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Abstract
The phylogenies of species and the genes they contain are similar but distinct, due to evolutionary
events that affect genes but do not create new species. These events include gene duplication and
loss, but also paralog exchange (non-allelic homologous recombination), where duplicate copies of
a gene recombine. To account for paralog exchange, the evolutionary history of the genes must
be represented in the form of a phylogenetic network. We reconstruct the interlinked evolution of
the genes and species with reconciliations, which map the gene network into the species tree by
explicitly accounting for these events. In previous work, we proposed the problem of reconciling a
gene network and a species tree, but did not find an efficient solution for a general gene network. In
this paper, we develop such a solution, and prove that it solves the most parsimonious reconciliation
problem. Our algorithm is exponential only in the level of the gene network (with a base of 2), and
we demonstrate that it is a practical solution through simulations. This allows, for the first time, a
fine-grained study of the paralogy/orthology relationship between genes along their sequences.
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1 Introduction

It is now well-established that the evolutionary histories of species and the genes they contain,
although related, may differ. These discrepancies may be due to several causes, such as gene
duplication and loss, lateral genetic transfer, and incomplete lineage sorting. Analysing the
differences between the phylogenies of genes and species can give insights into the evolutionary
forces shaping them both.

Two central problems in this area are those of reconciliation and species tree inference.
In the former, we start with known phylogenies of both gene and species, and attempt to
reconstruct a scenario which explains the differences between the two, using a number of
specified gene evolution processes. In the latter, we start with several known gene phylogenies,
and attempt to reconstruct a species tree by combining the information they contain. We will
focus on the reconciliation problem in this paper. The two main paradigms of reconciliation
inference are parsimony, where each evolutionary event is assigned a cost and the total cost
minimised, and probabilistic, where the likelihood of the reconciliation under a statistical
model of gene evolution is maximised. We focus on the parsimony paradigm here.

The most parsimonious reconciliation problem has a long history dating back to Goodman
et al. [10]. Early models accounted only for gene duplication and loss, resulting in a model
that was easy to solve with the lowest common ancestor (LCA) mapping [25], but not
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always realistic. These reconciliation models enabled the determination of whether genes
within a family are paralogous or orthologous, with corresponding functional implications,
by determining if their LCA is inferred to be a duplication or a speciation.

Subsequent models (such as [8]) also included lateral genetic transfer, increasing both
their realism and the complexity of their solution. More recent models also account for
further events and processes such as incomplete lineage sorting [20, 23, 4, 17], segmental du-
plications [7], gene conversion [13], transfer with replacement [12], and “failure to diverge” [9].
A review of recent developments in the field can be found in [19].

As models have increased in realism, there has been a growing awareness of the role that
reticulate evolution has played in shaping gene and species histories. Such evolution cannot
be represented in tree-like structures; instead, evolutionary histories must be represented by
phylogenetic networks [15]. Some reconciliation algorithms have been devised for models
where reticulations in the species phylogeny represent hybridisation [22] or lateral transfer [21]
events. However, relatively little consideration (in phylogenetics) has been made of the fact
that there is also reticulate evolution at the gene level.

Reticulate evolution in genes is well-studied in population genetics, where the evolutionary
history of a recombining set of genes is expressed in the form of the Ancestral Recombination
Graph (ARG; [11]). Inference of the ARG has long been considered a challenging problem,
but recent developments (see [16, 2] for reviews) have made it possible to infer ARGs on a
massive scale: some methods claim to be able to infer ARGs from genome-scale sequences
for 105–106 individuals. These methods typically study allelic recombination within a single
panmictic population, although some (e.g., ARGWeaver-D [14]) can also work with a known
structured history of a small number of populations (typically a much smaller number than
in a reconciliation study).

In [5], we suggested that another significant but underappreciated reticulate evolutionary
process at the gene level is that of paralog exchange (or non-allelic homologous recombination).
This process enables the diversification of gene duplicates, which can increase the fitness of
the organism; for example, the duration of malaria infection is related to the diversity of the
var genes of the malaria parasite Plasmodium falciparum [6]). We proposed the problem of
reconciling a gene network to a species tree, taking into account gene duplication, loss, and
paralog exchange (see Figure 1 for an example). We found that under certain conditions
(that the gene network is tree-child), the problem could be solved efficiently by means of the
so-called “LCA-HCA mapping”, an extension of the traditional LCA mapping. However, we
were not able to formulate an algorithm to efficiently solve the problem for a general gene
network.

In this paper, a sequel to [5], we now provide an efficient algorithm to solve the problem
of finding a most parsimonious reconciliation between a general gene network and a species
tree. Although the theoretical difficulty of the problem is an open question, it shares some
characteristics with known NP-hard problems in phylogenetics, in particular the dependence
between gene lineages that prevents the use of standard dynamic programming methods.
Our algorithm is exponential only in the level of the gene network, typically a much smaller
number than the number of reticulations [1]. We perform simulations to show that this is a
practical method for solving the network-tree reconciliation problem.

