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Abstract
Analyzing and comparing sequences of symbols is among the most fundamental problems in computer
science, possibly even more so in bioinformatics. Maximal Common Subsequences (MCSs), i.e.,
inclusion-maximal sequences of non-contiguous symbols common to two or more strings, have only
recently received attention in this area, despite being a basic notion and a natural generalization
of more common tools like Longest Common Substrings/Subsequences. In this paper we simplify
and engineer recent advancements on MCSs into a practical tool called McDag, the first publicly
available tool that can index MCSs of real genomic data. We demonstrate that our tool can index
sequences exceeding 10,000 base pairs within minutes, utilizing only 4-7% more than the minimum
required nodes, while also extracting relevant insights.
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1 Introduction

Strings are fundamental in computer science, and their analysis, indexing, and processing are
among the oldest and best-studied problems. A central aspect of these problems is searching
for relevant patterns in strings, which vary based on the application. We focus here on
patterns that are common between two or more strings.
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In some real-world domains, a common substring may be too strict of a requirement:
to make an example, a sequence of bases in genetic data may represent an important gene,
but different specimens may have undergone different micro-variations in their genetic code
that very slightly altered the gene, and even the act of sequencing introduces noise in the
data, so that an exact match is not guaranteed even when comparing samples from the same
specimen. In these domains, it is relevant to consider the common subsequence: an ordered
sequence of characters that occurs in all given strings, but not necessarily contiguously, i.e.,
the characters of the sequence may be interleaved with others.

As the number of common subsequences between two strings can be exponentially high,
a common idea is looking at just the one of maximum length, longest common subsequence
(LCS hereafter). LCSs are used to see how well two or more sequences align, or how similar
they are [25]. Sometimes, the sequence itself is ignored, and a similarity metric is simply
the length of the LCS compared to n, the length of the original strings. While LCS-based
approaches can be effective, they have significant limitations: firstly, efficiency is limited as
finding a single LCS among an arbitrary number of strings is NP-complete [19], and still
takes quadratic time with just two strings (see the conditional lower bounds in [1, 4]). Also,
Figure 1 shows an example case where a critical but relatively short sequence cannot be
extended to a common subsequence as long as an LCS, thus any analysis based on LCSs
would completely disregard this information.

On the other extreme, it is possible to consider all common subsequences with a Common
Subsequence Automaton [8]. However, these will include many solutions (possibly most)
that are included within other longer solutions, and thus pollute the set with redundant
information. For these reasons, we focus on a generalization of LCSs called Maximal Common
Subsequences (MCS hereafter), which provides an interesting middle point between LCS and
all subsequences: an MCS S between two (or more) strings is a sequence of characters that
occurs as a subsequence in each of the strings and that is (inclusion) maximal, that is, S

cannot be extended with any character in any position and still be a common subsequence.
For example in Figure 1, the critical shorter common subsequence may be included in the
set of MCSs, and could improve the alignment of some critical common parts.

Once established our interest in MCSs for string analysis, the natural question is: which
tools should be employed? In fact, very little was possible until recently. We now have an
algorithm to enumerate all MCSs efficiently [6] but they can be exponential in number (in
fact, this is true for LCSs too [12]) and it would be inconvenient to both enumerate and
store all of them. To facilitate analysis using MCSs, a useful tool would be a sufficiently
small index that allows us to efficiently retrieve and query MCSs.

First steps in this direction have been taken: [7] proves the existence of a DAG (Directed
Acyclic Graph) of polynomial size that is able to represent all MCSs, count them, and
reconstruct them as needed. Similar structures have also been shown in [13].

X · · ·

Y · · ·
· · ·

Figure 1 In the example, the LCS only shows the longer white “promoter sequence”, a common
occurrence in genomic sequences. The critical (but shorter) shaded common part cannot be extended
to a common subsequence of the same length, is thus not shown by LCS-based analysis.
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Figure 2 M-DAG (taken from [7]), CSA-maximal (derived from [8] and our filtering meth-
ods), and McDag (this paper), for input strings X = TCACAGAGA and Y = ACCCGTAGG. Here,
MCX(X, Y ) = ACGAG, ACAGG, CCGAG, CCAGG, TAGG.

1.1 Contribution
Based on these results, the contribution of this paper is to build a practical indexing tool,
which we call McDag, that is simultaneously simpler in concept and faster to construct,
and to show that it can provide insight on real genomic data. Figure 2 shows our proposed
McDag on the right, along with two other DAGs obtained from the literature [7, 8].1 Apart
from the different number of nodes and edges, all share the same conceptual structure:

There exist a single source s, labeled with marker #, and a single sink t, labeled with
marker $. All other nodes are labeled with characters from the alphabet Σ of X and Y .
Each st-path is associated with a unique Z ∈ MCS(X, Y ) spelled out in its traversed
nodes; vice versa, each Z ∈ MCS(X, Y ) has a unique st-path associated.
The out-neighbors of each node are labeled with distinct characters from Σ, so the
out-degree is at most |Σ| (ignoring # and $ labeling s and t respectively).

As a result, each prefix of an MCS has a unique path from s. For example, ACA is found
in McDag following #, A, C, and A in this order, each time with a unique branching choice
on the current node. The McDag has less than |X| × |Y | nodes in our experimental study
of Section 3, only 4-7% more than the minimum required nodes. It takes quadratic time
in practice, which allows us to index sequences exceeding 10,000 base pairs within minutes.
Note that, in general, no DAG storing MCS(X, Y ) can take sub-quadratic time in the worst
case, unless SETH or OVH fail, as an LCS is an MCS of maximum length, and the problem
of finding the LCS length has a quadratic conditional lower bound [1, 4].

The benefit of the above conceptual structure is that it fits several efficient algorithms on
the state of the art for querying deterministic acyclic automata. For instance, listing all the
strings in MCS(X, Y ), reporting only those of (up to) a given length, or matching a simple
regular expression, and counting the number of the above strings (e.g. see [7]). Moreover,
McDag can be easily extended to store MCS of an arbitrary number k of strings.

