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Abstract
Inverse folding is a classic instance of negative RNA design which consists in finding a sequence that
uniquely folds into a target secondary structure with respect to energy minimization. A breakthrough
result of Bonnet et al. shows that, even in simple base pairs-based (BP) models, the decision version
of a mildly constrained version of inverse folding is NP-hard.

In this work, we show that inverse folding can be solved in linear time for a large collection of
targets, including every structure that contains no isolated BP and no isolated stack (or, equivalently,
when all helices consist of 3+ base pairs). For structures featuring shorter helices, our linear algorithm
is no longer guaranteed to produce a solution, but still does so for a large proportion of instances.

Our approach introduces a notion of modulo m-separability, generalizing a property pioneered
by Hales et al. Separability is a sufficient condition for the existence of a solution to the inverse
folding problem. We show that, for any input secondary structure of length n, a modulo m-separated
sequence can be produced in time O(n2m) anytime such a sequence exists. Meanwhile, we show
that any structure consisting of 3+ base pairs is either trivially non-designable, or always admits a
modulo-2 separated solution (m = 2). Solution sequences can thus be produced in linear time, and
even be uniformly generated within the set of modulo-2 separable sequences.
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1 Introduction

RNA inverse folding is a fascinating algorithmic problem which, given a target secondary
structure T , consists of designing one or several sequences, all of which should uniquely
fold into the target T according to a reference folding prediction algorithm. Considering
a folding prediction algorithm as a mathematical function Φ : {A, C, G, U}⋆ → S ∪ {⊥}
mapping an RNA sequence to a unique predicted structure (or ⊥ if equally likely alternatives
exist), inverse folding can be abstracted as the search for a preimage w ∈ Φ−1(T ) of the
target structure T . This naturally generalizes into a variety of design tasks which, given
a predictive algorithm implementing a function Φ, aim to create one or multiple instances
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19:2 Exact Linear-Time RNA Design for Min Helix Length 3

predicted to behave in a certain way. Such a formulation is, in general, overly broad (e.g.
it encompasses the concept of one-way functions in cryptography) to inspire reasonable
hopes for a general solution. Still, a restriction of the inverse problem to certain types of
computable functions/algorithms (e.g. amenable to dynamic programming) appears realistic
and generally relevant to (synthetic) biology, yet poorly studied to this day.

In the specific case of RNA, despite being the object of substantial attention since
its formal introduction in the early 1990s [9], the complexity of RNA inverse folding has
remained elusive for almost three decades. A generalization of RNA inverse folding, including
the energy model as part of the input, was shown to be NP-hard by Schnall-Levin et
al. [19]. However, their reductions critically relied on (ab)using the energy model to encode
a 3SAT instance, leaving the hardness of the problem largely open for a fixed energy
model. The classic complexity of inverse folding was only settled, in 2020, when Bonnet et
al. [2] finally showed the NP-hardness of RNA folding in a classic base pairs maximization
setting. Such computational intractability (retrospectively) legitimizes a very large quantity
of heuristic or exponential-time methods, based on local search [9, 4, 1, 23, 17], bio-inspired
metaheuristics [12, 5, 10, 13], global sampling [16, 22], constraint programming [6, 8] and,
more recently, neural networks-inspired generative models [18].

In parallel to complexity studies, Hales et al. [7] revisited the problem from a structural
angle, attempting to characterize designable or undesignable families of secondary structures.
The authors showed that saturated structures, having all positions paired, are designable
if and only if their multiloop degrees do not exceed 4. They also introduced a notion of
separability, a sufficient, yet not necessary in general, condition for a sequence to be a design
for a given target. This notion allowed them to show that any target structure either features
an occurrence of a locally-undesignable motif {m3•, m5}, or can always be transformed into
a separable structure by adding at most one base pair per helix. More strikingly, they
proposed linear-time algorithms for producing a single solution for each characterized class
of designable structures, painting a – puzzling – contrasted picture of general hardness (as
per Bonnet et al. [2]) and practical facility for inverse folding.

In this work, we further those studies and show that, while conceptually simpler, the
existence of a separated design for a given structure remains NP-hard. Conversely, any
structure with helices of length greater than 3 base pairs is either trivially undesignable (i.e.
contains {m3•, m5}), or separable and can be designed in linear-time. This constraint is
relevant to the objectives of RNA design, as targeted secondary structures are typically stable
and tend to avoid shorter – unstable – helices. This result hinges on the introduction of a
modulo m version of separability, coinciding with general separability whenever m ≥ n/2,
for which we give a Fixed-Parameter Tractable (FPT) algorithm running in time O(n2m).
We proved that this algorithm solves all instances with minimal helix lengths of 3 BPs when
invoked with m = 2 and, even in this restricted setting, solves many instances with shorter
helices in practice. Based on an unambiguous dynamic programming, our algorithm can be
adapted into a random generator of separated designs. Finally, we show through empirical
studies that separated sequences, despite being only guaranteed to constitute designs with
respect to base pair maximization, are also likely to represent designs in the more realistic
Turner energy model, and are far superior in this setting than compatible sequences.

2 Problem statement, definitions, and prior work

Algorithmically, RNA can be abstracted as a nucleotide sequence, i.e. a string w ∈
{A, C, G, U}n where n denotes the length of ω. Given a length n, a (non crossing/pseudoknot-
free) secondary structure is a set T ⊂ [1, n]2 consisting of base pairs such that:
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Figure 1 Local design rules. Base pair compatibility graph (A) and incompatibility graph for
base pairs and unpaired nucleotides occurring within a loop (B): Connected base pairs, when jointly
occurring within a loop of the target structure, can refold to form a local, an alternative structure
having same number of base pairs as the target (C, left). Unpaired nucleotides may also interfere
with some (A or C) or every (G or U) base pairs, leading to local alternatives (C, right).

Each position in [1, n] is involved in at most one base pair;
Base pairs in T are pairwise non-crossing: ∀(i, j) ̸= (k, l) ∈ T , i < k, either i < k < l < j

or i < j < k < l.
Minimal distance in nucleotide number is parameterized by θ (default θ equals 0).

The set Sw of secondary structures compatible with an RNA sequence w is defined as:
Sw := {Secondary structure T | ∀(i, j) ∈ T, {wi, wj} ∈ {{G, C}, {A, U}, {G, U}}} .

Without loss of generality, a secondary structure can be represented as a tree T =
(V (T ), E(T )), whose nodes V (T ) are in bijection with base pairs (internal nodes2) and
unpaired regions (leaves), and whose edges represent the inclusion of base pairs. Given a
node v ∈ V (T ), we denote by parent(v) the parent of v in T , and by children(v) the list of
children of v in T . A loop is the subtree restricted to node and its (direct) children. The tree
is rooted in a special Root node, associated with the whole sequence interval. An helix of
length ℓ of the tree is a maximal path v1, . . . , vℓ of base pair nodes such that each vi with
i < ℓ has a single child vi+1 (no leaf attached). A helix of length 1 is an isolated base pair. A
helix of length 2 is an isolated stack. We define hmin as the minimum length over all helices
of T . As the target tree is always explicit and unmodified through proofs and algorithms we
do not specify it explicitly in the notations.

RNA inverse folding starts from a target secondary structure T , and attempts to construct
a sequence ω ∈ {A, C, G, U}n whose only base-pair maximizing secondary structure is T .

