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Abstract
The field of population genetics attempts to advance our understanding of evolutionary processes.
It has applications, for example, in medical research, wildlife conservation, and – in conjunction
with recent advances in ancient DNA sequencing technology – studying human migration patterns
over the past few thousand years. The basic toolbox of population genetics includes genealogical
trees, which describe the shared evolutionary history among individuals of the same species. They
are calculated on the basis of genetic variations. However, in recombining organisms, a single
tree is insufficient to describe the evolutionary history of the whole genome. Instead, a collection
of correlated trees can be used, where each describes the evolutionary history of a consecutive
region of the genome. The current corresponding state of-the-art data structure, tree sequences,
compresses these genealogical trees via edit operations when moving from one tree to the next
along the genome instead of storing the full, often redundant, description for each tree. We propose
a new data structure, genealogical forests, which compresses the set of genealogical trees into a
DAG. In this DAG identical subtrees that are shared across the input trees are encoded only once,
thereby allowing for straight-forward memoization of intermediate results. Additionally, we provide
a C++ implementation of our proposed data structure, called gfkit, which is 2.1 to 11.2 (median
4.0) times faster than the state-of-the-art tool on empirical and simulated datasets at computing
important population genetics statistics such as the Allele Frequency Spectrum, Patterson’s f , the
Fixation Index, Tajima’s D, pairwise Lowest Common Ancestors, and others. On Lowest Common
Ancestor queries with more than two samples as input, gfkit scales asymptotically better than
the state-of-the-art, and is thus up to 990 times faster. In conclusion, our proposed data structure
compresses genealogical trees by storing shared subtrees only once, thereby enabling straight-forward
memoization of intermediate results, yielding a substantial runtime reduction and a potentially
more intuitive data representation over the state-of-the-art. Our improvements will boost the
development of novel analyses and models in the field of population genetics and increases scalability
to ever-growing genomic datasets.
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1 Introduction

Charles Darwin famously wrote that living beings share a common evolutionary history and
organize in a tree [6, 14]. Since then, hand-drawn trees based on morphological features [14,
21, 23] have been replaced by trees computed using mathematical and statistical models
taking into account variations among the genomic data of the observed species [50, 22].

Next to analyzing the evolutionary history among distinct species (phylogeny), the question
of how living and past individuals and populations of a single species, for example humans1,
have emerged, migrated, and how they relate to each other (genealogy) is also of interest.
Population genetics is the sub-field of evolutionary biology addressing these questions and
advances our understanding of evolutionary processes such as mutations, genetic drift, gene
flow, and natural selection [41]. Its downstream applications include for example medical
research [63, 47, 39, 3], wildlife conservation [24, 41, 59, 54], and – in conjunction with recent
advances in ancient DNA sequencing technology [48, 44, 52, 12] – studying human migration
patterns in the past few thousand years [2, 40, 53, 48].

1.1 Genealogical Trees, Tree Sequences, and Forests
Genealogical trees depict shared evolutionary history among genomes and are based the
genetic variation across sampled individuals [36]. Genetic loci (positions) which are identical
across all sampled genomes lack evolutionary signal and are therefore omitted. Hence, in this
work, genomic sequence or genome often refers to only those loci of the genome with variation
across the samples. In genealogical trees, tips (out-degree 0 nodes) represent biological
samples, that is, the genetic material of a single individual. Non-tip nodes, or inner nodes,
represent one or multiple sequence variations inherited from a single parent. These inner
nodes might be multifurcating, that is, they can have more than two children. Further, we
consider all genealogical trees to be rooted, that is, they have a node with an in-degree of 0
(i.e., no parent), which we call the root, and directed edges going away from this root. This
root is the hypothetical common ancestor individual of all tips in the tree.

Single trees cannot adequately describe processes in which individuals pass on different
parts of the genome independently [45]. This is seen, for example, in sexually reproducing
species with multiple genome copies (e.g., two in humans) [30]: Here, a process called recom-
bination causes the genetic material, organized in a DNA strand, to break and reconnect.

1 In this work, human always refers to homo sapiens.
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Figure 1 (a) Different, but correlated, trees each describe distinct regions of multiple aligned
genomes. The subtree (G1,G2) (pink) appears in all displayed trees, whereas the subtree
(G0,((G1,G2),G3)) (bronze) appears only in T0 and T2, but not in T1. (b) A tree describes
the genomic states of genomes at its tips by storing ancestral states and corresponding mutations
annotated at the tree edges (we show only a single genomic site). (c) tskit encoding of the three
trees from (a). tskit re-uses (G1,G2) but not (G0,((G1,G2),G3)), as the latter does not re-occur
in consecutive trees. (d) Our proposed encoding (gfkit) of the trees from (a). gfkit re-uses both,
(G0,G1) when describing T1, and (G0,((G1,G2),G3)) when describing T2. (e) Lowest Common
Ancestors of two (lca(G1, G3)) or more (lca(G0, G1, G3)) selected samples.

Thus, the closer two genetic positions are along the genome, the higher the chance for them
to have been inherited from the same parent [58]. Therefore, for recombining organisms, mod-
elling the (correlated) history of distinct regions along the genome using distinct (correlated)
trees captures the evolutionary history more accurately than a single tree [30]. Based on
this observation, Kelleher et al. [35, 36, 51] introduce (succinct) tree sequences (Figure 1.a),
which are collections of correlated genealogical trees, each describing the evolutionary history
of a range of adjacent sites along the genome. In the genealogical trees stored in tree
sequences, tips represent biological samples, edges represent lines of descent, and mutations
are meta-data associated with these edges (Figure 1). In tree sequences, the edges are valid
for a specified region of the genome, as they describe its evolutionary history. Statistics over
the topologies of genealogical trees (Section 1.2) and differences in the genetic code between
the observed genomes (Section 1.3) are frequently deployed in population genetics to conduct
quantitative assessments, e.g. how genetically diverse a population is.

