
Anchorage Accurately Assembles Anchor-Flanked
Synthetic Long Reads
Xiaofei Carl Zang
Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA

Xiang Li
Department of Computer Science and Engineering, The Pennsylvania State University, University
Park, PA, USA

Kyle Metcalfe
Element Biosciences, San Diego, CA, USA

Tuval Ben-Yehezkel
Element Biosciences, San Diego, CA, USA

Ryan Kelley1 #

Element Biosciences, San Diego, CA, USA

Mingfu Shao2 #

Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
Department of Computer Science and Engineering, The Pennsylvania State University, University
Park, PA, USA

Abstract
Modern sequencing technologies allow for the addition of short-sequence tags, known as anchors, to
both ends of a captured molecule. Anchors are useful in assembling the full-length sequence of a
captured molecule as they can be used to accurately determine the endpoints. One representative of
such anchor-enabled technology is LoopSeq Solo, a synthetic long read (SLR) sequencing protocol.
LoopSeq Solo also achieves ultra-high sequencing depth and high purity of short reads covering the
entire captured molecule. Despite the availability of many assembly methods, constructing full-length
sequence from these anchor-enabled, ultra-high coverage sequencing data remains challenging due
to the complexity of the underlying assembly graphs and the lack of specific algorithms leveraging
anchors. We present Anchorage, a novel assembler that performs anchor-guided assembly for ultra-
high-depth sequencing data. Anchorage starts with a kmer-based approach for precise estimation of
molecule lengths. It then formulates the assembly problem as finding an optimal path that connects
the two nodes determined by anchors in the underlying compact de Bruijn graph. The optimality is
defined as maximizing the weight of the smallest node while matching the estimated sequence length.
Anchorage uses a modified dynamic programming algorithm to efficiently find the optimal path.
Through both simulations and real data, we show that Anchorage outperforms existing assembly
methods, particularly in the presence of sequencing artifacts. Anchorage fills the gap in assembling
anchor-enabled data. We anticipate its broad use as anchor-enabled sequencing technologies
become prevalent. Anchorage is freely available at https://github.com/Shao-Group/anchorage;
the scripts and documents that can reproduce all experiments in this manuscript are available at
https://github.com/Shao-Group/anchorage-test.

2012 ACM Subject Classification Applied computing → Molecular sequence analysis

Keywords and phrases Genome assembly, de Bruijn graph, synthetic long reads, anchor-guided
assembly, LoopSeq

Digital Object Identifier 10.4230/LIPIcs.WABI.2024.22

1 correspondence: ryan.kelley@elembio.com
2 correspondence: mxs2589@psu.edu

© Xiaofei Carl Zang, Xiang Li, Kyle Metcalfe, Tuval Ben-Yehezkel, Ryan Kelley, and Mingfu Shao;
licensed under Creative Commons License CC-BY 4.0

24th International Workshop on Algorithms in Bioinformatics (WABI 2024).
Editors: Solon P. Pissis and Wing-Kin Sung; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ryan.kelley@elembio.com
mailto:mxs2589@psu.edu
https://github.com/Shao-Group/anchorage
https://github.com/Shao-Group/anchorage-test
https://doi.org/10.4230/LIPIcs.WABI.2024.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Anchorage

Supplementary Material Software: https://github.com/Shao-Group/anchorage
Software: https://github.com/Shao-Group/anchorage-test

Funding This work is supported by the US National Science Foundation (2019797 and 2145171 to
M.S.) and by the US National Institutes of Health (R01HG011065 to M.S.).

Acknowledgements We thank Qimin Zhang and Qian Shi for constructive discussions and suggestions
on this work.

1 Introduction

Sequence assembly has long been a critical task in computational biology, serving as a
foundational step in understanding genomic structures and functions. Assembly algorithms
have been driven by the rapid evolution of sequencing technologies. Early approaches focused
on Sanger sequencing data, requiring algorithms that could handle relatively low-throughput,
high-accuracy reads. The advent of next-generation sequencing (NGS) technologies introduced
a new era of high-throughput sequencing, producing short reads with low error rates that
necessitated the development of efficient and scalable assembly algorithms. Methods based
on de Bruijn graphs (dBGs) were developed, such as SPAdes series [1], Velvet [28], ABySS [3],
where assembling full-length sequences is formulated as finding a Eulerian path in the
dBG. Recently, third-generation sequencing technologies, such as those from PacBio and
Oxford Nanopore, have enabled the production of long reads, which, despite higher error
rates, provide crucial information for resolving complex genomic regions and structural
variants. This has led to the creation of overlap-layout-consensus assemblers, such as Flye
series [17], Canu [18], and hifiasm [6]. As sequencing technologies continue to advance,
assembly algorithms must continuously adapt, incorporating new strategies and algorithms
to take advantage of the new features in the data and to keep pace with the increasing data
complexity.

Recent advancements of synthetic long read (SLR) sequencing technologies are able
to label reads from the same molecule with the same barcode/index [13, 14, 25]. One
representative of such technology is LoopSeq Solo, where exactly one molecule is captured in
each plate well. LoopSeq Solo distributes molecular index to every read that evenly covers
the entire (long) molecule, whereafter accurate paired-end short reads can be sequenced by
any standard next-generation sequencing technology [25, 21]. LoopSeq Solo exhibits high
purity of their read clouds, meaning that almost all reads with the same index originated
from the same molecule [22]. Taking advantage of its high purity, we are able to assemble
each molecule separately instead of assembling a read cloud of multiple molecules. This
practice is especially beneficial when the sequenced molecules are similar to each other, such
as transcript isoforms and 16S sequences of a microbiome [21].

Modern sequencing technologies can also ligate short adapters with known sequences to
both ends of a captured molecule [12, 21, 23]. Those adapters often play functional roles in
sequencing, for example, the capture of target molecules, template switch and amplification
in PCR [23, 21, 25]. Part of LoopSeq’s adapters are called anchors, which are short synthetic
sequences of 12 base pairs and are dissimilar from the sequenced target. Anchors, and
likewise, adapters in other sequencing technologies, are extremely useful for assembly as
they mark the two endpoints of molecules [24, 23, 21]. We argue that, having the ends of
molecules accurately determined transforms the assembly problem into finding a path that
connects the ends in an assembly graph. This scheme is computationally easier than finding
either Euler path or Hamiltonian path. Previous studies, such as ref [29, 20, 16, 10], have

https://github.com/Shao-Group/anchorage
https://github.com/Shao-Group/anchorage-test

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:3

leveraged the edge of a similar idea in connecting both ends of a read pair in an assembly
graph and ref [24] showcased end-guided assembly of transcripts with genome reference, but
to our best knowledge, such formulation has not been explored in de novo assembly of a
full-length single molecule with high sequencing coverage. Sequencing depths are crucial
for accurate assembly with high-coverage generally preferred. LoopSeq Solo, for example,
can produce ultra-high sequencing depth, e.g., more than 1 million reads per molecule. The
whole target molecule is therefore sequenced in full coverage without a gap. However, high
depth may cause sequencing artifacts, which increases the complexity of the assembly graphs,
requiring robust assembly algorithms to fully utilize the high sequencing depth.

