overhead once the
examined intervals become small. The improved FourWay+Pairwise method that switches
to pairwise Hamming distance tests on small intervals is always faster (using an interval length
threshold of 24). The Quarter grouping algorithm shows comparably good performance
to FourWay+Pairwise for k ≥ 20, but suffers from large buckets for smaller k. Overall,
FourWay+Pairwise is the method of choice with overall best performance and excellent
parallelization performance.

In future work, one might attempt to further optimize the generated code for each
algorithm, e.g., removing branches in the code which may lead to branch mispredictions that
cost time. However, since the code generation is handled by numba and the LLVM compiler
infrastructure [9], the relations between the written Python code and the finally generated
optimized code is non-obvious.

WABI 2024

15:14 Swiftly Identifying Strongly Unique k-Mers

It would be of high interest to develop methods that do not require a sorted expanded
array of k-mers as input but that instead work directly on a compact hash table representation
of the input set, similar to neighborhood generation, but with performance comparable to
the methods presented here.

The algorithms in this work have been specially engineered for a Hamming distance of 1.
It would be interesting to extend the problem for Hamming distances ≥ 2 from a practical
point of view, as this would increase the tolerance against a combination of sequencing errors
and SNPs in a small interval. However, one would most likely need a different approach, as
a transformation to eulertigs [15] and branching on their FM index, or an approach based on
search schemes [12].

References
1 Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic

rna-seq quantification. Nature biotechnology, 34(5):525–527, 2016.
2 Florian P Breitwieser, Daniel N Baker, and Steven L Salzberg. KrakenUniq: confident and

fast metagenomics classification using unique k-mer counts. Genome biology, 19(1):198, 2018.
3 C. Titus Brown and Luiz Irber. sourmash: a library for minhash sketching of DNA. Journal

of Open Source Software, 1(5):27, 2016. doi:10.21105/joss.00027.
4 S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz. KMC 2: fast and resource-

frugal k-mer counting. Bioinformatics, 31(10):1569–1576, May 2015.
5 Diego Díaz-Domínguez, Miika Leinonen, and Leena Salmela. Space-efficient computation of

k-mer dictionaries for large values of k. Algorithms for Molecular Biology, 19(1):14, 2024.
6 M. Erbert, S. Rechner, and M. Müller-Hannemann. Gerbil: a fast and memory-efficient k-mer

counter with GPU-support. Algorithms Mol Biol, 12:9, 2017.
7 Pascal Hirsch, Leidy-Alejandra G Molano, Annika Engel, Jens Zentgraf, Sven Rahmann,

Matthias Hannig, Rolf Müller, Fabian Kern, Andreas Keller, and Georges P Schmartz.
Mibianto: ultra-efficient online microbiome analysis through k-mer based metagenomics.
Nucleic Acids Research, page gkae364, 2024.

8 M. Kokot, M. Dlugosz, and S. Deorowicz. KMC 3: counting and manipulating k-mer statistics.
Bioinformatics, 33(17):2759–2761, September 2017.

9 Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a LLVM-based python JIT
compiler. In Hal Finkel, editor, Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015, pages 7:1–7:6.
ACM, 2015. doi:10.1145/2833157.2833162.

10 G. Marcais and C. Kingsford. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics, 27(6):764–770, March 2011.

11 Sven Rahmann, Marcel Martin, Johannes H. Schulte, Johannes Köster, Tobias Marschall,
and Alexander Schramm. Identifying transcriptional miRNA biomarkers by integrating
high-throughput sequencing and real-time PCR data. Methods, 59(1):154–163, January 2013.

12 Luca Renders, Lore Depuydt, Sven Rahmann, and Jan Fostier. Automated design of efficient
search schemes for lossless approximate pattern matching. In Jian Ma, editor, Research in
Computational Molecular Biology - 28th Annual International Conference, RECOMB 2024,
Cambridge, MA, USA, April 29 - May 2, 2024, Proceedings, volume 14758 of Lecture Notes in
Computer Science, pages 164–184. Springer, 2024. doi:10.1007/978-1-0716-3989-4_11.

