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Abstract
Genome rearrangements are events where large blocks of DNA exchange places during evolution.
The analysis of these events is a promising tool for understanding evolutionary genomics, providing
data for phylogenetic reconstruction based on genome rearrangement measures. Many pairwise
rearrangement distances have been proposed, based on finding the minimum number of rearrangement
events to transform one genome into the other, using some predefined operation. When more than
two genomes are considered, we have the more challenging problem of rearrangement-based phylogeny
reconstruction. Given a set of genomes and a distance notion, there are at least two natural ways
to define the “target” genome. On the one hand, finding a genome that minimizes the sum of the
distances from this to any other, called the median genome. On the other hand, finding a genome
that minimizes the maximum distance to any other, called the closest genome. Considering genomes
as permutations of distinct integers, some distance metrics have been extensively studied. We
investigate the median and closest problems on permutations over the following metrics: breakpoint
distance, swap distance, block-interchange distance, short-block-move distance, and transposition
distance. In biological applications some values are usually very small, such as the solution value d

or the number k of input permutations. For each of these metrics and parameters d or k, we analyze
the closest and the median problems from the viewpoint of parameterized complexity. We obtain the
following results: NP-hardness for finding the median/closest permutation regarding some metrics of
distance, even for only k = 3 permutations; Polynomial kernels for the problems of finding the median
permutation of all studied metrics, considering the target distance d as parameter; NP-hardness
result for finding the closest permutation by short-block-moves; FPT algorithms and infeasibility of
polynomial kernels for finding the closest permutation for some metrics when parameterized by the
target distance d.
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2:2 On the Complexity of the Median and Closest Permutation Problems

1 Introduction

Ancestral reconstruction is a classic task in comparative genomics, which is based on consensus
word analysis, with a vast applicability [11, 17, 29]. In this field, genome rearrangement
problems study large-scale mutations on a set of DNAs in living organisms, and have been
studied extensively in computational biology and computer science for decades. From a
mathematical point of view, a genome is represented by a permutation (a sequence of distinct
integers). Based on that, as proposed by Watterson et al. [33], a genome rearrangement
problem is interpreted as transforming one permutation into another by a minimum number
of operations depending on the possible allowed rearrangements, i.e., the chosen metric. In
this model we consider the following assumptions: the order of genes in each genome is
known; all genomes we compare share the same gene set; all genomes contain a single copy
of each gene; and all genomes consist of a single chromosome. So, genomes can be modeled
as permutations, once each gene is encoded as an integer.

Finding the minimum number of operations is equivalent to sorting the permutation with
a given rearrangement. Many metrics received attention in recent years, and among the
studied distances or sorting problems the following are the most natural ones. The breakpoint
distance is the number of consecutive elements in one permutation that are not consecutive in
another one. Note that on the breakpoint distance we do not apply any operation to transform
a permutation into another one. The reversal operation transforms one permutation into
another one by reversing the elements of a block of one permutation (a block is an interval
of consecutive elements). The block-interchange operation exchanges two disjoint blocks,
and generalizes the transposition, where the blocks are restricted to be consecutive. A swap
is a block-interchange where each block has a unique element. A short-block-move is a
transposition whose blocks have at most three elements. Concerning the computational
complexity with respect to these metrics, the corresponding problems for breakpoint distance,
sorting by block-interchanges, and sorting by swap can be solved in polynomial time [9, 17],
sorting by transpositions and sorting by reversals are NP-complete [6, 7], and the complexity
of sorting by short-block-moves is still unknown. Some restrictions or generalizations of the
presented metrics have been considered and algorithmic aspects have been developed [27,32].

When an input has more than two genomes, there are many approaches for finding
ancestral genomes. The main application is to infer common ancestor configurations and
eventually phylogenies, which are trees that show the relationships between organisms or
between species [1,8,10,14,21,30]. A relevant approach is the Median problem, where, for a
fixed metric M , the goal is to find a solution genome that minimizes the sum of the distances
between the solution and all the input genomes.

Instance: A set S of genomes.
Goal: A genome that minimizes the sum of the distances, according to metric M ,

between the solution genome and all other genomes of S.

Metric M Median

The Breakpoint Median problem is NP-hard [30] for a general input. The Reversal
Median and Transposition Median problems are NP-hard even when the input consists
of three permutations [1, 8]. Prior to this work, the complexity of Block-interchange
Median was not known. The same applies to the Median problem regarding swap or
short-block-move operations.

Haghighi and Sankoff [21] observed that, with respect to the breakpoint metric, a tendency
for medians is to fall on or to be close to one of the input genomes, which contain no useful
information for the phylogeny reconstruction. They also conjectured the same behavior
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concerning other metrics. Hence, an alternative approach is to consider the Closest problem
for a fixed metric M , which aims to find a genome that minimizes the maximum distance to
any genome in the input, which can be seen as finding a genome in the center of all others,
i.e., a genome minimizing the radius of the ball containing all the genomes of the input set.

Instance: A set S of genomes.
Goal: A genome that minimizes the maximum distance, according to metric M ,

between the solution genome and any other genome in S.

Metric M Closest

Lanctot et al. [28] studied the Closest problem over strings with respect to the Hamming
distance, and settled that this problem is NP-hard even for binary strings. Popov [31] studied
the Closest problem over permutations with respect to the swap operation distance, and
showed that it is NP-hard. Cunha et al. [10] showed that the Closest problem is NP-hard
for several well-known genome rearrangement distances, such as the breakpoint and the
block-interchange ones.

The parameterized complexity (see Appendix A for the basic definitions, which can also
be found in [15]) of the Median and Closest problems has been studied mostly regarding
strings on an alphabet Σ with respect to the Hamming distance. These problems, and some
variations, have been considered with respect to parameters that are combinations of k, d,
|Σ|, and n, where d is the solution value, k is the number of input permutations, and n is
the length of the strings. Gramm et al. [19, 20] investigated the Closest String problem
on binary strings considering some parameters, and showed how to solve it in linear time
for fixed d (the exponential growth in d is bounded by O(dd)), and when k is fixed and d

is arbitrary. Fu et al. [18] developed a polynomial kernelization parameterized by d and
k, of size O(k2d log k). Basavaraju et al. [3] presented a comprehensive study of Closest
String and some related problems from the kernelization complexity perspective, and
showed that Closest String parameterized by d and the length of the strings n does not
admit a polynomial kernel under a standard complexity assumption. Furthermore, recently
parameterized results regarding Median and Closest problems with respect to edit distance
were developed [25].

Considering the input genomes as permutations, some few results are known, such as
the fact that the Swap Closest problem is FPT when parameterized by the number of
input permutations and the solution radius [31]. On the other hand, the Transposition
Median problem parameterized by the number of input permutations is para-NP-hard, since
Bader proved that it is NP-hard even if the input consists of three permutations [1]. To
the best of our knowledge, a multivariate investigation of the parameterized complexity
of computing the median/closest genome by the considered metrics on permutations has
not been thoroughly studied in the literature. Therefore, our goal is to map sources of
computational tractability for both consensus problems (Median and Closest) defined
above, and consequently identify features that make it tractable through the lenses of metrics
over permutations and the parameterized complexity.

Our contribution. In this article we obtain the following results:
In Section 3, we develop polynomial kernels for finding median permutations considering
swap, breakpoint, block-interchange, transposition, and short-block-move operations, all
of them parameterized by the target distance d. This result is in sharp contrast with the
fact that, as we have also managed to prove, for most of the above metrics the problem of
finding the closest permutation does not admit a polynomial kernel parameterized by d.
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2:4 On the Complexity of the Median and Closest Permutation Problems

In Section 3, we prove the NP-hardness of Block-interchange Median, even for
only k = 3 permutations. Based on that, in Section 4 we are able to reduce Block-
interchange Median to Block-interchange Closest, as well to Transposition
Closest, even for only k = 3 permutations.
In Section 4, we prove the NP-hardness of Short-block-moves Closest. Since it is
still an open question to decide whether the sorting problem by short-block-moves can be
solved in polynomial time, it is natural to consider the “closest” version of the problem
that, somehow surprisingly, had not been considered in related previous work [10].
In Section 4, we also provide FPT algorithms for the Closest problem parameterized by
the target distance d, for some of the above metrics. Our approach is inspired from FPT
algorithms for Closest String (see [15]).

