
AlfaPang: Alignment Free Algorithm for
Pangenome Graph Construction
Adam Cicherski #

Institute of Informatics, University of Warsaw, Poland

Anna Lisiecka #

Institute of Informatics, University of Warsaw, Poland

Norbert Dojer #

Institute of Informatics, University of Warsaw, Poland

Abstract
The success of pangenome-based approaches to genomics analysis depends largely on the existence of
efficient methods for constructing pangenome graphs that are applicable to large genome collections.

In the current paper we present AlfaPang, a new pangenome graph building algorithm. AlfaPang
is based on a novel alignment-free approach that allows to construct pangenome graphs using
significantly less computational resources than state-of-the-art tools. The code of AlfaPang is freely
available at https://github.com/AdamCicherski/AlfaPang.

2012 ACM Subject Classification Applied computing → Computational genomics

Keywords and phrases pangenome, variation graph, genome alignment, population genomics

Digital Object Identifier 10.4230/LIPIcs.WABI.2024.23

Supplementary Material Software (Source code): https://github.com/AdamCicherski/Alfa
Pang [4], archived at swh:1:dir:e8a27a620673d796d0701ab29a39aa2383bece22

Funding This work was supported by the National Science Centre, Poland, under grant number
2022/47/B/ST6/03154.

1 Introduction

Pangenome (or variation) graphs serve as models for joint representation of populations of
genomes [20, 6, 9, 2, 10]. They have proven to be useful in analyzing sequence evolution
and variation [3, 14], as well as in reducing the so-called reference bias in the analysis of
experimental data [13, 21].

However, the success of the pangenome-based approaches depends on the existence of
efficient construction methods, applicable to large collections of genomes. Most pangenome
building algorithms adapt the approaches used in whole genome alignment tools. Early
versions of the VG toolkit [13] constructed pangenome graphs iteratively, i.e. aligning
consecutive sequences to a current graph. In the current version of VG, by default, graphs are
constructed from genomic sequences using Minigraph-Cactus [15], which aligns all genomes
to a reference genome.

In both approaches the outcome depends on an arbitrary choice of genome order (VG) or
the reference (Minigraph-Cactus). To avoid such biases, several alternatives have recently
been proposed. seqwish [11] builds pangenome graphs from all-to-all pairwise genome
alignments. Unfortunately, the construction doesn’t scale linearly with respect to the number
of genomes, and the final graph requires refinement. The last problem was addressed in
pggb [12] – a pipeline that builds a pangenome graph in three steps:
1. all-to-all genome alignment (wfmash),
2. graph induction from pairwise alignment (seqwish),
3. graph refinement (smoothxg+gfaffix).

© Adam Cicherski, Anna Lisiecka, and Norbert Dojer;
licensed under Creative Commons License CC-BY 4.0

24th International Workshop on Algorithms in Bioinformatics (WABI 2024).
Editors: Solon P. Pissis and Wing-Kin Sung; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.cicherski2@uw.edu.pl
https://orcid.org/0009-0007-5707-8967
mailto:a.lisiecka@mimuw.edu.pl
https://orcid.org/0000-0002-0386-8767
mailto:dojer@mimuw.edu.pl
https://orcid.org/0000-0001-5653-1167
https://github.com/AdamCicherski/AlfaPang
https://doi.org/10.4230/LIPIcs.WABI.2024.23
https://github.com/AdamCicherski/AlfaPang
https://github.com/AdamCicherski/AlfaPang
https://archive.softwareheritage.org/swh:1:dir:e8a27a620673d796d0701ab29a39aa2383bece22;origin=https://github.com/AdamCicherski/AlfaPang;visit=swh:1:snp:5649c0cf7d3bf4a80af4c9d378609327f55eb365;anchor=swh:1:rev:817d39e4b8b301cd7fe69957d55371ae145396aa
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 AlfaPang: Alignment Free Pangenome Construction

All the above-mentioned tools construct variation graphs, which are the most widely used,
but not the only, graph pangenome models. One of the most important alternatives are de
Bruijn graphs. Their structure is strictly determined by the parameter k, which guarantees
the avoidance of order and reference biases. Moreover, the construction is conceptually
simple, and optimized building algorithms such as TwoPaCo [18] or bifrost [16] are orders
of magnitude faster than alignment-based building algorithms for variation graphs. However,
de Bruijn graphs pose a challenge for downstream analysis, especially in terms of annotation,
visualization and information extraction [1].

A bridge between both models that could combine their advantages was proposed in [5].
The paper introduces the notion of a string graph, which is a common generalization of
variation graph and de Bruijn graph. Moreover, the authors propose an axiomatization of
the desired properties of representing a sequence collection in such a graph. It is shown that
the axioms are always satisfied in de Bruijn graphs and that they determine the structure
of variation graphs up to merging unbranched paths into single nodes and the opposite
operation. Furthermore, authors explore the relationship between de Bruijn graphs and
variation graphs satisfying the axioms to design an algorithm transforming the former into
the latter. The proposed transformation algorithm can potentially be used as a crucial
component of an efficient variation graph building pipeline.

In the current work, we take this path to achieve an efficient variation graph construction
one step further. We design and implement AlfaPang – an algorithm that builds a variation
graph satisfying the axioms introduced in [5] directly from the input sequences. We show
that replacing the first two steps of pggb with our algorithm results in significant efficiency
improvement and yields output graphs of similar properties. The rest of the paper is organized
as follows. In section 2 we introduce the necessary notation and prove theoretical results
underlying the correctness of our algorithm. In section 3 we describe the algorithm and
study its complexity. Sections 4 and 5 present experiments’ design and results, respectively.

2 Representing sequences with variation graphs

2.1 Directed variation graphs

A directed variation graph is a tuple G = ⟨V, E, l⟩, where:
V is a set of vertices,
E ⊆ V 2 is a set of directed edges,
l : V → Σ+ is a function labeling vertices with non-empty strings over the DNA alphabet
Σ = {A, C, G, T}.

A path in a variation graph is a sequence of vertices ⟨v1, . . . , vm⟩ such that ⟨vj , vj+1⟩ ∈ E

for every j ∈ {1, . . . , m − 1}. The set of all paths in G will be denoted by P(G). The labeling
function l extends to l̂ : P(G) → Σ+ defined by formula l̂(⟨v0, . . . , vm⟩) = l(v0) · . . . · l(vm),
i.e. the label of the path is the concatenation of the labels of its consecutive vertices.

Assume that G = ⟨V, E, l⟩ is a directed variation graph and ∼ is an equivalence relation
on the set of G-nodes satisfying v ∼ v′ ⇒ l(v) = l(v′) for all v, v′ ∈ V . The quotient graph
of G by ∼ is defined as G′ = ⟨V ′, E′, l′⟩, where

V ′ = V/ ∼,
E′ = {⟨[v]∼, [v′]∼⟩ | ⟨v, v′⟩ ∈ E},
l′([v]∼) = l(v).

A. Cicherski, A. Lisiecka, and N. Dojer 23:3

The correctness of the definition of l′ (i.e. independence on the choice of [v]∼-representative)
is guaranteed by the above assumption on ∼. Note that the quotient construction saves the
labels of paths, i.e. given a path p = ⟨v1, . . . , vm⟩ in G, p′ = ⟨[v1]∼, . . . , [vm]∼⟩ is a path in
G′ and l̂′(p′) = l̂(p).

