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Abstract
In this study, we investigate the problem of comparing gene trees reconciled with the same species
tree using a novel semi-metric, called the Path-Label Reconciliation (PLR) dissimilarity measure.
This approach not only quantifies differences in the topology of reconciled gene trees, but also
considers discrepancies in predicted ancestral gene-species maps and speciation/duplication events,
offering a refinement of existing metrics such as Robinson-Foulds (RF) and their labeled extensions
LRF and ELRF. A tunable parameter α also allows users to adjust the balance between its species
map and event labeling components. We show that PLR can be computed in linear time and that it
is a semi-metric. We also discuss the diameters of reconciled gene tree measures, which are important
in practice for normalization, and provide initial bounds on PLR, LRF, and ELRF.

To validate PLR, we simulate reconciliations and perform comparisons with LRF and ELRF.
The results show that PLR provides a more evenly distributed range of distances, making it less
susceptible to overestimating differences in the presence of small topological changes, while at the
same time being computationally efficient. Our findings suggest that the theoretical diameter is rarely
reached in practice. The PLR measure advances phylogenetic reconciliation by combining theoretical
rigor with practical applicability. Future research will refine its mathematical properties, explore its
performance on different tree types, and integrate it with existing bioinformatics tools for large-scale
evolutionary analyses. The open source code is available at: https://pypi.org/project/parle/.
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1 Introduction

During evolution, it is well-known that genes can be duplicated, lost, and transferred, resulting
in evolutionary scenarios that differ from the history of the species that contain them. Gene
trees can therefore be discordant with their species trees, and reconciliation aims to infer
the macro-evolutionary events that explain the discrepancies. Several models have been
proposed to achieve this task, allowing duplications and losses [24, 68, 27, 9, 20, 64, 39, 30, 21],
horizontal gene transfer [25, 19, 4, 35, 33, 62, 50, 36, 66, 61], incomplete lineage sorting [69,
63, 56, 67, 14, 43], and others (see e.g. [17, 42, 28, 10, 2, 57, 45]). In addition, some of these
models support segmental events that affect multiple genes at once [52, 13, 5, 53, 18], and
some approaches infer histories based on parsimony whereas others are probabilistic [3, 1, 41].

This variety of reconciliation models and algorithms is accompanied by a large diversity of
software and tools to reconcile gene trees with species trees (examples include NOTUNG [20],
DLCoal [56], RANGER-DTL [6], ecceTERA [32], Jane [15]). Most of these tools infer, for each
ancestral gene tree node, the ancestral species to which the gene belonged to, as well as the
event that affected the gene. It is, however, difficult to assess the quality of the reconciliations
produced by these approaches, even with the availability of high quality software to simulate
gene tree evolution (e.g. SimPhy [48], Asymmetry [59], aevol [7], ZOMBI [16]). A standard
benchmarking idea would be to simulate reconciled gene trees and to compare the inferred
scenarios with the true simulated ones. However, it is not straightforward to perform this
comparison. Indeed, reconciled gene trees exhibit three types of valuable information: the tree
topology, the gene-species map, and the event labeling. While there exist metrics to measure
discrepancies for each of those three criteria individually, we are not aware of any established
method to measure disagreements in all three simultaneously. There is a large body of
literature on measuring topological differences between trees (e.g. [54], [23], [58],[47],[49],
[65]). In terms of gene-species mapping discordance, the path distance metric [31] applies
to gene trees with identical topologies but possibly different species maps, and quantifies
how far the species of corresponding nodes are in the gene trees. The metric was mainly
introduced to obtain medians in the reconciliation spaces of gene trees. If the gene trees
differ, though, the metric cannot be used.

Perhaps the most relevant metric to compare reconciled gene trees is the recent labeled
Robinson-Foulds (RF) distance, now called ELRF, which accounts for differences in topology
and event labeling. Given two gene trees, the distance is the minimum number of edge
contractions, edge expansions, and node label substitutions required to transform one gene
tree into the other [11]. It is unknown whether this distance can be computed in polynomial
time, the main difficulty being that edge operations must have the same label on both
endpoints. The authors then proposed a variant of this metric, called LRF, in which edge
contractions/expansions are replaced with node insertions/deletions, which can be computed
in linear time [12]. Although these are perhaps the only approaches specifically tailored for
gene tree comparison, their usage has some disadvantages. First, these distances do not take
gene-species maps into consideration. Second, the metric suffers from the same well-known
shortcomings as the RF distance, see [44] for a discussion on this (for instance, a single
misplaced leaf can increase the distance dramatically). Another subtle but yet important
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aspect is the topological uncertainty that can be present in gene trees. In particular, when
ancestral species undergo gene duplication episodes (see e.g. [26, 53]), the corresponding gene
trees may contain large duplication subtrees. In this case, there is too little phylogenetic
signal to infer the topology of such duplication subtrees accurately. However, most approaches
penalize discrepancies in those local parts of the gene trees as in any other part, even though
predicting different speciation patterns should be more heavily penalized than in duplication
clusters.

In this work, we introduce a novel approach for comparing gene trees that considers
all the aforementioned components that play a role in reconciliations: the species tree, the
gene tree, the labeling of their internal nodes by species and events, as well as duplication
clusters. This method effectively circumvents the shortcomings of the RF distance. Given
two reconciled gene trees on the same set of genes, our dissimilarity measure establishes a
correspondence between the gene tree nodes from both trees and applies a penalty if the
matched nodes differ in species or event label. As we demonstrate, due to the constraints
inherent in reconciliation models, this approach implicitly penalizes topological disagreements
between the gene trees, except when the discordance is solely due to consecutive duplication
rounds within the same species.

Our measure also has the advantage of being computable in linear time. We first explore
some theoretical properties of our approach and show that it functions as a semi-metric in the
space of reconciled gene trees. We demonstrate that if non-binary gene trees are considered,
the measure does not necessarily satisfy the triangle inequality, although this remains an
open question for binary trees. We also provide initial results on the diameters of the PLR,
LRF, and ELRF measures, which are important in practice for normalization.