The above results provide an accurate picture of the parameterized complexity of the
considered problems with respect to the parameters k (in particular, for k = 3) and d.
Note that in biological applications some of these values are very small [3,19,25]. Table 1
summarizes our results, considering only d as the parameter, and the open questions.

Table 1 Some results obtained in this paper comparing Median (Theorem 14) and Closest
(Corollary 24 and Theorem 25) problems parameterized by d. Open questions are denoted by “??”.

Swap Block-interchange Short-Block-Moves Transposition Breakpoint
Median
Par. d poly kernel poly kernel poly kernel poly kernel poly kernel

Closest FPT FPT FPT ?? ??
Par. d no poly kernel no poly kernel no poly kernel no poly kernel no poly kernel

Organization. In Section 2 we provide a detailed explanation on rearrangement operations,
associated graphs, and bounds on the distances we deal with. In Section 3 (resp. Section 4)
we present our results for the Median (resp. Closest) problems, and detailed proofs from
Section 3 can be found in Appendix B. For the sake of readability, the results whose proofs
are in the appendices are marked with “(⋆)”.

2 Preliminaries on genome rearrangements

Genome rearrangements are events where large blocks of DNA exchange places during
evolution. For models, we may consider genomes as strings or permutations. An alphabet
Σ is a nonempty set of letters, and a string over Σ is a finite sequence of letters of Σ. The
Hamming distance of two strings s and s′ of the same length, denoted by dH(s, s′), is the
number of mismatched positions between s and s′. The Hamming distance of a string s of
length n, denoted by dH(s), is the Hamming distance of s and the string 0 . . . 0, where 0 ∈ Σ.

A permutation of length n is a bijection from the set {1, 2, . . . , n} onto itself π =
[π(0) π(1) π(2) . . . π(n)π(n + 1)], such that π(0) = 0 and π(n + 1) = n + 1. For simplicity
π = [π(0) π(1) π(2) . . . π(n)π(n + 1)] = [π0 π1 π2 . . . πnπn+1]. The operations will never
act on π0 or πn+1, but these are used to define graphs useful for determining bounds on
some distances, as discussed later. When not needed, π = [π1 π2 . . . πn]. Similarly to the
above, given a metric M and two permutations π and σ of the same length, we define
dM (π, σ) as their distance with respect to metric M , and the distance of a permutation
π of length n, denoted by dM (π), is the distance between π and the identity permutation
ι = [0 1 2 . . . n n + 1].
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2.1 Sorting by rearrangement operations
Note that the distance between two permutations can also be seen as the sorting of a
permutation. Indeed, once permutations π and σ are given, one can relabel σ to be equal
to σσ−1 = ι, and then the distance between π and σ is the same as sorting πσ−1, i.e., the
distance between πσ−1 and ι. Hence, throughout this paper we may use interchangeably
distance or sorting problem. Block-interchange generalizes a transposition and generalizes
also a swap operation. Nevertheless, with respect to the distance problem, if we are dealing
with an operation M that generalizes another M ′, if computing the distance by the metric
M is in P, it does not imply that with respect to the metric M ′, the distance problem
is also in P. For instance, concerning the block-interchange distance, it can be computed
in polynomial time [9], whereas computing the transposition distance is NP-hard [6], and
computing the swap distance is in P, as discussed later. On the other hand, if a distance
problem is NP-hard, then the Median/Closest problems for the same operation are also
NP-hard. Indeed, this follows by considering an input set of permutations consisting of two
permutations π, ι such that π ≠ ι, and asking for a permutation with distance at most d

from each, for a metric M . Then, we can consider the problem of computing the distance as
a particular case of the Closest problem.

The breakpoint distance. An adjacency of a permutation π with respect to permutation σ is
a pair (πi, πi+1) of consecutive elements in π such that this pair is also consecutive in σ, i.e.,
πi = σj and πi+1 = σj+1. If a pair of consecutive elements is not an adjacency, then it is called
a breakpoint, and we denote by dBP(π, σ) the number of breakpoints of π with respect to σ.
The set Adj(π) is the set of adjacencies of π, given by Adj(π) = {{πi, πi+1} | i = 1, . . . , n − 1}.
Thus, in other words, the breakpoint distance between π and σ is dBP(π, σ) = |Adj(π)−Adj(σ)|.

The block-interchange and the transposition distances. Bafna and Pevzner [2] proposed
a useful graph, called the reality and desire diagram, which allowed to obtain non-trivial
bounds on the transposition distance [2], and also provided, as established by Christie [9], the
exact block-interchange distance. Nevertheless, when considering the transposition distance,
the reality and desire diagram is a tool to only deal with lower and upper bounds for a
permutation, as discussed below.

Given a permutation π of length n, the reality and desire diagram G(π, ι) (or just
G(π) when convenient) from π to ι, is a multigraph G(π) = (V, R ∪ D), where V =
{0, −1, +1, −2, +2, . . . , −n, +n, −(n + 1)}, each element of π corresponds to two vertices
and we also include the vertices labeled by 0 and −(n + 1), and the edges are partitioned
into two sets: the reality edges R and the desire edges D. The reality edges represent the
adjacency between the elements on π, that is R = {(+πi, −πi+1) | i = 1, . . . , n − 1} ∪
{(0, −π1), (+πn, −(n + 1))}; and the desire edges represent the adjacency between the
elements on ι, that is D = {(+i, −(i + 1)) | i = 0, . . . , n}. Figure 1 illustrates the reality and
desire diagram of a permutation. A general definition considers G(π, σ) where the reality
(resp. desire) edges represent the adjacency between elements of π (resp. σ), and then
D = {(+σi, −σi+1) | i = 0, . . . , n}.

As a direct consequence of the construction of this graph, the sets of reality edges and
desire edges define two perfect matchings (that is, a set of edges that contains all vertices of
the graph and each of them appears exactly once), denoted by M(π) and M(ι), respectively.
Each of these perfect matchings is called a permutation matching.

Since every vertex in G(π) has degree two, G(π) can be partitioned into disjoint cycles.
We say that a cycle in π has length k, or that it is a k-cycle, if it has exactly k reality edges
(or, equivalently, k desire edges). Hence, the identity permutation of length n has n + 1 cycles

WABI 2024



2:6 On the Complexity of the Median and Closest Permutation Problems

0 -2 +2 -1 +1 -4 +4 -3 +3 -5 +5 -6 +6 -9 +9 -8 +8 -7 +7 -10

Figure 1 The reality and desire diagram between permutation [0 2 1 4 3 5 6 9 8 7 10] and ι, where
green edges are the reality edges and red edges are the desire edges.

of length one. We denote by c(G(π, ι)) (or just c(G(π)) for convenience) the number of cycles
in G(π). After applying a block-interchange bℓ in a permutation π, the number of cycles
c(G(π)) changes in such a way that c(G(πbℓ)) = c(G(π))+x, for some x ∈ {−2, 0, 2} (see [9]).
The block-interchange bℓ is thus classified as an x-move for π. Analogously, after applying a
transposition t in a permutation π, the number of odd cycles, denoted by codd(G(π)), changes
by an x-move, x ∈ {−2, 0, 2}, for π (see [2]). Christie [9] proved, for the block-interchange
operation, the existence of a 2-move for any permutation, which says that the number of
cycles yields the exact block-interchange distance:

▶ Theorem 1 (Christie [9]). The block-interchange distance of a permutation π of length n is
dBI(π) = (n+1)−c(G(π))

2 .

On the other hand, by allowing only the particular case of the transposition operation,
it is not always possible to use a 2-move. We say that a transposition affects a cycle if the
extremities of the two blocks of the transposition eliminate a reality edge of a cycle and
create another edge. This new edge may increase, decrease, or preserve the number of cycles.

A transposition t(i, j, k), where 1 ≤ i < j < k ≤ n+1, is a permutation that exchanges the
contiguous blocks i i+1 . . . j−1 and j j+1 . . . k−1; when composed with a permutation π, it yields
the following permutation: π · t(i, j, k) = [π1 π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn].
Bafna and Pevzner [2] showed conditions of a cycle for a transposition to be an x-move. If a
transposition t is a −2-move, then t affects three distinct cycles. However, if a transposition
t is a 0-move or a 2-move, then t affects at least two elements of the same cycle [2].