Given a path p = ⟨v1, . . . , vm⟩, the subpath of p is any path p[j1..j2] = ⟨vj1 , . . . , vj2⟩,
where 1 ≤ j1 ≤ j2 ≤ m. Similarly, S[j1..j2] denotes the substring of a string S consisting on
the characters from positions j1, . . . , j2.

When |l(v)| = 1 for every vertex v, the graph is called singular. In this case |p| = |l̂(p)|
and moreover l̂(p[j1..j2]) = l̂(p)[j1..j2] for all 1 ≤ j1 ≤ j2 ≤ |p|. To simplify the description,
we assume below that considered variation graphs are singular. This does not lead to a
loss of generality, because any variation graph can be transformed into a singular one by
splitting each node v into a path with |l(v)| nodes. We refer readers interested in generalized
definitions to [5].

2.2 Representations of collections of sequences
Given a set of sequences S = {S1, . . . , Sn}, a singular directed variation graph G⟨V, E, l⟩ and
π : S → P(G), we say that ⟨G, π⟩ represents S iff the following conditions are satisfied:

l̂(π(Si)) = Si for every i ∈ {1, . . . , n},
every vertex in G occurs in some path π(Si),
every edge in G joins two consecutive vertices in some path π(Si).

We define the set of positions in S as Pos(S) = {⟨i, j⟩ | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ |Si|}. The
set of π-occurrences of a vertex v is defined as Occπ(v) = {⟨i, j⟩ ∈ Pos(S) | π(Si)[j] = v}.
Let’s call the generic representation of S the representation ⟨G0, π0⟩, where G0 = ⟨V0, E0, l0⟩
and:

V0 = Pos(S),
E0 = {⟨⟨i, j⟩, ⟨i, j + 1⟩⟩ | 1 ≤ i ≤ n ∧ 1 ≤ j < |Si|},
l0(⟨i, j⟩) = Si[j],
π0(Si) = ⟨⟨i, 1⟩, . . . , ⟨i, |Si|⟩⟩.

▶ Lemma 1. For every singular representation ⟨G, π⟩ of S = {S1, . . . , Sn}, there exists an
equivalence relation ∼⟨G,π⟩ on Pos(S) such that:
1. G is isomorphic to a quotient graph of G0 by ∼⟨G,π⟩,
2. π(Si) = ⟨[⟨i, 1⟩]∼⟨G,π⟩ , . . . , [⟨i, |Si|⟩]∼⟨G,π⟩⟩ for all i ∈ {1, . . . , n}.

Proof. The relation ∼⟨G,π⟩ is defined as follows:

⟨i, j⟩ ∼⟨G,π⟩ ⟨i′, j′⟩ ⇐⇒ π(Si)[j] = π(Si′)[j′]

Verifying that both conditions are satisfied is straightforward. ◀

Let Si, Si′ be two (not necessarily different) sequences from S and assume that they have
a common k-mer Si[p..p+k−1] = Si′ [p′..p′ +k−1]. We say that π reflects this common k-mer
iff it is represented by the same path in the graph, i.e. π(Si)[p..p+k−1] = π(Si′)[p′..p′ +k−1].
We say that ⟨G, π⟩ represents S k-completely iff all common k-mers in S are reflected by π.

We say the pair of π-occurrences ⟨i, j⟩, ⟨i′, j′⟩ of a vertex v is:
directly k-extendable iff these occurrences extend to a common k-mer reflected by π, i.e.
π(Si)[j −m..j +m′] = π(Si′)[j′ −m..j′ +m′] for some m, m′ ≥ 0 satisfying m+m′ ≥ k−1,
k-extendable if there is a sequence of occurrences of v that starts from ⟨i, j⟩, ends at
⟨i′, j′⟩ and each two consecutive occurrences in that sequence are directly k-extendable.

WABI 2024

23:4 AlfaPang: Alignment Free Pangenome Construction

Figure 1 Example of a 3-faithful and 3-complete variation graph. Edge colors are used to mark
genomic paths (graph has no multi-edges, they are used only for purpose of paths visualisation). All
occurrences of vertex “A” filled with pink are 3-extendable, as occurrences on the red and green
paths can both be extended to the path labeled with TAT, on the red and cyan paths to ATT,
on the purple and cyan paths to GAT, and on the purple and green paths to ATG. On the other
hand, occurrences of the grey vertex “A” on the orange and blue paths can be extended to ATC but
are not extendable to any of the previously mentioned 3-mers, and therefore this vertex cannot be
merged with the pink one.

We say that ⟨G, π⟩ represents S k-faithfully if every pair of occurrences of a vertex is
k-extendable.

Note that the k-completeness property specifies, which fragments of S-strings must
be unified in the representation, while k-faithfulness states that anything that is not a
consequence of k-completeness cannot be unified (see example on Figure 1).

▶ Theorem 2. Let S = {S1, . . . , Sn} be a set of sequences. Then the k-complete and k-faithful
representation of S exists and is unique up to isomorphism.

The above theorem is roughly equivalent to Theorems 1 and 2 in [5]. In that paper the
proof of the existence was based on the transformation of a de Bruijn graph into a variation
graph. Here we propose an alternative proof that leads to a more efficient variation graph
construction algorithm.

Proof. Let G0 = ⟨V0, E0, l0⟩ be a generic representation of S. We define a binary relation
∼0 indicating the pairs of positions in S that should be merged in a representation reflecting
common k-mers:

⟨i, j⟩ ∼0 ⟨i′, j′⟩ ⇐⇒ ∃0≤m<k Si[j − m..j + k − 1 − m] = Si′ [j′ − m..j′ + k − 1 − m]

Let ∼ denote the equivalence closure of ∼0. Obviously, the above definition implies that
Si[j] = Si′ [j′] whenever ⟨i, j⟩ ∼0 ⟨i′, j′⟩ and, consequently, the same property holds for ∼.
Therefore a quotient graph G of G0 by ∼ is properly defined. Moreover, each G0-path
π0(Si) = ⟨v1, . . . , v|Si|⟩ can be handled to G through the quotient construction: π(Si) =
⟨[v1]∼, . . . , [v|Si|]∼⟩.

Hence we have a representation ⟨G, π⟩ of S that is:
k-complete, because consecutive vertices in paths representing common k-mers were
merged in the quotient construction,
k-faithful, because all occurrences of a node v are in relation ∼, so for each pair
⟨i, j⟩, ⟨i′, j′⟩ ∈ Occπ(v) there exists a sequence ⟨i, j⟩ = ⟨i0, j0⟩, . . . , ⟨ip, jp⟩ = ⟨i′, j′⟩
of v-occurrences such that for each l ∈ {1, . . . , p} the condition ⟨il−1, jl−1⟩ ∼0 ⟨il, jl⟩ is
satisfied, which means that occurrences ⟨il−1, jl−1⟩ and ⟨il, jl⟩ are directly k-extendable.

A. Cicherski, A. Lisiecka, and N. Dojer 23:5

Moreover, by Lemma 1, every representation ⟨G′, π′⟩ of S is isomorphic to a quotient of
G0 by some relation ∼′ on the set of oriented G0-vertices. It is easily seen that ⟨G′, π′⟩ is

k-complete iff ⟨i, j⟩ ∼ ⟨i′, j′⟩ ⇒ ⟨i, j⟩ ∼′ ⟨i′, j′⟩,
k-faithful iff ⟨i, j⟩ ∼′ ⟨i′, j′⟩ ⇒ ⟨i, j⟩ ∼ ⟨i′, j′⟩.