Even though assembly has been extensively studied and many assemblers have been
developed, none of them is specifically designed for anchor-equipped, ultra-high-depth
sequencing data. In this paper we present a new assembler, Anchorage, to fill the gap.
Anchorage features a new formulation for assembling anchor-enabled data, that to seek a
path in the underlying assembly graph that connects the start/end anchor nodes identified
by mapping anchor sequences. Leveraging the high sequencing depth, we seek the path
whose minimized node weight is maximized. We design an efficient dynamic programming
to find the optimal connecting path. Additionally, Anchorage includes a novel method to
estimate the length of the captured sequence. The dynamic programming is adapted to
incorporate the estimated length as a selection criterion. Through both simulations and real
biological data, we demonstrate that Anchorage outperforms existing assembly methods on
anchor-enabled, ultra-high-depth sequencing data. Notably, when sequencing artifacts are
present, Anchorage exhibits a significant performance advantage.

2 Methods

Anchorage takes reads with the same index, which are known to originate from the target
molecule, and the associated anchor sequences, which mark the ends of the target molecule,
as input, and assembles the full-length sequence of the target molecule. In its first module, it
estimates the length of the target molecule based on frequencies of kmers. Its second module
first constructs a compact de Bruijn graph (cdBG) from the raw reads and then searches
for candidate paths guided by the anchor sequences. Lastly, the candidate paths will be
examined against the range of the estimated target length so as to pick one path, forming
the assembled molecule.

2.1 Estimating target length
An accurate estimation of the target length is critical for determining the correct target
sequence. The LoopSeq data exhibits desirable properties, including high purity (i.e., nearly
all reads of a run come from the target molecule), high and evenly distributed coverage,
and a low error rate. Many previous studies proposed kmer-frequency-based methods to
accurately estimate the size of a genome [15, 26]. In this work, we proposed a new method
to estimate the target length accurately by leveraging these properties of LoopSeq.

Let M be the (unknown) length of the target molecule, N be the number of reads, and
R be the length of each read. If we assume that reads are uniformly sampled from the target
molecule, the target molecule does not contain repetitive kmers, and all reads are error-free,
then the frequency of each kmer can be calculated as

Fkmer = N × (R− k + 1)/M,

leading to

M = N × (R− k + 1)/Fkmer.

WABI 2024

22:4 Anchorage

In practice, N and R are known statistics. The choice of k should ensure that most
kmers in the target sequence are unique, i.e., k cannot be too small, while also making
most kmers error-free, i.e., k cannot be too large. In our method, we choose k = 33 as a
default value, which balances well these two considerations for SLR sequencing data. The
accurate estimation of M now depends on a “good” estimation of kmer frequency Fkmer.
The distribution of kmer frequency can be calculated from the sequencing reads. We found
that using the average, mode, or median of the frequencies is ineffective, as these statistics
are prone to disturbances from sequencing errors and repetitive kmers.

We propose using the N50 kmer frequency, defined as the frequency for which the collection
of all kmers of that frequency or higher accounts for at least 50% of the occurrences of all
kmers. This concept is similar to the N50 of contig lengths, which is known to be more
robust against long-tail distributions or local maxima in the frequencies. Although N50 is
commonly used as a measure in evaluating genome assembly methods, using the N50 kmer
frequency to estimate the target length is a novel approach. By substituting the unknown
variable Fkmer with its estimator, N50 kmer frequency, denoted as FN50k, the length of the
target molecule M can be easily computed by M = N × (R− k + 1)/FN50k. Anchorage also
sets upper and lower bounds for the target length (default: 50% and 200% of the estimated
target length M). These bounds are later used to choose the best full-length sequence.

2.2 Anchor-guided assembly

In addition to cell barcodes and unique molecular index (UMI), modern sequencing technolo-
gies can ligate additional known short sequences to both ends of a captured molecule. These
short sequences play important roles, such as in template switching and preamplification [23],
but also serve as indicators of the endpoints of the target molecule [21, 24]. LoopSeq employs
similar short sequences, known as “anchors” [21]. The sequences of the start/end anchors
can be mapped to the underlying assembly graph (i.e., a compacted de Bruijn graph in
Anchorage) to locate the start/end anchor nodes. The task of assembling the full-length
molecule now becomes finding a path from the start anchor node to the end anchor node in
the assembly graph. We refer to this task as anchor-guided assembly. Note that the search
space of anchor-guided assembly is much smaller than searching for the best Eulerian path
or Hamiltonian path in the classic assembly formulation, thanks to the critical information
provided by the anchors.

We use compacted de Bruijn graph (cdBG) as the assembly graph to organize reads
originating from a target molecule (i.e., reads with the same index). In the implementation
of Anchorage, SPAdes [1] is called to construct the de Bruijn graph (dBG). In a node-centric
dBG, a node represents a distinct kmer and its weight is equal to the number of appearance
in the reads. The cdBG is constructed by concatenating each simple path of the dBG as a
single node (called a unitig). Each node v ∈ V has a weight w(v) calculated as the coverage
of the unitig v.

Given a weighted cdBG G = (V, E, w) and the anchor sequences, Anchorage starts with
identifying start/end anchor nodes by aligning the anchor sequences to the nodes of G. Note
that neither the anchor sequences nor the unitigs may be error-free. To be able to tolerate
such errors, Anchorage employs an iterative approach: it first locates nodes that can exactly
match the anchor sequences (i.e., assuming no errors); if such start/end anchor nodes can
be identified and “appropriate” path (i.e., full-length molecule) can be assembled, then the
algorithm terminates; otherwise Anchorage increments the tolerance of edit distance by 1 and
repeats the procedure, until a user-defined maximum edit distance is reached (default: 2).

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:5

Since anchor sequences are usually much shorter than the kmer size of a dBG (for instance,
anchors of LoopSeq Solo have 12 base pairs), tolerating a maximal edit distance of 2 should
be sufficient to locate anchors.

Note also that multiple start/end anchor nodes might be identified in each iteration, due
to repeats or sequencing errors/artifacts. Anchorage will consider each pair of start/end
anchor nodes and seek an optimal path that connects them in the cdBG. The optimal
connecting paths will also be scored, and the one with the maximum score (across all pairs)
will be selected and the corresponding full-length sequence will be reported. In case of
multiple connecting paths have the same maximum score, the estimated sequence length will
be used to break the tie by picking the one whose length is the closest to the estimation.
The framework of Anchorage is given as the pseudo-code in Algorithm 1; the algorithm for
finding the optimal connecting path together with its score is described in the next section.

Algorithm 1 Anchor-guided Assembly.