▶ Theorem 2 (Bafna and Pevzner [2]). The transposition distance of a permutation π of
length n satisfies dT(π) ≥ (n+1)−codd(G(π))

2 .

Permutations whose transposition distances are equal to the lower bound of Theorem 2
are called hurdle-free permutations [1,9]. Cunha et al. [12,13] presented upper bounds on the
distance of any permutation by using permutation trees data structure (cf. [13]), and based
on that, an 1.375-approximation algorithm for Sorting by Transpositions was developed,
improving the time complexity to O(n log n). An interesting transformation on permutations
is the reduction operation, since the permutation obtained after its reduction preserves both
the block-interchange and the transposition distances. The reduced permutation of π, denoted
by gl(π) (also called as a glued operation), is the permutation whose reality and desire
diagram G(gl(π)) is equal to G(π) without the cycles of length one (recall that the length of
a cycle is its number of reality edges), and has its vertices relabeled accordingly. For instance,
the reduced permutation corresponding to the permutation in Figure 1 is [0 2 1 4 3 5 8 7 6 9].

▶ Theorem 3 (Christie [9]). The block-interchange distances of a permutation π and its
reduced permutation gl(π) satisfy dBI(π) = dBI(gl(π)).

Swap distance. Permutations can also be represented by each element followed by its
image. For example, given a set {1, 2, 3}, the sequence (1 2 3) maps 1 into 2, 2 into 3, and
3 into 1, corresponding to the permutation [2 3 1]. This representation is not unique; for
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instance, (2 3 1) and (3 1 2) are equivalent. Permutations are composed of one or more
algebraic cycles, where each algebraic cycle of a permutation π is formed by an element
i, followed by its image π(i), followed by the image of π(i), i.e., π(π(i)), and so on. We
continue this process until we reach a repeated element. This procedure uniquely defines the
permutation. We denote by c(π) the number of algebraic cycles of π. For example, given
π = [8 5 1 3 2 7 6 4] = (1 8 4 3)(2 5)(6 7), we have c(π) = 3. An exchange of elements
involving elements a and b such that a and b are in the same cycle is an exchange that
breaks the cycle into two, whereas if a and b belong to different cycles, the exchange of
these elements unites the two cycles [17]. Thus, when considering the swap metric, the swap
distance of a permutation π is determined as follows: dswap(π) = n − c(π), where c(π) is the
number of algebraic cycles of π and n is the length of π.

Short-block-move distance. A p-bounded block-move is a transposition t(i, j, k) such that
k − i ≤ p, and a 3-bounded block-move is called a short-block-move. Hence, a short-block-
move is either a transposition t(i, i + 1, i + 2), called a skip, a transposition t(i, i + 1, i + 3),
or a transposition t(i, i + 2, i + 3), the two latter ones called hops. If the transpositions
are restricted only to p-bounded block-moves, then one obtains the p-bounded block-move
distance, denoted by dpbbm(π). When p = 3, this defines the short-block-move distance,
denoted by dsbm(π). Previous works investigated variants of block-move distances where
bounds are imposed on the lengths of at least one of the moved blocks [22, 23]. The problem
of sorting permutations using 2-bounded block-moves, i.e., adjacent swaps, is easily solved
by the Bubble-Sort algorithm [26]. In general, the complexity of sorting a permutation
by p-bounded block-moves is unknown for fixed p > 2, whereas the analogous problem of
limiting k − i ≤ f(n), is NP-hard [22], since Sorting by Transpositions is NP-hard.

To estimate the short-block-move distance, Heath and Vergara [22,23] used the permutation
graph PG(π) = (V p

π , Ep
π), where V p

π = {1, 2, . . . , n} and Ep
π = {(i, j) | πi > πj , i < j}; each

edge of PG is called an inversion in π. Heath and Vergara proved that on a shortest sequence
of operations for π, every short-block-move decreases the number of inversions by at least one
unit, and by at most two units, therefore:

⌈
|Ep

π|
2

⌉
≤ dsbm(π) ≤ |Ep

π|. Given a permutation,
our aim is to minimize the number of operations that decrease only one inversion in PG.
Examples of permutations that are tight with respect to the above lower and upper bounds
are [2 4 3 5 1] and [2 1 4 3 6 5], respectively.

A short-block-move is a correcting move if it is a skip that eliminates one inversion, or a
hop that eliminates two inversions in π. Otherwise, the block-move is called non-correcting.
Heath and Vergara [23] proved that each sorting sequence can be performed by using just
correcting moves. Table 2 shows replacements from non-correcting moves to correcting moves
in an optimal sorting sequence, which we will use later in Lemma 20.

Table 2 How to replace a non-correcting move βi with a correcting move β′
i [23]; in all cases,

e < f , and x is arbitrary. Case 1 is an exception in this discussion, since it is the case where βi is a
skip, so that it suffices to simply omit βi instead of replacing it with some β′

i.

Case π π′ = πβi π′′ = πβ′
i

1 . . . ef . . . . . . fe . . . . . . ef . . .
2 . . . exf . . . . . . xfe . . . . . . xef . . .
3 . . . exf . . . . . . fex . . . . . . efx . . .
4 . . . xef . . . . . . fxe . . . . . . exf . . .
5 . . . efx . . . . . . fxe . . . . . . exf . . .

WABI 2024



2:8 On the Complexity of the Median and Closest Permutation Problems

2.2 Relationship between sorting and median/closest problems

Median problems. Caprara [8] proved that the Reversal Median problem (RM) is NP-
complete by the following strategy. It begins with the Eulerian Cycle Decomposition
problem (ECD), which consists in, given an Eulerian graph, find a partition of its edges
into the maximum number of cycles. The ECD problem was proved to be NP-complete by
Holyer [24]. First, Caprara reduced ECD to Alternating Cycle Decomposition (ACD),
which is the problem of finding a maximum cycle decomposition of a reality and desire
diagram (defined in Subsection 2.1). Then, he reduced ACD to Cycle Median (CM), which
is the problem of finding a permutation that maximizes the sum of the number of cycles in
the reality and desire diagram of a given set of three permutations. Finally, Caprara reduced
CM to Reversal Median. Summarizing, he proved ECD ≤p CM ≤p RM.

In 2011, just before it was proved that Sorting by Transpositions is NP-hard [6],
Bader [1] proved the NP-completeness of the Transposition Median problem (TM for
short). It was based on the following definition: given three input permutations π1, π2, π3, find
a permutation σ such that

∑3
i=1 dT(σ, πi) is minimized, where dT(σ, πi) is the transposition

distance between σ and πi.
Bader [1] proved the hardness as an adaptation of Caprara’s reductions considering

reversals. This adaptation was done by reducing 3SAT ≤p MDECD ≤p OCM ≤p TM, where
MDECD is the Marked Directed Eulerian Cycle Decomposition problem, proved
NP-hard by Bader [1] and defined as follows. Let k be an integer, let G = (V, E) be a
directed graph, and let Ek ⊆ E be a subset of its edges with |Ek| = k. The edges in Ek are
called the marked edges of G. (G, Ek) ∈ MDECD if and only if E(G) can be partitioned into
edge-disjoint cycles such that each marked edge is in a different cycle. OCM denotes the Odd
Cycle Median problem defined as follows. Let π1, π2, π3 be permutations of {1, . . . , n}
and let k be an integer. Then, (π1, π2, π3, k) ∈ OCM if and only if there is a permutation
σ with

∑3
i=1 codd(G(σ, πi)) ≥ k (because it is known that dT(π) ≥ (n+1)−codd(G(π))

2 , where
codd(G(π)) is the number of odd cycles in the reality and desire diagram of π, see Theorem 2).
Solving an OCM instance is equivalent to finding a permutation matching M(σ) such that∑3

i=1 codd(G(σ, πi)) is maximized. This sum is also called the solution value of M(σ).
TM was proved to be NP-hard by a transformation from any instance σ′ that maximizes∑3

i=1 codd(G(σ′, πi)) to an instance that minimizes
∑3

i=1 dT(σ′, πi). This could be done by
ensuring that the distance between σ′ and each πi achieves the lower bound of Theorem 2.

In order to examine TM, the multiple reality and desire diagram1 was used in [1,8]. Given
the permutations π1, . . . , πq each one with length n, the multiple reality and desire diagram
MG(π1, . . . , πq) = (V, E) is a multigraph with V = {0, −1, +1, . . . , −n, +n, −(n + 1)} and
E = M(π1) ∪ . . . ∪ M(πq), i.e., the edge set is formed by the union of all permutation
matchings of the permutations.