Therefore, if ⟨G′, π′⟩ has both properties, graphs G and G′ must be isomorphic. ◀

2.3 Bidirected variation graphs
In bidirected graphs each node has two sides (denoted here ±1) and undirected edges join
incident nodes on particular sides [8]. Both sides are equivalent in the sense that swapping
sides at selected nodes yields an isomorphic bidirected graph.

A path entering a node on one side must exit it on the other side. More formally, a path
in a bidirected graph is a sequence ⟨⟨v1, o1⟩, . . . , ⟨vm, om⟩⟩ such that for all respective j

oj = ±1 determines the orientation of vj in the path,
side oj−1 of vj−1 is connected by an edge with side −oj of vj .

Paths may be reversed, but it requires reversing both order and orientation of the nodes, i.e.
given path p = ⟨⟨v0, o0⟩, . . . , ⟨vm, om⟩⟩, its reverse is p−1 = ⟨⟨vm, −om⟩, . . . , ⟨v0, −o0⟩⟩.

Bidirected variation graphs naturally represent the double-stranded structure of DNA.
The orientation of a node indicates the strand of the represented DNA fragment, i.e. strand
⟨v, +1⟩ has sequence l(v), while ⟨v, −1⟩ has sequence l(v)−1, where S−1 denotes the reverse
complement of sequence S. For convenience, we introduce notation S+1 = S and p+1 = p.
The label of the path is the concatenation of the oriented labels of consecutive vertices, i.e.
l̂(⟨⟨v0, o0⟩, . . . , ⟨vm, om⟩⟩) = l(v0)o0 · . . . · l(vm)om . Note that hence l̂(p−1) = l̂(p)−1.

Bidirected representations of sequence collections are defined similarly to directed ones.
Positions and vertex occurrences are extended to include the orientation, i.e.

Pos(S) = {⟨i, j, o⟩ | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ |Si| ∧ o = ±1},
Occπ(v) = {⟨i, j, o⟩ ∈ Pos(S) | π(Si)[j] = ⟨v, o⟩}.

Because the strands of the represented sequences are treated in the same way, the concept
of reflecting common k-mers applies to occurrences of k-mers on both strands. Below we
adapt the definitions of k-completeness and k-faithfulness to take this into account.

Let Si, Si′ be two (not necessarily different) strings from S and assume that they have a
common k-mer So

i [p..p + k − 1] = So′

i′ [p′..p′ + k − 1] (o and o′ indicate the strands, on which
the k-mer occurs). We say that π reflects this common k-mer iff it is represented by the
same path in the graph, i.e. π(Si)o[p..p + k − 1] = π(Si′)o′ [p′..p′ + k − 1]. We say that ⟨G, π⟩
represents S k-completely iff all common k-mers in S are reflected by π.

We say the pair of π-occurrences ⟨i, j, o⟩, ⟨i′, j′, o′⟩ of a vertex v is:
directly k-extendable iff these occurrences extend to a common k-mer reflected by π, i.e.
π(Si)o[j − m..j + m′] = π(Si′)o′ [j′ − m..j′ + m′] for m, m′ ≥ 0 satisfying m + m′ ≥ k − 1,
k-extendable if there is a sequence of occurrences of v that starts from ⟨i, j, o⟩, ends at
⟨i′, j′, o′⟩ and each two consecutive occurrences in that sequence are directly k-extendable.

We say that ⟨G, π⟩ represents S k-faithfully if every pair of occurrences of a vertex is
k-extendable.

▶ Theorem 3. Let S = {S1, . . . , Sn} be a set of DNA sequences. Then the k-complete and
k-faithful representation of S as a singular bidirected variation graph exists and is unique up
to isomorphism.

WABI 2024

23:6 AlfaPang: Alignment Free Pangenome Construction

Proof. As in the directed case, the desired representation is constructed as a quotient of
the generic representation. The quotient construction is slightly more complicated in the
bidirected case, because each node of the original graph can either retain or reverse its
orientation in the resulting graph. However, the structure of the entire proof is analogous to
the proof of Theorem 2, so we leave the details to the reader. ◀

3 AlfaPang algorithm

In this section we present AlfaPang – ALignment Free Algorithm for PANGenome graph
construction. AlfaPang builds k-complete and k-faithful variation graphs following the
quotient construction described in the proofs of Theorems 2 and 3.

3.1 Algorithm overview

Given a collection of sequences S and a positive natural number k, we first build its generic
representation G = ⟨V, E⟩. Then we build a weighted bipartite graph with parts V and B,
where B is a set of vertices labeled by canonical k-mers of S, and edges satisfy the following
conditions:

each edge e is assigned a value from the set {−k, . . . , −1, 1, . . . , k}, denoted as C(e),
C(⟨⟨i, j⟩, b⟩) = c iff

Si[j − c + 1..j + k − c] = l(b) for c > 0 ,
Si[j − c − k..j − c − 1] = l(b)−1 for c < 0.

Therefore, an edge between ⟨i, j⟩ and b indicates that the position in the sequence
corresponding to ⟨i, j⟩ can be extended to a k-mer represented by b, and the value assigned
to the edge indicates its position in that k-mer. Hence such graph allows us to represent the
relation described in previous section.

To find all vertices in G that should be merged with a chosen vertex v, we traverse the
bipartite graph starting from v using a BFS manner, but with the following constraints:

If we enter a vertex belonging to V , we can leave it by any edge.
If we visit a vertex belonging to B from an edge with value c, we can leave it only through
edges with value c or −c.

All vertices of V visited during one such run establish one equivalence class of the relation
presented in the theorems. For each such class, we choose a canonical orientation arbitrarily
to be consistent with a canonical label of the first vertex visited in the run. Therefore, to
find a quotient graph, we start a new run as long as there are vertices not visited in previous
runs.

3.2 Compact graph representation

We reduce the memory requirements of our algorithm by representing the redundant in-
formation from the bipartite graph implicitly. First, we store only the edges with values
1 or −k and calculate the rest on the fly. This optimization is based on the observation
that if e1 = {⟨i, j⟩, b} and C(e1) = 1, then for 1 < q < k and e2 = {⟨i, j − q⟩, b}, we have
C(e2) = 1 + q. Similarly, if e1 = {⟨i, j⟩, b} and C(e1) = −k, then for 1 < q < k and
e2 = {⟨i, j − q⟩, b}, we have C(e2) = −k + q. We can then modify the constraints for graph
traversal:

A. Cicherski, A. Lisiecka, and N. Dojer 23:7

From a node belonging to an equivalence class, we can exit by an edge or jump q < k

positions backward in the generic representation and then traverse through the edge
incident with that vertex (this vertex is not marked as visited since it does not need to
belong to the same class).
From vertices belonging to B, we can exit by both types of edges (those assigned to 1
and those assigned to −k).
If we exit from a node belonging to B by an edge with the same sign as the edge we used
to enter that vertex, we need to jump q vertices forward in the generic representation to
find a vertex belonging to the equivalence class.
If we exit from a vertex belonging to B by an edge with the opposite sign to the one we
used to enter that vertex, we need to jump k − 1 − q vertices forward to find a vertex
belonging to the equivalence class.