1.2 Lowest Common Ancestor (LCA) Queries
The Lowest Common Ancestor (LCA)2 [1] of two or more tips in a tree is the lowest (farthest
from the root) inner node on all paths from the root to the tips (Figure 1.e). Population
geneticist employ LCA queries on genealogical trees for example to answer questions like “Did
the evolutionary history of genomes of group A and B separate at the time this land bridge

2 Also called the Most Recent Common Ancestor (MRCA).
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vanished?”. This involves computing the LCA of all genomes in A and B and estimating the
time of the resulting ancestor3 using methods beyond the scope of this paper. Note that
here, we extend the definition of LCA to also include more than two tips.

1.3 Differences in The Genetic Code Among Genomes
Alleles are concrete variants of genetic variation between genomes and encompass one or
multiple (related) genetic loci. This work considers only alleles consisting of single-loci
differences. For instance, a set of genomic sequences of human individuals might have the
alleles A and C at a specific genome site. We call a site with more than one allele polyallelic
(e.g., A, C, or T), or biallelic if it has exactly two alleles. The allele frequency is the proportion
of alleles at a given site, e.g., 80 As and 5 Cs (Figure 1.b). We often select only a subset
of the samples (tips in the genealogical tree) for a given query; which we call the selected
samples or sample set. The exponential number of possible sample sets yields pre-computing
all statistics of interest infeasible, necessitating algorithmic improvements.

Many statistics in population genetics are functions of allele frequencies [51]: For example
sequence diversity [46] measures the average genetic differences among the genomes of
individual samples in a single sample set (drawn from a single population). Other statistics
work on two or more sample sets, for example to assess the degree of sequence divergence [46]
between them. While we define these statistics per site, we often average them across many
or all sites in the input genome or within a sliding window over all sites of the genome.

1.4 The Need for Efficient Algorithms
Storing and processing the full genomes of all samples in contemporary datasets on a base-
by-base basis is infeasible as collections of hundreds of thousands of enomes exist for humans
alone [5, 42, 11, 61, 34, 53], with even larger datasets being sequenced and assembled.4 In
fact, the growth of genomic data outpaces the growth of computational power and storage
per unit of money [8]. Thus, we can not rely on increasing (sequential or parallel) processing
speeds to analyze these data. Instead, we require algorithms performing no more work than
minimally required by the problem5 (i.e., are compute-efficient) as well as highly optimized
implementations exploiting modern hardware features and leveraging data locality.

1.5 State of the Art and Contribution
Tree sequences allow for reducing the storage space required for a set of related genomes
by modelling the evolutionary history of the included samples, and reusing computations
in statistical queries [35, 36, 51]. For example, the human chromosome 20 in the Thousand
Genomes Project collection (Section 5) contains 5008 sequences with 860 thousand variant
sites; each sequence being in one of four potential states (A, C, T, or G) at each site [36]. This
results in a theoretical space requirement of 1 GiB if stored on a base-by-base basis using
2 bit per sequence and site – compared to the tree sequence file size of 283 MiB [36].

Additionally, a tree sequence stores the evolutionary history of each part of the genome
via the corresponding genealogical trees and allows reusing partial results between adjacent,
yet topologically distinct trees, thereby avoiding some – yet not all possible – redundant

3 Gfkit currently does not store coalescent times, but we plan on adding them (Section 8).
4 https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes
5 For some problems, the minimum work required might not be known.

https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes
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computations [35, 51]. This is because tree sequences reuse only intermediate results for
shared subtrees among adjacent trees along the genome [35, 51]. They do not allow reusing
intermediate results across trees further apart, if the respective subtree is not part of all
intermediate trees (Figure 1.c). Tree sequences use edit operations (edge insertions and
removals) to describe changes/differences in the tree topology from one tree to the next along
the genome; and thus across recombination events. Therefore, determining if a given subtree
was already present in an earlier tree is not trivial. For example, if an edge from node a to
node b (a → b) is removed and a (sans meta-data) identical edge a → b is added back a few
trees further down the genome, other edges might have changed in the subtree below node b,
thus invalidating the intermediate results for b.

The core concept of our data structure is to encode and store shared subtree across all (not
just adjacent) trees exactly once, enabling queries on the trees topologies (Section 3.3) and
genetic sequences (Section 3.4) to reuse intermediate results across all trees (memoization).

1.6 Overview of the Paper Structure

After providing an overview of related work (Section 2), we describe the core idea of our
proposed data structure gfkit (Section 3), as well as the implications of our design decisions.
Further, we describe gfkit’s query algorithm for computing the LCA (Section 3.3) and other
common statistics used in population genetics (Section 3.4). We also describe the conversion
of the tskit to the gfkit data structure (Section 3.6) as well as two variants of our data
structure (Section 3.5 and Section 3.7). Further, we evaluate the performance of gfkit
(Section 6), report speedups (Section 6.1 and Section 6.2) and analyze the created DAGs
(Section 6.3 and Section 6.4). Next, we discuss the space usage of gfkit vs tskit (Section 6.6)
and describe our qualitative observations concerning numerical stability (Section 7). Finally,
we conclude, and highlight possible direction of further work (Section 8).

2 Related Work

The genetic code of related species or individuals of the same species is highly redundant, even
when considering only variant sites [51]. Ané and Sanderson [4] thus propose compressing
related genomic sequences using a phylogenetic tree. Here, the tips of the tree represent the
genomic sequences, which are fully described by storing the ancestral state for each site at the
root and the respective mutations along the edges of the tree (Figure 1.b). Ané and Sanderson
primarily use a biologically reasonable evolutionary tree with an optimized parsimony score in
order to attain a good compression ratio but not for explicitly modelling evolutionary history.
Kelleher et al. [35, 36, 51] introduce so-called tree sequences, which model the evolutionary
history of a set of related genomes, allow reusing some intermediate results when computing
statistics on them, and enable space-efficient storage of these sequences (Section 1.5).

Matthews and Williams [43] compress a collection of trees by encoding each bipartition
exactly once. Here, a bipartition is a separation of a tree’s tips into two disjoint sets. Note,
that each edge of a tree induces a bipartition and thus the set of all bipartitions fully describes
a tree. However, this does not allow for direct access to the trees’ topologies, which we
require, for example, to compute the Lowest Common Ancestor (Section 3.3).

