
MEM-Based Pangenome Indexing for k-mer
Queries
Stephen Hwang #

XDBio Program,
Johns Hopkins University, Baltimore, MD, USA

Nathaniel K. Brown #

Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Omar Y. Ahmed #

Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Katharine M. Jenike #

Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Sam Kovaka #

Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Michael C. Schatz #

Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Ben Langmead1 #

Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Abstract
Pangenomes are growing in number and size, thanks to the prevalence of high-quality long-read
assemblies. However, current methods for studying sequence composition and conservation within
pangenomes have limitations. Methods based on graph pangenomes require a computationally
expensive multiple-alignment step, which can leave out some variation. Indexes based on k-mers
and de Bruijn graphs are limited to answering questions at a specific substring length k. We present
Maximal Exact Match Ordered (MEMO), a pangenome indexing method based on maximal exact
matches (MEMs) between sequences. A single MEMO index can handle arbitrary-length queries over
pangenomic windows. MEMO enables both queries that test k-mer presence/absence (membership
queries) and that count the number of genomes containing k-mers in a window (conservation queries).
MEMO’s index for a pangenome of 89 human autosomal haplotypes fits in 2.04 GB, 8.8× smaller
than a comparable KMC3 index and 11.4× smaller than a PanKmer index. MEMO indexes can
be made smaller by sacrificing some counting resolution, with our decile-resolution HPRC index
reaching 0.67 GB. MEMO can conduct a conservation query for 31-mers over the human leukocyte
antigen locus in 13.89 seconds, 2.5× faster than other approaches. MEMO’s small index size, lack of
k-mer length dependence, and efficient queries make it a flexible tool for studying and visualizing
substring conservation in pangenomes.

2012 ACM Subject Classification Applied computing → Computational genomics

Keywords and phrases Pangenomics, Comparative genomics, Compressed indexing

Digital Object Identifier 10.4230/LIPIcs.WABI.2024.4

Supplementary Material Software (Source Code):
https://github.com/StephenHwang/MEMO [9]

archived at swh:1:dir:793f47e3260ebae1887b07175fe3087c8e93d1f8
Software (Experiments performed for paper):
https://github.com/StephenHwang/MEMO_experiments [10]

archived at swh:1:dir:d69ad61b0d1d563b3945a978b1396fd81be04732

Funding This work was carried out at the Advanced Research Computing at Hopkins (ARCH) core
facility (rockfish.jhu.edu), supported by the National Science Foundation (NSF) grant OAC 1920103.
Stephen Hwang: Johns Hopkins University, XDBio Program.

1 Corresponding author

© Stephen Hwang, Nathaniel K. Brown, Omar Y. Ahmed, Katharine M. Jenike, Sam Kovaka,
Michael C. Schatz, and Ben Langmead;
licensed under Creative Commons License CC-BY 4.0

24th International Workshop on Algorithms in Bioinformatics (WABI 2024).
Editors: Solon P. Pissis and Wing-Kin Sung; Article No. 4; pp. 4:1–4:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shwang45@jh.edu
https://orcid.org/0000-0003-0299-569X
mailto:nbrown99@jh.edu
https://orcid.org/0000-0002-6201-2301
mailto:oahmed6@jh.edu
https://orcid.org/0000-0002-9933-8508
mailto:kjenike1@jh.edu
https://orcid.org/0000-0002-7276-8110
mailto:skovaka1@jh.edu
https://orcid.org/0000-0002-4835-8023
mailto:mschatz@cs.jhu.edu
https://orcid.org/0000-0002-4118-4446
mailto:langmea@cs.jhu.edu
https://orcid.org/0000-0003-2437-1976
https://doi.org/10.4230/LIPIcs.WABI.2024.4
https://github.com/StephenHwang/MEMO
https://github.com/StephenHwang/MEMO
https://archive.softwareheritage.org/swh:1:dir:793f47e3260ebae1887b07175fe3087c8e93d1f8;origin=https://github.com/StephenHwang/MEMO;visit=swh:1:snp:b23bfa6e000a68e85c5b91961d022de194b4b86b;anchor=swh:1:rev:d61a1a995b8027ae3d3dbe449502e952321f7217
https://github.com/StephenHwang/MEMO_experiments
https://github.com/StephenHwang/MEMO_experiments
https://archive.softwareheritage.org/swh:1:dir:d69ad61b0d1d563b3945a978b1396fd81be04732;origin=https://github.com/StephenHwang/MEMO_experiments;visit=swh:1:snp:c6a9c4193f1f39f83e8987cf1f9dda2ad2fc3e2d;anchor=swh:1:rev:b47d8f5f8a1d7ff511dad707c79f168feef8469f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 MEM-Based Pangenome Indexing for k-mer Queries

Nathaniel K. Brown: Johns Hopkins University Computer Science PhD Fellowship.
Omar Y. Ahmed: R01HG011392 and R35GM139602 to BL.
Katharine M. Jenike: NSF grant 2216612, NIH grant U01CA253481, and HFSP award RGP0025/2021
to MCS.
Sam Kovaka: NSF grant 2216612, NIH grant U01CA253481, and HFSP award RGP0025/2021 to
MCS.
Michael C. Schatz: NSF grant 2216612, NIH grant U01CA253481, and HFSP award RGP0025/2021
to MCS.
Ben Langmead: R01HG011392 and R35GM139602 to BL.

Acknowledgements We thank Christina Boucher for helpful conversations.

1 Introduction

There is a growing availability of pangenomes, including the Human Pangenome Reference
Consortium (HPRC, n=94), the Vertebrate Genomes Project (VGP, n=16), and a recent
pangenome for Arabidopsis thaliana (n=69) [30, 24, 19]. Pangenomes enable new ways of
studying and visualizing variation, as well as the degree to which genomic sequences are
conserved [27]. K-mers have proven to be a powerful tool for factoring, representing and
indexing genomes. They have been used to power genome-wide association studies in plants
such as barley and soybean [11, 16, 13], to identify single-copy genes in pangenomes [8, 11],
and to study sequence conservation [4].

However, to date, indexing methods based on k-mers or de Bruijn Graphs require the
value k to be set at index building time, limiting future queries to use that value of k only.
PanKmer [4] supports only 31-mer queries, whereas length-31 substrings may not be the
correct resolution at which to understand conservation across all genes or pangenomes [21].
Further, k-mer-based indexes can be large; e.g. an index consisting of a separate 31-mer
KMC3 database [14] for each haplotype in the HPRC requires 1.26 TB.

Alternative methods for indexing pangenomes also have drawbacks. Graph-based methods
start with a computationally difficult reference-graph construction step. Accurate multiple
alignments are difficult to create, requiring that some difficult repetitive sequences be masked
first (e.g. the “dna-brnn” regions of the HPRC [30]).

Here we depart from the idea of a fixed length-k index by expanding on the notion of a
“sequence landscape,” a vector of lengths of half-maximal exact matches between a query
and reference text [6, 5, 26]. When computed between two sequences, a sequence landscape
is equivalent to a vector of matching statistics (MS) lengths, from which maximal exact
matches (MEMs) can be derived [25]. While MSs and MEMs have been applied successfully
to classification [1, 2], they have not yet been used to index pangenomes.