To implement the algorithm, we do not build such a graph explicitly. Instead, we use the
following data structures:

A concatenation of all sequences from the set S as a single string s, with an additional
special character $ at the ends of original sequences.
A vector K of the same size as s, that stores the ID (positive integer) assigned to the k-mer
b at position i if S[i..i + k − 1] = b, or the negative of that value if S[i..i + k − 1] = b−1. If
the k-mer starting at position i is not fully included in a sequence from S, then K[i] = 0.
IDs of all canonical k-mers of S are obtained by enumeration with positive numbers,
which can be done efficiently using a hash table.
A vector R that stores M vectors, where M is the number of distinct canonical k-mers in
S. This vector is used as an inverted index, enabling fast locating of k-mer occurrences
in s. If for some i, j > 0 we have K[i] = ±j, then we push i into the vector R[j].
A vector F of the same size as s, initially filled with zeros. This vector represents the
assignment of positions in s to the vertices of the output graph. The absolute value of a
number in this vector identifies a vertex ID, and its sign determines the vertex orientation.

In such framework we can identify vertices belonging to V with indices of K and vertices
belonging to B with indices of R. Pseudocode showing the algorithm is presented in Listing 1.
Figure 2 illustrates the data structures and a part of an example run of the algorithm.

3.3 Unbranched paths compactness
The graph resulting from the described algorithm is singular. As a final step in our tool,
we compact unbranching paths into vertices to reduce its size. Since it is k-complete, we
know that, (similarly to the vertices of the de Bruijn graph) each vertex has no more than
|Σ| vertices connected to it on each side, and each of these has a different symbol as a label.
Therefore, based on ideas proposed in the [17], we implemented a similar algorithm for our
variation graphs. For each vertex, we can assign a state that encodes whether the vertex
is inside such a path or is a branching node. Initially, vertices are assigned to one of the
(Σ + 1)2 states representing symbols on their sides (+1 for a special character representing
the end of a sequence), or to one of three special states representing branching vertices - two
different states for situations when a vertex has only one edge on one side and more than
one edge on the other, and a state for vertices with more than one edge on each side. To
recognize branching vertices, we build a vector D of length equal to the number of vertices
in the singular graph, filled with 0. Then we traverse vector F and update D as follows:

WABI 2024

23:8 AlfaPang: Alignment Free Pangenome Construction

Figure 2 A: Set of DNA sequences. B: Generic variation graph representation of that set. C:
Bipartite graph for k = 3. Colors of edges represent values assigned to them (blue: 1, red: 2, green:
3). Nodes filled with a color other than white belong to the same equivalence class. Orange nodes
are both connected to the 3-mer GAT by blue edges. The first and the second pink nodes are
connected to GAT by red edges, and the first and third pink nodes are connected to ATG by blue
edges. The first and the second yellow nodes are connected to GAT by green edges, and the first and
the third are connected to ATG by red edges. Grey nodes are connected to ATG by green edges. D:
Variation graph resulting from the quotient algorithm. Different edge colors mark different genomic
paths (not multi-edges) and are consistent with edge colors in B. Node colors are consistent with
equivalence classes shown in C. E: Data structures used in the algorithm: s – concatenation of
the input sequences, K – vector storing ids of k-mers starting at given positions in s, R – inverted
index, enabling locating of k-mer occurrences in s, F – output vector, assigning positions in s to the
vertices of the output graph.
To find a pink equivalence class, let’s start from symbol “A” at position 3 - we assign F [3] a new
value (2 in this example). Since K[3] = 2, we look into the vector R[2], which points to positions 3
(starting position) and 15, so we assign F [15] = 2. Next, we backtrack one position to K[2]. Since
K[2] = 1, we look into R[1], which points to positions 2 (from where we came) and 9. From position
9, we move one position forward and assign F [10] = 2. After backtracking two steps from the
starting position, we find K[1] = 0, indicating that this “A” is not the third symbol in any k-mer.
We repeat the procedure from found positions 10 and 15, identifying no additional positions.

A. Cicherski, A. Lisiecka, and N. Dojer 23:9

Listing 1 Quotient algorithm.
function quotient (s, K, R, F)

v = 1.
for i from 1 to |s|

if F[i] != 0
continue

visited_edges = empty set
queue = empty queue
queue.push(i)
while queue is not empty

node_id = queue.pop ()
for j from 0 to k-1

idx = K[node_id - j]
if (idx , j) in visited_edges

continue
visited_edges .add ((idx , j))
for pos in R[idx]

x = K[pos]
new_node = pos + (idx != x) * (k - 1) + sign(idx * x) * j
if F[new_node] != 0

continue
F[new_node] = v if s[new_node] == s[i] else -v
queue.push(new_node)

v = v + 1
return F

If D[abs(F [i])] = 0, we assign it a state encoding labels of the previous and next vertex
(s[i − 1] and s[i + 1]).
Otherwise, we check if labels of vertices on both sides of a vertex are consistent with the
state assigned to it. If so, we do nothing. Otherwise, we change the state to one of the
special states (depending on which side of the vertex differs).
If a vertex is assigned to a special state, we need to check only one of the sides or none of
them.
Additionally, we check if −F [i − 1] = F [i] or F [i] = −F [i + 1]. If so, we also need to
change the state to one of the specials.

Next, we simplify states by changing all non-special states to a single value. Then, we
traverse vector F once again to merge maximal unbranching paths into vertices, identified
by combinations of branching nodes at the ends of the paths.

3.4 Algorithm complexity
If we denote the sum of lengths of sequences in S as N , then the time complexity of our
algorithm is O(kN), since we need to traverse each edge in the bipartite graph exactly one.
However, we only need O(N) space to store vectors K, R, F , and the string s.

3.5 Code availability
C++ implementation of AlfaPang can be found at: https://github.com/AdamCicherski/
AlfaPang

WABI 2024

https://github.com/AdamCicherski/AlfaPang
https://github.com/AdamCicherski/AlfaPang

23:10 AlfaPang: Alignment Free Pangenome Construction

4 Design of experiments

4.1 Datasets and parameter setting
We tested our tool on two series of genome collections: the Escherichia coli series containing
50, 100, 200, and 400 Escherichia coli haplotypes, obtained from [12], which we further
extended by datasets of 800, 1600, and 3412 sequences downloaded from GenBank (with
total lengths ranging from 250Mbp to 17Gbp; specific queries are available in our GitHub
repository), and the Saccharomyces cerevisiae series containing 16, 32, 64, and 118 haplotypes
(total length from 195Mbp to 1.44Gbp), obtained from [19].

Before the analysis, we estimated the complexity and repetitiveness of the sequences in
the datasets to get some intuition about the appropriate selection of the parameter k for
AlfaPang. For this purpose, we calculated the fractions of overrepresented and rare k-mers,
defined as the k-mers that occur more frequently than the number of genomes and that occur
only once, respectively. Too low k yields a large fraction of overrepresented k-mers, which
will result in merging non-homologous fragments. On the other hand, too large k increases
the fraction of rare k-mers, which will translate into poor sequence similarity detection.

The fractions were calculated for k between 17 and 67 with step 10 in the datasets with
64 S. cerevisiae haplotypes and with 100 E. coli haplotypes. Results are shown in Table 1.
Based on that, we decided to use k = 47 for all AlfaPang tests, since this value allows us to
keep the fraction of overrepresented k-mers below 5% while having about twice as small the
fraction of rare k-mers.