A further example, showcasing both the capabilities of our tool and the significance of
MCSs, is shown in Figure 3: we took segments of DNA data from different sources (viruses,
fish) as well as a randomized sequence as control, we used McDag to compute the MCSs of
each pair of types, and plot their size distribution, without generating all the exponentially
many MCSs. Looking at the distributions involving the random string we see remarkably
similar bell curves, due to the sheer amount of shorter subsequences which occur in all
sequences. Strikingly, when comparing virus and fish DNA, the curve aligns rather precisely
with the random ones; this is a key insight to the fact that such subsequences are unlikely to

1 Based on our understanding of [13], the DAG introduced therein could potentially fit our definition.
However, we lack sufficient details to make this assertion with certainty.
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Figure 3 Length distribution of MCSs among different pairs of DNA sequences (see Section 3).

hold much significance. On the other hand, when comparing two sequences of the same kind
(fish vs fish, and virus vs virus, in red and yellow), the distribution lines initially start in the
same bell-curve shape, but take a completely different behaviour on the right part of the
graph, showing a high amount of larger MCSs. This suggests that beyond a certain length
threshold, some MCS may exhibit valuable alignment properties. Notably, this threshold
might be shorter than the length of the LCS.

This suggests that MCS-based analysis can determine not only when two sequences have
significant similarities, but also which common sequences are relevant and which are likely
noise. We argue that McDag is a significant first step in this type of analysis. It is – to
the best of our knowledge–the first publicly available tool that allows for efficiently indexing
and analyzing MCSs, and can process sequences of over 10000 symbols in just a few minutes
(https://github.com/giovanni-buzzega/McDag). While of course complex genes such as
human ones are orders of magnitude longer and require further development of the tool, this
already allows for a deeper analysis of simpler genomic data or selected segments.

1.2 Related work
The concept of MCSs first appeared within a general form in the data mining community [2].
In this context, the authors considered ordered sequences of sets of items rather than strings.
A subsequence is obtained from a sequence by deleting any number of items from any set
at any position. The focus was on finding frequent subsequences, which are subsequences
that appear in more than a user-defined number of sequences in the database. One of the
problems proposed was to find inclusion-maximal frequent subsequences, which are not
subsequences of any other frequent subsequences. Our problem can be seen as a special case
of this framework by considering only two sequences of singletons and setting the frequency
threshold to two.

The MCS problem was later formalized in [11], along with several variations of the
common subsequences, for which they studied the computational complexity and dynamic
programming solutions in some cases. Further solutions to this problem have been proposed
in various studies. Sakai provided the first (almost) linear-time algorithm to extract one MCS
between two strings [23]. Bulteau et al. [5] used MCSs as a tool for a new parameterized LCS
algorithm. Hirota and Sakai explored MCSs for multiple strings [14]. Conte et al. [7] and
Hirota and Sakai [13] independently proposed DAGs for enumerating MCSs of two strings.
Conte et al. [7] published the first polynomial-size DAG in the literature, where each node
represents at least one prefix of some MCS.

https://github.com/giovanni-buzzega/McDag
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We give some detail of the latter: if there is an edge from node u to node v, all prefixes
of u are prefixes of some MCS and when extended with the character associated with that
edge they do not lose this property. This allows for the direct construction of an MCS index,
but maintaining it can be costly [6], as finding the right character to extend a prefix may
require expensive computation. For instance, finding a character that extends an MCS prefix
to a CS prefix is simple, but it may yield prefixes that do not lead to any MCS. The current
approach for finding suitable extensions associates a distinct quadruple of integers to each
node, causing the automaton size to be n3 or more in terms of nodes.

Subsequence-related problems have been previously addressed using automata. Baeza-
Yates [3] introduced the Directed Acyclic Subsequence Graph (DASG), that accepts all
subsequences of a given string, and can be generalized to accept subsequences of any string
in a set. A subsequent result was the common subsequence automaton (CSA) [8, 9, 26]:
it accepts common subsequences of a set of strings, including non-maximal ones, and it is
similar in concept to the common subsequence tree of [15]. The CSA can also be used to
find an LCS between two strings [20]. Moreover, automaton-inspired tools such as binary
decision diagrams like ZDD [21] and SeqBDD [17] can be used to compactly represent the
set MCS(X, Y ), but construction is non trivial: one potentially needs to first generate all
MCSs and this can take exponential time and space.

As for LCSs, some algorithms for their computation can be seen as dynamic programming
on some DAG [16, 18]. Furthermore, a DAG representation of LCSs was also recently used
in [24] for the problem of finding diverse LCSs.

2 The McDag Index

Before defining McDag, we provide some preliminary notions.

2.1 Preliminaries

We consider a string X = X[0] . . . X[|X| − 1] as a sequence of characters from an alphabet Σ,
where X[i] ∈ Σ denotes the character at position i in X and |X| denotes the total number of
characters in X. We use special characters {#, $} as markers delimiting input strings.

We say that string Z is a subsequence of X if there exist indices 0 ≤ i0 < · · · < i|Z|−1 < |X|
such that X[ik] = Z[k] for 0 ≤ k < |Z|. Moreover, Z is a common subsequence of strings
X and Y if Z is a subsequence of both X and Y : letting 0 ≤ j0 < · · · < j|Z|−1 < |Y | be
the indices such that Y [jk] = Z[k] for 0 ≤ k < |Z|, we say that each pair (ik, jk) is a match
(as X[ik] = Y [jk]) and the pairs (i0, j0), . . . , (i|Z|−1, j|Z|−1) form a matching in X and Y ,
whose corresponding string is Z. In general, we call a pair (i, j) a match when X[i] = Y [j],
observing that the pairs induce a partial order, defined as (i, j) < (i′, j′) iff i < i′ and j < j′,
which is total if pairs belong to the same matching; (i, j) ≤ (i′, j′) is analogously defined.

In our example of Figure 2, Z = CGA is a common subsequence of X = TCACAGAGA and
Y = ACCCGTAGG, and one of its matchings is underlined in X and Y as (1, 2), (5, 4), (8, 6).

We say that Z is a longest common subsequence (LCS), or belongs to LCS(X, Y ), if there
is no common subsequence that is strictly longer than Z. Finally, Z is a maximal common
subsequence (MCS) of X and Y if there is no string W that satisfies both conditions: (i) W

is a common subsequence of X and Y , and (ii) Z is a proper subsequence of W . The set of
all strings that are maximal common subsequences is denoted by MCS(X, Y ). Note that
LCS(X, Y ) ⊆ MCS(X, Y ), as an LCS is an MCS of maximum length.

WABI 2024
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We next introduce some graph notions. A directed graph G = (V, E), where V is the set
of nodes and E ⊆ V × V is the set of edges, is a graph so that each edge (u, v) has direction
from u to v. Specifically, two edges (u, v) and (w, z) are adjacent if v = w. A path in G is a
sequence of distinct edges, each adjacent to the next. If the path starts at node s and ends
at node t, it is called an st-path; it is a cycle when s = t. A DAG G = (V, E) is a directed
acyclic graph. Given a node u, the set N+(u) indicates the out-neighbor nodes v such that
(u, v) ∈ E, and the set N−(u) indicates the in-neighbor nodes v such that (v, u) ∈ E. The
out-degree of u is d+(u) = |N+(u)|, and its in-degree is d−(u) = |N−(u)|; u is a source if
d−(u) = 0, and a sink if d+(u) = 0. We consider a labeled DAG G = (V, E, ℓ), where each
node u is associated with a character ℓ(u) ∈ Σ ∪ {#, $}.