We present a maximal exact match (MEM)-based compressed indexing approach called
MEMO (Maximal Exact Match Ordered), along with new concepts enabling both lossless and
lossy pangenome indexes. MEMO indexes MEMs between a “pivot” genome selected from
the pangenome with respect to all the other genomes. MEMO can then answer any-length
k-mer queries for k-mers drawn from the pivot.

MEMO builds from a few methodological principles. First, the MEMs indexed by MEMO
are sufficient for answering any k-mer membership or conservation query for any k as long
as the k-mer is from the pivot. Second: it is also sufficient to store only the intervals
representing overlaps between consecutive MEMs, helping to reduce index size. Third: we
also use a variation on MEMs called “order-MEMs”, obtained by re-sorting the values in the
matching statistics vectors. Order-MEMs speed up conservation queries both by enabling
early stopping, i.e. the ability to return a correct answer after examining some but not all of
the orders, and by enabling lossy compression as described below.

S. Hwang et al. 4:3

We also introduce two ideas to further reduce index size with lossy compression. The
first builds on the use of order-MEMs; once arranged as orders, we can discard some orders –
and potentially a large fraction of the MEM intervals – as long as the user is satisfied with
coarse-grained answers to conservation queries. A coarse-grained answer does not convey
the exact number of genomes in which a substring occurs, but could instead return e.g. the
largest percentage such that the substring occurs in at least 10%, 20%, . . . , 90% or 100% of
the genomes (a “decile conservation query”). The second idea builds on the observation that
if we limit the user to making k-mer queries where k is greater than a threshold length t,
we can reduce the index size further by discarding MEMs with length ≤ t. If we operate
using MEM overlaps rather than MEMs themselves, we can apply an inverted version of
that principle; i.e. we can enable k-mer queries for k less than a threshold length t while
discarding MEM overlaps greater than a threshold length.

Finally, we offer the practical insight that indexes over pangenomic MEMs – as well as
the variants discussed here – are quite compressible, due both to the inherent repetitiveness
of pangenomes, and to the inherent inefficiency of how offsets and lengths are stored in BED
files. This compression is not exploited when intervals are simply placed in BED files, nor is
it well exploited by standard compression approaches compressing BED files, such as gzip or
tabix [17]. Approaches that use columnar compression such as Apache Parquet [29] are key
to achieving the needed degree of compression while still enabling fast queries.

Here we test MEMO by comparing its index size and query speed to existing k-mer-based
methods for membership and conservation queries. We find that MEMO consistently yields
the smallest index size, sometimes orders of magnitude smaller than those from comparable
approaches. We show how MEMO’s index scales well to large pangenomes, and that its lossy
and lossless strategies for reducing index size were effective, ultimately fitting the HPRC index
for coarse-grained conservation queries in less than 1 GB. Finally, we demonstrate MEMO’s
utility in visualizing and exploring sequence conservation in a pangenome by visualizing
sequence conservation in the region of the human genome containing the Human Leukocyte
Antigen (HLA) genes.

2 Methods

2.1 Methods Overview
MEMO is a pangenome index enabling arbitrary-length k-mer membership and conservation
queries. If the pangenome consists of N genome sequences, a k-mer membership query
returns a length-N vector of true/false values indicating the presence/absence of the k-mer
in each genome. A k-mer conservation query returns the number of genomes that the k-mer
occurs in, which is an integer in [1, N]. Both membership and conservation queries are
limited to k-mers that occur in a particular genome, called the “pivot.” Thus, a membership
query will always return at least one “true” value (for the pivot) and the conservation query
result will always return a value ≥ 1.

The index works by pre-computing and indexing the MEMs between one of the genomes
(the “pivot”) and all the others. The user may pose queries using only k-mers from the pivot;
i.e. the user specifies the interval within the pivot containing the query k-mers. The index
answers such queries by examining whether and how the query intervals overlap the indexed
MEM intervals. Some pangenomes will have a natural choice of pivot. For example, the
T2T-CHM13 assembly is the most complete [22]. But this is also a limitation of the MEMO
approach; when there is more than one natural pivot, the user may need to build multiple
indexes for multiple choices of pivot.

WABI 2024

4:4 MEM-Based Pangenome Indexing for k-mer Queries

Figure 1 MEMO index outline. A Numbers below the pattern (i.e. pivot genome) are matching
statistic (MS) lengths with respect to the Text (i.e. other genome). Triangles represent MS positions
and lengths. MS peak lengths are bolded; these correspond to maximal exact matches (MEMs).
B Presence/absence of the Pattern’s k-mers depicted as green and red rectangles. Grey triangles
represent overlaps between consecutive MEMs. C Order-MEM creation from a pangenome. Top left:
Sequences of anchor genome (G1) and genomes (G2-G5). Top right: MSs matrix of match lengths
between G1 and G2-G5. Bottom: Order-MEMs found from MSs. MEM and order triangles of
G2-G5 are colored distinctly. Retained match-lengths capturing the landscape are bolded; redundant
match-lengths are translucent and discarded in the MEMO indexes. Peaks of a single order are
composed of MEMs from varying genomes. K-mer presence/absence of an example query are
depicted in green and red. The order-MEM k-mer query enables early stoppage, as depicted by the
k-mer in the dotted outline.

S. Hwang et al. 4:5

To build the index, we first compute vectors of matching statistics (MSs), also called
sequence landscapes [6], between the pivot and the other genomes (Figure 1A). This yields a
matrix of MSs, where the rows are genomes and columns are pivot coordinates (Figure 1C,
bottom). MEMs map one-to-one to peaks in the matrix, i.e. instances where one MS is not
less than the MS to its right. Presence or absence of a k-mer from pivot offset i is determined
by asking whether it falls entirely within a MEM. (Figure 1C, left middle). MEMO also
implements a complementary approach, which considers whether a k-mer contains an overlap
region between consecutive MEMs (Figure 1B) with overhang on either side, in which case it
is not present.

To answer conservation queries, MEMO uses a rearranged version of MSs, whereby the
MS matrix is first sorted along its column axis. After this, a row no longer represents MSs
with respect to a particular genome, but instead represents “order” MSs with respect to the
entire pangenome (Figure 1C, right). MEMs derived from the reorderd matrix are called
order-MEMs. A k-mer fully contained in an order-MEM from order x occurs in at least x

other genomes in the pangenome.
For all index types, MEM intervals are indexed as a columnar-compressed BED file, with

an extra column containing an identifier for the genome of origin (for membership queries)
or a number indicating the rank of the order statistic (for conservation queries).

2.2 Preparing for the MEMO index
A MEMO index is derived from an initial set of matching statistics (MS) vectors. MSs
are half-maximal exact matches between a pattern P [1..m] and text T [1..n] that cannot be
extended to the left without introducing a mismatch or reaching the end of a string (Figure
1A). We define the MSs of P as an array MS[1..m] where MS[j] is the length of the longest
suffix of P [1..j] occurring in T . We note that this definition of MS is reversed with respect
to how it is defined in some other work. This is because some algorithms for computing MS
naturally work in right-to-left direction. For simplicity, we will define and discuss MS[1..m]
as though it is computed left-to-right.