▶ Problem 1 (Inverse-FoldingBP).
Input: Target secondary structure T , sequence length n

Output: Sequence w ∈ {A, C, G, U}n satisfying both:
Compatibility with target structure: T ∈ Sw;
Uniqueness of the target as the optimal fold for the sequence: ∀T ′ ∈ Sw, T ′ ̸= T, |T ′| <

|T |.
or ⊥ if no such sequence exists.

Nevertheless, Inverse-FoldingBP, mildly extended to allow further restrictions on individual
sequence positions, was shown to be NP-hard by Bonnet et al. [2]. (The used restriction
requires the inclusion of some constraints of the form “nucleotide i must be labeled by the
base letter b")

2 Base pairs may also be leaves of the tree when involving consecutive positions, which happens rarely in
practice. We thus qualify as internal node any node in bijection with a base pair.

WABI 2024
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Figure 2 Exhaustive designability analysis of 12nts RNA sequences/structures. (Left)
For a minimum base pair span of θ = 0, there exists 15 511 secondary structures over 12 nucleotides,
of which little over half (8 111) admits at least a solution to the inverse folding problem. (Right)
The number of valid solutions varies substantially between targets and appears to depend on the
number of base pairs. Overall, out of the 16 777 216 RNA sequences of length 12, only 399 348
(≈ 2.4%) represent a valid design for some structure.

a - e+1

a+1 - b b+1 - c c+1 - d d+1 - e

. . . . . . . . . . . . . . . . . .

a - c+2

a+1 - b b+1 - c c+1

. . . . . . . . . • . . .

Figure 3 Forbidden motifs. Motifs m5 (left) and m3• (right), both shown as a tree (with a,
b, c d, e arbitrary integers) and as nested base-pairs. Note that the relative order of the children
base-pairs and the leaf in the m3• pattern is irrelevant. Any assignment of base pair letters (either
matching a proper coloring of the tree or not) leads to a possible local rerooting of at least two base
pairs yielding an alternative thus making the structure undesignable. [7].

A sequence is called a design for a structure T if it represents a solution to the inverse
folding problem for the input T . Note that the uniqueness condition can be tested in
polynomial time using a variant of the Nussinov algorithm [14, 7]. In addition to showing
that Inverse-FoldingBP is in NP, such an algorithm enables, for moderate sequence lengths,
a systematic folding of all sequences in order to characterize the set of structures admitting
a solution. For instance, Figure 2 shows that, while only 2.4% of RNA sequences of length
12 represent a design for some target, roughly half of the secondary structure admits at least
one solution sequence, and ≈ 49 on average, for the inverse folding problem.

We remind that, as noted by Halès et al. [7], two key motifs are not designable in a base
pair maximization setting, see Figure 3:

The m5 motif consists of 5 base pairs occurring on the same loop (not counting the Root).
No sequence can be designed for such a motif, since exposing 5 base pairs on a loop
always allows for local refolding to have the same number of base pairs. This follows from
the inspection of Figure 1, where the largest set of mutually compatible base pairs clearly
has cardinality 4;
The m3• motif consists of 3 base pairs (excluding the Root) and at least one unpaired
position. Indeed, as shown in Figure 1, the presence of an unpaired nucleotide either
forbids the co-occurrence of any adjacent base pair (G or U), or only allows three (C or
A). Since at most two of those base pairs can co-occur in a successful loop design, m3• is
not designable.

Any occurrence of these structures (or of any other undesignable structure, cf [21]) as a
subgraph of an instance makes the instance undesignable.
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Figure 4 A proper coloring is necessary towards design. In (A), having two children
implies that the sequence derived from this coloring features a motif where G and C can reconfigure
locally. In that case, they form an alternative structure that contains the same number of base pairs.
Conversely, in (B), the proper coloring ensures that locally no alternative of equal (or better) energy
exists by forcing some consecutive incompatibilities.

2.1 Inverse folding as a tree coloring problem
We start by reminding the coloring framework introduced by Halès et al. [7].

▶ Definition 1 (Coloring). A coloring of a (secondary structure) tree T is a function χ :
V (T ) → { , , ,∅} associating a color to each node (except the root and the leaves which
always get ∅).

A coloring of a tree T typically induces multiple RNA sequences that are compatible with,
but not guaranteed to fold into, the given secondary structure through letters assignment
rules. Namely, in any sequence w derived from a coloring χ, we have for each (i, j) ∈ T :

If χ((i, j)) = → (wi, wj) = (G, C);
If χ((i, j)) = → (wi, wj) = (C, G);
If χ((i, j)) = → (wi, wj) ∈ {(A, U), (U, A)}.

For nodes, the freedom in choosing (A, U) or (U, A) depends on the context: the choice
may be unconstrained (e.g. when isolated within a helix), or forced (e.g. when two gray
nodes are involved in a multiloop or stack). However, this property will only impact the
number of sequences associated with the coloring, but bears no consequence on the existence
of a solution to Inverse-FoldingBP, since the problem asks for the production of a single
sequence.

Denote by c the inverse of a color c, defined as = , = and = . Denote by
|C|c the number of occurrences of color c in vector C.

▶ Definition 2 (Proper Coloring). A coloring χ is proper when, for each node v ∈ V (T ), the
vector of colors C, composed of the complementary color of the node concatenated with the
colors of its children, respects the following constraints:

|C| ≤ 1, |C| ≤ 1 and |C| ≤ 2 with C :=
[

χ(v)
]
.
[
χ(v′) | v′ ∈ children(v)

]
.

The use of the complementary color of v in C enables a compact definition: it forbids and
to have respectively and children which would result in an alternative rerooting of the

pairs. These conditions must also hold for the colorless Root, but with C being restricted to
the colors of children(Root).

In terms of RNA design, the proper condition is necessary for an associated sequence to be
a solution to inverse folding. Indeed, any coloring that is not proper will be associated with
sequences that can be locally reconfigured, this without losing any base pair (see Figure 4
for an example).

WABI 2024
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3) A separated proper coloring

Figure 5 1) 2D and dot-bracket representations of a secondary structure. Helices of sizes
respectively 1 (isolated base pairs), 2 (isolated stacks) and more than 3 are represented in light
red, purple and blue. 2) Same secondary structure as a tree. The tree is colored and levels are
represented in red and blue bubbles. The coloring is proper and non-separated as the level of the
leaf 19 is the same as the level of the node 34-51. A non-separated coloring is not guaranteed to
induce a design for its target, but may still do so, as is the case here. 3) Same secondary structure,
colored in a separated (necessarily proper) manner. This coloring yields one or multiple designs
(depending on the choice of AU or UA for nodes). Notably, this coloring is 2-separated, as leaves
and nodes end up at odd and even levels respectively.

▶ Definition 3 (Levels). Given a coloring χ of a tree T , the level L : V (T ) → Z of a node
v is L(v) := |p| − |p| where p denotes the color vector associated with the shortest node
sequence from parent(v) to Root.

On an RNA level, the concept of level helps categorize, and possibly control, the set
of alternative structures to the target. Indeed, consider a sequence w generated from a
coloring χ. First remark that, in order for an alternative structure to be competitive, every
occurrence of C must be paired. Whenever two positions i and j interact to form a base pair,
it can be shown that the inner interval ]i, j[ interval contains L(i) − L(j) more G than C.
Meanwhile the outermost interval [1, i[ ∪ ]j, n] features the opposite imbalance (L(i) − L(j)
more C than G). In other words, any structure that contains a base pair (i, j) /∈ T already
has 2 × |L(i) − L(j)| fewer base pairs than the target structure. Thus only structures made
of pairs (i, j) such that L(i) = L(j) need to be considered as viable alternatives to T . This
property can be exploited as a design principle, as formalized by the following property.