2.2 Definition of index for MCS

Given two strings X and Y , a labeled DAG G = (V, E, ℓ) is an index for MCS(X, Y ) if the
following conditions hold:
1. Each node u (other than source or sink) is associated with a match denoted as m(u) = (i, j),

and has label ℓ(u) = X[i] = Y [j], where 0 ≤ i < |X| and 0 ≤ j < |Y |.
2. There exist a single source s and a single sink t, with special values m(s) = (−1, −1),

ℓ(s) = #, and m(t) = (|X|, |Y |), ℓ(t) = $.
3. Each st-path P = s, x0, ..., xh−1, t is associated with unique string Z = ℓ(x0), ..., ℓ(xh−1) ∈

MCS(X, Y ), and the associated matching for P must satisfy m(x0) < · · · < m(xh−1).
4. Each Z ∈ MCS(X, Y ) has a corresponding st-path P = s, x0, ..., xh−1, t such that

Z = ℓ(x0), ..., ℓ(xh−1).

We say that the DAG is deterministic if each node has out-neighbors labeled with distinct
characters (and so its out-degree is at most |Σ| and each prefix of a MCS has a unique path
from s), and co-deterministic if the condition applies to the in-neighbors of each node (which
has in-degree at most |Σ|). In both cases, there cannot be two distinct st-paths corresponding
to the same string. Moreover, we get an approximate index for MCS(X, Y ) when condition 3
is relaxed, so that Z is not necessarily maximal, and so there could be st-paths in the DAG
that store non-maximal common subsequences.

The DAGs in Figure 2 are all deterministic indices for the same set MCS(X, Y ), and
they all satisfy the above conditions. The leftmost is M-DAG and has been introduced in [7].
The central one is CSA-maximal and has been derived from the Common Subsequence
Automaton [8] by filtering out the non-maximal common subsequences. The rightmost is
McDag, our proposed index that further reduces the number of nodes.

When any of the above deterministic indices for the set MCS(X, Y ) is available, a number
of classical operations can be supported. For instance:

List all the strings in MCS(X, Y ).
Report only the strings in MCS(X, Y ) of (up to) given length.
List the strings in MCS(X, Y ) containing a given string S, or similar regular expressions.
Count the number of the above strings (all kinds).

We refer the reader to [7] for these operations, which can be implemented using standard
algorithms from the literature on strings and automata, following the above definition of a
deterministic index for MCS. As a final remark, the associated matches m(u) for the nodes u

in the DAGs are not strictly necessary for these operations, but help to quickly reconstruct a
possible matching of a given MCS Z to X and Y .
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2.3 Operational definition of McDag
The best way to define McDag for input X and Y is to employ a two-phase scheme. In the
first phase, an approximate co-deterministic index A for MCS(X, Y ) is built. We recall that
A stores MCS(X, Y ) along with some non-maximal common subsequences. We allow for this
relaxed version as we can run the second phase, which eliminates from A the non-maximal
ones, and makes the outcome a deterministic index, thus yielding our McDag.

First phase. We build A = (VA, EA, ℓA) with source sA, so that A satisfies the rightmost
property: for each (u, v) ∈ EA, let c = ℓA(u) be the character labeling u, and m(u) = (iu, ju)
and m(v) = (iv, jv) be the matches (recalling that m(u) < m(v) by definition of MCS index);
then, c does not appear in X[iu + 1] . . . X[iv − 1] and Y [ju + 1] . . . Y [jv − 1].

We can obtain A as a vanilla version of the Common Subsequence Automaton [8] as
follows. Since we want it to be co-deterministic, we read X and Y from right to left, and
start building A from its sink tA backwards. Consider the generic step for a node u, initially
u = tA with m(tA) = (|X|, |Y |). We need to link u to its in-neighbors, possibly creating
some of the latter ones, which are at most |Σ| + 1, one per character c and one for the source.
Hence, for c we find the largest pair (ic, jc) < m(u) such that c = X[ic] = Y [jc]: if a node v

with m(v) = (ic, jc) does not exist, we create v with m(v) = (ic, jc) and ℓ(v) = c, and add
edge (sA, v); in any case, we add edge (v, u).

Apart from its source and sink, A has as many nodes as the matches involved in its
construction. As there cannot be two distinct nodes u and v of A with the same match
m(u) = m(v), we derive that |VA| ≤ n2 + 2 and |EA| ≤ (|Σ| + 1)(n2 + 1) as the max in-degree
is |Σ| + 1. Its construction time is O(n2|Σ| log n), and its space is O(n2|Σ|). Here we assume
wlog that n = |X| = |Y |.

An optimized version of the first phase has been implemented in McDag, as discussed
in the experimental Section 3.3.

Second phase. Given A = (VA, EA, ℓA) with source sA from the first phase, we apply
Algorithm 1 to get a graph G = (V, E, ℓ) that becomes our McDag with source s and sink t.
During the construction we associate each node u ∈ V with a set F (u) of nodes from VA, all
having the same label as u’s (initially F (s) = {sA} with label #). At each step we expand a
node u ̸= t with its out-neighbors, filtering out the nodes of A whose matches are to the right
of some match (ic, jc) > m(u), as they cannot lead to MCS: (ic, jc) is a witness to defy their
maximality. After that, we create new nodes in G for the filtered set of nodes with the same
label coming from A, and their edges in G. We end up having a single sink t, corresponding
to $, only occurring at the end of both strings.

The proof of correctness of procedure McConstruct in Algorithm 1 is non-trivial, as
we have to show that we retain all and only the strings in MCS(X, Y ) along all the st-paths
in G. We postpone the correctness to Section 4, after providing the experimental analysis of
Algorithm 1 in Section 3, which yields a quadratic cost in practice.

3 Experimental Analysis

3.1 Experimental setup
Our algorithms were implemented in C++ using g++ 11.4.0 and compiled with the -O3
and –march=native flags. All tests were conducted on a DELL PowerEdge R750 machine in
a non-exclusive mode. This platform features 24 cores with 2 Intel(R) Xeon(R) Gold 5318Y
CPUs at 2.10 GHz, and 989 GB of RAM. The operating system is Ubuntu 22.04.2 LTS.

WABI 2024
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Algorithm 1 Construction algorithm for McDag.