MDECD is NP-hard even when the degree of all nodes is bounded by four. Furthermore,
this result still holds for graphs G = (V, E) that |V |+ |E|−k is odd, where k is the number of
marked edges. Based on that, Bader described a polynomial transformation from G being an
instance of MDECD to an MG. Hence, it is necessary to guarantee conditions on graphs to
be a multiple reality and desire diagram MG. To this end, we have the following properties.

1 Also called multiple breakpoint graph in [1], but not called in this way here so as not to create confusion
with breakpoint distances we also deal with.
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▶ Lemma 4 (Caprara [8]). Let V t and V h be two disjoint node sets, and let G′ = (V t ∪
V h, M1 ∪ . . . ∪ Mq) be a graph, where each M i is a perfect matching, each edge in M i has
color i, and each edge connects a node in V t with a node in V h. Furthermore, let H be a
perfect matching such that each edge in H connects a node in V t with a node in V h, and
H ∪ M i defines a Hamiltonian cycle of G′ for 1 ≤ i ≤ q. Then, there exist permutations
π1, . . . , πq such that G′ is isomorphic to MG(π1, . . . , πq).

A matching H as described in Lemma 4 is called a base matching of the graph. An
important operation over MG was introduced in [8]. Given a perfect matching M on a
node set V and an edge e = (u, v), the operation M/e is defined as follows. If e ∈ M , then
M/e = M\{e}. If e /∈ M , and (a, u), (b, v) are the two edges in M incident to u and v, then
M/e = M\{(a, u), (b, v)} ∪ {(a, b)}.

▶ Lemma 5 (Caprara [8]). Given two perfect matchings M, L of a given graph G and an
edge e = (u, v) ∈ M with e /∈ L, M ∪ L defines a Hamiltonian cycle of G if and only if
(M/e) ∪ (L/e) defines a Hamiltonian cycle of G − {u, v}.

Given an MG graph G = (V, M(π1) ∪ . . . ∪ M(πq)), the contraction of an edge e = (u, v)
yields the graph G/e = (V \{u, v}, M(π1)/e ∪ . . . ∪ M(πq)/e). By induction on the node size
and contracting merging cycles, as a consequence of Lemma 4 we have the following result.

▶ Lemma 6 (Bader [1]). Let V t and V h be two disjoint sets, and let G = (V t ∪V h, M1 ∪M2)
be a graph where M1 and M2 are disjoint perfect matchings where each edge connects a node
in V t with a node in V h. If M1 ∪ M2 defines an even number of even cycles on V , then G

has a base matching H.

Closest problems. We start with the following result.

▶ Theorem 7 (Basavaraju et al. [3]). Closest String parameterized by d and n does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

Considering Closest problems, Popov [31] proved the NP-completeness of the Swap
Closest problem, and Cunha et al. [10] developed an NP-completeness framework of closest
permutation regarding some rearrangements, such as breakpoint and block-interchange. The
proposed reduction was the following: by considering any set of k strings of length n, obtain
a particular set of k permutations of length f(n), which is f(n) = 4n for the breakpoint case,
while f(n) = 2n for the block-interchange case. Based on that transformation, Cunha et
al. [10] showed a polynomial transformation where a solution for Closest string yields a
solution for Closest permutation, as follows.

▶ Lemma 8 (Cunha et al. [10]). Given a set of k permutations obtained by the transformed
set of binary strings, there is a breakpoint closest permutation with maximum distance equal
to 2d if and only if there is a Hamming closest string with maximum distance equal to d.

▶ Lemma 9 (Cunha et al. [10]). Given a set of k permutations obtained by the transformed
set of binary strings, there is a block-interchange closest permutation with maximum distance
at most d if and only if there is a Hamming closest string with maximum distance equal to d.

Hence, the developed technique is a polynomial parameter transformation (PPT, as
defined in Appendix A) from Closest String to Breakpoint Closest Permutation
and to Block-interchange Closest Permutation.
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3 Results for the MEDIAN problems

Given a set of k permutations, each of length n, we can store these permutations as a k × n

matrix. The columns of this matrix are called the columns of the set of permutations, which
are the elements in a same position over the k permutations. For convenience, we denote by
S the input matrix and by s ∈ S a permutation of the instance.

First, we show that Block-interchange Median (BIM for short) is NP-complete
even if the input consists of only three permutations. The proof follows a similar approach
considered by Caprara [8] for the reversal rearrangement.

▶ Theorem 10 (⋆). The Block-interchange Median problem is NP-complete even when
the input consists of three permutations.

From Theorem 10, one can conclude that BIM is para-NP-hard when parameterized by the
number of input permutations. Transposition Median and Breakpoint Median are also
known to be para-NP-hard when parameterized by the number of input permutations [1, 30].

Lemma 11, Lemma 12, and Lemma 13 present useful conditions to reduce the size of the
input permutations in order to obtain polynomial kernels (Theorem 14).

▶ Lemma 11 (⋆). If an adjacency occurs in all of the input permutations, it occurs also in a
solution of the Block-interchange Median and the Transposition Median problems.

The argument of Lemma 11 does not hold when dealing with short-block-moves, because
a simulation operation (i.e., an operation that must be applied in non-reduced permutations
analogous to the reduced ones) may be affected when it exceeds the size of a block. Never-
theless, an analogous result is proved in Lemma 12. We define the d-M Median problem as
the Median problem for a metric M parameterized by the sum d of the distances between
the solution and all the input instances, i.e., the median solution.

▶ Lemma 12. For d-Short-Block-Move Median, let I be an interval with 6d + 1
consecutive columns where in each column of I all elements are equal, and let the middle
column be with element c, i.e., the (3d + 1)th column of I has only element c. Then there is
a median solution s⋆ that satisfies following properties:
1. Element c occurs in s⋆ in the same position as in the input permutations, i.e., c occurs

in the (3d + 1)th column of s⋆, which is the same column of I.
2. For any element e that occurs before I in the input, e does not occur after the (3d + 1)th

column of I in s⋆.
3. All elements of the input that occur in I and take place before (resp. after) the (3d + 1)th

column of I also occur in s⋆ before (resp. after) the (3d + 1)th column.

Proof. For the first statement, assume that s is a median solution in which the column
ℓ containing c in the input contains a in such a position and c is in a position j. Since
I contains 6d + 1 columns, with respect to the input permutations, a must also be in I,
otherwise at least 3d/2 > d moves would have to be applied, and so we could safely conclude
that we are dealing with a no-instance. For each input permutation πi, assume a is at a
position pa

i . Hence, the short-block-move distance between s and each πi must use at least
|pa

i − ℓ|/2 operations to move a to column ℓ, plus |ℓ − j|/2 operations to move c to column j.
In any case, ℓ < j < pa

i , pa
i < ℓ < j, or j < ℓ < pa

i . Based on that, we can transform s into s⋆

by keeping c in position ℓ and a in position j, applying the same number of short-block-moves
as before, once it is necessary to apply at least |j − pa

i |/2 operations.
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For the second statement, note that if there is a permutation where the element e comes
after I, then it is necessary to apply at least (6d + 1)/2 > d operations, which contradicts
the existence of a median solution for d-Short-Block-Move Median.

Now, let us consider the third statement. Let A be the interval inside I before the column
of c’s, i.e., before the (3d + 1)th column, and B the interval inside I after the column of c’s.
As proved in the previous statement, a median solution does not have an element e that
occurs in the input before I and in the solution it is after I. Let us consider that in s⋆ an
element of x ∈ A occurs in B. By the pigeonhole principle, one of the elements of B must
occur outside of B. Let us consider the following cases:
Case 1) An element of B occurs after B in s⋆. In this case, let us consider that x moves

from A to B and it takes place where y ∈ B was. Hence, y moves to another place and,
also by the pigeonhole principle, some element of B takes place after B in s⋆. Since
there are 3d elements in B, more than d operations were necessary in total, similar to
the previous second statement, which contradicts a median solution for d-Short-Block-
Move Median (see Figure 2(a));

Case 2) An element of B occurs inside A in s⋆. In this case, with respect to an element of
A (resp. of B) of the input that occurs in B (resp. in A) in s⋆, by the pigeonhole principle,
there must be a cycle C according to the moves necessary to be applied between the
positions that the elements change their positions among to s⋆ and the input permutations.
Thus, we can transform s⋆ into s′ by keeping all elements of A (resp. of B) in A (resp.
in B), since in s⋆ there must be moves following C to correct the elements according to
the input columns (see Figure 2(b)). ◀

(a)

c

x'

x x'

y' x y

y'y

(b)

x y

y'x'

c

x

x y

y'y

x y y'

Figure 2 Cases of the third statement of Lemma 12. In red are elements before their moves to
other positions and in blue elements in s⋆ (after the moves). (a) Case 1, where element x of A takes
place in B and element y′ of B takes place after B. (b) It represents whenever an element of A takes
place in B. Arrows follow a cycle C representing new positions of the elements. Element x moves to
the position where there was y, element y moves to the position where there was y′, and so on.