1: Input: weighted cdBG G = (V, E, w), start/end anchor sequences as and at, estimated
sequence length M

2: Output: full-length sequence of the target molecule
3: for e = 0→ max_tolerated_edit_distance do
4: identify S ⊆ V where each s ∈ S contains a substring s′ such that d(s′, as) ≤ e

5: identify T ⊆ V where each t ∈ T contains a substring t′ such that d(t′, at) ≤ e

6: let p∗ be the best path (so far) with score z∗ = 0 and length L∗ = 0
7: for each pair in {(s, t) | s ∈ S, t ∈ T} do
8: (p, z, L)← connect(G, s, t)
9: if z > z∗ or (z = z∗ and |L−M | < |L∗ −M |) then

10: p∗ ← p, z∗ ← z, L∗ ← L

11: end if
12: end for
13: if p∗ is not empty (i.e., z∗ > 0 or L∗ > 0) then
14: read out the sequence following p∗ and return it (the algorithm terminates)
15: end if
16: end for

2.3 Finding optimal connecting path
Let G, s, and t be the given cdBG and the start/end anchor nodes. We aim to find the
“optimal” path in G from s to t. We define the optimal path first. Note that the “true” path
corresponds to the target sequence, which must be covered by most reads. We therefore
define the optimal connecting path to be the one whose smallest node weight is maximized.
When there exist two paths whose smallest (node) weight is equally maximized, we compare
their second smallest weight, and so on. Formally, let p1 and p2 be two paths in G from s to
t. Let wi

1 and wi
2 be the ith smallest weight in path p1 and p2, respectively. We then define

p1 to be better than p2, if there exists an integer k such that wi
1 = wi

2 for all 1 ≤ i < k,
and wk

1 > wk
2 . We argue that this definition is suitable for anchor-guided assembly, as

it selects the path with the strongest support from reads, while also automatically ruling
out false paths due to sequencing errors which often have low coverage. We note that a
similar formulation has been used in the context of reconstructing the entire fragment (or its
alignment) of paired-end RNA-seq reads and in transcript assembly [29, 27, 20].

WABI 2024

22:6 Anchorage

The optimal connecting path can be calculated efficiently using a dynamic programming
algorithm, as this definition satisfies the optimal substructure property. Specifically, we define
d(l, v) as the maximized smallest weight from s to node v using up to l edges, v ∈ V . We have
this recurrence: d(l, v) = max{d(l − 1, v), max(u,v)∈E(min(d(l − 1, u), w(v))}. However, the
length of this single optimal sequence may not fall in the reasonable range [Ml, Mu] (default:
Ml = 0.5M, Mu = 2M]). To take into account the estimated sequence length, Anchorage
calculates the best c optimal paths, where c is a user-defined parameter (default: c = 30).
These top c optimal paths can be calculated by extending the above dynamic programming
algorithm. Specifically, we replace d(l, v) with a priority queue pq(l, v) of size up to c, storing
the maximized smallest weight of the best c paths from s to v using at most l edges. To
update, we consider each in-edge (u, v) ∈ E of v, and examine each element z stored in
pq(l − 1, u). Let z′ = min{z, w(v)}. If pq(l, v) is full and z′ > pq(l, v).smallest-key(), which
means the examined path to u expanded by (u, v) leads to a better path than the worst one
stored in pq(l, v), we update it by doing pq(l, v).pop() and pq(l, v).insert(z′); if pq(l, v) is not
full, we simply do pq(l, v).insert(z′). This operation takes Θ(c · log c) time, Hence, updating
all in-edges of all vertices takes Θ(c · log c · |E|) time.

Note that if c = 1 then l can be limited to |V | − 1, as the single optimal path must not
contain cycles. However, when c > 1, paths might contain cycles. Hence, we have to consider
l from 1 all the way to |E|, which slows down the algorithm. We can leverage the estimated
upper bound Mu to speed up. Once a path reaches the upper bound, we can exclude it
from expanding. Specifically, an element in a priority queue is now a pair (z, L) where z

remains the smallest weight and L stores the corresponding sequence length. The above
updating procedure will be executed only if L + L(u, v) ≤ Mu, where L(u, v) denotes the
length increased by expanding edge (u, v). Doing so will accelerate the termination, as after
certain rounds, which is likely much smaller than |E|, the optimal c paths will not get better,
and then the algorithm will (safely) terminate (lines 20–22). The runtime of this algorithm
is Θ(c · log c · |E| · l∗), where l∗ is the number of rounds executed, l∗ ≤ |E|. The space taken
by this algorithm is O(c · l∗ · |V |) which is the size of the dynamic programming table. The
dynamic programming algorithm is given as the pseudo-code in Algorithm 2.

3 Results

The anchor-enabled, ultra-high coverage sequencing technology represented by LoopSeq Solo
offers an unprecedented opportunity for accurately detecting full-length captured molecules.
The high purity of reads allows for assembling each molecule separately, the anchors enable
precise determination of endpoints and the high coverage reveals the true molecule as the most
abundant path in the assembly graph. All of these superior properties have been leveraged
by and modeled in Anchorage. However, these advantages come with some costs. Sequencing
artifacts may occur, resulting in more complicated assembly graphs. In Section 3.1, we
investigate the sequencing artifacts on 7 real datasets produced by LoopSeq Solo, proving
their presence; on the same dataset, we show that the N50 kmer frequency calculated in
Section 2.1 gives a more accurate estimation than other methods. We then compare the
assembly accuracy of Anchorage with the state-of-the-art assembler SPAdes and its variant
on these real data in Section 3.1, on simulated data without artifacts in Section 3.3, and on
simulated data with two types of artifacts in Section 3.4 and 3.5.

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:7

Algorithm 2 Connect a pair of start/end anchor nodes.

1: Input: graph G = (V, E, w), start/end anchor nodes s and t, length range [Ml, Mu]
2: Output: an optimal connecting path p from s to t in G with score z and length L

3: for l = 1→ |E| do
4: for each node v ∈ V do
5: for each edge (u, v) ∈ E do
6: for each element (z, L) ∈ pq(l − 1, u) do
7: if L + L(u, v) > Mu then
8: continue
9: end if

10: z′ ← min{z, w(v)}
11: if pq(l, v) is not full then
12: pq(l, v).insert(z′, L + L(u, v))
13: else if z′ > pq(l, v).smallest-key() then
14: pq(l, v).pop())
15: pq(l, v).insert(z′, L + L(u, v))
16: end if
17: end for
18: end for
19: end for
20: if none of the priority queues gets updated then
21: let l∗ = l and break
22: end if
23: end for
24: filter out elements (z, L) in pq(l∗, t) with L < Ml

25: find the element (z, L) in pq(l∗, t) with maximized z

26: trace back for this element to get the optimal path p from s to t

27: return (p, z, L)

3.1 Investigation of sequencing artifacts and depths

To investigate the presence of artifacts, we retrieved LoopSeq Solo sequencing reads of seven
controlled 16S molecules whose ground truth nucleotide sequences are known (Table 1).
Bacterial genomic DNA materials were retrieved from ATCC (catalog number 19718D-5,
47085D-5, BAA-3050, 27774D-5). Ground truth 16S DNA sequences were downloaded from
the ATCC genome portal [2]. We first performed quality control using Trimmomatic [4].
Then, reads with the same molecular index were aggregated and their index sequences were
trimmed. Afterward, we aligned all the reads to the ground truth sequences using STAR [7],
enabling chimera detection with –chimSegmentMin 20. Chimeric reads were analyzed to
reveal sequencing artifacts. See the results in Table 1.