▶ Definition 4 (Separated coloring). A coloring χ is separated for a target T if and only if it
is proper and the levels of -colored nodes and leaves do not overlap:

{L(v) | χ(v) = } ∩ {L(v) | v is a leaf} = ∅

This immediately suggests a design strategy that associates A to unpaired positions and
assigns and colors such that nodes end up as different levels as the leaves. Indeed,
in this setting, Hales et al. [7] showed that the proper coloring of a saturated structure
(without unpaired position) yields a sequence that uniquely folds with respect to base pair
maximization. It follows that a competitive/alternative structure may only result from a base
pair (i, j) /∈ T , a position of which is a node while the other is a leaf. Ensuring that all
nodes and leaves are found at different levels is thus sufficient to guarantee the designability
of T , i.e. the existence of a solution to this instance of the inverse folding problem.

More generally, we say that a target secondary structure T is separable if there exists a
coloring χ such that ‘χ is separated for T . We recall the main results of Halès et al. [7] here.
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Figure 6 Designability does not imply separability. Left: A target structure that does not
admit any separated coloring instance. Note that the coloring χ shown here puts the node 8-9
and the leaf 3 both at level 1. Right: Sequence w compatible with the coloring χ, which provably
admits T as its single base pair-maximization structure (i.e. w is a design for T ).

▶ Theorem 1 (Separable =⇒ Designable (Halès et al., 2017)). If a tree/secondary structure
T is separable, then T is designable.

Moreover, given a separated coloring, an RNA sequence that uniquely folds into T , i.e. a
solution to the inverse folding problem, can be found in linear time.

▶ Remark 2. Note that any design sequence w, generated through a separated coloring,
avoids any alternative structure featuring GU base pair(s). Indeed, every G and C need to be
paired to achieve the number of base pairs featured in the MFE. Meanwhile, the formation
of any GU base pair, leaves one C and one A unpaired, resulting in the overall loss of at least
one base pair. Structures featuring GU base pairs can thus be safely ignored.

3 Separability: Intrinsic and computational limits

Despite utilizing separability to explore a design of approximative instances, the work of
Halès et al. [7] left open the complexity of searching for a separated coloring, as well as
the existence of designable, yet non-separable, structures. An exhaustive search for all
structures with up to 12 bases, summarized in Figure 2, shows that for such small instances,
all designable instances are separable.

However, we show that non-separable designable instances can be constructed.

▶ Proposition 1 (Designable ≠⇒ Separable). There exists a target structure which: i) does
not admit a separated coloring; and ii) admits a solution to the inverse folding problem.

Proof. We use the tree T of Figure 6 as a counterexample to the notion that separability
fully captures designability. First, note that a separated coloring χ of T would be extremely
constrained. Node 5 − 18 should be and the nodes 2 − 4 and 19 − 21 are and
respectively, or vice-versa due to their respective leaf. Thus, we have two leaves at levels 1
and −1. At least, one of the two children of 5 − 18, w.l.o.g 6 − 7 is or . One child of
6 − 7 is then necessarily , leading to a child of level +1 or −1. With two leaves at level
+1 and −1, a direct consequence is that T is non-separable.

Now, we show that T is designable. We propose the sequence w of Figure 6. Using a
simple dynamic programming algorithm, it is possible to check that the best folding for w is
unique and corresponds to the secondary structure encoded as the tree T . Intuitively, the
only competitive alternative base pair is the one corresponding to the overlap of the levels. It
consists of joining the U from 8 − 9 with the A at position 3. By doing so, note that the base
pair 5 − 18 will be disconnected with no way to pair A with another U due to the connection
between 5 and 7. ◀

WABI 2024
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Figure 7 Instances of Inverse-FoldingBP. For unconstrained instances (Left), Inverse-
FoldingBP is likely NP-hard, as suggested by the hardness of a constrained version [2]. Finding
a design for a separable target is also NP-hard but, for any fixed modular level m, m-separable
targets can be designed in Θ(n) time. This suggests an algorithm, FPT on m, for all separable
structures. When hmin ≥ 3 (Right), Thm 6 applies and the hierarchy collapses: any instance becomes
2-separable ( =⇒ separable and designable) and Inverse-FoldingBP can be solved in Θ(n) time.

Notice that, despite not being separated, the coloring shown in Figure 6 is compatible with
a sequence that is a design for its target. This illustrates the fact that, while not being
guaranteed to uniquely fold as their intended target, sequences produced from non-separated
colorings may still represent solutions for the inverse folding problem.

Regarding computational complexity, although looking for a separable coloring is not
directly equivalent to finding a design for a structure, we show that this decision problem
(formalized below) is also NP-complete.

▶ Problem 2 (Separability).
Input: Target tree T (without any occurrence of m3• or m5 motif)
Output: Coloring χ of the tree T such that χ is separated

▶ Theorem 3. Separability is NP-complete.

The proof can be found in the appendix. It is obtained by reduction from Bin Packing,
with a tree using one branch per item. Leaves and nodes enforce that items must be
packed in consecutive ranges of levels (with levels at transitions between successive items
and other levels saturated with leaves). Then, separating nodes are placed to enforce
that series of consecutive items sum up to the target bin size, thus enforcing that items are
ordered according to a correct bin packing.

4 Modulo separability as a parameterized tractable alternative

Then, we introduce a stratified version of separability, called modulo m-separability, or
m-separability in short, which prescribes different modular values for the levels of and
leaves nodes. Figure 7 describes the relative positioning of classes of instances and associated
complexity results.

▶ Definition 5 ((Modulo) m-separability). Let m be an integer. A coloring χ is m-separated
(or separated with modulus m) for a target secondary structure T , if an only if χ is proper
and

{L(v) mod m | χ(v) = } ∩ {L(v) mod m | v is a leaf} = ∅

using for negative levels l < 0 the classic l mod m := (l + ⌈−x/m⌉ × m) mod m.
Structure T is m-separable if it admits an m-separated coloring.

Clearly, modulo separability implies classic separability: if a coloring χ is m-separated for
a target structure T , then χ is separated for T . Conversely, if a target structure admits a
separated coloring, assigning levels in [−a, b] to and leaf nodes, then the same coloring
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is provably m′-separated for m′ := (b + a + 1) (since, for l, l′ ∈ [−a, b], l ̸= l′ implies that
l mod m′ ̸= l′ mod m′). Note that, since there are at most n/2 base pairs/internal nodes in
a target tree, then 0 ≤ a, b ≤ n/2, and we have m′ ≤ n.

The concept of m-separability thus provides an angle to address the generation of separated
colorings, so we introduce below the associated formalized algorithmic problem.

▶ Problem 3 (Modulo Separability).
Input: A tree T (with no m3• or m5 motif), a modulus m ∈ N
Output: A coloring χ of T that is m-separated, or ⊥ if no such coloring exists.

As noted above, the problem specializes in the Separability problem when m = n, implying
that Modulo Separability remains NP-complete. However, it can be efficiently solved
for moderate values of m, as shown below. Practically, one may focus on small values of m

since 99% of instances without isolated base pairs are separable with modulus m ≤ 6 (cf
Table 10).

4.1 Fixed parameter tractable algorithm for modulo-separability
We now show that, for any fixed modulus m, Modulo Separability can be solved in linear
time. In particular, the problem is Fixed Parameter Tractable (FPT) for the parameter m.