Directed Acyclic Graphs (DAGs) contain only directed edges and no path of length ⪈ 0
from a node to itself. The tree terminology introduced in Section 1.1 generalizes to DAGs:
We call out-degree 0 nodes tips, which represent samples and their associated genomes.
Contrary to trees, DAGs may have multiple root nodes, that is, nodes with an in-degree of 0.

WABI 2024
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Theoretical computer science has studied the compression of single trees via DAG-
compression [55, 10], tree grammars [17], and top-trees [9]. DAG-based compression reuses
identical (topology and label) subtrees, when occurring multiple times in the same tree. In a
tree, each node also induces/represents the subtree containing it and all of its descendants.
Thus, instead of encoding a subtree a second time, we add an edge to the node representing
the already encoded subtree, resulting in a DAG. In a single genealogical tree, all tips
(representing samples) are distinct and thus not compressible using DAG-based compression.
However, one can extend the idea of representing each unique subtree only once to forests by
reusing subtrees that are part of multiple trees (Section 3). Ingels [32, 31] implements this
idea, encoding a forest as a DAG. However, they focus on the enumeration of trees instead
of on reusing intermediate results during computations. Tree grammars and top-tree based
compression reuse tree patterns, that is any identically-connected subgraph (not necessarily
including all descendants) [9]. It remains an open question if top-trees6 can be used to encode
the set of related genealogical trees while supporting the required queries efficiently.

To the best of our knowledge, two phylogenetic tools use DAGs to memoize intermediate
results: ASTRAL-III, a tool for inferring a species tree from a set of topologically distinct gene
trees, represents and processes unique tip bipartitions only once [67]. Further, Larget [38]
uses memoization to compute the conditional clade probability only once per unique subtree.

Gene Recombination Graphs (GRGs) [15] encode the mutations of a collection of related
genomes as a DAG in order to re-use computations. GRG are conceptually similar to our
bipartition-based DAG (Section 3.5) and hence do not support LCA queries. Further, GRGs
do neither model the evolutionary history of the described genomes nor encode mutations
back to the ancestral state or recurrent mutations.

3 Design of the Genealogical Forest Data Structure

In recombining organisms, the collection of genealogical trees used to describe the related
evolutionary histories of different parts of the genome share common subtrees (a node
including all of its descendants).7 Thus, we propose a data structure which encodes each
unique subtree across all trees exactly once (Figure 1.d). We construct such a data structure
by contracting the set of unconnected trees to a Directed Acyclic Graph (DAG) where
each root node represents a tree and each non-root node represents a unique subtree in the
input set of trees. Here, we consider each sample to be a subtree containing only itself. If
two or more input trees share an identical subtree, the associated node in the DAG has
multiple incoming edges; see for example (B,C) in Figure 1.d. These resulting DAGs are
called multitrees [19]. In them, each subgraph and all nodes reachable from it induce a
tree. Additionally, there is exactly one path from each root to each tip. In analogy to
tree sequences (implemented in tskit), we call this data structure a genealogical forest and
provide an implementation called gfkit8. We choose this naming to highlight that the trees
describe genealogies and use the established term “forest” to describe a collection of trees.

We encode the (closely related) genomic sequences represented by the tips of the genealo-
gical forest analogously to tskit (Figure 1.b). For this, we make the biologically realistic
assumption that the evolutionary history of each genomic position is described by exactly
one tree. Several adjacent positions along the genome can and will often share the same

6 Minimal tree grammars are N P-hard to construct, and they do not support efficient navigation [9].
7 Branch lengths are irrelevant for genetic variation based statistics and the LCA, thus we omit them.
8 https://github.com/lukashuebner/gfkit; LGPL

https://github.com/lukashuebner/gfkit
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tree. This assumption can potentially be relaxed - see future work (Section 8). For each
site with genetic variation9, we store the ancestral state at the root and the respective
mutations along the edges of the associated tree. Note, that each edge in a tree might thus
be annotated by multiple mutations, as it describes the evolutionary history of multiple
genomic sites. Additionally, note that there might be multiple mutations per genomic site,
including recurring mutations and mutations back to the ancestral state.

3.1 Implications of Our Design

Nodes in a genealogical forest represent unique subtrees (Section 3). Thus, queries using the
trees’ topologies or the genetic sequences may easily reuse intermediate results on subtrees
shared by all trees (memoization). In contrast, tree sequences allow for reusing intermediate
results only among adjacent trees along the genome (see Section 1.5 for an explanation).
We implement this memoization by storing the intermediate results in a lookup table, using
the ID of the respective DAG node as the key. This memoization speeds up post-order
traversals on the DAG, which we use to compute the LCAs (Section 3.3) and allele frequencies
(Section 3.4), from which we derive numerous statistics in population genetics (Section 1.3).

3.2 Computing the Number of Selected Samples in a Subtree

A

ancestral: A

mutation A→T

T→A

T A T
state at tips

in sample set not in sample set

1 1

1

0

2

3

1

(b)(a) (c)

ancestral
A C A G

3 0 0 0

� A→ T
A C T G

1 0 2 0

� T→ A
A C T G

1 0 2 0n samples below

�

�

�

�
allele frequencies

Figure 2 (a) Encoding a set of four sequences (here: one site) using a tree, an ancestral state,
and mutations along the edges. (b) We compute the number of samples in the input sample set
below each node using a post-order traversal. We need this information in order to (c) compute the
allele frequencies (number of samples per genomic state) of each site by iterating over its mutations.

For each query to the genealogical forest data structure, the user selects a subset of the
forest’s samples to be considered (Section 1.3). Counting the number of selected samples
which are part of each subtree of the genealogical forest (represented by a node in DAG)
is an important building block for computing allele frequencies and the LCA. We define a
post-order traversal on a DAG as iterating over all of its nodes such that all children of a
node are processed before the node itself, thereby allowing us to reuse the intermediate result
for these children using memoization (Section 3.1). Thus, to count the number of selected
samples in each subtree, we assign v(t) = 1 for all tips t representing samples selected in the
user query and v(t) = 0 to all other tips. Next, we perform a post-order traversal on the
DAG by assigning to each node nk the sum over the values assigned to its children c(nk),
that is v(nk) =

∑
nc∈c(nk) v(nc) (Figure 2.b).