We observed 239 to 573 uniquely mapped read pairs supporting back-splicing junctions
(BSJs) of 100bp or longer (#BSJs in Table 1). A BSJ is a special type of junction where
the donor site is downstream of its acceptor site, opposite to ordinary forward splicing
junctions. The BSJs indicate read-through events in the circular amplicon sequencing used by
LoopSeq [25], resulting in read-through reads that span the end and the start of the captured
molecule. It is noteworthy that the reported reads with BSJs may greatly underestimate the
number of read-through reads because Trimmomatic was applied, which trimmed away low-
quality regions and read-through reads. Additionally, only properly aligned read pairs, that

WABI 2024

22:8 Anchorage

were reported by the STAR aligner in the SAM format, are included. STAR reported 7.63%
to 25.28% unaligned reads, which we believe includes a significant portion of read-through
reads as well.

We also observed that approximately 1% of the read pairs from each control formed
chimeras between two 16S molecule species (#IMJs in Table 1). Furthermore, six of the
seven controls have at least one forward splice junction supported by at least 1,000 uniquely
mapped reads. These splice junctions indicate potential artifact molecules. One possible
reason for the high IMJ rate is that recombination is more likely to happen between highly
similar molecules, e.g. 16S sequences, and the recombinant was formed and amplified in the
PCR cycles.

The observed sequencing artifacts significantly increase the complexity of the underlying
assembly graph. For example, artifact forward splice junctions result in erroneous edges,
inter-molecular chimeras can create both erroneous edges and additional anchor nodes, and
intra-molecular back-splice junctions may introduce cycles in the graph. These factors must
be considered for a comprehensive comparison of different methods. Therefore, we performed
the evaluation on simulated data both with and without the introduction of sequencing
artifacts (Sections 3.3, 3.4, and 3.5).

As illustrated in Section 2.1, an accurate estimation of target length is reliant on the
accurate estimation of a “good” kmer frequency Fkmer. We compared N50 kmer frequency
with other estimators of Fkmer, such as the average, median, and mode of kmer frequen-
cies (Table 2). Notably, some estimators were computed based on the frequencies of those
kmers whose frequency is higher than 10 or 100, respectively, to rule out fortuitous kmers
due to random sequencing errors. Actually, the median of all kmer frequencies is always 1
for all seven controls. Also, estimators based on kmers with a frequency higher than 10 are
extremely unreliable and always much worse than those based on kmers with a frequency
higher than 100. The N50 kmer frequency is the best estimator of Fkmer in six controls and
its difference from the ground truth is less than or equal to 10% in five controls, marking
its superiority and reliability in application. Even though the mode of frequencies of kmers
whose frequency is higher than 100 is the best in the fifth control, the N50 kmer frequency
has a very close performance. Nevertheless, it is intriguing and arbitrary to determine
under which frequency (in this example, 100) kmers are unreliable. The differences between
estimations and ground truths are relatively large in the second and fourth control, this
might indicate those two samples have more sequencing errors and artifacts, while N50 kmer
frequency is a significantly better and more robust estimator than the other options.

Table 1 Information of controlled LoopSeq Solo sequencing of seven 16S molecules.
seq length: length of 16S sequence in nucleotides; #read pairs: number of read pairs after quality
control; #IMJs: number of inter-molecular junctions; #BSJs: number of back splice junctions;
%unaligned: percentage of unaligned reads in all quality-controlled paired-end reads.

No. Species seq length #read pairs #IMJs #BSJs %unaligned

1 D. desulfuricans 1546 1896118 20383 519 8.44
2 N. europaea 1534 1955927 19310 534 25.28
3 E. coli 1538 1956516 20523 521 7.65
4 N. europaea 1534 1841484 16128 515 20.44
5 P. aeruginosa 1531 1761401 19284 569 8.09
6 P. aeruginosa 1531 1610901 16759 494 7.83
7 E. coli 1538 717168 7773 235 7.63

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:9

3.2 Assembly of real biological samples by LoopSeq Solo
We evaluate the assembly accuracy on the same dataset with seven LoopSeq Solo samples
studied in Section 3.1. Reads with the same index were grouped together and piped to each
algorithm. Each control has 0.7M–1.9M paired-end reads (Table 1). However, assembling a
∼1500bp sequence (length of the known ground-truth molecule) with more than half a million
reads is unnecessary, as the tremendously excessive reads (approximately 112,000-304,000×
depth) do not contribute new information but errors and artifacts. To fairly reduce time
and computational complexity, we sampled 10,000 reads for each control and performed
the experiments. This is approximately equal to 1,600× depth which is already ultra-high
compared to an ordinary sequence assembly and fits the purpose of this study.

We compared Anchorage with SPAdes [1] and MEGAHIT [19]. Both tools are very
popular in assembling single-cell sequencing and metagenomic sequencing reads. Besides,
SPAdes is the only assembler that was previously used by and integrated in the LoopSeq
analysis pipeline [5, 21]. Since the ultra-high sequencing depth often brings detrimental
artifacts to other assembly algorithms (discussed below), we also ran SPAdes and MEGAHIT
with randomly down-sampled 500 reads. It is often possible that a state-of-the-art algorithm
outputs multiple contigs for one instance. We selected the best contig with the following
preference: contigs with both start and end anchors present, contigs with either anchor
present, contigs without anchors present, and then trimmed extra sequences outside anchors.
If multiple contigs have the same maximal number of anchors identified, the longest contig is
selected as the output. Those selection criteria for SPAdes and MEGAHIT follow the current
published LoopSeq pipeline [21]. We used QUAST [11] to evaluate the seven assemblies of
each algorithm against their respective known ground-truth sequence. The minimal contig
length was set to 200 bp. Four metrics are reported (see below). Experimental details such
as the parameters used can be found in online code repositories (Section 5). The comparison
is given in Figure 1.

QUAST aligns the assembled sequence to the reference (i.e., ground-truth sequence). The
first metric is genome fraction percentage (GFP), defined as the percentage of bases in the
reference that are aligned by the assembly. This metric reflects the sensitivity of assembly
methods. Anchorage achieved a very high GFP for all assemblies, averaging 97.5%. This
is 21% and 39% higher than that of the second and third-best methods, MEGAHIT with

Table 2 Comparison of different estimators for a “good” kmer frequency. Real: real
kmer frequency; N50: N50 kmer frequency; Avg: average; Med: median; kmer freq > 10: computation
based on kmers whose frequency is at least 10; kmer freq > 100: computation based on kmers whose
frequency is at least 100. Bold estimator is the best in each experiment.