The complexity of the Swap Median problem is still open even if the number of input
strings is three. Bryant [5] proved that some variations of the Breakpoint Median
problem are NP-hard having three input permutations, by dealing with the cases of linear,
circular, signed, or unsigned permutations. One condition of a breakpoint median solution
for given three input permutations is that if there are adjacencies common to the three input
permutations, then these adjacencies can be assumed to be in a median genome [5]. This
result can be directly generalized, analogous to Lemma 11, as follows.

▶ Lemma 13 (⋆). If an adjacency occurs in all of the input permutations, then it occurs
also in a solution of the Breakpoint Median problem.

Next, we consider the parameterized complexity of some median problems parameterized
by the distance d. The previous lemmas allow us to develop reduction rules in order to
obtain Theorem 14.

WABI 2024



2:12 On the Complexity of the Median and Closest Permutation Problems

▶ Theorem 14 (⋆). The following problems admit a polynomial kernel parameterized by
the value d of the desired median solution: d-Swap Median, d-Breakpoint Median,
d-Block-interchange Median, d-Transposition Median, and d-Short-Block-Move
Median.

To conclude this section, to give an insight on the proof of Theorem 14, we present the
description of the kernel for the d-Swap Median problem, the other ones being based on
slight variations of it. The kernel consists on the application of the following rules:
1. If there is a column with more than d + 1 elements, return no.
2. If there is a column with at least two elements occurring at least d + 1 times, return no.
3. If an element occurs more than d times in at least two columns, return no.
4. If a row has at least d copies in the matrix, either the solution is a copy of such a row, or

the answer is no.
We say that a column i is heavy for an element x if x occurs more than d times in it;
otherwise, i is said light for x.

5. For each element x if the sum of occurrences of x in its light columns is more than 2d

then the answer is no.
6. If the previous rules were not applied, remove the columns whose all elements are the

same (and reduce the universe size accordingly).

After proving that Rules 1-5 are safe, to complete the proof it just remains to show (cf.
Lemma 29) that if S′ is a yes-instance of the d-Swap Median problem for which Rules 1-5
cannot be applied and that has been reduced according to Rule 6, then S′ has at most 2d

columns and 4d2 + d rows. See Appendix B for all the details.

4 Results for the CLOSEST problems

First, we present a framework transformation from the median to the closest problem. Since
BIM is NP-hard even for three input permutations, we show that Block-Interchange
Closest (BIC) is NP-hard even for three input permutations. This is a stronger result
compared to the NP-hardness presented by Cunha et al. [10] for the case where there is an
arbitrary number of input permutations.

4.1 Reducing median to closest
The polynomial reduction presented in Theorem 10 allows us to show that not only the Block-
Interchange Closest problem is NP-hard for three input permutations, but also a closest
problem where the corresponding median with a constant number of input permutations is
NP-hard. Next we show that it is the case for the block-interchange rearrangement.

▶ Definition 15. Given π1 with p elements and π2 with q elements, the union of π1 and
π2 is a permutation π1 ⊎ π2 with p + q + 1 elements such that π1 ⊎ π2 = [π1

1 , π1
2 , . . . , π1

p, (p +
1), (π2

1 + p + 1), (π2
2 + p + 1), . . . , (π2

q + p + 1)]. For simplicity, π1 ⊎ π2 is denoted by π1,2.
Permutations π1 and π2 are called parts of the union.

▶ Lemma 16. Given permutations π1 and π2, we have that dBI(π1,2) = dBI(π1) + dBI(π2).

Proof. Assuming that π1 has p elements and π2 has q elements, since p+1 is greater than all
elements of π1 and smaller than all elements of π2, the reality and desire diagram G(π1 ⊎ π2)
is obtained by gluing G(π1) and G(π2), i.e., the reality and the desire edges do not change
when the union operation is applied to permutations. As a direct consequence of Theorem 1,
we have dBI(π1,2) = p+q+2−c(G(π1))−c(G(π2))

2 = dBI(π1) + dBI(π2). ◀
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▶ Theorem 17. Given three permutations π1, π2 and π3, σ is a solution of BIM if and only

if
6⊎

i=1
σ is a solution of BIC for the permutations π1,2,3,1,2,3, π2,1,1,3,3,2, and π3,3,2,2,1,1.

Proof. Since permutations π1,2,3,1,2,3, π2,1,1,3,3,2, and π3,3,2,2,1,1 are composed by six parts
of unions and, considering BIC, each part corresponds to columns yielding π1, π2, and π3.
Moreover, by Lemma 16 each part can be treated separately without loss of optimality.
Hence, there is a solution of BIC where all parts have the same solution δ. Therefore, there is

a permutation x ∈ {π1,2,3,1,2,3, π2,1,1,3,3,2, π3,3,2,2,1,1} such that dBI(
6⊎

i=1
δ, x) = 2(dBI(δ, π1) +

dBI(δ, π2) + dBI(δ, π3)). Since we want δ such that dBI(
6⊎

i=1
δ, x) is minimized, we want δ such

that dBI(δ, π1) + dBI(δ, π2) + dBI(δ, π3) is minimized. Hence, this happens if and only if δ = σ,
where σ is solution of BIM. ◀

Since Block-Interchange Median is NP-complete (Theorem 10), as a consequence of
Theorem 17, we have Corollary 18.

▶ Corollary 18. The Block-Interchange Closest problem is NP-hard even when the
input consists of three permutations.

When dealing with transpositions, sorting each part of a union separately does not yield
an optimum sequence in order to sort a permutation in general, as proved by Cunha et
al. [11]. Hence, an analogous strategy of the one in Theorem 17 does not apply to reduce the
median to the closest problems regarding transpositions rearrangement, given that Lemma 16
does not hold for sorting by transpositions. However, if each part of a union is hurdle-free
i.e., a permutation in which the transposition distance is equal to the lower bound on the
transposition distance dT(π) ≥ (n+1)−codd(G(π))

2 , it follows that dT(π1,2) = dT(π1) + dT(π2)
in the same matter as Theorem 17. Therefore, we have Corollary 19.

▶ Corollary 19. Transposition Closest is NP-hard even when the input consists of three
permutations which are unions of hurdle-free permutations.

Proof. Transposition Median is NP-hard when k = 3 even for hurdle-free permutations [1],
i.e., permutations in which the transposition distances are equal to the lower bound of
Theorem 2. Since the distance of unions of hurdle-free permutations can be obtained by the
sum of the distances of each part of the union, Theorem 17 holds in the same way. ◀

4.2 The SHORT-BLOCK-MOVE CLOSEST problem
Sufficient condition to sort by short-block-moves. We refer to block-moves that introduce
elements in connected components of the permutation graph PG(π) of π (defined in Section 2)
as merging moves. For instance, [2 3 1 6 4 5] → [2 3 4 1 6 5] is a merging move.

▶ Lemma 20. For every permutation π, sorting each connected component of PG(π) separ-
ately is optimal.

Proof. We allow ourselves to use merging moves, which can be replaced by correcting moves
as in Table 2. The modified sequence is not longer than the original, and we observe that
these new moves never merge components.