9 Invariant sites do not carry evolutionary information and are thus filtered out during pre-processing.
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3.3 Computing the Lowest Common Ancestor
We compute the Lowest Common Ancestor (LCA, Section 1.2) of two or more tips in all
trees represented by a genealogical forest using a variation of the algorithm described in
Section 3.2. For this, we exploit that in a genealogical forest DAG, there exists exactly one
path from each tip to each root. We chose this approach, as unrolling the DAG into a set of
trees and answering LCA queries using the well studied techniques for trees (e.g., Schieber
and Vishkin [56]) would require memory linear in the number of nodes per tree times the
number of trees. Further, using a LCA algorithm developed for general DAGs (e.g., Kowaluk
and Lingas [37]) is asymptotically slower as they cannot exploit the above property. First,
we assign each tip t selected as part of the query the tuple n(t) = (1,∅) and all tips not
selected the tuple n(t) = (0,∅). Here, the first element of the tuple counts the number of
selected samples which are part of the subtree represented by the node. We accumulate this
counter up the trees (bottom up from the tips) using a post-order traversal on the DAG.
Additionally, if for any node the sample counter is equal to the number of selected samples
for the first time, this node must be the LCA for this subtree. Thus, we store the ID of this
node in the second element of the tuple and propagate this value up the tree, instead of the
sample count. Note, that we might select multiple nodes in the DAG as LCAs in a single
query. However, as noted above, there is exactly one path from each tip to each root. This
ensures that for each root in the DAG (representing a genealogical tree), we pick exactly one
node that is reachable from this root as the LCA.

The runtime of this algorithm depends on the number of edges in the DAG, but not on
the number of samples in the input sample set. Thus, computing the LCA of a large subset
of the samples takes no longer than computing the LCA of only two samples (Section 6.2).

Note, that we could modify this algorithm to compute an almost-LCA- the lowest node
under which “almost all” samples are located. This could increase the robustness of the
biological interpretation against single “rogue” samples which were erroneously included in
the input sample set and cause the LCA to be much higher than it would be without them.

3.4 Computing the Allele Frequencies and Derived Statistics
Most population genetics statistics depend on the allele frequencies [51], that is, how many
As, Cs, Ts, and Gs we observe at a given site. We are interested only in variant sites, where at
least two of these counts are > 0. Also, the allele frequencies at different genomic sites are
evidently independent of one another. Again, we allow for selecting a subset of samples for a
query. Given a query, we first count the number of selected samples contained in each subtree
represented by the nodes in the genealogical forest DAG (Section 3.2). Let S = {A, C, T, G} be
the set of alleles (here: possible genomic states) and n(∗) be the number of selected samples.
For each site, we intend to compute the number of selected samples n(x) which exhibit allele
x ∈ S. First, we set all samples to be in the ancestral state, that is n(xancestral) = n(∗) and
n(x) = 0 for all other x (Figure 2.c). Next, we iterate over the mutations at this site: Each
mutation is associated with a subtree in the DAG and changes the state xi ∈ S of all samples
contained in this subtree to the state xj ∈ S. We thus successively decrement n(xi) and
increment n(xj) by the number of selected samples contained in the respective subtree.

From the allele frequencies, we now derive numerous population genetics statistics. The
sequence diversity [46], for instance, reflects the probability that two random sequences differ
at a random site (both chosen uniformly at random). Segregating Sites are sites exhibiting
more than one allele (i.e., polyallelic sites). The Allele Frequency Spectrum (AFS) [18] is a
histogram over the allele frequencies. Some statistics also work on multiple sample sets. For
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example the sequence divergence [46] is the probability that two sequences – each chosen
uniformly at random from its own sample set – differ at any given site. More elaborate
statistics can be derived from the above basic statistics, using up to four disjoint sample sets.
Examples include Patterson’s f2,3,4 [49], Tajima’s D [60], and the Fixation Index (FST) [66].

3.5 Memoizing on Shared Bipartitions
In contrast to computing the LCA, computing the allele frequencies is independent of the
actual tree topologies as it requires only the sample bipartitions induced by the subtrees
associated with the mutations. Remember, that these bipartition separate all tips of a tree
into two disjoint sets (Section 2). For example, two identical mutations in two distinct
subtrees ((G0,G1),G2) and (G0,(G1,G2)) will identically affect the respective allele
frequencies. Memoizing on shared bipartitions allows reusing (slightly) more intermediate
results than memoizing on shared subtrees (Section 6.5). Next, we detail the construction of
the regular (unique subtrees) genealogical forest and this variant (unique bipartitions).

3.6 Constructing the Genealogical Forest DAG

h(0) h(1) h(2) h(3)

h(h(h(1)⊕ h(2))⊕ h(3))

h(h(1)⊕ h(2))

h(h(h(h(1)⊕ h(2))⊕ h(3))⊕ h(0))(a)

G0 G1 G2 G3

h(0) h(1) h(2) h(3)

h(1)⊕ h(2)⊕ h(3)

h(1)⊕ h(2)

h(1)⊕ h(2)⊕ h(3)⊕ h(0)(b)

G0 G1 G2 G3
subtree IDs bipartition IDs

Figure 3 (a) Four sample genomes mapped to ti ∈ 0, 1, 2, 3. The unique subtree IDs of the tips
(i.e., samples) are h(ti) where h is a pseudorandom hash function. We compute the unique subtree
IDs for non-tip nodes by applying h to the exclusive or (⊕) of all of its children. The resulting ID
uniquely identifies a subtree including its topology. (b) Not breaking the linearity of the ⊕ results
in a unique ID per set of samples in a subtree (i.e., not including its topology; called bipartition).

In order to construct the genealogical forest DAG, we assign unique IDs to all subtrees
of the genealogical trees forming the input. For this, let h be a pseudorandom hash-
function. We start by assigning unique subtree IDs to the tips T = {t0, t1, . . . , t|T |−1} of the
tree: id(t0) = h(0), id(t1) = h(1), . . . , id(t|T |−1) = h(t|T |−1). We then compute the unique
subtree ID of each non-tip node by applying the bitwise exclusive or (⊕) over all of its
children, followed by hashing the result using h (Figure 3.a). That is, for a node n with
children c(n), we compute id(n) = h(⊕j∈c(n)id(j)). By using a symmetric function – i.e.,
id(j) ⊕ id(i) = id(i) ⊕ id(j) – we ensure, that the order by which we process the children
does not affect the resulting subtree ID. In order for the actual topology of the subtree to
influence its ID, we break the linearity of the ⊕ operator using a hash function. Otherwise,
the ID would solely be determined by the bipartition induced by the respective subtree. For
example, the following two subtrees would have the same subtree ID: ((A,B)C) & (A(B,C)).