No. Real N50 Avg kmer freq >10 kmer freq >100

Avg Med Mode Avg Med Mode

1 1146 1050 21 199 16 12 961 1024 1255
2 1137 780 20 179 17 10 579 639 263
3 1127 1031 23 213 16 10 889 983 1028
4 1134 776 21 161 16 10 563 551 102
5 1131 1035 22 211 16 10 909 1001 1185
6 1128 1016 23 202 15 10 906 987 959
7 1148 1040 27 223 16 10 893 986 1288

WABI 2024

22:10 Anchorage

down-sampled 500 reads and SPAdes with down-sampled 500 reads. Notably, the GFP of
SPAdes with all reads is less than half of that of its down-sampled counterpart and the same
for MEGAHIT. The second metric is largest alignment ratio (LAR), defined as the ratio of
the largest continuous alignment in the assembly, reflecting the precision of different assembly
methods. Anchorage achieved a near-perfect LAR for all assembled sequences, 17.8% and
39.4% higher than that of MEGAHIT with down-sampling and SPAdes with down-sampling.
Similar to the GFP value, the LARs of SPAdes/MEGAHIT with all reads are less than half
of that of their 500-read counterpart. Nevertheless, SPAdes with all reads only assembled
two contigs that passed QUAST’s quality filter and properly aligned to the reference. Whilst
MEGAHIT with all reads assembled three contigs passing the filter, only one of them has
both high GFP and LAR. This might indicate that sequencing artifacts are detrimental to
Spades and MEGAHIT with all reads, but down-sampling could help in removing those
damages. It is noteworthy that the 2 (resp. 5) assembled sequences by SPAdes with all reads
(resp. SPAdes with down-sampling) are very accurate while the other 5 (resp. 2) assembled
sequences almost did not align to the reference at all (blue dots in Figure 1).

QUAST also reported the average number of mismatches per 1000bp and the average
number of indels per 100kbp. The rate of mismatches of Anchorage and SPAdes with all
reads are very low and no indels were reported in them. On the other hand, MEGAHIT
with all reads has the highest mismatch rate and indel rate, at least 10 times higher than
the others. QUAST did not report misassemblies on any of the assemblies.

The presence of anchors in the assembled sequence is a positive signal suggesting an
assembly is full-length. LoopSeq pipeline, for example, considers an assembled sequence as
full-length if it contains both anchors [21]. In this experiment, Anchorage identified both
anchors for all 7 sequences (not a surprise, as Anchorage directly models anchors), while the
second best method, MEGAHIT with 500 reads, missed the end anchor for one control and
missed both anchors for another control. However, the presence of anchors does not always
indicate completeness. For example, SPAdes with all reads reported both anchors for 6 of its
assemblies but only two of them aligned to their respective ground truth. This observation
indicates that even though anchors provide many benefits in an accurate assembly, a sole
reliance on anchors to determine the completeness of an assembly is inaccurate.

Anchorage had a reasonable time and memory usage on those real biological datasets,
although its running time is the longest among all tools. Anchorage took 77.94s/205.8MB
to assemble all seven contigs. SPAdes took 54.67s/205.7MB to assemble with all reads and
42.98s/187Mb to down-sample and assemble with 500 reads. MEGAHIT took 2.00s/208MB
to assemble with all reads and 3.37s/205MB to down-sample and assemble with 500 reads.
Random down-sampling of reads was performed using Python scripts from the LoopSeq
pipeline and it was counted in the total time. All experiments were performed on a 2020-model
iMac with 8 Intel i7 Cores and 64 GB Memory.

3.3 Assembly of simulated SLR data without artifacts
We then evaluated Anchorage and compared it with other methods on anchor-enabled
SLR data with simulations. The ground-truth, full-length sequences were retrieved from
NCBI, comprising of 23 16S genes of length ranging from 547bp to 2089bp (see detailed
description in Table 3). Subsequently, two 12bp anchors (start: CGCAGAGTACAT, end:
TTGGAGTTAAAG), which are the same as used in real LoopSeq Solo sequencing, are
concatenated to respectively the start and end of each sequence. Afterward, Polyester [9]
was used to simulate 110bp-long paired-end reads with a 0.5% error rate. We simulated a
series of sequencing depths of 50×, 100×, 500×, 3000× from ordinary depth to ultra-high

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:11

27
.7
6%

80
.6
8%

34
.3
8%

69
.5
7%

97
.5
4%

28
.3
1%

84
.7
3%

28
.9
1%

70
.9
4%

99
.9
6%

0.
33

1.
14

13
.4
4

0.
93

0.
48

27
.8
7

40
7.
61

Figure 1 Comparison of assembly accuracy on real LoopSeq Solo sequencing datasets.
Anchorage, SPAdes, and MEGAHIT used all reads; SPAdes500 and MEGAHIT500 used 500 reads
via random downsampling. The height of each bar represents the average value of each metric and
the average value is labeled on each bar. Each dot represents the value of one assembly.

depth. Reads from the same 16S gene are grouped together and piped to downstream
assemblers, so that the grouped reads can be considered as index-aggregated LoopSeq Solo
reads after quality control and trimming. Each method assembles each of the 23 samples
into a full-length sequence using the method described in Section 3.2. The assemblies were
then evaluated using QUAST [11] against their respective ground truths.

Overall, when no sequencing artifacts are present and the sequencing depths are high, all
methods produced accurate assemblies. When depth is higher or equal to 500×, all methods
achieved 95% or higher averaged GFP (over the 23 instances). SPAdes and MEGAHIT
performed the best when using all reads, but they were closely followed by Anchorage.
Anchorage has a lower GFP when the sequencing depth is lower than 100×. This could be
because Anchorage models the minimal weight of nodes in a path that is less robust under
low depths. The average GFP gradually increases as the sequencing depth increases for both
Anchorage and SPAdes with all reads. However, this trend is not observed for methods with
down-sampled 500 reads, likely due to missing or decreased coverage in some regions caused
by down-sampling. As for LAR metrics, We can see that all methods achieved nearly perfect
precision. Anchorage and two MEGAHIT methods reported zero mismatches and indels
across all sequencing depths.

3.4 Assembly of simulated SLR data with read-throughs

The aforementioned read-through scenarios are more prevalent in high sequencing depth. To
evaluate the impact of such a scenario on the assembly methods, we simulated reads with
read-throughs. The simulation was done by concatenating an “anchored” 16S gene to itself
5 times so that reads may span from the end of the sequence to its start, stimulating the
“read-though” events. The other simulation settings are the same as in Section 3.3.