By definition, successive values of MS[1..m] have the sawtooth property:

▶ Lemma 1. MS[j] − MS[j − 1] ≤ 1 , j ∈ (2, m]

On a collection of genomes G = [G1, G2, ..., Gt], MEMO factors the index building process
into (t − 1)-pairwise comparisons between the pivot genome P = G1 and each of the other
(t − 1)-genomes. MEMO uses MONI to compute these MS vectors [25]. Specifically, MEMO
builds a MONI index over each genome and its reverse-complement sequence, appending $ to
the end of each sequence in order to mark boundaries. MEMO then queries the pivot against
each index to find MSs. These MSs are arranged in a m x t − 1 matrix. While MEMO uses
MONI, any tool capable of finding all MEMs or matching statistics could be used, such as
SPUMONI [1] or MUMmer [20].

2.3 MEMO index
2.3.1 MEMO index with genome annotation
The full vector of matching statistics can be more concisely represented as a vector of MEMs.
A MEM is an exact substring match between the genomes that cannot be extended left
or right without introducing a mismatch or reaching the end of a genome. MEMs can be
derived from MSs and vice versa. The length MS[j] at position j is a MEM if and only if:

MS[j] ≥ MS[j + 1], j ∈ [1, m), or j = m

WABI 2024

4:6 MEM-Based Pangenome Indexing for k-mer Queries

In other words, a one-to-one mapping exists between MEM and “peaks“ of the sawtooth
(Figure 1A), where the above expression defines a peak.

MEMO finds all MEMs between the pivot and each other genome in this way. Also,
MEMO computes and stores the overlaps between consecutive MEMs, which we call “overlap
MEMs.” These are illustrated in Figure 1B. Overlap MEMs are stored as zero-indexed,
half-open intervals (i.e. with the low offset being inclusive and the high offset being exclusive)
in a columnarly-compressed BED file. For example, a row in the BED file “chr1 3 8 4“
specifies positions 3 up to and including 7 of chromosome 1 of pivot genome G1 share
consecutive overlap MEMs to genome G4. Overlaps between adjoining consecutive MEMs,
where one MEM ends exactly where the next MEM starts, are stored as an interval with the
same value for its start and end.

2.3.2 MEMO index with order annotation

MEMO can also index and perform conservation queries with respect to “order-MEMs.” For
the pangenome G = [G1, G2, ..., Gt], we define a matching-statistics matrix L[1..t][1..m] such
that L[i] = MS[1..m] with respect to T = Gi and P = G1. We define the order-matching-
statistics (order MS) matrix O[1..t][1..m] as the result of sorting L along its columns in
descending order, such that O[1][j] ≥ O[2][j] ≥ . . . ≥ O[t][j] (Figure 1C, bottom). Though
the rows of O are not defined the same way as those of L, it is notable that order-MSs also
have the sawtooth property:

▶ Lemma 2. O[i][j] − O[i][j − 1] ≤ 1 for i ∈ [1, t], j ∈ (1, m]

Proof. By sorted order of O, there can be at most i entries in O[1..t][j − 1] strictly greater
than O[i][j − 1]. Let π be the permutation that sorted L[1..t][j − 1], such that O[i][j − 1] =
L[π−1(i)][j − 1]. Then for any i′ < i, Lemma 1 ensures O[i′][j − 1] + 1 ≥ L[π−1(i)][j]. Since
these values are then sorted in O[1..t][j] it follows that there are at most i entries in O[1..t][j]
strictly greater than O[i][j − 1] + 1, guaranteeing that O[i][j] ≤ O[i][j − 1] + 1, and hence
O[i][j] − O[i][j − 1] ≤ 1. ◀

We use a similar formulation to extract “order-MEMs” from O as we do for finding
MEMs from MSs. That is, O[i][j] at position j is a ith order peak if and only if: O[i][j] ≥
O[i][j + 1], j ∈ [1, m) or j = m. For conservation queries, MEMO computes and indexes
overlaps between consecutive order-MEMs. These order-MEM overlaps are encoded as
genomic intervals in a BED file, similar to Methods 2.3.1, but with the interval’s annotation
set to its order (i.e. row in the O matrix) instead of its genome ID. For example, a row in
the BED file “chr1 3 8 2“ specifies positions 3 up to and including 7 of chromosome 1 of
pivot genome G1 share consecutive 2nd-order overlap MEMs.

There is no one-to-one correspondence between MEM peaks and order-MEM peaks of O.
As depicted in the match lengths at the bottom of Figure 1C, the 10th column of the MS
matrix contains one length-3 blue peak while the corresponding 10th column of O contains
two peaks–one length-3 peak and one length-2 peak. For visual explanation, ties of equal
length MSs are resolved by genome priority, but the colors of O in Figure 1C are not indexed.
The orignating genome is discarded in the MEMO-C index. The original MS landscape
cannot be reconstructed from the order MEMs, but the color-originating genome information
is superfluous for an exact conservation query.

S. Hwang et al. 4:7

2.4 Quantile-sampled conservation indexes
Conservation queries do not always need to be answered at full resolution. The HPRC
pangenome includes around 90 human haplotypes; the difference in conservation level
between a k-mer that occurs in exactly 71 genomes versus one that occurs in exactly 72
is not large, and may not be relevant to the scientific question. Also, such small relative
differences would be hard to distinguish in a visualization.

For situations where a coarser resolution is sufficient, we propose a lossy-compression
strategy called quantile sampling. Say that is sufficient for the user to learn whether a k-mer
is present in at least x% of genomes, where x is a multiple of 10, i.e. count deciles. We
subsample rows of the O matrix to include only those rows representing thresholds into the
next-highest decile. For instance, for the 89 haplotypes of the HPRC, we would sample the
8th row in O corresponding to the boundary from <10% to over 10% of the haplotypes.
Likewise, we would sample rows 17, 26, . . . , 89 of O, since these represent order-MEMs
present at the boundaries of 20%, 30%, . . . , 100% of the haplotypes. Rows of O not sampled
in this way are discarded.

Consecutive order-MEM overlaps are stored in a BED file, similar to Methods 2.3.2, but
are annotated by the decile threshold number of genomes. For example, the order-MEMs of
the 17th row in O are annotated with 9, capturing that rows 9-17 represent the 10% decile
of the 89 total haplotypes. Note that this scheme is easily adapted to any set of quantiles,
e.g. quartiles, percentiles, etc.

Columnar-compressed index

MEMO indexes are compressed and indexed using PyArrow, a Python API for Apache Arrow.
The index is stored in an Apache Parquet file [29]. A Parquet file is organized into chunks of
rows (MEMs), where rows within a chunk are laid out and compressed in a columnar fashion,
i.e. with data items arranged in column-major order. This yields a better compression ratio
than if the data were indexed in row-major order, since it brings the values most likely to be
redundant (e.g. MEM starting coordinates) into closer proximity.

Parquet supports efficient column-wise queries, compression, and decompression. Columns
of a MEM index are compressed using the ZSTD codec. Rows are factored into blocks such
that a single block occupies about 0.5 GB.

While other compression and indexing methods, such as bgzip and tabix [18], could
be used instead of Parquet and ZSTD, we found this combination to provide excellent
compression and speed in practice, as seen in the Results.