Using a 128 bit hash function, ensures a collision probability of 10×10−16 when computing
≈3.8 × 1011 hashes [7]. This corresponds approximately to the probability of a single bit-flip
occurring at any given second in the 128 bit needed to output a single subtree ID [57].

As noted in Section 3.5, the allele frequencies are invariant w.r.t. the actual topology of
a subtree, and solely by the samples contained in it. For computing a unique bipartition
ID, we therefore remove the linearity-breaking hash function h from the computation of the
non-tip IDs, i.e., id(ni) = ⊕j∈c(n)id(j) for any non-tip node n.
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Construction Algorithm

We construct the genealogical forest DAG from a given set of trees, by iterating over the input
trees10 and processing the nodes of each tree in post-order. For each tree node (representing
the subtree induced by it and its descendants) encountered during this post-order traversal,
we compute the unique subtree ID and add the subtree to the DAG if it is not already
present. For the sake of simplicity, we ensure that there exists exactly one distinct root in
the DAG for each tree in the collection of input trees. Even if two trees are topologically
exactly identical, each is represented by a separate root node in the DAG. They of course
still share all subtrees below their respective, distinct, root node.

Recent versions of tskit provide information on which edges were inserted or removed
when moving from one tree to the next along the genome. We exploit this information in
order to recompute only those subtree IDs that might have changed, that is, all subtrees
induced by nodes which are on the path from a changed edge to the tree root. Using this
information results in speedups of 2 to 5, depending on the dataset.

Analogously to tskit, we encode the genomic sequence by storing the ancestral state as
well as the respective mutations annotated at nodes of the DAG for each genomic site.

3.7 Balanced-Parenthesis Encoding of a Forest

Instead of encoding a genealogical forest as a DAG using explicit nodes and edges, an encoding
extending the balanced parenthesis encoding for trees [33] with back-references is possible.
This encoding is space-efficient and a post-order traversal over a balanced parenthesis encoded
tree is a simple linear scan. Exploring the full design space of this approach and providing
an efficient implementation represents an interesting challenge. However, initial experiments
did not yield substantial speedups, and hence we do not repeat them here.

4 Experimental Setup

We implement our algorithms in C++20 and build our tool using CMake 3.25.1, gcc 12.1,
and ld 2.38. We run our experiments on an AMD EPYC 7551P processor running at
2 GHz with 64 MiB of shared L3, 512 KiB of core-local L2, 32 KiB of core-local L1 data, and
64 KiB core-local L1 instruction cache. We use 8 banks of 32 GiB DDR4 RAM running at
2667 MT s−1. As our experiments are single threaded, only a single socket is being used. We
compare tskit git rev 77faade5 and gfkit version fbd2740.11

5 Datasets

We evaluate our method on three freely-available empirical human (GRCh38) tree sequence
collections (see Appendix for details): Thousand Genomes Project (TGP) [5] phase 3
autosomes, Simons Genome Diversity Project (SGDP) [42] autosomes, and the collection
inferred by Wohns et al. [64] (“Unified”). We use all 22 autosomes for each of these collections
in our experiments. We choose these specific tree sequence collections because to the best of
our knowledge they constitute the only publicly-available empirical collections at present.

10 The order of trees in not relevant.
11 https://github.com/tskit-dev/tskit and https://github.com/lukashuebner/gfkit

https://github.com/tskit-dev/tskit
https://github.com/lukashuebner/gfkit
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Additionally, we simulate a human dataset containing 640 000 samples (see Appendix for
details). As we do not observe substantial runtime differences between distinct chromosomes
of the empirical genomic data collections, we limit our simulated data benchmarks to
chromosome 20 to conserve computation resources and reduce our CO2 footprint.12

6 Evaluation

We evaluate the implementation of our proposed data structure “genealogical forests” (gfkit)
regarding query speed (Section 6.1 and Section 6.2) and storage space used (Section 6.6).
Additionally, we assess the algorithmic reasons for the obtained speedups (Section 6.4 and
Section 6.3) and report the time required to convert tskit tree sequences into the gfkit
data structure (Section 6.7).

6.1 Speedup for Computing Statistics Based on the Allele Frequencies

We evaluate the runtime of our proposed genealogical forest data structure and its associated
implementation gfkit by comparing it to the state-of-the-art reference implementation of tree
sequences, tskit. We benchmark the runtimes of various important statistics in population
genetics (Section 1.3), including statistics that are based on the allele frequencies (e.g., AFS)
as well as on the topology (LCA). We use 10 repeats for each runtime measurement on each
of the 22 autosomal chromosomes of each empirical collection (TGP, SGDP, and Unified; see
Section 5) and on chromosome 20 of the simulated dataset. The mean standard deviation
of runtimes across the 10 repeats of each statistic, collection, and chromosome is below
1.3 %. We report a median speedup of 4.0 of gfkit (ours) over tskit (state-of-the-art) for
computing various allele frequency-based statistics (Figure 4). The absolute runtimes range
from 775 to 1770 ms for tskit and 152 to 340 ms for gfkit.

Figure 4 Speedup of gfkit (ours) over tskit (state-of-the-art) for computing statistics on three
empirical and one simulated dataset (human). The bars indicate the speedup range and the dot
the median speedup across all chromosomes of the respective collection. We use all 22 autosomal
chromosomes from the Thousand Genome Project (TGP), Simons Genome Diversity Project (SGDP),
and the Unified collection. We use chromosome 20 of a simulated human collection containing
640 000 samples. AFS: Allele Frequency Spectrum. f{2,3,4}: Patterson’s f . Fst: Fixation Index.