We then validate our approach through experiments involving simulated reconciliations
on the same set of leaves and calculation of various measures. We show that, as can be
expected from previous knowledge, RF, LRF, and ELRF tend to produce large distances
overestimating tree differences, which can result from a rapid increase in the distance values
when, for example, a single leaf is misplaced. In contrast, our measure effectively captures
small, average, and large distances between reconciliations. Therefore, PLR is established as
the first reconciliation measure with greater variability than RF variants, and sensitivity to
differences in every component of evolutionary scenarios.

Note that due to space constraints, some of the proofs were replaced by a sketch of
the main idea, and the full detailed arguments can be found in the arxiv version (https:
//arxiv.org/abs/2407.06367).

2 Preliminary notions

A tree is a connected acyclic graph. Unless stated otherwise, all trees in this paper are rooted.
For a tree T , we denote by r(T ) the root of T , by V (T ) and E(T ) its set of nodes and edges,
respectively, and by L(T ) its set of leaves. A non-leaf node is called internal. For u, v ∈ V (T ),
we write u ⪯T v if u is a descendant of v, i.e., if v is on the path between r(T ) and u (we
write u ≺T v if u ̸= v). Then v is an ancestor of u. If u ̸= r(T ), then the parent pT (u) of u

if the ancestor v of u such that uv ∈ E(T ), and u is a child of v. A tree T is binary if each
internal node has two children, and T is a caterpillar if all internal nodes have at most one
child that is an internal node (that is, T is a path with leaves attached to its nodes).

For X ⊆ V (T ), we denote by lcaT (X) the lowest common ancestor of all the nodes in X.
When |X| = 2, we may write lcaT (u, v) instead of lcaT ({u, v}). For v ∈ V (T ), we write T (v)
for the subtree of T rooted at v. Note that L(T (v)) is the set of leaves that descend from v,
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which we call the clade of v. As a shorthand, we may write LT (v) to denote the clade of v,
or L(v) if T is understood. The distance between two nodes u, v in T is denoted distT (u, v),
i.e., the length of the undirected path in T between u and v.

2.1 Species trees and reconciled gene trees
A species tree S is a tree which we assume to be binary. A reconciled gene tree (with S) is a
tuple G = (G, S, µ, l) where G is a tree in which each internal node has at least two children
(possibly more), S is a species tree, µ : V (G)→ V (S) maps nodes of G to species in S, and
l : V (G)→ {dup, spec, extant} is an event labeling. We also have the following requirements:
1. Leaves are from extant species: for every leaf v ∈ L(G), µ(v) ∈ L(S) and l(v) = extant.

Moreover, every internal node w ∈ V (G) \ L(G) satisfies l(w) ∈ {dup, spec};
2. Time-consistency: for any two nodes u, v ∈ V (G), u ⪯G v implies µ(u) ⪯S µ(v);
3. Speciations separate species: for any node v ∈ V (G) such that l(v) = spec, we have

µ(v) ∈ V (S) \ L(S) and v has exactly two children v1, v2.
Moreover, denoting by s1, s2 the two children of µ(v) in S, we have that µ(v1) ⪯S s1 and
µ(v2) ⪯S s2, or µ(v2) ⪯S s1 and µ(v1) ⪯S s2.

If µ satisfies µ(v) = lcaS({µ(x) : x ∈ L(v)}) for every node v ∈ V (G), then µ is called
the lca-mapping [27, 9]. In this map, all genes map to the lowest possible species according
to the rules of reconciliation. These concepts are illustrated in Figure 1, which presents
two reconciled gene trees that use the lca-mapping (see caption). Note that our reconciled
gene trees are not restricted to the lca-mapping. However, it is known that if l(v) = spec,
then µ(v) must indeed be the lowest common ancestor of all the species that appear in the
genes below v. However, the converse is not required to hold, that is, a duplication could be
mapped to the lowest common ancestral species (or above).

Isomorphism between reconciled gene trees. Two reconciled gene trees G1 = (G1, S, µ1, l1)
and G2 = (G2, S, µ2, l2) are isomorphic if they have the same sets of leaves, use the same
species tree, have the same topology (i.e., they branch in identical ways), and their corres-
ponding nodes map to the same species and have the same label. If this holds, we write
G1 ≃ G2. Formally, G1 ≃ G2 if there exists a bijection ϕ : V (G1) → V (G2) such that the
following holds:

L(G1) = L(G2) and, for each leaf x ∈ L(G1), ϕ(x) = x. In other words, each leaf of G1
is mapped to the same leaf in G2;
uv ∈ E(G1) if and only ϕ(u)ϕ(v) ∈ E(G2);
for every node v ∈ V (G1), µ1(v) = µ2(ϕ(v)) and l1(v) = l2(ϕ(v)).

2.2 The Path-Label Reconciliation (PLR) dissimilarity measure
Let G1 = (G1, S, µ1, l1) and G2 = (G2, S, µ2, l2) be two reconciled gene trees. We say that
G1 and G2 are comparable if: (1) they are reconciled with the same species tree S; (2)
L(G1) = L(G2); and (3) for each leaf x ∈ L(G1), µ1(x) = µ2(x) (that is, extant genes map
to the same species in both trees). Unless stated otherwise, we assume that all pairs of
reconciled trees mentioned are comparable, although (3) could be dropped, see remark below.