Towards that goal, we consider a constrained version of Modulo Separability, where
the modular values of levels are prescribed. Formally, we enforce that leaves only occur at
modular levels in ξL ⊆ [0, m[, and nodes only occur at levels [0, m[\ξL. In this constrained
version of Modulo Separability, the existence of a valid solution can be solved in linear
time using dynamic programming.

Namely, let us denote by dξL

v→c,ℓ the existence of a valid assignment (i.e. solution) for
a subtree of T rooted at internal node v, with v occurring at level ℓ, and being assigned a
prior color c. Provably, dξL

v→c,ℓ can be computed recursively by progressing along the tree,
keeping track of the current level and checking that leaves and end up being assigned at
modular levels ξL and [0, m[\ξL respectively. This leads to the following formula:

dξL
v→c,l =



False
if ℓ ∈ ξL ∧ c =
or ℓ′ /∈ ξL, and ∃ leaf in children(v)

True if children(v) = ∅

∨
c′ proper coloring of

children(v) given v → c

∧
v′∈children(v)

dξL
v′→c′(v′),ℓ′ otherwise.

with ℓ′ := ℓ + δ(c) mod m

where δ denotes the level increment induced by a color c, defined as δ( ) = +1, δ( ) = −1
and δ( ) = 0. Moreover, in the outermost loop, the color assignment explored for children is
meant to be locally proper: the colors c(v′) of the children, in conjunction with the color
c of v must obey the conditions of Definition 2. Note that, in the absence of m3• and m5,
the number of (proper) assignments is bounded by a constant, so this conjunctive loop
does not impact the complexity. The existence of a ξL coloring for the full tree is then
SeparableξL

:= dξL

Root→∅,0.

The decision version of the problem can thus be solved in Θ(m.n) time. Indeed, the
number of left-hand side terms scales in Θ(m.n), the number of proper coloring for children
is bounded by a constant (since avoiding m3• and m5 =⇒ |child(v)| < 5), and the total
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number of executions of the conjunctive loops is in overall Θ(n). A backtracking procedure
could also be defined to reconstruct a solution coloring in Θ(n) if such a solution exists
(SeparableξL

= True) or return ⊥ otherwise (SeparableξL
= False).

An algorithm for Modulo Separability can then be obtained by explicitly considering
all the possible subsets of admissible modular levels for leaves:

If T contains m3• or m5, return ⊥
For each ξL ⊆ [0, m[:

If #DesignsξL
> 0, then backtrack to produce ξL-separated design

Return ⊥

The algorithm is correct since any ξL solution is also m-separated, and any m-separated
coloring implies a partition of the leaves and nodes into disjoint levels ξL and χ ⊆ [0, m[\ξL

respectively. A m-separated coloring is thus always found by invoking the DP algorithm over
the 2m subsets ξL ∈ [0, m[. The overall complexity of the algorithm is in Θ(n.m.2m) time
and Θ(m.n) memory, and we conclude with the parameterized complexity of the problem
with respect to m.

▶ Theorem 4. Modulo Separability is Fixed Parameter Tractable for the modulus m

4.2 Random generation of m-separated RNA sequences
We then turn to the uniform random generation of m-separated sequences, defined as a
design w for T , featuring A on unpaired positions, and such that the coloring χw, obtained by
replacing base pairs with suitable color ((G, C) → , (C, G) → and (A, U) or (U, A) → ),
is m-separated.

▶ Problem 4 (Uniform Modulo Separated Generation).
Input: Target tree T (with no m3• or m5 motif)
Output: RNA sequence w, associated with m-separated coloring χw, such that

P(w | χw is m-separated) = 1
|{w′ | χw′ is m-separated}|

Again, we approach this problem by first solving a more constrained version where the
modular levels of leaves are explicitly given as a set ξL. Then, in the spirit of Reinharz et
al. [16], we adapt the above recurrence, through a simple algebra change, to count the number
pξL

v→µ,l of RNA sequences, associated with a ξL separated coloring (for a subtree of T rooted
at v, with v occurring at level l, and being assigned a nucleotide assignment µ).

pξL
v→µ,ℓ =



0 if ℓ ∈ ξL and µ ∈ {(A, U), (U, A)}
0 if ℓ′ /∈ ξL and v has a leaf attached
1 if children(v) = ∅∑
µ′ proper assignment
children(v)→Σ2∪{∅}

∏
v′∈children(v)

pξL
v′→µ′(v′),ℓ′ otherwise (ℓ′ := ℓ + δ(µ) mod m).

where µ′ is a nucleotide assignment to the children of v, consistent with a proper coloring
and additionally respecting natural constraints on the content ((A, U) or (U, A)) of pairs of

nodes (same for both if one parent of other, different content if siblings). Once again, the
colorless Root node needs to be distinguished, and the overall number of designs is given by
#DesignsξL

:= pξL

Root→∅,0.
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The following backtrack procedure then produces a uniform random RNA sequence that
corresponds to a m-separated coloring for a fixed set ξL. In that case, by abuse of language,
we say that the sequence is ξL separated. More precisely, backtrack(v, c, ℓ) produces a random
sequence, associated with a ξL separated coloring, for the subtree anchored in v, reached at
height ℓ, where the root is assigned a pair of bases µ ∈ Σ2. It first picks a random proper
assignment µ′ for the children, weighted by the corresponding number of solutions (namely,∏

v′∈children(v) pξL

v′→µ′(v′),ℓ′ , with ℓ′ := ℓ + δ(µ) mod m). The resulting sequence is then

∏
v∈children and leaves(v)

{
A If v′ is a leaf
b.backtrack(v′, µ′(v′), ℓ′).b′ otherwise, with µ′(v′) = b.b′

The resulting algorithm, consisting of precomputing all pξL

v→µ,ℓ, followed by a sequence of
k backtracks, provably returns k random, uniformly-distributed and independent designs
that are ξL separated in time Θ(n.m + k.n).

To leverage the uniform generation for a fixed ξL into a uniform generation of m-separated
designs, we implement a strategy (see [15, pp 77] for details), proven in Appendix C, which
start by generating some ξL, and then uses a suitable rejection to correct the emissions
probabilities of sequences compatible with several ξL.

▶ Theorem 5. Uniform Modulo Separated Generation can be performed in an
average-case complexity that is Fixed Parameter Tractable for the modulus parameter m.

5 Structures without isolated stacks and base pairs are 2-separable

Although separability does not give a full characterization of designability in general (cf
Prop. 1), we obtain a much stronger result for structures without small helices, as hinted by
the fact that all counter-examples and hardness gadgets heavily use isolated base pairs in
their construction. Indeed, we show that a 2-separated coloring can be constructed for all
structures without forbidden motifs (m3•, m5) and hmin ≥ 3, so indeed all such structures
are designable. Since avoiding (m3•, m5) is a necessary condition for designability, we obtain
the stronger characterization stated in Corollary 9.

▶ Theorem 6. Every (m3•, m5)-avoiding target T , having hmin ≥ 3, admits a 2-separated
coloring

Proof. First, let us remark that helices can be treated as atomic objects, and compacted
into the edges of a helix tree, whose edges are helices (sequence of consecutive BP nodes),
and whose internal nodes are either:

Multiloops, consisting of 2 or 3 children/BPs/Helices, and no leaf (so m3• does not occur);
Internal/Bulges/Hairpin (IBH) loops, consisting of at most 1 BP/Helix and featuring at
least one leaf/unpaired node.