12 Wohns et al. [64] use chromosome 20, as they consider it representative for genome-wide patterns.
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Profiling using Intel VTune shows that gfkit spends over 90 % of its runtime in the post-
order traversal during the computation the allele frequencies. The numerical computations
for the actual statistics thus amount for less than 10 % of runtime. Therefore, the number
of nodes in the genealogical forest DAG, as well as the in-degree of those nodes appear to
constitute the dominating runtime factors. These values correspond to the number of unique
subtrees in the genealogical trees used to construct the genealogical forest, and the number of
times that an intermediate result can be reused during the post-order traversal, respectively.
Thus, we provide more details on these measurements (Section 6.3 and Section 6.4).

6.2 Speedup for Computing the Lowest Common Ancestor
We compare gfkit’s and tskit’s runtimes for computing the Lowest Common Ancestor
(LCA) of two (“pairwise”) or more samples. The asymptotic runtime of gfkit’s LCA-
algorithm (Section 3.3) does not depend on the number of selected samples. In contrast,
given three or more samples, tskit performs an analogous number of LCA-queries: First,
it computes the LCA of two arbitrary samples, which it subsequently uses as input for the
next LCA query; together with another sample from the input. After processing all samples,
tskit obtains the overall LCA. Therefore, tskit’s LCA-algorithm scales linearly with the
number of samples in the input.

Figure 5 Speedup of gfkit (ours) over tskit (state-of-the-art) for computing the Lowest Common
Ancestor (LCA) of every n-th sample in the dataset. The runtime of gfkit’s LCA-algorithm does
not depend on the number of samples in the sample set. In contrast, the runtime of tskit’s
LCA-algorithm depends linearly on the number samples in the sample set.

We report the speedups of gfkit over tskit when computing the LCA (Figure 4 and
Figure 5). In order to save computational resources and reduce our environmental footprint,
we perform only 3 repeats when computing the LCA of more than two samples using tskit
(runtime up to 34 min). We observe speedups of gfkit over tskit of 5.5 (median) for
pairwise queries, 208 (median) when selecting 10 % of the samples, and 990 (median) when
selecting 50 % of the samples as input sample set. Experiments on the simulated dataset
took 64 min for gfkit (median 155 ms per query) but did not finish for tskit in a week.

6.3 Proportion of Subtrees that are Unique
Each query spends the majority of its time in the post-order traversal. Thus, the number of
nodes and edges in the gfkit DAG is the determining runtime factor. The number of unique
subtrees in the input tree set determines the number of nodes in the DAG. We report the
number of overall subtrees in the input as well as the absolute and relative number of unique
subtrees (Table 1). For example, in the TGP collection, 0.48 % (mean) of the subtrees are
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unique per chromosome. Additionally, we report that the absolute number of unique subtrees
in a simulated dataset (human, chromosome 20) with 640 000 samples is not substantially
higher than for the shown empirical collections containing 554 to 7508 samples, respectively.

Table 1 Number of overall and unique (i.e, distinct) subtrees and the proportion of subtrees that
are unique. The ranges given cover all 22 autosomal chromosomes of the respective collection. We
report the arithmetic mean and standard deviation across all chromosomes of a collection. TODO
Check new Trees column.

Collection Chr. Samples Trees
×106

Subtrees
×106

Uniq. Subtrees
×106

Uniq. Subtrees
/ Subtrees

SGDP all 554 0.1 to 0.7 84 to 587 1.8 to 11 0.020 ± 0.001
TGP all 5008 0.3 to 2.1 2150 to 14 916 11 to 69 0.0048 ± 0.0003
Unified all 7508 0.04 to 0.2 698 to 2708 3.2 to 18 0.006 ± 0.002
Sim. 640k 20 640 000 0.5 695 185 14 0.000 02

In conclusion, only 0.002 to 2 % of the subtrees in the tested collections are unique. This
proportion decreases as we add more samples (and thus subtrees) from the same species.
This is due to the absolute number of unique subtrees not increasing substantially for larger
collections, thus, neither does the runtime of the queries. The number of mutations per
subtree is 3 to 4 orders of magnitude smaller13 for the 640 000-sample dataset compared to
the collections with ≤ 7508 samples. Therefore, there is less signal to resolve the evolutionary
history of the samples, possibly leading to larger unresolved subtrees. It remains an open
question how other data characteristics (for example the species when not considering human
populations) influence the number of unique subtrees.

6.4 Reusing Shared Subtrees
Apart from to the number of nodes in the gfkit DAG, the number of edges also influences
the runtime of the post-order traversal. However, the proportion of edges to nodes also serves
as an indicator for memoization performance. During the post-order traversal, the in-degree
of a node is equal to the number of times its result is used (and reused). We report the mean
in-degree across all non-root nodes in all trees across all chromosomes of each collection
(Appendix). Thus, each intermediate result on a unique subtree is reused on average 4.12
(SGDP), 5.48 (TGP), 5.59 (Unified), or 5.10 (Simulated 640k) times.

6.5 Speedups when Memoizing on Shared Bipartitions
We also benchmark queries on the bipartition-DAG described in Section 3.5. Here, we
observe a median speedup of 4.7 over tskit across all empirical collections (Appendix).
Queries on the bipartition DAG are on average 1.14 ± 0.09 (mean ± sd) times faster than
on the subtree-DAG. There are 5 to 20 % fewer unique bipartitions than there are unique
subtrees; corresponding to fewer nodes in the bipartition-DAG. The average in-degree in
the bipartition-DAG, and thus number of times we reuse an intermediate result, ranges
from 4.44 to 5.20 (Appendix), compared to 4.12 to 5.49 on the subtree-DAG. These two
measurements explain the (moderately) faster runtimes of the bipartition-DAG compared to
the subtree-DAG. However, as the bipartition-DAG does not support topology-aware queries
(e.g, LCA), we do not consider the tradeoff worthwhile with respect to the increased code
complexity and storage unless additional optimizations further reduce the runtimes.

13 Mutations per subtree: ≈ Sim. 640k: 0.000 000 7, SGDP: 0.002, TGP: 0.0002, and Unified: 0.003
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6.6 Storage Space Needed for Encoding the Forest

In a sense, the genealogical forest DAG factors-out all unique subtrees that a tree sequence
describes using edge insertions and removals. Concerning the space usage, there are two
contrary effects at play here: On the one hand, tree sequences store some identical subtrees
multiple times, but using distinct edges and/or nodes. On the other hand, a single edge inser-
tion or removal can induce multiple new subtrees along the path from the insertion/removal
point up to the tree root. In the first case, genealogical forest are the more space-efficient
representation, in the second case, tree sequences are.