This also allows us, for the first time, to study the paralogy/orthology relationships
between genes in a network. In particular, because a pair of genes may now have more than
one LCA along their sequence, it is now possible that they may be paralogous in some parts
of the sequence and orthologous in others, rather than necessarily being one or the other for
the whole sequence. This opens the door to the fine-grained study of gene functions along
their sequences.
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(a) Gene network. (b) Species tree. (c) Reconciliation.

Figure 1 An example of a reconciliation between a gene network and a species tree. Gene nodes
are mapped into the species tree to form the reconciliation. Each divergence node in the gene network
can be mapped as either a duplication (square) or a speciation (divergence), while reticulations
(triangle) must be between contemporary gene lineages in the same species. Losses (crosses) do not
appear in the gene network and must immediately follow a speciation in the reconciliation.

2 Notation and preliminaries

We use the same notation as that of [5], reproduced here (with minor alterations) for
completeness.

A phylogenetic network N on a label set X is a rooted, directed acyclic graph, containing
nodes of four types:

a root node has indegree 0 and outdegree 2;
a divergence node has indegree 1 and outdegree 2;
a reticulation node has indegree 2 and outdegree 1;
a leaf node has indegree 1 and outdegree 0, and is labelled by an element of X .

We consider root nodes to also be divergence nodes. We generally consider networks with
a unique root node, although this is not necessary for the definition. This is commonly
referred to as a binary phylogenetic network in the literature, but we drop the “binary” for
the purposes of brevity. A phylogenetic tree is a phylogenetic network with no reticulation
nodes.

For a network N , the sets of its nodes, branches, and leaves are denoted by V (N), E(N),
and L(N) respectively. The label of each leaf u ∈ L(N) is denoted by L(u). The root node
of N is denoted by r(N).

For a non-root node u ∈ V (N), we denote its parents by {up, uq}, where uq is undefined
for nodes of indegree 1. The parents of a reticulation node are arbitrarily ordered. Likewise,
the children of a non-leaf node u ∈ V (N) are denoted by {ul, ur}, where ur is undefined for
nodes of outdegree 1, and the children are arbitrarily ordered otherwise. Given two nodes
u, v ∈ V (N), we write u ≤N v (u <N v) if there exists a directed path from v to u in N

(and u ̸= v). We will drop the subscript N where it is clear. Two nodes u, v ∈ V (N) are
comparable if u ≤ v or vice versa.

The (unique) edge above a non-reticulation node u ∈ V (N) is denoted by e(u). We also
include (for technical reasons) an artificial edge above the root node r(N), with child r(N)
and no parent. Two edges (u1, v1), (u2, v2) ∈ E(N) are comparable if they lie on the same
directed path from the root, i.e., u2 ≤ v1, or v2 ≤ u1, or the edges are identical.

WABI 2024
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For a tree T , for a node v ∈ V (T ), Tv is the subtree of T consisting of v and all its
descendants. (A similar concept can be defined for networks.) Given a set of leaf nodes
C ⊆ L(T ), the lowest common ancestor (LCA) of C, denoted LCA(C), is the unique minimal
node u ∈ V (T ) such that u ≥ v for all v ∈ C. For two nodes u, v ∈ V (T ), the distance
d(u, v) is the number of edges on the unique path from u to v (although u and v need not be
comparable, we only use d for comparable nodes).

A set of edges E ⊆ E(N) is a cut set of N if its removal separates N into more than one
connected component. For a cut set E, NE is the network forest (set of networks) resulting
from replacing all parent nodes of edges in E by separate root nodes, and taking the networks
consisting only of these nodes and all their descendants (this may result in networks that
have multiple root nodes).

A network is biconnected if removing any node does not disconnect the network. We do
not consider the graph with two nodes and a single edge to be biconnected. A biconnected
component of a network is a maximal subnetwork which is biconnected. It is well-known [15]
that any network can be expressed as a tree of its biconnected components. A biconnected
component B must have a unique root node, denoted r(B). The set of edges from nodes in
B to nodes not in B is denoted out(B). A level-k network has at most k reticulation nodes
in each biconnected component. A tree-child network [3] is a network in which every internal
node has at least one child which is not a reticulation node.

A gene network (tree) is a phylogenetic network (tree) where each leaf node represents
an extant gene in a gene family. Similarly, a species network (tree) is a phylogenetic network
(tree) where each leaf node represents an extant species. Given a gene network/tree G and
species network/tree S, each extant gene is associated to the species that contains it by a
function s : L(G) → L(S), called the species labelling. For clarity, we will conventionally
refer to the nodes of a gene network/tree as nodes and the nodes of a species network/tree
as vertices.