WABI 2024

22:12 Anchorage

Table 3 Information of 16S sequenced used in simulation. All species and 16S sequences
were selected by searching “16S RefSeq Nucleotide sequence records” (keyword “33175[BioProject]
OR 33317[BioProject]”) on NCBI.

Accession # seq length Species Gene name

NR_181961.1 547 M. ovipneumoniae ATCC 29419 strain Y98 16S ribosomal RNA
NR_181928.1 566 X. bonasiae strain FX4 16S ribosomal RNA
NR_178827.1 640 G. deserti strain I12A-02624 16S ribosomal RNA
NR_178392.1 694 E, entomophila strain BR193 16S ribosomal RNA
NR_178393.1 696 E. nematocerorum strain BR208 16S ribosomal RNA
NR_181953.1 740 A. tiandongensis strain 3.1105 16S ribosomal RNA
NR_178227.1 816 B. bavariensis PBi 16S ribosomal RNA
NR_178832.1 830 X. rhizosphaerae strain MH17 16S ribosomal RNA
NR_179969.1 909 P. piersonii strain IIIF1SW-P2 16S ribosomal RNA
NR_180430.1 959 S. miscanthi strain AK13 16S ribosomal RNA
NR_181766.1 1416 G. fulvus strain con5 16S ribosomal RNA
NR_181783.1 1418 P. piersonii strain NRRL B-65522 16S ribosomal RNA
NR_181751.1 1427 R. ruber strain JC435 16S ribosomal RNA
NR_181947.1 1441 G. pseudamarae strain CON9 16S ribosomal RNA
NR_181997.1 1470 N. flavus strain IFO 14396 16S ribosomal RNA
NR_181962.1 1488 B. bavariensis PBi 16S ribosomal RNA
NR_181850.1 1526 S. parmotrematis strain Ptm05 16S ribosomal RNA
NR_181950.1 1538 E. nematocerorum strain BR208 16S ribosomal RNA
NR_181949.1 1538 E. entomophila strain BR193 16S ribosomal RNA
NR_181964.1 1555 D. oleivorans Hxd3 16S ribosomal RNA
NG_044969.1 2089 T. shockii strain WB1 16S ribosomal RNA gene
NG_042068.1 2197 A. pernix culture NBRC:100138 16S ribosomal RNA gene
NG_046384.1 3600 P. ferrireducens strain 1860 16S ribosomal RNA gene

The results were demonstrated in Figure 3. Compared to the simulation results without
read-throughs (Figure 2), the accuracy of Anchorage was minimally impacted: it achieved
a greater than 95% GFP which is better than all other methods on all sequencing depths,
and nearly perfect LAR for all sequencing depths. On the contrary, the GFPs of the other
methods were much reduced in the presence of read-throughs. The numbers of two MEGAHIT
methods and SPAdes with 500 reads dropped to approximately 77-89% from >96% under
various depths. Furthermore, SPAdes with all reads was impacted the most. Its GFP dropped
to 41% from 99% under 3000× depths. Whilst the LARs of all algorithms are almost equally
satisfying with being around 99%, SPAdes using all reads had its PAR dropped from 100% to
73.5% under 3000× depths. Those observations confirmed that Anchorage is more robust to
sequencing artifacts such as read-throughs, thanks to its design that leverages the anchors to
accurately determine the sequence ends. Anchorage and MEGAHIT reported no mismatches
in this experiment, but both of the two MEGAHIT methods’ indel rate is very high around
18-63 indels per 100kbp. QUAST reported zero misassemblies for all assemblies.

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:13

97
.7
7%

92
.0
4%

96
.9
0%

83
.0
6%

99
.9
6%

98
.2
0%

99
.9
7%

98
.2
0%

97
.7
7%

96
.9
0%

95
.3
5%

96
.9
1%

97
.4
7%

98
.6
3%

98
.2
5%

99
.9
7%

97
.4
6%

98
.6
3%

97
.1
1%

96
.4
8%

99
.6
5%

99
.7
8%

99
.4
1%

95
.4
9%

99
.9
7%

99
.8
1%

10
0.
00

%

99
.8
6%

99
.6
5%

99
.4
1%

99
.6
4%

99
.6
4%

98
.8
8%

99
.0
3%

98
.9
0%

98
.6
6%

98
.9
1%

99
.0
3%

98
.7
2%

98
.7
8%

0.
09

0.
01

0.
09

2.
94

2.
94

2.
94

Figure 2 Comparison of assembly accuracy on simulated reads without artifacts.
Anchorage, SPAdes, and MEGAHIT used all reads; SPAdes500 and MEGAHIT500 used 500 reads
via random downsampling. The height of each bar represents the average value of each metric and
the average value is labeled on each bar. The whiskers in the GFP and LAR panels extend from the
25th to 75th percentile of values in each metric.

81
.0
4%

98
.2
0%

82
.0
8%

95
.2
4%

74
.1
3%

95
.2
4%

40
.9
3%

98
.2
0%

81
.2
5%

85
.1
4%

84
.1
5%

77
.1
9%

82
.9
9%

86
.2
4%

88
.3
5%

86
.4
6%

93
.0
5%

93
.8
6%

79
.7
1%

89
.5
8%

99
.9
3%

99
.9
9%

99
.7
4%

99
.9
0%

99
.9
8%

99
.9
0%

73
.5
2%99
.9
9%

10
0.
00

%
99

.7
4%

99
.8
7%

10
0.
00

%

99
.2
8%

98
.3
2%

99
.2
6%

98
.6
4%

97
.9
1%

97
.6
8%

99
.2
0%

98
.3
5%

2.
7410

.6
5

3.
49

3.
49

24
.6
1

10
.6
5

4.
31

26
.4
3

49
.5
7

23
.7
9

36
.2
9

41
.7
2

63
.0
0

18
.4
1 42

.3
2

0.
04

0.
31

0.
03

Figure 3 Comparison of assembly accuracy on simulated reads with read-throughs.
Anchorage, SPAdes, and MEGAHIT used all reads; SPAdes500 and MEGAHIT500 used 500 reads
via random downsampling. The height of each bar represents the average value of each metric and
the average value is labeled on each bar. The whiskers in the GFP and LAR panels extend from the
25th to 75th percentile of values in each metric.

WABI 2024

22:14 Anchorage

2.
66

0.
05

0.
02

0.
04

0.
03

73
.0
7%

97
.7
3%

71
.6
1%

93
.3
0%

64
.2
0%

95
.1
9%

32
.3
2%

96
.7
7%

75
.4
4%

69
.1
5%

75
.4
5%

72
.0
3%

72
.5
5%

74
.6
3%

74
.0
7%

74
.7
2%

73
.3
8%

72
.7
6%

76
.3
1%

75
.8
8%

99
.9
7%

97
.9
7%

10
0.
00

%

97
.6
3%

99
.9
8%

98
.0
8%

51
.8
2%

97
.7
5%

99
.9
9%

10
0.
00

%

99
.8
8%

99
.9
6%

98
.5
8%

98
.9
1%

98
.9
5%

99
.0
6%

98
.6
2%

98
.8
5%

98
.1
1%

98
.4
9%

39
.9
6

46
.5
4

44
.6
4

39
.9
8

45
.9
3

40
.2
0

44
.0
5

48
.7
3

22
.1
6

3.
77

Figure 4 Comparison of assembly accuracy on simulated reads with repetitive se-
quences. Anchorage, SPAdes, and MEGAHIT used all reads; SPAdes500 and MEGAHIT500 used
500 reads via random downsampling. The height of each bar represents the average value of each
metric and the average value is labeled on each bar. The whiskers in the GFP and LAR panels
extend from the 25th to 75th percentile of values in each metric.