4.2 Compared algorithms and criteria
Similarly to seqwish, AlfaPang may produce pangenome graphs with complex local struc-
tures. Therefore we evaluate AlfaPang on two levels.

On the first level, we compared the computational efficiency of AlfaPang and the first
two steps of the pggb workflow, i.e., wfmash+seqwish. Unfortunately, we were unable to
complete the wfmash+seqwish calculations even for the 400 E. coli sequences – after 6 days
of computations on a server with 512 GB RAM, the process crashed due to excessive memory
consumption. Consequently, we repeated the calculations on the E. coli series with the
Erdős–Rényi random graph sparsification option activated. With that approach, we were
able to finish calculations for 400 and 800 sequences, but 1600 and 3412 still required too
much memory.

In order to prepare the second-level comparison, we modified the pggb pipeline by
replacing the first two steps with AlfaPang. Thus, the new workflow, called AlfaPang+,
consists of AlfaPang followed by the graph refinement tools smoothxg and gfaffix. For all
Saccharomyces cerevisiae datasets and datasets of 50, 100, 200, and 400 E. coli sequences, we

Table 1 Fractions of overrepresented and rare k-mers for different k.

kmer size k=17 k=27 0k=37 k=47 k=57 k=67
S. cerevisia 64

over represented k-mers 0.105 0.071 0.057 0.049 0.043 0.038
rare k-mers 0.011 0.018 0.024 0.030 0.037 0.043

E. coli 100
over represented k-mers 0.109 0.076 0.059 0.049 0.042 0.037
rare k-mers 0.011 0.014 0.017 0.020 0.023 0.027

A. Cicherski, A. Lisiecka, and N. Dojer 23:11

Figure 3 A log–log plots of performance of AlfaPang vs wfmash+seqwish.
All wfmash+seqwish tests were performed using 20 CPU threads.

compared AlfaPang+ with pggb and Minigraph-Cactus in terms of computational efficiency
and output graph properties. Finally, we analyzed the similarity between sequence alignments
induced by these graphs.

To define a measure of this similarity, we introduce the following equivalence relation:
a pair of positions in two (not necessary different) sequences is aligned in graph G if both
are represented by the same position in a label of the same vertex. In the case of singular
graphs this could be expressed Si[p] ≡G Sj [p′] ⇐⇒ π(Si)[p] = π(Sj)[p′]. We define µ(G)
as the set of all aligned pairs in G. The similarity between two variation graphs G1, G2 is
measured using Jaccard index between µ(G1) and µ(G2).

Due to the large size of the sets of aligned pairs in our datasets, exact calculation of
their intersections is computationally inefficient. Therefore we decided to estimate their
cardinality using the mafTools package [7]. To do so we first converted variation graphs to
alignments in Multiple Alignment Format (transforming each node into a separate MAF
block), then calculated the estimates of ratios β1 := |µ(G1)∩µ(G2)|

|µ(G1)| and β2 := |µ(G1)∩µ(G2)|
|µ(G2)|

using the mafComparator program from mafTools, and finally we used β1|µ(G1)|+β2|µ(G2)|
2 as

an approximation of the cardinality of µ(G1) ∩ µ(G2).

5 Results

5.1 Performance comparison
The performance of each tool was evaluated in terms of running time and peak memory
consumption. Running time was measured as wall clock time and peak memory as maximum
resident set size using the time command. All benchmarks were performed on a Supermicro
X10DRi server with 512GB RAM and two 14-cores CPUs Intel Xeon E5-2690V4, using single
thread for AlfaPang and 20 threads for all other tools.

Figure 3 presents the comparison of AlfaPang and wfmash+seqwish, without the refine-
ment step of pggb, on a log-log plots. AlfaPang consumes less memory than wfmash+seqwish
on all datasets and is substantially faster than wfmash+seqwish on all E. coli datasets and

WABI 2024

23:12 AlfaPang: Alignment Free Pangenome Construction

Figure 4 Performance of AlfaPang+ vs pggb vs Minigraph-Cactus.
All pggb and Minigraph-Cactus tests, as well as smoothxg in AlfaPang+ were performed using 20
CPU threads.

on the larger S. cerevisiae datasets. Moreover, unlike wfmash+seqwish, AlfaPang scales
almost linearly with respect to the number of genomes (although there is a memory usage
increase when scaling from 400 to 800 genomes due to the need to switch from 4-byte integers
to 8-byte integers, but it resumes linear scaling afterward). Consequently, the difference
between both tools increases with the dataset size. For example, on 50 E. coli sequences,
AlfaPang is more than 9 times faster than wfmash+seqwish with sparsification (and 12 times
faster than wfmash+seqwish without it) and consumes 3 times less memory, while on 800 E.
coli sequences, AlfaPang is more than 21 times faster and consumes 3.5 times less memory.
It is worth pointing out that AlfaPang achieved these results using only one thread, while
wfmash+seqwish was tested on 20 CPU threads.

Figure 4 summarizes the computational efficiency of full pangenome building pipelines.
For the series of E. coli datasets, AlfaPang+ proved to be the most efficient tool and shows
almost linear scalability with respect to the size of the data. On the dataset consisting of 400
E. coli sequences, AlfaPang+ is more than twice as fast as pggb (with activated sparsification)
and Minigraph-Cactus, and it consumes less than one-third of the memory required by
the other tools. Although Minigraph-Cactus is faster on the smallest dataset of 50 E. coli
sequences, AlfaPang+ is still consuming significantly less memory.

For the series of S. cerevisiae datasets, the results are slightly more ambiguous. The
runtime for both pggb and AlfaPang+ is mostly dependent on smoothxg, which runs faster
in pggb. However, as the number of haplotypes increases, AlfaPang+ gains an advantage and
becomes almost twice as fast for the largest dataset. Although Minigraph-Cactus proved
to be the fastest tool in this case (3 to 13 times faster than pggb, depending on number
of haplotypes, and 7 times faster than AlfaPang+), this comes at the expense of loosing
interchromosomal structural variants in the resulting variation graph. As opposite to pggb and
AlfaPang+, for all yeast datasets Minigraph-Cactus constructed graphs with 16 connected
components, corresponding to 16 chromosomes of S. cerevisiae. This can be explained by the
way the last tool is designed. After initial graph construction, Minigraph-Cactus remaps
all genomic sequences onto the graph and assigns each sequence to one of the reference
chromosomes. Sequences that cannot be confidently assigned to any chromosome are left
out of further analysis. Thus, subsequent steps may be performed independently and in

A. Cicherski, A. Lisiecka, and N. Dojer 23:13

parallel for each reference chromosome, resulting in significant computational speedup for
multichromosomal genomes, likely explaining the difference in the running time results of
experiments on the E. coli and S. cerevisiae datasets.

As the number of S. cerevisiae haplotypes goes from 16 to 118, the memory usage increases
by 12.5 times for pggb, 3.4 times for Minigraph-Cactus, and only 2.7 times for AlfaPang+
which again demonstrates AlfaPang+ scalability in this regard.

5.2 Graphs topology
To measure the complexity of the produced pangenome graphs, we compared such graph
characteristics as the number of nodes and edges. Results are displayed in Table 2 and
Table 3. We also compared the total length of nodes labels to check the ability of all the
tools to compress input sequences (see Table 4). In all the following tables, we refer to the
graphs produced by the pggb pipeline without sparsification, except for the graph of the
largest E. coli dataset, for which sparsification was activated.