Input A = (VA, EA, ℓA): rightmost approximate co-deterministic MCS index with source
sA

1: procedure McConstruct(A)
2: Initialize G = (V, E, ℓ), where V = {s}, E = ∅, m(s) = m(sA) = (−1, −1), ℓ(s) = #
3: F (s) = {sA} ▷ F (u) is the set of nodes in A corresponding to u in G

4: while there exists u ∈ V with d+(u) = 0 and ℓ(u) ̸= $ do
5: Initialize Nc = ∅ for all c ∈ Σ ∪ {$}
6: for all (x, y) ∈ EA such that x ∈ F (u) do
7: Add y to Nc, where c = ℓA(y)
8: Initialize P = ∅
9: for all Nc ̸= ∅ do

10: ic = min{i | (i, j) = m(z), z ∈ Nc}
11: jc = min{j | (i, j) = m(z), z ∈ Nc}
12: Add (ic, jc) to P

13: for all Nc ̸= ∅ and p ∈ P do
14: Remove all z from Nc such that p < m(z)
15: for all Nc ̸= ∅ do
16: if no node v ∈ V has F (v) = Nc then
17: Add new node w to V

18: Set F (w) = Nc, m(w) = (ic, jc), ℓ(w) = c

19: Add edge (u, w) to E

20: return G = (V, E)

Datasets. To evaluate the effectiveness of our methods, we selected three datasets with
diverse compositions and varying sequence lengths, as shown in Table 1:

random: Random sequences of 4 symbols generated using the uniform distribution from
the standard C++ library.
fish−mito: 25 mitochondrial genomes of fish species from the suborder Labroidei,
sourced from [10].
hiv−1: 43 complete HIV-1 genomes, referenced in the literature [27].

Table 1 Datasets.

Datasets Composition # Sequences Avg # Base Pairs Source
random Random sequences 2 3000 stdlib
fish−mito Fish assemblies 25 16624 [10]
hiv−1 HIV genomes 43 9267 [27]

Index data structures. We implemented the following indexing data structures in C++
and evaluated them based on the number of nodes, edges, and construction time:

M-DAG: The DAG storing MCSs presented in [7].
CSA-all: The Common Subsequence Automaton [8] storing all common sequences, both
non-maximal and maximal, and implemented as a labeled DAG (as presented in the first
phase of Section 2.3).
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CSA-maximal: The automaton storing only MCS, derived from CSA-all using the
method described in Section 2.3.
CSA-filtered: An optimized version of CSA-all, which filters out many non-maximal
common subsequences during construction, as detailed below in Section 3.3.
McDag: Our proposed data structure from Section 2, implemented as the DAG storing
only MCS derived from CSA-filtered, using the method described in Section 2.3.
MCS-minimized: The minimized version of M-DAG, CSA-maximal, and McDag.Note
that, as these three DAGs encode the same language, when minimized they converge to
the unique optimal index MCS-minimized.

Qualitative data. The baseline for our experimental study involves finding MCS(X, Y )
where X and Y are sequences selected from random, fish−mito, and hiv−1. This results
in six unordered pairs: random vs random, fish−mito vs fish−mito, hiv−1 vs hiv−1,
random vs fish−mito, random vs hiv−1, and fish−mito vs hiv−1. The distribution by
length of MCS(X, Y ), displaying the number of MCS for each length, was shown in Figure 3
of the introduction. For uniformity, we truncated all sequences to n = 3000 base pairs,
though longer sequences have been analyzed and resemble the current results.

Table 2 provides statistics for the comparisons among these sequences. For each pair
X, Y , the columns report the number of sequences in MCS(X, Y ), the number of sequences
in LCS(X, Y ) ⊆ MCS(X, Y ), the length of an LCS, and the number of nodes and edges
of the minimal automaton MCS-minimized for storing MCS(X, Y ). Note that for random
data, the number of MCSs quickly explodes and reaches the max-val of the machine word.
Intuitively, a larger #MCS indicates that X and Y are farther apart. The table also
emphasizes the need for a compact index, since it appears evident that generating all MCSs
or all LCSs is unfeasible.

Table 2 Statistics on compared pairs, all sequences truncated to 3000 base pairs.

Comparison Pair X vs Y # MCS # LCS Len(LCS) # Nodes # Edges
fish−mito vs fish−mito 2.33×10284 1.42×1017 2638 2235772 3656773
hiv−1 vs hiv−1 4.45×10289 1.92×1011 2541 2255709 3623730
random vs random max-val 8,79×1065 1946 2152163 3704365
hiv−1 vs fish−mito 1.06×10295 4.97×1056 1910 2239742 3684099
random vs hiv−1 2.78×10303 2.57×1069 1905 2181229 3710081
random vs fish−mito 7.62×10303 7.44×1061 1919 2139712 3627623

3.2 Index size
We analyzed the computational cost of the index data structures M-DAG, CSA-maximal,
McDag, and MCS-minimized in terms of the number of nodes, edges, and construction
time. Figure 4 shows two plots: the left plot displays the number of nodes and the right plot
shows the number of edges for M-DAG, CSA-maximal, McDag, and MCS-minimized as
the sequence length n increases. The x-axis reports the sequence length n, while the y-axis
reports the corresponding number of nodes/edges. Data from hiv−1 are presented.

M-DAG consistently has more nodes/edges than CSA-maximal, which in turn has more
than McDag. The former two were interrupted after a timeout of 8000 seconds (giving a
truncated plot, respectively, for n = 2300 and n = 5700), while McDag completed in less
than 600 seconds. Indeed, the construction of McDag benefits from the optimization that
we will discuss in Section 3.3.
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Figure 4 Number of nodes and edges in the DAGs on the dataset hiv−1.

All plotted curves are below n2, empirically established for all of our datasets. We plot the
data for McDag and MCS-minimized, along with the curve for n2 to ease the comparison
in Figure 5. McDag is closest to MCS-minimized, with nodes/edges only 4-7% more than
MCS-minimized (compared to M-DAG’s 26-31% and CSA-maximal’s 19-27%).
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Figure 5 Number of nodes and edges for McDag and MCS-minimized, in comparison with n2.

It remains an open problem to prove that the number of nodes and edges in McDag
is always < n2/c for some constant c > 0, regardless of the sequence alphabet. Synthetic
sequences X and Y of length n can be defined to yield Ω(n2) nodes and edges in McDag,
but we found no real-world or synthetic sequences exceeding n2 nodes or edges. For example,
in Figure 6, we fix n = 3000 on random data, and report the number of nodes and edges for
McDag and MCS-minimized for varying |Σ| compared to n2 = 9 · 106.