Given a gene network G, species tree S, species labelling s, and a gene node v ∈ V (G),
we define LCA(v) to be LCA(s(L(Gv))); that is, the lowest common ancestor of all species
containing descendants of the gene v.

A reconciliation and its cost are formally defined as follows.

▶ Definition 1 (Reconciliation, [5]). Let G be a gene network and S a corresponding species
tree, with s the species labelling between G and S. A reconciliation between G and S is
a function tuple (f, ϵ), where f : V (G) → V (S) and ϵ : V (G) → {S,D,R,C} satisfy the
following conditions for all v ∈ V (G):

If v is a divergence node, then either:
ϵ(v) = S and f(vl) ≤ f(v)l and f(vr) ≤ f(v)r, or vice versa (speciation); or
ϵ(v) = D and f(vl), f(vr) ≤ f(v) (duplication);

If v is a reticulation node, then ϵ(v) = R and f(vl) ≤ f(v);
If v is a leaf node, then ϵ(v) = C and f(v) = s(v).

▶ Definition 2 (Cost of a reconciliation, [5]). Let G be a gene network and S a corresponding
species tree. Given a reconciliation (f, ϵ) between G and S, and costs δ, λ ≥ 0 for duplications
and losses respectively, the cost of the reconciliation is c(f, ϵ) = n · δ + m · λ, where n is
the number of duplications and m is the number of losses in the reconciliation. These are
calculated by:

n =
∣∣{v ∈ V (G) | ϵ(v) = D}

∣∣;
m =

∑
(u,v)∈E(G)

[
d(f(u), f(v)) − I(ϵ(u) = S)

]
, where I(x) = 1 if x is true and 0 otherwise.
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We note that reticulations have no cost as their number is fixed by the gene network.
The LCA-HCA (“lowest common ancestor – highest common ancestor”) mapping is a

specific reconciliation, defined as follows.

▶ Definition 3 (LCA-HCA mapping, [5]). Let G be a gene network and S a corresponding
species tree, with s the species labelling between G and S. Define a reconciliation (f, ϵ) in the
following way:
1. For all leaf nodes v ∈ V (G), set f(v) = s(v) and ϵ(v) = C.
2. For all divergence nodes v ∈ V (G), set f(v) = LCA(v). If LCA(v) > LCA(vl), LCA(vr),

then set ϵ(v) = S. Otherwise, set ϵ(v) = D.
3. Order the reticulation nodes of G in descending order, so that each node comes after all

of its ancestors. For all reticulation nodes v ∈ V (G) in this order, set f(v) to be the
maximal vertex such that:

f(v) ≥ LCA(v);
for u ∈ {vp, vq}, if ϵ(u) = S then f(v) < f(u); otherwise, f(v) ≤ f(u).

Set ϵ(v) = R.
We call the reconciliation defined this way the LCA-HCA mapping between G and S.

In this paper, we study the problem of finding a most parsimonious reconciliation between
a gene network and species tree.

▶ Problem 4 (Most Parsimonious Reconciliation, MPR, [5]). Given a gene network G and a
corresponding species tree S, and costs δ, λ ≥ 0 for duplications and losses respectively, find a
reconciliation between G and S with the lowest cost.

For completeness, we reproduce (in our notation) two results from [5] that will be used
below.

▶ Theorem 5 (Theorem 1, [5]). Let G be a tree-child gene network and S a corresponding
species tree. Then the LCA-HCA mapping from G to S is a most parsimonious reconciliation
between G and S.

▶ Theorem 6 (Theorem 8, [5]). Let G be a gene network and S a corresponding species tree.
Then there exists a most parsimonious reconciliation (f, ϵ) between G and S such that, for
each v ∈ V (G) which is the root of a biconnected component:

f(v) = LCA(v);
ϵ(v) = D if the biconnected component has size greater than 1.

3 The algorithm

3.1 Description
We now formulate an algorithm to calculate the MPR between a gene network G and species
tree S. This algorithm essentially uses the idea of “ancestral configurations” [24] in that it
performs dynamic programming on the branches of the species tree, in contrast to standard
reconciliation algorithms (e.g., for the DTL problem) which perform dynamic programming
on the branches of the gene tree. As the gene phylogeny is a network, the latter approach no
longer works.

For a set of gene branches E ⊆ E(G), we define c(E, x) to be the current minimum cost
of a reconciliation of the network forest GE to the species subtree Sx, where each edge in E

is “mapped” to the edge above x; that is, for (u, v) ∈ E, f(u) = xp and f(v) ≤ x. Intuitively,

WABI 2024
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(a) Contracting a divergence. (b) Expanding a reticulation.

Figure 2 Possible operations for an edge set E mapped to a species x, resulting in a new edge
set E′.

we can think of this as the cost of a partial reconciliation, where only gene nodes below
E have assigned mappings into S, and must be mapped at x or below. We calculate this
quantity recursively.