Remark that, while constructing a separated coloring assigning a modular level ξL to leaves,
those two motifs are the only sources of immutable constraints:

Any proper coloring of a multiloop features at least one node, so the levels of chil-
dren/nodes need to be set to a level ξL := ξL + 1 mod 2;
Any IBH loop features at least one leaf within its children, which needs to be set to a
modular level ξL.

Conversely, beyond their first BP, helices may be colored with very limited constraints and
can be used to offset multiloops and IBH loops.
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Figure 8 Alternative colorings for helices consisting of 3+ base pairs (hmin ≥ 3), such that the
modular level of the following nodes is offset as needed. Such colorings can be chosen to respect a
prescribed level for nodes and, a predetermined color for the first node/base pair of the helix.

▶ Lemma 7. Let ξL denote the prescribed modular level for nodes. Consider an helix H

consisting of 3 BPs or more (hmin ≥ 3), whose first BPs is assigned some color c ∈ { , , }.
Then for each modular level l ∈ [0, 1] for the first BP of H (c = only if l = ξL), and

targeted exit modular level l′ ∈ [0, 1], there exists a coloring for the rest of H such that:
The modular level of the upcoming nodes, i.e. those immediately following H, is l′;
Base pairs can only be -colored at modular level ξL.

Proof. The proof is essentially based on case decomposition, and summarized in Figure 8.
We show that, for any l and hmin ≥ 3, there exists a color assignment to the first 3 nodes
of the helix, such that the modular level of upcoming nodes is either 0 or 1, so l′ can be
reached. Moreover, if such a coloring starts with or , and uses a single node, then
there exists an alternative coloring placing this node at the opposite modular level, so
one of them places their node at the intended level ξL. Finally, if the first node is set
to , then the consistency condition above implies that l mod 2 = ξL, so that nodes are
naturally found at an admissible modular level. ◀

It follows that any helix tree starting with an initial helix H can be colored into a 2-separated
coloring. Starting at initial level l = 0 and having initial BP color c (̸= if ξL = 0), color
the rest of H as shown in the proof of Lemma 7, depending on ξL and the type of upcoming
loop (target l′ = ξL for Multiloops; l′ = ξL for IBH loops), while ensuring that nodes end
up at ξL modular level (which can always be done from Lemma 7). The remaining nodes of
the loop are then colored in a proper/greedy manner, and we iterate the process recursively
on the children helices of the loop (if any) until the full tree is colored.

Since its level cannot be offset, the Root node must be treated as a special case. Indeed,
if the Root has at least one leaf/unpaired position, then the modular value 0 is taken by
the leaf, so we must have ξL = 0. Conversely, if the Root supports at least 3 helices, then
at least one needs to start with a node, so we must have ξL = 1. Regardless of this
restriction on ξL, in both cases the first base pair of each helix (if any) supported by the Root
can be properly colored, and helices can be independently colored using the above strategy,
ultimately yielding a 2-separated coloring. ◀

▶ Corollary 8. Inverse Folding, restricted to instances with hmin ≥ 3 (containing no
isolated base pair and no isolated stacks) is solvable in linear time and space.

It is a direct consequence of Theorem 6 and of the DP scheme introduced in Section 4.1.
Indeed, for m = 2, the DP algorithm only needs to be run twice (ξL = 0 and ξL = 1) in linear
time/space, to produce a 2-separated coloring whenever such a coloring exists (guaranteed
by Theorem 6). The coloring can then be transformed into a design, i.e. a solution to the
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Figure 9 Main gadget used to build non-separable instances with hmin = 2. Left:
Admissible colors for each node (up to branch symmetries). Right: Example coloring and levels of a
selection of leaves and nodes. Note that along with the node at level ℓ, there always exists a
leaf at level ℓ + m or ℓ − m for 2 ≤ m ≤ b, ruling out modulo separability for small m.

inverse folding problem. Similarly, Uniform Modulo Separated Generation can
also be performed in linear expected time and space as long as input instances contain only
helices of size 3 or more.

▶ Corollary 9. Let T be a target structure with hmin ≥ 3, then the following are equivalent:
i) T is designable; ii) T is 2-separable; and iii) T avoids (m3•, m5).

With this result, the hierarchy of instances collapses as depicted on the left of Figure 7 A
natural follow-up question is whether the bound 3 on the helix length is tight. Indeed, there
are non-separable and designable instances with hmin = 1 (Proposition 1), but the question
remains for hmin = 2. In Proposition 10 we give a non-separable instance without isolated
base pairs, so hmin = 3 is indeed tight to ensure separability.

▶ Proposition 10. There exist non-separable structures with hmin = 2.

The full proof relies on a counterexample built from the gadget in Figure 9. Intuitively,
T (a, b) saturates all levels modulo b with leaves, so that none remains available for nodes.
Meanwhile, the presence of multiloops forces proper colorings to use nodes, so a collision
occurs and the gadget is not m-separable for any m ≤ b. By assembling 5 copies of T (a, b)
with large b and increasing values of a, we obtain a target that is not separable for any m.

6 On the relevance of separated sequences towards realistic designs

While the existence of a linear-time algorithm for a reasonable restriction of the inverse folding
problem is already notable, its practical relevance may be perceived as hindered by several
limitations: our algorithms are only guaranteed to produce design solutions for helices beyond
3 base pairs; proper colorings only allows the design of highly-constrained (multi)loops; and
solutions to the base pair inverse folding are not guaranteed to represent good solutions in more
realistic energy models, such as the Turner nearest-neighbor model. To assess the promises
of separated designs in realistic settings, we performed computational experiments, using a
Python implementation available at https://gitlab.inria.fr/amibio/linearbpdesign,
to assess the potential of separated colorings to inform future RNA design methods.
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Figure 11 Average runtime of our algorithm
(preprocessing + sampling of single instance) for
separable instances (hmin=3; no m3•/m5) on a
domestic laptop (AMD Ryzen 7 3700U).

6.1 Targets with isolated BPs/stacks are frequently separable

While our algorithm is only guaranteed to produce a design when hmin ≥ 3, it also produces
(guaranteed correct) solutions for input with smaller helices, as long as a separated coloring
exists for them. For very small targets, an exhaustive analysis is feasible, consisting of
folding/testing the unicity of the MFE folding for all sequences of length n = 12 (see
Figure 2). Moreover, once a design w is found for a target T , it is easy to test if the
associated coloring χw is separated, and to compute minimal modulus value m⊖ such that
χw is m⊖ separated. We found that all of the 8 111 designable targets are also separable,
despite a very large proportion of them featuring isolated stacks and base pairs. Moreover,
all designable targets admit separated solutions associated with very small values of the
modulus m (7 690 for m = 2, 420 for m = 3 and m = 1 only for the empty structure).

To further measure the proportion of separable structures within larger targets featuring
isolated stacks, we implemented a uniform random generation algorithm [15]. We produced
random target secondary structures of length 100 with a min base pair span of θ = 3. We
used rejection to produce a synthetic dataset consisting of 10 000 targets having at least
one helix of size 2 while avoiding m3• and m5. For each target T , we ran an in-house
implementation of the algorithm in Section 4.1 with increasing modulus, to find the minimal
modulus m⊖ such that T admits a m⊖ separated coloring. Table 10 summarizes our results,
which we discuss below.