3.3 Filtering and construction time
We described McDag’s construction in Section 2.3 using a vanilla version A of the Common
Subsequence Automaton [8]. We denote this by CSA-all in our experiments, and the
resulting DAG from Algorithm 1 is CSA-maximal.

However, we can further optimize this before executing Algorithm 1. We build a filtered
version of the CSA by reading input strings X and Y from left to right, and building the
edges forward, so that it is deterministic. To reduce the number of inserted edges, when
analyzing a node x we do not add an out-neighbor y if there exists a match m such that
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Figure 6 Number of nodes and edges in random for increasing alphabet size |Σ|, vs n2 = 9 · 106.

m(x) < m < m(y). Note that the presence of such match implies that the all paths that
pass from x to y are not maximal by definition. We then simulate an intersection with
CSA-all to filter out some common subsequences, ultimately obtaining CSA-filtered,
which becomes the smaller A to give as input to Algorithm 1. As we show, this process is
more effective in reducing the number of nodes and edges, and its resulting graph is the
choice for McDag. This choice is conceptually motivated by the computational paths shown
on the left of Figure 7, where we report the number of nodes over time on dataset hiv−1:

The blue path is the one in Section 2.3: we start from CSA-all, obtain CSA-maximal,
and then, using Revuz’s algorithm [22], minimize to obtain MCS-minimized.
The green path is its optimized version: we start from the filtered version (which is
symmetrical to CSA-all and takes the same time), obtain CSA-filtered, get McDag,
and then MCS-minimized using Revuz’s algorithm, as in the blue path.

As noted, both paths lead to the same MCS-minimized, but the green path takes less
time and generates fewer intermediate nodes. Therefore, we decided to implement McDag
using the green path in our experiments.
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Figure 7 Filtering out and construction time on the hiv−1 dataset.

We provide more details on how to obtain CSA-filtered. The idea is to build the
co-deterministic CSA-all with an additional filter provided by the filtered version of the
deterministic CSA we described earlier; we force each node v of CSA-filtered to correspond
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to the set F (v) of nodes of CSA that share at least one suffix with v. With that information,
we allow for the addition of an edge (u, v) only if F (u) is non-empty. This way, we avoid
adding strings that are not present in the filtered deterministic CSA, as they cannot be
maximal. Note that, unlike in Algorithm 1, we do not permit duplicate matches, so the size
of CSA-filtered is always smaller than the size of CSA-all. We apply the same filtering
approach as illustrated above, not adding an edge if there is a match that inserts between
the matches of the two nodes. In the end, only paths whose matchings allow for match
insertions of characters are filtered out, as they are not maximal by definition. Moreover,
CSA-filtered is a rightmost approximate co-deterministic MCS index, so it can be used
as input to Algorithm 1.

Finally, the plot on the right of Figure 7 shows the running times for constructing the
DAGs. All methods were implemented as fairly as possible. McDag scales well compared
to the plot of n2/50000, which is significant given that McDag also computes LCS(X, Y ),
which has a quadratic conditional lower bound for computation [1, 4].

4 Correctness of McConstruct (Algorithm 1)

Here we prove the correctness of algorithm McConstruct. The algorithm takes as input
the output A of the first phase, which is an approximate co-deterministic index with the
rightmost property, and outputs a McDag index G as described in Section 2.3. First, we
show a number of necessary properties that are satisfied by McDag. Then, to show that
st-paths correspond to MCS, we conclude the proof through a characterization of the shape of
non-maximal CS in similar data structures, showing that they do not occur in our McDag.

For a set of matches X = {(i1, j1), ..., (ih, jh)} corresponding to the same character
c ∈ Σ we define their minimum as the match given by the minimum over both components:
min(X) = (min1≤k≤h ik, min1≤k≤h jk). For a set of nodes Y = {v1, ..., vk}, we define their
corresponding set of matches as m(Y ) = {m(v1), ..., m(vk)}.

▶ Theorem 1. During the algorithm, we retain the following properties for graph G = (V, E, ℓ)
(and thus for McDag at the end):

(i) G is deterministic;
(ii) each node v ∈ V is labeled with a symbol ℓ(v) from Σ ∪ {#, $}, and is associated to a

set of nodes F (v) of A, all labeled with ℓ(v). Furthermore, it is associated with match
m(v) = min(m(F (v))) for character ℓ(v).

(iii) G is a labeled DAG with a single source s, having F (s) = m(s) = (−1, −1) and
ℓ(s) = #;

(iv) If (u, v) ∈ E, then m(u) < m(v).
(v) each path P = s, v1, ..., vh in G is associated with unique string str(P ) = ℓ(v1), ..., ℓ(vh),

which is a common subsequence of X and Y occurring at the pairs of (increasing)
positions m(v1), ..., m(vh).

Proof. Conditions (i) and (ii) are immediate by construction. As for (iii), at the beginning
node s is added to G with m(s) = (−1, −1) and ℓ(s) = #. We only add out-neighbors to
existing nodes, and thus we never add new sources. Furthermore, the absence of cycles
follows immediately from the same property in A.

Let us now recall what happens when node u is selected to be processed. We define the sets
of possible neighbors with respect to each character for all the corresponding nodes F (u) in A:
Nc = {y ∈ N+

A (x) | x ∈ F (u), ℓA(y) = c}. We then filter these nodes, removing the ones with
corresponding matches that come after some min(m(Nd)), yielding the final set Nc. For each
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non-empty Nc, we consider node wc of G (or add it if it does not exist) such that F (wc) = Nc,
m(wc) = min(m(Nc)), ℓ(wc) = c, and add edge (u, wc) to G. Let us consider a newly
added edge, (u, wc) ∈ E, for some wc as defined above, and let us show that m(u) < m(wc)
(property (iv)). It is clear that the edge corresponds to at least one (x, y) ∈ EA with x ∈ F (u)
and y ∈ F (v), by definition of Nc. Let (i, j) = m(wc) = min(m(F (wc))). By definition of
minimum, there exist y, y′ ∈ F (wc) such that m(y) has first coordinate i, and m(y′) has
second coordinate j. By construction, there exist x, x′ ∈ F (u) such that (x, y) and (x′, y′)
are in EA. This implies, by definition of A, that m(x) < m(y) and m(x′) < m(y′). Since
m(x) and m(x′) contribute to the minimum for m(u), we must have that the first coordinate
of m(u) is smaller than, or equal to, the one for m(x), which is strictly smaller than i, the
one for m(y). With a similar reasoning over x′, we show that the second coordinate of m(u)
is also strictly smaller than j. Therefore, m(u) < m(wc), as required.