Table 2 Number of nodes (in 106).

AlfaPang+ pggb Minigraph-Cactus
S. cerevisia 16 0.92 0.89 1.08
S. cerevisia 32 1.78 1.80 2.22
S. cerevisia 64 2.88 2.85 3.86
S. cerevisia 118 3.73 3.87 5.44
E. coli 50 1.74 1.62 1.93
E. coli 100 1.93 1.79 2.67
E. coli 200 2.79 2.61 4.13
E. coli 400 3.66 3.25 5.80

Table 3 Number of edges (in 106).

AlfaPang+ pggb Minigraph-Cactus
S. cerevisia 16 1.27 1.22 1.48
S. cerevisia 32 2.47 2.48 3.05
S. cerevisia 64 4.07 3.98 5.37
S. cerevisia 118 5.40 5.49 7.68
E. coli 50 2.37 2.20 2.64
E. coli 100 2.65 2.45 3.65
E. coli 200 3.85 3.60 5.72
E. coli 400 5.09 4.53 8.16

For all S. cerevisia datasets, the number of nodes in graphs from AlfaPang+ and pggb
differs by at most 5%. For E. coli datasets these numbers are slightly higher (up to 11%
for 400 haplotypes and 6-7% for the rest of datasets). Minigraph-Cactus produces graphs
with visibly larger number of nodes and edges. On S. cerevisia datasets, Minigraph-Cactus
graphs has 17-45% more nodes then the AlfaPang+ (and 20-40% more than pggb), while on
E. coli data it is 10-58% more than AlfaPang+ (19-78% more than pggb).

For all graphs, the number of edges is 35-45% larger than the number of nodes. Moreover,
going from 16 to 118 S. cerevisia haplotypes increases the number of nodes 4-5 times, while
going from 50 to 400 E. coli sequences, the number of nodes increases by at most 3 times

WABI 2024

23:14 AlfaPang: Alignment Free Pangenome Construction

across all tools, indicating that for all tools graph size grows sublinearly with respect to the
number of input sequences. Similar conclusion can be drawn from Table 4. When the number
of S. cerevisia haplotypes increases from 16 to 118, the total size of node sequences increases
by 1.3, 1.7, and 2.9 times for AlfaPang+, pggb, and Minigraph-Cactus, respectively. For
E. coli data, increasing the number of sequences from 50 to 400 results in the total size
of node sequences increasing by 1.8 and 3.1 times for AlfaPang+ and Minigraph-Cactus,
respectively. For pggb, the graph constructed from a dataset of 400 sequences deviates from
this trend: increasing the number of sequences from 50 to 200 increases the total length of
node labels by 1.4 times, while increasing from 200 to 400 sequences increases this value by
2.5 times. This deviation is suspected to result from the sparsification used for that dataset.
For all datasets, AlfaPang+ shows a higher rate of compression than pggb, which in turn
has a higher rate of compression than Minigraph-Cactus.

5.3 Graphs similarity
Table 5 summarizes the number of aligned pairs in all graphs. It was consequently larger
in AlfaPang+ than in pggb which in turn was greater than in Minigraph-Cactus for all
datasets. For S. cerevisia datasets, pggb identified 69-75% as many pairs as AlfaPang+ and
Minigraph-Cactus detected only 59-61% of the number of pairs found by AlfaPang+. For
E. coli datasets, pggb found 68-92% as many pairs as AlfaPang+ while Minigraph-Cactus
found 59-85%. In both cases the percentage decreases as the number of sequences grows. As
expected, number of aligned pairs scale quadratically with a number of sequences.

The Jaccard index between sets of aligned pairs is presented in Table 6. On the S.
cerevisia datasets, the Jaccard index between AlfaPang+ and pggb is approximately 70%,
while for the pair AlfaPang+ and Minigraph-Cactus, it is around 60%. The Jaccard index
for pggb and Minigraph-Cactus ranges between 82% and 87% on S. cerevisia datasets, with
a decreasing tendency as the number of haplotypes grows.

For E. coli datasets, the Jaccard index between AlfaPang+ and pggb decreases from
89% to 65% as the number of sequences increases. A similar trend is observed for the pair
AlfaPang+ and Minigraph-Cactus, with the index decreasing from 83% to 57%. In contrast,
the Jaccard index between pggb and Minigraph-Cactus varies between 74 and 91%, showing
no clear dependencies on the number of sequences.

These numbers are close to the ratio of the numbers of aligned pairs between the tools.
A more precise analysis of these values showed that AlfaPang+ was able to find 96-99%
of the pairs found by pggb. Moreover both AlfaPang+ and pggb were able to found more
than 97.9% and 98.5 % of the pairs found by Minigraph-Cactus, respectively. Thus, the
differences between pair sets are mainly due to the differences in sensitivity to sequence
similarity between tools.

Table 4 Total number of base pairs in nodes (in 106 bp).

Dataset Alfapang+ pggb mg Input size
3 S. cerevisia 16 12.61 17.03 18.59 192.04
S. cerevisia 32 13.64 20.73 26.54 384.52
S. cerevisia 64 15.32 26.52 38.58 769.61
S. cerevisia 118 16.74 29.56 53.67 1416.23
E. coli 50 14.02 19.01 28.89 249.52
E. coli 100 14.91 20.20 43.61 539.83
E. coli 200 19.64 27.37 67.28 1050.67
E. coli 400 25.43 68.21 90.75 2027.21

A. Cicherski, A. Lisiecka, and N. Dojer 23:15

Table 5 Number of aligned positions pairs (in 109). A pair of positions from input sequences is
aligned in a graph if they are both represented by the same position in a label of the same vertex.

AlfaPang+ pggb Minigraph-Cactus
S. cerevisia 16 2.2 1.52 1.26
S. cerevisia 32 8.47 6.33 5.14
S. cerevisia 64 34.76 25.81 21.00
S. cerevisia 118 121 90.95 71.50
E. coli50 5.55 5.08 4.72
E. coli 100 28.51 25.31 19.04
E. coli 200 107.76 92.37 73.70
E. coli 400 503.56 343.97 298.79

Table 6 The estimated values of the Jaccard index between sets of aligned pairs. The numbers
in parentheses are the estimated ratios of the number of common aligned pairs in both graphs to
the numbers of aligned pairs found by the first and second tool, respectively.

pggb vs Minigraph-Cactus Minigraph-Cactus vs
AlfaPang+ vs AlfaPang+ pggb

S. cerevisia 16 68.3 (99.1, 68.7) 60.6 (99.4, 61.7) 86.6 (99.3, 87.5)
S. cerevisia 32 73.9 (98.5, 73.7) 63.5 (99.2, 64.6) 84.7 (99.2, 85.7)
S. cerevisia 64 70.8 (97.3, 72.2) 62.6 (99.0, 63.8) 84.3 (99.0, 85.3)
S. cerevisia 118 69.7 (95.7, 71.9) 61.3 (98.9, 62.5) 81.8 (99.0, 82.9)
E. coli 50 88.5 (98.3, 89.9) 82.7 (98.5, 83.8) 91.3 (99.1, 92.1)
E. coli 100 82.7 (96.3, 85.5) 65.6 (98.7, 66.0) 74.3 (99.1, 74.6)
E. coli 200 79.7 (96.1, 82.4) 66.4 (98.2, 67.1) 78.3 (98.9, 78.9)
E. coli 400 65.4 (97.5, 66.5) 57.3 (97.9, 58.0) 84.5 (98.5, 85.6)

6 Conclusion

We presented AlfaPang – a novel algorithm for building pangenome graphs. Unlike alternative
algorithms, AlfaPang constructs graphs with their structure strictly defined by the k-
completeness and k-faithfulness properties introduced in [5]. AlfaPang’s runtime and memory
usage scales linearly with the number of genomes, allowing it to process much larger sets
of genomes than state-of-the-art alternatives such as wfmash+seqwish. Replacing the latter
with AlfaPang in the pggb pipeline results in output graphs with similar properties in
terms of graph structure, but with a larger number of aligned genome residues. Although
the decision whether or not given fragments of genomic sequences should be aligned in a
pangenome graph is somewhat arbitrary, this fact reflects the high sensitivity of AlfaPang
to sequence similarity.