Remarkably, all of the 10k targets in the datasets could be designed using our algorithm,
and thus admit a separable coloring. Moreover, roughly three-quarters (80%) of the targets
were found to be 2-separable, and less than 1% of the targets required the consideration of
values for m⊖ beyond 6. The max value for m⊖ in this dataset was 9, an order of magnitude
lower than the sequence length. Clearly, since we have shown the existence of non-separable
instances with isolated stacks and no isolated base pair, this observation does not generalize
to arbitrary sequence lengths. However, the large size of these counterexamples suggests that
the proportion of separable structures, despite ultimately decaying exponentially [21], may
remain non-negligible for relevant RNA target sizes.
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6.2 Separated designs are promising candidates in the Turner model
We now consider a more realistic setting, where the inverse folding problem is now considered
with respect to the Turner nearest-neighbor energy model [20]. To assess the value of a
sequence in the Turner model, we introduce a metrics which we call the (signed) energy
distance ∆∆G(w, T ) of a target T to its most stable distant alternative for the sequence w:

∆∆G(w, T ) := ∆G(w, αd−(w, T )) − ∆G(w, T ), α(w, T ) := min{∆G(w, T ′) | |T ′, T | ≥ d−}

where ∆G(w, T ) is the Turner free-energy, |T, T ′| := |T △ T ′| denotes the base-pair distance,
and d− represents the minimum base pair distance to T . Both ∆G and αd−(w, T ) can be
obtained by appropriate calls to the ViennaRNA package [9], namely RNAeval and RNAsubopts,
using max energy distance parameter E = 5 (so our estimation of ∆∆G(w, T ) is bounded by
5). A positive energy distance confirms that w is a solution to the Turner version of inverse
folding, and dominates its competitors by ∆∆G(w, T ) kcal.mol−1. Meanwhile, a negative
energy distance indicates that the target T is dominated by some alternative structure,
having ∆∆G(w, T ) kcal.mol−1 lower free-energy than the target.

We consider three strategies for sampling sequences: i) The compatible model uniformly
generates random sequences compatible with the target (A for unpaired positions; AU, UA,
GC or CG for base pairs); ii) The separated model uses the sampler described in Section 4.2
to generate sequences that are 2-separated and proper; iii) The relaxed model generates
sequences that are 2-separated, but not necessarily proper by assigning uniform random
pairs to the base pairs of a multiloop. The relaxed model enables a heuristic extension of
our algorithms supporting multiloops of arbitrary degrees, noting that the local refolding
(see Figure 4) occurring in the BP model for non-proper sequences are either unrealistic or
outright impossible, in the Turner energy model.

Separated sequences substantially improve over compatible random sequences. We first
asked a basic question: Are separated sequences better candidates for design in the Turner
model than sequences merely compatible with the target? The answer is not obvious since
separated sequences are only guaranteed to represent designs for the BP max. model. We
considered instances of size n = 100 admitting a solution to Inverse-FoldingBP (θ = 3; no
m3•/m5; hmin ≥ 3). We generated 10 000 random targets and, for each target, sampled a
single sequence using each of the 3 strategies above and computed the energy distance.

The results, summarized in Figure 12.top suggest that separated sequences represent a
substantial improvement over merely compatible sequences. Indeed, while 10% of compatible
sequences ended up being good design candidates (∆∆G > 0), the proportion of successful
designs increases to approximately one-third (35%) for separated sequences, and further to
43% for relaxed design. A similar trend can be observed for the average ∆∆G (distance to
the first alternative/competitor) among successful designs, being of 0.79/0.98/1.06 kcal.mol−1

in the compatible, separated and relaxed models respectively. The surprisingly good behavior
of the relaxed model, which was mostly introduced to overcome unrealistic limitations on
multiloops, remains to be explained.

Relaxed sequences enable designs for multiloops having higher degrees. We also tested
the capacity of the relaxed model to generate solutions for multiloops of higher degrees,
noting that the avoidance of m3• and m5 restricts the maximum degree of a multiloop to
4. We used the above-mentioned generation algorithm to generate uniform design targets
of size n = 100, featuring at least one (but frequently many) occurrence of m3• and m5.
As shown in Figure 12.bottom, compatible sequences are again substantially outperformed
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Figure 12 Comparison of compatible (baseline), separated, and relaxed models for
targets having n = 100, θ = 3, hmin = 3. For energy distance parameters, we took d− = 3 and
E = 5.

by the relaxed separated model in this setting, with 31.5% of the separated/non-proper
sequences (as opposed to only 5.1% of compatible sequences) representing successful designs
(∆∆G > 0), on average 0.86 kcal.mol−1 more stable than their best competitor.

7 Conclusion

Adapting a coloring perspective initially introduced by Halès et al. [7], we have shown that
the inverse folding problem can be solved in linear time for all target secondary structures
having minimum helix length equal to 3. Towards that main result, we have established the
existence of designable, yet non-separable, instances of inverse folding, and the NP-hardness
of finding a separable design in the initial sense of Halès et al. We have also introduced
concrete algorithms for the problem of finding a m modulo-separated coloring, which we
have shown to be NP-hard yet FPT-solvable for m. Already for m = 2, the scope of our
algorithms encompasses all targets without isolated base pairs and stacks, but also extends
much beyond, in a way that remains to be fully characterized. Beyond base pair maximization,
modulo-separated sequences may also represent a solid foundation towards concrete design
methodologies. Namely, we empirically showed that, for the Turner energy model, separated
sequences tend to represent better design candidates than merely compatible sequences,
and that the limitations on loop degrees (intrinsic to the BP maximization model) can be
overcome by relaxing our design model while retaining substantial performances.

Future work should focus on how much of designable sequences are covered by sequences
obtained with (modulo)-separated colorings. More importantly, does the space of (modulo)-
separated colorings always/often contain a design with respect to the nearest-neighborhood
Turner energy model? Even if it unlikely to hold unconditionally, it is plausible that some
extensions of separability and m-separability will achieve theoretical and practical solutions
for inverse folding in more general energy models. As a first step, separability in a stacking
energy model seems a relevant goal, even if less ambitious than the Turner model. It would
probably require to go beyond the current coloring formalism, and motivate the introduction
of more general notions of defect to capture imbalance at the dinucleotide level.
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A NP-completeness of general separability (Proof of Theorem 3)

Separability is clearly in NP, since any coloring (certificate) can be checked in linear
time. We prove hardness by reduction from Bin Packing which we formulate as an interval
packing problem.

▶ Problem 5 (Interval Packing).
Input: set of pairwise distinct integers A = {a1, · · · , an}, integers k and B

Output: function x from A to intervals of [0, kB − 1[ such that:
x(ai) is an interval of size ai

x(ai) and x(aj) are disjoint for i ̸= j

x(ai) does not contain both jB − 1 and jB for any i, j.

This is a reformulation of Bin Packing: fitting items for a total size of B is equivalent to
finding a partition of a size-B interval into smaller intervals. The problem remains NP-hard
even when input integers are encoded in unary (which corresponds to the fact that Bin
Packing is strongly NP-hard). We further require that all items have size ai ≥ 5

Object and border gadgets. We first give the main gadgets for our reduction, see figure 13
for more details.

▶ Definition 6. An object gadget of size q ≥ 3 is a chain of q + 3 nodes c0, . . . cq+2 with a
child attached to c1 and cq+1 and leaves attached to all other nodes ci.

A period-p border gadget of size q is a chain of q nodes c0, . . . cq−1 with a child attached
to ci for all i ≡ 0 mod p and leaves attached to all other nodes ci.