For a node v ∈ V (G1), we need a corresponding node for v in G2. This can be done in
multiple ways, and here we assign this corresponding node as the lowest possible node of G2
that is an ancestor of all the descendants of v. To put it more formally, define

mG1,G2(v) = lcaG2(L(G1(v)))
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A B C D

S

a b c d

G2

a b c d

G1

z1 = μ1(x1)

μ2(y1)y0

x1

dasym(G1, G2) = α ⋅ 1 + (1 − α) ⋅ 2

a b c d

← x1

a b c d

← y0 = m(x1)

x0

y1

y2

z0 = μ2(m(x1))
m(y0) = x0

m(x1) = y0
μ2(y2)

μ2(y0)

z2x2

dasym(G2, G1) = α ⋅ 0 + (1 − α) ⋅ 2

α = 0.5

dplr(G1, G2) = 2.5

Figure 1 In the upper row, there are two reconciled gene trees G1 and G2 as well as a species tree
S. The event labelings are shown as red circles and blue squares, which represent speciations and
duplications, respectively. Lowercase letters a, b, c, d depict extant genes, while the corresponding
uppercase letters are the species where genes reside. The maps µ1, µ2 use the lca-mapping, that
is, µ1(x0) = z0, µ1(x1) = z1, µ1(x2) = z2, and µ2(y0) = µ2(y1) = z0, µ2(y2) = z2. The gene trees
have the same set of leaves but different topology and event labeling. Purple arrows exemplify the
maps mG1,G2 (x1), which is the lca of genes c and d, and mG2,G1 (y0), while green arrows illustrate
the species map µ2. The shaded edge in S displays the path distance between µ1(x1) = z1 and
µ2(m(x1)) = µ2(y0) = z0. The lower row shows the explicit evolution of the gene trees within the
species tree. The contribution of x1 to the dpath component is 1, because distS(µ1(x1), µ2(m(x1))) =
1, whereas its contribution to dlbl is 0 because l(x1) = l(m(x1)) = dup. On the other hand, the node
y0 from G2 contributes 0 to dpath since its correspondent x0 is mapped to the same species, but
contributes 1 to dlbl since l(y0) = dup and l(x0) = spec.

which is the lowest common ancestor in G2 of the clade of v. Note that this is well-defined
since L(G1) = L(G2). For instance in Figure 1, mG1,G2(x1) = y0. When G1,G2 are clear from
the context, we may write m(v) instead of mG1,G2(v). In essence, this is the lca-mapping,
but applied between two gene trees. Note that such mappings are usually applied between
gene and species trees, but [37] also introduced the ancestral gene-gene map idea (or more
specifically, ancestral RNA-gene maps).

Our measure has two components: one for the discrepancies in the species mappings, and
one for the labelings. These components are defined as:

dpath(G1,G2) =
∑

v∈V (G1)

distS(µ1(v), µ2(m(v)))

dlbl(G1,G2) = |{v ∈ V (G1) : l1(v) ̸= l2(m(v))}|

In words, in dpath, each term distS(µ1(v), µ2(m(v))) penalizes v by how far its species is
from the species of its correspondent m(v), and dlbl is simply the number of nodes of G1
whose label differ from their correspondent in G2.

WABI 2024
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We assume the existence of a given parameter α ∈ [0, 1] to weigh these components, and
define the asymmetric dissimilarity between G1 and G2 as:

dasym(G1,G2) = α · dpath(G1,G2) + (1− α) · dlbl(G1,G2).

Note that when α = 1 and G1, G2 have the same topology, then dasym is exactly the path
distance metric studied in [31]. Our dissimilarity measure generalizes this by allowing trees
with different topologies and by considering node labels. One could ignore the α parameter
by weighing dpath and dlbl equally, which can be achieved with α = 0.5. Also notice that
dpath may be adapted to species trees with branch lengths.

It is easy to see that dasym is not symmetric. For instance, suppose that G1 consists of a
binary gene tree with several internal nodes mapping to different species, and G2 consists of
a star tree with a single internal node, such that both roots are duplications that map to the
same species. Then dasym(G1,G2) can be proportional to the number of internal nodes of G1,
whereas dasym(G2,G1) = 0.

The Path-Label Reconciliation (PLR) dissimilarity is therefore defined as

dplr(G1,G2) = dasym(G1,G2) + dasym(G2,G1)

If G1 and G2 are not comparable, then we define dplr(G1,G2) =∞.
In Figure 1 we exemplify all the components of the dissimilarity measure. In the example,

following the µ1, µ2 maps given in the caption, if we count the respective costs of x0, x1, x2,
we have dpath(G1,G2) = 0 + 1 + 0 = 1 and dlbl(G1,G2) = 1 + 0 + 1 = 2. If we put
α = 0.5, we get dasym(G1,G2) = 0.5 · 1 + 0.5 · 2 = 1.5. As for the costs of y0, y1, y2, we
get dpath(G2,G1) = 0 + 0 + 0 and dlbl(G2,G1) = 1 + 0 + 1 = 2, and thus dasym(G2,G1) = 1.
Therefore, dplr(G1,G2) = 2.5.

A remark on leaves belonging to the same species. Recall that condition (3) of compar-
ability requires µ1(x) = µ2(x) for every leaf x ∈ L(G1). Although this assumption usually
follows from the knowledge of the species of a gene, it may not hold in some contexts. Indeed,
in metagenomics even the species of extant genes is unknown and needs to be inferred (see for
example [26]). Therefore, for an extant gene x, two different reconciliation algorithms may
predict that x belongs to a different species, leading to µ1(x) ̸= µ2(x). Although condition
(3) is useful in the proofs that follow, we note that it is not required in the definition of dplr,
and the latter remains well-defined even if we drop this condition. Therefore, dplr could be
used to also compare gene trees with predicted gene-species maps that differ even at the
level of leaves (although the theory developed hereafter may need revision for this case).

A remark on setting α. The reader may notice that if α is ignored in dplr, or set to a
constant, the dpath component can easily outweigh the dlbl component. This is because in
the worst case, dpath(G1,G2) can be in Θ(nm), where n is the number of species leaves and
m is the number of gene tree leaves, which occurs if most nodes of G1 are mapped to nodes
of G2 with Θ(n) path distance in S (see the diameter section for a detailed analysis). On the
other hand, the dlbl(G1,G2) component is always O(m), as it only depends on the number
of nodes in the gene tree. This quadratic-versus-linear effect can be prevented by making
α depend on n. For instance, one may put α = 1/n, or more generally α = c/n for some
constant c.
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A remark on scenarios with horizontal transfer events. In the presence of horizontal
gene transfers, gene tree nodes can also undergo a transfer event, and a different notion of
time-consistency than ours is typically used (see e.g. [51]). Nonetheless, such reconciliations
also include a gene-species map µ and a labeling function l, and dplr is also well-defined in
this context. On the other hand, it is unclear whether path distances are appropriate to
compare transferred genes, and again, the theory that follows may need to be adapted to
allow transfers.