3.5 Assembly of simulated SLR data with repetitive regions

Repeats in the molecule pose a major challenge to assembly methods, as they cause tangled
assembly graphs while making the length of the target molecule much harder to estimate.
We simulated anchor-enabled SLR data with repetitive regions and read-throughs to test its
impact on the assembly methods. For each of the 16S gene used in Section 3.3, we randomly
copied 10% of each sequence and inserted it back into themselves at a random location. The
other simulation parameters are again the same as previously described in Section 3.3. All
simulated data are tested with all methods.

The comparison was given in Figure 4. The assembly of sequences with repeats appears
harder for all methods, evident by the drop in GFP of all methods under all depths.
Anchorage achieved the highest GFPs, topping at 96.8%, for all sequencing depths, which is
approximately 24%–29.5% higher than the second-best method under various sequencing
depths. Unlike previous experiments where GFP of Anchorage increases as the depth
increases, assemblies with repetitive regions in different sequencing depths exhibit roughly
the same level of accuracy, indicating the source of error is mainly from the complicated
structures of the assembly graphs caused by repetitives instead of insufficient coverage. The
LARs of most algorithms are near-perfect, with the exception of SPAdes with all reads under
3000×. SPAdes with all reads have a higher mismatch rate while the other methods reported
almost zero mismatches. Both two MEGAHIT methods report high indels rates in this
experiment. Both Anchorage and MEGAHIT have misassemblies in several contigs under
various sequencing depths, most of which are duplications of themselves. This indicates
that the read-throughs with repetitive sequences impact both algorithms and more careful
algorithm curation is needed. On the other hand, SPAdes with all reads take a more
conservative strategy to assemble shorted contigs, as reflected in its low GFP.

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:15

4 Conclusion and Discussion

We introduce Anchorage, a novel sequence assembler designed for anchor-enabled, high
sequencing depth synthetic long reads data. Anchorage incorporates several algorithmic
innovations, including a robust k-mer-based method for estimating the length of the target
molecule, an innovative approach that efficiently models anchors and high sequencing depth
while being resilient to sequencing errors and artifacts, and an efficient dynamic programming
algorithm that identifies optimal paths while integrating the estimated sequence length. We
evaluated Anchorage against state-of-the-art methods using both simulated and real datasets.
Anchorage demonstrated significantly improved accuracy in the presence of sequencing
artifacts. Moreover, unlike other methods that experience decreased accuracy with larger
input sizes, Anchorage maintains robust and consistent performance, particularly with high
sequencing depth.

We would like to note that Anchorage is highly accommodated to assemble anchor-labeled
single molecules, where the targeted molecules often have lengths between several hundred to
dozens of thousand base pairs, such as RNA transcripts and 16S genes. One major advantage
of SLRs, exemplified by LoopSeq, is that reads from a relatively small region are labeled
and aggregated prior to assembly. Hence, assemblies of each SLR are separated in a pure
read cloud. The SLR assembly task differs from assembling continuous contigs of a whole
human-sized genome. Consequently, one single continuous assembly is strongly preferred
rather than scaffolds of a large genome. The two state-of-the-art assembly methods, SPAdes
and MEGAHIT, are not specifically designed for this task. While they may assemble partial
scaffolds, stitching partial assemblies together for a continuous contig requires adequate
manual curation and prior knowledge of the sequenced target. We admit that in the case of
assembling large genomes, the information provided by anchors and coverage will be diluted
and the admixed read clouds increase the problem complexity very much, so Anchorage
requires considerable modifications to perform general-purpose genome assembly.

To the best of our knowledge, LoopSeq and LoopSeq Solo are the only sequencing
technologies that produce anchor-equipped, high-coverage data. Consequently, these were the
only real datasets we tested. However, Anchorage is applicable to any data that possesses these
two properties. For example, in principle, adding short synthetic anchors to sequence adapters
is practical and increasing sequencing depths requires only increasing PCR amplification
cycles. As such sequencing technologies become more prevalent, we anticipate that Anchorage
will see broad adoption. As a future direction, we plan to extend Anchorage to assemble
multiple target molecules, enabling applications in transcript assembly, metagenome assembly,
and synthetic long-read (SLR) assembly with lower purity.

We acknowledge that the dynamic programming algorithm can be further optimized
by incorporating ideas from existing algorithms for the k shortest paths problem, such as
Eppstein’s algorithm [8]. Anchorage currently employs a straightforward algorithm for ease
of implementation. To scale for large-scale data in case of need, these advanced optimization
techniques can be integrated in the future.

5 Code Availability

The Anchorage tool is available at https://github.com/Shao-Group/anchorage. The
scripts that reproduce the experimental results of this manuscript are available at https:
//github.com/Shao-Group/anchorage-test.

WABI 2024

https://github.com/Shao-Group/anchorage
https://github.com/Shao-Group/anchorage-test
https://github.com/Shao-Group/anchorage-test

22:16 Anchorage

6 Conflict of interest

K.M., T.B.-Y., and R.K. are current or former employees of Element Biosciences and may
hold stock options in the company.

References
1 Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin,

Alexander S. Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son Pham, Andrey D. Prjibelski,
Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A. Alekseyev,
and Pavel A. Pevzner. SPAdes: A New Genome Assembly Algorithm and Its Applications to
Single-Cell Sequencing. Journal of Computational Biology, 19(5):455–477, 2012.

2 Briana Benton, Stephen King, Samuel R. Greenfield, Nikhita Puthuveetil, Amy L. Reese,
James Duncan, Robert Marlow, Corina Tabron, Amanda E. Pierola, David A. Yarmosh,
Patrick Ford Combs, Marco A. Riojas, John Bagnoli, and Jonathan L. Jacobs. The ATCC
Genome Portal: Microbial Genome Reference Standards with Data Provenance. Microbiology
Resource Announcements, 10(47):e00818–21, 2023.

3 Inanç Birol, Shaun D. Jackman, Cydney B. Nielsen, Jenny Q. Qian, Richard Varhol, Greg
Stazyk, Ryan D. Morin, Yongjun Zhao, Martin Hirst, Jacqueline E. Schein, Doug E. Horsman,
Joseph M. Connors, Randy D. Gascoyne, Marco A. Marra, and Steven J. M. Jones. De novo
transcriptome assembly with ABySS. Bioinformatics, 25(21):2872–2877, 2009.