▶ Proposition 11. If an object gadget of size q appears in a tree with a separated coloring χ,
with ℓ = min{L(ci) | 1 ≤ i ≤ q} such that

there are nodes at levels ℓ + 2 and ℓ + (q + 2)
there are leaves at levels ℓ + i for all 1 ≤ i ≤ q + 3, i ̸= 2, q + 2.

If a period-p gadget of size q appears in a tree with a separated coloring χ, with the root
at level ℓ, then there exists some direction d ∈ {−1, 1} such that

there are nodes at levels ℓ + d · i + 1 for all 1 ≤ i ≤ q, i ≡ 0 mod p;

https://doi.org/10.1093/nar/gkp892
https://doi.org/10.1145/3307339.3342163
https://inria.hal.science/hal-02987566
https://doi.org/10.1002/jcc.21633
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Figure 13 Left: details of the four main parts of the reduction, i.e. an object gadget Ci of size ai

(in this example with ai = 5), border gadgets X1 and X2 with respective periods 2 and 3, and the
separator chain S). Right: general layout of the tree built in the reduction.

there are leaves at levels ℓ + d · i for all 1 ≤ i ≤ q + 3, i ̸≡ 0 mod p.

Proof. First note that in either gadget, all nodes ci have the same non- color. Indeed,
nodes with a leaf attached or a leaf sibling cannot be , so all ci are or . Furthermore,
by the proper coloring constraints, consecutive nodes must be of the same color, so all ci

have the same color. Thus, writing ℓr for the root level, we have that the level below each
node ci is ℓr + di, with d = 1 if the whole chain is and d = −1 otherwise.

Furthermore, all nodes attached to the chain must be by the proper coloring constraints.
This directly gives the desired property for border gadgets. For object gadgets, the minimum
level ℓ along the chain is either ℓr (if d = 1) or ℓr − q − 3 (if d = −1), and in both cases, for
each level ℓ + i with 1 ≤ i ≤ q + 3, there is either a node (i = 2 or i = q + 2) or a leaf
(otherwise). ◀

Reduction. Given an instance A, k, B of Interval Packing, we build a tree T as follows:
We start with a chain P of n + 1 nodes denoted p0, . . . , pn.
For each i ≥ 1 we attach a chain (denoted Pi) of Bk nodes to pi, and an object gadget
Ci of size ai to the end of the chain.
We attach a period-2 border gadget of size 2kB to p0, denoted X1.
We attach a chain S of kB + 3 nodes to p0 with:

a leaf to the (iB + 1)st node of S for each 0 ≤ i ≤ k,
a second child, called separator, to the (iB + 2)nd node of S for each 0 ≤ i ≤ k,
a period-3 border gadget of size 2kB at the end of S, denoted X2.

We will now show that there exists a solution for unary bin packing if and only one can find
a separated coloring for T .

From interval packing to separated coloring. In this section, we consider an interval
packing x assigning an interval of [0, kB − 1[ to each item ai. We write xi such that
x(ai) = [xi, xi + ai − 1[, and we color the tree T as follows (see Figure 14):

All nodes ci in object gadgets, all non-separator nodes in S and all nodes ci in X1 are
colored ,
All nodes ci in X2 are colored .
The first three nodes of Pi are colored , and the last xi nodes of Pi are colored
(note that Pi has length kB ≥ xi + 3 since xi + ai < kB and ai ≥ 5).
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All remaining nodes are colored .
We show that this coloring is separated, in particular, we show that the level of each

node is of one of the following types, and that leaves are not of these types:
a. 0, 2 and kB + 2
b. xi + 2 for each 1 ≤ i ≤ n

c. j − 1 for j ≤ 0, j ≡ 0 mod 2
d. kB + j + 4 for j ≥ 0, j ≡ 0 mod 3
For the chain P , all nodes are and have level 0 (type a). For each Pi, there are nodes
at levels -1 and 0 (types a and c), and the chain ends at level xi. For each object gadget
Ci, there are nodes at levels xi + 2 (type b), and xi + ai + 2 (type b or a, since this
corresponds to the start of the next interval or to kB + 2). There are also leaves in Ci at
each level xi + j for j = 1, 3, 4, . . . ai, ai + 1, ai + 3 which are all values between 1 and kB + 3
and indeed do not correspond to any of the four types above. For gadget X1, there are
nodes at odd levels from −1 down to −2kB + 1 (type c), and leaves at even negative levels.
For the chain S, there are nodes attached at levels iB + 2 for each 0 ≤ i ≤ k, which are
necessarily of the form xi + 2 (type b) for some i (since each iB must be the start of some
interval of x). Leaves in S are at level 1 and kB + 1, which are not of any type (in particular
for type b, this is true since ai ≥ 5). Finally, for gadget X2, the nodes are of type d, and
the leaves occupy remaining levels beyond kB + 4.

From separated coloring to interval packing

Suppose now that T admits a separated coloring χ, and consider the gadget X1. Its root is
at level ℓX1 ∈ {−1, 0, 1}, and by Proposition 11, there exists some dX1 ∈ {−1, 1} such that,
for each level ℓX1 + dX1j, there is a leaf (for even j) or a node (odd j). Without loss
of generality, we assume that dx1 = −1 (i.e., the chain in X1 is ): if this is not the case
we swap and colors overall. Thus, there are leaves and nodes at alternating levels
between −2 and −2kB + 1 (at least).

Consider the chain S. For any 0 ≤ i ≤ k, the (iB + 2)nd node of the chain cannot be
(since it has a leaf sibling) so one of its two children must be . We write s0 ≤ s1 ≤ . . . ≤ sk

for the levels of such nodes in ascending order: from the position of the nodes we have
sj+1 ≤ sj + B. Furthermore, s0 ≤ 3 and sk ≤ kB + 3 (using the distances to the root).

Consider now X2. Its root is at most one level away from a separator, so at level ℓX2
with s0 − 1 ≤ ℓX2 ≤ sk + 1. By Proposition 11, there exists some dX2 ∈ {−1, 1} such that,
for each level ℓX2 + dX2j with 1 ≤ j ≤ 2kB, there is a node (i ≡ 0 mod 3) or a leaf
(otherwise). In particular, we necessarily have dx2 = 1, since otherwise there would be two
consecutive levels among levels {−2, −3, −4}, which would raise a conflict with X1.

For any i ∈ [1, n[, consider object gadget Ci. Its minimum level is ℓi with −kB−n−ai−3 ≤
ℓi ≤ kB + ai + n + 3 , and by Proposition 11, for each level ℓi + j with 1 ≤ j ≤ ai + 3, there
is a node (j = 2, ai + 2) or a leaf (otherwise). In particular, ℓi ≥ s0 − 5 (as otherwise
there would be consecutive leaves at consecutive levels under s0 − 2, in conflict with X1)
and ℓi + aj ≤ sk + 5 (otherwise there would be leaves at consecutive levels higher than
sk + 3, in conflict with X2). Finally, since levels s0 and sk have nodes and ai ≥ 5, then
for i such that ℓi ≤ s0 − 2, we have ℓi = s0 − 2. Similarly, for i such that ℓi + ai + 2 ≥ sk,
we have ℓi + ai + 2 = sk. And for any i and j, if ℓi + 2 ≤ sj ≤ ℓi + ai + 2, we have
sj ∈ {ℓi + 2, ℓi + ai + 2}.