Firstly, from Theorem 6 we know that the root of each biconnected component of
G must always be mapped to its LCA, so we can calculate the reconciliation (and thus
the optimal cost) of each biconnected component separately. We thus calculate the cost
c({e(r(B))}, LCA(r(B))) for each biconnected component B in bottom-up order. The initial
condition for leaves (which are always biconnected components of size 1) is trivial, as they
must be mapped to the corresponding species leaf with cost 0 (i.e., if v ∈ L(G), then
c({e(v)}, s(v)) = 0).

Now consider a biconnected component B; from Theorem 5, we know that if B is tree-
child, then the LCA-HCA mapping is an optimal reconciliation for the nodes of B, and thus
the cost of its mapping can be easily found. Otherwise, we can assume that for each out-edge
e = (u, v) ∈ out(B), the cost c({e}, LCA(v)) has been found by recursion. We now proceed
by dynamic programming on the vertices of the species tree. At each species tree vertex
x ∈ V (S), if we have calculated a cost c(E, x), we recursively calculate further costs at x in
two ways:

Contract a divergence (Figure 2a): if E contains the two child edges of a divergence node,
replace them by the parent edge of that node and add a cost of δ, resulting in a new edge
set E′. This corresponds to placing that node as a duplication on the species branch
above x.
Expand a reticulation (Figure 2b): if E contains the child edge of a reticulation node,
replace it by the two parent edges of that node, resulting in a new edge set E′. This
corresponds to placing that node on the species branch above x.

In either case, we update the minimum cost of (E′, x) if the new cost is lower than the
current minimum.

When we contract a divergence, we no longer need to consider the set E for the vertex x.
Intuitively, this is because all divergences “sink” (are placed as low as possible, subject to
the constraints of other nodes), so a divergence which can occur at a vertex will occur there.
To keep track of this, we maintain an “active set” (denoted A) of (E, x) configurations that
we must consider further. Contracting a divergence removes the original configuration (E, x)
from the active set, replacing it with the new configuration (E′, x). To maximise efficiency,
we contract all possible divergences before we expand reticulations.

On the other hand, if we expand a reticulation we must still consider the original
configuration (E, x), so we add the new configuration to the active set A but do not remove
the original. Instead, we “mark” the reticulation in the original configuration (so that we
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Figure 3 Joining two edge sets E1 and E2 mapped to the children of a species x, resulting in a
new edge set E1 ⊕ E2 mapped to x. (For neatness, losses are not shown.)

do not repeatedly expand the same reticulation). To improve efficiency, we can calculate a
set of possible mappings Mv ⊆ V (S) in an MPR for each reticulation node v ∈ V (G). This
may come, for example, from the MPNSR algorithm of [5], or simply by restricting v to be
placed no higher than the root of its biconnected component. If we expand a reticulation
and the reticulation cannot be mapped higher up in the species tree in any MPR, we can
then remove (E, x) from the active set.

Once we have calculated as many costs c(E, x) as possible at a given vertex, we proceed
up the species tree. For a given species vertex x, we can calculate initial costs from the
previously calculated costs at xl and xr. Given the costs c(E1, xl) and c(E2, xr), we merge the
two sets E1 and E2 together by first taking their union and then contracting all divergences
that arise from the union; we call the resulting set E1 ⊕ E2 (Figure 3; formal definition
below). These divergences are assigned as speciations at x, and as before must occur for
the reconciliation to be most parsimonious. To yield the cost c(E1 ⊕ E2, x), we must add
one loss for each edge in E1 ⊕ E2 that is in either E1 or E2 (and thus must proceed with a
speciation-loss event to a child of x). We must additionally add any out-edges of B which
are known to be mapped to x.

▶ Definition 7. Let E1, E2 ⊆ E(G). Let

V = {v ∈ V (G) | (v, vl) ∈ E1 and (v, vr) ∈ E2 or vice versa}.

Then we define

E1 ⊕ E2 := E1 ∪ E2 ∪ {(vp, v) | v ∈ V } \ {(v, vl), (v, vr) | v ∈ V }.

This recursion proceeds until we have mapped the root biconnected component; then
c({e(r(G))}, LCA(r(G))) is the cost of an MPR from G to S. The MPR itself can then be
found through standard back-tracking. Formal pseudocode for this algorithm is given in
Algorithm 1.

3.2 Proof of correctness
We now show formally that the algorithm works as claimed. We first require some results on
the configurations (E, x) that are added to A.

WABI 2024
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Algorithm 1 Given a gene network G and a corresponding species tree S, return the cost of an
MPR between G and S.