Least duplication-resolved gene trees

Consider a reconciled gene tree G = (G, S, µ, l). If, in G, there is a connected subtree
consisting only of duplication nodes, all mapped to the same species, then it is difficult to
postulate on the exact topology of the duplication subtree due to the lack of clear phylogenetic
signals. One solution is to contract the subtree into a single node to model the uncertainty.
Contracting weakly supported branches in gene trees can be useful to detect and correct
errors in dubious duplication nodes [40]. Moreover, special cases of least-duplication resolved
trees such as discriminating co-trees arise in the context of orthology detection [29, 22]. To
this end, we say that an edge uv ∈ E(G) is redundant if µ(u) = µ(v) and l(u) = l(v) = dup.
We then say that G is least duplication-resolved if no edge uv of G is redundant.

Suppose that G is not least duplication-resolved, and let uv ∈ E(G) be a redundant edge,
with u = pG(v). We denote by G/uv the reconciled gene tree obtained by contracting uv in
G and updating µ and l accordingly. More specifically, G/uv = (G′, S, µ′, l′), where: G′ is
obtained from G by deleting v and its incident edges and, for each child v′ of v in G, adding
the edge uv′; and then putting µ′(w) = µ(w) and l′(w) = l(w) for every w ∈ V (G′). If
R ⊆ E(G) is a set of redundant edges of G, then G/R is the reconciled gene tree obtained after
contracting every edge in R, in any order. If R is the set of all redundant edges of G, then
we define LR(G) = G/R, called the least duplication-resolved subtree of G. It is not difficult
to see that such a subtree is unique, least duplication-resolved, and satisfies all conditions of
a reconciled gene tree. Figure 2 shows two gene trees and their least duplication-resolved
version (note that two consecutive duplications in distinct species remain).

For two reconciled gene trees G1,G2, we write G1 ≃d G2 if LR(G1) ≃ LR(G2). This means
that G1 and G2 may differ, but every form of disagreement is due to redundant edges, and
they become identical in their least duplication-resolved form. The following will be useful.

▶ Lemma 1. Let G = (G, S, µ, l) be a reconciled gene tree that is least duplication-resolved.
Let u, v ∈ V (G) be such that v ≺G u. Then either µ(u) ̸= µ(v) or l(u) ̸= l(v).

Proof sketch. If there is a spec node on the path from u to v (excluding v), then the
speciation separates species conditions implies that µ(v) ≺S µ(u). If all nodes on the path
are dup nodes, and if v is a spec, then l(u) ̸= l(v). Finally, if v is also a dup, the least
duplication-resolved properties imply that µ(v) ̸= µ(u). ◀

3 Properties of the Path-Label Reconciliation (PLR) dissimilarity

We first show that in terms of time complexity, dplr(G1,G2) can be computed in linear time,
using appropriate data structures, in a very straightforward manner as shown in Algorithm 1.
The details of a linear-time implementation can be found in the proof of Theorem 2.

▶ Theorem 2. The value dplr(G1,G2) can be computed in time O(|V (G1)|+ |V (G2)|+ |V (S)|).

WABI 2024
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Algorithm 1 Computing dasym in one direction.

1 function getAsymmetricDist(G1 = (G1, S, µ1, l1),G2 = (G2, S, µ2, l2), α)
2 dpath ← 0, dlbl ← 0;
3 m← lcamap(G1, G2); // Computes all m(v) = lcaG2(L(G1(v)))
4 foreach v ∈ V (G1) do
5 v′ ← m(v);
6 dpath ← dpath + distS(µ1(v), µ2(v′));
7 if l1(v) ̸= l2(v′) then dlbl ← dlbl + 1;
8 return α · dpath + (1− α) · dlbl;

Proof. We argue that Algorithm 1 can be implemented to run in time O(|V (G1)|+ |V (G2)|+
|V (S)|), which clearly proves the statement since we only need to run it twice (once
for G1 versus G2, and once for G2 versus G1). We assume that G1, G2, and S are pre-
processed to answer lowest common ancestor queries between any two nodes in constant
time. This pre-processing time is linear for each tree [8], and therefore this step takes
time O(|V (G1)| + |V (G2)| + |V (S)|). We also assume that we know the depth of each
node x of S, denoted depth(x), which is the distance between x and the root. This can
easily be computed by a linear-time preorder traversal of S. It is not difficult to com-
pute m = lcamap(G1, G2) in time O(|V (G1)|+ |V (G2)|) using the lca pre-processing and
dynamic programming. Indeed, for a gene tree node v ∈ V (G1) with children v1, . . . , vl,
we have m(v) = lcaG2({m(v1), . . . , m(vl)}). The latter lca expression can be computed
with l − 1 lca queries as follows. Define w1,i = lcaG2({m(v1), . . . , m(vi)}). First compute
w1,2 = lcaG2(m(v1), m(v2)), then w1,3 = lcaG2(w12, m(v3)), and so on until m(v) = w1,l =
lcaG2(w1,l−1, m(vl)), each in O(1) time. Since l is the number of edges between v and its
children, the number of lca queries required throughout the execution of the whole algorithm
is less than the number of edges of G1, which is O(|V (G1)|).