2.5 Queries
Say we have already computed the matching statistics for pivot genome G1 with respect
to another genome G2. Given the matching statistics, we can collect the start and end
coordinates of all of the MEMs, storing these in an interval-based data structure. By the
definition of a MEM, we know that a k-mer G1[i..i + k − 1], is present in G2 if and only if
and only if the interval [i, i + k − 1] is entirely contained in a MEM. This is true regardless
of k; that is, we can answer arbitrary-length presence/absence queries for G1’s substrings
with respect to G2 using only the MEM intervals.

Given an array of all the MEMs in order according to their starting coordinate, we can
derive a second array of “overlap-MEMs.” Specifically, from a consecutive pair of MEMs
[i, i + ℓ − 1], [j, j + ℓ′ − 1] where j > i, we derive a single overlap MEM [j, i + ℓ − 1]. We can
perform presence/absence queries with respect to overlap MEMs:

WABI 2024

4:8 MEM-Based Pangenome Indexing for k-mer Queries

▶ Lemma 3. Consider a k-mer interval from G1 [i, i+k −1]. If there exists an overlap-MEM
interval [j, j + ℓ − 1] such that i < j and i + k > j + ℓ, then the k-mer is not present in G2.

Proof. By definition of a MEM, we know that the k-mer at interval [i, i + k − 1] is present
in G2 if and only if it is entirely contained within a MEM. Also by definition of a MEM, a
MEM interval cannot contain another MEM interval.

If there exists an overlap-MEM [j, j + ℓ − 1] such that i < j and i + k > j + ℓ, then
the k-mer interval [i, i + k − 1] is contained in neither the leftmost nor the rightmost of the
two MEMs that created the overlap-MEM. Because these MEMs were consecutive, no other
MEM exists that could span the k-mer interval. ◀

Therefore, we have two distinct ways to test for the presence/absence of a k-mer from G1:
(a) we can test whether the k-mer interval is entirely contained in a MEM, in which case it
is present, or (b) we can test whether the k-mer interval spans an overlap-MEM including
“overhang” on both sides, in which case it is not present. In practice, we generalize the query
from pivot G1 to genome G2 to all (t − 1)-genomes (G2, ..., Gt) of the pangenome. A single
index file contains all the MEM intervals – each interval annotated by document ID or order.

We apply the substring presence/absence query on overlap MEMs for the k-mer member-
ship query:

▶ Lemma 4. For G1[i : j] and length k, yield G1[x : x + k − 1] in Gn for x ∈ [i, j − k],
n ∈ [2, t]

MEMO can compute arbitrary k k-mer presence/absence on any substring q of the pivot
of the t-genome membership index M . Membership intervals m of M are defined by a start,
end, and genome_id: (m.start, m.end, m.genome_id). The query region q is defined by a
start and end: (q.start, q.end).

Algorithm 1 MEMO - Membership query.

1: procedure Membership(M , q, k, t)
2: A = ones([t, q.end - q.start]) ▷ Initialize t-vectors of 1s the length of query.
3: for m in M do
4: if m in q then ▷ If membership interval overlaps query region
5: end = m.end - (k - 1)
6: if end < m.start then
7: A[m.genome_id, end:m.start] = 0
8: end if
9: end if

10: end for
11: return A
12: end procedure

Likewise, MEMO applies the substring presence/absence query on order-MEMs for the
conservation query problem:

▶ Lemma 5. For G1[i : j] and length k, yield
∑t

n=2(G1[x : x+k −1] in Gn) for x ∈ [i, j −k]

MEMO uses a similar algorithm as its membership query (Algorithm 1) for the conserva-
tion query, but outputs the last order a k-mer is present in. Conservation intervals c of C

are defined by a start, end, and order: (c.start, c.end, c.order).

S. Hwang et al. 4:9

Algorithm 2 MEMO - Conservation query.

1: procedure Conservation(C, q, k, t)
2: A = zeros([t, q.end - q.start]) ▷ Initialize t-vectors of 0s the length of query.
3: for c in C do
4: if c in q then ▷ If conservation interval overlaps query region
5: end = c.end - (k - 1)
6: if end < c.start then
7: A[c.order, end:c.start] = 1
8: end if
9: end if

10: end for
11: return A.argmax() ▷ Per-column argmax
12: end procedure

2.6 KMC3 index and query
We use KMC3 as a comparison to MEMO’s membership and conservation queries [14]. For the
KMC3 membership index, we created a KMC3 database for each genome in the pangenome
with the count of each canonical k-mer present transformed to 1. The KMC3 membership
query uses samtools faidx to isolate the query substring from the query FASTA and KMC3
API’s GetCountersForRead function to query each k-mer in the substring against each
KMC3 database.

The KMC3 database for the conservation query is constructed by taking the union/sum
of each of the genome-specific KMC3 databases. That is, the count associated with a
k-mer in the joined database is the sum of presence/absence values in each genome. This
straightforwardly provides answers to conservation queries.

3 Results

We compared MEMO index sizes and query speeds to k-mer-based indexes built with
PanKmer [4] and KMC3 [14]. PanKmer is a recently published tool for reference-free
pangenome analysis and stores presence/absence values of all 31-mers across the total genome
collection for each genome [4]. KMC3 is a more generic k-mer counting tool and is very
efficient in practice–used as the backbone in kmer-db’s index [7]. We adapted KMC3 for the
pangenome membership and conservation queries as described in Methods 2.6. We abbreviate
the KMC3 membership and conservation queries as KMC3-M and KMC3-C, respectively.
Likewise, we abbreviate the MEMO’s membership and conservation queries as MEMO-M and
MEMO-C. We also indexed and evaluated MEMO-C for approximate conservation counts
to the nearest decile threshold and refer to this as MEMO-DC (“DC” standing for “decile
conservation”). We refer to PanKmer’s conservation query as PanKmer; PanKmer cannot
perform the membership query.

We compared how these methods scale to two pangenomes: a human pangenome and a
vertebrate pangenome. The human pangenome is composed of the autosomal chromosomes
from 88 haplotypes from the Human Pangenome Reference Consortium (HPRC) and T2T-
CHM13 [30, 22]. We refer to this genome collection as the HPRC pangenome, even though
T2T-CHM13 is not part of the HPRC Year 1 data freeze release. The HPRC pangenome
stored in raw FASTA format is 254.46 GB. We refer to the vertebrate pangenome, composed

WABI 2024

4:10 MEM-Based Pangenome Indexing for k-mer Queries

of 16 high-quality vertebrate genomes (26.80 GB) from the Vertebrate Genomes Project’s
initial release, as the VGP pangenome [23]. Finally, we visualized sequence conservation from
MEMO-C output across the human leukocyte antigen (HLA) locus of the HPRC pangenome
as anchored to T2T-CHM13.

3.1 Indexing

Table 1 Index and query statistics of pangenome query tools. The pangenome includes 88
human autosomal haplotypes from HPRC and T2T-CHM13. Index query types include: 1. Global
presence/absence; 2. Member presence/absence; 3. Conservation; 4. Decile conservation. Query
type 4* indicates no relative size reduction in a KMC3 decile index. The decile conservation index
yields counts to the nearest lowest decile. Elapsed conservation query runtime and peak memory
usage on the HLA locus (chr6:29476949-33231258) anchored to T2T-CHM13. Time is expressed in
hours:minutes:seconds.