1: for each reticulation node v ∈ V (G) do
2: calculate a set of possible mappings Mv ⊆ V (S)
3: end for

4: for each v ∈ L(G) do
5: c({e(v)}, s(v))← 0
6: end for

7: for each biconnected component B ⊆ V (G) with B ̸⊆ L(G) in bottom-up order do
8: if B is tree-child then
9: c({e(r(B))}, LCA(r(B))) ← cost of LCA-HCA mapping for nodes of B + costs of

descendant biconnected components
10: goto line 7
11: end if

12: A← ∅
13: for each x ∈ V (S) with x ≤ LCA(r(B)) in bottom-up order do
14: Ex ← {(u, v) ∈ out(B) |LCA(v) = x}
15: if x ∈ L(S) then
16: c(Ex, x)←

∑
e∈Ex

c({e}, x)

17: add (Ex, x) to A (even if Ex = ∅)
18: else
19: for each (E1, xl), (E2, xr) ∈ A do
20: c((E1 ⊕ E2) ∪ Ex, x) ← c(E1, xl) + c(E2, xr) + (2|E1 ⊕ E2| − |E1| − |E2|) · λ +∑

e∈Ex

c({e}, x)

21: add ((E1 ⊕ E2) ∪ Ex, x) to A

22: end for
23: end if
24: repeat
25: while ∃(E, x) ∈ A s.t. (u, ul), (u, ur) ∈ E, u ∈ V (G) is a divergence node do
26: E′ ← {(up, u)} ∪ E \ {(u, ul), (u, ur)}
27: c(E′, x)← min(c(E′, x), c(E, x) + δ)
28: add (E′, x) to A

29: remove (E, x) from A

30: end while
31: if ∃(E, x) ∈ A s.t. (u, ul) ∈ E is unmarked, u ∈ V (G) is a reticulation node then
32: E′ ← {(up, u), (uq, u)} ∪ E \ {(u, ul)}
33: c(E′, x)← min(c(E′, x), c(E, x))
34: add (E′, x) to A

35: if x = max(Mu) then
36: remove (E, x) from A

37: else
38: mark (u, ul) in (E, x)
39: end if
40: end if
41: until A does not change
42: end for
43: end for

44: return c({e(r(G))}, LCA(r(G)))
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▶ Lemma 8. If (E, x) ∈ A at any stage of Algorithm 1, then:
1. for all (u, v) ∈ E, LCA(v) ≤ x;
2. E is either ∅ or a cut set of the gene network G;
3. E separates r(B) and all nodes v ∈ V (G) such that (u, v) ∈ out(B) and LCA(v) ≤ x;
4. edges in E are non-comparable.

Proof. We show this by induction on the elements of A in the order they are added. Consider
an arbitrary biconnected component B. The initial elements of A are (Ex, x) as defined on
line 14 for all x ∈ L(S). If Ex = ∅, clearly all properties but the third are satisfied, and by
definition there are no nodes such that (u, v) ∈ out(B) and LCA(v) ≤ x, so property 3 is
also satisfied. Otherwise, Ex consists of a number of out-edges (u, v) of B with LCA(v) = x.
By virtue of the fact that B is a biconnected component, any set of its out-edges forms a cut
set of G, so E is a cut set of G that separates r(B) and all v such that (u, v) ∈ out(B) and
LCA(v) ≤ x. Thus the first 3 properties hold, and since out-edges of B are non-comparable,
property 4 also holds.

Now suppose that the lemma holds for all (E, x) ∈ A added up to some point. There are
two possibilities for adding a new (E′, x) to A, for the same species vertex x. The first one
(line 28) has E′ identical to E except for the removal of two edges (u, ul) and (u, ur), and
the addition of the edge (up, u) for some divergence node u. Since LCA(ul), LCA(ur) ≤ x,
then LCA(u) ≤ x, so property 1 holds. Clearly if E is a cut set of G, then E′ is as well;
furthermore, E′ separates the same out-edges of B from r(B) as E does, so properties 2 and
3 hold. Lastly, if an edge in E′ is comparable to (up, u), then it must be comparable to either
(u, ul) or (u, ur), causing a contradiction, so property 4 holds. Hence the lemma holds for
(E′, x).

The second possibility (line 34) has E′ identical to E except for the removal of an edge
(u, ul) and the addition of the edges (up, u) and (uq, u) for some reticulation node u. Again,
we have LCA(u) = LCA(ul) ≤ x, and it is clear that if E is a cut set of G, then E′ is as well,
and E′ separates the same out-edges of B from r(B). Finally, if an edge in E′ is comparable
to (up, u) or (uq, u), then it is comparable to (u, ul). Thus the lemma holds for (E′, x).

Finally, if (E1, xl), (E2, xr) ∈ A, then ((E1 ⊕ E2) ∪ Ex, x) is added to A (line 21). All
edges (u, v) in E1, E2, or Ex have LCA(v) ≤ x from the induction assumption, and E1 ⊕ E2
is derived from E1 ∪ E2 by a series of operations similar to line 26. By similar reasoning to
above, property 1 holds for all edges in (E1 ⊕ E2) ∪ Ex.