For each v ∈ V (G1), we can obtain distS(µ1(v), µ2(v′)) in constant time, since it is equal
to depth(µ1(v))+depth(µ2(v′))−2·depth(lcaS(µ1(v), µ2(v′))). It follows that each v ∈ V (G1)
can be dealt with in O(1) time and the loop of the algorithm takes time O(|V (G1)|), which
does not add to the complexity. ◀

A semi-metric under least duplication-resolved equivalence
Let us recall the mathematical notion of a metric, which can be defined as a triple (X, d,≡)
where X is a set, d : X × X → R is a dissimilarity function, and ≡ is a binary equality
operator on X, such that the following conditions are satisfied:

(identity) for all x ∈ X, d(x, x) = 0;
(positivity) for all x, y ∈ X, if x ̸≡ y, then d(x, y) > 0;
(symmetry) for all x, y ∈ X, d(x, y) = d(y, x);
(triangle inequality) for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

If all the above conditions are satisfied, except the triangle inequality, then (X, d,≡) is a
semi-metric. If X is clear from the context, we call d a metric (or semi-metric) under ≡.

In our case, we consider the set of all reconciled gene trees, with dplr as our dissimilarity
function. As for the equality operator, we may consider ≃ or ≃d. In general, dplr does not
always meet the positivity requirement under ≃. That is, G1 ̸≃ G2 does not necessarily imply
dplr(G1,G2) > 0. Consider for example two gene trees with different topologies, but whose
internal nodes are all duplications in the same species (in which case all internal nodes incur
a path and label penalty of 0). For a more elaborate example, see Figure 2.
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Figure 2 Two different reconciled gene trees G1, G2, where redundant edges are bold (again,
lowercase letters indicate the species). Their dplr value is 0 (one can check that all duplications in
species W ∈ {A, X, B} in either tree maps to a duplication in the same W in the other tree, and the
X speciation to an X speciation. On the right, the least duplication-resolved version of the trees,
showing that G1 ≃d G2.

However, we can show that dplr is a semi-metric under ≃d. The most difficult part is
to show that G1 ̸≃d G2 implies dplr(G1,G2) > 0. We first need to show that contracting the
trees to their least duplication-resolved form cannot increase the dissimilarity.

▶ Lemma 3. Let G1 = (G1, S, µ1, l1),G2 = (G2, S, µ2, l2) be comparable reconciled gene trees,
and let uv ∈ E(G1) be a redundant edge. Then dplr(G1,G2) ≥ dplr(G1/uv,G2).

Proof sketch. Denote G1/uv = G′
1 = (G′

1, S, µ′
1, l′

1). For each node w ∈ V (G1) \ {v} that
remains in G′

1, the species and label of w, is the same as before, and mG1,G2(w) = mG′
1,G2(w).

Therefore, the contribution of w to both the dpath and dlbl components are the same as
before, and thus dasym(G′

1,G2) ≤ dasym(G1,G2). In the other direction, for w ∈ V (G2), we
get that either mG2,G1(w) is unchanged after the contraction and w contributes to dpath and
dlbl just as before, or mG2,G1(w) = v. In the latter case, mG2,G′

1
(w) = u, and since µ1(u) =

µ1(v), l1(u) = l1(u), w costs the same as before. So dasym(G2,G1) = dasym(G2,G′
1). ◀

Since Lemma 3 can be applied to any sequence of contractions, in either G1 or G2 by
symmetry, we get the following.

▶ Corollary 4. Let G1 = (G1, S, µ1, l1),G2 = (G2, S, µ2, l2) be reconciled gene trees with the
same leafset. Then dplr(G1,G2) ≥ dplr(LR(G1), LR(G2)).

The above is sufficient to deduce that if ≃d is interpreted as “being the same reconciled
tree”, then we have a semi-metric, unless α = 0 or α = 1 (see arxiv version for full proof).

▶ Theorem 5. For any α ∈ (0, 1), dplr is a semi-metric under ≃d.

Proof sketch. Identity and symmetry are easy to show. For G1 = (G1, S, µ1, l1) and G2 =
(G2, S, µ2, l2) with G1 ̸≃d G2, we need to argue dplr(G1,G2) > 0. Corollary 4 lets us assume
that G1,G2 are least duplication-resolved trees, but not isomorphic. If G1 and G2 have the
same topology, then there must be some v ∈ V (G1) whose correspondent mG1,G2(v) has either
a different species or a different event label, as otherwise G1 and G2 would be isomorphic.
In this case, dplr(G1,G2) > 0. If G1 and G2 have a different topology, then they must have
some different clades and there is some v ∈ V (G1) such that its correspondent v′ = mG1,G2(v)
satisfies L(v) ⊊ L(v′) (or if not, we swap the roles of G1 and G2 to guarantee this). If v and
v′ have a different species or label, we are done. If v and v′ have the same species and label,
then v′′ = mG2,G1(v′) must be a strict ancestor of v, which must have a different species or
label than v by Lemma 1. This species or label also differs from v′, and dplr(G1,G2) > 0. ◀

We next show that, despite being a semi-metric, the dplr dissimilarity measure is not a
metric since it does not satisfy the triangle inequality on non-binary gene trees, regardless of
α. If α is a constant, it can even be far from satisfying the inequality.
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Figure 3 A species tree S and reconciled gene trees G1, G2, G3 that violate the triangle inequality.

▶ Proposition 6. For any α ∈ [0, 1], possibly depending on the number of leaves of the gene
trees, dplr does not necessarily satisfy the triangle inequality under ≃d. This is true even if
the gene trees use the lca-mapping.

Moreover, for any fixed α < 1, the quantity dplr(G1,G3) can be arbitrarily larger than
dplr(G1,G2) + dplr(G2,G3).

Proof sketch. Consider the three reconciled gene trees G1,G2,G3 illustrated in Figure 3.
Suppose that the root of the gene tree in G1 has, as children, k ≥ 2 copies of an ((a, b), (a, b))
subtree. Then the gene tree of G2 has 2k copies of an (a, b) subtree. Assume that every
(a, b) subtree of G1 maps uniquely to some (a, b) subtree of G2. One of the main ideas is
that each ((a, b), (a, b)) subtree of G1 generates a dlbl cost when compared to G3, because the
duplication is a speciation in G3. We can calculate that dplr(G1,G2) + dplr(G2,G3) = 4− α

and dplr(G1,G3) = k(1− α) + 2α + 3. Since we can choose k as large as desired, we can infer
the lack of triangle inequality, and arbitrarily large gap for constant α < 1. ◀

We observe that in the example from Figure 3, the triangle inequality is violated mainly
because the trees are heavily imbalanced in terms of number of internal nodes. We could not
find counter-examples in which all trees are binary.