Pick any two object gadgets Ci, Ci′ with ℓi ≤ ℓi′ . Then ℓi ̸= ℓi′ (otherwise, since ai ̸= ai′ ,
there would be a conflict at level ℓi + min{ai, ai′} + 2), and ℓi′ ≥ ℓi + ai (otherwise, there
would be a conflict at level ℓi′ + 2).
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Figure 14 Example of the reduction with n = 4 items with sizes {3, 4, 5, 6} to be sorted into k = 2
size-9 bins. A separated coloring is shown, corresponding to the solution {3, 6}, {4, 5} (a selection of
leaf and levels are depicted). Each item is mapped into a branch Pi followed by an object gadget
Ci, containing 2 nodes separated by the size of the item. Leaves in object gadget enforce that
any two gadgets may overlap only if the nodes are aligned. The bins are implemented using the
separator sequence S, with nodes at every Bth position, enforcing that series of consecutive items
are packed into size-B bins. Finally, border gadgets X1 and X2 may not overlap with any other
gadget, and enforce that all object gadgets and separators are packed together in a size-kB range of
levels.

We now have all the tools to build an interval packing. We write xi = ℓi − s0 + 2 and
σj = sj − s0. By the remarks above, we have that intervals [xi, xi + ai − 1[ are pairwise
disjoint. Furthermore, they are all included in interval [0, σk − 1[. Since they have total
size

∑n
i=1 ai = kB and σk = sk − s0 ≤ kB, we have σk = kB, which is only possible with a

fully chain S: so we get σj = jB for all 0 ≤ j ≤ k. And finally, if σj ∈ [xi, xi + ai − 1[,
then ℓi + 2 ≤ sj ≤ ℓi + ai + 2 which yields sj ∈ {ℓi + 2, ℓi + ai + 2}. This translates into
σj ∈ {xi, xi + ai}, so necessarily σj = xi and σj − 1 /∈ [xi, xi + ai[. Overall gadget levels
relative to the first separator s0 give a valid partition of [0, kB − 1[ into pairwise disjoint
size-ai intervals non-overlapping block border positions jB, so they give a valid Interval
Packing solution.

B Non-separable target w/o isolated BPs (Proof of Proposition 10)

We start with the following remark:

▶ Proposition 2. If u0, . . . , uk is a path in T and each ui for even i has a leaf attached to it
then, for any coloring χ of the path, we have χ(u0) ∈ { , } and χ(ui) = χ(u0) for all i.
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Proof. Indeed, by the proper coloring constraint, every node with an attached leaf or with a
leaf sibling may not be , so all χ(ui) ∈ { , } for all i. Moreover, there can be no direct
edge between and nodes, so χ(ui) = χ(ui−1) for all i which gives the desired property
by induction. ◀

We now build a non-separable instance I without size-1 helix nor (m3•, m5) motif. Let
a ≥ 2 and b ≥ 2 be even numbers. Let T (a, b) be the gadget from Fig 9, containing a length-a
path from the to an internal node denoted t, and three length-b branches attached to t.
Further attach a leaf to every node at an even distance from the root (except t itself). Note
that all helices in T (a, b) have length 2. The level of a copy of some T (a, b) gadget is the
level reached under node t of this gadget.

We build the instance I as a tree containing 5 copies of the gadget T (a, b), precisely
I = (((T [10, 100], T [20, 100])), ((T [30, 100], T [40, 100])), T [50, 100]).

First note that for a copy of gadget T (a, b) at level ℓ in any separable coloring, there is
a node at level ℓ, since the node t has three children and at least one must be . Also,
there exist two integers u, v such that, for every x ∈ [1, b[, there is a leaf at level ℓ + ux if x

is odd, and level ℓ + vx if x is even. Indeed, pick one gray child U of t, and one non-gray
child V . All vertices under U form an all-white or all-black branch by Proposition 2 (we let
respectively u = −1 and u = 1), and vertices at levels l + u, l + 3u, . . . , l + bu (or l + (b − 1)u)
have a pending leaf. We similarly define v = 1 if V is black and v = −1 if V is white, and
vertices at levels l + 2v, l + 4v, . . . , l + bv (or l + (b − 1)v) have a pending leaf. From the
above, if there are nodes at levels ℓ1 and ℓ2 with ℓ − b ≤ ℓ1 < ℓ < ℓ2 ≤ ℓ + b, then ℓ1 ̸= ℓ2
mod 2 (since otherwise, one of ℓ1, ℓ2 could be written as ℓ + ux with even x, so that level
would be a leaf level).

Aiming at a contradiction, assume that I admits a separable coloring. Let ℓ1 ≤ ℓ2 ≤
ℓ3 ≤ ℓ4 ≤ ℓ5 be the levels of all five copies of the T [a, b] gadgets of I, in ascending order.
Then from the length of the branches from the root, we have ℓi ∈ [−50, 50] and ℓi ̸= ℓj .
Then by the remark above applied to the gadget with level ℓ2, we have ℓ1 ̸≡ ℓ3 mod 2, and
similarly using gadgets with level ℓ4 we have l3 ̸≡ l5 mod 2 and l1 ̸≡ l5 mod 2, leading
to a contradiction (any three integers such as ℓ1, ℓ3 and ℓ5 may not have pairwise distinct
parities).

C Leveraging random generators at fixed modular levels into a
uniform random generation of separated sequences

▶ Theorem 12. Uniform Modulo Separated Generation can be performed in an
average-case complexity that is Fixed Parameter Tractable for the modulus parameter m.

We consider a rejection-based approach, which starts by precomputing all #DesignsξL
in

time Θ(n.m.2m) (see Section 4.2), and accumulates them into Zm :=
∑

ξ′
L

⊆[0,m[ #Designsξ′
L

.
It then iterates the following steps until a suitable sequence is returned:
1. Choose some ξL ⊂ [0, m[ with probability P(ξL) = #DesignsξL

/Zm

2. Generate a ξL separated sequence w

3. Compute the number Ξw of ξ′
L ⊂ [0, m[ such that w is ξ′

L separated
4. Accept/return w with probability 1/Ξw; Reject/restart from 1. otherwise.
Due to the full reset on each rejection, the emission probability pw of any suitable w does
not depend on the prior sequence of rejections (folklore, proven in [15, pp 77]), and we have:

pw ∝
∑

ξL such that w
is ξL separated

P(ξL)×P(w | ξL)× 1
ΞL

=
∑

ξLsuch that w
is ξL separated

#DesignsξL

Zm
× 1

#DesignsξL

× 1
Ξw
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Some terms directly cancel out and, by definition, we have
∑

ξLsuch that w
is ξw separated

1 = Ξw. It follows

that pw ∝ 1/Zm, a term that no longer depends on w, from which we conclude that the
generation is uniform.

Complexity-wise, a prior accumulation of the 2m terms #DesignsξL
, each smaller than

4m, into a suitable data structure (see Lorenz and Ponty [11] for details) enables a random
choice of ξL (Step 1.) in Θ(n.m). Once ξL is chosen, the above DP algorithm uniformly
generates w in time Θ(m.n) (Step 2). The computation of Ξw (Step 3) is trivial and consists
in identifying, in time Θ(n + m), the subset Φw ⊆ [0, m[ of modular levels that are populated
by neither leaves nor nodes in χw. Indeed, those levels represent the only degrees of
freedom available while choosing a compatible ξL, the others modular values being forced
to either or leaves. Since such modular values can be independently chosen to be in
or out of ξL, then we have Ξw = 2|Φw|. Clearly, we have Ξw ≤ 2m, so the expectation
of the number of (independent) rejections admits an upper bound in 2m, and the overall
average-case complexity is in Θ(n.m.2m).
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