By the induction assumption, E1 and E2 are cut sets of G, and we have shown above
that Ex is also a cut set. By construction, E1 ∪ E2 is a cut set, and from similar reasoning
to above, E1 ⊕ E2 is a cut set, and thus so is (E1 ⊕ E2) ∪ Ex, so property 2 holds.

Furthermore, E1 separates r(B) and all nodes v such that (u, v) ∈ out(B) and LCA(v) ≤
xl, E2 separates r(B) and all nodes v such that (u, v) ∈ out(B) and LCA(v) ≤ xr, and
Ex separates r(B) and all nodes v such that (u, v) ∈ out(B) and LCA(v) = x. Hence
(E1 ⊕ E2) ∪ Ex separates r(B) and all nodes v such that (u, v) ∈ out(B) and LCA(v) ≤ x,
so property 3 holds.

Lastly, E1 only contains edges (u, v) such that LCA(v) ≤ xl, and E2 only contains edges
(u, v) such that LCA(v) ≤ xr. Since Ex only contains out-edges (u, v) of B with LCA(v) = x,
edges in Ex are non-comparable to edges in E1 and E2. Hence all edges in (E1 ⊕ E2) ∪ Ex

are non-comparable, and property 4 holds.
Therefore the lemma holds for ((E1 ⊕E2)∪Ex, x), and the result follows by induction. ◀
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Note that if E is a cut set of G, then the gene subnetwork forest GE is well-defined, and
thus so is the cost c(E, x). We define the terminology “(f, ϵ) maps E to x” as meaning that
for all (u, v) ∈ E, f(v) ≤ x, and either f(u) ≥ x for ϵ(u) ̸= S or f(u) > x for ϵ(u) = S. We
can consider that each configuration (E, x) in the active set A represents all (f, ϵ) that map
E to x.

▶ Theorem 9. Algorithm 1 returns the cost of an MPR between G and S.

Proof. Consider an arbitrary non-leaf biconnected component B (line 7). We claim that
after each species vertex x is processed (line 13), then if (E, x) ∈ A, c(E, x) is set to the
minimal cost to reconcile the gene subnetwork forest GE to the species subtree Sx.

First consider a version of Algorithm 1 with no configurations removed from A (lines 29
and 36), and moreover at line 21 also adds all configurations (E′, x) for all V ′ ⊆ V , where
we define V as in Definition 7, and

E′ := E1 ∪ E2 \ {(v, vl), (v, vr) | v ∈ V ′} ∪ {(vp, v) | v ∈ V ′} ∪ Ex.

For each configuration (E, x) ∈ A, this version of Algorithm 1 simply considers all possible
events (divergences, reticulations, and speciations) that could happen immediately above
E, and adds the resulting configuration to A. It is thus a standard dynamic programming
algorithm which returns the cost of an MPR between G and S.

To show that Algorithm 1 as written also returns the cost of an MPR, we need to show
that the configurations that are removed from (or not added to) A cannot contribute to a
most parsimonious reconciliation, other than to lead to configurations that have already been
added to A. In other words, we need to show the following three lemmas:

▶ Lemma 10. If (f, ϵ) is an MPR between G and S that maps E to x, and (u, ul), (u, ur) ∈ E

for a divergence node u ∈ V (G), then f(u) = x and ϵ(u) = D.

Proof. Suppose that f(u) = y > x. Consider the reconciliation (f ′, ϵ) where f ′(u) = x and
f ′(v) = f(v) for all other v ∈ V (G). By assumption, f ′(ul), f ′(ur) ≤ x, so this is a valid
reconciliation. Also, since f(u) > x ≥ LCA(u), we know that ϵ(u) = D.

Now (f, ϵ) has 2d(y, x) more losses than (f ′, ϵ) on the the branches (u, ul) and (u, ur), and
d(y, x) fewer losses on the branch (up, u). Hence c(f, ϵ) > c(f ′, ϵ), a contradiction. Therefore
f(u) = x. If ϵ(u) = S, then we require f(u) > x, so ϵ(u) = D. ◀

▶ Lemma 11. If (f, ϵ) is an MPR between G and S that maps E to x, (u, ul) ∈ E for a
reticulation node u ∈ V (G), and x = max(Mu), then f(u) = x.

Proof. By assumption, we must have f(u) ≥ x, but by definition of Mu, f(u) ∈ Mu. Hence
f(u) = x. ◀

▶ Lemma 12. If (f, ϵ) is an MPR between G and S that maps E1 to xl and E2 to xr, and
{(u, ul), (u, ur)} ∈ {E1, E2} for a divergence node u ∈ V (G), then f(u) = x and ϵ(u) = S.

Proof. Suppose that f(u) = y ≥ x and ϵ(u) = D. Consider the reconciliation (f ′, ϵ′) where
f ′(u) = x and ϵ′(u) = S, and f ′(v) = f(v), ϵ′(v) = ϵ(v) for all other v ∈ V (G). By
assumption, f ′(ul), f ′(ur) < x, so this is a valid reconciliation.