4 Diameters

We now study the question of computing the diameter of dplr, which is the maximum possible
dissimilarity achievable over a given instance size. This can be useful in practice for normal-
ization, since we can compare heterogeneous datasets by dividing obtained dissimilarities
by the diameter. In the context of general trees, the diameter is usually the maximum
dissimilarity among all pairs of trees with the same number of leaves n. In reconciled gene
trees though, there are multiple ways to define the diameter. We may fix two numbers n, m,
and find the maximum dplr value among all species trees on n leaves and pairs of gene trees
on m leaves. Or, we could decide to fix the species tree S, and find the gene trees over m

leaves of maximum dplr value with respect to S. Or, we could fix the species tree S, and for
each species leaf s ∈ L(S) also fix the number ms of extant genes that belong to s, and find
the most distant gene trees under these parameters.

Even the simplest forms of diameters are not trivial to determine. We thus provide initial
results by determining the diameter in the case that the species tree S is fixed, and gene
trees contain exactly one gene per species. Even though this assumption may not hold in
practice, we hope that the bounds established here can be extended to broader classes of
scenarios in the future. We leave the question of finding the theoretical values of the other
diameters as open problems.



A. López Sánchez et al. 20:11

For a fixed species tree S, let GS represent the set of all reconciled gene trees G =
(G, S, µ, l), such that for each s ∈ L(S), exactly one leaf x of G satisfies µ(x) = s. Since each
leaf of G is uniquely identifiable by its species, we assume that all the elements of GS have
the same leaves and are pairwise-comparable. We define the diameter for fixed S as:

diam(dplr, S) = max
G1,G2∈GS

{
dplr(G1,G2)

}
In terms of dlbl, in the worst case dlbl(G1,G2) is the number of internal nodes of the gene

tree of G1, which occurs when all labels differ. We next characterize the maximum possible
path distance. It is tempting to make every node of G1 map to a deepest leaf of S, and every
node of G2 to the root of S, thereby maximizing distS(µ1(v), µ2(m(v))) for every node v,
but such an example may not satisfy the rules of reconciliation.

For a species tree S, let H(S) =
∑

v∈V (S)\L(S)
distS(v, r(S)) be the sum of root-to-internal

node distances.

▶ Lemma 7. Let S be a species tree on n ≥ 1 leaves. Let G1 and G2 be two reconciled trees
in GS. Then dpath(G1,G2) ≤ H(S) ≤ (n− 1)(n− 2)/2.

Proof sketch. Denote G1 = (G1, S, µ1, l1) and G2 = (G2, S, µ2, l2). For the first bound,
we can show that the maximum dpath is achieved when, for each v ∈ V (G1) \ L(G1) and
corresponding v′ = mG1,G2(v), v uses the lca-mapping and v′ is mapped to r(S) (or vice-versa).
The intuition is that one gene tree maps genes as low as possible, and the other as high as
possible. Because of the time-consistency conditions, the gene tree that puts all ancestral
genes as low as possible is obtained by copying the species tree. In this case, each ancestral
species in V (S) \L(S) has one ancestral gene that maps to it, and so the highest sum-of-path
distances adds the path lengths from r(S) to every internal node. The second bound is a
standard proof by induction and is achieved by caterpillar species trees. ◀

We can now proceed to prove the following theorem.

▶ Theorem 8. Let S be a species tree on n ≥ 2 leaves. Then

diam(dplr, S) = 2α ·H(S) + (1− α)(2n− 2).

Moreover, among all species trees with n leaves, the diameter is maximized when S is a
caterpillar, in which case diam(dplr, S) = α(n− 1)(n− 2) + (1− α)(2n− 2).

Proof sketch. By Lemma 7, the dpath component is at most 2αH(S) if we consider both
dasym directions. The (1−α)(2n− 2) term is because the dlbl is at most the number of nodes
in the two gene trees, which is twice n− 1 (since we have one gene per species). The upper
bound is achieved if G1 is a copy of S, with all speciations and that uses the lca-mapping,
and G2 is a copy of S, with all duplications and all gene tree nodes mapped to r(S). ◀

On the labeled RF distances

We now take a brief detour into another distance designed to compare reconciliations, namely
the labeled Robinson-Foulds distances as presented in [11, 12], of which there are two variants.
These distances are used in the next section and we briefly discuss upper bounds on their
diameters. An edge of a tree is internal if none of its endpoints is a leaf. labeled tree is a pair
T = (T, l) where T is an unrooted tree without degree two nodes, and l : V (T ) \ L(T )→ X

assigns some label from some set X to each internal node (one can think of the label set as
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X = {spec, dup}). A label-flip is an operation that changes the label of an internal node. An
extension is the reverse of a contraction: it takes a node v and a non-empty subset X of
its neighbors, creates a new node w, deletes the edges {vx : x ∈ X}, then adds the edges
{wx : x ∈ X} along with vw, such that the latter must be internal. A labeled contraction is
an operation that contracts an internal edge uv satisfying l(u) = l(v), and a labeled extension
is an extension of v that creates node w with l(w) = l(v).

Given two labeled trees T1 = (T1, l1), T2 = (T2, l2), the ELRF distance [11] between T1
and T2 is the minimum number of labeled contractions, labeled extensions, and label-flips
required to transform T1 into T2.

The LRF distance [12] is the minimum number of contractions, extensions, and label-flips
required to transform T1 into T2 (note that the authors use the notion of node deletions and
insertions, but are stated in [12] to be the same as contractions and extensions).

For an integer n ≥ 3, the diameter of the ELFR (resp. LRF) distance is the largest
possible distance among all possible labeled trees with n leaves. These diameters were not
discussed in the literature. We provide bounds which we believe to be tight, under the
assumption that the label set consists of two elements X = {spec, dup}.