In order to quantify the trade-off between the two effects, we compare the size of the
genealogical forest DAG against the size of the respective tree sequence. However, the
tree sequence implementation tskit stores a variety of additional meta-data, to support
operations which we currently do not implement in gfkit. We thus perform a theoretical,
instead of an empirical space requirement comparison.

A tree sequence as well as a genealogical forest could minimally be described by its
(directed) edges plus sequence information. Let ι be the number bits needed to encode a node
ID and ϕ be the number of bits needed to encode a position in the genome. Thus, choosing an
edge list (see below) we need 2 · ι bit for each edge in a genealogical forest. In tree sequences,
an edge is valid for a specified region of the genome, requiring 2 · ϕ additional bits per edge
to store this information. Note, however, that the number of nodes and edges differs between
tskit and gfkit and these numbers are thus not directly comparable. Additionally, we
cannot arbitrarily sort tskit’s edges without incurring a performance penalty, as we require
the insertion order in order to efficiently move from one tree to the next along the genome.14

In gfkit, all outgoing edges of a node could be stored consecutively in an edge list, which
would allow omitting some of the from node IDs, conceptually creating an adjacency array.

Both, tskit and gfkit, describe the genomic sequences using one ancestral state and a
list of mutations per genome site. We can encode each mutation using a site ID, the node
ID at which the mutation occurs, plus the derived state. Let s be the number of sites, σ

be the number of bits per site ID, γ be the number of bits per genomic state, and m be
the overall number of mutations. The sequence information thus (theoretically) requires
s · γ + m · (σ + ϕ + γ) bit. In practice, tskit and gfkit store additional information: For
example, in order to avoid traversing up the tree to the parent mutation (or root node),
tskit stores a pointer to the parent mutation (64 bit) and gfkit stores the parent mutation’s
state (2 bit). However, we omit these and other implementation-specific constants here.

Table 2 Theoretical space usage of tskit vs gfkit. The description of the trees is substantially
larger than the description of the sequence (ancestral states and mutations). tskit encodes the trees
as a tree sequence (Section 1.5), whereas gfkit encodes them using a genealogical forest (Section 3).

Collection Chr. tskit gfkit Sequence
SGDP all 1076 MiB 3891 MiB 123 MiB
TGP all 4577 MiB 32 134 MiB 310 MiB
Unified all 1684 MiB 7843 MiB 874 MiB
Sim. 640k 20 53 MiB 198 MiB 3.74 MiB

14 We could determine the deletion order on the fly by using a priority queue containing only the currently
active edges.
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For our calculations (Table 2), we assume ι = ϕ = σ = 32 bit integers for node IDs,
site IDs, and genomic positions15 and four possible genomic states, thus γ = 2 bit. We
conclude that the edge removals and insertions used to store the set of genealogical trees
by tskit are more-space efficient than gfkit’s method of storing a node for each unique
subtree. However, we argue that, as the differences are in the same order of magnitude than
implementation-specific constants (e.g., choice of data-types or explicitly storing IDs), one
could mitigate against this effect. Therefore, it remains a tradeoff between query-speed and
space usage. It is subject of future work to evaluate the genealogical forest variants using
the compressed edge list (above) and the balanced parenthesis representation (Section 3.7).

6.7 Converting Tree Sequences to Genealogical Forests
To the best of our knowledge, there is no fundamental reason why tools could not output
genealogical forests instead of tree sequences once we add support for storing coalescent
times (Section 8). Currently, however, these tools output the established tskit format – and
will probably continue doing so for a while, since the current implementation of our data
structure, does not support all features of tskit yet. While we provide corresponding gfkit
files (Appendix) for the openly available tskit collections (Section 5), the time taken to
convert tskit to gfkit input files is not negligible in general.

Kelleher et al. [36] report tree sequence inference times of 5 min for chromosome 20 of
SGDP (Section 5) and 2 h for chromosome 20 of TGP using 40 cores. We convert their output
files from the tskit to the gfkit format on a single core in 6.5 s and 123 s respectively. We
thus argue that one can convert empirical collections in a negligible amount of time compared
to the time required for inferring them. Additionally, in principle, tree sequence inference
could directly output the gfkit format, thereby entirely eliminating the conversion step.

7 Numerical Stability

Basic operations such as additions or multiplications on IEEE 754 floating point numbers
always induce rounding errors [20]. The magnitude of these errors directly depends on the
difference order of magnitude between the two operands. Thus, computing running sums,
where we sum many small values to an ever-growing sum, is particular rounding-error prone.

We often compute statistics in population genetic per site (Section 1.3) and then average
over all sites. Using a running sum, as currently implemented in tskit and gfkit, leads
to increasing round-off errors the more variant genetic sites there are. Some statistics, like
Patterson’s f4 entail multiplying the number of samples in four different sample sets. With
more than 262 143 samples16, the product might exceed a 64 bit integer. We (for the sake
of result verification), as well as tskit, thus choose to represent these products as 64 bit
IEEE 754 floating point numbers, potentially introducing substantial numerical errors.

It is currently unknown if errors introduced by these simplifications influence the biological
interpretation of the results. Further, rounding errors imply that the order of operations
influences the result, even though the input operands are bit-identical, thus impacting
reproducibility. Even when the software version and the random seeds are fixed, different
algorithms, compiler optimizations, or degrees of parallelism influence the order of operations.
Reports on these effects influencing the results of scientific computations exist for example
in the fields of phylogenetics [13], sheet metal forming [16], and fluid simulations [62].

15 This is true for gfkit. However, tskit uses ϕ = 64 bit IEEE 754 floating points for genomic positions.
16 When the four sample sets have the same size: (262144/4)4 = 264
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An analysis of the impact of numerical errors on population genetics statistics, their
downstream analyses, and result reproducibility is needed. Ideally, a standardized order of
calculations would lead to all software in the field outputting comparable and reproducible
results with well-understood numerical inaccuracies. Further, results should be invariant
under addition of further, but ignored in the query at hand, genomes and mutations to
the dataset. Given numerical calculations require less than 10 % of overall runtime, we are
optimistic that introducing arbitrary precision calculations could have negligible overhead.