A merging move must act on contiguous components of π. Let us assume that the leftmost
component the move acts on ends with elements a and b, and that the rightmost component
starts with elements c and d, as represented below:
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a b c d

It follows that a < c, a < d, b < c, and b < d. We now replace any merging move involving
those component’s extremities with correcting moves. There are five cases to consider:

a b c d → b c a d: this move satisfies the conditions of Case 2 in Table 2, so we replace it
with a b c d → b a c d.
a b c d → c a b d: this move satisfies the conditions of Case 4 in Table 2, so we replace it
with a b c d → b a c d.
a b c d → a c b d: this move satisfies the conditions of Case 1 in Table 2, and in this case
we just remove that block-move from the sorting sequence.
a b c d → a c d b: this move satisfies the conditions of Case 5 in Table 2, so we replace it
with a b c d → a b d c.
a b c d → a d b c: this move satisfies the conditions of Case 3 in Table 2, so we replace it
with a b c d → a b d c.

None of the correcting moves that we use to replace the non-correcting moves in those five
cases is a merging move, and no such a replacement increases the length of our sorting
sequence. Given any sorting sequence, we repeatedly apply the above transformation to
the merging move with the smallest index until no such move remains; in particular, the
transformation applies to optimal sequences as well, and the proof is complete. ◀

There exist cases where allowing merging moves still yields an optimal solution. This is
the case for [2 1 4 3], which can be sorted optimally as follows: [2 1 4 3] → [2 3 1 4] → ι,
where ι = [1 2 . . . n]. It is natural to wonder whether Lemma 20 generalizes to p-bounded
block-moves, for p > 3. However, the following counterexample shows that it is not the case,
even when a block-move is bounded by four (i.e., a 4-bounded block move): sorting each
component of [3 2 1 6 5 4] separately yields a sequence of length four, but one can do better
by merging components as follows: [3 2 1 6 5 4] → [3 2 5 4 1 6] → [3 4 1 2 5 6] → ι.

SHORT-BLOCK-MOVE CLOSEST problem is NP-hard. First, we apply Algorithm 1 to
transform any string s of length m into a particular permutation λs of length 2m.

Algorithm 1 PermutBI(s).

Input : A binary string s of length m.
Output : A permutation λs.

1 For each occurrence of 0 in position i of s, set the elements 2i − 1 and 2i in positions
2i − 1 and 2i of λs, respectively.

2 For each occurrence of 1 in position i of s, set the elements 2i − 1 and 2i in positions
2i and 2i − 1 of λs, respectively.

Since from Lemma 20 each connected component can be sorted separately, and each bit
set to 1 in s corresponds to an inversion in λs from Algorithm 1, it implies Lemma 21, which
is an equality between the Hamming distance of an input string s and the short-block-move
distance of its output permutation λs.

▶ Lemma 21. Given a string of length m and a permutation λs of length 2m obtained by
Algorithm 1, the short-block-move distance of λs is dsbm(λs) = dH(s).

▶ Lemma 22. Given a set of k permutations obtained by Algorithm 1, there is a short-block-
move closest permutation with maximum distance at most d if and only if there is a Hamming
closest string with maximum distance at most d.
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Proof. If λ′ can be built by Algorithm 1 for some input string s′, then, by Lemma 21, s′ is
a closest string. Otherwise, we search from left to right along the permutation to find the
first position where the corresponding element is different from the one intended to be by
the algorithm, which is a position x ∈ {2i − 1, 2i}. In this case, all elements from position x

until the position where the first element y ∈ {2i − 1, 2i} appear form inversions with respect
to each input permutation, implying the short-block-move distance between the solution
[A x B y C] and any input greater than the distance between the new permutation [A y x B C]
and any input permutation, such that A, B, and C are blocks of elements. By repeating
this process, a string agreeing with the algorithm output can be found and, by Lemma 21,
a string with maximum distance at most d can be constructed. Given a solution string s,
we obtain the associated permutation λs given by Algorithm 1. By Lemma 21 we have the
solution s regarding the closest string corresponding to the permutation λs with the same
value of maximum distance d, concluding the proof of the lemma. ◀

Since Hamming Closest String is NP-complete [28], Lemma 22 implies Theorem 23.

▶ Theorem 23. Short-block-move Closest Permutation is NP-hard.

Theorem 7, proved by Basavaraju et al. [3], states that Closest String does not admit
a polynomial kernel, unless NP ⊆ coNP/poly. Since the results presented in Lemma 8,
Lemma 9, Lemma 22, Theorem 23, Corollary 19, as well as the results from Popov [31], are
PPT reductions from Closest String, we have the following corollary.

▶ Corollary 24. Breakpoint Closest, Block-interchange Closest, Transposition
Closest, Swap Closest and Short-block-move Closest do not admit polynomial a
kernel unless NP ⊆ coNP/poly.

4.3 FPT algorithms
Popov [31] solved the Swap Closest problem in time O(kn + g(k, d)) parameterized by
the number of permutations k (each of them of size n) and the distance d, where g is a
function which depends only on k and d. Now, we propose FPT algorithms for finding
closest permutations of a given set of permutations, parameterized just by the distance d (the
function O∗(f(n)) means that there exists an algorithm which runs in time O(f(n)) · poly(n),
where poly(n) is a polynomial function in n). Our approach is inspired by the algorithm for
the Closest String problem [15,19], considering the three metrics below.

▶ Theorem 25. d-Swap Closest, d-Short-Block-Move Closest, and d-Block-
interchange Closest can be solved in time O∗(d)O(d).

Proof. First, we consider d-Swap Closest. The other problems follow in a similar way,
as we discuss below. Let π1, . . . , πk be the input permutations. Recursively, we solve these
problems using a bounded search tree technique as follows: First, set z = π1 as a candidate
permutation solution. If dswap(y, z) ≤ d for each permutation y of the input, then return
yes. Otherwise, if d = 0 then return no. In the remaining case, d > 0 and there exists a
permutation πi with dswap(πi, z) > d. From the triangular inequality, dswap(πi, z) ≤ 2d for
each input permutation z; otherwise, the answer is no. Since each swap operation corrects
at most two positions, there are at most 4d positions on which πi and z differ. Let P be a
set of 4d positions on which πi and z differ. Hence, we branch into |P | = 4d subcases: for
every p ∈ P , we define zp to be equal to z except for the swap putting the element πi

p in the
position p of zp, and we recursively solve the problem for the pair (zp, d − 1).
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We build a search tree of depth at most d, and every node has at most 4d children. Thus,
the size of the search tree does not exceed O((4d)d).

For d-Short-Block-Move Closest, it is known that each operation involves at most
two edges on the associated permutation graph. Since the current solution must be at
distance at most 2d from any input permutation, it holds that the associated permutation
graph between a current solution z and any πi has at most 4d edges and at most 8d vertices
incident to some edge of the associated permutation graph; otherwise the answer is no.
Therefore, either we are already dealing with an instance with universe of small size, or
there are many isolated vertices in the associated permutation graph. By the definition of
permutation graphs of strings, these isolated vertices represent positions that coincide in
both permutations, and we may assume that they are not involved in any move to obtain one
from the other. Since we do not need to consider moves involving these isolated vertices of
the associated permutation graph, we can consider only moves involving O(d) many vertices.
Thus, we can perform a similar bounded search tree algorithm as previously described.

For d-Block-Interchange Closest, it is known that each operation changes the
number of cycles in the reality and desire diagram by −2, 0, or +2 (see [9]). Moreover,
from Theorem 1, there exists an optimum sequence of block-interchanges that only applies
2-moves, i.e., each operation increases the number of cycles by two. This implies that there is
no optimum sequence that uses −2 or 0 moves. Recall that we obtain a sorted permutation
when we achieve only cycles of size one (n + 1 cycles in total); so, sorting is equivalent to
maximizing the number of cycles in the reality and desire diagram. Thus, our focus is only
analyzing possible 2-moves to approximate one permutation to another one in our bounded
search tree algorithm. It is known that there is no 2-move that affects a 1-cycle (cycle of
length one in the diagram), because a 2-move can only be performed into a unique cycle
(cf. [9, 11]). Thus, there is no 2-move that affects an adjacency (a pair is an adjacency if and
only if it yields a 1-cycle in the reality and desire diagram [2,9]).