Now (f ′, ϵ′) has one fewer duplication than (f, ϵ) and 2(d(y, x) + 1) fewer losses on the
branches (u, ul) and (u, ur). Conversely, it has d(y, x) more losses on the branch (up, u).
Hence c(f, ϵ) > c(f ′, ϵ), a contradiction. Hence ϵ(u) = S, which forces f(u) = x. ◀
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These three lemmas show that the configurations that are removed from A do not
eliminate any reconciliations which are most parsimonious. Hence Algorithm 1 returns the
cost of an MPR between G and S. ◀

3.3 Efficiency
We now show that the algorithm is exponential in the level of the gene network. Although it
has been shown [1] that any algorithm that is fixed-parameter tractable in the number of
reticulations is also fixed-parameter tractable in the level of the network, the level is typically
a much smaller number in practice.

▶ Theorem 13. Algorithm 1 runs in O(|G||S|2k) time, where k is the level of the network G.

Proof. Consider an arbitrary non-leaf biconnected component B with r reticulation nodes.
After each species vertex x is processed (line 13), from Lemma 8, if (E, x) ∈ A, then E is a
cut set of G which separates r(B) and all out-edges (u, v) of B where LCA(v) ≤ x.

We claim that E is completely determined by which reticulation nodes in B it separates
from r(B). For a given E, let R be the set of reticulation nodes which E does not separate
from r(B). (Note that R may be empty, for example if B has no reticulation nodes.) Let
E′ be the set {(u, v) | u ∈ B, LCA(v) ≤ x, v ̸≥ R}, where v ̸≥ R means that there exists no
r ∈ R where v ≥ r. We will show that E is the set of maximal edges of E′.

To show this, assume that this is not the case. By construction, E′ contains all possible
edges that could be in E, under the conditions that E is mapped to x and does not separate
R from r(B), and so E ⊆ E′. Therefore, there must be an edge in E which is not maximal in
E′. Let e be such an edge which is minimal according to its parent node, i.e., e = (u, v) ∈ E

and there is no edge (u′, v′) ∈ E which is not maximal in E′ with u > u′. There are now two
possibilities:

u is a reticulation node. Then either u ∈ R, in which case e is maximal in E′ (a
contradiction), or u ̸∈ R, in which case there must exist an edge in E separating r(B)
from u. This edge is comparable to e, a contradiction.
u is a divergence node. We must have LCA(u) ≤ x, as otherwise e would be maximal
in E′. Now consider the sibling edge of (u, v), which we denote (u, v′). By assumption
that e is minimal according to its parent node, no strict descendants of (u, v′) are in
E. Similarly, no ancestors of (u, v′) are in E, as they are comparable to e. However,
LCA(v′) ≤ LCA(u) ≤ x, so (u, v′) is the ancestor of at least one out-edge (u′′, v′′) of B

where LCA(v′′) ≤ x. From Lemma 8, we know that E separates r(B) and this edge,
which means that (u, v′) ∈ E. But since both (u, v) and (u, v′) are in E, we can contract
the divergence u and remove (E, x) from A, a contradiction.

Hence E is the set of maximal edges of E′, and the claim is proved. Since there are r

reticulation nodes in B, there are at most 2r possible choices of R, and thus at most 2r

possible choices for E for a given x.
Now, there are at most |G| biconnected components, for each of which we process |S|

species vertices, at each of which we calculate c(E, x) for at most 2k sets, where k is the level
of G. The result follows. ◀

4 Simulation results

To test the algorithm, we perform some simulations. We first simulate a species tree of m

species using a Yule (pure-birth) process with a birth rate of 1. Then we simulate a gene
network within the species tree using a birth-and-death process as follows. We begin with a
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single gene lineage at the root of the species tree. At any time, a gene lineage may duplicate
(independently of other lineages) at a constant rate of D (events per unit time), or be lost at
a constant rate of L. If the last gene lineage is lost, we re-simulate the gene network from
the beginning. In addition, if there are k > 1 gene lineages in a species, then at a constant
rate of R(k − 1), two lineages from that species are randomly selected to recombine, with a
breakpoint chosen uniformly at random from the sequence interval, taken to be [0, 1]. When
a species speciates, all gene lineages contained in that species diverge into both child species.

After simulating the gene network, we then reconcile it to the species tree with costs of
δ = λ = 1. (If the algorithm takes longer than 10 minutes, we terminate it to keep simulations
tractable; this occurred in less than 5% of cases at any parameter setting, and usually not
at all.) We then compare the reconciled gene network to the true history by considering
each event type in turn, examining all events of that type in the true reconciliation, and
determining the proportions of these events that are:

assigned the correct event type (reticulations are always assigned the correct event type);

correctly placed in the species tree;

both assigned the correct event type and correctly placed in the species tree.