8 Conclusion and Future Work

In recombining organisms, a set of genealogical trees is often used to describe the evolutionary
history of the studied samples. While tree sequences (tskit) compress these trees using
edit operations from one tree to the next along the genome, genealogical forest (gfkit)
compresses them into a DAG where each node represents a unique subtree of the input
(Section 3). While the genealogical forest encoding (theoretically) requires a factor 3.6 to 7.0
more space than tree sequences (Section 6.6), it also yields speedups by a factor of 2.1 to 11.2
(median 4.0) when computing pairwise LCA queries and important statistics in population
genetics (e.g., sequence diversity). In contrast to tskit’s LCA-algorithm, the runtime of
gfkit’s LCA-algorithm does not depend on the number of samples selected in the query.
Thus, gfkit’s LCA queries are substantially faster, e.g. a speedup of 208 (median) when
querying 10 % of samples and a speedup of 990 (median) when querying 50 % of samples.
Additionally, we describe, implement, and benchmark an alternative data structure, which
represents the set of genealogical trees as a DAG in which each node represents a unique
bipartition in the input. This variant is slightly faster but does not support topology-aware
queries (e.g., LCA). To explain this, we show, that subtrees containing the same samples but
having a different topology are actually rare in the analyzed datasets.

As more genomes are being sequenced, future datasets will contain a multiple of today’s
samples. However, we observe speedups (and runtimes) comparable to the largest existing
empirical datasets for a simulated human dataset with 640 000 samples (Section 6.1). We
show, that this might be due to the number of unique subtrees being comparable to those
of current empirical datasets with at most 7508 samples, thus resulting in DAGs of about
the same size. As the post-order traversal on the genealogical forest DAG takes up over
90 % of a query’s runtime, the size of this DAG is the determining runtime factor. Which
characteristics of the input influence the number of unique subtrees remains an open question.

Tskit was not build in a day and neither was gfkit. Currently, gfkit does not support
all tskit features, yet most of these other features should be straightforward to implement.
For example, gfkit currently supports only sample weights of 0 and 1 (a sample is in
the sample set, or it is not), as these are sufficient for implementing the allele frequencies
and derived statistics as well as LCA queries. Further, gfkit currently supports only site
statistics on the entire genome, that is, neither branch- nor node-based statistics as well as
no sliding windows over the genomic sites. We plan on adding support for storing coalescent
times at inner nodes, enabling branch-length based statistics and the application of LCAs
described in Section 1.2. Additionally, gfkit assumes that for each genomic site, a single
tree describes the evolutionary history of all tips, while tskit allows for multiple (partial)
trees. Tree sequences are an instantiation of Ancestral Recombination Graphs and can be
augmented with nodes representing a recombination event between to individuals [65]. In a
genealogical forest each tree describes the evolutionary history of a part of the genome. Thus,
the full genetic code of an individual is described by a subset of nodes and a recombination
event can be annotated between these subsets. This is, however, not implemented yet.
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Next to lifting these limitations, additional improvements include evaluating a top-tree
based genealogical forest (Section 2) and extending LCA queries with more than two samples
to also report ancestors which are common to “almost all” selected samples, thus making the
query robust against single samples erroneously included in the query (Section 3.3).

Tree sequences opened up new possibilities of storing and processing large sets of gene-
alogical trees and sequences used in population genetics. Genealogical forests provide a
substantial reduction in runtime for site-based statistics and LCA calculations over the
state-of-the-art. Additionally, they make developing efficient algorithms more intuitive as
these algorithms can be implemented for example as a post-order traversal with automatic
reuse of intermediate results. We believe that these improvements will boost the development
of new analyses in the field of population genetics. For instance, they might be used for
developing appropriate optimization criteria and techniques for automatically determining
subpopulations.
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A Dataset Details

Tree sequence datasets were inferred using tsinfer [36] version 0.2.1 and dated using
tsdate [64] version 0.1.4. The description on Zenodo is incorrect; see: https://tskit-dev.
slack.com/archives/C010834D669/p1713340040404519. We simulate the “Sim. 640k”
dataset containing 640 000 samples using stdpopsim 0.2.017 and the HapMapII_GRCh38
genetic map. We convert tree sequence to genealogical forest files via gfkit version fbd2740.

Collection Chr. Format Author Link
SGDP all tskit Wohns et al. [64] https://doi.org/10.5281/zenodo.3052359
SGDP all gfkit us https://doi.org/10.5281/zenodo.11241730
TGP all tskit Wohns et al. [64] https://doi.org/10.5281/zenodo.3051855
TGP all gfkit us https://doi.org/10.5281/zenodo.11241619
Unified all tskit Wohns et al. [64] https://doi.org/10.5281/zenodo.5495535
Unified all gfkit us https://doi.org/10.5281/zenodo.11241788
Sim. 640k 20 tskit us https://doi.org/10.5281/zenodo.11241938
Sim. 640k 20 gfkit us https://doi.org/10.5281/zenodo.11241938

B Reusing Shared Bipartitions

Table 3 Average in-degree of non-root nodes in the gfkit DAG. The in-degree of a node in the
DAG is equal to the number of times its intermediate result is reused during the post-order traversal.

Dataset Chr. Mean In-degree
Bipartition

Mean In-degree
Subtree

SGDP all 4.44 4.12
TGP all 5.89 5.48
Unified all 5.20 5.49
Sim. 640k 20 — 5.10

17 https://github.com/popsim-consortium/stdpopsim
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C Speedups Using the Bipartition-DAG

Figure 6 Speedup of gfkit (ours) over tskit (state-of-the-art) when computing various statistics
on three empirical and one simulated dataset (human). The bars indicate the range of speedups
and the dot the median speedup across all chromosomes of the respective collection. We use all 22
autosomal chromosomes for Thousand Genome Project (TGP), Simons Genome Diversity Project
(SGDP), and the Unified collection. We use chromosome 20 of a simulated human dataset with
640 000 samples.
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