Figure 4 An example of two labeled trees (left and right), with n = 5 leaves and two internal
edges, which both need to be contracted. To achieve this under the ELRF distance, we can perform
⌊(n − 2)/2⌋ = 1 relabeling to make every label a circle (not shown), then contract every internal
edge to obtain a star tree (second drawing). We can then change the remaining label, and reverse
the operations to obtain the right tree. This takes 7 = 3n − 8 operations.

▶ Proposition 9. For n ≥ 3 and label set X of size 2, the ELRF diameter is at most 3n− 8.
Furthermore, the LRF diameter is at most 2n− 5.

The intuition is that we can always contract all n − 3 internal edges of the first tree.
In ELRF, we may have to relabel half of the n − 2 internal nodes to do this, so using
n− 3 + (n− 2)/2 operations to reach a star tree (in the proof we show that this bound can
be achieved while also attaining any desired label at the root of the star, with some case
handling required for odd versus even n). This has to be reversed, leading to 3n − 8. In
LRF, we can just contract all n− 3 internal edges directly, possibly relabel the internal node
of the star tree, then extend. It is possible that these bounds are tight. Consider Figure 4
for the ELRF distance. If we generalize this pattern, it would appear that we need to flip
⌊(n− 2)/2⌋ nodes, do n− 3 mandatory contractions, flip the central node, and reverse the
process. This results in the upper bound 3n− 8. For LRF, one can think of a pair of trees
with no label in common, that require the maximum of 2n− 6 contractions and extensions,
plus a label flip. However, proving that such examples cannot be handled better is not trivial,
and since these distances are not the focus of the paper, we reserve those for future work.

5 Methods

We compared the distribution of the PLR semi-metric against the classical Robinson-Foulds
(RF) and its ELRF and LRF variants. To this end, we designed and implemented a stepwise
procedure to simulate reconciled trees. The software tool to compute dplr is available as
open source at: https://pypi.org/project/parle/.

https://pypi.org/project/parle/
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5.1 Simulation of reconciliations

The existing programs for simulation of reconciliations like AsymmeTree or SaGePhy [60, 38]
operate in a top-bottom fashion by first simulating ancestral genes/species followed by a
birth-death process generating speciation, duplication, and loss events among others. This
procedure does not guarantee trees with a fixed set of genes, whereas the PLR, LRF, and
ELRF metrics require trees with the same set of leaves. To fulfill this requirement, we
designed Algorithm 2, which takes as input a species tree S, as well as a set of genes Γ and
the assignment of species σ : Γ→ L(S), then builds a reconciled gene tree over leafset Γ in a
bottom-up fashion. At each iteration it picks pairs of genes x′, x′′ ∈ Γ and substitutes them
with a newly created node x, being the parent of the chosen genes. Finally, x is associated
with an event and mapped to the species tree in Line 7. Algorithm 2 uses the lca-mapping µ

for the generated gene trees. It is known that this map satisfies time-consistency, and that a
node x with children x′, x′′ can be a speciation if and only if µ(x) /∈ {µ(x′), µ(x′′)}[27]. If this
is not satisfied, the algorithm assigns l(x) = dup, and otherwise chooses l(x) ∈ {dup, spec},
which guarantees the speciations separate species condition.

Algorithm 2 considers a probability distribution P of picking x′, x′′ ∈ Γ. In our imple-
mentation, this probability decays exponentially w.r.t. the distance between the species
where x′ and x′′ reside, in other words, the larger d = distS(µ(x′), µ(x′′)) is, the smaller
the chance of choosing x′, x′′. In particular, we use the probability e−0.7d. This approach is
intended to prevent close elements in the gene tree from being mapped to distant nodes in
the species tree, such a setting causes most of the inner nodes in the gene tree to be mapped
near the root of the species tree, which would in turn create many dup nodes.

In total, we generated 9 sets of random reconciliations, obtained as follows. First, we
generated three species trees Sn, where n is the number of leaves: S10, S25, and S50, using
the AsymmeTree package [60] under the innovations model as described in [34]. For each
species tree Si we generated the gene sets Γi,5, Γi,10, and Γi,20, together with the assignments
of species σi,5, σi,10, and σi,20 in such a way that for the set Γi,j each species y ∈ L(Si)
contains at least one gene and at most j genes. Considering this restriction, the number of
genes for each species was chosen with uniform probability.

Algorithm 2 Simulation of random reconciliation scenarios.

1 function generate_random_scenario(S, Γ, σ)
// S is a species tree, Γ is the set of genes, σ is a map from Γ

to their species.
2 Initialise G = (G, S, µ, l) with L(G) = Γ such that µ maps every leaf to their

corresponding species in L(S) according to σ

3 while |Γ| > 1 do
4 Pick two genes x′, x′′ in Γ according to a probability distribution P .
5 Create a new node x as the parent of x′ and x′′.

// Set reconciliation map and label of the new node.
6 Set µ(x) = lcaS(µ(x′), µ(x′′))
7 if µ(x) ∈ {µ(x′), µ(x′′)} then l(x) = dup

8 else choose l(x) from {dup, spec} with uniform probability
9 Γ← (Γ \ {x′, x′′}) ∪ {x} // Update set of genes

10 return G
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Distance distribution and normalization

Given a set Ri,j of random reconciliations generated from Si and Γi,j , we computed the PLR,
ELRF, LRF, and RF measures for each pair of different reconciliations. We set |Ri,j | = 50,
resulting in 1225 total comparisons per set of random reconciliations. As argued in Section 2.2,
the parameter α of PLR is aimed to balance the quadratic-versus-linear components of the
distance. Following this analysis, we set α = 1/i for the dataset Ri,j . Furthermore, to
address the impact of α on the metric we also used the values 0, 0.25, 0.5, 0.75, and 1.

We normalized the distances obtained to have a fair comparison between the distribution
of the different measures. We used two strategies, first, we normalized PLR by the theoretical
diameter of the distance, while ELFR by its upper bond, and second by the empirical max
normalization, which consists of dividing each computed value of a measure by the maximum
encountered in the dataset for that measure.