Lastly, property (v) follows from the corresponding property 3 of approximate MCS
index A: since we are never adding edges which have no corresponding ones in A, any path
from s in G surely spells a subsequence of an st-path spelled by A, which are still common
subsequences. ◀

Note that by construction, Algorithm 1 adds out-neighbors to all nodes u that have label
ℓ(u) ̸= $, hence the sink of McDag has label $. Moreover, since A has an unique sink,
McDag must also have a unique sink, as for all nodes |N$| ≤ 1.

Theorem 1 together with the above observation implies that the graph output by
McConstruct satisfies conditions 1-3 of an approximate MCS index. Thus, the only
things missing for G to be an index for MCS(X, Y ) is that MCSs correspond to st-paths
and that st-paths correspond to MCSs. We first show that all MCSs are retained as st-paths
of G (condition 4 of an MCS index):

▶ Lemma 2. Each Z ∈ MCS(X, Y ) has a corresponding st-path in the resulting graph
G = (V, E, ℓ) at the end of the McConstruct procedure.

Proof. First, recall that each MCS occurred once as an st-path of A. During the construction
of G, we have a correspondence between edges (u, v) ∈ E of G, and edges (x, y) ∈ EA with
x ∈ F (u) and y ∈ F (v), which share the same respective labels. Since indeed they spell the
same string, we say that an st-path sA = x1, ..., xk = tA of A corresponds to an st-path
s = v1, ..., vk = t of G if xi ∈ F (vi) for all i.

When building the neighbors of some node u ∈ V during McConstruct, we may discard
(x, y) ∈ EA with x ∈ F (u), in the sense that y ̸∈ F (v) for any v ∈ N+

G (u). This happens, by
construction, if and only if y is removed when filtering set Nc, that is, if and only if there
exists a match m = min(m(Nd)) for some d ∈ Σ such that m < m(y). By property (iv), we
further have m(u) < m. Therefore, we have a pair of matching characters given by m which
occur strictly between the matches given by m(u), and the ones given by m(y).

Let us now assume by contradiction that this happens for an edge (x, y) which is traversed
by an MCS: let P = sA = x1, ..., xk = tA be such that str(P ) ∈ MCS(X, Y ), and let us
assume that h is the minimum index such that there is a path S = v1, . . . , vh corresponding
to prefix x1, . . . , xh of P and xh+1 ̸∈ F (w) for all w ∈ N+

G (vh). By the reasoning above,
there exists a match m such that m(vh) < m < m(xh+1). Let us now consider the following
matching: m(v1), ..., m(vh), m, m(xh+1), ..., m(xk). These matches are all strictly increasing
(by (v) of Theorem 1 for the prefix, and by property 3 of approximate MCS index A for
the suffix), and the consequent spelled subsequence has P as a proper subsequence, a
contradiction. ◀

WABI 2024



21:14 McDag: Indexing Maximal Common Subsequences in Practice

We now have that McDag is a deterministic approximate MCS index. To conclude the
proof of correctness, the only thing left to show is that no st-path corresponds to a common
subsequence that is not maximal. To this end, we give a characterization of the non-maximal
common subsequences given by st-paths in data structures satisfying some of the conditions
of McDag. Then, we show that during the construction of McDag, we eliminate these
types of structures.

▶ Definition 3 (Subsequence Bubble). Consider a DAG D where each node is labeled with a
symbol of Σ ∪ {#, $}, and let b, e1, e2, e be four distinct nodes of D.

A closed subsequence bubble is a pair of disjoint be-paths S, L such that str(S) is a
proper subsequence of str(L).
An open subsequence bubble is a pair of disjoint paths, where S is a be1-path, and L is a
be2-path, such that str(S) is a proper subsequence of str(L).

In both cases, S is called the short side of the bubble, and L the long side.

Subsequence bubbles are useful for giving a characterization of which st-paths correspond
to common subsequences that are not maximal, under certain hypotheses:

▶ Lemma 4. Let D be an approximate MCS index, and let P be an st-path of D.
str(P ) is a non-maximal common subsequence if and only if there exists a closed subse-

quence bubble B such that P traverses the short side S of B.

Proof. If an st-path P traverses S, then str(P ) cannot be maximal: let the endpoints of B

be b, e; the path given by the prefix of P up to b, then L, and then the suffix of P from e to
t defines a common subsequence which has str(P ) as proper subsequence.

Vice versa, let str(P ) be a common subsequence that is not maximal. Then, there
exists an st-path Q such that str(P ) is a proper subsequence of str(Q), since every MCS is
represented in the index. Let b ∈ V be the first node after which str(P ) and str(Q) differ;
it is well-defined since the first node of both paths is s. Symmetrically, it is well-defined
the first node after b which belongs to both paths, which we call e, since both paths end at
the same node t. Then, the subpaths P ′ of P and Q′ of Q between nodes b and e form a
subsequence bubble, with P traversing the short side: P ′ ̸= Q′ since they differ at the node
after b, and str(P ′) is a proper subsequence of str(Q′) since they start and end at the same
nodes, and thus positions in the strings, with at least one more symbol appearing in Q′. ◀

As mentioned before, McDag is an approximate MCS index, and thus satisfies the
hypotheses of Lemma 4. To conclude the proof of correctness of the construction procedure
McConstruct, it is sufficient to show that whenever we have an open bubble, we never
add a node and edges which “close it”.

The first step towards this is the subsequence mapping λ between the short side and the long
side of a subsequence bubble, to couple nodes that correspond to the same characters in the
subsequences. Given a subsequence bubble (open or closed), let S = b → v1 → v2 → ... → vh

be its short side and L = b → w1 → ... → wk be its long side. We will use the order
vi < vi+1 and wj < wj+1, which is well-defined by the corresponding relationship between
the associated matches, by (iv) of Theorem 1. We thereby define the injective mapping
λ : S → L such that λ(vi) = min{w ∈ L | ℓ(w) = ℓ(vi) and w > λ(vi−1)}, where λ(v0)
is improperly considered equal to b. In other words, it is a correspondence between the
characters of the short string and the ones of the longer string, indicating the subsequence
relationship.

We say that two matches m1, m2 are crossing if neither m1 ≤ m2 nor m2 ≤ m1. The
subsequence mapping has the following properties:
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▶ Lemma 5. Let v be a node along the short side S of a subsequence bubble of a McDag
(V, E). Then, if v ̸= λ(v), ∀ms ∈ m(F (v)) and ∀ml ∈ m(F (λ(v))), it holds that ml ≠ ms,
and that either ms ≤ ml or ms and ml are crossing. In particular, note that the first
condition is equivalent to F (v) ∩ F (λ(v)) = ∅.