Method Index - HPRC Query - HLA Locus
Size (GB) Pivot Query Length Query Type Time Memory (GB)

PanKmer 23.29 any 31-mer only 1, –, 3, – 1:24:33.87 6.27
KMC3-M 1,267.20 any re-index 1, 2, 3, – 1:31:23.07 14.32
KMC3-C 18.05 any re-index 1, –, 3, 4* 0:00:35.71 18.10
MEMO-M 2.35 re-index any 1, 2, 3, – 0:00:51.15 2.69
MEMO-C 2.04 re-index any 1, –, 3, – 0:00:13.89 2.79
MEMO-DC 0.87 re-index any –, –, –, 4 0:00:08.12 2.46

The MEMO indexes were substantially smaller than equivalent k-mer-based indexes. The
MEMO index for the HPRC pangenome, using T2T-CHM13 as the pivot genome, was roughly
2 GB. The MEMO-M index was by far the smallest: 539.2× smaller than the equivalent
KMC3-M index. The MEMO-C index was 11.4× and 8.8× smaller than the equivalent
PanKmer and KMC3-C indexes respectively (Table 1).

MEMO index creation can be resource intensive. KMC index creation on the HPRC
and VGP datasets was the fastest and used the least memory (Table 3, 4). PanKmer index
creation time was comparable to MEMO. The bulk of MEMO index creation time and
memory was from MONI index creation and querying to find MSs. The total elapsed MEMO
index creation time can be ameliorated by running MONI in parallel across each genome of
the collection.

We separately measured the size of the compressed files produced using the MEMO
Parquet strategy versus the strategy of using block-based bgzip compression and tabix
indexing [17]. Parquet compression using the ZSTD codec yielded index sizes roughly 4×
smaller than those produced by bgzip and tabix (Table 2). Notably, indexing the overlapping
intervals between consecutive MEMs and order-MEMs yielded a better compression ratio
compared to indexing the MEM intervals themselves.

3.2 Pangenome scaling
MEMO enables approaches to reduce index sizes for large pangenomes. Although MEMO
has a larger scaling factor than KMC3 and PanKmer for the HPRC pangenome, MEMO
has comparable scaling to the VGP pangenome and can incorporate additional subsetting to
reduce index size.

S. Hwang et al. 4:11

Table 2 Comparison of approaches for compressing BED files (GB). MEMO-M is the compressed
overlap MEM file. MEMO-C is the compressed order overlap MEM file. Parquet is used for columnar
compression and file access, as compared to bgzip and tabix.

BED intervals Raw Parquet + ZSTD bgzip + tabix
MEM 83.87 2.62 8.81
Order-MEM 91.16 2.11 9.07
Overlap MEM 83.87 2.35 8.64
Order overlap MEM 91.16 2.04 8.99

(A) (B)

Figure 2 Index scalability of PanKmer, KMC3, and MEMO indexes. The X-axis is the number
of indexed genomes. The Y-axis is the log2 index size (GB). (A) Index scalability across 89
autosomal HPRC haplotypes, anchored to T2T-CHM13. (B) Index scalability across 16 VGP
genomes, anchored to the blenny genome.

Across 9 to 89 HPRC haplotypes, MEMO index sizes roughly increase 6.5×, but are likely
to remain under 4 GB for a large number of haplotypes. For the HPRC pangenome, KMC3
indexes scale 1.2× for KMC3-C and 9.9× for KMC3-M. A new KMC3 database must be
made for each genome for the membership query; these together compose the KMC3-M index.
PanKmer scales roughly 1.6× (Figure 2A, Table 5). Across 4 to 16 vertebrate genomes from
the VGP pangenome, MEMO indexes scale 3.8×; KMC3 indexes scale 3.6×; and PanKmer
index scale 4.0× (Figure 2B, Table 6). K-mer-based indexes scale poorly to diverse sets of
genomes as a k-mer table must store each k-mer in the union of sequences. On the other
hand, MEMO stores genome coordinates that are efficiently compressed.

The MEMO-C index sizes can further be reduced by leveraging the rank-ordered design
to yield approximate conservation counts. Subsetting indexed orders to the deciles of 89
haplotypes, reduces the MEMO-C HPRC index to 0.87 GB (Table 1). Order subsetting allows
the potential for small index sizes in larger pangenomes while still capturing pangenome
sequence divergence. Subsetting the KMC3-C database to yield counts to the nearest decile
yields no reduction in the index size since all k-mers must still be stored. PanKmer API
does not have any functionality to reduce index size.

Subsetting to overlap MEMs ≤ t restricts k-mer queries to k ≤ t + 2. In practice for the
HPRC pangenome, restricting queries to k ≤ 31 (and so discarding overlap MEMs length
> 29) reduces the number of MEM overlaps indexed by MEMO-M by 13.74% and the number
of order-MEM overlaps indexed by MEMO-C by 19.91%. Removing these larger intervals

WABI 2024

4:12 MEM-Based Pangenome Indexing for k-mer Queries

allows for better compression and results in index sizes of 1.74 GB and 1.19 GB, respectively.
Subsetting order and intervals allow MEMO two opportunities to reduce index size for larger
pangenomes – approaches that are incompatible with k-mer-based indexes. The MEMO-DC
HPRC index for conservation decile k-mer queries with k ≤ 31 is 0.66 GB.

3.3 Querying pangenome membership & conservation

MEMO queries are faster and more memory efficient than equivalent queries on k-mer-based
indexes. MEMO queries 31-mer conservation across the human leukocyte antigen (HLA)
locus on T2T-CHM13, a highly variable 3.75 Mbp region on Chromosome 6, in 13.89 seconds –
2.6× and 365.3× faster than KMC3-C and PanKmer. KMC3-C and PanKmer peak memory
usage is 5.1× and 2.2× more than MEMO-C (Table 1). The HRPC decile conservation
MEMO-DC index exhibits further query speed and memory savings. Compared to KMC3-M,
MEMO-M is 107.2× faster and uses 5.3× less peak memory. As the MEMO query runtime
is proportional to the number of overlap MEM intervals, the runtime is roughly constant
across varying-k for the same query region. On the other hand, to vary the length-k k-mer
query, KMC3 indexes require re-indexing. PanKmer can only index 31-mers.

Figure 3 Sequence conservation plot from 31-mers anchored to the T2T-CHM13 HLA locus
across the HPRC haplotypes (n=88). The user specifies a target region on the pivot, a length-k,
and a histogram bin count to visualize the proportion of genomes containing the k-mer at each
position of the query. The white area above the stacked bars represents the proportion of k-mers
found across all 89 genomes. (Top left) Zoomed-in on the HLA delta block highlights a region of low
sequence diversity. (Top right) Decile resolution of the Delta block demonstrates that MEMO-DC
yields a plot that’s largely indistinguishable from the full-fidelity plot made by MEMO-C.