5.2 Computational results

Comparisons with max-normalization

Each subplot of Figure 5 shows four distributions comparing the PLR, ELRF, LRF, and RF
metrics represented in blue, light orange, green, and red, respectively.

The ELRF, LRF, and RF distributions exhibit right-skewness, indicating that many data
points cluster towards higher values. This skewness suggests a higher frequency of larger
distances, a common trait among these metrics. Notably, the RF metric often shows smaller
distances because it ignores label changes, whereas the ELRF and LRF metrics yield almost
identical values, performing very similarly, as expected.

In contrast, the PLR distribution is centered around its mean, displaying a broader
spread of measurements. This symmetric distribution indicates that the PLR metric has a
greater variability in distance measurements, highlighting its sensitivity, that is, a balanced
penalization of all the elements of an evolutionary scenario. This contrasts with the more
concentrated and nearly identical distributions of ELRF, LRF, and RF.

The theoretical diameter is hard to reach

Figure 6 presents the distribution of the ELRF distance and the PLR distance for various
values of the parameter α. We omit the plots for LRF and RF distances since they closely
resemble the ELRF distributions, as discussed in the previous section.

The first two rows in Figure 6 compare trees with fewer duplications than speciations,
while the subsequent rows involve trees with an equal or greater number of duplications
compared to speciations. The PLR measure is normalized by the theoretical diameter
introduced here, whereas the ELRF is normalized by its upper bound. Note that ELRF
consistently has higher values than PLR and that these values are significantly far from the
theoretical diameter. The shape of the PLR distribution remains largely unchanged as α

increases, likely due to the diminishing contribution of the linear component relative to the
quadratic component as α grows. On the right side of the figure, we observe the frequency
of speciation and duplication events in our simulated reconciled trees, as well as their least
duplication-resolved (LDR) counterparts. Notably, when there are more speciations than
duplications, the PLR measure increases but still remains far from the theoretical diameter.
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Figure 5 Distributions of the PLR, ELRF, LRF, and RF metrics for datasets Γ10,20, Γ25,10, and
Γ50,5, from top to bottom rows, respectively, and alpha values from the set { 1

n
, 0.25, 0.5, 0.75}, with

n as number of species. Each row corresponds to a dataset, while each column represents a different
value of α. The x-axis represents max-normalized values ranging from 0 to 1, and the y-axis is the
frequency of these values. The PLR measure in purple shows a centered and symmetric distribution
with a broader spread. The ELRF, LRF, and RF metrics, shown in light orange, green, and red,
respectively, exhibit right-skewed distributions towards the higher end of the scale.

Figure 7 illustrates important differences between the measures, since we can observe
two different scenarios: 1) where ELRF is significantly smaller than PLR, suggesting that
reconciliations may be completely different even when gene tree topologies are similar; and 2)
conversely, PLR may be significantly small when the ELRF is large, suggesting that different
gene tree topologies could have similar reconciliations.

6 Discussion

In this work, we have underscored the unique attributes of PLR, a novel semi-metric designed
for comparing reconciled gene trees within a fixed species tree framework. Unlike existing
metrics such as RF, LRF, and ELRF, which primarily focus on tree topology, PLR incorporates
all elements of an evolutionary scenario: a species tree, gene trees, speciation/duplication
labeling and a mapping from gene trees to species tree. This broader scope provides a more
holistic measure of dissimilarity between reconciled gene trees, offering researchers a nuanced
understanding of evolutionary relationships.

One notable advantage of PLR is its flexibility, particularly regarding the parameter α,
which allows users to balance the quadratic and linear components of the distance according
to their specific research context. This flexibility enhances the metric’s applicability across
diverse evolutionary scenarios, providing researchers with a customizable tool for reconciliation
analysis. Additionally, our experiments reveal that PLR exhibits a symmetric and broadly
spread distribution around its mean, indicating sensitivity to variations in reconciliations
and finer granularity in distinguishing between different tree pairs. Despite its strengths,
PLR does have some limitations. For instance, while the flexibility of α is advantageous, it
also introduces a degree of subjectivity into the metric’s application, as users must determine
the appropriate value for their specific context. Moreover, our theoretical analysis highlights
a large theoretical diameter for PLR, which is seldom reached in practice. Tighter bounds
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Figure 6 Comparison of the distribution of ELRF and PLR measures with different values for the
parameter α, and different proportions of duplication/speciation events. The measures are shown for
both the least duplication-resolved trees (LDR) and non-LDR. All the plots consider reconciliations
with 10, 25, and 50 species. The parameter α = 1/n aims to balance the linear-vs-quadratic
components of the distance, where n is the number of species. Note that the biggest change in the
distribution of the PLR measure happens for small values of α.

are needed to improve practical applicability and interpretability. One of the key strengths
of PLR is its computational efficiency, with an O(n) time complexity. This efficiency is
particularly beneficial for analyzing large datasets or trees, where computational resources
and time are critical constraints.

Looking ahead, future directions for PLR include refining the theoretical bounds of its
diameter. An important theoretical problem that remains open is determining whether
binary gene trees satisfy the triangle inequality. Additionally, developing metrics between
gene trees with different leaf sets would significantly broaden its applicability. Incorporating
alternative methods for matching ancestral genes, such as those proposed by Lin et al. [44],
or using asymmetric cluster affinity as suggested by Wagle [65], could further enhance the
metric’s accuracy and relevance.

In conclusion, PLR represents a significant advancement in the comparison of reconciled
gene trees, offering a detailed and flexible measure of dissimilarity. Its computational efficiency
and comprehensive event consideration make it a valuable tool for evolutionary studies, with
potential for further refinement and application in future research.
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Figure 7 Examples of distance between reconciliations and gene trees, plotted using
REvolutionH-tl [55]. The reconciliations have 10 species and 24 genes, with α = 1/10. The
upper row has a large PLR value but a small ELRF distance. In contrast, the bottom row shows
trees when PLR is small even when ELRF is big. In this example, we set α = 1/10.
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