Proof. Let the short side be S = b, v1, ..., vh, and the long side L = b, w1, ..., wk. We split
the proof according to whether v is the first node of the bubble, or not.

First, consider v = v1. By definition, v and λ(v) are labelled with the same symbol.
Therefore, by determinism of McDag, λ(v) ̸= w1. Therefore, for each z ∈ F (λ(v)) there
are nodes q ∈ F (b), y ∈ F (w1) such that m(q) < m(y) < m(z) =: ml. By construction z is
filtered, that is z ̸∈ F (u), for all nodes u such that (b, u) ∈ E, and in particular z ̸∈ F (v).
Thus, ml is different from any match in F (v). Let now x ∈ F (v), and ms = m(x). If we had
ml ≤ ms, then we would have m(q) < m(y) < ms, which again is impossible by construction.
Therefore, either ms crosses ml, or ms ≤ ml.

Let us now prove the inductive case. Assume that the thesis holds for all 1 ≤ j < i,
and let v = vi. Suppose by contradiction that there exist x ∈ F (vi) and z ∈ F (λ(vi)) such
that ml := m(z) ≤ m(x) =: ms. Since there are paths from vi−1 to vi, and from λ(vi−1) to
λ(vi), we have that there exist x′ ∈ F (vi−1), z′ ∈ F (λ(vi−1)) such that m(x′) < m(x) = ms

and m(z′) < m(z) = ml. By contradiction hypothesis, m(z′) < ml ≤ ms, and thus we have
m(x′), m(z′) < ms. This contradicts the rightmost property of A: indeed, consider the match
given by the maximum of the coordinates of m(x′), m(z′). This match is different from x′

by induction hypothesis, as it does not hold that m(z′) ≤ m(x′). Thus, the match follows
m(x′) and strictly precedes ms, and still this match does not correspond to the in-neighbor
for character ℓA(x′) of x, contradiction. ◀

▶ Theorem 6. The graph G = (V, E) obtained at the end of procedure McConstruct does
not have any closed bubbles.

Proof. By contradiction, let S = b, v1, ..., vh, e and L = b, w1, ..., wk, e be respectively the
short and long sides of a subsequence bubble in G. We show that the edge (vh, e) could not
have been added to G during construction. By contradiciton, assume that it happens. Let
λ(vh) = wi and let y ∈ F (e) and me := m(y) the match for y. Since we have edge (vh, e)
in G, by construction we have x ∈ F (vh) such that (x, y) ∈ EA. We have no occurrences
of ℓA(x) between m(x) and me. Furthermore, we have m(vh) ≤ m(x) by definition. Now,
consider node λ(vh) = wi, which has the same associated label ℓA(x). Since there is a path
from wi to e, we can choose node x′ ∈ F (wi) such that we have a path from x′ to y in A.
In particular, this implies that m(x′) < m(y) = me. By Lemma 5, we have x′ ̸= x, and we
further have either m(x′) ≥ m(x), or m(x′) crossing m(x). Both lead to a contradiction:
there would be an occurrence of character ℓA(x) = ℓA(x′) after one of the two endpoints of
m(x), but before the endpoints of me. ◀

5 Conclusions

In this paper, we presented a novel method for building a compact index of all maximal
common subsequences (MCS) of two strings, which is simple to understand and implement.
We empirically evaluated our method on synthetic and DNA sequences from public datasets,
demonstrating its effectiveness and efficiency.

Our method introduces a significant advancement in the indexing of MCS, providing a
practical solution for applications in bioinformatics, text processing, and other fields requiring
efficient sequence analysis. By focusing on a co-deterministic approach and utilizing filtering
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techniques, we have shown that it is possible to construct a compact and precise index that
can handle substantial datasets, utilizing only 4-7% more than the minimum required nodes.
It remains an open problem to prove whether McDag has always less than n2 nodes and
edges, independently of the alphabet size |Σ|, and give tight bounds on its construction cost.

In future research, we will investigate the relevance of the proposed approximate MCS
indices and how they compete with their exact counterparts. We aim to explore their
performance in various real-world applications, identifying scenarios where approximate
indices may offer substantial advantages in terms of speed and memory usage. To elicit
interest in subsequence-based methods, we plan to investigate the performance of MCSs
and how they compare with the k-mers methods commonly used in tasks such as sequence
alignment and sequence similarity estimation.

Moreover, we plan to extend the scalability of our approach. This includes pushing further
the length n of the analyzed sequences by employing advanced space-saving techniques,
leveraging parallelism, and utilizing SIMD (Single Instruction, Multiple Data) instructions.
Ultimately, our goal is to provide a robust and versatile tool for MCS indexing that balances
accuracy, efficiency, and practicality, contributing to the advancement of sequence analysis
methodologies and their applications.

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 59–78. IEEE, IEEE Computer Society, 2015. doi:10.1109/FOCS.
2015.14.

2 Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Proceedings
of the eleventh international conference on data engineering, pages 3–14. IEEE, 1995. doi:
10.1109/ICDE.1995.380415.

3 Ricardo A Baeza-Yates. Searching subsequences. Theoretical Computer Science, 78(2):363–376,
1991. doi:10.1016/0304-3975(91)90358-9.

4 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 79–97. IEEE, 2015. doi:10.1109/FOCS.
2015.15.

5 Laurent Bulteau, Mark Jones, Rolf Niedermeier, and Till Tantau. An FPT-algorithm for
longest common subsequence parameterized by the maximum number of deletions. In Hideo
Bannai and Jan Holub, editors, 33rd Annual Symposium on Combinatorial Pattern Matching,
CPM 2022, June 27-29, 2022, Prague, Czech Republic, volume 223 of LIPIcs, pages 6:1–6:11.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CPM.2022.6.

6 Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno. Enumeration of maximal
common subsequences between two strings. Algorithmica, 84(3):757–783, 2022. doi:10.1007/
s00453-021-00898-5.

7 Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno. A compact DAG for storing
and searching maximal common subsequences. In Satoru Iwata and Naonori Kakimura, editors,
34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-
6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 21:1–21:15. Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ISAAC.2023.21.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1016/0304-3975(91)90358-9
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.CPM.2022.6
https://doi.org/10.1007/s00453-021-00898-5
https://doi.org/10.1007/s00453-021-00898-5
https://doi.org/10.4230/LIPIcs.ISAAC.2023.21
https://doi.org/10.4230/LIPIcs.ISAAC.2023.21


G. Buzzega, A. Conte, R. Grossi, and G. Punzi 21:17

8 Maxime Crochemore, Borivoj Melichar, and Zdenek Tronícek. Directed acyclic subsequence
graph - overview. J. Discrete Algorithms, 1(3-4):255–280, 2003. doi:10.1016/S1570-8667(03)
00029-7.