Another state-of-the-art pangenome graph builder tool, Minigraph-Cactus, substantially
differs from both pggb and AlfaPang in the assumptions on how the pangenome graph should
look like. First, it does not align neither paralogs (i.e. similar sequence fragments in the same
genome) nor homologuous sequences that in different genomes occur on different chromosomes.
Second, it requires the user to choose a reference genome. This choice highly influences the
output graph, as it may ignore similarity between fragments of non-reference genomes that
have no homologs in the reference. Both design assumptions make it possible to reduce the
number of sequence alignments necessary to build the graph, which consequently allows

WABI 2024

23:16 AlfaPang: Alignment Free Pangenome Construction

Minigraph-Cactus to provide much better computational efficiency than pggb. However,
the alignment-free approach of AlfaPang allows even higher reduction, especially in terms of
required memory.

The close relationship between the variation graphs constructed by AlfaPang and the
de Bruijn graphs provides a bridge between both pangenome models. On the other hand,
this is a limitation of the AlfaPang approach, as the structure of resulting graphs resembles
the structure of de Bruijn graphs with their drawbacks, such as excessive entanglement in
areas representing low-complexity sequence regions. Such entanglement is removed in the
refinement step of the AlfaPang+ pipeline by the smoothxg tool. However, due to high
AlfaPang efficiency, this step dominates the whole AlfaPang+ computation time (∼ 95%
on all datasets). Perhaps more precise tuning of the smoothxg parameters would allow to
reduce this time without affecting the output. More substantial reduction would probably
require incorporation of the refinement procedure in the graph building process of AlfaPang.

References

1 Francesco Andreace, Pierre Lechat, Yoann Dufresne, and Rayan Chikhi. Comparing methods
for constructing and representing human pangenome graphs. Genome Biology, 24(1), 2023.
doi:10.1186/s13059-023-03098-2.

2 Jasmijn A. Baaijens, Paola Bonizzoni, Christina Boucher, Gianluca Della Vedova, Yuri
Pirola, Raffaella Rizzi, and Jouni Sirén. Computational graph pangenomics: a tutorial on
data structures and their applications. Nat. Comput., 21(1):81–108, 2022. doi:10.1007/
s11047-022-09882-6.

3 Jasmijn A Baaijens, Bastiaan Van der Roest, Johannes Köster, Leen Stougie, and Alexander
Schönhuth. Full-length de novo viral quasispecies assembly through variation graph con-
struction. Bioinformatics, 35(24):5086–5094, December 2019. doi:10.1093/bioinformatics/
btz443.

4 Adam Cicherski. AlfaPang. Software, version 1.0., This work was supported by the
National Science Centre, Poland, under grant number 2022/47/B/ST6/03154, swhId:
swh:1:dir:e8a27a620673d796d0701ab29a39aa2383bece22 (visited on 2024-08-16). URL:
https://github.com/AdamCicherski/AlfaPang.

5 Adam Cicherski and Norbert Dojer. From de bruijn graphs to variation graphs – relationships
between pangenome models. In Franco Maria Nardini, Nadia Pisanti, and Rossano Venturini,
editors, String Processing and Information Retrieval 2023, pages 114–128, Cham, 2023. Springer
Nature Switzerland.

6 Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises
and challenges. Brief Bioinformatics, 19(1):118–135, January 2018. doi:10.1093/bib/bbw089.

7 Dent Earl, Ngan Nguyen, Glenn Hickey, Robert S Harris, Stephen Fitzgerald, Kathryn Beal,
Igor Seledtsov, Vladimir Molodtsov, Brian J Raney, Hiram Clawson, Jaebum Kim, Carsten
Kemena, Jia-Ming Chang, Ionas Erb, Alexander Poliakov, Minmei Hou, Javier Herrero,
William James Kent, Victor Solovyev, Aaron E Darling, Jian Ma, Cedric Notredame, Michael
Brudno, Inna Dubchak, David Haussler, and Benedict Paten. Alignathon: a competitive
assessment of whole-genome alignment methods. Genome Res, 24(12):2077–2089, October
2014.

8 Jack Edmonds and Ellis L. Johnson. Matching: A well-solved class of integer linear programs.
In Michael Jünger, Gerhard Reinelt, Giovanni Rinaldi, Gerhard Goos, Juris Hartmanis, and
Jan van Leeuwen, editors, Combinatorial optimization —eureka, you shrink! papers dedicated
to jack edmonds 5th international workshop aussois, france, march 5–9, 2001 revised papers,
volume 2570 of Lecture notes in computer science, pages 27–30. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003. doi:10.1007/3-540-36478-1_3.

https://doi.org/10.1186/s13059-023-03098-2
https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://archive.softwareheritage.org/swh:1:dir:e8a27a620673d796d0701ab29a39aa2383bece22;origin=https://github.com/AdamCicherski/AlfaPang;visit=swh:1:snp:5649c0cf7d3bf4a80af4c9d378609327f55eb365;anchor=swh:1:rev:817d39e4b8b301cd7fe69957d55371ae145396aa
https://github.com/AdamCicherski/AlfaPang
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1007/3-540-36478-1_3

A. Cicherski, A. Lisiecka, and N. Dojer 23:17

9 Jordan M Eizenga, Adam M Novak, Jonas A Sibbesen, Simon Heumos, Ali Ghaffaari,
Glenn Hickey, Xian Chang, Josiah D Seaman, Robin Rounthwaite, Jana Ebler, Mikko
Rautiainen, Shilpa Garg, Benedict Paten, Tobias Marschall, Jouni Sirén, and Erik Gar-
rison. Pangenome graphs. Annu Rev Genomics Hum Genet, 21:139–162, August 2020.
doi:10.1146/annurev-genom-120219-080406.

10 Shilpa Garg, Renzo Balboa, and Josiah Kuja. Chromosome-scale haplotype-resolved pangenom-
ics. Trends in Genetics, 38(11):1103–1107, November 2022. doi:10.1016/j.tig.2022.06.011.

11 Erik Garrison and Andrea Guarracino. Unbiased pangenome graphs. Bioinformatics, 39(1),
January 2023. doi:10.1093/bioinformatics/btac743.