MEMO allows exploring visualizations of sequence conservation from varying-k. From
MEMO-C, we visualized 31-mer conservation of the HLA locus of T2T-CHM13 across the
HPRC pangenome (Figure 3), as inspired by Panagram [12]. The HLA locus sequence
conservation plot captures known regions of high single nucleotide polymorphism density
[28, 15]. Zooming onto the HLA delta block, we found that the conservation decile count
approximation of MEMO-DC yields a similar sequence conservation plot as the full MEMO-C
resolution, yet with a 2.3× smaller index. While conservation plots can be generated from
KMC3-C and PanKmer, visualizations made using these tools will generally be limited to a
fixed value of k. Their slower query speeds restrict practical interactive exploration, while
MEMO-C’s faster query times allow interactive visualization and exploration.

S. Hwang et al. 4:13

4 Discussion

We developed MEMO, a small MEM-based pangenome index that efficiently answers arbitrary-
length k-mer membership and conservation queries. By using matching statistics as the
basis for finding MEMs, we derived the related notion of order-MEMs, which are derived
from matching statistics that have first been sorted across genomes. These ideas effectively
generalize MEMs and matching statistics to the pangenomic context while enabling extremely
small indexes.

MEMO’s fast query speed enables visual exploration of sequence conservation, especially
in complex regions where the freedom to vary the k-mer length used can help to better
understand distinct patterns of sequence conservation.

Indexing the overlapping intervals between consecutive MEMs and order-MEMs yielded a
better compression ratio compared to indexing the MEMs themselves. Columnar compression
using Parquet and ZSTD yielded roughly 4× better compression than commonly used bgzip
and tabix. These observation could have wider significance in bioinformatics; switching to
columnar compression may yield improved compression in other contexts.

MEMO’s chief limitation is the fact that a single pivot genome must be selected at index
construction time. Although pangenomes typically do have a natural pivot – i.e. a genome
that has a higher quality assembly or annotation compared to the others – there could also
be situations where no natural pivot exists. The VGP project is an example of this. In
the future, it will be important to consider designing multi-pivot generalizations of MEMO,
which could possibly benefit even more from the inherent redundancy of the pangenome.

While MEMO uses MONI to find matching statistics, MONI is not tailored to our problem.
Instead, the profile document array of Ahmed et al. could be used in the future [3]. MEMO
demonstrates the potential of MEM-based indexes over k-mer-based indexes for compressed
indexes and fast flexible queries on large pangenomes.

References
1 O. Ahmed, M. Rossi, S. Kovaka, M. C. Schatz, T. Gagie, C. Boucher, and B. Langmead.

Pan-genomic matching statistics for targeted nanopore sequencing. iScience, 24(6):102696,
June 2021.

2 O. Y. Ahmed, M. Rossi, T. Gagie, C. Boucher, and B. Langmead. SPUMONI 2: improved
classification using a pangenome index of minimizer digests. Genome Biol, 24(1):122, May
2023.

3 O.Y. Ahmed, M. Rossi, C. Boucher, and B. Langmead. Efficient taxa identification using a
pangenome index. Genome Research, 33(7):1069–1077, July 2023.

4 Anthony J Aylward, Semar Petrus, Allen Mamerto, Nolan T Hartwick, and Todd P Michael.
PanKmer: k-mer based and reference-free pangenome analysis. Bioinformatics, page btad621,
October 2023. doi:10.1093/bioinformatics/btad621.

5 W.I. Chang and E.L. Lawler. Sublinear approximate string matching and biological applications.
Algorithmica, 12(4):327–344, 1994.

6 B Clift, D Haussler, R McConnell, T D Schneider, and G D Stormo. Sequence landscapes.
Nucleic Acids Research, 14(1):141–158, January 1986. URL: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC339363/.

7 Sebastian Deorowicz, Adam Gudyś, Maciej Długosz, Marek Kokot, and Agnieszka Danek.
Kmer-db: instant evolutionary distance estimation. Bioinformatics, 35(1):133–136, January
2019. doi:10.1093/bioinformatics/bty610.

8 Pushpendra K. Gupta. GWAS for genetics of complex quantitative traits: Genome to
pangenome and SNPs to SVs and k-mers. BioEssays, 43(11):2100109, 2021. doi:10.1002/
bies.202100109.

WABI 2024

https://doi.org/10.1093/bioinformatics/btad621
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC339363/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC339363/
https://doi.org/10.1093/bioinformatics/bty610
https://doi.org/10.1002/bies.202100109
https://doi.org/10.1002/bies.202100109

4:14 MEM-Based Pangenome Indexing for k-mer Queries

9 Stephen Hwang, Nathaniel K. Brown, Omar Y. Ahmed, Katharine M. Jenike, Sam Kovaka,
Michael C. Schatz, and Ben Langmead. StephenHwang/MEMO. Software, version 1.0.0., sw-
hId: swh:1:dir:793f47e3260ebae1887b07175fe3087c8e93d1f8 (visited on 2024-08-16). URL:
https://github.com/StephenHwang/MEMO.

10 Stephen Hwang, Nathaniel K. Brown, Omar Y. Ahmed, Katharine M. Jenike, Sam Kovaka,
Michael C. Schatz, and Ben Langmead. StephenHwang/MEMO_experiments. Software, sw-
hId: swh:1:dir:d69ad61b0d1d563b3945a978b1396fd81be04732 (visited on 2024-08-16). URL:
https://github.com/StephenHwang/MEMO_experiments.

11 M. Jayakodi, S. Padmarasu, G. Haberer, V. S. Bonthala, H. Gundlach, C. Monat, T. Lux,
N. Kamal, D. Lang, A. Himmelbach, J. Ens, X. Q. Zhang, T. T. Angessa, G. Zhou, C. Tan,
C. Hill, P. Wang, M. Schreiber, L. B. Boston, C. Plott, J. Jenkins, Y. Guo, A. Fiebig, H. Budak,
D. Xu, J. Zhang, C. Wang, J. Grimwood, J. Schmutz, G. Guo, G. Zhang, K. Mochida,
T. Hirayama, K. Sato, K. J. Chalmers, P. Langridge, R. Waugh, C. J. Pozniak, U. Scholz,
K. F. X. Mayer, M. Spannagl, C. Li, M. Mascher, and N. Stein. The barley pan-genome
reveals the hidden legacy of mutation breeding. Nature, 588(7837):284–289, December 2020.

12 K. Jenike, S. Kovaka, S. Oh, S. Hwang, S. Ramakrishnan, B. Langmead, Z. Lippman, and
M.C. Schatz. Panagram: Interactive, alignment-free pan-genome browser. https://github.
com/kjenike/panagram, 2023.

13 J. H. Kim, J. S. Park, C. Y. Lee, M. G. Jeong, J. L. Xu, Y. Choi, H. W. Jung, and H. K.
Choi. Dissecting seed pigmentation-associated genomic loci and genes by employing dual
approaches of reference-based and k-mer-based GWAS with 438 Glycine accessions. PLoS
One, 15(12):e0243085, 2020.

14 M. Kokot, M. Dlugosz, and S. Deorowicz. KMC 3: counting and manipulating k-mer statistics.
Bioinformatics, 33(17):2759–2761, September 2017.