9 Maxime Crochemore and Zdeněk Troníček. Directed acyclic subsequence graph for multiple
texts. Rapport IGM, pages 99–13, 1999.

10 Christoph Fischer, Stephan Koblmüller, Christian Gülly, Christian Schlötterer, Christian
Sturmbauer, and Gerhard G. Thallinger. Complete mitochondrial dna sequences of the
threadfin cichlid (petrochromis trewavasae) and the blunthead cichlid (tropheus moorii) and
patterns of mitochondrial genome evolution in cichlid fishes. PLOS ONE, 8(6):1–14, June
2013. doi:10.1371/journal.pone.0067048.

11 Campbell Fraser, Robert W. Irving, and Martin Middendorf. Maximal common subsequences
and minimal common supersequences. Inf. Comput., 124(2):145–153, 1996. doi:10.1006/
inco.1996.0011.

12 Ronald I. Greenberg. Bounds on the number of longest common subsequences. CoRR,
cs.DM/0301030, 2003. URL: http://arxiv.org/abs/cs/0301030.

13 Miyuji Hirota and Yoshifumi Sakai. Efficient algorithms for enumerating maximal common
subsequences of two strings. CoRR, abs/2307.10552, 2023. doi:10.48550/arXiv.2307.10552.

14 Miyuji Hirota and Yoshifumi Sakai. A fast algorithm for finding a maximal common subsequence
of multiple strings. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 106(9):1191–1194,
2023. doi:10.1587/transfun.2022dml0002.

15 W. J. Hsu and M. W. Du. Computing a longest common subsequence for a set of strings. BIT
Numerical Mathematics, 24(1):45–59, 1984. doi:10.1007/BF01934514.

16 Robert W Irving and Campbell B Fraser. Two algorithms for the longest common subsequence
of three (or more) strings. In Combinatorial Pattern Matching: Third Annual Symposium
Tucson, Arizona, USA, April 29–May 1, 1992 Proceedings 3, pages 214–229. Springer, 1992.
doi:10.1007/3-540-56024-6_18.

17 Elsa Loekito, James Bailey, and Jian Pei. A binary decision diagram based approach
for mining frequent subsequences. Knowl. Inf. Syst., 24(2):235–268, 2010. doi:10.1007/
s10115-009-0252-9.

18 Mi Lu and Hua Lin. Parallel algorithms for the longest common subsequence problem.
IEEE Transactions on Parallel and Distributed Systems, 5(8):835–848, 1994. doi:10.1109/71.
298210.

19 David Maier. The complexity of some problems on subsequences and supersequences. Journal
of the ACM (JACM), 25(2):322–336, 1978. doi:10.1145/322063.322075.

20 Borivoj Melichar and Tomás Polcar. The longest common subsequence problem A finite
automata approach. In Oscar H. Ibarra and Zhe Dang, editors, Implementation and Application
of Automata, 8th International Conference, CIAA 2003, Santa Barbara, California, USA, July
16-18, 2003, Proceedings, volume 2759 of Lecture Notes in Computer Science, pages 294–296.
Springer, Springer, 2003. doi:10.1007/3-540-45089-0_27.

21 Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In
Alfred E. Dunlop, editor, Proceedings of the 30th Design Automation Conference. Dallas,
Texas, USA, June 14-18, 1993, DAC ’93, pages 272–277, New York, NY, USA, 1993. ACM
Press. doi:10.1145/157485.164890.

22 Dominique Revuz. Minimisation of acyclic deterministic automata in linear time. Theoretical
Computer Science, 92(1):181–189, 1992. doi:10.1016/0304-3975(92)90142-3.

23 Yoshifumi Sakai. Maximal common subsequence algorithms. Theor. Comput. Sci., 793:132–139,
2019. doi:10.1016/j.tcs.2019.06.020.

24 Yuto Shida, Giulia Punzi, Yasuaki Kobayashi, Takeaki Uno, and Hiroki Arimura. Finding
diverse strings and longest common subsequences in a graph. CoRR, abs/2405.00131, 2024.
doi:10.48550/arXiv.2405.00131.

25 Temple F Smith, Michael S Waterman, et al. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197, 1981.

WABI 2024

https://doi.org/10.1016/S1570-8667(03)00029-7
https://doi.org/10.1016/S1570-8667(03)00029-7
https://doi.org/10.1371/journal.pone.0067048
https://doi.org/10.1006/inco.1996.0011
https://doi.org/10.1006/inco.1996.0011
http://arxiv.org/abs/cs/0301030
https://doi.org/10.48550/arXiv.2307.10552
https://doi.org/10.1587/transfun.2022dml0002
https://doi.org/10.1007/BF01934514
https://doi.org/10.1007/3-540-56024-6_18
https://doi.org/10.1007/s10115-009-0252-9
https://doi.org/10.1007/s10115-009-0252-9
https://doi.org/10.1109/71.298210
https://doi.org/10.1109/71.298210
https://doi.org/10.1145/322063.322075
https://doi.org/10.1007/3-540-45089-0_27
https://doi.org/10.1145/157485.164890
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1016/j.tcs.2019.06.020
https://doi.org/10.48550/arXiv.2405.00131


21:18 McDag: Indexing Maximal Common Subsequences in Practice

26 Zdenek Tronícek. Common subsequence automaton. In Jean-Marc Champarnaud and Denis
Maurel, editors, Implementation and Application of Automata, 7th International Conference,
CIAA 2002, Tours, France, July 3-5, 2002, Revised Papers, volume 2608 of Lecture Notes in
Computer Science, pages 270–275. Springer, Springer, 2002. doi:10.1007/3-540-44977-9_28.

27 Xiaomeng Wu, Zhipeng Cai, Xiu-Feng Wan, Tin Hoang, Randy Goebel, and Guohui Lin. Nu-
cleotide composition string selection in HIV-1 subtyping using whole genomes. Bioinformatics,
23(14):1744–1752, May 2007. doi:10.1093/bioinformatics/btm248.

https://doi.org/10.1007/3-540-44977-9_28
https://doi.org/10.1093/bioinformatics/btm248

	1 Introduction
	1.1 Contribution
	1.2 Related work

	2 The McDag Index
	2.1 Preliminaries
	2.2 Definition of index for MCS
	2.3 Operational definition of McDag

	3 Experimental Analysis
	3.1 Experimental setup
	3.2 Index size
	3.3 Filtering and construction time

	4 Correctness of McConstruct (Algorithm 1)
	5 Conclusions