At this point, we have that we can safely reduce the permutation, since all optimum block-
interchange sequences do not affect adjacencies (this is a stronger result than Theorem 3).
Hence, as each block-interchange affects at most four breakpoints, the permutation must
have at most 8d breakpoints (i.e., 8d+1 elements in the reduced permutation). Therefore, we
can consider only moves involving O(d) many breakpoints. Thus, we can perform a similar
bounded search tree algorithm as previously described. ◀

Note that Breakpoint Closest does not admit a bounded search tree analogous to
the ones used in Theorem 25, since this metric does not have a sequence of operations to
transform a permutation into another one; so, it is unclear how to branch. Also, for the
Transposition Closest problem, it is known that there may exist optimum sequences of
transpositions that apply 0-moves and 2-moves, and it is an old open problem whether there
are optimum sequences using −2-moves [2,11]; so, it seems that is not safe to use the reduced
permutation in that case, because there may exist an optimum sequence of transpositions
that uses moves not preserved in the reduced instance, and those moves could be good for
our branch step. Therefore, we leave both cases as open questions.
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A Preliminaries on parameterized complexity

A parameterized problem is a decision problem whose instances are pairs (x, k) ∈ Σ∗ × N,
where k is called the parameter. A parameterized problem is fixed-parameter tractable (FPT)
if there exists an algorithm A, a computable function f , and a constant c such that given an
instance I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time
bounded by f(k) · |I|c.

A parameterized problem is slice-wise polynomial (XP) if there exists an algorithm A
and two computable functions f, g such that given an instance I = (x, k), A (called an
XP algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|g(k). Within
parameterized problems, the class W[1] may be seen as the parameterized equivalent to the
class NP of classical optimization problems. Without entering into details (see [15,16] for
the formal definitions), a parameterized problem being W[1]-hard can be seen as a strong
evidence that this problem is not FPT. The canonical example of W[1]-hard problem is
Clique parameterized by the size of the solution.

A parameterized problem is para-NP-hard if it is NP-hard for some fixed value of the
parameter, such as the k-Coloring problem parameterized by the number of colors for
every fixed k ≥ 3.

▶ Definition 26 (Bodlaender et al. [4]). Let P, Q ⊆ Σ∗ × N be parameterized problems. We
say that a polynomial computable function f : Σ∗ × N → Σ∗ × N is a polynomial parameter
transformation (PPT) from P to Q if for all (x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P

if and only if (x′, k′) = f(x, k) ∈ Q and k′ ≤ kO(1).

▶ Definition 27 (Bodlaender et al. [4]). A kernelization algorithm, or in short, a kernel for
a parameterized problem L ⊆ Σ∗ × N is an algorithm that given (x, k) ∈ Σ∗ × N, outputs in
p(|x| + k) time a pair (x′, k′) ∈ Σ∗ × N such that

(x, k) ∈ L ⇔ (x′, k′) ∈ L, and
|x′|, k′ ≤ f(k),

where f is some computable function and p is a polynomial. Any function f as above is
referred to as the size of the kernel.

If we have a kernel for L, then for any (x, k) ∈ Σ × N, we can obtain in polynomial
time an equivalent instance with respect to L whose size is bounded by a function of the
parameter. Of particular interest are polynomial kernels, which are kernels whose size is
bounded by a polynomial function.
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▶ Theorem 28 (Bodlaender et al. [4]). Let P and Q be parameterized problems and P ′ and
Q′ be, respectively, the unparameterized versions of P and Q. Suppose that P ′ is NP-hard
and Q′ is in NP. Assume that there is a polynomial parameter transformation from P to Q.
Then if Q admits a polynomial kernel, so does P . Equivalently, if P admits no polynomial
kernel under some assumption then neither does Q.

B Proofs deferred from Section 3

In this appendix we provide the proofs deferred from Section 3. For the sake of readability,
we restate the corresponding result before proving it.

▶ Theorem 10. The Block-interchange Median problem is NP-complete even when
the input consists of three permutations.

Proof. Let π1, π2, π3 be permutations of {1, . . . , n}, and let k be an integer. Then, (π1, π2, π3,

k) ∈ CM if and only if there is a permutation σ satisfying
∑3

i=1 c(G(σ, πi)) ≥ k. Since
solving an CM instance is equivalent to finding a permutation matching M(σ) such that∑3

i=1 c(G(σ, πi)) is maximized and the block-interchange distance between any two permuta-
tions dBI(σ, πi) = n+1−c(G(σ,πi))

2 , then CM ≤p BIM. ◀

▶ Lemma 11. If an adjacency occurs in all of the input permutations, it occurs also in a
solution of the Block-interchange Median and the Transposition Median problems.

Proof. Assume ab is an adjacency that occurs in all k input permutations. Let σ be
a solution median permutation satisfying a and b are not adjacent. Suppose, w.l.o.g.
σ = [σ1, . . . , σi−1, a, σi+1, . . . , σj−1, b, σj+1, . . . , σn]. Thus, we obtain the permutation σ′

from σ by setting adjacencies ab, bσi+1 and σj−1σj+1, removing aσi+1, σj−1b and bσj+1, and
keeping all other adjacencies of σ, i.e., σ′ = [σ1, . . . , σi−1, a, b, σi+1, . . . , σj−1, σj+1, . . . , σn].
Now, considering any optimum sequence of block-interchanges (or transpositions) from σ to
πi, we present a simulation sequence from σ′ to πi. Any operation applied on a sequence
from σ to πi that does not change adjacencies aσi+1, σj−1b and bσj+1 can be simulated
properly from σ′ to πi without any loss, once any impact on the decreasing number of
breakpoints is the same, and so the number of cycles on the reality and desire diagram. If an
operation applied on a sequence from σ to πi affects i) aσi+1, ii) σj−1b, or iii) bσj+1, then
we simulate it on a sequence from σ to πi as follows: i) instead of cut a block just after
a, it is cut after the two elements ab; ii) instead of cut a block just before b, it is cut just
after σj−1; iii) instead of cut a block just after b it is cut just before σj+1 as well. Since all
input permutations have the adjacency ab, no extra operation must be applied from σ′ to πi.

Thus, we conclude that
k∑

i=1
dBI(σ′, πi) ≤

k∑
i=1

dBI(σ, πi) (or
k∑

i=1
dT(σ′, πi) ≤

k∑
i=1

dT(σ, πi)). ◀

▶ Lemma 13. If an adjacency occurs in all of the input permutations, then it occurs also
in a solution of the Breakpoint Median problem.

Proof. Suppose that x = [x1, x2, . . . , xn] is a breakpoint median for the input π1, π2, . . . , πk,
and {xi, xj} is a pair in (Adj(π1) ∩ . . . ∩ Adj(πk)) \ Adj(x). We obtain a set Y being
Y = Adj(x) ∪ {{xi, xj}}. Hence, we modify Y in such a way to generate a set of adjacencies
which forms a median solution. Given a pair of adjacency {u, v} ∈ X, let w(u, v) = |{X ∈
{π1, . . . , πk} : {u, v} ∈ Adj(x)}|, i.e., w(u, v) is the number of input permutations that have
the adjacency {u, v}. If w(xi−1, xi) ≤ w(xi, xi+1) we remove {xi−1, xi} from Y , otherwise
we remove {xi, xi+1}. In the same way, if w(xj−1, xj) ≤ w(xj , xj+1) we remove {xj−1, xj}
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from Y , otherwise we remove {xj , xj+1}. Note that in each one of the four possible cases, in
the resulting set Y , {xi, xj} happens exactly once, the same as the others elements. Since

w(xi, xj) = k,
k∑

i=1
dBP(πi, Y ) <

k∑
i=1

dBP(πi, x), which is a contradiction. ◀

▶ Theorem 14. The following problems admit a polynomial kernel parameterized by the
value d of the desired median solution:
1. d-Swap Median.
2. d-Breakpoint Median.
3. d-Block-interchange Median.
4. d-Transposition Median.
5. d-Short-Block-Move Median.

Proof. First, we consider a polynomial kernelization for the d-Swap Median problem based
on the following reduction rules:
1. If there is a column with more than d + 1 elements, then return no.
2. If there is a column with at least two elements occurring at least d + 1 times, then return

no.
3. If an element occurs more than d times in at least two columns, then return no.
4. If a row has at least d copies in the matrix, then either the solution is a copy of such a

row, or the answer is no.
We say that a column i is heavy for an element x if x occurs more than d times in it;
otherwise, i is said light for x.

5. For each element x, if the sum of occurrences of x in its light columns is more than 2d,
then return no.

6. If the previous rules were not applied, remove the columns whose all elements are the
same, and reduce the universe accordingly.