In addition, for each pair of extant genes, we determine the paralogy/orthology relationship
between the pair by tracing their LCAs in the gene network. Due to recombinations, there
may be more than one LCA, but there is always exactly one LCA for any point in the sequence
interval. If an LCA is a duplication event, the pair is considered to be paralogous at that
point in the sequence, and if it is a speciation, the pair is considered to be orthologous. We
calculate the segments of paralogy/orthology for each gene pair and determine the proportion
of the total sequence length for which this relationship is correctly inferred.

We first study the case where the duplication and loss rates vary, but are constrained to
be equal, and the recombination rate is held fixed. Figure 4 shows the results for the values
m = 10, D = L ∈ [0, 1], R = 0.5, and 1000 replicates for each parameter setting. (Although
the species tree is quite small, the ability to have both duplication and recombination events
means that the gene network space is unbounded, and indeed the largest gene network in these
simulations contains 123 leaves and 161 events.) We see that in all cases, all types of events
are very accurately inferred, with over 90% of duplication events inferred with the correct
type and placed in the correct location in the species tree; likewise for reticulation events (by
definition, they are always inferred with the correct type). Speciation events are inferred even
more precisely, with virtually all of them correctly inferred. As expected, accuracy decreases
as the duplication and loss rate increase. Likewise, paralogy/orthology relationships are
very accurately inferred; on average, the correct relationship is inferred for over 96% of the
sequence interval, with accuracy again decreasing with increasing duplication/loss rate.

Next, we study the case where the duplication and recombination rates vary, but are
constrained to be equal, and the loss rate is held fixed. Figure 5 shows the results for m = 10,
D = R ∈ [0, 1], L = 0.5, and 1000 replicates for each parameter setting. As above, all
events are very accurately inferred (over 90% in all cases), as are the paralogy/orthology
relationships (over 98% in all cases). Interestingly, accuracy increases rather than decreases
for increasing duplication/recombination rate. A possible explanation for this is that while
losses induce a topological discordance between the gene network and species tree, this is
less true for recombinations, since both lineages that recombine are still present in the gene
network. Thus, increasing the loss rate results in decreasing accuracy, but the same is not
true for the recombination rate.
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Figure 4 The average proportion of (a)–(c) correctly inferred events and (d) correctly inferred
paralogy/orthology for equal duplication and loss rates. Error bars are twice the standard error for
1000 replicates.
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Figure 5 The average proportion of (a)–(c) correctly inferred events and (d) correctly inferred
paralogy/orthology for equal duplication and recombination rates. Error bars are twice the standard
error for 1000 replicates.
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5 Discussion

In this paper, we re-examine the problem of the reconciliation of a gene network to a species
tree. We devise an algorithm that finds the most parsimonious reconciliation for a general
gene network, and show that it is exponential in the level of the network. Simulations
show that this is a practical and efficient algorithm to solve the network-tree reconciliation
problem.

The benefit of this approach is that it allows a fine-grained comparison of paralogy/ortho-
logy relationships between genes. By acknowledging the process of paralog exchange, we now
see that it is possible for genes to be partially paralogous and partially orthologous along
their sequences. Our reconciliation algorithm allows us to recover these relationships and
thus study their functional implications at a deeper level.

The paradigm used in our algorithm is different from the traditional dynamic programming
approaches used for e.g., DTL reconciliations; instead of recursing on the branches of the
gene tree, we recurse on the branches of the species tree. The former approach, while used
widely, fails in many models where gene lineages are dependent. In addition to the gene
network model, this also includes many of the models mentioned in the Introduction, such as
segmental duplications or incomplete lineage sorting. It has been proven that many of these
models are NP-hard, although the difficulty of the gene network problem itself is an open
question. Our work here provides another avenue to approach these problems in a tractable
manner.

Our algorithm takes costs δ and λ for duplications and losses as input, but does not specify
how to choose them. This is a common issue for parsimonious reconciliation models, where
one potential approach is to explore the space of these costs to determine Pareto-optimal
reconciliations [18]. These reconciliations are typically computed using the traditional
dynamic programming framework, so further work is needed to calculate them for the
network-tree problem.

There still remains the problem of how to reconstruct the gene network in the first
place. Phylogenetic network reconstruction methods are still relatively inefficient, and
more pertinently aim to reconstruct a species network, rather than a gene network. ARG
reconstruction methods seem more likely, and recent dramatic advances in their efficiency
allow the inference of such gene networks at scale. However, more must be done in order
to infer them across larger evolutionary distances and in particular over large numbers of
species. Our reconciliation method may aid in this direction by allowing a species tree-aware
method to relate (and thus score) a prospective gene network to the species tree.

Finally, a logical extension of this method is to the case where both gene and species
phylogenies are in the form of networks, which is the subject of future work.

Data availability

All code used in the simulations is available at
https://github.com/yao-ban/network-tree-reconciliation.
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