4 Anthony M. Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: A flexible trimmer for
Illumina sequence data. Bioinformatics, 30(15):2114–2120, 2014.

5 Benjamin J. Callahan, Dmitry Grinevich, Siddhartha Thakur, Michael A. Balamotis, and
Tuval Ben Yehezkel. Ultra-accurate microbial amplicon sequencing with synthetic long reads.
Microbiome, 9(1):130, 2021.

6 Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li. Haplotype-
resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods,
18(2):170–175, 2021.

7 A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
and T.R. Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–21,
2013.

8 David Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673,
1998.

9 Alyssa C Frazee, Andrew E Jaffe, Ben Langmead, and Jeffrey T Leek. Polyester: simulating
rna-seq datasets with differential transcript expression. Bioinformatics, 31(17):2778–2784,
2015.

10 Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro, Joshua N. Burton,
Bruce J. Walker, Ted Sharpe, Giles Hall, Terrance P. Shea, Sean Sykes, Aaron M. Berlin,
Daniel Aird, Maura Costello, Riza Daza, Louise Williams, Robert Nicol, Andreas Gnirke, Chad
Nusbaum, Eric S. Lander, and David B. Jaffe. High-quality draft assemblies of mammalian
genomes from massively parallel sequence data. Proceedings of the National Academy of
Sciences, 108(4):1513–1518, 2011.

11 Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. QUAST: Quality
assessment tool for genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

12 Michael Hagemann-Jensen, Christoph Ziegenhain, Ping Chen, Daniel Ramsköld, Gert-Jan
Hendriks, Anton J. M. Larsson, Omid R. Faridani, and Rickard Sandberg. Single-cell RNA
counting at allele and isoform resolution using Smart-seq3. Nature Biotechnology, 38:708–714,
2020.

13 Joseph B. Hiatt, Rupali P. Patwardhan, Emily H. Turner, Choli Lee, and Jay Shendure.
Parallel, tag-directed assembly of locally derived short sequence reads. Nature Methods,
7(2):119–122, 2010.

X. C. Zang, X. Li, K. Metcalfe, T. Ben-Yehezkel, R. Kelley, and M. Shao 22:17

14 Lewis Z. Hong, Shuzhen Hong, Han Teng Wong, Pauline PK Aw, Yan Cheng, Andreas Wilm,
Paola F. de Sessions, Seng Gee Lim, Niranjan Nagarajan, Martin L. Hibberd, Stephen R.
Quake, and William F. Burkholder. BAsE-Seq: A method for obtaining long viral haplotypes
from short sequence reads. Genome Biology, 15(11):517, 2014.

15 Michal Hozza, Tomáš Vinař, and Broňa Brejová. How Big is that Genome? Estimating Genome
Size and Coverage from k-mer Abundance Spectra. In Costas Iliopoulos, Simon Puglisi, and
Emine Yilmaz, editors, String Processing and Information Retrieval, pages 199–209, Cham,
2015.

16 Felix Kallenborn and Bertil Schmidt. CAREx: Context-aware read extension of paired-end
sequencing data. BMC Bioinformatics, 25(1):186, 2024.

17 Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel Pevzner. Assembly of long error-prone
reads using repeat graphs. Nature Biotechnology, 37:540–546, 2019.

18 Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller, Nicholas H Bergman,
and Adam M Phillippy. Canu: scalable and accurate long-read assembly via adaptive k-mer
weighting and repeat separation. Genome Research, 27(5):722–736, 2017.

19 Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. MEGAHIT:
An ultra-fast single-node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics, 31(10):1674–1676, 2015.

20 Xiang Li and Mingfu Shao. On de novo Bridging Paired-end RNA-seq Data. In Proceedings
of the 14th ACM International Conference on Bioinformatics, Computational Biology, and
Health Informatics, BCB ’23, pages 1–5, New York, NY, USA, 2023.

21 Silvia Liu, Indira Wu, Yan-Ping Yu, Michael Balamotis, Baoguo Ren, Tuval Ben Yehezkel, and
Jian-Hua Luo. Targeted transcriptome analysis using synthetic long read sequencing uncovers
isoform reprograming in the progression of colon cancer. Communications Biology, 4(1):1–11,
2021.

22 Lauren Mak, Dmitry Meleshko, David C. Danko, Waris N. Barakzai, Salil Maharjan, Natan
Belchikov, and Iman Hajirasouliha. Ariadne: Synthetic long read deconvolution using assembly
graphs. Genome Biology, 24(1):197, 2023.

23 Simone Picelli, Omid R Faridani, Åsa K Björklund, Gösta Winberg, Sven Sagasser, and
Rickard Sandberg. Full-length rna-seq from single cells using Smart-seq2. Nature Protocols,
9:171–181, 2014.

24 Michael A. Schon, Stefan Lutzmayer, Falko Hofmann, and Michael D. Nodine. Bookend:
Precise transcript reconstruction with end-guided assembly. Genome Biology, 23(1):143, 2022.

25 James A. Stapleton, Jeongwoon Kim, John P. Hamilton, Ming Wu, Luiz C. Irber, Rohan
Maddamsetti, Bryan Briney, Linsey Newton, Dennis R. Burton, C. Titus Brown, Christina
Chan, C. Robin Buell, and Timothy A. Whitehead. Haplotype-Phased Synthetic Long Reads
from Short-Read Sequencing. PLOS One, 11(1):e0147229, 2016.

26 Gregory W Vurture, Fritz J Sedlazeck, Maria Nattestad, Charles J Underwood, Han Fang,
James Gurtowski, and Michael C Schatz. GenomeScope: Fast reference-free genome profiling
from short reads. Bioinformatics, 33(14):2202–2204, 2017.

27 Tasfia Zahin, Qian Shi, Xiaofei Carl Zang, and Mingfu Shao. Accurate assembly of circular
rnas with terrace. In Jian Ma, editor, Research in Computational Molecular Biology, pages
444–447, Cham, 2024. Springer Nature Switzerland.

28 Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Research, 18(5):821–829, 2008.

29 Qimin Zhang, Qian Shi, and Mingfu Shao. Accurate assembly of multi-end rna-seq data with
scallop2. Nature Computational Science, 2(3):148–152, 2022.

WABI 2024

	1 Introduction
	2 Methods
	2.1 Estimating target length
	2.2 Anchor-guided assembly
	2.3 Finding optimal connecting path

	3 Results
	3.1 Investigation of sequencing artifacts and depths
	3.2 Assembly of real biological samples by LoopSeq Solo
	3.3 Assembly of simulated SLR data without artifacts
	3.4 Assembly of simulated SLR data with read-throughs
	3.5 Assembly of simulated SLR data with repetitive regions

	4 Conclusion and Discussion
	5 Code Availability
	6 Conflict of interest