Since the goal is to determine whether there is a permutation s⋆ whose sum of the
distances by swaps between s⋆ and all permutations of S is at most d, Rules 1-4 are clearly
safe. Now, we discuss Rule 5. If S is a yes-instance then an element x having a heavy
column i (by Rule 2, there is at most one heavy column) must have x in the position i of any
optimum solution s⋆. Thus, the number of rows that contains x in positions different than i

is at most d. Also, if x has no heavy column, then such a s⋆ contains x in some position i

whose column has at most d occurrences of x, while the number of rows having x in other
positions is also at most d (hence, 2d occurrences in total). Thus, Rule 5 is safe.

Regarding Rule 6, as each s ∈ S is a permutation, it holds that if a column i of S contains
only one element x, then all permutations of S have x in position i, implying that any
optimal solution for the problem should contain x in position i. Thus, it is safe to ignore
that column i and element x from the input. (Recall that s⋆ having x in position i implies
that for any s ∈ S, there is an algebraic cycle of length one between s⋆ and s, which is the
best possible because the swap metric can be seen as the minimum number of swaps to get
only algebraic cycles of size one.)

At this point, we may suppose that Rules 1-5 were not applied and that S′ is the resulting
instance after the application of Rule 6. To complete the kernelization algorithm for d-Swap
Median, we need the following lemma.

▶ Lemma 29. If S′ is a yes-instance of the d-Swap Median problem, then S′ has at most
2d columns and 4d2 + d rows.
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Proof. For a column i having more than one element, the distance between the optimum
solution s⋆ and some permutation of S needs to count a swap move involving column i. In
addition, each swap affects only two columns, implying that d moves can affect at most 2d

columns. However, by Rule 6, any column of S′ has more than one element. Therefore, if S′

is a yes-instance of the d-Swap Median problem, it must have at most 2d columns.
Now, let us argue about the number of rows of S′. Recall that a row s is light if it has an

element x in position i such that column i is light for x; otherwise it is heavy. By Rule 5,
the number of rows that contain an element x in a light column for it is at most 2d. Since,
S′ has at most 2d columns it also has at most 2d elements. Therefore, the number of light
rows is at most 4d2. Finally, by definition, heavy rows have only elements in positions for
which they are heavy. By Rule 3, each element is heavy for only one column, which implies
that heavy columns are copies. By Rule 4, we conclude that we have at most d heavy rows
in S′. Hence, S′ has at most 4d2 + d rows. ◀

Therefore, either the size of S′ certifies a no-answer, or S′ is returned as a kernel for the
d-Swap Median problem.

Next, we discuss a kernelization algorithm for the d-Breakpoint Median problem.
Recall that in the breakpoint metric, one does not care about occurrences of elements in
columns but adjacencies of elements instead (regardless of their position in the rows). Thus,
we should adapt the previous arguments accordingly.

A kernel for the d-Breakpoint Median problem can be found as follows:
1. If there is an element having with more than d + 1 distinct successor elements (distinct

adjacencies) in the matrix, then return no.
2. If there is an element x with at least two elements occurring at least d + 1 times as

successor of x in the matrix, then return no.
3. If an element occurs more than d times as successor of at least two other elements in the

matrix, then return no.
4. If a row has at least d copies in the matrix, then either the solution is a copy of such a

row, or the answer is no.
We say that an element y is a heavy successor for an element x if xy occurs more than d

times in the matrix; a successor of x that is not heavy is said to be a light successor for x.
5. For each element x, if the sum of occurrences of x with light successors is more than 2d,

then return no.
6. Assuming that the previous rules were not applied, if there is an adjacency between x and

y (i.e., xy) occurring in all of the input permutations, then consider xy as a single element
and reduce the universe accordingly. Repeat this until there is no such adjacencies.

The safety of Rules 1-4 is straightforward, for Rule 5 the argument is similar to the swap
case replacing columns by successors, and for Rule 6 the safety proof follows from Lemma 13.
Again, we suppose that Rules 1-5 were not applied and S′ is the resulting instance after the
application of Rule 6.

Similarly as above, to complete the kernelization algorithm for d-Breakpoint Median,
we need the following lemma.

▶ Lemma 30. If S′ is a yes-instance of the d-Breakpoint Median problem, then S′ has
at most 2d columns and 4d2 + d rows.
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Proof. For an element x having more than one element as successor or more than one
element as predecessor in the matrix, the distance between the optimum solution s⋆ and
some permutation of S needs to count a breakpoint involving element x. In addition, each
breakpoint involves only two elements, implying that d breakpoints can involve at most
2d elements. However, by Rule 6, any element of S′ is involved in at least one breakpoint.
Therefore, if S′ is a yes-instance of the d-Breakpoint Median problem, then, since we are
dealing with permutations, it must have at most 2d elements and at most 2d columns.

Now, let us argue about the number of rows of S′. Recall that a row s is light if it has an
adjacency xy such that y is a light successor for x; otherwise it is heavy. By Rule 5, for each
element x, the number of rows that contain an adjacency xy where y is a light successor of x

is at most 2d. Since S′ has at most 2d elements, the number of light rows is at most 4d2.
Finally, by definition, heavy rows have only heavy successors. By Rule 3, each element is
heavy for only one predecessor in the matrix, implying that heavy rows are copies. By Rule
4, there are at most d heavy rows in S′. Hence, S′ has at most 4d2 + d rows. ◀

Therefore, as above, either the size of S′ certifies a no-answer, or S′ is returned as a
kernel for the d-Breakpoint Median problem.

Next, we discuss a kernelization for the d-Block-interchange Median problem and
the d-Transposition Median problem. Recall that for both metrics, whenever there is
a breakpoint there is a move to be “played” to obtain the identity. Thus, a large set of
breakpoints being one per row is enough to certify a no-answer for both problems as well.
As Rules 1-5 of the previous kernelization deal only with these kind of sets of breakpoints,
they also hold as reduction rules for these two problems.

On the other hand, an analogous of Rule 6 may depend on the kind of move to be used.
However, Lemma 11 shows that a similar reduction rule can also be applied for the d-Block-
interchange Median problem and the d-Transposition Median problem. Regarding
an analogous of Lemma 30, it is enough to observe that any block-interchange involves the
adjacency of at most eight elements (at most four adjacencies involved), and then one can
conclude that S′ has at most 8d elements/columns and 16d2 + d rows. Similarly, concerning
transpositions, each move involves the adjacency of at most six elements (at most three
adjacencies involved), and then one can conclude that S′ has at most 6d elements/columns
and 12d2 + d rows.

Finally, we discuss a kernelization for the d-Short-Block-Move Median problem. As
previously discussed, Rules 1-5 described for the breakpoint distance can be also applied
to any metric where the existence of a breakpoint certifies the existence of a move to be
“played” in order to obtain the identity. Thus, they work for the short-block-move distance
as well. However, unlike with the d-Block-interchange Median problem and the d-
Transposition Median problem, an immediate analogue of Rule 6 does not apply to the
short-block-move distance, because it may be necessary to traverse some positions to get an
element from one point to another, temporarily breaking some “good” adjacencies. To get
around this problem, we introduce the notion of homogeneous columns.

A column of an input matrix/set S is homogeneous if it contains only one element, and
heterogeneous otherwise. Note that the existence of a heterogeneous column implies the
existence of a move involving such a column. Since we are looking for a permutation s⋆ whose
sum of distances from the input permutations is at most d, it follows that S contains at most
3d heterogeneous columns. So, either we have already a kernel or too many homogeneous
columns where many of them are not involved in moves needed for the calculation of the
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distance between s⋆ and any s ∈ S. Then, an analogous of Rule 6 for this problem must
identify these homogeneous columns, remove them, and reduce the universe properly. Due to
Lemma 12, we can safely apply the following reduction rule.

If there is an interval I with 6d + 2 consecutive homogeneous columns, then remove the
middle columns of I and reduce the universe size accordingly. Repeat this until there is
no such interval.

After applying the above rule, we claim that the number of columns of a yes-instance is
at most 18d2 + 9d + 1, because it has at most 3d heterogeneous columns and a sequence of at
most 6d + 1 homogeneous columns before/after a heterogeneous one. This remark together
with the reduction rules applied implies that the number of rows is at most 36d3 + 18d2 + 3d.
This concludes the existence of a polynomial kernel for the d-Short-Block-Move Median
problem. ◀
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