13 Arang Rhie, Sergey Nurk, Monika Cechova, Savannah J Hoyt, Dylan J Taylor, Nicolas
Altemose, Paul W Hook, Sergey Koren, Mikko Rautiainen, Ivan A Alexandrov, et al. The
complete sequence of a human Y chromosome. Nature, 621(7978):344–354, 2023.

14 Raffaella Rizzi, Stefano Beretta, Murray Patterson, Yuri Pirola, Marco Previtali, Gianluca Della
Vedova, and Paola Bonizzoni. Overlap graphs and de Bruijn graphs: data structures for
de novo genome assembly in the big data era. Quant. Biol., 7(4):278–292, 2019. doi:
10.1007/S40484-019-0181-X.

https://doi.org/10.21105/joss.00027
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1007/978-1-0716-3989-4_11
https://doi.org/10.1007/S40484-019-0181-X
https://doi.org/10.1007/S40484-019-0181-X

J. Zentgraf and S. Rahmann 15:15

15 Sebastian S. Schmidt and Jarno N. Alanko. Eulertigs: minimum plain text representation
of k-mer sets without repetitions in linear time. Algorithms Mol. Biol., 18(1):5, 2023. doi:
10.1186/S13015-023-00227-1.

16 Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy array: A structure
for efficient numerical computation. Comput. Sci. Eng., 13(2):22–30, 2011. doi:10.1109/
MCSE.2011.37.

17 N. Whiteford, N. Haslam, G. Weber, A. Prügel-Bennett, J. W. Essex, P. L. Roach, M. Bradley,
and C. Neylon. An analysis of the feasibility of short read sequencing. Nucleic acids research,
33(19):e171, 2005. doi:10.1093/nar/gni170.

18 Jens Zentgraf and Sven Rahmann. Identification of strongly unique k-mers. Software, version
1.0., swhId: swh:1:dir:7ce51b0df8003cb2d49b99084d09f2ce6df56638 (visited on 2024-08-
12). URL: https://gitlab.com/rahmannlab/strong-k-mers.

19 Jens Zentgraf and Sven Rahmann. Fast lightweight accurate xenograft sorting. Algorithms
Mol. Biol., 16(1):2, 2021. doi:10.1186/S13015-021-00181-W.

20 Jens Zentgraf and Sven Rahmann. Fast gapped k-mer counting with subdivided multi-
way bucketed cuckoo hash tables. In Christina Boucher and Sven Rahmann, editors, 22nd
International Workshop on Algorithms in Bioinformatics, WABI 2022, September 5-7, 2022,
Potsdam, Germany, volume 242 of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.WABI.2022.12.

WABI 2024

https://doi.org/10.1186/S13015-023-00227-1
https://doi.org/10.1186/S13015-023-00227-1
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1093/nar/gni170
https://archive.softwareheritage.org/swh:1:dir:7ce51b0df8003cb2d49b99084d09f2ce6df56638;origin=https://gitlab.com/rahmannlab/strong-k-mers;visit=swh:1:snp:69ece597a22096d56e1fa4598d2ccb6e6627fb52;anchor=swh:1:rev:7187800f25c4f697df674a935fe3d05e7d72eaf9
https://gitlab.com/rahmannlab/strong-k-mers
https://doi.org/10.1186/S13015-021-00181-W
https://doi.org/10.4230/LIPICS.WABI.2022.12

	1 Introduction
	2 Preliminaries
	3 Methods
	3.1 Recursive 4-way comparisons (FourWay)
	3.2 Pairwise comparisons in small buckets (Quarter)
	3.3 Memory usage and chunking
	3.4 Result interpretation

	4 Computational Experiments
	4.1 Number of strong and weak k-mers
	4.2 Running Times
	4.3 Use case: xenograft sorting

	5 Discussion and Conclusion