15 J. K. Kulski, S. Suzuki, and T. Shiina. Human leukocyte antigen super-locus: nexus of genomic
supergenes, SNPs, indels, transcripts, and haplotypes. Hum Genome Var, 9(1):49, December
2022.

16 M. A. Lemay, M. de Ronne, R. langer, and F. Belzile. k-mer-based GWAS enhances the
discovery of causal variants and candidate genes in soybean. Plant Genome, 16(4):e20374,
December 2023.

17 H. Li. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinform-
atics, 27(5):718–719, March 2011.

18 Heng Li. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioin-
formatics, 27(5):718–719, March 2011. doi:10.1093/bioinformatics/btq671.

19 Q. Lian, B. Huettel, B. Walkemeier, B. Mayjonade, C. Lopez-Roques, L. Gil, F. Roux,
K. Schneeberger, and R. Mercier. A pan-genome of 69 Arabidopsis thaliana accessions reveals
a conserved genome structure throughout the global species range. Nat Genet, 56(5):982–991,
May 2024.

20 G. Marçais, A. L. Delcher, A. M. Phillippy, R. Coston, S. L. Salzberg, and A. Zimin. MUMmer4:
A fast and versatile genome alignment system. PLoS Comput Biol, 14(1):e1005944, January
2018.

21 D. J. Nasko, S. Koren, A. M. Phillippy, and T. J. Treangen. RefSeq database growth influences
the accuracy of k-mer-based lowest common ancestor species identification. Genome Biol,
19(1):165, October 2018.

22 S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko, M. R. Vollger,
N. Altemose, L. Uralsky, A. Gershman, S. Aganezov, S. J. Hoyt, M. Diekhans, G. A. Logsdon,
M. Alonge, S. E. Antonarakis, M. Borchers, G. G. Bouffard, S. Y. Brooks, G. V. Caldas,
N. C. Chen, H. Cheng, C. S. Chin, W. Chow, L. G. de Lima, P. C. Dishuck, R. Durbin,
T. Dvorkina, I. T. Fiddes, G. Formenti, R. S. Fulton, A. Fungtammasan, E. Garrison, P. G. S.
Grady, T. A. Graves-Lindsay, I. M. Hall, N. F. Hansen, G. A. Hartley, M. Haukness, K. Howe,
M. W. Hunkapiller, C. Jain, M. Jain, E. D. Jarvis, P. Kerpedjiev, M. Kirsche, M. Kolmogorov,
J. Korlach, M. Kremitzki, H. Li, V. V. Maduro, T. Marschall, A. M. McCartney, J. McDaniel,

https://archive.softwareheritage.org/swh:1:dir:793f47e3260ebae1887b07175fe3087c8e93d1f8;origin=https://github.com/StephenHwang/MEMO;visit=swh:1:snp:b23bfa6e000a68e85c5b91961d022de194b4b86b;anchor=swh:1:rev:d61a1a995b8027ae3d3dbe449502e952321f7217
https://github.com/StephenHwang/MEMO
https://archive.softwareheritage.org/swh:1:dir:d69ad61b0d1d563b3945a978b1396fd81be04732;origin=https://github.com/StephenHwang/MEMO_experiments;visit=swh:1:snp:c6a9c4193f1f39f83e8987cf1f9dda2ad2fc3e2d;anchor=swh:1:rev:b47d8f5f8a1d7ff511dad707c79f168feef8469f
https://github.com/StephenHwang/MEMO_experiments
https://github.com/kjenike/panagram
https://github.com/kjenike/panagram
https://doi.org/10.1093/bioinformatics/btq671

S. Hwang et al. 4:15

D. E. Miller, J. C. Mullikin, E. W. Myers, N. D. Olson, B. Paten, P. Peluso, P. A. Pevzner,
D. Porubsky, T. Potapova, E. I. Rogaev, J. A. Rosenfeld, S. L. Salzberg, V. A. Schneider, F. J.
Sedlazeck, K. Shafin, C. J. Shew, A. Shumate, Y. Sims, A. F. A. Smit, D. C. Soto, I. Sović,
J. M. Storer, A. Streets, B. A. Sullivan, F. Thibaud-Nissen, J. Torrance, J. Wagner, B. P.
Walenz, A. Wenger, J. M. D. Wood, C. Xiao, S. M. Yan, A. C. Young, S. Zarate, U. Surti,
R. C. McCoy, M. Y. Dennis, I. A. Alexandrov, J. L. Gerton, R. J. O’Neill, W. Timp, J. M.
Zook, M. C. Schatz, E. E. Eichler, K. H. Miga, and A. M. Phillippy. The complete sequence
of a human genome. Science, 376(6588):44–53, April 2022.

23 A. Rhie, S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti, S. Koren, M. Uliano-Silva,
W. Chow, A. Fungtammasan, J. Kim, C. Lee, B. J. Ko, M. Chaisson, G. L. Gedman, L. J.
Cantin, F. Thibaud-Nissen, L. Haggerty, I. Bista, M. Smith, B. Haase, J. Mountcastle,
S. Winkler, S. Paez, J. Howard, S. C. Vernes, T. M. Lama, F. Grutzner, W. C. Warren,
C. N. Balakrishnan, D. Burt, J. M. George, M. T. Biegler, D. Iorns, A. Digby, D. Eason,
B. Robertson, T. Edwards, M. Wilkinson, G. Turner, A. Meyer, A. F. Kautt, P. Franchini,
H. W. Detrich, H. Svardal, M. Wagner, G. J. P. Naylor, M. Pippel, M. Malinsky, M. Mooney,
M. Simbirsky, B. T. Hannigan, T. Pesout, M. Houck, A. Misuraca, S. B. Kingan, R. Hall,
Z. Kronenberg, I. ć, C. Dunn, Z. Ning, A. Hastie, J. Lee, S. Selvaraj, R. E. Green, N. H.
Putnam, I. Gut, J. Ghurye, E. Garrison, Y. Sims, J. Collins, S. Pelan, J. Torrance, A. Tracey,
J. Wood, R. E. Dagnew, D. Guan, S. E. London, D. F. Clayton, C. V. Mello, S. R. Friedrich,
P. V. Lovell, E. Osipova, F. O. Al-Ajli, S. Secomandi, H. Kim, C. Theofanopoulou, M. Hiller,
Y. Zhou, R. S. Harris, K. D. Makova, P. Medvedev, J. Hoffman, P. Masterson, K. Clark,
F. Martin, K. Howe, P. Flicek, B. P. Walenz, W. Kwak, H. Clawson, M. Diekhans, L. Nassar,
B. Paten, R. H. S. Kraus, A. J. Crawford, M. T. P. Gilbert, G. Zhang, B. Venkatesh, R. W.
Murphy, K. P. Koepfli, B. Shapiro, W. E. Johnson, F. Di Palma, T. Marques-Bonet, E. C.
Teeling, T. Warnow, J. M. Graves, O. A. Ryder, D. Haussler, S. J. O’Brien, J. Korlach, H. A.
Lewin, K. Howe, E. W. Myers, R. Durbin, A. M. Phillippy, and E. D. Jarvis. Towards complete
and error-free genome assemblies of all vertebrate species. Nature, 592(7856):737–746, April
2021.