12 Erik Garrison, Andrea Guarracino, Simon Heumos, Flavia Villani, Zhigui Bao, Lorenzo
Tattini, Jörg Hagmann, Sebastian Vorbrugg, Santiago Marco-Sola, Christian Kubica, David G.
Ashbrook, Kaisa Thorell, Rachel L. Rusholme-Pilcher, Gianni Liti, Emilio Rudbeck, Sven
Nahnsen, Zuyu Yang, Mwaniki N. Moses, Franklin L. Nobrega, Yi Wu, Hao Chen, Joep
de Ligt, Peter H. Sudmant, Nicole Soranzo, Vincenza Colonna, Robert W. Williams, and Pjotr
Prins. Building pangenome graphs. bioRxiv, 2023. doi:10.1101/2023.04.05.535718.

13 Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T Dawson,
William Jones, Shilpa Garg, Charles Markello, Michael F Lin, Benedict Paten, and Richard
Durbin. Variation graph toolkit improves read mapping by representing genetic variation in
the reference. Nat Biotechnol, 36(9):875–879, October 2018. doi:10.1038/nbt.4227.

14 Andrea Guarracino, Simon Heumos, Sven Nahnsen, Pjotr Prins, and Erik Garrison. ODGI:
understanding pangenome graphs. Bioinformatics, 38(13):3319–3326, June 2022. doi:10.
1093/bioinformatics/btac308.

15 Glenn Hickey, Jean Monlong, Jana Ebler, Adam M. Novak, Jordan M. Eizenga, Yan Gao,
Haley J. Abel, Lucinda L. Antonacci-Fulton, Mobin Asri, Gunjan Baid, Carl A. Baker,
Anastasiya Belyaeva, Konstantinos Billis, Guillaume Bourque, Silvia Buonaiuto, Andrew
Carroll, Mark J. P. Chaisson, Pi-Chuan Chang, Xian H. Chang, Haoyu Cheng, Justin Chu,
Sarah Cody, Vincenza Colonna, Daniel E. Cook, Robert M. Cook-Deegan, Omar E. Cornejo,
Mark Diekhans, Daniel Doerr, Peter Ebert, Jana Ebler, Evan E. Eichler, Susan Fairley,
Olivier Fedrigo, Adam L. Felsenfeld, Xiaowen Feng, Christian Fischer, Paul Flicek, Giulio
Formenti, Adam Frankish, Robert S. Fulton, Shilpa Garg, Erik Garrison, Nanibaa’ A. Garrison,
Carlos Garcia Giron, Richard E. Green, Cristian Groza, Andrea Guarracino, Leanne Haggerty,
Ira M. Hall, William T. Harvey, Marina Haukness, David Haussler, Simon Heumos, Kendra
Hoekzema, Thibaut Hourlier, Kerstin Howe, Miten Jain, Erich D. Jarvis, Hanlee P. Ji, Eimear E.
Kenny, Barbara A. Koenig, Alexey Kolesnikov, Jan O. Korbel, Jennifer Kordosky, Sergey Koren,
HoJoon Lee, Alexandra P. Lewis, Wen-Wei Liao, Shuangjia Lu, Tsung-Yu Lu, Julian K. Lucas,
Hugo Magalhães, Santiago Marco-Sola, Pierre Marijon, Charles Markello, Tobias Marschall,
Fergal J. Martin, Ann McCartney, Jennifer McDaniel, Karen H. Miga, Matthew W. Mitchell,
Jacquelyn Mountcastle, Katherine M. Munson, Moses Njagi Mwaniki, Maria Nattestad, Sergey
Nurk, Hugh E. Olsen, Nathan D. Olson, Trevor Pesout, Adam M. Phillippy, Alice B. Popejoy,
David Porubsky, Pjotr Prins, Daniela Puiu, Mikko Rautiainen, Allison A. Regier, Arang
Rhie, Samuel Sacco, Ashley D. Sanders, Valerie A. Schneider, Baergen I. Schultz, Kishwar
Shafin, Jonas A. Sibbesen, Jouni Sirén, Michael W. Smith, Heidi J. Sofia, Ahmad N. Abou
Tayoun, Françoise Thibaud-Nissen, Chad Tomlinson, Francesca Floriana Tricomi, Flavia
Villani, Mitchell R. Vollger, Justin Wagner, Brian Walenz, Ting Wang, Jonathan M. D. Wood,
Aleksey V. Zimin, Justin M. Zook, Tobias Marschall, Heng Li, and Benedict Paten. Pangenome
graph construction from genome alignments with minigraph-cactus. Nature Biotechnology,
42(4):663–673, May 2023. doi:10.1038/s41587-023-01793-w.

16 Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of
colored and compacted de bruijn graphs. Genome Biology, 21(1), September 2020. doi:
10.1186/s13059-020-02135-8.

WABI 2024

https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1016/j.tig.2022.06.011
https://doi.org/10.1093/bioinformatics/btac743
https://doi.org/10.1101/2023.04.05.535718
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1093/bioinformatics/btac308
https://doi.org/10.1093/bioinformatics/btac308
https://doi.org/10.1038/s41587-023-01793-w
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8

23:18 AlfaPang: Alignment Free Pangenome Construction

17 Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel and low-memory compaction of de
Bruijn graphs from large-scale genome collections. Bioinformatics, 37(Supplement_1):i177–
i186, July 2021. doi:10.1093/bioinformatics/btab309.

18 Ilia Minkin, Son Pham, and Paul Medvedev. TwoPaCo: an efficient algorithm to build the
compacted de bruijn graph from many complete genomes. Bioinformatics, 33(24):4024–4032,
December 2017. doi:10.1093/bioinformatics/btw609.

19 Samuel O’Donnell, Jia-Xing Yue, Omar Abou Saada, Nicolas Agier, Claudia Caradec, Thomas
Cokelaer, Matteo De Chiara, Stéphane Delmas, Fabien Dutreux, Téo Fournier, Anne Friedrich,
Etienne Kornobis, Jing Li, Zepu Miao, Lorenzo Tattini, Joseph Schacherer, Gianni Liti,
and Gilles Fischer. Telomere-to-telomere assemblies of 142 strains characterize the genome
structural landscape in saccharomyces cerevisiae. Nature Genetics, 55(8):1390–1399, August
2023. doi:10.1038/s41588-023-01459-y.

20 Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison. Genome graphs and
the evolution of genome inference. Genome Res, 27(5):665–676, May 2017. doi:10.1101/gr.
214155.116.

21 Mikko Rautiainen and Tobias Marschall. GraphAligner: rapid and versatile sequence-to-graph
alignment. Genome Biol, 21(1):253, September 2020. doi:10.1186/s13059-020-02157-2.

https://doi.org/10.1093/bioinformatics/btab309
https://doi.org/10.1093/bioinformatics/btw609
https://doi.org/10.1038/s41588-023-01459-y
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1186/s13059-020-02157-2

	1 Introduction
	2 Representing sequences with variation graphs
	2.1 Directed variation graphs
	2.2 Representations of collections of sequences
	2.3 Bidirected variation graphs

	3 AlfaPang algorithm
	3.1 Algorithm overview
	3.2 Compact graph representation
	3.3 Unbranched paths compactness
	3.4 Algorithm complexity
	3.5 Code availability

	4 Design of experiments
	4.1 Datasets and parameter setting
	4.2 Compared algorithms and criteria

	5 Results
	5.1 Performance comparison
	5.2 Graphs topology
	5.3 Graphs similarity

	6 Conclusion