24 A. Rhie, S. Nurk, M. Cechova, S. J. Hoyt, D. J. Taylor, N. Altemose, P. W. Hook, S. Koren,
M. Rautiainen, I. A. Alexandrov, J. Allen, M. Asri, A. V. Bzikadze, N. C. Chen, C. S.
Chin, M. Diekhans, P. Flicek, G. Formenti, A. Fungtammasan, C. Garcia Giron, E. Garrison,
A. Gershman, J. L. Gerton, P. G. S. Grady, A. Guarracino, L. Haggerty, R. Halabian, N. F.
Hansen, R. Harris, G. A. Hartley, W. T. Harvey, M. Haukness, J. Heinz, T. Hourlier, R. M.
Hubley, S. E. Hunt, S. Hwang, M. Jain, R. K. Kesharwani, A. P. Lewis, H. Li, G. A. Logsdon,
J. K. Lucas, W. Makalowski, C. Markovic, F. J. Martin, A. M. Mc Cartney, R. C. McCoy,
J. McDaniel, B. M. McNulty, P. Medvedev, A. Mikheenko, K. M. Munson, T. D. Murphy,
H. E. Olsen, N. D. Olson, L. F. Paulin, D. Porubsky, T. Potapova, F. Ryabov, S. L. Salzberg,
M. E. G. Sauria, F. J. Sedlazeck, K. Shafin, V. A. Shepelev, A. Shumate, J. M. Storer,
L. Surapaneni, A. M. Taravella Oill, F. Thibaud-Nissen, W. Timp, M. Tomaszkiewicz, M. R.
Vollger, B. P. Walenz, A. C. Watwood, M. H. Weissensteiner, A. M. Wenger, M. A. Wilson,
S. Zarate, Y. Zhu, J. M. Zook, E. E. Eichler, R. J. O’Neill, M. C. Schatz, K. H. Miga, K. D.
Makova, and A. M. Phillippy. The complete sequence of a human Y chromosome. Nature,
621(7978):344–354, September 2023.

25 M. Rossi, M. Oliva, B. Langmead, T. Gagie, and C. Boucher. MONI: A Pangenomic Index for
Finding Maximal Exact Matches. J Comput Biol, 29(2):169–187, February 2022.

26 B. Shariat, N. S. Movahedi, H. Chitsaz, and C. Boucher. HyDA-Vista: towards optimal guided
selection of k-mer size for sequence assembly. BMC Genomics, 15 Suppl 10(Suppl 10):S9,
2014.

27 R. M. Sherman and S. L. Salzberg. Pan-genomics in the human genome era. Nat Rev Genet,
21(4):243–254, April 2020.

28 T. Shiina, K. Hosomichi, H. Inoko, and J. K. Kulski. The HLA genomic loci map: expression,
interaction, diversity and disease. J Hum Genet, 54(1):15–39, January 2009.

WABI 2024

4:16 MEM-Based Pangenome Indexing for k-mer Queries

29 The Apache Software Foundation. Parquet. https://github.com/apache/parquet-format,
2024.

30 T. Wang, L. Antonacci-Fulton, K. Howe, H. A. Lawson, J. K. Lucas, A. M. Phillippy, A. B.
Popejoy, M. Asri, C. Carson, M. J. P. Chaisson, X. Chang, R. Cook-Deegan, A. L. Felsenfeld,
R. S. Fulton, E. P. Garrison, N. A. Garrison, T. A. Graves-Lindsay, H. Ji, E. E. Kenny, B. A.
Koenig, D. Li, T. Marschall, J. F. McMichael, A. M. Novak, D. Purushotham, V. A. Schneider,
B. I. Schultz, M. W. Smith, H. J. Sofia, T. Weissman, P. Flicek, H. Li, K. H. Miga, B. Paten,
E. D. Jarvis, I. M. Hall, E. E. Eichler, and D. Haussler. The Human Pangenome Project: a
global resource to map genomic diversity. Nature, 604(7906):437–446, April 2022.

A Appendix

Table 3 HPRC index creation resources. Time (hours:minutes:seconds), CPU %, and peak
memory usage as output from /usr/bin/time. PanKmer was run in 20 rounds with 8 threads and
gzip-level 6. KMC3 was run with 8 threads and 20 GB max RAM. MEMO index creation relies on
MONI to find MSs. MONI was run single-threaded during the build step and with 8 threads during
MS finding.

Method Time CPU % Memory (GB)
PanKmer 30:18:55 684% 33.07
KMC3-M 03:40:20 514% 20.03
KMC3-C 05:38:59 380% 20.03

MEMO-M 23:13:49 4053% 151.58
MEMO-C 24:38:07 3827% 151.58

Table 4 VGP index resources. Time (hours:minutes:seconds), CPU %, and peak memory usage
as output from /usr/bin/time. PanKmer was run in 20 rounds with 1 thread and gzip-level 6.
KMC3 was run with 48 threads [default, max no. of CPU cores] and 12 GB max RAM. MEMO
index creation relies on MONI to find MSs. MONI was run with 8 threads for the build and MS
finding steps.

Method Time CPU % Memory (GB)
PanKmer 15:48:00 99% 273.52
KMC3-M 00:07:50 740% 12.02
KMC3-C 01:27:15 173% 12.03

MEMO-M 13:45:24 839% 278.85
MEMO-C 14:37:56 799% 278.85

https://github.com/apache/parquet-format

S. Hwang et al. 4:17

Table 5 Index scalability to the HPRC pangenome. Index sizes in GB of an increasing number
of HPRC autosomal haplotypes. MEMO indexes are anchored to T2T-CHM13.

Genomes MEMO-M MEMO-C KMC3-M KMC3-C PanKmer
9 0.33 0.34 128.19 15.41 14.57

18 0.59 0.59 256.31 15.85 15.58
27 0.81 0.80 384.42 16.21 16.54
36 0.97 0.95 512.58 16.48 17.39
45 1.16 1.13 654.98 16.79 18.36
54 1.36 1.31 768.88 17.11 19.36
63 1.57 1.51 897.07 17.43 20.40
72 1.94 1.74 1025.16 17.68 21.22
81 2.14 1.90 1153.31 17.87 22.44
89 2.35 2.04 1267.16 18.05 23.29

Table 6 Index scalability to the VGP pangenome. Index sizes in GB of an increasing number of
VGP genomes. MEMO indexes are anchored to the blenny genome.

Genomes MEMO-M MEMO-C KMC3-M KMC3-C PanKmer
4 1.79 1.93 37.95 34.63 31.68
8 3.76 4.18 65.86 59.31 56.41

12 5.64 5.41 100.51 96.23 94.09
16 7.41 6.61 131.23 129.81 126.57

WABI 2024

	1 Introduction
	2 Methods
	2.1 Methods Overview
	2.2 Preparing for the MEMO index
	2.3 MEMO index
	2.3.1 MEMO index with genome annotation
	2.3.2 MEMO index with order annotation

	2.4 Quantile-sampled conservation indexes
	2.5 Queries
	2.6 KMC3 index and query

	3 Results
	3.1 Indexing
	3.2 Pangenome scaling
	3.3 Querying pangenome membership & conservation

	4 Discussion
	A Appendix

